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CHAPTER I

INTRODUCfION

The juvenile phase of the life cycle of the Dungeness crab, Cancer magister

(Dana) is either spent in shallow estuarine zones or in coastal waters. In the estuary,

salinity levels change with the tide, food resources are variable, and large temperature

changes may occur seasonally, daily and diurnally (Leffler 1972; Newe111976). Young

crabs must have the ability to compensate for this environmental variability in order to

survive in a wide range of habitats. If an organism can tolerate change, the possible

benefits derived from an estuarine existence include refuge from larger cannibalistic

conspecifics, arid accelerated growth as a result of more abundant food supplies and

warmer temperatures than are found in offshore waters (Botsford and Wickham 1978;

Stevens et al. 1982).

The populations of juvenile C. magister crabs that inhabit nearshore coastal waters

experience lower temperatures and presumably decreased food availability (Tasto 1983;

Armstrong and Gunderson 1985). These field studies found growth rates of C. magister

to be substantially slower in colder nearshore coastal waters than in warmer estuarine

waters. Development of C. magister either inside or outside the estuary raises interesting

questions regarding the influence of environmental factors on development. It is

important to conduct empirical studies of crab physiology and development, to gain an
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understanding of the mechanisms that allow juveniles to exploit coastal estuaries or

colder nearshore waters.

The primary questions addressed by this investigation are first, how flexible is

growth in juveniles of C. magister in response to environmental conditions? And two, is

the expression of adult Hc fixed to a specific developmental stage? In the present

investigation, juveniles of C. magister were reared from megalopas under controlled

conditions in the laboratory to study the effects of temperature and food limitation on

growth and development. Growth was measured in terms of intermolt period and size at

molt, and development was monitored by observed changes in the subunit composition of

the hemocyanin of C. magister as determined by gel electrophoresis. Specifically, I

hypothesized that increased temperature and increased food availability would accelerate

growth, molting, and the appearance of adult hemocyanin.

Life History

The ability of C. magister to exist in both estuarine and nearshore environments is

due in part to its life cycle. Cancer magister shows tremendous diversity in body

structure, mode of feeding, and habitat range during its life cycle. Mating usually occurs

in coastal locations in late spring to early fall when intermolt males search out premoIt

females through a pheromonal homing system (Pauley et al. 1986). Several days prior to

the female's molt, the male clasps the female in a mating embrace. The male usually

stays with the female until after she molts; he deposits spermatophores in her

spermatothecae while her exoskeleton is still soft. Fertilization occurs as the female
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extrudes the eggs in the autumn. In Oregon, females usually carry embryos (up to 1.5

million) from October to January, when young C. magister zoeae hatch (Rudy and Rudy

1983). The five swimming zoeal stages occur in nearshore waters and progressively

move offshore. Larval duration is lengthy, ranging anywhere from 45 to 158 days

depending on environmental conditions (Jamieson and Phillips 1988). During its

planktonic existence as a zoea and then as a megalopa, C. magister feeds on

phytoplankton, is photopositive to moderate light (Jacoby 1982), and can exhibit diel

vertical migration (Hobbs and Botsford 1992). The zoeae metamorphose into megalopas

and settle to the bottom (Lough 1976) in either bays and estuaries or nearshore waters.

Lough (1976) observed that substantial numbers of C. magister megalopas first appeared

off Newport, Oregon in mid-April and most zoeae were megalopa by early May.

The C. magister megalopa is a swimming-crawling phase which molts into a first

juvenile instar on the benthos. Growth and molting continue and it eventually becomes a

benthic adult after 11 successive molts (Gutermuth and Armstrong 1989). The juvenile

crabs scavenge for fish, mollusks, and crustaceans (Butler 1954) in shallow coastal

waters, and large numbers live in eelgrass (Zostera spp.) beds (Stevens and Armstrong,

1984). Large numbers of juvenile C. magister were found in the upper reaches of the

South Slough National Estuarine Research Reserve, Charleston OR, during a distribution

study just before the start of this study (Dumler, personal observation, summer 1994).
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Effect of Food Levels and Temperature on Crab Physiology

Maintaining an efficient food and oxygen supply, in a habitat where food levels

and temperatures fluctuate, is essential to survival. The effects of food and temperature

resources on growth of C. magister (Reed 1969; Stevens et al. 1984; Oresanz and

Gallucci 1988; McMillan et al. 1995), and respiration of C. magister (McMahon et al.

1978; McMahon 1986; Sulkin 1989; Gutermuth and Armstrong 1989; DeWachter and

McMahon 1996) have been widely studied. Most of these studies, however, have

concentrated on larval and adult crabs even though it is the juvenile stages that regularly

experience the extremes found in intertidal areas and the shallow margins of the oceans.

Indirect effects of temperature changes on salinity tolerance may further stress

crabs already coping with the direct effects of temperature on metabolism. One study

found juvenile crab growth to be significantly affected by the interaction of temperature

and salinity in Menippe mercenaria (Wang and Truesdale 1991). In contrast, another

study on the same species found that both factors affected the proportion of juveniles that

survived; however, temperature but not salinity significantly affected molt frequency of

juveniles (Brown 1991). A third study reported that blue crabs (Callinectes sapidus)

acclimated to cold temperature (lOoC) consumed more oxygen at low salinity than at high

salinity (Laird and Haefner 1976). In the present study, salinity was held constant to

simplify the study and isolate the effects of temperature and food availability.
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Growth

Laboratory studies explored the physiological effects of temperature and food

limitation on molting rate and size in crustaceans (Shen 1935; Demeusy 1958; Btickmann

and Adelung 1964; Adelung 1971; Leffler 1972; Klein-Bretler 1975). A general pattern

of crab growth can be summarized from these investigations. The intermolt period

lengthened as the crab aged. Molting was accelerated at higher temperatures and also

with greater food supply. In these studies, increases in crab size per molt was generally

found to be less at higher temperatures than at lower temperatures, and food availability

had a small but demonstrable effect.

Other studies on free-living crabs have examined the connection between

environmental conditions and crab growth. Higher rates of growth have been reported for

juvenile crabs of C. magister settling in estuaries and shallow embayments compared to

the same year-class found in adjacent coastal waters (Tasto 1983; Collier 1983; Stevens

and Armstrong 1984; Armstrong and Gunderson 1985; Warner 1987; Guttermuth and

Armstrong 1989; Gunderson et al. 1990). A recent study in Puget Sound, Washington

linked post-settlement growth rates to seasonal water temperatures (McMillan, et al.

1995). The authors followed the population density, habitat use and growth of two

cohorts of intertidal juvenile Dungeness crabs at five sites over several years. Cohorts

settling earlier in the year had an average carapace width of 7.2 mm as juvenile first

instars. They grew rapidly at summer water temperatttres in excess of 15°C and quickly

reached sizes of greater than 30 mm carapace width (CW). These juveniles emigrated
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from intertidal to subtidal areas by September. Individuals in the later cohort were

smaller (5.3 mm CW) and exhibited little growth during decreasing autumn water

temperatures. These crabs overwintered in the intertidal with growth rates increasing in

March and subtidal emigration occuring 10 months after settlement in April and May.

Post-settlement growth rates corresponded to seasonal water temperatures, being greatest

for the coastal cohort that settled in May and June. Variations in food levels or diets were

not examined.

Not surprisingly, restricted diets affect growth and development of crustaceans.

Studies of the effects of nutrition on larval development (see McConaugha 1985 for

review) have found food intake regulates intermolt duration and size-at-molt (Anger

1984). On a cellular level, one study on region-specific growth during segment

development in Artemia found that growth processes were dependent on the level of

nutrients and were enhanced by diets enriched in polyunsaturated fatty acids (Freeman

1990).

Respiration and Metabolism

Respiration rates have been used to determine the physiological means by which

adult C. magister (Prentice and Schneider 1979) and juvenile C. magister (Gutermuth and

Armstrong 1989) acclimate to thermal stress. The concentration of O2, activity level of

the organism, season, starvation, sex, and water temperature are determining factors of

metabolic rates in crustaceans (Vemberg and Vemberg 1972). Changes in gill structure

and oxygen requirements during development of C. magister have been documented
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(Gutermuth and Armstrong 1989; Brown 1991). When exposed to a specific temperature

(6°C, Woc, 14°C, or 18°C) for three days, juvenile age Cancer magister had a

temperature-dependent metabolic response. The metabolic rate or oxygen consumption

(Q02) of very early instar crabs increased from 6°C to 14°C with a QlO = 2.3 but remained

constant from 14°C to 18°C (QlO :::::1) (Gutermuth and Armstrong 1989). The authors

suggested this was evidence that metabolic costs do not become excessive as small crabs

exploit warmer water for faster growth. According to the authors, this pattern of

increased metabolic rate with temperature was in agreement with a marked difference in

sizes of estuarine (35mm CW) versus offshore developing (l2mm CW) crabs of the same

year class. They concluded that elevated metabolic rates for crustaceans acclimated to

higher temperatures (ie. increased respiration and growth rates) would be advantageous

for early instar juveniles in a nutrient-rich habitat such as an estuary.

Hemocyanin Structure

The hemolymph of C. magister contains hemocyanin (He), a copper-based

respiratory protein which is responsible for delivering oxygen to the tissues. Arthropod

hemocyanins are present either as hexamers of 6 polypeptide chains or as multiples of

these hexamers. On a finer level of structural resolution, the polypeptide chains or

subunits represent a heterogeneous class of similarly sized proteins (reviewed in van

Holde and Miller 1995). The hemocyanin of C. magister is composed of 6 subunits (l

hexamer) or 12 subunits (2 hexamer aggregate) with sedimentation coefficients of 16S

and 25S respectively (Ellerton et al. 1970; Carpenter and van Holde 1973; Larson et al.
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1981). Oxygen transport proteins with multisubunit structures generally have greater

cooperativity and allosteric regulation, which are necessary for efficient delivery and

uptake of oxygen (Savel-Neimann et al. 1988).

Studies have characterized the function and structure of the hemocyanin molecule

of adult c. magister (Ellerton et al. 1970; McMahon 1986; Larson et al. 1981). The 25S

two-hexamer and 16S hexamer fractions of the hemocyanin molecule occur throughout

the crab's life cycle (Terwilliger and Terwilliger 1982). Recently, a third non-respiratory

protein also present during ontogeny has been described in hemolymph of c. magister

using gel electrophoresis (Otoshi 1994); however, the function of this protein is not yet

known.

Investigations have also centered specifically on the function and structure of

hemocyanin of C. magister during development (Terwilliger and Terwilliger 1982;

Terwilliger et al. 1986; Brown and Terwilliger 1992; Terwilliger and Brown 1993).

Megalopal and juvenile hemocyanin of c. magister have an oxygen affinity 50% lower

than that of adult hemocyanin under identical experimental conditions (Terwilliger et al.

1986). In addition to functional changes, the structure of the hemocyanin molecule was

found to change during the life cycle of c. magister (Terwilliger and Terwilliger 1982).

Megalopa and juvenile hemocyanins differ from adult hemocyanin in that they lack one

of the adult polypeptide chain subunits (subunit 6), and the relative concentrations of two

of the other chains (subunit 4 and 5) are not the same as in the adult. Under controlled

conditions of approximately 10°C and a regulated diet, the onset of adult hemocyanin
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synthesis as indicated by the appearance of subunit 6 mRNA was found to occur by the

sixth juvenile instar (Durstewitz 1996).

Increases in temperature reduce the solubility of oxygen in the water and reduce

the oxygen-carrying capacity of the hemolymph. In cold-blooded animals this is of

physiological significance because increased temperature is usually accompanied by an

increased metabolic rate (or need for oxygen). It is therefore advantageous for the crab in

one respect, that hemocyanin deliver oxygen more readily at higher temperatures. An

increase in temperature weakens the bond between hemocyanin and oxygen, and causes

an increased dissociation of the bond resulting in the hemocyanin giving up oxygen more

readily at the tissue (Schmidt-Nielsen 1990). On the other hand, increased temperature

results in decreased loading of oxygen at the gills.

Research has shown that changes in subunit composition of crustacean

hemocyanins can occur in response to environmental changes such as season, oxygen

level, and salinity (reviewed in van Holde and Miller 1995). For example, sex and

temporal (time of year) differences in the subunit composition of the Hc of the lobster

Palinuris elephas were observed (Bellelli et al. 1985). Also, Mangum and Rainer (1988)

provided more direct evidence of the connection between environmental changes and

subunit composition by demonstrating that changes in subunit composition of Callinectes

sapidus Hc occurred in response to changes in oxygen and salinity levels. Decreases in

the availability of food resources for protein synthesis as well as increased temperatures

are two more parameters that would likely alter the structure of the hemocyanin molecule

of crustaceans.
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CHAPTERTI

MATERIALS AND METHODS

Collection of Megalopas

The late megalopa stage of C. magister appear in the surface waters near the

mouth of the Coos Bay estuary, Oregon, in spring. Megalopas were collected from the

plankton by dipnet in the evening as they swarmed around docklights on the outer

floating docks of the Charleston boat basin. Megalopas for this study were collected on

June 25, 1995, and all experiments were started within 24 hours after transport in cold

seawater to the laboratory at the Oregon Institute of Marine Biology, (OIMB).

Laboratory Culture Conditions

In order to investigate whether temperature and food limitation affect

development of juvenile instars, crabs were raised in the laboratory under controlled

conditions for 6 months. Two seawater tables that each contained 30 megalopas were

maintained at average temperatures of 14°C and 21°C respectively, in the same room.

Both seawater tables had a continuous supply of running, unfiltered, aerated seawater at a

salinity of 30 ppt-33 ppt, pumped on an incoming tide from near the mouth of Coos Bay.

These seawater tables had been used exclusively for many years, as holding tanks for live

marine invertebrates, and were "well-seasoned" with running seawater before the
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introduction of the experimental megalopas. All developmental stages of C. magister

were exposed to natural light/dark cycles in these same holding facilities.

Seawater for the cold seawater table (C) was piped directly into the table at an

average ambient temperature of 14°C. Seawater for the 21°C seawater tables was first

piped into a glass aquarium, heated with four Hartz immersion heaters and allowed to

overflow into the water table. This warm seawater table (W) was slowly brought up to

experimental temperature over a period of two days after megalopas were added to the

seawater table. Temperature was measured with a field thermometer (Fisher Scientific)

twice daily in each of the tables, once in the morning and once in the evening.

In the seawater table, each crab was housed individually in a plastic container

(8cm x 8cm x 12cm) with screens on 2 opposing sides. The containers were weighted

down with small glass specimen dishes and were positioned so that the screens were

aligned perpendicular to the direction of the water flow. Each crab was allowed freedom

of movement within its container, and all of the containers were maintained in the same

physical position in their respective water tables for the duration of the study.

The low and high temperatures selected for this study were based on data obtained

the previous summer (1994) from field stations at the head (ie. riverine input) of the

estuary, South Slough National Estuarine Research Reserve (SSNERR), Charleston, OR

and at the mouth Coos Bay, OR. (Figure 1). Temperatures were recorded throughout the

study at these two sites for comparison with the laboratory temperatures. A Yellow

Springs Instruments (YSI 6000) meter measured bottom temperatures at Sengstacken



South Slough
National Estuarine
Research Reserve
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I
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Figure 1. Study sites for temperature monitoring within Coos Bay and South Slough
National Estuarine Research Reserve (SSNERR). Charleston. OR. I-Boathouse Dock.
Oregon Institute of Marine Biology; 2- Sengstaken Ann. SSNERR

12
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Arm (SSNERR) (Figure 2). Another YSI meter was used to record surface temperatures

during slack tide at the Boathouse Dock, Oregon Institute of Marine Biology (OIMH)

(Figure 3). Due to variability of open-flow systems, the laboratory water temperatures

ranged from WOC to 17°C in the cold water table and 17°C to 25°C in the warm water

table but maintained an average difference of 7°C throughout the study period (Figure 4).

Crabs in each of these temperature regimes were randomly subdivided into two

groups which received either high levels of food (HF) or low levels of food (LF); 15 crabs

were assigned at random to each group. Sex was externally indeterminate at the start of

the study. When sex of juvenile crabs could be discerned later during the study, numbers

of males and females were approximately equal. The treatment groups were designated

as: cold, high food (CHF), cold, low food (CLF), warm, high food (WHF), and warm,

low food (WLF). Juveniles in the high food groups (CHF and WHF) were fed an

unlimited diet of fresh mussel (Mytilus edulis) (bits of mantle approximately 3mm x

3mm) daily, for the duration of the study. Those in the low food groups (CLF and WLF)

were every fourth day from the start of the study on the same diet as above but were

allowed to feed for only four hours during the designated feeding day. Brachyuran crabs

are known predators on mollusks (Blner 1978), therefore Mytilus edulis was used. Little

evidence exists for the reingestion of cast exuviae post-molt in crustaceans (Wheatley and

Gannon 1995), and no information is available for C. magister. Assuming the cast

exuviae in crustaceans is a possible source of dietary calcium, only the dorsal carapace

was removed from the containers in the present study so that crabs were allowed access to



14
A.

20 10-11 June 1995 B.

16

- 12()
0..........

CD
~ 8:J
~

20-21 December 1995~

CD
0-

16E
CD.-

12

8

0 12 0 12 0

Time of day (h)

Apr May Jun Jut Aug Sep Oct Nov Dec Jan

Month .(1995-96)

24 --y---------------------,
22
20-P 18..........

~ 16
:J
~ 14
~

~ 12
~ 10
.- 8

6
4-.L.---.----r--......---y--'"""---r-----.-----r--r---r--.....----J

Figure 2. Bottom seawater temperatures t>C) at SSNERR, Charleston, Oregon recorded
throughout the six month study (A). Gaps in the data reflect periods when data was
downloaded. Examples of diurnal temperature cycling (B) over two day periods during
the spring and winter 1995 (lower graph).



15

••, ..... .--.

•
~,

•

24

22

- 20
0
0 18---(I)

16I.-

~

1\1 14 • , ..• •l.- I •• •(I) •• ~. . -0- 12 • • • ,.
E --.~ • •(I) 10 ~

l-
I.- 8(I)

1\1
6

~
4

•• •• •,. ." .-- , ... .-
•

A • I •• •. .·M.• ~'Y ~.~--••• ••

DecNovSept OCt

Month (1995)
AugJuly

2

04----r-..----r-----.-,..-;-......,...-..----r-----.--,-......,...-..----.-....;....,--,-......,...-..----r-----.--!
June

Figure 3. Surface seawater temperatures ~C) at high tide, Boathouse Dock, Oregon
Institute of Marine Biology, Charleston, OR.



26

24

22

20
0
0

~ 18
::J
as
'-

~ 16
E

~ 14 JI
12 .J

10

8
Jul Aug Sep Oct

Month (1995)

Nov Dec

Figure 4. Mean seawater temperatures (Oe) recorded in the laboratory: warm seawater table (above) and cold seawater
table (below). -0\



17

the exoskeleton as a possible nutritional source. Most exoskeletons from crabs in the

present study disappeared within a few days and may have been ingested.

Morphological Data

Crabs were surveyed daily, and data was collected for every stage (instar) of

growth. The date of molt (ecdysis) was noted, and the size of the individual was recorded

on the day of each molt and 2 days post-molt. Carapace width (CW) was measured to the

nearest 0.1 mm with calipers across the carapace, between the notches just anterior to the

tenth anterolateral spines.

Hemolymph Samples

Hemolymph samples were collected once a week from juvenile crabs until fifth

instar, when samples were collected twice a week. Hemolymph samples (approximately

2ul) from second instar juveniles and older were withdrawn by micro-capillary pipets

from the sinus at the base of a walking leg. Hemolymph was allowed to coagulate for 30

minutes on ice and then centrifuged in an Eppendorf microcentrifuge (4°C) at 8000 rpm

for 2 minutes. The supernatant was divided into an aliquot for SDS PAGE and an aliquot

for pH 7.4 PAGE.

Electrophoresis

All hemolymph samples collected over the course of the study were analyzed

using a modified protocol described by Terwilliger and Terwilliger (1982). Hemolymph
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aliquots were separated by pH 7.4,5% polyacrylamide gel electrophoresis (7.4 PAGE)

(Davis 1964) and 7.5% discontinuous sodium dodecylsulfate polyacrylamide gel

electrophoresis (SDS PAGE) (Laemmli 1970). The pH 7.4 PAGE is a non-denaturing gel

run at physiological pH.

pH 7.4 PAGE

Polyacrylamide gel electrophoresis (pH 7.4 PAGE) was used to analyze the

structure of the intact hemocyanin molecule. Whole hemolymph aliquots (approximately

2 uL) were diluted 1:1 with 0.1 M TrisIHCL (pH 7.5),0.1 Min NaCI, 10 mMIL in CaCh,

and 10 mMollL in MgCh; half of the diluted aliquot was used for the pH 7.4 PAGE and

the other half for SDS. pH 7.4 samples included approximately 20% glycerin to prevent

convection anomalies in the wells, and 6ul of sample was added to each well.

Hemolymph was electrophoresed on 5% polyacrylamide slab gels (37: 1 acrylamide:

bisacrylamide) at 35 mAmps for 3 hours. Electrophoresis buffer systems included: lower

gel buffer, 0.05 M Tris-HCL (pH 6.8); upper gel buffer, 1M Tris-maleate (pH 7.4).

Whole hemolymph of C. magister was used as a calibrant. Gels were stained with

Coomassie brilliant blue R (Fairbanks et al. 1971) and destained with 10% acetic acid.

Gels were dried between cellulose sheets and stored at room temperature.

JAVA Protein Quantification

The relative amounts of 25S hemocyanin (Hc), cryptocyanin (Cc) and 16S

hemocyanin (Hc) protein present in each hemolymph sample was quantified using video
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image analysis software (JAVA, Jande! Scientific). Images of pH 7.4 non-denaturing gels

were captured using identical camera settings and magnification. Each protein band was

outlined, the background subtracted, and the area and average intensity measured. Area

intensity units (AIU) were calculated using the equation: «255-average intensity) X area)/

10,000. This equation results in a workable number which inverts the grayscale so that

larger numbers equal high intensities (ie. normally the maximum value 255 equals white,

and zero equals black). Values of zero were considered visually undetectable. To

compare between treatment groups at any given point in time, sampling dates for

individuals were assigned to the ~earest 20% of the molt cycle. Values clustering around

10% (0-20% molt cycle) were placed in the first interval, values clustering around 30%

(21-40% molt cycle) were placed in the second interval and so on. These intervals were

then listed chronologically within each instar.

SDSPAGE

Hemolymph aliquots, diluted as above, were used for the SDS procedure

(Laemmli 1970). The aliquots were mixed 1:1 with an SDS incubation buffer to yield

final concentrations of2% SDS, 0.05 M dithiothreitol (DTT), 10% glycerin, 10 mM

EDTA, 1 mM phenylmethylsulfonyl fluoride, 62.5 mM Tris-HCL (pH 6.8), and 0.01 %

bromophenol blue. All samples were heated in a boiling water bath for 1.5 minutes and

then stored at -20°C until they were analyzed by SDS PAGE the next day. Four ul

samples were loaded in each gel lane. The running buffer (pH 8.3) contained 0.025M

Tris-OH, 0.192 M glycine, 0.1% SDS, and O.lM EDTA. Acrylamide slab gels (7.5%)
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were electrophoresed at l00V for about 4 hours and stained with Coomassie brilliant blue

R (Fairbanks et al. 1971). Gels were destained with 10% acetic acid. All protein bands

present were recorded immediately after the destaining procedure to avoid the possibility

of bands fading with time. Gels were dried between cellulose sheets and stored at room

temperature.

Statistical Analyses

Data were examined for normality using Kolmogorov-Smimov (Lilliefors) one

sample test. Homogeneity of variances was tested using the Dunn-Sidak method. The K­

S Lilliefors test for normality within temperature groups and between food groups

indicated that measurements of carapace width were normally distributed. Intermolt

period was, in most cases, normally distributed with the exception of 3 cases: cold

waterlhigh food group at 4th instar, warm waterllow food group at 3rd instar, and warm

waterlhigh food group at 4th instar. Comparisons of carapace width measurements and

intermolt period were reported using a two-sample t-test if they were normally distributed

or using a Mann-Whitney V-test statistic in each of the groups above which did not meet

the assumptions for a normal distribution (Zar 1984). Separate variance t-tests were

conducted because variances were unequal. The Dunn-Sidak method, employed because

multiple t-tests were conducted, requires an adjusted significance level for each

individual test to reduce the experiment-wise error rate for k number of comparisons (Zar

1984). Few individuals molted beyond 5th instar in the low food group therefore sample

sizes beyond this instar were too small for a comparison between food groups.
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Apparent differences between cold and warm treatment groups are discussed but

statistical analyses were not performed because of potential pseudoreplication resulting

from the necessary separation of temperature treatments into different seawater tables.

Even though both seawater tables were well-seasoned, it remains a possibility that

differences unrelated to temperature may exist between groups exposed to warm and cold

conditions.

The Kolmogorov-Smimov one sample t-test (Lilliefors) determined that the data

for onset of adult Hc were not normally distributed with the exception of number of

weeks to onset of adult Hc for high and low food groups in cold water. Between food­

group comparisons of adult hemocyanin onset, measured by instar and number of elapsed

weeks, were performed using the Mann-Whitney U test statistic for non-parametic

analyses (Zar 1984).
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CHAPTERID

RESULTS

Size-at-Instar

Effect of Food Levels

Data on individual carapace width at each instar for each treatment (CHF, CLF,

WHF, and WLF) are shown in Figure 5. Mean CW for each treatment group by instar is

shown in Table 1 and Figure 6. The effect of food on size within each temperature group

was determined for each instar (two sample t-test or Mann-Whitney U statistic). In both

the cold and warm seawater tables, crabs in the high food group were significantly larger

than those in the low food group for 3rd instar through 5th instar (Table 2 and Figure 7).

Sizes were not statistically different in 1st and 2nd instar juveniles. Carapace width

became progressively larger with each instar within a treatment group.

Effect of Temperature

When compared between similar feeding regimes, crabs reared in the cold

seawater table were consistently larger at a given instar than those reared in the warm

seawater table (Figure 8). The difference in carapace width measurements between

temperature groups increases dramatically after 4th instar.
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Figure 5. Effects of food levels and temperature on size (CW, .Q.lmm) of individual C.
magister juveniles (CHF- cold, high food; CLF- cold, low food; WHF- warm, high food;
WLF- warm, low food). Each crab is represented by a symbol.



Table 1. Mean (± S.E.M) intermolt duration (days) and mean size (CW, O.lmm) of juvenile Cancer magister at each instar
for each treatment group (CHF-cold, high food: CLF-cold, low food: WHF-warm, high food:WLF-warm, low food)

GroUP 1st Instar 2nd Instar 3rd Instar 4th Instar 5thInstar 6th Instar 7th Instar
Days Size Days Size Days Size Days Size Days Size Days Size Days Size

CHF 14.9 6.3 16.8 9.0 20.8 12.1 22.6 15.5 34.9 20.1 46.4 25.3 31.8
+s.e.m. 0.5 0.1 0.9 0.2 0.4 0.2 1.7 0.2 2.0 0.3 1.9 0.4 0.7

CLF 24.8 6.3 32.5 8.6 34.1 10.8 39.8 13.5 45.0 17.1 16.5
+s.e.m. 0.8 0.1 1.4 0.2 0.9 0.3 1.2 0.4 n=l 0.5 n=1

WHF 10.3 6.1 14.5 8.5 16.1 11.4 20.9 14.0 30.0 17.4 51.6 21.2 34.0 25.2
+s.e.m. 0.5 0.1 0.6 0.2 0.9 0.3 2.4 0.4 5.6 0.6 5.7 0.8 n=l 1.4

WLF 36.1 6.1 30.7 8.0 37.2 10.1 36.0 12.4 45.0 14.9 17.9
+s.e.m. 1.9 0.1 1.5 0.1 2.5 0.2 1.9 0.2 n=l 0.3 n=l

~
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Figure 6. Mean size (CW, O.lmm) of C. magister juveniles at each instar for each of the
four treatment groups (CHF- cold, high food; CLF- cold, low food; WHF- warm, high
food; WLF- warm, low food). CAF and WAF were later renamed CHF and WHF,
respectively.



Table 2. Effects of food levels on size at a specified instar and intervals between molts. Mann­
Whitney U-test (U) or t-tests (t) are used where appropriate. Probabilities (P) are calculated for
individual t-tests; * indicates those p that are less than the adjusted Dunn-Sidak r1 (Le., p < 0.05)

Cold Water Group Warm Water Group
Size, r1< 0.010 Intermolt, r1 < 0.013 Size, r1<0.010 Intermolt, a'< 0.013

Instar t U t U t U t U

1 0.09 10.34* 0.226 12.96*
(p = 0.928) (p < 0.001) (p =0.823) (p < 0.001)

2 1.17 9.28* 2.679 10.17*
(p = 0.252) (p < 0.001) (p = 0.901) (p < 0.001)

3 3.54* 13.41* 3.953* 100.0*
(p = 0.002) (p < 0.001) (p = 0.001) (p <0.001)

4 4.57* 211.0* 3.698* 66.0*
(p < 0.001) (p < 0.001) (p = 0.002) (p = 0.002)

5 4.98* 3.863*
(p <0.001) (p = 0.003)

tv
0'1
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Figure 7. Bar graph of mean size (CW, O.lmm) (± S.E.M.) of C. magister juveniles in
each treatment group (CHF- cold, high food; CLF- cold, low food; WHF- warm, high
food; WLF- warm, low food). Numbers of surviving crabs at 4th instar are: CHF (15),
CLF (13), WHF (9), and WLF (11).
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Figure 8. Line graph of mean size (CW, O.lmm) (± S.E.M.) of C. magister juveniles in
each treatment group (CHF- cold, high food; CLF- cold, low food; WHF- warm, high
food; WLF- warm, low food). Numbers of surviving crabs at 4th instarare: CHF (15),
CLF (13), WHF (9), and WLF (11).
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Molting Rate

Effect of Food Levels

Growth is described not only by size-at-instar but also by molting rate. Here,

molting rate is defined in terms of the intermolt period (i.e., days between molts). Data is

absent for the later instars in the CLF and WLF groups because the experiment was

stopped before they reached the next instar, not because mortality rates were high for

these groups. Data on individual intermolt length at each instar for each treatment (CHF,

CLF, WHF, and WLF) is shown in Figure 9. One outlier, present in the CHF group, was

excluded from analyses due to an extremely protracted 4th instar (approximately four

times longer than average). Mean intermolt lengths for each treatment group by instar are

shown in Table 1 and graphed in Figure 10. The effect of food on intermolt length within

each temperature group was determined for each instar (two sample t-test or Mann-

Whitney U statistic). Comparisons of intermolt length were significant between food

groups within each temperature for 1st through 4th instars (Table 2). In both cold and

warm groups, crabs fed abundant amounts of food had significantly shorter intermolt

periods than crabs whose diet were limited. Intermolt period became progressively longer

with each instar within a treatment group.
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Figure 9. Intennolt duration (days) of individual C. magister juveniles in each treatment
group (CHF- cold, high food; CLF- cold, low food; WHF- wann, high food; WLF- wann,
low food). Each symbol represents an individual crab.
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Effect of Temperature

Within the high food level group, crabs reared in the warm seawater table had

consistently shorter intermolt lengths at a given instar than those reared in the cold

seawater table (Table 1, Figure 10). Within the low food level group, no difference in

intermolt was evident.

Hemolymph Proteins

The major proteins of the hemolymph of C. magister are resolved into three bands

using pH 7.4 PAGE (Terwilliger and Terwilliger 1982) (Figure 11). This electrophoretic

technique separates high molecular weight oligomers (e.g. hemocyanin (Hc) and

cryptocyanin (Cc)) on the basis of size and charge. Megalopa, juvenile and adult

hemolymph have one slowly migrating band corresponding to 258 Hc molecules, one fast

band corresponding to 168 Hc, and depending on the molt phase a band of Cc midway

between the two (Terwilliger and Terwilliger 1982).

When hemolymph samples were taken through multiple sequential molt cycles for

six months in this study, patterns of change in protein concentrations over time could be

seen. Levels of 258 Hc, 168 Hc, and Cc found in the hemolymph of C. magister using

pH 7.4 PAGE varied with molt cycle as has been shown by previous investigations

(Terwilliger and Terwilliger 1982; Otoshi 1994).
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Figure 11. pH 7.4 PAGE of juvenile C. magister hemolymph. The top band in each lane
is 25S He, the middle lane (if present) is Cc, and the bottom band is 16S He. From the
left of the photo, lanes 2 and 5 are examples of hemolymph from crabs that lack Cc.
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258 Hemocyanin

Hemolymph protein levels rose during premolt, started falling just before ecdysis,

and continued falling postmolt. After each molt the postmolt levels of 258 Hc quickly

returned to levels found in the previous instars (Figure 12). Mean average intensity units

± 8.E.M. of 258 Hc levels are shown separately for each of the four treatment groups in

Figure 13, as an example of the variability in data of the hemolymph protein studies. At

maximal levels of 258 Hc, a double peak was seen. Levels of 258 Hc in the low food

groups were similar to levels in the cold, high food group. The levels of 258 Hc in the

wann, high food group were much higher relative to the other treatments at 2nd instar but

steadily decreased, dropping to low levels by 5th instar. Within low food groups,

differences in temperature groups were negligible.

168 Hemocyanin

The wann water treatment groups had slightly higher 168 Hc levels than the cold

water groups (Figure 14). 168 Hc protein levels, like the 258 Hc levels, quickly returned

to levels seen in previous postmolt instars. A double peak also was seen midway through

the molt cycle. Within each temperature group, crabs in the low food groups had higher

levels of 168 Hc than those in the high food groups. The wann, low food group had

noticably higher 16 Hc levels than all three other groups.
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Figure 12. Mean average intensity units (JAVA) for 25S Hc at each instar for each
treatment group (CHF- cold, high food; CLF- cold, low food; WHF- warm, high food;
WLF- warm, lpw food).
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Cryptocyanin

Cryptocyanin levels remained in higher concentration in the high food groups

(CHF and WHF) than the limited food groups throughout the study, eSPeCially in the early

stages of instars 2-5 (Figure 15). Temperature did not seem to have a profound effect on

protein levels of Cc. The levels of Cc for all groups except WLF increased with time and

did not return to levels found in previous instars. The double peak seen in the respiratory

protein levels was also present in Cc.

Levels of Cc, a related non-respiratory protein (Terwilliger and Otoshi 1995),

showed greater decreases post-molt and increases pre-molt than hemocyanin (ie., the

magnitude of change was greater for cryptocyanin) (Figure 15). In general, the longer the

intermolt duration, the longer it took cryptocyanin levels to return to their pre-molt state

or vice versa, unlike Hc levels. For example in the WHF group, beginning with 6th

instar, crabs grew for longer periods of time without cryptocyanin than in earlier instars

and by 7th instar could go up to 3 weeks without cryptocyanin (data not shown).

Younger crabs died after such prolonged periods without Cc. Young crabs that perished

had low levels of 25S Hc, almost non-existent 16S Hc, and undetectable Cc 3-3 1/2

weeks before death. In the majority of crabs cryptocyanin never entirely disappeared (Le.,

became visually undetectable) at ecdysis until after crabs reached 6th instar. It is not

known whether the temporary disappearance of Cc in older instars was due to the natural

lengthening of the intermolt period with age or was a result of resouce allocation toward

growth rather than storage. Dilution of the hemolymph due to water uptake during
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molting could not account for decreasing levels of hemolymph proteins because the

pattern of flucuations in Cc protein levels was different from 25S Hc and 16S Hc.

Onset of Adult Hemocyanin by Instar and Age

SDS PAGE is an effective technique for analyzing the subunit composition of Hc

and Cc. The reducing agent, dithiothreitol, breaks both intra- and intermolecular

disulfide bonds. Sodium dodecylsulfate denatures and dissociates multisubunit proteins

like hemocyanin and cryptocyanin into subunits (Figure 16). Adult C. magister 25S Hc

has 6 subunits by SDS PAGE which appear as electrophoretically distinct bands ranging

in size from 67,300 daltons to 81,800 daltons (Larson et al. 1981). Early stage juvenile

25S Hc contains only 5 of the 6 subunits (Terwilliger and Terwilliger 1982).

Effect of Food Levels

SDS-PAGE results were analyzed to determine the first appearance of adult

hemocyanin for individuals in each treatment group. The timing of the appearance of

subunit 6, measured both in terms of instar and the number of weeks from the initiation of

the study, were compared using Mann-Whitney U test (Zar 1984). For three of the four

treatment groups (CHF, CLF, WHF), Hc of C. magister showed a stage-specific switch

around 5th instar from a juvenile form lacking subunit 6 to an adult form that contains

subunit 6 (Figure 17). Those reared in warm water under limited food conditions (WLF)

exhibited adult Hc at a significantly more immature instar than those given abundant food
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Figure 16. SDS PAGE of juvenile C. magister hemolymph. Subunits are designated as 1
through 6 from top to bottom. From the left of the photo, lane 2 is an example of
hemolymph from a crab that contains Cc and adult Hc. Lane 5 is hemolymph from a crab
that lacks Cc and has only a trace of subunit 6.
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food). Boxes encompass the 25th to the 75th percentile and open circles denote single
outliers. Asterisks indicate significance at p<O.05.
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(Mann-Whitney u= 97.0, df =1, P < 0.001). For crabs reared in cold water, adult Hc

appeared at a similar instar regardless of feeding regime (U= 117.0, df = 1, P = 0.135).

Similarly, there were significant differences in the absolute timing of the onset of

adult Hc in the hemolymph in terms of number of weeks from the beginning of the study.

For three of the four treatment groups (CHF, WHF, and WLF) onset of adult Hc occurred

approximately during the same number of weeks from the beginning of the study (Figure

17). In this case, both the high food level and low food level crabs in the warm water

group exhibited adult Hc after similar periods of time (U= 34.5, df = 1, P = 0.238) even

though crabs fed abundant food had developed through 2-3 more instars. In contrast, the

high and low food crabs in cold water showed marked differences from one another in the

timing of adult Hc depending on food levels; crabs with a restricted diet exhibited adult

Hc approximately 7 weeks later than crabs fed high food levels (t =9.3, df =19.2, P <

0.001).

Effect of Temperature

The timing of the appearance of the 6th subunit, measured both in terms of instar

and the number of weeks from the initiation of the study was qualitatively compared

between temperature groups. For crabs fed high levels of food the onset of adult Hc by

instar was very similar for the cold and warm treatments. For those given low levels of

food, the warm water crabs had a precocious onset of adult Hc. Differences were also

apparent in the absolute timing of the onset of Hc in terms of number of weeks from the

beginning of the study. Crabs in the warm water treatments for both high and low food



levels had earlier onset of adult He. Figure 18 summarizes the trends in size, molting

rate, and onset of adult He of the four treatment groups.

44
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CHAPTER IV

DISCUSSION

In response to changes in temperature and food availability, juveniles of C.

magister show a substantial flexibility in morphology, growth rates and hemolymph

proteins. This flexibility enhances C. magister's ability to inhabit estuarine and nearshore

waters. Juveniles that develop within estuaries experience seasonal, diurnal, and tidal

changes in water temperature, and they probably experience higher prey abundance than

in nearshore habitats. Those crabs that develop in nearshore waters experience more

constant environmental conditions and likely more sparse food resources. Growth and

molting results in the present study suggest that while temperature is important, food

availability plays an even greater role than temperature in the growth of juveniles of C.

magister.

Size and Growth Rate

In the present study, juveniles of C. magister fed high levels of food grew larger

and faster than those fed low levels of food. Juveniles of C. magister raised in cold water

reached larger sizes but grew more slowly than crabs raised in warm water within the

high food groups. Data within the low food groups was variable. These findings are

interesting in light of previous observations on growth in C. magister. Investigations of

growth in postsettlement C. magister in Washington, found growth to be strongly
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correlated to temperature, with considerably higher rates measured in warmer estuarine

waters compared to oceanic waters (Tasto 1983; Armstrong and Gunderson 1985;

Gutermuth and Armstrong 1989; Gunderson et al. 1990). Larvae settled at the same time,

but estuarine recruits were exposed to water temperatures around 16°C while coastal

recruits experienced 10°C or less and grew more slowly. By September, estuarine

postsettlement crabs in Grays Harbor ranged between 30 mm and 50 mm CW, but coastal

recuits of the same age class were 10 mm to 18 mm CWo Similar size ranges were found

in the present study; however, differences in size and growth rate were strongly correlated

with differences in food levels. Increased food availability rather than elevated

temperature may confer a greater competitive advantage to estuarine juveniles of C.

magister over their coastal conspecifics.

Stevens (1984) had hypothesized that colder bottom-water temperatures off the

Washington coast would cause a reduced metabolic rate, slower growth, and general

energetic depression in juvenile C. magister. Results from the present study found that

growth was not depressed at colder temperatures, but in fact cold water crabs attained

larger sizes at a particular instar than warm water crabs. Limited food availability was

particularly detrimental for crabs raised in warmer temperature water. While metabolic

rates were not measured, warm water crabs were more active. The combination of

temperature-induced activity and increased metabolic rate could severely deplete

available reserves in those crabs fed a restricted diet. The molt cycle was also faster in

crabs raised in warmer water. At first glance, the increased molting rate would suggest a

fster overall growth rate for crabs in warm water, but data from this study proves
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otherwise. Therefore, a tradeoff seems to exist between gaining a competitive advantage

(i.e., faster molting) during optimal environmental conditions, and coping within the

crabs physiological limits during stressful conditions. A highly accelerated molt cycle

becomes compromised at some point with reduction in carapace sizes.

Although the diet composition of C. magister has been studied (Butler 1954)

further investigations are necessary to address nutritional requirements during

development. The hierarchial partitioning of nutrients in crustaceans has been

investigated (Freeman 1990 and references therein) but no studies have explored this in

the juvenile stages of C. magister. The present study demonstraes that clearly food levels

affect growth and intermolt duration; future studies might include further determination

of the specific stages at which tissues grow, and the key regulating factors. Comparison

of this data with seasonal variation in food availability, feeding behavior and activity

levels will provide a more comprehensive picture of juvenile C. magister growth and

habitat use.

Hemolymph Protein Levels

Proteins dissolved in the hemolymph of a crab are an important part of a highly

coordinated molecular system which regulates respiration and molting. Molting in

crustaceans is a physiologically stressful process and can cause an increased metabolic

rate (Leffler 1972). One of these proteins, He, functions as an oxygen transporter and is

important during premolt when there is a 50 to 1900% increase in oxygen consumption

by the whole animal (Poulson 1935; Nyst 1941; Scudamore 1947; Edwards 1950, 1953;
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Schneiderman 1952; Bliss 1953; Schneiderman and Williams 1953). Levels of 25S

hemocyanin (Hc), 16S Hc, and cryptocyanin (Cc) varied with the molt cycle, increasing

in pre-molt and decreasing slightly in post-molt. In the present study both elevated

temperature and food limitation affected hemolymph protein levels during the molt cycle

of juvenile C. magister. The most dramatic differences in protein levels were seen

between food groups in early instars 2,3, and 4 which may suggest that younger instars

are more sensitive to environmental conditions than later stages.

The 16S one-hexamer fraction of Hc of juveniles of C. magister fluctuated not

only with the molt cycle but among treatment groups as well. Levels of 25S Hc, the two­

hexamer fraction, were similar for each of the four treatment groups; however levels of

16S Hc were higher in juveniles fed low food levels and also in those raised in warm

water. The increase in 16S Hc is significant for two reasons. First, crustacean

hemocyanins are highly sensitive to temperature so a very efficient 02 transport system is

necessary (Mangum 1980). The temperature dependence of oxygen transport in the blood

has been proposed as a mechanism explaining both large and small thermal responses of

02 uptake (Mangum 1977). For example, total oxygen uptake in the blue crab Callinectes

sapidus doubled with a rise in ambient temperature in the range of 15-25°C (Mauro and

Mangum 1982). Second, the changes in the ratio of C. magister 16S Hc to 25S Hc may

affect the oxygen affinity in the crabs. A study of the blue crab, Callinectes sapidus,

found the ratio of I-hexamer to 2-hexamer Hc molecules varied in natural populations

and that isolated 2-hexamers have a lower O2 affinity and greater cooperativity than

isolated hexamers (Mangum et al. 1991). This difference in affinity was detectable in



50

both isolated fractions and native mixtures of different proportions of the two. In the

present study, if the 165 Hc fraction of C. magister hemolymph has a higher oxygen

affinity than the 255 Hc fraction, than the higher levels of 165 Hc found in C. magister

raised in warm water would result in an increase in the oxygen affinity of C. magister

hemolymph in response to low oxygen conditions.

The functional and structural role of respiratory proteins during thermal stress

have been documented (Mangum 1977; Mauro and Mangum 1982; Brown 1991). The

role of Cc, a non-respiratory protein found in the hemolymph of C. magister remains to

be elucidated. Juvenile C. magister Cc (earlier termed hemoecdysin) decreases in

concentration by approximately five-fold after the molt and remains low for twice as

many days of the molt cycle as do the hemocyanins (Otoshi 1994). Transmission electron

microscopy has revealed that cryptocyanin has a sedimentation coefficient of 165, a

molecular weight of 450,000 daltons and a hexameric shape (Terwilliger and Terwilliger

1982).

The presence of copper-free proteins similar in size to hexameric Hc have been

demonstrated in crustaceans (Markl et al. 1979; Otoshi 1994). It is not yet known if they

are similar to the insect storage proteins called hexamerins. The storage hexamers are a

family of insect proteins that reach extraordinary concentrations in the hemolymph just

prior to metamorphosis; their amino acids are incorporated into new tisues and proteins

during adult development but they may also be incorporated into cuticle as intact protein

and in one case were found to be diverted to a small degree into energy metabolism (as
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reviewed in Telfer and Kunkel 1991). Protein comprises 30-50% of the exoskeletons of

arthropods (Kumari and Skinner 1993).

Cryptocyanin is structurally related to insect storage hexamers (N. Terwilliger,

personal communication.) but the function of this non-respiratory protein is not yet

known. In the present study, levels of Cc were higher in juveniles fed high food, and no

temperature effect was observed. The hypothesis that Cc acts as a storage protein is

supported by the fact that Cc levels increase over successive molts and that juveniles of

C. magister fed high levels of food had higher levels of Cc than crabs fed low food.

Interestingly, the absence of cryptocyanin for a period of 3 weeks or more was directly

related to the incidence of mortality.

Onset of Adult Hemocyanin

The Hc of juveniles of C. magister changes in subunit composition during stages

of development (Terwilliger and Terwilliger 1982). In the present study, ontogeny of C.

magister Hc showed neither a stage-specific switch (instar) nor a time dependent switch

(duration of the study in days). If we disregard the WLF group as the least likely of the

four environmental scenarios wild crabs would encounter (ie. prolonged thermal stress

and starvation) then the switch to adult Hc would appear to be stage-specific. It is also

possible that the ontogenetic shift in adult Hc in crabs in the wild might normally occur at

a specific age (ie. the same number of days from metamorphosis) and therefore the

lagtime in adult Hc onset in the CLF group was due to depressed metabolic rate and lack

of food. The combined effects of food limitation and elevated temperatures in the WLF
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group may cause a physiological acceleration of adult Hc appearance. More, likely the

molt schedule in these crabs is delayed while Hc ontogeny moves along at a normal pace

from the start of metamorphosis.

The subunit composition of crustacean hemocyanins is highly heterogeneous

(Markl, 1986). The role of different subunit compositions on oxygen binding is an

important component of the crab's ability to adapt to changing environmental conditions.

Crabs with adult Hc have an oxygen affinity 50% higher than juveniles (Terwilliger et al.

1986) and therefore earlier onset of adult Hc may be a significant adaptive factor in

increasing the amount of 02 carried in the hemolymph to the tissues. A recent study

demonstrated that none of the juvenile stages of C. magister that were examined showed

significant increases in the rate of oxygen consumption in response to changing salinity

levels. First instar juveniles, however, were found to be more sensitive to an increase in

temperature from 10°C to 20°C (Brown and Terwilliger 1992). One hypothesis that

Brown and Terwilliger (1992) suggested to explain the differences between adult and

juvenile Hc in C. magister involved divalent cations as hemolymph protein modulators.

Ontogenetic changes in hemolymph magnesium regulation, resulting in high hemolymph

magnesium in megalopa and juvenile crabs compared to the adults, at 10°C in 100%

seawater, may partially compensate for the low intrinsic oxygen affinity of the juvenile

type Hc or vice versa (Brown and Terwilliger 1992). Low oxygen conditions might

induce accelerated adult Hc onset in conjunction with accelerated adult-form ionic

regulation.
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Cancer magister is an important commercial species which has a life history

sensitive to environmental change. Alteration of estuarine habitat, poor water quality,

and dredging in west coast estuaries kills hundreds of thousands of crabs annually

(Stevens 1981). Juvenile crabs living in estuaries are thought to benefit from the warmer

temperatures, decreased predation, and increased food availability (Bottsford and

Wickham 1978; Stevens et al. 1982). This study helps to define the relative importance

of estuarine habitat in the life cycle of C. magister by experimentally isolating the effects

of temperature and food on crab development. This study has implications for the

preservation of estuaries as effective and necessary nursery grounds for the

developmental stages of C. magister.
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