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Planktonic larvae of estuarine organisms exhibit two dispersal patterns,

export and retention. The effects of rhythmic vertical migrations by planktonic

larvae on dispersal have been well documented. Most of these studies were

done in partially-mixed estuaries with non-tidal residual flow.

South Slough, a National Estuarine Research Reserve, is well mixed due

to low freshwater input and tidal mixing of the relatively shallow water column.

Little is known about the transport of zooplankton in South Slough; therefore,

abundances and vertical distributions of multiple species in several taxa were

investigated over five semi-diurnal tidal cycles from an anchor station. The data

suggest larvae of Neotrypaea califomiensis and Hemigrapsus oregonensis were

exported, while pinnotherid larvae and larval fish were retained. Additionally,

there were a variety of zooplankters that were imported into South Slough from

coastal ocean waters. The role of vertical migration in larval transport is

discussed.
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CHAPTER I

INTRODUCTION

After hatching from the egg, but prior to settling to the benthos where the

majority of their life-cycle is spent, most marine and estuarine benthic

invertebrates progress through one or more planktonic larval stages. Though the

larval period is a relatively small part of an organism's life-cycle, what happens to

larvae in terms of survival and advection has large consequences. It has long

been recognized that larval supply affects the abundance and distribution of

benthic populations (Underwood & Fairweather 1989, Grosberg & Levitan 1992).

Understanding factors that affect the supply of larvae to a population, such as

larval transport, is important for understanding marine and estuarine population

dynamics, and is critical for the management of populations, be it for

conservation or exploitation.

Planktonic larvae of estuarine organisms are either exported from the

estuary shortly after hatching and develop in offshore waters, returning to the

estuary as late-stage larvae or juveniles, or, they are retained in the estuary

throughout their development (reviewed in Epifanio 1988). There are also coastal

invertebrate species, as well as fishes, that utilize estuaries as nursery habitats

as larvae and juveniles, later to return to the coastal ocean as adults (reviewed in
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Epifanio 1988 and Boehlert & Mundy 1988). The mechanisms by which larvae

are transported into and out of estuaries involves physical processes, and in

many species, as a growing amount of evidence suggests, the swimming

behavior of the larvae.

Because most planktonic larvae are small and swim relatively slowly, their

swimming capabilities are inadequate to overcome horizontal current speeds that

they typically encounter; however, most larvae swim fast enough to overcome

vertical water currents that they typically encounter (Mileikovsky 1973, Chia et al.

1984). By swimming vertically larvae are able to affect their horizontal transport;

because, in many instances the speed and direction of water currents vary over

the depth of the water column. In estuaries the current direction changes

predictably on a regular basis with the ebb and flood of the tide. There is now a

large body of evidence that many planktonic larvae of estuarine organisms

undergo vertical migrations timed to specific phases of the tide (reviewed in

Forward &Tankersley 2001). This behavior, termed selective tidal-stream

transport, can result in unidirectional horizontal transport along the estuary or

maintenance of their position in a segment of the estuary. This has been best

studied in decapods and fish, but the behavior has also been seen in some

species of copepods, bivalves, and polychaetes (Forward &Tankersley 2001).

Two general dispersal patterns have been observed in planktonic larvae of

estuarine invertebrates, export and retention. Larvae have been observed to

export from estuaries in a couple of ways. In partially-mixed estuaries with two-
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layer circulation there is a net seaward flow of water at the surface and a net

landward flow at the bottom (Pritchard 1955). Therefore, larvae that maintain a

position in surface waters will be carried out of the estuary into the coastal ocean

via the residual currents. This is the behavior seen in larvae of Callinectes

sapidus in Delaware Bay, USA (Epifanio et al. 1984). The export process is

further enhanced by female C. sapidus crabs migrating to the mouths of bays to

spawn. This strategy, of maintaining a position high in the water column, will

result in export only if there is a net seaward flow at the surface and the flushing

time is shorter than the larval development period. The other ways that larvae

export from estuaries can be classified as ebb-tide transport. These strategies

require larvae to ascend into the water column during ebb tide and reside on or

near the bottom during flood tide. The first stage zoeae of Carcinus maenas in

Canal de Mira, Portugal, reached their highest position in the water column

during ebb tide and their lowest during flood tide (Queiroga et al. 1997). By

maintaining a position low in the water column during flood tides, where currents

were slower, larvae minimized landward transport, and by rising into the faster

moving surface currents during ebb tide, they maximized seaward transport.

DiBacco et al. (2001) found that first stage Pachygrapsus crassipes zoeae

aggregated at the sediment-water interface during flood tides and near the

surface of the water column during nocturnal ebb tides preventing landward

transport and maximizing their export from San Diego Bay.

Larvae that export from estuaries develop in off-shore waters and then
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must return to the estuary as they become competent to settle. Larvae that

invade estuaries must behave in the opposite manner of larvae leaving the

estuary, Le. remain in the landward flowing bottom waters, or hold a position high

in the water column during flood tides and on or near the bottom during ebb

tides. Many crab megalopae have been found to utilize flood-tide transport (Le.

ascent during flood tide and descent during ebb tide) (Epifanio et al. 1984,

Brookings & Epifanio 1985, Little & Epifanio 1991, Queiroga et al. 1994, Dittel &

Epifanio 1990, Dittel et al. 1991, DeVries et al. 1994). Juvenile shrimp and fish

also use flood-tide transport to move up the estuary to nursery habitat (Forward

& Tankersley 2001).

Zooplankton have been observed to retain in estuaries in a number of

ways. Larvae with developmental periods shorter than the flushing time of their

estuary and that lack behaviors to expedite export will be retained. Upon

hatching, some larvae maintain a position high in the water column, but as they

develop they become negatively phototactic and positively geotactic (Sulkin

1984) and take a position lower in the water column. In estuaries with net

seaward flows in the upper water layer and net landward flows in the lower water

layer, if a large enough portion of the larval period is spent in the lower water

layer the larvae may be retained in the estuary (Epifanio 1988). This was best

demonstrated in the barnacle Balanus improvisus in the classic study by

Bousfield (1955) in the Miramichi Estuary, New Brunswick. In estuaries with two­

layer circulation systems, larvae may also retain by undergoing vertical



migrations centered around the depth of no net flow. An example of this vertical

migration behavior is seen in the euryhaline crab, Rhithropanopeus harrisii

(Cronin 1982). In the Conwy Estuary, United Kingdom, which is a strongly tidal,

partially mixed estuary, Hough and Naylor (1991) found that the copepod

Eurytemora affinis could be retained in the estuary by "switching" behaviors

depending on its location in the estuary. In high salinity areas, the copepods

would ascend during flood tides and descend during ebb tides resulting in

movement up the estuary. Alternately, in low salinity areas, copepods would

ascend during ebb tides and descend during flood tides resulting in movement

down the estuary. In San Diego Bay, California, freshwater input is negligible

during the dry season; therefore, residual flows are weak or absent. DiBacco et

al (2001) found that without a distinct vertical migration pattern, larvae of

Lophopanopeus bel/us were retained in San Diego Bay.

The transport of planktonic larvae of estuarine organisms has been

studied in a number of estuaries. Many of the studies have been done on the

East Coast of North America in large, partially-mixed estuaries with two layer

circulation; however, more recently, smaller estuaries across several continents

have been examined. On the West Coast of North America, relatively few

studies have looked at the dispersal strategies of estuarine invertebrates.

Therefore, we investigated the advective transport of several zooplankton

species in South Slough, a small, well-mixed estuary on the southern Oregon

coast. For some of the species this is the first published description of their

5



dispersal patterns.
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CHAPTER II

DESCRIPTION OF THE STUDY SITE

This study was conducted during August and September 1996 from a

floating anchor station in South Slough, an arm of the Coos Bay estuary, Oregon.

The anchor station was located near the mouth of the slough, which in turn is

located approximately 1.6 km from the mouth of Coos Bay (43.3°N, 124.3°W;

Fig. 1). Coos Bay, located on the southern coast of Oregon, is the fifth largest

estuary in the Pacific Northwest. Characterized as a drowned river valley it has a

surface area of -50 square kilometers (State of Oregon Division of State Lands

1973).

With an average depth of two meters, approximately 65% of the Coos Bay

estuary is intertidal (Rumrill in prep). At low tide, extensive mudflats are exposed

as well as eelgrass beds of Zostera marina. The mudflats, eelgrass beds, and

subtidal habitat in the estuary support a diverse community of marine and

estuarine invertebrates. Macrofauna typical of these habitats include: burrowing

shrimp, such as Upogebia and Neotrypaea; numerous species of bivalves,

worms, and crabs; as well as a variety of fishes. There is also a small amount of

rocky substrata found within the estuary with an associated community of

invertebrates and fish.



Fig. 1. Map of the Coos Bay estuary, Oregon, and location of the sampling
station (indicated by arrow) in South Slough. (adapted from Roye 1979)
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Freshwater input into the Coos Bay estuary is highly seasonal. Between

October and May average rainfall is 140 cm, but less than 10 cm falls between

June and September. Total annual rainfall (measured at the North Bend, Oregon

airport) during 1996 was 214.8 cm, with 2.95 cm falling during the course of the

study (and almost all of that fell during the last sampling period)(Oregon Climate

Service 2001). Approximately 70% of the 1576 km2 Coos Bay watershed drains

into the Coos River (US Army Corps of Engineers 1993). Maximum freshwater

flow occurs in February and minimal flow occurs in late summer (August and

September), with flows of 155.7 m3 S·1 and 2.55 m3 S·1, respectively (Percy et al.

1974). A number of small creeks also contribute freshwater to Coos Bay (Fig. 1).

In the summer, circulation in the Coos Bay estuary is dominated by

semidiurnal tides that have a mean excursion of 1.7 m and extremes of -0.6 and

2.8 m relative to MLLW (mean lower low water)(Oregon Dept of Trans 1983).

The tidal prism is approximately 5.3 x 107 m3 (Arneson 1976); therefore,

approximately 77% of the water within the Coos Bay estuary is discharged during

an ebb tide. The estuary is essentially well mixed throughout the year (Burt and

McAlister 1959). During periods of low freshwater inflow (typical for Coos Bay

during summer and early fall), well-mixed estuaries typically have a slow net

seaward drift at all depths; salt moves landward against the drift by means of

diffusion, enhanced by tidal mixing (Burt & McAlister 1959).

South Slough, a National Estuarine Research Reserve, is an arm of the

Coos Bay estuary (Fig. 1). The slough has a surface area of 20.2 km2 with a
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watershed surface area of 193 km2 (Rumrill in prep). It experiences limited

freshwater input from a number of small creeks and streams with maximal runoff

in February at 6.6 m3 S-1 and minimal runoff in August at 0.2 m3 S-1 (Pimentel

1986). The tidal prism was estimated to be 9.4 x 106 m3 (Harris et al. 1979);

hence, during an average amplitude tide approximately 48% of the water in

South Slough is discharged during an ebb tide. Using a mean tidal range of

1.7 m, Pimentel (1986) calculated the flushing time of South Slough for February

and August to be about one tidal cycle.
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CHAPTER III

MATERIALS & METHODS

In order to investigate the physical structure of the water column and

advective transport of zooplankton, we occupied an anchor'station for five semi-

diurnal tidal periods, spaced about a week apart, from 7 August - 14 September

1996 (Table 1, Fig. 2). Late summer dates were chosen because many of

Table 1. 1996 sampling period dates and times, maximum tidal amplitude during
the sampling period, and coastal ocean conditions with respect to the upwelling­
downwelling cycle.

Sampling Start End Maximum tidal Downwelling
period (date! time) (date! time) amplitude (m) or upwelling
7 Aug. 7 Aug. ! 01 :57 8 Aug. ! 06:58 2.03 upwelling
15 Aug. 15 Aug.! 07:30 16 Aug. ! 07:57 2.08 upwelling
28 Aug. 28 Aug.! 06:03 29 Aug. ! 07:00 2.95 downwelling
5 Sep. 5 Sep. ! 00:45 6 Sep./ 01 :48 1.30 downwelling
13 Sep. 13 Sep. /06:27 14 Sep. /07:38 1.89 downwelling

the decapod larvae are completing their larval development at these times, and

second broods are just beginning to hatch (Table 2). The anchor station

consisted of a boat anchored in the middle of the South Slough channel

approximately 2 km from the mouth of Coos Bay. Sampling was initiated at slack

low water. Conductivity, temperature, and depth were measured with a Seabird

19 CTD. A Wetstar fluorometer was attached to the CTD to measure the
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Table 2. Life history information of decapod species found in the vicinity of Coos Bay, Oregon.

Organism Range Adult habitat
Number of Months broods Number of larval

Larval period
broods hatch stages

Neotrypaea Alaska - Baja
Estuaries (a) 3 - 4 (b) May - Sep (b)

5 zoeae 6 - 8 weeks
californiensis (a) 1 megalopa (b) (b)

Hemigrapsus Alaska - Baja
Estuaries but

May - Jul; 5 zoeae 4 - 5 weeks
also outer coast 2 (c)

oregonensis (a)
(a)

Aug - Sep (c) 1 megalopa (d) (d)

Mainly outer
Lophopanopeus Alaska - coast but also in

2 (c)
May-Aug; 4 zoeae

5 weeks (c)
bel/us California (a) lower reaches of Aug -? (c) 1 megalopa (d)

estuaries (a)

Pachygrapsus Oregon - Sea Estuaries and ovigerous
5 (f) or 6 (g) 3 months

crassipes of Cortez (a) outer coast (a)
1-2 (e)

April- Sep (e)
zoeae z1 up to meg

1 megalopa (f)
Alaska - Baja Commensal with year round (h)

Pinnotherid spp. (a) (Individual estuarine
multiple peaks late summer- 5 zoeae 7 - 8 weeks

species ranges organisms (a)
(h) early fall and late 1 megalpoa (h) (h)

may be smaller) winter-early spring (c)

S.E. Alaska-
Mainly outer

May - mid Aug;
coast but also in 2 zoeae 5 - 6 weeks

Porcelain crabs Southern
lower reaches of

2 (c) Aug - early Oct
1 megalopa (i) (i)

California (a)
estuaries (a)

(c)

Emerita analoga
Oregon - Chile

Outer coast (a) ? July - Aug (j)
5 zoeae

4 months (k)
(a) 1 megalopa (j)

(a) Jensen (1995); (b) McCrow (1972); (c) Strathmann (1987); (d) Hart (1935); (e) Morris et al. (1980);
(f) Schlotterbeck (1976); (g) DiBacco (2001); (h) Lough (1975); (i) Gonor and Gonor (1973);
(j) Johnson and Lewis (1942); (k) Johnson (1939)
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concentrations of chlorophyll a, and a NE Sensortec AlS UCM-60 acoustic

current meter measured horizontal current velocity. The instrument package

(CTD, fluorometer, and current meter) recorded measurements at 12 s intervals.

The instrument probes were suspended from the boat at -0.7 m depth (relative to

the water's surface) except during vertical profiles that were conducted at about

hourly intervals. During a vertical profile, the instrument package was first

brought up to the surface and then lowered to within 5 cm above the bottom. As

the instrument package was lowered through the water column, it was stopped

about every 30 cm and usually held at this depth for 30 seconds, but sometimes

up to a minute or more.

Zooplankton was sampled with a 333 micron mesh net (mouth dimensions

of 1 x 0.3 m). Styrofoam floats along the upper edge of the net mouth and

weights along the bottom edge ensured that the plane of the mouth was

perpendicular to the flow of water. A rotary flow meter mounted in the center of

the net mouth was used to calculate volume of water filtered. Approximately

once an hour, neuston and near-bottom tows were conducted consecutively.

Thirty pounds of weight was added to the lower edge of the net in order to sink it

to the bottom for the near bottom samples. Samples were collected by allowing

the water to pass through the net (which was approximately 35 meters

downstream of the boat) for 5 to 10 min depending on the velocity of the tidal

currents. The objective was to filter about 50 m3 of water per sample. The actual
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volume filtered ranged from 4 to 99 m3
, with a meaQ of -40 m3 and a median of

-37 m3
. Samples were preserved in -7% buffered formalin.

Zooplankton were enumerated in the laboratory using a dissecting microscope.

The entire sample was examined for species of interest (Table 3); however, if

more than three hundred individuals of a given species were encountered in the

first half of the sample, a 5 ml Stemple pipette was used to sub-sample. Aliquots

were taken from a known volume until approximately two hundred organisms had

been counted. Larvae were identified according to Shanks (2001) (decapods

and barnacles), Wrobel and Mills (1998) (gelatinous organisms), and Matarese et

al. (1989) (larval fish). Not all organisms were counted for all sampling periods;

Table 3 shows whether an organism was present and counted, absent, or not

counted.

~--~------- ~ ---------



Table 3. Organisms enumerated in samples collected from South Slough during five
sampling periods. A = absent, P = present, NC = not counted.

16

Organism Stage
7 15 28 5 13

Aug. Aug. Aug. Sep. Sep.
DECAPODS

Cancerspp.
z1-z5 A A A A A
meg P P P P P
z1 P P NC NC P

Emerita ana/oga z2-z5 A A NC NC A
meg A A A NC A

z1 &z2 NC P P P P

Hemigrapsus oregonensis
z3 NC P P P P

z4 &z5 NC P P P P
meg P P A, NC P

z1 &z2 P P NC NC P

LophopanopeusbeHus
z3 A A NC NC P
z4 A A NC NC P

meg P P A NC A
z1 P P P NC P

Majid spp. z2 A P P NC A
meg A P A NC A

z1 &z2 P P P P P

Neotrypaea californiensis
z3 A A A A A

z4 &z5 A A A A A
meg A P A A A
z1 P P NC NC P

Pachygrapsus crassipes z2-z5 A A NC NC A
meg A A A NC A

z1 &z2 NC P NC NC P

Pagurus spp.
z3 NC P NC NC P
z4 NC A NC NC P

meg P P P NC A
z1 &z2 P NC P P P

Pinnotherid spp.
z3 P NC P P P

z4 &z5 P NC P P P
meg A A A NC P
z1 P P P P P

Porcelain spp. z2 P P P P P
meg P P A NC A

NON-DECAPODS
C/ytia gregaria NC P P P P
Aequorea spp. NC P P P P
P/eurobrachia bachei NC P P P P
Chaetognath spp. NC P P P P
Barnacle Cyprids NC P P P P
Larval Fish -3mm NC P P P A
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CHAPTER IV

RESULTS & DISCUSSION

Physical Forcing within the South Slough Estuary

Circulation in the South Slough estuary was tidally driven during the

summer sampling period. Measurements of the physical variables showed little

variability over the depth of the water column, indicating that the water was well-

mixed. Estuarine water temperature, salinity, and velocity, however, varied with

the tides. Consistent patterns in the time-series of estuarine water parameters

were apparent.

The depth of the water column at the anchor station ranged from -1.5 to

-5 m (Figs. 8-12a). Data from hourly CTD casts indicate that the water column

was well-mixed during all five sampling periods. Temperature gradients greater

than 1 °C or salinity gradients greater than 0.5 psu, over the depth of the water

column, were rare (Figs. 3 and 4).

Plots of the individual vertical casts illustrate that the velocity varied only

slightly over the depth of the water column. Within a vertical cast, it was typical

for the velocity to vary 0.05 to 0.2 m S-1; however, there was no consistent

relationship between horizontal velocity and depth within the water column (Figs.

5-7). Of the 107 vertical profiles conducted during the five sampling periods,



18

r
16-.2.

L

24

L

24

L

H

18

18
H

Missing
data

12

12
L

LH

6

H

6

H

1
I
f

I
L

0

-1
-.
E -2

.£:.......
0- -3Q)

0

-4

-5

0

L
0

-1
-.
E -2--.£:.......
0- -3Q)

0

-4

-5

0

L
0

-1
-.
E -2

.£:.......
0-

-3Q)

0

-4

-5

o 6 12 18 24
Elapsed time (h)

Fig. 3. Time series of hourly vertical temperature profiles for the five sampling
periods. Contour intervals are 1 C. Sampling dates are indicated in the bottom
left corner of the graphs. Black areas are approximations of the bottom. Since
sampling was conducted from an anchor station, as the tide flooded and ebbed,
water column depth increased and decreased, respectively. Along the top of the
graphs, H indicates high slack tide, and L indicates low slack tide.



19

L H L H L

15.0

1 .0

13.0

-5

a--.--.--,--.--.------.----,-----,-----.------,---,---r----r-1

-4

-1
...--..-

E -2
.c......
g- -3
o

a 6 12 18 24

L H L H L

-1

-5

-4

a--.---,.----.-..------,;...-..---,-..-.-.----,--,....,---.,,-----.-.---.--,
1 .0

1 .0
1 .0

1 .0...--..-

E- -2
.c......
a.
w -3
o

a 6 12

Elapsed time (h)

18 24

,

I
1

I
i

Fig. 3. Cant.



20

L H L H L

-1

-2
J::
+-'

ar -3
o

-4

-5

o 6 12 18 24

L H L

2418

Missing
data

126o

-4

o ----r---r..,,-.,---,--.-,.---,--,.---.-.........o-:r-----------,,....--,...,----,

-1

-5

J::
+-'

0. -3
Q)

o

.--..
E -2---

-1
.--..

E -2
J::
+-'

ar -3
o

-4

-5

L H H L

o 6 12

Elapsed time (h)

18 24

Fig. 4. Time series of hourly vertical salinity profiles. Contour intervals
are 0.2 psu. Further details as in figure 3.



21

L

L

24

24

H

H

18

18

L

L

12

12

Elapsed time (h)

H

6

6

L

L H
O---..-----.~,..----r-----.--,..----.--_._----__,_______r__r_,.,__,_,

-1

-1

Fig. 4. Cant.

o

-4

-5

o

-4

-5

..-
E -2

..-

-S -2
..c.....
g- -3
o

..c.....
0. -3Q)

o



D. 5 September
Increasing ebb tide
Duration of cast: 14.2 min
o ~--.--.,.----,.,~---,r---,

-4

-1

-3

-2

l ~~
~

~~

I~

!

-5 +--+-+--~-I--~

0.1 0.2 0.3 0.4 0.5 0.6 -0.3 -0.2 -0.1 0.0 0.1 0.2

Velocity (m/s) Velocity (m/s)

C. 5 September
Decreasing flood tide
Duration of cast: 5.4 min
o

-4

-3

-1

-2

Velocity (m/s)

-4

-1

-2

-3

B. 28 August
Increasing ebb tide
Duration of cast: 10.6 min
o .,-----r-.-----.---.--,

Velocity (m/s)

\
f-t-

~

~

A. 7 August
Near max velocity, flood
Duration of cast: 7.2 min
o

-4

-1

-5 -5 -5
0.3 0.4 0.5 0.6 0.7 0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2

.c.-a.
<D
o -3

..- -2
E--
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mean values and the 95% confidence interval; triangles are used when <3 measurement were taken at a depth.
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mean values and the 95% confidence interval; triangles are used when <3 measurements were taken at a depth.
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65% had velocities that varied more than 0.05 m S·1 but less than 0.2 m S·1 (Fig.

5). In 19% of the vertical profiles, differences in velocity over the depth of the

water column were less than 0.05 m S·1 (Fig. 6). The remaining 16% of the

vertical profiles had velocities that varied 0.2 m S·1 or more (Fig. 7). We did not

observe decreased velocities near the bottom; however, the deepest

measurements recorded were -5 cm above the estuary floor.

Although the water column temperature, salinity, and density were

typically homogenous during each individual cast, the physical characteristics of

the water at the anchor station were more variable over a tidal cycle. The

difference in the values of the physical variables between consecutive slack

periods largely depended on the difference in the tidal amplitude between the

high and low tides. The smallest change in temperature between consecutive

slack tides was -1°C as seen on 5 September between low high and high low

tide (Table 4), and the largest change in temperature observed between

consecutive slack tides was -7 °C as seen on 7 August between high high and

low low tide (Table 4). Because the study was conducted during the summer

when freshwater input was at its annual minimum, the range of salinities

observed was small; values varied between 0.28 and 2.9 psu between

consecutive slack tides (Table 4). Density values varied from 0.6 to 3.36 sigma-t

(Table 4).

Despite variation related to the spring-neap cycle, consistent patterns

were evident in the physical variables over a tidal cycle. At low tide, the

~ -------------~------
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Table 4: Slack tide values and the change (~) in value from the previous slack tide for tidal height
(relative to MLLW), temperature, salinity, and density, for the five sampling periods.

7 August
Tidal height Temperature Salinity Density

(m) ~ (DC) ~ (psu) ~ (crt) ~

Start 16.11 32.32 23.66
Low high 1.599 10.75 5.36 33.44 1.12 25.59 1.93
High low 0.924 0.675 15.04 4.29 32.76 0.68 24.28 1.31
High high 2.135 1.211 10.18 4.86 33.87 1.11 26.04 1.76
Low low 0.109 2.026 17.06 6.88 32.28 1.59 23.42 2.62

15 August
Tidal height Temperature Salinity Density

(m) ~ (DC) ~ (psu) ~ (crt) ~

Low low -0.043 15.94 32.20 23.60
High high 2.037 2.08 10.87 5.07 33.8 1.6 25.86 2.26
High low 0.406 1.631 16.03 5.16 32.67 1.13 23.95 1.91
Low high 2.031 1.625 Missing data Missing data Missing data
Low low 0.036 1.995 15.08 32.27 23.85

28 August Tidal height Temperature Salinity Density
(m) ~ (DC) ~ (psu) ~ (crt) ~

High low 0.227 15.04 32.16 23.77
High high 2.588 2.361 10.94 4.1 33.49 1.33 25.61 1.84
Low low -0.360 2.948 16.48 5.54 30.59 2.9 22.25 3.36
Low high 2.434 2.794 11.17 5.31 33.47 2.88 25.56 3.31
High low 0.109 2.325 15.24 4.07 31.71 1.76 23.58 1.98

5 Tidal height Temperature Salinity Density
September (m) ~ (DC) ~ (psu) ~ (crt) ~

Low low 0.278 15.04 32.8 24.26
Low high 1.574 1.296 11.47 3.57 33.42 0.62 25.46 1.2
High low 0.911 0.663 12.55 1.08 33.14 0.28 24.86 0.6
High high 1.989 1.078 11.02 1.53 33.56 0.42 25.65 0.79

End 15.28 4.26 32.89 0.67 24.28 1.37

13 Tidal height Temperature Salinity Density
September (m) ~ (DC) ~ (psu) ~ (crt) ~

Start 14.60 32.71 24.30
High high 2.325 11.68 2.92 33.50 0.79 25.45 1.15
High low 0.436 1.889 15.59 3.91 32.88 0.62 24.21 1.24
High high 2.324 1.888 11.20 4.39 33.57 0.69 25.63 1.42

End 14.74 3.54 32.57 1 24.16 1.47
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temperature of the water at the anchor station was relatively warm and the

salinity and density were relatively low. Temperature at low tide ranged from

12.55-17.06 °C, salinity ranged from 30.59-33.14 psu, and density ranged from

22.25-24.86 sigma-t (Table 4). The extent of the values generally depended on

the spring-neap cycle. For example, during spring tides, when low tides were

the lowest, the water tended to be the warmest and salinity and density tended to

be lowest.

As the tide turned and began to rise, the water that most recently ebbed

past the station and toward the estuary mouth, flooded back past the anchor

station. As flood tide advanced, tempe'rature decreased while salinity, density,

and velocity increased (Figs. 8-12).

Approximately 1.5 to 2 hours into the flood tide, water characterized by

increasing (or constant) temperature and decreasing (or constant) salinity and

density values passed the station. This mass of water is interpreted as water

from the main stem of the Coos Bay estuary, and is labeled Coos Bay water in

figure 12. This mass of water passed by the station in -1 to 2 hours.

Following the Coos Bay water, as velocity was typically reaching its

maximum, temperature decreased and salinity and density increased relatively

rapidly. This water was a mix of estuary water that had been expelled into the

ocean during the ebb tide, and coastal ocean water. Eventually the rates at

which temperature, salinity, and density were changing slowed as the water

composition became more oceanic. Often lines of flotsam, suggesting
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convergent flow, preceded the coastal ocean water.

For the last 1 to 2 hours of flood tide, as velocity decreased, coastal ocean

water (the coldest, highest salinity, most dense water encountered) passed the

anchor station (labeled as ocean water in Fig. 12). During this time there was

little change in temperature, salinity, and density. Temperatures at high tide

ranged from 10.18 to 11.68 °C, salinity ranged from 33.15 to 33.87 psu, and

density ranged from 25.21 to 26.04 sigma-t.

The values of the estuarine water parameters observed at high tide not

only reflected differences in the spring-neap cycle, but also in the upwelling­

downwelling cycle in the coastal ocean. The coldest, highest salinity, densest

waters were seen during spring tides that coincided with upwelling favorable

periods. Upwelling occurs when northwest winds push the Ekman layer offshore,

and colder, higher salinity waters from below upwell to compensate for the

displaced surface waters; the upwelled waters are in turn advected into the

estuary during flood tide. When winds cease (or blow from the south), the

warmer less dense waters, previously held offshore, relax (or are pushed) back

against the coast. Though these waters are warm in comparison to upwelled

waters, they are still colder than estuarine waters. The 7 and 15 August

sampling periods took place during upwelling favorable periods, while the 28

August, 5 September, and 13 September sampling periods took place during

downwelling favorable periods (Roegner and Shanks, 2001).

As the tide turned from flood to ebb, the coastal ocean water that most
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recently entered the slough retreated. As ebb tide progressed and velocity

increased, temperature increased while salinity and density decreased. The

mass of Coos Bay water was no longer distinct.

Though the pattern in the time-series of estuarine water parameters

described above was evident during most sampling periods for both portions of

the semi-diurnal tidal cycle, during neap tides some features were absent during

the smallest tidal amplitude changes. On 7 August and 5 September, ocean

water failed to arrive at the anchor station during the shift from the low low tide to

low high tide (Figs. 8 and 11). On 5 September the Coos Bay water mass was

not apparent during the shift from the high low tide to high high tide (Fig. 11).

In summary, during the summer near the mouth of South Slough the water

column was vertically well mixed. Horizontal current velocity also varied little with

depth. The waters that passed by the station during flood tide can be identified

as being estuarine or oceanic, while the waters that passed the station during

ebb have been mixed during their passage through the slough and form a

roughly constant gradient. Circulation in estuaries is complex and is influenced

by factors such as water density, tides, wind stress, and bathemetry. Yet,

consistent patterns in the physical variables at the anchor station were evident

and appeared to be highly influenced by the mixed semidiurnal tides. Because of

its close proximity to the mouth of the estuary, the study site was inundated with

coastal ocean water during most high tides. Therefore processes affecting the

nearshore, like the upwelling-downwelling cycle, impact the estuary.
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Zooplankton Abundance Patterns

A total of 199,530 decapod larvae, 3,670 barnacle cyprids, 32,107

gelatinous organisms, and 1,562 larval fish were enumerated. All of the

zooplankton species counted during the five sampling periods as well as their

average and maximum concentrations are listed in Table 5. The most abundant

organisms enumerated were typically early stage zoeae of the estuarine

decapods Pinnotherid spp., Hemigrapsus oregonensis, and Neotrypaea

californiensis, and the hydromedusae, C/ytia gregaria. Very few megalopae were

collected. The least abundant organisms, when they were caught at all, were mid

and late stage zoeae (excepting Pinnotherid spp.).

Based on zooplankton abundance patterns, dispersal strategies can be

inferred; thus, the estuarine zooplankton have been classified as either exporting

or retaining. There were also decapod larvae, barnacle cyprids, hydromedusae,

and other zooplankton that imported into the estuary from the coastal ocean. The

following data and interpretations are therefore divided into three sections:

export, retention, and import. For some of the organisms, interpretation of the

data is uncertain because the abundances were low and/or they were present or

counted in only one or two of the sampling periods. Despite this, they have been

included and placed in the section that is most consistent with the data. Majid

spp. larvae, Cancer spp. larvae, and Pagurus spp. larvae, due to low

abundances and inconsistent patterns will not be discussed any further.



Table 5. Average and maximum concentrations of all zooplankton
enumerated from the five sampling periods.

7 Aug. Average Maximum

Organism
concentration concentration
(number m-3

) (number m-3
)

Pinnotherid spp. z1 &z2 29.23 208.83
Neotrypaea californiensis z1 5.18 33.24
Pachygrapsus crassipes z1 0.48 1.68
Emerita analoga z1 0.43 3.38
Pinnotherid spp. z3 0.16 0.80
Majid spp. z1 0.14 0.85
Pinnotherid spp. z4 &z5 0.074 0.37
LophopanopeusbeHusz1 0.072 0.44
Porcelain spp. z1 0.017 0.31
Hemigrapsus nudus megalopae 0.013 0.31
Hemigrapsus oregonensis megalopae 0.011 0.14
Cancer spp. megalopae 0.0081 0.14
Lophopanopeus beHus megalopae 0.0059 0.071
Porcelain spp. megalopae 0.0033 0.061
Pagurus spp. megalopae 0.0025 0.042
Porcelain spp. z2 0.00094 0.031

15 Aug. Average Maximum
concentration concentration

Organism (number m-3
) (number m-3

)

Hemigrapsus oregonensis z1 & z2 21.24 333.99
Clytia gregaria 9.78 159.28
Neotrypaea californiensis z1 6.89 49.20
Pagurus spp. z1 & z2 2.30 4.80
Pleurobrachia bachei 1.63 20.16
Balanus glandula cyprids 1.53 7.33
Larval fish 1.48 25.24
Pachygrapsus crassipes z1 0.50 2.14
Emerita analoga z1 0.45 3.38
Majid spp. z1 0.27 1.30
Balanus crenatus cyprids 0.26 2.12
Semibalanus cariosus cyprids 0.12 1.80
Porcelain spp. z1 0.12 0.93
LophopanopeusbeHusz1 0.095 1.11
Hemigrapsus oregonensis z3 0.069 0.39
Aequorea spp. 0.058 0.47
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15 Aug. (cont.) Average Maximum

Organism
concentration concentration
(number m-3) (number m-3

)

Pollicipes polymerus cyprids 0.053 0.51
Chthamalus dalli cyprids 0.044 0.41
Chaetognath spp. 0.042 0.40
Balanus nubilus cyprids 0.033 0.16
Pagurus spp. megalopae 0.030 0.15
Hemigrapsus oregonensis z4 & z5 0.015 0.19
Balanus improvisus cyprids 0.010 0.19
Lepas spp. cyprids 0.0053 0.051
Porcelain spp. z2 0.0039 0.052
Cancer spp. megalopae 0.0021 0.051
Majid spp. megalopae 0.0019 0.025
Porcelain spp. megalopae 0.0014 0.020
Neotrypaea californensis megalopae 0.00073 0.026
Lophopanopeus bel/us megalopae 0.00055 0.020
Hemigrapsus oregonensis megalopae 0.00043 0.016
Majid spp. z2 0.00037 0.013
Neotrypaea californiensis z2 0.00037 0.013
Pagurus spp. z3 0.00018 0.013

28 Aug. Average Maximum

Organism
concentration concentration
(number m-3) (number m-3

)

Pinnotherid spp. z1 7.33 59.22
Clytia gregaria 5.41 40.55
Hemigrapsus oregonensis z1 4.58 98.85
Porcelain spp. z1 & z2 0.97 7.61
Neotrypaea californiensis z1 0.78 6.01
Larval fish 0.24 2.16
Pleurobrachia bachei 0.21 1.13
Cancer spp. megalopae 0.15 3.08
Hemigrapsus oregonensis z2 0.15 2.28
Pinnotherid spp. z2 0.13 1.12
Pinnotherid spp. z3 0.093 0.46
Aequorea spp. 0.069 1.72
Cyprids 0.058 1.00
Hemigrapsus oregonensis z3 0.025 0.23
Majid spp. zoeae 0.018 0.41
Pinnotherid spp. z4 0.015 0.18
Chaetognath spp. 0.013 0.13
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28 Aug. (cont.)

Organism

Hemigrapsus oregonensis z4
Pagurus spp. megalopae
Pinnotherid spp. z5

Average
concentration
(number m-3)

0.0030
0.0030
0.0012

Maximum
concentration
(number m-3

)

0.046
0.023
0.015
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5 Sep. Average Maximum
concentration concentration

Organism (number m-3) (number m-3
)

Pinnotherid spp. z1 51.27 570.81
Hemigrapsus oregonensis z1 10.02 141.11
Clytia gregaria 8.47 66.91
Neotrypaea californiensis z1 5.49 108.38
Pinnotherid spp. z2 3.28 25.31
Pinnotherid spp. z3 1.20 6.93
Porcelain spp. z1 & z2 0.52 5.03
Pinnotherid spp. z4 0.52 1.73
Pleurobrachia bachei 0.37 2.98
Pinnotherid spp. z5 0.21 1.69
Larval fish 0.15 1.12
Non-Cancer megalopae 0.082 0.44
Aequorea spp. 0.056 0.44
Chaetognath spp. 0.038 0.46
Hemigrapsus oregonensis z2 0.035 0.34
Cancer spp. megalopae 0.029 0.27
Cyprids 0.029 0.30
Hemigrapsus oregonensis z3 0.021 0.41
Hemigrapsus oregonensis z5 0.0015 0.022
Hemigrapsus oregonensis z4 0.00090 0.025



13 Sep. Average Maximum

Organism
concentration concentration
(number m-3

) (number m-3)

Pinnotherid spp. z1 29.84 145.07
Pinnotherid sp. A z1 7.30 112.55
Hemigrapsus oregonensis z1 & z2 5.37 27.72
Clytia gregaria 4.23 24.30
Pinnotherid spp. z2 4.13 20.77
Neotrypaea californiensis z1 2.41 21.91
Porcelain spp. z1 1.96 6.82
Pinnotherid sp. A z2 1.93 47.69
Pinnotherid spp. z3 1.50 10.14
LophopanopeusbeHusz1 1.46 20.57
Pinnotherid spp. z4 0.78 5.30
Pinnotherid spp. z5 0.73 3.97
Pleurobrachia bachei 0.64 3.66
Pagurus spp. z1 & z2 0.56 2.54
Emerita analoga z1 0.42 2.30
Pachygrapsus crassipes z1 0.28 1.44
Balanus glandula cyprids 0.22 2.19
Chaetognath spp. 0.21 2.19
Semibalanus cariosus cyprids 0.20 1.11
Balanus nubilus cyprids 0.18 0.97
Majid spp. z1 0.16 0.62
Pinnotherid sp. A z3 0.089 1.37
Porcelain spp. z2 0.086 0.38
Hemigrapsus oregonensis z3 0.065 0.40
Balanus crenatus cyprids 0.061 0.93
Pinnotherid spp. megalopae 0.055 0.30
Pagurus spp. z3 0.027 0.19
Hemigrapsus oregonensis z4 & z5 0.025 0.15
Cancer spp. megalopae 0.020 0.21
Pinnotherid sp. A z4 0.018 0.12
Pollicipes polymerus cyprids 0.015 0.12
Chthamalus dalli cyprids 0.014 0.11
Pinnotherid sp. A z5 0.0090 0.070
LophopanopeusbeHusz2 0.0070 0.12
Hemigrapsus spp. megalopae 0.0067 0.066
Aequorea spp. 0.0034 0.053
Pagurus spp. z4 0.0031 0.034
Lophopanopeus beHus z3 & z4 0.0020 0.041
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Export

If larvae export from an estuary and develop offshore, later to return to the

estuary to settle, only early stage larvae and the last larval stage would be found

in estuarine waters. Four of the decapod species enumerated have abundance

patterns that suggest that their larvae are exported from the bay: Neotrypaea

californiensis, Hemigrapsus oregonensis, Lophopanopeus bel/us, and

Pachygrapsus crassipes.

Neotrypaea californiensis

Neotrypaea californiensis is a burrowing thalassinid shrimp. Adults are

found in bays and estuaries in the middle to low intertidal zones in sand and

mUddy sand (Jensen 1995). They produce three to four broods per year that

hatch May through September (McCrow 1972). Neotrypaea californiensis molts

through five zoeal stages and one megalopal stage, spending approximately six

to eight weeks in the plankton (McCrow 1972) (Table 2).

Of the 22,959 N. californiensis larvae caught during the five sampling

periods, 99.6% of them were first stage zoeae (hereafter referred to as z1), the

remaining larvae were second stage zoeae (z2), third stage zoeae (z3) and

megalopae (Table 6). No stage four or five zoeae were caught. The fact that

most larvae caught were early stages and that the middle stage larvae were

absent in estuarine waters suggests that N. californiensis larvae were exported

from the estuary. Our findings are consistent with those of Johnson and Goner



Table 6. Percentage of each stage comprising the total catch for a given species. Parenthetical numbers indicate the
number of sampling dates organisms were counted. X indicates when a species does not have that stage.

Organism z1 z2 z3 z4 z5 meg

Neotrypaea
average 99.62 (5) 0.35 (5) 0.0087 (5) o (5) o (5) 0.0087 (5)

100- 4.98- 0.13- 0.021 -californiensis range
94.88 0 0

0 0
0

Hemigrapsus
average 97.66 (4) 1.65 (4) 0.53 (4) 0.12 (4) 0.0045 (4) 0.018 (4)

99.38 - 3.03- 1.31 - 0.50- 0.031 - 0.10-oregonensis range 96.41 0.35 0.21 0.015 0 0

Lophopanopeus
average 99.29 (3)

grouped
0.35 (3) 0.11 (3) X 0.23 (4)

99.47 - 0.39- 0.13- 4.91-
bel/us range

95.08
with z1

0 0
X

0
Pachygrapsus average 100 (3) o (3) o (3) o (3) o (3) o (4)
crassipes range 100 0 0 0 0 0

average 88.25 (4) 6.63 (4) 2.56 (4) 1.34 (4) 1.12 (4) 0.084 (3)
Pinnotherid spp. 98.30 - 11.31 - 4.08- 2.31- 2.28- 0.20-

range 79.81 0.99 0.46 0.17 0.016 0
average 95.30 (3) 4.47 (3) X X X 0.23 (3)

Porcelain spp. 95.57 - 9.09- X X X 27.27 -
range 63.63 0 0

Emerita analoga
average 100 (3) o (3) o (3) o (3) o (3) o (4)
range 100 0 0 0 0 0
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(1982). Their study, conducted in the Salmon River Estuary, Oregon, found that

88% of z1 N. californiensis larvae were exported during an ebb tide. McCraw

(1972, p 43), in a study conducted in Yaquina Bay, Oregon also found a "total

lack of older stages" in the bay. However, all N. californiensis larval stages were

found 1-3 miles offshore with larval densities up to two orders of magnitude

greater than those found in the bay; larvae were rare further than 3 miles

offshore (McCraw 1972).

High concentrations of z1 N. californiensis consistently occurred in the

surface samples during nocturnal ebb tides and in bottom flood samples that

followed a nocturnal ebb tide (Fig. 13). This suggests that N. californiensis zoeae

were vertically migrating to hasten their export fram the estuary. The best

illustration of this is seen on 7 August, figure 13. Zoeae were concentrated at the

surface during the nocturnal ebb tide, yet when the tide turned and flooded back

in, the zoeae were concentrated near the bottom. Whether it was day or night,

peaks in zoeal abundance occurred near the bottom during flood tides that

followed a nocturnal ebb tide (Fig. 13). Zoeae were rarely caught during daytime

ebb tides and the flood tides that followed. These data suggest that the zoeae

were selectively entering the water column to enhance their transport out of the

estuary. At the anchor station current speeds near the bottom were appreciable.

If larvae are to prevent transport in an "undesired" direction, they must swim into

the benthic boundary layer, or even into the sediment. There is only one study

that suggests that decapod zoeae might reside on the bottom to avoid transport.
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Neotrypaea califoniensis - z1
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Fig. 13. Abundance (number of individuals per m3
) of first stage zoeae of the burrowing shrimp,

Neotrypaea californiensis, at the South Slough anchor station over five sampling periods.
Unshaded bars represent surface zooplankton samples, and the shaded bars represent near
bottom zooplankton samples. Water density is also plotted to identify the water masses in
which the organisms are found. Gray background shading indicates night. Dotted vertical lines
indicate slack water. Triangles along the bottom axis indicate the time at which the
zooplankton samples were collected.
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Samples collected in the field by DiBacco et al. (2001) suggest that a significant

proportion of z1 P. crassipes are resting on the sediment-water interface during

flood tides, thus preventing landward transport. In addition, they observed that

first stage Pachygrapsus crassipes zoeae burrowed into the sediment to a depth

of two centimeters when hatched in the laboratory and raised in still water in

aquariums with coarse sand bottoms. The near absence of N. californiensis

zoeae from samples taken at times other than nocturnal ebb tides and the

following flood tide suggests that the zoeae may be residing on the bottom or

possibly burrowing into the sediment. Only two megalopae were caught during

the study, both of them were in the same sample collected on 15 Aug., at the

surface, at night, one hour before high tide. The low abundances of megalopae

caught during this study will be addressed in the concluding chapter.

Hemigrapsus oregonensis

Hemigrapsus oregonensis is a grapsid crab found in mudbank burrows in

estuaries and throughout the intertidal among rocks on mud or gravel bottoms

(Jensen 1995). They produce two broods per year. In Puget Sound,

Washington, the first broods hatch early May through late July; second broods

are produced almost immediately and typically hatch by late September

(Strathmann 1987). Hemigrapsus oregonensis molts through five zoeal stages

and one megalopal stage, spending approximately four to five weeks in the

plankton (Hart 1935) (Table 2).
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Of the 43,513 H. oregonensis larvae caught during four sampling periods,

97.66% of them were z1, 1.65% were z2, and the remaining -0.7% were z3­

megalopae (Table 6). The sharp decline in abundance of third to fifth stage

zoeae suggests that H. oregonensis larvae are exported from the estuary,

develop in the coastal ocean, and return to the estuary as megalopae. This is

also supported by the fact that the small number of later stage zoeae (z3-z5) that

were caught tended to be most abundant in ocean water (Fig. 14). In a study in

Elkhorn Slough, California, Hsueh (1991) also concluded that H. oregonensis

zoeae transported offshore, based on the scarcity of second to fifth stage zoeae

in horizontal plankton tows taken biweekly at four stations over a 14 month

period.

The abundance patterns of H. oregonensis were similar to N.

californiensis in that peaks in abundance of early zoeae often occurred at the

surface, at night, during ebb tides, and at the bottom during flood tides that

followed nocturnal ebb tides (Fig. 15). However,there were also differences.

The higher proportion of second stage H. orgonensis zoeae suggests that export

was not as rapid as it was for N. californiensis. Some of the largest peaks in

abundance of z1 larvae were at the bottom, near slack low tide (Fig. 15); H.

oregonensis z1 larvae were also caught in low abundances during daytime ebb

tides and the flood tides that followed, whereas N. californiensis were virtually

absent during these times (Fig. 15 compared to Fig. 13). Also, later stage H.

oregonensis larvae were caught in oceanic samples (Fig. 14). These data
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Fig. 14. Abundance (number of individuals per m3
) of later stage zoeae of the brachyuran crab,

Hemigrapsus oregonensis, at the South Slough anchor station over four sampling periods.
Unshaded bars represent surface zooplankton samples, and the shaded bars represent near
bottom zooplankton samples. Water density is also plotted to identify the water masses in
which the organisms are found. Gray background shading indicates night. Dotted vertical
lines indicate slack water. Triangles along the bottom axis indicate the time at which the
zooplankton samples were collected.
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Fig. 15. Abundance (number of individuals per m3
) of first stage zoeae of the brachyuran crab,

Hemigrapsus oregonensis, at the South Slough anchor station over four sampling periods.
Unshaded bars represent surface zooplankton samples, and the shaded bars represent near
bottom zooplankton samples. Water density is also plotted to identify the water masses in
which the organisms are found. Gray background shading indicates night. Dotted vertical
lines indicate slack water. Triangles along the bottom axis indicate the time at which the
zooplankton samples were collected.
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suggest that H. oregonensis zoeae were behaving differently than N.

californiensis zoeae. The presence of late stage zoeae in oceanic samples, albeit

in low numbers, suggests that H. oregonensis larvae may have been staying

closer to shore. H. oregonensis megalopae, when they were caught, were

mainly at the surface during flood tides (Fig. 16).

Lophopanopeus bel/us

Lophopanopeus bel/us is a xanthid crab found in the low intertidal and

subtidal under rocks on sand or gravel (Jensen 1995), and also in the low

intertidal areas of estuaries under rocks where there is some tidal current

(Strathmann 1987). In Puget Sound, Washington, 60-70 percent of females

produce two broods per year, the first hatching beginning in May, peaking in

June, and the second hatches in the fall (Strathmann 1987). Lophopanopeus

bel/us molts through four zoeal stages and one megalopal stage, spending

approximately five weeks in the plankton (Table 2).

A total of 1,692 L. bel/us zoeae were counted in three sampling periods

and four megalopae were found in two of four sampling periods examined. Over

99% of the larvae counted were z1 and z2, very few z3 through megalopae were

caught (Table 6). Over 91 % of the larvae were caught on 13 September, and

this is the only sampling period when later stage zoeae were caught. During this

sampling period, z1 and z2 larvae were most abundant at the surface, at night,

during ebb tide (Fig. 17), while z3 and z4 larvae were found near the bottom,



H. oregonensis megalopae
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Lophopanopeus bel/us - z1 and z2
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Fig. 17. Abundance (number of individuals per m3
) of early stage zoeae of the brachyuran crab,

Lophopanopeus bel/us, at the South Slough anchor station on 13 September. Unshaded
bars represent surface zooplankton samples, and the shaded bars represent near bottom
zooplankton samples. Water density is also plotted to identify the water masses in which the
organisms are found. Gray background shading indicates night. Dotted vertical lines indicate
slack water. Triangles along the bottom axis indicate the time at which the zooplankton
samples were collected.
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associated with ocean water, and primarily at night (data not shown). During the

other two sampling dates no discernible pattern was apparent most likely due to

low larval abundances.

The low number of larvae caught makes interpretation uncertain, but the

one sampling date when relatively high numbers of larvae were collected

suggests that the larvae were exported. Only early stage zoeae were found in

estuarine waters while late stage zoeae were found in ocean waters. And like N.

californiensis and H. orgonensis, early stage zoeae were found at the surface, at

night, during early ebb. DiBacco et al. (2001) found that in San Diego Bay, which

has little to no non-tidal residual flow in the dry season, L. bel/us larvae did not

exhibit a distinct vertical migration behavior and as a result were retained. Well

mixed estuaries with low inflow, like South Slough, typically have a slow net drift

outward at all depths, with a back-and-forth tidal movement superimposed upon

the slow drift (Burt and McAlister 1959). In South Slough, with an exchange ratio

of 0.48 and approximate summer flushing times of one tidal cycle (Pimentel

1986), it is unlikely that larvae without behavioral adaptations would be retained

in the estuary. Even in Coos Bay, with an exchange ratio of 0.78 and

approximate summer flushing times of 10 days for the lower half and 23 days for

the upper half of the bay (Arneson 1976), it is unlikely that larvae without

behaviors that aid in retention would be retained. Like the late stage zoeae, the

megalopae all were found at the bottom at night.
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Pachvgrapsus crassipes

Pachygrapsus crassipes is a grapsid crab found in the upper and middle

intertidal of rocky shores and estuaries (Jensen 1995). They produce one to two

broods per year. Females are reported to be ovigerous from April through

September (Morris et al. 1980). While Schlotterbeck (1976) reports that there

are five zoeal stages, more recently DiBacco (2001) reports six zoeal stages that

required between 68 and 108 days to develop (at 18 to 20°C).

A total of 1,535 P. crassipes larvae were counted in three sampling

periods. All of the larvae caught were z1. This suggests that the zoeae are

exported from the estuary. This is consistent with the findings of Hsueh (1991)

and DiBacco et al. (2001).

Stage one zoeae were abundant during nocturnal ebb tides, and at the

bottom during flood tides that followed nocturnal ebb tides. However, it was

common for zoeae to be present at concentrations of about half that of peak

concentrations in both surface and bottom estuarine samples (Fig. 18). There is

some indication that zoeae may be vertically migrating to hasten export, but low

abundances make for dubious interpretations. Low abundances of zoeae may

be due to a small population of P. crassipes in South Slough, and/or the

sampling periods did not coincide with larval spawning and zoeae exported

shortly after hatching.
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Pachygrapsus crassipes - z1
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Fig. 18. Abundance (number of individuals per m3
) of first stage zoeae of the brachyuran crab,

Pachygrapsus crassipes, at the South Slough anchor station over three sampling periods.
Unshaded bars represent surface zooplankton samples, and the shaded bars represent near
bottom zooplankton samples. Water density is also plotted to identify the water masses in
which the organisms are found. Gray background shading indicates night. Dotted vertical
lines indicate slack water. Triangles along the bottom axis indicate the time at which the
zooplankton samples were collected.
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Retention

If larvae retain in an estuary, all larval stages would be found in estuarine

waters. Two zooplankton groups enumerated have abundance patterns that

suggest that their larvae were retained in the estuary: pinnotherids and larval

fish.

Pinnotherid spp.

Pinnotherids are small crabs that live in association with a variety of

invertebrate hosts. Each species tends to associate with a specific host, though

some pinnotherid species are less specific, and juveniles are even less so.

Based on the reported ranges of pinnotherid crabs on the West Coast of North

America there are potentially 10 species that may be present in the vicinity of

Coos Bay. I've personally observed adults of Fabia subquadrata, Pinnixa

littoralis, Pinnixa faba, Pinnixa tubicola in the Coos Bay estuary. I have also

searched for Scleroplax granulata, which lives in the burrows of N. californiensis,

but have not found them. Of all 10 species, only Fabia subquadrata is reported

to live in association with an outer coast host, the rest have been found

associated with primarily estuarine hosts. Pinnotherids tend to have multiple

broods per year that hatch year round with peaks in late summer-early fall and

late winter-early spring (Strathmann 1987). They typically molt through four to

five zoeal stages and one megalopal stage spending approximately 7-8 weeks in

the plankton (Table 2). Descriptions of the larvae for only three of the species
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are available. None of the larvae collected in this study fit the descriptions of

Fabia subquadrata (Lough 1975) or Pinnotheres taylori (Hart 1935). Adult

Pinnixa Iittoralis and Pinnixa faba are commonly found in the gaper clam, Tresus

capax, in Coos Bay and South Slough (personal observation). Lough (1975)

describes the larvae of P. Iittoralis, but Pearce (1966) reports that the larvae of P.

Iittoralis and P. faba are indistinguishable. Therefore, all pinnotherid crab larvae

were lumped together.

A total of 113,258 pinnotherid larvae were counted during four sampling

periods. All zoeal stages were caught on all sampling dates, but megalopae

were only caught on 13 September. All larval stages were collected (Table 6)

predominately from estuarine waters (Figs. 19-21). This suggests that the larvae

are retained. Strangely, the highest concentrations of z1 pinnotherid larvae

tended to be in surface samples collected during nocturnal ebb tides and often in

bottom flood samples that followed nocturnal ebb tides (Fig. 19), as was seen in

H. oregoensis and N. californiensis larvae (Figs. 15 and 13 respectively), both of

which export. Possibly these are all newly hatched zoeae. Many decapod

larvae are negatively geotactic when they first hatch. In addition, regardless of

where larvae develop, many species have evolved to spawn during nocturnal

ebb tides, perhaps to avoid visually hunting planktivorous fishes (Morgan 1995).

However, z1 pinnotherid larvae were also found at the surface during nocturnal

flood tides (Fig. 19). Later stage zoeae (z3-z5) were found mainly in estuarine

waters, but they were also found in incoming ocean water (Figs. 20 and 21). The
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Fig. 19. Abundance (number of individuals per m3
) of first stage zoeae of the commensal

crabs, Pinnotherid spp., at the South Slough anchor station over four sampling periods.
Unshaded bars represent surface zooplankton samples, and the shaded bars represent near
bottom zooplankton samples. Water density is also plotted to identify the water masses in
which the organisms are found. Gray background shading indicates night. Dotted vertical
lines indicate slack water. Triangles along the bottom axis indicate the time at which the
zooplankton samples were collected.
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) of third stage zoeae of the commensal

crabs, Pinnotherid spp., at the South Slough anchor station over four sampling periods.
Unshaded bars represent surface zooplankton samples, and the shaded bars represent near
bottom zooplankton samples. Water density is also plotted to identify the water masses in
which the organisms are found. Gray background shading indicates night. Dotted vertical
lines indicate slack water. Triangles along the bottom axis indicate the time at which the
zooplankton samples were collected.
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Fig. 21. Abundance (number of individuals per m3
) of fourth and fifth stage zoeae of the

commensal crabs, Pinnotherid spp., at the South Slough anchor station over four sampling
periods. Unshaded bars represent surface zooplankton samples, and the shaded bars represent
near bottom zooplankton samples. Water density is also plotted to identify the water masses in
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lines indicate slack water. Triangles along the bottom axis indicate the time at which the
zooplankton samples were collected.
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presence of larvae in oceanic samples suggests that some larvae "leak" out of

the estuary, but their behaviors result in their return to the estuary. Another

possible explanation is that the distribution of host species extend out of the

estuary; therefore, larvae may be spawned in the waters adjacent to the estuary

mouth. However, the presence or absence of host species in that area is not

known.

Examination of individual sampling periods reveals that peaks in

abundance of the different larval stages occur in the same water masses (Figs.

22-24), suggesting that they behave similarly throughout development. This is

most apparent for the 13 September sampling period (Fig. 24) when the largest

number of all larval stages were caught. This was also the only sampling period

examined to have pinnotherid megalopae. A total of 96 megalopae were

counted and identified as five different species. Species B, C, 0, and F were

mostly found at night (Fig. 25). Most of the megalopae were caught in estuarine

waters; however, relatively large numbers of megalopae were found in incoming

ocean waters.

While counting the samples from 13 September it was apparent that one

pinnotherid species was smaller and had longer spines relative to its body size.

This species, which will be referred to as pinnotherid sp. A, was counted

separately. Of the 7,632 pinnotherid sp. A larvae counted, 84.89% were z1,

13.27% were z2, 1.2% were z3, 0.35% were z4, and 0.28% were z5. Again, the

fact that all larval stages were found in estuarine waters suggests that
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) of the five zoeal stages of the commensal
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surface zooplankton samples, and the shaded bars represent near bottom zooplankton
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are found. Gray background shading indicates night. Triangles along the bottom axis
indicate the time at which the zooplankton samples were collected.



64

Sep. 13 - Pinnotherid spp. megalopae

0.12 27
megalopae sp. B

0.10 26 0
Q),?-

~"--"~
CD

0.08 :J
g E (f)

co ... 25 ~
"'C Q) 0.06 -coO (f)

:J E 0.04 24 cO'
.0 :J 3«S 0>

0.02 23 I

c-

0.00 /l. /l. /l. /l. 4: 22
0 6 12 18 24

27
megalopae sp. C

0.15 26 0me?
~r',~

CD
g E :J

(f)

-{g iii 0.10 25 ;:.:
'<

coO : " -:J E (f)

.0 :J 24 cO'
« S 0.05 3

0>
23 I

c-

0.00 22
0 6 12 18 24

0.08 27
megalopae sp. 0

Q)e? 0.06 26 0

~"--"~
CD

g E :J
(f)

co ... 25 ~.
"'C Q) 0.04 : "coO en:J E
.0 :J 24 cO'

« S 0.02 3
0>

23 I

c-

0.00 /l. /l. /l. 22
0 6 12 18 24

Elapsed time (h)

Fig. 25. Abundance (number of individuals per m3
) of megalopae of the commensal

crabs, Pinnotherid spp., at the anchor station on 13 September. Unshaded bars represent
surface zooplankton samples, and the shaded bars represent near bottom zooplankton
samples. Water density is also plotted to identify the water masses in which the organisms
are found. Gray background shading indicates night. Triangles along the bottom axis
indicate the time at which the zooplankton samples were collected.
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Sep. 13 - Pinnotherid spp. megalopae
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pinnotherid sp. A larvae were retained in the estuary. Like the other pinnotherid

species, peaks in abundance of the different larval stages co-occurred (Fig. 26),

suggesting that the different larval stages behave similarly. The larvae were

mainly caught at the bottom in the lowest density estuarine waters sampled (Fig.

26). It is interesting to note that these larvae have the longest spines relative to

their body size of the pinnotherids found in this study (personal observation).

Morgan (1989, 1990) has found that larvae that remain in estuaries tend to be

better defended by being larger and having longer spines. Lough (1975)

commented that pinnotherid larvae have especially sharp and rigid spines.

The presence of all larval stages in estuarine waters suggests that the

pinnotherid larvae are retained. Hsueh (1991) also found all larval stages of the

pinnotherid crabs, Pinnixa franciscana and Pinnixa weymouthi in Elkhorn Slough,

California. Neither of these species are reported to have ranges that extend into

Oregon. How exactly pinnotherid larvae are retained in South Slough is unclear.

The vast majority of studies that have looked at zooplankton retention have been

done in stratified estuaries with two-layer circulation. Because the slough is well

mixed and has low freshwater inflow, it is likely that there is a net seaward drift at

all depths. On top of that, flushing times are on the order of one tidal cycle and

approximately 48% of the slough water is discharged on an average ebb tide.

Therefore strategies used by zooplankton in two layer systems would not work in

South Slough. Tidally timed migrations resulting in ascent during flood tides and

residence on the bottom or in the benthic boundary layer during ebb tides could
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result in retention, but does not appear to be the case for pinnotherid larvae in

South Slough. Some days first through third stage pinnotherid spp. zoeae

tended to be more abundant at the surface at night and at the bottom during the

day, while forth and fifth stage zoeae were more evenly distributed (but their

numbers were often low). Without a better understanding of the circulation in

South Slough it is difficult to determine the effects of diel migrations on dispersal.

Vertical migration behavior as was seen in the copepod Eurytemora affinis

(Hough and Naylor 1991) could lead to retention. In high salinity areas the zoeae

could ascend during flood tides and descend to the benthic boundary layer (or

onto the bottom) during ebb tides; alternately, in low salinity areas zoeae could

ascend during ebb tides and descend to the benthic boundary layer (or onto the

bottom) during flood tides, resulting in retention in the estuary. There does seem

to be some evidence for this during the 28 Aug. sampling period (Fig. 22), but not

during any of the other sampling dates. On 7 Aug. almost all pinnotherid spp.

larvae were collected in bottom samples (Figs. 19-21,7 Aug.), this was also the

case for pinnotherid sp. A on 13 Sep. (Fig. 26). Tidally timed migrations between

the near bottom waters and the benthic boundary layer could easily lead to

retention and at the same time reduce the risk from visually hunting planktivores.

It appears that the mechanism for retention in pinnotherid larvae is complex. It is

also confounded by the lumping together of several species. A more thorough

and intensive sampling protocol will be necessary to understand the mechanisms

involved in their retention.
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Larval Fish

The larval fish caught during this study were all approximately 3 mm long

and were extremely similar in appearance. Larvae taken randomly from multiple

samples in each of the four sampling periods that larval fish were present all

keyed out as Clevelandia ios based on morphological characteristics and the

number of caudal and precaudal vertebrae. Clevelandia ios, the arrow goby,

belongs to the family Gobiidae. Gobies are small sedentary fishes that frequently

rest on the bottom partially buried in sand. Adult C. iosi live in sheltered bays

and estuaries and are very tolerant of extreme conditions of temperature and

salinity. When threatened or during low tides, adults take shelter in the burrows

of ghost shrimps (such as Neotrypaea californiensis) and mud shrimps. In

California, arrow gobies spawn December to August. Eggs, laid in groups, sink

and are non-adhesive. Eggs, at -15°C, hatch in 10 to 12 days, and produce

pelagic larvae 2.7-3.8 mm long. They grow rapidly reaching 7 mm in 10 days.

There is no parental care of young (Hart 1973).

A total of 1,562 larval fish were counted in four sampling periods. Peaks

in larval fish abundance were consistently in the lowest salinity estuarine waters

sampled. Larvae were rare in Coos Bay and ocean waters. They were caught

almost exclusively in bottom samples and mainly during the day (Fig. 27). These

data suggest that the larvae are retained in the estuary. Larval fish longer than

-3 mm were not caught, perhaps because larger fish were able to avoid the net.

How the larvae are retained is unclear. One possibility is that the larval fish are
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station over three sampling periods. Unshaded bars represent surface zooplankton samples,
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bottom axis indicate the time at which the zooplankton samples were collected.
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resting on the bottom during ebb and flood when velocities are high and are

coming up off the bottom during daytime slack tides, perhaps to feed. A similar

type of vertical migration behavior was seen in the copepod Pseudodiaptomus

hessei in the Sundays River estuary, South Africa (Wooldridge and Erasmus

1980). The copepods would retain in the estuary by avoiding flood and ebb

surface currents, but migrated toward the surface during times of slack water.

Import

Though the focus of my investigation was the transport of planktonic

larvae of estuarine organisms, while processing the zooplankton samples,

holoplankton and larvae of coastal invertebrates were regularly present in the

samples and often in high abundance. Because so little is known about the

transport of zooplankton in South Slough, I decided that as many species, as

time permitted, should be included in the study. Therefore all crab larvae,

barnacle cyprids, and gelatinous zooplankton were counted, though not for all

sampling periods (Table 3).

The zooplankters that imported typically live on the outer coast as adults,

but some can tolerate living in the lower portions of estuaries. Estuarine

zooplankton are spawned in the estuary, whereas larvae importing to the estuary

originated outside of the estuary. Zooplankton were classified as imported if

peaks in abundance occurred in incoming ocean waters. Without behavioral

adaptations it is unlikely that zooplakton coming into the estuary with ocean
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waters near the end of flood tide would remain in the estuary during the following

ebb tide. Though some zooplankters may be entrained due to tidal mixing the

majority are most likely expelled.

Porcelain spp.

There are four species of porcelain crabs found in the vicinity of the Coos

Bay: Petrolisthes cinctipes, Petrolisthes eriomerus, Pachycheles pubescens,

and Pachycheles rudis. It is time consuming to identify their larvae to the genus

level, and identification to the species level requires dissection; therefore, the

larvae were grouped together. Porcelain crabs live in rocky intertidal and

subtidal areas. The Petrolisthes species are also known to live in the interstices

of well developed mussels beds and around submerged jetties and rip-rap

(Morris et al. 1980). They produce two broods per year, the first hatching in May

through mid August and the second August through early October (Strathmann

1987). Porcelain crabs molt through two zoeal stages and one megalopal stage

spending approximately five to six weeks in the plankton (Gonor and Gonor

1973)(Table 2).

A total of 4,965 porcelain crab larvae were counted in five sampling

periods. Larvae were identified to stage for three of the sampling periods; for

those three dates 95.30% of the larvae were z1, 4.47% were z2, and 0.23% were

megalopae (Table 6). Peaks in zoeal abundance occurred in ocean waters,

although zoeae were common in estuarine waters (Fig. 28). The zoeae
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were found both day and night, at the surface and bottom (Fig. 28). Six

megalopae were caught, three on 7 August, and three on 15 August. There was

no consistency in when megalopae were caught with regards to time of day,

water mass, or stage of tide. Porcelain larvae do not appear to vertically migrate

to regulate their transport within the estuary.

Emerita ana/oga

Emerita analoga, the Pacific sand crab, lives on sandy beaches in the surf

zone (Jensen 1995). Larvae hatch July through August. They molt through five

zoeal stages and one megalopal stage (Johnson and Lewis 1942), spending up

to four months in the plankton (Johnson 1939).

A total of 1,160 E. ana/oga larvae were counted in three sampling periods.

All of the larvae caught were z1. Peaks in larval abundance occurred in ocean

waters (Fig. 29). Larvae tended to be more abundant at night, and appeared to

be evenly distributed vertically; when caught during the day they were mainly in

bottom samples (Fig. 29). There is no habitat for E. ana/oga in South Slough;

therefore, their transport into the slough is "accidental". Larvae that have not

evolved to develop in brackish waters will experience physiological stress in

salinities lower than typical ocean salinities; thus, larvae entrained in estuarine

waters for too long a period may die.
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Barnacle Cyprids

Excepting Balanus improvisus, which is found in the upper reaches of

estuaries, barnacles in the Pacific Northwest are mainly distributed on the outer

coast. However, most species can inhabit the lower reaches of bays and

estuaries where hard substrate is present. Balanus glandula, B. nubilus, and

Semibalanus cariosis are all found in the Charleston boat basin near the mouth

of South Slough (personal observation). In most barnacle species the larval

period lasts two to four weeks, during which time they molt through six naupliar

stages and one cyprid stage. The cyprid is the last larval stage, it is non-feeding,

and it is responsible for seeking out suitable habitat for settlement. For the

barnacle species that have been studied in the Pacific Northwest, peak

settlement is typically in the spring. However, most species produce multiple

broods, thus lower levels of settlement through early fall is common (Strathmann

1987).

3,670 barnacle cyprids were caught during four sampling periods. Except

for the 15 August sampling period, cyprid concentrations in the water column

were low with maximum concentrations of less than 3 m-3
. Approximately 76% of

the cyprids were caught on 15 August, -2% were caught on 28 August, less than

1% were caught on 5 September, and -21 % were caught 13 September. On 15

August and 13 September the cyprids were identified to the species level.

Balanus glandula was the most abundant species on these two dates. The

species composition of the catch is shown in Table 7.
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Table 7. Percentage of each species of barnacle comprising the catch for a
given day.

Organism 15 13
Aug. Sep.

Balanus crenatus 12.42 8.82

Balanus glandula 74.52 31.88

Balanus improvisus 0.51 0

Balanus nubilus 1.60 25.97

Chthamalus dalli 2.14 2.06

Lepas spp. 0.26 0

Pollicipes polymerus 2.57 2.20

Semibalanus cariosus 5.98 29.07

Peaks in cyprid abundance were often at the surface in incoming ocean water

(Fig. 30). After such peaks, during the subsequent ebb tide, cyprids were

abundant in bottom samples or were not caught at all. These data suggest that

cyprids were imported from the coastal ocean and were then sinking or

swimming downward in search of settlement habitat. Vertical migration behavior

has been observed in cyprids by Bousfield (1955), who found that barnacle

cyprids in the Miramichi estuary, New Brunswick, achieved upstream transport

not only by maintaining a position in the landward flowing bottom waters, but also

augmented this transport by being higher in the water column during flood than

during ebb. Cyprids were found at the surface in incoming ocean waters, both

day and night; suggesting that over the shelf cyprids maintain a position in

surface waters, but upon entering the estuary their behavior changes.
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) of barnacle cyprids at the South Slough

anchor station over four sampling periods. Unshaded bars represent surface zooplankton
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is also plotted to identify the water masses in which the organisms are found. Gray background
shading indicates night. Dotted vertical lines indicate slack water. Triangles along the bottom
axis indicate the time at which zooplankton samples were collected.
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Gelatinous Zooplankton and Chaetognaths

Clytia gregaria, Pleurobrachia bachei, and Aequorea sp. were the most

common gelatinous organisms collected during the study. Clytia is one of the

most abundant small hydromedusae in the Pacific Northwest. Its hydroid form is

an inconspicuous member of the fouling community. Medusae are released from

spring until early fall (Wrobel and Mills 1998). Clytia spp. are reported to feed on

copepods, eggs of euphausiids and copepods, and small crustacean and

noncrustacean larvae (Lucas et al. 1995). Pleurobrachia, the sea gooseberry, is

a nearly spherical ctenophore. It is reported to feed on copepods, larval fish,

various types of eggs, and other small plankton (Wrobel and Mills 1998).

Aequorea sp., a relatively large hydromedusae, eats mostly soft-bodied prey

including other hydromedusae, ctenophores, polychaetes, and appendicularians

(Wrobel and Mills 1998). Chaetognaths were all lumped together. They are

primarily oceanic, but some estuarine species are known. They are voracious

predators eating larval fishes and small zooplankton; there are even reports of

cannibalism.

Clytia gregaria, Pleurobrachia bachei, Aequorea sp., and chaetognaths

were all most abundant at the surface and in ocean waters (Figs. 31-33,

Aequorea spp. not graphed). Clytia gregaria and P. bachei were more abundant

at night (Figs. 31 & 32), which suggests that they were undergoing diel vertical

migrations. Diel vertical migrations have been observed in P. bachei by Hirota

(1974) and in Pleurobrachia pileus by Rowe (1971). Hirota (1974) suggests that
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Fig. 31. Abundance (number of individuals per m3
) of the hydromedusae, Clytia gregaria,

at the South Slough anchor station over four sampling periods. Unshaded bars represent
surface zooplankton samples, and the shaded bars represent near bottom zooplankton
samples. Water density is also plotted to identify the water masses in which the organisms
are found. Gray background shading indicates night. Dotted vertical lines indicate slack water.
Triangles along the bottom axis indicate the time at which zooplankton samples were collected.
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Fig. 32. Abundance (number of individuals per m3
) of the ctenophore, Pleurobrachia bachei,

at the South Slough anchor station over four sampling periods. Unshaded bars represent
surface zooplankton samples, and the shaded bars represent near bottom zooplankton
samples. Water density is also plotted to identify the water masses in which the organisms
are found. Gray background shading indicates night. Dotted vertical lines indicate slack water.
Triangles along the bottom axis indicate the time at which the zooplankton sapmples were
collected.
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Fig. 33. Abundance (number of individuals per m3
) of chaetognaths at the South Slough

anchor station over four sampling periods. Unshaded bars represent surface zooplankton
samples, and the shaded bars represent near bottom zooplankton samples. Water density
is also plotted to identify the water masses in which the organisms are found. Gray background
shading indicates night. Dotted vertical lines indicate slack water. Triangles along the bottom
axis indicate the time at which the zooplankton sapmples were collected.
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the vertical migrations may lead to maintenance of high ctenophore abundances

close to shore. The effect of diel migrations on the transport of P. bachei and C.

gregaria off the coast of Oregon and in South Slough is beyond the scope of this

paper. Because many gelatinous consumers have the potential for high

ingestion rates (Alldredge 1984), the high densities of gelatinous zooplankton in

South Slough, sometimes in excess of 160 individuals per cubic meter, may have

profound effects on the population dynamics of their planktonic prey.
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CHAPTER V

CONCLUSIONS

This study investigated the transport of zooplankton in South Slough,

Oregon, and the role of vertical migration in the transport process. The data

demonstrate that larvae of Neotrypaea californiensis and Hemigrapsus

oregonensis were exported from the estuary. Early stage zoeae of these species

dominated the catch in estuarine waters. No later stage zoeae of N.

californiensis were caught, and the few later stage zoeae of H. oregonensis

caught were primarily in ocean waters. There is evidence that early stage zoeae

of Neotrypaea californiensis and Hemigrapsus oregonensis underwent rhythmic

vertical migrations that enhanced their export. Peaks in larval abundances

occurred at the surface during nocturnal ebb tides and then at the bottom during

the following flood tide. The data also suggest that larvae of Lophopanopeus

bel/us and Pachygrapsus crassipes may be exported. N. californiensis, H.

oregonensis, L. bel/us, and P. crassipes larvae had similar patterns of

abundance and vertical distribution, but differences during day-time ebb tides

and the flood tides that followed were observed. The differences in distributions

may have been due to differences in the location of spawning adults, and/or

differences in larval swimming behavior.
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All larval stages of pinnotherid crabs were found in estuarine waters,

indicating that the larvae were retained in the estuary. Larval fish, which were

probably the arrow goby, Clevelandia ios, were found exclusively in estuarine

waters, this suggests that they also were retained. How pinnotherid spp. larvae

and larval fish were retained in South Slough is unclear. Almost half of the

slough water is discharged on an average ebb tide, and summer flushing times

are on the order of one tidal cycle (Pimentel 1986). Given that the estuary is

well-mixed, and freshwater input is minimal in the summer, it is likely that there is

a net seaward flow at all depths (Burt and McAlister 1959). In such conditions it

is unlikely that larvae without behaviors that aid in retention would be retained.

Patterns of abundance and vertical distribution of pinnotherid spp. zoeae were

variable between sampling periods, only z1 larvae showed somewhat consistent

patterns. However, during a sampling period, distributions of the different larval

stages were often remarkably similar, suggesting that the different larval stages

were behaving similarly. Therefore the data suggest that larvae swimming

behavior plays a role in the retention of pinnotherids, however, a more thorough

and intensive sampling design will be necessary to elucidate the mechanisms

involved.

Why do some larvae export while others retain? Predation, food

resources, physiological stress, and the risk of being dispersed "too far" from

settlement habitat are all thought to be factors. Larvae that export are thought to

benefit from lower predation risks, and lower physiological stress, while larvae
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that retain are thought to benefit from higher food resources and reduced

dispersal (and thus enhanced recruitment) (Strathmann 1982, McConaugha

1988). Predation risks are assumed to be lower in coastal waters because the

density of planktivorous fishes decreases with increasing distance from shore

(Morgan 1995); however, during my study, abundances of gelatinous

zooplankton in incoming ocean waters were as high as ......160 organisms per cubic

meter. Zooplankton food resources are offen reported as being higher in

estuaries than adjacent coastal areas (Mann 2000). Recent studies in Pacific

Northwest estuaries suggest that in the summer, phytoplankton production in the

estuary is low, and that coastal waters, due to wind driven upwelling, offen have

much higher concentrations of phytoplankton (Roegner and Shanks 2001,

Roegner et al. 2002). Larval development success of some estuarine

invertebrate larvae has been found to be highest in salinities approximating

ocean water (Strathmann 1982, McConaugha 1988), while others develop

optimally in brackish water (Costlow et al. 1966, Strathmann 1982, Gon9alves et

al. 1995, Strasser & Felder 2001). Finally, just as retained larvae have behaviors

that result in their retention, larvae of exported species are known to have

behavioral adaptations that result in their return to the estuary (Shanks 1995).

Although it seems intuitive that exporting larvae into the ocean, where currents

are less predictable, would be riskier, I know of no study that has looked at

recruitment success of exported versus retained larvae.
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Larvae of estuarine invertebrates may be retained or exported by taking

advantage of residual currents in stratified estuaries, however, the more species

that are examined, the more prevalent selective tidal-stream transport (STST) is

found to be. Examples exist for export and retention via STST in a wide variety

of estuaries (references in Forward and Tankersley 2001). The involvement of

endogenous rhythms in STST Can be investigated under constant conditions in

the laboratory. Unfortunately, few studies have looked at a species vertical

migration behavior in both the field and in the laboratory. Even fewer studies

exist looking at the same species in multiple estuaries, especially estuaries that

are drastically different (with regards to size, circulation, flushing rates, turbidity,

physical constituents, geographic location, etc.). But for the few species that

have been intensively studied in both the lab and in multiple locations in the field,

the picture that is emerging is that zoeae have endogenous rhythms that are set

by local zeitgebers and are modified by exogenous factors (Cronin and Forward

1983, Zeng and Naylor 1996). Therefore larvae may be able to undergo the

same dispersal strategy even in different hydrodynamic conditions.

While some estuarine larvae export to coastal waters, a variety of

organisms were imported into South Slough from coastal waters. Porcelain spp.

zoeae, Emerita ana/oga first stage zoeae, several species of barnacle cyprids,

C/ytia gregaria, P/eurobrachia bachei, Aequorea sp., and chaetognaths all were

most abundant in incoming ocean waters. Of these organisms, only barnacle

cyprids appeared to change their vertical position upon entering the estuary.
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Peaks in cyprid abundance occurred at the surface, in incoming ocean waters,

both day and night, but during the subsequent ebb tides, cyprids were abundant

in bottom samples or were not caught at all (suggesting that they settled while in

the estuary). Changes in vertical position or vertical migrations in the estuary in

the other imported organisms were either not observed or the data were

inconclusive.

Given that the sampling dates were chosen to coincide with the time of

year when megalopae are typically recruiting, it was surprising that so few

megalopae were caught with the incoming ocean waters. One possible

explanation is that import of megalopae from coastal waters is pulsed, and

sampling periods may have been out of phase with peaks in megalopal ingress.

Data from light trap samples collected daily near the mouth of South Slough

revealed species-specific variation in megalopae abundance, with variability in

the number, size, duration, and timing of peaks between years (Roegner et al. in

prep. a). Generally, abundances increased sharply from low background levels

over 2 to 7 day periods. Additionally, cruise data from coastal waters adjacent to

the Coos Bay and other Pacific Northwest estuaries suggest that megalopae are

concentrated in patches (Roegner et al. in prep. b). The authors hypothesize

that larval advection into the estuary depends on proximity of the larval patch in

relation to the estuary mouth. Therefore it is possible that sampling dates missed

peaks in megalopal ingress. There is also evidence that megalopae may import

into estuaries via axial convergent fronts. In Grays Harbor, Washington,
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Eggleston et al. (1998) found that mean concentrations of Cancer magister

megalopae were significantly higher in fronts than in adjacent waters 20 to 30 m

outside of the front. They propose "axial convergent fronts may serve as a type

of 'larval conduit' delivery system" (Eggleston et al 1998, p 80). Axial convergent

fronts regularly occur in South Slough, and were seen during this study (personal

observation); however, they were not sampled. If megalopae were concentrated

in axial convergent fronts in South Slough, the fact that my samples were

collected outside the front could account for the low megalopae densities. The

two possible explanations for low megalopal abundances presented here

(episodic import and the larval conduit theory) are not mutually exclusive.

Twice a day the lower reaches of the Coos Bay estuary were inundated

with coastal ocean waters. Along with the intruding waters came the community

of plankton in those waters. During high tide the water and zooplankton

community at the anchor station can be characterized as oceanic. Cziesla

(1998) has found that the phytoplankton assemblages in South Slough were also

dominated by oceanic species during high tide. What organisms import into the

estuary at high tide depends on what organisms are near the mouth as the tide

begins to flood. What organisms are found near the mouth of the estuary

depends on coastal circulation and zooplankton behavior. Because the lower

estuary is inundated with ocean waters, large scale processes that affect coastal

ocean waters, such as the wind driven upwelling-downwelling cycle, also impact

the estuary
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