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This dissertation presents experimental and theoretical studies of radiation

pressure cooling in silica optomechanical microresonators where whispering gallery

modes (WGMs) are coupled to thermal mechanical vibrations. In an optomechanical

system, circulating optical fields couple to mechanical vibrations via radiation pressure,

inducing Stokes and anti-Stokes scattering of photons. In analogy to laser cooling of

trapped ions, the mechanical motion can in principle be cooled to its ground state

via the anti-Stokes process in the resolved-sideband limit, in which the cavity photon

lifetime far exceeds the mechanical oscillation period.

Our optomechanica.l system is a slightly deformed silica microsphere (with a

diameter 25 - 30 Il:m), featuring extremely high Q-factors for both optical (Q 0 rv 108
)

and mechanical (Qm rv 104
) systems. Exploiting the unique property of directional

evanescent escape in the deformed resonator, we have developed a free-space

configuration for the excitation of WGMs and for the interferometric detection of

mechanical displacement, for which the part of input laser that is not coupled into
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the microsphere serves as a local oscillator. Measurement sensitivity better than

5 x 10-18m / JHZ has been achieved. The three optically active mechanical modes

observed in the displacement power spectrum are well described by finite element

analysis.

Both radiation pressure cooling and parametric instabilities have been observed

m our experiments. The dependence of the mechanical resonator frequency and

linewidth on the detuning as well as the intensity of the input laser show excellent

agreement with theoretical calculations with no adjustable parameters.

The free-space excitation technique has enabled us to combine resolved sideband

cooling with cryogenic cooling. At a cryogenic temperature of 1.4 K, the sideband

cooling leads to an effective temperature as low as 210 mK for a 110 MHz mechanical

oscillator, corresponding to an average phonon occupation of 37, which is one of

the three lowest phonon occupations achieved thus far for optomechanical systems.

The cooling process is limited by ultrasonic attenuation in fused silica, which should

diminish when bath temperature is further lowered, with a 3Hc cryostat, to a few

hundred millikelvin. Our experimental studies thus indicate that we are tantalizingly

close to realizing the ground-state cooling for the exploration of quantum effects in

an otherwise macroscopic mechanical system.
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CHAPTER I

INTRODUCTION

Optomechanical cooling of a microresonator has recently attracted a great deal

of attention in the optics community because it can provide a promising avenue to cool

a macroscopic mechanical oscillator to its quantum ground state. In an analogue to

laser trapping or cooling of an ion, in optomechanical cooling the mechanical energy of

a macroscopic oscillator is extracted through the viscous radiation pressure force when

the laser beam is red-detuned from the cavity resonance by the oscillator's vibration

frequency. However, instead of cooling a single atom, the radiation pressure in a

microresonator cools the collective vibrational motion of the macroscopic oscillator,

which consists of much more than 1010 atoms. The ability to reach the quantum

ground state of a macroscopic oscillator enables us to explore the quantum nature of

an otherwise classical system.

1.1 Laser Cooling of Atoms

Laser cooling of ions and atoms is a powerful and well-established technique

in atomic physics [1-3]. For an ion trapped in a harmonic potential, a photon can

couple to the mechanical motion of the ion through Stokes as well as anti-Stokes

processes, as illustrated in Fig. 1.1(a). The anti-Stokes process leads to the absorption
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Figure 1.1: Schematic of (a) the resolved-sideband cooling of a trapped ion and
(b) the Doppler cooling of an atom. In (a), the phonon occupation of the ion's
vibration motion is lowered by the resonant anti-Stokes process with negligible
Stokes process when WL = WA - Wvib: in the limit where Wvib is larger than the
atomic transition linewidth. In (b), the net momentum transfer involved in the
photon absorption followed by spontaneous emission results in the slowdown of the
atomic motion. In this case, the laser is red-detuned in order to compensate the
blue Doppler shift seen by the moving atom. Wvib, W Land W A are the angular
frequency of the phonon, the laser and the atomic transition, respectively. Ig(e), N) =
Iground state(excited state), phonon)
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of phonons and cools down the mechanical motion of the ion, while the Stokes process

leads to the emission of phonons and amplifies the mechanical motion of the ion. In

the resolved-sideband limit, the mechanical (or phonon) frequency is large compared

with the optical transition linewidth. As a result, the resonant anti-Stokes process

can take place with negligible contribution from the Stokes process. In this limit, the

anti-Stokes process can in principle cool the trapped ion to its motional ground state.

For Doppler cooling of neutral atoms, a laser beam is slightly red-detuned from

the incoming atoms. Optical absorption followed by spontaneous emission along a

random direction damps the atomic motion and leads to a viscous radiation pressure

force, as illustrated in Fig. 1.1 (b). Here, the red detuning compensates for the blue

Doppler shift experienced by the atom.

After theoretical predictions of Doppler cooling in 1975 [4, 5], the radiation

pressure cooling of Mg+ ions to the effective temperature of < 40 K was first

demonstrated in 1978 by D. Wineland [6], followed by the laser deceleration of Na

atoms in 1982 by W. Phillips [7]. By combining three pairs of counterpropagating

lasers in three orthogonal directions, a number of ions were cooled, and at the same

time, trapped in small region [8, 9]. This is so called Optical Molasses. Cooling

below the single photon recoil, the Doppler cooling limit, was also demonstrated in

1988 by achieving'" 2 pK for He atoms [10, 11]. In 1989 by F. Diedrich, through the

resolved-sideband cooling scheme, a single Hg+ ion initially trapped in potential well

was cooled to the ground state, approximately 95 % of the time [12].

1.2 Cooling of a Macroscopic Object

The idea of cooling a macroscopic object originates from the issue of thermal

noise at the laser interferometer gravitational wave observatory (LIGO). Gravitational



4

wave predicted by A. Einstein in his theory of general relativity has long been sought,

but not observed yet. For the detection of this extremely weak signal, a lot of

effort has been made in order to improve the measurement sensitivity. One of the

major obstacles is the thermal vibrations, or Brownian motion, of the mirrors that

constitute the laser interferometer [13, 14]. These thermal mechanical fluctuations

induce a random noise in the phase sensitive measurement, obscuring the signal of the

gravitational wave. As predicted by Braginsky [15], the circulating laser power can

induce the parametric instability in the thermal motion of the laser mirrors. Because

the measurement noise comes from the thermal motion, one straightforward solution

to this issue will be the cooling of the entire mechanical components of the LIGO

system [16].

Not only for its applications to the ultrasensitive measurement in force and

displacement [17], the cooling of macroscopic objects is intrinsically attractive also

for the fundamental studies in a new quantum system, a macroscopic quantum state,

that has never been explored before. The interesting, but challenging topics include,

for examples, the quantum mechanical entanglement between a mirror and single

photons [18, 19], the transition in the boundary between quantum and classical

mechanics and cavity quantum optomechanics [20-22].

The final average phonon occupation number depends not only on the bath

temperature, but also the mechanical vibration frequency as shown in Fig. 1.2. With

an assumption of a bosonic behavior of phonons, when a mechanical oscillator is in

thermal equilibrium at temperature T, the average phonon occupation, (N) is given

by,

(1.1)

where nand kB are the Planck constant and the Boltzmann constant, respectively, and
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Figure 1.2: Temperature dependence of average phonon occupation number of a
mechanical oscillator for 100 YIHz in red solid curve and 1 GHz in blue dashed curve.

wm /27r is the mechanical vibration frequency. Figure 1.2 shows the average phonon

occupation as a function of temperature for two different oscillator frequencies. If

kaT» rLW m , the average phonon occupation yields to the classical limit, (N)

kaT/ f7/..;)m, which is proportional to the temperature as expected from the equipartition

theorem. If kBT « rtwm , (N) approached to 0, indicating the quantum ground state.

The temperatures for (N) = 1 are approximately 9 rnK for a 100 :VIHz vibration and

90 rnK for a 1 GHz vibration, respectively.

The cooling of macroscopic objects has been intensively pursued in two different

directions; Cryogenic cooling of nano- or micro-electromechanical system (MEMS or

NE-;\;IS) [17, 23] and the optomechanical cooling of a microresonator [20--22]. In the

former case, the entire mechanical oscillator is cooled in a cryogenic chamber, such as a

dilute gas refrigerator. Therefore, in thermal equilibrium with the bath temperature,

the final temperature and the corresponding phonon occupation of the mechanical
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oscillator are determined by bath temperature, but cannot go further below. From

cryogenic cooling of a 21.8 MHz nanomechanical oscillator, a phonon occupation as

low as 25 was observed at rv 50 mK bath temperature [24]. The design and the

fabrication of mechanical oscillators with a frequency above GHz could lead to the

quantum ground state within temperatures available in current cryogenic systems.

On the other hand, the optomechanical cooling utilizes the dynamical backaction of

the radiation pressure force, which can either damp or heat the resonator's thermal

motion, depending on the laser detuning. In this case, the temperature of a mechanical

oscillator is effectively lowered from bath temperature while increasing the circulating

power. In radiation pressure cooling, only a particular vibration mode is selectively

cooled due to the resonant mechanism in optomechanical cooling.

In order to see how optomechanical cooling works in a microresonator, consider

a Fabry-Perot resonator consisting of two end mirrors. We assume that one end

mirror is not movable while the other mirror is allowed to vibrate. As shown in

Fig. 1.3(a), this mirror's vibration can be modeled as a simple harmonic oscillator

with an effective mass m. A real mirror has a number of vibration modes with

discrete eigenfrequencies, but for simplicity, we consider only a single vibrational

frequency, wm /27r. This assumption is reasonable as long as the coupling between the

different mechanical vibration modes is negligible for high mechanical quality factors,

or small damping rates. The effective mass is defined by accounting optomechanical

coupling, i.e. the changes in the optical path length induced by the mechanical

vibrations [14, 25]. Thus, each vibration mode has a different effective mass [26].

The cavity round trip length determines the resonant condition for the optical

modes in a microresonator at a given frequency. The mechanical vibration of an

end mirror directly changes this resonance condition, leading to an oscillation of

the optical resonances with a vibration frequency and in turn a modulation of the
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Figure 1.3: Illustration of optomechanical coupling in terms of energy exchange. (a)
One end mirror in Fabry-Perot resonator is modeled as a mechanical oscillator with
wm /21r (b) A force-distance diagram of one end mirror. The path integral gives
the net work done by the radiation pressure force on the mirror. For red detuning
(WL - We < 0), the net work can be negative, meaning the cooling of the mechanical
motion as denoted in a red line. WL and We are the angular frequency of the excitation
laser and the cavity resonance, respectively.
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intracavity power. The shift in the optical resonance frequency, 6wc , is,

x
6w = --w

C L C
(1.2)

where x is the vibration amplitude and L is the cavity length, which corresponds to the

radius for a microsphere resonator. For a 30 p,m microsphere with an optical Q-factor

of rv 107
, the resonance frequency shift by the mechanical vibration is approximately

0.4 MHz, which induces about one percent of circulating power modulation with a

laser detuned on the half maximum. The radiation pressure force arising from the

reflections of single photons at the end mirror is proportional to the intracavity power.

Therefore, the modulation of the intracavity power directly leads to the change in the

radiation pressure force.

The build-up or decay time of the intracavity field is not instantaneous, but

finite due to the cavity loss. This fact makes the effect of radiation pressure force

on the vibrating mirror more dramatic. Consider a force-displacement diagram of a

mirror's motion in Fig. 1.3(b), provided a laser is detuned on the red side of cavity

resonance. In the case where the cavity lifetime is shorter than the vibration period,

the position-dependent radiation pressure force immediately changes along with the

mirror's position. In this adiabatic limit, the radiation force and the position are

nearly in phase. The integral over the adiabatic path denoted in a black line implies

that the net work done by the radiation pressure on the mirror per cycle is equal

to zero, meaning no optomechanical energy transfer. However, when the cavity

lifetime is comparable to or longer than the vibration period, the radiation pressure

force is not instantaneous, but delayed with respect to the mirror's motion. In this

limit, Wm ~ K, the radiation force and the mirror's position are no longer in phase.

This delayed response of radiation pressure force is drawn in the force-displacement



9

diagram, showing a counterclockwise loop in a red line in Fig. 1.3(b). The path

integral over the red loop leads to the negative net work, and the mechanical vibration

energy is lowered, indicating the cooling of the mechanical motion. In contrast, for

blue detuning, the path integral leads to the positive net work, indicating an increase

in the mechanical energy, the heating of the mechanical motion. In this way, the

optomechanical coupling can either cool or enhance the mechanical motion of the

mirror, depending on the laser detuning.

The cooling and heating of the mechanical vibration of a microresonator can

be also understood by an optomechanical parametric process that generates Stokes

(ws = WL - wm ) and anti-Stokes photons (WAS = WL + wm ) into the relevant cavity

mode as shown in Fig. 1.4. Each Stokes process increases the mechanical energy by

nwm , while each anti-Stokes process decreases the mechanical energy by nwm . The

optomechanical coupling intrinsically induces both the Stokes and the anti-Stokes

photons, but the rates of each process strongly depend on the laser detuning. For

red detuning, the Stokes is dominant because it is close to the optical resonance. In

contrast, the anti-Stokes is dominant for blue detuning. Optimal cooling or heating

is obtained by adjusting the laser detuning such that the anti-Stokes or the Stokes

falls exactly onto the cavity resonance.

The resolved-sideband scheme used to cool a trapped ion can be adapted

for the cooling of the mechanical vibration of a microresonator [27J. As explained

in optomechanical parametric process, the net cooling rate is determined by the

difference between the anti-Stokes (cooling) and the Stokes (heating) processes.

Suppose the laser is detuned such that the anti-Stokes emission is on the cavity

resonance as depicted in Fig. 1.5. In the adiabatic limit Wm « K as in Fig. 1.5(a),

the residual Stokes emission contributes to reduce the cooling rate induced by the

anti-Stokes process. However, in the resolved-sideband limit Wm ~ K as in Fig. 1.5(b),
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Figure 1.4: Optomechanical parametric process generates the Stokes W s = W£ - W m

and the anti-Stokes Was = WL +wm where WL is an angular laser frequency. Depending
on the laser detuning, the asymmetry of the Stokes and the anti-Stokes leads to (a)
the cooling and (b) the heating of mechanical vibrations.

the Stokes emission is profoundly suppressed, while the anti-Stokes emission is still

resonantly enhanced. In this limit, the radiation pressure cooling will be more

efficient.

In addition, the quantum theory of the optomechanical cooling addresses the

importance of the resolved-sideband condition of the optomechanical system. The

radiation pressure cooling, which increases with increasing the intracavity intensity,

will be eventually limited by the random fluctuation of the intracavity intensity,

i.e. the shot noise. However, in the resolved-sideband limit, the heating due to the

fluctuation of the radiation pressure force can be significantly reduced because the

laser is detuned far away from the cavity resonance. Theoretical work predicts that

the ground-state cooling is, in principle, possible in this limit [28-30].

Radiation pressure cooling was first demonstrated in 1999 by P. Cohadon in

an active feedback system of controlling the thermal motion, showing about 20 times

reduction in the vibration amplitude of an end mirror in a Fabry-Perot cavity [31].
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Figure 1.5: Schematic of optomechanical cooling and the energy diagram in (a) the
adiabatic limit Wm « K and in (b) the resolved-sideband limit Wm » K, where Wm

and K are angular frequencies of the mechanical vibration and the cavity linewidth,
respectively. The cooling laser is detuned such that the anti-Stokes falls exactly on the
cavity resonance. In the resolved-sideband limit, the Stokes is profoundly suppressed,
leading to the significant reduction in the phonon occupation. 1.9(e) N) denotes the
energy level where N is a phonon occupation, and .9 and e mean no-excitation and
excitation of the cavity mode, respectively.
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Self-cooling and self..,heating of a cantilever by the delayed bolometric force was

demonstrated [32], proving the key role of dynamical backaction on the optomechanical

cooling. The dynamical backaction cooling of the radiation pressure force was realized

in several types of optomechanical systems [33-36]. Significant suppression of the

thermal vibration motion of a microresonator leads to the effective temperature as

low as sub-Kelvin. Optomechanical cooling experiments have been also carried out

at low temperature [37~3g], demonstrating the effective temperature in the range of

milli-Kelvin for a 3.8 kHz mechanical oscillator [37]. Reminding of the frequency

dependence of the average phonon occupation, in spite of the considerable reduction

in the effective temperature, the average phonon occupation numbers that have been

attained thus far, however, still remain above 1, 000.

Resolved-sideband cooling was also demonstrated in a silica microresonator

with a high optical finesse, achieving (N) rv 4, 000 at room temperature [27]. The

resolved-sideband cooling can be combined with the cryogenic precooling to lower the

thermal dissipation determined by the bath temperature. In this case, the challenges

and technical difficulties lie not only in the implementation and the control of a high

finesse optical resonator in a cryogenic environment [40], but also in achieving an

extremely high measurement sensitivity [41]. Recently, experimental studies of the

resolved-sideband and cryogenic cooling from three different groups [42-44], including

our silica microsphere optomechanical resonator, have achieved the average phonon

occupation below 60. These results indicate that we are just a few steps away toward

the ground-state cooling of an otherwise macroscopic mechanical system.
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1.3 Overview of the Dissertation

This dissertation presents the experimental studies of radiation pressure cooling

of a silica microresonator in a cryogenic environment. We begin with an introduction

to the optical whispering gallery modes and the mechanical vibration modes in silica

optomechanical microsphere resonator in Chapter II. The physical insight of ultrahigh

Q-factor WGMs is discussed based on the effective radial potential as analogue to the

one dimensional quantum well. We simulate the mechanical vibrations of a silica

microsphere with finite element analysis, providing the eigenfrequencies along with

the spatial shapes for each normal vibration mode. We show that the radial breathing

mechanical modes, which induce changes in the cavity path length of a WGM, can

be coupled with the WGM.

In Chapter III, we provide the theoretical background of the radiation pressure

induced optomechanical cooling. Considering the Stokes and anti-Stokes fields in

the parametric optomechanical process, we derive the analytic forms of the effective

damping rates and the effective mechanical frequencies under the influence of the

radiation pressure force. A quantum description of the optomechanical cooling is

discussed to explain the ultimate limit of radiation pressure cooling. Ground-state

cooling with the radiation pressure is in principle possible only in the resolved-sideband

limit, where the cavity lifetime is longer than the mechanical vibration period.

We discuss the experimental techniques for the radiation pressure cooling in

Chapter IV. By utilizing the directional escape in deformed microspheres, we are able

to excite the WGMs in free space, demonstrating the transmission dip more than

50%. The free-space evanescent excitation scheme provides not only a convenient way

to access a silica microresonator in a cryogenic environment, but also interferometric

homodyne detection of the mechanical displacement with the measurement sensitivity
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below 5 X 10-18 rn/.;HZ. We show the experimental observations of the thermal

mechanical vibration of silica microspheres, which show excellent agreements with

the finite element analysis. Under the influence of the radiation pressure force,

which is proportional to the circulation power, we observe also the significant heating

and cooling of the mechanical vibration, including the parametric oscillation. The

calibration of the observed mechanical displacement is performed with the phase

modulated excitation laser, which mimics the phase shift induced by the mechanical

vibrations.

Thermal bistability ofthe WGMs is studied both at room and low temperatures

in Chapter VI. We observe the WGM resonance shift goes to zero near 20 K where

the effect of the negative thermal expansion and the thermo-optic effect are canceled

out. We also observe the pulsation in the optical transmission upon continuous laser

input, which is attributed to the competition between the diminishing thermal effect

and the Kerr effect.

In Chapter VII, we present the resolved-sideband cooling carried out at both

room and cryogenic temperatures. At room temperature we achieve an effective

temperature of 11 K, limited mainly by the thermal dissipation. As lowering the

temperature, we first confirm the cryogenic precooling of a silica microsphere by

observing the linear dependence of the spectral area on the bath temperature. At

low temperature, we show the dependence of the mechanical vibration frequency and

the mechanicallinewidth on the detuning as well as the input power of the excitation

laser, which show excellent agreements with the theoretical calculation. At 1.4 K bath

temperature, we achieve an average phonon occupation as low as 37 for a 110 MHz

mechanical vibration, which is limited by the ultrasonic attenuation of fused silica.

In Chapter VIII, we will provide an overall summary and the future work.
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CHAPTER II

SILICA MICROSPHERE OPTOMECHANICAL RESONATORS

When light travels between two different media, the light is partially reflected

and partially refracted at the boundary surface. If light crosses the boundary from a

higher refractive index medium to a lower one, light wiIl be totally reflected with no

transmission when the angle of incidence is equal to or greater than a certain angle,

called the critical angle. In a ring type dielectric resonator, such as a microsphere

or a microtoroid, light can travel along the circumference by successive total internal

reflections. When the round trip distance is an integer number of wavelengths in the

resonator, a resonant optical mode is formed in the ring resonator (See Fig. 2.1).

These modes are so called whispering gallery modes (WGMs), named after, the

whispering gallery where a person standing near the wall can clearly hear whispering

from the opposite side of the gallery since the sound can travel along the wall. The

WGMs in optical resonators [45] were first experimentally observed in 1908 by G.

Mie [46].

In fused silica microresonators, WGMs feature ultrahigh optical quality factors

due to extremely high material purity and nanometer scale surface uniformity. Optical

Q-faetor as high as f"V 0.8 x 1010 was demonstrated in a 100 p,m silica microsphere [47].

When the angle of incidence is close to 90 degrees, a WGM is tightly confined within

a wavelength of the microsphere surface, and its volumes can be as small as f"V 1/1000
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Figure 2.1: When light travels from a higher refractive index material to a lower
index, total internal reflection occurs at an angle of incidence, X, equal to or greater
than the critical angle, XC' Whispering gallery modes are formed by total internal
reflection in a microsphere resonator.

of the whole resonator volume. These unique optical properties make the silica

resonators suitable in a variety of experimental studies [48], including cavity-QED [49,

50], ultralow threshold lasing [51], and cavity optomechanics [43, 44, 52].

A silica microsphere is also an elastic mechanical resonator. Vibrational modes

of a microsphere are determined by the boundary conditions as well as the mechanical

properties, such as the mass density and Young's modulus. Resonance frequency,

which is inversely proportional to the size, ranges in ultrasonic band, from above

100 ::\11Hz for a 30 f-lm diameter. On the other hand, the spatial pattern of the

vibration is of special importance in view of optomechanical coupling. Assuming

that vVCIvls lie near the equatorial plane, the vibrational modes which can induce

changes in the radial amplitude in that plane are effectively coupled with vVCfv1s.

In this case, phases of the circulating fields features an oscillation at the mechanical

vibration frequency. These radial breathing modes can also have extremely high

elasticity with mechanical quality factors Qm ~ 10, 000.
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In this chapter, we will discuss the optical WGMs and the mechanical vibrations

of a silica microsphere resonator. The realistic model of a microsphere-stem system

will be simulated with finite element analysis to characterize the frequency and the

spatial pattern of mechanical vibration modes.

2.1 Whispering Gallery Modes in Silica Microspheres

From Maxwell's equations, the electric field of WGMs formed in a dielectric

microsphere is described by a Helmholtz equation,

(2.1)

where n is the refractive index of a microsphere and k is the wavevector in vacuum.

For simplicity, here we consider only a TE-wave whose polarization is perpendicular

to the propagation direction in the tangential plane of the equator. Using separation

of variables, the solution of the TE-wave in Eq.(2.1) can be written as,

E(r) = Rlm(r)Xlm(f), ¢)

X (B,f..) = r x iVYim
1m ,'P Jl(l + 1)

(2.2)

(2.3)

where Rim and X lm are the radial and the angular part solutions, respectively, and

Yim are spherical harmonics.

Considering the momentum of a photon traveling at near-glancing incidence,

the integer I is identified as the angular momentum. It is approximately the same as

the total number of reflections,

I ~ 27fR
)../n

(2.4)



18

for a large sphere R » Awhere A is a wavelength in vacuum and R is the microsphere

radius. The integer m= -l, ... ,0, ... , l is the azimuthal mode number, and Il - ml

describes the number of nodes along the polar angle. These mode numbers, along

with a radial mode number, P, consist of three mode numbers characterizing the

spatial distribution of the WGMs in the spherical microsphere resonator, in analogue

to three quantum numbers describing the wavefunctions in a hydrogen atom.

From Eq.(2.1) rv Eq.(2.3), the radial equation of Rzm has the form

(2.5)

This is a Bessel equation of order l + 1/2. Then, the solutions of the radial equation

are,

for r :::; R

for r > R
(2.6)

where jz is a spherical Bessel function and np) is a spherical Hankel function of the

first kind. The boundary conditions are that the radial solution and its derivative

should be continuous at r = R, which yields,

nljz_l(nkR) - n(l + l)jZ+l(nkR)

jz(nkR) (lnC1) (kR) - (l + l)nC1 ) (kR) = ° (2.7)
n?)(kR) Z-1 Z+1

By numerically solving this equation for a given value of l, a series of kp , with p =

1,2, ... , are obtained. The radial mode number, p, denotes p - 1 nodes of the electric

field of WGMs in the radial direction. Figure 2.2 shows the intensity distribution

of the radial functions for p = 1 and p = 2 modes. The peaks are located within

one wavelength of the surface, and the intensity decays exponentially beyond the
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microsphere. The skin depth is given as,

(2.8)

for l - m = O. The skin depth is approximately 110 nm at A = 800 nm for a silica

microsphere.

The radial equation gives more insight about the WGMs when this equation is

compared with the Schrodinger equation in quantum mechanics. The radial equation

of the WGMs can be rewritten as,

d
2
R 1m ~dRlm (k 2 _ v: )R - a

d 2 + d + eff lm-r r r

where ~fj, the effective potential, is defined as,

v: = l(l + 1) + k2(1 _ n2)
eff 2r

(2.9)

(2.10)

Eq.(2.9) is the same as the Schrodinger equation if we consider a WGM as the

wavefunction of a particle that is confined in a radial potential well. In this analogue,

k 2 corresponds to the total energy of the particle, and the effective potential depends

on the wavevector as well as on the radius. Due to the step-like change in the refractive

index, the effective potential discontinues at r = R as schematically drawn in Fig. 2.2.

In the same way that a particle with total energy smaller than a potential barrier can

be bounded in the potential well, the optical fields with k 2 smaller than the effective

potential barrier are allowed to form the WGMs in a microsphere. In order to have

nontrivial solutions for a given effective potential, k should lie in the ranges of,

l + 1/2 < k < l + 1/2
Rn - - R (2.11)
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Normalized radius

Figure 2.2: Effective potential barrier for the radial part of WGMs in a microsphere
resonator. The discontinuity at r = R is due to the change of refractive index. Radial
part solutions of WGMs are displayed for p = 1 and 2 modes with R = 15 f-Lm and
l = 173. We use n = 1.457 for r ::; Rand n = 1 for r > R for fused silica.
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where we used l(l + 1) ~ (1 + 1/2? for large l. Eq.(2.11) together with Eq.(2.7)

determines the allowed discrete mode numbers for the WGMs in a microsphere. The

value of k is also closely related to the angle of incidence of the WGMs. For the

lowest k, which corresponds to the p = 1 radial mode, a WGM is tightly confined

within a wavelength from the microsphere surface with a small mode volume, as

shown in Fig. 2.2. In this case, the angle of incidence is nearly 90 degrees, the

glancing incidence. For the higher radial modes, the angle of incidence decreases and

approaches the critical angle for k rv kmax '

Similar to the tunneling phenomenon in quantum mechanics, a WGM can

evanescently escape beyond the potential barrier. As k increases, the potential barrier

gets smaller. Therefore, the evanescent escape grows exponentially as the angle of

incidence approaches the critical angle. This fact is closely related to free-space

evanescent excitation of WGMs in deformed microspheres.

The optical energy in WGMs in a silica microsphere resonator decays with

time. The light can be scattered due to surface roughness or particles on the surface,

and can be absorbed by the material. WGMs can also leak outside through evanescent

escape across the potential barrier. In order to characterize the energy loss in WGMs,

we commonly use the optical Q-factor defined as,

Q _ 21f total energy
energy loss for one cycle

(2.12)

For fused silica microspheres, a Q-factor as high as 8 x 109 was demonstrated [47].

It is well known that water vapor deposited on the microsphere surface significantly

spoils the Q-factors of WGMs. For use of silica microspheres in experiments, silica

microspheres are usually kept in a chamber filled with an inert gas such as N2 or He

gas, in order to prevent Q-spoiling from possible contaminations. Experimentally the
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optical Q-factor is determined by,

(2.13)

where wc/2Tr and ",/2Tr are the resonance frequency and the full width of half maximum

of the measured WGM spectrum, respectively.

The sharpness of the spectral peak is also characterized in terms of optical

finesse, which is defined as,

(2.14)

where WFRS is the free spectral range, the mode spacing between two successive

azimuthal mode numbers, given by,

C

WFSR = nR or (2.15)

in a microsphere with a radius R. Here, Ac is the resonance wavelength. The free

spectral range can give an alternative, accurate measure of the microsphere size by

using Eq.(2.15). The optical finesse in a microsphere can now be rewritten as F =
c

--, which is independent of the cavity resonant frequencies or wavelengths.
n",R

Another important parameter describing optical resonators is the mode volume

that the electromagnetic field spatially occupies in the resonator. The mode volume

of the WGMs in microsphere is,

(2.16)

for the lowest radial mode [53]. Assuming the l = m mode, with a radius R = 15 f-Lm

and a wavelength A = 800 nm, the mode volume is approximately 150 J.Lm3
, which

is only rv 1 % of the whole microsphere volume. The small size of the 'VGM mode
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volume leads to strong electromagnetic fields, which are tightly confined just under

the microsphere surface.

2.2 Mechanical Vibration Modes of Silica Microspheres

The mechanical vibration modes in a homogeneous and isotropic elastic sphere

with free surface boundary conditions can be calculated with a well established theory,

first developed back in 1878 by H. Lamb [54]. The wave equation governing the elastic

mechanical motions is given by [55, 56J,

p ii = (>' + 2fl)"V(\7 . u) - fl\7 x (\7 x u) (2.17)

where u(r) is the displacement vector and p is the mass density. >. = ( ~t )
1 + a 1- 2a

E
and fl = ( ) are Lamb constants. E is Young's modulus and a is Poisson's

21+a
ratio. The solution of this equation for a particular geometry can be obtained

with proper boundary conditions. In case of a silica microsphere-stem geometry,

the resonator is hung at the end of a tapered optical fiber with a diameter of one

tenth of the microsphere diameter. Thus, only a small fraction less than 1% of the

microsphere surface is constrained to the fiber stem. Under this circumstance, the

microsphere-stem system can be reasonably approximated by a free microsphere with

stress-free-surface boundary conditions. More detailed analysis in a microsphere-stem

structure will be given with finite element simulations.

The general solution of Eq. (2.17) for an elastic sphere under the free-surface

boundary condition has the form,

Wi(X, t) = L A;l,m)jl (Wl~r) yZm((), ¢)e-iW1,rnt

l,m
(2.18)
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where jl and ytm are the spherical Bessel function and the spherical harmonics,

respectively. WI,m/27f is the mechanical vibration frequency of a (l, m) mode where l

and m are the mode numbers. Vi denotes the longitudinal sound velocity for i = 1,2

and the transverse sound velocity for i = 3, respectively. These velocities are also

fi!.. J).. + 211 .expressed as VI = V2 = VL = Vp and V3 = VT = p m terms of Lamb

constants. For fused silica with p = 2.2 g/cm3
, E = 73.1 GPa, and (J = 0.17, we

obtain VL = 3766 m/sand VT = 5970 m/s.

The mechanical vibration modes of a microsphere fall into two categories,

namely, the torsional and the spheroidal modes. While torsional modes are purely

rotational without dilatation, the spheroidal modes involve dilatation without any

rotation. In optomechanical coupling, we are more interested in the spheroidal modes

because these modes can change the optical path length and in turn the optical

resonances in a microsphere resonator. The eigenvalues of the spheroidal modes of

an elastic sphere are determined by [56],

(2.19)

where 7] and ~ are the dimensionless eigenvalues, which can be rewritten as,

(2.20)

(2.21)

where R is the microsphere radius and n is the radial mode number that is assigned to

the n-th zero of w's satisfying the boundary conditions. For a given l, Eq.(2.19) can

be numerically solved for a parameter Xnl - Rwnl
. In Fig. 2.3 the values of Xnl for

27f
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Figure 2.3: Spheroidal vibration modes of a silica microsphere. The value of the
parameter Xnl is plotted for the mode number l. Square, circle and triangle represent
the mode numbers n = 1, 2 and 3, respectively.

n = 1,2 and l = 0, 1,2,3, and 4 for the spheroidal modes are plotted. It is interesting

to note that the (1,2) mode has the lowest vibration frequency. For vibration shape,

n indicates (n - 1) nodes in the radial direction. The eigenvalue equation does not

involve the mode number m, indicating 2l +1 degeneracy in the spheroidal modes for

each l mode. Although the vibration frequencies for the same l mode are degenerate,

the spatial vibration shapes are distinct for different m = - l, ... ,+ l as will be

analyzed with finite element analysis.

2.3 Finite Element Analysis of a Microsphere-Stem System

The mechanical vibration modes of a silica microsphere are simulated and

characterized with finite element analysis using a commercial program, COMSOL

Multiphysics. Finite element simulation not only gives the vibration frequencies, but
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also displays the corresponding spatial patterns, which are more important in view

of optomechanical coupling. For simulations, we have modeled a microsphere-stem

system as a sphere attached to the end of a cylindrical stem whose diameter is set to

one tenth of a microsphere diameter. The other end of the stem is smoothly connected

to a tapered cone whose height and base diameter are set to 200 J1m for both. The

whole structure is assigned as fused silica and all surfaces are set to be free-stress

except for a fixed cone base. In experimental studies of optomechanical cooling, the

microsphere is slightly deformed for the free-space excitation of WGMs, which will be

discussed in detail in Chapter IV. The deformed microsphere is modeled as an ellipsoid

where one axis on the equatorial plane is longer than other two perpendicular axes of

the same length.

Fig. 2.4 shows fundamental spheroidal modes of mechanical vibration of a

stem-microsphere system for the n = 1 mode number. D = 30 J1m microsphere

diameter, 30 J1m stem length, and f = 2 % deformation are used in this simulation.

The radial breathing modes, in which average radial displacement in the equatorial

plane changes with mechanical vibration, are displayed for (1,0), (1,2) and (1,4)

modes in Fig. 2.4(a). The existence of the fiber stem slightly deforms the vibration

shape in the proximity of the microsphere-stem joint. For the (1,0) mode, the

vibration frequency is 152 MHz and the overall sphere shrinks and expands with

the same phase for all points in the microsphere. In the (1,2) mode with 105 MHz

vibration frequency, the microsphere is elongated along the fiber stem direction.

This mode, named the American football mode, has the lowest vibration frequency

and shows out of phase vibration motion between the pole and the equator of the

microsphere. The radial breathing mode in the (1,4) mode, vibrating at 199 MHz,

shows vibration nodes along the polar angle with a cylindrical symmetry. For the

(1,1) mode with 128 MHz and the (1,3) mode with 153 MHz shown in Fig. 2.4(b), the
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Figure 2.4: Finite element simulation of mechanical vibration modes of a
microsphere-stem system. Fundamental spheroidal modes are shown for the (n, l) =
(1,0), (1,1), (1,2), (1, 3) and (1,4) modes. For radial breathing modes in (a),
two spacial mode patterns in opposite phases are displayed to show the radial
displacement. In (b), non-radial spheroidal modes are shown. In this simulation,
the deformation is E = 2 %, and the diameter of the fiber stem is equal to one tenth
of the microsphere diameter, 30 fJ..'m.
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change in the average radial displacement is negligible, resulting in no optomechanical

coupling.

Due to the fiber stem and the microsphere deformation, the degeneracy of

higher l modes is lifted. For example, Fig. 2.5 shows the breaking of the fivefold

degeneracy in the (1,2) mode, resulting in five different frequencies within a few l'vIHz

range for different m mode numbers. For the other four modes, except for the radial

breathing mode, the average radial displacement remains nearly constant during

vibration in spite of their dynamical change in shape. These modes are optically

invisible.

J..

.J

L

;L,

(a) (b)

Figure 2.5: Degeneracy of a (1,2) mechanical vibration mode. A five-fold degeneracy
in the vibration frequency is split due to the fiber stem and the deformation. Only the
radial breathing mode in (a) that can change cavity path length is optically visible.
In (b), non-radial breathing modes are shown.
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2.4 Effective Mass

With finite element analysis, we have shown that each mechanical mode has

its own distinct vibration shape. In view of optomechanical coupling, even though

the maximal deformation is greatly different from an equilibrium shape, the optical

resonance shift will be negligible if there is no cavity path change in the equatorial

plane of mechanical vibration. For example, see the non-radial breathing modes

in Fig. 2.5(b). Considering mechanically induced cavity path length change, the

mechanical oscillator can be characterized by introducing the effective mass, me!!,

which is defined as [57],

(2.22)

where Em is the total mechanical energy, Wm is the angular vibration frequency, and

A is the average radial amplitude in the equatorial plane. The effective mass is

interpreted as the mass of a one-dimensional equivalent harmonic oscillator whose

amplitude is equal to the average radial amplitude. From this definition, it is

straightforward to see that the effective mass is infinite for non-breathing modes

due to their negligible radial amplitude. However, for the radial breathing modes,

the effective mass can be larger or smaller than the physical mass, depending on

vibration shape. As a mass is considered an inertia of the kinetic motion subject to

an external force, the effective mass acts as an inertia of the mechanical vibration

motion subject to the radiation pressure force in optomechanical coupling.

The effective mass of mechanical vibration modes in a deformed microsphere

is simulated with finite element analysis as shown in Fig. 2.6. Since the microspheres

are usually fabricated in different sizes, it is convenient to define the effective mass

coefficient, a, as,
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Figure 2.6: Effective mass coefficient for the (1,0) and (1,2) radial breathing modes
simulated with finite element analysis. In this simulation, the microsphere diameter
with E = 0 is 30 11m and the long axis length in the equatorial plane is changed in
order to impose a deformation.

meff
a=--

m
(2.23)

where m is the whole microsphere mass. For each mode, the radial displacement

in the equatorial plane is averaged over a circumference, and the total mechanical

energy or the elastic energy is calculated at the average radial amplitude. Microsphere

deformation is applied by changing the long axis length in the equatorial plane and

E = 0 corresponds to a 30 11m diameter spherical microsphere. Figure 2.6 shows the

simulated effective mass coefficients of the (1,0) and (1,2) radial breathing modes

as a function of deformation. While the coefficient for the (1,2) mode increases

slightly with increasing deformation, the coefficient for the (1,0) mode remains nearly

constant for differing deformation. At E = 2 %, the effective mass coefficients are

found as a(l,O) = 1.01 for the (1,0) mode and a(1,2) = 1.19 for the radial breathing
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(1,2) mode. These correspond to the effective masses of 32 ng for the (1, 0) mode

and 38 ng for the (1,2) mode. We also find that the effective mass coefficient of each

mode remains nearly the same irrespective of the microsphere diameter.

Effective mass can be used to calibrate the measured mechanical displacement

spectrum. According to the equipartition theorem, the peak amplitude of the

displacement spectrum depends only on the effective mass for a given bath temperature.

For example, with D = 30 jJm, E = 2 %and T = 300 K, we simulate the average radial

amplitude of 1.56 x 10-14 m of the radial breathing (1,2) mode, which results in the

peak value of 1.25 x 10-16 mjJHZ in the mechanical displacement spectral density

for a mechanical quality factor Qm = 10, 000 and a 100 MHz vibration frequency.



32

CHAPTER III

THEORETICAL BACKGROUND OF OPTOMECHANICAL COOLING

In a theoretical description of optomechanical cooling, a radial breathing

mechanical mode can be approximated as a one-dimensional harmonic oscillator [35]

(See Fig. 3.1). This equivalent harmonic oscillator, which is in thermal equilibrium

with bath temperature, is subject to the radiation pressure force arising from the

circulating optical power. The fact that thermal mechanical vibrations of the resonator

induce changes in optical resonances and that the radiation pressure force is delayed

due to a finite cavity lifetime [32] yields two coupled differential equations governing

the mechanical motion and the intracavity optical field. The forced harmonic motion

is characterized by the effective mechanical frequency and the effective mechanical

linewidth. A position-dependent and time-delayed radiation pressure force leads to

the shift of mechanical resonance (i.e. optical spring effect [58]) and the change in

the damping rate, respectively. Interestingly, the radiation pressure induced damping

rate can be either positive, meaning heating of the mechanical motion, or negative,

meaning cooling of the mechanical motion, depending on the laser detuning.

According to the equipartition theorem, the change in temperature of the

vibration motion is given simply by the ratio between the effective damping rate and

an intrinsic damping rate. Classically the effective temperature would be arbitrarily

small with increasing circulating power and, accordingly, the effective damping rate
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Figure 3.1: One-dimensional harmonic oscillator equivalent to the (1,0) radial
breathing mode of a microsphere resonator with the assumption of same vibration
frequency and total mechanical energy. The amplitude is assigned to be the same as
the radial amplitude (~r) in the equatorial plane, and m is the effective mass.

would be arbitrarily large. The effective temperature needs to be below 5 mK in

order to reach the ground state of a 100 MHz mechanical oscillator.

However, quantum theory predicts that the radiation pressure cooling will be

ultimately limited by quantum backaction, the fluctuation of the radiation pressure

force arising from the shot noise of circulating power. The ground-state cooling of

mechanical motion with phonon occupation far below one can in principle be achieved

only in the resolved-sideband limit, where the cavity photon lifetime is comparable

to or larger than the mechanical vibration period [28-30, 59].

In this chapter, we will first discuss a one-dimensional harmonic oscillator in

thermal equilibrium. Theoretical calculations of optomechanical coupling in a silica

optomechanical resonator will be presented to derive analytic forms of the effective

frequency and damping rate. We will also discuss the cooling limit imposed by

quantum backaction, emphasizing the importance of the resolved-sideband condition.
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3.1 1D Harmonic Oscillator in Thermal Equilibrium

Consider a one-dimensional harmonic oscillator with mass m subject to thermal

random force Fth [13]. Assuming velocity dependent friction, the equation of motion

IS,

mx + 1':£ + kx = Fth (3.1)

where l' is the damping rate and k is the stiffness. Fth is given in the frequency

domain as,

(3.2)

where k B is the Boltzman constant and T is the bath temperature. Note that Fth

is independent of the resonant frequency. This fluctuation force, which is also called

Langevin force, is responsible for the random driving force as well as the frictional

force as stated in fluctuation-dissipation theorem [60]. The equation of motion of a

harmonic oscillator in Eq.(3.1) is solved in the frequency domain by replacing x(t)

with x(w)eiwt , and the solution reads,

(3.3)

where wo/21f is the resonance frequency. This is the power spectral density of vibration

displacement and has units of [m2/Hz]. The amplitude on resonance is linear with

temperature as expected from the thermally excited motion. When the damping rate

is small, the response is sharply peaked near the resonance and approximately given

by a Lorentz shape. Its sharpness is quantified by the mechanical quality factor,

defined as,

Q
_ Wo

m-

l'
(3.4)
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The amplitude variance of a harmonic oscillator subject to thermal forces can

be calculated by integrating the power spectral density over all frequencies as,

(3.5)

3.2 Equipartition Theorem

In classical statistical mechanics, the equipartition theorem states that, in

thermal equilibrium, the total average energy is equally distributed over the various
1

forms in quadrature of, for example, position or velocity. The average energy of 2kBT

is assigned to each degree of freedom. For a one-dimensional harmonic oscillator in

thermal equilibrium, the total energy is the sum of the kinetic energy and the elastic

energy. And each energy is quadratic in the respective variable. Thus, the mean total

mechanical energy is given by,

(3.6)

The mean kinetic energy is equal to the mean elastic energy.

The average amplitude of the mechanical oscillator is calculated through the

equipartition theorem, as,

!1x ~ JkBT
mw2

o
(3.7)

This expression is exactly the same result as Eq.(3.5). By rewriting this equation, we

obtain,

(3.8)

This equation says that the average amplitude is a direct measure of the temperature

of the vibration motion.
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3.3 Classical Theory of Optomechanical Cooling in a Microsphere

The radiation pressure force in a microsphere, which is exerted on the boundary

due to multiple reflections of photons, is,

21m
Frad = --Pcav

c
(3.9)

where Pcav is the intracavity power, c is the speed of light in vacuum and n is the

refractive index of silica. This force is in radial direction in the equatorial plane

as shown in Fig. 3.2, and acts as a driving force to the radial vibration motion of

a microsphere. For simplicity, we consider only a single mechanical mode which is

approximated as a one-dimensional harmonic oscillator. The equation of motion of

the radial displacement, r(t) can be written as [61],

F
f(t) + "1m r(t) + w~r(t) = rad

m
(3.10)

where m is an effective mass, and W m and "1m are a mechanical vibration angular

frequency and damping rate, respectively.

On the other hand, the equation of the intracavity electric field follows [62],

(3.11)

where it is the transmission coefficient, Trt is the round trip time and r is the

mode-matching coefficient. The frequency change is given by,

(3.12)
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Figure 3.2: The momentum change of a photon circulating inside a cavity exerts
a radiation pressure force proportional to the intracavity power on the surface of a
microsphere. By symmetry, the force is in the radial direction on the equatorial plane.

where the first term /j.w = WL - We is the laser detuning and the second term is the

phase shift due to the mechanical vibration. W L and We are the angular frequency of

the excitation laser and the optical resonance, respectively, and R is a WGM radius,

which is nearly the same as a microsphere radius. These two coupled differential

equations, Eq.(3.10) and Eq.(3.11), govern the optomechanical coupling due to the

radiation pressure force.

With an explicit time dependence,

rewritten as,

the radial displacement can be

(3.13)

where X m is the slowly varying amplitude. Then, using Eq.(3.13), Eq.(3.10) and

Eq.(3.11), it becomes,

(3.14)

(3.15)
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Here we assume wm » I and xm «wmXm. EO is the permittivity of free space, and s

and E the cross sectional area and the electric field of a relevant WGM, respectively.

Assuming the Stokes and the anti-Stokes fields generating from the parametric

process in a microresonator, the electric field can be decomposed as [63],

(3.16)

with

(3.17)

(3.18)

where p, s and as denote a pump, Stokes and anti-Stokes, respectively. Inserting

Eq.(3.16) into Eq.(3.14) and Eq.(4.7), and sorting these equations by each electric

field component, we reach four coupled equations, as follows,

(3.19)

(3.20)

(3.21)

(3.22)

Assuming Es ' Eas « Ep , we solve for Es and Eas in terms of Ep from Eq.(3.19)

rv Eq.(3.21) in steady-state. Then, by inserting the solutions into Eq.(3.22), the

equation of X m is now put into a simple form as,

. (1m + rC . J\ )
X m = - 2 + 1,uWm X m (3.23)
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This equation describes the harmonic motion with the effective damping rate, reiI =

rm +fc , and the effective resonance frequency, weff = Wm+~wm, where the radiation

pressure induced damping rate f c and frequency shift ~wm are found [35],

(3.24)

and

where fl,c is the cavity loss associated with excitation of a WGM.

As shown in Eq.(3.24), the Stokes or the anti-Stokes process can be resonantly

enhanced when the relevant sideband is resonant with the cavity resonance. For blue

detuning, ~w > 0, the Stokes process overwhelms the anti-Stokes process and the

optomechanical damping rate f c is negative. In this case, radiation pressure leads to

an overall amplification of the mechanical oscillation. Conversely, for red detuning,

~W < 0, the optomechanical damping rate is positive and radiation pressure leads to

an overall cooling of the mechanical oscillation. In Fig. 3.3, the effective damping rate

is normalized to an intrinsic damping rate and the vibration frequency shift is plotted

as a function of laser detuning for different ratios between W m and fI,. Two extremes

near ~w/wm = ±1 in Fig. 3.3(a) are due to the enhanced Stokes or the anti-Stokes

emission. For large wm / fI" i.e, in the resolved-sideband limit, the resonant peak on

each side is sharpened and its linewidth approaches the cavity linewidth fI,. On the

other hand, ~w features a unique response as the laser detuning changes. Theoretical

evaluation of ~w and reff predicts a way to manifest the radiation pressure effect on

the mechanical vibrations. Note that, at zero laser detuning, both reff and ~wm are
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Figure 3.3: Theoretical calculation of (a) the effective linewidth normalized to the
intrinsic linewidth and (b) the mechanical frequency shift as a function of laser
detuning normalized to the mechanical frequency. Different ratios wm / K = 1, 2,
5 and 10 are plotted in red, green, blue and purple lines. The input power is set to
the threshold power for parametric instability. Dynamic responses of lefI/lm and
!:J.w are the signature of radiation pressure induced optomechanical coupling.
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equal to the values of the intrinsic mechanical linewidth and mechanical frequency,

respectively, because of the complete balance between the Stokes and the anti-Stokes

in the optomechanical parametric process.

Fig. 3.4 shows the input power dependence of the effective damping rate and

the frequency shift as a function of laser detuning for wm/ /'i, = 4. Both '"Yeff /'"Ym and

llwm grow linearly with input power. For blue laser detuning, '"Yeff can be zero at

a certain input power where radiation pressure induced gain overcomes the intrinsic

mechanical damping, resulting in great enhancement in the vibration amplitude along

with a narrow linewidth. The threshold power for the parametric oscillation is, from

'"Yeff = 0, found as,

This expression shows that Pth is proportional to the inverse of the mechanical quality

factor and has a size dependence of rv R 2 with an assumption of W m rv 1/R. A high

optical Q-factor reduces the threshold power, but the exact dependence varies with

/'i,c and the ratio of wm / /'i,. Using Eq.(3.26) for Pth , the effective damping rate can be

rewritten as,

(3.27)

This shows that '"Yeff decreases (or increases) linearly with the input power with

a slope of '"Ym/ Pth for blue detuning (or red detuning). Note that '"Ym and Pth are

experimentally measurable parameters. In the resolved-sideband limit, with llw =

W m , the threshold power is simplified as,

(3.28)
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Figure 3.4: Theoretical calculation of input power dependence of (a) the efl:'ective
linewidth normalized to the intrinsic linewidth and (b) the vibration frequency shift
as a function of laser detuning normalized to the mechanical freqeuncy, Different
ratios Pin = O.2Pth ,O.5Pth , IPthand, 1.5Pth are plotted in red, blue, green and purple
lines. Both "feff and /:::;w linearly increase with the input power. "feU < 0 is the
regime of the parametric oscillation.
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Under the influence of the radiation pressure force, by replacing "fm and W m in

the dominator with "feff = "fm + f c and weff = Wm + L}.w, respectively, in Eq.(3.3),

the power spectral density of the radial displacement is obtained as,

2( ) _ 4kB T "fm
x W - --(2 2)2 2 2

m W - Weff + "feffW
(3.29)

Note that weff is nearly the same as Wm owing to L}.wm «wm . From the equipartition

theorem, the effective temperature of the mechanical oscillator is calculated as,

2 2 2 J d
T - mwmx _ mWm 2()~ _ "fm T

eff - - X W -
kB kB 2n "fm+fc

(3.30)

Therefore, the effective temperature is simply determined by the ratio between the

effective and the intrinsic damping rate. For red detuning, Tef f is proportional to

the inverse of the input power because of f c ex: Pin. For a given fe' the effective

temperature depends only on "fm for a given bath temperature, implying the crucial

role of high mechanical quality factor for the optomechanical cooling. Figure 3.5

schematically shows the change of the displacement spectrum when the mechanical

vibration is cooled or heated. Cooling results in the area reduction and the linewidth

widening of the displacement spectrum, while heating results in the area enhancement

and the linewidth narrowing.

3.4 Quantum Mechanical Description of Optomechanical Cooling

The quantum mechanical Hamiltonian of the optomechanical system is [59,

64,65],

H = H cav + H m + Hint + Hdrive (3.31)
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Figure 3.5: Schematic description of the displacement spectrum upon cooling or
heating. (a) Intrinsic displacement spectrum. (b) Cooling of mechanical motion
reflected in the area reduction along with linewidth broadening. (c) Heating of
mechanical motion reflected in the area amplification along with linewidth narrowing.
Am and A eff are intrinsic and effective spectral areas, respectively.

where

Hcav flw ata (3.32)c

Hm flwmatnam (3.33)

Hint flwc flwc~( t ) . (3.34)--x=-- a +amaTa
L L 2mwm m

Hdrive liE(aeiwLt + ate-iwLt) (3.35)

Hcav and Hm describe the energy of the optical cavity mode and the mechanical

mode, respectively. a(am) and at (atn) are lowering and raising operators for the

cavity (mechanical) mode, with [a, at] = [am, atn] = 1. Hint is the optomechanical

interaction term with an effective cavity length L. This length corresponds to an

actual cavity length for a Fabry-Perot resonator and to a radius for a microsphere

resonator. Hdrive describes the cavity driving field with E = J;:: where P is the

input power.



45

By inspecting the interaction term, the radiation pressure coupling rate is

given by gm = We 6.{O, where 6.xo is the zero-point amplitude. The smallness of

gm rv 1Q3(<< We, wm ) in a microsphere optomechanical system allows us to treat the

interaction term as a perturbation coupled to the system reservoir. For solving the

quantum Hamiltonian of an optomechanical system, the master equation approach

can be used in order to derive the evolution equation of the density matrix of the

optomechanical system, where the optical cavity losses and the mechanical dissipation

are included in the Lindblad form.

In steady-state, (atnam)ss yields the final average phonon occupation number

of a mechanical vibration [28, 29],

with
N. __ 4(6.w + wm )2 + ",2

Q - 166.w W m

(3.36)

(3.37)

Ni is the phonon occupation number determined by bath temperature, and for Ni » 1

Eq.(3.36) reduces to the classical regime where thermal dissipation of mechanical

vibration is dominant. On the other hand, for small dissipation or high cooling

rate, the final occupation reduces to NQ , the shot noise limited phonon occupation

number. The fluctuation of the intracavity power leads to the randomness of the

radiation pressure force, and thus the mechanical motion is effectively heated. This

random noise can arise from classical laser noise such as phase or intensity noise,

but, in ideal conditions, the quantum nature of light is eventually responsible for this

noise, which is referred to as quantum backaction. Note that NQ is independent of

the input power.
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3.5 Resolved-Sideband Cooling

In Fig. 3.6(a), NQ is plotted as a function of the laser detuning for different

ratios of wm / r;" showing the minimum reachable phonon occupation number. When

the detuning approaches zero, the occupation rapidly increases due to the increase

in intracavity power. By differentiating Eq.(3.37) with respect to .6.w, the minimum

value of NQ is obtained as,

N Q = ~ (F£+r;,2 - 1)
2 4w2

m

(3.38)

with a laser detuning .6.wm = -Jw?-n + r;,2/4. Depending on the ratio wm/r;" this

expression falls into two regimes,

for wm » r;,

(3.39)
for wm « r;,

For W m « r;, in the adiabatic limit, the final occupation prohibits from reaching

the ground state cooling, yielding the effective temperature Tef f ~ nr;, This
4kB

regime can be compared to the Doppler cooling limit of laser cooling of atoms. On

the other hand, for W m » r;, in the resolved-sideband limit, the final occupation

number can be well below one, indicating that the quantum ground state can indeed

be achieved. Figure 3.6(b) plots the photon occupation number as a function of

effective damping rate. By increasing the effective damping rate or the input power,

the occupation number starts to deviate from the classical regime where thermal

dissipation is dominant, and finally converges to the quantum backaction limit QN,

which is essentially well below one in the resolved-sideband limit.
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Figure 3.6: Average phonon occupation number achievable by radiation pressure
cooling. (a) Quantum backaction limited final occupation number as a function of
jj.w /wm for different ratios of wm / K, = 0.2, 1 and 5, from the top to the bottom curves.
(b) Final phonon occupation N r is plotted as a function of the effective damping
rate, showing the transition from the classical region in the black line to the quantum
region, wm/K, = 1 in blue and w m /'''- = 0.1 in red. Only in the resolved-sideband limit,
N j « 1 is in principle achievable. A black curve represents the classical limit and
dotted lines are asymptotic lines.
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Although quantum theory predicts that ground state cooling is possible in

the resolved-sideband cooling limit, it is only reachable when the classical limit is

suppressed well below one, i.e, Ni'Ym/Yejj « 1. Upon satisfying this condition, the

final occupation can be arbitrarily small for large detuning l.6.wl = W m »/'1,. All

we need to do is to increase the input power to keep a constant radiation pressure

force. Large laser detuning has another benefit regarding to the absorption of the

intracavity power, which is one of the heating sources which needs to be suppressed.
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CHAPTER IV

EXPERIMENTAL TECHNIQUES AND CHARACTERIZATION

For experimental studies of the radiation pressure induced optomechanical

coupling, which is theoretically described in the previous chapter, we develop and

utilize a unique technique, the free-space evanescent excitation ofWGMs in a deformed

silica microsphere. While the incident angle of a WGM is conserved in regular

microspheres, it no longer remains constant in deformed microspheres, leading to

the changes in the emission pattern of WGMs. Compared to very weak and isotropic

far-field emission of WGMs in regular microspheres, a deformed microsphere has

unique properties of directional evanescent escape near the regions where the angle of

incidence is close to the critical angle for the total internal reflection [66, 67J. Utilizing

this fact, WGMs in deformed microspheres can be evanescently excited in free space,

providing a simple, but useful way of WGM excitation [50, 68J.

The scheme of free-space excitation of WGMs can be used simultaneously for

high sensitivity homodyne detection of mechanical vibrations of the optomechanical

resonator [44J. According to the equipartition theorem, the radial vibration amplitude

of a silica microsphere with a 15 fJ>m radius is about 10-14 m at room temperature,

which is four orders of magnitude smaller than the atomic Bohr radius. Thus, studies

of optomechanical cooling of the thermal vibrations require extremely high readout

sensitivity of the mechanical displacement [69J as well as efficient cooling mechanism.
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For light circulating in a WGM, thermal mechanical vibrations induce a phase shift,

which is proportional to the mechanical displacement. The optical interferometric

measurements of the induced phase shift provide a highly sensitive measure of the

mechanical displacement. In the free-space excitation configuration, the part of the

excitation laser beam that is not coupled to WGMs provides a local oscillator for the

homodyne interferometric detection of the mechanical displacement [41, 44].

For the calibration of the measured displacement spectrum, the excitation

laser is phase-modulated in order to mimic the phase shift induced by mechanical

vibration [27]. This phase modulation generates a reference spectral peak, providing

direct comparison between phase shifts due to the mechanical vibration and the

phase-modulated laser. The cavity emission and the local oscillator take the same

optical path to the detector in free-space configuration and thus this calibration

scheme is independent of the cavity decay rate, the mode matching efficiency and

the free-space excitation efficiency.

In this chapter, we will discuss the free-space evanescent excitation of WGMs

in a deformed microsphere. Based on this scheme, we will discuss the homodyne

detection and the calibration of mechanical vibrations of a silica microsphere resonator,

both in theory and experiment. We will also present and discuss the experimental

observations of the radiation pressure induced optomechanical cooling and heating,

including parametric instabilities in our optomechanical system. Radiation pressure

effects will be further manifested by detailed studies about the dependence of the

effective mechanical frequency and linewidth on the laser detuning as well as the

input power.
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4.1 Free-Space Excitation of WGMs

4.1.1 Launching of Whispering Gallery Modes

Although the WGMs in a microsphere feature excellent optical properties such

as ultrahigh optical Q-factor and small mode volume, excitation of WGMs is not

trivial. In the case of a Fabry-Perot resonator, the excitation laser is aligned along

the axis connecting centers of two mirrors, which normally makes the excitation beam

mode-matched with the optical modes. However, in a microsphere, the light that

enters the resonator should leave from the microsphere by refraction. Although it

is not impossible to excite a WGM by focusing a laser beam near the microsphere

surface, this excitation scheme is not effective. This fact, on the other hand, explains

the ultrahigh optical Q-factor in the WGMs. However, in an asymmetric microsphere,

free-space coupling efficiency can be profoundly improved.

WGMs can be efficiently excited by generating an evanescent field near the

microsphere, which is mode-matched to the relevant WGM [62]. For this purpose,

an optical coupler, such as a high index prism [53] or a tapered fiber is normally

used [70]. As shown in Fig. 4.1(a), light can propagate from the prism into the

microsphere across a sub-,um gap via the frustrated total internal reflection. By

changing the incident angle of the prism, different radial modes can be selectively

excited. Another way to excite the WGMs is to use a tapered fiber of a few ,um in size,

which is fabricated by stretching a single mode optical fiber while applying a torch or

a CO2 laser. When light propagates through the tapered fiber, a large portion of light

overfills the fiber waveguide, generating an evanescent field. In this configuration, the

mode-matching between the excitation and a WGM is almost perfect, and the WGM

can be excited with nearly 100 % efficiency [TI-J. For both a high index prism and

a tapered fiber, the gap between the microsphere surface and the coupler should be
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(a) (b)

Figure 4.1: Excitation of WGMs in a microsphere. (a) The frustrated total internal
reflection in a high index prism and (b) the spatial extension of a single mode near
a tapered fiber are used to generate an evanescent field near the microsphere for the
excitation of the \iVGMs.

within a wavelength because the evanescent field decays exponentially beyond the

coupler's boundary.

High efficiency of coupling-in also means high efficiency of coupling-out from

the resonator, leading to optical energy loss in WGMs. Considering the loss due to

the coupling, the total Q-factor, Qtot, becomes,

Q -l = Q-l + Q-ltot 0 c (4.1)

where Qo is an intrinsic quality factor and Qc is the quality factor associated with

the coupling. Because the coupling efficiency is sensitive to the gap in a prism or a

tapered fiber coupling, Qc and accordingly Qtot have a strong dependence on the gap.

In order to describe the coupling efficiency of the \iVGMs, impedance matching

should be considered. This terminology originates from the issue of power transfer

in an electrical circuit. When two electrical devices have the same impedance, the

electrical power can be effectively transferred without reflection or loss. In excitation

of the WGMs, the mode-matched optical field can be completely coupled into the
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microsphere when the intrinsic loss is matched with the coupling loss. In this case, the

resonance dip in optical transmission can go to zero, and the optical power coupled

into the resonator dissipates within the resonator. This is called critical coupling,

which has been demonstrated with a tapered fiber coupler. The fractional dip in the

optical transmission, K, is given by [62],

(4.2)

where r is a mode matching coefficient. When Qo = Qc, K is equal to 1 with r = 1.

4.1.2 Evanescent Escape in a Deformed Microsphere

When a ring resonator is deformed, the angle of incidence is no longer conserved

during the propagation along the circumference. Optical properties of an asymmetric

resonator have been extensively studied both in theory and experiment, including

a deformed silica microsphere. One of the unique properties is directional cavity

emission when the incident angle is close to the critical angle for total internal

reflection.

Figure 4.2 shows the scanning electron microscope (SEM) images of a deformed

microsphere taken along three orthogonal directions. On the equatorial plane, one

axis is elongated, showing a reflection symmetry about each axis. The deformation

of a deformed microsphere, E, is defined as,

a-b
E=-

a
(4.3)

where a and b are the long and short axis on the equator plane, respectively, as shown

in Fig. 4.2(d). In fabrication, which will be discussed in detail later, the deformation,
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(d)

Figure 4.2: (a) "" (c) Scanning electron microscope images of a deformed microsphere
taken along three orthogonal directions. Average diameter is 32.6 f-Lm and deformation
is E = 4.9 %. (d) A long axis a and a short axis b in an elliptical shape.

ranging from 1 % to 10 %, is precisely controlled with 1 % accuracy by repeated

heating with a CO2 laser.

Previous studies [66, 67] have shown that there are two different regimes for the

directional emission in deformed microspheres, depending on the deformation. For

large deformation, the WGMs with low optical Q-factors escape refractively when the

angle of incidence is smaller than the critical angle. However, for a small deformation

below 2 %, the evanescent escape is dominant with high optical Q-factors. This

behavior can be explained by the effective potential of WGMs. When the angle of

incidence approaches the critical angle, the potential barrier gets relatively thinner,

and the chances that a WGM field tunnels through this barrier grows exponentially.
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Theoretical works show that the regions with minimal incident angles in the deformed

microspheres are located near 45 degrees away from a long or short axis. In these

regions, WGMs can evanescently escape along with ultrahigh Q-factors.

4.1.3 Free-Space Evanescent Excitation of WGMs in a Deformed Microsphere

By utilizing directional evanescent escape, the WGMs in deformed silica

microspheres can be effectively excited in free space without using any coupler [50, 52].

A light path is reversible. Thus, a laser beam can be evanescently coupled into the

microsphere resonator through the evanescent escape regions. In order to demonstrate

free-space excitation, a laser beam is focused near one of these regions 45 degrees away

from a short or a long axis, as schematically shown in Fig. 4.3. The relative position

between a focused beam and a microsphere surface is precisely adjusted in order to

obtain the optimal excitation.

For the excitation of WGMs, we use two lasers, a diode laser (New Focus 6316)

and a Ti:sapphire ring laser (Coherent 899-21), operating near A rv 800 nm. The diode

laser with a scan range over 20 nm is used to test excitation of WGMs and locate

WGM resonances in free-space coupling. In order to resolve the ultrahigh Q-factor

WGMs, the ring laser whose frequency is stabilized with an external reference cavity

is used. These two lasers are aligned such that they are easily switched with a single

flipping mirror.

Free-space excitation of WGMs relies not only on the fabrication of the

deformed microspheres, but also on beam focusing. For optimal focusing, the laser

beam is expanded and collimated with two different focal length lenses in order to fill

the entire objective aperture. a high magnification lens can provide a focused spot

size down to a refraction limit, but for the practical reasons when using a cryogenic
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Figure 4.3: Experimental setup of free-space evanescent excitation of WGMs and
optical detection of mechanical vibrations of a deformed microsphere. An electro-optic
modulator is used for the calibration of mechanical displacement and a liquid helium
cryostat is used for cryogenic operation.



57

system, a lens with a long walking distance must be used. A lOx objective lens with

33.5 mm working distance is chosen to focus the excitation laser and has been used

throughout this dissertation.

The Microsphere is imaged along the direction of incoming laser onto a CCD

camera through the same focusing lens followed by a beamsplitter. With this imaging

system, the position of the focused beam near the microsphere is adjusted for optimal

excitation of WGMs, and the free-space evanescent excitation of the WGMs are

monitored. This also allows us to monitor degradation of optical Q-factor due to

any contamination.

In order to measure WGMs, the optical transmission is collected with another

objective lens after the microsphere, and focused onto a silicon photodiode. For

lock-in detection, the excitation laser is modulated with a mechanical chopper which

provides a reference frequency to the Lock-in amplifier. When an excitation laser

scans over a WGM, the optical transmission decreases, resulting in a dip with an

inverse Lorentzian lineshape. WGMs are also measured in the backward direction

through the same focusing lens. In this case, the backscattered modes are measured

nearly background free by isolating the optical emission with a spatial filter consisting

of one pair of lenses and a pin hole.

Experimental setup for free-space evanescent excitation of WGMs in deformed

microspheres can be simultaneously used for studies of optomechanical coupling. For

the measurement of the mechanical vibrations, the optical transmission is collected

and focused onto a photodiode in the same way as when measuring WGMs, but

without modulation of the excitation power. Because of the ultrasonic frequencies

above 100 MHz for the mechanical vibrations in a silica microsphere, a high speed

photodetector (NewFocus Model 1801, AC-coupled) with a 125 MHz bandwidth

is used. The photodetector output is sent either to an electric spectrum analyzer
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(0.1 MHz - 1.5 GHz) to measure the mechanical spectrum or to an oscilloscope to

measure the mechanical vibration in the time domain.

The optical images in Fig. 4.4 show the onset of a WGM in a deformed

microsphere through the free-space excitation. When the laser is on the cavity

resonance, a strong emission of the WGM in Fig. 4.4(a) appears on the microsphere

surface. For comparison, the image shown in Fig. 4.4(b) is taken when the laser is

off-resonant with a WGM. Due to the finite size of a focused beam, a small portion

of the excitation laser is scattered by the deformed microsphere, resulting in a weak

light-scattering on the opposite side of the focused beam.

The behavior of free-space evanescent excitation is similar to the evanescent

excitation of WGMs with a tapered fiber except for two main differences. First of

all, the free-space excitation process does not lead to additional degradation of the

optical Q-factor. Secondly, the free-space excitation efficiency is in part limited by the

imperfect mode matching between the incident laser beam and the relevant WGM.

Figure 4.5(a) shows the transmission spectra obtained near a WGM resonance for a

deformed microsphere with D = 30 f.1m and deformation near 4 %. The background

level for each distance changes due to the diffraction of the excitation laser by a

microsphere. The top curve in Fig. 4.5(a) is obtained when the microsphere is

completely out of the focused beam. It shows no transmission dip, implying no

excitation of a WGM. Note that the linewidth of the resonance remains unchanged

for different distances between the laser spot and the microsphere surface. This fact

indicates that the free-space excitation induces no degradation on the optical Q-factor,

as expected. However, the relative depth or the fractional dip of the transmission

resonance depends sensitively on the position of the laser focal spot. The fractional

dip with respect to background level with no coupling is measured as a function of

the distance in Fig. 4.5(b). The maximum fractional dip observed exceeds 50 % [44].
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Figure 4.4: Free-space evanescent excitation of WGMs in a deformed microsphere.
Optical images of a WGM excitation taken when the laser is (a) off-resonant and (b)
on-resonant. These images are taken with the same objective lens used for focusing
the excitation laser. A small portion of excitation laser scattered by a microsphere
is observed on the left-side of the microsphere. Dotted lines representing a deformed
microsphere and a fiber stem are a guide for the eye.
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Figure 4.5: (a) Transmission spectrum near a WGM resonance obtained with
free-space excitation for different distances between the focused beam and the
microsphere surface. From top to bottom, the distance are -2.4 /J,rn, -0.6 fLm, 0 fLm

and 0.6 fLm, respectively. (b) Fractional dip obtained from the transmission spectrum
as a function of distance. The solid line is a Gaussian fit, showing a full width at half
maximum of 1.8 fLm. Note that we set the position of maximum fractional dip as the
zero distance.

The full width at half maximum of the gauss fit in Fig. 4.5(b) implies the focused

beam spot of 1.8 fLm assuming that the skin depth of the WGlVIs beyond the surface

is much smaller than the focused spot size.

The optical Q-factors of the vVGlVIs in deformed microspheres via the free-space

evanescent excitation can be expressed as,

Q-l = QC;l + Q;;l (4.4)

where Qo is the intrinsic optical quality factor and Qd is associated with the coupling

in a deformed microsphere. Through the free-space excitation, the optical Q-factors in

a deformed microsphere are observed to be in the range of Q = 106
rv 108 , depending

on the deformation. If we assume that the cavity loss is entirely due to output coupling
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along the four emission directions, perfect mode matching between the incident laser

beam and the relevant WGM should lead to a fractional dip of 75 %. A mode matching

coefficient of 0.6 will lead to a fractional dip near 50 %. For silica microspheres with

smaller deformation, the fractional dip observed is considerably smaller. For these

spheres, cavity losses other than those due to the output coupling become important.

Fig. 4.6 shows the structure ofWGM spectra obtained via free-space excitation.

Figure 4.6(a) and (b) are wide range spectra scanned with a diode laser, and Fig. 4.6(c)

is a high resolution spectrum scanned with a frequency-stabilized ring laser. Its

spectral linewidth is :S 0.5 MHz. A coarse scan clearly reveals the free spectral

range of 4.9 nm, which gives a microsphere diameter of D = 28 fJ,m from Eq.(2.15).

Within each free spectral range, a series of spectral peaks are observed. These equally

spaced peaks arise from azimuthal symmetry breaking and each WGM has nearly the

same optical Q-factor. A single WGM is further resolved in Fig. 4.6(c) and the

linewidth from a Lorentz fit is 4 MHz, which is corresponding to Q = 1.2 X 108. The

WGM spectra in Fig. 4.6 are measured by detecting the counterclockwise modes that

arise due to the backscattering. These modes are monitored through a focusing lens

followed by a beam splitter and can be measured nearly background free.

The free-space evanescent excitation of the WGMs provides a unique tool for

experimental studies with a silica microsphere resonator in a cryogenic environment.

Although the silica microsphere or microtoroid features the best optical properties

among the microresonators, these resonators have been rarely used at low temperature

because of technical difficulties in implementing the microresonator and in controlling

the distance between the resonator and the coupler. By utilizing free-space excitation,

we have been able to carry out deformed microsphere based experimental studies at

cryogenic temperature, including cavity-QED and optomechanical cooling.
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Figure 4.6: WGM structure of a deformed microsphere obtained from free-space
excitation. (a) A wide range scan reveals the free spectral range of 4.9 nm, which
corresponds to a microsphere diameter of 28 f.1m. (b) A series of spectral peaks within
one spectral range are due to the azimuthal symmetry breaking. Spectral separation
is about 8.2 GHz. (c) A fine scan resolves the ultrahigh optical Q-factor of a WGM.
A Lorentz fit (solid line) gives a linewidth of 4 MHz, which yields Q = 1.2 X 108 .
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4.1.4 Fabrication of Silica Microspheres

Silica microspheres are fabricated by melting an optical fiber with a CO 2

laser [72]. We have used a multimode fiber with a core refractive index n = 1.457,

a 200 p,m diameter and the attenuation below 10 dB/km at A = 800 nm. In order

to have uniform refractive index through the whole microsphere, only the core of the

multimode fiber has been used for fabrication. After removing the fiber jacket, the

optical fiber is installed into a fiber chuck, and then a small weight is attached to one

end of the fiber. The fiber chuck is mounted on a 3D stage for fine positioning. A

CO 2 laser is focused with a 1 inch focal length ZnSe lens. A CCD camera is placed

at a right angle with respect to the CO 2 laser beam path, and a 50x objective lens is

used for monitoring the fabrication process. When the focused CO2 laser is brought

toward the optical fiber, the heated part of fiber starts to be melted and stretched due

to the weight. Once the desired length and diameter of stretched fiber is obtained,

the weight is cut easily by increasing laser power or bringing the beam focus further

more into the optical fiber. The remaining part of the optical fiber is now heated

with a relatively high laser power and becomes spherical through surface tension.

The stem size is usually kept less than one fifth of the microsphere diameter, but for

the optomechanical cooling experiment it is kept as small as one tenth in order to

achieve high mechanical quality factors. Although fabricated microspheres are very

close to spherical in shape, they are slightly elongated along the vertical direction due

to the fiber stem and the gravitational pulling.

For the fabrication of deformed microspheres, we have tested two different

methods; fusing two microspheres [66] and pulsing a CO2 [68] laser on a single

microsphere. For the fusing method in Fig. 4.7, two regular microspheres of similar

size are separately fabricated by following the procedure as described above. Then,
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Figure 4.7: Fabrication procedure of a deformed microsphere by fusing two regular
microspheres with similar sizes. The final deformation is controlled by repeated
heating.

two microspheres each mounted on a 3D stage are brought together to slightly make

contact near equator planes. The first microsphere is placed upward) while the

second microsphere is in the normal position. The line connecting the centers of

two microspheres should be aligned along the direction of the CO2 laser. By applying

slight heat, the regions in contact are fused and then the stem of the second microsphere

is cut by using the laser beam. Now, relatively high laser power is applied to fuse

them together until they are completely immersed in each other. The deformation is

controlled by repeated heating.

For the pulsing method, a single microsphere is prepared first. Then, a

CO2 laser pulse with a high power but a short duration time is applied onto the

microsphere. The pulsing of a CO2 laser is externally controlled with a function

generator. Because of the short duration time, about a few p,s, the absorbed heat

melts only the one side that is exposed to the laser. At the same time, the laser beam

pressure also pushes this side, resulting in a deformed curvature. After a 180 degree

rotation of the microsphere, applying another pulse leads to a deformed microsphere

with two symmetric axes. In the pulsing method, it is important to have a microsphere

exactly in the center of the beam path to prevent any distortion due to misalignment.

Both methods for the fabrication of deformed silica microspheres work nicely.

However) we usually find that the excitation of the WGMs in the free-space coupling

is more efficient for the microspheres fabricated with the fusing method than with the
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pulsing method. Because of the need of the control on the deformation as well as high

coupling efficiency, the fusing of two microspheres method has been used through all

the experimental studies of optomechanical coupling.

4.2 Homodyne Interferometric Detection of Mechanical Vibrations

4.2.1 Direct Homodyne Detection

In the free-space excitation configuration, as shown in Fig. 4.8, the part of

excitation laser beam that is not mode-matched with the relevant WGM passes by the

deformed microsphere without coupling into the resonator. The uncoupled laser beam

provides a local oscillator for interferometric homodyne detection of the mechanical

displacement. In this direct homodyne detection, the relative phase between the

cavity emission and the local oscillator remains unchanged after the microsphere

because both beams travel the same optical path all the way to the photodiode.

Consider a simple harmonic motion of the radial displacement in the equatorial

plane with well-defined phase and amplitude r = ro sin wmt with a radial amplitude,

ro, and a mechanical vibration frequency, wm/27f. Then, the equations for the

intracavity field Eeav and the transmission field Eout are, respectively,

[-~ +i (flw - ra;o sinwmt)] Eeav + ;:tfEin

rEin + itEeav

(4.5)

(4.6)

where K, is a cavity decay rate, it and r are the transmission and the reflection

coefficient, respectively. Trt = 27fnR/c is a round-trip time, R is a microsphere

radius, n is the refractive index of silica, c is the speed of light in vacuum, and

flw = WL - We is a laser detuning. WL and We are angular frequencies of the incident



66

----- ~ ------.. ~

__.:lIo._ ------ ~----~
p _ ~--- --

Figure 4.8: Schematic of interferometric homodyne detection of mechanical
displacement in free-space evanescent excitation of vVGMs in a deformed microsphere.
The uncoupled part (red dash) of excitation beam that provides a local oscillator is
recombined with the cavity output (blue dash) after the microsphere.

laser and the cavity resonance, respectively. f(S 1) is a mode-matching coefficient,

which is equal to 1 for perfect mode-matching such as a tapered fiber coupling. In

free-space excitation, the value of r can be higher than 0.6 as discussed before.

However, in studies of optomechanical cooling in the resolved-sideband limit, this

value is about a few percent due to the low excitation efficiency accompanied by the

ultrahigh Q-factor.

Eq.(4.5) is an ordinary first order differential equation and the solution can be

formally found as,

with

C
1 JEcav(t) = !L(t) !L(t)dt

!L(t) = C2e(~-i6w)t-iacoswmt

(4.7)

(4.8)

where C1 and C2 are constants, and !L(t) is called an integration factor. In order to

perform the integration in Eq.(4.7), it is convenient to expand the exponential term,
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eiacoswmt, as a series of Bessel function (In) by using Jacobi-Anger expansion,

00

eizcos(} = L in In(z)ein(}
n=-oo

(4.9)

This identity is equivalent to the expansion of a plane wave in a series of cylindrical

waves. The integration in Eq.(4.7), with a help of Eq.(4.9), yields an analytic form

of Eeav(t) as [27],

(4.10)

h d·· I rOWe h h all £ d bwere we use a ImenSlon ess parameter a = Rw
m

' w ic is usu y oun to e

< 10-3 for a microsphere optomechanical system. Due to the smallness of a, by

including the leading terms, to the first order of a in the Bessel expansion, Eq.(4.10)

becomes,

(4.11)

a
Here, Jo(a) ~ 1 and J1(a) ~ "2 for a « 1, and J-n = (_l)nJn are used for the

calculation. By putting Eeav(t) in Eq.(4.11) into Eq.(4.6), we can directly obtain

Eou,t(t). After some algebra, the transmitted optical power Pov.t(t) normalized by the
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input power Pin is calculated as,

H(!:::"w; t)

(4.12)

(4.13)

up to the first order of ex in H(!:::"w; t). The laser detuning dependence appeared in the

denominator of H(!:::"w; t) implies the resonant response of the Pout(t) at !:::"w = ±wm as

a result of parametric optomechanical process. Now, it is convenient to separate the

optical transmission spectrum into two parts, a stationary part (DC) and a modulated

part (AC) oscillating at a frequency wm /27f, which are, respectively,

Pout,DC

Pout,AC

Here, we introduce a coupling coefficient of the free-space excitation defined as TJ 

rT2/Trt fi-. Note that T 2/Trt is a coupling loss (= fi-c ) associated with the microsphere

deformation. The DC part in Eq.(4.14) represents a transmission dip near a cavity

resonance that provides a measure of the coupling coefficient through a relation,

K = 4TJ(1 - TJ), where K is a fractional dip. The linewidth of the transmission dip

gives a total cavity decay rate. When TJ = 1/2, the fractional dip reaches one, implying

a critical coupling. However, the maximum fractional dip obtainable will be limited

to 0.75 assuming four symmetric emissions in a deformed microsphere. The AC

part describes the intensity modulation in the transmission due to the mechanically

induced phase change. In Eq.(4.15), higher harmonic terms in Wm are neglected.
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In Fig. 4.9, the AC amplitude normalized to input power is plotted as a

function of laser detuning for different ratios of wm / K,. We assume there is no heating

or cooling effect due to optomechanical coupling and thus the radial amplitude ro

remains constant. The AC response is symmetric for blue and red detuning, and goes

to zero at zero detuning where the Stokes and the anti-Stokes emission are completely

balanced. For a small ratio of wm / K, in the top graph in Fig. 4,9, the AC response is

optimized at ~w rv ±K,/2 and gradually decreases for a large laser detuning. As the

ratio of wm / K, increases, additional peaks in the AC response appear at ~w ~ ±wm-

These peaks are resonantly enhanced emissions of the Stokes for blue detuning and the

anti-Stokes for red detuning. Although the laser detuning is completely off-resonance

in the bottom graph in Fig. 4.9, the AC response at sideband detuning is as high as

that at ~w ~ ±K,/2. The ratio of wm / K, = 10 indicates that only less than 1%of input

power is coupled into the microresonator at ~w ~ ±wm . The width of these peaks is

the same as a cavity linewidth. This behavior of AC response indicates that, for the

resolved-sideband cooling of a microresonator, the excitation laser should be detuned

at ~w = -Wm for the maximum cooling and at the same time for the maximum

readout sensitivity.

4.2.2 Measurement Sensitivity

Displacement readout obtained from the AC response in transmission shows

a strong dependence on the laser detuning. In the resolved-sideband limit, which is

our focus, the AC amplitude in Eq.(4.15) with a laser detuning ~w = ±wm yields,

(4.16)
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Figure 4.9: Theoretical calculations of the AC amplitude normalized (Solid lines) to
the input power as a function of laser detuning with wm /27r = 100 MHz. Dotted lines
denote cavity resonance with different linewidths (a) K,/27r = 100 MHz, (b) K,/27r =
50 MHz, (c) K,/27r = 20 MHz and (d) K,/27r = 10 MHz. Values for ro = 10-14 m,
R = 15 /Lm, A= 790 nm and TJ = 0.03 are used for this calculation.
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Due to the small coupling efficiency and the off-resonance laser detuning in the

resolved-sideband limit, the input laser power sets the shot noise level as V2'11b.JcPin.

Therefore, assuming shot noise overwhelms any other noises in electric equipments,

the measurement sensitivity is calculated as,

RWm ~'I1b.Jc ( ( )2)r min = -8- ------:;:) 4 + K, / Wm
'T]Wc 'T]D.lin

(4.17)

where 'T]D is a detector efficiency. For the parameters of R = 15 j.Lm, wm /27f =

120 MHz, 'T] = 0.03, A = 790 nm, 'T]D = 0.5 and Pin = 1 mW, the sensitivity of the

displacement measurement reaches rmin = 2.2 x 10-18 m/VHz. This corresponds

to a minimal detectable amplitude ~ 2.2 x 10-16 m for a mechanical vibration with

Qm = 10,000.

4.2.3 Observation of Mechanical Vibrations

The power spectrum of the optical transmission, in which mechanical vibrations

are imprinted, is measured through free-space excitation. An excitation far below the

threshold input power Pth for parametric instability is used and thus any heating or

cooling from optomechanical coupling is negligible. Figure 4.10 shows an example

of the noise power spectrum of the mechanical vibrations taken by an electronic

spectrum analyzer. The three discrete peaks observed originate from fundamental

mechanical vibrations of a deformed microsphere, and there are no other sources that

can give rise to ultrasonic frequencies in the experimental setup. By comparing the

observed spectrum with finite element analysis, these modes are identified as the first

three radial breathing modes with (n, I) = (1,2), (1,0) and (1,4), respectively. These

modes are optically visible because their vibration spatial shapes modulate cavity

path length in the equatorial plane. The insets show the corresponding vibration
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Figure 4.10: Power spectrum of optical transmission taken by an electric spectrum
analyzer showing the three lowest radial breathing modes of a microsphere. Insets
are corresponding vibration shapes simulated with finite element analysis. From left
to right, (l, m) = (1,2), (1,0) and (1,4) modes.

mode shape. We have also observed a mechanical mode splitting in the range of

0.2 f'J 0.4 MHz for the (1,2) mode caused by the small deformation and imperfect

symmetry.

The size dependence of the mechanical vibration frequencies for the n 1

mode is plotted with diameters ranging in 25 f'J 40 11m in Fig. 4.11 [52]. The observed

mechanical resonance frequency is inversely proportional to the microsphere diameter

and agrees very well with the theoretical expectation based on the free sphere model,

implying that the effect of the fiber stem is insignificant to the eigenfrequency. The

size dependence further confirms that the resonance peaks in the spectrum arise from

mechanical vibrations of the microsphere. Note that the modes with odd number of l

represented with dashed lines in Fig. 4.11, are not optically observable because these

modes do not change the optical path length of the WGMs.
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Figure 4.11: Size dependence of Mechanical vibration modes. Mechanical vibration
frequencies are plotted as a function of a microsphere diameter. Dots are experimental
data and curves are theoretic calculation based on the free sphere model. Mechanical
vibrations are observed proportional to the inverse of a diameter. Solid lines present
(n, l) = (1,2), (1,0) and (1,4), and dashed lines present (1,1) and (1,3) mode, from
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In order to verify the homodyne scheme in free-space excitation, we have

measured the spectral response of the optical transmission in free-space excitation

as shown in Fig. 4.12. For ensuring the complete spatial overlapping between the

cavity emission and the local oscillator, a collection lens is placed right after the

deformed microsphere to enforce both beams to the same path. An independent test

with a single mode optical fiber shows no significant difference in terms of spatial

overlapping. Thus, the relative phase between the signal and the local oscillator

is totally determined in the microsphere resonator. The DC response is measured

with a lock-in detection and the AC response is measured with an electric spectrum

analyzer. Figure 4.12(b) shows a cavity linewidth of fl,/2Jr = 54 MHz from a Lorentz

fit, and a mechanical frequency is wm /2Jr = 148 MHz in a (1,0) mode. In Fig. 4.12(a),
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Figure 4.12: Homodyne detection of mechanical displacement in the free-space
excitation scheme. (a) The AC part and (b) the DC part of the optical transmission
are plotted as a function of laser detuning. Dots are experimental data and a theoretic
curve based on the experimental parameters is added for comparison in (a). A curve
in (b) is a Lorentz fit of the cavity spectrum. Measured optical spectra are shown
for three different laser detunings: (c) 6w = -Wm , (d) 6w = 0 and (e) 6w = W m .

Mechanical frequency is 148 MHz of a (1,0) vibration mode and the cavity linewidth
is 54 :VIHz.



75

the amplitude of the measured optical power spectrum, the AC part, is plotted as a

function of laser detuning. The input power was weak so that optomechanical cooling

or heating is negligible in this measurement. The observed laser detuning dependence

of spectral amplitudes agree very well with theoretic calculation, confirming the

homodyne detection scheme in the free-space excitation configuration. Figure 4.12

(c) rv ( d) show representative optical power spectra measured at .6.w = -Wm , 0 and

+Wm , respectively. Note that, at zero laser detuning, there is no AC response due to

balanced Stokes and anti-Stokes emission. With increasing input power, we have also

observed the enhancement in peak amplitude for blue detuning and the suppression

for red detuning. This asymmetric response in the AC part indicates the cooling or

the heating of the mechanical vibration, depending on laser detuning.

4.2.4 Calibration of Mechanical Vibrations

Interferometric homodyne detection provides a highly sensitive method for the

observation of the mechanical displacement spectrum that is embedded in the optical

transmission. However, the optical power spectrum may include spectral noises

from the experimental environment, such as a laser noise, other than the mechanical

vibrations of a microsphere resonator. Thus, proper calibration procedures should be

followed by the detection in order to completely recover the mechanical displacement

spectrum.

The possible vibration sources other than mechanical vibrations of a silica

microsphere in the optomechanical experiment are the mechanical vibrations of an

optical table and a ring laser system pumped by a solid-state laser. The former is

easily ruled out because of its very slow motion at a rate of few rv Hz. The mechanical

vibrations of laser mirrors mounted in the ring laser are known to range up to a few
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MHz. Therefore, we can assume that there is no spectral source in the frequency

ranges interested other than the mechanical vibrations of a microsphere.

In measured optical power spectrum, the linewidth and the resonance frequency

directly give the damping rate and vibration frequency of the mechanical motion,

but the amplitude that results from the transduction process in direct homodyne

detection should be properly calibrated to obtain an accurate mechanical vibration

amplitude. Even though it is in principle possible to calibrate the peak amplitude of

the measured power spectrum by considering the excitation, detection efficiency and

all the electrical conversions, it would involve many uncertainties arising from the

optical and electrical measurement. One way to calibrate the spectrum amplitude is

to use the effective mass obtained from finite element analysis via the equipartition

theorem. But, the validity of simulated values should be examined experimentally.

A robust way to calibrate the measured spectrum is to introduce a phase

modulation in the excitation laser beam with an electro-optic modulator (EOM).

This phase modulation mimics the phase shift induced by the mechanical vibration.

With phase modulation, the incident optical field is described by,

E . -------t g ei (3 sin Oph t
~n 2n (4.18)

where (3 and o'ph/27f are the depth and the frequency of phase modulation, respectively.

The modulation frequency is chosen to be close to the mechanical vibration frequency

being observed. The modulation depth (3 is determined from a separate measurement

of the relative intensity distribution of modulated laser taken by an optical spectrum

analyzer. With the phase-modulated input laser, following the same steps as direct

homodyne detection in free-space excitation scheme discussed in the previous section,
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the transmission output after the microsphere resonator becomes,

I(tl; t)

(4.19)

(4.20)

up to the first order in (3. We separate the output power into the DC response and

the AC response oscillating at Dph /27r. The DC part is,

(4.21)

This equation, which is independent of Dph , is exactly same as Eq.(4.15). On the

other hand, the AC part is,

(4.22)

We can easily check that Pout,AC goes to zero at zero detuning tlw = 0 where Re{I} =

tlwIm{ I}=O. In Fig. 4.13, we plot the AC response at modulation frequency D/27r

as a function of laser detuning for different ratios of wm / /1,. Overall behavior of the

AC response due to the phase-modulated laser is nearly close to the AC response

due to mechanical vibrations of a microsphere. For a large wm / /1" a laser detuning

tlw = ±Dph leads to the resonantly enhanced amplitude of AC response. In the

resolved-sideband limit and with tlw = ±Dph , Eq.(4.22) becomes,

(4.23)
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By comparing Eq.(4.23) to Eq.(4.16), we find that, in the resolved-sideband limit, a

mechanical vibration with amplitude 1'0 leads to the same signal as a phase modulation

with amplitude,

(4.24)

where we have also assumed Wm ::::::: nph and D.w = ±wm . The calibration is independent

of the cavity decay rate, the mode matching efficiency, and the free-space excitation

efficiency. This fact makes the calibration with the phase-modulated input robust as

well as convenient. Note that this result is the same as the homodyne detection with

D.w = 0 in the Hansch-Couillaud configuration.

Fig. 4.14 shows the noise power spectrum obtained with a phase-modulated

excitation laser beam. A resonance due to the phase modulation at nph /27f =

100.9 MHz appears along with the resonance associated with the (1,2) mechanical

mode, wm /27f = 100.98 MHz. Comparing these two peak amplitudes, we find the

vibration amplitude 1'0 = 1.6 X 10-14 m for the observed (1,2) mechanical mode at

room temperature. The y-axis scale in Fig. 4.14 is accordingly calibrated. Using the

equipartition theorem, we also determine that the effective mass of the mechanical

mode is approximately 41 ng and the corresponding effective mass coefficient is 1.16,

which is within 5 % of the theoretical value calculated with finite element analysis.

4.3 Observations of Optomechanical Coupling

4.3.1 Optomechanical Effects on Mechanical Linewidths and Frequencies

As the input power increases, the mechanical vibrations no longer remain the

same due to dynamical backaction of the radiation pressure force. The effects of the

optical spring and the optomechanical damping are reflected in the eff-ective frequency
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and the effective linewidth. Figure 4.15(a) and (b) show the measured power spectra

of a (1,2) mechanical breathing mode obtained for different laser detunings, ~w,

with red detuning in Fig. 4.15(a) and with blue detuning in Fig. 4.15(b). An optical

pumping power of 0.85~h is used where Pth is the threshold power for parametric

oscillation. For the microsphere used in this measurement, the intrinsic mechanical

frequency and linewidth are 87.2 MHz and 7.5 kHz, respectively, and the optical cavity

linewidth is 80 MHz. For red detuning, the measured linewidths of power spectra are

greater than the intrinsic linewidth, indicating cooling of the vibration motion. In

contrast, for blue detuning, the measured linewidths are smaller than the intrinsic

linewidth, indicating heating of the mechanical motion. The effective frequency
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also changes with laser detuning, which is the signature of the optical spring effect.

The amplitudes of the measured spectra are closely related with the measurement

sensitivity in the free-space excitation scheme. The observed dynamic response of the

effective linewidth and frequency with laser detuning is the manifestation of dynamical

backaction optomechanical coupling.

In Fig. 4.15(c) and (d), the effective linewidths '"Yeff and the effective frequencies

weff that are obtained from Lorentzian fits to measured spectra are plotted as a

function of laser detuning. The cooling and heating of mechanical motion with varying

laser detuning are obviously observed from the measured mechanicallinewidths. The

maximum cooling and heating occur at b.w = -Wm and at b.w = +Wm, respectively.

we!! shows a delicate response with laser detuning, crossing the intrinsic frequency at

b.w = 0, ±wm. For large detuning on both sides, '"Yeff and weff converge to each

intrinsic value. The unique behavior of '"Yeff and weff agree very well with the

theoretical calculation, confirming these effects are caused purely by the radiation

pressure force.

We have also measured the input power dependence of the effective linewidth

with laser detuning b.w = ±wm in Fig. 4.16. While the effective linewidth increases

linearly with increasing input power at b.w = -Wm, it decreases linearly with b.w =

+Wm , approaching '"Ye!! = 0 at the input power for the parametric oscillation. For

weak excitation power, the linewidths measured on both sides converge to the intrinsic

linewidth of 11 kHz.

4.3.2 Radiation Pressure Induced Parametric Oscillation

With a laser detuned on the blue side of a WGM resonance, the mechanical

damping rate decreases due to the optomechanically induced negative damping. With
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increasing input power, the net damping rate can be zero, resulting in the parametric

oscillation of the mechanical vibration. Figure 4.17(a) shows the observed power

spectrum below and above the threshold power. For this measurement, the mechanical

frequency and cavity linewidth are W m /2K = 113 MHz for the (1,2) mechanical mode

and K/2K = 25 I\!IHz, respectivley, and the laser is detuned to 6w = W m . Above the

threshold power, the enhancement of mechanical vibration shows a signal to noise

ratio of more than 40 dB along with a spectral linewidth < 1 kHz. This leads to

the strong periodic oscillation in the optical transmission from the WGM with an

oscillation period of (Wm /2Kt 1 9 ns, as shown in Fig. 4.17(b). Note that by

setting the appropriate amount of laser detuning, parametric oscillations of either the

(1,0) or (1,2) mode can be selectively realized in a single microsphere.
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"From theoretical calculations, the threshold power for the parametric oscillation

in the resolved-sideband limit has a dependence in the form,

(4.25)

This implies that Pth can be further lowered by improving mechanical quality factor

with a smaller sized microsphere as well as by increasing WGM excitation efficiency.

The result shown in Fig. 4.17 demonstrates that radiation pressure induced mechanical

oscillations can be realized with free-space evanescent excitation. The simplicity,

the robustness and the relatively high coupling efficiency of the free-space coupling

approach should enable explorations and applications of radiation pressure induced

optomechanical effects under a variety of environments, for example, for carrying out

optomechanical studies in a cryogenic environment for the cooling of a macroscopic

mechanical oscillator toward its quantum ground state.

4.4 Mechanical Quality Factors

The mechanical quality factor, Qm, is defined as,

27f total mechanical energy
dissipated energy for one cycle

Wm

"1m

(4.26)

(4.27)

where W m and "1m are the angular mechanical frequency and intrinsic damping rate

that can be measured from the mechanical displacement spectrum. The mechanical

quality factor describes how well a mechanical system is isolated from its environment.

Qm-factors or the damping rates depend on the intrinsic material properties as well

as on the external factors. The mechanical loss of a silica microsphere-stem system
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can be decomposed as,

'"'1m = '"'IG + '"'Ie + '"'ITED + '"'IvA (4.28)

where '"'IG, '"'Ie, '"'ITED and '"'IVA represent collision loss, clamping loss, thermoelastic

loss and ultrasonic attenuation, respectively [73-77]. The mechanical quality factors

of deformed microspheres are routinely obtained rv 10, 000 or higher for the (1,2)

radial breathing mode at room temperature, limited mainly by the clamping loss.

Figure 4.18 shows the measured mechanical displacement spectrum, which features

Qm = 18, 000 for a (1,2) mode in vacuum.

Collision loss [73] is due to random impact by the surrounding gases and

usually decreases with decreasing pressure or bath temperature. We normally observe

that the spectral linewidth of a mechanical mode of a silica microsphere, which is

surrounded by helium gas, is reduced by approximately 2 kHz when the gas pressure

decreases below one mTorr from one atmosphere. This difference indicates a collision

loss limited mechanical quality factor Qm rv 50, 000. The collision loss contribution

to the total damping rate will be further decreased at cryogenic temperature due to

the reduced kinetic energy of surrounding gases.

Clamping loss is unavoidable, but can be reduced by carefully designing the

resonator-support structure. For example, a LIGO mirror is normally supported at

a position of vibration node with a lossless fiber string [73]. In a microsphere-stem

system, it is technically difficult to adjust the relative position, but the stem size and

length can be controlled to minimize the clamping loss. In fabrication, the diameter

of the fiber stem is usually kept rv 1/10 of the microsphere diameter. We believe

that the clamping loss in the microsphere-stem system is a dominant factor because

the motion of the radial breathing modes is longitudinal with respect to the stem

direction in the proximity of the microsphere pole. In order to investigate the effects
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of the fiber stem, the mechanical quality factors are measured with different stem

parameters as shown in Fig. 4.19. In this measurement, the microsphere deformation

is kept E rv 2 %. We find that mechanical quality factors increase with smaller

diameter and longer length of the fiber stem. Although the stem diameter and the

length separately affect the mechanical quality factor, Fig. 4.19(c) and (d) suggest

that these two parameters should be considered together for the better description of

the stem effect.

Thermoelastic loss [74] originates from the irreversible heat flow, which is

known as a dominant loss mechanism for silicon nanomechanical oscillators. When

an object vibrates, while some parts collapse, some parts also expand, resulting in

a temperature gradient over the object. Due to the nonuniformity of temperature
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distribution, a net heat flow occurs across the object, causing mechanical energy

dissipation. However, for fused silica possessing a poor thermal conductivity, the

thermoelastic loss is negligible because the thermal response time is three orders of

magnitude smaller than the mechanical vibration period. The mechanical quality

factor limited by thermoelastic loss is estimated to be as high as Qm rv 109 with finite

element analysis.

We observe that mechanical quality factors of deformed microspheres also

depend on the deformation. Figure 4.20 shows that the mechanical quality factor

of the (1,2) radial breathing mode increases rapidly with decreasing deformation.

In order to have high Qm, the deformation needs to be kept below 2 %. However,

relatively low Qm with small deformation, as marked with red circles in Fig. 4.20,
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implies that there is another competing factor, which can one prevent from achieving

high mechanical quality factors. The possible explanation of deformation dependence

is the increase in vibration amplitude with increasing deformation. Due to the

oval-like vibration shape of the (1,2) mode, a higher vibration amplitude in the

equatorial plane accompanies higher amplitude at the microsphere poles, to which

the fiber stem is attached. Therefore, the vibration motion with higher deformation

causes more stress on the joint between the fiber stem and the microsphere, resulting

in more mechanical loss. Systematic control of size and deformation in the deformed

microsphere system will provide a better explanation of the deformation induced

clamping loss.
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4-4-1 Ultrasonic Attenuation in Fused Silica

Ultrasonic attenuation [75] arises from the acoustic damping in an amorphous

solid such as silica glass. This effect is negligible at room temperature, but becomes

very important below room temperature, playing a crucial role in optomechanical

cooling at low temperature. Fig. 4.21(a) shows the temperature dependence of the

intrinsic mechanical linewidth rym/27r for the (1,2) mode from room temperature

to 1.4 K. Starting with rym/27r near 10 kHz (corresponding to Qm rv 11,500)

at room temperature, rym/27r increases with decreasing temperature, peaks near a

bath temperature of 50 K and then decreases with decreasing temperature with

a plateau at temperatures between 10 and 4 K. At nath = 1.4 K, the intrinsic

linewidth is approximately 35 kHz and correspondingly Qm recovers to 3,700. If

we can assume the ultrasonic attenuation is negligible at room temperature, the

contribution of the residual acoustic damping at 1.4 K is approximately 25 kHz, which

corresponds Qm ~ 4,500, the upper bound limit set by the ultrasonic attenuation.

Ultrasonic attenuation depends strongly on the vibration frequency. For the higher

the mechanical frequency, the damping rate is larger and the drop-off below 10 K

occurs relatively higher temperature.

In an amorphous solid where the molecular structure is irregular rather than

periodic, ultrasonic attenuations can occur through thermally activated relaxation

processes for Tbath > 10 K. Below 5 K, interactions of phonons with two-level

tunneling defects become important. These behaviors are theoretically explained

in the frame of a double-well potential model [78, 79]. In this model, an oxygen

atom in a Si-O-Si bond thermally scatters between adjunct potentials, whose barrier

and depths are a function of the temperature as illustrated in Fig. 4.21(b). The

temperature dependence shown in Fig. 4.21(a) is in good agreement with extensive



91

•

10 100
Temperature (K)

---N
I 200~
"-

.c
+-'
"'0 150.~

Q)
c-
co 100
(j

c
co

50.c
(j eQ)

~

0
1

(a)

~A
~.

• - -0- -A..................'.......

Si o Si -C~·. =,.
I:"

JP
....;;.:.-~

•• • •.. ~ '-.. '."""

(b)

Figure 4.21: (a) Measured mechanicallinewidth of a (1,2) vibration mode are plotted
as a function of bath temperature. The increase in the intrinsic damping rate below
room temperature is attributed to the ultrasonic attenuation in amorphous solids.
(b) Illustration of possible Si-O-Si bond configurations. An oxygen atom is placed in
a double-well potential in fused silica.
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earlier studies, indicating that Qm should recover to the room-temperature value

when the temperature is lowered to a few hundred mK.
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CHAPTER V

OPTICAL BISTABILITY OF WGMS AT LOW TEMPERATURE

When the temperature of a silica microsphere changes, a WGM resonance

shift is induced by the thermal expansion of the resonator and the thermo-optic

effet, Le. temperature-dependent refractive index. This thermal nonlinearity causes

a red-shift of the WGM resonance at room temperature. The optical Kerr effect, the

intensity-dependent refractive index, also induces the red-shift, but its magnitude is

negligible compared with thermal effect at room temperature.

However, the fact that the thermal expansion coefficient becomes negative

below 200 K can lead to the cancelation between thermo-optic effect and the effect

of negative thermal expansion [80, 81J. This results in a diminishing optical thermal

nonlinearity near 20 K and induces a blue-shift of the WGM resonance with decreasing

temperature below 20 K. Interestingly, the much reduced thermal nonlinearity can

become comparable in magnitude but opposite in sign with the Kerr nonlinearity.

The competition between these two nonlinearities, which are characterized by very

different timescales, leads to distinct regenerative pulsation in the transmission of the

WGMs excited by a continuous wave laser at low temperature [82J. The characteristic

frequency of regenerative pulsation ranges up to only a few MHz, which is far below

ultrasonic mechanical vibration of a microsphere.
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In this chapter, we will discuss thermal bistability of WGMs both at room

and low temperature. We will also present the experimental observation and the

theoretical description of the regenerative pulsation at low temperature.

5.1 Thermal Bistability of WGMs in a Silica Microsphere

When a WGM is excited in a microsphere, a part of circulating power is

absorbed and thus the microsphere temperature is increased. The thermal absorption

not only causes the direct change in the cavity path length due to the thermal

expansion, but also changes the thermo-optic effect, the temperature dependence

of the refractive index [83]. The thermal effects together with the optical Kerr effect

can lead to the shift of the WGM resonance. These optical and thermal effects can be

described in a single expression by introducing the effective refractive index, which

can be defined as,

(5.1)

where no is the refractive index of silica, a = ~ ~; is the thermal expansion

coefficient, :; is the thermo-optic coefficient [84] and n2 is an optical Kerr constant.

!:1T and I are the temperature change and optical field intensity, respectively. For

fused silica with no = 1.45, a thermal expansion coefficient a = 0.55 x 1O-6 /K and

thermo-optic coefficient ~; = 8.7 X 10-6 . This yields the thermally induced WGM

resonance shift -2.5 GHz/K at room temperature with A = 800 nm. At room

temperature, the thermo-optic effect is about one order higher than the effect from

thermal expansion and the optical Kerr effect is negligible compared to thermal effects.

In Fig. 5.1, a measured WGM spectrum shows a resonance shift as an excitation laser
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Figure 5.1: Thermal bistability of a WGM resonance at room temperature. The
absorbed heat pushes the WGM resonance away when excitation laser is scanned
from high to low frequency, resulting an asymmetric spectrum. When scanned from
low to high frequency, a WGM resonance is pulled toward laser frequency, resulting
in a sudden increase of the intensity in the WGM. The input power of 120 J-lW in
free-space coupling is used, and cavity linewidth with weak excitation is 30 MHz at
A = 800 nm.

with relatively a high power is scanned over the WGM resonance. The asymmetric

WGM is attributed to the absorption of intracavity power. Scanning the laser from

high to low frequency, the absorbed heat pushes the WGM resonance away from

excitation laser frequency until it passes the dragged resonance, leaving a sudden

quenching of a WGM (Top curve in Fig. 5.1). On the other hand, with scanning the

laser from low to high frequency, the absorbed heat pulls the WGM resonance toward

the laser frequency, leading to a sudden increase of the intensity (Bottom curve in

Fig. 5.1).

WGMs in a microsphere are measured at low temperature through free-space

coupling. To overcome the poor thermal conductivity of the fused silica, a cryogenic

system with static exchange helium gas in direct contact with the microsphere in the

sample chamber is used. Figure 5.2 shows the temperature dependence of the WGM
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Figure 5.2: Solid squares show the relative frequency of a WGM resonance A t'V 632 nm
as a function of temperature. The solid line is a guide to the eyes. Zero crossing of
the slope of the temperature dependence occurs near 20 K. Below 20 K, thermal
nonlinearity induces a blue-shift of the WGM resonance oppose to a red-shift at
room temperature.

resonance in a temperature range between 5 and 25 K. As shown in Fig. 5.2, the

slope of the temperature dependence features a zero crossing near 20 K. Below 20 K,

the slope becomes positive and is approximately +0.1 GHz/K at 10 K. In contrast to

the red-shift of the WGM resonance due to thermal nonlinearity, the positive slope

means that the thermal nonlinearity leads to a blue-shift of the WGM resonance. Note

that the positive slope at low temperature will also avoid the optical bistability that

hinders or complicates room temperature experiments on radiation pressure cooling

of mechanical vibrations.

As shown in an earlier study, :; decreases monotonically but remains positive

as the temperature decreases from room temperature to 4 K. However, below 200 K,

the thermal expansion coefficient becomes negative. In this case, the red-shift induced

by the thermal optical effect can be compensated by the blue-shift induced by the

thermal optical expansion. Figure 5.2 indicates that exact cancelation occurs near
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20 K. Below 20 K, thermal expansion becomes the leading contribution to temperature

dependent frequency shift of the WGM resonance.

5.2 Regenerative Pulsation

Fig. 5.3 shows the WGM transmission as a function of time at 18.5 K. An

input laser power of 2 mW and 4.5 mW is used for Fig. 5.3(a) and (b), respectively.

For these studies, frequency-stabilized tunable dye laser (Coherent 899-21) with A "-'

632 nm was used. In the weak excitation limit, the spectral linewidth of the WGM

resonance is given by K,/27f = 30 MHz, and the fractional dip in the optical transmission

through the free-space evanescent excitation is estimated to be 17 %. The pulsation

occurs when the continuous-wave single-frequency excitation laser beam is tuned to

below the WGM resonance. The top curves in Fig. 5.3 (a) and (b) were obtained

with a greater red detuning (~w = -0.7K,) than the bottom curves (~w = -0.3K,),

where ~w is the detuning between laser beam and the WGM resonance in the weak

excitation limit.

The temporal behavior of the WGM transmission shown in Fig. 5.3 features

highly distinctive regenerative pulsation. The top part of the pulse is inclined. The

turn-on and turn-off of the pulse occur in a timescale much faster than the pulsation

period. The pulsation period and the duration of the pulse increase with input laser

power and decrease with the weak-field detuning between the excitation laser beam

and the WGM resonance. The onset of regenerative pulsation takes place at an

input excitation laser power of the order of 1 mW. The regenerative pulsation

can be observed at temperature between 18 K and 20 K. Note that the stable

cavity emissions were obtained when the input power was below the threshold for

regenerative pulsation.
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Figure 5.3: Optical transmission as a function of time at T = 18.5 K when a WGM is
excited by a continuous-wave laser beam. Square dots, experimental data; solid lines,
theoretical calculation. The excitation power used is 2 mW for (a) and 4.5 mW for
(b). For both (a) and (b), the top and bottom curves were obtained with ~w = -0.7/'\:
and ~w = -0.3/'\:, respectively. For the theoretical calculation, the thermal relaxation
rate is used as an adjustable parameter with "'iT = 7.72 kHz, "'iT = 7.36 kHz, "'iT =
6.62 kHz, and "'iT = 6.78 kHz from the top to bottom curves, respectively.
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Distinctive regenerative pulsation similar to those shown in Fig. 5.3 had been

observed in earlier studies of optical bistability [85], in which there were two competing

nonlinear optical mechanisms with comparable magnitude, opposite sign, but with

very different timescales. We attribute the regenerative pulsation in silica microspheres

to the competition between the Kerr nonlinearity [86] and the much reduced thermal

nonlinearity near 20 K. Due to the optical absorption of silica, excitation of WGMs

in a microsphere raises the temperature within the effective mode volume, leading to

thermal nonlinearity. The heat generated can be dissipated through the rest of the

microsphere and through the surrounding environment with a timescale ranging from

a few f.J,S to a few ms [87]. In contrast, the refractive index change induced by the

optical Kerr effect follows instantaneously the optical intensity in the cavity mode.

At room temperature, the Kerr nonlinearity is two orders of magnitude weaker than

the thermal nonlinearity. However, at low temperature, the two nonlinearities can

become comparable in magnitude due to the diminishing of the thermal nonlinearity,

as we have discussed above.

The regenerative pulsation consists of four dynamic stages. Here we assume

that the input laser power is above the threshold for the onset of the regenerative

pulsation. As illustrated in Fig. 5.4, when the cavity resonance in slightly above the

laser frequency, a redshift induced by the Kerr nonlinearity pulls the cavity resonance

toward the laser frequency. The corresponding increase in the intracavity power,

Pcav(t), leads to an instability, resulting in a rapid rise of Pcav(t) and a large redshift

of the cavity resonance. At the end of this first stage, the cavity resonance is below

the laser frequency. In the second stage, the effect of thermal nonlinearity becomes

important. A blueshift induced by the thermal effect slowly pulls the cavity resonance

back toward the laser frequency, leading to a further gradual rise of Pcav(t). The

thermal effect eventually shifts the cavity resonance to above the laser frequency. In
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Figure 5.4: Schematic illustrates the shift of the cavity resonance with respect to the
laser frequency through the four dynamic stages of regenerated pulsation. On the left
side, the peak in red denotes laser detuning and the cavity resonance is described by
the black curve.

the third stage, the decrease in Pcaou(t) and the corresponding reduction in Kerr effects

leads to another instability, in which Pcav (t) drops rapidly and the cavity resonance

shifts further above the laser frequency. In the fourth stage, the resonator cools down

and the cavity resonance experience a gradual redshift toward laser freqeuncy. The

whole process repeats itself, resulting in the regenerative pulsation.

For a detailed theoretical analysis of the experimental results, we assume that

to the first order of Pcav(t) and the induced temperature change within the cavity

mode volume, 6.T(t), the cavity resonance frequency, wc(t), can be written as,

We(t) = We [1 - (et + ~ dn) 6.T(t) _ n2 Pcav(t)]
nodT no S

(5.2)
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where S is the effective cross-sectional area of the relevant WGM. The dynamic

equations governing the induced temperature change and the intracavity field are,

dt:..T(t)
dt

dEcav(t)
dt

-,Tt:..T(t) + ~ab~Pcav(t)
pP

(
/1, ()) () itrEin- 2" + it:..w t Ecav t + T.

rt

(5.3)

(5.4)

where IT is the effective thermal relaxation rate, p is the mass density of silica, Ctabs

and Cp are the absorption coefficient and the heat capacity of silica, respectively.

r is a mode-matching coefficient, it is a transmission coefficient to the microsphere

deformation, Trt is the cavity round time, Ein is the input field, and t:..w(t) = WL -

wc(t), with WL being the frequency of the external field.

We compare directly in Fig. 5.3 the experimental result and the calculated

WGM transmission as a function of time, where we have used no = 1.45, n2 =

2.5 X 10-16 cm2/W, p = 2.2 g/cm3 , Cp = 30 J/kg. K [88], Ct = -0.6 x 1O-6/K,

/1, = 27f' 30 MHz, r = 0.15, Ctabs = 0.00018 /m at A = 630 nm, and dn/dT = 0.811 x

1O-6 /K. We have taken IT as an adjustable parameter in the calculation. Figure 5.3

shows a good agreement between theory and experiment, including the dependence of

the pulsation on the input power and on the detuning between the cavity resonance

and the input laser field. The range of the effective thermal relaxation rates used

is also in general agreement with earlier studies. Note that the pulsation frequency

decreases with increasing input power, since it takes a longer time for the thermally

induced blueshift to compensate the larger redshift induced by the Kerr effect.

While the diminishing of the thermal nonlinearity at low temperature in a silica

microresonator is expected to be beneficial for important applications such as cavity

QED and radiation pressure cooling, these experimental studies have shown that the

competition between Kerr effects and the much reduced thermal effects can lead to
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the unusual nonlinear optical behavior of regenerative pulsation. For applications of

silica microresonators at low temperature, it is important to take into account the

regenerative nonlinear optical process.
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CHAPTER VI

RESOLVED-SIDEBAND COOLING OF A SILICA MICROSPHERE

Dynamical backaction of a radiation pressure force can lead to the cooling

of a microresonator's mechanical vibrations when a laser is detuned to the red side

of the cavity resonance. With increasing intracavity intensity, the cooling by the

radiation pressure lowers the effective temperature of a mechanical vibration. At the

same time the random fluctuation of the radiation pressure force, i.e. the quantum

backaction, also increases, leading to the heating of the motion. Thus, the final

phonon occupation will be eventually limited by the quantum nature of the cooling

light. The ground-state cooling is in principle achievable in the resolved-sideband

limit, where the cavity photon lifetime in a microresonator is comparable to, or

longer than, the mechanical vibration period. In this regime, with a laser detuning

fj"w = -Wm , the anti-Stokes (cooling process) falling on the cavity resonance is

resonantly enhanced, while the Stokes (heating process) falling further away from

the cavity resonance is strongly suppressed. The final average phonon occupation is

given by N Q = /i;2/4w~ « 1 in the resolved-sideband limit, which is independent of

the circulating power.

Although theoretical work predicts that ground-state cooling by the radiation

pressure is possible, the phonon occupation achieved thus far still remains more than

1, 000 in optomechanical systems, because the thermal dissipation induced by bath
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temperature overwhelms the radiation pressure cooling power. Thermal dissipation

due to the environment can be considerably reduced by lowering the bath temperature

with the use of a cryogenic system. Thus, resolved-sideband cooling together with

cryogenic precooling will further reduce the phonon occupation toward the quantum

ground state. Technical difficulties involved in implementation and control of a

microresonator at low temperature should be overcome in order to realize a cryogenic

optomechanical system.

In this chapter, we will discuss experimental studies of the resolved-sideband

cooling of a silica microsphere resonator carried out both at room temperature and

in a cryogenic environment through the free-space excitation of WGMs. We will also

discuss the ultrasonic attenuation of fused silica that limits the obtainable phonon

occupation at low temperature.

6.1 Resolved-Sideband Cooling at Room Temperature

We have carried out radiation pressure cooling of a silica microsphere at room

temperature in the free-space excitation scheme. The resolved-sideband condition is

realized in a deformed microsphere optomechanical system by improving the cavity

linewidth to < 30 MHz with a small deformation f < 2 %. The fractional dip

in optical transmission is normally measured to be about 5 rv 10 %. For the

cooling experiment, the excitation laser is dutuned on the redside with 6.w = -Wm

throughout all experiments. At this detuning, both the optomechanically induced

cooling rate and the measurement sensitivity are maximized in the resolved-sideband

limit. Figure 6.1(a) shows the measured displacement spectra of a (1,2) mechanical

mode for two different input powers. With a weak excitation of Pin = 0.1 mW,

the spectrum, the top curve in Fig. 6.1(a) shows the intrinsic linewidth '"'1m = 27f .
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11 kHz and corresponding mechanical quality factor Qm = 11,200. The measured

cavity linewidth and the mechanical vibration frequency are 38 MHz and 115 MHz,

respectively, which put this optomechanical microresonator into the resolved-sideband

condition with wm / K, = 3.0. In this condition, the shot noise limited average phonon

occupation is NQ c:::'. 0.07, which is well below one. With an input power of Pin =

50 mW, the effective linewidth is measured '"'Ieff = '"'1m + '"'Ie = 2n . 270 kHz as shown

in the lower curve in Fig. 6.1(a). The linewidth broadening along with the area

reduction in the noise spectrum is clearly observed, which is the manifestation of the

cooling of the mechanical motion. In this measurement, resolved-sideband cooling

leads to the effective temperature of Tef f = 11 K and the corresponding average

phonon occupation of Nf c:::'. 2,000, approximately 27 times reduction in the thermal

energy of the mechanical vibration mode being cooled. The spectra in Fig. 6.1 are

calibrated based on the effective mass simulated with finite element method. The

spectrum obtained with a higher input power in Fig. 6.1 shows that the measurement

sensitivity below 5 x 10-18 m/JHZ is achieved.

The effective linewidth is plotted as a function of input excitation power

in Fig. 6.1 (b) and shows the linear dependence on the input power, as expected

from theoretic calculation. Assuming that there is no other heating effects, the

corresponding effective temperature determined via the equipartition theorem is also

displayed together with effective linewidth. Optomechanically induced cooling ratio

can be further increased by improving the quality of the optomechanical system,

such as the WGM excitation efficiency and the mechanical quality factor. However,

the final phonon occupation achieved at room temperature is mainly limited by the

thermal dissipation to the environment. This suggests the necessity of carrying out the

cooling experiment at lower bath temperature, combined with a cryogenic precooling.
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Figure 6.1: Resolved-sideband cooling at room temperature. (a) Measured
displacement spectra for two different input powers: Pin = 0.1 mW in black
and Pin = 50 mW in green. (b) Measured effective mechanical linewidth and
the corresponding effective temperature are plotted as a function of input power.
The intrinsic mechanical linewidth '"'1m = 211"' 11 kHz and the cavity linewidth
K, = 211" . 38 MHz are measured. The final effective temperature Teff = 11 K is
achieved via the resolved-sideband cooling at room temperature.

6.2 Cryogenic Precooling

For the low temperature experiments, we have been able to combine the

optomechanical cooling with the cryogenic cooling through the free-space excitation

technique. We have used liquid helium optical cryostats where a microsphere is placed

in direct contact with either static exchange helium gas or vapors from a pumped

helium reservoir in order to compensate the bad thermal conductivity of silica glass.

The relative position change in focused beam between room temperature and low

temperature is easily adjusted by precise control of objective lens that is outside

cryostat. A 7 mm diameter objective lens with a 5 mm focal length is placed after

microsphere to collect the optical transmission. Other experimental setups remain

the same as in the room temperature measurement.
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Fig. 6.2 shows the temperature dependence of both the vibration frequency

wm /27f and the mechanical quality factor for the (1,2) mode from room temperature

to 1.4 K. Figure 6.2(a) shows a weak temperature dependence < 1 % of mechanical

frequency Wm = 27f . 115.6 MHz of a (1,2) vibration mode. The sign reversal in the

slope of the temperature dependence reflects a sign change of the thermal expansion

coefficient for fused silica near 100 K. The mechanical quality factor strongly depends

on the bath temperature. Starting with a mechanical quality factor of Qm f"V 11,500 at

room temperature, Qm decreases with decreasing temperature, reaches minimum near

a bath temperature of nath = 50 K, and then increases with decreasing temperature.

Qm recovers to 3,700, nath = 1.4 K. As explained in Chapter IV, the degradation

of Qm observed below room temperature is attributed to the ultrasonic attenuation

in amorphous solid, such as fused silica. The temperature dependence indicates that

Qm should recover to the room-temperature value when the temperature is lowered

to a few hundred mK.

In order to make sure that the complete thermalization of a microsphere

resonator with the bath temperature, we have measured the displacement spectrum

of a mechanical vibration while lowering the bath temperature. The spectrally

integrated area of a mechanical resonance in the displacement power spectrum is
I

proportional to the temperature of the mechanical mode. In the limit that temperature

dependent variations in the mechanical frequency and the effective mass are negligible,

relative changes in the spectrally integrated area provide a direct measure of relative

changes in the effective temperature of the mechanical mode. Figure 6.3(b) shows the

spectrally integrated area for the (1,2) mode as a function of Tbath after subtraction of

the shot-noise-limited background. The area is normalized to that obtained at nath =

150 K. The solid line is the calculated area assuming that the mechanical oscillator

is fully in thermal equilibrium with the bath. The integrated area exhibits a linear
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Figure 6.2: (a) Measured mechanical frequency and (b) mechanical quality factor of a
(1, 2) vibration mode are plotted as a function of bath temperature. Frequency shift is
due to the change in thermal expansion coefficient of fused silica, and the bouncing-off
near 100 K results from the sign change of thermal expansion of fused silica. The
decrease in the mechanical quality factor below room temperature is attributed to
the ultrasonic attenuation in amorphous solids.

dependence on Tbath , in spite of the strong temperature dependence of Qm (or im/27f)

shown in Fig. 6.2(b), confirming that in the absence of dynamical backaction, the

mechanical oscillator is in thermal equilibrium with the bath. During the measurement,

no noticeable change in the optical Q-factor and the transmission is observed.

6.3 Resolved-Sideband Cooling at Cryogenic Temperature

We have carried out resolved-sideband cooling on the (1,2) mode at Tbath =

3.6 K [44]. A deformed microsphere with wm / /), = 5.4, wm /27f = 123.4 MHz,

im/27f = 12.5 kHz and D = 25.5 jJm was prepared at room temperature and

cryogenically precooled to 3.6 K, at which point im/27f = 80 kHz. The mechanical

quality factor changes from Qm """ 10, 000 at room temperature to Qm = 1,540 at

3.6 K. Figure 6.4(a) shows the displacement power spectrum obtained at various
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Figure 6.3: (a) Displacement spectrum obtained at nath = 20 K. The spectral area
after subtracting shot noise is proportional to the vibration amplitude, which is a
measure of vibration mode temperature. (b) Spectrally integrated area is plotted
as a function of bath temperature. The linearity ensures that the vibration mode
temperature is completely in equilibrium with bath temperature.

incident laser powers with an input laser detuned at ~w = -Wm . The spectrally

integrated area of the mechanical resonance decreases with increasing laser power,

accompanied by an increase in the effective damping rate of the mechanical mode.

This behavior of the displacement spectrum is the signature of the radiation pressure

cooling of the mechanical vibration. Note that although the incident laser power in

these experiments can approach 100 mW, the laser power coupled into the WGM is

well below 50 f-l Wowing to the large laser detuning and the small free-space coupling

efficiency, which is about a few per cent.

In order to characterize the resolved-sideband cooling process, we plot in

Fig. 6.4(b) and (c), the ratio 'Yeff/'Ym = bm + rc)/'Ym and the mechanical frequency

shift, ~wm/21f, induced by the optomechanical coupling as a function of the laser

detuning, ~w. Near ~w = -Wm , the mechanicallinewidth is maximized while the
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Figure 6.4: Resolved-sideband cooling at cryogenic temperature. Displacement power
spectrum obtained at Tbath = 3.6 K and 6.w/wm. = -1. The incident laser power
is, from top to bottom, 10 mW, 40 mvV, 60 mW and 83 mW, respectively. The
solid lines are Lorentzian fits. leff /,m in (b) and the mechanical frequency shift in
(c) induced by optomechanical coupling are plotted as a function of laser detuning
obtained at three incident laser powers: 20 mW in blue, 60 ml¥ in purple and 83 mW
in olive. The solid lines are the results of the theoretical calculation.



111

mechanical frequency shift crosses zero. For large laser detuning, both the mechanical

linewidth and frequency converge to the intrinsic values determined by the bath

temperature. Theoretically, as derived in Chapter III, for resolved-sideband cooling

we have,

(6.1)

(6.2)

where Pin is the incident laser power and Pth is the threshold incident power for

parametric instability when .6.w = W m . As shown in Fig. 6.4(b) and (c), the observed

r c and .6.wm are in good agreement with the calculation, for which Pth = 35 mW,

determined in a separate experiment, is used and there are no adjustable parameters.

We have also observed that large deviations between the experiment and calculation

occur when the laser is tuned to near the WGM resonance. In this case, heating

arising from optical absorption of the circulating light in silica becomes important

and optical bistability can also occur. It should be added that at nath < 5 K, no

bistability is observed with .6.w/ W m = -1.

A reliable measure of the effective temperature of a mechanical mode is the

spectrally integrated area of the mechanical resonance in the displacement power

spectrum. The spectrally integrated area includes contributions from all heating

mechanisms, including optical absorption in silica and fluctuations of the laser or

the WGM frequency. Figure 6.5 shows the spectrally integrated area, derived from

the Lorentzian curve fitting such as those shown in Fig. 6.4(a), as a function of the

incident laser power. At nath = 3.6 K and P = 83 mW, radiation-pressure cooling

leads to a reduction in the area by a factor of 3.5, indicating Teff ~ 1.0 K and

an average final phonon occupation N f ~ 170. In the limit that optomechanical
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Figure 6.5: Spectrally integrated area of the (1,2) mode obtained at different bath
temperatures from the displacement noise spectrum and the corresponding effective
mechanicallinewidth in insets as a function of the incident laser power with 6w/wm =
-1. The area is normalized to that when the incident laser power approaches zero.
The solid curves are the calculated area using the slope of the linear power dependence
obtained from the inset.

coupling induces no extra heating, the ratio leJd,m can also be used to determine

the effective temperature, with TefJ = (rym/'ejf)Tbath . The inset of Fig. 6.5(a) shows

leff/21f as a function of the incident laser power, yielding a maximum cooling rate of

r c /21f = 200 kHz. The solid line in Fig. 6.5(a) is the calculated area using the slope

obtained from the linear power dependence in the inset of Fig. 6.5(a). The excellent

agreement between TefJ derived from the spectrally integrated area and that derived

from leff /Im shows that under these experimental conditions, the incident laser beam

induces negligible heating.

Resolved-sideband cooling at nath = 3.6 K is limited by the relatively large 1m

due to ultrasonic attenuation in silica, which should diminish at lower temperature.

'Within the limit of a 4He cryostat, we have carried out resolved-sideband cooling

for the (1,2) mode at nath 1.4 K. A deformed microshpere with wm / rv = 4.0,
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wm/21r = 118.6 MHz, Im/21r = 11.5 kHz and D = 26.5 11m was prepared at room

temperature. The mechanical quality factor decreases from Qm = 10, 000 at room

temperature to Qm = 3,400 at nath = 1.4 K. Figure 6.5(b) and its inset show the

spectrally integrated area and the effective mechanical linewidth, derived from the

displacement power spectra, as a function of the incident laser power. A maximum

cooling rate of rc!21r = 195 kHz, similar to that shown in the inset of Fig. 6.5(a),

is obtained. As a result of the smaller 1m, this cooling rate leads to a reduction of

the temperature for the mechanical mode by a factor of 6.6, resulting in the effective

temperature of Teff rv 210 mK and the corresponding average phonon occupation of

Nf ~ 37 [44]. Figure 6.5(b) also shows the excellent agreement between Tef! derived

from the spectrally integrated area and that derived from lef!1,m, again indicating

that the incident laser beam induces negligible heating.

6.4 Discussion of Cooling Limit

Dynamical backaction cooling in optomechanical systems with high optical

finesse is less susceptible to radiation-induced heating than that in electromechanical

systems. Although slightly lower average phonon occupation of Nf rv 25 has been

achieved in cryogenically cooled electromechanical systems, dynamical back-action

cooling in these systems has been limited by heating arising from microwave radiation.

Average phonon occupation demonstrated with combined cryogenic and dynamical

backaction cooling in electromechanical systems is considerably higher, Nf rv 140 [89].

The direct heating by the laser absorption, which is negligible in our current

experimental studies, will become important as more input power is coupled into the

microresonator for further cooling. This radiation-induced heating can be suppressed
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in the optomechanical cooling if working deeply in the resolved-sideband condition

with ultrahigh optical quality factors.

Using a deformed silica microsphere, we have demonstrated the

resolved-sideband cooling of a silica microsphere optomechanical system in a cryogenic

environment and have reached a final average phonon occupation as low as 37 quanta.

Although resolved-sideband cooling carried out at nath = 1.4 K is still limited by

residual ultrasonic attenuation in silica, no special technical difficulty is anticipated

in further lowering the precooling temperature, with a 3He cryostat, to a few hundred

mK, at which effects of ultrasonic attention should diminish [75, 90, 91]. The

experimental results reported here thus indicate that we are tantalizingly close to

realizing the ground-state cooling and reaching the quantum limit of a macroscopic

optomechanical system.
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CHAPTER VII

SUMMARY AND FUTURE WORK

7.1 Dissertation Summary

This dissertation presents experimental studies of radiation pressure cooling

of a silica optomechanical resonator where the optical WGMs are efficiently coupled

with the mechanical vibration modes. Optomechanical cooling via radiation pressure

can lead to the quantum ground state of a mechanical oscillator, opening the door

for exploring the quantum nature of a macroscopic system. Long photon lifetime of

WGMs and ultrasonic'mechanical vibration in a silica microsphere resonator enable

us to carry out optomechanical cooling experiment in the resolved-sideband regime

where the average phonon occupation can be well below unity.

We use a slightly deformed microsphere as an optomechanical system. By

utilizing directional evanescent escape in deformed microspheres, we are able to

evanescently excite the WGMs in free space by focusing a laser beam near microspheres.

We demonstrate both high coupling efficiency by showing the optical transmission

dip exceeding 50 % and an ultrahigh optical Q-factor up to 1.2 X 108. This unique

approach overcomes the technical complexity and difficulty that are normally involved

in accessing optical microresonators at low temperature. Through free-space excitation,

we are able to launch WGMs in deformed microspheres with no degradation on the
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Q factors at a temperature of T = 1.4 K in liquid helium cryogenic system. In terms

of optomechanical cooling, cryogenic precooling helps to reduce thermal dissipation

determined by the bath temperature.

In the frame work of free-space excitation, we analyze the interferometric

homodyne detection of the mechanical displacement both in theory and in experiment.

Due to relatively low excitation efficiency, but with ultrahigh Q factors, the part of

an input laser which is not coupled into the resonator serves as local oscillator. In

homodyne detection, the phase shift induced by mechanical vibration is significantly

promoted by the ultrahigh optical finesse in microspheres, resulting in considerable

modulation in the optical transmission. We show that the shot noise limited

measurement sensitivity yields below 5 x 10-18 m/vHz with nominal experimental

parameters, enabling us to observe thermal mechanical displacement both at room

and at low temperature, with high signal-to-noise ratio.

We characterize vibration frequencies and spatial shapes of the mechanical

vibrations of a microsphere-stem system with finite element analysis. Resonance

frequencies range in an ultrasonic spectral band, above 100 MHz for a 30 Jlm diameter

microsphere. Under direct homodyne scheme, we detect the mechanical vibrations

that are imprinted on the optical transmission spectrum. The observed frequencies

and their size dependence show excellent agreement with the numerical simulations.

Displacement calibration is performed in the same free-space configuration with a

phase-modulated excitation laser, which generates a reference spectral peak near the

mechanical vibration mode. This method is insensitive to the optical finesse, the

coupling efficiency or the noise level, and thus gives an accurate and convenient way

of displacement calibration. We show that the effective mass coefficient obtained from

the calibration agrees very well with a value simulated by finite element simulation.



117

We routinely obtain mechanical quality factors above 10, 000 for a (1,2) radial

breathing mode at room temperature, which is mainly limited by the clamping

loss due to the longitudinal coupling of mechanical vibration to the fiber stem.

However, it is well known that at low temperature ultrasonic attenuation in fused

silica is dominant source of the mechanical loss. The temperature dependence of the

mechanical damping rate reveals that, although the ultrasonic attenuation decreases

with decreasing temperature below 50 K, the mechanical quality factors measured at

1.4 K is still limited by residual ultrasonic attenuation and remains about three times

smaller than that measured at room temperature.

We study radiation pressure coupling of a silica microsphere first at room

temperature in the resolved-sideband regime where a photon lifetime is comparable

to or longer than the mechanical vibration period. Again, based on the direct

homodyne detection, we measure dynamical behaviors of the effective mechanical

frequency and the effective mechanical linewidth as a function of the detuning as

well as the intensity of the input laser. For red detuning, we observe the effective

linewidth larger than the intrinsic linewidth, implying cooling of mechanical vibration.

On the other hand, for blue detuning we observe the effective linewidth smaller

than the intrinsic linewidth, implying heating of the mechanical vibration. The

experimental observation and the theoretic calculation show excellent agreements,

confirming that this response in the displacement spectrum is purely due to the

radiation pressure force. Radiation pressure driven parametric oscillation is also

demonstrated through free-space coupling within a few mW threshold power, showing

the efficient optomechanical coupling in our optomechanical system.

We carry out the resolved-sideband cooling at room temperature and are able

to achieve an effective temperature of 11 K for a 118 MHz mechanical vibration of

the (1,2) radial breathing mode. This corresponds to average phonon occupation of
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Nf rv 2, 000, which is mainly limited by the thermal dissipation to the environment

held at room temperature.

In the free-space coupling scheme, we are able to combine the resolved-sideband

cooling with cryogenic precooling. During precooling, we show the linearity between

the spectral area in the displacement spectrum and the bath temperature as predicted

from equipartition theorem, indicating perfect thermalization of a microsphere at

bath temperature. At a 1.4 K bath temperature, we achieve an average phonon

occupation as low as 37 quanta, which is limited mainly by the ultrasonic attenuation

in the silica microsphere. We show that both the reduction of the spectral area and

the linewidth broadening yield to same cooling ratio, implying no additional heating

from the laser noise or the environment. The experimental results achieved by the

resolved-sideband and cryogenic cooling indicate that we are tantalizingly close to

realizing the ground-state cooling and reaching the quantum limit of a macroscopic

optomechanical system.

7.2 Future Work

Resolved-sideband cooling carried out at 1.4 K is still limited by residual

ultrasonic attenuation in fused silica, but no special technical difficulty is anticipated

in further lowering the precooling temperature, with a 3He cryostat, to a few hundred

millikelvin, at which effects of ultrasonic attention should diminish. If we can assume

negligible ultrasonic attenuation at 300 mK bath temperature, we expect to achieve

an average phonon occupation as low as one through the resolved-sideband cooling,

based on achieved optomechanically induced cooling rate r c' Then, we may observe

quantum behavior of a macroscopic mechanical oscillator, for example, the transition

between classical and quantum mechanics of a macroscopic mechanical oscillator.
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Although no significant heating from the experimental environments has been

observed in our current work, the heating by the cooling laser absorption could

be important in cryogenic operation at sub-Kelvin temperature and restrict the

achievable phonon occupation [43]. The heat absorption can be avoided if we work

deeply in the resolved-sideband limit with a high ratio of wm / K,. Assuming a 4 MHz

cavity linewidth achieved in free-space excitation and a 120 MHz mechanical vibration

frequency, the fraction coupled into the microresonator will be only 0.03 % of the

mode-matched input laser power.

The precooling of mechanical vibration to a sub-Kelvin temperature will reduce

the amplitude of the displacement spectrum and simultaneously diminish the

ultrasonic attenuation, Le. recovering the mechanical quality factor, resulting in the

linewidth narrowing and accordingly the amplitude enhancement of the displacement

spectrum. These two effects on the displacement spectrum of the thermal mechanical

vibration will be nearly canceled out as we lower the bath temperature. Thus, we

expect that there will be no difficulties in observing thermal mechanical vibration

even at 300 mK with the current measurement sensitivity.

In this dissertation, we have demonstrated an optomechanical system where

the thermal mechanical vibration is cooled by the radiation pressure force arising from

the WGM in a silica microsphere [44]. We have also demonstrated a strong-coupling

cavity-QED system where nitrogen vacancy (NV) centers in diamond nanocrystals

are coupled to the WGM in a silica microsphere [50]. Both the cavity-QED and the

cavity optomechanics can be combined in the single microsphere resonator as shown

in Fig. 7.1, opening the opportunities for studying an unexplored field, for example,

the coupling between the mechanical vibration of a microsphere resonator and the

spin state of NV centers via the WGM.
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Figure 7.1: A mechanical oscillation can be coupled to a spin excitation in a combined
system of Cavity-QED and cavity optomechanics. (a) A mechanical vibration of a
microsphere. (b) Cavity-QED system in a microsphere where nanocrystals are located
on the path of the WG1VI. (c) A schematic of the combined cavity-QED and cavity
optomechanics system.
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