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This dissertation focuses on low-dimensional electron transport phenomena in

devices ranging from semiconductor electron 'billiards' to semimetal atomic clusters to

gold nanoparticles. In each material system, the goal of this research is to understand

how carrier transport occurs when many elements act in concert. In the semiconductor

electron billiards, magnetoconductance fluctuations, the result of electron quantum

interference within the device, are used as a probe of electron transport through arrays

of one, two, and three connected billiards. By combining two established analysis

techniques, this research demonstrates a novel method for determining the quantum

energy level spacing in each of the arrays. That information in turn shows the extent

(and limits) of the phase-coherent electron wavefunction in each of the devices. The

use of the following two material systems, the semimetal atomic clusters and the gold
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nanoparticles, is inspired by the electron billiard results. First, the output of the

simple, rectangular electron billiards, the magnetoconductance fluctuations, is quite

generally found to be fractal. This research addresses the question of what output

one might expect from a device with manifestly fractal geometry by simulating the

electrical response of fractal resistor networks and by outlining a method to implement

such devices in fractal aggregates of semimetal atomic clusters. Second, in gold

nanoparticle arrays, the number of array elements can increase by orders of magnitude

over the billiard arrays, all with the potential to stay in a similar, phase-coherent

transport regime. The last portion of this dissertation details the fabrication of these

nanoparticle-based devices and their electrical characteristics, which exhibit strong

evidence for electron transport in the Coulomb-blockade regime. A sketch for further

'off-blockade' experiments to realize magnetoconductance fluctuations, i.e. phase­

coherent electron phenomena, is presented.
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CHAPTER I

INTRODUCTION

Electronic devices have become very complex. This ranges from the staggering

feats of engineering inherent in present day integrated circuits, to quantum computing

with coherent carriers in quantum dots, to frustrated electron systems like single

electron transistors. The breadth and depth of the field is fascinating and continues

to expand. The goal, technologically speaking, of all this complexity is to either make

individual devices smaller, thus packing more and more computing power into smaller

and smaller footprints, or to make devices with more functions or novel functionality.

This dissertation addresses these goals (in some small part) by focusing on low­

dimensional electron transport phenomena in three different electronic device types:

semiconductor electron 'billiard' arrays in high mobility heterostructures, fractal

semimetal cluster aggregates, and gold nanoparticle-DNA complexes. In some ways

these three systems are quite different, primarily in their appearance (see Figure 1.1).

Each has a distinct fabrication process. The physical models for carrier transport in

each system, though similar in basis, are also quite distinct. This dissertation details

these differences, but it should become clear to the reader that, in fact, there is much

that links these three systems, both thematically and physically.

At the broadest level, this research is united by the goal of understanding how
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Figure 1.1. Examples of the three material systems studied in this dissertation: an
atomic force microscope (AFM) image of an electron billiard array in a semiconductor
heterostructure (a), the outline and backbone of a semimetal cluster aggregate (b),
and a scanning electron microscope (SEM) image of a nanoparticle-DNA array
(highlighted, c).

carrier transport occurs when multiple elements act in concert. This ranges from

the few element limit, where device and material control is very precise (i.e. the

electron billiard system), to the many element limit where the behaviors of individual

elements are superceded by collective behavior (cluster aggregates and nanoparticles).

More specifically, each of the latter variety was inspired by particular aspects of the

electron billiard research. These connections are outlined along with the structure of

this dissertation below.

Chapter II contains a brief overview of the apparatus used for the experiments

described in Chapters III and V.

Chapter III details experiments on the semiconductor electron billiard devices.

The goal of this research was to study and quantify changes in coherent electron
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phenomena as the number of elements was changed in linear arrays of electron

billiards. We study devices with one, two, and three electron billiards connected

in series. Our probe in this study was magnetoconductance fluctuations (MCF),

which are the result of electron quantum interference within the billiards, and are

thus particularly sensitive to changes in the dynamics and coherence of electrons

moving through the arrays. Combining two established techniques for analyzing the

MCF, we were able to demonstrate a novel method for charting the quantum energy

level spacing in each of the devices as the coupling between individual elements was

changed. This in turn yields information about the extent and limits of the electron

wavefunction as it hybridizes over multiple elements.

Chapter IV will explore the potential for novel, complex functionalities in

electronic circuits that are fractal in their geometry. In short, a fractal is a

structure that has an identical appearance (statistically or exactly) over a range of

magnifications. They can be found in many places: mathematics, art, technology,

and most widely in nature, a fact asserted by Mandelbrot's The Fractal Geometry of

Nature [1] and titularly expanded upon (perhaps a bit enthusiastically) by Barnsley's

Fractals Everywhere [2].

Research into the statistical qualities of electron billiards' MCF has come to

the conclusion that they are indeed fractal over a wide range of experimental and

material systems [3, 4]. Our current research has revealed a strong candidate for
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the mechanism of this 'universal' behavior [5}, namely the distribution of small-angle

scatterers in the 2-dimensional electron gas (2DEG) induced by remote donor ion

potentials. Repeated coherent deflections from these potentials produce the requisite

mixed-phase-space carrier dynamics [6] for observing fractal conductance fluctuations.

Having established fractal behavior in the output of a nominally Euclidean device,

the electron billiard, an interesting question is: what functionality might we be able

to produce when the device itself has a fractal geometry? To begin to answer that

question, this chapter presents electrical simulations of fractal resistor networks along

with a proposal for implementation of these devices in the form of diffusion-limited

aggregates of semimetal atomic clusters.

Chapter V details the construction and measurement of Au nanoparticle arrays,

a project done in collaboration with Professor Jim Hutchison's lab at the University

of Oregon. This collaboration grew out of a proposal to extend our studies of

electron billiard arrays to arrays of nanoparticles that can be close-packed along

DNA molecules, creating arrays with tens, hundreds, or even thousands of elements

depending on the size of the nanoparticles and the length of the DNA sections.

The expectation that these two systems are analogous is based largely on their

shared geometric features (linear, connected arrays of conducting elements) and rough

calculations indicating that the phase-coherence-Iength to length-of-array and Fermi­

wavelength to array-element-size ratios were similar, i.e. we could expect coherent
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electron transport across the nanoparticle array, and the energy level spacings of a

single nanoparticle would be of similar magnitude to the billiard's in relation to kBT,

the so-called 'mesoscopic' transport regime. With these characteristics, MCF may be

observable in the nanoparticle arrays at low temperatures and provide a great deal

of information about how electrons move through this novel nanoscale system.

However, in practice there are a number of challenges that must be addressed

before MCF can be used to probe carrier dynamics in these arrays. For instance,

the electrical characteristics of our first generation devices exhibit strong evidence

for Coulomb blockade transport, which is quite distinct from our normal mode of

operation in the electron billiards (though very similar to a situation where the billiard

entrance and exit are replaced with tunnel barriers). It is interesting in its own right,

since Coulomb blockade in arrays is still a topic of active research interest [7-10]. Our

electrical measurements in this regime, device fabrication details, and an outline for

further 'off-blockade' experiments to possibly realize MCF in these novel devices are

all presented in Chapter V.
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CHAPTER II

MEASUREMENT APPARATUS AND TECHNIQUES

Introduction

This chapter provides a brief overview of the experimental apparatus used to

study the electron billiard arrays and nanoparticle arrays detailed in Chapters III

and V respectively. The material presented here does not delve into the many details

of instrument operation that any subsequent user will need to understand for many

hours of (relatively) trouble-free experimenting. For such information, the reader

should refer to the manuals and instructions on file with the instrumentation.

Cryostat Operation and Characteristics

Overview

For measurements of both the electron billiard and nanoparticle arrays, it

is important to maintain precise control of the device temperature and reach

temperatures at or below that of liquid 4He (4.2 K). Another fundamental requirement

is the ability to tune the electromagnetic environment of the devices during

measurements.
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A standard solution to these requirements is the use of a liquid helium cryostat

in combination with a superconducting solenoid. The Taylor/Linke lab possesses

two of these systems, one from Oxford Instruments and another, newer system from

Janis. The measurements performed in the course of this dissertation made use of

the Oxford Instruments cryostat. This system consists of a 3He Heliox-VL insert

and a liquid nitrogen jacketed dewar with an 8 Tesla (9 T with the A-plate system)

superconducting solenoid mounted near its bottom. This instrument can access

magnetic fields of ±9 T with 0.1 mT resolution and temperatures down to 230 mK

and upwards of 100 K. Given these capabilities, the 3He cryostat can be a versatile and

powerful tool for experimental investigations involving temperature or field dependent

phenomena in solid state systems. The following two subsections offer operational

details pertinent to this dissertation.

System Architecture

The system architecture for the Oxford insert and dewar is shown in

Figure 2.1. The liquid helium dewar is liquid nitrogen-jacketed and contains an 8 T

superconducting solenoid for tuning the magnetic field perpendicular to the plane of a

device mounted parallel to the end of the cryostat insert. Electrical connections feed

up through the interior of the inserts from the device mount, and can be connected

to instrumentation exterior to the cryostat via a multi-pin interface at the top of the

insert.
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Figure 2.1. Manufacturer schematics for the end of the 3He insert (a) and
surrounding dewar (b). Shaded components in (a) indicate the sealed :3He cell
position. In (b), green, blue, and red shadings indicate the liquid nitrogen shielding,
liquid helium tank, and the superconducting solenoid respectively.

The cryostat is 'sample in vacuum', which makes sample switching a relatively

long (;:::::: 2 hour minimum) process, but allows a more inert sample environment and

cooling below;:::::: 1.6 K. Base temperature is achieved by cooling the liquid helium

(4He) drawn up into the 1 K coil by mechanical pumping and outgassing (by heating

to ;:::::: 30 K) the sorption pump inside the 3He cell, freeing 3He gas. Pumped helium

will drop the temperature inside the sealed cell to 3He's condensation point. Once the

3He gas is completely condensed to liquid, the sorption pump temperature is allowed

to drop. The sorption pump will slowly reduce the pressure in the cell, thus lowering
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the liquid's temperature. The 3He pot and the attached sample will then drop to its

base temperature value.

Temperature Control

As stated previously, the base temperature for the Oxford cryostat is 230 mK.

This temperature can be routinely achieved and stably maintained for long periods

of time: several days for the Oxford cryostat. This limit stems from the need to

recondense the 3He inside the Oxford insert, which requires warming the sample to

:::::::: 2 K for a few hours. In the case of the electron billiard devices (Chapter III), the

longest continuous period of static temperature needed is :::::::: 8 hours (one full length

data set). Also, the devices' electrical characteristics are the same before and after a

cycle up to 2 K, so experiments can continue as long as needed.

For the experiments on nanoparticle-based devices (Chapter V),any single data

set can be collected in as little as 15 minutes. Though some care must be taken to

ensure thermal equilibrium between the location of the thermometer and the device

prior to measurement, in practice temperature stability is still only required on the

hour time scale. The temperatures for our experiments (from base to :::::::: 80 K) are

easy to achieve and maintain over that time scale. Higher temperatures (> 100 K)

are achievable and still have a high degree of stability, but require increasingly long

heating and cooling cycles. For the nanoparticle devices, where we were initially

unsure regarding their stability over such times, these temperatures were largely
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avoided. Future investigations of temperature dependent effects in the nanoparticle

devices may take advantage of a newly commissioned Janis cryostat in the lab, which

has a higher base temperature (:::::: 1.6 K), but temperature control response times on

the order of seconds and even higher temperature stabilities.

Electrical Measurement Tools and Techniques

Electron Billiard Measurement

The electron billiards discussed in Chapter III generally have resistances rv 10 kO,

and only small contributions to their impedance from capacitance and inductance.

This relatively low electrical impedance allows 4 point device measurements using

the circuit shown in Figure 2.2. A constant excitation current of 1 nA at 37 Hz is

applied to the device via a lock-in amplifier output channel (Figure 2.2(c)). Typically

this is accomplished with a 0.1 V signal at the output over the circuit resistance,

which is maintained at 100 MO via a ballast resistor. This level of current maintains

a relatively large signal-to-noise ratio (,2: 100 : 1) while avoiding electron heating

effects in the device (eVbias ::; kB T) . The voltage drop across the 10 kO resistor

monitors the current in the circuit, just to be certain. Two other lock-ins monitor the

device (Figure 2.2(a)), and a portion of the empty Hall bar channel (Figure 2.2(c)).

The latter measures the longitudinal resistance (Rxx ) of the channel, which can be

translated into a carrier density from its Rxx vs. magnetic field dependence [11]. An
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Figure 2.2. A schematic of the electrical measurement circuit for the electron billiard
experiments. The labeling details the purpose of each instrument (see text). At the
center is an optical microscope image of a Hall bar mesa.

alternate configuration for measuring carrier density might instead monitor the Hall

resistance using leads directly across from one another in the channel [12].

For reference, the specific instruments used for the experiments detailed in Chapter

III are: Stanford Research Systems (SRS) SR830 lock-in amplifiers and an IoTech

DAC 488HR/4 digital-to-analog converter for the DC source.

Nanoparticle Array Measurement

The nanoparticle arrays discussed in Chapter V are measured using the DC circuit

pictured in Figure 2.3. AC measurements like those applied to the electron billiard
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Figure 2.3. A schematic of the DC electrical measurement circuit for the
nanoparticle-based devices. At the center is an SEM image of a single pair of the
electrodes used to contact the nanoparticle array.

are made more difficult by the nanoparticle arrays' high impedances, typically at

least on the order of 10 en's. This makes 4 point voltage detection difficult (noting

that SR830 lock-in amplifiers have 10 Mn input impedances). Fortunately there is a

great deal of information available using simple DC measurements of the nanoparticle

arrays. Eliminating lead resistances, the advantage of 4 point detection, is also much

less important given the massive resistance of the device. Sourcing voltage, current

through the circuit is monitored via a high sensitivity voltmeter after passing through

a current pre-amplifier. Despite the absence of lock-in detection, current noise is only

~ 0.2 pA at the cryostat's base temperature.

For reference, the specific instruments used for the experiments detailed in Chapter

V are a Yokogawa 7651 DC source, an SRS SR570 low noise current pre-amplifier,

and a Keithley multimeter (2000 model).
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CHAPTER III

COHERENT TRANSPORT IN ELECTRON BILLIARD ARRAYS

Introduction

The coupling of quantum electronic devices to form arrays is of considerable

interest for both fundamental physics (e.g. quantum coherence [13, 14]) and applied

physics (e.g. spintronics and quantum computing [14-17]). From an engineering

viewpoint, understanding the interaction of individual devices represents the first

step for developing circuits with sophisticated quantum functionality. The majority

of previous coherent coupling research has focused on electron transport mediated by

tunneling between 'closed' electron billiards or quantum dots [13, 14, 17-22]. The

experiments detailed in this chapter focus on the 'open' transport regime where

the devices are connected by conducting channels [23-25]. Our experiments and

subsequent analyses have lead to a novel measurement technique for quantifying the

evolution of the quantum energy level spectrum of the open electron billiard arrays as

the coupling strength of the connecting channels is varied and the number of devices

in the array, Nbilliard, is increased. The technique employs magnetoconductance

fluctuations to probe the decrease in the average spacing of the quantum energy

levels as the electron wavefunctions hybridize between billiards in the array. Our
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method is relatively flexible compared to previous spectroscopy techniques, in that

it does not require microwave radiation [13, 18], nor is it restricted to probing dots

~ 0.2 11m2 in area [26]. To demonstrate the technique, weI investigate arrays of

electron billiards etched into a modulation-doped GaInAs/InP heterostructure [27].

The GaxInI-xAs material system is increasingly employed for studies of quantum

transport phenomena, such as quantum coherence [28] and engineered conductance

asymmetry, [23] rather than the traditional AlxGaI_xAs/GaAs heterostructures [24,

25].

This chapter will begin with a short reVIew of the physics relevant to this

experiment, give some fabrication details for these electron billiard arrays, and finish

by detailing the results of our experiment and analyses.

Quantum Interference in Electron Billiards

This section will attempt the cover the requisite physics and material science

background for our experiment. There is a great deal that could be included, but

to retain focus, descriptions will remain brief. The reader is referred to a number of

excellent reviews [29-31] and texts [32-34] on this subject for further information.

IThe plural pronoun is used to reflect the contributions of other researchers in addition to the
author of this dissertation. The project was completed primarily in collaboration with Dr. Theodore
Martin (PhD, University of Oregon, 2006), currently of the Naval Research Laboratory. Other
contributors are noted in the text.
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Two-Dimensional Transport and Electron Billiards

Two-dimensional electron gases (2DEGs) in semiconducting materials combine a

variety of properties that make them ideal for studying quantum electron transport

phenomena. Carrier densities are relatively low (rv 1 X lOll / cm2
) and are easily

modulated by an electric field, because of the large screening length. The low

density also results in a relatively large Fermi wavelength AF' (rv 40 nm), which

is approximately the minimum size of the devices that can be fabricated in these

materials. Additionally, the reduced dimensionality of the system simplifies the

physics2 of carrier motion and the Fermi surface, which becomes circular.

2DEGs can be formed in a variety of material systems, but conceptually the

mechanism is the same in each case. Electrons are confined to a quantum well

at the interface between two materials of differing bandgap. Transport parallel to

the interface is unimpeded, however the confinement perpendicular to the interface

quantizes the allowed energies of the electrons such that only a single level is

populated, creating (ideally) a 2D plane of electrons.

Interestingly, some of the first 2DEG research was done on the surface of liquid

helium [35]. However, numerous experiments on the 2DEGs formed in the inversion

layer of Si MOSFETs [36] set the foundation of the field. More recently (since the

advent of modulation doping [37]), the canonical research system for creating 2DEGs

has been AlxGal_xAs/GaAs on account of its superior electron mobility, which eases

2Said one way - enough for detailed theoretical treatment, but not so much that experiments are
boring.
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Figure 3.1. Schematic band structures of an Si inversion layer 2DEG (a), the
AlxGal_xAs/GaAs heterostructure (b), and the Ino.25Gao.75As/lnP heterostructure
(c) .

the observation of quantum coherent phenomena and has significant technological

advantages as well. For comparison, the heterostructures that create 2DEGs in Si

and AlxGal_xAs/GaAs are shown in Figure 3.1(a,b).

The high mobility of AlxGal_xAs/GaAs is the result of several factors: 1) epitaxial

growth techniques (molecular beam epitaxy, metal-organic vapor phase epitaxy, etc)

produce crystalline layers with very few defects, 2) AlxGal-xAs and GaAs have well-

matched lattice constants for most x, dramatically reducing boundary scattering,

3) GaAs has a direct bandgap with a single conduction band minimum, removing
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intervalley scattering effects, 4) electrons in GaAs have a low effective mass (0.067 me)'

The same factors are present in Ino.25Gao.75As/lnP, the high mobility material system

selected for the experiments performed in the course of this dissertation. Its band

structure is shown in Figure 3.1 (c). Further details about this heterostructure can be

found in the "Fabrication" subsection below and in [38, 39].

Electron billiards are created by further confining the 2DEG using biased surface

gates or etching3
. Each method is shown schematically in Figure 3.2 (in cross-sections

and top-down). Negatively biased surface gates electrostatically deplete the 2DEG

beneath them, causing the device shape to roughly mirror that of the surface gates

(Figure 3.2(a)). Etching physically removes portions of the 2DEG to create the

desired device (Figure 3.2(b)). Though this technique sacrifices some flexibility (for

instance, surface gates can be grounded to remove portions of the device design), it

generally allows for more precision in defining device shape. Typically, the billiard

is defined in a Hall bar, which allows 4 point electrical measurements of the billiard

itself as well as measurements (using the Hall and Shubnikov - de Haas effects) to

determine carrier mobility, effective mass, and other key material properties. A typical

measurement configuration is shown in Figure 2.2.

The term electron 'billiard' comes from an analogy between the electrons moving

. through the device and balls moving across a table. This analogy works, because of

3Though dry etching techniques can be used, more common are chemical etching techniques that
create smooth, relatively defect-free surfaces.
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(a)V f~:".!

2DEG

(b)

L_
Figure 3.2. Schematics of the surface gate (a) and etching (b) methods for device
definition. On the left are cross-sections of the heterostructures. On the right are
top-down views for each method. The positions of the cross-sections are indicated in
red.

the material's extremely low defect density in the 2DEG plane, such that electrons

can be thought of as moving ballistically within the device. The term "ballistic"

transport is traditionally applied to systems where the device dimensions (W, L) < t,

the mean free path (see Figure 3.3(a)), which is in sharp contrast to the more familiar,

Drude-type diffusive regime (Figure 3.3(b)) where (W, L) » t. It is important to note

that the billiard model of the electron leaves out the quantum nature of the device.

Since Ap is comparable to the typical electron billiard's linear dimension (rv 40 nm

compared to 1 f..lm), there is quantization of the electron energies in the device with

spacings ~Es rv 10 f..leV « E p . For this reason, "electron billiard" is commonly

replaced with "quantum dot", which implies a OD quantum system. However, for our

experiments, ~Es rv kaT, so we retain the 2D picture.
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(a) (b)

Figure 3.3. Schematics ofthe ballistic (a) and diffusive (b) carrier transport regimes.
The asterisk-like objects in (b) represent crystalline defects.

Ballistic transport results in a wide variety of unique phenomena [29, 31], however

there are two items of primary importance to the research presented in this chapter.

First is the presence of a classically chaotic electron trajectory distribution in our

electron billiards. The quantum manifestations of this classical behavior are well-

described by random matri.x theory [30, 40], whose predictions are key to our method.

Second is the preservation of 'skipping' orbits in the high magnetic field regime.

Analysis of the quantum interference between these special electron trajectories can

quantify how long electrons will remain in the same quantum mechanical state,

i.e. remain phase-coherent. Given that our research depends on charting quantum

interference effects, the extent of electron phase coherence is a crucial parameter.

Magnetoconductance Fluctuations

Though there are many phase coherent phenomena in 2DEG devices, the primary

tool for our electron billiard research is magnetoconductance fluctuations. In a time-

varying magnetic field applied perpendicular to the 2DEG plane, the conductance
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Figure 3.4. Two sets of MCF from a single square electron billiard (inset). The
data sets have a resolution of 0.5 mT, and were taken several days apart during the
same experiment.

of a ballistic device will change due to quantum interference between electron

wavefunctions in the device. Example set::; of these fluctuations are shown in

Figure 3.4.

Note that the MCF are symmetric in field, which among other things demonstrates

that they are not noise [41]. They are also repeatable - the two data sets are

from the same device (Figure 3.4(inset)) under the same conditions, but collected

days apart. The fact that they are the result of quantum interference is most

readily seen by reducing the phase coherence time Tef; of the electrons, for instance by

raising its operating temperature. Tef; is a measure of the average electron's quantum

state lifetime, and increasing thermal energy raises the rate of phase coherence-

breaking events in the billiard. As Figure 3.5 shows, raising the temperature gradually
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Figure 3.5. A series of MCF taken at the indicated temperatures (a), and an
example of a classical magnetic focusing feature (dotted line). The dominant electron
trajectory for thp- indicated feature is shown in schematic (inset). The traces are
offset in 0.25 x 2e2

/ h increments for clarity.

suppresses the MCF amplitude. The remaining variations in conductance after the

quantum MCF are completely suppressed can be correlated with a classical, ballistic

effects like magnetic focusing. Ballistic electron trajectories are in effect 'focused'

on to the narrow exit of the electron billiard by a magnetic field of the appropriate

strength. An example is shown in Figure 3.5. This effect can also contribute to

conductance suppression if the ballistic trajectories dictate very long (path length»

mean free path) or explicitly backscattering paths. The broadening in these features

reflects in some part the spread of their velocities (direction and magnitude) upon

injection from the billiard entrance.

To gain an understanding of the MCF's origin, it is helpful to first consider an
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Figure 3.6. Schematics showing the origin of the MCF. A single trajectory loop
encloses area A with penetrating field B (a), creating an Aharonov-Bohm oscillation
with period t:1B as magnetic field is varied (b). Electron billiards actually support
many trajectory loops (c), leading to a superposition of many oscillations (d).

electron trajectory loop like the one depicted in Figure 3.6(a). These two possible

paths for the electron enclose some area A (shaded). Given their identical path

lengths, they will constructively interfere upon meeting at the drain side of the

electron billiard. However, a perpendicular applied field B has a vector potential

it curling in the plane of the 2DEG, which induces a phase difference between the

two paths, t:1¢ ~ eBA/Ii, from the Aharonov-Bohm effect [42]. As B is varied, the

paths will alternately constructively and destructively interfere, creating an oscillation

of period t:1B ~ h/eA (Figure 3.6(b)). Unlike the classic Aharonov-Bohm experiment

wherein a very thin conducting ring supports only a single path (or very few, similar

paths), the electron billiard hosts a wide variety of trajectory loops as illustrated
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in Figure 3.6(c). Each of these loops will have differing amounts of magnetic flux

penetrating it, and thus create a whole spectrum of oscillation periods as the field

is varied. What is experimentally observed is a Feynman-style summation over

all the possible loops for an electron, which result in aperiodic oscillations in the

billiard conductance as a function of B (Figure 3.6(d)). Since MCF arise from

these distributions of phase-coherent electron paths within the billiard, they make

an excellent probe of electron dynamics and coherence.

For instance, our research into the statistics of MCF in electron billiards has come

to the conclusion that they are fractaZ 4 over a wide range of billiard shapes and

material systems [3, 4, 43, 44]. Furthermore, they can be universally characterized by

an empirical parameter Q, which measures the ratio of average energy level spacing

!:::J.Es in the device and energy level broadening, i.e. the energy level 'resolution'

within the device [3, 4, 44]. An example set of fractal conductance fluctuations,

its power-law frequency spectrum, and the Q curve for electron billiards are shown

in Figure 3.7. The mechanism for this interesting phenomenon is still the subject of

current research [5], however a strong candidate appears to be the modulations in the

billiard's potential landscape caused by the remote donor ions in the heterostructure

(see Figure 3.1(c)). We hypothesize that these modulations act as soft-walled, circular,

4Briefly, a fractal is an object which has structure that repeats itself over many scales, leading to
power-law behavior in its frequency spectrum. For more detailed information on fractals, the reader
is referred to Chapter IV's background sections and the references therein.
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Figure 3.7. Fractal conductance fluctuations (a), their spectral analysis (b), and
the Q curve for electron billiards (c). The results of the spectral analysis (b) show
characteristic power-law scaling in the fluctuations. The fractal power-law scaling
exponent a plotted vs. the parameter Q establishes a universal curve (c) for a variety
of electron billiards in the AlxGal_xAs/GaAs (red symbols) and Ino25Gao75As/lnP
(blue symbols) heterostructures.

chaotic scatterers, which transform what would be a regular electron trajectory

distribution (in a square billiard) to a mixed, regular/chaotic trajectory distribution,

which is known to induce fractal conductance flucutuations [6].

Note that this behavior is well-established for a wide variety (shape, size, material)

of single electron billiards, but has not been studied in multi-element devices. The

measurement technique for 6Es presented in this chapter for billiard arrays will be

use for these future investigations.

Electron Phase Coherence

Electron phase coherence is a prerequisite to observing quantum phenomena in

electron billiards as well as many other 2DEG devices. In essence, it is an electron's

retention of its quantum mechanical state, which is usually expressed in terms of



25

a 'phase-breaking' or dephasing time (7</». 7</> measures the average time before an

electron undergoes a dephasing scattering event. There are a variety of physical

mechanisms for dephasing in electron billiards: electron-phonon interactions, electron-

electron scattering, or spin-orbit interactions to name a few5. The primary, low-

temperature mechanism in semiconductor heterostructures like AlxGal-xAs/GaAs

and Ino.25G~.75As/InP is (most probably) two electron-electron interactions, large

energy transfer scattering (ex T 2
) and small energy transfer (Nyquist) scattering

(ex T) [45], which generally limit 7</> to be ~ 1 ns, though this can be exceeded

using dilution fridge temperatures and ever-more-perfect materials.

One can quantitatively measure 7</> by monitoring quantum phenomena that are

sensitive to phase coherence. For electron billiards, this means either weak localization

(i.e. phase coherent backscattering) or magnetoconductance fluctuations. Methods

involving weak localization require a great deal of data averaging to reliably identify

and measure the peak's magnitude [45]. In addition, at 3He cryostat temperatures

(rv 240 mK), the magnitude is quite small. For these reasons, we concentrate on two

methods for determining 7</> from MCF analysis.

The first method charts the correlation field (Be) of the MCF in the high magnetic

field regime to determine 7</> [46,47]. The specific region of magnetic field considered is

5Note that scattering from distributions of defects and device walls are not included here. These
interactions are generally modeled as elastic and cause reproducible phase shifts in the incident
electrons, thus preserving coherence.
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the 'skipping orbit' regime, in which the cyclotron radius (rc ) of an electron trajectory

fits entirely within the billiard. This causes the electrons to 'skip' along the walls

of the billiard as depicted in Figure 3.8(a)(inset). When this occurs, the MCF's

characteristic fluctuation period is no longer independent of magnetic field, which

can be seen qualitatively by inspection (Figure 3.8(a)). The key to this analysis is

drawing a relation between T¢ and the field dependent characteristic field scale of

the MCF, B c . In the skipping-orbit regime, each trajectory has an average enclosed

phase-coherent area,

(3.1)

where VF and kF are the Fermi velocity and k-vector respectively. A¢ can be related

to the MCF's characteristic field scale B c via the Aharonov-Bohm effect [42,46]:

(3.2)

where <Po = hie is the magnetic flux quantum. The last link is the correlation

function [48, 49], whose half width at half max is defined as B c '

F(~B) = (og(B)og(B + ~B)); F(Bc ) = ~F(O)

where og(B) = G(B) - (G).

(3.3)

Thus to find T¢, three quantities must be experimentally determined: m*, kF ,

and B c . The first two can be measured via the Shubnikov-de Haas effect [50],

which is inherent to the material, not the device. The third requires evaluation

of the correlation function F(~B). First, a low frequency, classical background
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Figure 3.8. An example set of MCF going through the correlation field analysis. The
MCF are plotted (a) over the universal and skipping-orbit field regimes (schematics
above plot) with a low-frequency background fit (red line). A section of the skipping­
orbit MCF during a single analysis step is shown in (b). The result (c) of the full
analysis, Be vs. B, is shown with linear fits to the low-field and skipping orbit field
regimes.

(Figure 3.8(a), red line) is subtracted from the fluctuations to translate G(B) to

6g(B). F(t::..B) is then computed for a ~ 0.4 T window centered at magnetic field B

(Figure 3.8(b)), producing an associated Be. This process is repeated over many B

values such that a plot of Be vs. B (Figure 3.8(c)) can be produced and Ttf; extracted

from Equation 3.2. Typically, the largest sources of error in this analysis come

from the determination of the frequency cutoff used for the classical background

subtraction and fitting to the linear trend in Be vs. B. The error inherent in the

latter is obvious considering the scat tel' in Figure 3.8(c). The former can be done

systemically, for instance by comparing to the frequency content of the device's MCF

at high temperatures where quantum eHects are suppressed. The Ttf; results from a

small spread of frequency cutoffs are factored into the measurement error.
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The second method analyzes the statistics of MCF in the low-field regime to

determine Tc/J. The derivation of the correlation field technique (shown above) relies

on predicting the average coherent areas enclosed by classical orbits of single electrons.

This second method is derived from a formulation of random matrix theory (RMT).

Briefly, RMT is a method of determining the statistical properties of a physical

system via correlation functions derived from ensembles of Hamiltonians or scattering

matrices. It was originally applied to determine energy level distributions in heavy

nuclei [51, 52]. More recently, the theory became popular for describing electron

billiards, diffusive quantum wires, etc, after research showed that the Wigner-Dyson

ensemble of Hamiltonians applied generally to classically chaotic systems [40] and

that the properties of large random matrices were linked to universal conductance

fluctuations in diffusive conductors [53]. These developments and subsequent advances

are covered in large part by C. W. J. Beenakker's review paper [30].

Recently RMT has been extended to treat finite temperature and phase-breaking

phenomena in electron billiards [54, 55], which has since been experimentally validated

in comparison to the correlation field technique [28, 56, 57]. Implementing the RMT­

derived method requires the evaluation of the following integral in the universal MCF

regime,

(8G)2 = 100100

j'(E)j'(E') (N + Nc/J)2 + 4~~~ _ E')2 /~E~ dE dE' (3.4)

where (8G? is the variance ofthe MCF in the universal regime, j'(E) is the derivative

of the Fermi function, and N = N1 + N2, the total number of conducting modes
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in the entering (Nd and exiting (N2 ) quantum point contacts (QPCS)6. At zero

temperature, the l'(E) 's reduce to delta-functions and the need to integrate over a

thermal spread of electron energies is removed. Loss of phase coherence in this model

is represented by electrons 'escaping' the dot via a fictitious lead attached to a phase-

randomizing reservoir. The escape rate is set by the average energy level spacing in

the billiard, !::J.Es , and is related to N¢ by the expression N¢ = 27rh/T¢!::J.Es [58f. In

the absence of phase-breaking interactions, (N + N¢) ---+ N.

As previously mentioned, this integrand must be evaluated in the universal MCF

regime. Additionally, similar to the correlation field method, a low-frequency classical

background must be subtracted from the MCF to ensure the calculation of (<5G)2

includes only fluctuations that originate from quantum interference. Figure 3.9

demonstrates these constraints on the same data set used for depicting the correlation

method in Figure 3.8. The low end cutoff for the universal regime is the field scale for

time-reversal symmetry breaking, B rv <po/Adot , where Adot is the area of the billiard.

This is the field scale at which the weak localization effect should be completely

suppressed [59]. The high end cutoff is where the ballistic trajectories in the billiard

begin to transition to the skipping-orbit regime, which corresponds to B rv hkF
,

ere

where r c = (1/2)(L) (see Figure 3.9). Once these steps are accomplished, (<5G)2

6Quantum point contacts are the narrow openings that connect the billiard to the bulk 2DEG.
These are treated as short, ID wires, which have a strongly-discretized energy spectrum. Each
occupied level contributes 2e2 /h to the conductance, and the number of occupied levels N can be
tuned with an electrostatic gate or magnetic field (see Figure 3.11).

7Note that the fictitious lead draws no net current - the electrons that escape to the phase­
randomizing reservoir are re-injected at an equal rate, conserving electron number in the device.
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Figure 3.9. Data selection for the RMT T¢ analysis. The full MCF data set is
shown (left) with the region of interest shaded. A magnified view of this region
(right) indicates the necessary cutoffs in magnetic field to address only the universal
regime fluctuations.

can be calculated, and T¢ can subsequently be extracted by evaluating Equation 3.4

numerically.

Device Fabrication and Architecture

The semiconductor billiards studied in this dissertation were made by Dr. Colleen

Marlow in collaboration with the Nanometer Consortium at Lund University, Sweden.

For more fabrication details, the reader should refer to Dr. Marlow's dissertation [57].

Fabrication

All the devices studied in this dissertation were fabricated in an GaO 25Ino.75As/lnP

heterostructure, which is shown schematically in Figure 3.10(a). This material system
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Figure 3.10. (a) The Gao.25Ino75As/InP heterostructure etched to a narrow channel,
(b) SEM images of the one, two, and three billiard arrays, and their locations in the
Hall bar (below). The two billiard array has a typical depletion profile indicated in
red.

was selected primarily for its very low effective mass, measured to be 0.040 me in our

wafer, and for its superior fidelity in terms of device geometry. The effective mass

is low even compared to the canonical heterostructure used for 2DEG experiments,

AlxGal_xAs/GaAs, whose effective mass is ~ 50% greater (0.067 me)' This low

effective mass increases the carrier mobility in the material and the energy level

spacings within the billiards, both of which enhance the ability to observe quantum

interference phenomena. Further information on the heterostructure can be found in

the literature [27, 60].

Device geometry can be particularly well-defined in this heterostructure, because

none of the constituent materials are strongly oxidizing, which enables chemical

etching for device definition. In contrast, AlxGal_xAs/GaAs heterostructures cannot

be effectively etched due to the presence of aluminum, the oxide of which is an
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insulator and forms quickly at atmosphere. Etching our devices creates a confinement

potential that is an order of magnitude steeper than the equivalent in surface gate­

defined devices [60]. In addition to creating a well-defined device shape, this steeper

potential also enables the number of conducting channels in the QPCs to be altered

by the top gate without strongly perturbing the billiard geometry.

For our study of coherent transport phenomena in billiard arrays, three separate

devices, comprising one, two and three coupled billiards, were defined in the 2DEG

confined to the 9 nm Gao.25Ino.75As quantum well. The arrays were patterned using

electron beam lithography and chemically etched into the mesa of a Hall bar (see

Figure 3.10(b)). The component billiards were defined to be nominally identical

squares with lithographic dimensions 0.77 J1m x 0.73 J1m (±0.01 J1m) and connected

to one another and the surrounding 2DEG by QPCs 100 nm ± 5 nm in width.

To control the carrier density simultaneously in the Hall bar and all three devices,

a uniform TilAu electrostatic gate was deposited over the entire structure. Leakage

current was eliminated by separating the top gate from the heterostructure surface

with a 1 J1m insulating polymer (PMMA) layer. In this experiment, a top gate bias of

~ = 0 V at temperature T = 240 mK resulted in a carrier density ns = 6 x 1011 cm-2

and mean free path It = 3 J1m.
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Figure 3.11. Conductance vs. gate voltage for the three billiard array devices. The
black arrows indicate the voltages at which MCF were measured.

Hybridization in Electron Billiard Arrays

The Experiment

The arrays were cooled to T = 240 mK ± 5 mK in the Oxford 3He refrigerator

and their conductance G was measured using 37 Hz lock-in detection in the four-

probe configuration detailed in Chapter II. All measurements were performed at

a 1 nA constant current. The MCF were measured at plateaus observed in the

conductance of each array vs. top gate voltage (see Figure 3.11). The MCF for each

device were measured between -0.6 T and +3.5 T. The negative field region is useful

for determining a baseline noise amplitude, since field symmetry is expected in the

linear regime of transport. The region above ~ 0.5 T, the so-called 'skipping orbit'
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Figure 3.12. Three examples of MCF from the single billiard array. The dotted line
approximately indicates the border between the low field universal regime and high
field skipping orbit regime.

regime, is required to determine T¢ using the method pioneered by Bird, et al. [46].

A few examples of complete MCF data sets are shown in Figure 3.12.

It is important to note that for our subsequent analyses it is useful to parameterize

coupling between billiards within each array using the mean conductance (G) of the

MCF, which increases as the top gate populates additional modes in the QPCs. (G)

was calculated at magnetic fields where chaotic electron transport and time-reversal

symmetry breaking occur simultaneously, which is in the range 0.02 < B < 0.4 T for

our devices. The MCF in this regime can be analyzed using the RMT analysis, [28]

which plays an important role in our technique.
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Figure 3.13. Phase coherence time (T<f» and length (l<f» vs. (G) for the three
billiard arrays. The single, double, and triple billiard arrays are represented by circles,
squares, and triangles respectively.

Establishing Phase Coherence

vVe use the correlation field analysis (described in detail earlier) to measure

T<f>. Figure 3.13 shows T<f> and the equivalent phase-breaking length8
, (l<f» vs. (G)

for each array. As expected for identical material environments, all three arrays

have approximately the same phase coherence length of l¢ ~ 6 /-Lm. This value

decreases slightly as the number of coupling modes N increases, which is in line

with expectations. The suppression has been explained previously as an effect of the

increased exposure of the billiards to the 'bulk' 2DEG environment [61].

8l</> = VFT</>, where VF is the electron Fermi velocity. It should be noted that VF =
liV27fn./O.040me, and thus changes slightly over the plotted domain of (G). However, the change
is small - well within the error bars indicated.
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Measuring Hybridization

To assess the degree of hybridization occurring in the multi-billiard arrays, we

measure the average quantum energy level spacing I::1Es as determined by combining

the two previously discussed methods for extracting T¢ from the MCF: the correlation

field analysis [46] and the RMT analysis [56].

Previous research has shown that values of T¢ obtained from Eq. 3.4 and those

extracted from the correlation field analysis are consistent [28, 57]. Thus we may

extract I::1Es from Eq. 3.4 by numerical integration9
, using the values of T¢ from the

correlation field analysis along with the measured values for N, 6G, T, and (G) as

inputs.

To establish a baseline for this technique, we first examine the results for the

single billiard array (Figure 3.14(a), black circles). For comparison, the value of I::1Es

is calculated from the dot's enclosed area A via the relation I::1Es = 21rn2 /m* A. This

simple approximation shows a downward trend with (G) caused by the slight increase

in A due to decreased electrostatic depletion. Values of I::1Es measured using Eq. 3.4,

though largely commensurate with the approximation, show an even steeper decrease,

which we tentatively assign to a combination of reduction in A and also an increase

in hybridization between the wavefunctions in the billiard and QPCs.

For the two and three billiard arrays, our technique should produce significantly

9Calculations were completed using Mathematica's Nlntegrate function. Though convenient, the
automatic function often uses too coarse a grid for integrating over functions with sharp features.
Grid resolution was manually increased for our calculation, and its accuracy was tested against
several functions with similarly sharp features and known volume.
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Figure 3.14. (a) displays the result of the 6Es analysis for the one, two, and three
billiard arrays (circles, squares, and triangles respectively) and a baseline derived
from single billiard's lithographic area (gray circles). Minimum perimeter quantum
interference loops (b) for two and three billiard arrays (solid white) are superimposed
on SEM images of the devices along with typical wall depletions (dotted red).

smaller f....Es values if the devices are effectively acting as a single quantum system.

Figure 3.14(a) shows the results for the two (squares) and three (triangles) billiard

arrays, and a significant drop in 6Es is indeed observed. However, the three billiard

array shows a degree of hybridization very similar to that of the two billiard array.

'vVe propose that this can be understood by examining the characteristic l¢ values

in Figure 3.13. Recalling the Aharanov-Bohm interpretation of the MCF, we can

picture the smallest quantum interference loop as the diamond shapes shown in

Figure 3.14(b), the minimum perimeter for a loop spanning the two billiard array

is 4.2 Mm, while for the triple array it is 6.4 Mm. Thus the measured l¢ ':::::' 6 Mm easily

accommodates the minimum perimeter coherent interference loop spanning the two

billiard array, but the corresponding loop perimeter in the three billiard array is ,2: l¢
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and consequently has a much reduced likelihood of coherent transport over all three

dots.

Given these results, we can conclude that the technique produces the proper

result for 1) the baseline case of a single billiard, 2) the case of hybridized billiard

array, and 3) and finally, the case where lack of phase coherence limits the extent

of hybridization between array elements. To further substantiate our method, we

present two complementary analyses in the following section.

Supporting Analysis

We first consider the possible scenario in which each dot in an array acts as

an isolated quantum system, i.e. the wavefunctions do not couple, but are instead

contained within the square geometry of the billiard. If this is the case, then the

MCF generated by each dot in the array will be independent of the MCF from

neighboring billiards after a subtraction of the low frequency, geometry-dependent

features. This will lead to ensemble averaging of the measured MCF, such that

bGtotal = bGbilliard/VNbilliards' The solid gray lines in Figure 3.15 plot the fitted

trend in bG for the single dot and for a two billiard and three billiard array assuming

this ensemble averaging. The measured bG are shown for the one, two, and three

billiard arrays (circles, squares, and triangles respectively). The gray trend lines do

not fit to the measured data for the double and triple arrays, indicating that some
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Figure 3.15. be vs. (e) for the one (black circles), two (squares), and three
(triangles) billiard arrays. Also shown (in solid gray) are a fit to the one billiard trend,
and that trend scaled by 1IJ2 and 11.J3 to show trends expected from fluctuation
ensemble averaging. A theoretical prediction from RMT for the single billiard is also
shown (open circles).

wavefunction coupling must be occurring between the dots. The absence of ensemble

averaging has also been observed for open dot arrays in GaAs heterostructures [61].

This analysis of be can also be used to check the applicability of RMT to our

devices. Figure 3.15 includes a calculation of be = N I N2/(N2 + N",N) for the one

billiard array based on a zero-temperature prediction from RMT that includes phase

decoherence [54]. The number of physical modes in the QPCs are calculated from

the mean conductance (e) = [lINI + 1IN2]-I (2e2I h), [54] while N¢ = m* AlfiT¢

is calculated using the billiard's enclosed area A obtained from simulations of the

confinement potential [60]. The observed reduction in the measured values of be

compared to this theory is expected due to the suppression of the MCF amplitude

at non-zero temperature. The reasonably close agreement between the measured and
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Figure 3.16. Fourier analysis for the one (a), two (b), and three (c) billiard arrays.
Plotted frequency and amplitude ranges are fixed for all three devices to aid in their
comparison. For the (G) axes, the minima correspond to a single conducting mode
((G) ~ 0.5 * 2e2

/ h), and the maxima are indicated.

predicted trends in 6G for the single billiard confirms the applicability of RMT to

these devices.

Fourier analysis provides a final check on our conclusions. The power spectrum

(the modulo-square of the complex Fourier transform) for each data set is shown

in Figure 3.16 for the one, two, and three billiard arrays. By inspection, the two

billiard array (Fig. 3.16(b)) has significantly more high frequency content than the

single billiard (Fig. 3.16(a)). However, the three billiard array shows no appreciable

difference compared to the two billiard array, further confirming that the extent of

hybridization is limited by de-phasing. Recall that higher frequency fluctuations
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correspond to a larger spatial extent of electron quantum interference loops, [62]

which we would expect for larger coherent systems like the hybridized arrays [25].

Note that the mild downward trend in !::J.Es observed in Figure 3.14 for the three

devices is reflected in the power spectra, with higher frequency structure increasing

mildly with coupling strength (G).

Conclusions

In summary, we have demonstrated a quantitative method for extracting !::J.Es ,

which is a direct indicator of wavefunction hybridization in an array of electron

billiards. The arrays show hybridization over the entire range of measured coupling

strengths (N1,2 ::::::; 1 to 4). Although we have concentrated on ballistic transport, the

T¢ measurement method (RMT) that forms the basis of our measurement technique

has a corresponding expression for the diffusive transport regime [30]. The correlation

field method also has a diffusive regime analog, though it is evaluated in the universal

rather than skipping-orbit regime [49]. Thus the technique explored here could be

expanded to act as a tool across a wide range of coupled quantum coherent devices.
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CHAPTER IV

TRANSPORT IN FRACTAL ELECTRONIC DEVICES

Introduction

This chapter will explore the potential for novel, complex functionalities in

electronic circuits that are fractal in their geometry, i.e. have a fractional, non-

Euclidean dimension. For motivation, recall that our research into the statistics of

MCF in electron billiards has come to the conclusion that they are fractal over wide

range of billiard shapes and material systems [3, 4, 43, 44jl. Having established

fractal behavior in the output of a nominally Euclidean set of devices, the electron

billiards, an interesting question is: what functionality might we be able to produce

when the device itself has a fractal geometry?

We know that many natural structures have fractal geometry, from trees [1] to

coastlines [63] to clouds [64] to galaxy distributions [65] and beyond. Though there are

some that are more observational curiosities than anything else, the pervasiveness of

fractals in nature can be understood in many cases by considering the advantageous

properties that result from the scale-invariant complexity of fractal objects. For

IThe reader may also refer to the MCF subsection in Chapter III for a brief summary of these
results.
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instance, fractal trees have very high surface-to-volume ratios on account of their

fractional dimension. Fractal coastlines tend to be very effective in dispersing the

energy of incident waves. Fractal neurons [66] benefit from very high connectivities.

Such properties have made artificial fractal structures the subject of increasing

fundamental research (e.g. optical transmission [67], quantum interference [68], and

AC electron transport [69]) and technological applications (e.g. capacitor [70] and

antennae [71] designs). To begin to answer what functions other fractal electronic

devices may have, this chapter presents electrical simulations of fractal resistor

networks, which are found to generate novel, nonlinear electrical properties in a simple

gating scheme. This is followed by a proposal for implementation of these devices in

the form of fractal diffusion-limited aggregates [72] of semimetal atomic clusters2
.

2This proposal was developed in collaboration with Professor Simon Brown's group at University
of Canterbury, whose experimental apparatus and expertise will be integral to future device
implementation.
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Fractals and Fractal Devices

This section will offer an abbreviated background on fractals, fractal analysis

methods, and the artificial fractal devices that have appeared in the literature. The

reader is referred to more comprehensive reviews of fractals and fractal analyses for

further details [1, 73, 74].

Fractals

A fractal is strictly defined as an object which displays self-similarity at all scales.

Hence fractals are often referred to as 'scale-free', appearing the same to examinations

over any number of size scales. An example of an exactly self-similar fractal is shown

in Figure 4.1. However, this type of fractal can only exist as an ideality, since any

physical fractal's scaling will necessarily be cut-off at the small and large size scales

by either our ability to observe it or the constraints of the material system. For

example, the fractal nature of cloud cover [64] can only be observed as well as the

weather satellites can detect it. Furthermore, its absolute minimum size scale is set

by the smallest cloud constituent, a water molecule, while its maximum size is set by

the surface area of the Earth.

When discussing most natural fractals like clouds, trees, and coastlines, it is also

important to note that the property of exact self-similarity no longer holds. Instead

it is the statistical properties of the pattern that repeat over the fractal scaling
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Figure 4.1. An example of exact fractal sca.ling as found III a Sierpinski carpet
pattern.
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Figure 4.2. An example of statistical fractal scaling as found in one instance of the
Weierstrass-Mandelbrot function.

range. In artificial fractals, like the vVeierstrass-Mandelbrot (W-M) function [75]

depicted in Figure 4.2, variations are included by adding in some random process.

For the W-M function, this is accomplished by deliberately randomizing the phase

and/or amplitude of the constituent sine waves. For natural fractals, any number

of randomizing influences (Brownian motion, for instance) are already present in the

environment. This results in, for example, oa.k trees that vary widely in terms of

branch-for-branch correspondence, despite sharing an underlying statistical fractal

character.



46

Statistically self-similar fractals are more difficult to identify than the exactly

self-similar variety. In the situation where one does not know whether an object is

a fractal, exact self-similarity is relatively easy to pick out by examining the object

at different magnifications. Though it can be trickier than the case of the Sierpinski

carpet in Figure 4.1, the fractal geometry of such objects can often be identified

by inspection. In the statistical case, inspection may suggest self-similarity, but the

absence of an exactly repeating pattern makes the characterization qualitative at

best. Because statistical fractals are so prevalent in the natural world and are thus

studied quite widely, researchers have developed a variety of methods to evaluate the

presence and extent of an object's fractal scaling. Two methods will be highlighted

here, because of their relevance to our research.

The simplest is known as the box-counting method [73, 76] The technique proceeds

as follows: the object (Figure 4.3(a)), which is in this case a modified Koch curve, is

covered with a computer-generated mesh of identical squares ('boxes'). The number

of boxes, N(L), that contain any part of the object is then counted, and this count is

repeated as the size, L, of the squares in the mesh is reduced. N(L) gives a measure

of the spatial coverage of the object, and reducing the box size is analogous to looking

at this coverage at finer and finer magnifications. For fractal behavior, N(L) scales

according to the power law relationship N(L) rv L-D
, where 1 < D < 2. This power

law generates the scale-invariant properties that are central to fractal geometry and

manifests itself as a straight line in the 'scaling plot' of log(N(L)) versus log(L), as



47

(a)

(b)

,
It:::: [L f-1 L'-l~

JI 1'-/ b [ .?--' le
-I :;J ':b ~IJ ~ ..t:: II.":-

~,

'"
1;-'. 111 "4* :..., l- i\--,

!d

~ -,~

(c)

(Inrge)
log(L)

(smnll)

Figure 4.3. A schematic example of the box-counting fractal analysis. The modified
Koch curve (a) matches to the line of matching color in (c), the box-counting scaling
plot. The standard, lower D Koch curve matches color with the bottom line.

shown schematically in Figure 4.3(c). The gradient of the line is equal to D, which is

referred as the object's fractal dimension. For comparison, Koch curve constructed

via a different generation rule is also shown (Figure 4.3(b)). It is also a fractal, but

possesses a lower D. The two Koch curves have similar size, which means that their

box-count at large box sizes is approximately the same. The effect of (a) 's higher D

is to fill many more boxes at the smaller scales, implying a greater amount of fine

scale structure compared to the smoother, lower D Koch curve (b).

Another method for characterizing fractals is by conducting an analysis of its

'mass' scaling. The analysis is conceptually quite simple. Selecting a central point

in an object, draw a circle or box around it, and count the number of elements (say,

image pixels) that lie inside a box of that size. Expand the box, and count again.

These steps are repeated until the box grows to the size of the object, and one is left

with a data set of mass (1V!) vs. box side length (L) with the general form lV! = kL D
.
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(ag(L)

Figure 4.4. Examples of the mass scaling analysis. A square (top curve) and
line (bottom curve) reproduce their Euclidean dimensions, but a fractal object (a
simulated diffusion-limited aggregate) takes on a fractional dimension.

The results for objects of various geometries are shown in Figure 4.4. A solid square's

mass scales as the square of L, giving the expected D = 2 result. On the other

extreme, a line's mass scales linearly with L, thus D = 1. Fractals, like the pictured

diffusion-limited aggregate, scale with an exponent 1 < D < 2 (= 1.7 in this case).

All this is similar to the box-counting method, the major difference being that the

mass analysis counts within each box rather than simply counting it as full or empty.

However the result of each, the fractal dimension D, is generally equal, except in the

special case of a so-called 'multifractal' object. In this case, the mass dimension is

slightly smaller [77, 78].

Though the mass scaling analysis is easy to describe, it can be difficult to

implement properly. Consider picking a different central point on the object around
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which to examine the mass scaling. Despite being technically no less valid, the mass

distribution in its immediate vicinity may be very different than the original point,

especially if the object is spatially inhomogeneous. To mitigate this effect, it is

advisable to average the results of many instances of the mass analysis, all with

different central points. For large (f'V 1000+ pixels on aside) images it can become

computationally very expensive to arrive at a reliable result, though this problem can

be mitigated with some clever programming [72].

Given the analytical equivalence of the two methods for the objects studied in this

chapter, we primarily use the box-counting method for its ease of implementation.

By way of confirmation, the mass scaling analysis has been applied previously to

diffusion-limited aggregates similar to ours [72, 79, 80] and arrived at the same fractal

dimension.

Devices with Fractal Geometry

Given the prevalence of fractal geometry in nature and the advantages it brings

with it, it is not surprising that there is significant body of research regarding artificial

fractal devices. This began with investigations of diffusion in a fractal medium [81­

83], which was subsequently applied to the scaling of electrical conduction in random­

resistor networks, of which [84] supplies a good review. This theoretical research has in

turn lead to applications in bulk disordered semiconductors and granular metals [85,

86].
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More recently, devices with engineered fractal geometry have been appearing in

the research literature and in application. On the research side, certain aspects of the

electrical and optical properties of fractal elements have been considered in some

detail. Optically, research has concentrated largely on the infrared transmission

spectra of metallic films with fractal patterning [67, 87-89]. These fractal, sub­

wavelength aperture patterns (a Sierpinski carpet and a Cayley tree) show plasmon­

induced transmission resonances over a broad band of frequencies, which is attributed

to their hierarchical, multi-scale structure.

Research into the electronic properties of fractal devices has largely considered

the asymptotic case, where fractal scaling is assumed to continue over all scales. This

approach has been useful in determining the 'bulk' electrical properties of fractal

objects. For example, the conductance G of a fractal network is ex: LD
-

2
-

a
, where

L is the linear size of the network, D is the fractal dimension, and a is an exponent

characterizing the "anomalous diffusion" encountered by an electron on a fractal

network [90]. The AC response of fractal networks, particularly the scaling properties

of their impedance, have also been considered in a variety of fractal systems [91}.

The case of fractal networks or elements with limited scaling ('real' fractals,

in other words) has also been considered in some instances. These investigations

have lead to the discovery of anomalous electrical properties dependent on the

fractal geometry of the device. Calculations involving passive circuit elements on

a Sierpinski gasket network reveal log-periodic oscillations of the device impedance
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vs. frequency [69]. Experiments on a lithographically defined fractal tree [92] and

Sierpinski gasket [93] have found interesting fractal phenomena in the device input

impedance and magnetoresistance respectively. On the applied side, research into

capacitors with fractal interfaces shows a large increase of capacitance per unit area

over conventional designs [70). Fractal electronic devices have even found their way

out of the laboratory in the case of antenna [71], where the fractal's multiscale spatial

structure allows greater performance in applications that require multi- or broadband

antenna response, like cell phones.

This broad array of interesting and useful phenomena in fractal devices has

informed our investigations into the DC electrical properties of fractal electronic

devices. In our approach, detailed below, we simulate the response of fractal circuits

to structural modification via electrostatic gates.

Fractal Circuit Simulations

Simulation Details

All the electrical simulations in this chapter were carried out using a Mathematica

program that took 4-color images as input and computed the resistance ofthe 'circuit'

using a circuit simulation technique known as modified nodal analysis (MNA) [94].

The basic process for the program is to translate the image into a matrix of current

junction rules. Figure 4.5 shows the translation from image pixels to electrical circuit

elements. l'or instance, a black pixel (Figure 4.5(a), 2nd column, 2nd row) with
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Figure 4.5. An example image to circuit translation. A small (6 x 4) pixel 4-color
image, (a), is equivalent to the electrical circuit, (b), with each appropriately colored
node (dots) taking the place of each pixel. 'White pixels, which represent empty space
in the model, drop out during the translation.

nearest neighbors of one red pixel, one white pixel, and two black pixels is translated

into a junction with connections to two resistors (black) and a DC source (red)

(Figure 4.5(b)). The white pixel is interpreted as an infinite resistance with no

corresponding connection.

The translation of a circuit to junction rule matrix via NINA essentially involves

writing down junction rules to construct an (n + m) x (n + m) matrix involving m

voltage sources (red pixels) and n nodes (junctions). The process for this can be

reduced to a few simple rules, but the matrix itself can quickly become very large.

For instance, Figure 4.5's circuit translates to a 28 x 28 matrix. Figure 4.6 shows

a smaller circuit (a) and its corresponding matrix (b) to illustrate the process. For

a more detailed look at the program's contents and NINA, the reader is referred to

Appendix A.

This approach yields a simple, relatively flexible method for determining the DC

electrical characteristics of circuits with arbitrary geometries. It is thus a good
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Figure 4.6. A small-scale demonstration of the MNA technique. A circuit with a
single DC voltage source (V), resistors (1- 5), and nodes (a - e) can be written out in
terms of its current junction rules as in (b). The voltages at each node (va, Vb, etc.)
and the circuit's current can be calculated by inverting the matrix shown.

first step toward charting the electrical response of our fractal circuits. Concerning

fractals, it is important to note that this technique does become very computationally-

intensive once the image is rv 106 pixels (nodes) in size:!. This limits our current

simulations to fractals with ;S 3 orders of magnitude of scaling, but this is fortunately

also the regime in which most natural fractals exist.

The Sierpinski Carpet

vVe begin by examining how to transfer the inherent nonlinearity of the fractal's

spatial geometry into a nonlinear response in a device's electrical characteristics.

One method for this is to deplete areas of the fractal device with a nearby or overlaid

electrostatic gate. Removing features from a conducting pattern in this way will

translate into an electrical response.

3More specifically, this upper limit depends on the number of current-carrying pixels (black, red,
green), so larger, but very spa.rse images ca.n be computed as quickly as smaller, denser images.
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First, our focus is on fractals where the pattern repetition at different

magnifications is exact. These fractals are relatively simple compared to statistical

fractals, such as diffusion-limited aggregates (DLAs), where only the statistical

properties of pattern repeat at many scales. This simplicity allows correlations

between a circuit's spatial geometry and the resulting gate characteristics to be more

easily identified. Nevertheless, the scaling properties of statistical and exact fractals

depend on D in the same manner, such that properties identified for exact fractals

will be readily transferable to statistical patterns.

Figure 4.7(a) shows an exact fractal known as the Sierpinski carpet [95], which

was chosen for this study, because its high D value (= 1.89) is similar to that of

our proposed DLA-based fractal circuit elements. For the 'Sierpinski circuit', square

patterns (shown in white in Figure 4.7(a)) repeat at many size scales, at a rate

determined by D. These squares represent insulating regions and therefore create a

fractal distribution of conducting channels (black regions). Current passes through

these channels from the source (red) to drain (green) electrodes, routed by a pair

of narrow side-gates. Two gate architectures are investigated: a pair of symmetric

gates positioned to be level with the central square of the circuit (i.e. with positions

indicated by blue arrows in Figure 4.7(a)) and a pair of symmetric gates with positions

offset from the central square (red arrows).

To simulate the effect of electrostatically depleting the material in line with, for

example, the central gate pair, a series of images was produced, each one representing
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Figure 4.7. Architecture and simulation results for a 2 iteration Sierpinski circuit.
The device architecture (a) has broad source (red bar) and drain (green bar) contacts
on either side. The positions of the two different gate configurations are indicated
with pairs of arrows, and the maximum extent of the gating is shown in matching
color. Two simulation instances for the central gate pair (b) correspond to the data
points for 1 and 7 pixel depletion in (c). The results of the circuit simulations (c) are
shown in terms of resistance R (upper traces) and dR/dx (lower traces) vs. depietioll
x measured in pixels. The center gate (blue) and offset gate (red) configurations
correspond to the appropriately colored traces.

a different 'voltage' applied to the pair of gates. The original pattern (Figure 4.7(a))

represents the situation with no voltage on the gates. The next image in the series

has the same pattern except with a single pixel removed from each side along the

line of the gate. Figure 4.7(b) shows two simulation instances corresponding to 1 and

7 pixel depletions. The total series of simulated circuits consists of 10 images, one

ungated and nine others with 1 - 9 pixels depleted. Figure 4.7(c) shows simulation

results for the '2 iteration' Sierpinski circuit4, where we have calculated the differential

4Two iterations refers to two steps through the fractal generation process from the original
generator, which is a single white box surrounded by black. Each step consists of copying the
generator, scaling it by 1/3, making eight copies, and translating them to surround the original
pattern. The side length of the generated image is multiplied by 3 for every step, which in this case
yields an image 27 pixels on a side.
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Figure 4.8. Architecture and simulation results for a 4 iteration Sierpinski circuit.
The device architecture (a) has broad source (red bar) and drain (green bar) contacts
on either side. The positions of the two different gate configurations are indicated
with pairs of arrows, and the maximum extent of the gating is shown in matching
color. The results of the circuit simulations (b) are shown in terms of resistance
R (upper traces) and dRjdx (lower traces) vs. depletion x measured in pixels. The
center gate (blue) and offset gate (red) configurations correspond to the appropriately
colored traces.

resistance of the circuit as a function of the electrostatic depletion from the side gates.

Depleting the current-carrying channels (black pixels) causes a series of differential

resistance responses whose amplitudes are, to first order, determined by the width of

the remaining conducting channels, but whose frequency (in x space) is dictated by

the fractal geometry of the circuit.

These simulations were repeated on the equivalent Sierpinski circuit featuring

4 iterations (Figure 4.8). The narrow gates have the same positions as before,

although now they deplete over cross-sections 81 pixels in length instead of 9. The

two additional iterations give this circuit 9 times the area of the 2 iteration circuit

and feature sizes ranging from one pixel (the same as before) to 81 pixels. This

corresponds to an additional rv 1 order of magnitude in fractal scaling over the
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Figure 4.9. Sierpinski circuit (4 iteration) dR/d.T vs. depletion for three different
gates. The dR/dx curves for the offset line gate (red), centered line gate (blue), and
a full width gate (black) on the 4 iteration carpet are shown in (b). The full width
gate is shown in schematic (a), and is essentially a superposition of line gates at every
pixel position across the pattern.

previous simulation. The frequency (in x space) of the features is once again dictated

by the fractal geometry of the circuit. However, the increase in fractal scaling leads

to a far more complex differential resistance response (Figure 4.8(b)).

Further complexity in the differential resistance can be induced by considering

gates that address the entire width of the carpet. The results of this gate configuration

on the 4 iteration carpet are shown in Figure 4.9. A full width gate is equivalent to

a superposition of line gates at every pixel position across the image width, which

adds significantly to the variety and amplitude of features in the dR/dx curve. The

correspondence of features in dR/dx to features in the carpet can still be made without

much difficulty, but the well-defined cyclic nature of the line gate curves is complicated

somewhat by simultaneously depleting at all positions.
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Figure 4.10. dR/dx of a Sierpinski circuit compared to a non-fractal circuit (main
panel), and the corresponding patterns that formed the circuit. The Sierpinski Carpet
and its dR/dx trace are shown in blue.

Finally, we consider how a non-fractal, but still finely-featured, pattern compares

to these fractal patterns. There is clearly a vast variety of patterns that could be

considered, but in order for the comparison to be informative, the pattern should

match the large scale features of the Sierpinksi carpet. Figure 4.10(bottom right)

shows a selected pattern, which retains the large central square of insulating material

so that the background increase in dR/dx as the same trend compared to the 4

iteration Sierpinski circuit. The fractal structure around the central square is replaced

with a grid of white, single-pixel squares. Simulated dR/dx results for each pattern

are shown in Figure 4.1O(main panel).

The Sierpinski circuit produces comparatively larger features in dR/dx over

intervals of depletion, which translates into a more sensitive response to gating than

the grid pattern circuit. Clearly, a carefully selected 'Euclidean' pattern of this type
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could produce single dR/dx features in excess of the fractal, but this is largely beside

the point. The interesting characteristic of the Sierpinski circuit's response is its

cyclic pattern of enhanced and suppressed dR/dx over the whole range of depletions.

This sensitivity (or lack of it over certain depletion regions) and its predictability

may be of use in application.

The Diffusion-Limited Aggregate

In anticipation of our proposed implementation of a gated fractal circuit element,

we also consider simulations of the diffusion-limited aggregate. The locations and

shapes of both the electrodes and the gates can be chosen to maximize connections

to the fractal circuit element. Figure 4.11 shows two possible configurations where

the truncated circle drain connects many branches of a single simulated DLA pattern.

Gates adjacent to the source electrode could then be used to incrementally reduce the

number of connections to the drain, routing current through the remaining branches.

The latter gating scheme (Figure 4.11(b)) was chosen to match the symmetry of

the pattern (like the linear gates in the Sierpinski carpet), but not for its ease of

implementation. Gating electrostatically around an arc would require a large number

of independent gates that could be switched on sequentially, each forming a small

linear part of the overall arc shape. Considering the physical size (rv 3 {Lm in diameter)

of the proposed circuit elements, this may prove challenging to achieve. Figure 4.11 (a)
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Figure 4.11. Schematics of two gating schemes for a DLA pattern. Current flows
through the island from source (red) to drain (green), routed by two electrostatic
gates (gray). A simpler, plunger gate system (a) and an arching gate system (b) are
two possible gating implementations for this circuit.
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Figure 4.12. Simulation results for DLA circuits in two gating configurations with
R (dark blue) and dR/dx (light blue) displayed. The labeling (a, b) is the same as
for Figure 4.11.

shows a simpler implementation that sacrifices some of its ability to address as many

branches of the pattern as possible.

The simulation results for these patterns are presented in Figure 4.12. The

resistance and dR/dx results are reminiscent of the Sierpinski circuit curves, despite

the change in geometry. This is encouraging for future device implementations in

diffusion-limited aggregate-type devices. However, one consideration will be whether
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the predictability of feature positions in the depletion graph is of use. Since DLA

is a statistical fractal, only the statistics of the features (average number, average

separation, etc) will remain constant between DLA patterns.

Atomic Cluster Aggregates as Fractal Circuit Elements

Motivated by our simulations, we focus on circuits formed from semi-metallic

elements that 'self-assemble' on atomically flat surfaces via modified diffusion-limited

aggregation. This self-assembly process has the advantage of minimizing the waste

of material associated with traditional lithographic fabrication techniques and also

enables the generation of whole arrays of complex, multi-scale structures in a single

deposition step. The size, shape and fractal properties of these structures can be

controlled by the growth conditions, which offers a high degree of flexibility for

device fabrication. This section will discuss briefly how the patterns are currently

formed, characterize their fractal properties, and outline methods for tuning the

fractal properties and implementing the finished fractal electronic devices.

Experimental Background

Self-assembled, fractal patterns have previously been observed in a variety of

metallic systems under varied growth conditions [79, 96-98]. Here the focus is on

depositing high purity (99.998%) Sb4 clusters on highly-oriented pyrolytic graphite

(HOPG) in an ultra high vacuum, which results in highly branched Sb patterns [99].



62

substrate

to ion pump

~

sample
insertion

::: appamlns
- ~

", .
"., .

Figure 4.13. Deposition apparatus and SEM image of the Sb islands. The UHV
deposition apparatus (a) is used to create islands like those shown in the SEM image
(b). The scale bar = 111m.

Figure 4.13(a) shows a schematic of the fabrication process, which uses thermal

evaporation to generate and deposit a beam of atomic clusters on a substrate.

Figure 4.13(b) shows a representative SEM image of 10 monolayer-thick5 Sb 'islands'

deposited on the substrate at a rate of 0.2 A/s. The apparatus allows control of

many experimental parameters. Two that will be key to device fabrication are the

substrate temperature and deposition rate for reasons that will be elaborated on

later in the section.

5Note that this refers to the number of monolayers that would be found in an Sb film that
uniformly covered the entire area exposed to the beam. This is a common way to measure the
amount of material deposited in these experiments, and is calculated from crystal deposition monitor
data.
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Island Formation and Fractal Analysis

The model for the formation of these islands is based on classical diffusion-

limited aggregation of the 8b particles. In DLA models, particles are released from

a boundary on the substrate and diffuse freely until they encounter a fixed particle

or surface. Once this encounter has occurred, the particle has its position fixed and

the process is repeated. Figure 4.14(a) shows the simulated island generated from

~ 100000 particles. This type of DLA structure has been shown to have statistical

fractal properties [72].

To facilitate a visual comparison with the physical 8b islands, in Figure 4.14(c) we

have traced out the edge of one of the 8b islands. A red 'backbone' pattern to highlight

the coarse scale branching structure is also included. Whereas the coarse scale

structure of the 8b island is visually reminiscent of the DLA simulation, the island's

edge clearly lacks the simulation's fine structure. This absence of finer structure is

due to two phenomena that do not occur in the classic DLA model: particle diffusion

along the edge of the island and coalescence of the particles with the existing island.

A simulated pattern6 that incorporates both of these phenomena is presented in

Figure 4.14(b). Additionally, this simulation allows multiple particles to impinge

anywhere on the substrate (as if from a beam of atomic clusters) rather than single

particles released from a boundary. By tuning the relative rates of particle deposition,

6This simulation program was written by Dr. David McCarthy at University of Canterbury. A
kinetic Monte Carlo method, which uses probabilistic (nondeterministic) techniques to evolve a
dynamical system. For more information, the reader is referred to [100, 101]
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Figure 4.14. (a) A simulated DLA pattern, (b) a simulated island with edge diffusion
and coalescence of clusters included in the DLA model, and (c) an Sb island with
'backbone' branching structure. The island width in (c) is ~ 2.2!'1m.

island edge and island 'corner' diffusion (which are energetically distinct), and island

reordering (coalescence), we can simulate a continuum of island structures. These

can range from highly-branched DLA-like patterns to completely compact patterns

devoid of branching, e.g. approximately circular islands. The example simulation of

Figure 4.14(b) shows one 'intermediate' island that is similar to the physical islands

observed in Figure 4.13(b).

How fractal are the islands? This question is investigated by applying the box-

counting method [73, 76] to the edges of the islands? The results of the box-count are

shown in Figure 4.15 for the three patterns of Figure 4.14. To allow direct comparisons

between the size scales of the three islands, the L values are normalized using the

short axis of the island, Lo.

7Note that analysis of the filled-in pattern would introduce significant error to this technique by
making a large section of the analyzed image two-dimensional. Boxes in this region would always
be filled, regardless of box size. Though the features of the pattern would still be captured in the
box-count in this case, resolving them in log-log space with a large filled box background proves
difficult.
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Figure 4.15. The box-counting analysis for the simulated DLA island of
Figure 4.14(a) (blue circles), the modified DLA simulated island of Figure 4.14(b)
(open red circles), and the physical Sb island of Figure 4.15(c) (green diamonds). The
bars and arrows in corresponding colors indicate the extent of each island's fractal
scaling range. In those scaling range~, Llack liIle~ indicate the D = 1.7 gradient. The
perimeter of each pattern is also indicated at the fine scale end of the plot.

These scaling plots are important for quantifying the fractal parameters that

generate the favorable functional characteristics mentioned earlier in the chapter.

In particular, characteristics such as high connectivity, dispersion, and area/volume

ratios all arise from the repetition of spatial structure, the extent of which is

mapped out by the scaling plots. These characteristics can be enhanced by adjusting

two factors. The dimension D describes how the patterns occurring at different

magnifications combine to build the resulting fractal shape. Since D corresponds to

the gradient of the scaling data, it charts the rate at which structure in a pattern

is magnified: a high D value corresponds to a higher rate, which leads to a higher

ratio of fine to coarse structure in the pattern. The second factor is the magnification
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range over which this fractal scaling occurs and this is set by coarse and fine scale

cut-offs.

The scaling plots of Figure 4.15 allow an investigation of how the differing growth

conditions of the islands of Figure 4.14 affect their D values and their magnification

ranges. The D value for the simulated island of Figure 4.14(a) matches the well­

established value for DLA of 1.7 [72]. This scaling 'rate' is preserved for all three

islands, indicating that the changing growth conditions have not modified the basic

particle dynamics of the fractal generation process - all three islands are formed

from a DLA process. However, the changing growth conditions have reduced the

magnification range over which the DLA operates, as illustrated by the colored bars

at the base of the scaling plot. This corresponds to a gradual suppression of fine scale

branching by edge diffusion and cluster coalescence. To emphasize the importance of

this reduction of magnification range on functional properties, the perimeter lengths

of the three islands are noted in Figure 4.15. The perimeter of the pure (simulated)

DLA island of Figure 4.14(a) has a perimeter of 180 fJ,m, reduced to only 25 fJ,m

through fine-structure suppression. This reduction will directly impact, for example,

boundary to area ratios and also the number of branches available for connections,

both of which are potentially useful generic properties for circuit designs.

The Sb island of Figure 4.14(c) scales over approximately 0.5 orders of magnitude,

perhaps too small a range to be considered fractal [102, 103]. For our proposed fractal

electronic devices, it is therefore informative to consider the potential for increasing
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the fractal scaling region. Fortunately, it has been shown that the island growth

conditions can strongly affect the structure of the islands, for example by increasing

the deposition rate [99]. With further tuning of these growth parameters as well

as cluster size [97] and substrate temperature [104], the islands will develop finer

structure. This decrease of the fine scale cut-off and associated increase of the fractal

scaling region will improve the effectiveness of the islands as fractal electronic circuit

elements. Note that the fundamental minimum for feature size is set by the size of

the impinging clusters « 1 nm in the case of Sb4 ), though in practice this limit will

be difficult to achieve.

Fractal Scaling Enhancements

The fractal scaling range can be extended by increasing the coarse scale cut­

off, achieved by growing larger islands (as measured by the island diameter Lo).

Depositing more material, as shown sequentially in Figure 4.16(a,b,c) for 5 monolayers

(ML), 10 ML, and 40 ML respectively, results in larger, more branched structures.

However, when considering island size, it is important to remember that there are

physical constraints on both the minimum and maximum values of the island diameter

Lo. The minimum value is of interest for applications that may require large packing

densities. The minimum size of a branching island is dictated by the so-called

'critical radius' (rc ) of the island. rc is the size at which an island will transition

from a compact, circular shape to a branched structure. This transition changes the
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Figure 4.16. Comparing the SEM image~ in (a), (b), and (c) demonstrates the
growth of the islands at a constant (0.03 A/s) deposition rate with 5, 10, and 40
effective monolayers on the substrate respectively [99]. The images in (c) and (d)
show the two types of structure nucleation: at point defects (examples colored red)
and step edges (examples colored blue). Scale bars = 1.um.

mathematical relationship between the perimeter of the island and the area that it

encloses and can therefore be determined by the analysis shown in Figure 4.17 [96].

The knee in the data shows a transition from circular island geometry (with a smooth

perimeter of D = 1) to a branched structure (with a perimeter of D > 1) at 0.3 ~tm.

This minimum island size can be decreased significantly by depositing material at a

faster rate [99].

The maximum island size is set primarily by the distance between neighboring

islands. Since islands nucleate on locations of 'roughness' on the substrate surface

(e.g. point defects and step edges), the maximum island size can be controlled by

the distance between surface features. Figures 4.16(c) and (d) show examples of

point defect nucleation (exampIes are highlighted in red), which produces roughly
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Figure 4.17. Island perimeter vs. island area showing the critical branching radius
on log-log axes. Each data point represents an individual island. All islands, of
varying sizes, are grown under identical conditions. The dotted line is a guide to the
eye, showing the behavior expected for purely Euclidean (ellipsoidal) islands. The
critical radius C" c ) represents the point at which the data deviates from this behavior,
indicating the formation of branches. Perimeters and areas vvere measured from SEM
Images.

symmetric islands, and step edge nucleation (examples are highlighted in blue) which

promotes growth radiating from the edge. The ability to manipulate surface features

will also be central to future circuit designs: for example, for connecting the islands

between source and drain electrodes. Focused ion beam (FIB) milling may be useful

for precise patterning, since FIB features have previously been shown to act as

artificial nucleation sites for the islands [105]. Standard lithography techniques can

also be used to define boundaries restricting the islands to selected substrate regions

so that they do not merge with other circuit components.

A final practicality involves the substrate material. HOPG is currently used

by Professor Brown's group, which is a conductor (~ 4 x 10-7 n·m) in the plane
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parallel to its surface. This is certainly problematic for studying the islands as

elements in electrical circuits. Mica is a possible alternative substrate material,

because of its low surface defect density and insulating properties. However, the

electrostatic and crystalline properties of its surface may not be ideal for observing

the cluster diffusion necessary to create DLA-like structures. The cleavage plane

of muscovite mica contains randomly distributed K+ atoms, giving the surface a

polar character and perhaps interfering with cluster diffusion [106]. Also, the lattice

mismatch between mica and typical metallic materials is rv 10% compared to rv 50%

on HOPG, which will increase the substrate-cluster interaction, also inhibiting free

diffusion [107]. Alternatively, the adhesion of the fractal islands to the HOPG surface

is quite weak [97], which may enable post-deposition transfer of the islands from the

original HOPG substrate to a more strongly attracting insulating substrate.

Conclusions

Fractal geometry is prevalent in a wide variety of natural and manufactured

devices and provides many functional advantages over more conventional, Euclidean

systems. Electrical simulations demonstrate that novel, non-linear transport behavior

can be generated from circuit elements with fractal geometry. Furthermore, increasing

the fractal scaling range of the circuit increases the complexity and extent of these

non-linearities. We propose extending fractal geometry to micron-scale electronic
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circuits and using self-assembled nanocluster aggregates as a platform for such studies.

The growth dynamics of these aggregates can be adjusted to tune the 'strength' of

their fractal characteristics, which should allow a detailed experimental study of how

the extent of fractal scaling affects carrier transport.



72

CHAPTER V

TUNNELING TRANSPORT IN QUASI-1D NANOPARTICLE ARRAYS

Introduction

The nanoparticle arrays investigated in this chapter were designed as a next step

from the few element limit of the electron billiard system to a quantum system with

hundreds or perhaps thousands of individual elements. As mentioned in Chapter

I, the analogy between the two systems was based on calculations that place gold

nanoparticle arrays with total length = 200 nm and nanoparticle diameter = 3.5 nm

in a similar carrier transport regime as the electron billiards. This transport regime

(the 'semiclassical' regime) requires phase-coherent electron transport as well as a

Fermi wavelength (AF) that is a small fraction of the array element size. In the

electron billiard arrays, the phase coherence length, l<jJ, ~ 6 !tm or between 2 and 6

times the linear extent of the array. In gold, measured l<jJ values at ~ 300 mK range

from 3 to 12 !tm [108, 109], which are far in excess of the nanoparticle array length.

The AF to nanoparticle diameter ratio (0.5 nm to 3.5 nm) is within a factor of 3

compared to the electron billiard's ratio (35 nm to 750 nm)l

These simple calculations are encouraging, but transport through the nanoparticle

IThis result assumes a carrier density = 5.9 x 1022 /cm3
•
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Figure 5.1. Coulomb blockade oscillations in an electron billiard. The period of the
oscillations is labeled, and corresponds to the classical charging energy necessary to
add an electron to the blockaded billiard.

arrays is dominated by the Coulomb blockade effect at low temperatures. Coulomb

blockade occurs in systems where tunnel barriers (often referred to as tunnel junctions)

separate the conducting elements from the source and drain electrodes. This results in

a 'blockade' of current until a tunneling electron can pay the classical charging energy

price of the conducting element (island), which set by its capacitance. The effect can

be observed in electron billiards by pinching off the quantum point contacts to create

tunnel barriers between the 2DEG and the device. Figure 5.1 shows an example in

the weak tunnel barrier regime, where there is a small background tunneling current

in addition to the Coulomb oscillations.

In the nanoparticle arrays, the tunnel barriers are formed by the insulating ligand

shells on each gold nanoparticle that prevent them from clumping together in solution.

This consequently places all transport between array elements in the tunneling regime,
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which is quite different than the default electron billiard configuration. As our

experiments will demonstrate, this has profound effects on electron transport in the

nanoparticle arrays, and is an important consideration for future experiments with

these devices.

This chapter will briefly cover the theoretical underpinnings of our experimental

results, detail our experimental efforts to fabricate and electrically characterize

these nanoparticle tunnel junction arrays, and finally offer a perspective on future

experiments for realizing our original research intent.

Transport in Arrays of Tunnel Junctions

This section will present the background for the experimental and analytical

details of the following sections. Building on the behavior of a single Coulomb­

blockaded metallic island, a brief account of the Coulomb-blockade in many junction

arrays will be presented. Finally, a review of the relevant contemporary literature

in experiment and modeling will complete the necessary basis for understanding our

experiments and analysis. For further reading and more detail, the reader is referred

to the citations in the following pages and also some excellent reviews of Coulomb

blockade phenomena [110, 11:1-].
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Theory of Coulomb Blockade

For the barrier-metal island-barrier system shown schematically in Figure 5.2(a),

one's expectation would be for electrons to tunnel from the lefthand electrode to

the island and subsequently to the righthand electrode. This would depend on the

barrier height, barrier width, and various material parameters. In practice, there is

one more, very important consideration: the Coulomb charging energy of the island.

This is a classical effect, but manifests itself in the energy spectrum of the island as

2

a gap = 2 x ;C' one multiple of the classical charging energy for the electron, and

one for the corresponding hole as shown in Figure 5.2(b).

In this case, there is no longer a state in the island at the Fermi energy, EF , and

so current will not flow from one electrode to the other. To induce current to flow,

there must be either an applied bias between the two electrodes or the energy levels

of the island must be shifted until an energy level is in resonance with EF , perhaps

by a biased gate near the the island. The first of these two situations is shown in

Figure 5.2(c). In the case of an applied bias between the source and drain electrodes,

2

once the source chemical potential JLs is raised at least ~, carriers can tunnel freely
2C

from the source to the island and to the drain (see Figure 5.2(d)). Increasing the

bias increases the rate of tunneling and hence electrical current, since an increasing

number of island states become available for transport. The bias required to overcome

blockade is called the threshold voltage, vt, and the ideal case has the I-V behavior

shown in Figure 5.2(e).
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Figure 5.2. Coulomb blockade in a single metallic island. A schematic of the model
system (a) has the energy level diagram shown in (b). The island is assumed to be
small enough to have a discretized energy spectrum as depicted. An applied bias
between the source and drain electrodes (c), suppresses the blockade once the source
chemical potential /-l.s is raised by e2 /2C (d). This corresponds to the region of (e)
above vt. The result of blockade on the island's current-voltage characteristic is shown
in (e).

By instead adjusting the island's energy with a gate (see Figure 5.3(a)), the island

can be shifted on- and off-blockade as a function of gate potential, Vq . Formally, the

electrostatic energy of charge Q on the island can be represented by

Q2 2
E = -QVg + 2C = (Q - Qo) /2C + f(Vg , C) (5.1 )

where C is the capacitance between the island and all the components of the system,

and Qo = CVg . In the second expression, f(Vg , C) is an additive quantity that is

independent of Q. As Vg (and hence Qo) is changed, it shifts the allowed charge

states between two extrema. In the first (Figure 5.3(b)), Qo = N e and an integer
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Figure 5.3. The Coulomb blockade effect in a gated single island. A schematic
geometry (a) has an energy level diagram like Figure 5.2(b). By shifting the gate
voltage Vg (= Qo/C), the energy level spectrum of the island moves cyclically between
two states depicted in (b) and (c). See main text for details.

2

number of electrons minimizes E. This results in the usual ~ energy gap and the
2C

island is on-blockade. However, when Qo = (N + 1/2)e, the energies for the island

having N electrons and N + 1 electrons are degenerate and the island is off-blockade.

In practice, sweeping Vg will result in a series of peaks in the device conductance,

separated by e/C, the voltage required to shift Qo = (N + 1/2)e to Qo = (N + 3/2)e.

This model [110, 112] does not explicitly account for finite temperatures, however

the intuitive expectation - that the conductance peaks will shift from zero T delta

functions to peaks with width <X kBT - is correct. 2

The situation is further complicated by islands (such as ours) small enough to

have energy level spacings> kaT, however this instance will not be of concern to

our experiments. Single island and island array gating and the discretized energy

2Specifically, the line shape becomes G/G"eak ~ cosh- 2 (I/kDT) at finite T [111]
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Figure 5.4. A single island (a) vs. an array of islands (b) in the tunneling regime.
VL , Vn , and Vg are the voltages on the left and right electrodes and a gate. Each
island is capacitively coupled to the surrounding islands, the electrodes, and the gate.

spectrum of the gold nanoparticles will likely playa role in future experiments. These

will be discussed later in the chapter.

Coulomb Blockade in Tunnel Junction Arrays

In view of the expected geometry of our nanoparticle arrays, i.e. a ID or nearly

ID chain of spherical gold particles aligned along a DNA molecule's backbone [113,

114], it is important to review how the physics of a single pair of tunnel junctions

translates to many element arrays of tunnel junctions. The situation is illustrated

in Figure 5.4. The electrostatic energy of an arbitrary charge configuration can be

calculated (somewhat arduously) after [115] by assuming that all the inter-island

capacitances are identical. This model neglects the presence of any gates and assumes

a very high degree of uniformity within the tunnel junction array. These constraints

are appropriate for some situations [116], but the nanoparticles in our arrays are

somewhat poly-disperse (i.e. of varying size), making a model introduced by [117]
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more appropriate. That model's general expression for the array's electrostatic energy,

E = ~ I)Qi + qi)Ci-/(Qj + qj) + VLQL + VRQR + L v:extQi (5.2)
ij i

is an extension of Equation 5.1, summing over all the islands in the array. The

notation is defined as follows: Qi is the charge on the i-th island. VL (Qd and VR

(QR) are the voltages (charges) on the left and right electrodes respectively. Cij is the

capacitance matrix for the array whose diagonal contains the sum of all capacitances

associated with the dot and off-diagonals are the negative of the interdot capacitances

(capacitance between i-th island (row) and j-th island (column)). v:ext is the voltage

on the i-th island due to elements 'external' to the array, i.e. the left and right
x x

electrodes and gate, and = L Cx L Cijl Vx where L is a sum over islands j that
x j j

neighbor the electrode x = L, R, g.

This description is nearly equivalent to [115] and makes similar approximations to

make subsequent calculations, assuming a constant capacitance C between islands and

a constant capacitance Cg between each island and the gate. The most important

addition is including disorder in the form of a randomized, offset charge qi, which

represents an effective charge on the i-th island due to nearby, static, charged 'defects'.

This is a continuous variable, since the distance from defect to island can vary

continuously. It is assumed that 0 < qi < e, since mobile electrons should be able to

compensate for local defects in integer multiples of e. Though this model of disorder

doesn't specifically treat the case of varying island size (varying Cij ), it has a similar

effect in that shifting Cij's will also offset the energy barriers on each island.
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Thinking in terms of a single island (Figure 5.4(a)), an offset charge of this sort

would shift the energy necessary to move a charge on to the island (e1/;;). Extending

this to an array of many islands, the effect of this type of disorder would be to

randomize the Coulomb energy barriers of each island. An applied bias to the left

electrode less than 1/;; for the array overcomes a fraction of the energy barriers in

adjacent islands. Increasing the applied bias overcomes a larger fraction of barriers

until eventually 1/;; is reached, meaning that there is at least one continuous path of off-

blockade islands from source to drain. Raising the bias beyond 1/;; simply adds more

and more paths until (eventually) all of the islands' energy barriers are overcome, and

the I-V characteristic resembles that of a single off-blockade island.

However, it generally takes a high bias to accomplish this last situation, and

research [117] has found that in the intermediate region between threshold and entirely

off-blockade,

V
I rv (- - ])(1/;; -- (5.3)

where ( takes on the values of 5/3 and 1 for 2D and ID arrays respectively. In the 2D

case, the exponent is calculated using the Kardar-Parisi-Zhang interface model [117,

118], where in this case the interface is defined by how far a mobile charge can

move toward the drain electrode for a given V. In the strict ID case, there is only

one pathway from source to drain, meaning that as soon as V = 1/;;, all islands are

necessarily off-blockade, and the behavior reverts to the single island (linear response)

case. In combination with the prediction that 1/;;(T = 0) = aNe/Cg in the limit C «
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Cg , the model sets out a good picture for the zero-temperature I-V characteristics of

tunnel junction arrays3.

Two of this model's limitations, namely the requirements that the thermal energy

is much less than the charging energy and the inter-island capacitances are much less

than an island's self-capacitance (C « Cg ), are addressed by a recent extension [119].

The main results of this extension are a derivation of the dominant vt temperature

trend,

vt(T) = vt(O)[l - p(T)/pc] ~ vt(O)[l- 2bkB TP(O)/pc] (5.4)

inclusion of nearest-neighbor, inter-island capacitive coupling, and the prediction that

the power-law onset (Equation 5.3) will remain unchanged4
. ~Particularly relevant to

our experiments are the first and last of these accomplishments. The first (analytical)

expression in Equation 5.4 states that VT will be suppressed from its zero temperature

value (vt(O)) as the ratio of p(T) and the percolation threshold Pc, which are the

fraction of tunnel junctions with no Coulomb barrier at temperature T, and the

minimum fraction of junctions with no Coulomb barrier that guarantees a continuous

path of junctions from source to drain. This is illustrated conceptually in Figure 5.5.

Starting at zero T (a), when the array has a distribution of Coulomb barriers (!1E)

set by randomly distributed background charges, raising T gradually overcomes a

3N is the number of elements in the length of the tunnel junction array, and a is a factor
dependent on the array dimensionality, = 0.5 for 1D and = 0.338(1) for a 2D square lattice.

4The complexity and extent of the analytical and numerical calculations that form the basis of
this extension are significant and will thus only be covered briefly here. The interested reader is
referred to the relevant research papers [8, 119]
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Figure 5.5. An illustration of percolation on a nanoparticle junction lattice.
Coulomb barriers on each junction are randomly distributed at zero temperature
in (a), fractions of which are overcome by increasing kBT energy broadening (b, c).
\It ~ 0 when there is a path (highlighted) with zero energy cost connecting source
and drain (d). Red (green) rectangles represent (un)blockaded junctions, and the
width of the rectangles represent the magnitude of the Coulomb barrier.

larger (Figure 5.5(b)) and larger (c) fraction of the Coulomb barriers until a single

path connects source and drain (d) at Pc.

Assuming a relatively flat distribution of 6.E's in the tunnel junction array, p(T)

can be approximated by 2bkB T P(O) (Equation 5.4), where band P(O) are geometry-

dependent constants. Specifically, bkBT is a measure of the thermal broadening

of states above and below EF in each nanoparticle. Since the tails of the state

must be ~ kBT, b ~ 2 is a reasonable assumption. The exact value of b =

1.2 [119] depends on the density of states in an island (nanoparticle). P(O) is a

factor that depends primarily on the ratio of the inter-island capacitance and the

total capacitance of an island, and is thus dependent on the nanoparticle and array

geometry, but independent of the uniformly random background charges.
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The model was developed to extend the zero temperature model developed in [117],

and was validated directly [8] and via comparison to experiments in the literature [120,

12:1-]. Because our devices are analogous to these, the model's predictions are expected

to apply to our results. The quality of agreement is analyzed later in this chapter.

Nanoparticle Device Fabrication and Architecture

The fabrication of the gold nanoparticle arrays was done in collaboration with

the Hutchison Lab in the University of Oregon Department of Chemistry, specifically

with Dr. Greg J. Kearns, Dr. Tatiana Zaikova, and Dr. John Miller. Details of the

chemical processes used to form the nanoparticles can be found in G. J. Kearns'

dissertation [122]. A brief summary of these processes will be presented here in

addition to a more detailed treatment of the lithography techniques I employed

to create the electrodes contacting the nanoparticle arrays. Lastly, the process for

depositing the devices on the electrodes will be presented.

Nanoparticle Synthesis and Characterization

Precursor Au nanoparticles with tetraoctylammonium bromide (TOAB) ligand

shells were prepared as detailed in [123], resulting in a deep red solution that is

stable for periods ~ 1 year if stored properly. In order to bind to the anionic

backbone of the A-DNA template molecules, these nanoparticles must be given a
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cationic ligand shell. A thiocholine (N,N,N-trimethylaminoethanethiol iodide) ligand,

which is known to produce close-packed nanoparticles along the DNA strand [113],

was used for our devices. The TOAB ligand was replaced with the thiocholine via

a biphasic ligand exchange reaction at room temperature as detailed in [122, 124].

After this process, the nanoparticles were characterized via ultraviolet-visible (UV­

Vis) spectroscopy and transmission electron microscopy (TEM) to confirm that the

appropriate Au particle diameter was achieved. For the nanoparticles in our devices,

UV-Vis confirmed the presence of nanoparticles greater than 2 nm in diameter. TEM

image analysis indicated a mean core diameter of 3.5 nm ±1.2 nm with a ligand shell

~ 0.7 nm in thickness. The stability of these nanoparticles is not well-measured,

but is less than that of the precursors. The nanoparticles show some coalescence in

solution over a period of a few weeks and sensitivity to extended periods of electron

beam irradiation. However, the electrical characteristics of the resultant devices are

consistent over the course of the experiment ("" 1 week), suggesting little degradation

over that time scale.

Electrode Construction

In order to electrically interface with nanoscale devices like these nanoparticle

arrays, there is generally a need for more 'macro-scale' contacts. Many fabrication

techniques deposit the nanoscale objects on the substrate first, e.g. semiconductor

nanowires or carbon nanotubes, and use electron beam lithography (EBL) to 'draw'
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electrodes to the nanodevices' positions. The process is reversed for our nanoparticle

arrays. In addition, the ability to form our narrow nanoparticle arrays reliably is

influenced by the electrode geometry, and thus considerable care must be given to

electrode construction.

An issue of primary importance is to achieve electrical isolation of the nanoparticle

arrays. To this end, we use silicon wafers that have a thick (3 J1m) thermal oxide

grown on the surface. A back-of-the-envelope calculation using Si02 's worst-case bulk

resistivity, 1014 n·m, ideal contacts, etc, etc, estimates the minimum resistance path

to 'short' the device to be f"V 10 Tn. This estimate gives a reasonable expectation

of effectively complete electrical isolation from the Si substrate and between the

electrode pairs with no connecting nanoparticle array. Experimental results confirm

this, and in fact suggest that the estimate for the minimum resistance path is quite

low.

Starting with these thick oxide wafers, the lithography process to produce finished

electrodes is as follows. Photolithography is the first step (Figure 5.6). Beginning

with the bare wafer, a photoresist layer (Shipley 1818) is spun on and exposed to UV

radiation through a mask pressed to its surface. The substrate is then submerged in a

developer chemical (Microposit 351) that strips away the portions of the photoresist

layer previously exposed to UV. After baking the remaining photoresist to make it

relatively insensitive to heat and light, a metal bilayer (CrjAu)5 is evaporated over the

5Chromium (3 nm) is required to make the gold layer (50 nm) stick to the Si02 substrate.
Without it, the gold can easily be scraped off with a fingernail.
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Figure 5.6. A step-by-step schematic of the photolithography process. See text for
details.

entire pattern. The substrate is then placed in an acetone bath for rv 12 hours, during

which the acetone eats away the photoresist underneath the unexposed portions

of the film. This results in (ideally) everything except the desired pattern 'lifting

off'. This waste material can be washed away with a stream of acetone and/or mild

ultrasonication.

A similar process is followed for EBL (Figure 5.7). The substrate, with finished

photolithography-defined electrodes, is first cleaned and then spin-coated with an

electron beam resist, polymethyl methacrylate (PMMA) 950 at 3% concentration.

The resist layer is then hard-baked to drive off the polymer solvent. At this point,

the substrate is placed on a scanning electron microscope stage and the desired pattern

is exposed by rastering the 20 kV electron beam over PMMA layer. 6 The exposed

6Though the raster process is itself computer-automated, preparation of the substrate
(cleanliness, selection of PMMA weight and concentration, PMMA layer thickness) and preparation
of the electron beam (quality of focus, correction for variable lens a.nd aperture alignment effects,
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Figure 5.7. A step-by-step schematic of the electron beam lithography process.
Dotted arrows indicate past postions of the beam as it is rastered over the surface.
See text for details.

"" 20 ~1l11

Figure 5.8. Scanning electron microscope images of a set of electrode pairs (a), a
zoom-in of a single pair (b), and a detail image of the electrode gap (c), which is
::::5 200 nm wide.

pattern is then stripped away in a solution of MIBKIPA (1:3). The final steps

(evaporation and lift-off of the metal layer) to create electrodes with a ::::5 200 nm gap

are the same as with the photolithography process. Figure 5.8 shows a set of finished

electrodes (a) and more detailed images ((b) and (c)) of a single pair.

choice of accelerating voltage, measurement of beam current) a.re nontrivial processes. Details will
be left on file with Professor Taylor's laboratory.
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Device Completion

The outline of the fabrication process is illustrated in Figure 5.9. Figure 5.9(a)

shows a schematic representation of the electrode pair array geometry. The array of

parallel pairs of electrodes enables the deposition of multiple devices in a single step,

which is both useful for measurement purposes and perhaps for future application.

The surface is silanized to adjust the hydrophobicity of the surface appropriately and

drawn at ~ 0.35 mmls from a solution containing A-DNA (Figure 5.9(b)). The DNA

are aligned along the axis of the electrode pairs by the meniscus at the solution­

substrate interface. The concentration of the DNA is tuned such that on average a

single DNA strand will span each pair of electrodes, i.e. ~ 1 DNA strand per 1 J-lm2

area of the substrate.

The substrate is then rinsed with nanopure water and floated face-down in a

solution containing the thiocholine-stabilized Au nanopartic1es (Figure 5.9(c)) at high

concentration. The nanopartic1es preferentially adhere to the DNA backbone via

electrostatic interaction and close-pack along its length. The face-down orientation

reduces the number of nanopartic1es that errantly adhere to other parts of the

substrate, perhaps due to quenched charges associated with substrate defects or

contamination. After a thorough rinsing with nanopure water and N2 blow-dry,

the devices are complete. Ideally, they would have a single strand, ID character

like the schematic in Figure 5.9(d), but in practice come out in a variety of quasi­

ID configurations (Figure 5.9(e)) that likely consist of one to several DNA strands
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Figure 5.9. Schematics of the process steps for completing the nanoparticle devices
(a-d), and an SEM image of a completed device (e). See text for process step details.
The scale bar in (e) = 200 nm.

bundled together. Figure 5.9(e) shows an SEM image of an example where rv 4 strands

bundled together best explain the width of the array (~ 20 nm).

Electrical Measurements

The Experiment

A large number of potential devices were measured on a room temperature setup,

both in air and in vacuum, for testing purposes prior to the measurements described

below. These tests were performed by Dr. G. J. Kearns and myself as a simple method
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Figure 5.10. Preliminary current-voltage curves for the three electrode Pall'S at
240 mK.

to determine the presence of nanoparticle arrays between a given pair of elecLwdes7
.

The measurement circuit was similar to the cryostat measurement circuit for these

devices (see Figure 2.3), with the voltage source, pre-amp, and multimeter replaced

by a Keithley 236 source-measure unit.

One set of completed devices was mounted on the cold finger of the 3He cryostat

with silver epoxy and three pairs of electrodes were contacted via ultrasonic wire

bonding. The measurement setup is shown in Figure 2.3. Sourcing voltage, I-V

curves were taken at 240 mK to establish the presence of nanoparticle arrays between

each electrode pair. The results of these tests are shown in Figure 5.10. Two out of

the three contacted devices (#2 and #3) passed detectable current. #10 passed

7Dr. Kearns also used the in-vacuum configuration of this setup to measure a series of devices
at room temperature. Intriguingly, one particularly narrow device exhibited Coulomb blockade at
room temperature. The reader is referred to [122] for more detail.
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Figure 5.11. Current-voltage curves for the measured nanoparticle devices. I-V
curves for devices #2 (a) and #3 (b) are shown for temperatures ranging from ~

240 mK to 80 K.

no current, and a post-experiment SEM inspection showed that no nanoparticle

array bridged the gap. To ascertain the stability of the devices, and to compare

to experimental and theoretical results in the literature (covered in the previous

section), a series of I-V curves were measured as a function of temperature, 240 mK

< T ::; 80 K.

The measured data for the #2 and #3 devices is shown in Figure 5.11, (a) and

(b) respectively. Their appearance, in both cases, is consistent with theory and

experiment describing arrays of tunnel junctions - a blockaded region, symmetric in

voltage, where no current passes through the device followed by a power law rise in

current after ~ is reached. The data has a noise level that is typically ±0.2 pA,

though this varies a little trace to trace. The maximum noise level was ±0.4 pA,
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Figure 5.12. An example of the 1Ir extraction procedure. The arrow indicates the
assigned 1Ir for this 240 mK data set. The red bar centered on the arrow's position
indicates a conservative estimate of the error associated with the analysis.

and it went as low as ±0.1 pA. Its magnitude does not correlate well with cryostat

temperature. It may be a result of ground loop noise.

Current-Voltage Data Analysis

Two standard parameters of interest, the threshold voltage 1Ir and the power

law exponent ( were extracted from the I-V curves. 1Ir is determined systematically

from inspection of the I-V data. An example illustrating this process is shown in

Figure 5.12. Essentially, once the average current rises above zero and over the noise

level of the data set, the threshold is said to be overcome. Another method, which

involves plotting I x dV/ dI vs. V and charting the V intercept [7], yields the same

result within error.
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Figure 5.13. 1ft vs. T for the nanoparticle devices. Device #2 corresponds to the
upper data (blue), and device #3 is the lower data (green). Dotted lines are fits to
each data set.

This procedure was applied to both the positive and negative bias halves of the

curve. According to theory, the curves should be symmetric in voltage and thus

symmetric in 1ft. However, the values did differ slightly (approximately ±O.05 V),

which was factored into the final error estimate for 1ft at each temperature. The

complete results of the 1ft analysis are shown in Figure 5.13. Qualitatively, the results

look sensible - starting with some maximum value at low temperature, then falling

off with increasing temperature.

Quantitatively, Equation 5.4 predicts a linear dependence between 1ft and T.

Fitting linear trends to the measured 1ft values yields the dotted lines shown in

Figure 5.13. If these are extrapolated up to ambient temperature, the expected

temperature at which each device no longer exhibits Coulomb blockade is 125 K and
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135 K for devices #2 and #3 respectively. This can be compared to a calculation

of these temperatures from Equation 5.4. P(O), the lattice geometry-dependent

term, is determined from the ratio of the nanoparticle center-to-center spacing and

nanoparticle radius, which = 2.8 for the average nanoparticle in our devices. This

ratio informs the magnitude of the inter-nanoparticle capacitances. The percolation

threshold, Pc, is known for 1D chains (= 1) and large 2D networks (dependent on

lattice connectivity), but for objects with intermediate geometry like our devices,

it must be calculated8
. Device #2 has Pc = 0.80 and device #3 has Pc = 0.65,

which reflect their relative narrowness, ~ 4 particles vs. ~ 7 particles respectively.

Using these simple calculations, the predicted linear slopes coming down from vt(O)

are ~ 0.002(2) (device #2) and 0.002(7) (device #3), which translate into blockade

disppearing at rv 450 K (#2) and rv 370 K (#3). This differs from the observed

trends by a factor of rv 3.

The correspondence between the model and the observed vt behavior is clearly

not very good, but it is important to note a few caveats in these calculations.

The dielectric constant of the ligand shell is not known to high accuracy, which

could affect the P(O) calculation somewhat. The value used here is 3 after research

on a similar ligand material [125]. Also, the percolation threshold is difficult to

calculate accurately, because our nanoparticle arrays appear to have an amorphous

8These calculations were made using a custom Mathematica routine that allowed for lattices of
arbitrary length and width. A fraction of sites were turned on randomly, and the lattice was checked
for percolation. This was repeated for 2000 lattice instances for a particular fraction. This was
repeated for 'filling' fractions 0.0 to 1.0, charting the probability of finding a percolating path vs.
fraction filled. The the middle of the transition from probability 0 to 1 determines Pc.
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lattice geometry, variable array width, and variable individual size. This makes

percolation simulations, which depend strongly on the number of nearest neighbors

in the lattice, imprecise. Along these same lines, the expression for P(O) assumes

identical inter-nanoparticle capacitances on a fixed lattice. The nanoparticle's size

variation, which approaches rv 30%, will make these capacitances vary significantly.

Finally, the limited extent of these quasi-1D arrays makes them more susceptible

to local variations in the background charge distribution, which the model takes as

uniform.

Despite these complicating issues, the linear suppreSSIOn of ~(T) is retained

(Figure 5.13) in our observations, which suggests that the basis of the model is

quite robust. Future calculations examining the effect of nanoparticle lattice and size

perturbations ('amorphizing' the lattice) may result in better quantitative agreement

with experiment for this device type.

Analysis ofthe power law exponent (is carried out as illustrated by Figure 5.14(a),

fitting a line to a log-log plot of current vs. voltage. The voltage axis was re-scaled

relative to the measured ~ to match the theoretical power law form (Equation 5.3).

In the selected example, ~ = 1.375 (the average of the positive and negative ~'s).

Note that the fit was made to those points above zero on the x-axis. Below that,

the current through the device is above threshold, but is less than approximately
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Figure 5.14. Power law exponent (() analysis and T dependence for the measured
nanoparticle devices. (is determined from the slope of the fit line in (a). (for devices
#2 and #3 (blue and green symbols respectively) is plotted vs. temperature (b).

2 pA. Since the noise is then comparable to the signal magnitude, the data becomes

somewhat unreliable for fitting purposes.

The spread in the measured ('S (shown vs. temperature in Figure 5.14(b)) is

significant - approximately equal to 0.3 for both devices with a couple of exceptional

cases for the #3 device. Their values are also considerably higher than those predicted

by [117] (1 and 5/3 for one and two dimensions respectively). However, they are well-

aligned in both instances with the power law characteristics of similar experimental

systems in the literature [7-9, 121]. All of these experiments find power laws in excess

of the theoretical values for their system's dimensionality, though [121] do find a few

of their carbon nanoparticle chains close to ( = 1.

The spread in power laws for the most directly comparable system [9], which

studies strips of nanoparticles defined by EBL, is very close to what we observe.

Additionally, other quasi-1D nanoparticle structures [121, 126] show evidence for even
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greater variability. A plausible explanation for this phenomenon is the sensitivity the

devices have to the local configuration of quenched background charges. The limited

width of the nanoparticle arrays allows for only a few current-carrying pathways. A

re-configuration of local fixed charges changes the energy thresholds for particles in

the array, thus shifting the manner in which the array responds to increasing bias. For

our devices, ( has no apparent dependence on temperature, however the spread in the

the base temperature data sets' ( (see Figure 5.14(b)) suggests a temporal and/or

temperature dependence for the re-configuration of background charges. Further

experiments would be required to determine which (time or temperature) is the

dominant effect for our devices.

Other Points of Interest

An obvious concern with these novel devices is how stable they are. Unlike, for

instance, the semiconductor electron billiards, these devices are not encapsulated.

They sit directly on the surface of the wafer, and are at least briefly exposed to

atmosphere before insertion into the cryostat. These exposures could translate into

device volatility, especially given the partially organic nature of the device structure.

While there are many aspects to stability, and thus many ways of characterizing

it, we have taken a first step by charting these devices' stability with regards to

the duration of the experiment. Figure 5.15 shows base temperature I-V curves for

each device before and after raising the devices up to 80 K for the temperature
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Figure 5.15. Two current-voltage curves at base temperature for each device,
separated by ;:::::: 1 week and a slow temperature cycle up to 80 K. Device #2 and
#3 correspond to (a) and (b) respectively.

dependent measurements, which correspondti to a temporal separation of ;:::::: 1 week.

The differences between the two curves are small in both cases, indicating that at

least in response to the noted stimuli, the devices are reasonably stable.

An interesting point can be observed in positive bias side of device #2's curves.

There is a small jump in the bottom curve at ;:::::: 6 V that takes it briefly up to the

level of the top curve before reverting to its previous behavior. A closer look at this

occurrence is shown in Figure 5.16(a). This is interesting, because while the bottom

curve has switched upwards, it appears to follow the top curve's power law. This

switching behavior is prevalent in device #2 data sets up to and including the 35 K

trace (Figure 5.16 (b) ).

The intervals of 'on' and 'off' appear random, though the jump height in current

;:::::: 2 pA in all cases. It is difficult to draw any good conclusions from this limited

set of observations, however we speculate that the current carrying pathway through
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Figure 5.16. 'Switching' behavior in nanoparticle device #2. A comparison of
base temperature data sets shows a single feature (a), but the switching behavior
is apparent in data sets below 50 K (b). The numbering on the righthand graph
indicates the cryostat temperature for each I-V curve.

the nanoparticle array is switching between two routes that are energetically nearly

the same. The switching between them could occur due to charging/discharging of

a nanoparticle or quenched substrate charging site near the pathway, which would

minutely shift the energy of one path vs. the other. In this scenario, raising the

temperature would eventually make the two routes effectively identical, suppressing

the switching behavior. This is consistent with our observations. Similar telegraph-

like switching was observed as a function of time at fixed bias in [9], also with quasi-lD

chains of nanoparticles. They offer a similar explanation for their origin.
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Future Experiments

The experiments and current-voltage curve analysis presented in this chapter show

good correspondence with existing theoretical models and experimental results from

analogous devices. It would be a mistake, however, to say that this novel class of

nanoparticle devices is well-understood overall. For instance, the device finishing

step remains a very sensitive process, as evidenced by the limited number of devices

measured in our experiments. There are also basic questions regarding the extent

of device-to-device variability, device stability under temperature and bias cycling,

and the effects of nanoparticle size variation that remain unanswered. Further study

along the lines set out in this chapter should bring answers to some of these and

inform refinements in our fabrication process, perhaps allowing us to achieve truly

one-dimensional nanoparticle arrays.

More ambitious are experiments based on the original intent of this project, to

observe phase-coherent electron interference through a many element (nanoparticle)

array. Rough calculations (see the introduction for this chapter) suggest that electron

phase coherence lengths should be well in excess of the nanoparticle array length

(lrp rv 5 {lm » 200 nm), and that the AF to nanoparticle size ratio is similar to that

of the electron billiards, nominally placing carriers in the 'semiclassical' regime9 of

transport when moving within each nanoparticle.

9The electron billiards of Chapter III operate in this regime. In short, because AF is only a
fraction of the device size, the dynamics of carriers at EF can be modeled classically, but must obey
quantum-mechanical Fermi-Dirac statistics.
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Taking these calculations as motivation, a relatively simple experiment would be

to move the nanoparticle array off-blockade and proceed similarly to the electron

billiards - applying a varying magnetic field while monitoring current through the

device - with the goal of observing MCF. This is certainly worth an attempt (because

of its simplicity), but there are issues with this straightforward approach. The first

is detection of the MCF. Even well beyond Vi, the resistance of these nanoparticle

arrays is on the order of en, which precludes standard AC lock-in detection. Also,

the amplitude of MCF due to quantum interference is limited theoretically to e2
/ h

or ~ 25 kn, making the fluctuations a 1 part in 100,000 modulation on the measured

current. This is approximately an order of magnitude below the measurement circuit's

best detection limit.

Outside of this considerable technical challenge, there is a variety of physical

differences from the electron billiard system that may prove to be important in

observing phase coherent phenomena. Even in the off-blockade regime there is still

a tunnel barrier between each island. Electrons can still move coherently through

the array via elastic tunneling from one island to the next, but the transmission

probability for anyone tunneling 'attempt' may be very low. Depending on the

number of reflections the electron endures within each island before moving on to the

next, its total path length may exceed l¢ before traversing the array.

A more crucial practical consideration is the magnetic field required to place

a nanoparticle into the MCF field regime. According to semiclassical theory, no
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experimentally accessible field will be able to remove the nanoparticles from the weak

localization field regime, 0 < B < <I>o/Adot or 0 < B ~ 400 T(!), which means MCF

may be completely suppressed.

The issues with observing MCF in the nanoparticle arrays are not limited

to those discussed here, but these should convey the significant challenges that

remain in realizing the original intent of this research project. A more modest and

experimentally realizable goal for these arrays may be to modify the devices such that

a gate could be positioned near each one. This would be only a small change of the

lithographic processes detailed earlier in the chapter, and would allow electrostatic

tuning ofthe nanoparticles' energy spectra10 with potentially interesting results [129].

Finally, in a direction that broadly complements the research presented in Chapter

IV, the DNA/nanoparticle system could be deposited between contacts without

the molecular combing step. Doing this with higher concentrations of DNA and

larger electrode gaps may allow the deposition of disordered nanoparticle networks

which may have a fractal geometryll as shown schematically in Figure 5.17(b).

Because transport in tunnel junction systems is strongly dependent on their

10A single nanoparticle has average energy level spacings ~ 27r:n
2

3 ~ 23 meV neglecting electron­
m* pr

electron interactions and using m* = ma [127, 128]. This is well in excess of kBT at cryogenic
temperatures.

llThis is based on a fractal analysis of the AFM image in [125] of gold nanoparticlejpoly-L-lysine
fractured films, and research on the 2D packing statistics of DNA molecules [130]
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Figure 5.17. Nanoparticle networks of differing dimension. The 2 (a) and quasi-l
(c) dimensional networks

dimensionality [117], devices with a fractional dimension should exhibit behaviors

distinct from one (Figure 5.17(c)) and two dimensional (Figure 5.17(a)) systems.
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APPENDIX

CIRCUIT SIMULATIONS USING MODIFIED NODAL ANALYSIS

The electrical simulations in Chapter IV were completed using a technique

called "modified nodal analysis" (MNA), which is a commonly used and flexible

circuit analysis method [94]. The described implementation takes a 4-color image as

input and computes the resistance of the 'circuit' that corresponds to the image's

pixel arrangement. This Appendix offers a more detailed look at the method and

programming that goes into these simulations.

At its heart, MNA is simply the usual Kirchoff's rule circuit analysis modified

to systematically produce a matrix of equations that is more easily solved by

computer than by hand. This is pointless for small circuits, but is required for

circuits of the size considered in Chapter IV ('" 103 ---+ 106 nodes per circuit). The

analysis technique was advanced in 1974 to eliminate some of the disadvantages of

(unmodified) node analysis, which included the inability to process voltage sources

and current-dependent circuit elements in a time efficient manner [131]. It was

subsequently integrated into SPICE2 (Simulation Program with Integrated Circuit

Emphasis 2), which went on to become the de facto standard circuit simulator for

the integrated circuit industry for a time, and is still used widely today.
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For the simulations in this dissertation, MNA is used to solve for the DC electrical

characteristics of large resistor networks. Using a custom-written Mathematica

routine, a 'circuit' is input in the form of a 4-color (black, white, red, and green)

image, translated into a matrix of circuit equations, and solved for the voltages at each

node (pixel) and the currents going into each drain node. Figures 4.5 and 4.6 and the

surrounding text describe the process of translating a circuit into the corresponding

matrix of equations. For completeness, Figure A.I shows the process start-to-end for

a small circuit with 6 nodes. Each pixel translates to a node (Figure A.I (b)), which

is in turn translated into a matrix row that contains the node's current junction rule

equation (Figure A.I (c)). Note that the color of each pixel signals how to connect

it to its neighbors, not what type of circuit element to place in its position. The

rules implemented here are: a white pixel accepts no electrical connections, a black

pixel connects to any non-white pixels with a resistor, a green pixel has a connection

to ground, and a red pixel has a connection to a DC voltage source. The present

implementation also uses a constant voltage at all source (red) pixels, a fixed value

resistor between each connected node (R1 = R2 = R3 = ... ), and nearest neighbor

connections only.

This procedure produces the (n+m) x (n+m) matrix in Figure A.l(c), which has

a size dictated by the number of nodes (n) and the number of source pixels (m), and

consists only of known quantities. The upper left n x n matrix contains the passive

electrical elements' information (i.e. no voltage sources, etc.). Elements connected to
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Figure A.l. The complete MNA program process showing a simple image (a), its
translation into a resistor network (b), and the linear set of equations that describe
that resistor network (c).

ground appear only on the diagonal, while others appear in both the diagonal and

off-diagonal positions. The remainder of the matrix indicates node connections to

voltage sources. For an example, take row b in Figure A.I. Its current junction is:

v - v V - Vd
-1 + Q + R = 0

R1 1.,4
(A.I)

where 1 equals the total current in the circuit, and Vb has been replaced by V

of the voltage source. After separating out the unknown quantities (Vd, 1) into the
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Figure A.2. A sample large scale simulation (a) and its voltage map (b). The color
gradient in (b) ranges from red to blue, which represent the source voltage V and
V = 0 respectively. See Chapter IV for a further explanation of the resistor network
in (b).

vector multiplying the matrix and the known quantities (sum of current flows = 0)

into the righthand vector, the correspondence of row b to Equation A.l is clear.

Solving this linear set of equations gives the voltage at every node as well as the

total current in the circuit. This last quantity allows the resistance of the circuit to be

calculated. The voltage information can allow an intuitive grasp of the current flow

patterns in the devices (see Figure A.2 for an example), and may have more direct

uses in future applications of this technique.

Finally, MNA and this implementation are extensible. MNA can handle simulations

of AC circuit characteristics by using the complex impedances Z of whatever elements

are included [94, 131]. For our program, AC circuit implementation would require a

different set of translation rules from pixel to circuit element, but in principle could
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represent any type of reactive circuit element. For instance, the white pixel translation

rule could connect any white node to adjacent nodes via a capacitor, which would

produce a more realistic AC response than the present rule. A concern with added

translation rules is the size of the resultant matrix of equations and hence computation

time. The present white pixel rule produces a significant number of zero columns and

rows, which quickly drop out of the calculation. The new rule (just discussed) would

put an equation in every row, adding significant computational complexity. For this

reason, any rule modifications may further limit the size of the images that can be

used.
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