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My dissertation research has centered on understanding how nuclear encoded

proteins affect chloroplast gene expression in higher plants. I investigated the functions

of three proteins that belong to families whose members function solely or primarily in

mitochondrial and chloroplast gene expression; the Whirly family (ZmWHYI) and the

pentatricopeptide repeat (PPR) family (ZmPPR5 and ZmPPRl0). The Whirly family is

a plant specific protein family whose members have been described as nuclear DNA

binding proteins involved in transcription and telomere maintenance. I have shown that

ZmWHYl is localized to the chloroplast where it binds nonspecifically to DNA and

also binds specifically to the atpF group II intron RNA. Why] mutants show reduced

atpF intron splicing suggesting that WHYl is directly involved in atpF RNA

maturation. Why] mutants also have aberrant 23S rRNA metabolism resulting in a lack

of plastid ribosomes. The PPR protein family is found in all eukaryotes but is greatly

expanded in land plants. Most PPR proteins are predicted to localize to the

mitochondria or chloroplasts where they are involved in many RNA-related processes

including splicing, cleavage, editing, stabilization and translational control. Our results
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with PPR5 and PPR10 suggest that most of these activities may result directly from the

unusually long RNA binding surface predicted for PPR proteins, which we have shown

imparts two biochemical properties: site-specific protection of RNA from other proteins

and site-specific RNA unfolding activity. I narrowed down the binding site for PPR5

and PPR10 to ~45 nt and 19 nt, respectively. I showed that PPR5 contributes to the

splicing of its group II intron ligand by restructuring sequences that are important for

splicing. I used in vitro assays with purified PPR10 to confirm that PPR1 0 can block

exonucleolytic RNA decay from both the 5' and 3' directions, as predicted by prior in

vivo data. I also present evidence that PPR1 0 promotes translation by restructuring its

RNA ligand to allow access to the ribosome. These findings illustrate how the unusually

long RNA interaction surface predicted for PPR proteins can have diverse effects on

RNA metabolism.

This dissertation includes both previously published and unpublished co

authored material.



CURRICULUM VITAE

NAME OF AUTHOR: Jana Prikryl

PLACE OF BIRTH: Olomouc, Czech Republic

DATE OF BIRTH: March 30,1976

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene
University of Colorado, Boulder
University of Colorado, Colorado Springs
Pikes Peak Community College, Colorado Springs

DEGREES AWARDED:

Doctor of Philosophy, Department of Biology, 2009, University of Oregon
Bachelor of Arts, 1998, University of Colorado, Boulder

AREAS OF SPECIAL INTEREST:

Molecular and Cellular Biology
Genetics
Biochemistry

PROFESSIONAL EXPERIENCE:

Graduate Teaching Fellow, Department of Biology, University of Oregon,
Eugene, 2004-2005 and 2008-2009

v



vi

Teaching Assistant, Department of Molecular, Cellular, and Developmental
Biology, University of Colorado, Boulder, 2002-2004

Professional research assistant, lab of Professor Kathleen Danna, University of
Colorado, Boulder, 1998-2001

Professional research assistant, lab of Professor Peter Kuempel, University of
Colorado, Boulder, 1998-2000

GRANTS, AWARDS AND HONORS:

American Association for the Advancement of Science (AAAS)/ Program for
Excellence in Science, 2008-2009

Genetics training grant, National Institute ofHealth (NIH), 2004-2006 and 2008

Molecular Biology training grant, National Institute of Health (NIH), 2006-2007

Co-president of Students in Biological Sciences (SIBS) graduate student group,
2006-2007

Undergraduate Research Opportunities (UROP) Grant, University of Colorado,
1998

PUBLICATIONS:

pfalz J, Ali Bayraktar 0, Prikryl J, and Barkan A. (2009) Site-specific binding
of a PPR protein defines and stabilizes 5' and 3' mRNA termini in chloroplasts.
EMBO J 28(14):2042-52.

Prikryl J, Watkins KP, Friso G, van Wijk KJ, Barkan A. (2008) A member of
the Whirly family is a multifunctional RNA- and DNA-binding protein that is
essential for chloroplast biogenesis. Nucleic Acids Res 36(16):5152-65.

Prikryl J, Hendricks EC, Kuempel PL. (2001) DNA degradation in the terminus
region of resolvase mutants of Escherichia coli, and suppression of this
degradation and the Difphenotype by reeD. Biochimie 83(2):171-6.



Vll

ACKNOWLEDGMENTS

I am sincerely grateful to my advisor Alice Barkan for her encouragement,

support and thoughtfulness. She has gone far beyond the call of duty to help me progress

as a scientist. Sincere and conscientious, she is not only a wonderful mentor but also, a

model of what I believe a scientist, collaborator, and educator should be. I am extremely

thankful for my lab mates Kenneth Watkins, Tiffany Kroeger, Margarita Rojas, Rosalind

Williams-Carrier, Susan Belcher, Yukari Asakura, and Jeannette Pfalz. They are

invaluable to me as both coworkers and as friends. They have always made time to give

me helpful advice and share their vast knowledge. They have supported me through

failure and success. They have forgiven me for being irritable at times. Their camaraderie

and passion for their work is uplifting and inspiring.

I am very appreciative to the members of my committee Eric Selker, Tory

Herman, Karen Guillemin, and Andy Berglund. Their helpful advice and involvement in

the progress of my graduate career have truly made a positive impact. I am thankful to the

staff of the Institute of Molecular Biology and the Biology Department, they have made

my life easier in so many ways I cannot list them all here. I am ever grateful for my

friends Kohl, Bob, Tiffany, Luke, Emily, Scott, Clair, and Andy for their companionship

and support, and to my parents Jarmila and Ivan and my sister Helena who are the model

of courage, and love, and who give me strength to move forward.



Vlll

DEDICATION

This dissertation is dedicated to Professor Nancy Guild whose kind nature, devotion to

teaching, and classroom ingenuity continue to inspire me, and whose encouragement

and support gave me the confidence to set out on this path.



ix

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1
Co-Evolution of the Chloroplast and Nuclear Genomes 1

RNA Metabolism in the Chloroplast 2

Non-Canonical RNA Binding Proteins in the Organelles 3

II. A :MEMBER OF THE WHIRLY FAMILY IS A MULTIFUNCTIONAL

RNA AND DNA BINDING PROTEIN THAT IS ESSENTIAL FOR

CHLOROPLAST BIOGENESIS 5

Introduction 5

Materials and Methods 7

Purification of CRS 1 Ribonucleoproteins and Mass Spectrometry 7

Plant Material 7

Generation ofRecombinant ZmWHY1 for Antibody Production and
Binding Assays................................................................................. 7

Chloroplast Fractionation and Protein Analysis 8

Nucleic Acid Coimmunoprecipitation Assays 8

Analysis of DNA and RNA 9

Nucleic Acid Binding Assays 9

Chloroplast Run-On Transcription Assay 10

Results 10

Identification of ZmWHY1 in CRS 1 Coimmunoprecipitates 10

Recovery of ZmWhyl Insertion Mutants 11

ZmWHY1 Partitions Between the Chloroplast Stroma and Thylakoid
Membrane, To Which it is Bound in a DNA-Dependent Manner ...... 14

ZmWHYI Is Associated With Large RNA- and DNA-Containing
Particles............................................................................................ 14



x

Chapter Page

Coimmunoprecipitation Assays Demonstrate That ZmWHY1
Associates with a Subset ofPlastid RNAs That Includes the atpF
Intron 17

DNA From Throughout the Plastid Genome Coimmunoprecipitates
with ZmWHYI 20

Zm Why1 Mutants Are Deficient for Plastid Ribosomes 21

ZmWHY1 Promotes atpF Intron Splicing 25

ZmWHYI Is Required Neither for Chloroplast DNA Replication nor
for Global Plastid Transcription........................................................ 27

Recombinant ZmWHY1 Binds Single-Stranded RNA and DNA in
Vitro 30

Discussion 32

Multiple Roles of ZmWHYI in Chloroplast Biogenesis 32

ZmWHY1 Binds both RNA and DNA in Vitro and in Vivo 33

What is WHY1's DNA-Related Function in the Chloroplast? 34

Bridge 36

III. BIOCHEMICAL ANALYSES SUGGEST THAT PPRIRNA

INTERACTIONS INVOLVE AN UNUSUAL RNA/PROTEIN

INTERFACE THAT IS SUFFICIENT TO MEDIATE A VARIETY OF

POSTTRANSCRIPTIONAL EFFECTS ;......... 37
Introduction 37

Materials and Methods 39

Ribonucleic Acid Binding Assays 39

Minimal Binding Assay Using Partially Alkali Hydrolyzed RNA 40

PNPase Purification.............................................................................. 40

In Vitro Exonuclease Protection Assays................................................ 41

Nuclease Cleavage Structure Probing Assays 42

2-Aminopurine Fluorescence Assay 43

Results 43

The Minimal PPRI0 Binding Site Spans 15 Nucleotides 43

PPRI0 Protects its RNA Ligand From 3' and 5' Exonucleolytic
Cleavage in Vitro 44



Xl

Chapter Page

PPR10 Binding Releases the atpH Ribosome Binding Site From a
Sequestering Secondary Structure........................... 49

The PPR5 Binding Site is Complex and Includes Discontinuous RNA
Segments 51

PPR5-Induced Changes in RNA Structure Suggest Mechanisms by
which PPR5 Enhances Splicing 56

Discussion 62

Features of the PPRlO Binding Site Suggest That PPRlO Binds RNA
Along an Unusually Long RNAIProtein Interface 62

Site-Specific Barrier and RNA Remodeling Functions of PPR5 and
PPRlO: Implications for the Mechanisms by which PPR Proteins
Mediate Downstream Effects 65

IV. CONCLUSIONS AND FUTURE DIRECTIONS 69
Conclusions 69

Future Directions 72

Future Directions Related to WHY1 72

Immediate Directions Related to PPR Proteins 72

Long-Term Directions Related to PPR Proteins 73

REFERENCES 76



xii

LIST OF FIGURES

Figure Page

CHAPTER II

1. Mutant Alleles ofZmWhyl 12

2. Intracellular Localization ofZmWHYI 15

3. Sucrose-gradient sedimentation demonstrating that ZmWHY1 is
associated with DNA- and RNA-containing particles in chloroplast
stroma 16

4. Identification of chloroplast RNAs and DNAs that coimmunoprecipitate
with ZmWHY1 18

5. Plastid ribosome deficiency in ZmWhyl mutants 22

6. Reduced atpF intron splicing in ZmWhyl mutants 26

7. Accumulation of plastid RNAs in ZmWhyl mutants 28

8. Chloroplast DNA levels in ZmWhyl mutants 29

9. Recombinant ZmWHY1 binds single-stranded RNA and DNA 31

CHAPTER III
1. The PPRI0 RNA ligand 45

2. Stoichiometric binding assay with recombinant PPRIO 47

3. PPRI0 protects against 3' and 5' exonuclease activity in vitro 48

4. PPRI0 binding induces structural changes in the atpH 5'UTR 50

5. Mapping the boundaries of sequences required for a high-affinity
interaction with PPR5 53

6. The PPR5 RNA ligand 55

7. Ribonuclease sensitivity assay of RNA structure in the absence and
presence ofPPR5 58

8. PPR5 causes an increase in 2-aminopurine fluorescence in its ligand,
indicating unfolding of the RNA stem 61



1

CHAPTER I

INTRODUCTION

Co-Evolution of the Chloroplast and Nuclear Genomes

The overarching goal of my graduate work has been to gain better insight into

how chloroplast gene expression is regulated by the nuclear genome. In order to

appreciate this process one must first quickly review the evolution of the organelles (1-3).

The mitochondrion and chloroplast each arose as a result of an endosymbiotic event. First

the endosymbiosis of a proteobacterium gave rise to the mitochondrion; there is

consensus that this was a very early event during the evolution of the eukaryotic cell,

although there is controversy concerning whether it predated the evolution of the nucleus.

More recently (~1 billion years ago), the engulfinent of a cyanobacterium gave rise to the

chloroplast. As a consequence of these events, genetic material is found in three places in

the plant cell: the nucleus, the mitochondrion, and the chloroplast. The genomes ofthe

organelles are greatly diminished in comparison to those of their bacterial ancestors. This

has occurred through successive gene loss from the organelles, sometimes in conjunction

with gene transfer to the nuclear genome. Despite this gene loss, approximately 100

genes have been retained in the chloroplast genome in land plants. Most of these encode

proteins that are directly involved in either photosynthesis (e.g. subunits ofphotosystem

II, photosystem I, etc) or in chloroplast gene expression (e.g. tRNAs, rRNAs, ribosomal

proteins, and RNA polymerase subunits). Because some genes encoding subunits of the

photosynthetic complexes are found in the chloroplast, whereas others are encoded in the

nucleus, concerted expression of the chloroplast and nuclear genomes is required for

proper chloroplast function. The basis for the retention of some genes in the chloroplast is
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not fully understood but has been proposed to facilitate redox based regulation of protein

expression, wherein the photosynthetic status of the chloroplast can directly influence the

expression of chloroplast genes involved in photosynthesis (4).

The co-evolution of the chloroplast and the host cell resulted in two classes of

chloroplast targeted, nuclear encoded proteins: those derived from the ancestral

cyanobacterium and those derived from the host genome. Most nuclear genes of

cyanobacterial ancestry encode proteins that are targeted to the chloroplast, where they

carry out their ancestral function; these compensate for the loss of the orthologous genes

from the chloroplast. Host-derived proteins on the other hand lack relatives in bacteria;

they are thought to have evolved from proteins with functions outside of the chloroplast,

with subsequent co-opting to fulfill newly acquired needs of the chloroplast. In fact, the

chloroplast acquired many features that are not characteristic of its cyanobacterial

ancestor, and the emergence of these features seems to have been accompanied by the

"invention" of several new nuclear-encoded protein families that are dedicated to these

functions. Examples of this phenomenon are highlighted below.

RNA Metabolism in the Chloroplast

The complexity ofRNA metabolism in the chloroplast is much greater than that

in cyanobacteria (5). For example, chloroplast RNAs are modified by RNA editing,

terminal processing at both the 5' and 3' ends, group I and group II intron splicing, and

intercistronic processing of polycistronic precursors (reviewed in 6, 7). Furthennore,

most gene regulation is believed to occur at the post-transcriptional level, via modulation

of RNA stability and translation.

There are 18 introns in the maize chloroplast genome: one group I intron and 17

group II introns. These introns are classified as autocatalytic because members of both

groups in other organisms have been shown to self-splice in vitro. However, group I and

II introns in higher plant chloroplasts are incapable of self-splicing in vivo and require



3

protein cofactors to facilitate splicing. In fact, it is thought that the nuclear spliceosome

evolved from the degeneration of group II introns accompanied by the co-evolution of

proteins to compensate for the loss of autocatalytic RNA activity. The splicing of

chloroplast group II introns requires many nucleus-encoded proteins, but these proteins

are not related to spliceosomal proteins, nor to the RNA binding protein classes that

function in the nuclear-cytosolic compartment or in bacteria (6, 8, 9).

RNA editing and the processing of polycistronic precursors to single gene

mRNAs are also characteristic of chloroplasts, but not oftheir bacterial ancestors. The

intercistronic processing events generate complex populations of RNAs from most

chloroplast genes, reflecting the full length polycistronic precursor, various processing

intermediates, and fully-processed monocistronic mRNAs. It had been speculated that

this processing arises through site-specific endonucleolytic cleavages, but our

laboratory's previous work, as well as results described in this thesis, suggested an

entirely different mechanism to account for the complex chloroplast transcript

populations.

Non-Canonical RNA Binding Proteins in the Organelles

Genetic approaches have been used to identify nucleus-encoded, proteins that

affect these various aspects of chloroplast RNA metabolism. A striking finding is that

the vast majority of such proteins are not related to the classic RNA binding proteins

found in the nuclear-cytosolic compartment. In fact, most of these proteins belong to

families that are dedicated to organeller gene expression. Some examples are the CRM,

DUF860, and PPR families of proteins (8-10). These proteins harbor non-canonical RNA

binding domains, with most or all family members targeted to the chloroplast or

mitochondrion. CRM and DUF860 proteins are involved in the splicing of many

chloroplast and mitochondrial introns, whereas the PPR family plays multiple roles in the

chloroplast and mitochondrion, including RNA splicing, RNA editing, translational



4

control, and maintaining RNA stability. CRM and DUF860 proteins are plant-specific

whereas PPR proteins are found in all eukaryotes. However, there has been a large

expansion of the PPR family in plants; whereas there are ~10 PPR proteins in humans

and yeast, there are ~450 in land plants (11). Although these protein families play

essential roles in many aspects of organellar RJ\fA metabolism, very little is known about

the mechanisms by which they exert their effects.

To understand the mechanisms by which the non-canonical RNA binding proteins

characteristic of the chloroplast and mitochondrion mediate their effects, I have studied

three nuclear encoded proteins that are required for chloroplast biogenesis: WHY1,

PPRlO, and PPR5. All three ofthese proteins are targeted to the chloroplast, bind to RNA

with sequence specificity, and are involved in multiple steps in RNA processing. WHYI

and PPR5 facilitate group II intron splicing. PPR5 and PPRI0 protect RNA from

nucleases, and PPRI 0 also promotes translation. How WHYI exerts its downstream

effects is still a mystery. Our detailed study ofPPR5 and PPRI0, on the other hand, is

beginning to give us insight into how members of the PPR family can mediate multiple

downstream affects through one biochemical property: a long and specific RNA

interaction surface.

The work on WHYI (Chapter II) has been published and is co-authored by Jana

Prikryl, Kenneth P. Watkins, Giulia Friso, Klaas J. van Wijk, and Alice Barkan. The

work on PPR5 and PPRlO (Chapter III) is in preparation for publishing and will also be

co-authored by Jana Prikryl, Margarita Rojas, Rosalind Williams-Carrier, Omer Ali

Bayraktar, and Alice Barkan.
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CHAPTER II

A MEMBER OF THE WHIRLY FAMILY IS A MULTIFUNCTIONAL RNA AND

DNA BINDING PROTEIN THAT IS ESSENTIAL FOR CHLOROPLAST

BIOGENESIS

This chapter describes the characterization of a member of the plant specific,

Whirly protein family, WHYl. This work was done in collaboration with Dr. Alice

Barkan, and Dr. Kenneth Watkins. In addition, Dr. Giulia Friso, and Dr. Klaas van Wijk

contributed by using Mass Spectroscopy to identify the WHYI protein. This work has

been published and co-authored with the above-mentioned individuals.

Introduction

Plant mitochondria and chloroplast genomes encode ~50 and ~100 products,

respectively, most of which participate in basal organellar gene expression or energy

transduction. Post-transcriptional events play the dominant role in dictating gene product

abundance in both organelles (reviewed in 12). In fact, the two organelles house a similar

repertoire of RNA processing pathways that includes RNA editing, group II intron ,

splicing, and endonucleolytic processing. Genetic and bioinformatic analyses suggest that

many hundreds of nuclear genes encode organelle-localized nucleic acid binding proteins

and influence organellar gene expression (9, 11, 13, 14), but only a small fraction of such

genes has been studied.

The protein that is the focus of this study, ZmWHY1, came to our attention during

our characterization of the chloroplast RNA splicing machinery. Nine nucleus-encoded
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proteins that are necessary for the splicing of various subsets of the ~20 chloroplast

introns in vascular plants have been reported (15-24). One of the first to be

characterized, CRS 1, is necessary for the splicing of the group II intron in the chloroplast

atpF gene (15, 18), and binds specifically to that intron in vivo and in vitro (19, 20, 25).

However, the large size of the particles containing CRS 1 and atpF intron RNA in vivo,

and the fact that CRS 1 is not sufficient to promote atpF intron splicing in vitro suggested

that additional proteins are involved. We therefore used mass spectrometry to identify

proteins that coimmunoprecipitate with CRSl; ZmWHYl was one such protein.

ZmWHYl is a member of the "Whirly" protein family, whose orthologs in potato

(StWHYl) and Arabidopsis (AtWHYl) were reported to be nuclear transcription factors

involved in pathogen-induced transcription (26, 27). StWHYl and AtWHYI bind single

stranded DNA in vitro, and StWHYI adopts a propeller-like structure from which the

family acquired its name (26, 28). AtWHYI has also been implicated in telomere binding

and maintenance (29). Additional functions for members of the Whirly family were

suggested by the fact that GFP fused to each member of the family from Arabidopsis

localizes to chloroplasts or mitochondria (30). The copurification of AtWHYl with a

transcriptionally-active chloroplast DNA complex (31) and the association of AtWHY2

with mitochondrial nucleoids (32) confirmed that these proteins have organellar

functions, but the nature of these functions is not known. Results presented here show

that ZmWHY1 plays an essential role in the biogenesis of chloroplasts, that it is

associated with DNA from throughout the chloroplast genome and that it interacts in vivo

with a subset of chloroplast RNAs that includes the atpF intron. ZmWHYl enhances

atpF intron splicing and influences the biogenesis of the large ribosomal subunit.

However, chloroplast DNA and RNAs in ZmWhyl mutants accumulate to levels similar

to those in other mutants with plastid ribosome deficiencies of similar magnitude. These

results argue that ZmWHY1 is required neither for chloroplast DNA replication nor

directly for global chloroplast transcription.
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Materials and Methods

Purification of eRSl ribonucleoproteins and mass spectrometry

Purification of CRS 1 ribonucleoprotein particles and mass spectrometry were

performed as described for CAF1 and CAF2 particles in ref (21). The antibody to CRS1

was described previously (20).

Plant material

Our collection of Mu transposon-induced non-photosynthetic maize mutants

(http://chloroplast.uoregon.edu) was screened by PCR to identify insertions in ZmWHYl,

using methods described in (33) and a ZmWhyl-specific primer (5'

CGGCGGCCTTTCTGGAGGA -3') in conjunction with a Mu terminal inverted repeat

primer (5'- GCCTCCATTTCGTCGAATCCCG -3'). The alleles were tested for

complementation by crossing phenotypically normal siblings (+/+ or +/-) from ears

segregating each allele. 74 ears were recovered, 36 of which segregated chlorophyll

deficient mutants. Other mutants used in this work include iojap (34), hcj7 (35), and crsl

(15). The inbred line B73 (Pioneer HiBred) was used as the source of wild type tissue for

coimmunoprecipitation, sucrose gradient, and chloroplast fractionation experiments.

Plants were grown in soil in a growth chamber (16h light, 24°C) / 8h dark, 19°C). Leaf

tissue was harvested ~9 days after planting.

Generation of recombinant ZmWHYl for antibody production and binding assays

ESTs representing ZmWhyl were identified as GenBank accessions DV170433

and DV503865; the corresponding cDNAs were obtained from the maize full-length

cDNA project (http://www.maizecdna.org/). The complete cDNA sequence was

detemiined and has been entered in GenBank under Accession EU595664. A ZmWHYl

protein fragment (amino acids 86 to 258) with a C-termina16x-histidine tag was

expressed in E. coli from pET28b (Novagen), purified by nickel affinity chromatography

and used for the production ofpolyclonal antisera in rabbits at the University of Oregon
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antibody facility. Full-length mature ZmWHYl (i.e. lacking the transit peptide) for

nucleic acid binding assays was generated by PCR amplification of its coding sequence

from the cDNA (primers 5'- TATAGGATCCGCCTCCTCCCGTAAG -3' and 5'

TATAGTCGACTCACCGACGCCATTC -3'), digestion of the product with BamHI and

SalI, and cloning into pMAL-TEY. Subsequent steps in expressing and purifying

recombinant ZmWHYl were as described previously for RNCI (21).

Chloroplast fractionation and protein analysis

Leaf protein extracts were prepared and analyzed as previously described (36).

Chloroplast subfractions were those described by Williams and Barkan (33). For RNAse

and DNAse treatment ofthylakoid membranes, MgCh was added to a thylakoid

membrane fraction to a concentration of 15 rnM. The sample was divided into three 20 III

aliquots: 1 III RNAse-free RQl DNAse (IU/Ill) (Promega), 1 III ofRNAse A (1 1lg!1ll),

or 1 III water was added for the DNAse, RNAse, and mock treatments, respectively.

Samples were incubated at room temperature for 30 min and then centrifuged at 4°C at

15,000 x g for 15 min. The pellet was resuspended in 10 mM Tris-HCl pH 7.5, 2 rnM

EDTA, 0.2 M sucrose, to a volume equivalent to that of the supernatant. The supernatant

and pellet fractions were analyzed by SDS-PAGE and immunoblotting. Sucrose gradient

sedimentation of stromal extract was performed as described by Jenkins and Barkan (16);

aliquots of stroma were treated with either 3 units RQ 1 DNAse or 50 Ilg/ml RNAse A for

30 min at room temperature prior to centrifugation. Antisera to spinach chloroplast RPL2

and MDH were generously provided by A. Subramanian (University of Arizona) and

Kathy Newton (University of Missouri), respectively. The other antibodies were

generated by us and described previously (37).

Nucleic acid coimmunoprecipitation assays

100 III aliquots of stromal extract (~500 Ilg of protein) were analyzed by RIP

chip, DIP-chip, and slot-blot hybridization using methods described in (38), except that

stroma used for RIP-chip assays was treated with DNAse prior to immunoprecipitation
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(10 units RQ1 DNAse at 37 ·C for 30 min) and again after purification of nucleic acids

from the immunoprecipitation. For DIP-chip assays, RNAse A (100 Ilg/ml final

concentration) was added to stroma prior to immunoprecipitation and residual RNA was

removed from the recovered nucleic acids by alkali hydrolysis in 200 mM NaOH at 70 ·C

for 30 min.

Analysis of DNA and RNA

DNA extraction from leaf tissue and Southern blot analysis were performed as

previously described (39). Leaf RNA was extracted from the middle of the second leaf of

9 day old seedlings, with Tri Reagent (Molecular Research Center). RNA gel blot

hybridizations were performed as previously described (36). The following PCR

fragments were used as probes (residue numbers refer to GenBank accession X86563):

atpF int/ex2, 35706-36384; atpF int, 36073-35233; ndhA int, 114941-115730; orf99,

86911-88430;petD ex2, 75539-75895;petN, 19081-19415;psbA, 296-1074; rp116 ex2,

79519-79920; rp116 int, 80002-80888; rpoB, 23258-24475; rps12 trans, 69307-69420

and 129636-129861; rps12 intl/exl, 5',68793-69460; rps14, 38500-39020; rrn4.5,

102041-102135; rrn5, 102180-102619; rrn16, 95559-96779; rrn23, 98332-98792; trnA

mature, 98038-98075 + 98712-98916; trnG mature, 13245-13292 and 13991-14013;

trnG int 13293-13990; trnN, 103066-103137; ycj3 int2/ex3, 43820-44873; ycj3 int,

44383-45116. Poisoned primer extension assays to distinguish mature from precursor

RNAs were performed as previously described (18) using the following primers and

dideoxynucleotide: rm23, 5'- CGCAAGCCTTTCCTCTTTT -3' (ddTTP); rp12, 5'

GGCCGTGCCTAAGGGCATATC -3' (ddCTP); rps12, 5'

GGTTTTTTGGGGTTGATAG -3' (ddCTP). Radioactive gels and blots were imaged

with a phosphorimager and analyzed using ImageQuant software (GE Healthcare).

Nucleic acid binding assays

Gel mobility shift assays were performed with the same substrates an~ procedures

as described in Watkins et al. (2007) (21) except that the binding reactions contained 150
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mM NaC!, 5 mM DTT, 50 j.lg/m1 BSA, 25 mM Tris-HCl pH 7.5,0.1 mg/ml Heparin.

Filter binding assays were based on the procedure of Wong and Lohman (40) with

modifications (25). The atpF intron RNA substrate for filter-binding assays was

transcribed in vitro by T7 RNA from a PCR product generated with the following

primers: atpF forward /T7 promoter, 5'-TAATACGACTCACTATAGGGATGAAAAA

TGTAACCCATTCTT -3'; atpF reverse, 5'- AATGAAAGTAGATTATCTTGC -3'. The

RNA, which included atpF exon 1 and the complete intron, was heated in TE to 90°C for

2 min and then placed on ice immediately prior to its addition to binding reactions (300

mM NaC!, 5 mM DTT, 50 j.lg/ml BSA, and 25 mM Tris pH 7.5, 30°C for 30 min).

Chloroplast run-on transcription assay

The chloroplast run-on transcription assay was performed as described by Mullet

and Klein (41-43). The radiolabeled products were hybridized to the following synthetic

oligonucleotides (10 pmol/slot) that had been applied with a slot-blot manifold to a nylon

membrane: rrn16 5'-

CCCATTGTAGCACGTGTGTCGCCCAGGGCATAAGGGGCATGATGACTTGG -3',

rrn23 5'- GGACTCTTGGGGAAGATCAGCCTGTTATCCCTAGAGTAACTTTTATC

CGA -3', trnG 5'- CATCTATGTCAGCTTTTCTGTCTGAATGGAACCAAAGCTCTC

CGCTTTCTAGATGC -3', and CFM3 5'- ATACTCGAGCGAAAAACAGGAGGATT

AGTAATCTGGCGATCAGGGACTTCTGTTTCTCTGTACCGGGGAGTAGATTATG

ATGAACC -3'.

Results

Identification of ZmWHYl in CRSl coimmunoprecipitates

To find proteins involved in the splicing of the atpF intron we used mass

spectrometry to identify proteins that coimmunoprecipitate with the atpF splicing factor

CRS 1. Stromal extract was initially fractionated on a sucrose gradient, and the fractions
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that contained the majority of the CRSI ribonucleoprotein particles (~600-700 kDa) were

used for immunoprecipitation. The immunoprecipitated proteins were separated by SDS

PAGE, and contiguous gel slices containing proteins between ~20 and ~120 kDa were

used for in-gel trypsin digests and tandem mass spectrometry. Among the proteins

identified was a member ofthe Whirly protein family (Supplementary Table I,

Supplementary Figure IA) (26, 28). The Whirly protein family in vascular plants

includes two orthologous groups (Supplementary Figure IB). The peptides detected in

the CRS 1 coimmunoprecipitate identified the protein as a member of the orthologous

group designated Whyl.

Recovery of ZmWhyl insertion mutants

To elucidate the function of ZmWHY1 we sought insertion mutants in a reverse

genetic screen of our collection of transposon-induced non-photosynthetic maize mutants

(http://pml.uoregon.ed!!L). Two mutant alleles were recovered (Figure I): the Zmwhyl-l

allele has a MuDR transposon insertion 35 bp downstream of the predicted start codon

and conditions an ivory leaf phenotype; the Zmwhyl-2 allele has a Mul or Mul. 7

insertion 38 bp upstream ofthe predicted start codon and conditions a pale green leaf

phenotype. The heteroallelic progeny ofcomplementation crosses (Zmwhyl-l/-2) exhibit

an intermediate phenotype (Figure IB). Homozygous mutant plants die after the

development of three to four leaves, as is typical of non-photosynthetic maize mutants.

A polyclonal antibody was raised to a recombinant fragment ofZmWHYI. This

antibody detected a leaf protein whose size is consistent with that anticipated for

ZmWHYI (~25 kDa) (data not shown) and whose abundance is reduced in ZmWhyl

mutants (Figure IC), indicating that the detected protein is ZmWHYI. The ZmWHYI

antibody coimmunoprecipitated CRS1 (Figure ID) from chloroplast extract, confmning

that CRS 1 and ZmWHYI associate with one another. This association was disrupted by

treatment with ribonuclease A (Figure ID), indicating it is mediated by RNA. Results

described below show that atpF intron RNA, which was shown previously to associate

with CRSI in vivo (19, 20), mediates the CRSI/ZmWHYI interaction.
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Figure 1. Mutant Alleles ofZmWhy1.
(A) Positions of Mu transposon insertions in the ZmWhy1 gene. Protein coding regions
are indicated by rectangles, untranslated regions and introns by lines, and Mu transposon
insertions by triangles. The sequence of each insertion site is shown below, with the nine
nuc1eotides that were duplicated during insertion underlined. The identity of the member
of the Mu family is shown for each insertion (whyl-2: Mull!.7; why1-1: MuDR), and
was inferred from polymorphisms in the terminal inverted repeats.
(B) Phenotypes ofZmWhy1 mutant seedlings grown for nine days in soil. Seedlings
shown are homozygous for either the Zmwhy1-1 or Zmwhyl-2 allele, or are the
heteroallelic progeny of a complementation cross.
(C) Immunoblot showing loss ofZmWHY1 in mutant leaf tissue. Total leaf extract (10
Ilg protein, or dilutions as indicated) were analyzed. The same blot stained with Ponceau
S is shown below, with the large subunit of Rubisco (RbcL) marked. hej7 and iojap are
pale green and albino maize mutants with weak and severe plastid ribosome deficiencies,
respectively (34, 35). The apparently higher levels of ZmWHYI in Zmwhy1-1 mutants
relative to Zmwhyl-2 mutants may be an artifact of the fact that samples were loaded on
the basis of equal total protein: the abundant photosynthetic enzyme complexes make up
the bulk of the protein in the Zmwhyl-2 extract but are missing in the Zmwhy1-1 extract,
causing other proteins to appear over-represented.
(D) RNA dependent coimmunoprecipitation of ZmWHYI with CRS 1. Prior to
immunoprecipitation, stroma was treated with DNAse or RNAse, or incubated under
similar conditions without added nuclease (Mock). The stroma was then subjected to
immunoprecipitation with the antibody named at top. Presence of CRS 1 in the
immunoprecipitation pellets was tested by immunoblot analysis with CRS 1 antibody.
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ZmWHYl partitions between the chloroplast stroma and thylakoid membrane, to

which it is bound in a DNA-dependent manner

ZmWHY1 was initially recovered from chloroplast stroma and is predicted to

localize to chloroplasts by both the TargetP (44) and Predotar (45) algorithms.

Immunoblot analysis ofproteins from leaf, chloroplasts, and mitochondria confirmed that

ZmWHY1 is found in chloroplasts and that it is absent, or found at only very low levels,

in mitochondria (Figure 2A). Analysis of chloroplast subfractions showed that

ZmWHY 1 is recovered in both the stromal and thylakoid membrane fractions (Figure

2A); this behavior differs from that of other chloroplast gene expression factors using the

same fractionated chloroplast preparation (PPR2, PPR4, RNCl, CAF1, CAF2, CFM2),

all of which were found solely in the stromal fraction (17, 19,21,24,33).

It seemed possible that ZmWHYl associated with the thylakoid membrane via a

DNA tether because chloroplast nucleoids are membrane-associated (46) and AtWHY1

copurified with a chloroplast chromosome preparation (31). In support of this possibility,

treatment of the thylakoid membrane fraction with DNAse released a portion of the

membrane-associated ZmWHY 1 to the soluble fraction (Figure 2B), whereas RNAse

treatment had no effect. These results indicate that ZmWHY1 is associated with the

thylakoid membrane, at least in part, via an association with chloroplast DNA.

ZmWHYl is associated with large RNA- and DNA-containing particles

The observations that RNAse and DNAse disrupt ZmWHY1 's association with

CRS 1 and the thylakoid membrane, respectively, suggested that ZmWHY1 associates

with both RNA and DNA. To further explore the nature of these interactions, the effects

of RNAse or DNAse treatment on the sedimentation properties ofZmWHY1 were

investigated (Figure 3). When untreated stroma was sedimented through a sucrose

gradient, ZmWHY1 was detected in two peaks (~400-500 kDa and ~600-700 kDa) and

was also found in pelleted material at the bottom of the gradient. The 600-700 kDa peak

coincides with the peak of CRS 1 in the same gradient. Treatment of stroma with DNAse

reduced the amount of ZmWHY1 in the pellet and in the ~400-500 kDa peak, but did not
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reduce its recovery in the 600-700 kDa peak. Conversely, RNAse treatment specifically

reduced the recovery ofZmWHY1 in the 600-700 kDa peak. These results together with

Figure 2. Intracellular Localization ofZmWHY1.
(A) Immunoblots of extracts from leaf and subcellular fractions. The samples in the
chloroplast (Cp) and chloroplast subfraction lanes are derived from the same initial
number of chloroplasts. The same blot was probed to detect a marker for thylakoid
membranes (D1) and mitochondria (MDH). These subcellular fractions are the same as
those shown previously for localization of RNC 1, where a marker for the envelope
membrane fraction was also presented (21). Env, envelope; Mito, mitochondria; Thy,
thylakoid membranes. The blot stained with Ponceau S is shown below, with the band
corresponding to RbcL marked.
(B) DNA-dependent association ofZmWHY1 with thylakoid membranes. The thylakoid
membrane fraction was treated with DNAse, RNAse, or incubated under similar
conditions without added nuclease (Mock). Thylakoid membranes were then pelleted by
centrifugation. Pellet (Pel) and supernatant (Sup) fractions were brought to equal
volumes, and an equivalent proportion of each fraction was analyzed on an immunoblot
probed with ZmWHY1 antibody. The same blot stained with Ponceau S is shown below.
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those described above suggested that ZmWHY1 resides in two types of complexes: one

that includes CRS 1 and RNA, and the other that includes DNA.
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Figure 3. Sucrose-gradient sedimentation demonstrating that ZmWHY1 is associated
with DNA- and RNA-containing particles in chloroplast stroma.
Stromal extract was treated with DNAse or RNAse, or incubated under similar conditions
without nuclease (Mock), and then sedimented through a sucrose gradient. An equal
volume of each gradient fraction was analyzed by probing immunoblots with the
antibodies indicated to the left. RPL2, a protein in the large ribosomal subunit, marks the
position of ribosomes. Shown below is the blot of the mock-treated fractions stained
with Ponceau S, with the RbcL band marked to illustrate the position of Rubisco. The
Ponceau S stained blots of experiments involving the DNAse and RNAse treated extracts
looked similar (data not shown).
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Coimmunoprecipitation assays demonstrate that ZmWHYl associates with a subset

of plastid RNAs that includes the atpF intron

The RNA-dependent association between ZmWHY1 and CRS 1 suggested that

ZmWHY might associate with CRS1's RNA ligand, the atpF intron. However, the

albino phenotype conditioned by the Zmwhy1-1 allele indicated that this could not be

ZmWHYI 's sole ligand, because mutations in crsl that completely block atpFintron

splicing result in a much less severe chlorophyll deficiency (20). To identify RNAs that

associate with ZmWHY in vivo we used a "RIP-Chip" assay (47) as an initial screen:

RNAs that coimmunoprecipitate with ZmWHY1 from stromal extract were identified by

hybridization to a tiling microarray ofthe maize chloroplast genome. To ensure that

DNA associated with ZmWHY did not contribute to the signal, the extract was treated

with DNAse prior to immunoprecipitation, and the nucleic acids recovered from the

immunoprecipitation pellet and supernatant were again treated with DNAse. RNAs

recovered from the pellet and supernatant were then labeled with red- or green

fluorescing dye, respectively, combined, and hybridized to the microarray. Two replicate

immunoprecipitations were analyzed in this manner. To highlight sequences that are

enriched in the ZmWHY1 immunoprecipitations, the median enrichment ratio

[red(F635)/green (F532)] was plotted according to chromosomal position, after

subtracting the median enrichment ratios from control assays (Figure 4A). The results

highlight the atpF intron as the major RNA ligand of ZmWHY. The results suggested, in

addition, an association between ZmWHY1 and RNAs derived from several other loci

(e.g. rps14, rpoC, ycj3, rps12,petD, rp116, orf99). When the same data were analyzed by

considering only the signal in the immunoprecipitation pellets, the results were similar

(Supplementary Figure 2A).

To validate candidate RNA ligands to emerge from the RIP-chip experiment,

RNAs that coimmunoprecipitate with ZmWHY1 were analyzed by slot-blot hybridization

using probes corresponding to each RIP-chip peak (Figure 4B). RNAs purified from

immunoprecipitations with antibodies to CRSI and OE16 (a protein that does not bind

RNA) were analyzed as controls. As for the RIP-chip assays, the stromal extract was
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Figure 4. Identification of chloroplast RNAs and DNAs that coimmunoprecipitate with
ZmWHYl.
(A) RIP-chip data showing coimmunoprecipitation of specific chloroplast RNAs with
ZmWHYl. The ratio of signal in the pellet versus the supernatant (F635/F532) for each
array fragment is plotted according to chromosomal position. The plot shows the median
values for replicate spots across two replicate ZmWHY1 immunoprecipitations after
subtracting the corresponding values for two negative control immunoprecipitations (one
with OE16 antibody and one without antibody). The same data are plotted using an
alternative analysis method in Supplemental Figure 2B; the atpF intron is the most
prominent peak in both analyses, but the proportional sizes of other peaks vary depending
on the comparison used.
(B) Validation of RIP-chip and DIP-chip data by slot-blot hybridization. Stroma was
pretreated with DNAse or RNAse or left untreated and then subjected to
immunoprecipitation with the antibodies indicated at the top. Nucleic acids purified from
the pellets (Pel) and supernatants (Sup) were further treated with DNAse or alkali to
remove residual DNA or RNA. The resulting total nucleic acids (T), RNA (R), or DNA
(D), were applied to a nylon membrane with a slot blot manifold and hybridized with
probes specific for the indicated sequences. 1I9th and 1/27th of the nucleic acid recovered
from each pellet and supernatant, respectively, was applied to each slot.
(C) DIP-chip data showing genome-wide enrichment of chloroplast DNA in ZmWHYl
immunoprecipitations. Stroma was treated with RNAse prior to immunoprecipitation.
Nucleic acids were extracted from the immunoprecipitation pellets and from total input
stroma, and subjected to alkali hydrolysis to remove residual RNA prior to analysis by
microarray hybridization. The median log2-transformed ratio of fluorescence in the pellet
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treated with DNAse prior to immunoprecipitation and the nucleic acids recovered from

the immunoprecipitation were treated again with DNAse. The results largely

recapitulated the RIP-chip data (see lanes "R" in Figure 4B): atpF intron RNA was

confirmed to be strongly enriched in ZmWHYl immunoprecipitations, whereas RNAs

from the psbA and petN loci, which did not appear as positives in RIP-chip assays,

likewise scored negative in the slot-blot hybridization assay. Coimmunoprecipitation with

ZmWHYl was also confirmed for RNAs from the rps12, ndhA, rp116, ycj3, and rps14

loci; as predicted by the RIP-chip data, their degree of enrichment was less than that for

the atpF intron. However, RJ"JAs from the petD, orj99, and rrn5 loci, which appeared as

minor peaks in the RIP-chip data, did not appear to be enriched based on the slot-blot

data; the orj99 transcript is ofvery low abundance, however, so it may be enriched in the

pellet at levels that are too low to detect. These issues not withstanding, the RIP-chip and

slot-blot hybridization data together show that ZmWHYl associates with a subset of

RNAs in chloroplast extract, and that the atpF intron is its major RNA ligand.

DNA from throughout the plastid genome coimmunoprecipitates with ZmWHYl

The effects ofDNAse-treatment on ZmWHYl 's association with the thylakoid

membrane (Figure 2B) and on its sedimentation rate (Figure 3) indicated that ZmWHYl

is associated with chloroplast DNA in vivo. To gain insight into which DNA sequences

were involved in these interactions, we modified the RIP-chip protocol to detect

coimmunoprecipitating DNA (DIP-chip): stromal extract was treated with ribonuclease

prior to the immunoprecipitation, and alkali hydrolysis was used to remove residual RNA

after the immunoprecipitation. A control immunoprecipitation used antibody to CAF 1, a

splicing factor that associates with specific chloroplast intron RNAs in vivo (19). Both

ZmWHYl and CAFI were efficiently immunoprecipitated (Supplementary Figure 2C),

but the DIP-chip data were strikingly different (Figure 4C): nearly all of the DNA in the

input stromal sample coimmunoprecipitated with ZmWHY1, whereas very little DNA

was recovered in CAFI immunoprecipitations. These results confirm that ZmWHYl is

associated with chloroplast DNA and show further that ZmWHY1 either binds
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throughout the chloroplast genome, or binds to specific DNA regions and

coimmunoprecipitates all other DNA sequences due to their linkage to ZmWHY1

binding sites. Incubation of the extract with various restriction enzymes prior to the

immunoprecipitation did not reveal the specific enrichment of any DNA sequences

(Supplementary Figure 2B), leading us to favor the interpretation that ZmWHY1 is

associated with many sites throughout the chloroplast genome. Nucleic acids recovered

from the CAF1 and ZmWHY1 immunoprecipitations were also used as a direct template

for PCR (Supplementary Figure 2D). The results support the DIP-Chip data: PCR

product was obtained using a variety of chloroplast genome primers from the ZmWHY1

coimmunoprecipitation and not from the CAF1 coimmunoprecipitation.

The enrichment of DNA sequences in ZmWHY1 immunoprecipitations was

further confirmed by slot blot hybridization (Figure 4B). As for the DIP-chip assays,

stroma was treated with RNAse prior to the immunoprecipitation, and residual RNA was

removed by alkali hydrolysis after the immunoprecipitation (Figure 4B, lanes "D").

Antibody to ZmWHY1 coimmunoprecipitated DNA from all sequences tested, whereas

DNA was not detected in either the CRS1 or OE16 immunoprecipitations. The DIP-chip,

PCR, and slot-blot hybridization data provide strong evidence that ZmWHY1 is

associated with chloroplast DNA in vivo and that it has many binding sites throughout the

genome.

Zm Whyl mutants are deficient for plastid ribosomes

A role for WHY1 in chloroplast gene expression was suggested by the

coimmunoprecipitation ofZmWHY1 with CRS 1, RNA and DNA, and by the

copurification ofAtWHY1 with the plastid transcriptionally-active-chromosome (31). In

support of this possibility, core subunits of the chloroplast ATP synthase, photosystem II,

photosystem I, the cytochrome b6fcomplex, and Rubisco accumulate to reduced levels in

ZmWhyl mutants (Figure 5B). The protein deficiencies conditioned by the weak allele

combinations (Zmwhyl-2/-2 and Zmwhyl-l/-2) resemble those in hcj7mutants, which

have a reduced content of chloroplast ribosomes (35).
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Figure 5. Plastid ribosome deficiency in ZmWhyl mutants.
(A) Total seedling leaf RNA (0.5 "",g) was analyzed by RNA gel blot hybridization using
probes for the RNAs indicated at the bottom. A map of the plastid rRNA operon is shown
below. A cDNA probe was used to detect mature trnA; this lacks intron sequences and
therefore hybridizes poorly to unspliced precursor. The probe for 23S rRNA is derived
from the 5' portion of the rrn23 gene and detects just one of the two 23S rRNA
fragments found in ribosomes in vivo. The leaf pigmentation conditioned by each mutant
allele is indicated: iv, ivory leaves; pg, pale green leaves. The blot used to detect 16S
rRNA is shown after staining with methylene blue to illustrate equal loading of cytosolic
rRNAs (I8S, 28S). Mature RNA forms are indicated with asterisks.
(B) Reduced accumulation of photosynthetic enzyme complexes in ZmWhy1 mutants.
Immunoblots of leaf extract (5 J.lg protein or the indicated dilutions) were probed with
antibodies to core subunits of photosynthetic enzyme complexes: AtpA (ATP synthase),
Dl (photosystem II), PsaD (photosystem I), and PetD (cytochrome brfcomplex). The
same blot stained with Ponceau S is shown below to illustrate sample loading and the
abundance of RbcL.
(C) Plastid run-on transcription. Chloroplasts prepared from Zmwhyl-l/-2 heteroallelic
mutants or their normal siblings (WT) were used for run-on transcription assays as
described in Methods. RNAs purified from the reactions were hybridized to slot blots
harboring oligonucleotides corresponding to the genes indicated at the top. Each probe
was present in duplicate. elm3, a nuclear gene, served as a negative control. The results
were quantified with a phosphorimager and plotted on the bar graph below.
versus the input is plotted for replicate array fragments as a function of chromosomal
position. The left inset shows the recovery of CAP1 and ZmWHY1 in the
immunoprecipitations: the antibody used for immunoprecipitation is indicated above, and
the antibody used to probe the immunoblot is shown to the left. Coimmunoprecipitated
DNAs were also used as template for PCR using primers at several positions in the
chloroplast chromosome (right inset) The fragment #s correspond to those on the
mlCroarray.
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These proteins were not detectable in Zmwhy1-1 homozygotes, as in albino iojap mutants

which lack plastid ribosomes (Figure 5B).

The global loss of photosynthetic enzyme complexes in ZmWhyl mutants

suggested an underlying loss of plastid ribosomes. This possibility was confirmed by

RNA gel blot hybridizations, which showed a loss of mature 23S, 4.5S, and 16S rRNAs

in hypomorphic ZmWhy1 mutants, and an increased accumulation ofrRNA precursors

(Figure 5A). Chloroplast rRNAs were not detectable in plants homozygous for the null

Zmwhy1-1 allele, as in albino iojap leaves. Whereas hej7 mutants show a more severe

loss of 16S rRNA than 23S and 4.5S rRNAs, the reverse is true for hypomorphic

ZmWhyl mutants. A dramatic increase in the ratio of 23S rRNA precursors to mature

23S rRNA in these mutants was confirmed with a poisoned-primer extension assay

(Supplementary Figure 3C).

Some steps in rRNA processing are dependent upon ribosome assembly in

chloroplasts, as in bacteria (see, for example, refs. (24, 35,48)). The aberrant 23S and

4.5 S rRNA processing in ZmWhy1 mutants suggested therefore that ZmWHYI might

promote the expression of a gene needed for the assembly of the large ribosomal subunit

(an rRNA or ribosomal protein), with loss of the small ribosomal subunit being a

secondary effect. It seemed plausible, for example, that ZmWHYI might promote

processive transcription through the chloroplast rrn operon; this would differentially

affect the large ribosomal subunit due to the distal position of the genes encoding its

rRNA components (23S, 4.5S, and 5S rRNA) in the operon (see map in Figure 5A).

However, the results of chloroplast run-on transcriptions assays argue against this

possibility (Figure 5C): the ratio of polymerase transit through the 23S gene in

comparison to the 16S rRNA gene, and the ratio of rrn operon transcription in

comparison to transcription from a different chloroplast locus (trnG-UCC) were similar

in wild-type and Zmwhyl-l/-2 mutant chloroplasts. Furthermore, the rRNA components

of the large ribosomal subunit were not reproducibly enriched in ZmWHY co

immunoprecipitates (Figure 4A, Supplementary Figure 2B); this suggests that ZmWHY1

does not interact directly with rRNAs or 50S ribosomal subunits, although such
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interactions cannot be eliminated based on these negative results. Taken together, these

results argue that ZmWHYl directly impacts the expression of a gene encoding a

component of the large ribosomal subunit and/or promotes ribosome assembly.

Elucidation of its precise role in this process will require further study.

ZmWHYl promotes atpF intron splicing

The coimmunoprecipitation ofZmWHYl with the atpF splicing factor CRS1 and

with RNA from the atpF locus suggested that ZmWHYl might be involved in the

splicing of atpF pre-mRNA. To test this possibility, atpF RNA from Zmwhyl mutants

was analyzed by RNA gel blot hybridization (Figure 6). To control for pleiotropic effects

of weak and severe plastid ribosome deficiencies, RNAs in pale green (hypomorphic)

Zmwhyl-2 and Zmwhyl-2/-1 mutants were compared to those in hcj7 mutants, and

RNAs in albino (null) Zmwhyl-l mutants were compared to those in iojap mutants.

These comparisons were important because the complete absence of plastid ribosomes

results in the failure to splice all chloroplast subgroup IIA introns, including the atpF

intron (15, 49, 50).

The results in Figure 6 show that the ratio of spliced (S) to unspliced (D) atpF

transcripts is reduced in hypomorphic ZmWhyl mutants in comparison to wild-type and

hcj7 plants, albeit not as severely as in crsl mutants. The ratio of excised intron

(asterisks) to unspliced RNA is also reduced, supporting the interpretation that ZmWHYl

promotes atpF splicing rather than stabilizing the spliced product. The normal splicing of

the atpF intron in hcj7 mutants argues that the partial plastid ribosome deficiency in

hypomorphic ZmWhyl mutants cannot account for their reduced atpF splicing.

Furthermore, a different subgroup IIA intron, the rp/2 intron, is spliced normally in the

same plants (Supplementary Figure 3B), showing that not all subgroup IIA introns are

affected in the hypomorphic ZmWhyl mutants. These results provide strong evidence that

ZmWHYl's association with atpFRNA enhances the splicing of the atpFintron.
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Figure 6. Reduced atpF intron splicing in ZmWhyl mutants.
RNA gel blot analysis of atpF splicing. Total seedling leaf RNA (5 ~g) was analyzed by
RNA gel blot analysis using a probe including atpF exon 2 and a portion of the atpF
intron (atpF int/ex2), or with an intron-specific probe (atpFint). The atpF gene is part of
a polycistronic transcription unit that gives rise to a previously-characterized population
ofRNAs (51, 52). Spliced (S) and unspliced (D) transcripts are indicated. Asterisks mark
bands that we believe correspond to the excised intron and its degradation products. The
ratio of spliced to unspliced transcripts was quantified with a phosphorimager,
normalized to the wild-type ratio, and plotted below using arbitrary units.
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The coimmunoprecipitation data demonstrated an association between ZmWHYl

and RNAs from several loci other than atpF. However, RNA gel blot hybridizations

showed that the transcripts from all such genes were qualitatively similar in ZmWhyl

mutants and in the relevant control mutant (Figure 7). The coimmunoprecipitation of

ZmWHYl with RNAs from both loci encoding the trans-spliced group II intron in rps12

was intriguing (Figure 4A), but splicing of this RNA is not disrupted in ZmWhyl mutants

(Supplementary Figure 3B). These results show that ZmWHYl is not necessary for the

normal processing of most chloroplast transcripts.

A structural homolog of ZmWHYl in Trypanosoma brucei is required for mitochondrial

RNA editing (53). Several plastid RNAs that are known to be substrates for RNA editing

were represented among the RNAs that coimmunoprecipitate with ZmWHYl. Direct

sequencing of RT-peR products demonstrated, however, that the editing of the known

edited sites in the petB, rp120, ycj3, and rps14 transcripts is not disrupted in Zmwhy1-1

and Zmwhyl-21-1 mutants (data not shown), suggesting that ZmWHYl is not required

for RNA editing.

ZmWHYl is required neither for chloroplast DNA replication nor for global plastid

transcription

The association of ZmWHYl with plastid DNA suggested that it might be

involved in chloroplast transcription or DNA replication. However, Southern blot

analysis of total leaf DNA showed that plastid DNA levels in ZmWhy1 mutants, although

somewhat variable from sample to sample, were generally similar to those in normal and

control mutant plants (Figure 8). In addition to the plastid transcripts shown in Figure 7,

a variety of other transcripts were examined by RNA gel blot hybridization

(Supplementary Figure 3A). In no case was a significant reduction in transcript level

detected, indicating that ZmWHYl is not necessary for global plastid transcription. In

fact, a trend is apparent toward increased transcript abundance in ZmWhy1 mutants, but

these changes are rather subtle and indirect effects on RNA abundance cannot be

excluded.
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Figure 7. Accumulation of plastid RNAs in ZmWhy1 mutants.
Total seedling leaf RNA (5 ""g) was analyzed by RNA gel blot hybridization using probes
specific for the RNAs indicated at bottom. The rps12 probe was a cDNA probe
containing exons 1 and 2. The leafpigmentation conditioned by each mutant allele is
indicated: iv, ivory; pg, pale green. The methylene blue-stained blots are shown below,
with rRNAs marked. Additional RNAs that were analyzed analogously are shown in
Supplementary Figure 3A.
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Figure 8. Chloroplast DNA levels in ZmWhy1 mutants.
Seedling leaf DNA (5 f!g) was digested with EcoRI (left), or Pvull (right) and analyzed
by DNA gel blot hybridization using a probe from the chloroplast rrn23 gene (top left),
or orf99 (top right). The same gels stained with ethidium bromide are shown below. The
small fluctuations in relative band intensity may result from small differences in sample
loading.
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Recombinant ZmWHYl binds single-stranded RNA and DNA in vitro

To determine whether ZmWHY1 can directly bind both RNA and DNA,

recombinant ZmWHYl (rWHY1) was generated by expression as a maltose binding

protein (MBP) fusion. rWHYl was released from the MBP moiety by protease cleavage

and further purified on a gel filtration column (Figure 9A). rWHYl eluted from the sizing

column at a position corresponding to a globular protein of~100 kDa, consistent with the

report that StWHYl forms a homo-tetramer (28). Filter binding assays showed that

rWHYl binds to unspliced atpF RNA in vitro (Figure 9B), but it did not show specificity

for this RNA relative to other RNAs of similar size under the conditions tested (data not

shown).

To compare the affinity ofZmWHY1 for single-stranded and double-stranded

RNA and DNA, gel mobility shift assays were used to detect binding to a synthetic 31

mer oligonucleotide in the context of single-stranded DNA, single-stranded RNA,

double-stranded DNA, or double-stranded RNA (Figure 9C). ZmWHYl bound rather

weakly to these short oligonucleotides but the results showed, nonetheless, that rWHYl

binds both ssDNA and ssRNA, and binds poorly to dsRNA and dsDNA.
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Figure 9. Recombinant ZmWHYl binds single-stranded RNA and DNA.
(A) Elution of recombinant ZmWHYI from a gel filtration column. MBP-WHYI was
purified by amylose affinity chromatography, cleaved with TEV protease to separate the
WHYI and MBP moieties, and applied to a Superdex 200 column. Column fractions
were analyzed by SDS-PAGE and staining with Coomassie blue. The elution position of
size markers (alcohol dehydrogenase, 150 kDa; BSA, 67 kDa, MBP, 42 kDa) is shown.
The peak WHYI fractions were pooled and used for in vitro assays.
(B) Filter binding assay showing RNA binding activity ofZmWHYl. Assays containing
10 pM radiolabeled atpF intron RNA and increasing ZmWHY1 concentrations (50 nM
maximum) were filtered through sandwiched nitrocellulose and nylon membranes.
Protein/RNA complexes were captured on the nitrocellulose (bound); unbound RNA was
captured on the nylon membrane below.
(C) Gel mobility shift assay showing rWHYl 's relative affinity for double and single
stranded R1\fA and DNA. A 31-mer oligonucleotide in RNA or DNA form was
radiolabeled, heated, and either snap cooled (ssRNA, ssDNA), or cooled slowly in the
presence of monovalent salts and a two fold excess of its complement (dsRNA, dsDNA).
The substrate (40 pM) was mixed with increasing concentrations of ZmWHY1 (17,
50,150 nM). Protein binding is illustrated by the appearance of an upper band and
retention at the top of the gel, and by the disappearance of unbound substrate.
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Discussion

Previous reports have attributed diverse functions and intracellular locations to

WHYl. WHY1 in dicots has been reported to be a single-stranded DNA binding protein

that functions in the nucleus as both a transcription factor (26, 28) and as a negative

regulator of telomere length (29). Arabidopsis WHY1 copurified with the

"transcriptionally active chromosome" from chloroplasts (31). Our results add another

layer to this complex picture. We demonstrate that ZmWHY1 is essential for chloroplast

biogenesis, and that it localizes to the chloroplast where it plays multiple roles in gene

expression. We also add RNA-binding to WHY1's repertoire of biochemical activities

and demonstrate that ZmWHY1 is bound to a subset of chloroplast RNAs in chloroplast

extract

Multiple roles of ZmWHYl in chloroplast biogenesis

ZmWHY was identified among proteins that coirnrnunoprecipitate with CRS1,

which is required for the splicing of the group II intron in the chloroplast atpF pre

mRNA. We showed that ZmWHY1 is associated with atpF intron RNA in vivo and that

the coimmunoprecipitation of ZmWHY1 and CRS1 is disrupted by RNAse, indicating

that they coimmunoprecipitate due to their association with the same RNA molecule.

ZmWHY1's association with atpF RNA is functionally significant, as atpF intron

splicing is disrupted in ZmWhy1 mutants. However, the splicing of this intron is more

sensitive to a partial loss ofCRS1 than to a partial loss of ZmWHY1, suggesting that

ZmWHY1 plays an accessory function in atpF splicing but may not be absolutely

required.

The atpF splicing defect in Zm Why1 mutants cannot account for their loss of

plastid ribosomes, as the more severe atpF splicing defect in crs1-1 mutants is not

accompanied by a substantial plastid ribosome deficiency (20). The specific role of

ZmWHY1 in promoting the biogenesis of the plastid translation machinery remains

unclear. Although several RNAs with translation-related functions are among the RNAs
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that coimmunoprecipitate with ZmWHY1, the abundance and processing of these RNAs

are similar in ZmWhyl mutants and in control mutants that exhibit a ribosome-deficiency

of similar severity. The specific rRNA deficiencies in ZmWhyl mutants do suggest,

however, that ZmWHYI is most directly involved in the biogenesis of the large

ribosomal subunit: the accumulation and processing of the 238 and 4.58 rRNAs are more

sensitive to the partial loss of ZmWhyl function than are those of 168 rRNA, whereas the

reverse is true for hej7 mutants. Furthermore, in ppr5 mutants, whose primary defect is in

the maturation of a specific plastid tRNA, the rRNAs from the two ribosomal subunits

are impacted to a similar extent (48). Thus, our results point to the biogenesis of the

plastid large ribosomal subunit as one function ofZmWHYI but definition of its precise

role in this process will require additional study. The strong defect in the processing step

that separates 238 rRNA from 4.58 rRNA in hypomorphic ZmWhyl mutants is

reminiscent of defects reported for mutations in the DeL, DAL, and RNRI genes in dicots

(54-57). Although it is unclear whether any of these genes functions directly in 238/4.58

rRNA processing, it is possible that WHYI acts in concert with one or more of these

proteins.

ZmWHYl binds both RNA and DNA in vitro and in vivo

We show here that chloroplast DNA coimmunoprecipitates with ZmWHYI from

plastid extract, that a fraction ofZmWHY1 is tethered to the thylakoid membrane in a

DNA-dependent fashion, that a fraction of stromal ZmWHYI is found in DNA

containing particles of~400 kDa, and that Zm WHY1 binds single-stranded DNA in

vitro. These results are consistent with previous reports that dicot WHY1 binds single

stranded DNA (28, 29) and that it copurifies with a chloroplast "transcriptionally-active

chromosome" (31). Our findings suggest that ZmWHY1 either binds DNA in a sequence

non-specific fashion or that it has many binding sites distributed throughout the plastid

genome, because DNA sequences from throughout the plastid genome

coimmunoprecipitated to a similar extent with ZmWHYl. It remains possible, however,

that ZmWHYI associates with specific DNA regions in vivo, but that these associations
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were disrupted during lysate preparation. A DNA-immunoprecipitation experiment was

recently reported for AtWHY2, a mitochondrial-localized Whirly protein (32), with

analogous results: DNA sequences from a variety of regions throughout the

mitochondrial genome coimmunoprecipitated with AtWHY2, when assayed by peR.

We demonstrate here that ZmWHYl interacts not only with DNA, as anticipated

by previous reports, but that it also binds RNA in vivo and in vitro. That ZmWHYl

interacts with RNA is, perhaps, not surprising given that a structural homolog of

ZmWHYl has been shown to bind RNAs involved in kinetoplastid RNA editing (53),

and that many proteins that bind single-stranded DNA also bind RNA. The atpF intron

RNA was the major RNA ligand of ZmWHYl detected in the RNA

coimmunoprecipitation assays. This RNA is not particularly abundant in vivo so its

enrichment in ZmWHYl immunoprecipitations likely reflects a specific interaction in

vivo. Although intrinsic specificity for this RNA did not emerge from in vitro binding

assays using the entire intron, a high affinity site within a large RNA such as the atpF

intron (~800 nucleotides) can be masked in vitro due to the over-whelming number of

non-specific sites available for protein binding. Therefore, more detailed studies

involving smaller RNA ligands will be required to determine whether ZmWHYl binds

RNA with sequence-specificity, or whether it is recruited to the atpF intron via protein

protein interactions.

What is WHYl's DNA-related function in the chloroplast?

The association of ZmyWHYl with DNA sequences from throughout the

chloroplast genome suggests that it participates in transcription and/or DNA metabolism.

However, our results argue against a general role in transcription, as all plastid mRNAs

examined accumulate in hypomorphic Zmwhy1 mutants to levels that are comparable to

those in the relevant control mutants. The results of chloroplast transcription run-on

experiments argue that the preferential loss of238 rRNA in these mutants is due to

aberrant ribosome assembly rather than to reduced rRNA transcription rates. It remains
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possible, however, that ZmWHY1 does playa role in chloroplast transcription but that

another gene with a partially redundant function serves this purpose in ZmWhyl mutants.

It is intriguing that ZmWHY1 binds preferentially to DNA in single-stranded

form because opportunities to interact with single-stranded DNA in vivo are expected to

be limited. DNA replication, recombination and repair involve the transient occurrence of

single-stranded DNA, and torsional stress can induce DNA unwinding. The Southern blot

data showing that plastid DNA levels are no more than minimally decreased in ZmWhyl

null mutants argue against a central role for ZmWHY1 in DNA replication; however

participation ofZmWHY1 in DNA recombination or repair remains possible. In fact, the

participation of an unrelated ssDNA binding protein, OSB 1, in plant mitochondrial DNA

recombination was reported recently (58).

There are several parallels between our findings with ZmWHY1 and the activities

reported for the bacterial protein HU. HU is associated with the bacterial nucleoid, binds

preferentially to DNA with irregular structural features (e.g. single-stranded gaps and

bulges), and is involved in DNA recombination and repair (59,60). Despite its high

conservation in bacteria and the presence of an HU homolog in a plastid genome in red

algae (61), HU homologs are not encoded in the nuclear or plastid genomes of vascular

plants (61,62). Thus, alternative proteins have presumably been recruited in vascular

plants to fulfill the functions performed by HU in the chloroplast's cyanobacterial

ancestor. The nucleoid-associated protein sulfite reductase has been suggested to be one

such protein (62-64), and perhaps WHY1 is another. HU influences global transcription

patterns through its effect on nucleoid architecture, and mediates the formation of DNA

loops that repress transcription from specific genes (65-67). HU is also an RNA binding

protein, and functions in vivo to repress the translation of the E. coli rpoS mRNA (68,

69). Like HU, ZmWHY1 interacts globally with plastid DNA, but specifically with

certain plastid RNAs, and binds preferentially to nucleic acids with single-stranded

character. The abundance of several chloroplast mRNAs is increased in ZmWhyl

mutants, consistent with a global repressive role for ZmWHY1 in transcription. This

possibility is in accord with the recent report that over-expression ofAtWHY2 in
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Arabidopsis causes a reduction in the levels of several mitochondrial RNAs (32).

Although its role in DNA metabolism remains uncertain, our results demonstrate that

description of WHYI as a chloroplast transcription factor is, at best, an over

simplification of the complex roles played by this interesting protein.

Bridge

The preceding chapter discusses WHYl, a plant specific RNA and DNA binding

protein in the Whirly protein family. The severe phenotype of WHY] mutant plants

suggests this protein is crucial for chloroplast biogenesis, however the mechanism of

WHYls function is still not understood. The following chapter will discuss the

pentatricopeptide repeat (PPR) family, another family of proteins important for organelle

biogenesis. Like WHY 1, PPR proteins are sequence-specific binders of RNA, and are

indispensable for chloroplast function. Both Whirly family members and PPR family

member are targeted to either the chloroplasts or the mitochondria. Whereas Whirly

proteins comprise a small, plant specific family (2 to 3 members per species), PPR

proteins are found in all eukaryotes, and the family is extremely large in plants,

consisting of more then 450 members in angiosperms (11). The data presented here gives

insight into how this diverse family of proteins may function to regulate chloroplast and

mitochondrial gene expression.
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CHAPTER III

BIOCHEMICAL ANALYSES SUGGEST THAT PPRIRNA INTERACTIONS

INVOLVE AN UNUSUAL RNAIPROTEIN INTERFACE THAT IS SUFFICIENT

TO MEDIATE A VARIETY OF POSTTRANSCRIPTIONAL EFFECTS

This chapter describes analyses of two members of the pentatricopeptide repeat

protein family, PPRlO and PPR5. This work was done in collaboration with Dr. Alice

Barkan, Margarita Rojas, and Orner Ali Bayraktar. Margarita Rojas performed the

structure probing assays and some of the partial alkali hydrolysis binding assays, and

Orner Ali Bayraktar performed the PPRI0 partial alkali hydrolysis binding assay with 5'

end labeled RNA.

Introduction

Mitochondria and chloroplasts contain small genomes that reflect their origins as

free-living bacteria. The organellar genomes are much reduced in comparison to those in

their bacterial ancestors, and their gene expression mechanisms have diverged

considerably. For example, genes in chloroplasts are transcribed by two different types of

RNA polymerase, and the transcripts are then subject to an array of processing events

that include RNA editing, group I and group II intron splicing, and the processing of

polycistronic precursors to yield monocistronic mRNAs. These events are carried out by

nucleus-encoded proteins, most of which are innovations that evolved in the eukaryotic

host.
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The pentatricopeptide repeat (PPR) family is a notable example of a host-derived

protein family that mediates gene expression in chloroplasts and mitochondria (reviewed

in 70). PPR proteins consist of up to ~25 degenerate repeats of a 35 amino acid sequence,

usually in a single tandem array (10). They are found in all eukaryotes but form a

greatly expanded family in plants, with more then 450 members in angiosperms (11). The

PPR motif shares homology with the TPR motif, a helical hairpin motif found in repeated

arrays that mediates protein-protein interactions. However, genetic data have consistently

implicated PPR proteins in functions related to RNA metabolism; these include RNA

editing, RNA splicing, RNA cleavage, RNA stabilization, and translational control

(reviewed in 70). Biochemical analyses of several PPR proteins support the notion that

they exert downstream effects through site-specific binding to RNA (71-73). However,

the mechanistic basis of the diverse activities attributed to PPR proteins is largely

unexplored.

To elucidate how PPR proteins recognize specific RNA sequences and mediate

their effects on RNA metabolism, we are studying several PPRIRNA interactions in

detail. We describe here in vitro analyses of two chloroplast PPR proteins, PPR5 and

PPRI0, whose physiological functions and in vivo binding sites were reported previously.

PPR5 binds within a group II intron found in a chloroplast tRNA precursor (trnG-UCC),

protecting it from inactivation by an endonucleolytic cleavage (48, 71). PPRI0, in

contrast, binds in the intergenic regions of two polycistronic transcripts and stabilizes

adjacent RNA segments. That PPRI0 binding sites are found at the immediate 5' or 3'

ends of those RNAs it stabilizes suggested that PPRI0 serves as a barrier to

exonucleolytic RNA degradation in vivo (72).

Results presented here provide evidence that PPRlO is sufficient to block RNA

degradation by both 3'7 5' and 5'73' exoribonucleases in vitro. In addition, we define

the minimal RNA segments required for a high affinity interaction with PPR5 and

PPRlO, and probe the effects of these interactions on adjacent RNA structures. The

results support the notion that PPR5 and PPRlO bind an extended stretch of single

stranded RNA, and that this binding disrupts RNA structures that would otherwise inhibit
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splicing and translation, respectively. These findings suggest plausible mechanisms

underlying the ability ofPPR10 to enhance atpH translation (72) and PPR5 to enhance

tmG-UCC splicing in vivo (48). This study shows how two seemingly disparate functions

of PPR proteins, translational activation and promotion of splicing, can be explained as a

passive consequence of the ability of a PPR tract to bind in a sequence-specific fashion to

an extended segment of single-stranded RNA. We speculate that most or all of the

functions attributed to proteins comprised purely of PPR repeats may result from their

intrinsic ability to block access to the RNA by other proteins and to remodel RNA

structures.

Materials and Methods

Ribonucleic acid binding assays

Gel mobility shift (GMS) assays were performed as previously described (71).

Briefly, in vitro transcribed RNAs (oligonucleotides 3,4,5,8, and 9 in the PPR5 assays) or

synthetic RNAs (all PPR10 oligonucleotides and oligonucleotides 1,2,6, and 7 used for

PPR5 GMS assays) were 5'-end labeled with [y-32P]-ATP. PPRlO binding reactions

contained 100 mM NaCI, 40 mM Tris pH 7.5, 4 mM DTT, 0.1 mg/ml BSA, 0.5 mg/ml

heparin, 10% glycerol, 10 units RNAsin, ~40 pM radiolabeled RNA, and protein

concentrations as indicated. The PPR10 stoichiometric binding assay was performed as

for the PPR10 GMS assays, except that it included 100 nM RNA (~40 pM radiolabeled,

the rest was unlabeled)(19 nt sequence shown in Figure 1) and increasing concentrations

of protein as indicated. PPR5 binding reactions contained 100mM NaCI, 1 mg/ml

heparin, 40 mM Tris pH 7.5, 4 mM DTT, .04 mg/ml BSA, 10% glycerol, 10 units

.RNAsin, ~40 pM radiolabeled RNA, and protein concentrations as indicated. All

reactions were incubated for 20 min at 25°C and resolved on 5% native polyacrylamide

gels.
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Minimal binding assay using partially alkali hydrolyzed RNA

10 pmols of5' or 3' end label RNA oligonucleotide (55nt trnG intron RNA for

PPR5 and 49 nt atpH 5' UTR RNA for PPRlO) were ethanol precipitated and

resuspended in alkaline hydrolysis buffer (50mM Na2C03 pH9.5 and ImM EDTA). The

RNA was distributed in 5 different tubes and boil for 1,2,3,4 and 5 min respectively, and

then snap cooled on ice for 1 min. The RNA was purified by phenol: chloroform

extraction, and ethanol precipitation. The hydrolyzed RNA was incubated in the absence

or presence of recombinant protein at 20°C for 20 min under the following buffer

conditions: 30mM Tris pH7.5, 100mM NaCl, 4mM DTT, 0.04mg/ml BSA, and 500ng/lll

of heparin (25 ng/Ill heparin for PPRI0). Binding reactions were separated on a 5%

native polyacrylamide gel in Ix THE buffer as previously described (71). The set of

bands corresponding to the bound and unbound fractions were excided, eluted in RNA

elution buffer (0.5M NH40AC, 0.25% SDS, ImM EDTA), extracted with phenol:

chloroform, and precipitated with Ethanol. Samples were resuspended in 20lll formamide

loading dye and analyzed on an 8% polyacrylamide gel in lXTBE as previously

described (71).

PNPase purification

His tagged Synechocystis polynucleotide phosphorylase (PNPase) expression

construct in pET-20b (+) vector was generously provided by the Shuster lab. PNPase was

expressed in BL21 star E.coli cells. Induction and lysis via sonication were preformed as

described in Williams-Carrier et al. (2008) except that lysis buffer consisted of 50 mM

NaH2P04 pH 8, 300 mM NaCl, 20 mM imidazole, 10% glycerol, 1% Tween-20, and 2

mM BME. The lysate was cleared by centrifugation at 13,000 g for 20 min. Cleared

lysate was bound to 1 ml Ni-NTA agarose (Qiagen) and incubated for 1 h at 4°C. Slurry

was put on .8X4 em Poly-Prep Chromatograph Column (Bio-Rad). Column was washed

3 times with 5 ml of lysis buffer. Protein was eluted with 1 mllysis buffer containing 100

mM imidazole, followed by 2 mllysis buffer containing 250 mM imidazole. Elute was

brought up to 15.5 ml volume with Q buffer (20 mM HEPES pH8, 50 mM NaCI, 12.5
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mM MgCl, .1 mM EDTA, 2 mM DTT). Elute was then added to 1 ml Q Sepharose, Fast

Flow (Amersham Biosciences). Slurry was incubated for 1 h at 4°C and put on .8X4 cm

Poly-Prep Chromatograph Column (Bio-Rad). Column was washed 3 times with 5 ml of

Q buffer. Protein was eluted through a series of 1 ml washes with Q buffer containing

increasing concentrations ofNaCl: 150 mM, 300 mM, 450 mM, and 600 mM. Protein

eluted at ~300mMNaCl. Buffered glycerol (~100% glycerol with Q buffer constituents)

was added to a final concentration of 19%. Protein aliquots were taken and stored at 

20°C for use, and -80°C for long-term storage.

In vitro exonuclease protection assays

PNPase assays for 3'~5' exonuclease activity. Synthetic RNA oligonucleotide

corresponding to the atpH 5' UTR (sequence in Figure 3A) was 5'-end labeled with [y

32P]-ATP and gel purified as for the gel mobility shift assays (71). ~80 pM radiolabeled

RNA was heated 2 min at 90°C, removed from heat, and snap cooled on ice. Salt mix

was added to final concentration of25 !-tg/ml Heparin, 30 mM Tris pH 7.5, 100mM NaCl,

4 mM DTT. 5 !-tl PPRIO was added to PPRIO + samples, final concentration 100 nM.

PPRIO dialysis buffer was added to PPRIO - samples. Final sample volume was 25 !-tl.

Samples were incubated 15 min at 25°C. 2!-tl PNPase was added to PNPase + samples,

final concentration 440 nM. PNPase buffer (Q buffer with 19% glycerol) was added to

PNPase - samples. Samples were incubated at 25°C for 20 min. 10 !-tl of each sample was

run on a 5% native gel as in the gel mobility shift assays (71). Remaining sample was

phenol extracted and ethanol precipitated. RNA pellets were resuspended in 15 !-tl

formamide die mix boiled 3 min and applied to a 30 cm long, 8% polyacrylamide, 8M

urea, IX TBE (89 mM Tris pH 8.3,89 mM boric acid, 2 mM EDTA), denaturing gel.

Gels were run at 20 W (constant power) at room temperature until the bromophenol blue

dye migrated to ~8 cm from the bottom of the gel.

Terminator exonuclease assays for 5'~3' exonuclease activity. Synthetic RNA

oligonucleotide corresponding to the atpH 5' UTR (sequence in Figure 3A) was 3'-end

labeled by annealing with a DNA sequence complementary to the last (3 ') 20 nt and
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beginning with an additional 5' G. Klenow polymerase lacking the exonuclease domain

was used to incorporate an [a-32P]-CTP. The product was gel purified as for the gel

mobility shift assays (71). ~80 pM radiolabeled RNA was heated 2 min at 90°C, removed

from heat, and snap cooled on ice. Salt mix was added to final concentration of 25 !!g/ml

Heparin, 50 mM Tris pH 8, 100mM NaCl, 2 mM MgCh, 4 mM DTT. 5 !!l PPRI0 was

added to PPRI0 + samples, final concentration 100 nM. PPRI0 dialysis buffer was added

to PPR10 - samples. Final sample volume was 25 !!l. Samples were incubated 15 min at

25°C. 2!!1 Terminator 5'-73' exonuclease (Epicentre Biotechnologies) was added to

Terminator + samples, final concentration 100 nM. Samples were incubated at 25°C for

20 min. 10 !!l of each sample was run on a 5% native gel as in the gel mobility shift

assays (71). Remaining sample was phenol extracted and ethanol precipitated. RNA

pellets were resuspended in 15 !!l formamide die mix boiled 3 min and applied to a 30 cm

long, 8% polyacrylamide, 8M urea, IX TBE (89 mM Tris pH 8.3,89 mM boric acid, 2

mM EDTA), denaturing gel. Gels were run at 20 W (constant power) at room

temperature until the bromophenol blue dye migrated to ~8 cm from the bottom of the

gel.

Nuclease cleavage structure probing assays

5-end labeled trnG 55mer RNA oligonucleotide (O.lpmols) in the absence or

presence of rPPR5 protein was incubated at 20°C for 20 min under the following buffer

conditions 30mM Tris pH7.5, 100mM NaCl, 4mM DTT, 0.04mg/ml BSA, and 100ng/!!1

of heparin. The binding step was followed by cleavage with varying concentrations of

either RNAseTI (Ambion) or RNAse VI (Ambion) or Mung Bean Nuclease (NEB) or

Rnase H (Ambion) at 20°C for 10 min. Treated RNA was added to 10!!1 of formamide

loading dye. Samples were analyzed on either and 15% or an 8% polyacrylamide, 8M

urea gels. A limited alkaline digestion oftmG55 mer was added for size comparison. The

gel was dried and exposed to a PhosphoImager screen, and ImageQuant software was

used to view and analyzed the gel data.
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2-Aminopurine fluorescence assay

RNA containing 2-aminopurine in place of adenine at the indicated position

(Dharmacon RNA Technologies)(Fig 6) was diluted to 500 nM in binding buffer (lOO

mM NaCl, 50 mM NaP04 pH 7.5, 100 !!g/ml heparin, 3 mM ~ME). All reactions were

performed at room temperature, in binding buffer, using a I-formate Jobin-Yvon Horiba

Fluoromax fluorimeter and a 3 mm wide Spectrosil microcell cuvette (Stama Cells, Inc).

Readings were taken without PPR5 added, and with indicated concentrations ofPPR5

(5X was 2.5 !!M PPR5, lOX was 5 !!M PPR5) at 4 time points, immediately after

addition ofPPR5 (~30sec), 5 min, 10 min, and 15 min after addition ofPPR5. The 2

aminopurine was excited at 315 nm, and spectra were collected from 320 to 420 nm. The

fluorimeter slits were 2 nm, with an integration time of 0.1 seconds. Spectra collected

with buffer, protein, and RNA without 2-aminopurine incorporated was used to subtract

out background. The value at 370 nm was used to calculate relative fluorescence.

Results

The minimal PPRI0 binding site spans 15 nucleotides

Previously we had localized a high affinity PPR10 binding site to a 29-nt segment

of the atpH 5'-UTR (72). To better define the minimal region required to bind PPRlO

with high affinity, we assayed its boundaries by performing binding assays with end

labeled RNA harboring the binding site that had been subjected to partial alkaline

hydrolysis; the length of the shortest labeled RNAs capable of binding PPRlO defines the

distance from the labeled end that is required for a high-affinity interaction. The results

are shown in Figure lA and summarized in Figure IC. Analysis of 5' end-labeled RNA

placed the 3' boundary required for high affinity PPRI0 binding at position -29, with

respect to the start of the atpH ORF. Analysis of 3' end-labeled RNA placed the 5'

boundary at roughly - 42, although RNAs with several additional nucleotides at the 5'

end bind preferentially.
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To validate and extend these conclusions, several synthetic RNAs were used in

gel mobility shift assays (Figure IB). An 18 nt RNA that lackes one nucleotide ofthe 3'

boundary defined above failed to interact with PPRI 0, whereas all RNAs that include all

the sequence within the 3' and 5' boundaries resulted in a high affinity interaction.

Additional binding assays need to be done using synthetic RNA with the exact

boundaries defined above to validate that these boundaries truly define the minimal

ligand. 11114 of the nucleotides in the minimal atpHbinding site, as defined by the alkali

hydrolysis binding assays described above, are shared in PPRIO's second binding site,

found in the psaJ-rpl33 intergenic region. This striking conservation strongly suggests

that most or all of the nucleotides within this RNA segment contribute to its specific

interaction with PPRlO.

The elution profile of recombinant PPRIO from a gel filtration column suggested

that it might be a homodimer (72). To further address this possibility, we performed a

stoichiometric binding assay in which the RNA was present at a concentration well above

the~, and the fraction of RNA bound to protein was measured as a function ofPPRlO

concentration (Figure 2). The results show an inflection point at a PPRlO:RNA ratio of

~2.5. This finding is consistent with the possibility that PPRlO binds RNA as a

homodimer, although we cannot exclude the possibility that the high stoichiometry

results from a population of inactive PPRlO molecules.

PPRIO protects its RNA ligand from 3' and 5' exonucleolytic cleavage in vitro

We showed previously that the PPRlO binding sites are found at the 5' or 3'

termini of those chloroplast RNAs that fail to accumulate inpprlO mutants (72). On that

basis, we hypothesized that bound PPRlO blocks 3' and 5' exonucleases, thereby

stabilizing adjacent RNA segments. To test whether bound PPRlO is sufficient to
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Figure 1: The PPRIO RNA ligand.
(A) Mapping the boundaries of sequences required for a high-affinity interaction with
PPRIO. The RNA shown in (C) was labeled at either its 5' or 3' end, subjected to partial
alkali hydrolysis and used for gel mobility shift assays with PPRIO. RNA was extracted
separately from the gel regions containing unbound and bound RNA, and resolved on a
denaturing polyacrylamide gel. The nucleotides assigned to each band were inferred
based on their position from the labeled end. T- total hydrolyzed RNA. U- RNA that did
not bind PPRIO. B- RNA that bound PPRIO.
(B) Gel mobility shift assays, using the synthetic RNAs diagrammed in panel (C).
(C) Summary of data that define the minimal PPRIO binding site. The sequence of the
synthetic RNA used for the boundary mapping experiment is shown at top; arrows
annotate the major RNA termini defined by PPRIO in vivo, and asterisks annotate
nucleotides conserved between the PPRlO binding sites in the atpH 5' UTR and the psaJ
3'UTR. The smallest end-labeled RNAs that bound well to PPRIO are indicated with
bars; the 5' boundary is indicated with a dashed line, because of the gradient in apparent
affinity observed as additional nucleotides in this region are included (see panel A, 3' end
label). Smaller synthetic RNAs used for the gel mobility shift assays in panel Bare
shown below, annotated according to the degree to which they interact with PPRIO.
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block exonucleolytic RNA degradation in vitro, we performed in vitro assays with

recombinant PPRlO, synthetic end-labeled RNAs, and purified exonucleases (Figure 3).

The Synechocystis polynucleotide phosphorylase (PNPase) was used as the 3'~5'

exonuclease, as it is more easily expressed as a recombinant protein than is its chloroplast

ortholog. Whereas the 5'-end labeled RNA alone was quickly degraded by PNPase, the

addition ofPPRI0 inhibited degradation. (Figure 3B). The 3' termini that were stabilized

Figure 2: Stoichiometric binding assay with recombinant PPRlO. Gel mobility shift
assays were performed with a 5' end labeled synthetic 19 nt atpH 5' UTR RNA (Figure 1
C) at 100 nM concentration (Data not shown). The results were quantified by
phosphorimaging. Linear trendlines were created in Excel using either the first 5 data
points or the last 4 data points.
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by PPRI0 in this assay map ~10 nts downstream of the most abundant termini found in

vivo (Figure 3A). There are several possibilities that can account for this. First, PNPase

mediated polyadenylation is believed to enhance processive RNA degradation through

RNA secondary structures, but the reaction conditions used here were not optimized for

polyadenylation activity. Second, PNPase is not the only 3'~ 5' exonuclease in
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Figure 3: PPRIO protects against 3' and 5' exonuclease activity in vitro.
(A) Diagram of the RNA ligand used for nuclease-protection assays. The bar denotes the
3' ends that were protected from the PNPase assay shown in panel B.
(B) PPRIO protects RNA from Synechocystis PNPase in vitro. The left panel shows a gel
mobility shift assay with the indicated proteins and the 5' end labeled RNA. The right
panel shows a denaturing gel of the RNA recovered from the same reactions. The bar
marks the termini ofRNAs that were protected from PNPase digestion by PPRlO. PPRlO
and PNPase concentrations are 200 nM and 440 nM respectively.
(C) PPRIO protects RNA from a 5'-.73' exonuclease. Terminator exonuclease (Epicentre
Biotechnologies) and PPRlO were included in reactions with 3'-end labeled RNA, as
indicated. The left panel shows a native gel mobility shift assay. The right panel shows a
denaturing gel of the RNA recovered from the same reactions. PPRIO and terminator
exonuclease concentrations are 200 nM and I !AM respectively.
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chloroplasts (reviewed in 7); thus, a different exonuclease could cooperate with the

PNPase to generate the in vivo 3' end. Despite these caveats, these results suggest that

bound PPRI0 is sufficient to confer protection from 3' -7 5' exonuclease digestion.

However, I plan to repeat this assay with chloroplast extract, using the conditions

reported for efficient native PNPase activity (74).

The same RNA was labeled at its 3' end and incubated with a commercially

available 5'-73' exonuclease. The addition ofPPRI0 fully protected the RNA from

degradation (Figure 3C), indicating that bound PPRI 0 is sufficient to block access by

5'-73' exonucleases. Because the PPRI0 binding site is near the 5' end of this RNA

substrate, it is possible that bound PPRI0 simply prevents the exonuclease from loading

onto the RNA instead of blocking exonucleolytic progression. To address this possibility,

I will repeat this assay with an RNA that has additional sequence upstream of the PPRI0

binding site.

PPRIO binding releases the atpH ribosome binding site from a sequestering

secondary structure

Previously we had shown that the residual atpH mRNAs in ppr10 mutants are

translated less efficiently than their counterparts in normal plants, indicating that PPRI 0

binding simultaneously stabilizes atpHRNA and enhances its translation (72). In light of

this observation, it is intriguing that the putative Shine-Dalgamo element for atpH

translation is predicted to base pair with a portion of the PPRI0 binding site (Figure 4A).

Current data support the view that PPR tracts bind single-stranded but not double

stranded nucleic acids along their surface (71, 75, 76). Thus, we hypothesized that

PPRlO's interaction with the "anti-Shine-Dalgamo" element would prevent masking of

the Shine-Dalgamo region, thereby facilitating ribosome recruitment.

To test this hypothesis we used ribonucleases 1'1 and Yl to probe the structure of

the atpH 5' UTR in the presence and absence ofPPRI0 (Figure 4B). RNAse 1'1 cleaves

after guanosines, but only when they are in a single-stranded context; RNAse VI cleaves
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Figure 4: PPRIO binding induces structural changes in the atpH 5'UTR.
(A) Predicted structure of the atpH 5' UTR and summary of the structure probing data.
The lowest energy structure predicted by M-Fold is shown. The "in vivo" footprint of
PPRIO (flanked by the predominant 5' and 3' ends ofPPRIO-dependent termini in vivo)
is shaded. The atpH start codon and putative Shine-Dalgarno (SD) element are marked.
PPRIO-induced changes to cleavage by RNAses TI and VI are marked by (+) and (-), to
indicate increased or decreased cleavage in the presence ofPPRIO, respectively.
(B) Structure probing assay of the atpH 5' UTR with (+), and without (-) PPRIO. The
RNA diagrammed in (A) was radiolabeled at its 5' end and subjected to partial alkali
hydrolysis (OR marker), denaturation and digestion by RNAse TI (TI marker), or
incubation with RNase TI or VI under conditions that permit RNA folding.
(C) Proposed mechanism by which PPRIO binding induces atpHtranslation.
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regions in which the bases are stacked due to their presence in a double-stranded region

or to other structural constraints. In the absence ofPPRI0, the three guanosine residues in

the putative Shine-Dalgamo element were not cleaved by RNAse 1'1, and the anti-Shine

Dalgamo element was efficiently cleaved by RNAse VI. These results support the

existence of the predicted RNA duplex in the majority of molecules. Addition ofPPRlO

caused a dramatic change in the digestion pattem. First, the guanosines within and a short

distance upstream of, the Shine-Dalgamo element were now efficiently digested by

RNAse 1'1, indicating a substantial increase in their single-stranded character. Second,

RNAse VI ceased to cleave the anti-Shine-Dalgamo region; this could be due either to

direct protection by PPRI0 or to a PPRI0-induced loss of the RNA duplex. Finally,

PPRlO binding increased RNAse VI sensitivity at several positions 3' to the PPRI0

binding site. PPRI0 apparently induces the stacking of these bases, but details of these

changes cannot be inferred from these data. It is intriguing, however, that a similar

enhancement ofRNAse VI cleavage was observed adjacent to RNA bound by PPR5 (see

below).

These data show that PPRI0 binding induces a rearrangement of the RNA in the

atpH 5' UTR. The PPRI0-induced rearrangement would be anticipated to enhance

translation regardless of whether the putative Shine-Dalgamo site indeed has ribosome

binding activity, as initiating ribosomes interact with ~30 nucleotides of single-stranded

RNA centered on the start codon (77). Taken together, these results support a model in

which PPRI 0 captures its binding site in the atpH 5'UTR in single-stranded form,

thereby increasing the single-stranded character of the atpH ribosome binding region and

facilitating ribosome binding (Figure 4C).

The PPR5 binding site is complex and includes discontinuous RNA segments

To understand general features ofPPRIRNA interactions, it is necessary to

analyze multiple examples. Thus, a second PPR protein, PPR5, was analyzed in parallel

with PPRI0. Previously we had determined that the PPR5 binding site resides within a

50 nt segment ofthe group II intron in pre-trnG-UCC (71). When PPR5 binds to this site
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in vivo, it stabilizes the unspliced precursor by blocking an endonucleolytic cleavage

(48). In addition, PPR5 appears to enhance splicing itself, as the ratio of spliced-to

unspliced trnG RNA is substantially reduced in hypomorphic ppr5 mutants. A direct role

for PPR5 in splicing is consistent with the fact that its binding site contains several

sequence elements that are important for group II intron splicing: Exon Binding Site I

(EBS I), a', and {) (see Figure 5A). In order for splicing to occur, each ofthese sites must

pair with complementary sequences found elsewhere (lBS 1, a, and {)', respectively)

(reviewed in 78). The EBS 1 and {) elements in this intron are unusual, in that they are

predicted to be sequestered in a stable RNA hairpin (Figure 5A); formation of this

structure is supported by the ribonuclease-sensitivity data described below. Thus, we

hypothesized that PPR5 binding may enhance splicing by influencing the structure of this

RNA (71).

To understand how PPR5 could influence the splicing of its group II intron ligand,

we initially defined its binding site more precisely by using assays analogous to those

described above for PPRIO. The PPR5 analysis was more complex than that ofPPRlO

for two reasons. First, previous data suggested that PPR5 interacts with discontinuous

RNA segments ((71), and this possibility was supported by the additional results

described below. Second, the RNA sequence harboring the PPR5 binding site has the

capacity to form several alternative structures, with the favored structure changing as

various segments are removed (data not shown). Because PPR5 binds preferentially and

possibly solely to single stranded RNA (71), failure ofa deletion construct to bind to

PPR5 could potentially be due to sequestration ofPPR5 recognition elements within an

RNA duplex.

When a partial alkali hydrolysis binding assay with 5' end-labeled RNA was

preformed, the shortest RNA that bound with high affinity to PPR5 terminated two

nucleotides into the a' element, suggesting that recognition determinants for PPR5 lie

within or just upstream ofa' (see 10 3' boundary in Figures 5A and B). Although

binding was lost for molecules ending in the single-stranded region upstream ofa' (gray

bar in Figure 5B), weak binding was detected after further truncation to remove the base
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Figure 5: Mapping the boundaries of sequences required for a high-affinity interaction
withPPR5.
(A) Predicted secondary structure of the region harboring the PPR5 binding site.
Elements involved in group II intron splicing (EBS I, (), and a') are marked. The
boundaries mapped in the experiments shown in (B) are indicated.
(B) Partial alkali hydrolysis binding assay, using 5' or 3'-end labeled RNA. The
nucleotides assigned to each band were inferred based on their position from the labeled
end and by comparison to a nuclease Tlladder. T- total hydrolyzed RJ\fA. U- RNA that
did not bind PPR5. B- RNA that bound PPR5.
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of the 3' side ofthe hairpin as these molecules were depleted from the unbound fraction,

and enriched in the bound fraction (see 20 3' boundary in Figure 5A and B). Therefore,

PPR5 can interact with molecules that end within the distal side of the stem, albeit with

lower affinity than with the full-length 50-mer. That deletion of the distal side of the stem

was required to reveal this secondary interaction suggested that sequences on the 5' side

of the stem are important for PPR5 binding, and that these are masked when the stem is

intact.

A partial alkali hydrolysis binding assay with 3'-end labeled RNA revealed that

truncation of the 5' end past position 3 reduced binding dramatically (see 10 5' boundary

in Figure 5 A and B). Thus, these boundary mapping experiments implicated sequences

both 5' and 3' to the stem as being important for PPR5 recognition, consistent with gel

mobility shift data reported previously (71).

Gel mobility shift assays with synthetic oligonucleotides (Figure 6) confirmed

that RNA sequences on both sides of the hairpin are required for a high-affinity

interaction with PPR5. For example, removing the four adenine residues at the 5' end

caused a dramatic decrease in binding (Figure 6B, construct 2), as did deletion of five

nucleotides within the 3' single-stranded region (Figure 6B, construct 9). To determine

whether sequences within the stem contribute to binding affinity, various stem

truncations were assayed. Previously we showed that deletion of the EBS1 element did

not disrupt binding (71). An RNA lacking the distal half of the stem (construct 5)

maintained considerable binding activity. This RNA apparently adopts two structures that

migrate differently through a native gel (see asterisks); only the more slowly migrating

conformer bound PPR5, as only this form was depleted as PPR5 concentrations

increased. That a high affinity interaction with PPR5 requires some invasion of the stem

was suggested by the fact that stabilizing the truncated stem with a terminal tetraloop

decreased its interaction (compare constructs 4 and 5). Furthermore, removal of the

entire stem eliminated binding (Figure 6B, construct 6), strongly suggesting that

recognition determinants reside within the stem itself. Indeed, the
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Figure 6: The PPR5 RNA ligand.
(A) Alignment of the PPR5 ligand region and truncations used for gel mobility shift
assays. Exon Binding Site 1 (EBS1), delta (6) and alpha prime (a') are labeled. Predicted
stem denoted by parenthesis. Sequence 4 contains a tetraloop (UUCG) that promotes
stem formation. PPR5 binding affinity indicated by ++ (high affinity), + (moderate), and
- (no binding).
(B) Gel mobility shift assays showing PPR5 binding to the truncations of the trnG RNA
shown in A). Sequence 5 apparently adopts two conformations that migrate differently in
the gel (*).
(C) Diagram ofthe region of the tmG intron to which PPR5 binds. Lines indicate which
part of the RNA molecule was removed or altered (in the case of 8) resulting in the
constructs in A). Sequences that were bound by PPR5 are labeled in gray whereas
sequences that did not bind are labeled in black. EBS 1, 6, and a' are in gray boxes.
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boundary-mapping data using 5' end labeled RNA revealed a 2° interaction site upon

removal of the 3' end of the stem (see above), implicating nucleotides near the 5' end of

the stem as contributing to PPR5 binding.

Previously, we had reported that elimination of sequences downstream ofa'

prevents the binding ofPPR5 (71). In this study we found that a GUUU to CAAA

substitution just downstream ofa' greatly increases PPR5 binding (Figure 6B, construct

8). These data suggest that PPR5 may be interacting with sequences 3' of the a' site as

well as sequences 5' of this site.

Taken together, these results support the view that PPR5 recognizes nucleotides

that are discontinuous in the primary sequence; these include the 5' single-stranded

region, one or several nucleotides on the 5' side of the stem base, the single-stranded

region on the 3' side of the stem adjacent to a', and perhaps nucleotides on the 3' side of

a'. That deletion of the entire stem eliminates binding is an important observation, as this

provides evidence that PPR5 invades the stem, providing a plausible mechanism by

which it could influence the stability of the hairpin, and thus the efficiency of splicing. It

will therefore be important to firmly establish the location of PPR5 recognition

determinants at the base of the RNA stem. To test the notion that the nucleotides on the

5' side of the stem contribute to a high affinity interaction with PPR5, I plan to test

several additional constructs. For example, I will test the binding activity of an RNA

harboring nucleotides 1-11, fused directly to nucleotides 33 through 50.

PPR5-induced changes in RNA structure suggest mechanisms by which PPR5

enhances splicing

Group II intron splicing requires the EBS 1, a', and () elements within the intron to

base pair with their complements found elsewhere. Consequently, these elements are

found in a single stranded context in the vast majority of group II introns (reviewed in

78). In this context, the apparent sequestration ofEBSI and () in the PPR5 binding region

within the trnG-UCC intron (Figure 5) are striking. The binding data suggested that PPR5

might destabilize this hairpin (and thereby activate splicing) by invading the 5' side of the
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stem. To address how PPR5 influences the structure of its RNA ligand, we used

ribonucleases Tl, VI and Rl to probe RNA structure in the presence and absence of

PPR5 (Figure 7). RNAse Tl cleaves after single-stranded guanosines, RNAse Rl cleaves

single-stranded pyrimidines, and RNAse VI cleaves stacked or double-stranded regions.

The results obtained in the absence ofPPR5 (Figure 7A) provided support for the

predicted stem-loop structure. For example, RNAses Rl and Tl cleaved the region

between the predicted stem and a', but did not cleave within the predicted stem (lanes 5

8 and 13-16). RNase VI, in contrast, cleaved many of the positions predicted to reside

within the stem (lanes 9-12). The EBS 1 was cleaved weakly by RNAse Rl (lanes 13 and

14), but not at all by RNAse Vl(lanes 9-12).

When PPR5 was bound to the RNA prior to the ribonuclease treatments, the

cleavage patterns changed in several interesting ways. For example, the single-stranded

region upstream ofa' became less sensitive to cleavage by RNAse Rl (lane 14),

suggesting an interaction between PPR5 and these nucleotides (see dark gray bar in

Figure 7). Indeed, deletion of nucleotides in this region caused a dramatic decrease in

PPR5 binding (see construct 9 in Figure 6). The G residue at the 5' base of the stem

became susceptible to cleavage by RNAses Tl and Rl (see G* lanes 5-8 and 13-16 in

Figure 7), suggesting that PPR5 binding releases this nucleotide from an RNA duplex.

The most dramatic effect, however, concerned the a' region, which became

hypersensitive to all three nucleases upon PPR5 binding (lanes 5-16). Enhanced cleavage

by RNAses Tl and Rl suggested an increase in single-stranded character, yet the

increased sensitivity to RNAse VI indicated increased base-stacking or base-pairing.

These observations suggested that PPR5 binding constrains the structure ofthe RNA in

the a' region, such that the bases are single-stranded but stacked. Curiously, however,

the a' residues whose RNAse Tl sensitivity increased upon PPR5 binding are not

adjacent to G residues, and were not susceptible to RNAse Tl cleavage even in the fully

denatured RNA (see Tl marker, lane 1, in Figure 7). A profound change in the structure

of these nucleotides is further supported by the fact that the G residue within a' site

becomes sensitive to RNAse H cleavage in the presence ofPPR5 (lanes 17 and 18), yet
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Figure 7: Ribonuclease sensitivity assay of RNA structure in the absence and presence of
PPR5.
(A) The RNA shown in panel B was labeled at its 5' end, incubated in the absence (-) or
presence (+) ofPPR5, and then treated with RNAse TI, VI, or Rl. Two concentrations
of each nuclease were tested, with the left pair of lanes in each instance representing the
higher concentration. The TI marker was generated by treating the same RNA with
RNAse TI after heating and snap-cooling to minimize secondary structures. The OR
marker is a partial alkali hydrolysis, to mark the positions of consecutive nucleotides.
PPR5 incubated under the same conditions used for the nuclease treatment did not cause
any RNA cleavage (lane 4). G* refers to a residue that becomes susceptible to RNAse
TI and RNAse RI after PPR5 binding. Other features referred to in the text are coded
with bars to the right, and summarized in panel B.
(B) Summary of structure probing data. EBS I and a' sites are outlined and indicated by
black bars in (A). G* residue that becomes susceptible to RNAses TI and RI with PPR5
addition is encircled. Stem structure is shaded gray and indicated by gray bars in (A).
Region that is protected from RNAse RI cleavage when PPR5 is added is outlined and
shaded gray, and indicated by a dark gray bar in (A).
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RNAse H is believed to be specific for RNA found in the context of an RNAIDNA

hybrid. Taken together, these results show that PPR5 binding causes the u' site to

become hypersensitive to nucleases, including nucleases that would not ordinarily

recognize those particular sequences. These observations suggest that PPR5 changes the

architecture ofthis region of the RNA in an unusual way, and that this might be

important for presenting the u' element during the splicing reaction.

The nuclease-sensitivity data offered hints that PPR5 binding may reduce the

double-stranded character ofEBS1 and its flanking sequences. As noted above, the G

residue at the 5' end of the stem becomes susceptible to RNAse 1'1 cleavage upon PPR5

.binding. In addition, a subtle but reproducible enhancement of RNase R1 cleavage of

EBS1 sequences is induced by PPR5 (Figure 7, bar labeled EBS1). To gain further

insight into this possibility, the formation of the stem was probed by substituting a

fluorescent analog of adenine, 2-aminopurine (2-AP), for one of the adenines on the

distal side of the stem (Figure 8A). 2-AP fluorescence is high when it is unstacked but

greatly decreases when it is stacked due to its residing in an RNA duplex or other

structural constraints (79). Addition ofPPR5 to the 2-AP modified RNA resulted in an

increase of fluorescence, indicative of reduced base stacking in the stem (Figure 8B).

PPR10, which does not bind with high affinity to the PPR5 binding site, also induced

some increase in fluorescence, although to a much lesser extent. This is consistent with

the fact that PPR10 binds weakly to this RNA under the reaction conditions used (data

not shown). Initially, the enhanced fluorescence caused by PPR5 in comparison with

PPR10 increased with time. This could be due to different binding kinetics, or could be a

result of nucleases in the PPR5 preparation. I plan on resolving these possibilities at a.
later date by isolating the RNA directly after determining the fluorescence and assaying

for degradation.

These uncertainties not withstanding, the body of nuclease-sensitivity and 2-AP

fluorescence data support the idea that PPR5 binding results in an increase in the single

stranded character of the RNA duplex harboring EBS1 and o. As PPR5 binds to single

stranded but not double stranded RNA (71) and clearly requires nucleotides within the
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stem for a high-affinity interaction (Figure 6, construct 6), a reasonable hypothesis is that

PPR5 binding nucleates in the single-stranded regions flanking the stem, but ultimately

invades the stem base. This may enhance the splicing of the tmG intron, by increasing the

accessibility of the EBS 1 and C elements to their RNA partners.

Figure 8: PPR5 causes an increase in 2-aminopurine fluorescence in its ligand, indicating
unfolding of the RNA stem.
(A) The tmG RNA ligand of PPR5 with Exon Binding Site One (EBS1), C, and the
position of 2-aminopurine labeled.
(B) fluorescence emission at 370nm for RNA [.5[.lM] mixed with PPR5 or PPRlO.
Readings were taken either right away, or after 5, 10, and 15 minutes.
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Discussion

In this study we have defined the PPRlO and PPR5 binding sites to high

resolution, and we showed that both proteins profoundly influence the structures adopted

by the RNA flanking their binding sites. These results have broad implications regarding

mechanisms by which PPR proteins recognize RNA and influence downstream functions.

PPR proteins have been implicated in a variety of processes, including RNA splicing,

RNA editing, RNA cleavage, RNA stabilization, and translation control. Because these

functions appear to be diverse, it has often been suggested that PPR proteins serve as

adaptors to recruit various effector proteins to specific RNA sites. However, with the

notable exception ofPPR proteins involved in RNA editing, experimental evidence to

support this view is lacking. Our results suggest an alternative possibility: that most

functions attributed to PPR proteins- particularly those consisting largely of "pure" PPR

repeats - result as a passive consequence of their sequence-specific binding to long tracts

of single-stranded RNA. Below we discuss evidence that the PPRIRNA interaction

interface is unusually long in comparison with those mediated by most RNA binding

motifs, and that this activity in itself could account for many of the dramatic and diverse

effects ofPPR proteins on organellar RNA metabolism.

Features of the PPRIO binding site suggest that PPRIO binds RNA along an

unusually long RNA/protein interface

Several observations support the idea that PPRlO's RNA interaction surface is

substantially longer than that of typical RNA binding proteins. Most RNA binding

proteins contain several globular RNA binding domains, such as the RRM or KH

domain, each ofwhich contacts ~2-5 nucleotides. The combinatorial action of several

domains and their variable orientation with respect to one another can mediate the

recognition of specific RNAs based on a combination of sequence and structure (80-82).

In contrast, the minimal RNA segment required for a high affinity interaction with PPRI0

spans ~15 nt, with its in vivo footprint (i.e. the RNA protected by PPRI0 from
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exonucleases in vivo), substantially larger, at ~25 nt. The extremely high conservation of

the nucleotides within this RNA segment provides evidence that most of its nucleotides

contribute to binding affinity. Thus, PPRlO's second binding site, which maps in the

psaJ-rp133 intergenic region, has only three nucleotide differences, and even these small

differences are associated with a substantial decrease in binding affinity (72).

Furthermore, the sequence of the 25 nts within PPRIOs in vivo footprint in the atpH 5'

UTR is almost identical in monocot and dicot plants (e.g. maize and spinach differ at

only one of25 positions). Although no other PPR proteins have been analyzed in this

level of detail, several compelling observations support the view that the PPR protein

HeF152 likewise has an extensive in vivo footprint and that its binding site is extremely

highly conserved between monocots and dicots (72). These data, albeit still limited,

suggest that an extensive RNA/protein interface along which most contiguous nucleotides

interact with the protein is the norm for PPR proteins harboring long tracts ofcanonical

PPR repeats.

That long PPR tracts have an extensive RNA interaction surface is consistent with

structural predictions. The PPR motif is closely related to the TPR motif, a 34 amino acid

repeating unit that generally mediates protein-protein interactions (10, 83). TPR tracts

adopt a helical repeat solenoid structure (83-85), with each repeat forming a pair of

helices, and consecutive repeats stacking to form a broad substrate-binding surface. It is

anticipated that PPR tracts likewise form helical repeat solenoids, although structural data

remain very limited (71). This is an atypical structure for a nucleic acid binding protein,

but there is precedent in the PUM-Homology Domain (PUM-HD). The PUM-HD defines

the "PDF" protein family, whose members regulate gene expression in eukaryotes by

binding specific 3' UTRs and influencing RNA stability or translation (reviewed in 86).

Structural analyses revealed an unusual mechanism for RNA recognition: the PUM-HD

consists of eight helical repeating units; consecutive repeats stack to form an RNA

binding surface, with each repeat recognizing a single RNA base (87). Our results

support the view that PPR tracts likewise bind single-stranded RNA parallel to the axis of

stacked alpha helices. Whereas the PUM-HD always consists of eight repeats and binds
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an ~8 nt core element, the number of repeats in PPR proteins is highly variable and

generally greater, with 20 repeats commonly observed. Thus, according to this model of

PPRIRNA recognition, the length of the PPRIRNA interaction surface is limited only by

the number ofPPR motifs.

PPRlO contains 16 canonical PPR motifs that are preceded by two additional

repeats that have more TPR character (72). That PPRlO's minimal RNA ligand spans 14

16 nt is intriguing in light of its 16 PPR motifs, as it suggests that each nucleotide may be

recognized by a single PPR motif. However, prior observations suggested that

recombinant PPR10 forms homodimers (72), and the stoichiometric-binding assay

presented here supports this view, in that two molecules ofPPRlO appear to bind to each

atpH 5'UTR. One possible explanation for this apparent discrepancy is that one monomer

binds in a sequence-specific manner to the minimal binding site whereas the other binds

to adjacent regions in a sequence-non-specific fashion. This view is consistent with the

finding that PPRlO's in vivo footprint is significantly longer than its minimal binding site.

The PPR5/RNA interaction is considerably more complex, and therefore is less

informative regarding the relationship between the number of PPR motifs and the number

ofnuc1eotides recognized. PPR5 recognizes two non-contiguous RNA segments within a

50-nt RNA sequence, and this RNA has a propensity to fold into various stable RNA

structures. Our results indicate that PPR5 can bind to either the 5' or 3' portion of the 50

mer, but that it binds with highest affinity when both regions are present in the same

molecule. In aggregate, our results lead us to favor a model in which two molecules of

PPR5 bind to each 50-mer, one interacting with the 5' single-stranded region and

invading the RNA duplex, the other interacting in the single-stranded region between the

duplex and alpha'. We further speculate that two PPR5 monomers bind to this RNA

cooperatively, as recombinant PPR5 did not dimerize, and gel mobility shift assays did

not provide evidence for complexes ofvarying mobility as the PPR5 concentration was

increased (71). Additional experiments will be required to fully understand these

interactions.
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Site-specific barrier and RNA remodeling functions ofPPR5 and PPRIO:

implications for the mechanisms by which PPR proteins mediate downstream effects

Genetic data have implicated proteins composed virtually entirely ofPPR motifs

in diverse functions, including RNA cleavage, RNA stabilization, translational control

and group II intron splicing. Thus, it has often been thought that they serve as sequence

specific adapters whose sole function is to recruit effecter proteins to appropriate RNA

sites. Our findings with PPR5 and PPRI0 suggest an alternative view: that the unusual

features of the PPRIRNA interface can directly result in most or all of the in vivo

functions attributed to "pure" PPR proteins (i.e. those composed almost entirely of

canonical PPR motifs) without the involvement of accessory factors. We propose that: (i)

long PPR tracts sequester an extended segment of single-stranded RNA; (ii) that this

activity makes them particularly effective at blocking access to their RNA ligands by

other proteins and at remodeling adjacent RNA structures; and (iii) that these two effects

are sufficient to account for the many biological functions attributed to proteins of this

nature.

Our results with PPR5 and PPRI0 illustrate how a pure PPR protein can, on its

own, enhance the splicing, translation, or stability of specific RNAs, and can appear to

enhance site-specific RNA processing events. We showed previously that PPRI0 is

required for the accumulation of those RNAs harboring its binding site at either their 5'

or 3' end, suggesting that PPRI0 serves as a barrier to exonucleases intruding from either

direction (72). Here we present evidence that PPRIO is sufficient to block

exoribonucleases in vitro. Additional genetic data support the idea that a blockade to 5'-7

3' degradation is a common function ofPPR proteins (e.g.88). Recently, a moss PPR

protein was shown to stabilize its RNA ligand against 3' -7 5' exonucleases in vitro (89).

Finally, PPR5 stabilizes the trnG-UCC precursor in vivo against an inactivating

endonucleolytic cleavage (48, 71). Together, these results strongly suggest that the ability

to block ribonuclease access to its RNA ligand is an intrinsic activity of long PPR tracts.

Genetic data have provided evidence that some PPR proteins repress the translation of

specific organellar mRNAs. This activity can likewise be accounted for by a passive
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"barrier" activity, as an extensive interaction with an RNA segment that includes

nucleotides required for interaction with initiating ribosomes would surely inhibit

translation initiation.

In addition to blocking access of bound RNA to other proteins, it is anticipated

that an interaction with a long PPR tract will likewise block interaction of an RNA

segment with complementary RNA sequences. This, in turn, can influence RNA folding

in a manner that can account for the ability of pure PPR proteins to activate translation,

splicing, and even RNA cleavage. Results presented here for PPR5 and PPRI 0 provide

evidence for this type ofRNA remodeling activity. PPRIO binding enhances the

translation of the adjacent atpH open reading frame in vivo. The PPRlO binding site

includes sequences that are complementary to the putative Shine-Dalgamo element for

atpH translation. We show here that PPRI0 binding releases the Shine-Dalgamo element

from sequestration in an RNA duplex, providing a plausible mechanism to explain its

translation enhancing effects. An analogous mechanism can account for genetic data

suggesting a translation activating function for other PPR proteins, with no need to

invoke active recruitment of components of the translation machinery.

PPR5 is one of several PPR proteins that have been shown to enhance the splicing

of group II introns in vivo. We believe the mechanism by which PPR5 promotes tmG

intron splicing mirrors the mechanism by which PPRIO promotes translation. PPR5 binds

RNA that is adjacent to the critical splicing elements EBS 1, (), and a', which need to base

pair with their complementary sequences for splicing to occur. Without PPR5, EBS 1 and

() are sequestered in a stem loop structure, and the presence of PPR5 destabilizes this

structure. We propose that the PPR5 binding site includes several nucleotides at the base

of the stem loop, and that PPR5 binding promotes the unfolding of the stem by capturing

its RNA ligand in a single stranded conformation. In addition, PPR5 induces an unusual

spectrum of nuclease hypersensitivity within the a' sequence: PPR5 binding enhances

cleavage by both single-strand and double-strand "specific" ribonucleases (RNAses TI

and VI), by RNAse H in the absence of an RNA/DNA duplex, and by RNAse TI at

residues other than guanosines, its normal substrate. These results suggest that PPR5
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distorts the RNA in close proximity to its binding site, possibly in a manner that makes

a' more accessible for pairing with its a complement.

In summary, the ability ofPPR5 and PPRlO to influence the structure adopted by

adjacent RNA segments can explain their ability to activity translation and splicing,

respectively. An analogous mechanism may account not only for other instances in which

pure PPR proteins enhance the translation or splicing of specific RNAs, but also for the

ability of some PPR proteins to enhance endonucleolytic processing at specific sites. For

example, the binding of a PPR protein to an intergenic region on a polycistronic RNA

could influence the adjacent RNA structure, and thereby expose a segment ofRNA with

features that make it susceptible to cleavage by generic endonucleases. We proposed

previousy that RNases E and J are primarily responsible for the endonucleolyic cleavage

events that initiate both RNA processing and RNA decay in chloroplasts. The bacterial

orthologs of these enzymes cleave AU-rich RA segments found in an unstructured

context. Thus, a PPR binding site that includes an AU rich RNA segment can be

anticipated to stabilize nearby RNA, whereas a PPR binding site adjacent to an AU rich

RNA segment could enhance its accessibility to these nucleases by minimizing local

RNA structure.

Our model that many functions attributed to PPR proteins are a passive

consequence of the unusually extensive protein/RNA interface that is predicted for these

proteins is limited to those PPR proteins that lack additional domains. In fact, many PPR

proteins in plants include one of the accessory domains denoted as E, E+, or DYW. These

proteins are involved in RNA editing, an activity that certainly requires a catalytic

activity. Furthermore, the PPR tracts in such proteins are variants of the regular repeating

array of tandem PPR motifs found in proteins such as PPR5 and PPRIO; this variant

organization, designated "PLS", is likely to interact with RNA in a less regular way,

possibly of a "looser" nature. Although a recruitment function need not be invoked to

explain most of the genetic data obtained for pure PPR proteins, our model does not

preclude the possibility that some pure PPR proteins do interact with other proteins;

indeed the homodimerization ofPPRlO provides evidence for a protein-protein
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interaction surface on this protein.

Genetic analysis has identified many PPR proteins that have diverse functions

related to RNA binding. We believe that many of these functions may be mediated by the

PPR proteins ability to promote single-stranded RNA conformation through, and adjacent

to, its binding site. Biochemical approaches that identify the specific binding sites of

these proteins, and analysis of these sites, will be essential in determining how prevalent

this model for PPR protein function is.
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CHAPTER IV

CONCLUSIONS AND FUTURE DIRECTIONS

Conclusions

This dissertation investigates the nuclear control of gene expression in the

chloroplast. The plant nucleus encodes many families of proteins that are targeted to the

chloroplast where they regulate expression of the chloroplast genome. Some of these

proteins are descendent from cyanobacterial proteins that may have had similar function

prior to endosymbiosis. Many of these proteins are host innovations that evolved to

accommodate the needs of a changing chloroplast genome. The proteins discussed here,

WHYl, PPR5, and PPRlO, are examples of the latter group of host-derived proteins.

Chapter II discusses WHYl, a chloroplast targeted, nuclear encoded protein that

binds to both single-stranded DNA and single-stranded RNA. WHYl binds with

specificity to the atpF group II intron and promotes atpF splicing. However, why1 mutant

plants show a strong albino phenotype that cannot be accounted for by this splicing defect

alone. Examination ofwhy1 mutant transcripts revealed a severe loss of 23S and 4.5S

ribosomal RNAs suggesting that WHYI is involved in the biogenesis of the large

ribosomal subunit. WHYI does not appear to bind directly to ribosomal RNAs, or mature

ribosomes, leading us to conclude that WHY1's influence on ribosomal biogenesis is

most likely indirect.

WHYI also binds DNA throughout the chloroplast genome and has a strong

preference for single-stranded DNA. Though other groups have proposed functions for

WHYI binding to DNA in the nucleus (26, 27 , 29), the significance ofthis property in

the chloroplast still remains to be elucidated. WHYl does not appear to be involved in
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nucleoid DNA replication or global transcription as chloroplast transcript and DNA

abundance in why] mutants is similar to that ofrelevant controls. WHYl

coimunoprecipitates all chloroplast DNA sequences suggesting the WHYllDNA

interaction is not sequence-specific, although the possibility that WHY 1 binds with

sequence-specificity to a sequence represented throughout the entire chloroplast genome

cannot be excluded.

Chapter III discusses the PPR family ofproteins. PPR proteins are involved in

many diverse RNA-related functions. However, most PPR proteins lack obvious catalytic

domains. Because of this, they are often proposed to be sequence-specific adaptors that

recruit effecter proteins to appropriate RNA sites. We have shown here, that the unique

PPRIRNA interaction surface can directly explain many of the functions attributed to

PPR proteins. The results presented in this dissertation provide three examples: RNA

stabilization, translational activation, and RNA splicing.

The previously accepted model of RNA processing in the chloroplast suggested

that mature RNA termini are defined by site-specific endonucleolytic cleavage of

polysistronic transcripts (7). According to this model, sequence-specific RNA binding

proteins, like PPR proteins, define mature RNA ends by recruiting endonucleases to

specific cleavage sites. Data presented here, as well as in our previous investigations,

suggest an alternative model in which PPR proteins define mature RNA termini by acting

as a site-specific barrier to exonucleolytic cleavage (72). In this model endonucleases

cleave polysistronic transcripts at exposed (ribosome free) AU rich regions. Exonucleases

subsequently degrade the RNA from the cleavage site until their progression is blocked

by secondary structure or bound proteins like PPRl O. This hypothesis obviates the

necessity for PPR protein-protein interaction sites, which are vital to the recruitment

based model. In vitro exonuclease assays support this model by demonstrating that

recombinant PPRlO can block both 3' ~ 5' and 5' ~ 3' exonuclease progression.

Another consequence ofPPRlO binding is increased translation ofatpHRNA.

We had previously shown that PPRlO promotes translation of atpH mRNAs, although the

mechanism was unclear (72). In this study we elucidate this mechanism. We demonstrate
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that PPRlO promotes the formation of single-stranded RNA encompassing the ribosome

binding region of the atpH transcript. In the absence ofPPRlO, the Shine-Dalgamo

sequence, which is important for ribosomal recruitment, is base paired with part ofthe

PPRI0 binding site. We propose that this structure limits ribosomal access to the 5'UTR

thereby inhibiting translation. The PPRlO/RNA binding site includes the complement

sequence to the Shine-Dalgamo site, therefore PPRI0 binding prevents formation of this

inhibitory srtucture. This exposes the Shine-Dalgamo and promotes ribosomal

recruitment. This model for promoting translation does not rely on PPR protein-protein

interactions, but instead rests solely on PPRI Os ability to bind a long RNA tract and

thereby prevent its base pairing with adjacent sequences.

We believe the mechanism by which PPR5 promotes tmG intron splicing mirrors

the mechanism by which PPRlO promotes translation. Similar to the case for PPRlO,

PPR5 binds a stretch ofRNA that is adjacent to sequence elements required for splicing:

EBSl, tJ, and a' (71). All three need to base pair with their complementary sequences for

splicing to occur. Without PPR5 present, EBSl, and tJ are sequestered in a stem loop

structure. We propose that PPR5 captures the stem loop sequence in a single-stranded

conformation thereby enabling the EBS 1, and tJ elements to base pair with their

complementary sequences. In addition, PPR5 induces nuclease hypersensitivity in the a'

sequence suggesting that it augments the structure of this RNA in some way. The

significance of this is not clear but it could reflect a conformational change that makes a'

more accessible for base pairing.

We show here that both PPRIO and PPR5 can prevent secondary structure

formation by binding single-stranded RNA. We demonstrate how this property results in

two disparate PPR functions, ribosomal recruitment in the case of PPRI 0, and splicing in

the case of PPR5. In both cases, the downstream effect can be explained by PPR proteins

binding to an extended tract of single-stranded RNA, and thereby influencing the

structure of adjacent RNA, instead of directly recruiting effecter proteins. We speculate

that this mechanism of action may be common among many PPR proteins.
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Future Directions

Future directions related to WHY!

Despite the many functions that have been attributed to WHYI and the other

whirly family members, there is no clear indication how this family ofproteins mediates

their downstream effects. The WHY I phenotype in maize presents as a seedling with

virtually no chlorophyll, suggesting chloroplast biogenesis is severely affected. This

phenotype can be explained by the near complete loss of ribosomal RNA from the

chloroplast. However, how the why] mutation leads to rRNA loss is still a mystery that

needs to be resolved. We did not find evidence for a direct interaction between WHYI

and ribosomal RNA or ribosomal subunits, but we cannot exclude that WHYl may

influence ribosomal assembly factors. (not really- just brings down the whole nucleoid... )

It is still unresolved whether WHYl binds to DNA without specificity, or whether

it binds a commonly represented sequence. Co-crystallizing WHYl with DNA would

address this issue. The significance of WHY1's DNA binding properties in the

chloroplast has yet to be revealed. Though we found no gross defects in DNA amount or

nucleoid appearance in why] mutant plants, a closer analysis of nucleoid composition and

structure could reveal defects suggestive ofWHYl function.

Finally, how WHYl contributes to atpF intron splicing warrants further

investigation. Refinement of the WHYI binding site within the atpF intron could give

insight into this question.

Immediate directions related to PPR proteins

Several experiments need to be done to clarify aspects of the work presented in

this dissertation. The PPRI 0 minimal binding site, as determined by alkali hydrolysis

binding assays, needs to be validated by GMS assays. We plan to determine whether

PPRIO will bind a synthetic RJ'JA oligonucleotide that recapitulates the minimal 3' and 5'

ends. The ~15 nt PPRlO binding site is of a manageable size for in depth mutagenesis

studies. We will make mutations in this sequence and assay for PPRlO binding ability.
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This can give us insight into which, and how many, bases are important for PPRI 0

interaction. In addition, deleting internal nucleotides can indicate whether PPRIO binds

as a ridged structure or whether it has a more flexible binding capacity.

We plan to perform additional exonuclease assays to refine our current findings.

We will repeat the PNPase assay under conditions that are more favorable for PNPase

activity. This may lead to a stronger correlation between the in vivo atpI 3' end, and the

3' end resulting from PPRIO protection against PNPase cleavage. Our results of the

5'~3' terminator nuclease assays could have two explanations: PPRIO blocks terminator

nuclease progression, or PPRIO prevents terminator nuclease from binding the RNA. To

distinguish between these two possibilities we need to repeat this assay with RNA that

contains additional 5' end sequence. This way we can be confident that terminator

nuclease loading is unhindered by bound PPRI O.

Long-term directions related to PPR proteins

Despite the prevalence and importance for pentatricopeptide repeat proteins in

plant organelles, there is relatively little known about the biochemical mechanisms

through which they exert downstream effects. This work explores how the putative long

RNA interaction surface can mediate several of the functions attributed to PPR proteins.

This investigation is one of the few biochemical analyses of this extensive family of

proteins. To better understand how PPR proteins mediate downstream affects it will be

important to carry out similar analyses with additional members of this protein family. In

this way we can determine whether the results presented here are exceptions to the rule,

or widely relevant to PPR family members.

PPR5 and PPRIO are the only proteins in this family for which there has been an

extensive analysis of the RNA ligand. Identifying and refining additional PPR ligands

will allow us to validate several of the predictions made by this study. Our research

predicts that many PPR proteins will have similarly long RNA binding sites. It will be

interesting to see whether the length of the RNA ligand typically correlates with the

number ofPPR motifs contained within the protein. Narrowing down the exact binding
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sites, and modeling the RNA structures around these sites will provide insight into how

specific PPR proteins may influence gene expression. The PPR proteins we have studied

mediate downstream affects by promoting the formation of single-stranded RNA. It will

be interesting to see whether PPR proteins generally prefer single-stranded RNA as a

binding substrate, and if so, whether they tend to bind to sites where secondary structure

sequesters sequences important for RNA processing or translation.

Bioinformatic approaches can be used to identify potential PPR binding sites.

Many PPR proteins are predicted to bind to intergenic regions of the chloroplast genome.

Intergenic regions, in general, have low sequence conservation between plant species.

Because PPR proteins bind long RNA tracts with sequence-specificity we predict that

PPR binding sites in the intergenic regions will have a higher level of conservation then

adjacent sequences. We are currently working with a collaborator, Rodger Voelker, to

identify highly conserved sequences within intergenic regions of the chloroplast genome.

We believe some of these could correspond to PPR binding sites.

It is still unclear how PPR proteins recognize their RNA ligands. Because PPR

motifs are similar to TPR motifs, PPR sequences have been modeled by threading onto

known TPR structures. Such models allow us to speculate on what types of interactions

are possible between the PPR surface and nucleic acids. These models suggest that PPR

proteins may contain asparagine ladders similar to those in ARM repeat proteins.

Whereas in ARM repeat proteins these are thought to mediate nonspecific interactions

with other proteins, perhaps in PPR proteins they mediate interactions with RNA. Actual

crystallographic structures would greatly enhance our understanding ofPPRIRNA

interactions. Attempts at crystallizing PPRI 0 with and without its RNA ligand are

ongoing with our collaborators, Ian Small and Charles Bond.

The long interaction surface created by the consecutive arrangement of PPR

repeats suggests a modular nucleotide interaction motif that can be rearranged to create

new binding surfaces specific to new RNA sequences. Perhaps the expanded use ofPPR

protein in plants arose through gene duplication followed by simple rearrangements or

mutations of these repeats. The rearrangements may have resulted in specificity for new



RNA sequences, which were subsequently selected for based on utility. Further

understanding of PPR/RNA interactions could enable us to exploit these modules to

create de novo site-specific RNA interacting proteins.
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