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In this dissertation, we will study the crossed product C*-algebras obtained from free

and minimal IR actions on compact metric spaces with finite covering dimension. We first define

stable recursive subhomogeneous algebras (SRSHAs), which differ from recursive subhomogeneous

algebras introduced by N. C. Phillips in that the irreducible representations of SRSHAs are infinite

dimensional instead of finite dimensional. We show that simple inductive limits of SRSHAs with no

dimension growth in which the connecting maps are injective and non-vanishing have topological

stable rank one. We then construct C*-subalgebras of the crossed product that areanalogous to

the C*-subalgebras in the studies of free minimal Z actions on compact metric spaces with finite

covering dimension. Finally, we prove that these C*-algebras are in fact simple inductive limits of

SRSHAs in which the connecting maps are injective and non-vanishing. Thus these C*-subalgebras

have topological stable rank one.
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CHAPTER I

INTRODUCTION

This dissertation is on crossed product C*-algebras obtained from free and minimal lR

actions on unital abelian C*-algebras, or transformation group C*-algebras. A C*-algebra can

either be regarded as a subalgebra of the algebra B(H) of the bounded operators on a Hilbert

space H that are closed in norm and adjoint operation, or be defined abstractly using a set of

axioms:

Definition 1.0.1. Let A be a Banach algebra with a *-operation A --t A, denoted a f-) a*. We say

A is a C* -algebra if

1. the *-operation is conjugate linear;

2. for all a, bE A, we have (ab)* = b*a*;

3. for all a E A, we have (a*)* = a;

4. for all a E A, we have lIa*all = Ila112.

The condition Ila*all = IIal1 2 for all a E A is called the C*-norm condition, and a norm

that satisfies this condition is called a C*-norm.

When a topological group G acts on a C*-algebra A by automorphisms, we can form the

crossed product C*-algebra. Let a: G --t Aut(A) be a group homomorphism that is continuous

when Aut(A) has the topology of pointwise convergence. For each S E G, we use a 8 to denote

the image of sunder a. Then on the linear space Cc(G, A) of all continuous functions from G

into A with compact support, we can define multiplication and a *-operation, which are often

respectively called convolution and involution in this context, as follows: for all f,g E Cc(G,A),
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define convolution by

(J * g)(s) = fc f(t) CYt(g(C 1s))dt, for all s E G;

for all f E Cc(G, A), define involution by

where the measure on G is taken to be the left Haar measure, and where 6. is the modular function

associated with the left Haar measure. With convolution and involution defined as above Cc(G, A)

becomes a *-algebra. On Cc(G,A), we can put the norm defined by IIfl11 = Ie Ilf(s)llds, which

is called the L 1-norm for obvious reasons. Denote the completion of Cc(G, A) with respect to the

L 1-norm by L 1 (G,A). Then U(G,A) becomes a Banach-*-algebra. However U(G,A) is not a

C*-algebra because the L 1-norm is not a C*-norm.

In general, there are two different C*-norms, the universal norm and the reduced norm,

that we can put on L 1 (G, A) that will make L 1 (G, A) into a C*-algebra after completion. The

universal norm is defined to be

Ilfll = sup{II11"(J)II : 11" is a representation of L 1(G, An.

A representation of a *-algebra B is a pair (11", H), where H is a Hilbert space, and where

11": B ---t B(H) is a linear and multiplicative map that also preserves the *-operation. In

order for the supremum to be well defined, we need to ensure that there is at least one

representation of U(G, A), and that {1111"(j)II : 11" is a representation of L 1(G, An is a bounded

set. The boundedness of {1111"(J) II: 11" is a representation of U (G, A)} is automatic because any

representation of any Banach-*-algebra is automatically norm reducing (Theorem 2.1.7 in [6]). To

exhibit one representation of U(G, A), we invoke the GNS construction. By the GNS construction,

we know that any C*-algebra has a representation (Section 3.4 in [6]), so the C*-algebra A has a

representation (11", H). The space L2 ( G, H) of all L2 integrable measurable functions is a Hilbert

space; or equivalently L2 (G, H) is the Hilbert space tensor product L2 (G) @ H. Then we can define
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a representation '\r: Cc(G,A) ........ B(L2 (G, H)) by

for all f E Cc(G,A), all ~ E L 2 (G,H), and all rEG, Routine calculations show that An is

L1-norm decreasing, and hence extends to a representation of L1(G,A). See Chapter 2 in [17] for

more details. The representation (An' L2 (G, H)) obtained from the representation (1f, H) is known

as the left regular representation induced by (1f, H). The reduced norm on L1(G, A) is defined to

be

Ilfllr = sup{IIAn(f)II: 1f is a representation of A}.

The completion of L1(G,A) in the universal norm is called full crossed product, or just the crossed

product, and will be denoted by C*(A,G,a), The completion of L1(G,A) in the reduced norm is

called the reduced crossed product and will be denoted C;(A, G, a).

It is well known that when the group G is amenable, the universal norm and the reduced

norm coincide (Theorem 7.13 in [17]). We will not go into details about amenability of groups, but

it follows from Proposition A.16 in [17] that JR is amenable. In this dissertation we only consider the

group JR, so we will not distinguish the reduced crossed product from the full crossed product, nor

the reduced norm from the universal norm. Further, we will only consider the crossed products

of C(X), the algebra of all continuous functions from X into <C, by JR, where X is a compact

metric space with finite covering dimension, and where the action on C(X) is induced by a free

and minimal action of JR on X. In this case, we will denote the crossed product by C*(X,JR). We

will use s . x, or just simply sx to denote the action, for s E JR and x E X. It is clear that we can

identify the linear space Cc(JR, C(X)) with Cc(JR x X), the space of all continuous functions from

the product space JR x X into the complex number <C with compact support. Also, it is known

that the Lebesgue measure on JR is the left Haar measure for JR, and that the modular function ~

for the Lebesgue measure is the constant 1, i.e. JR with the Lebesgue measure is unimodular. Then

the convolution on Cc(JR x X) is given by the formula

(f *g)(r, x) = l f(t, x)g(r - t, (-t)x)dt; (1.1)
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and the involution on Cc(lR x X) is given by the formula

j*(r,x) = f(-r, (-r)x). (I,2)

It is known that the reduced normed on a crossed product C*(A, G, a) can be obtained

from just one of left regular representations induced by a faithful (injective) representations of A

(Theorem 7.13 in [17]). That is, if (n,H) is a faithful representation of A, then IIfllr = 1I>\1I"(f)1I.

Since the direct sum of all irreducible representations of C(X) is faithful, and since the irreducible

representations of C(X) are the point evaluations, the universal norm (which is the same as the

reduced norm) on Cc(lR x X) is given by

Ilfll = sup IIAx(f)II,
xEX

(I,3)

where for each x E X, the representation Ax: Cc(JR x X) ---+ L2 (JR) is the left regular representation

induced by the evaluation map evx of C(X) at x. We can quickly verify that Ax is given by

Ax(f)(~)(r) = ~ f(r - t, rx)~(t)dt,

for all f E Cc(JR x X), all ~ E L 2 (JR), and all r E R

(I.4)

If we consider the action of the group on a single orbit and forget about the topology, we

quickly realize that the action is essentially the action of the group on itself by left translation.

However, due to the minimality of the action, every orbit of the action is dense in the space X,

and it becomes quite difficult to see how the orbits are tied together topologically. So we resort

to the method of "orbit breaking" to simplify the dynamics, and obtain a structure theorem for

certain distinguished C*-subalgebras of C* (X, JR).

The "orbit breaking" method was introduced by I, F. Putnam in the study of free and

minimal actions of the group Z of integers on the Cantor set. Let U E C*(X, Z) be the standard

unitary, let Y ~ C(X) be a dosed subset, and let Co(X \ Y) be the space of all continuous

functions from X \ Y into <C that vanish at infinity. In this case, finite dimensional C* -subalgebras

are constructed using partitions of the Cantor set X into dopen sets, and it is shown that the

C*-subalgebra Ay of the crossed product generated by C(X) and uCo(X \ Y) is an inductive limit

of those finite dimensional subalgebras. See [10] and [11] for more details.
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In [5], a similar idea is used on the crossed product of C(X) by a free and minimal Z

action, where X is an arbitrary compact metric space X with finite covering dimension, to obtain

a structure theorem for the C*-subalgebras Ay generated by C(X) and uCo(X \ Y). In this case,

closed subsets Y of X with nonempty interior are used to break the orbits. Every orbit is broken

into partial orbits that start and end in Y which do not go through Y in between. Upon collecting

the partial orbits together, it is shown that the C*-subalgebra Ay is obtained by "gluing" finitely

many homogeneous algebras together, Le. is a recursive subhomogeneous algebra. Then shrinking

a sequence of decreasing closed subsets with nonempty interior to the point y, it was shown that

A y , the C*-subalgebra generated by C(X) and uCo(X\ {y}), is a simple inductive limit ofrecursive

subhomogeneous algebras with no dimension growth.

Recursive subhomogeneous algebras were introduced by N. C. Phillips in [8]. This class

of C*-algebras is a useful technical tool for studying transformation group C* -algebras. In [9], a

stable rank reduction theorem is obtained, Le. it is shown that a simple inductive limit of recursive

subhomogeneous algebras with no dimension growth has topological stable rank one. (See [16]

for the definition of topological stable rank.) In [3], H. Lin and N. C. Phillips show that the

subalgebras A y of the crossed product of C(X) by a free and minimal action of Z have tradal

rank zero given that certain hypothesis about traces hold. In the same paper, this result is used

to show that the crossed product has tradal rank zero under the same hypothesis about traces.

In this dissertation, we similarly use the "orbit breaking" method to study the crossed

products of C(X) by free and minimal ffi. actions. When the group that is acting is JR, the

subalgebras A y are no longer obtained by "gluing" homogeneous algebras together; but rather,

they are obtained by "gluing" algebras of the form C(Z) ® IK, where Z is a compact metric space

with finite covering dimension, and IK is the algebra of compact operators on the separable infinite

dimensional Hilbert space. Thus we first define "stable recursive subhomogeneous algebras",

analogous to recursive subhomogeneous algebras, to accommodate this change. We will also

obtain a stable rank reduction theorem for simple inductive limits stable recursive subhomogeneous

algebras with no dimension growth. Then we construct the analogs for actions of ffi. of A y and

Ay . Recall that, in the integer case, A y is defined to be the C* -subalgebra generated by C(X)

and uCo(X \ Y), and A y is defined to be the C* -subalgebra generated by C(X) and uCo(X \ {y}).

However, when the group is not discrete, the unitaries that implement the action and the algebra

C(X) are not contained in the crossed product. So we have to resort to other methods to define
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the analogous subalgebras. Finally we will show that the Ay is a stable recursive homogeneous

algebra, and that A y is a simple inductive limit of the algebras A y with no dimension growth, and

has have topological stable rank one.
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CHAPTER II

STABLE RECURSIVE SUBHOMOGENEOUS ALGEBRAS

Recursive subhomogeneous algebras, abbreviated RSHA, are introduced by N. C. Phillips

in [8]. Essentially, a RSHA is an iterated pull back of algebras of the form C(X, M n ), where

the spaces X are taken to be compact Hausdorff space, M n is the algebra of n x n-matrices,

and C(X, M n ) is the algebra of all continuous functions from X into M n . It is well known that

C(X, A) = C(X) 0 A for any C*-algebra A. In some sense, a recursive subhomogeneous algebra

is formed by "gluing" finitely many algebras of the form C(X, M n ) together. In this chapter, we

introduce an analogous "stable" version of RSHA, and establish a topological stable rank reduction

result.

We will use IK to denote the algebra of all compact operators on the separable infinite

dimensional Hilbert space throughout the dissertation. If A is a C*-algebra, we will take C(0,A)

to be the zero algebra.

ILL Definitions

Definition 11.1.1. Let A, B be C* -algebras, let X be a compact Hausdorff space, and let

¢: A --t C(X, B) be a *-homomorphism. We say ¢ is non-vanishing if for all x E X, there exists

some a E A such that ¢(a)(x) i=- O.

Note that in the above definition, if X = 0, then ¢ is vacuously non-vanishing.

Definition 11.1.2. Let H be a separable infinite dimensional Hilbert space and let IK denote the

set of all compact operators on H. Let n be a positive integer, let XI, ... ,Xn be compact Hausdorff

spaces, let XkO) ~ Xk be closed subspaces for k = 2, ... ,n, and let Rk: C(Xk, IK) --t C(XkO) , IK) be

the restriction map for k = 2, ... ,n. For each k with 2 ~ k ~ n, let ¢k : A (k-l) --t C(XkO), IK) be a
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non-vanishing *-homomorphism, let A(l) = C(XI,K), and inductively define

We call

a stable recursive sub-homogeneous system, abbreviated SRSH system, and call the algebra A(n)

the stable recursive sub-homogeneous algebra, abbreviated by SRSHA, corresponding to the system.

Let A be a C* -algebra. We say that A has a stable recursive sub-homogeneous

decomposition iJ there exists a stable recursive sub-homogeneous system

such that A ~ A (n), in which case we also say that A is a stable recursive sub-homogeneous algebra,

and call the system a stable recursive sub-homogeneous decomposition oj A.

The integer n is called the length oj the system (or the decomposition). The spaces

Xl, ... ,Xn are called the bases spaces oj the system. The space X = U~=l Xk is called the

total space oj the system. The spaces X~O), ... ,X~O) are called the attaching spaces oj the system.

The maps R 2 , ... ,Rk are called the restriction maps oj the system. The maps (P2, (h, ... ,¢n are

called the attaching map oj the system. For each k E {I, ... ,n}, the algebra A(k) is called k-th

partial algebra oj the system.

Note that a SRSH system of length 1 is simply (XI, C(X I, K)). For a SRSHA A, the

decomposition is by no means unique. We allow any or all of the attaching spaces to be the empty

set. If XkO
) = 0 for some k, then A(k) is simply A(k-l) EB C(Xk,K). If A has a stable SRSH

decomposition

then A is a C*-subalgebra of E9~=1 C(XbK); also for each k E {I, ... ,n}, the k-th partial algebra

is also a SRSHA with the decomposition being
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Let a = (al,' .. , an) E A and let x be in the total space X. Then there exists unique k such that

x E X k. We will use a(x) to denote ak(x). So for each x E X, the map A ----+ ]I( sending a I-? a(x) is a

clearly *-homomorphism. If 1 ::; k ::; l ::; n, then it is easily verified that the map Pl,k: A(l) ----+ A(k)

defined by Pl,k(al, ... ,al) = (al,'" ,ak) is a surjective *-homomorphism. If 1::; k::; l::; m::; n,

then Pm,k = Pl,k 0 Pm,l'

11.2. Ideals and Homomorphisms of SRSHAs

In this section we establish some results about the spectrum, primitive ideal space, and

ideals of a SRSHA. We will use A to denote the spectrum of A, i.e. the space of all irreducible

representations of A, and if 7r is an irreducible representation of A, we will use [7r] to denote the

corresponding element in A. We will use Prim(A) to denote the primitive ideal space of A. The

next lemma is a standard result.

Lemma 11.2.1. Let X be a locally compact Hausdorff space and let A

x E X, let evx : A ----+ ]I( be defined by eVx(f) = f(x). Then

1. the map X ----+ A defined by x I-? revx] is a well defined bijection;

Co(X,]I(). For each

2. the map X ----+ Prim(A) defined by x I-? {f E A: f(x) = O} is a well-defined bijection.

Lemma 11.2.2. Let n be a positive integer. Let

be a stable recursive sub-homogeneous system and let A = A(n). Let xiO) = 0. Then

1. the map M: U~=l (Xk \ XrO)) ----+ Prim(A) defined by M(x) = {a E A: a(x) = O} is a well

defined bijection.

2. for each x E U~=I(Xk \ XrO)), the evaluation map evx : A ----+ ]1(, given by a I-? a(x), is

non-zero; also the map S: 1J~=I(Xk \ XrO)) ----+ A defined by S(x) = [evxl is a well defined

bijection.

Proof: Induct on n. The case when n = 1 is given by Lemma 11.2.1. Suppose that statement

holds for some n, let
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(x A (l) (X XeD) ,J, A(k))n+1)
1, , k, k ,'Pk,Rk, k=2

be a SRSH system of length n + 1 and let A = A (n+1).

Let 1 :::; i ~ n+ 1 and let x E Xi \Xi(O). Define 1r: A(n+1) -+ OC by 1r(h, ... , fn+I) = Ji(x).

Then 1r is a clearly a *-homomorphism. Let a E K Choose h E C(Xi ) such that h(x) = 1 and

supp h ~ Xi \ X}O), and let f E C(Xi ,OC) be defined by f(y) = h(y)a. Then supp f ~ Xi \ Xi(O).

Hence Ri(f) = flxiO) = °= 1/Ji(O), and so (0, ... ,O,i) E A(i). Since the map A(n+1) -+ A(i)

defined by (gl, ... ,gn+I) 1--4 (gl, ... ,gi) is surjective, there exist gH1, ... ,gn+1 such that ~ =

(0, ... ,0, f, gH1,···, gn+1) E A(n+1). Then 1r(~) = f(x) = a. Thus 1r = evx maps onto OC, and so 1r

is non-zero and irreducible. This shows that the map S defined in part 2 of the statement of the

lemma is well defined. Further, this also shows that

and so M defined in part 1 of the statement of the lemma is well defined.

Now consider

Then it is clear that In+1 is a closed two sided ideal of A. Note that if (h, ... , fn+I) E In+1, then

°= 1/Jn+1 (h , ... , f n) = Rn+ 1(fn+ I), and so fn+l vanishes on X~~l' Define

by ¢(h, ... ,fn+I) = fn+1l x \x(O). This map is well defined because if (h,· .. ,fn+1) E In+l,
n+l n+l

then fn+1 vanishes on X~~l' so fn+1 E CO(Xn+1 \ X~~l'OC). Then it is clear that ¢ is a

*-isomorphism.

Now let 1r: A -+ B(H) be a non-zero irreducible representation. First assume that

1rlln+1: In+1 -+ B(H) is not the zero representation. Then 1rllnn+l is also irreducible. Thus

1r 0 ¢-1 is an irreducible representation of CO(Xn+1 \ X~~l'OC), and so by Lemma 11.2.1 there

exists x E X n+1 \ X~~l' such that [1r 0 ¢-l] = [evx ]. Then there exists a unitary u such that
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1rO¢-l = Ad(u) oevx, where Ad(u): IK ---t IK is defined by Ad(u)(a) = uau*. Define 1r': A ---t B(H)

by 1r'(h, ... , in+l) = Ad(u)(fn+l(X)). Then 1rlln+l = 1r'IIn+1· Since 1rlln+l = 1r'IIn+l is irreducible,

hence non-degenerate, we have 1r = 1r'. Then S(x) = [1r'] = [1r].

Now suppose that 1rlln+1 = O. Define 'l/J: A(n+l) ---t A(n) by 'l/J(h,.··, in+l) = (iI, .. ·, in)'

Consider the short exact sequence

Since 1r restricts to zero on In+1 , 1r factors through A(n). That is, there exists n: A(n) ---t B(H)

such that no 'l/J = 1r. Then 1m 1r = 1m n. Since 1r is irreducible, we see that n is also irreducible.

Thus by the inductive hypothesis, we see that there exists some 1 ::; i ::; n and some x E Xi \ X;O)

such that [n] = revx]. So there exists a unitary such that n(f) = Ad(u) (f (x)) for all i E A(n). Then

for all i = (h, . .. , in' in+l) E A (n+l), we have 1r(f) = n( 'l/J(f)) = n(h, ... , in) = Ad(u)(Ji(x)).

Thus [1r] = S(x), and hence S is surjective. If J E Prim(A), then there exists some irreducible

representation 1r of A such that J = ker1r. So there exists x E u~~i (Xk \ XkO
)) such that

[evxl = [1r]. It follows that

J = ker1r = kerevx = {a E A: a(x) = O} = M(x).

Thus M is also surjective.

Next we show that M and S are injective. Let x,y E U~~i(Xk \ XkO
)) and suppose that

x =I=- y. First assume that there exist 1 ::; j < k ::; n such that x E X j \ xjO) and y E Xk \ XkO). Let

hE C(Xk) satisfy h(y) = 1 and supp h ~ X k \ XkO
), let a ElK be a non-zero element, let i = ah,

and let b = (0, ... ,0,1) E A(k). Let ik+l' ... ,in+l be such that 9 = (b, ik+l, ... , in+l) E A(n+l).

Then g(x) = 0, but g(y) = a =I=- O. Thus 9 E M(x), but 9 ¢:. M(y), and so M(x) =I=- M(y). Since

M(x) = kerevx and M(y) = kerevy, we have S(y) = levy] =I=- [evx] = S(x). Now suppose that

x, y E Xk \ XkO
) for some 1 ::; k ::; n. Since x, yare different, there exists an open U ~ Xk \ XkO

)

such that y E U, but x ¢:. U. Choose h E C(Xk) such that h(y) = 1 and h vanishes outside of U.

Let a E IK be non-zero. Let i = ah. Then i vanishes on XkO
). So there exist
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such that 9 = (0, ... ,0, f, gk+1, ... , gn+l) belongs to A. Then g(x) = f(x) = 0 and g(y)= f(y) = a.

It follows that 9 E M(x), but 9 rt- M(y). So M(y) =1= M(x), and consequently S(x) =1= S(y). 0

Corollary II.2.3. Let

be a stable recursive sub-homogeneous system and let A = A (n). Let xiO
) = 0. Then for all

x,y E U~=l(Xk \ XkO») with x =1= y, there exist some a,b E A such that a(x) = 0, a(y) =1= 0,

b(x) =1= 0, and b(y) = O.

Proof: First suppose that x E X j \ X;o) and y E Xk \ XkO
), where 1 ::::; j < k ::::; n. Then the

element a E A needed is constructed in the last paragraph of the proof of II.2.2. Next we construct

the element b. Let h E C(Xj) be such that h(x) = 1 and h vanishes on xjO), let ~ E IK be non-zero,

and let f = h~. Then (0, ... ,0, f) E AU). Choose b' E A(k-l) such that the first j entries of b' are

(0, ... ,0, f). Let c = cPk(b'). Let V be an open neighborhood of XkO
) that does not contain y, and

choose h' E C(Xk) such that h'lx(o) = 1 and h' vanishes outside of V. Let c' be any extension of
k

cover Xk, and let l' = h'c'. Then 1'lx(o) = c = cPk (b'). So (b', 1') E A (k). Choose b E A such that
k

the first k entries of bare (b', 1'). Then b(x) = f(x) = ~ =1= 0, and b(y) = 1'(y) = h'(y)c'(y) = O.

Now suppose that x, y E Xk \ XkO
). Let Ux and Uy be two disjoint open sets contained in

Xk \ XkO) such that x E Ux and y E Uy. Choose hx E C(Xk) and hy E C(Xk) such that hx(x) = 1

and hy(y) = 1, hx vanishes outside of Ux, and hy vanishes outside of Uy. Let ~ E IK be non-zero.

Let fx = hx~, and fy = hy~. Then a' = (0, ... , fy) E A(k) and b' = (0, ... ,0, fx) E A(k). Let

a, bE A be such that the first k entries of a and b are, respectively, a' and b'. Then

a(x) = a'(x) = fy(x) = 0,

a(y) = a'(y) = fy(Y) = ~ =1= 0,

b(x) = b'(x) = fx(x) = ~ =1= 0,

b(y) = b'(y) = fx(y) = o.

o



13

Corollary 11.2.4. Let n be a positive integer. Let

be a stable recursive sub-homogeneous system, and let A = A (n). Let xiO) = 0. Let I ~ A

be a closed two sided ideal of A. Then there exists a closed set F ~ X = U~=l Xk such that

I = {a E A: alF = O}.

Proof: Let I be a closed two sided ideal of A. If I = 0, then take F = X. If I = A, then take

F = 0. Now assume that I is proper and non-zero. Recall that for any C*-algebra B and for any

closed two sided ideal I of B, the hull of I, denoted by hull(I), is the set of all primitive ideals

of B that contain I; and for any subset S ~ Prim(B), the kernel of S, denoted by ker(S) is the

intersection of all the members of S. We know that I = ker(hull(I)). Let M be as in Lemma r1.2.2.

Let F = M-l(hull(I)). We will verify that I = {a E A: alF = O}. Let J denote {a E A: alF = O}.

Let a E I, and let x E M- 1(hull(I)). Then M(x) E hull (I) , and so a E I ~ M(x).

So a(x) = O. This holds for all x E M- 1 (hull(I)). Thus a vanishes on M- 1 (hull(I)). Since a is

continuous, alF = O. So a E J, and so I ~ J. Now suppose that a E J. Let L E hull(I). Then there

exists x E X such that L = M(x), and so x E M- 1 (hull(I)) ~ F. The condition a E J implies that

a(x) = 0, which implies that a E M(x) = L. This holds for all L E hull(I), so a E ker(hull(I)) = I.

Thus J ~ I, and so I = J. 0

The next theorem is a restatement of Theorem 1.4.4 in [1].

Theorem 11.2.5. Let H be an arbitrary Hilbert space, and let A ~ K(H) be a non-zero

C* -subalgebra. Then there exists an index set I and a family (Pi)iEI of mutually orthogonal

projections in B(H), indexed by I, such that

1. Pi E AI for all i E I, where AI denotes the commutant of A;

2. PiApi = K(PiH) for all i E I (we identify K(PiH) with PiK(H)Pi in an obvious way);

3. Iiall = SUPiEI IlpiaPi II for all a E A;

4. LiEI PiaPi converges to a in norm for all a E A;

5. for all a E A and for all E > 0, there exists a finite subset F ~ I such that Ilpiapill < E for

alli~F.
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Proposition 11.2.6. Let H be a separable infinite dimension Hilbert space and let IK denote the

set of all compact operators on H. Let

be a SRSH system whose underlying Hilbert space is H. Let A = A(n). Let xiO) = 0. Let

<f;: A -> K(H) be a non-zero *-homomorphism. Then there exists an index set I, a family (Pi)iE!

of mutually orthogonal projections in B(H), a family (Wi)iE! of isometries in B(H), and a family

(Xi)iE! of elements in U~=l (Xk \ XkO)) (note that we do not assume that the Xi are mutually

distinct) such that

1. Pi E <f;(A)' for all i E I, where <f;(A)' denotes the commutant of <f;(A);

2. WiWi = 1 and wiwi = Pi for all i E I;

3. <f;(a) = LiE! Wia(Xi)wi for all a E A, where the convergence is in norm;

4. II <f;(a) II = sUPiEi Ila(xi)11 for all a E A;

5. I is a finite set.

Proof: It is clear that <f;(A) is a non-zero C*-subalgebra of K Apply Theorem II.2.5 to <f;(A) to

get the index set I and the family of mutually orthogonal projections (Pi)iE!' Then part 1 of the

proposition holds holds. For each i E I, define <f;i: A -> K(PiH) by <f;i(a) = Pi<f;(a)Pi' By part 10f

this proposition, <f;i is a well defined *-homomorphism. It is clear that

Then part 2 of Theorem II.2.5 implies that <f;i(A) = K(PiH). Thus (<f;i,PiH) is an irreducible

representation of A. So by Lemma II.2.2, there exists a unitary Wi: H -> PiH and some

Xi E U~=l(Xk \ XkO)) such that <f;i(a) = Wia(Xi)wi for all a E A. Identifying Wi as an element

of B(H) in the obvious way (identify Wi with the composition inclusion PiH -> H followed by Wi),

the element Wi is an isometry in B(H). Then it is clear that part 2 of this proposition holds. By
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part 4 of Theorem II.2.5, we have

¢(a) = LPi¢(a)Pi = L¢i(a) = L Wia(Xi)w7
iEI iEI iEI

for all a E A, where the convergence is in norm. So part 3 holds. By part 3 of Theorem II.2.5, we

have

11¢(a)11 = sup Ilpi¢(a)Pill = sup II¢i(a)\\ = sup \\Wia(Xi)w7\\ = sup Ila(xi)ll·
iEI iEI iEI iEI

So 4 holds.

Finally we show that I is a finite set by contradiction. Suppose that I is an infinite set.

Let S denote the set {Xi E X: i E I}, where X = U~=l Xk. We claim that there are distinct il E I

for lEN such that il i=- iI' if l i=- l', and that the sequence (Xi!)~l converges to some Xa E X. To

prove this claim, if S is finite, then there exists some yES such that the set {i E I: Xi = y} is

infinite. In this case take a sequence of mutually distinct indices (il)~l in {i E I: Xi = y}. Then

clearly Xi! = Y ---4 y. If S is infinite, then, since X is compact, we can pick a countable mutually

distinct subset elements YI,Y2, ... E<;;; S such that Yn ---4 Xa for some X E X. For each l 2:: 1,

choose il E I such that Xiz = Yl. Then the indices iI, i2,'" are necessarily mutually distinct, and

Xi! = Yl ---4 Xa. This proves the claim.

Now we show that for all a E A, Ila(xiz)11 ---4 O. Let a E A, and let E > O. By part 5 of

Theorem II.2.5, there exists a finite subset F <;;; I such that i ~ F implies that

Since F is finite, there exists la 2:: 1 such that if l 2:: la then il ~ F. Thus for all l 2:: la, we have

Ila(Xiz)11 < E. This shows that Ila(xiz)11 ---4 a for all a E A.

Since a is continuous for all a E A, we have a(xa) = a for all a E A. Then the map A ---4 IK

defined by a f-+ a(xa) is the zero map, hence Xa E U~=l X~a), because by Lemma II.2.2, for all

Y E X \ (U~=l X~a)) , the map a f-+ a(y) is an irreducible representation and hence cannot be

the zero map. Suppose that Xa E X~a) for some k E {I, ... ,n}. Now, we assumed that the map

¢k: A (k-l) ---4 C(X~a), IK) is non-vanishing, so there exists some b E A(k-l) such that ¢k(b)(xa) i=- O.

Then, since the map A(n) ---4 A(k-l) defined by (al, ... ,an) f-+ (al, ... ,ak-d is surjective, there
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exists some a = (al,"" an) E A such that (al,"" ak-l) = b. Thus

This contradicts the fact that a(xo) = 0 for all a E A. This means that I has to be finite. 0

Definition 11.2.7. Let

be a SRSH system, and let A = A (n). Let ¢: A ----t ]I( be a non-zero *-homomorphism. Then

by Proposition II.2.6, there exists Xl, ... , Xm E U~=l (Xk \ XkO)) and isometries WI, ... , wm with

orthogonal ranges such that ¢(a) = 2::':1 Wia(Xi)Wt for all a E A. We call the set {Xl,"" Xn }

(not counting multiplicity) the spectrum of ¢, and we will denote the spectrum of ¢ by sp(¢). Let

be another SRSH system, let B = B(m), and let ¢: A ----t B be a *-homomorphism. We say that ¢

is non-vanishing if, for all y E UZ'=l Yk, the map A ----t ]I( defined by evy 0 ¢ is not the zero map.

In this case, will call sp(evy 0 ¢) the spectrum of ¢ at y and write SPy(¢).

In the previous definition, it is not necessary to insist on ¢ being non-vanishing to define

SPy(¢). If evy 0 ¢ = 0 for some y, then SPy(¢) would simply be the empty set. The condition that

¢ is non-vanishing guarantees that SPy(¢) =1= 0 for all y E U:':l Yi.

The spectrum of a *-homomorphism between homogeneous algebras was used in [2] to show

that simple inductive limits of homogeneous algebras with no dimension growth have topological

stable rank one. One of the key steps is that if the inductive limit is simple, then the spectra of the

connecting *-homomorphisms of the inductive system, in a sense, become more and more "dense"

when we follow the connecting maps of the inductive limit further and further out. We will prove

a similar result in our situation. We will first need a few preliminary results, and some results that

will be used later in this dissertation.
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Lemma II.2.8. Let

(Xl, A(1), (Xk,XkO), ch, R k, A(k)) :=J '
(Y1, B(l), (Yk, yk(O) , 'ljJk, Tko B(k))~=J '

and

(Zl, e(l), (Zk, ZkO), ek, Sko e(k)) :=2)
be three SRSH systems, and let A = A (n), B = B(m), and e = e(l). Let ¢: A -> Band 'ljJ: B -> e
be non-vanishing *-homomorphisms. Then 'ljJ 0 ¢ is non-vanishing.

Proof: Let z E U~=l Zk. Since 'ljJ is non-vanishing, the map evz 0 'ljJ is non-zero. So there

exists tEN with t > 0, and isometries W1,".,Wt, with orthogonal ranges such that 'ljJ(b)(z) =

:Z=~=1 wib(Yi)wi for all b E B, where {Y1,'''' yd = spA'ljJ) =I- 0. Since ¢ is non-vanishing, there

exists some a E A such that ¢(a)(yd =I- O. Then 11'ljJ(¢(a))(z) II ::=: 11¢(a)(ydll > 0, and hence 'ljJ 0 ¢
is non-vanishing. 0

Lemma 11.2.9. Let n be a positive integer. Let

be a SRSH system and let A = A(n). Let X~O) = 0 and let X = U~=l X k.

1. Let U ~ X be an open subset. Then Iu = {a E A: aluc = O} is a closed two sided ideal of A.

Further, let Uk = Un Xk for k E {l, ... , n}, and let

for each k = 2, ... , n. Suppose that

U =I- 0 and Wk = Uk n XkO) for k = 2, ... ,n.

Then Iu =I- 0, and

U = {x EX: there exists some a E Iu such that a(x) =I- O}.

(II.1 )
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2. Let I s:;; A be a non-zero ideal. Then the set

U = {x EX: there exists some a E A such that a(x) -I- O}

is open in X and satisfies the condition II.l in part 1. Also Iv = I.

Proof: For part 1, we induct on the length of the SRSH system. If n = 1, then result is trivial.

Suppose that result holds for systems of length n, and let

be a system of length n + 1. Let U, UI, ... , UnH and WI, ... , Wn+1 be as given in the statement

of the lemma.

It is clear that Iv is a closed two sided ideal of A. Let V = U~=I Uk. First suppose that

V -I- 0. Then by the induction hypothesis, Jv = {a E A(n): alvc = O} is a non-zero ideal. So let

bE Jv be nonzero. Now, for all x E X~~I \ WnH , we have sPx(¢n+d s:;; ve. Since b vanishes on

ve, the function ¢nH(b) also vanishes outside of WnH . If WnH = 0, then ¢nH(b) = O. Thus

(b,O) E Iv and (b,O) -I- O. So assume that WnH -I- 0. Since W k is closed in Un+l, we can extend

¢nH(b) to some f E CO(UnH , IK). Since UnH s:;; X n+1 is open, we can define f(x) = 0 for all

x ~ Un+l , so that f E C(Xn +I ,IK). Then Rn+I(f) = ¢n+l(b), and so (b,j) E Iv and (b,j) -I- O.

Thus Iv -I- o.
Now suppose that V = 0. Then Wn+1 = 0, and so UnH s:;; X n+1 \X~~I' Since UnH -I- 0

(otherwise U = 0), there exists f E C(Xn +I ,IK) such that f vanishes outside of UnH and f -I- o.
Then (0, ... ,0, f) E Iv and (0, ... ,0, j) -I- o. So Iv -I- o.

It is clear that

{x E X: there exists some a E Iv such that a(x) -I- O} s:;; U.

Now let x E U. Let k be the integer such that x E Uk. First suppose that 1 < k < n. Let

W = U~=I Ui · Then by the induction hypothesis, we have

W = {x E X: there exists some a E I w ~ A(n) such that a(x) -I- O}.
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So there exists some b E Iw such that b(x) -=I=- o. An argument similar to the one given in the second

paragraph of this proof give some f E C(Xn +1 , lK) such that a = (b,1) E Iu. Then a(x) = b(x) -=I=- o.
Therefore

x E {y EX: there exists some a E I u such that a(y) -=I=- O}.

Now suppose that k = n + 1. Assume that x E X~~I' Then x E Wn +1 , which means that

there exists some y E SPx(cPn+l) n (U~=1 Ui ). By what is shown in the previous paragraph, there

exists some a E Iu such that a(y) -=I=- O. Then

lIa(x)11 = sup Ila(z)11 2: Ila(y) II > 0,
zEsP", (qI,,+Il

so a(x) -=I=- 0, and so

x E {y EX: there exists some a E Iu such that a(y) -=I=- O}.

Finally assume that x tf. X~~ l' Let ~ E lK be non-zero and choose h E C (Xn+1) such that h(x) = 1

and h vanishes outside of Un +1 n (Xn +1 \ X~~I)' Let f = ~h. Then a = (0, ... ,0,1) E A, and a

vanishes outside of U. So a E Iu, and a(x) = f(x) = ~ -=I=- O. Therefore

x E {y EX: there exists some a E I u such that a(y) -=I=- O}.

Thus

U = {x EX: there exists some a E Iu such that a(x) -=I=- O}.

For part 2, we first note that U = UaE1{X E X: a(x) -=I=- O} is open in X, and that U

cannot be empty. Let U1 , ... , Un +1 and Wz, ... , Wn be as given in part 1. Let k E {2, ... ,n}. Let

x E Wk and let y E sPx (cPk) n (IJ~':} Ui ) . Let a E I satisfy a(y) -=I=- O. Then

Ila(x)11 = sup Ila(z)11 2: lIa(y)11 > O.
zEsp", (qlk)

Thus a(x) -=I=- o. So x E Uk, and so x E Uk nXkO).

Now suppose that x E Uk n XkO). Then a(x) -=I=- 0 for some a E I. Let a = (b, 91, ... ,91),

where b E A(k-l). Then Ila(x) II = SUPZESP", (qlk) Ilb(z) II. Now, since b vanishes outside of U~':} Ui , if
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SPx(<Pk) <:;;; (IJ~~} Uir, then Ila(x)II = 0, and so a(x) = O. Since a(x) =I- 0, we have

So x E Wk. Thus Wk = Uk n XkO
).

It is clear that 1 <:;;; lu. Now we know that there exists some closed subset F <:;;; X such

that 1 = {a E A: alp = O}. Since for all x E U, there exists some a E 1 such that a(x) =I- 0, we

have F <:;;; UC. Then a belonging to lu implies a vanishes on UC, and so a vanishes on F. So a E I.

Thus lu <:;;; I, and hence 1 = lu.

Lemma 11.2.10. Let

D

be a SRSH system, and let A = A(n). Let X = U~=:l Xk. Then there exists some a E A such that

a(x) =I- 0 for all x E X.

Proof: Induct on the length of the system. The result clearly holds for n = 1. Suppose that

result holds for systems of length n, let

( A (1) (X (0) R A(k))n+l)
Xl, , k'Xk '<Pk' k, k=2

be a SRSH system, and let A = A(n+l).

Now,

is a system of length n, so by inductive hypothesis, A (n) contains some ao such that ao (x) =I- 0 for

all x E U~=l Xk. Let a = aoao. Then a(x) ~ 0 for all x E X, and a(x) =I- 0 for all x E X. Let

b = <Pn+l(a). Because a vanishes nowhere, and because <Pn+l is non-vanishing, we have b(x) =I- 0

and b(x) ~ 0 for all x E X~~l' Extend b to some positive element b' E C(Xn+l,lK). Let

It is clear that U is an open neighborhood of X~~l' Then {U, Xn+l \ X~~l} is an open cover



21

for X n +l . Let {hI, hz} be a partition of unity subordinate to {U, X n +l \ X~~d. (Without loss

of generality, assume that supp hI ~ U, and supp hz ~ X n +l \ X~~l') Let ~ E K be a non-zero

positive element. Let f = hlb' + hz~. Then if x E X~~l' we have

f(x) = hl(x)b'(x) + hz(x)~ = b'(x) = b(x) = cPn+l(a)(x).

Thus (a,J) EA. Now let x E Xn+l' If hl(x) #- 0, then x E U, and then hl(x)b'(x) #- O. Since

f(x) ::::: hl(x)b'(x), we have f(x) #- o. If hl(x) = 0, then hz(x) = 1, and so hz(x)~ = ~ #- O. Since

f(x) ::::: hz(x)~, we have f(x) #- O. Thus f vanishes nowhere. Then the element (a, J) vanishes

nowhere on X. (That is (a, J) is not contained in any non-zero proper ideal of A.) o

The next proposition shows that in a simple inductive limit in which the connecting maps

are injective and non-vanishing, the spectra of the connecting maps become more and more dense,

in some sense. If A is a set and if B is a subset of A, we use Be to denote the complement of B.

Proposition II.2.11. Let (An' '!,Un) be an inductive system of SRSHAs and let A be the inductive

limit. Let X n be the total space for An. Suppose that '!,Un is injective for all n, that '!,Un is

non-vanishing for all n, and that A is simple. Then for all n ::::: 1, and for all open set U ~ X n

such that Iu = {a E An: aluc = O} is a non-zero ideal, there exists no ::::: n such that for all k ::::: no

and for all x E Xk, we have sPx('!,Un,k) n U #- 0, where '!,Ui,j = '!,Uj-l 0'" 0 '!,UHI 0 '!,Ui for i :s; j.

Proof: This will be a proof by contradiction. Suppose that there exists m ::::: 1 and some open

set U ~ Xm with Iu #- 0, such that for all n ::::: m, there exists some kn :::::. n and some x E X kn

such that sPx('!,Um,kn ) n U = 0. Then U certainly cannot be the entire space X n. Without loss of

generality, we can assume that kn < kn+l < kn+z < .... Then, passing to a subsequence of the

inductive system and truncating if necessary, we can assume that m = 1, and that kn = n for all

n ::::: 1. Thus we are assuming that there exists some open subset U ~ Xl with Iu #- 0 such that

for all n ::::: 1, there exists some x E X n such that SPx('!,UI,n) n U = 0. It is clear that U #- Xl.

For each n ::::: 1, let '!,Un: An -; A be the natural injection that comes with the inductive

limit. Also let

v = {x E Xl: there exists some b E Iu such that b(x) #- O}.
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It is clear that V <:: u. Then for all n :::: 1, there exists some x E X n such that

By Lemma II.2.9, we have Iv = Iv =I- o. For each n :::: 2, let Fn = {x E X n : Sp",(~l,n) n V = 0}.

Then Fn =I- 0 for all n :::: 2. Let In = {a E An: alFn = O}. Let h = Iv. For each n ;::: 1, let

I n = ~n(In), and let Bn = ~n(An)' Then I n is a closed two sided ideal of Bn. We first show that

J l <:: Jz <:: h <:: .... Fix n :::: 1, and let a E In. Let XQ E {x E Xn+l : SPx(~l,n+!) n V = 0}. Let

y E sPxo(~n)'

Suppose that SPy(~l,n)n V =I- 0. Let z E SPy(~l,n) n V, and let bEll = Iv be such that

b(z) =I- O. Then

But b vanishes outside of V, so if x E X n +l satisfies SPx(~l,n+l) n V = 0, then

lI~l,n+l(b)(x)11 = sup Ilb(z')11 = 0;
z'ESPxC,pl,n+l)

hence in particular ~l,n+!(b)(XQ) = O. This contradicts the fact that II~l,n+!(b)(xQ)11 > O. Thus

SPy(~l,n)n V = 0.

Then y E Fn, and so a(y) = O. This holds for all y E sP"'o (~n), so ~n(a)(xQ) = O. This holds

for all XQ E X n+l such that SPxo(~l,n+l)n U = 0, so ~n(a)IFn+l = 0, and so ~n(a) E In+!' Then

~n(a) = ~n+l(~n(a)) E ~n+l(In+l) = I n+l . This holds for all a E In' so I n = ~n(In) <:: I n+!.

This holds for all n :::: 1, so we have J l <:: Jz <:: ....

Then J = Un;:::l I n is an ideal of A. The ideal J cannot be 0, because ~l is injective and

h =I- O. Finally we show that J =I- A. Let a E Al satisfy a(x) =I- 0 for all x E Xl' Then compactness

of Xl gives that there exists E > 0 such that Ila(x)11 :::: E for all x E Xl. For all n :::: 2 and for all

x E Xn, we have II~l,n(a)(x)11 = sUPYESPxC,pl,n) Ila(y)11 :::: E. For all n :::: 2, and for all b E In' we

have
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Then for all n ::::: 1 and for all b E In' we have

This shows that J is a non-zero proper ideal of A, which contradicts the simplicity of

A. 0

II.3. Topological Stable Rank of Simple Inductive Limits of SRSHAs

The first few lemmas of this section will be some trivial or nearly trivial results about

functional calculus and semi-continuity of spectral projections at self-adjoint elements in lK, which

the author of this dissertation has not encountered. These mayor may be be written down

explicitly in the literature. Then, through several lemmas, we adapt Lemma 3.3 in [9], which is

the key lemma in showing that simple inductive limits of RSHAs with no dimension growth have

topological stable rank one, to our situation. The last portion of the section will be dedicated to

showing that if A is simple inductive limit of SRSHAs with no dimension growth such that all the

connecting maps are injective and non-vanishing, then A has topological stable rank one.

Lemma II.3.1. Let 1r be a polynomial with complex coefficients, let M > 0 be a positive real

number, and let E > O. Then there exists 0 > 0 such that if A is a unital C* -algebra, and if a, b E A

satisfy Iiall :S M, IIbll :S M, and lIa - blj < 0, then 111r(a) -1r(b)11 < E.

Proof: Let n E N and let Ao, AI ... , An E <C be such that 1r(~) = 2::7=0 Ai~i for all ~ E <C. If

Ao = Al = ... = An = 0, then 1r(a) = 0 for all a E A, and the result follows trivially. So assume

that not all of Ao, ... ,An are O. Let

Then 0 > O. Let A be a unital C* -algebra, and let a, b E A satisfy \\a\\ < M, Ilbll < M, and
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Iia - bll < J. Then

n n

IIn(a) - n(b)11 = II L Ak(ak - bk) II = II L Ak(ak - bk)II
k=O k=l

n

~ L(IAkl'llak - bkll)
k=l

n

= L[IAkl' (ilak - ak-1b + ak-1b - ak- 2 b2

k=l

n

~ L[IAkl' (ilak - ak-1bll + Ilak-1b - ak- 2b2 11 + ... + Ilabk- 1 - bkll)]
k=l

n

< L[lAkl' kMk-1J]
k=l

n

= JL[lAkl' kMk
-

1
] = f.

k=l

o

Corollary 11.3.2. Let M > a be a real number, let f E C([-M, MD, and let f > a. Then there

exists a J > a such that if A is a unital C* -algebra, and if a, b E A are self-adjoint elements such

that Iiall ~ M, IIbll ~ M, and Iia - bll < J, then Ilf(a) - f(b)11 < f.

Proof: Since [-M, M] is compact, there exists a polynomialn such that Ilnl[-M,Mj - flloo < f/3.

Apply Lemma 11.3.1 to n, M, and f/3 to get J > a. Let A be a unital C*-algebra, and let a, bE A

be self-adjoint elements such that Iiall ~ M, Ilbll ~ M, and Iia - bll < J. Then

Ilf(a) - f(b)11 ~ IIf(a) - n(a)11 + Iln(a) -n(b)11 + Iln(b) - f(b)11

~ Ilflsp(a) - nlsp(a) 1100 + f/3 + Ilflsp(b) - nlsp(b) 1100

< f/3 + f/3 + f/3

= f.

o

Corollary 11.3.3. Let M > a be a real number, let f E C([a, MD, and let f > a. Then there exists

some J > 0 such that if A is a unital C* -algebra, and if a, b E A are positive elements such that
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lIall :::; M, Ilbll :::; M, and Iia - bll < b, then Ilf(a) - f(b)11 < E.

Proof' Extend f to l' over [-M, M], then apply Corollary 11.3.2 with f replaced by 1'. 0

Lemma 11.3.4. Let A be a C* -algebra, let.li denote the unitization of A, and let 1 be the adjoined

identity. (Here, we add a new identity to A even if A is already unital.) Let a E A be self-adjoint

and let Ii = a + 1. Then

1. sp(a) + 1 = sp(li) where both spectra are taken with respect to .Ii.

2. Let h: sp(li) ----+ sp(a) be defined by h(e) = e-1 and let h*: C(sp(a)) ----+ C(sp(Ii)) be defined

by h*(j) = f 0 h. Let F: C(sp(a)) ----+ .Ii and let F: C(sp(Ii)) ----+ .Ii be the functional calculus

(with respect to .Ii) at a and Ii respectively. Then F = F 0 h*.

Proof: Part 1 is trivial. To prove part 2, note that a = h-I(a). Then if f E C(sp(a)), we have

F 0 h*(j) = h*(j)(a) = h*(j)(h-I(a)) = (j 0 h)(h-I(a)) = (j 0 h 0 h-I)(a) = f(a) = F(j).

o

For all C*-algebras A and all a E A, we use lal to denote (a*a)I/2. We use Xa: JR ----+ JR

to denote the characteristic function of (-00, a) for all a E R Also, for all C*-algebras A and

all self-adjoint a E A, we use Pa(a) to denote Xa(a). Even though Pa(a) may not be in A for

some combinations of a, A and a, it is still in the double commutant of A when A is faithfully

represented on a Hilbert space. For our purposes, A will be either the algebras of compact operators

on separable Hilbert spaces, or their unitization; and a will be less then the limit point of sp(a) (if

any). In these cases Pa(a) will be a finite rank projection, and hence in A. Then the next corollary

follows immediately from Lemma 11.3.4.

Corollary 11.3.5. Let a E lKs .a ., let 1 > a > 0, and let a = a + 1. Then Pa(a) = Pa-I(a).

Lemma 11.3.6. Let A be a unital C* -algebra and let PI, P2 E A be orthogonal projections such that

PI + P2 = 1. Let Al and A 2 be C* -subalgebras of A such that Pi is the identity of Ai for i = 1,2.

Let al E Al and a2 E A 2.

1. Then sPA(al +a2) = SPA! (al)UsPA
2
(a2), where sPB(b) denotes the spectrum ofb with respect

to B for all C* -algebra B and any b E B.
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2. Suppose that al and a2 are self-adjoint. Let Fi be the functional calculus of ai with respect

to Ai, for i = 1,2, and let F be the functional calculus of al +a2 with respect to A. Then for

all f E C(sPA(al + a2)), we have F(f) = FI(f) + F2(f) , that is, f(al + a2) = f(ad + f(a2)'

Proof: First assume that Ai = PiApi for i = 1,2. Let A E C. If A - (al + a2) is invertible in

A, then there exists some b E A such that b(A - al - a2) = (A - al - a2)b = 1 = PI + P2, and

b commutes with PI and P2. SO Plbpi and P2bP2 are the inverses of API - al and AP2 - a2 in Al

and A2, respectively, and so API - al and AP2 - a2 are both invertible. On the other hand, if both

API -al and AP2 -a2 are invertible, then there exists bi E Ai such that bi = (APi -ai)-l for i = 1,2.

Then bi + b2 = (A - al - a2)-I. Thus A ~ sPA(al + a2) if and only if A ~ sPA
1
(al) n sPA

2
(a2). So

result follows. Now assume that Ai is an arbitrary C* -algebra of A that contains Pi as its identity,

for i = 1,2. Then for i = 1,2, Ai is a C*-algebra of PiApi that contains the identity of PiApi, so

SPp;Ap;(ai) = sPA;(ai). Thus

and part 1 or the lemma is proven.

Since al a2 = a2al = 0, it is easy to verify that if 7r is a polynomial on sPA (al + a2), then

7r(al) +7r(a2) = 7r(al +az), where functional calculus on the left side of the equation is taken in the

subalgebras Ai, i = 1,2, and the functional calculus on the right side of the equation is taken in A.

So the continuous map C(sPA(al + az)) ---t A defined by f I---t f(al) + f(a2), where the respective

functional calculus is taken in the subalgebra, agrees with the map f I---t f(al + az) on the set of

all polynomials, which is dense in C(sPA(al + a2)). Hence the result follows. 0

From 11.3.6, a standard induction argument shows the following:

Corollary 11.3.7. Let A be a unital C* -algebra, and let PI, ... ,Pn E A be orthogonal projections

such that PI + pz + ... + Pn = 1. Let Ai be a C* -subalgebra of A such that Pi is the identity of Ai

for i = 1,2, ... , n. Let ai E Ai, i E {I, ... , n}.

2. Suppose that ai is self-adjoint for i E {I, ... , n}. Let Fi be the functional calculus of ai

with respect to Ai for i E {I, ... , n} and let F be the functional calculus of L:~=l ai with
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respect to A. Then for all f E C(SPA(2=~=lai))' we have F(j) = ~~=lFi(j), that is,

f (2=~=1 ai) = 2::~=1 f(ai)'

The next few results are about the semicontinuity of spectral projections.

Lemma 11.3.8. Let E > 0, let 0 < al < a2 < 1, and let M :::: 1 be a real number. Then there

exists some 0 > 0 such that if a, bE lKs .a ., 0,= a+ 1, b= b+ 1, 110,11 ~ M, Ilbll ~ M, and 110, - bll < 0,

then

and

Proof: We know that there exists a 0'0 > 0 such that if P, q are projections in lK such that

Ilpq - qll < 0'0, then rank(q) ~ rank(p). Let 0' = min{E, O'o}.

Define f: [-M,M] -> [0,1] by

f(t) =

Then it is clear that f E C([-M, M]). Apply Corollary II.3.2 to M, f, and 0'/2, to get 0 > O. Let

a, b E lKs .a ., a = a + 1, and b = b + 1. Then a,b E :OC, which is unital. Suppose that 110,11 ~ M,

IIbll ~ M, and that 110, - bll < o. By the choice of 0, we have II f(a) - f(b) II < 0'/2. Now, XaJ = Xal

and xa2f = f on [-M, M]. Thus Pal (a)f(a) = Pal (a), and Pa2(b)f(b) = f(b). Then we have
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Ilpa,(a) -Pal(a)Pa2(b)11 = Ilpa,(a)f(a) -Pal (a)f(a)Pa2 (b) II

s:; Ilpal (a) f (a) - Pal (a) f (b) II

+ Ilpa, (a) f (1) - Pal (a)f(a)PaJb) II

s:; IIf(a) - f(b) II + IIf(b) - f(a)Pa2(b) II

= IIf(a) - f(b) II + IIf(b)Pa2(b) - f(a)Pa2 (b) II

s:; Ilf(a) - f(b) II + Ilf(b) - f(a)11

< (Y s:; f.

Then by the choice of (Y, we have rank(Pa,(a)) s:; rank(Pa2(b)). D

Corollary 11.3.9. Let f > 0, let 0 s:; al < az < 1, and let M 2: 1 be a real number. Then

there exists 8 > 0 such that if X is compact Hausdorff space, and if a, bE C(X, JK)8.a., a = a + 1,

b = b+ 1, Iiall s:; M, Ilbll s:; M, and Iia - bll < 8, then

and

rank(Pa, (a(x))) s:; rank(Pa2(b(x))), for all x E x ..

Proof: First of all, we identify c(X;JK) as a subalgebra of C(X, i) by identifying (a,),) E c(X;JK)

with a + )'lx , where Ix is the constant function on X at id[J. Then it is clear that a(x) = a(x)

for all x E X.

Apply II.3.8 to f, aI, az and M to get a 8 > O. The result follows. D

Corollary 11.3.10. Let X be a compact Hausdorff space, let 0 < a < 1, let a E C(X, JK)8.a., let

a = a + 1. Then there exists some n E N such that rank(Pa(a(x))) s:; n for all x EX.

Proof: If a = 0, then nothing to prove. So assume a =I- O.

Let a < (Y < 1. Apply Corollary II.3.8 to f = 1, 0 < a < (Y < 1, and M = Iiall, to get

8> O. For each x E X, let Ux = {y E X: Ila(x) - a(y)11 < 8}. Then there exists Xl, ••. ,Xm EX

such that U:I UXi = X. Let n = max{rank(Pa(a(xi))): i = 1, ... ,m}. Let x E X. Then x E UXk

for some k. So Ila(x) - a(xk)11 < 8. Also Ila(x)11 s:; Iiall and Ila(xk)11 s:; Iiali. So by the choice of 8,

we have rank(Pa(a(x))) s:; rank(Pa(a(xk))) s:; n. D
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Lemma 11.3.11. Let n ~ N, let a > 0, let M > 0 be a real number, and let a E Mn be self-adjoint.

Then po,(a) = pc</M(a/M).

Proof: Let sp(a) n (-00, a) = {r1,"" rk}. Then

sp(a/M) n (-oo,a/M) = {rI/M,r2/M, ... ,rk/M}.

Then Pc< (a) = 2::7=1 Pi, where Pi is the projection to the eigenspace of a corresponding to ri, and

pc</M(a/M) = 2::7=1 qi, where qi is the projection onto the eigenspace of aiM corresponding to

ri/M. But for all i E {I, ... , k} and all ~ E en, a(O = ri~ if and only if (a/M)(~) = (ri/M)~. So

Pi = qi for all i E {I, ... ,n}, and so the result follows. 0

Lemma 11.3.12. Let 1 > a > 0, let a E lKs,a" and let a = a + 1 ElK. Then there exists a 0 > 0

such that if bE IKs .a ., and if lib - all < 0, then rank(pc«a)) ::::: rank(pc«b)).

Proof: Fix 1 > a > 0 and a E lKs .a .. Since a < 1, sp(a) n (-00, a) is a finite set. So there

exists 01 > 0 such that sp(a) n (a - 301,a + 3(1) ~ {a}. Let F1 = [-110,11- ol,a - 201], and

F2 = [a - 01, 110,11 + 01]' Then

Let K = F I UF2• Let ¢ = XF1 • Then ¢ E C(K). Since K ~ IR is compact, there exists a polynomial

1f E C(K) such that 111f - ¢lloo < 1/3. The map x f---+ 1f(x) is continuous, so there exists 02 > 0 such

that if IIx - all < 02, then 1I1f(x) -1f(a)11 < 1/4. Let 0 = min{od2,02}'

Let bE IKs .a . satisfy lib - all < o. Then sp(b) ~ U{(r - 0, r + 0): r E sp(a)}. If r E sp(a),

then -110,11 ::::: r ::::: a - 301 or a ::::: r ::::: 110,11, and then

So

sp(b) ~ (-110,11 - 0, a - 301 + 0) U (a - 0, 110,11 + 0)

~ (-110,11- ol,a - 2(1) U (a - 01, 110:11 + (1) ~ K.
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Then

11¢(a) - ¢(b)11 :::; 11¢(a) -1f(a)11 + 111f(a) - 1f(b)11 + 111f(b) - ¢(b)ll < 1.

Thus ¢(a) and ¢(b) are unitarily equivalent projections, and so rank(¢(a)) = rank(¢(b)). But

¢(a) = Pa(a), so rank(Pa(a)) = rank(¢(b)). Also ¢ :::; X(-oo,a) , so ¢(b) :::; Pa(b), and so

rank(Pa(a)) = rank(¢(b)) :::; Pa(b). 0

The remaining portion of this section will be dedicated to obtaining a topological stable

rank reduction theorem for SRSHAs. The idea is to obtain an approximate polar decomposition

for elements a in a SRSHA such that the dimensions of the eigenspaces of la(x)1 corresponding to

------------small eigenvalues are large enough for every x E X. This can be easily done in C(X, IK), where

------------X is just a one-point space and C(X, IK) denotes the unitization of C(X, IK), which can always

be taken to be the first base space of any SRSH system. We then have an approximate polar

decomposition for the image of the first coordinate of a under the first attaching map. In order to

obtain an approximate polar decomposition for a, we will need to be able to extend the image of

the unitary used in the approximate polar decomposition for the first coordinate of the element a

------------to a unitary in C(X2 , IK), where X 2 is the second base space in the SRSH system. Thus we will

need an extension result for such unitaries. This extension result for RSHAs is given by Lemma

3.3 in [9]. We will modify this lemma to suit our situation.

The following lemma is a slight modification of Lemma 3.3 in [9]. In fact, the original

proof of Lemma 3.3 in [9] also proves the following lemma.

Lemma 11.3.13. Let 10, a > 0 and let n E No Then there exists a 0 > 0 such that the following

holds. Let X be a compact Hausdorff space with dim(X) = d < 00, and let X(O) S;;; X be a closed

subspace. Let mEN, and let a E C(X, Mm ) satisfy Iiall :::; 1. For each x E X, let

p(x) = X(_oo,a)([a(x)*a(x)]1/2).

Suppose that n 2: rank(p(x)) 2: d/2 for all x E X. Let u(O) E Uo(C(X, Mm )) be a unitary such that

II [u(O)(x)[a(x)*a(x)]1/2 - a(x)][l - p(x)]ll < 0

for every x E X(O). Let t I-t u~O) be a homotopy from 1 to u(O) in U(C(X(O),Mm )). Then there
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exists a unitary u E Uo(C(X, Mm )) and a homotopy t --t Ut in U(C(X, Mm )) from 1 to u such

that ulx(o) = u CO), Ut Ix(o) = u~O) for all t, and such that

II [u(x) [a(x)*a(xW/ 2
- a(x)l[l - p(x)]11 < E

for all x EX.

Now we remove the condition that the element Iiall has norm less or equal to 1 from Lemma

II.3.13.

Corollary 11.3.14. Let E, a> 0, let n E N, and let M 2 1 be a real number. Then there exists a

o > 0 such that the following holds. Let X be a compact Hausdorff space with dim(X) = d < 00,

and let XCO) ~ X be a closed subspace. Let mEN, and let a E C(X, Mm ) satisfy IIall :::; M. For

each x E X, let

p(x) = Pa(la(x)I).

Suppose that n 2 rank(p(x)) 2 dj2 for all x E X. Let u CO) E Uo(C(XCO), Mm )) be a unitary such

that

II[uCO)(x)la(x)l- a(x)][l - p(x)]11 < 0

for every x E XCO). Let t f---'> u~O) be a homotopy in U(C(XCO),Mm )) from 1 to u CO). Then there

exists a unitary u E Uo(C(X, Mm )) and a homotopy t f---'> Ut in U(C(X, Mm )) from 1 to u such

that ulx(o) = u CO), Ut Ix(o) = u~O) for all t, and that

II[u(x)la(x)l- a(x)][l- p(x)III < E

for all x E X.

Proof: Apply Lemma II.3.13 to EjM,ajM, n to get o. Let X, XCO), m, a, p, u CO) be as given in

the statement of this corollary. Let t f---'> u~O) be a path from 1 to u CO).

Let b = ajM. Then Ilbll :::; 1. Let q(x) = Pa/M(lb(x)I). By Lemma II.3.11, we have

q(x) = p(x) for all x E X. Then we have n 2 rank(q(x)) 2 dj2 for all x E X. Also,

II[uCO)(x)lb(x)l- b(x)][l- q(x)]11 < ojM:::; 0
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for all x E XCO). So by the choice of 8, there exists a unitary U E Uo(C(X,Mm)), and a homotopy

t 1-7 Ut in U(C(X,Mm)) from 1 to U such that ulx(o) = u CO), utlx(o) for all t, and that

II[u(x)lb(x)l- b(x)][l- q(x)]11 < E/M.

Then

II[u(x)la(x)l- a(x)][l- p(x)111 < M· ~ = E.

D

The next lemma adapts the above to unitizations of C(X) lSi Mn .

Lemma 11.3.15. Let 1 > a, E > 0, let n E N, and let M E [1,00). Then there exists 8 > 0 such

that the following holds. Let X be a compact Hausdorff space such that dim(X) = d < 00, and let

Y be a closed subspace. Let mEN, let a E C(X, Mm), and let a = a + Ix E C(X, Mm)~, where

Ix denotes the adjoined identity. Suppose that 110,11 ::; M. For each x E X, let p(x) = po:(la(x)I).

Suppose that n 2: rank(p(x)) 2: d/2. Let Uo E Uo(C(Y, Mm)~) satisfy

II[uo(x)la(x)l- a(x)][l- p(x)111 < 8 for all x E 1": (II.2)

Let t 1-7 Wt be a homotopy in U(C(Y, Mm)~) from 1 to Uo. Then there exists a unitary u contained

in Uo(C(X, Mm)~) and a homotopy t ----t Vt in U(C(X, Mm)~) from 1 to u such that uly = Uo,

Vtly = Wt for all t, and that

II[u(x)la(x)l- a(x)l[l - p(x)111 < 8 for all x E X, (II.3)

Proof; Let 0 < E, a < 1, n E N, and M E [1,00) be given. Apply Corollary 11.3.14 to E, a, n,

and M to obtain 8' > 0, and let 8 = min{ E, 8'/2}. Let X, Y, m, a, p, and Uo satisfy the conditions

in the statement of the lemma. Let t 1-7 Wt be a homotopy in U(C(Y, Mm)~) from 1 to Uo.

We set up some notations first. We use 1 to denote the adjoined identity of M m , and use

e to denote the identity of Mm. Use Ix and 1y to denote the adjoined identity of C(X, Mm)~

and C(Y, Mm)~, respectively. Use ex and ey to denote the identities of C(X, Mm) and C(Y, Mm)

respectively.
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For each x E X, or Y, use evx to denote the map C(X, Mm) --+ Mm, or C(1'"; Mm) --+ Mm,

defined by evx(a) = a(x). By identifying (a, >..) with a + >.. ·lx, or a + >.. ·ly, we treat C(X, Mm)~

and C(Y, Mm)~ as subalgebras of C(X, Mm) and C(Y, Mm) respectively. For each x E X, or Y,

use evx to denote the map C(X, Mm)~ --+ Mm or C(Y, Mm)~ --+ Mm, defined by evx(a) = a(x).

Let T denote the standard map from the unitization of any C*-algebra to C.

Define

<1>x: C(X, Mm)~ --+ C(X, Mm) EEl C by (a, >..) 1-7 (a + >..ex, >..),

<1>y: C(Y, Mm)~ --+ C(Y, Mm) EEl C by (a, >..) 1-7 (a + >..ey, >"),

and

<1>: Mm --+ M m EEl C by (a, >..) 1-7 (a + >..e, >..).

Define R: C(X,Mm)~ --+ C(Y,MM)~ by R(a + >..lx) = aly + >"ly, and define

R: C(X, Mm) --+ C(Y, Mm) by R(a) = aly. Then for every x E X and every y E 1'"; we have

the following commutative diagram:

Mm
ev;

C(X,Mm)~
R

C(Y,Mm)~
evy

Mm<----- -----+ -------;

1<1> 1 <1> X 1 <1>y 1<1>

MmEElC
eV x El3id

C(X,Mm) EElC REI3iC C(Y,Mm) EEl C
eVy El3id

MmEElC+------- --------> -----+

Now, since for all x EX, we have

we see that for all x E X, p(x) = (p(x),O) for some projection p(x) E X. Since Uo E C(Y, Mm)~,

there exists some Wo E C(1'"; Mm) and some unitary J-l E C such that Uo = (wo, J-l). Note that (11.2)

implies that

IJ-l- 11 = liT [[uo(x)la(x)l- a(x)l[l - p(x)]] II < J :s; f, for all x E X. (11.4)
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Let Vo = wo+ J-Ley, so that ipy(uo) = (wo+ J-Ley, J-L) = (vo, J-L). Since ipy is an isomorphism,

we have vo E Uo(C(Y,Mm )). Let a = a+ex, so (a, 1) = ipx(a). Next we compute: for each x E Y,

we have

ip ([uo(x)la(x)l- a(x)] [1 - p(x)])

= [ip(uo(x))lip(a(x))I- ip(a(x))] ip[l - p(x))

= [(vo(x),J-L)' (la(x)l, 1) - (a(x), 1)] (e - p(x), 1)

= [(vo(x)!a(x)\, p) - (a(x) ,1)] (e - p(x), 1)

= (vo(x)la(x)l- a(x),p-1) . (e - p(x), 1)

= ([vo(x)la(x)l- a(x)] [e - p(x)] ,P-1) .

Thus, since ip is isometric, we obtain the following from (II.2)

II [vo(x)la(x)l- a(x)] [e - p(x)] " < <5 < <5', for all x E Y. (II.5)

Now, let 1f: Mm EB C -; Mm be the standard map. Then we compute again: for every

x E X, we have

p(x) = 1f(p(x), 0) = 1f 0 ip(p(x), 0) = 1f 0 ip(p(x))

= 1f 0 ip(Xa(la(x)I)) = Xa(1f 0 ip(la(x)I))

= Xa(l1f 0 ip(a(x)) I) = Xa(l1f 0 ip(a(x), 1)1)

= X" (11f(a(x) + e, 1)1) = Xa(I1f(a(x), 1)1)

= Xa(la(x)I)·

Also, we have n ~ rank(p(x)) = rank(p(x)) ~ d/2 and Iiall ::::; M. Let Wt = 1f(ipy(Wt)) for each

t. Then t I-t Wt is a homotopy in U(C(Y, Mm )) from Wt = 1f(ipy((O, 1)) = 1f(ey, 1) = ey, to

WI = 1f(ipy(uo)) = 1f(vo, p) = vo.
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Thus by the choice of 0', there exist v E UO(C(X, M m )) and a homotopy t I---> Vt in

U(C(X, M m )) for ex to v such that vly = vo, Vtly = {ih, and

II [v(x)la(x)l- a(x)] [e - p(x)] II < E, for all x E X.

Let u = (v - J.Lex, J.L). Then if?x(u) = if? (v - J.Lex, J.L) = (v, J.L). Since

and since <I>x is a *-isomorphism, we have u E Uo(C(X, Mm)~)' Also for all x E Y, we have

u(x) = (v(x) - J.Le,J.L) = (vo(x) - J.Le,J.L)

= (wo(x) + J.Le - J.Le,p,) = (wo(x),p,) = uQ(x).

Thus u[y = UQ.

Then for all x EX, we have

<I> ([u(x)la(x)l- a(x)] [1- p(x)])

= [<I>(u(x))I<I>(a(x))I- if?(a(x))] <I>(1- p(x))

= [(v(x), J.L)([a(x) I, 1) - (a(x) , 1)] (e - p(x), 1)

= [(v(x)W(x)!- a(x), p,- 1)] (e - p(x), 1)

= ([v(x)la(x)l- a(x)][e - p(x)],p,-l).

Thus for all x E X, we have, by (11.4), (11.6), and the fact that if? is isometric,

II [u(x)la(x)l- a(x)] [1- p(x)] II

= II ([v(x)la(x)l- a(x)] [e - p(x)] ,p,-1) II

(the norm above is now taken in M m EB C)

= max {II [v(x)la(x)l- a(x)] [e - p(x)] II, 1p,- 11}

< E.

(II.6)
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Let Vt = <p:xl(vt, T(Wt)). Then t f-t Vt is a homotopy in U(C(X, Mm)~)' For each t and

each y E Y, we have Vt(Y) = {iit(y), so we have (Vt(y),T(Wt)) = (Wt(y),T(Wt)). So

and

Thus Wt = R(Vt). So Wtly = Vt. Also Vo = <p:xl (ex, 1) = Ix and VI = <p:xl(v, T(Uo))) = <p:xl (v, p) =

u. This finishes the proof. 0

The next lemma will "stabilize" the above lemma, and will be the one that we will need.

Lemma 11.3.16. Let 0 < f < 1 and let 0 < al < az < 1. Let X be a compact Hausdorff space with

dim(X) = d < 00. Let Y s;:; X be a closed subset. Let a E C(X,lK) and let a = a + 1 E C(X,lK)~.

For all x E X, let PI(X) = Pal (la(x)l) and let pz(x) = Pa2(la(x)I). Suppose that for all x E X,

rank(PI(x)) 2': d/2. Then there exists J > 0 such that: if Uo E Uo(C(Y,lK)~) is a unitary and

ho: [0,1] ----> U(C(Y,lK)~) is a homotopy such that ho(O) = 1, ho(l) = Uo, and

II[uo(x)la(x)l- a(x)][l- PI(x)111 < J for all x E Y, (II.7)

then there exists a unitary u E Uo(C(X,lK)~) and a homotopy h: [0,1] ----> U(C(X,lK)~) such that

h(O) = 1, h(l) = u, that h(t)ly = ho(t) for all t, that uly = Uo, and that

II[u(x)la(x)l- a(x)][l - pz(x)]11 < J for all x E X.

Proof: Let f, aI, az, X, Y, a, PI, and pz satisfy the hypothesis of the lemma, and let M = 211all.

Note that M 2': Iiall 2': 1.

First of all, it is clear that there exists some c E C(X, lK)8.a. such that lal = c + 1. Denote

c+ 1 bye. Note that Ilell = Iiall, since (C)z = (a)*(a). Let a' = a1ta2, and for each x E X, let

p'(x) = Pa'(la(x)l). Note that for all x E X, we have pz(x) 2': p'(x) 2': PI(X) 2': d/2, and so we have

rank(pz(x)) 2': rank(p'(x)) 2': rank(PI(x)) 2': d/2.
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By Lemma II.3.1O, there exists n E N such that rank(p2 (x)) = rank(Pa2 (C)) ::::: n for all

x E X. Apply Lemma II.3.I5 to Ej(16M) > 0, I > 0'.' > 0, n, and M, to get 81 > O. Without loss

of generality, assume that 81 < Ej(16M). Apply Corollary II.3.9 to 8I/(4M) in place of E, 0'.1, 0'.'

in place of 0'.2, and M, to get 0"1 > O. Apply Corollary II.3.9 again to 8I/(4M) in place of E, 0'.' in

place of 0'.1, 0'.2, and M to get 0"2 > O. Let

8 = min{Ej(16M), 8d(16M), 0"I/(16M) ,0"2j(16M), 0'.2j(16M)}.

Now let Uo E Uo(C(Y,lK)~) be a unitary such that (II.7) holds, and let ho: [0,1] ----7 U(C(Y;lK)~)

be a homotopy from I to uo.

For each kEN, embed Mk into Mk+l in the standard, and embed Mk into lK in the

standard way. Then we have lK = Uk:2:1 Mk and OC = Uk:2:1 Mk' where the adjoined identity of

each Mk is the same as the adjoined identity of OC. We will use I to denote the adjoined identity

of OC and Mk, for k ~ 1. The above embeddings give the embedding of C(X, Mk) into C(X, Mk+d

and into then C(X, lK). Then C(X, lK) = Uk:2:1 C(X, Mk) and C(X, lK)~ = Uk:2:1 C(X, Mk)~'

Again, we assume that the adjoined identity of C(X, lK)~ is the same as the adjoined identity

of C(X, Mk)~ for every k ~ 1. We will use Ix to denote the adjoined identity of C(X, lK)~ and

C(X, Mk)~ for all k ~ 1. Similarly, we use Iy to denote the adjoined identity of C(Y, lK)~ and

C(Y, Mk)~ for all k ~ 1.

Then, we can find some mEN, some b E C(X, Mm ), and some homotopy

such that

Iia - bll < 8j(8M), IIIi - bll < 8j(8M), Illbl- ell < 8j(8M)

Ilbll:::::M

fo(O) = I and lifo - holl < 8j(8M),

(II.8)

(II.9)

(IUO)

where b = b + 1. Let va = fo(1). Then "va - uoll < 8j(8M). Let b' E C(X, Mm)s.a. be such that
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Ibl = b' + 1. Then lib' + 111 = Ilbll S M. Then (11.8) implies that

lib' - ell < 6/(8M). (11.11 )

For each x E X, let q'(x) = Pa' (Ib(x) I) and let qz(x) = Pa2(lb(x)I). By the choice of 0"1, which is

greater than 6/(8M), we have (the space X, and elements a and b in Corollary 11.3.9 are taken to

be X, e and b', respectively)

IIp1(x)q'(x) - P1(x)11 < 61/(4M) and rank(p1(x)) S rank(q'(x)), (11.12)

for all x E X. By the choice of o"z, we have (the space X, and the elements a and b in Corollary

11.3.9 are taken to be X, b' and e, respectively)

Ilq'(x)pz(x) - q'(x)11 S 6d(4M) and rank(q'(x)) S rank(pz(x)), (11.13)

for all x E X. Then

n ~ rank(pz(x)) ~ rank(q'(x)) ~ rank(p1(x)) ~ d/2.

Now, by (11.8), for all x E Y, we have

II [vo(x)lb(x)l-b(x)] - [uo(x)la(x)l- a(x)] II

S Ilvo(x)lb(x)l- uo(x)la(x)111 + Ilb(x) - a(x)11

S IIvo(x)lb(x)l- vo(x)la(x)111 + Ilvo(x)la(x)l- uo(x)la(x)III + 6/(8M)

S Illb(x)I-la(x)111 + M Ilvo(x) - uo(x)11 + 6/(8M)

< 26/(8M) + 6/8 S 36/8.

(11.14)
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Also, by (1I.12), for all x E X, we have

11(1 - Pl(x))(l - q'(x)) - (1 - q'(x))11

= 111- q'(x) - Pl(X) + Plq'(X) - 1 + q'(x)11

= Ilpl(x)q'(x) - Pl(x)11

< 61/(4M).

Then combining the above two calculations and (II.7), we have

II [vo(x)lb(x)l- b(x)] [1 - q'(x)] II

::; II [vo(x)\b(x)l- b(x)] [1- PI (x)] [1- q'(x)] II

+ II [vo(x)!b(x)!- b(x)] {[1- q'(x)] - [1- Pl(X)] [1- q'(x)] }II
::; II [vo(x)!b(x)l-b(x)] [1- Pl(X)] II + 2M 11[1- q'(x)] - [1 - Pl(X)] [1 - q'(x)] II

< II{ [vo(x)lb(x)!- b(x)] - [uo(x)la(x)l- a(x)]} [1- PI (x)] II
+ II [uo(x)la(x)!- a(x)] [1 - Pl(X)] II + 61/2

::; II [vo(x)lb(x)l- b(x)] - [uo(x)la(x)l- a(x)] II + 6 + 61/2

<36/8+6+61/2

::; 361/(16· 8M) + 61/(16M) + 61/2

for all x E Y. Then by the choice of 61 (with X, Y, m, a p, Wt, and Uo in Lemma 11.3.15 taken to be,

respectively, X, Y, m, b, q', fo and vo), there exists a unitary v E Uo(C(X,Mm)~) <:;;; Uo(C(X,lK)~)

and a homotopy f: [O,l] ----; U(C(X,Mm)~) <:;;; U(C(X,lK)~), such that f(O) = 1, f(l) = v,

f(t)IY = fo(t) for all t, and vly = Vo, and that

II [v(x)!b(x)l- b(x)] [1 - q'(x)] II < t/(16M), for all x E X. (II.15)

Since, by (II.10) , lifo - holl < 6/(8M), and since f(t)IY = fo(t) for all t E [0,1], there

exists h: [0,1] ----; U(C(X, 1K)~) such that h(O) = 1, h(t) Iy = ho(t) for all t, and Ilh - fll < 6/(4M).



Let u = h(l). Then Ilu - vii < 8/(4M), and uly = ho(1) = uo. By (11.8), we have

II [u(x)la(x)l- a(x)] - [v(x)lb(x)l- b(x)] II

:S Ilu(x)la(x)\- v(x)lb(x)111 + Ila(x) - b(x) II

:S [[u(x) la(x) I - u(x) Ib(x) 111+11 u(x) Ib(x) I- v(x) Ib(x) III + 8/(8M)

:S Illa(x)I-lb(x)111 +Mllu(x) -v(x)11 +8/(8M)

< 28/(8M) + 8/4 :S 8/2,

for all x E X. Also by (II.13), we have

11[1 - q'(x)][l- P2(X)] - [1- P2(x)]11 < 8d(4M)

for all x E X. Thus by the two estimates above and (11.15), for all x E X, we have

II [u(x)la(x)\- a(x)] [1 - P2(X)] II

:s II [u(x)la(x)l- a(x)] [1 - q'(x)] [1 - P2(X)] II

+ II [u(x)la(x)l- a(x)] {[1 - P2(X)] - [1 - q'(x)] [1 - P2(X)]} II

:s II [u(x)la(x)l- a(x)] [1 - q'(x)] II + 2M8d(4M)

:s II{ [u(x)la(x)l- a(x)] - [v(x)lb(x)l- b(x)]} [1- q'(x)] II
+ II [v(x)lb(x) I - b(x)] [1 - q'(x)] II + 2M8d(4M)

< II [u(x)la(x)l- a(x)] - [v(x)lb(x)l- b(x)] "

+ f/(16M) + 2M8d(4M)

< 8/2 + f/(16M) + 2M81 /(4M)

:s 8 + f/16 + 8d2

:s f/16 + f/16 + f/16 < f.

This finishes the proof.
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Let A, B, and C be C*-algebras. Let ¢: A ~ C and R: B ~ C be *-homomorphisms.

Let D = {(a, b) E A EB B: ¢(a) = R(b)}. If we unitize A, B, C, ¢ and R, and let

E = {((a, A), (b,/-1)) E AEB B: ¢(a) = R(b)},

then ((a, A), (b, /-1)) E E if and only if (a, b) E D and A = /-1. So the map E ~ D defined by

((a, A), (b, A)) f---+ ((a, b), A) is a *-isomorphism. Thus, given a SRSH system

and A = A(n), we can inductively unitize all the algebras and maps to obtain the unitized system

Then (a'i' Ai)i=l E Aif and only if (ai)i=l E A and Al = ... = An; and each element ((ai)i=l' A) E A
can be uniquely written as (ai, A)i=l' Also, if a E A and x E X k for some k, then a = (ai, A)i=l

for some (a1,'''' an) E A, and we will use a(x) to denote (ak' A)(X) = (ak(x), A).

Lemma 11.3.17. Let

( Xl A(l) (X XeD) ,j" D, AC'i))n )
, , 7., i ,I.f/'l" .J. Li,

i=2

be a SRSH system and let A = A(n). Let Y be a compact Hausdorff space and let ¢: A ~ C(Y,OC)

be a *-homomorphism (not necessarily non-vanishing). Let ¢ denote the unitization of¢. Let E > 0,

let 1 > a > 0, let a E A, and let a = a + 1 E A. Let u E Uo(A) be a unitary such that for all

x E U~=l(Xi \ X}O)),

II [u(x)la(x)l- a(x)] [1 - poJla(x)I)] II < €.

Then ¢(u) E Uo(c(Y-;JK)) and all y E Y, we have

II [¢(u)(y)I¢(a)(y)l- ¢(a)(y)] [1 - Pa(I¢(a)(y)I)] II < E.

(II.16)

(II.17)

Proof: Let H denote the separable infinite dimensional Hilbert space and let 1 denote the

identity of B(H). We identify the iK with OC EB (C ·1) using the map (a, A) f---+ a + A. 1. For any

compact Hausdorff space Z, let 1z denote the identity of C(Z,B(H)). We identify the algebra
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C(Z, lK) EB (<C . 1z) as a subalgebra of C(Z, B(H)) using the map (a, A . 1z) f---t a + A . 1z. Then we

--------identify C(Z,lK) with C(Z,lK) EB (<C ·lz) ~ C(Z,B(H)) using the map (I,A) f---t f +A ·lz.

Let

be a SRSH system and let A = A (n). Let Y be a compact Hausdorff space and let ¢: A ----+ C(Y, lK)

be a *-homomorphism (not necessarily non-vanishing). Let ¢ denote the unitization of ¢. Let

E > 0, let 1 > 0: > 0, let a E A, and let a= a + 1 E A. Let u E Uo(A) be a unitary that satisfies

(11.16) for all x E U~=l (Xi \ X;O»). With the above identifications, we can treat A as a subalgebra

of C(X, B(H)) using the maps (b, A) f---t b+ A1x, where X is the total space of A, and then the

identity of A is Ix. So every element in A can be uniquely written as ((aI, A1xJ, ... , (an' A1xn)),

where A E <C and (aI, ... ,an) E A. Then for all b+ A1x E A, we have ¢(b + A1x) = ¢(b) + Aly.

It is clear that ¢(u) E Uo(C(Y, lK)~). Fix y E Y. If the map A ----+ lK defined by b f---t ¢(b)(y) is

the zero map, then for all bE A, we have ¢(b)(y) = 1 = 1¢(a)(y)l, and so Pa(l¢(a)(y) I) = Pa(1) = O.

Since u = (v, /-1) E Uo(A) satisfies (11.16), we have 1/-1 - 11 < E, and then the left side of (11.17)

reduces to 11[/-1·1 - 1][1 - 0111 = 1/-1- 11 < E. SO we can assume that the map A ----+ lK given by

b f---t ¢(b)(y) is not the zero map.

Let (Pi)~l be the family of mutually orthogonal projections in B(H), let (Wi)~l be the

family of isometries in B(H) and let (Xi)~l be the family of elements of 1J~=1(Xk\ xiO») that

satisfy the conclusion of Proposition 11.2.6. Let Pm+l = 1 - L:~l Pi. Then (Pi):tl is still a

mutually orthogonal family of projections. For all b+ )'lx E A, we have

m m

¢(b + A1x)(Y) = ¢(b)(y) + Al = L Wib(Xi)W; + ALPi + APm+l
i=l i=l

m m

= L Wib(Xi)W; + AL WiW; + APm+l
i=l i=l
m

= L wi(b(Xi) + A' l)w; + APm+l
i=l
m

= L wi(b + A1x )(Xi)W; + APm+l.
i=l
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Let v E A and p, E <C satisfy v + p,Ix = u. Then

m

¢(u)(y) = ¢(v + p,Ix) = L WiU(Xi)W: + P,Pm+l·
i=l

Also, we have
m

¢(a)(y) = ¢(a + Ix) = L Wia(Xi)W: +Pm+l
i=l

and
m m

I¢(a)(y) I = ¢(Ial)(y) = L wilal(Xi)W: +Pm+l = L wila(Xi)lw: +Pm+l·
i=l i=l

Then (IUS) and (II.20) give

m

¢(U)(y) I¢(a) (y) I = L Wiu(xi)la(xi:1Iw: + P,Pm+l·
i=l

Also, by Corollary II.3.7, we have

(IUS)

(II.I9)

(II.20)

(II.2I)

where the functional calculus in the last expression is taken in PiB(H)Pi for i E {I, ... , m + I}.

Now, for each i E {I, ... , m}, the map B(H) ----+ PiB(H)Pi defined by T f-+ WiTw: is a unital

*-isomorphism, so we have p",(wila(Xi) Iwi) = wiP",(\a(xi)l)w:, where the last functional calculus

is now taken in B (H). So we have

m

p",(I¢(a)(y) I) = LWiPa(la(xi)l)w:,
i=l

(II.22)

(functional calculus on both sides is taken in B(H), Le. the identity used in the functional calculus

is idH on both sides).
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Note that (11.16) implies that III - 11 < E. Then from (11.16), (11.19), (11.21), and (11.22),

we have

II [~(u)(y)I~(a)(y)1 - ~(a)(y)] [1 - Pa(I~(a)(y)I)] II

= II [(IL - I)PmH +~Wi [u(xi)la(Xi)l- a(Xi)]W;]

. [Pm+l +~wd1 - Pa(la(Xi)[)]W;] II

~ II (M - 1)PmH +t,Wi [u(xi)la(Xi) 1- a(Xi)] [1 - Pa(la(xi) I)] wi II

= max ({Ill - II} u {II [U(Xi) la(xi)1 - a(xi)][1 - Pa(la(xi)l)] " : 1 ~ i ~ m})

<Eo

This estimate holds for all y E Y, so result follows.

Lemma 11.3.18. Let

D

be a SRSH system, let A = A(n) and let X be the total space. Suppose that dim(X) = d < 00. Let

1 > E > 0 and let 1 > a > O. Let a E A, and let a = a + 1 E A. Suppose that for all x E X, we

have rank(Pa/z(la(x) I)) ~ d/2. Then there exists u E Uo(A) such that for all x E X, we have

II [u(x)la(x)l- a(x)] [1 - Pa(la(x)l)] II < E. (11.23)

Proof: First of all, if we let Xo E Xl, let xiO) = Xo = {xo}, let R l : C(Xl,lK) ........ C(XiO),lK) be

the restriction map, let 1;1: C(Xo, lK) ........ c(xiO) , lK) be the identity map, and let A (0) = C(Xo, lK),

then

(X A (O) (X. X(O) '/'. D. A(i))n )
0, , 1" i ,1.f/1,' .Lli, k=l

is again a SRSH system that gives the same SRSHA as the original system. This change does

not affect any of the hypotheses or the conclusion of the lemma. Thus without loss of generality,

assume that Xl is just one point set, and so A (1) ~ 11{.



45

Now suppose

(x A(l) (x. X(O) -1,. R. A(i))n )
1, , 'l.' i ,If/'l,, '0 i=2'

where Xl is a one-point set, 1 > f. > 0, 1 > a > 0, and a E A satisfy the hypothesis of the lemma.

Write a = (al,"" an) with ak E C(Xk, JK) for k E {I, ... n}.

Choose aI, az, . .. , an E lR such that 0 < a/2 = al < ... < an = a. Now we inductively

pick 01,"" On > O. Let On = f./2. Suppose that Ok > 0 is picked. Note that dim(Xk) :::; dim(X) = d,

and that for each x E Xk, we have

So we can apply Lemma II.3.I6, with f., aI, az, X, Y, and a in Lemma 11.3.16 respectively taken to be

min{Ok/2, f./(2 k)}, ak-l, ak, Xk, Xk
O
), and ak, to obtain Ok-I' Set Ok-l = min{Ok/2, Ok-I}' Next we

inductively choose Uk E C(Xk,lK)~ for k E {I, ... ,n}, and homotopies hk : [0,1] --; U(C(Xk,lK)~

for k E {I, ... ,n}, such that

hk(O) = 1, hk(I) = Uk, for k E {I, ... ,n},

(hl(t), ... hk(t)) E U(A(k)), for t E [0,1]

(Ul,"" Uk) E Uo(A(k)), for k E {I, ... ,n},

(II.24)

(11.25)

(II.26)

(11.27)

For each ~ = (6, ... ,~n) E A, we will use ~(k) to denote the first k entries of~. Note that

(6, ... ,~k) E A(k). Since Xl is just a one-point space, it is clear that there exists Ul E Uo(A(1))

and a homotopy hI: [0,1] --; U(A(l)) such that hl(O) = 1 and hl(I) = Ul, and that (II.24), (II.26),

and (II.27) hold for k = 1. Suppose that Uk and hk are chosen to satisfy (II.24), (11.25), (II.26),

and (II.27).

Let v = ¢k+l(u(k»), where u(k) = (Ul"'" Uk) E A(kl, and define

by fo(t) = ¢k+l(hl(t), ... ,hk(t)). Then v E Uo(C(Xk~l,JK)~) and fo is a homotopy in

U(C(Xk~l,lK)~) from 1 to v. Also, applying Lemma (11.3.17) to A(k) in place of A, Xk~l in place
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of Y, cPk+1 in place of cP, aCk) in place of a, 6k in place of E, ak in place of a, and uCk) = (U1"'" Uk)

in place of u, we have

for all x E Xk~l' Then by the choice of 6k, there exists uk+1 E UO(C(Xk+1,OC)~) and a

homotopy hk+1 in U(C(Xk+1,OC)~) such that hk+1(0) = 1, such that hk+1(1) = Uk+1, such that

hk+1(t)lx (o) = fo(t) for all t E [0, IJ, such that Uk+1I x (o) = v, and such that
k+l k+l

for all x E Xk+1' It is clear that (U1, ... ,Uk,Uk+1) is a unitary ACk+l), and that for each t E [0,1],

we have

Then t f---; (h 1(t), ... ,hk+1(t)) is a homotopy in U(C(Xk+1,OC)~) from 1 to (U1, ... ,Uk). So

(U1,"" Uk) E UO(ACk+1)). This completes the inductive step.

Now take U = (U1,''''Un ), Since for all k E {1, ... ,n} and for all x E Xk, we have

1 - Pak(la(x)l) ~ 1 - Pa(la(x)I), and since 61 < 62 < ... < 6k < E, (II.27) implies (II.23). This

finishes the proof. o

As a consequence of the above lemma, the next proposition will give an approximate polar

decomposition for elements a in a SRSHA such that the dimension of the the eigenspaces of the

small eigenvalues of la(x)1 is large enough.

Proposition 11.3.19. Let

be a SRSH system, let A = ACn), and let X be the total space. Suppose that dim(X) = d < 00. Let
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1 > f > 0 and let 1 > a > O. Let a E A, and let a = a + 1 E A. S1Lppose that for all x E X, we

have rank(Pa/2(la(x) I)) ::::: d/2. Then there exists u E Uo(A) s1Lch that Ilulal- all < f + 2a.

Proof' Let u be the unitary obtained using Lemma 11.3.18. Then for all x E X and all ~ E H,

where H is the underlying Hilbert space, we have

II[u(x)la(x)l- a(x)](~)11

:::; II [u(x)la(x)l- a(x)](l- Pa(la(x)l)(O) II

+ II [u(x)la(x)l- a(x)]Pa(la(x) 1)(011

< fll~11 + 11(la(x)/)Pa(la(x)I)(~)11 + Ila(x)Pa(la(x)I)(~)11

:::; fll~11 + 2all~ll·

Thus II[u(x)la(x)l-a(x)lll:::; f+2a for all x E X. So Ilulal-all:::; f+2a.

Corollary 11.3.20. Let

o

be a SRSH system, let A = A (n), and let X be the total space. Suppose that dim(X) = d < 00. Let

1 > f> O. Let a E A and let 0,= a+ 1 E A. Suppose that for all x E X, we have rank(P€/s (Ia(x) I)) :::::

d/2. Then there exists b E A such that b is invertible and 110, - bll < f.

Proof: Apply Proposition 11.3.19 to A, f/4 in place of f, f/4 in place of a, and a E A, to obtain

a unitary u E Uo(A) such that Ilulal - ali < f/4 + f/2 = 3f/4. Let b = u(lal + f/4). Then b is

invertible and

o

Lemma 11.3.21. Let

(X A(l) (X. X(O) A... R. A(i))n )
1, , ~'i' 1f/1" 'L, i=2

be a SRSH system, let A = A(n), and let X be the total space. Let a E A and let a = a + 1 E A.

Let 1 > a > O. Then the set U = {x EX: rank(Pa (Ia(x)l) ::::: 1} is open. Further, if U i= 0, then

Iu = {a E A: aluc = O} is a non-zero ideal of A.
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Proof: If U = {x EX: rank(Pa(l'ii(x)I)) 2': I} is empty, then we are done. So assume that U -I- 0.

To show that U is open, it is enough to show that every x E U is an interior point, i.e. there exists

some open V ~ U such that x E V. Fix Xo E U.

Apply Lemma II.3.12 to a and la(xo)[ to obtain 0 > O. The map x f---* la(x)1 is continuous,

and the set V = {x EX: Illa(x)l- la(xo)111 < o} is open and contains xo. If x E V, then the choice

of 0 implies that 1 ~ rank(Pa(la(xo)I)) ~ rank(Pa(la(x)l)). Therefore V ~ U, and hence U is open.

To show that I u -I- 0, we verify the condition in part 1 of Lemma II.2.9. For each

k E {I, ... , n}, let Uk = X k n U, and for each k = 2, ... , n, let

Let 2 ~ k ~ n and let x E Wk. Then SPx(cPk)nU -I- 0, so let Yo E SPx(cPk)nU. Let WI,." ,WI be the

family of isometries with orthogonal ranges such that cPk(f) = Z=~=I Wd(Yi)wi for all f E A (k-I),

where Yi E SPx(cPk) for i E {I, ... ,l}. Let i o be an integer such that 1 ~ i o ~ land Yio = Yo. Let

C E A s .a . be such that lal = C + 1. Then

Pa(la(x)l) = Pa(c(x) + 1) = Pa-I(C(X))

I

= L WiPa-I(C(Yi))wi 2': WioPa-l (c(Yo))wio
i=l

So, since Yo E U, we have rank(Pa(la(x)l)) > rank(Pa(la(Yo)j)) > 1. Hence x E Uk, and so

x E Uk n XkO). Therefore Wk ~ Uk n XkO).

Now let x E Uk n XkO). Let WI, ... ,WI be the family of isometries with orthogonal ranges

such that cPk(f) = Z=~=I Wd(Yi)wi for all f E A(k-I), where Yi E SPx(cPk) for all i E {1, ... ,l}.

Then

Since x E U, for some i E {1, ... ,l}, we have rank(Pa(la(Yi)I)) 2': 1. Thus Yi E u}:iUj. So

SPx(cPk) n (u~:i Uj) -I- 0, and so x E Wk' Hence Uk n XkO) ~ Wk·

Thus by Lemma 11.2.9, I u -I- O. 0
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Lemma 11.3.22. Let (An, 'l/Jn) be an inductive system of SRSHAs and let A be the inductive limit.

Let X n be the total space for An. Suppose that 'l/Jn is injective for all n, that'l/Jn is non-vanishing

for all n, and suppose that A is simple. Let 1 > a > O. Then for all n 2 1 and all a E An such

that a = a + 1 is not invertible in An' there exists some m 2 n such that for all k 2 m and all

x E Xk, we have rank(Pa(l~n,k(a)(x)I)) 2 1, where ~n,k is the unitization of the map 'l/Jn,k.

Proof: Let U = {x E X n : rank(Pa(la(x)j)) 2 I}. We first show that U f- 0. Since a is not

invertible, there exists some Xo in the total space of An such that a(xo) is not invertible. Then

by the Fredholm Alternative, the operator a(xo) is not injective, which implies that la(xo) I is not

injective. Then Pa(ja(xo)!) f- 0, which implies that Xo E U. This shows that U f- 0.

By Lemma II.3.21, I u = {a E An: aluc = O} is a non-zero ideal. Then by Proposition

II.2.11, there exists m 2 N such that for all k 2 m, and for all x E X k, we have sPx('l/Jn,k)nU f- 0.

Let k 2 m, let x E X k, and let WI,"" WI be the family of isometries with orthogonal ranges

such that 'l/Jn,k(f)(X) = 2:~=1 Wd(Yi)wi for all f E An' where {Yi: i = 1, ... , l} = sPx('l/Jn,k). Let

Yo E sPx('l/Jn,k) n U and choose 1 S; i o S; l such that Yio = Yo. Let C E (An)8.a. be such that lal = C.

Then I~n,k(a)\ = ~n,k(\al) = ~n,k(C) = 'l/Jn,k(C) + 1. Thus

rank(Pa(l~n,k(a)(x)l))= rank(Pa(l~n,k(a)J(x)))

= rank(Pa('l/Jn,k(C)(X) + 1))

= rank(Pa_1 ('l/Jn,k(C)(X)))

I

= I>ank(Pa-I(C(Yi))) 2 rank(Pa-I(C(Yio))
i=1

= rank(Pa_l (c(Yo))

= rank(Pa(c(yo) + 1))

= rank(Pa(c(yo))) = rank(Pa(la(Yo)l)) 2 1.

The last inequality above holds because Yo E U. o

Theorem 11.3.23. Let (An, 'l/Jn) be an inductive system of SRSHAs and let A be the inductive

limit. Let X n be the total space for An. Suppose that 'l/Jn is injective and non-vanishing for all n,

and suppose that A is simple. Also assume that there exists dEN such that dim(Xn ) S; d for all

n 2 1. Then A has topological stable rank one.
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Proof: We first show that an element of the form b+ 1 E Jr, where b E A, can be approxmiated

arbitrarily closely by some invertible element in A.

Let b E A, let 1 > E> 0, and let 6= b+ 1. Let n ~ 1, and let a E An satisfy Ihj;'n(a) - 611 <

E/2, where 'ljJn : An ----t A is the standard map that comes with the inductive limit. If a is invertible

in An' then :;jP(a) is invertible in Jr, and we are done. So assume that a is not invertible in

An. Then by Lemma II.3.22, using E/16 as n, find some ml ~ n such that for all k ~ ml,

rank(p€/16(I-J;n,k(a)(x)I)) ~ 1 for all x E X k.

For each n ~ 1, let Xn,I, ... ,Xn,l(n) be the base spaces of An, let x~~1, ... ,x~~1(n) be

the attaching spaces, and let x~~i = 0. If for all k ~ ml, the set U~~i(Xk,i \ Xk~l) is a finite

set, then for all k ~ ml the algebra A k is simply a finite direct sum of copies of K. This means

that A k has topological stable rank one for all k ~ ml, which implies that A has topological

stable rank one, and we are done. So we can assume that there exists some m2 ~ ml such that

U~~n;:2)(Xm2 ,i \ X~~) is infinite. Let 1 :S l :S l(m2) be the largest integer such that X m2 ,1 \ X~~,l is

infinite. Then Arn2 is isomorphic to A~2 EEl ( EB~~1 K) for some l' E N U{O}, via some isomorphism

h' A ----t A(l) ill (Lh K ). m2 m2 W Q7
i=l

such that the composition Arn2 .!!.c, A};!2 EEl ( EB~~1 K) ----t A};!2 (the map on the right is the standard

projection) is the restriction map Ami ----t A~i' Let d l be an integer greater that d/2 and let

Xl, •.. ,Xdi E X m2 ,1 \X~;,l' For each i E {I, ... ,dd, let Vi ~ X m2 ,l\X~~,l be an open neighborhood

of Xi such that {Vi: i = 1, ... , dl } is disjoint. For each i E {I, ... , dd, let

Then each Ji is a non-zero closed two sided ideal of A~2 EEl (EB~~1 K) .For each i E {I, ... , dl },

let Ii = h-I(Ji ). Since {Ji: i = 1, ... ,d l } is orthogonal, so is {Ii: i = 1, ... ,dd. For each i E

{I, ... , dd, let

Wi = {X E Xmi : there exists some a E Ii such that a(x) =I- O}.
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Now, for each i E {I, ... , dIl, apply Proposition 11.2.11, to obtain some ni 2: m2 such that

for all k 2: ni, and for all x E X k, SPx('IPml,k) n Wi -I- 0. Let no = max{nl, ... , ndJ· Let k 2: no

and let x E X k. Then sPx('lfJm2,k) n Wi -I- 0 for each i E {I, ... ,d1}. So for each i E {I, ... ,dIl,

we can choose Yi E sPx( 'lfJm2,k) n Wi' Since for each i E {I, ... ,dIl,

and since VI, ... , Vd2 are pairwise disjoint, we see that Yl, ... , Yd 1 are distinct. Let

WI, ... , Wt be isometries with mutually orthogonal ranges such that for all f E Am2 we have

'lfJm2,k(f)(X) = 2:;=1 Wd(Zi)W;, where {Zi: i = 1, ... , t} = SPx('lfJm2,k). Since m2 2: ml, we have

rank(p€/16(I~n,m2(a)(Yi)I)) 2: 1 for each i E {l, ... ,dIl. Let C E (AmJs.a. satisfy l~n,m2(a)1 = C.

Then

rank(p€/16(I~n,k(a) (x) I) = rank(p€/16(I~m2,k (~n,m2 (a) )(x) I))

= rank(p€/16(~m2,k(l~n,m2 (a) I)(x)))

= rank(p€/16(~m2,k(C)(X)))

= rank (p€/16 ('lfJm2,k (c)(x) + 1))

= rank(p(€/16J-l ('lfJm2,k (c)(x)))

= rank (P(€/16J-l (t WiC(Zi)W; ) )

t

= Lrank(p(€/16J-l(C(Zi)))
i=l
d2

2: L rank(p(€/16J-l (C(Yi)))
i=l
d2

= L rank(P€/16(C(Yi)))
i=l
d2

= Lrank(p€/16([~n,m2(a)(Yi)I))
i=l

Then by Corollary 11.3.20, there exists some invertible element CE Ak such that II~n,k(a)-c" < f./2.
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So ;Jk(e) is invertible in A, and

II;Jk(e) - hll ::; II;Jk(e) - ;Jk (;In,k (a)) II + II;Jk(;Jn,k(a)) - bll

= lie - ;In,da) II + II;Jn(a) - bll

< E/2 + E/2.

Thus we have shown that for all b E A and all E > 0, there exists some invertible element e E A

such that llh - ell < E. Next will show that for all b E A and all E > 0, there exists some eE A such

that e + 1 is invertible and lie - hll < E.

Let b E A and let 1 > E > O. By what we just proved above, h E inv(A), where inv(A)

denote the set of all invertible elements of A. So there exists a sequence (an, An) E inv(A) such

that II(an , An) - (b,l)ll-+ O. Then An -+ 1. So (A;;-l an ,l) = A;;-l(an,An) -+ h. Thus we can pick

some n such that II (A;;-l an, 1) - hiI < Eo Setting e = A;;-l an, we see that e= A;;-l (an, An) is invertible

and lie- hll < E. Then by Proposition 4.2 of [16], the algebra A has topological stable rank one. D

Many arguments in this chapter may be simplified greatly if every SRSHA is the tensor

product of a RSHA with K; however we were not able to determine whether every SRSHA is the

tensor product of a RSHA with K. In the approach we used when trying to resolve this question,

we found that in order to show that a SRSHA is the tensor product of a RSHA with K, we needed

to extend projection valued functions over a closed subspace of a compact metric space to the

entire space. This cannot be done in general, and so we feel that it is not true that every SRSHA

is the tensor product of a RSHA with K.

Also, SRSHAs are likely to be K-stable. If A is a SRSHA, then A is contained in B =

E9~=1 C(Xi , K) as a C*-subalgebra, which implies that A Q9 JK is a C* -subalgebra of B (9 K. The

obvious *-isomorphism from B (9 K to B restricted to A Q9 K may very well be a *-isomorphism

from A (9 JK to A.
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CHAPTER III

STABLE RECURSIVE SUBHOMOGENEOUS C*-SUBALGEBRAS OF C* (X, JR)

In general, when X is a compact metric space, and G is a topological group acting on

X freely and minimally, the structure and properties of the crossed product C*(X, G) are often

very difficult to study, even if G is as familiar as Z or R So we would like to look at certain

distinguished C*-subalgebras of the crossed product instead. Often, properties and the structure

of those C*-subalgebras can be used to study the entire crossed product.

In [10], X was taken to by the Cantor set, G was taken to be Z, and the action was

assumed to be free and minimal. For Y ~ X closed, define Ay to be the C*-subalgebra of the

crossed product C*(X, Z) generated by C(X) and uCo(X \ Y). When Y is also open, it was shown

that Ay is an AF-algebra. For y E X, let A y denote A{y}. If (Yn)n~l is a decreasing sequence of

clopen sets such that nn~l Yn = {y}, then it is easy to see that A y is the closure of the increasing

union Un~l A yn · Hence, Ay is an AF-algebra as well.

When Z acts freely and minimally on a arbitrary compact metric space X with finite

covering dimension, it is shown in [5] that the C*-subalgebra Ay generated by C(X) and uCo(X\Y)

is a RSHA. This fact is used in [3] to show that, under certain hypothesis, the crossed product has

tracial rank zero.

When we consider free minimal actions of JR on compact metric spaces with finite covering

dimension, we would like to look at C*-subalgebras of the crossed product that are analogous to the

ones mentioned above. However, we immediately run into a difficulty: the algebra C(X) and the

unitaries that implement the action are not contained in the crossed product; they are contained

in the multiplier algebra of the crossed product instead. So we cannot define the C*-algebras A y

and Ay as the C*-algebras generated by certain sets of elements of the crossed product. We need

to take a more explicit approach. In retrospect, we realize that the subalgebra Ay in the integer

case, in some sense, is the "algebra of partial orbits": orbits are broken at a chosen subset 1';
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then partial orbits are grouped together according to their lengths to make C* -subalgebras of the

crossed product. This is the approach we take in this chapter to construct the C*-subalgebras

analogous to Ay and A y in the integer case.

In the rest of this dissertation, we fix a compact metric space X, and fix a free minimal

action of JR on X. The construction that we will describe in this chapter requires that the action

admits "pseudo-transversals," which we define below.

Definition 111.0.1. Let X be a compact metric space and let JR act on X freely and minimally.

A nonempty closed subset Z of X is called a pseudo-transversal if

1. For all x E X, the set (JR. x) n Z is dense in Z.

2. There exists (J' > 0 such that for all x E Z, we have ([-(J',(J']. x) n Z = {x}.

The existence of pseudo-transversals is essentially guaranteed by Lemma 3.1 in [12]. Only

the density condition is not explicitly stated in the statement of that lemma. We include the proof

of the existence of pseudo-transversals here, applying Lemma 3.1 in [12].

Lemma 111.0.2. Let X be a compact metric space. Let JR act freely and minimally on X. Then

the action admits a pseudo-transversal.

Proof: By Lemma 3.1 in [12], there exist a real number f > 0, an element Xo E X, and a closed

subset S ~ X containing Xo such that the map r: (-f,f) x S ----> X defined by r(r,x) = rx is a

homeomorphism onto a neighborhood of xo.

We first claim that any subset T ~ S satisfies condition 2 in Definition IILO.I. Take

(J' = f/2. Let x E T. Suppose that y E ([-(J', (J'] . x) n T. Then y = rx for some r E [-(J', (J'] ~ (-f, f).

So (r,x) E (-f,f) x S. Therefore y =r(r,x) =r(O,y). It follows from the injectivity of r that

x = y. This proves the claim.

Next we claim that if x, yES and r E JR satisfy y = rx, then either r = 0 or Irl ::::: 2f.

Let x,y E Sand r E JR satisfy y = rx. Also assume that Irl < 2f. Then -r/2,r/2 E (-f,f). Since

y = rx, we have

r (G) ,x) =G) ·x= (-~) .y=r(-G) ,y).

By the injectivity of r, we have r = O. This proves the claim.

Let d be the metric on X. For each r > 0 and each x E X, let B(x, r) denote the open ball

{y EX: d(x, y) < r}. Now, since (-f, f) . S is a neighborhood of xo, there exists some r5 > 0 such
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that B(xo, 6") ~ (-f, f) . S. Let Z = B(xo, 6" /2) n S. Note that since S is closed in X, the set Z is

contained in S. With (J = f/2, condition 2 in Definition IILO.1 holds by the first claim above.

We now show that Z satisfies condition 1 in Definition IILO.1. Fix some x E X and some

Z E B(xo, 6" /2) n S. Note that Z E B(xo, 6") n S. Choose a sequence {Tn} of strictly positive real

numbers such that B(z, Tn) ~ B(xo, 6") for all n and such that limn-+CX) Tn = O. Since the action is

minimal, the set (JR· x) nB (z ,Tn) is nonempty for all n 2: 1. So for each n 2: 1, we can choose some

Zn E B(z, Tn) n (JR· X). Then Zn is in the image of the map f for each n 2: 1. Thus, for each n 2: 1,

there exists (sn' Yn) E (-f, f) X S such that f(sn, Yn) = Zn. It is clear that Zn ----t z. That is, we have

f(sn' Yn) ----t f(O, z). Then, since f is a homeomorphism, we have Yn ----t z. Because SnYn = Zn E Rx

for all n 2: 1, we have Yn E lR . x for all n 2: 1. Now, because Yn ----t Z and z E B(xo, 6" /2), we can

assume, passing to a subsequence if necessary, that Yn E B (xo, 6" / 2) for all n 2: 1. Then we have

Yn E Z n (lR· x) for all n 2: 1. We have now shown that for all z E B (xo, 6" /2) n S there is a sequence

in Z n lR . x that converges to z. Then it is clear that Z n lR . x is dense in Z. This finishes the proof

of the lemma. 0

For the rest of the chapter, fix a pseudo-transversal Z, and use (J to denote the real number

in the second condition of the definition above. Before we start describing the construction, we

look as some examples of lR actions.

The most trivial example is lR acting trivially on an arbitrary metric space X. That is,

for every T E lR and every x E X, we have TX = x. In this case, the action is not free and is

minimal only when X contains only one element. The corresponding crossed product C*(X, lR) is

well known (for instance, Example 2.53 in [17]) to be isomorphic to C(X) ® C*(lR), where C*(lR)

is the group C*-algebra of lR, which we will not describe here. (See Section 3.1 in [17] for the

definition of the group C*-algebra.) It is also well known (for instance, Proposition 3.1 in [17])

that C*(lR) is isomorphic to Co(lR). So C*(X,lR) is isomorphic to C(X) ® Co(lR) = Co (X x lR).

When lR acts on itself by translation, the action is free and minimal. The corresponding

crossed product C*(lR,lR) is isomorphic to the algebra of all compact operators on L2 (lR). In

fact, more generally, when a locally compact group G acts on itself by left translation, the crossed

product is isomorphic to the algebra of compact operators on L 2 ( G). This fact is essentially proven

in [14], and is the motivation behind the map defined by Equation IIL9 in this chapter.
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Another class of examples is the class of flows under ceiling functions. Take a locally

compact space X. Let h: X ----- X be a homeomorphism. Then h induces a Z action on X. Let Y

be the quotient space ([0,1] x X)/rv, where the equivalence relation rv is given by (l,x) rv (0, h(x)).

Now let points in Y flow upward at unit speed. When a point reaches the ceiling (Le. the set

{I} x X), it jumps to the floor (Le. the set {O} x X) and keeps moving up at unit speed. This

gives a flow under the ceiling function that is constantly one. When the Z action on X is free and

minimal, the JR. action on Y is also free and minimal. If X is compact, then so is Y. It was shown in

[15] that the crossed product C* (Y, JR.) is stably isomorphic to C* (X, Z). So this class of examples

is also essentially trivial. A similar construction can be used to allow the ceiling function to be an

arbitrary strictly positive continuous function from X to R In this case, the corresponding crossed

product C* (Y, JR.) is still stably isomorphic to C* (X, Z). See [15] for more details.

The examples we have described so far are all more or less trivial. Less trivial examples

would be free minimal actions on compact metric spaces that are not flows under ceiling functions.

It was shown in an unpublished work by N. C. Phillips that such actions indeed exist.

111.1. Entering Times and Return Times

Definition 111.1.1. Let X be a compact metric space, let JR. act on X freely and minimally, and

let Z <:;;; X be a pseudo-transversal. Let ZC denote the complement of Z with respect to X. Define

the forward entering time fJ: ZC ----- JR. by

fJ(x) = inf{r > 0: rx E Z};

define the backward entering time a: ZC JR. by

a(x) = sup{r < 0: rx E Z};

and define the return time R: Z ----- JR. by

R(x) = inf{r > 0: rx E Z}.

Note that the entering times are well defined because Z meets every orbit of the action.

Now we fix some notation for the rest of the chapter
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Notation 111.1.2. For the rest of the chapter we use 0: and (3 to denote, respectively, the forward

and backward entering times associated with the pseudo-transversal, and use R to denote the

return time for the transversal. We first establish some elementary properties of 0:, (3 and R.

Lemma 111.1.3. For all x E ZC, we have (o:(x),(3(x))·x ~ ZC. For all z E Z, we have (0, R(z))·z ~

ZC. (We use the notation (o:(x), (3(x)) and (O,R(z)) to denote open intervals of the real line, the

notation (o:(x), (3(x)) . x to denote the set {rx: r E (o:(x), (3(x))}, and the notation (0, R(z)) . z to

denote the set {rz: r E (0, R(z))}.)

Proof: Let x E ZC and let r E (o:(x), (3(x)). Suppose that rx E Z. If r > 0, then

(3(x) = inf{s > 0: sx E Z} :::; r < (3(x),

a contradiction. So r :::; O. If r < 0, then

o:(x) = sup{r < 0: rx E Z} ~ r > o:(x),

contradiction. So r = O. But then x = rx E Z, contradicting the assumption. Thus (o:(x),(3(x))·

x ~ Zc.

Let z E Z and let r E (0, R(z)). Suppose that rz E Z. Then R(z) < r < R(z), a

contradiction. So rz E ZC. Thus (0, R(z)) . z ~ Zc. 0

Lemma 111.1.4. For all x E ZC, we have o:(x) < 0 and (3(x) > O. Also, for all z E Z, we have

R(z) ~ (J".

Proof: Let x E ZC. There exists f > Osuch that (-f,f)X ~ ZC. Then by definition, o:(x):::; -f < 0

and (3(x) ~ f > O.

Let z E Z. It is clear that we have (O,(J")z ~ ZC. Then by definition, R(z) ~ (J". 0

Lemma 111.1.5. For all x E ZC, we have o:(x) . x E Z and (3(x) . x E Z. Also, for all z E Z, we

have R(z) . z E Z.

Proof: We know that (3 > 0 and 0: < 0, by Lemma IIL1.4.

Let x E ZC. Suppose that o:(x) . x (j. Z. The map r 1-+ r . (o:(x) . x) is a continuous map

from lR to X, so the inverse image of ZC under the map, which contains 0 since we assumed
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a(x)· x E ZC, is open in lit Thus there exists f > 0 such that (-f,f)' (a(x)x) <:;;; zc. Then for all

r E (-f + a(x), a(x)], we have rx ¢:. ZC. Now Lemma III.1.3 implies that (a(x),O) . x <:;;; Zc. So for

all r E (-f+a(x),O), we have rx ¢:. Z. Thena(x)-f is an upper bound to the set {r < 0: rx E Z},

contradicting the fact that a(x) = sup{r < 0: rx E Z}. Thus a(x)x E Z.

Very similar arguments show that (3(x) . x E Z for all x E ZC and R(z) . z E Z for all

z E Z. D

Lemma 111.1.6. The map a is upper semi-continuous, and the maps (3 and R are lower

semi-continuous.

Proof: Let rElit We will show that a- 1([r, 00)) is closed in ZC. If r ~ 0, then by Lemma

IIL1.4, we know that a- 1 ([r,00)) = 0, and then we are done. So assume that r < O. Suppose

that {Xn }n>1 is a sequence in ZC such that a(xn ) ~ r for all n ~ 1, and suppose that there is

x E ZC such that Xn ~ x. Since the sequence {a(xn )} is bounded, it has a convergent subsequence

{a(xkJ}. Say a(xkn) ~ s with s E [r,O]. Then a(xkJXkn ~ sx. By Lemma m.1.5, we have

a(xkn)Xkn E Z for all n ~ 1. So sx E Z, since Z is closed. Also, S -=1= 0, since x ¢:. Z. Then by the

definition of a, we have a(x) ~ S ~ r. Thus x E a-I ([r, 00)), and so a is upper semi-continuous.

Let r E (0,00) and let {xn } be a sequence in (3-1((-00, r]) such that X n ~ x for some

x E ZC. Then {(3(xn n has a subsequence {(3(Xknn such that (3(XkJ ~ S for some S E [O,r]. For

each n ~ 1, we have (3(XkJXkn E Z, so sx E Z. Also, x E ZC implies that s -=1= o. So (3(x) ::; s ::; r.

This shows that (3 is lower semi-continuous.

In the previous paragraph, if we replace all occurrences of (3 by R and suppose that x E Z

instead of ZC, then we get the argument that shows that R is lower semi-continuous. D

Lemma 111.1.7. For all x E ZC and for all r E (a(x), (3(x)), we have a(rx) = a(x) - rand

(3(rx) = (3(x) - r.

Proof: Let x E ZC and let r E (a(x),(3(x)). We know that (3(x) - r > 0 and ((3(x) - r)(rx) =

(3(x)x E Z. Therefore by the definition of (3, we have (3(x) - r ~ (3(rx). Also, a(x) - r < 0 and

(a(x) - r)(rx) E Z imply that a(rx) ~ a(x) - r. Then it follows from Lemma III.1.3 that

(a(x) - r,(3(x) - r)· (rx) = (a(x),(3(x))· x <:;;; Zc.

Then (3(rx) ~ (3(x) - rand a(rx) ::; a(x) - r. D
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Lemma 111.1.8. Let Z = [-a, a]· Z, let Z_ = [-a, 0]· Z, and let Z+ = [0, a]· Z. Then Z, Z+ and

Z_ are all closed and have nonempty interior.

Proof: It is clear that Z, Z+ and Z_ are all closed, because they are all continuous images of

compact sets. Suppose that Z_ has empty interior. Then for every nEZ, the set (an) . Z_ has

empty interior also, since the map x I--> (an)x is a homeomorphism. Now

X2 U((an).Z_) 2 (U[an-a,an]) ·Z=lR·Z=X.
nEZ nEZ

So X = UnEZ((an) . Z_). Since each (an)Z_ is closed and has empty interior, (an)Z_ is nowhere

dense for each n E Z. Then we see that X is a countable union of nowhere dense set. But X is a

compact metric space, hence complete. This contradicts the Baire Category Theorem. Thus Z_

has nonempty interior. Similarly, Z+ and Z have nonempty interior also. 0

Lemma 111.1.9. The functions a, (3 and R are all bounded functions.

Proof: Let U be the interior of Z_. Then U is open in X. By Lemma 111.1.8, U =1= 0. Since

the action is minimal, for each x E X, there exists some r E [0,00) such that rx E U. That is,

for all x E X, there exists r E [0,00) such that x E (-r)U. So {(-r)U: r E [O,oo)} is an open

cover for X. Since X is compact, there exist rl, ... ,rn E lR such that X = U:~l(-ri)U. Let

r = max{rl,"" rn }. Then

X = [-r,O]U ~ [-r,O]. ([-a,O]Z) ~ [-r - a,O]Z.

Thus, if x E ZC, we have x = (-t)z for some t E (0, r + a] and some z E Z. Then (3(x) :::; t :::; r +a.

Thus (3 is bounded above by a + r. It is clear that (3 is bounded below by 0. If z E Z, then

(a /2)z E ZC and (a /2)z = (-s)z' for some z' E Z and some s E (0, r + a]. Then (s + a /2)z = z'.

We have s + a /2 > 0, so then R(z) :::; s + a /2 :::; r + a + a /2. So R is bounded.

An argument similar to the one that shows (3 is bounded shows that a is bounded. 0

Notation 111.1.10. For the rest of the chapter, let M denote some positive real number such

that M ~ 1(3(x)1 for all x E ZC, M ~ la(x)1 for all x E ZC, and M ~ IR(z)1 for all z E Z. Also for



60

the rest of the chapter, define

Gz = {(r,x) E JR x X: x E ZC,-r E (a(x),,8(x))}. (III. 1)

Lemma 111.1.11. The set Gz is an open subset of JR x X with compact closure. Further, if

(r,x),(s,y) E Gz satisfy x = (-s)y, then (r + s,y) E Gz ; also (r,x) E Gz if and only if

(-r, (-r)x) E Gz .

Proof: Let (r,x) E Gz . Then x E ZC and -r E (a(x),,8(x)). Let

E = (1/2) min{,8(x) +r, -r - a(x)}.

It is clear that E > O. Let

U = ,8-1((-r + E, 00)) n a-1(( -00, -r - E)).

Note that U contains x. Also, since ,8 is lower semi-continuous, and since a is upper

semi-continuous, we see that U is open. Let (t, y) E (r - E, r + E) XU. Then a(y) < -r - E< -t <

-r+E < ,8(y). So (t, y) E Gz. Thus (r-E, r+E) x US;;; Gz. Then we have (r, x) E (r-E, r+E) x US;;;

Gz. So (r, x) is an interior point of Gz. This holds for all (r, x) E Gz, so Gz is open. To see that

Gz has compact closure, note that Gz S;;; [-M,M] x X, which is compact.

Let (r, x), (s, y) E Gz satisfy x = (-s)y. Then

(a(x),,8(x)) = (a((-s)y),,8((-s)y)) = (a(y),,8(y)) + s.

So -r E (a(x), ,8(x)) implies that -s - r E (a(y), ,8(y)), whence (r + s, y) E Gz .

If (r,x) E Gz , then (a((-r)x),,8((-r)x)) = (a(x),,8(x)) + r. Since 0 E (a(x),,8(x)), we

have r E (a(x),,8(x)) +r = (a((-r)x),,8((-r)x)). So (-r, (-r)x) E Gz . Applying the previous

argument to (-r, (-r)x), we see that if (-r, (-r)x) E Gz , then (r, x) E Gz. D

It follows from Lemma IH.1.11 that Co(Gz ) is a linear subspace of Cc(JR x X). Recall that

the linear space Cc(JR x X) is endowed with a multiplication and a *-operation, as defined by the

formulas in 1.1 and 1.2 respectively. Thus Cc(JR x X) is a *-algebra.
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Lemma 111.1.12. Go(Gz) is a *-subalgebra of Gce&. x X).

Proof: We only need to show that Go(Gz) is closed under involution and convolution.

Let f,g E Go(Gz ). We only need to show that (f * g)I(Gz)C = 0 and (f*)I(Gz)c = O. Let

(r, x) E (Gz)c. Then (-r, (-r)x) t/:- Gz by Lemma III.1.11, so f*(r, x) = f( -r, (-r)x) = O. Now,

suppose that (f * g)(r, x) i=- O. Since f and 9 are continuous, for some t E JR, we have f(t, x) i=- 0

and g(r - t, (-t)x) i=- O. Then (t,x) E Gz and (r - t, (-t)x) E Gz. So (r,x) E Gz by Lemma

111.1.11 again, a contradiction. Hence (f * g)(r,x) = O. Therefore f * g, f* E Go(Gz ). 0

For the rest of the chapter define

A z = Go(Gz ), (111.2)

where the closure is taken in the crossed product G*(X, JR).

By Lemma 111.1.12, it is clear that Az is a G* -subalgebra of the crossed product. This

subalgebra Az will be the subalgebra that is analogous to the subalgebras Ay in [3]. In fact,

the subset Gz of JR x X is a subgroupoid of the transformation groupoid JR x X. See [13] for

definitions of groupoids and groupoid G* -algebras. We find it more convenient to work directly

with the construction we have given then to formulate the construction in terms of groupoids. In

particular, we will not use any machinery from the theory of groupoids.

111.2. Continuous Extensions of the Entering Times

We wish to obtain a stable recursive subhomogeneous decomposition for Az. We first find

finitely many subsets of Gz that are closed in Gz whose union covers Gz. We will show that each

of those subsets is locally compact with compact closure, and that spaces of continuous functions

on those subsets that vanish at infinity are in fact pre-G*-algebras whose closures have the form

G(F, lK), where F is a compact metric space. Finally, we show that Gz is obtained by gluing these

G*-algebras together.

To obtain the subset of Gz mentioned above, we first need to cut ZC into finitely many

pieces so that a and (3 are continuous on each piece, and can be extended continuously to the

closure of the each piece. The continuity of the entering times is required if we want to identify

the components of the of a stable recursive subhomogeneous decomposition of Az as "continuous"

functions from a compact metric space into lK.
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Lemma III.2.10 For every D E (0,00) and for every Z E Z, there exists a compact neighborhood

K of Z (K contains a set U that is open in X and Z E U) such that {(O, D]. (KnZ)}n(KnZ) = 0.

Proof: This will be a proof by contradiction. Suppose that the statement is not true. Then

there exists D E (0,00) and some Z E Z such that for every compact neighborhood of K of Z

we have {(O,D]. (K n Z)} n (K n Z) =I 0. For each n E N, let Kn = {x E X: d(x,z) :S lin}.

Then K n is a compact neighborhood of z for every n E N. So for each n E N, there exists

rn E (0, D] and Zn E K n n Z such that rnZn E K n n Z. Then Zn --t Z and rnZn --t z. Since {rn}

is a bounded sequence, it has a subsequence {rkn } such that rkn --t r for some r E [0, D]. Then

limn->CXJzkn = limn->CXJ(-rkJ(rknzkn) = (-r)z. But limn->CXJzkn = z, so (-r)z = z. Since the

action is free, we have r = 0. Therefore there exists mEN such that °< rkm < (j. Now Zkm E Z,

rkm Zkm E Z, and Zkm =I rkm Zkm , so ([-(j, (j] . Zkm ) n Z contains two distinct elements, namely Zkm

and rkm Zkm , which contradicts the definition of Z. D

Lemma III.2.2. There exist nv EN and Zl, Z2,"" Znv ~ Z such that

1. for every i E {I, ... ,nv}, the set Zi is compact;

2. for every i E {I, ... ,nv}, every x E Zi, and every r E (0, 8M], we have rx ~ Zi;

4. for every i E {l, ... ,nv}, the map [0,8M] x Zi --t [0, 8M] . Zi defined by (r, z) ~ rz is a

homeomorphism.

Proof: For each Z E Z, let K z be the compact neighborhood obtained from Lemma III.2.1 where

the real number D in Lemma III.2.1 is taken to be 8M. Use K~ to denote the interior of K z for

each Z E Z. Now, the collection {K~: Z E Z} is an open cover for Z, which is compact, so there

exists nv such that U~:l K Zi :J Z. For each i E {I, ... , nv}, let Zi = K Zi n Z. Then part 1 and

part 3 of the lemma hold. Also, by the choice of the sets K Zi' we have

0= [(0, 8M] . (KZi n Z)] n (KZi n Z) = ((0, 8M] . Zi) n Zi

for i E {I, ... , nv}. So part 2 holds.

The map [0, 8M] x Zi --t [0, 8M] . Zi, defined by (r, z) ~ rz, is certainly continuous and

surjective. Now suppose that (r, x) E [0, 8M] X Zi and (s, y) E [0,8M] X Zi, and that rx = sy.
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Without loss of generality, assume that r :::; s. Then s - r E [0, 8M] and x = (s - r)y. But x, y E Zi

and s - r E [0, 8M], so, by part 2, we have s - r = O. Therefore (r, x) = (s, y). Thus the map

is injective. Since both [0, 8M] x Zi and [0,8M] . Zi are compact and Hausdorff, the map is a

homeomorphism. Hence part 4 holds. 0

Notation 111.2.3. Now we use the return time function R to partition Z. For each i E N, let

T i = R- 1 (( (i - 1)0" iO"]).
16 ' 16

Note that, because R is bounded above by M and below by 0", we have Ti = 0 for all but

finitely many i, and that {Ti: i E N} partitions Z. Let A = {n EN: n 2: 1, Tn i=- 0}. Then

for some nR EN, we have A = {k1,k2, ... ,knR }. Re-indexing if necessary, we can assume that

k1 < k2 < ... < knR' For each i E {I, ... , nR}, let Zi = Tki. Then it is clear that {Zl, ... , znR}

partitions Z. For each i E {I, ... , nv} and each j E {I, ... ,nR}, let Yi,j = Zi n zj. It is clear that

{Yi,j: 1:::; i:::; nv, 1:::; j:::; nR} covers Z.

Lemma 111.2.4. Let nv be as in Lemma 111.2.2 and let nR, zj and Yi,j be as given above. For

each i E {I, ... ,nv} and each j E {I, ... ,nR}, we have:

1. if {zn} is a Cauchy sequence in zj, then {R(znn is Cauchy;

2. RI Zj is continuous;

3. the map [0, 8M] x Yi,j --'> [0, 8M] . Yi,j is a homeomorphism.

Proof: Fix i E {I, ... ,nv} and j E {I, ... ,nR}' We show part 1 first. Suppose that {xn } is a

Cauchy sequence in zj. Then Xn --'> x for some x E Z. Since {R(xnn is a bounded sequence, it

has a convergent subsequence {R(XkJ}. Let r = limn ---.oo R(Xkn ). Then R(Xkn)Xkn --'> rx. Since

R(Xkn)Xkn E Z for all n 2: 1, we have rx E Z. Suppose that {R(xnn does not converge to r. Then

there exists E > a and a subsequence {R(xjJ} of {R(xnn such that IR(xjn) - rl 2: E for every

n 2: 1. We know that {R(xjnn is bounded, so it has a convergent subsequence {R(xjzJ}. Say

R(xjzJ --'> s. Then sx E Z. Also, IR(xjzJ -rl 2: E for all n 2: 1 implies that r i=- s, and so rx i=- sx.
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Then by the second condition in the definition of a pseudo-transversal, we have Ir - 81 > cr. But

Ir - 81::::; Ir - R(Xkn)1 + IR(xkJ - R(XjzJI + IR(XjzJ - 81

::::; Ir - R(xkJI + cr/16 + IR(Xjzn) - 81,

which converges to cr/16, a contradiction. Thus R(xn) ----t r. So {R(xn)} is Cauchy, and part 1 is

proven.

Now suppose that {xn} is a sequence in zj such that Xn ----t x for some x E zj. Then

by part 1, R(xn) ----t r for some r E R We will show that r = R(x). Suppose that r i=- R(x).

Then rx i=- R(x)x. Also we have R(x)x E Z, rx E Z, and (R(x) - r)(rx) = R(x)x. So we have

IR(x) - rl ~ cr. But

IR(x) - rl ::::; IR(x) - R(xn)1 + IR(xn) - r\ ::::; cr /16 + IR(xn) - rl,

and the last expression converges to cr/16, a contradiction. So R(x) = r, and so part 2 holds.

For the last part, we note that the map in part 3 is the restriction of the map in part 4 of

Lemma III.2.2, and that the map in part 3 is surjective.

Now we fix some more notation for this chapter.

D

Notation 111.2.5. Recall the definition of the integers nv and nR from Lemma III.2.2 and

Notation IIL2.3, respectively. Enumerate the collection of sets {Yi,j: 1 ::::; i ::::; nv, 1 ::::; j ::::; nR}

by Yk in the following order: Y 1 = Yl,l, Y2 = Y2,1, ... , Ynv = Ynv,l, Ynv+1 = Y1,2, Ynv+2 =

Y2,2, ... , Y2nv = Ynv ,2,"" YCnR-l)nv+l = Y1,nR"'" YnRnv = Ynv,nR' Throwaway the empty

members of {Yk: 1 ::::; k ::::; nRnv}, and let N be the number of nonempty sets in the collection,

then relabel the nonempty members of {Yk: 1 ::::; k ::::; nRnv} without changing the relative order.

That is, if we let L: {I, ... , N} ----t {I, ... , nvnR} be a strictly increasing function such that

{Y;Ck): 1 ::::; k ::::; N} is the collection of all nonempty members of {Yk: 1 ::::; k ::::; nvnR}, then

we relabel Y;Ck) as Yk. It is clear that {Yk: 1 ::::; k ::::; N} covers Z. For the rest of the chapter, let

Yk denote the sets just mentioned, and for each i E {I, ... ,N}, let Ci = {(R~z))z: Z E Yi}, let

Wi = {rz: z E Yi, r E (0, R(z))} and let Xi = Ci .
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Lemma 111.2.6. Let 0: and (3 are the maps in III. 1.2. For each i E {I, ... , N}, let o:f = 0:1 Wi ,

and let (37 = (31 Wi' Then

1. For each i E {I, ... , N}, the map Rly; is continuous.

2. For each i E {I, ... , N}, we have Ci ~ Wi ~ zc.

4. For each i E {I, ... , N}, for each z E Yi and each r E (0, R(z)), we have O:f(rz) = -r, and

(37(rz) = R(z) - r.

5. For each i E {I, ... , N}, the map o:i and (3? are continuous.

6. For each i E {I, ... , N}, each x E Wi, and each r E (o:i(x), (3i(x)), we have rx E Wi.

Proof' For each i E {I, ... , N}, the set Yi is contained in some Zj, and Rlzj is continuous, so

RIYi is continuous. It is clear that for each i E {I, ... , N} we have Ci ~ Wi; and Wi ~ zc follows

from Lemma IlL 1.3.

Let x E ZC. Then o:(x)x E Yi for some i E {I, ... , N}. Since (o:(x),(3(x))x ~ Zc, we

have (0, (3(x) - o:(x))(o:(x)x) ~ ZC. Also, (3(x) - o:(x) > 0 and ((3(x) - o:(x)) . (o:(x)x) E Z, so

R(o:(x)x) = (3(x) - o:(x). So -o:(x) E (0, R(o:(x)x)), and then x = (-o:(x)) . (o:(x)x) E Wi. Thus

zc = U~l Wi' (Here we used the fact that 0: < 0 < (3.)

Now fix i E {I, ... , N}. Let z E Yi and let r E (0, R(z)). Then by Lemma III.1.3, we

have (-r, R(z) - r) . (rz) = (0, R(z))z ~ ZC. Also, we have (-r)(rz), (R(z) - r)(rz) E Z, and

-r < 0 < R(z) - r. So by the definition of 0: and (3, we have O:f(rz) = -r and (37(rz) = R(z) - r.

Now let {xn} be a sequence in Wi such that X n ----; x for some x E Wi. Then for each

n ~ 1, there exist Zn E Yi and rn E (0, R(zn)) such that X n = rnzn; and there exist z E Yi

and r E (0, R(z)) such that x = rz. By Lemma IlL2.4, we have Zn ----; z and rn ----; r. Now, by

part 4, for each n ~ 1, we have o:(xn) = -rn and (3(xn) = R(zn) - rn; and also o:(x) = -r and

(3(x) = R(z) - r. Then we have o:(xn) = -rn ----; -r = o:(x); and since RIYi is continuous, we have

(3(xn) = R(xn) - rn ----; R(x) - r = (3(x). Thus o:f and (37 are continuous.

Now let x E Wi, and let r E (o:i(x),(3i(x)). Then x = sz for some z E Yi and some

s E (O,R(z)). So o:f(x) = -s and (37(x) = R(z) - s. Then r E (o:i(x),(3i(x)) implies that

r E (-s,R(z) - s), and so r + s E (O,R(z)). Therefore rx = (r + s)z E Wi' D
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The next lemma is used to extend the entering times. It is a well known result in analysis,

so we will omit its proof here.

Lemma 111.2.7. Let X be any metric space, and let Y ~ X be an arbitrary subset. Let f: Y ----+ JR

be a continuous function. Suppose that for every Cauchy sequence {Yn} in Y, the sequence {f (Yn)}

is a Cauchy sequence in JR. Then there exists g: Y ----+ JR such that gly = f, and 9 is continuous.

Moreover, g(y) = limn->CXl f(Yn), where {Yn} is any sequence in Y that converges to y.

Now we extend the maps ai and fJ'; in Lemma III.2.6 continuously to the closures of Wi'

Lemma 111.2.8. For each i E {I, ... , N}, the maps ai and fJ'; from Lemma III. 2. 6 can be extended

to continuous functions on Wi.

Proof: Fix i E {I, ... , N}. By Lemma III.2.7 and III.2.6, we only need to show that ai and fJ';

preserve Cauchy sequences.

Let {xn } be a Cauchy sequence in Wi. Note that Wi ~ [0, 8M] . Yi , which is compact, so

X n ----+ x for some x E [0, 8M] . Yi, For each n ~ 1, we have X n = rnZn for some Zn E Yi and some

rn E (0, R(zn)); and x = rz for some Z E Yi and some r E [0, 8M]. Then by Lemma III.2.4, rn ----+ r

and Zn ----+ Z. Now, by Lemma III.2.6, we have ai(xn) = ai(rnzn ) = -rn , and fJ';(xn ) = R(zn) -rn .

Then it follows that {ai (xn )} is Cauchy. By Lemma III.2.4, the sequence {R(zn)} is Cauchy, so

then {fJ';(xn )} = {R(zn) - rn } is also Cauchy. The lemma now follows from Lemma III.2.7. 0

Notation 111.2.9. For the rest of the chapter, let ai and fJi denote the extensions of ai and fJ';,

respectively, obtained from Lemma III.2.8. We will let Vi = {rc: c E Xi,r E (ai(c),fJi(C))} for

each i E {I, ... , N}. Note that Vi ~ Wi, but in general, we do not expect Vi to equal to Wi or Wi.

111.3. Properties of ai, fJi' Wi and Vi

Lemma 111.3.1. Let i E {I, ... , N}, let x E Wi, and let r E [ai(x), fJi(X)], Then:

1. ai(x)x E Yi and fJi(X)X E Z.

2. -M:::: ai(x) :::: °:::: fJi(X) :::: M.

3. fJi(X) - ai(x) ~ a.

4. rx E Wi.
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6. If ai(x) = 0 then x E Y,;; if fJi(X) = 0, then x E Z.

7. If x E ZC, then ai(x) ::; a(x) < 0 < fJ(x) ::; fJi(X) , where a and fJ are the maps in 111.1.2.

ProD!' Let {xn} be a sequence in Wi that converges to x. For each n ~ 1, we have Xn = rnZn

for some Zn E Y,; and some rn E (0, R(zn))' Then ai(xn) = -rn and fJi(Xn) = R(xn) - rn for each

n ~ 1 by Lemma III.2.5(4)

Since ai(Xn)Xn = Zn ----+ ai(x)x, and Zn E Y,; for each n ~ 1, we have ai(x)x E Y,;. Also,

fJi(Xn)Xn E Z for all n ~ 1, and fJi(Xn)Xn ----+ fJi(X)X, so fJi(X)X E Z. So part 1 holds.

Note that -M ::; a(y) < 0 < fJ(y) ::; M for all y E ZC and 0 < R(z) ::; M for all Z E Z.

So -M ::; a(xn) = ai(xn) < 0 < fJ(xn) = fJi(Xn) ::; M, for every n. Then part 2 follows from

continuity of ai and fJi.

We first claim that (ai(x),fJi(X))X <:: Wi' Let S E (ai(x),fJi(X)), Since ai(xn) ----+ ai(x) and

fJi(Xn) ----+ fJi(X) , we can assume that, taking a subsequence if necessary, S E (ai(xn), fJi(Xn)) for all

n ~ 1. Then SXn E Wi for all n ~ 1. Since SXn ----+ SX, we have sx E Wi. This proves the claim. Now,

for each n ~ 1, let Sn = fJi(X) - f3i(X~~~i(X). Then Sn E (ai(x), fJi(X)) for all n ~ 1, so SnX E Wi for

all n ~ 1. Since SnX ----+ fJi(X)X, we have fJi(X)X E Wi. Similarly, taking Sn = ai(x) + f3i(X~~~i(X),

we have ai(x)x E Wi. So part 4 holds.

Next we prove part 5. First assume that r E (ai(x), fJi(X)), Recall from the beginning of

the proof that {xn } is a sequence in Wi that converges to x. Without loss of generality, assume

that r E (ai(xn),fJi(Xn)) for all n ~ 1. Then rXn E Wi for all n ~ 1, and then

ai(rx) = lim ai(rxn) = lim a(rxn) = lim a(xn) - r = ai(x) - r.
n~oo n~oo n~oo

Similarly, fJi(rx) = fJi(X) - r. Now, let Sn = fJi(X) - f3i(X~~~i(X). Then Sn E (ai(x), fJi(X)), so

fJi(SnX) = fJi(X) - Sn, and ai(SnX) = ai(x) - Sn, by what we just proved. Thus



68

and

B tak' - () + i3i(X)-ai(X) h (( ) ) - () () dy mg Sn - O!i X n+l' we ave O!i O!i X X - O!i X - O!i X , an

So part 5 holds.

By part 1, we see that O!i(X) = 0 implies that x = O!i(X)X E Yi; and that 13i(X) = 0 implies

that x = 13i(X)X E Z. So part 6 holds.

By part 1, we know that O!i(X)X E Z, and 13i(X)X E Z. Since x E ZC, by part 6, we have

O!i(X) i= 0, and 13i(X) i= 0. Then part 2 implies that O!i(X) < 0, and 13i(X) > 0. Part 7 follows from

the definition of O! and 13.

Lemma 111.3.2. Let i E {I, ... , N}. Then:

1. Xi ~ Wi, Yi ~ Wi, and Wi ~ [O,M]. Yi ~ [0,8M]. Yi,

2. If Z E Yi, then 13i(Z) = R(z). If z E Yi, then O!i(Z) = O.

4. The map Xi ----7 Yi defined bye f---+ O!i(e)e is a homeomorphism.

5. Suppose that e, e' E Xi, that e i= e', and that re = e'. Then Irl ~ 6M.

6. The map

defined by (r, c) f---+ re, is a homeomorphism.

o

Proof: We already know that Ci ~ Wi, so Xi = Ci ~ Wi' If Z E Yi, then (R(z)j2n)z E Wi;

and then Z E Wi, since (R(z)j2n)z ----7 z. So Yi ~ Wi' It is clear that Wi ~ [0, M] . Yi, so

Wi ~ [0, M] . Yi ~ [0, 8M] . Yi. So part 1 holds.
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Now we show part 2. Let Z E Yi. For each n 2': 1, let Sn = ~~). Then Sn E (0, R(z)) for

all n 2': 1, and SnZ ----. z; so by continuity, we have fJi(SnZ) ----. fJi(Z), and that Cti(SnZ) ----. Cti(Z), By

Lemma III.2.6, we have fJi(SnZ) = R(z) - Sn and Cti(SnZ) = -Sn' So

fJi(Z) = lim fJi(SnZ) = lim R(z) - Sn = R(z);
n--+oo n--+oo

and

Cti(Z) = lim Cti(SnZ) = lim -Sn = O.
n--+oo n---+oo

Then it is clear that CtilYi = O. So part 2 holds.

Now we show part 3. Let

A - {(Cti(X) + fJi(X)).. w.}- 2 x.xE, ,

let

and let

G = {rz: Z E Yi, r E [0, fJi(Z)]},

Let e E Xi. If e E Gi , then e = (R(z)j2)z for some Z E Yi, and e E Wi. Thus Cti(e) = -R(z)j2,

and fJi(e) = R(z)j2. Then e = ("'i(C)~l3i(C)) . e E A. Thus Gi S;; A. Now, Wi is compact, and A is

the image of the continuous map x f-> ("'i(X)~l3i(X)) . x, so A is compact, and hence closed. Then

Xi = Gi S;; A. Thus Xi = A.

Let

and let

G' = {(r,z): Z E Yi,r E [O,fJi(Z)]},

Note that B' S;; [-M, M] x X, and G' S;; [0, M] x X. We first show that B' and G' are closed. Suppose

that (rn , en) E B', and (rn , en) ----. (r, e). Then e E Xi, since Xi is closed. Now, Cti(Xn) :::; rn :::;

fJi(Xn) for each n 2': 1; also Cti(Xn) ----. Cti(X), fJi(Xn) ----. fJi(X), and rn ----. r. So Cti(X) :::; r :::; fJi(X),

and so (r, e) E B'. Thus B' is closed. Similarly, G' is closed. Then both B' and G' are compact,
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since both are contained in compact sets. So Band C are also compact, because they are the

images of B' and C' under a continuous map, and so Band C are closed.

From part 2 and the definition of Wi, it is clear that Wi ~ C, and so Wi ~ C. Now let

z E Yi, and let r E [O,,Bi(Z)], Let e = (,Bi(z)j2)z. Now, there exists a sequence {zn} in Yi such that

Zn ----; z. Then (R(zn)j2)zn E Ci for each n ;::: 1. But by part 2, (R(zn)j2)zn = (,Bi(zn)j2)zn ----; C,

so e E Xi. Now

The r E [O,,Bi(Z)] implies that r - ,Bi(Z) E [ai(e),,Bi(e)]. Then rz = (r - ,Bi(z))e E B. Thus C ~ B.

By part 1 and part 4 of Lemma III.3.1, we have B ~ Wi. Thus Wi = B = C. So part 3 holds.

Now we show part 4. By Lemma III.3.1, we see that the map does map to Yi. Continuity

is clear. If Z E Yi, then (,Bi(z)j2)z E Xi, and z = ai (e"~Z)) z) . ((i1i~Z)) z). So the map is

surjective. Now suppose that ai(e)e = ai(e')c' with e, e' E Xi. Then ai(e)e, ai(e)e' E Yi ~ Zk for

some k. Since (ai(e') - ai(e))(ai(e)e) = ai(e')c', by Lemma III.2.2, we see that lai(c) - ai(e')1 = °
or lai(e) - ai(c')1 ;::: 8M. But lai(e) - ai(c')[ S; 2M, so ai(c) = ai(e'). Then e = e' by freeness of

the action. So the map is bijective and continuous, and since both Xi and Yi are compact and

Hausdorff, it is a homeomorphism. Part 4 is proven.

Now we show part 5. Since re = e', we have

Both ai(e')e' and ai(c)c are in Yi ~ Zk for some k, so by Lemma III.2.2, we have Ir+ai(c')-ai(e)\ =

°or Ir+ai(e') -ai(e)1 ;::: 8M. If Ir+ai(e') -ai(e)1 ;::: 8M, then we done, since lai(e) -ai(e')1 S; 2M.

So suppose that r = ai(e) - ai(c'). Then c' = re = (ai(e) - ai(e'))e. So ai(e')e' = ai(e)c. Then

part 4 implies that c = e', contradicting the hypothesis e i= e'. So part 5 is proven.

In part 6, the map is well defined and surjective by part 3, and continuity is clear. Suppose

that re = r'e'. Then (r - r')c = c'. By part 5, either e' = e', or Irl ;::: 6M. But Ir - r'l S; 2M, so

c = e'. So the map is injective. We have already shown in the proof of part 3 that the domain is

compact. Thus the map is a homeomorphism.

Part 7 follows directly from part 3. o



Notation 111.3.3. For the rest of the chapter, let 'Tri: Wi ----; Xi denote the map

Lemma 111.3.4. Let i E {I, ... , N}. Then:

1. We have

Vi = Wi \ ({CXi(C)C: CE Xd U {,Bi(C)C: CE Xd)

= Wi \ ({CXi(X)X: x E Wd U {,Bi(X)X: x E Wd)

= Wi \ ({,Bi(Z)Z: Z E Yi} U Y;)

= Wi \ {x E Wi: CXi(X) = 0 or ,Bi(X) = o}

= {rz: Z E Yi, r E (0, ,Bi(Z))},

3. For all x E Vi, we have -M :s; CXi(X) < 0 < ,Bi(X) < M.

4. For all x E Vi, and for all r E (CXi(X),,Bi(X)), we have rx E Vi-

5. The map

defined by (r, c) /-4 rc is a homeomorphism.

7. Vi n ZC is closed in ZC.

71
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Proof: We first show part 1. Let

A = Wi \ ({ai(C)C: C E xd U {,8i(C)C: C E Xi});

B = Wi \ ({,8i(Z)Z: Z EYi} UYi);

o = Wi \ {X E Wi: ai (X) = 0 or ,8i (x) = O};

D = {rz: Z E Yi, r E (0, ,8i(Z))}

E = Wi \ ({ai(x)x: x E WJ U {,8i(X)X: x E Wi})'

Let Al = {ai(C)C: C E Xi}, let A 2 = {,8i(C)C: C E Xi}, let B1 = {,8i(Z)Z: Z E Yi}, let B2 = Yi, let

0 1 = {x E Wi: ai(X) = O}, let O2 = {x E Wi: ,8i(X) = O}, let E1 = {ai(x)x: x E Wi}' and let

E2 = {,8i(X)X: x E Wi}. It is clear that 0 1 ~ B 2 ~ Al ~ E1 ~ 0 1, Now, if x E O2 , then we have

which implies that ,8i(Z)Z E A2 . Thus B 1 ~ A2 • Then it is clear that O2 ~ B 1 ~ A2 ~ E2 ~ O2 ;

and so it follows that A = B = 0 = E.

Let x E Vi, then x = rc for some C E Xi, and some r E (ai(c),,8i(C)), Thus

Then rc = (r - ai(c)) . (ai(c)c) ED. Thus Vi ~ D. Let xED. Then x = rz for some Z E }i, and

some r E (0, ,8i(Z)), So

Also, (,8i(z)/2)z E Xi, so X = (r - ,8i(z)/2) . ((,8i(z)/2)z) E Vi. Thus Vi = D.

If x E Vi, then x = rc for some C E Xi and some r E (ai(c),,8i(C)), We thus have

ai(x) = ai(c) - r i= 0, and ,8i(X) = ,8i(C) - r i= O. Thus x tJ- 0 1 U O2 , so x E O. So Vi ~ O. Now
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let x E C. Then ai(x) =I- 0, and fJi(X) =I- O. Let r = (ai(x) + fJi(x))/2. Then C = rx E Xi. Also

(ai(c),fJi(C)) = (ai(x),fJi(X)) - r. Since ai(x) =I- 0, and fJi(X) =I- 0, so 0 E (ai(x),fJi(X)), and so

-r E (ai(x), fJi(X)) - r = (ai(c), fJi(C)), Then x = (-r)(rx) E Vi. Thus Vi = C. Part is 1 proven.

For part 2, let c E Xi' By part 3 of Lemma III.3.1, we have fJi(C) - ai(c) 2: 0". Since

ai(c) = -fJi(C), we have ai(c) =I- 0, and fJi(C) =I- O. So C E C = Vi.

Part 3 follows immediately from part 1 and part 2 of Lemma III.3.1. Part 4 follows from

part 1 and part 5 of Lemma III. 3.1. Part 5 follows from part 1 and part 6 of Lemma III.3.2.

For part 6, let x E ZC. Then x E Wj for some j E {I, ... , N}. So ai(x) = a(x) < 0 <

fJ(x) = fJi(X). Therefore x E Vj.

For part 7, let {xn} be a sequence in Vi n zc that converges to x for some x E ZC. Since

Vi ~ Wi, we see that x E Wi. Since x E ZC, ai(x) =I- 0 and fJi(X) =I- O. So x E Vi, D

Lemma 111.3.5. Let i,j E {I, ... , N}. Then 1fi(Vi n Vj) is closed in Xi'

Proof: We only need to show that 1fi(Vi n Vj) is closed in Xi; the other statements follows from

symmetry. If Vi n Vj = 0, then we are done. So assume that Vi n Vj =I- 0.

Let {wn} be a sequence in 1fi(Vi n Vj) that converges to some W E X. Since Xi is compact,

W E Xi' Choose Xn E Vi n Vj such that 1fi(Xn) = W n. But Vi n Vj ~ Wi n Wj , which is compact,

so Xn has a subsequence, say {Yn}, that converges to some Y E Wi n Wj . We claim that

Suppose that (ai(y),fJi(Y)) n (aj(Y),fJj(Y)) = 0. But 0 E [ai(y),fJi(Y)] n [aj(y),fJj(Y)]'

so either fJi(Y) = aj(Y) = 0 or ai(Y) = fJj(Y) = O. First assume that fJi(Y) = aj(Y)' Then we

have fJi(Yn) - aj(Yn) --t fJi(Y) - aj(Y) = O. Now, Yn E Vi n Vj, so fJi(Yn) > 0 and aj(Yn) < 0

for all n 2: 1. Then fJi(Yn) - aj(Yn) > 0 for all n 2: 1. For each n 2: 1, let Zn = aj(Yn)Yn'

Then R(zn) ::; fJi(Yn) - aj (Yn) --t 0, which contradicts the fact that R 2: 0". Similarly, we get a

contradiction if we assume fJj (y) = ai (y). Therefore (ai (y), fJi (y)) n (aj (y), fJj (y)) =I- 0.

Let r E (ai(Y), fJi(Y)) n (aj (y), fJj (y)). Then ry E Vi n Vj. Now, Yn --t Y, so ai(Yn) --t ai(Y),

and fJi(Yn) --t fJi(Y)' Passing to a subsequence if necessary, we can assume that r E (ai(Yn), fJi(Yn))

for all n 2: 1. Then rYn E Vi for all n 2: 1, and so 1fi(rYn) --t 1fi(ry). But 1fi(rYn) = 1fi(Yn) --t W, so

W = 1fi(ry) E 1fi(Vi n Vj). We have shown that 1fi(Vi n Vj) is closed in Xi' D
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Notation 111.3.6. We fix the following notation for the rest of the chapter. For each x E X, let

TX = {r E JR: rx E Z}. Then TX is an infinite discrete set, hence countable. So index T X as

... < a':-n < a':-n+l < ... < a':-l < a~ < aT < ... < a~_l < a~ < ....

Also note that for each nEZ, we have a~+1 - a~ ~ 0". For i E {I, ... , N} and for each x E Vi, let

The following lemma shows that the sets Vi are ordered in the correct order.

Lemma 111.3.7. Let k E {2, ... , N}, and let x E Vk. Suppose that T X n [ak(x), .8k(X)] contains 3

or more elements. Then zc n V: = U~,:}(V: n Vi) n zc.

Proof: Let T = TX n [ak(x),.8k(X)]. Then for some m,l E Z with m < l, there exist

T = {a~, a~+ l' ... , an. For each n E {m, m + 1, ... , l - I}, let Zn = a~x.

Then for each n E {m, m + 1, ... , l-I}, we have

We claim that for each n E {m, m + 1, ... , l - I}, there exists kn < k such that Zn E Yk n • So fix

nE{m,m+l, ... ,l-I}.

Now Yk = Yi,j for some 1 :'::: i :'::: nv and some 1 :'::: j :'::: nR. Also, Yi,j = Zi nzj ~ Zj = Ttj

for some 1 :'::: t j :'::: nR. See Lemma III.2.2, Notation III.2.3 and Notation III.2.5 for the definitions

of Zi, zj, Yi,j, Ttj and nR' If Y E Wk> then ak(Y)Y E Yk ~ Ttj, and

Then there exists some h with 1 :'::: h < t j such that R(zn) E (h~i)Q", ~~] , which implies that

Zn E T h . In particular, Th is not empty, hence it is relabeled as Zd for some d < j (see Notation
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111.2.3). So Zn E Yt,h for some 1 ::; t ::; nv. From the definition of Ys for s E {I, ... ,N} (see

Notation 111.2.5), it is clear that Yt,h = Ykn for some kn < k. This proves the claim.

Now, if y E V{ n zc, then there exists some r E (a;, a;+l) such that y = rx. Then

r - a; E (0, a;+l - a;) = (0, R(zn))' So we have

k-l

Y = rx = (r - a~)(a~x) = (r - a~)zn E Vk n ~ UVi.
i=l

o

Lemma 111.3.8. Let k E {2, ... , N} and let x E Vk n (U7~} Vi). Then

k-l

Zc n V{ = U(Vkx n Vi) n zc.
i=l

Proof: Note that T = T X n [ak(x),,Bk(X)] contains 2 or more elements. First suppose that T

contains only 2 elements. Since x E Vk, we see that 0 E (ak(x),,Bk(X)). Also (ak(x),,Bk(X))X ~ zc

by assumption, so we see that x = o· x E (ak(x),,Bk(X))' x ~ zc. Then we have (ak(x),,Bk(X)) ~

(a(x),,B(x)) ~ (ai(x),,Bi(X)) for every i E {l, ... ,N} such that x E Vi. Since x E Vi for some

1::; i < k, we have Vkx = (ak(x),,Bk(X))X ~ (ai(x),,Bi(X))X = Vix. Then we are done.

If T contains 3 or more elements, then we are done by Lemma 111.3.7.

111.4. Properties of Gi , F(k) and G(k)

o

Now we define the subspaces Gi of lR x X which will be used to define the components of

the stable recursive subhomogeneous decomposition of Az .

Notation 111.4.1. For each i E {I, ... , N}, let

(111.3)

For each k E {I, ... ,N - I}, let

(IlIA)

Note that by Lemma 111.3.5 the set F(k) is closed in X k+1. For each i E {I, ... , N} and each
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Note that Gi = Gi,Xi ' (Lemma 111.4.4 part 1.) For each k E {1, ... ,N -I}, let

G(k) G= k+l,F(k).

(III.5)

(111.6)

The subsets Gi of JR x X defined above are in fact subgroupoids of the transformation

groupoid JR x X. For each i, the subgroupoid Gi is contained in (JR x X)~, where (JR x X)~ is the

set of all elements of JR x X whose sources and ranges are both contained in Vi. Due to minimality

of the action, the subgroupoid (JR x X)~ is too large. The subgroupoid Gi , in some sense, is the

largest continuous piece in (JR x X)~. See [13] for more details about groupoids.

Recall that Gz = {(r,x): x E ZC,-r E (a(x),,8(x))}.

Lemma II1.4.2. G1 S;; Gz .

Proof: First of all, we know that Yl is closed in X. By Lemma 111.2.6, for all z E Y1, we have

R(z) = ,81 (z), and so by Lemma 111.3.4, we have

VI = {rz: z E Y1,r E (O,,8i(Z))} = {rz: z E Yi,r E (O,R(z))} = WI S;; ZC.

Then if (r,x) E G1, we have x E VI = WI S;; ZC and -r E (al(x),,81(X)) = (a(x),,8(x)), since

o

Lemma 111.4.3. Gz S;; U~1 G i ·

Proof: Let (r,x) E Gz. Then x E ZC, and -r E (a(x),,8(x)). So x E Vi for some 1 :::; i :::; N.

Then x E Zc n Vi implies that ai(x) :::; a(x) < -r < ,8(x) :::; ,8i(X). So (r, x) E Gi. o

Part 2 and part 3 of next lemma essentially show that Gi,F is a subgroupoid of JR x X for

i E {I, ... , N} and F S;; Xi.

Lemma 111.4.4. Let i E {I, ... , N}. Then the following hold:
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2. Let F ~ Xi' Let CI, C2 E F. Let rl, tl, r2 and t2 be real numbers that satisfy

and

Then (rl + r2, t2C2) E Gi,F, and (-rl' (t l - rl)cI) E Gi,F. Let s: 1R x X ---7 X be defined by

(r, x) f---+ x. Then Gi,F = Gi n s-I(7Til(F)) and Gi,F has compact closure.

3. If F ~ Xi, C E Xi, t E (ai(C), (3i(C)), and -r E (ai(c), (3i(C)) - t, then (r, tc) E Gi,F if and

only if C E F.

Proof: Part 1 is clear.

Now we show part 2. Since (rl' tlcd, (r2' t2C2) E Gi,F, we see that CI, C2 E F, that

h, t l - rl E (ai(cI), (3i(cd), and that t2, t2 - r2 E (ai(c2), (3i(C2)). Now h - rl E (ai(cI), (3i(CI))

implies that

-rl E (ai(cd, (3i(cd) - t l = (ai(hcd,{3i(hcd)

= (ai((t2 - r2)c2), (3i((t2 - r2)c2)) = (ai(c2), (3i(C2)) - (t2 - r2).

imply that (-rl, (t l - rl)cd E Gi,F.

To see that Gi,F is pre-compact, note that Gi,F ~ [-M, M] xX.

Let (r, tc) E Gi,F. Then c E F and t, t - r E (ai(c), (3i(C)). Also,
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So Gi,F s:;; G i n S-l (1fil (F)). Let (r, x) E G i n S-l (1fil (F)). Then x E Vi and -r E (ai(x), ,8i(X)).

Therefore x = tc for some c E Xi and some t E (ai(c),,8i(C)). Thus 1fi(s(r, x)) = 1fi(tC) = 1fi(C) =

c E F. Since

we see that t - r E (ai(c),,8i(C)) - s, and so (r,x) = (r, tc) E Gi,F.

For part 3, (r, tc) E Gi,F implies that there exists c' E F and t', t' - r' E (ai(c), ,8i(C)) such

that (r, tc) = (r', t'c'). Then c = 1fi(tC) = 1fi(t'C') = c' E F. Thus (r, tc) E Gi,F implies that c E F.

The other direction is trivial.

Let F, F' s:;; Xi. Then

Gi,FUF' = Gi n s-l(1fil(F U F'))

= Gi n [s-1(1fi1(F)) U s-1(1fi1(F'))] = Gi,F U Gi,FI.

Also, since (r, tc) E Gi,FnFI if and only if c E F n F', if and only if (r, tc) E Gi,F n Gi,FI, part 4

follows. D

Corollary 111.4.5. For each i E {I, ... , N} and each F; s:;; Xi, if F is closed (open) in Xi, then

Gi,F is closed (open) in Gi.

Lemma 111.4.6. Let i E {I, ... , N}. Then Gi n Gz is closed in Gz .

Proof: Let {(rn,xn)} be a sequence in G i n Gz that converges to some (r,x) E Gz . Then

Xn E Vi n ZC for all n 2:: 1, and x E ZC. By part 7 of Lamma III.3.4, we have x E Vi. Since x E ZC,

and since (r,x) E Gz , we see that -r E (a(x),,8(x)) s:;; (ai(x),,8i(X)). Thus (r,x) E Gi, and so

Gi n Gz is closed in Gz . D

Lemma 111.4.7. Let k E {I, ... , N -I}. Then for all i E {I, ... , k}, we have GinG(k) = GinGk+l;

and Gz n Gi n G(k) is closed in G(k) n Gz , in Gi n Gz , and in Gk+l n Gz .

Proof: Fix k E {I, ... , N -I}, and fix i E {I, ... , k}. We first show that G i n G(k) = Gi n Gk+l'

The inclusion Gi n G(k) s:;; Gi n Gk+l is clear. Let (r,x) E Gi n Gk+l' Then by the definition of

sets Gi (Notation III.4.1), we have x E Vi n Vk+l. So 1fk+l(s(r, x)) = 1fk+l(X), which is contained

in 1fk+l(Vi n Vk+l) s:;; F(k). Thus (r,x) E G(k).
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Now we claim that if A is any topological space, and B, C, D ~ A are arbitrary subspaces

such that B is closed in C, then B n D is closed in C n D. To prove this, since B is closed in C,

there exists F closed in A such that F n C = B. Then B n D = F n C n D is closed in C n D. This

proves the claim.

is closed in C z. Then by the claim above,

is closed in Ci n C z . Similarly Ci n Ck+1 n Cz is closed in Ck+1 n Cz.

Then by the first statement of the lemma, Cz n Ci n C(k) is closed in Ci n Cz, and in

CHI n Cz . But then Cz n Ci n C(k) = (Cz n Ci n C(k)) n C(k) is closed in C(k) n Ck+1 n Cz =

C(k) n CZ.

Lemma 111.4.8. Let k E {I, ... , N -I}. Then

k k

C(k) n Cz = U(C i n C(k) n Cz ) = U(C i n Ck+1 n Cz).
i=I i=I

Proof: The last equality of the lemma follows from Lemma 111.4.7. Also it is clear that

k

U(C i n C(k) n Cz) ~ C(k) n Cz.
i=l

We will show that C(k) n Cz ~ U7=1(C i n C(k) n Cz).

Let (r,x) E C(k) n Cz. Then x E VHl n zc and -r E (o:(x),;J(x)). Now consider

D

We first check that Vk\l = Vk+1ll1rk~l (1rk+l(X)). It is clear that Vk\l ~ Vk+1 n 1rk~l (1rk+l(X)).

Let Y E VH1 n 1rk~l (1rk+1(X)) , let r x = ak+l(x)~'(h+l(X), let r y = ak+l(Y)~'(h+l(Y), let Cx = rxx,

and let cy = ryY. Then Cx = 1rk+l(X) and Cy = 1rk+l(Y)' By assumption, Cx = Cy. Part 3 of

Lemma III.3.1 implies that r x E (O:k+1(X),;Jk+l(X)) and r y E (O:k+l(y),;JHl(Y)), so we have

-rx E (O:k+1(Cx),;Jk+1(Cx)) and -ry E (O:k+1(Cy),;Jk+1(Cy)), Note that X,Y E Vk+1 implies that
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O:k+I(X) < 0 < Ih+I(X) and that O:k+I(Y) < 0 < f3k+I(Y)' Now, if r x - r y ~ f3k+I(X), we have

(O:k+I(X) + f3k+I(X)) - (O:k+I(Y) + f3k+I(Y)) ~ 2f3k+I(X), and so

O:k+I(Y) + f3k+I(Y) ::; O:k+l(X) - f3k+I(X) = O:k+I(Cx ) - f3k+I(Cx)

= O:k+I(ey) - f3k+I(Cy) = O:k+l(Y) - f3k+I(Y)'

Then f3k+1 (y) ::; 0, contradiction. Similarly, r x - r y ::; O:k+1 (x) implies that O:k+1 (y) ~ 0, also

a contradiction. So r x - r y E (O:k+I(X),f3k+I(X)), Thus Y = (rx - ry)(x) E Vk'+I' and Vkx+ I =

Vk+1n 1l"k~I(1l"k+I(X)), Also, note that if Y E Vkx+l' then Y = sx for some s E (O:k+I(X),f3k+I(X)),

and then

V!+I = (O:k+I(Y)' f3k+1 (y))y = (O:k+I(SX),f3k+I(SX))(sx)

= (O:k+I(X) - S,f3k+I(X) - s)(sx) = Vk'+I'

Now, (r, x) E C(k) implies that 1l"k+l (x) E 1l"k+1 (Vk+1n (U~=I Vi) ). Thus there exists

Y E Vk+1 n (U~=I Vi) such that 1l"k+I(X) = 1l"k+I(Y)' Then Y E Vk'+I' so V!+l = Vk'+l' But by

Lemma III.3.8, we know that zc n vt+l = zc n (U~=I V!+I n Vi) . So we have zc n Vk\1 =

zc n (U7=1 Vk'+1 n Vi) .Since x E Vk'+l n ZC, there exists i E {I, ... ,k} such that x E Vk'+l n Vi ~
Vk+1 n Vi. Then x E Vi n Zc, and then (o:(x),f3(x)) ~ (O:i(X),f3i(X)), and so -r E (O:i(X),f3i(X)),

Thus (r,x) E Ci . Hence

k

(r,x) E C(k) n Cz n Ci ~ U(Ci n C<k) n Cz ).
i=1

o

Lemma III.4.9. Let k E {I, ... , N - I}. Then Ck+1 \ C(k) ~ Cz .

Proof' Let (r, x) E Ck+1 \ C(k). First of all, if Vkx+I n (U~=I Vi) =I- 0, there exists

Then 1l"k+I(X) = 1l"k+I(Y) E F(k). Hence (r,x) E C(k). This contradicts our assumption that (r,x)

is not contained in C(k). Therefore Vk\1 n (U7=1 Vi) = 0.
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a contradiction. So V{+I ~ Z. That is, (ak+l(x),.8k+I(X))X ~ Z. Let

Since x E Vk+l, we have ak+l(x) < 0 < .8HI(X). SO W > O. Then [-w,w]x ~ Z. But

([-w,w]x) n Z ~ ([-CJ,CJ]x) n Z = {x}.

So, because the action is free, w = 0, which is a contradiction. Therefore

By Lemma III.3.7, the set TX n [ak+l(x),.8k+I(X)] contains only 2 elements, namely

ak+l(x) and .8k+I(X). Then for all s E (ak+l(x),.8k+l(X)), we have sx E ZC. So x E ZC (because

aHI(x) < 0 < .8k+I(X)), a(x) = ak+l(x), and .8(x) = .8HI(X). Since (r,x) E GHI , we have

-r E (aHI(x),.8k+I(X)) = (a(x),.8(x)), and so (r,x) E Gz. 0

Lemma III.4.10. Let i E {I, ... ,N}, and let F ~ Xi be closed. Then:

1. we have Gi,F = {(r,x) E 1ft x Wi: 1l"i(X) E F,-r E [ai(x),.8i(X)]}.

2. we have

Gi,F \ Gi,F = {(r,x) E Gi,F: ai(x) = O}

U {(r,x) E Gi,F: .8i(X) = O}

U {(r, x) E Gi,F: - r = ai(x)}

U Hr, x) E Gi,F: - r = .8i(X)}.

3. the set Gi,F \ Gi,F is closed in 1ft x X, and Gi,F is open in Gi,F.
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Proof- Let

A = {(T,X) E lR x Wi: 1ri(X) E F, -T E [ai(x)"Lh(x)]}.

We first show that A is closed. Well, if (Tn' Xn) E A, and (Tn' Xn) ---4 (T, X) for some (T, x) E lR x X,

then x E Wi and 1ri(X) E F, because F and Wi are closed in X, and because ai(Xn) ---4 ai(x),

f3i(Xn) ---4 f3i(X) , and -Tn ---4 -T. Since -Tn E [ai(Xn),f3i(Xn)] for all n 2': 1, we have -T E

[ai(x),f3i(X)], Hence (T,X) E A, and so A is closed.

Now let (T,X) E A. Let s = (ai(x) + f3i(x))/2, and let c = sx = 1ri(X) E F ~ Vi. Since

-T E [ai(x), f3i(X)], there exists a sequence {Tn} in (-f3i(X), -ai(x)) such that Tn ---4 T. Now since

ai(x) < f3i(X), we see that ai(x) < S< f3i(X), Since ai(x) ::::: 0, we see that ai(x) ::::: ai(x)/(2n) for

all n 2': 1; since f3i(X) 2': 0, we have f3i(x)/(2n) ::::: f3i(X) for all n 2': 1. Then

for all n 2': 1. Thus s/(2n) E (ai(x),f3i(X)) for all n 2': 1. Then (2~JX E Wi, ai((2~Jx) -I- 0, and

f3i((2"r')x) -I- a for all n 2': 1. Thus (2~)x E Vi for all n 2': 1. Since -Tn E (ai(X), (3i(X)) for all n 2': 1,

we have

-Tn - S/ (2n) E(ai (X), f3i (X)) - s/ (2n) = (ai ( ( 2:) X) , f3i ((2:) X) )

for all n 2': 1, so (Tn + s/(2n), (s/2n)x) E Gi for all n 2': 1. Since

1ri(S((Tn + s/(2n), (s/2n)x)) = 1ri(X) E F,

we have (Tn + s/(2n), (s/2n)x) E Gi,F for all n 2': 1. Since (Tn + s/(2n), (2~JX) ---4 (T,X), we see

that (T, x) E Gi,F. Thus part 1 holds.

Let Al = {(T,X) E Gi,F: ai(x) = a}, let A2 = {(T,X) E Gi,F: f3i(X) = a}, let A3 =

{(T, x) E Gi,F: - T = ai(x)}, let A4 = {(T, x) E Gi,F: - T = f3i(X)}, and let A = Al U"· U A4. To

show part 2, we only need to show that Gi,F n A = 0 and Gi,F U A = Gi,F. We first show that

Gi,F n Aj = 0 for all j E {I, ... , 4}.
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Note that

Gi,F = {(r,se) E JR x X: e E F,s,s -r E (CYi(e),,Bi(e))}

= {(r,x) E Gi : 1ri(X) E F}.

If (r, x) E Gi,F, then x E Vi, and so CYi(X) -I- 0 and ,Bi(X) -I- O. Then (r, x) tI- Al and (r, x) tI- A2 .

Thus A l n Gi,F = 0, and A 2 n Gi,F = 0. Also, (r,x) E Gi,F implies that -r -I- CYi(X) and

-r -I- ,Bi(X). Then (r, x) tI- A3 and (r, x) tI- A4 · Thus A3 n Gi,F = 0, and A4 n Gi,F = 0. Then

Gi,F nA= 0.

Now let (r,x) E Gi,F. Then x E Wi, 1ri(X) E F, and -r E [CYi(X),,Bi(X)]. Suppose that

(r,x) tI- A. Then CYi(X) -I- 0, ,Bi(X) -I- 0, -r -I- CYi(X), and -r -I- ,Bi(X). So x E Vi, -r E (CYi(X),,Bi(X)),

and (r, x) E Gi. Since 1ri(X) E F, we see that (r, x) E Gi,F. Thus Gi,F = AUGi,F, and part 2 holds.

Now let {(rn' xn)} be a sequence in Al that converges to some (r, x) E JR x X. Since Gi,F

is closed, we see that (r,x) E Gi,F. Then by continuity of CYi, we have CYi(X) = O. So (r,x) E A l ,

and so A l is closed in JR x X. Similarly, A2 is closed. Now let {(rn' Xn)} be a sequence in A3

that converges to some (r, x) E lR x X. Then (r, x) E Gi,F. Since rn = CYi(Xn) for all n ~ 1, since

CYi(Xn) -> CYi(X), and since rn -> r, we have CYi(X) = r. Thus (r,x) E A3 . So A3 is closed in JR x X.

Similarly A4 is closed in lR x X; and so A is closed in lR x X. Then Gi,F = Gi,F n Ac is open in

~,F' 0

Corollary 111.4.11. Let i E {I, ... , N}. Then

1. we have Gi = {(r,x) E JR x Wi: -r E [CYi(X),,Bi(X)]},

2. we have

Gi \ Gi = ((r,x) E Gi : CYi(X) = O}

U {(r, x) E Gi : ,Bi(X) = O}

U{(r,X)EGi : -r=CYi(X)}

U {(r, X) E Gi: - r = ,Bi (X)} ,

3. the set Gi \ Gi,F is closed in lR x X, and Gi is open in Gi.
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111.5. The C*-Algebra of Gi

In this section we will define *-algebra structures and C*-norms on CO(Gi) and Co(G(k)).

Let f, 9 E C(Gi,F), and let (r, x) E Gi,F. For each t E [-,8i(X), -ai(x)], (t, x) and (r - t, (-t)x)

are elements of Gi,F (by Lemma III.4.4), so we can define h: [-,8i(X), -ai(x)] ---; <C by h(t) =

f(t, x)g(r - t, (-t)x). Then h is certainly continuous, and hence in Ll ([-,8i(X) , -ai(x)]) , and so

J~~(~~) f(t, x)g(r - t, (-t)x)dt exists. Also, (-r, (-r )x) is also an element of Gi,F, so f( -r, (-r)x)

exists. Then we can define convolution on Gi,F by

and involution by

j
-ai(X)

(f * g) (r, x) = f( t, x )g(r - t, (-t)x) dt,
-f3i(X)

j*(r, x) = f( -r, (-r)x).

(III.7)

(III.8)

We verify through the next three lemmas that the above formulas make CO(Gi,F) into a *-algebra.

In fact, if we take the groupoid structure of Gi,F into consideration, the above formulas are the

ones used in the construction of groupoid C*-algebras in [13].

Lemma 111.5.1. Let i E {I, ... ,N}, let F -1= 0 be a closed subspace of Xi, and let f, 9 E C(Gi,F).

Then f *9 and 1* are continuous. That is f *g, j* E C(Gi,F).

Proof: It is clear that 1* is continuous.

Let {(rn' xn)} be a sequence in Gi,F that converges to some (r, x) E Gi,F. Let E> O. For

each n 2: 1, let hn : JR ---; <C be defined by hn(t) = f( t, xn)g(rn-t, (-t)xn) if t E [-,8i(Xn), -ai(xn)],

and hn(t) = 0 otherwise. Then hn is measurable for each n 2: 1. Define h: JR ---; <C by h(t) =

f(t, x)g(r - t, (-r)x) for t E [-,8i(X), -ai(x)], and hn(t) = 0 otherwise. Then h is measurable. Let

5 = min {81Ifll~llglloo' f3i(X)~ai(X)}. Then 5 > O. Since ai(xn) ---; ai(x), and ,8i(Xn ) ---; ,8i(X), there

exists M 2: 1 such that n 2: M implies that lai(xn) - ai(x)1 < 5, and l,8i(X) - ,8i(Xn)I < 5. Now, if

t E [-,8i(X) + 5, -ai(x) - 5], then t E [-,8i(Xn), -ai(xn)] for all n 2: M' , and t E [-,8i(X) , -ai(x)].

Therefore

hn(t) = f(t, xn)g(rn - t, (-t)xn) ---; f(t, x)g(r - t, (-r)x) = h(t).
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Since Ihn(t)1 :S IIfil001191100 for all n :::=: 1 and all t E [-J3i(X) + 0, -ai(x) - oj, and since

by the Lebesgue Dominated Convergence Theorem, we have

j
a i (X)-8

Ihn(t) - h(t) 1 dt ---} O.
-,Bi(X)+8

So there exists M' :::=: 1 such that n :::=: M' implies that

j
a i (X)-8

Ihn(t) - h(t)1 dt < t/2.
-,Bi(x)+8

Let M" = M' + M. Then if n :::=: M", we have

Ij

-ai(xn) hn(t) dt _ j-ai(x) h(t) dtl
-,Bi(X n ) -,Bi(X)

:S 201lhn ll 00 + 201lhll 00 + Ij-a
i
(xn)-8 (hn(t) - h(t)) dtl

-,Bi(xn )+8

< 4011f11001191/00 + t/2 :S t/2 + t/2

= t.

f *9 is continuous. o

Lemma III.5.2. Let i E {I, ... , N}, and let F i=- 0 be a closed subset of Xi. Let f,9 E CO(Gi,F).

Then f *9 E Co (Gi,F ) and 1* E Co (Gi,F ).

Proof: By Lemma III.4. 10, we have

U {(r, x) E Gi,F: J3i(X) = O}

U {(r,x) E Gi,F: -r = ai(x)}

U{(r,x)EGi,F: -r=J3i(x)}.
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Next we define four different subsets of Gi,p, which can be thought of as the faces of Gi,p. Define

Al = {(r,x) E Gi,P: ai(x) = a},

Az = {(r, x) E Gi,P: fJi(X) = a},

A 3 = ((r,x) E Gi,P: -r = ai(x)},

and

To show that j * g, 1* E CO(Gi,p), we just need to show that (j * g)IA j = a and 1*IA j = a for

jE{1, ... ,4}.

Let (r, x) E Al U Az. Either ai(x) = a or fJi(X) = O. Then for all t E [-fJi(X) , -ai(x)], we

have (t, x) E Al U Az. So j(t, x) = a for all t E [-fJi(X), -ai(x)], and so

j
-ai(X)

(j * g)(r, x) = j(t, x)g(r - t, (-t)x) dt = O.
-f3;(x)

Thus (j *9)IA,UA2 = O.

Let (r,x) E A3 U A4 . Then either (r,x) = (-ai(x),x) or (r,x) = (-fJi(X), x). So for all

t E [-fJi(X), -ai(x)], we have

or

and so (r - t, (-t)x) E A3 U A4 i and then g(r - t, (-t)x) = O. Therefore we have

j
-ai(X)

(j * g)(r, x) = j(t, x)g(r - t, (-t)x) dt = O.
-f3i(X)

Thus (j *g)I AaUA4 = 0, and so j *9 E CO(Gi,p).
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Next we consider 1*. Now (r,x) E Al U Az implies CYi(X) = °or fJi(X) = 0, which implies

that r = CYi(( -r)x) or r = fJi(( -r)x), which in turn implies that (-r, (-r)x) E A3 U A4 • Also,

(r,x) E A 3 U A4 implies that -r = CYi(X) or -r = fJi(X), which implies that CYi((-r)x) = °or

fJi(( -r)x) = 0, which means that (r, x) E Al U Az. Thus if (r, x) E Gi,F, then so is (-r, (-r)x),

and so 1*(r,x) = f(-r, (-r)x)) = 0. Therefore 1* E CO(Gi,F).

Lemma 111.5.3. The set C(Gi,F) is a *-algebra, and Co(Gi,F) is a *-subalgebra of C(Gi,F).

D

Proof: It is clear that C(Gi,F) is a linear space. Lemma 111.5.1 shows that convolution and

involution are well-defined.

Let f,g, h E C(Gi,F), let (r,x) E Gi,F, and let A E Co To simplify the notation, let

a = CYi(X) and b = fJi(X). It is clear that A(j * g) = (Ai) *9 = f * (Ag). Now, applying the Fubini

Theorem to interchange integrals, we check that convolution is associative:

[(j *g) * h](r, x) = [~a (j * g)(t, x)h(r - t, (-t)x) dt

= [~a ([~a f(s, x)g(t _ s, (-s)x) dS) h(r - t, (-t)x) dt

= j-a j-a f(s, x)g(t _ s, (-s)x)h(r _ t, (-t)x) dt ds
-b -b

= [~a [~:~s f(s,x)g(t,(-s)x)h(r-(t+s),(-(t+s))x)dtds

j
-a (j-ai«-S)X) )

= f(s,x) g(t,(-s)x)h((r-s)-t),(-t)((-s)x))dt ds
-b -!3i«-S)X)

= j-a f(s, x)(g * h)(r - s, (-s)x) ds
-b

Thus convolution is associative. It is clear that convolution is distributive. Now we check that
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involution is anti-commutative:

(f*g)*(r,x) = (f*g)(-r,(-r)x)

j
-O:i((-r)x)

= f(t, (-r)x)g( -r - t, (-r - t)x) dt
-,6i((-r)X)

j
-(O:i(x)+r)

= f(t, (-r)x)g( -r - t, (-r - t)x) dt
-(,6i(X)+r)

= £~a f(s-r, (-r)x) g(-s,(-s)x)ds

= j-a j*(r _ s, (-s)x)g*(s,x) ds
-b

= (g* * j*)(r, x).

So involution is anti-commutative. It is clear that involution is conjugate linear. It is also clear

that (f*)* = f for all f E C(Gi,F). Thus C(Gi,F) is a *-algebra. By Lemma III.5.2, CO(Gi,F) is a

*-subalgebra of C(Gi,F). D

Next, we will define a family of *-representations of Gi,F for each i = 1, ... , N, and each

F <;;; Xi. For each i E {I, ... , N} and for each x E Xi, let xf: JR ----7 JR be the characteristic function

of the interval (ai(x),,Bi(X)) <;;; JR, and define a projection in pf E B(L2 (JR)) by pf(~) = xf~. For

each i E {I, ... , N}, each nonempty closed subset F <;;; Xi, and each x E F, define

by, for f E CO(Gi,F), ~ E L 2 (JR), and r E JR,

l
,6i(X)

Af,F(f)(~)(r)= xf(r)xf(t)~(t)f(r - t, rx) dt.
O:i(X)

(III.9)

Notation 111.5.4. For the rest of the chapter, let Af denote Af x. for each i E {I, ... , N}, and, ,

let A(k),x denote Ak+1,F(k) for each k = 1, ... , N - 1.

Lemma 111.5.5. For each i E {I, ... , N}, each nonempty closed subset F <;;; Xi and each x E F,

the map Af,F is a *-homomorphism. Further, if f E CO(Gi,F), and if {xn } is a sequence in F that

converges to some x E F, then A~,F(f) ----7 Xi,F(f). Moreover, if f E CO(Gi,F) and x E F, then
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A'i,F(f) = 0 if and only if flH. = 0, where

Proof: Fix i E {I, ... , N} and F <;;; X closed for the entire proof.

Let x E F. Linearity of Xi,F is clear. Now let f,g E CO(Gi,F). Then for all ~ E L2(JR) and

all r E (ai(x),,Bi(X)), we have, applying the Fubini Theorem,

l

(3i(X)

A'f,F(f * g)(~)(r) = xHr)xf (t)~(t)(f * g) (r - t, rx) dt
ai(x)

l

(3i(X) (l-ai(rx) )
= xf(r)xf(t)~(t) f(s, rx)g(r - t - s, (-s + r)x) ds dt

ai(X) -(3i(rx)

l

(3i(X) (l(3i(rx) )
= xHr)xHt)~(t) f(-s,rx)g(r-t+s,(s+r)x)ds dt

ai (x) a'i (rx)

l

(3i(X) (l(3i(X) )
= xHr)xHt)~(t) f(r - s, rx)g(s - t, sx) ds dt

ai(x) ai(X)

l

(3i(X) l(3i(X)
= xf (r )xf (t)~(t)f(r - s, rx )g(s - t, sx) dt ds

ai(X) ai(X)

l

(3i(X) (l(3i(X) )
= f(r-s,rx)xHr) xHt)~(t)g(s-t,sx)dt ds.

ai(x) a;(x)

Now we show that for all s E JR, we have xHs)f(r - s, rx) = f(r - s, rx). If f(r - s, rx) = 0, then

we are done, so assume that f(r-s,rx) i- O. Then (r-s,rx) E Gi,F' So s-r E (ai(rx),,Bi(rx)) =

(ai(x), ,Bi(X)) - r, and thus s E (ai(x), ,Bi(X)). Then xHs) = 1. So xHs)f(r - s, rx) = f(r - s, rx)

for all s E R Then

l~W (l~W )A'f,FU *g)(~)(r) = Xf(s)2 f(r - s, rx)xHr) xf(t)~(t)g(s - t, sx) dt ds
a;(x) ai(X)

l~W (l~W )= xf(s)f(r - s,rx)xf(r) xHs)xHt)~(t)g(s- t, sx)dt ds
ai(X) ai(X)

l

(3i(X)

= xHs)f(r - s, rx)xf (r)A'f,F(g)(~)(s)ds
ai(X)

= Af,FU)[Af,F(g)(~)](r).
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If r tt (C¥i(X),,Bi(X)), then Af,F(f * g)(~)(r) = 0 = Af,F(f)[Af,F(g)(~)](r), Thus

for all ~ E L2 (1R), So A7,F(f * g) = Af,F(f)Af,F(g). Therefore Ai,F is multiplicative.

For all j E CO(Gi,F) and all ~,T) E L2 (1R), we have, applying the Fubini Theorem,

(Af,F(f*)(~),T)) = 1A7,F(f*)(~)(r)T)(r) dr

r (l(3i(X) )= Jm xf(r)xf(t)~(t)j*(r - t, rx)dt T)(r) dr
lR a,;. (x)

l

(3;(X) l(3i(X)
= xf(r)xf(t)~(t)j*(r - t, rX)T)(r) dr dt

ai(X) ai(X)

l

(3;(X) l(3i(X)
= xf(r)xf(t)~(t)j(t - r, tX)T)(r) dr dt

ai(X) ai(X)

l

(3;(X) l(3;(,C)
= ~(t)xf(t) xf(r)xf(t)j(t - r, tX)T)(r) dr dt

a;(x) ai(X)

1 (l

(3,(X) )
= ~(t) xf(r)xf(t)j(t - r, tx)T)(r) dr dt

lR a,(x)

= r ~(t)AfF(f)(T))(t) dt
JlR '

= (~, Ai,F(f)(T))).

So A7,F(f*) = Af,F(f)*· Thus A7,F is a *-homomorphism.

Let j E CO(Gi,F), and let {xn} be a sequence in F that converges to x E F. We now

show that IIA~,F(f) - Af,F(f) II ---. O. For each n :::: 1, let Xn: 1R2 ---.IR be the characteristic function

of (C¥i(Xn),,Bi(Xn)) x (C¥i(Xn),,Bi(Xn)) ~ 1R2
, and let x: 1R2

---. IR be the characteristic function of

(C¥i(X),,Bi(X)) x (C¥i(X),,Bi(X)) ~ 1R2
• Because,Bi is continuous on F and because Xn ---. x, we see

that the sequence {,Bi(Xn)} is bounded. Let D = sUPn~l ,Bi(Xn) and let XD: 1R2
---. IR be the

characteristic function of the square (-D,D) x (-D,D). Since C¥i(Y) = -,Bi(Y) for all Y E Xi,

we see that Xn ::; XD for all n :::: 1 and X ::; XD. For each n :::: 1, define hn : 1R2 ---. C by

hn(r, t) = j(r - t,rxn). Also define h: 1R2 ---. C by h(r, t) = j(r - t,rx).
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It is clear that for all n:::: 1, either Xn :::: X or X :::: Xn. Then either

or

But in either case fJR2 IXn - xl -) 0, and so

( )

1/2 ( ) 1/2

IIXn - xI12 = l2 IXn - xI2 = l2 IXn - xl -) O.

Therefore IIXnh - xhl1 2 ::; Ilhlloo ·IIXn - xI12 -) o. Also, for every n :::: 1, we have IXDhn - XDhl 2
=

XD ·Ihn - hl 2 ::; 4XDllfll~· Since 4XDllfll~ E L 1(JR2) and since hn converges to h point-wise, it

follows from the Lebesgue's Dominated Convergence Theorem that IlxDhn - XDhl1 2 -) o. Then

Thus we have
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Note that Xn(r, t) = X~n(r)X~n (t) and x(r, t) = xi(r)xi(t). So for each ~ E L 2(JR), we have

II(A~,F(f) - Af,F(f))(~)112

= ll(A~,F(f) - Af,F(f))(~)(rf dr

= lIAf,'F(f)(O(r) - Af,F(f)(~)(r)12 dr

l I1
f3i (xn)

= X~n(r)Xfn(t)~(t)f(r - t,rxn)dt
lII. Ui (x n )

f3i(X) 1

2

- r xf(r)xf(t)~(t)f(r-t,rx)dt dr
} Ui(X)

= III Xn(r, t)~(t)hn(r, t)dt -l x(r, t)~(t)h(r, t) d{ dr

= lll[xn(r, t)~(t)hn(r,t) - x(r, t)~(t)h(r, t)] d{ dr

= III ~(t)[Xn(r, t)hn(r, t) - x(r, t)h(r, t)] d{ dr

:S l [ll~(t)I.lxn(r,t)hn(r,t) - x(r,t)h(r,t)ldtf dr

[( )
1/2 ( ) 1/2] 2

:S l ll~(t)12dt . llxn(r, t)hn(r, t) - x(r, t)h(r, t)1 2dt dr

:S l [ll~(t)12dt] . [llxn(r, t)hn(r, t) - x(r, t)h(r, t) 12dt] dr

:S 11~112 ·llIXn(r, t)hn(r, t) - x(r, t)h(r, t)1 2dtdr

= II~IIZ . IIXnhn - xhll~·

Thus, IIAf,'p(f) - Af,F(f) II :s IIXnhn - xhllz ----l o.
Next we show that for all x E F, if ~ E LZ(JR) is continuous on (ai(x),f3i(X)) and

bounded, then Af,F(f)(~) is continuous on (ai(x),f3i(X)). Let x E F, and let ~ E LZ(JR)

be continuous on (ai(x),f3i(X)) and bounded. Suppose that rn ----l r in (ai(x),f3i(X)). Then

hn(t) = xi(t)xf(rn)~(t)f(rn - t, rnx) converges to

h(t) = xi(t)xf (r)~(t)f(r - t, rx)

pointwise on (ai(x),f3i(X)). Therefore, since Ihnl :s xfll~lloollflloo E £l«ai(x),f3i(x)), by the
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Lebesgue Dominated Convergence Theorem, we have

lim Af F(f)(~)(rn) = lim rxf(t)xf(rn)~(t)f(rn - t,rnx) dt
n----tOO l n----too JIR.

= l xf(t)xf(r)~(t)f(r - t, rx) dt = Af,F(f)(~)(r).

Thus Xf,F(f)(~) is continuous on (ai(x),,8i(X)).

Now, let f E CO(Gi,F), and let x E F. Suppose that Xf,F(f) = O. Let r E (ai(x), ,8i(X)).

Define ~: lR -> <C by ~(t) = f(r - t,rx) for t E (ai(x),,8i(X)), and zero otherwise. Then ~

is continuous on (ai(x),,8i(X)), and ~ is bounded. Therefore ).,i,F(f)(~) is continuous. Since

).,f,F(f)(~) = 0, we have

1 j
(3i(X)

o= ).,i,F(f)(~)(r) = xi(t)xi(r)lf(r - t, rx)1 2dt = If(r - t, rx)1 2dt.
IR Qi(X)

But t i--' If (r - t, rxWis continuous on (ai(x), ,8i(X)), so f(r - t, rx) = 0 for all t E (ai(x),,8i (x)).

This holds for all r E (ai (x), ,8i(X)), so f(r - t, rx) = 0 for all r, t E (ai (x), ,8i(X)). That is flH x = O.

It is clear that if flHx = 0, then ).,i,F(f) = o.

The following proposition is an immediate consequence of Lemma IIL5.5.

o

Proposition 111.5.6. For each i E {I, ... , N} and each nonempty closed subset F ~ X, define

If F = 0, put cPi,F = O. Then cPi,F is a *-homomorphism such that IIcPi,F(f) II = SUPxEF II).,i,F(f) II
for all f E CO(Gi,f)'

111.6. Stable Recursive Subhomogeneous Decomposition of Az

Notation 111.6.1. We fix the following notations for the rest of the chapter. Now for each

i E {I, ... , N}, and each closed F ~ Xi define a C*- norm II . Ili,F on Co (Gi,F ) by Ilflli,F =

SUPxEF II).,f,F(f) II· Note that Lemma III.5.5 ensures that 11·lli,F is a C*-norm. Let II· Iii = 11·lkxi ,

for each i E {I, ... , N}; and let II . II(k) = II . Ilk+l,F(k) for each k E {I, ... , N - I}. (If F(k) = 0,

let 11'II(k) be the obvious norm on CO(G(k)).) For each i E {I, ... , N} and each closed F ~ Xi, let
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Ai,F be the completion of CO(Gi,F) with respect to II . Ili,F. For each i E {I, ... , N} let Ai denote

Ai,x;, and for each k E {I, ... , N -I} let ACk) denote Ak+l,F(k). For each i E {I, ... , N} and each

nonempty closed subset F ~ Xi, let ¢i,F denote the map in Proposition IlL5.6. It is then clear

that ¢i,F is isometric and extends to an injective *-homomorphism from Ai,F into C(F, lK(L2 (lR))),

and we will also use ¢i,F to denote the extension. Let ¢i denote ¢i,X; for i E {I, ... , N}, and let

¢Ck) denote ¢k+l,F(k). For each i E {I, ... , N} and each nonempty closed subset F ~ X, let

Ki,F = {f E C(F, K(L 2 (lR))): pi f(x)pi = f(x) for all x E F}.

If F = 0, then let Ki,F = O. Let Ki denote Ki,x; and let KCk) denote Kk+l,F(k).

The C*-algebras Ai will be the components of a SRSH decomposition of A z . We proceed

to obtain a SRSH decomposition of A z as follows: We first identify Ai with C(Xi , lK) for each i E

{I, ... , N}. Note that Proposition IlL5.6 already shows that CO(Gi ) is isometrically *-isomorphic

to a *-subalgebra of C(Xi , lK). Thus we only need to identify the range of the map, and show that

the norm closure of the range is isomorphic to C(Xi,lK). Then we glue the *-algebras CO(Gi ) to

obtain Co(Gz). After the gluing, we extend the gluing to the Ai to obtain a decomposition of Az .

Finally, we use the identifications between the algebras Ai and the algebras C(Xi , lK) to obtain a

SRSH decomposition of Az.

The next lemma is a standard result in operator algebra.

Lemma III.6.2. Let H be a Hilbert space, let {an} be a sequence in B (H) that converges to some

a E B(H) in strong operator topology, and let {bn} be a sequence in K(H) that converges to some

b E K(H) in the norm topology. Then anbna~ -- aba* in the norm topology.

Lemma III.6.3. For each i E {I, ... N}, and for each nonempty closed subset F ~ X, let Ki,F

be as in III. 6.1. Then we have:

1. Ki,F is a C*-subalgebra ofC(F,K(L2 (lR))).

4. For each i E {I, ... , N}, and for each x E Xi, define Ui,x: L 2 (lR) -- L2 (lR) by Ui,x(~)(r) =

~(TIf3;Cx)) Th f h' {I N} d h X ' 't 'th * 'Cf3;Cx)J1/2' en Jor eac z E , ... , , an eac x E i, Ui,x zs a unz ary, wz ui,x gwen
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by ui,x(~)(r) = (f3i(X))1/2~(f3i(x)r). Further, for each i = 1, ... , N, if {xn } is a sequence

in Xi that converges to some x E Xi, then {Ui,xn} and {ui,xJ converge to Ui,x and ui,x,

respectively, in the strong operator topology.

5. Let I = (-1,1), let PI E B(L2(JR)) be the projection given by PI(~) = XI~, and let

be the canonical *-isomorphism. For each i E {I, ... , N}, and each closed subset F ~ Xi,

define <Pi,F: Ki,F -> C(F, K(L2(1))) by <Pi,F(f)(X) = D(ui,xf(x)ui,x). Then <Pi,F is a well

defined *-isomorphism for all i E {I, ... , N}, and all closed F ~ Xi. (If F = 0, take

C(F,K(L2(I))) = 0, and <Pi,F = 0.)

Proof: Part 1 and part 2 are clear.

Now we show that for each x E F, the set Sx = {¢i,F(f)(X): f E CO(Gi,F)} is dense in Tx =

{a E K(L2(JR)): piapi = a}. Let L;" = (ai(x), f3i(X)), Note that Tx = piK(L2(JR))pi = K(L2(If))

is C*-subalgebra of K(L2(JR)). Let~, TJ E Cc((ai(x), f3i(X)), Let E = {(r, tx) E JR x X: t, r-t Elf}.

Then E <:;;; Gi,F. It follows from Lemma III.3.2 that the map h: If x If -> E defined by h(r, t) =

(t - r, tx) is a homeomorphism. (The inverse is given by (r, tx) f---' (t - r, t).) Let 1": I x I -> C be

defined by 1"(r, t) = ~(t)TJ(r). Then 1" E Co(I x 1). Let 1': E -> C be defined by l' = 1" 0 h-1.

Then l' E Co(E), and 1'(r, tx) = 1"(t - r, tx) = ~(t)TJ(t - r). Now E is closed in Gi,F, so there

exists f E CO(Gi,F) such that fiE = 1'. Then for all r E JR and all (E L2(If) we have

¢i,F(f)(x)(()(r) = >-i,F(f)(()(r)

= l xi(r)xi(t)((t)f(r - t,rx) dt

= l xi(r)xi(t)((t)~(r)TJ(t) dt

= l ((t)~(r)TJ(t) dt

= ((,TJ)~(r).

For any Hilbert space H and any e, TJ' E H, we use the notation E' ® TJ' to denote the rank one

operator defined by ( f---' ((, TJ')e. Then ¢i,F(f)(X) = ~ ® TJ, and ~ ® TJ E Sx' Since Cc(If) is dense
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spans a dense subset of Tx, we see that Sx is dense in Tx.

Now we show that for all f E Ki,F, for all x E F, and for all f> 0, there exists an open

subset U ~ F containing x and 9 E CO(Gi,F) such that for all y E U, we have II¢i,F(g)(y)- f(y)11 <

f. Let f E Ki,F, X E F and f > 0 be given. Then, by the paragraph above, there exists 9 E Co(Gi,F)

such that II¢i,F(g)(X) - f(x)11 < f/2. Now the map y H II¢i,F(g)(y) - f(y)11 is continuous, so

U = {y E F: II¢i,F(g)(y) - f(y)11 < f} is an open set containing x. It is clear that for all y E U, we

have II¢i,F(g)(y) - f(y)11 < f.

Now we show that if f E CO(Gi,F) and h E C(F), then h¢i,F(f) E 1m ¢i,F. Define

h: Gi,F ----; <C by h(r,x) = h(1ri(X)). Then hE C(Gi,F), and hf E CO(Gi,F). So for all x E F, all

~ E L 2 (JR), and all r E JR, we have

¢i,F(hf)(x)(~)(r) = )..f,F(hf)(~)(r)

= ~ xf(r)xf(t)~(t)h(r - t, rx)f(r - t, rx) dt

= ~ xf(r)xf(t)~(t)h(x)f(r - t, rx) dt

= h(x) ~ xf(r)xf(t)~(t)f(r - t,rx) dt

= (h(X) ..f,F(f))(~)(r)

= (h(X)¢i,F(f)(x))(O(r).

Now we finish the proof of part 3. Let 9 E Ki,F, and let f > O. For each x E F, let

Vx ~ F be an open subset containing x, and let fx E CO(Gi,F) be such that for all y E Vx we

have II¢i,F(fx)(Y) - g(y)11 < f. The existence of Vx and fx are shown above. Then {Vx : x E F}

is an open cover of F, which is compact; so there exist Yl, ... ,Yrn such that F = U;:l VYj' Let

{hj : 1 ~ J' ~ m} be a partition of unity subordinate to {Vj: 1 ~ j ~ m}. By what is shown above,

we have hj¢i,F(fYj) Elm ¢i,F for each j E {l, ... ,m}. Then f = 'L?=lhj¢i,F(fYj) E 1m ¢i,F.

Now let x E F, and let 1 ~ j ~ m. If x tJ- Vyj , then hj(x) = 0 and hj (x)II¢i,F(fYj)(x) - g(x)11 = 0;
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m

Ilf(x) - g(x)11 = L hj(X)¢i,F(fYj)(X) - g(X)
j=l

m m

L hj(X)¢i,F(fyJ(X) - L hj(x)g(x)
j=l j=l

m

:::; Lhj(x)ll¢i,F(fYj)(X) - g(x)11
j=l
m

< L hj(X)E = E.

j=l

Part 3 proven.

Now we show part 4. It is clear that for each i E {l, ... ,N} and each x E Xi, Ui,x is a

unitary, and that ui,x is given by the formula in the statement. Fix i E {l, ... ,N}. Now we show

that if Xn ---> x in Xi, then Ui,xn ---> Ui,x in strong operator topology, and ui,x
n

---> Ui,x in strong

operator topology.

Let Xn ---> x in Xi, and let ~ E Cc (lR.). Since f3i (xn) ---> f3i (x), we have

for every r E R Suppose that supp ~ S;; [-b, b]. Since f3i is continuous and strictly positive on the

compact set Xi, it is bounded above by some real number M and below by some real number

L > O. Then

I
~(r/f3i(Xn)) _ ~(r/f3i(X)) /2 < 4· X[-Mb,Mbj(r) 'II~II~

f3i(Xn)l/2 f3i(X)l/2 - L '

for all r E R Since (4, X[-Mb,Mb] . II~II~) L -1 E L 1(JR), by the Lebesgue Dominated Convergence

Theorem, we have
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Now let ~ E L2 (lR.), and let 10 > O. Choose 'f) E Cc(lR.) such that 11'f) - ~II < 10(3. Let N ~ 1

be an integer such that n ~ N implies that IIui,xn ('f)) - Ui,x('f)) II < 10(3. Then for all n ~ N, we have

II Ui,xn(~) - Ui,x (~) II

::::; Ilui,xn (~) - Ui,xn('f)) II + Ilui,xn('f)) - Ui,x ('f)) II + II ui,x('f)) - ui,x(~)11

< II~ - 'f)11 + 10(3 + II~ - 'f)11 = E.

Thus Ui,xn - Ui,x in the strong operator topology. Since the strong and *-strong operator

topologies agree on the set of all unitaries in B(L2 (lR.)), we have ui x - ui x in the strong operator, n ,

topology as well. This proves Part 4.

Now we show part 5. Fix i E {I, ... ,N} and fix a nonempty closed subset F ~ Xi' Note

that for all x E F, we have u;piux = PI. Now define 1jJ: C(F,K(L2 (lR.))) _ C(F,K(L2 (lR.))) by

1jJ(f)(x) = u;f(x)ux. Continuity of i!-'(!) follows from the previous three paragraphs and Lemma

III.6.2. It is clear that 1/J is a *-isomorphism. We claim that 1/J(Ki,F) = C(F,PIK(L2 (JR))PI)' Let

f E Ki,F. Then

for all x E F. Thus 1/J(Ki ,F) ~ C(F,PIK(L2 (JR))PI)' Now let f E C(F,PIK(L2 (lR.))PI)' Then for

all x E F, we have f(x) = pf(x)p = u;piuxf(x)u;piux. Define g: F - K(L2 (lR.)) by g(x) =

piUxf(x)u;pf. Then 9 E Ki,F (continuity follows from the fact that if X n - x in F, then pfn - pi

in the strong operator topology), and 1/J(g) = f. Thus 1jJ(Ki,F) = C(F,PIK(L 2 (lR.))PI)'

Since for all f E Ki,F and all x E F, we have 1>i,F(f)(x) = n([V'(f)](x)), it is clear that

1>i,F is a well defined *-homomorphism. It is also clear that lJ?i,F is invertible. 0

Notation 111.6.4. For the rest of the chapter, let 1>i,F be the *-isomorphism from Lemma III.6.3.

Use lJ?i to denote lJ?i,X; for each i E {I, ... , N}, and use lJ?(k) to denote lJ?k+l,F(k) for all k with

l::::;k::::;N-l.

Lemma 111.6.5. For each k E {I, ... , N - I}, if G(k) =I- 0, define Rk: CO(Gk+l) - Co(G(k))

by Rk(f) = flo(k); if G(k) = 0, let Rk: CO(Gk+l) - Co(G(k)) be the zero map. Then for each

k E {I, ... , N -I}, the map Rk is a norm decreasing surjective *-homomorphism.
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Proof: Fix k E {I, ... , N - I}. Since C(k) is closed in CHI, the map Rk is a well defined

surjective linear map.

Let f, g E Co(Ck+I)' Note that if (r, x) E C(k), then (t, x), (r-t, (-t)x), (-r, (-r)x) E C(k)

for all t E (-(3i(X), -ai(x)). Then for all (r, x) E C(k), we have

j
-ai(X)

Rk(J *g)(r, x) = (J *g)(r, x) = f(t, x)g(r - t, (-t)x) dt
-f3i(X)

j
-ai(x)

= Rk(J)(t, X)Rk(g)(r - t, (-t)x) dt
-f3i(X)

= (Rk(J) * Rk(g))(r, x);

and

Rk(J*)(r,x) = j*(r, x) = f( -r, (-r)x) = Rk(J)( -r, (-r)x) = Rk(J)*(r,x).

Thus Rk is a *-homomorphism.

Let f E CO(Ck+I}. Then for each x E p(k), we have >..(k),X(Rk(J)) = >"k+I(J). Thus

IIRk(:r)ll(k) = sup 11>..(k),X(Rk(J)) II
xEF(k)

So Rk is norm-decreasing. o

Lemma III.6.6. Let k E {I, ... , N -I}. For each E > 0, and for each f E Co(C(k») with IIfll(k) < E,

there exists g E CO(Ck+l ) such that IlgllHI ~ E and Rk(g) = f, where Rk is the map defined in

Lemma III.6.6.

Proof: Fix k E {I, ... , N - I}. First note that for all f E Co(Ck+l) we have ¢(k) (Rk(J)) =

¢k+ I (J)' F(k) •

Let E > 0, and let f E Co(C(k»). Extend f to f' E CO(CkH)' Let
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Then U is an open set in Xi' If x E p(k), then

Thus p(k) ~ U.

Let h E Cc(Xi) satisfy 0 :::; h :::; 1, supp h ~ U, and hIF(k) = 1. Define hi E C(Gk+d

by h'(r,y) = h(7fk+l(Y))' Then 9 = h'f' E CO(Gk+1). Note that cPk+l(g) = hcPk+l(jI). Now, if

x E Xi \ U, then cPk+l(g)(X) = h(X)cPk+l(jI)(X) = 0; if x E U, then

IlcPk+l(g)(x)11 = Ilh(x)cPk+l(jI)(x)11 = IlcPk+l(jl) (x) II < Eo

Rdg)(r,x) = h'(r,x)j'(r,x) = h(7fk+l(x))f(r,x) = f(r,x).

o

Lemma 111.6.7. For each i E {1, ... ,N}, define Qi: Co(Gz) --7 CO(Gi) by Qi(j) = flc;rlc z '

Then Qi is a norm decreasing *-homomorphism for each i E {I, ... , N}.

Proof: We first show that Qi is a *-homomorphism. Let i E {I, ... , N}.

By Lemma III.4.6, the set Gi n Gz is closed in Gz . Thus we see that Qi(j) E Co(Gi nGz )

for all f E Co(Gz )· Since GinGZ is open in Gi, we see that Qi(j) E CO(Gi ). So Qi is well defined.

Linearity of Qi is clear.

Let f,g E Co(Gz). Note that if (r,x) E Gz n Gi, then (a(x),,B(x)) ~ (ai(x),,Bi(X)),

and so for all t E (-,B(x),-a(x)), we have (t,x) E Gz n Gi, (r - t,(-t)x) E Gi n Gz, and

(-r,(-r)x) E G i n Gz. Thus for all (r,x) E Gz n Gi and all t E (-,B(x),-a(x)), we have

Qi(j)(t, x) = f(t, x) and Qi(g)(r - t, (-t)x) = g(r - t, (-t)x). Then for every (r, x) contained in
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Gz n Gi , we have

Qi(f*g)(r,x) = (f*g)(r,x) = If(t,x)g(r-t,(-t)X)dt

j
-a(x)

= f(t, x)g(r - t, (-t)x) dt
-(3(x)

j
-a(x)

= Qi(f)(t, X)Qi(g)(r - t, (-t)x) dt
-(3(x)

j
-ai(X)

= Qi(f)(t,X)Qi(g)(r-t,(-t)x)dt
-(3i(X)

= (Qi(f) *Qi(g))(r,x).

Also, for all (r, x) E Gi n Gz , we have

Qi(f*)(r, x) = 1* (r, x) = f( -r, (-r)x) = Qi(f)(-r, (-r)x) = Qi(f)* (r, x).

Now we consider what happens if (r, z) E Gi \ (Gz n Gi ). Suppose that

for some (r, x) E Gi . Then for some t E (-,Bi(X), -ai(x)), we have (t, x) E Gi n Gz and

(r-t, (-t)x) E Gi n Gz. Thus, by the first statement in part 2 of Lemma III,4.4, we have

(r,x) = (r - t, (-t)x)(t,x) E Gi n Gz. So if (r,x) E Gi \ Gz, then (Qi(f) * Qi(g))(r,x) = 0;

and clearly Qi(f * g)(r, x) = 0 for all (r, x) E Gi \ Gz as well. Thus for all (r, x) E Gi ,

we have Qi(f * g)(r,x) = (Qi(f) * Qi(g))(r,x). Also, if (r,x) tJ- Gi n Gz, then (-r, (-r)x) =

(r,x)-l tJ- Gz n Gi . So (r,x) tJ- Gi n Gz implies that Qi(f*)(r,x) = 0 = Qi(f)*(r, x). Thus Qi is a

*-homomorphism.

Now we prove that Qi is norm-decreasing. Let x E Xi, let r E JR., and let t E R If

xz(t)xf(r)f(r - t,rx) = 0 = xf(t)xf(r)Qi(f)(r - t,rx).

If r, t E (ai(x), ,Bi(X)), then (r - t, rt) E Gi , and then Qi(f)(r - t, rx) = f(r - t, rx). Thus for each
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x E Xi, each f E Co(Gz ), each ~ E L2 (n;t), and each r E n;t, we have

j
-ai(X)

)..f(Qi(j))(~)(r)= xf(r)xf(t)~(t)Qi(j)(r - t,rx) dt
-f:Ji(X)

j
-ai(x)

= xf(r)xf(t)~(t)f(r - t,rx) dt
-f:Ji(X)

j
-ai(x)

= xf (r) xf(t)~(t)f(r - t, rx) dt
-f:Ji(X)

j
-ai(x)

= xf (r) pf(~)(t)f(r - t, rx) dt
-f:Ji (x)

= xf(r)()..x(j)(pf(~)))(r)

= (pf)..x(j)pn(~)(r).

Qi is norm-decreasing. o

Lemma 111.6.8. Let H be a Hilbert space. For each nEZ, let Pn E B(H) be a projection.

Suppose that PmPn = 0 for all m i- n, and that LnEzPn converges to 1 in the strong operator

topology. Let a E B(H) satisfy Pnapn = apn for all n E Z. Then Iiall = sUPnEZ IIPnaPnll.

Proof: We first show that LnEZ Pnapn converges to a in the strong operator topology. Let

~ E H. Then limk-HX> L~=-k Pn(~) =~, so limk---+oo a(L~=_k Pn(~)) = a(~). Thus

k k

lim '" PnaPn(~) = lim '" aPn(~)
k---+oo L...J k---+oo L...J

n=-k n=-k

= lim a ( t pn(~)) = a(~).
k---+oo

n=-k

So LnEzPnaPn converges to a in the strong operator topology.

Now, let ~ E H. For each k ~ 1, let ~k = L~=-k Pn (~). Then by assumption, ~k -. ~' For

each k ~ 1, we have

n k

L (Pn(~),Pn(~)) = L IIPn(~)112.
n=-k n=-k
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Since (~k, ~k) -. 11~112, we see that 11~112 = L:nEZ IIPn(~)112. Thus for all ~ E H, we have 11~112 =

L:nEZ IIPn(~)112.

For each k 2: 1, let ak = L:~=-k PnaPn' Then we have shown that ak -. a in the strong

operator topology. Let R = sUPnEZ IIPnaPnll. For each nEZ, we have IIPnaPnl1 ::::; Iiall, so R::::; Iiall,

Now for each k 2: 1 and each ~ E H, we have

Ilak(~)112 = L IIPn(ak(~))112
nEZ

~ ~ Ilpn ctpmap..(<)) II'

~ ~ttPnPmapm(<) II'
k

= L IIPnaPn(~)112
n=-k

k

::::; L IIPnaPnI121IPn(~)112
n=-k

n

::::; R2 L IIPn(~)II2
n=-k

Thus for each k 2: 1, Ilakll ::::; R. Let B = {b E B(H): Ilbll ::::; R}. Now, ak E B for all k, and ak -+ a

in the strong operator topology. Since B is closed in the strong operator topology, we have a E B,

and so Iiall ::::; R. o

Notation 111.6.9. Recall from III.3.6 that for each x E X, the set TX = {r E JR: rx E Z} is

indexed by Z in the increasing order:

T X-{ x x x x x }- ... < a_n < a_n+1 < ... a_I < ao < a l < ... an < ... .

For each x E X and each nEZ, define a projection q;, E B(L2 (JR)) by q;,(~) = X(aii,a~+I)~'

Proposition 111.6.10. 1. Let r, t E JR, and let x E X. Suppose that (r - t, rx) E Gz . Then for

all nEZ, we have r E (a;', a;'+I) if and only if t E (a;', a~+I)' where a;' is as defined in

III. 6. 9.
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2. For all x E X, and for all n i- m, we have q::'nq;'. = OJ and 2:nEZ q;'. converges to 1 in strong

operator topology, where q;'. is as defined in III. 6. 9.

3. For all f E Co(Gz ), all x E X, and all nEZ, we have q;'.Ax(f)q;'. = Ax (f)q;'..

4. For all f E Co(G z ) and all x E X, we have IIAx (f)11 = sUPnEZ Ilq;'.Ax(f)q;'.ll, where Ax is as

defined by Equation (1.4).

Proof: Part 1: Suppose that r E (a;'., a;'.+l)' Then f3(rx) = a;'.+l - r, and a(rx) = a;'. - r. Since

(r - t, rx) E Gz, we see that t - r E (a(rx), f3(rx)) = (a;'. - r, a;'.+l - r). Thus t E (a;'., a;'.+l)' Thus

r E (a;'., a;'.+l) implies that t E (a;'., a;'.+l)' Now suppose that r t/:- (a;'., a;'.+l)' Then r E (a::'n, a::'n+l)

for some m i- n, whence t E (a::'n, a::'n+l) , and so t t/:- (a;'.,a;'.+l)'

Part 2: It is clear that q;'.q::'n = 0 if m i- n. For each k 2: 1, let qk = 2:~=-k q;'.. Then qk

is an increasing sequence of projections, hence converges in the strong operator topology to some

projection q (Theorem 4.1.2 in [6]). It is clear that qkq = qk for all k 2: 1. Suppose that q(~) = 0 for

aX 2
some~. Then qk(O = qkq(~) = 0 for all k 2: 1. So X(a"'-k,akl~ = 0 for all k 2: 1. That is Ja~k I~I = 0

for all k. So ~ = O. Thus q = 1.

Part 3: Fix f E Co(Gz ), x E X, and n E Z. Let Xn: JR ----t JR denote the characteristic

function of (a;'.,a;'.+l)' Now, ifr E (a;'., a;'.+l) , then

Xn(r)Xn(t)f(r - t,rx) = Xn(t)f(r - t,rx)

for all t E R If r t/:- (a;'., a;'.+l) , then

Xn(r)Xn(t)f(r - t,rx) = O.

If t E (a;'.,a~+l)' then by part 1, we have (r - t,rx) t/:- Gz , and so f(r - t,rx) = OJ then

Xn(r)Xn(t)f(r - t, rx) = 0 = Xn(t)f(r - t, rx). If t t/:- (a~, a~+l)' then

Xn(r)Xn(t)f(r - t, rx) = 0 = Xn(t)f(r - t, rx)

also. Thus for all r, t E JR, we have Xn(r)Xn(t)f(r - t, rx) = Xn(t)f(r - t, rx). Then for all r E JR
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we have

)..x(f)q~(~)(r) = Lq~(O(t)f(r - t, rx) dt

= LXn(t)~(t)f(r - t, rx) dt

= LXn(r)Xn(t)~(t)f(r - t, rx) dt

= Xn(r) LXn(t)~(t)f(r - t, rx) dt

= Xn(r) Lq~(~)(t)f(r - t,rx) dt

= Xn(r) ..x(f)q~(~)(r)

= q~)..(j)q~(~)(r).

So q~)..x(j)q~ = )..x(f)q~.

Part 4: This follows from part 2 and 3, and Lemma III.6.8.

Proposition III.6.11. Let Qi be the map defined in Lemma III. 6. 7. Define

N

Q: Co(Gz ) -4 E9 Co(Gi)
i=l

by Q(j) = (Q1 (f), Q2(f), ... ,QN(f)). Then Q is an isometric *-homomorphism.

Proof: Since each Qi is a *-homomorphism, so is Q.

o

Recall that II . Ilr denotes that reduced norm on Cc(lR. x X), which contains Co(Gz ) as

a *-subalgebra. We now show that IIQ(f)1I 2: Ilflir. Let f E Co(Gz ), let x E X, and let n E Z.

Let ro E (a~+l,a~). Then rox E Vi for some i E {l, ... ,N}. Let c = 1l"i(rOx) E Xi, let So =

(ai(rOx) + j3i(rox))/2, and let s = ro + So. Then c = (so + ro)x = sx. Let Xn: lR. -4 lR. be the

characteristic function of (a~,a~+l)' Define X(t) = Xn(t + s). We first show that xxi = X. Let

t E R First suppose that X(t) =I- O. Then t + s E (a~, a~+l)' and

So t E (ai(rOx) - so, j3(rox) - so) = (ai(c), f3i(C)). Thus xi(t) = 1. So xHt)x(t) = X(t). If X(t) = 0,

then X(t)xi(t) = a= X(t). Thus xxi = X·
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Let p E B(L2(JR)) be the projection defined by p(~) = X~. Define v: L2(JR) --; L2(JR) by

v(~)(r) = ~(r + s). It is easily checked that v is a unitary with v* defined by v*(O(r) = ~(r - s).

Then for all ~ E L 2 (JR) and all r E JR, we have

[vq~Ax(f)q~V*](~)(r)= [q~Ax(f)q~v*](O(r + s)

= Xn(r + S)Ax(f)q~v*(~)(r + s)

= x(r) l q~(v*(~))(t)f(r + s - t, (r + s)x) dt

= x(r) l Xn(t)~(t - s)f(r + s - t,rc) dt

= x(r) l Xn(t + s)~(t)f(r - t, rc) dt

= x(r) l X(t)~(t)f(r - t, rc) dt

= x(r) l xHr)x(t)XHt)~(t)f(r - t, rc) dt

= x(r) l xHr)x(t)xW)~(t)Qi(f)(r - t, rc) dt

= x(r) l xHr)XHt)p(~)(t)Qi(f)(r - t, rc) dt

= x(r)AHQi(f))(p(~))(r)

= (pAHQi(f))P)(~))(r).

Thus Vq~Ax(f)q~V*= PA'j(Qi(f))p, and hence

Ilq~Ax(f)q~11 = Ilvq~Ax(f)q~v*11 = l/pA'j(Qi(f))p/1

:::; II Af(Qi(f))1I :::; IIQi(f)lli :::; IIQ(f)II·

This holds for all nEZ, so IIAx(f)11 = sUPnEZ Ilq~Ax(f)q~11 :::; IIQ(f)II. This holds for all x E X, so

Ilfllr = SUPxEX IIAx(f)11 :::; IIQ(f)II·

For IIQ(f)11 :::; IlfilTl we have shown in Lemma III.6.7 that IIQi(f)lli :::; Ilfllr for all i E

{I, ... ,N}. So IIQ(f)11 = sup{IIQi(f)lli: i = 1, ... ,N}:::; Ilfllr' Thus Q is isometric. 0

At this point, we are almost ready to glue the *-algebras CO(Gi ) together to form Co(Gz ).

Before we do that, let us recall some of the notation that we have used in this chapter so far, and

let us fix further notation for the rest of this chapter.
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Notation 111.6.12. For each i E {1, ... , N}, the set CO(Gi) (Gi is defined in Notation III.4.1)

is a *-algebra; Ai is the completion of CO(Gi) with respect to II . Iii (II . IIi is defined in Notation

III.6. 1);

K i = U E C(Xi ,K(L2(1R))): pf f(x)pf = f(x) for all x E Xd;

(/Ji: CO(Gi) ----+ K i is an isometric *-homomorphism with dense range (¢i is defined in Notation

III.6.1); Ai ~ K i via the extension of ¢i; and iI>i: K i ----+ C(Xi ,K(L2(I))) is a *-isomorphism,

where I is the interval (-1,1) (iI>i is defined in Notation III.6.4).

For each k E {1, ... , N - 1} the space Co(G(k)) is a *-algebra (G(k) is defined in III.4.1);

A(k) is the completion of Co(G(k)) = CO(Gk+l,F(k») with respect to II· II(k) (II· II(k) is defined in

Notation III.6.1);

¢(k): Co(G(k)) ----+ K(k) is an isometric *-homomorphism with dense range (¢(k) is defined in

Notation III.6.1); A(k) ~ K(k) via the extension of ¢(k); iI>(k): K(k) ----+ C(F(k),K(L2(I))) is a

*-isomorphism (iI>(k) is defined in Notation III.6.4); the restriction map Rk: CO(Gk+l) ----+ CO(G(k))

is a norm-decreasing surjective *-homomorphism such that an element with small norm lifts to

some element with small norm.

Let Qi be the map defined in III,6.7, and let Q be the map defined in III,6.11. Then

Qi: Co(Gz ) ----+ CO(G i ) is a norm-decreasing *-homomorphism, and Q: Co(Gz ) ----+ E9~l Co(Gi ) is

an isometric *-homomorphism.

The next statement is used in the decompostion of Co(Gz). The proof is easy and is

omitted.

Lemma 111.6.13. Let X be any locally compact Hausdorff space, and let Fl , ... , Fn be closed

subsets of X such that U~=l Fi = X. Let f: X ----+ C an arbitrary function. Also suppose that

flFi E CO(Fi ) for each i E {1, ... , n}. Then f E Co(X).

Proposition 111.6.14. Let E l = CO(Gl)' For each k = 2, ... , N, there exists a *-subalgebra

Ek ~ Co(Gd EEl··· EEl CO(Gk) and a *-homomorphism 'l/Jk-l: Ek- l ----+ CO(G(k-l)) such that
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1. 'l/Jk-l is norm decreasing.

3. If (il, ... ,fk) E Ek, then for all i E {l, ... ,k}, we have fi E CO(Gi n Gz ). (We treat

CO(Gi n Gz ) as a subspace ofCO(Gi).)

5. If (il, ... , fk) E Ek' then for all j E {1, ... , k - 1}, we have (il, ... , fj) E Ej .

Proof' This is a proof by induction. We first simplify the base case of the induction by making

the first algebra of the gluing process trivial. Fix some Xo E Xl. Let p(O) = {xo} and let

Go = G(O) = G1,F(O). It is clear that Go = G(O) is a closed subset of G I . Then by Lemma IIl.5.3, we

see that Co(Go) = Go(G(O») is a *-algebra with the involution and convolution given by Equations

IlL? and IlL8. Let Ro: CO(G I ) ---t Co(G(O») be the restriction map. Then an argument identical

to the one given in Lemma IIl.6.5 shows that Ro is a norm decreasing surjective *-homomorphism.

Now, instead of proving the statement of this lemma, we prove the following instead, which
~

is the same as the the statement of the lemma except that the index k ranges from 1 through n

instead of 2 through n. The statement of this lemma follows immediately.

Let Eo = Co(Go). For each k E {1, ... ,N}, there exists a *-subalgebra

and a *-homomorphism 'l/Jk-l: Ek- l ---t CO(G(k-I») such that

1. 'l/Jk-l is norm decreasing.

3. If (fO, ... ,fk) E Ek, then for all i E {O, ... ,k}, we have Ii E Co(Gi n Gz ). (We treat

CO(Gi n Gz ) as a subspace of CO(Gi).)

5. If (fa, ... , fk) E Ek' then for all j E {a, ... ,k - 1}, we have (fa, ... , iJ) E Ej .
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Induct on k. For the base case when k = 1, let 'l/Jo: Eo ----t Co(G(O)) be the identity map and let

E 1 = {(f,g) E Eo EEl CO(G1): 'l/Jo(f) = Ro(g)}. Then conditions 1 through 5 hold trivially. This

proves the base case.

Inductive step: Suppose that for 1 < k < N, there exist Ek and 'l/Jk-l that satisfy conditions

1 through 5 in the statement.

If F(k) = 0, then let 'l/Jk = 0, and let Ek+l = Ek ED CO(Gk+1 ). Then condition 1, 2, 4, and

5 are clear; and condition 3 follows from Lemma IlI.4.9.

Now assume that F(k) i- 0. Then G(k) i- 0.

Define 'l/Jk: Ek ----t Co(G(k)) by 'l/Jk (fo , ... , !k)(W) = Ji(w) if wE G i for some i = 0, ... , k,

and 0 otherwise. We first show that for all (fo, ... , ik) E Ek' "pk(fo, ... , !k) is a well defined

function. We only need to show that the definition does not depend on the choice of i. Let

(iI, ... , !k) E Ek' and suppose that wE G i nGj . If w ¢:. Gz, then Ji(w) = 0 = h(w) by condition

3 in the inductive hypothesis. So suppose that w E Gz . Then w E Gi n Gj n Gz , and then

Ji(w) = h(w) by condition 4 in the inductive hypothesis. Thus "pk(fo, ... , !k) is well defined.

Note that if (r,x) E G(k) \Gz , then for all i = O, ... ,k, we have (r,x) ¢:. GinGZ ; and

then 'l/Jk(fo, .. . ,!k) (r, x) = 0 by condition 3 in the inductive hypothesis and by the definition of

'l/Jk (fo , ... , ik)·

Next we show that if (fo, ... , ik) E Ek' then 'l/Jk(fo, ... , ik) E Co(Gz n G(k)). Now we

know, by Lemma IIl.4.8, that

k k

G(k) n Gz = UGi n G(k) n Gz = UGi n G(k) n GZ,

i=l i=O

and by Lemma IIl.4.7, that G i n G(k) n Gz is closed in G(k) n Gz . From the definition of

'l/Jk(fO,"" !k), we see that

Now G i n Gz n G(k) is closed in G i n Gz, by Lemma IIlA.7. By condition 3 in the inductive

hypothesis, each Ji is in CO(Gi nGz ). So Jiic;nGznGCk) E Co(Gi nGz nG(k)). By Lemma IlI.6.13,

we have 'l/Jk (fo , ... ,!k) E Co(Gz n G(k)) ~ Co(G(k)). Thus 'l/Jk is a well defined map.
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Next we show that 'l/Jk is a *-homomorphism. Linearity is clear. Also, 'l/Jk preserves

the involution because (r, x) E Gi if and only if (-r, (-r)x) E Gi (by the first statement in

part 2 of Lemma III.4.4). Let (fo, ... ,fk),(go, ... ,gk) E Ek. Let hf = 'l/Jk(fo, ... ,fk), let hg =

'l/Jk(go, ... ,gk), and let h = 'l/Jk(fo * go,···, fk * gk). We only need to show that h = hf * hg. Note

that hg,hf,h E Co(Gz n G(k)). Let (r,x) E G(k). If

then for some t E (-,Lh+l(x),-ak+l(x)), we have (t,x),(r - t,(-t)x) E Gz. Then by the first

statement in part 2 of Lemma III.4.4, we have (r, x) E Gz. Thus if (r, x) t/:- Gz, then h(r, x) = 0 =

(hf*hg)(r, x). Now suppose that (r, x) E Gz. Then by Lemma III.4.8, we have (r, x) E GinG(k)nGz

for some i E {l, ... , k}. So h(r, x) = (fi * gi)(r, x). Also, we have

If t t/:- (-,B(x), -a(x)), then (t, x) t/:- Gz, and then hf(t, x) = O. So we have

j
-Cl:(X)

(hf * hg)(r, x) = hf(t, x)hg(r - t, (-t)x) dt.
-(3(x)

Now, (r,x) E Gi n Gz n G(k), so x E Vi n Vk+l n Zc. Then for all t E (-a(x),-,B(x)), we have

t E (-,Bi (x), -ai(x)), and t E (-,Bk+l (x), -ak+l (x)), since aj (y) :<::: a(y) < a < ,B(y) :<::: ,Bj (y) for all

j E {l, ... , N} and all y E zcnVj. Thus for all t E (-,B(x), -a(x)), we have (t, x) E GznGinG(k).

Then by Lemma III.4.4, (r - t, (-t)x) E Gz n Gi n G(k) for all t E (-,B(x), -a(x)). Thus we have

j
-Cl:(X)

(hf * hg)(r, x) = fi(t, x)gi(r - t, (-t)x) dt.
-(3(x)

Now, by condition 3 in the inductive hypothesis, fi vanishes outside of Gi n Gz. Then we have

j -Cl:i(X)

(hf * hg)(r, x) = fi(t, x)gi(r - t, (-t)x) dt = (fi *gi)(r, x) = h(r, x).
-(3i (x)

Therefore'l/Jk preserves convolution, and so 'l/Jk is a *-homomorphism.
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Next we show that 'l/Jk is norm decreasing. Let (fo, ... , ik) be an element of Ek, and let

h = 'l/Jk(fo, ... , fk)' Let x E F(k). Note that there exist m < n and a~, a~+l"'" a~ E lR such that

and 0k+l (x) = a~ < a~+l < ... < a~ = f3k+l(X). For each l = m, ... ,n -1, let Xl: lR ........ lR be the

characteristic function of (a'f, a'f+l)' and let ql be the projection in B(L2 (lR)) defined by ql(~) = Xl~.

It is clear that qlql' = 0 if l =/=l', and that L~==-~ ql = Pk+l' (Recall that Pk+l is the projection in

B(L2 (lR)) defined by Pk+l(~) = Xk+l~') Then it is clear that )..(k),X(h) = Pk+l)..(k),X(h)p~+l' We

claim that

II).. (k),x (h) II = sup{lIql)..(k),x (h)qtll : l = m, .. . ,n - I}.

Let l E {m, ... ,n - I}. Let r,t E R If (r - t,rx) t/:- Gz, then h(r - t,rx) = 0, and so

Xl(r)h(r-t, rx) = 0 = Xl(t)h(r-t, rx). Suppose that (r-t, rx) E Gz . By Proposition III.6.10 part

1, we have r E (a'f,a'f+l) if and only ift E (a'f,a'f+l)' Therefore Xl(t) = 1 if and only if Xl(r) = 1,

and Xl(t)h(r - t, rx) = Xl(r)h(r - t, rx). Thus Xl(r)h(r - t, rx) = Xl(t)h(r - t, rx) for all r, t E lR.

Then for all ~ E L 2 (lR) and all r E lR, we have

= XI(r) ..(k),X(h)(~)(r).

Thus )..(k),X(h)ql = ql)..(k),X(h) for alll E {m, ... ,n - I}. Then it is clear that

Now we show that for each l E {m, ... , n -I}, we have IIql)..(k),X(h)qlll :S II (fo, Jr, ... , fk) II·

Let l E {m, ... ,n-1}. Since x E F(k), there exists Xo E Vk+ln (U7=1 Vi) such that 1l"k+l(XO) =X.

Let ro E (a'f, a'f+l)' Then rox E zc n Vk'+l = zc n V:~l' Thus by Lemma III.3.8, there exists some

i with 1 :S i :S k such that rox E zc n Vi. Let So = (oi(rOx) + f3i(rox))/2, let c = (so + ro)x,
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and let s = ro + so. Then c belongs to Xi' We claim that for every real number r, we have

Xl(r + s)xi(r) = Xl(r + s).

Let r E R If Xl(r + s) = 0, then we are done. Suppose that Xl(r + s) =J. O. Then

r + s E (a'{,a'{+l)' and then

Because So E (ai (rox ), f3i (rox)), we have

So xi(r) = 1, and so Xl(r + s)xi(r) = Xl(r + s).

Define u: L 2 (JR) ----; L 2 (JR) by u(~)(r) = ~(r + s). Then u is a unitary with u* given by

u*(~)(r) = ~(r - s). For all ~ E L2 (JR), and for all r E JR, we have

[uqlA (k),x (h )qIU*] (~) (r)

= [qIA(k),X(h)qlu*](~)(r + s)

= Xl(r + S)[A(k),X(h)qIU*(~)](r + s)

= Xl(r + s) LXk+l(r + S)Xk+l(t)ql(U*(~))(t)h(r + s - t, (r + s)x) dt

= Xl(r + s)LXk+l(r + S)Xk+l(t)XI(t)~(t - s)h(r + s - t, (r + s)x) dt

= Xl(r + s) LXk+l (r + S)Xk+1 (t + S)XI(t + s)~(t)h(r - t, rc) dt

= Xl(r + s) LXl(t + s)~(t)h(r - t, rc) dt

= Xl(r + s)Lxi(r)xHt)XI(t + s)~(t)h(r - t, rc) dt.

Now for all r,t E (ai(c),f3i(C)), we have (r - t,rc) E Gi , so h(r - t,rc) = Ji(r - t,rc) for all

r, t E (ai(c), f3i(C)). Then, letting p be the projection in B(L2 (JR)) given by p(~) (r') = Xl (r' +s )~(r'),
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we have

[uqIA(k),X(h)qlu*l(~)(r) = Xl(r + s)1xHr)xW)p(~)(t)fi(r - t,rc) dt

= Xl(r + s)AiUi)(p(~))(r)

= [pAiUi)p](O(r).

l1qIA(k),X(h)qlll = IluqIA(k),X(h)qIU*11 = IlpAi(Ji)pll

~ II AiUi) II ~ Ilfilli ~ IIUo, ... fk)ll·

Thus IIA(k),X(h) II ~ IIUo, ... , fk) II for all x E F(k), and so

So 'l/Jk is norm-decreasing.

Now, let

Condition 5 is clear.

Now let Uo, ... , fk+l) E Ek+l . By condition 5 and inductive hypothesis (condition 3),

fi E CO(Gi n Gz ) for all i = a, ... ,k. To show that fk+1 E CO(Gk+1 n Gz ), we only need to

show that fk+1 vanishes outside Gz , since fk+1 E CO(Gk+I) and Gz n Gk+1 is open in Gk+I' Let

wE Gk+l \ Gz . Then by Lemma III.4.9, W E G(k), and

If W tJ- Gi for all i = a, ... ,k, then 'l/Jk (!I , ... , fk)(W) = a by the definition of 'l/Jk' Suppose that

W E Gi for some i E {a, ... ,k}. Then 'l/JkUo, ... ,fk)(W) = fi(W), But fi E Co(Gz nGi), so

fi(W) = a. Thus fk+1 vanishes outside of Gz , and so fk+1 E Co(Gz nGk+I)' So condition 3 holds.
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Now we show that condition 4 holds. Let (fa, ... , fk' fk+l) be an element of Ek+l' and let

i, j E {O, ... ,k + I}. Without loss of generality, assume that i < j. If j < k + 1, then by condition 4

in the inductive hypothesis and condition 5, fi IGznGinGj = fj IGznGinGj' So assume that j = k + 1.

Let wE GZnGinGk+l. By Lemma III,4.7, ifi ~ 1, then we have GZnGinGk+l = GZnGinG(k).

Also,

Gz n Go n Gk+l = G z n Go n G 1 n Gk+! = G z n Go n G 1 n G(k) = G z n Go n G(k).

Then

Lemma 111.6.15. For each k E {I, ... , N}, let Qk be the map defined in Lemma 111.6. 'l and

let Ek be the algebra defined in Proposition 111.6.14. For each k E {I, ... ,N}, define a map

Pk: Co(Gz) ----t EB~=1 C o(G i ) by Pk(f) = (Ql (f), ... ,Qk(f)). (Note that PN is the same as the map

Q defined in Proposition 111.6.11.) Then for each k = 1, ... , N, we have 1m Pk ~ Ek. Further, PN

is an isometric *-isomorphism from Co(Gz ) onto EN.

Proof· To show that 1m Pk ~ Ek' induct on k. This is clear when k = 1, since PI = Ql and

E 1 = C O(G 1 ) = CO(G 1 n Gz).

Let k satisfy 1 < k < N, and suppose that 1m Pk ~ Ek. Let f E Co(Gz ). Then Pk(f) E Ek.

Let 'l/Jk be the map defined in Proposition III.6.14. Let wE G(k). If w f- G z · Then 'l/Jk(Pk(f))(W) =

0= Rk(Qk+!(f))(W). Suppose that w E G z , then wE G z n G(k). By Lemma III.4.8, there exists

some i with 1 :s: i :s: k such that w E G i n G z n G(k). Then

and
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Next we show that PN is an isometric *-isomorphism. First of all, PN = Q is an isometric

*-homomorphism. So we just need to show that the range of PN is EN.

Let (II, ... , f N) E EN. Define f: Gz -t C by f (w) = fi (w) if w E Gin Gz. We first show

that f is well-defined. Well, we know that Gz = U~l Gz n G i by Lemma III,4.3, so f(w) exists.

Suppose that wE G i n Gj n Gz . By Proposition III.6.14, we have

Thus f is a well defined function. It is clear that flcinc z = filcznci E CO(Gi n Gz ).

Now G i n Gz is closed in Gz for all i E {l, ... , N} by Lemma III.4.6. Applying Lemma

III,6.13 to Gz, G1 n Gz,.·., GN n Gz, and f, we see that f E Co(Gz).

Finally, we check that PN(f) = (1I, ... ,fN). Let 1::; i::; N, and let w E Gi. Ifw 1:. Gz,

then fi(W) = 0 = Qi(f)(W); if w E Gz, then fi(W) = f(w) = Qi(f)(W). Thus fi = Qi(f) for all

i=l, ... ,N, and so

Hence PN is surjective.

This finishes the proof. o

The previous two lemmas give a recursive decomposition of Co(Gz ) with components

CO(Gi ). Next we use the fact that A z and Ai are closures of, respectively, Co(Gn ) and CO(Gi) in

C*(X, lR) to extend the decomposition to Az with components Ai. We need a technical lemma

first.

Lemma 111.6.16. Let B, D, and F be C* -algebras. Let A, C and E be dense *-subalgebras ofB, D,

and F, respectively. Let cPA: A -t E and cPc: C -t E be norm-decreasing *-homomorphisms. Let

G = A EElE C = {(a, c) E A EEl C: cPA(a) = cPc(c)}. Let cPB: B -t F and cPD: D -t F be continuous

extensions of cPA and cPc, respectively. Let H = B EElF D = {(b,d) E B EEl D: cPB(b) = cPD(d)}.

Suppose that cPc is surjective, and that for every E > 0 and every eE E with Ilell < E, there exists

cE C such that cPc(c) = e and Ilcll ::; E. Then G is a *-subalgebm of H, and G = H.

Proof: It is clear that G is a *-subalgebra of H. Let (b, d) E H, and let E > O. Since A is dense

in Band C is dense in D, there exist a E A and c E C such that Iia - bll < E/4 and lie - dll < E/4.
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Let e = ¢A(a) - ¢c(e). Then

Ilell ~ II¢A(a) - ¢B(b)11 + II¢D(d) - ¢c(e) II < E/2.

By assumption, there exists f E C such that Ilfll ~ E/2 and ¢c(f) = e. Then

¢c(f + c) = ¢df) + ¢de) = e + ¢c(e) = ¢A(a).

Thus (a, f + c) E G, and

Ilf + e - dll ~ lie - dll + Ilfll < E/4 + E/2 < E.

So II(a,e+ f) - (b,d)11 < E, and hence G is dense in H. D

Lemma 111.6.17. For each k E {I, ... N}, let R k : CO(Gk+l ) -+ CO(GCk) be the restriction map

defined in Lemma III.6.S. Let D l = AI, and let Rk : A k+l -+ ACk) be the continuous extension

of Rk. Then Rk is surjective. Moreover for each k E {2, ... , N}, there exists a *-subalgebra

k . ~

Dk ~ EBi=l Ai and a *-homomorphzsm Wk-l: Dk-l -+ ACk-l) such that

2. E k is a dense *-subalgebra of Dk.

3. .;,6'k-l!Ek_l = Wk-l, where the map Wk is the one defined in Proposition III.6.14 for each

k E {I, ... ,N - I}.

Proof: It is clear from Lemma III.6.5 that Rk is surjective for all k.

We prove other statements by induction on k. The base case is when k = 2. Let .;,6'1 be the

continuous extension of WI, and let D2 = {(a, b) E Dl ED A2 : .;,6'1 (a) = Rl (b)}. It is clear that E2 is

a *-subalgebra of D 2 . Condition 1 is clear, condition 2 follows from Lemma III. 6. 16 and Lemma

III.6.6, and condition 3 follows immediately from condition 2.

Suppose that result holds from some k. By the inductive hypothesis, Ek is dense in Dk,

so we can extend Wk: Ek -+ Co(GCk) continuously to .;,6'k: Dk -+ ACk). Let
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It is clear that Ek+1 is a *-subalgebra of Dk+1. Condition 1 is clear, and condition 2 follows from

Lemma 111.6.16 and Lemma 111.6.6. Condition 3 is also clear. D

Corollary 111.6.18. A z ~ DN as C* -algebras, where DN is the C* -algebra obtained in Lemma

111.6.17.

Proof' The map PN: Co(Gz ) ----. EN is an isometric *-isomorphism, Co(Gz ) is dense in Az , and

EN is dense in DN. So PN extends to a *-isomorphism from Az to DN. D

Lemma 111.6.17 and Corollary 111.6.18 give a recursive decomposition of Az . Now we use

the fact that each of the components Ai in the decomposition is isomorphic to the corresponding

C(Xi , lK) to obtain a stable recursive subhomogeneous decomposition of Az .

Theorem 111.6.19. Let K = K(L2 (( -1,1))). For each k E {I, ... , N - I}, let

Ik: C(Xk+1, K) ----. C(F(k), K)

be the restriction map. For k E {I, ... , N}} let ep k be the map defined in Notation 111.6.12. Let

B 1 = C(X1, K), and let 01: D1 ----. B 1 be given by 01 = ep1 0 cPl. For each k = 2, ... , N, there exists

a *-subalgebra of Bk ~ EB7=1 C(X i , K), a *-homomorphism Wk-1: B k- 1 ----. C(p(k-1), K), and a

*-homomorphism Ok: Dk ----. B k such that

2. Ok is a *-isomorphism.

Proof' First of all, some routine computation shows that for all k E {I, ... , N - I}, and all

f E CO(Gk+l), we have Ik (<I>k+l(¢k+l(f))) = ep(k) (¢(k)(Rk(f))) , where epk, ¢k, R k, ep(k) , and ¢(k)

are as defined in Notation 111.6.12. Since CO(Gk+1) is dense in Ak+l' for each k E {I, ... ,N -I},

we have the following commutative diagram:

Ak+l
¢k+l

Kk+1
<I>k+l

C(Xk+1,K)-------> -----+

1 Rk 11k

A(k) ¢(k) K(k) <I>(k)
C(p(k), K).------> -------t

Let 1/Jk and;[;k be the maps obtained from Proposition 111.6.14 and Lemma 111.6.17, respectively.
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Now we proceed to induct on k. When k = 2, let W1: B 1 = C(X1,K) -; C(FCk-l),K) be

- 1defined by W1 = (<I>(l) 04/1)) 0'IjJ1 0 (<I>1 o¢d- ; let

and let ()2: D 2 -; B 2 be defined by ()2 = (<I>1 0 ¢1) EB (<I>2 0 ¢2).

We first show that ()2 does map into B 2. Let (a,b) E D2 Then ;J1(a) = R1(b). Then

Next we show that ()2 is surjective. Let (c, d) E B 2 , and let

Now, (c,d) E B2 implies that W1(C) = "n(d), that is W1((<I>1 0 ¢d(a)) = "Y1((<I>2 0 ¢2)(b)). But

W1((<I>1 0 ¢l(a)) = (<I>(l) 0 ¢(l)) 0 '¢l(a), and 'Y1((<I>2 0 ¢2)(b)) = (<I> C1) 0 ¢(l)) 0 R1 (b). So

Thus ;Jl(a) = R1 (b), since <I>(l) o¢Cl) is injective. Therefore (a,b) E D2. It is clear that ()2(a,b) =

(c, d). Hence ()2 is surjective.

It is clear that ()2 is an injective *-homomorphism. So ()2 is a *-isomorphism.

Now suppose that result holds for some k with 2 < k < N. Let Wk: B k -; C(FCk), K) be

given by Wk = (<I>Ck) 0 ¢Ck)) O;Jk 0 ()"k 1
, let
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We first show that ek+l maps Dk+l to Bk+l' Let (a, b) E Dk+l' Then

Wk(ek(a)) = (<liCk) 0 1P)) 0 ;(Jk(a)

= <liCk) o1P) (Rk(b)) = /'k((<lIk+l 0 <Pk+l)(b)).

Thus ek+l(a, b) = (ek(a), (<lIk+l 0 <Pk+l) (b)) E Bk+l'

Next we show that ek+l is surjective. Let (c, d) E Bk+l' and let (a, b) = (e;;l(c), (<lIk+l 0

<Pk+l)-l(d)). Since

Wk(C) = Wk(ek(a)) = (<liCk) 0 <p Ck )) ;j;k(a) = /'k(d)

= /'k((<lIk+l 0 <Pk+l)(b)) = (<liCk) 0 <p Ck )) 0 Rk(b),

we see that ;j;k(a) = Rk(b). Thus (a, b) E Dk+l' and it is clear that ek+l(a, b) = (c, d). Therefore

ek+l is surjective. Since ek+l is clearly an injective *-homomorphism, we see that ek+l is a

*-isomorphism. 0

Corollary 111.6.20. Let eN and PN be the *-isomorphisms obtained in Corollary III. 6. 18 and

Lemma III. 6. 15, respectively. Then eN 0 PN is a *-isomorphism between Az and B N.

At this moment, we essentially have a SRSH decomposition of Az . We only need to verify

that the attaching maps are non-vanishing:

Lemma 111.6.21. Let eN be as in Lemma III.6.19, let PN be as in Corollary III.6.18, and let

<lIk,<Pk,Qk be as in Notation III. 6. 12. Let f E Co(Gz).

2. Let 1 ~ k ~ N, let x E X k, and let

Then Tx = Gk,{x} is a closed subset of Gk, Tx n Gz i= 0, and <lIk 0 <Pk 0 Qk(f)(X) = 0 if and

only if <Pk 0 Qk(f)(X) = 0, which happens if and only if flGznT." = O.

3. For each k = 2, ... , N, and for each x E pCk-l), there exists some a E B k- 1 such that

Wk-l(a)(x) i= 0, where Wk-l is the map defined in Lemma III. 6. 19.
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Proof: From the construction of the maps fh in the proof of Lemma III.6.19, we see that

for all (iI, ... , fN) E D N. From the definition of the maps Pk in Lemma III.6.15, we see that

PN(f) = (Q1 (f), ... ,QN(f)) for all f E Co(Gz ). So part 1 is clear.

It is clear that Tx = Gk,{x} is a closed subset of Gk , and Tx n G z is nonempty. From the

definition ofthe the maps <Pi, it is clear that <PkorPkoQk(f)(X) = 0 if and only if cPkOQk(f)(X) = O.

By Lemma III.5.5, we havecPk((Qk(f))(x) = A'k(Qk(f)) = 0 if and only if Qk(f)ITx = O. So

<Pk ocPk oQk(f)(X) = 0 if and only if Qk(f)ITx = 0, if and only if Qk(f)ITxnGz = 0 (Qk(f) vanishes

outside of Gz ), if and only if (fIGznGk)IT,nGz = 0, if and only if flTxnGz = O.

For part 3, we use the notation in Lemma III.6.19. Note that Wk-1 = <p(k-1)0cP(k-1)o,(fik_1°

Bk~l' It is clear that there exists some f E Cc(Gz ) such that flTxnGz I- o. Let a = Bk-1 0Pk-1(f).

Then a E B k - 1 . By part 2 we have

Wk_1(a)(x) = <p(k-1) ° cP(k-1) ° ,(fik-1(Pk-1(f))(X)

= <p(k-1) 0cP(k-1) o,(fik-1(Q1(f), ... ,Qk-1(f))(X)

= 'Yk-1((<Pk 0cPk(Qk(f)))(X)

= (<Pk ° cPk(Qk(f))(X)

I- o.

o

Corollary 111.6.22. Az is a SRSHA.

Proof: By Lemma III.6.19, and part 3 of Lemma III.6.21, we see that

is a SRSH system, so Az ~ B N is a SRSHA. o

The following lemma is known as the gluing lemma. It a standard result in point-set

topology, so we will omit its proof.
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Lemma III.6.23. Let X be a topological space. Let Y and Z be two subsets of X. Let f: Y ---> C

and g: Z ---> C be continuous functions such that flYnz = glYnz. If either both Y and Z are closed

in X or both Y and Z are both open in X, then the function h : X ---> C defined by

is continuous.

h(x) = {f(X)
g(x)

if x E Y

if x E Z

The next lemma will be used in the next chapter.

Lemma III.6.24. Let

be the SRSH decomposition for A z as in III. 6.22. For each k E {I, ... k}, let H k = Gzn (U7=1 Gi) .

For each k with 1 :::; k :::; N, if I ~ Bk is a non-zero ideal, then In ek(Cc(Hk )) i- o.

Proof: Define Tk: CO(Hk) ---> Ek by Tk(f) = (fIGinGz))i=I, ... ,k. By Lemma III.4.6, for each k

with 1 :::; k :::; N, the set Hk is a closed subset of G z . Hence each f E CO(Hk) extends to some

f' E Co(Gz ). Thus T(f) = Pk(f'), where Pk is the map in the proof of Lemma III.6.15. Thus we

see that Tk indeed sends elements of CO(Hk ) into E k . It is clear that Tk is injective. Also, since

Gz n Gi is closed in H k for every i with 1 :::; i :::; k +N, surjectivity of Tk follows easily from Lemma

III.6.23. Linearity of Tk is clear as well.

For each k with 1 :::; k :::; n, define ek : CO(Hk) ---> Bk byek = (h 0 Tk, where Bk and ek are

as in Lemma III.6.19. We will also use Tk and ek to denote their restrictions to Cc(Hk)'

Now we proceed by induction. If k = 1, then there exists a closed subset F ~ Xl such

that 1= {f E B I : flF = O}. Then GI,F is a closed subset of G I = G I n G z by Corollary III.4.5.

If GI,F = G I , then it is clear that F = Xl, which implies that I = O. Thus F i- Xl, and so

GI,F i- G I = HI' Then there exists f E Cc(GI ) = Cc(HI ) such that flGi,F = 0 and f i- O. So

el (f) E I n el (Co (Hd) and el (f) i- O. Thus the lemma holds for k = 1.

Now suppose that the lemma holds for some k with 1 < k < N. Let I ~ Bk+l be a

non-zero ideal. We can assume that I i- Bk+l. Then we know that for each i with 1 :::; i :::; k + 1,
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there exists a closed subset Pi ~ Xi such that

1= {(h, ... , fk+I) E Bk+I: JiIF; = 0 for i = 1, ... , k + I}.

First assume that Xk+I \ p(k) is not contained in Pk+I. (Recall that p(k) is the k-th attaching

space.) Now, by Lemma IlI.4.6, we know that GinGZ is closed in Gz for every i with 1 ~ i ~ k+1.

SO U7=1 (Gi n Gz) is closed in Gz· Thus U7=1 (Gi n Gz ) is closed in Hk+I, because Hk+l is also

contained in Gz . Similarly, Gz n Gk+I is closed in Hk+l as well. Also, by Corollary IlI.4.5, we

know that Gk+I,Fk+l is closed in Gk+ 1• Thus Gz nGk+I,Fk+l is closed in Gk+l nGz , which implies

that GZnGk+I ,Fk+l is closed in Hk+I' Therefore Gzn [Gk+I,Fk+l u (UZ=I Gi )] is closed in H k+I .

If Gz n [Gk+I,Fk+1 u (U7=1 Gi )] = Hk+I, then we have, by Lemma IIlA.8 and Lemma

III.4.4,

Gz n Gk+I = Gk+I n Gz n H k+I

= Gk+I n Gz n [Gk+I,Fk+l U C~ Gi) ]

= [GHI n Gz n Gk+I,Fk+l] U [Gk+I n Gz n C~ Gi) ]

= (Gz n Gk+I,Fk+l) U (G(k) n Gz )

= Gz n (Gk+I,Fk+l U G(k))

Then Xk+I = p(k) U PHI, which contradicts our assumption that Xk+I \ p(k) ~ Pk+I . Thus

Gz n [GHI ,Fk+1 u (U7=1 Gi )] I- Hk+I. Then there exists a nonzero element f E Cc (Hk+I) such

that fiG n[G u(Uk G)] = O. Then Ok+I (1) I- 0 and OHI (1) vanishes on Pi for all i with
Z k+l,Fk+l '1.=1 t

1 ~ i ~ k + 1. Thus In Ok+I(Co(HHd) I- O.

Now assume that Xk+I \ p(k) ~ PHI. Let P = XHI \ pCk) and let

Let P: Bk+I ----7 Bk be defined by P(h, ... ,h+I) = (h, ... , fk). Then P is surjective (this follows

because the map "(k: C(Xk+I,K) ----7 C(PCk),K) is surjective) and PIJ is injective (this follows
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from the construction of Bk+l and the definition of J). Also J is an ideal of Bk+l, F ~ Fk+1, and

I ~ J. Note that

ker P = {(O, ... ,0, fk+d: ik+1IF(k) = O}.

If I ~ kerP, then for every a = (h, ... ,fk+l) E I, we have fk+lIF(k) = 0 and fi = 0 for every

i with 1 ::; i ::; k. But fk+l also vanishes on Fk+l, which contains Xk+l \ F(k) as a subset. So

fk+l = O. Consequently, we have a = O. This contradicts the assumption that I =f O. Thus I

is not contained in ker P, which implies that P(I) is a non-zero ideal of Bk. Therefore we have

P(I) n ek(Cc(Hk)) =f 0 by the inductive hypothesis. So pick 9 E Cc(Hk) such that 9 =f 0 and

ek(9) E P(I). Now we prove some claims.

Claim 1: Let R: CO(Hk+l) ----; CO(Hk) be defined by R(f) = flHk' Then R is a linear

surjection. Also the following diagram commutes:

Co (Hk+1)

lR

Co (Hk)

0k+l
Bk+1------+

lP
Ok

Bk.---->

It is clear that R is a linear surjection. If f E CO(Hk+1), then

= p(ek+l(f!c,ncz ,"" flck+lncZ))

= p(ek(f!c,ncz,'''' fb), <Il k+1 0 <Pk+l(flck+ 1 ncZ))

= ek(f!c,ncz ,"" flckncZ)

= ek(Tk(R(f)))

= ek(R(f)).

So Claim 1 is proven.

Claim 2: We have P-1(P(I)) ~ {(h, ... , fk, fk+l) E Bk+l: fk+lIFnF(k) = O}.

Suppose that f = (h, ,fk+l) E P-l(P(I)). Then there exists a = (gl, ... ,gk+d E I

such that P(f) = P(a). So (h, ,ik) = (gl, ... gk). Then by the construction of Bk+l, we have
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fk+lIF(k) = 9k+lIF(k). Therefore A+lIFnF(k) = gk+lIFnF(k) = 0, since a E I and Pn p(k) S;; Pk+l'

Claim 2 is proven.

Claim 3: (Recall that the element 9 is chosen, right before Claim 1 above, to satisfy 9 -=J 0

and ek(g) E P(I).) We have gICk+l,FnHk = 0 or Gk+l,F n Hk = 0.

Suppose that Gk+l,FnHk -=J 0 and g/Ck+l,FnHk -=J O. Using Claim 1, choose h E Co(Hk+d

such that R(h) = g. Note that

So hlc (k) -=J O. Then by LemmaIII.5.5, ek+1(h'IIFnF(k) -=J O. By Claim 2, p(ek+l(h)) ct P(I).
k+l,FnF J

But by Claim 1, p(ek+l(h)) = ek(R(h)) = ek(9) E P(I). This is a contradiction, so Claim 3 is

proven.

Now,

Gk+l n [(Gk+l,F n Gz) U Hkl = Gk+l n Gz n [Gk+l,F U (~Gi) ]

= (Gz n Gk+l,F) U [(Gz n Gk+1) n (~Gi)]

= (Gz n Gk+l,F) U (Gz n Gk+1,F(k»)
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So we have

= {Gk+1n [(Gk+l,F n GZ) U Hk]} U Hk

= {Gk+1U Hk} n {[(Gk+l,F n GZ) U Hk] U Hk}

= {Gk+l U Hk} n {(Gk+l,F n GZ) U Hk}

= [Gk+l n (Gk+l,F n GZ )] U Hk

= (Gk+l,F n GZ) U Hk.

Both Gk+l,F n Gz and Hk are closed in Hk+l. Also, by Claim 3, regardless of whether or not

Gk+l,F n Hk = (Gk+1,F n Gz ) n Hk is empty, the function g agrees with the zero function on

Thus by Lemma IIl.6.23, 9 can be extended to some g' E CO(Hk+l) such that g'IGk+l,FnGz = O.

Then by Lemma IlL5.5, ek+1(g') vanishes on F. So ek+l(g') E J. It is clear that ek+l(g') =I- o.
Also, since g' vanishes outside of Hk, the support of g' is the same as g, so g' E Cc(Hk+1).

Finally we check that ek+l(g') E I. By Claim 1, p(ek+1(9')) = ek(g) E P(I). So there

exists some g" E I such that p(ek+1(g')) = P(gll). But PIJ is injective, and both ek+l (g') and gil

are in J, so ek+I(g') = gil E I. This completes the proof. 0

Corollary III.6.25. If I ~ Az is a non-zero ideal, then In Cc(Gz) =I- O.

Proof: Let I ~ A z be a non-zero ideal. Note that (eN 0 PN )lco(Gz) = eN. Since eN 0 PN(I) is a

non-zero ideal of B N, we see that

o=I- eN 0 PN(I) n eN(Cc(GZ))

= eN 0 PN(I) n eN 0 PN(Cc(GZ))

= eN 0 PN(I n Cc(Gz )).

o
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CHAPTER IV

INDUCTIVE LIMITS OF SRSHAS AS C*-SUBALGEBRAS OF C*(X,R.)

In this chapter, we show that when X is a compact metric space and when R. acts on X

freely and minimally, the crossed product C* (X, R.) contains C*-subalgebras that are isomorphic

to simple inductive limits of SRSHAs. These subalgebras are the analogs of the algebras A y =

C*(C(X), uCo(X \ {y} )), the C* -subalgebra generated by C(X) and uCo(X \ {y}), in the crossed

product obtained from a free minimal action of Z on a compact metric space X.

IV.I. Definition of the Subalgebra Ay

To define the subalgebras Ay, we will first need a different description of the set Gz defined

in Notation III.1.10.

Lemma IV.I.I. Let Z be a pseudo-transversal of a free minimal action ofR. on a compact metric

space. Let G z be the set defined in Notation III. 1. 1O. For each r E [0, 00), let Dr = [0, r] . Z, and

for each r E (-00,0], let Dr = [r,O] . Z, where we take [0,0] to be the degenerate closed interval

{O}. Then Gz = (UsEIR({s} x Ds)r.

Proof: Let H = (UsEIR({s} X Ds))c. Let (r,x) E Gz. Then x E ZC, and -r E (a(x),;3(x)),

where a and ;3 are the backward and forward entering times for Z, respectively. First assume that

r ~ O. If (r,x) ~ H, then (r,x) E UsEIR({s} x Ds), and then x E Dr = [O,r]' Z, so there exists

t E [O,r] and z E Z such that x = tz. Then (-t)x = z E Z. Since x E ZC, we see that t =1= 0, and

so -t < O. Then a(x) ~ -t by the definition of the backward entering time. But -r > a(x) ~ -t,

so r < t, contradicting the fact that t E [0, r]. Thus (r, x) E H. With a very similar argument, we

see that (r,x) E H when r :s: o. So Gz ~ H.

Now suppose that (r,x) E H. Then x ~ Dr. First assume that r ~ O. Since x ~ Dr =

[O,r]· Z, for all s E [-r,O], we have sx ~ Z. In particular x ~ Z and (-r)x ~ Z. Also, a(x) :s: -r.
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But a(x) =I- -r, for otherwise, (-r)x = a(x)x E Z. Thus a(x) < -r ~ 0 < f3(x). So (r,x) E Gz .

With a very similar argument, we see that (r, x) E Gz if r ~ O. So H ~ G z. o

Notation IV.1.2. Let Z be a compact pseudo-transversal of a free minimal action of lR on a

compact metric space X. For each y E X, let D¥ = [0, r] . y if r 2:: 0, let D¥ = [r,O] . y if

r ~ 0, where [0,0] = {O}, and let Gy = (UrEIR({r} x D¥)r. For each y E Z and each r > 0, let

B(y, r) = {x EX: d(x, y) < r}, let Z¥ = Z n B(y, r), and let Z¥ = Z¥.

Lemma IV.1.3. Using the notation in Notation IV.1.2, for all y E Z, all r > 0, and all x E X,

we have

1. (lR· x) n Z;¥ =I- 0.

2. Z¥ ~ Z;¥ n (lR. x).

3. Z;¥ n (lR . x) = Z;¥.

4. Z¥ is a pseudo-transversal, and Z¥ ~ z.

Proof: Fix y E Z r > 0 and x E X. Let S = (lR . x) n Z.

Since Z is a pseudo-transversal, we have S = Z. This implies that S n B(y, r) n Z =I- 0,

which implies that (lR· x) n Z¥ =I- 0. This proves part 1.

Let z E Z;¥. Then there exists E > 0 such that B(Z,E) ~ B(y,r). By part 1, for all n 2:: 1,

we have (lR· x) n Z:/2n =I- 0. So for each n 2:: 1, choose X n E (lR· x) n Z:/2n. Now, for each n 2:: 1,

we have B(z, E/2n) ~ B(z, E) ~ B(y, r), so xn E Z;¥ n (lR· x) for all n 2:: 1. Since d(xn, z) < E/2n

for each n 2:: 1, we see that X n ----. Z. SO part 2 holds. Then Z;¥ = Z;¥ ~ (lR· x) n Z;¥ ~ (lR· x) n Z;¥.

Since (lR . x) n Z¥ ~ Z;¥, and since Z;¥ is clearly compact, we see that (lR . x) n Z;¥ ~ Z;¥. So part 3

holds. Part 4 follows immediately from part 3. This finishes the proof.

IV.2. Simplicity and Topological Stable Rank of Ay

o

Notation IV.2.1. For the rest of the chapter, we fix a pseudo-transversal Z, a point y E Z, and

a strictly decreasing sequence {rn } of positive real numbers that converges to O. For each n 2:: 1,

let Zn = Z;¥n' where Z;¥n is as in Notation IV.1.2, let GZn be the set defined in Notation 111.1.10,

let An = Co(GzJ, and let Ay = Cc(Gy). Note that Zl 2 Z2 2 ... , and that n~=l Zn = {y}.
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Lemma IV.2.2. We have

Proof: For each r E JR, let D¥ be as in Notation IV.1.2; and for each n 2: 1, and each r E JR,

let D~ be the set Dr in Lemma IV.1.1 for the pseudo-transversal Zn. Then by Lemma IV.1.1, we

have G z" = (UrEIR({r} x D;:)) c . We first claim that for all r E JR, we have D¥ = n:=l D~.

It is clear that for all r E JR, we have D¥ ~ n:=l D~. So we just need to prove the other

inclusion. Let r E R We will only prove the inclusion for the case when r > 0, because the case

when r < a is similar, and the case when r = a is trivial. Let x E nn~l D~. Then for each n 2: 1,

there exist Sn E [0, r] and Zn E Zn such that x = SnZn. It is clear that Zn -l y. Since {Sn} is a

bounded sequence, we can assume, passing to a subsequence if necessary, that Sn -l S for some

S E [0, r]. Then x = SnZn -l sy E Dr Thus nn~l D;: ~ D¥. So the claim is proven.

Thus (s, x) E (Gy)C if and only if (s, x) E UrEJR( {r} x D¥), if and only if x E D~, if

and only if x E nn~l D~, if and only if (s,x) E nn~l{S} x D~, if and only if (s,x) belongs to

nn~l (UrEIR({r} x D~)) , if and only if (s, x) E nn~l (GzJ = (Un~l GZnr.So Un~l GZn = Gy.

Since D; =2 D; =2 ... for all r E JR, it follows immediately that GZ
1
~ GZ

2
~ •••• Part 1 is proven.

The first statement of part 2 and the first statement of part 3 follow immediately from

the first statement of part 1. Now let f E Cc(Gy), and let K be the support of f. Then K ~

Gy = Un~ 1 GZn· Since GZn is open, and since K is compact, there exists N 2: 1 such that K ~

U~=l GZn = Gzw So f E Cc(GzJ ~ Un~l CC(Gzn)· It is clear that Un~lCc(GzJ ~ Cc(Gy). So

part 2 is proven.

It follows immediately from part 1 and 2 and the first statement of part 3 that Ay C

Un~l An. For the other inclusion, note that for each n 2: 1, CC(GZn ) ~ Cc(JR x X) is dense in

Co(Gz.J ~ Cc(JR x X) when Cc(JR x X) has the inductive limit topology, and so Cc(GzJ is dense

in Co(GzJ in the norm topology. Then for all n 2: 1, we have An = Cc(GzJ ~ Cc(Gy) = Ay.

The desired inclusion follows. D
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Lemma IV.2.3. If I ~ A y is a non-zero ideal, then I n Cc(Gy ) -1= O.

Proof: Since I = UnZl (An n 1), we know that for some n ~ 1, I n An -1= O. Then I n An is a

non-zero ideal in An' so by Corollary III.6.25, we have InAnnCc(GzJ -1= O. But InAnnCc(Gzn ) ~

D

Lemma IV.2.4. Let U be an open set in IR x X. For each n ~ 1, let Rn denote the return time

for Zn, and for each n ;::: 1 and each z E Zn, let

T-; = {(r, sz): S E (0, Rn(z)), s - r E (0, Rn(z))}.

Then there exists N ~ 1 such that for all n ~ N and all z E Zn, we have T-; n U -1= 0.

Proof: We first show that for each r E (0, (0), there exists m ~ 1 such that Rm(z) ~ r

for all Z E Zm. By Lemma III.2.1, there exists a compact neighborhood K of y that satisfies

[(0, r] . (K n Z)] n (K n Z) = 0. Let 6 > 0 satisfy B(y, 6) ~ K, and let m ~ 1 satisfy r m < 6. Then

Zm = B(y,rm ) n Z ~ B(y,6) n Z ~ B(y,8) nZ ~ Kn Z.

So for all z E Zm, we have

[(0, r] . z] n Zm ~ [(0, r] . (K n Z)] n (K n Z) = 0,

and so Rm(z) ~ r.

Now let I ~ IR be a nonempty bounded open interval, and let V ~ X be an open set such

that I x V ~ U. Let ro > 0 be such that I ~ (-ro, ro), and let So > ro be such that so' y E V. (The

existence of So is guaranteed by the minimality of the action.) Pick N such that so' B(y, rN) ~ V

and RN(Z) ~ so+ro for all z E ZN. Note that R 1 :::; R 2 :::;··· • Let n > N. Then So ,Zn ~ V. Now

let z E Zn. Then So . z E V. Let tEl. Then -ro < -t < ro, so

0< So - ro < So - t < So + ro :::; RN(Z) :::; Rn(z).

Also Rn(z) ~ ro + So > So > 0, so (t, soz) E r;. It is clear that (t, soz) E I x V ~ U. Thus

T-; n U -1= 0. D
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Proposition IV.2.5. Let A y be the C* -algebra defined in Notation IV.2.1. Then A y is simple.

Proof: Recall that for each n 2: 1, the set Zn denotes the pseudo-transversal that gives rise

to An. Let I ~ Ay be a non-zero ideal. By Lemma IV.2.3, we have In Cc(Gy) =I- O. So let

0=1- f E Cc(Gy ) n1. Let U = {x E JR. x X: f(x) =I- O}. Then U is open. Use Part 2 of Lemma IV.2.2

and Lemma IV.2.4 to get N such that for all n 2: N, the function f belongs to Cc(GzJ, and for

all n 2: N and for all Z E Zn, we have T;' n U =I- 0, where T;' = {(r,sz): s,s - r E (0, Rn(z))}.

Now fix n 2: N.

Let Xl, X 2 , .•. , Xm be the compact subsets of X associated with the pseudo-transversal

Zn as defined in Notation III.2.5. Let CXl, .•• , CXm be the extensions of the backward entering

times associated with Xl, ... , Xm, as obtained in Lemma III.2.8. Let 131,"" 13m be the extensions

of the forward entering times associated with Xl,"" X m , as obtained in Lemma III.2.8. Then

Xl, ... , Xm are the base spaces of the stable recursive decomposition of An with components

C(Xi,K), for i = 1, ... , m, as in Corollary III,6.22. For each i E {I, ... ,m} and each x E Xi, let

H[ = {(r, sx): s, s - r E (CXi(X),13i(X))}. We claim that H[ n Gz n U =I- 0 for each i E {I, ... , m}

and each x E Xi.

Let i E {I, ... ,m}, and let x E Xi' Let z = CXi(X)X E Zn. Then Rn(z) :::; 13i(X) - CXi(X), Let

(r, sz) E T;'. Then (r, sz) = (r, (s + CXi(X))X), Since 0 < s < Rn(z), we see that CXi(X) < s + CXi(X) <

Rn (z) + CXi(X) :::; 13i (x), so s + CXi(X) E (CXi(X), 13i(X)), Since 0 < s - r < Rn(z), we have

So (r, sz) = (r, (CXi(X) + s)x) E Hf. Thus T;' ~ H[. Then, since T;' ~ Gz, we see that T;' ~

H[ n Gz. Thus 0 =I- U n T;' ~ U n H[ n Gz. This proves the claim.

To finish the proof, let (iI, ... ,1m) be the image of 1 in the recursive decomposition B of

An. Let i E {I, ... , m} and let x E Xi. We just showed that H[ n Gz n U =I- 0. So ll H f ncz =I- O.

Then by Lemma III.6.21, we have fi(X) =I- O. This holds for all i E {I, ... ,m} and all x E Xi'

So (iI, ... ,1m) is not contained in any primitive ideal of B, so (iI, ... ,1m) is not contained any

proper closed ideal B, so neither can 1 be contained in any proper closed ideal of An. Therefore

I n An = An. This holds for all n 2: N. So I = Un=l (I nAn) = Un2 N AN = Ay. Thus Ay is

simple. D



131

The next lemma shows that the connecting maps in the direct system (An, ~n), where An

is as in Notation IV.2.1 and ~n is the inclusion map, are non-vanishing.

Lemma IV.2.6. Let An and A y be as in IV.2.1. Let ~n: An ----> A n+1 be the inclusion. For each

n 2: 1, let Xf, ... ,Xl';. be the spaces associated with the pseudo-transversal Zn+ 1 as defined in

Notation III. 2. 5. Then for each n 2: 1, for each k E {I, ... , In}, and for each x E X k, there exists

some f E Cc(Gzn ) such that ~n(f)ITx i= 0, where

and where an+! and (3n+! are the entering times (not the extensions) associated with the

pseudo-transversal Zn+ 1.

Proof' We know that GZn <:;;: Gzn+1 • We show that Tx n GZn is nonempty. Because Zn and

Zn+1 are pseudo-transversals, there exists some s E (an+!(x),(3n+1(X)) such that sx rt. Zn. Take

l' > 0 small enough so that -1' E (an+1(sX),(3n+1(SX)), and that (-21',21')' (sx) <:;;: Z~. Then

(r, sx) E GZn n T x · Thus T x n GZn i= 0.

Then it is clear that there exists some f E CC(Gzn ) such that fiT", i= O. 0

Theorem IV.2.7. The algebra A y is isomorphic to a simple inductive limit of SRSHAs such that

all connecting the maps of the inductive system are injective and non-vanishing. Let X n be the total

space of the n-th SRSHA in the inductive system. Then dim(Xn) ::::; d for some dEN. Moreover,

A y has topological stable rank one.

Proof: For each n 2: 1, let ~n: An ----> An+! be the inclusion map. Let B n be the SRSHA

associated with the SRSH decomposition obtained in previous chapter, and let hn : An ----> Bn be

the isomorphism in Corollary III.6.20. Define en: Bn ----> B n+1 by en = hn+1 0 ~n 0 h:;;1.

It is clear that the total space of Bn has dimension less or equal to the dimension of X,

which is finite. It is also clear that en is injective. Lemmas III.6.21 and IV.2.6 show that en is

non-vanishing.

So the first statement of the theorem holds. It follows from Theorem II.3.23 and

Porposition IV.2.5 that Ay has topological stable rank one. o
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