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In this dissertation, we will study the crossed product C*-algebras obtained from free
and minimal R actions on compact metric spaces with finite covering dimension. We first define
stable recursive subhomogeneous algebras (SRSHAs), which differ from recursive subhomogeneous
algebras introduced by N. C. Phillips in that the irreducible representations of SRSHAs are infinite
dimensional instead of finite dimensional. We show that simple inductive limits of SRSHAs with no
dimension growth in which the connecting maps are injective and non-vanishing have topological
stable rank one. We then construct C*-subalgebras of the crossed product that are analogous to
the C*-subalgebras in the studies of free minimal Z actions on compact metric spaces with finite
covering dimension. Finally, we prove that these C*-algebras are in fact simple inductive limits of
SRSHAs in which the connecting maps are injective and non-vanishing. Thus these C*-subalgebras

have topological stable rank one.
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CHAPTER 1

INTRODUCTION

This dissertation is on crossed product C*-algebras obtained from free and minimal R
actions on unital abelian C*-algebras, or transformation group C*-algebras. A C*-algebra can
either be regarded as a subalgebra of the algebra B(H) of the bounded operators on a Hilbert
space H that are closed in norm and adjoint operation, or be defined abstractly using a set of

axioms:

Definition 1.0.1. Let A be a Banach algebra with a *-operation A — A, denoted a — a*. We say
A is a C*-algebra if

1. the *-operation is conjugate linear;

2. for alla,b € A, we have (ab)* = b*a*;
3. for all a € A, we have (a*)* = a;

4. for all a € A, we have |la*a|| = ||a||?.

The condition |la*al| = ||a||? for all @ € A is called the C*-norm condition, and a norm
that satisfies this condition is called a C*-norm.

When a topological group G acts on a C*-algebra A by automorphisms, we can form the
crossed product C*-algebra. Let a: G — Aut(A) be a group homomorphism that is continuous
when Aut{A) has the topology of pointwise convergence. For each s € G, we use a; to denote
the image of s under . Then on the linear space C.(G, A) of all continuous functions from G
into A with compact support, we can define multiplication and a *-operation, which are often

respectively called convolution and involution in this context, as follows: for all f,g € C.(G, A),



define convolution by
(f % g)(s) =/Gf(t)at(g(t"1s))dt, for all s € G;
for all f € C.(G, A), define involution by
F*(s) = A(s) " Las(f(s™H"), for all s € G,

where the measure on G is taken to be the left Haar measure, and where A is the modular function
associated with the left Haar measure. With convolution and involution defined as above C.(G, A)
becomes a *-algebra. On C.(G, A), we can put the norm defined by | f|l1 = [, [ f(s)||ds, which
is called the L'-norm for obvious reasons. Denote the completion of C.(G, 4) with respect to the
L'-norm by L'(G, A). Then L'(G, A) becomes a Banach-*-algebra. However L!(G, A) is not a
(C™-algebra because the L!-norm is not a C*-norm.

In general, there are two different C*-norms, the universal norm and the reduced norm,
that we can put on L'(G, A) that will make L*(G, A) into a C*-algebra after completion. The

universal norm is defined to be
| 7|l = sup{[|7(f)|: 7 is a representation of L*(G, 4)}.

A representation of a *-algebra B is a pair (m, H), where H is a Hilbert space, and where
m: B — B(H) is a linear and multiplicative map that also preserves the *-operation. In
order for the supremum to be well defined, we need to ensure that there is at least one
representation of L(G, A), and that {||x(f)|: 7 is a representation of L!(G, A)} is a bounded
set. The boundedness of {||x(f)|: = is a representation of L}(G, A)} is automatic because any
representation of any Banach-*-algebra is automatically norm reducing (Theorem 2.1.7 in [6]). To
exhibit one representation of L' (G, A), we invoke the GNS construction. By the GNS construction,
we know that any C*-algebra has a representation (Section 3.4 in [6]), so the C*-algebra A has a
representation (m, H). The space L?(G, H) of all L? integrable measurable functions is a Hilbert

space; or equivalently L2(G, H) is the Hilbert space tensor product L?(G) ® H. Then we can define



a representation A\, : C.(G, A) — B(L%(G, H)) by

[ﬁ(s_lr)]ds

A = /G (e (£(s)))

for all f € C.(G,A), all ¢ € L*(G,H), and all r € G. Routine calculations show that A, is
L'-norm decreasing, and hence extends to a representation of L'(G, A). See Chapter 2 in [17] for
more details. The representation (\,,L%(G, H)) obtained from the representation (m, H) is known
as the left regular representation induced by (w, H). The reduced norm on L!(G, A) is defined to
be

I£ |~ = sup{||A=(H)||: 7 is a representation of A}.

The completion of L!(G, A) in the universal norm is called full crossed product, or just the crossed
product, and will be denoted by C*(A, G, ). The completion of L!(G, A) in the reduced norm is
called the reduced crossed product and will be denoted Cr(A, G, ).

It is well known that when the group G is amenable, the universal norm and the reduced
norm coincide (Theorem 7.13 in [17]). We will not go into details about amenability of groups, but
it follows from Proposition A.16 in [17] that R is amenable. In this dissertation we only consider the
group R, so we will not distinguish the reduced crossed product from the full crossed product, nor
the reduced norm from the universal norm. Further, we will only consider the crossed products
of C(X), the algebra of all continuous functions from X into C, by R, where X is a compact
metric space with finite covering dimension, and where the action on C(X) is induced by a free
and minimal action of R on X. In this case, we will denote the crossed product by C*(X,R). We
will use s - z, or just simply sz to denote the action, for s € R and = € X. It is clear that we can
identify the linear space C.(R, C(X)) with C.(R x X), the space of all continuous functions from
the product space R x X into the complex number C with compact support. Also, it is known
that the Lebesgue measure on R is the left Haar measure for R, and that the modular function A
for the Lebesgue measure is the constant 1, i.e. R with the Lebesgue measure is unimodular. Then

the convolution on C.(R x X) is given by the formula

(f * 9)(r,z) = /R f(t,@)g(r — t, (~t)z)dt; (1L1)



and the involution on C,(R x X) is given by the formula
f(r,z) = f(=r,(-7)2). (L2)

It is known that the reduced normed on a crossed product C*(A, G, a) can be obtained
from just one of left regular representations induced by a faithful (injective) representations of A
(Theorem 7.13 in [17]). That is, if (w, H) is a faithful representation of A, then || f||» = A ()|
Since the direct sum of all irreducible representations of C(X) is faithful, and since the irreducible
representations of C'(X) are the point evaluations, the universal norm (which is the same as the

reduced norm) on C.(R x X) is given by

IFIl = sup [|A=(H)N), (L3)
z€X

where for each = € X, the representation A\, : C.(R x X) — L2(R) is the left regular representation

induced by the evaluation map ev, of C(X) at z. We can quickly verify that A, is given by

Xl H)E)(r) = /R F(r — t,ra)é(b)de, (14)

for all f € C.(R x X), all ¢ € L?(R), and all 7 € R.

If we consider the action of the group on a single orbit and forget about the topology, we
quickly realize that the action is essentially the action of the group on itself by left translation.
However, due to the minimality of the action, every orbit of the action is dense in the space X,
and it becomes quite difficult to see how the orbits are tied together topologically. So we resort
to the method of “orbit breaking” to simplify the dynamics, and obtain a structure theorem for
certain distinguished C*-subalgebras of C*(X,R).

The “orbit breaking” method was introduced by I. F. Putnam in the study of free and
minimal actions of the group Z of integers on the Cantor set. Let u € C*(X,Z) be the standard
unitary, let ¥ C C(X) be a closed subset, and let Co(X \ Y) be the space of all continuous
functions from X \'Y into C that vanish at infinity. In this case, finite dimensional C*-subalgebras
are constructed using partitions of the Cantor set X into clopen sets, and it is shown that the
C*-subalgebra Ay of the crossed product generated by C(X) and uCo(X \Y) is an inductive limit

of those finite dimensional subalgebras. See [10] and [11] for more details.



In [5], a similar idea is used on the crossed product of C'(X) by a free and minimal Z
action, where X is an arbitrary compact metric space X with finite covering dimension, to obtain
a structure theorem for the C*-subalgebras Ay generated by C(X) and uCo(X \ Y). In this case,
closed subsets Y of X with nonempty interior are used to break the orbits. Every orbit is broken
into partial orbits that start and end in Y which do not go through Y in between. Upon collecting
the partial orbits together, it is shown that the C*-subalgebra Ay is obtained by “gluing” finitely
many homogeneous algebras together, i.e. is a recursive subhomogeneous algebra. Then shrinking
a sequence of decreasing closed subsets with nonempty interior to the point y, it was shown that
Ay, the C*-subalgebra generated by C'(X) and uCo(X \{y}), is a simple inductive limit of recursive
subhomogeneous algebras with no dimension growth.

Recursive subhomogeneous algebras were introduced by N. C. Phillips in [8]. This class
of C*-algebras is a useful technical tool for studying transformation group C*-algebras. In [9], a
stable rank reduction theorem is obtained, i.e. it is shown that a simple inductive limit of recursive
subhomogeneous algebras with no dimension growth has topological stable rank one. (See [16]
for the definition of topological stable rank.) In [3], H. Lin and N. C. Phillips show that the
subalgebras A, of the crossed product of C(X) by a free and minimal action of Z have tracial
rank zero given that certain hypothesis about traces hold. In the same paper, this result is used
to show that the crossed product has tracial rank zero under the same hypothesis about traces.

In this dissertation, we similarly use the “orbit breaking” method to study the crossed
products of C(X) by free and minimal R actions. When the group that is acting is R, the
subalgebras Ay are no longer obtained by “gluing” homogeneous algebras together; but rather,
they are obtained by “gluing” algebras of the form C(Z) ® K, where Z is a compact metric space
with finite covering dimension, and K is the algebra of compact operators on the separable infinite
dimensional Hilbert space. Thus we first define “stable recursive subhomogeneous algebras”,
analogous to recursive subhomogeneous algebras, to accommodate this change. We will also
obtain a stable rank reduction theorem for simple inductive limits stable recursive subhomogeneous
algebras with no dimension growth. Then we construct the analogs for actions of R of Ay and
A,. Recall that, in the integer case, Ay is defined to be the C*-subalgebra generated by C(X)
and uCy(X \Y), and A, is defined to be the C*-subalgebra generated by C(X) and uCo(X \ {y}).
However, when the group is not discrete, the unitaries that implement the action and the algebra

C(X) are not contained in the crossed product. So we have to resort to other methods to define



the analogous subalgebras. Finally we will show that the Ay is a stable recursive homogeneous
algebra, and that A, is a simple inductive limit of the algebras Ay with no dimension growth, and

has have topological stable rank one.



CHAPTER 1I

STABLE RECURSIVE SUBHOMOGENEOUS ALGEBRAS

Recursive subhomogeneous algebras, abbreviated RSHA, are introduced by N. C. Phillips
in [8]. Essentially, a RSHA is an iterated pull back of algebras of the form C(X, M,), where
the spaces X are taken to be compact Hausdorff space, M, is the algebra of n x n-matrices,
and C(X, M,) is the algebra of all continuous functions from X into M,. It is well known that
C(X,A) = C(X)® A for any C™"-algebra A. In some sense, a recursive subhomogeneous algebra
is formed by “gluing” finitely many algebras of the form C(X, M,) together. In this chapter, we
introduce an analogous “stable” version of RSHA, and establish a topological stable rank reduction
result.

We will use K to denote the algebra of all compact operators on the separable infinite
dimensional Hilbert space throughout the dissertation. If A is a C*-algebra, we will take C(&, A)

to be the zero algebra.

II.1. Definitions

Definition II.1.1. Let A,B be C*-algebras, let X be a compact Hausdorff space, and let
¢: A— C(X,B) be a *-homomorphism. We say ¢ is non-vanishing if for all z € X, there exists
some a € A such that ¢(a)(z) # 0.

Note that in the above definition, if X = &, then ¢ is vacuously non-vanishing.

Definition 1I.1.2. Let H be a separable infinite dimensional Hilbert space and let K denote the
set of all compact operators on H. Let n be a positive integer, let Xy, ..., X, be compact Hausdorff
spaces, let X,SO) C Xy be closed subspaces for k =2,...,n, and let Ry: C(X§,K) — C’(X,EO),K) be
the restriction map for k =2,...,n. For each k with 2 < k < n, let ¢p: A*F~D C’(X,go),lK) be a



non-vanishing *-homomorphism, let A = C(X,,K), and inductively define
AP = {(a,0) € A%V ® C(Xi,K): ¢(a) = Ri(0)}.

We call

(3040, (50,36 6070 4 )

a stable recursive sub-homogeneous system, abbreviated SRSH system, and call the algebra A"
the stable recursive sub-homogeneous algebra, abbreviated by SRSHA, corresponding to the system.

Let A be a C"-algebra. We say that A has a stable recursive sub-homogeneous
decomposition if there exists a stable recursive sub-homogeneous system

(304, (3058 %))

such that A = A®™ | in which case we also say that A is a stable recursive sub-homogeneous algebra,
and call the system a stable recursive sub-homogeneous decomposition of A.

The integer n is called the length of the system (or the decomposition). The spaces
Xi1,..., X, are caolled the bases spaces of the system. The space X = L‘Z:l X1 is called the
total space of the system. The spaces XZ(O), - ,X,(lo) are called the attaching spaces of the system.
The maps Ra, ..., Ry are called the restriction maps of the system. The maps Pa, s, ..., o, are
called the attaching map of the system. For each k € {1,...,n}, the algebra A™® is called k-th

partial algebra of the system.

Note that a SRSH system of length 1 is simply (X;,C(X1,K)). For a SRSHA A, the
decomposition is by no means unique. We allow any or all of the attaching spaces to be the empty

set. If X,EO) = @ for some k, then A® is simply A®~D @ C(X},K). If A has a stable SRSH

decomposition

(0,49, (X0, X, 00, Ri, AV) ),

then A is a C*-subalgebra of @,_; C(Xy, K); also for each k € {1,...,n}, the k-th partial algebra

is also a SRSHA with the decomposition being

Nk
(XlaA(l)y (XiaXi(O);qbi,RiaA(z)) __2) .



Let @ = (a1,...,a,) € A and let  be in the total space X. Then there exists unique k such that
z € Xi. We will use a(z) to denote ag(x). So for each z € X, the map A — K sending a +— a(z) isa
clearly *-homomorphism. If 1 < k& <! < n, then it is easily verified that the map py j: AD 5 A
defined by pyk(a1,...,a;) = (a1,...,a) is a surjective *-homomorphism. If 1 <k <! <m < n,

then pm x = Pik © Pm,-

I11.2. Ideals and Homomorphisms of SRSHAs

In this section we establish some results about the spectrum, primitive ideal space, and
ideals of a SRSHA. We will use A to denote the spectrum of A, i.e. the space of all irreducible
representations of A, and if 7 is an irreducible representation of A, we will use [r] to denote the
corresponding element in A. We will use Prim(A) to denote the primitive ideal space of A. The

next lemma is a standard result.

Lemma I1.2.1. Let X be a locally compact Hausdorff space and let A = Co(X,K). For each
€ X, letevy: A— K be defined by ev,(f) = f(z). Then

1. the map X — A defined by x — [ev,] is a well defined bijection;
2. the map X — Prim(A) defined by x — {f € A: f(z) = 0} is a well-defined bijection.

Lemma I1.2.2. Let n be a positive integer. Let
(Xl, A(l), (Xk:a X[S;O)v ¢k, Rk:y AUC))E:Z)

be a stable recursive sub-homogeneous system and let A= AM™. Let X 1(0) = @&. Then

1. the map M: | |p_, (Xk \ X,go)) — Prim(A) defined by M(z) = {a € A: a(z) = 0} is a well
defined bijection.

2. for each z € | |, (Xi \ X,go)), the evaluation map ev,: A — K, given by a — a(z), is
non-zero; also the map S: |;_,(Xk \X,go)) — A defined by S(z) = [ev,] is a well defined
bijection.

Proof:  Induct on n. The case when n = 1 is given by Lemma I1.2.1. Suppose that statement

holds for some n, let
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n+1
(leA(1)> (kaXI(cO)7wkka7A(k)) >

be a SRSH system of length n + 1 and let A = A®+D,

Let 1 <i<n+1andlet z € X;\ X”. Define m: A™D — Kby n(f1,..., fat1) = fi(®).
Then 7 is a clearly a *-homomorphism. Let a € K. Choose h € C(X;) such that h(z) = 1 and
supp h C X;\ Xi(o), and let f € C(X;,K) be defined by f(y) = h(y)a. Then supp f C X;\ Xi(o).
Hence R;(f) = f|X§°) =0 = ¢;(0), and so (0,...,0,f) € A®. Since the map A®+D) — AW
defined by (g1,...,9n+1) = (91,.--,9:) is surjective, there exist gi+1,...,9n+1 such that & =
0,...,0, f,Gi41, -, Gns1) € A®TD Then 7(¢) = f(2) = a. Thus 7 = ev, maps onto K, and so
is non-zero and irreducible. This shows that the map S defined in part 2 of the statement of the

lemma is well defined. Further, this also shows that
{(g1,- -+, n41) € A"V gi(a) = 0} = ker 7w € Prim(AT+D),

and so M defined in part 1 of the statement of the lemma is well defined.

Now consider

Insi = {(f1, -, s far) € APV (1,00, fu) = O

Then it is clear that I,,+1 is a closed two sided ideal of A. Note that if (f1,..., fat+1) € Int1, then

0=1tn+1(f1,--+ fn) = Rnt1{fn+1), and so fny1 vanishes on Xr(le. Define
$: Int1 = Co(Xnt1 \ X\ 01, K)

by ¢(f1,-. s frt1) = f"+1|xn+1\xfﬂzl' This map is well defined because if (f1,..., fat1) € Int1,
then fn+1 vanishes on X,(Sgl, 50 frt1 € Co(Xnt1 \X,(ﬂl,]K). Then it is clear that ¢ is a
*_isomorphism.

Now let 7: A — B(H) be a non-zero irreducible representation. First assume that
T|1pert Ing1 — B(H) is not the zero representation. Then 7|zy,., is also irreducible. Thus

7o ¢~! is an irreducible representation of Co(Xpt1 \ X,(SQI,K), and so by Lemma II.2.1 there

exists z € Xpq1 \X,(le, such that [r o 7] = [ev;]. Then there exists a unitary u such that
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mog¢~! = Ad(u) oev,, where Ad(u): K — K is defined by Ad(u)(a) = uau*. Define 7': A — B(H)
by 7' (f1, -+, fat1) = Ad(w)(fas1(z)). Then |y, ., = 7’|y, Since 7|y, ., = 7'|1,,, is irreducible,
hence non-degenerate, we have m = n’. Then S(z) = [r'] = [7].

Now suppose that 7|z,,, = 0. Define 1p: AT — A™ by p(f1,. .., fuy1) = (fi,- > fo)-

Consider the short exact sequence
0 = Ing1 — ABHD 25 400

Since 7 restricts to zero on I,,q, 7 factors through A", That is, there exists 7: A™ — B(H)
such that 7 o1 = w. Then Im 7 = Im 7. Since = is irreducible, we see that 7 is also irreducible.
Thus by the inductive hypothesis, we see that there exists some 1 < ¢ < n and some z € X; \ X, ,L(O)
such that [7] = [ev,]. So there exists a unitary such that 7(f) = Ad(uw)(f(z)) for all f € A™). Then
for all = (f1,. .-, fus fut1) € AP, we have 7(f) = FW()) = F(f1,- -, fn) = Ad(w)(fi(2).
Thus [7] = S(z), and hence S is surjective. If J € Prim(A), then there exists some irreducible
representation m of A such that J = kerw. So there exists z € UZ:; (Xk\X ,ﬁo)) such that

levg] = [7]. It follows that
J =kerm =kerevy = {a € A: a(z) =0} = M(x).

Thus M is also surjective.

Next we show that M and S are injective. Let x,y € UZ:}(X s\ X ]go)) and suppose that
x #y. First assume that there exist 1 < j < k < n such that z € X \X](-O) and y € X \X,go). Let
h € C(Xy) satisfy h(y) = 1 and supp h C X \ X,go), let a € K be a non-zero element, let f = ah,
and let b = (0,...,0, f) € A®). Let foy1,..., fas1 be such that g = (b, fey1,..., fui1) € APTD,
Then g(z) = 0, but g(y) = a # 0. Thus g € M(z), but g ¢ M(y), and so M(z) # M(y). Since
M(z) = kerev, and M(y) = kerev,, we have S(y) = [ev,] # [ev,] = S(z). Now suppose that
z,y € Xi \ X,(co) for some 1 < k < n. Since xz,y are different, there exists an open U C X, \ X,(CO)
such that y € U, but = ¢ U. Choose h € C(X}) such that h(y) = 1 and h vanishes outside of U.

Let a € K be non-zero. Let f = ah. Then f vanishes on X }go)‘ So there exist

Gr+1 € C(Xpy41,K), ..., gny1 € C(Xny1,K)
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such that g = (0,...,0, f, gk+1,.--,gn+1) belongs to A. Then g(z) = f(z) =0 and g(y)= f(y) =a.
It follows that g € M(z), but g ¢ M(y). So M(y) # M(z), and consequently S(z) # S(y). a

Corollary 11.2.3. Let

(3040, (30, X031, A9

be a stable recursive sub-homogeneous system and let A = AM™ . Let Xl(o) = &. Then for all
z,y € Lo (Xe \ X,go)) with x # y, there exist some a,b € A such that a(z) = 0, a(y) # 0,
b(z) # 0, and b(y) = 0.

Proof:  First suppose that z € X; \XJ(.O) and y € Xi \ X,EO), where 1 < 7 < k < n. Then the
element a € A needed is constructed in the last paragraph of the proof of 11.2.2. Next we construct
the element b. Let h € C'(X;) be such that h(z) = 1 and h vanishes on XJ(O), let £ € K be non-zero,
and let f = h€. Then (0,...,0,f) € AY. Choose ¥’ € A%=1 such that the first j entries of b’ are
(0,...,0, f). Let ¢ = ¢, (V). Let V be an open neighborhood of X,EO) that does not contain vy, and
choose h' € C(Xk) such that #/| x© = 1 and A’ vanishes outside of V. Let ¢’ be any extension of
c over X, and let f/ = h'c’. Then fI|X;(c°) =c = ¢(b). So (', f') € A%, Choose b € A such that
the first k entries of b are (¥, f). Then b(z) = f(z) = £ # 0, and b(y) = f'(y) = K (y)(y) = 0.
Now suppose that z,y € X\ X ,EO). Let U, and U, be two disjoint open sets contained in
Xk\X,go) such that z € U, and y € U,. Choose h, € C(Xy) and hy € C(X}) such that hy(x) =1
and hy(y) = 1, h, vanishes outside of U, and hy vanishes outside of Uy. Let £ € K be non-zero.
Let f, = hy€, and fy, = hyé. Then o’ = (0,...,f,) € A® and ¥ = (0,...,0, f,) € A®. Let

a,b € A be such that the first k entries of a and b are, respectively, a’ and b'. Then

a(z) =d'(z) = fy(z) =0,
a(y) = a'(y) = fy(y) =€ #0,
blz) =b'(z) = fo(z) =€ #0,

b(y) =b'(y) = fo(y) = 0.
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Corollary I1.2.4. Let n be a positive integer. Let

(30,4, (30, 30,0020 49, )

be a stable recursive sub-homogeneous system, and let A = A™. Let Xl(o) =@. Let I C A
be a closed two sided ideal of A. Then there exists a closed set F C X = | [}_, Xi such that

I={ae€A:a|lp =0}

Proof:  Let I be a closed two sided ideal of A. If I = 0, then take FF = X. If I = A, then take
F = @. Now assume that I is proper and non-zero. Recall that for any C*-algebra B and for any
closed two sided ideal I of B, the hull of I, denoted by hull(I), is the set of all primitive ideals
of B that contain I; and for any subset S C Prim(B), the kernel of S, denoted by ker(S) is the
intersection of all the members of S. We know that I = ker(hull(7)). Let M be as in Lemma I1.2.2.
Let F = M~1(hull(T)). We will verify that I = {a € A: a|r = 0}. Let J denote {a € A: a|p = 0}.

Let a € I, and let z € M~Y(hull{J)). Then M(z) € hull(J), and so a € I C M(z).
So a(x) = 0. This holds for all z € M~!(hull(I)). Thus a vanishes on M ~!(hull(I)). Since a is
continuous, a|r = 0. So a € J, and so I C J. Now suppose that a € J. Let L € hull(J). Then there
exists z € X such that L = M(x), and so € M~} (hull(1)) C F. The condition a € J implies that
a(x) = 0, which implies that o € M (z) = L. This holds for all L € hull(I), so a € ker(hull()) = I.
Thus JC I,and so I = J. O

The next theorem is a restatement of Theorem 1.4.4 in [1].

Theorem I1.2.5. Let H be an arbitrary Hilbert space, and let A C K(H) be a non-zero
C”-subalgebra. Then there exists an index set I and a family (p;)sc; of mutually orthogonal

projections in B(H), indezed by I, such that
1. p; € A for alli € I, where A’ denotes the commutant of A,
2. piAp; = K(p;H) for alli € I (we identify K(p;H) with p;K(H)p; in an obvious way);
3. |lall = sup;ey lpiaps|| for all a € A,
4. 2 e Piap; converges to a in norm for all a € A;

5. for all a € A and for all € > 0, there exists o finite subset F' C I such that ||p;ap;| < € for

alli ¢ F.
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Proposition I1.2.6. Let H be o separable infinite dimension Hilbert space and let K denote the

set of all compact operators on H. Let

(0 (550,00 A0 )

be a SRSH system whose underlying Hilbert space is H. Let A = AU, Let Xfo) = . Let
¢: A — K(H) be a non-zero *-homomorphism. Then there exists an indez set I, a family (p;)ics
of mutually orthogonal projections in B(H), a family (w;);er of isometries in B(H), and a family
(zi)ier of elements in | [i_(Xx \ X,EO)) (note that we do not assume that the z; are mutually

distinct) such that
1. pi € ¢(A) for all i € I, where (A) denotes the commutant of $p(A);
2. wiw; =1 and wyw} = p; for alli € I;
8. ¢la) =3 e wialz)w} for all a € A, where the convergence is in norm;
4. 19(@)l| = supies la(@)| for all a € 4;
5. I is a finite set.

Proof: It is clear that ¢(A) is a non-zero C*-subalgebra of K. Apply Theorem I1.2.5 to ¢(A) to
get the index set I and the family of mutually orthogonal projections (p;);er. Then part 1 of the
proposition holds holds. For each ¢ € I, define ¢;: A — K(p;H) by ¢:(a) = pi¢(a)p;. By part 1 of

this proposition, ¢; is a well defined *-homomorphism. It is clear that
¢i(A) = psd(A)p; € p; K(H)p; = K(p;H).

Then part 2 of Theorem II.2.5 implies that ¢;(A) = K(p;H). Thus (¢;,p;H) is an irreducible
representation of A. So by Lemma I[.2.2, there exists a unitary w;: H — p;H and some
z; € | [ ( Xk \ X,EO)) such that ¢;(a) = wia(z;)w] for all @ € A. Identifying w; as an element
of B(H) in the obvious way (identify w; with the composition inclusion p;H — H followed by w;),

the element w; is an isometry in B(H). Then it is clear that part 2 of this proposition holds. By
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part 4 of Theorem I1.2.5, we have

¢la) =D pidla)pi = Y dia) = D wialzi)w}
i€l il el
for all @ € A, where the convergence is in norm. So part 3 holds. By part 3 of Theorem II1.2.5, we

have

lg(a)|l = sup |Ipip(a)pill = sup [|$s(a)|| = sup |wia(z:)w]|| = sup jla(z:)|.
i€l i€l el i€l

So 4 holds.

Finally we show that I is a finite set by contradiction. Suppose that I is an infinite set.
Let S denote the set {z; € X: ¢ € I'}, where X =| |i_, X. We claim that there are distinct i; € I
for I € N such that i; # 4y if [ # I’, and that the sequence (z;, )2, converges to some zo € X. To
prove this claim, if S is finite, then there exists some y € S such that the set {i € I: z; = y} is
infinite. In this case take a sequence of mutually distinct indices (4;)72; in {¢ € I: 2; = y}. Then
clearly z;, = y — y. If S is infinite, then, since X is compact, we can pick a countable mutually
distinct subset elements ¥,,%ya,... €C S such that y, — z¢ for some z € X. For each | > 1,
choose 4; € I such that z;, = y;. Then the indices 41,12, ... are necessarily mutually distinct, and
Zy = Y — xo. This proves the claim.

Now we show that for all a € A, |la{z;)|| — 0. Let @ € A, and let ¢ > 0. By part 5§ of

Theorem 11.2.5, there exists a finite subset F' C I such that ¢ ¢ F' implies that

Ipid(@)pill = l|¢s(a)]l = llwia(z:)will = |la(z:)| <e.

Since F is finite, there exists lp > 1 such that if [ > ly then 4; ¢ F. Thus for all [ > Iy, we have
|la{zs,)|| < e. This shows that |ja(zs,)|| — O for all @ € A.

Since a is continuous for all a € A, we have a(zo) = 0 for all @ € A. Then the map A - K
defined by a — a(xo) is the zero map, hence zg € | J;_; X ,EO), because by Lemma I1.2.2, for all
y € X\ (UZ=1 X ,EO)) , the map a — a(y) is an irreducible representation and hence cannot be
the zero map. Suppose that zg € X ,EO) for some k € {1,...,n}. Now, we assumed that the map
dp: A®=D - C(X{” K) is non-vanishing, so there exists some b € A®~1 such that ¢4 (b)(zo) # 0.

Then, since the map A™ — A*=1 defined by (ai,...,an) — (a1,...,ax_1) is surjective, there
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exists some ¢ = (ay,...,8,) € A such that (a1,...,a,—1) =b. Thus

a(zo) = Ri(ar)(zo) = ¢x(b)(x0) # 0.

This contradicts the fact that a(zg) = 0 for all a € A. This means that I has to be finite. O

Definition I1.2.7. Let
(1) (0) ®\"
(XlaA 7<Xk,Xk; awkka;A )k=2)

be a SRSH system, and let A = A", Let ¢: A — K be a non-zero *-homomorphism. Then
by Proposition I1.2.6, there exists T1,...,Zm € | e (Xk \X,EO)) and isometries wy,. .., Wy with
orthogonal ranges such that ¢(a) = 3 o, wia(z;)w} for all a € A. We call the set {z1,..., 2}
(not counting multiplicity) the spectrum of ¢, and we will denote the spectrum of ¢ by sp(¢). Let

(Yl; B, (Yk,Yk(k), Pr, Qs B(k)):ﬂ)

be another SRSH system, let B = B™) | and let ¢: A — B be a *-homomorphism. We say that ¢
is non-vanishing if, for all y € |_|1,:”=1 Yy, the map A — K defined by evy o ¢ is not the zero map.

In this case, will call sp(evy o ¢) the spectrum of ¢ at y and write sp,(@).

In the previous definition, it is not necessary to insist on ¢ being non-vanishing to define
sp,(#). If evy 0 ¢ = 0 for some y, then sp,(¢) would simply be the empty set. The condition that
¢ is non-vanishing guarantees that sp,(¢) # @ for all y € |2, ¥;.

The spectrum of a *-homomorphism between homogeneous algebras was used in [2] to show
that simple inductive limits of homogeneous algebras with no dimension growth have topological
stable rank one. One of the key steps is that if the inductive limit is simple, then the spectra of the
connecting *-homomorphisms of the inductive system, in a sense, become more and more “dense”
when we follow the connecting maps of the inductive limit further and further out. We will prove
a similar result in our situation. We will first need a few preliminary results, and some results that

will be used later in this dissertation.
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Lemma I1.2.8. Let
(1,49, (X, X, 60 Biy 4

(v, BY, (%, Y, 0, T, BV) Y,

and

!
<Z170(1), (Zk, AN Sk,C(k)>k_2)

be three SRSH systems, and let A= A™ B =B and C=C®. Let ¢p: A— B andp: B —C

be non-vanishing *-homomorphisms. Then ¢ o ¢ is non-vanishing.

Proof: Let z € [_|li:1 Zi. Since 1 is non-vanishing, the map ev, o ¢ is non-zero. So there
exists t € N with £ > 0, and isometries wy, ..., w;, with orthogonal ranges such that ()(2) =
22:1 wib(y)w? for all b € B, where {y1,...,y:} = sp,(¥) # &. Since ¢ is non-vanishing, there
exists some a € A such that ¢(a)(y1) # 0. Then ||[¢(d(a))(z)|| > ||¢(a)(y1)|| > 0, and hence ¢ o ¢

is non-vanishing. O

Lemma 11.2.9. Let n be a positive integer. Let

(31,40, (30 K0, 0,20 40 )

be a SRSH system and let A= A™. Let X\O = @ and let X = [ '_, Xp.

1. Let U C X be an open subset. Then Iy = {a € A: a|y- = 0} is a closed two sided ideal of A.
Further, let Uy = U N Xy for k € {1,...,n}, and let

k—1
Wi, = {x € X,go): spL(dr) N (l_l U,-) # @}
i=1
for each k =2,...,n. Suppose that
U#@ and Wi =Up N X fork=2,...,n. (IL1)

Then Iy # 0, and

U = {z € X: there exists some a € Iy such that a(z) # 0}.
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2. Let I C A be a non-zero ideal. Then the set
U ={z € X: there exists some a € A such that a(z) # 0}

is open in X and satisfies the condition II.1 in part 1. Also Iy = I.

Proof:  For part 1, we induct on the length of the SRSH system. If n = 1, then result is trivial.

Suppose that result holds for systems of length n, and let
o) ©) O\
leA 7(Xk7Xk 1¢k1Rk1A )k 9

be a system of length n + 1. Let U, Uy,...,U,+1 and Wy, ..., W, be as given in the statement
of the lemma.

It is clear that Iy is a closed two sided ideal of A. Let V = |_|7,;L=1 Uy. First suppose that
V # @. Then by the induction hypothesis, Jy = {a € A™: a|ye = 0} is a non-zero ideal. So let
b € Jy be nonzero. Now, for all x € Xﬁgl \ Wa+1, we have sp,(¢n+1) C V. Since b vanishes on
Ve, the function ¢,41(b) also vanishes outside of Wy, 11. If W41 = &, then ¢n41(b) = 0. Thus
(b,0) € Iy and (b,0) # 0. So assume that W, 11 # @. Since Wy, is closed in Up,41, we can extend
hn+1(b) to some f € Co(Upy1,K). Since Upy1 € X1 is open, we can define f(x) = 0 for all
z & Upy1, so that f € C(X,11,K). Then Ry1q(f) = s (b), and so (b, f) € Iy and (b, f) # 0.
Thus Iy # 0.

Now suppose that V' = @. Then W11 = &, and so Up41 € Xpy1 \Xffgl. Since Upy1 # @
(otherwise U = @), there exists f € C(X,+1,K) such that f vanishes outside of U, and f # 0.
Then (0,...,0,f) € Iy and (0,...,0,f) #£0. So Iy # 0.

It is clear that
{z € X: there exists some a € Iy such that a(z) A0} C U.

Now let £ € U. Let k be the integer such that x € Ug. First suppose that 1 < k < n. Let

W = | |, U;. Then by the induction hypothesis, we have

W = {z € X: there exists some a € Iy C A™ such that a(z) # 0}.
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So there exists some b € Iy, such that b(z) # 0. An argument similar to the one given in the second
paragraph of this proof give some f € C(X,,+1,K) such that a = (b, f) € Iy. Then a(z) = b(z) # 0.
Therefore

z € {y € X : there exists some a € Iy such that a(y) # 0}.

Now suppose that k& = n 4 1. Assume that z € Xﬁ?l. Then = € Wy, 1, which means that
there exists some y € sp,(¢n+1) N (}1 Ui) . By what is shown in the previous paragraph, there

exists some a € Iy such that a(y) # 0. Then

la(z)|= sup [la(2)]| = [la(y)]| > O,
2€8pg (dnt1)

so a(z) # 0, and so
x € {y € X there exists some a € Iy such that a(y) # 0}.

Finally assume that z ¢ Xff_),zl. Let £ € K be non-zero and choose b € C(X,+1) such that h(z) =1
and h vanishes outside of Upy1 N (Xn11 \X,(ﬁgl). Let f = ¢h. Then a = (0,...,0,f) € A, and a

vanishes outside of U. So a € Iy, and a(z) = f(z) = £ # 0. Therefore
x € {y € X : there exists some a € Iy such that a(y) # 0}.

Thus

U = {z € X : there exists some a € Iy such that a(z) # 0}.

For part 2, we first note that U = (J,c;{z € X: a(z) # 0} is open in X, and that U
cannot be empty. Let Us,...,Upt1 and Wa,..., W, be as given in part 1. Let k € {2,...,n}. Let
x € Wy, and let y € sp (i) N (Uf:—ll U¢> . Let a € I satisfy a(y) # 0. Then

la(z)| = sup  |la(2)ll = lla(y)| > O.
2€8p, (dk)

Thus a(z) # 0. So z € Uy, and so x € Uy, ﬂX,EO).
Now suppose that z € U, N X,EO). Then a(z) # 0 for some a € I. Let a = (b,g1,..-,91),

where b € A%=1, Then ||a(z)|| = SUD,cep, (4r) I0(2) |- Now, since b vanishes outside of |_|f:_11 U, if
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sp,(¢x) C <|Jf;11 Ui)c, then ||a(z)|| = 0, and so a(z) = 0. Since a(z) # 0, we have

k-1
Spm(¢k) n (LI U’L) 7é z.

i=1

So x € Wi. Thus Wy, = Up 0 X,

It is clear that I C Iyy. Now we know that there exists some closed subset ' C X such
that I = {a € A: a|r = 0}. Since for all z € U, there exists some a € I such that a(z) # 0, we
have FF C U°. Then a belonging to Iy implies a vanishes on U¢, and so a vanishes on F. So a € I.

Thus Iy C I, and hence [ = Ij;. |

Lemma I1.2.10. Let

CRCNERTIN T

be a SRSH system, and let A= A™. Let X = | |;_; Xk. Then there exists some a € A such that
a(z) # 0 for all x € X.

Proof:  Induct on the length of the system. The result clearly holds for n = 1. Suppose that
result holds for systems of length n, let

n+l1
(XlaA(l)y <X/C7X/E:O)1¢/C1Rk714(k)) )

k=2

be a SRSH system, and let A = A+,
Now,

(%0, 49, (X0, X0, 60 i, AP) )

is a system of length n, so by inductive hypothesis, A™ contains some ag such that ag (z) # 0 for
all z € ||;_; Xi. Let a = afao. Then a(z) > 0 for all z € X, and a(z) # 0 for all z € X. Let
b = ¢n+1(a). Because a vanishes nowhere, and because ¢, 41 is non-vanishing, we have b(x) # 0
and b(z) > 0 for all z € ngzl. Extend b to some positive element ¥’ € C(X,+1,K). Let

U={z€ Xpy1:b'(z) #0}.

It is clear that U is an open neighborhood of XSEI. Then {U, Xpn11\ XSEI} is an open cover
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for Xp+1. Let {h1, ha} be a partition of unity subordinate to {U, Xn41 \ Xﬁ?l}. (Without loss
of generality, assume that supp h1 C U, and supp hs € Xn41 \ Xflazl.) Let £ € K be a non-zero

positive element. Let f = h1b’ + hg&. Thenif z € ngzl, we have
f(z) = b () () + ho(2)€ = V' (2) = b(z) = ¢ni1(a)(2).

Thus (a, f) € A. Now let z € Xp41. If hi(z) # 0, then z € U, and then hy(z)b'(z) # 0. Since
f(x) > hi(z)b'(z), we have f(z) # 0. If hi(z) = 0, then hp(z) = 1, and so ha(z)€ = € # 0. Since
f(x) > ha(z)¢, we have f(z) # 0. Thus f vanishes nowhere. Then the element (a, f) vanishes

nowhere on X. (That is (a, f) is not contained in any non-zero proper ideal of A.) O

The next proposition shows that in a simple inductive limit in which the connecting maps
are injective and non-vanishing, the spectra of the connecting maps become more and more dense,

in some sense. If A is a set and if B is a subset of A, we use B¢ to denote the complement of B.

Proposition I1.2.11. Let (An, %) be an inductive system of SRSHAs and let A be the inductive
limit. Let X, be the total space for A,. Suppose that i, is injective for all n, that 1, is
non-vanishing for all n, and that A is simple. Then for all n > 1, and for all open set U C X,
such that Iy = {a € Ay a|yc = 0} is a non-zero ideal, there exists ng > n such that for all k > ng

and for all x € Xi, we have spy(Ynk) NU # &, where ; ; = 1P;_1 0+ oy1 09y fori <7

Proof:  This will be a proof by contradiction. Suppose that there exists m > 1 and some open
set U C X, with Iy # 0, such that for all n > m, there exists some &, > n and some © € X,
such that sp,(¥m,k,) N U = @. Then U certainly cannot be the entire space X,,. Without loss of
generality, we can assume that k, < kp41 < kpy2 < ---. Then, passing to a subsequence of the
inductive system and truncating if necessary, we can assume that m = 1, and that &, = n for all
n > 1. Thus we are assuming that there exists some open subset U C X; with Iy # 0 such that
for all n > 1, there exists some x € X, such that sp,(¥1,) N U = @. It is clear that U # X;.

For each n > 1, let ¥™: A, — A be the natural injection that comes with the inductive

limit. Also let

V = {z € X;: there exists some b € Iy such that b(z) # 0}.
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It is clear that V C U. Then for all n > 1, there exists some z € X,, such that

SPz ("/)1,11) nv g Spm("/’l,n) NnNU =a.

By Lemma I1.2.9, we have Iy = Iy # 0. For each n > 2, let F, = {z € X,,: sp,(¥1n) NV = 2}
Then F, # @ for all n > 2. Let I, = {a € A,: alp, = 0}. Let I; = Iy. For each n > 1, let
Jn = 9"(I,), and let B, = ¥"™(A,). Then J, is a closed two sided ideal of B,. We first show that
J1CJoCJ3C - . Fixn>1 andlet a € I,. Let o € {z € Xpt1: sp,(1,n+1) NV = @}, Let
Y € 8D, (¥n)-

Suppose that sp, (¥1,,) NV # @. Let 2 € sp,(¥1,,) NV, and let b € I} = Iy be such that
b(z) # 0. Then

[%1,n41(0) (@)l = [¥n (1,2 (0)) ()| Z [[¥1,n (D) (W) = 16(2)]| > O

But b vanishes outside of V, so if x € X, 1 satisfies sp,(¥1,n4+1) NV = &, then

[rner (@)@l = sup  [b(z")]| =0;

#'€spg (P1,n41)
hence in particular 91,n41(b)(z0) = 0. This contradicts the fact that ||1)1,n+1(b)(z0)| > 0. Thus
spy,(Y10) NV = 2.

Then y € Fy,, and so a(y) = 0. This holds for all y € sp,, (¥n), 50 ¥n(a)(xo) = 0. This holds
for all zo € X1 such that sp, (Y1,n+1) NU = @, 50 Yn(a)|F,,, =0, and so ¥n(a) € In41. Then
P*(a) = Y"1 (Yn(a)) € v 1 (I,41) = Jut1. This holds for all a € I,, so J,, = ¥™(I,,) C Jny1-
This holds for all n > 1, so we have J; C J, C --- .

Then J = m is an ideal of A. The ideal J cannot be 0, because 9! is injective and
I; # 0. Finally we show that J # A. Let a € A; satisfy a(z) # 0 for all z € X;. Then compactness
of X7 gives that there exists € > 0 such that ||a(z)| > € for all z € X;. For all n > 2 and for all
z € Xp, we have [|¥1,,(a)(z)|| = supyesp, (ys..) la@)]| > € For all n > 2, and for all b € I, we
have

[¥1,n(a) =Bl 2 1¥1,n(0) | = blE || = [[Y1,n(a)|mal| 2 €
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Then for all n > 1 and for all b € I,,, we have
19! (a) = ™) = 19" (W1,n(a)) = Y™ ()] = [l1,n(a) — b > €.

Thus ¥!(a) ¢ J. So J # A.
This shows that J is a non-zero proper ideal of A, which contradicts the simplicity of

A. (|

I1.3. Topological Stable Rank of Simple Inductive Limits of SRSHAs

The first few lemmas of this section will be some trivial or nearly trivial results about
functional calculus and semi-continuity of spectral projections at self-adjoint elements in K, which
the author of this dissertation has not encountered. These may or may be be written down
explicitly in the literature. Then, through several lemmas, we adapt Lemma 3.3 in [9], which is
the key lemma in showing that simple inductive limits of RSHAs with no dimension growth have
topological stable rank one, to our situation. The last portion of the section will be dedicated to
showing that if A is simple inductive limit of SRSHAs with no dimension growth such that all the

connecting maps are injective and non-vanishing, then A has topological stable rank one.

Lemma I1.3.1. Let w be a polynomial with complex coefficients, let M > 0 be a positive real
number, and let € > 0. Then there exists § > 0 such that if A is a unital C*-algebra, and ifa,b € A

satisfy |lal| < M, ||b]| < M, and ||a — b|| <4, then ||n(a) — ()| < e.

Proof:  Let n € N and let X\g,A;1..., A, € C be such that 7(&) = >0 (A& for all £ € C. If
Mo =A== A, =0, then m(a) = 0 for all a € A, and the result follows trivially. So assume

that not all of Ag, ..., A, are 0. Let

€

0= ==
2k (K| Ax M)

> 0.

Then 6 > 0. Let A be a unital C*-algebra, and let a,b € A satisfy ||la|] < M, ||b| < M, and
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lla — || < 5. Then

k(3

NE

Im(@) =7 @)l = [| D Mela® = ") =11 D Ae(a® — b¥)]|
k=0 k=1
<D (]l =)D
k=1
= [kl - (la* = a* '+ a7 b — a* 2
k=1
+aF 72— - abF T 4 abP T - bF|)]
<D Il (la® = a* o)l + [la" 10 — aF 7262 4+ flab® Tt - b))
k=1
<D [Ae] - kME]

bl

Il
Wil
= -

[Ae| - kM* Y =

=
Il

1

O

Corollary I11.3.2. Let M > 0 be a real number, let f € C([~M,M]), and let € > 0. Then there
exists a § > 0 such that if A is a unital C*-algebra, and if a,b € A are self-adjoint elements such

that |la|| < M, ||b|| < M, and ||a —b|| < 6, then ||f(a) — f(b)] <.

Proof:  Since [~M, M] is compact, there exists a polynomial 7 such that ||7|_as,a] — flleo < €/3.
Apply Lemma I1.3.1 to m, M, and €/3 to get § > 0. Let A be a unital C*-algebra, and let a,be A

be self-adjoint elements such that ||a|| < M, ||b|| < M, and |la — b|| < é. Then

£ (a) = FO < 1f(a) — w(a)l + [Iw(a) — w(B)|| + [l (b) — f(B)|
< ”f'sp(a) - 7r|Sp(a)||00 + 6/3 + ||f|Sp(b) - W'Sp(b)”oo
<e€/34+€/3+¢/3

= €.

O

Corollary I1.3.3. Let M > 0 be a real number, let f € C([0, M]), and let € > 0. Then there exists

some & > 0 such that if A is a unital C*-algebra, and if a,b € A are positive elements such that
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lall < M, [[b]] < M, and [la - b]| < 6, then || f(a) — f(B)I| <e.
Proof:  Extend f to f' over [—M, M], then apply Corollary I1.3.2 with f replaced by f'. O

Lemma I1.3.4. Let A be a C*-algebra, let A denote the unitization of A, and let 1 be the adjoined
wdentity. (Here, we add a new identity to A even if A is already unital.) Let a € A be self-adjoint

and leta = a + 1. Then
1. sp(a) + 1 = sp(a) where both spectra are taken with respect to A.

2. Let h: sp(a) — sp(a) be defined by h(§) =& — 1 and let h*: C(sp(a)) — C(sp(a)) be defined
by h*(f) = f o h. Let F: C(sp(a)) — A and let F: C(sp(@)) — A be the functional calculus

(with respect to A) at a and G respectively. Then F = Foh*.

Proof:  Part 1 is trivial. To prove part 2, note that @ = h=(a). Then if f € C(sp(a)), we have

Fol*(f) = ()@ = k*(f)(h™*(a)) = (f o W)(h™(a)) = (f o ho k™) (a) = f(a) = F(f).

a

For all C*-algebras A and all a € A, we use |a| to denote (a*a)'/2. We use xo: R — R
to denote the characteristic function of (—oo,a) for all & € R. Also, for all C*-algebras A and
all self-adjoint @ € A, we use pa(a) to denote xq{(a). Even though p,(a) may not be in A for
some combinations of a, A and «, it is still in the double commutant of A when A is faithfully
represented on a Hilbert space. For our purposes, A will be either the algebras of compact operators
on separable Hilbert spaces, or their unitization; and o will be less then the limit point of sp(a) (if
any). In these cases p,(a) will be a finite rank projection, and hence in A. Then the next corollary

follows immediately from Lemma I11.3.4.
Corollary 11.3.5. Leta € K; 4., let 1 > a >0, and let @ =a + 1. Then pa(@) = po—1(a).

Lemma 11.3.6. Let A be a unital C* -algebra and let p1,pa € A be orthogonal projections such that
p1 +pa = 1. Let Ay and As be C*-subalgebras of A such that p; is the identity of A; fori=1,2.

Let a1 € Ay and as € As.

1. Thenspy(ar+az) = spy,(a1)Uspg,(az), where spg(b) denotes the spectrum of b with respect
to B for all C*-algebra B and any b € B.
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2. Suppose that a1 and ay are self-adjoint. Let F; be the functional calculus of a; with respect
to A, for i = 1,2, and let F be the functional calculus of a1 + ag with respect to A. Then for

all f € C(spy(a1 + a2)), we have F(f) = F1(f) + Fa(f), that is, f(a1 +a2) = f(a1) + f(as).

Proof:  First assume that A; = p;Ap; for i = 1,2. Let A € C. If X\ — (a1 + a3) is invertible in
A, then there exists some b € A such that b{A — a1 —a2) = (A — a1 —a2)b =1 = p; + p, and
b commutes with p1 and ps. So p1bp, and pabpy are the inverses of Ap; — a1 and Apy — ag in A3
and As, respectively, and so Ap; — a1 and Apg — as are both invertible. On the other hand, if both
Ap1 —aj and Apz —ag are invertible, then there exists b; € A; such that b; = (A\p;—a;) ! fori=1,2.
Then by 4+ by = (A — a1 — ag)™". Thus A & sp4(a) +ag) if and only if A ¢ sp, (a1) Nsp 4, (az). So
result follows. Now assume that A; is an arbitrary C*-algebra of A that contains p; as its identity,
for i = 1,2. Then for i = 1,2, A; is a C*-algebra of p; Ap; that contains the identity of p; Ap;, so

SPp, Ap; (@i) = 8P4, (a;). Thus
spa(ar +az) = SPpy Apy (@)U SppzApz(aQ) = 8P4, (a1) U SpAz(a2),

and part 1 or the lemma is proven.

Since ajas = aza1 =0, it is easy to verify that if = is a polynomial on sp4(a; + a3), then
w(a1)+m(az) = w(a1 +a2), where functional calculus on the left side of the equation is taken in the
subalgebras A;, i = 1,2, and the functional calculus on the right side of the equation is taken in A.
So the continuous map C(spy(a; + az)) — A defined by f — f(a1) + f(a2), where the respective
functional calculus is taken in the subalgebra, agrees with the map f — f(a; + a3) on the set of

all polynomials, which is dense in C(sp4(a1 + a2)). Hence the result follows. 3
From II.3.6, a standard induction argument shows the following:

Corollary I1.8.7. Let A be a unital C*-algebra, and let p1,...,pn € A be orthogonal projections
such that py +pa + -+ + pp = 1. Let A; be a C*-subalgebra of A such that p; is the identity of A;

fori=1,2,...,n. Leta; € A, i € {1,...,n}.

1. Thenspy (3 fai) = Ui, P4, (as)-

2. Suppose that a; is self-adjoint for 1+ € {1,...,n}. Let F; be the functional calculus of a;

with respect to A; for i € {1,...,n} and let F be the functional calculus of Y ., a; with
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respect to A. Then for all f € C(spy (3 i, i), we have F(f) = Y7 | Fi(f), that is,
F(a) = X5 flaq).

The next few results are about the semicontinuity of spectral projections.

Lemma I1.3.8. Lete > 0, let 0 < oy < g < 1, and let M > 1 be a real number . Then there
exists some § > 0 such that ifa,be K, ,,a=0a+1, b=b+1, llal < M, “Z” <M, and ||E—€[| < 4,

then

”poq (a)paz(b) —Pay (E)“ <€

and

rank(p,, (@) < rank(pe, (0)).

Proof: ~ We know that there exists a g9 > 0 such that if p,q are projections in K such that
llpg — q|| < o0, then rank(q) < rank(p). Let ¢ = min{e, oo}
Define f: [-M,M] — [0,1] by

1 t e [—M,Oél]
t) = ca—t
f( ) —azz—al i e [al,ag]
0 te [Olz,M].

Then it is clear that f € C([—M, M]). Apply Corollary I11.3.2 to M, f, and 0/2, to get § > 0. Let
a,beK,o,a=0a+1, and b = b+ 1. Then §,b € K, which is unital. Suppose that lall < M,
6]l < M, and that ||G—b|| < 6. By the choice of 6, we have || £(@) — F(B)|| < /2. Now, Xa1f = Xou

o~ o~ o~

and Xo,f = f on [—-M, M]. Thus p,, (@) f (@) = pa, (@), and pg, (b) f(b) = f(b). Then we have
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1Pas (@) — Pasy (@)Par (D) | = [1Pe (@) £ (@) ~ Pay (@) f(@)Paxs (D)

< [Py (@) £(@) — Pa @) £ (B)

+ [P (@) £ () — Pay (@) f(@)pas, ()
<[1£@ — O + 1 () — f(@pa; O]
= 17@ ~ F®) + 1f B)pas (6) = F@pa, (D)l

<|f@—s®I+170) - f@)

<o<e

Then by the choice of o, we have rank{p,, (@) < rank(pg,(b)). O

Corollary 11.3.9. Lete > 0, let 0 < a1 < ag < 1, and let M > 1 be a real number. Then
there exists & > O such that if X is compact Hausdorff space, and if a,b € C(X,K)gqa., @ =0a+1,
b=b+1, |a| < M, ||b]| <M, and |[@ —b|| < 6, then

”Pal (a())pas (b(a:)) ‘Pal(a(x))H < €, forallxz € X;

and

rank(pey, (@(z))) < rank(pe, (b(z))), forallz e X..

Proof:  First of all, we identify C(/ﬁ() as a subalgebra of C(X, K) by identifying (a, \) € C(/ﬁ()
with a + Alx, where 1x is the constant function on X at idy. Then it is clear that a(z) = af(\z/)
for all z € X.

Apply I1.3.8 to €, 1,3 and M to get a § > 0. The result follows. O

Corollary I1.3.10. Let X be a compact Hausdorff space, let 0 < a < 1, let a € C(X,K)s.q., let

@ =ua+ 1. Then there exists some n € N such that rank(pa(a(z))) <n for allz € X.

Proof:  If a =0, then nothing to prove. So assume a # 0.

Let @ < 0 < 1. Apply Corollary II38 toe = 1,0 < a < 0 < 1, and M = ||d]|, to get
§ > 0. For each z € X, let U, = {y € X: |[a(z) — d(y)|| < é}. Then there exists z1,...,2y, € X
such that |Ji*, U, = X. Let n = max{rank(p,(a(z;))): ¢ =1,...,m}. Let € X. Then z € Uy,
for some k. So ||a{z) — a(zk)|| < 6. Also ||a(z)|| < |[@| and ||@{z)|| < ||@]l. So by the choice of 4,

we have rank(p,(a(z))) < rank(p,(@(zg))) < n. O
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Lemma I1.3.11. Letn > N, let & > 0, let M > 0 be a real number, and let a € M, be self-adjoint.

Then po(a) = posm(a/M).

Proof:  Let sp(a) N (—o00,a) = {r1,...,7x}. Then
sp(a/M) N (—oo0,a/M) = {r1/M,rs/M,...,1/M}.

Then pq(a) = Zle p;, Where p; is the projection to the eigenspace of a corresponding to r;, and
Poymla/M) = Zle q:;, where g; is the projection onto the eigenspace of a/M corresponding to
ri/M. But for all i € {1,...,k} and all £ € C™, a(§) = r;¢ if and only if (a/M)(§) = (ri/M)E. So

p;=gq; for all i € {1,...,n}, and so the result follows. O

Lemma I1.3.12. Let1 >a >0, letac K,;,, andleta=a+1¢€ K. Then there exists a 6 > 0

such that if b € K,.q., and if |b — @l < 6, then rank(p,(@)) < rank(pe(b)).

Proof: Fix1>a >0and a € K,,.. Since o < 1, sp(@) N (—o0, ) is a finite set. So there
exists 61 > 0 such that sp(@) N (o — 361, + 361) C {a}. Let Fi = [—||d| — 61, — 281], and
F2 = [Ol - 51, HEH + 51] Then

sp(@) C (—||a]| — 61, — 261) U (a — 61, [[@]] + 61) C F1 U Fa.

Let K = Fy UF,. Let ¢ = xp,. Then ¢ € C(K). Since K C R is compact, there exists a polynomial
m € C(K) such that |7 — ¢||oc < 1/3. The map x — 7(x) is continuous, so there exists d2 > 0 such
that if ||z — @|| < b2, then ||7(z) — 7(@)|] < 1/4. Let § = min{d,/2,d2}.

Let b € K,.o. satisfy ||b — @ < 6. Then sp(b) C U{(r — 6,7+ 6): r € sp(@)}. If r € sp(a),

then —||d]| <r < a—36; or & <7 < |[@||, and then
(r=234,r+48) C(—|al| —d,a—36 +8)U(ax—6,|al + 5).
So

sp(b) € (—[[@l] — b, = 381 + 6) U (o — , 3] + 6)

C (—|[all — 81, — 281) U (a — 6y, ||af} + &1) € K.
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Then
16@@) — )| < l|¢(@) — 7@ + [l7(@) — =) + |=(b) — s (B)I| < 1.

Thus ¢(a) and ¢(b) are unitarily equivalent projections, and so rank(¢(a)) = rank(¢(b)). But
(@) = pa(@), so rank(ps(@)) = rank(¢(h)). Also ¢ < X(-c0,a), 50 #(b) < po(b), and so
rank(p,(@)) = rank(¢(h)) < pa(b). O

The remaining portion of this section will be dedicated to obtaining a topological stable
rank reduction theorem for SRSHAs. The idea is to obtain an approximate polar decomposition
for elements a in a SRSHA such that the dimensions of the eigenspaces of |a(x)| corresponding to
small eigenvalues are large enough for every x € X. This can be easily done in C(/\Xj{), where
X is just a one-point space and C()\(j() denotes the unitization of C(X,K), which can always
be taken to be the first base space of any SRSH system. We then have an approximate polar
decomposition for the image of the first coordinate of @ under the first attaching map. In order to
obtain an approximate polar decomposition for a, we will need to be able to extend the image of
the unitary used in the approximate polar decomposition for the first coordinate of the element a
to a unitary in C(/)Z;K), where X5 is the second base space in the SRSH system. Thus we will
need an extension result for such unitaries. This extension result for RSHAs is given by Lemma
3.3 in [9]. We will modify this lemma to suit our situation.

The following lemma is a slight modification of Lemma 3.3 in [9]. In fact, the original

proof of Lemma 3.3 in [9] also proves the following lemma.

Lemma I1.3.13. Let ¢,a > 0 and let n € N. Then there exists a 6 > 0 such that the following
holds. Let X be a compact Hausdorff space with dim(X) = d < oo, and let X(® C X be a closed

subspace. Let m € N, and let a € C(X, My,) satisfy ||a]| < 1. For each xz € X, let
P(2) = X(~oo,) ([a(2)a(2)]"/?).
Suppose that n > rank(p(x)) > d/2 for all z € X. Let u® € Up(C(X, My,)) be a unitary such that
1[w© () a(z)*a(@)]/* — a(@)][L - p(e)]]| < 6

for every x € X©. Let t u§°) be a homotopy from 1 to u(® in U(C(X® M,,)). Then there
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exists a unitary u € Up(C(X, M,,)) and a homotopy t — uy in U(C(X, M,,)) from 1 to u such

that ulx o = v, us|x© = u§°’ for all t, and such that
lu(z)[a(z)*a(2)]*? - a(z)][1 ~ p(x)]]| <e

forallz e X.

Now we remove the condition that the element | al| has norm less or equal to 1 from Lemma

11.3.13.

Corollary I1.3.14. Let e, > 0, let n € N, and let M > 1 be a real number. Then there exists a
§ > 0 such that the following holds. Let X be a compact Hausdorff space with dim(X) = d < oo,
and let X© C X be a closed subspace. Let m € N, and let a € C(X, M,,) satisfy ||a| < M. For

each ¢ € X, let

p(x) = pa(la(z)))-

Suppose that n > rank(p(z)) > d/2 for all x € X. Let u(® € Up(C(X©, M,,)) be a unitary such
that
@ (@)la(z)| - a@)I[L - p@)]]| < &

for every z € X©. Let t — ul” be a homotopy in U(C(X©, Mp)) from 1 to w(®. Then there
exists a unitary v € Ug(C(X, My,)) and a homotopy t — wuy in U(C(X, My,)) from 1 to u such

that u|x) = MON Ut|x 0 = u§°’ for all t, and that

Ifu(z)]a(2)] = a(@)][1 - p(z)]l| < €

foralze X.

Proof:  Apply Lemma I11.3.13 to ¢/M, a/M, n to get 8. Let X, X m, a, p, u(? be as given in
the statement of this corollary. Let ¢ — u§°’ be a path from 1 to u(©.

Let b = a/M. Then [b|| < 1. Let g(z) = pasm(|b(z)]). By Lemma IL.3.11, we have
q(z) = p(x) for all z € X. Then we have n > rank(g(z)) > d/2 for all z € X. Also,

11 (@)lb(2)| = b()][L ~ g(@)]|| < 6/M < 6



32

for all z € X(©. So by the choice of §, there exists a unitary u € Up(C(X, M,,)), and a homotopy

t s uy in U(C(X, M,,)) from 1 to u such that u|y = u®, 1| x@ for all ¢, and that
[Tu(z)|b(z)] = b()][L — q(z)]|| < e/M.

Then
€

M

= €.

lfu(z)]a(z)] = a(2)][1 = p(z)]]| < M -

The next lemma adapts the above to unitizations of C(X) ® M,,.

Lemma IL.3.15. Let1 > a,e > 0, let n € N, and let M € [1,00). Then there exists § > 0 such
that the following holds. Let X be a compact Hausdorff space such that dim(X) = d < oo, and let
Y be a closed subspace. Let m € N, let a € C(X, My,), and let @ = a+ 1x € C(X, M,,)"~, where
1x denotes the adjoined identity. Suppose that ||@|| < M. For each x € X, let () = pa(|a(x)]).
Suppose that n > rank(p{x)) > d/2. Let ug € Ug(C(Y, M,)™) satisfy

I[uo(z)la(z)| —a(x)][1 - p(z)l| <& forallzeY. (IL.2)

Let t — wy be a homotopy in U(C(Y, M,,)™) from I to ug. Then there exists a unitary u contained
in Up(C{X, My,)™) and a homotopy t — v in U(C(X, M,,)™) from I to u such that uly = ug,

vtly = wy for all t, and that

Ifu(z)|a(z)] - a(@)][L - pla)ll| <&  for allz € X, (IL3)

Proof: Let 0 <e,a<1,neN, and M € [1,00) be given. Apply Corollary 11.3.14 to €, a, n,
and M to obtain ¢’ > 0, and let § = min{e, §’/2}. Let X, Y, m, a, p, and ug satisfy the conditions
in the statement of the lemma. Let ¢ — w; be a homotopy in U(C(Y, M,,)™) from 1 to ug.

We set up some notations first. We use 1 to denote the adjoined identity of ]T/I:H and use
e to denote the identity of M,,. Use 1x and ly to denote the adjoined identity of C(X, M)~
and C(Y, M,,)", respectively. Use ex and ey to denote the identities of C(X, M,,,) and C(Y, M,,)

respectively.
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For each z € X, or Y, use ev,, to denote the map C(X, M,,) = My, or C(Y, M) — Mp,
defined by ev,(a) = a(z). By identifying (a,A) with a +A-1x, or a+ A - 1y, we treat C(X, M,;,)™
and C(Y, M,,)~ as subalgebras of C(X, ]T/I\:n) and C(Y, ]T/ITn) respectively. For each z € X, or Y,
use v, to denote the map C(X, Mp)~ — M, or C(Y, My,)™~ — My, defined by &v,(a) = a(z).
Let 7 denote the standard map from the unitization of any C*-algebra to C.

Define
Ox: C(X,Mp)~ - C(X,Mpn)®C by (a,) — (a+ dex,N),

By: C(Y,My)~ — C(Y, M) ®C by (a,\) — (a+ Aey,A),

and

®: My, — My ®C by (a,A) - (a+ Ae, \).

Define R: C(X, M)~ — C(Y,Mpy)~ by R(a + Mx) = aly + Aly, and define
R: C(X,My,) — C(Y,Mp) by R(a) = a|y. Then for every z € X and every y € Y, we have

the following commutative diagram:

M, & ox,Mn)~ B ocwMa~ T M,
| @ l ®x | @y | @
MpoC =% cx M)ecC 5% cw,M)ec % M.ec

Now, since for all z € X, we have
7(P(z)) = T(xa([a(2)])) = Xalr([a(2)])) = Xa(I7(@(x))]) = xa(1) =0,

we see that for all z € X, p(z) = (p(z), 0) for some projection p(x) € X. Since up € C(Y, M,,)™,
there exists some wy € C(Y, M,,) and some unitary p € C such that up = (wo, ). Note that (I1.2)

implies that

lu—1| = HT[[uo(x)la(x)l — @[ ~ 5@)]] H <§<e forallzeX. (IL4)
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Let Tp = wo + pey, so that @y (ug) = (wo+ pey, ) = (Vo, 1). Since Py is an isomorphism,
we have Uy € Up(C(Y, My,)). Let @ = a+ex, so (@,1) = @x(@). Next we compute: for each z € Y,

we have

Thus, since ® is isometric, we obtain the following from (II.2)

H [ao(x)|a(x)| _ E(x)‘ [e - p(x)] H <6<§, forallzeY. (IL5)

Now, let m: M, & C — M,, be the standard map. Then we compute again: for every

z € X, we have

p(z) = 7(p(z),0) = 70 &(p(z),0) = 7 0 2(p(z))
=1 o ®(xa(|a(z)])) = Xalm o &(Ja(z))))
= Xa(|m 0 2(@())]) = xa(lm o B(a(z),1)])
= Xa(|7(a(z) + €,1)]) = xa(Ir(@(2), 1))

= Xa([a(z)])-

Also, we have n > rank(p(z)) = rank(p(z)) > d/2 and |[a|| < M. Let @, = w(Py(w;)) for each
t. Then t — @, is a homotopy in U(C(Y,M,,)) from @, = w(®y((0,1)) = w(ey,1l) = ey, to

’L/U\l =7T(<I)y('u,o)) = W(ij\o,,u,) Zi}\o.
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Thus by the choice of §’, there exist ¥ € Up(C(X, M,,)) and a homotopy ¢ — T; in

U(C(X, M,,)) for ex to v such that U]y = v, U]y = Wy, and
H [17(x)|a(x)| - a(x)] [e _ p(:l:):‘ H <e foralzeX. (IL6)
Let u = (0 — pex, p). Then @x(u) = (U — pex, u) = (U, ). Since
(0, ) € Uo(C(X, M) ® C),
" and since $x is a *-isomorphism, we have u € Up(C(X, M, )™). Also for all z € Y, we have

w(z) = (0(z) — pe, 1) = (o) — e, 1)

= (wo(z) + pe — pe, p) = (wo(2), ) = uo(2).

Thus uly = ug.

Then for all 2z € X, we have

@ ([u(z)la(z)| —a(z)] [1 - B(z)])

Thus for all z € X, we have, by (11.4), (I1.6), and the fact that ® is isometric,

(| [u(z)|@(z)| - a(z)] [1 - B(=)]|]
= ||([p(@)[a(z)| — a(z)] [e - p(z)], u — 1)

(the norm above is now taken in M,, ¢ C)

e {] ot -]~ t] -1

< €.
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Let v, = &% ¥y, 7(wy)). Then ¢ — v, is a homotopy in U(C(X, M,,)~). For each ¢ and

each y € Y, we have 0;(y) = @;(y), so we have (0;(y), 7(w¢)) = (We(y), 7(wy)). So
R®id(y, 7(wy)) = (W, T(wr)) = Py (wy)

and

by (wy) = RO id(Px (vy)) = Py (R(vt))-

Thus w, = R(v,). So we|y = v;. Also vy = %' (ex,1) = 1x and v; = 231 (9, 7(w))) = %' (v, u) =

u. This finishes the proof. ]
The next lemma will “stabilize” the above lemma, and will be the one that we will need.

Lemma I1.3.16. Let 0 <e< 1 andlet0 < oy < ag < 1. Let X be a compact Hausdorff space with
dim(X)=d < o0. Let Y C X be a closed subset. Let a € C(X,K) and leta=a+1 € C(X,K)™.
For all z € X, let p1(x) = pa, (|a(z)]) and let pa(z) = pas (|a(z)]). Suppose that for all z € X,
rank(p1(z)) > d/2. Then there exists 6 > 0 such that: if up € Up(C(Y,K)™) is a unitary and
ho: [0,1] —» U(C(Y,K)™) is a homotopy such that ho(0) =1, ho(1) = uo, and

Ifuo(z)[alz)| — a(z)][1 — pr(2)]l| <6 for aliz €7, (IL7)

then there exists a unitary u € Up(C(X,K)™) and a homotopy h: [0,1] — U(C(X,K)™) such that
h(0) =1, h(1) = u, that h(t)|y = ho(t) for all t, that uly = uo, and that

[u(z)[alz)| — &)1 — p2(@)]l <& forallz € X.

Proof: Let €, on, az, X, Y, a, p1, and ps satisfy the hypothesis of the lemma, and let M = 2|/d]|.
Note that M > |a]| > 1.

First of all, it is clear that there exists some ¢ € C(X,K); 4. such that @] = ¢+ 1. Denote
c+ 1 by @ Note that ||¢]| = ||, since (€)? = (@)*(a@). Let o/ = 2122 and for each z € X, let

p'(z) = por(|a(z)|). Note that for all z € X, we have pa(z) > p/(z) > pi1(z) > d/2, and so we have

rank(py(z)) > rank(p'(z)) > rank(p;(z)) > d/2.
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By Lemma I1.3.10, there exists n € N such that rank(ps(z)) = rank(p,,(€)) < n for all
z € X. Apply Lemma I1.3.15 to ¢/(16M) > 0, 1 > &' > 0, n, and M, to get §; > 0. Without loss
of generality, assume that §; < ¢/(16M). Apply Corollary 11.3.9 to 6, /(4M) in place of €, aq, o
in place of ay, and M, to get o1 > 0. Apply Corollary I1.3.9 again to d;/(4M) in place of ¢, @' in

place of o, ag, and M to get o5 > 0. Let
6 = min{e/(16 M), 81 /(16 M), 01 /(16 M), 02/(16 M), 2 /(16 M)}.

Now let ug € Up(C(Y,K)™) be a unitary such that (II.7) holds, and let Ag: [0,1] — U(C(Y,K)™)
be a homotopy from 1 to ug.

For each & € N, embed M} into My, in the standard, and embed M} into K in the
standard way. Then we have K = m and K = m, where the adjoined identity of
each m is the same as the adjoined identity of K. We will use 1 to denote the adjoined identity
of K and My, for k > 1. The above embeddings give the embedding of C (X, My) into C(X, Mi+1)
and into then C(X,K). Then C(X,K) = Uy, C(X, M) and C(X,K)™~ = U,s; C(X, M)~

Again, we assume that the adjoined identity of C(X,K)™~ is the same as the adjoined identity
of C(X, M)~ for every k > 1. We will use 1x to denote the adjoined identity of C(X,K)™~ and
C(X, M)~ for all k > 1. Similarly, we use 1y to denote the adjoined identity of C(Y,K)™ and
C(Y, M)~ for all k > 1.

Then, we can find some m € N, some b € C(X, M,,,), and some homotopy
fo: [0,1] = U(C(Y, M)™)

such that

lla — b)) < §/(8M), |[@—7| < &/(8M), H|Z| - EH < 6/(8M) (IL8)
Bll < M (1L.9)
£0(0) =1 and || fo — ho| < 6/(8M), (IL.10)

where b = b + 1. Let vo = fo(1). Then |lvo — ug|| < §/(8M). Let V' € C(X, M,,)s.q. be such that
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(5] = o + 1. Then ||p' + 1|| = |[b]] < M. Then (I1.8) implies that
6" — ¢|| < 8/(8M). (11.11)

For each ¢ € X, let ¢/(z) = po (|b(z)|) and let go(z) = pa,(|b(z)|). By the choice of oy, which is
greater than 6/(8M), we have (the space X, and elements a and b in Corollary I1.3.9 are taken to

be X, ¢ and ¥, respectively)
lp1(2)¢' (@) — pr(@)] < 61/(4M) and rank(p; (z)) < rank('(z)), (1112)

for all z € X. By the choice of o3, we have (the space X, and the elements a and b in Corollary

11.3.9 are taken to be X, b’ and ¢, respectively)
|7 (z)p2(z) — ' ()| < 61/(4M) and rank(q(z)) < rank(pz(z)), (11.13)
for all z € X. Then

n > rank(pa(z)) > rank(q'(z)) > rank(pi(z)) > d/2. (I1.14)

Now, by (I1.8), for all z € Y, we have

| [oo(@)B(@)] — B(e)] ~ [uo(=) ()| - ()] |
< |[vo@) B@)] - wo(@)a@)|| + Ib(z) - &)
< oo @) B@)] = vo(@) @@ | + ||vo(@)(@@)] - wo(@)la(@)|| +8/(sM)
< |[@)| - @@)l|| + M llvo(z) - wo(=)|l +&/(3M)

< 26/(8M) +6/8 < 38/8.
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Also, by (IL.12), for all z € X, we have

1(1 = pr(2))(1 — ¢'(z)) = (1 — ¢’ ()]l
=1 -¢'(z) —p1(z) + p1d'(z) = 1 + ¢' ()|
= |lp1(z)q' (z) — pa ()|
< d1/(4M).

Then combining the above two calculations and (I1.7), we have

| [wo(@) B - Be)] {1 — ¢ ()]
< || fot@) @)l - B@) 1 - @) 1 - o @) |
+ | Eo@ib@) - b {t - ¢@) - [t - (@) [t - ¢ @)}
fool) B(e)| = B(@)] (1 = @)] | + 20 |11~ ¢ (@) - [1 ~p(@)][1 - ¢@]|
< [[{ lwotw)b@)] - B(2)] — [wotz)fat)] - a<m>]} [1- i)
+ || [uo(z) [@(2)| — @)} [1 — pr(@)]|| + 61/2

< || vo(@)[b(2)| - b(z)] - [uo(w)l?i(m)l—?i(:v)]||+6+51/2

IA

<35/8+8+61/2
< 38:/(16-8M) + 61 /(16M) + 61/2

< 51/16+61/16+61/2 < 41,

for all z € Y. Then by the choice of §; (with X, Y, m, a P, wy, and up in Lemma 11.3.15 taken to be,
respectively, X, Y, m, b, ¢’, fo and vp), there exists a unitary v € Up(C(X, M,,)~) C Ug(C(X,K)™)
and a homotopy f: [0,1] —» U(C(X,M,)~) C U(C(X,K)~), such that f(0) = 1, f(1) = v,

f@®)]y = fo(t) for all ¢, and v|y = vg, and that
” [v(@)b(z)| - B(z)] [1 - ¢'(2)] H <e¢/(16M), forallz € X. (IL.15)

Since, by (IL.10), ||fo — ho|| < 6/(8M), and since f(t)|y = fo(t) for all ¢ € [0,1], there
exists h: [0,1] — U(C(X,K)~) such that h(0) =1, A(t)|ly = ho(t) for all ¢, and ||h— f|| < §/(4M).



Let uw = h(1). Then ||u —v|| < §/(4M), and uly = ho(1) = ug. By (IL.8), we have

| [u@fa@)] - )] - o)) 5] |
< |[st@)ia@)] - v@)b@)| + [a) -5
< @) fat@)] - u@) B 1+ u(@)b(=)] - v@)b@)l| + 5/(8M)
< H|a ()] = B@|| + M llu(z) - v@)ll +6/(3M)

<26/(8M)+46/4<6/2,
for all z € X. Also by (I1.13), we have
L~ ¢ @)[L = p2(z)] — [1 = pa()][| < 61/(4M)

for all x € X. Thus by the two estimates above and (I11.15), for all z € X, we have

|| [w(=)[@(=)] — @(=)] [1 - palz)] |
< || [u(=)[a(z)| - a(w)] [1-d@][1-p)]]
+ || [u(@)[@(@)] - 8@)] {[1 — p2(2)] — [1 — ¢'(@)][1 - p2(@)] }]|

< | [u(@)a@)| - a(w)] [1 - ¢'(a)] || +2M6, /(4D1)

< |t el - @) - b)) - 5]} 1 - ¢ @)
+H )I—b()![l—q || + 2828, /(a0)

< |[[u@)fa)| - @) - 2)] - =)
+¢/(16M) + 2M &, /(4M)

< 8/2+4 ¢/(16M) + 2M6, /(4M)
< 5+¢/16 +01/2

<e/l6+¢/16 +¢/16 < €.

This finishes the proof.

40
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Let A, B, and C be C*-algebras. Let ¢: A — C and R: B — C be *-homomorphisms.
Let D = {(a,b) € A® B: ¢(a) = R(b)}. If we unitize A, B, C, ¢ and R, and let

E ={((a,\), (b)) € A® B: ¢(a) = R(b)},

then ((a,\), (b,u)) € E if and only if (a,b) € D and A = p. So the map E — D defined by
((a, A), (b,A)) — ((a,b), A) is a *-isomorphism. Thus, given a SRSH system

(Xl, AW, (X X1, i, R, A(i));)

and A = A™, we can inductively unitize all the algebras and maps to obtain the unitized system

A0 (%, xO 7 7 an)"

(XI)A 7(Xz7X7, >¢’LaR’LaA )i=2).

Then (a;, A;)[; € Aifand only if (a;)?., € Aand Ay = --- = A,; and each element ((a;)7_,,A) € A
can be uniquely written as (a;, A)?_;. Also, if a € Aandz € X} for some k, then a = (a;, A),

for some (a1,...,a,) € A, and we will use a(z) to denote (ax, A)(z) = (ar(z), N).

Lemma I1.3.17. Let
(X1, 4D, (X5, X2, 0, Ri, AD)")

i=2
be a SRSH system and let A= A™. Let Y be a compact Hausdorff space and let ¢: A — C(Y,K)
be a *-homomorphism (not necessarily non-vanishing). Let 5 denote the unitization of ¢. Lete > 0,
letl>a >0, letac A andletd =a+1¢€ A Letu € UO(Z) be a unitary such that for all
z e, (x:\ x{9),
[w(@)l@()| - @(@)][1 - pa(fa()))]]| < e. (I1.16)

e

Then ¢(u) € Ug(C(Y,K)) and all y € Y, we have

|Fe)®ig@® - d@W] 1 - ra(F@WN]|| <« (L.17)

Proof: Let H denote the separable infinite dimensional Hilbert space and let 1 denote the
identity of B(H). We identify the K with K& (C-1) using the map (a,A) — a + A - 1. For any
compact Hausdorfl space Z, let 1z denote the identity of C(Z, B(H)). We identify the algebra
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C(Z,K)® (C- 1z) as a subalgebra of C(Z, B(H)) using the map (a,A-1z) — a+ A-1z. Then we
identify C(Z, K) with C(Z,K) @ (C - 12) C C(Z, B(H)) using the map (f,\) — f + X+ 1.
Let

be a SRSH system and let A = A™. Let Y be a compact Hausdorff space and let ¢: A — C(Y,K)
be a *-homomorphism (not necessarily non-vanishing). Let ¢ denote the unitization of ¢. Let
e>0,letl >a>0,letac A, andleta=a+1¢€ A Letuce Uo(.;lv) be a unitary that satisfies
(IL.16) for all z € | JI_, (X \ XZ-(O)). With the above identifications, we can treat A as a subalgebra
of C(X, B(H)) using the maps (b,A) — b+ Alx, where X is the total space of A, and then the
identity of Ais1x. So every element in A can be uniquely written as ((a1,Alx,),. .-, (an, Alx,)),
where A € C and (ay,...,a,) € A. Then for all b+ Al x € A, we have ¢(b+ Alx) = ¢(b) + Aly.

It is clear that ¢(u) € Up(C(Y,K)™). Fix y € Y. If the map A — K defined by b — ¢(b)(y) is
the zero map, then for all b € A, we have ¢(b)(y) = 1 = |¢(@)(y)], and so po(|¢(@)(¥)]) = pa(1) = 0.
Since u = (v, 1) € Uo(A) satisfies (I1.16), we have | — 1| < ¢, and then the left side of (I1.17)
reduces to ||[u-1—1][1 —0]|| = |u — 1] < €. So we can assume that the map A — K given by
b— ¢(b)(y) is not the zero map.

Let (p;)!; be the family of mutually orthogonal projections in B{H), let (w;)™; be the
family of isometries in B(H) and let (z;)7%; be the family of elements of |_[;_;(Xx \ X ]SO)) that
satisfy the conclusion of Proposition IL2.6. Let ppy1 = 1 — >.iv; p. Then (p)! is still a

mutually orthogonal family of projections. For all b + A\l x € .;IV, we have

B(b+A1x)(y) = $(b)(¥) + A = D wibl@iywi + A3 pi+ Ao

=1 i=1

m
wib(z;)w! + A szwf + ADmt1

i=1

I
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.
Il
—

|
.Ms

ﬂ
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-

wy (b + /\lx)(.’lli)’w;‘ + /\pm+1.
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o
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Let v € A and u € C satisfy v 4+ pulx = w. Then

PW)(y) = v+ plx) =Y win(@:)w} + ppmi1. (I1.18)
i=1
Also, we have
$@)) = dla+1x) = Y wid(z:)w] + Pms (11.19)
i=1
and
Ia(’d)(y” (|a| sz|a| mz)w + DPmy1 = Zwllﬁ(ml)lw: + Pmt1- (11.20)
i=1 i=1

Then (11.18) and (I1.20) give

$(u)(v)|$(@) I—Zw u(ws)[@(:) [ wf + ppmet. (I1.21)

i=1

Also, by Corollary I1.3.7, we have

Pall3@ ®))) = pa (Z wifa(es) uw + pmH) =" pa(wild(@)w}) + palpma),

i=1 =1

where the functional calculus in the last expression is taken in p; B(H)p; for i € {1,...,m + 1}.
Now, for each ¢ € {1,...,m}, the map B(H) — p;B(H)p; defined by T' — w;Tw] is a unital
*-isomorphism, so we have p, (w;|a(z;)|w}) = wipa(Ja(z;)|)w;, where the last functional calculus

is now taken in B(H). So we have

Dal IQS szpa Ia mz (1122)

(functional calculus on both sides is taken in B(H), i.e. the identity used in the functional calculus

is idg on both sides).
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Note that (I1.16) implies that | — 1| < e. Then from (IL.16), (I1.19), (II.21), and (I1.22),

we have

| )@@ 6] - 3@ [ - reF@)])|

[@ —1>pm+1+zwl (2 @) - aw)]wi]

: [P +Zw@ — pa(fa(@:)])]w;]

(b= 1Dpmi1 + sz (@:)[a(z)| - a(@:)] [1 ~ pala(@:)])] wy

= max ({|n — 11} U {||[u(z:)[@(zo)| - (2] [1 - polfa(@))]]| - 1 < i < m})

< €.

This estimate holds for all ¥y € Y, so result follows. O

Lemma I1.3.18. Let
(50,4, (3,50, 02,20

be a SRSH system, let A= A" and let X be the total space. Suppose that dim(X) = d < co. Let
1>e>0andletl >a>0 Letac A, andleta =a+1 €A Suppose that for all x € X, we
have rank(po/2([a(z)|)) > d/2. Then there exists u € Uo(A) such that for all z € X, we have

(| [u(@)[a(@)] - a@)] [1 - pa([@@)D] ] < e (I1.23)

Proof:  First of all, if we let zo € X1, let X{¥ = Xp = {0}, let Ry: C(X1,K) — C(X?,K) be
the restriction map, let ¢1: C(Xo,K) — C(Xfo), K) be the identity map, and let A®) = C(X,, K),
then

X0, A® (X, x© 4. A®

( 0 ( X i B )k 1)

is again a SRSH system that gives the same SRSHA as the original system. This change does
not affect any of the hypotheses or the conclusion of the lemma. Thus without loss of generality,

assume that X, is just one point set, and so AD) >~ K.
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Now suppose

(20,49, (X, x0, 6, R, 4) "),

where X is a one-point set, 1 > ¢ > 0,1 > a > 0, and o € A satisfy the hypothesis of the lemma.
Write a = (a1, ...,a,) with a; € C(Xy,K) for k € {1,...n}.

Choose ay,a3,...,a, € R such that 0 < a/2 = oy < -+ < ap, = a. Now we inductively
pick d1,...,d, > 0. Let §,, = €/2. Suppose that §; > 0 is picked. Note that dim(Xy) < dim(X) =d,

and that for each z € X, we have

rank(pa,_, ([ax(2)|)) = rank(pa,_, ([a(z][)) > rank(pas(la(z)))) = d/2.

So we can apply Lemma 11.3.16, with €, a1, g, X, Y, and o in Lemma I1.3.16 respectively taken to be
min{dx/2,¢/(2%)}, ak_1, ar, Xk, X’go)’ and ak, to obtain &,_;. Set dx—1 = min{dx/2,8,_,}. Next we
inductively choose uy € C(Xy,K)~ for k € {1,...,n}, and homotopies h: [0,1] — U(C(Xk,K)~
for k € {1,...,n}, such that

hie(0) = 1, hi(1) = ug, for k € {1,...,n}, (11.24)
(ha(t), ... hi(t)) € U(A®), for t € [0,1] (11.25)
(ur,. .., ux) € Ug(A®), for k e {1,...,n}, (11.26)
|| [u (@) |Gk ()] = Gr(2) ] (1 — Py ([@k(@)))|| < 8k, for all z € X. (11.27)

For each £ = (£1,...,&n) € ;4V, we will use £ to denote the first k entries of £. Note that
(€1,...,6k) € f/lz’:) Since X is just a one-point space, it is clear that there exists u; € Uo(m)
and a homotopy hi: [0,1] — U(ZH)) such that h; (0) = 1 and h1(1) = uq, and that (I1.24), (I1.26),
and (I1.27) hold for £ = 1. Suppose that ux and hy are chosen to satisfy (11.24), (11.25), (I1.26),
and (11.27).

Let v = g1 (u®), where ul® = (uy, ..., ux) € m, and define
fo: [0,1] = U(C(X,3,, K)™)

by folt) = ¢ry1(hi(t),...,he(t)). Then v € UO(C(X,S(BI,K)”) and fy is a homotopy in
U(C(X,g(_)gl, )™) from 1 to v. Also, applying Lemma (I1.3.17) to A®*) in place of 4, X,Eg}l in place



of Y, ¢r41 in place of ¢, a*) in place of a, 6 in place of €, ay in place of @, and u(® = (uq,...,ux)

in place of u, we have
I[v(2)|$@*S) (@) = $@*)(@)] [1 = par (18@* () D] < 8k,
forall z € X,Eg_)l. Since $k+1(6(k)) = E(5k+1), we have

[ [v(@)[@k+1(2)] = Tr+1(2)] [1 = P ([Er1 ()] || < I

for all z € X,Eg_)l. Then by the choice of &, there exists ugt1 € Up(C(Xk41,K)™) and a
homotopy hg41 in U(C(Xg+1,K)™) such that Ayt 1(0) = 1, such that hgi1(1) = ugy1, such that
hr+1(®)l o = fo(t) for all t € [0, 1], such that ugi1|, = v, and such that
k1 k1
|| [uk+1 (@) [@k+1(2)] = Brt1(2)] [1 = Do s ([@r41(@)D] || < k1,

for all z € Xg41. It is clear that (uy, ..., Uk, uky1) is a unitary A®FD " and that for each t € [0, 1},

we have

(hl(t), ceny hk(t), hk+1(t)) S U(C(Xk+1,K)N).

Then ¢ — (h1(t),...,he41(t)) is a homotopy in U(C(Xk+1,K)™) from 1 to (uy,...,ux). So
(u1,...,ux) € Up (A/(kj'/l)) This completes the inductive step.

Now take u = (uy,...,up). Since for all £k € {1,...,n} and for all z € Xj, we have
1 —pa,(|a(z)]) > 1 — pa([a(z)]), and since §; < dz < -+ < 8 < ¢, (IL.27) implies (I1.23). This

finishes the proof. O

As a consequence of the above lemma, the next proposition will give an approximate polar
decomposition for elements a in a SRSHA such that the dimension of the the eigenspaces of the

small eigenvalues of |a(x)| is large enough.

Proposition 11.3.19. Let

be a SRSH system, let A= A™ | and let X be the total space. Suppose that dim(X) =d < oo. Let
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1>e>0andlet]l >a>0. Leta € A, and let @ =a+1 € A. Suppose that for all x € X, we

have rank(ps/2(|a(z)()) > d/2. Then there exists u € Up(A) such that |[ul@] — || < €+ 2a.

Proof:  Let u be the unitary obtained using Lemma I1.3.18. Then for all z € X and all £ € H,

where H is the underlying Hilbert space, we have

[[fu(z)[@(z)| — @))€l
< ||[ul@)a(@)] - a(=)] (1 - pa(j@@)])(©))]]
+ || [u(@)[@(=)] - @(z)]pa (@) ) (©)]]

< ell¢ll + I(la(z)Dpeala@) D + la(z)pa ([a(@) ()]
<ell&ll + 2l€]l-
Thus ||[u(z)|a(z)] — a(z)]|| < e+ 2a for all z € X. So [|ula| — 2| < e+ 2a. O

Corollary 11.3.20. Let
<X1: A(l)a <Xia Xi(O)’ ¢i’ Ri, A(z))n )

=2

be a SRSH system, let A =A™, and let X be the total space. Suppose that dim(X) =d < o0. Let
1>e>0.Leta € A andletd@ = a+1 € A. Suppose that for allz € X, we have rank(p./s(|a(z)|)) >

d/2. Then there exists b € A such that b is invertible and ||@ — b < e.

Proof:  Apply Proposition 11.3.19 to A, ¢/4 in place of ¢, €/4 in place of @, and a € A, to obtain
a unitary u € Up(A) such that ||u|d] — @|| < €/4 + ¢/2 = 3¢/4. Let b = (|| + ¢/4). Then b is
invertible and

1b—a| < Hb - u|a:|H +|lufa] — @) < e/4+3¢/4 =e.

Lemma I1.3.21. Let
A\
(leA(l)a (Xin'i(O)’gbi)Ri)A(Z)) )

i=2
be a SRSH system, let A = A" and let X be the total space. Leta € A andletG =a+1 € A.

Let 1 > a > 0. Then the set U = {x € X: rank(p,(|a(x)|) > 1} is open. Further, if U # @, then

Iy = {a € A: a|ye. =0} is a non-zero ideal of A.
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Proof: U U = {z € X: rank(p,(la(z)|)) > 1} is empty, then we are done. So assume that U # @.
To show that U is open, it is enough to show that every « € U is an interior point, i.e. there exists
some open V C U such that x € V. Fix zg € U.

Apply Lemma I1.3.12 to @ and |@(zg)| to obtain § > 0. The map z — |@(z)| is continuous,
and theset V' = {;c € X: Hl?i(a:)| — |'d(a:0)|H < 5} is open and contains zg. If z € V, then the choice
of § implies that 1 < rank(pa(|d(zo)])) < rank(p,(|@(z)|)). Therefore V' C U, and hence U is open.

To show that Iy # 0, we verify the condition in part 1 of Lemma II.2.9. For each
ke{l,...,n}, let Uy = Xi NU, and for each k =2,...,n, let

k-1
Wy, = {a: e X9 sp, () N (U Ui) ” @}.

=1

Let 2 < k < n and let € Wi. Then sp,(¢r) U # @, so let yo € sp,(¢x)NU. Let wy, ..., w; be the
family of isometries with orthogonal ranges such that ¢p(f) = }:é:l wif (y;)wy for all f € A1)
where y; € sp,(¢x) for i € {1,...,1}. Let ip be an integer such that 1 < 49 < and y;, = yo. Let

¢ € Ao, be such that @] = ¢+ 1. Then

pa(la()]) = pale(z) + 1) = pa-1(c(z))
l
= Zwipa_l(C(yi))wI > Wi Pa—1(c(Yo) )W},

= wipPa(c(yo) + Vwi, = wiyPa([a(yo)|)wi,-

So, since yo € U, we have rank(p,([@(z)|)) > rank(p.(|@(yo)])) > 1. Hence z € Uy, and so
zeUpN X}go)' Therefore Wi C U N X,go).
Nowlet z € Uy N X 120)‘ Let wq,...,w; be the family of isometries with orthogonal ranges
such that ¢x(f) = Eli-_—l w; f(ys)wy for all f € A®1) where y; € sp,(¢x) for all i € {1,...,1}.
Then l l
rank(p, ([a(z)])) = rank (Z wipo ([a(ys))wy ) = erank(pa(l'd(yi)l))-

i=1
Since z € U, for some i € {1,...,l}, we have rank(p,(|a(y;)])) > 1. Thus y; € Uf;ll Uj. So
sp,(¢k) N (U;:} Uj) # @, and so x € Wy. Hence Uy ﬁX,go) c Wi.
Thus by Lemma I1.2.9, Iy # 0. O
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Lemma I1.3.22. Let (A, v¥y) be an inductive system of SRSHAs and let A be the inductive limit.
Let X, be the total space for A,. Suppose that 1, is injective for all n, that 1, is non-vanishing
for all n, and suppose that A is simple. Let 1 > a > 0. Then for alln > 1 and all a € A, such
that @ = a + 1 is not invertible in ﬂn, there erists some m > n such that for all k > m and all

a}(x)])) = 1, where Jn,k is the unitization of the map vy k.

& € Xy, we have rank(pe (|9, ,

Proof:  Let U = {z € X,,: rank{p,(|d(x)|)) > 1}. We first show that U # &. Since @ is not
invertible, there exists some zg in the total space of A, such that G(x) is not invertible. Then
by the Fredholm Alternative, the operator d(zg) is not injective, which implies that [@(xo)| is not
injective. Then p,(Ja(zo)|) # 0, which implies that zo € U. This shows that U # @.

By Lemma 11.3.21, Iy = {a € A,: a|ye = 0} is a non-zero ideal. Then by Proposition
I1.2.11, there exists m > N such that for all & > m, and for all z € Xk, we have sp, (¢, ) U # @.
Let £ > m, let x € X, and let wy,...,w; be the family of isometries with orthogonal ranges
such that ¢, x(f)(z) = Zi:l wi f(y;)wy for all f € Ay, where {y;: 4 =1,...,{} = sp,(¥n ). Let
Yo € 8P4 (¥n k) NU and choose 1 < i < [ such that y;, = yo. Let ¢ € (An)s.q. be such that |a| =¢.
Then |$n,k(@)| = ¥n k([&]) = ¥n,5(€) = Pnk(c) + 1. Thus

rank(pa(|$n,0(@)(@)])) = rank(pa(|$n,+@)|(z)))
= rank(pa(vn,k(c)(z) + 1))

= rank(po—1(¥n,k(c)(x)))
!
Zrank (Pa—1(c(ys))) > rank(pa—1(c(ys,))

= rank(p,—1(c(yo))
= rank(pq (¢(yo) + 1))

= rank(pa (c(40))) = rank(pa([a(yo)l)) = 1.

The last inequality above holds because yo € U. O

Theorem II1.3.23. Let (Ap,¢n) be an inductive system of SRSHAs and let A be the inductive
limit. Let X,, be the total space for A,. Suppose that 1, s injective and non-vanishing for all n,
and suppose that A is simple. Also assume that there exists d € N such that dim(X,) < d for all

n > 1. Then A has topological stable rank one.



50

Proof: ~ We first show that an element of the form b+ 1 € Z, where b € A, can be approxmiated
arbitrarily closely by some invertible element in A.

Letbe A, let1>e>0,andlet b=b+1.Letn > 1, and let a € A, satisfy [|[¥"(@) —b|| <
€/2, where ¢ : A, — A is the standard map that comes with the inductive limit. If @ is invertible
in Ay, then J”(E) is invertible in ;f, and we are done. So assume that @ is not invertible in
Ap. Then by Lemma I1.3.22, using ¢/16 as «, find some m; > n such that for all & > mq,
rank(pe/lﬁ(lzzn,k('d)(m)|)) > 1 for all z € Xj.

For each n > 1, let Xy 1,..., X5 (n) be the base spaces of A, let Xff%,.. Xflol)(n) be
the attaching spaces, and let X,S?i = @. If for all & > m,, the set |_|§(=k1)(Xk)i \ X,E?Z)) is a finite
set, then for all k > m; the algebra Ay is simply a finite direct sum of copies of K. This means
that Ax has topological stable rank one for all ¥ > m;y, which implies that A has topological
stable rank one, and we are done. So we can assume that there exists some msy > mj such that
I_Iig”)( mayi \X(O) ;) is infinite. Let 1 <1 < l(ms) be the largest integer such that X,,, \X( ) s

infinite. Then A,,, is isomorphic to AS,IL)Q ® (EB{: 1 K) for some I’ € NU {0}, via some isomorphism

ll
h: Am, —>A$Q2 ® @K
i=1
such that the composition Am, - A% @ <EB1 1 K) — AY  (the map on the right is the standard
projection) is the restriction map A,,, — AS,?I. Let d; be an integer greater that d/2 and let
T1y. s Tdy € Xng 1\ X, l Foreachi e {1,...,d1},let V; C sz»l\Xfr?g,z be an open neighborhood

of z; such that {V;: i =1,...,d1} is disjoint. For each i € {1,...,d1}, let
Ji = {a S Ag,lt)z: a|vf = 0}.

Then each J; is a non-zero closed two sided ideal of AS,ZL)Z <EB{=1 K) .Foreach i € {1,...,d},
let I; = h=1(J;). Since {J;: 4 = 1,...,d1} is orthogonal, so is {f;: 4 = 1,...,d;}. For each i €
{1, e ,dl}, let

W; = {z € Xpn,: there exists some a € I; such that a(x) # 0}.

Then for each i = 1,...,d;, we have V; C W; and W; N (Ul(m2)(Xm2,j \ Xf,?;ﬂ) =V.
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Now, for each i € {1,...,d1}, apply Proposition I1.2.11, to obtain some n; > mq such that
for all k > n,, and for all z € Xy, spy(¥m, k) N W; # @. Let np = max{ni,...,nq, }. Let k > ng
and let € Xj. Then sp,(¥m, k) NW; # @ for each i € {1,...,d1}. So for each i € {1,...,d1},

we can choose y; € Sp,{(¥m, ) N W;. Since for each i € {1,...,d1},

l(mz)
yi € Win ( || (Xima.i \X,ggg,g) =V
i=1
and since Vi,...,Vy, are pairwise disjoint, we see that yi1,...,yq, are distinct. Let
wy,...,wy be isometries with mutually orthogonal ranges such that for all f € A,,, we have
Yy k() = Z:Zl w; f(z)wy, where {z;: 4 =1,...,t} = spy(¥m, k). Since my > my, we have
raml«:(pe/m(|17)'n,m2 (@)(y;)])) > 1 for each ¢ € {1,...,d1}. Let ¢ € (A, )s.q. satisty |1Zn,m2 (@) = ¢
Then

rank(pe/16(|¥n £ (3)(2)]) = rank(pe/16(/Pma k (n,ms (@) (@)]))
= rank(pe/16 (P, (1$n,ms (8))(2)))
= rank(pe/16(Ym,1(6)(2)))
= rank(pe/16 (Y, 1 (€) () + 1))

= rank(p(e/16)—1(¥Ym,,k(€)()))

= rank (p(e/m)—l (Z Wic(zi)w:) )
= Zrank(p(e/m)—l(c(zi)))

i=1

dz

> Zrank(P(e/16)—1(C(yi)))

da

= Z rank(pe/16(¢(y:)))

i=1

dz
=" rank(pe/16(|Pnms (@) wi)1)

i=1

=d; > d/2 > dim(Xg)/2.

Then by Corollary I1.3.20, there exists some invertible element ¢ € Ay, such that ||1Zn,k(5)—c|| < €/2.
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So 9*(c) is invertible in A, and

155 (c) — Bl < 19 () = ¥* @k @) + [|9* (I s (@) — b]
= lle = Y@l + 19" @) — b]

<e€/24¢€/2.

Thus we have shown that for all b € A and all € > 0, there exists some invertible element ¢ € A
such that |[b—¢|| < e. Next will show that for all b € A and all € > 0, there exists some ¢ € A such
that ¢ + 1 is invertible and || — b|| < e.

Let b € A and let 1 > € > 0. By what we just proved above, b € m, where inv(lev)
denote the set of all invertible elements of A. So there exists a sequence (an, \,) € inv(4) such
that ||(an, An) — (b,1)|| — 0. Then A, — 1. So (A7 an,1) = A;1(an, An) — b. Thus we can pick
some n such that [|(A>2an,1) —b|| < €. Setting ¢ = A= ay,, we see that & = A;!(an, An) is invertible

and ||'5—3H < e. Then by Proposition 4.2 of [16], the algebra A has topological stable rank one. O

Many arguments in this chapter may be simplified greatly if every SRSHA is the tensor
product of a RSHA with K; however we were not able to determine whether every SRSHA is the
tensor product of a RSHA with K. In the approach we used when trying to resolve this question,
we found that in order to show that a SRSHA is the tensor product of a RSHA with K, we needed
to extend projection valued functions over a closed subspace of a compact metric space to the
entire space. This cannot be done in general, and so we feel that it is not true that every SRSHA
is the tensor product of a RSHA with K.

Also, SRSHAs are likely to be K-stable. If A is a SRSHA, then A is contained in B =
@D, C(X;,K) as a C*-subalgebra, which implies that A ® K is a C*-subalgebra of B ® K. The
obvious *-isomorphism from B ® K to B restricted to A ® K may very well be a *-isomorphism

from AQK to A.
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CHAPTER I

STABLE RECURSIVE SUBHOMOGENEOUS C*-SUBALGEBRAS OF C*(X,R)

In general, when X is a compact metric space, and G is a topological group acting on
X freely and minimally, the structure and properties of the crossed product C*(X,G) are often
very difficult to study, even if G is as familiar as Z or R. So we would like to look at certain
distinguished C*-subalgebras of the crossed product instead. Often, properties and the structure
of those C*-subalgebras can be used to study the entire crossed product.

In [10], X was taken to by the Cantor set, G was taken to be Z, and the action was
assumed to be free and minimal. For Y C X closed, define Ay to be the C*-subalgebra of the
crossed product C*(X,Z) generated by C(X) and uCo(X \Y). When Y is also open, it was shown
that Ay is an AF-algebra. For y € X, let A, denote Ag,y. If (Y,)n>1 is a decreasing sequence of
clopen sets such that (1,5, Y, = {y}, then it is easy to see that A, is the closure of the increasing
union | J,,»; Ay, . Hence, 4, is an AF-algebra as well.

When Z acts freely and minimally on a arbitrary compact metric space X with finite
covering dimension, it is shown in [5] that the C*-subalgebra Ay generated by C(X) and uCo(X\Y)
is a RSHA. This fact is used in [3] to show that, under certain hypothesis, the crossed product has
tracial rank zero.

When we consider free minimal actions of R on compact metric spaces with finite covering
dimension, we would like to look at C*-subalgebras of the crossed product that are analogous to the
ones mentioned above. However, we immediately run into a difficulty: the algebra C(X) and the
unitaries that implement the action are not contained in the crossed product; they are contained
in the multiplier algebra of the crossed product instead. So we cannot define the C*-algebras Ay
and A, as the C*-algebras generated by certain sets of elements of the crossed product. We need
to take a more explicit approach. In retrospect, we realize that the subalgebra Ay in the integer

case, in some sense, is the “algebra of partial orbits”: orbits are broken at a chosen subset Y,
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then partial orbits are grouped together according to their lengths to make C*-subalgebras of the
crossed product. This is the approach we take in this chapter to construct the C*-subalgebras
analogous to Ay and A, in the integer case.

In the rest of this dissertation, we fix a compact metric space X, and fix a free minimal
action of R on X. The construction that we will describe in this chapter requires that the action

admits “pseudo-transversals,” which we define below.

Definition I11.0.1. Let X be a compact metric space and let R act on X freely and minimally.

A nonempty closed subset Z of X is called a pseudo-transversal if

1. Forallz € X, the set (R-x) N Z is dense in Z.

2. There exists 0 > 0 such that for all x € Z, we have ([—0,0]- )N Z = {z}.

The existence of pseudo-transversals is essentially guaranteed by Lemma 3.1 in [12]. Only
the density condition is not explicitly stated in the statement of that lemma. We include the proof

of the existence of pseudo-transversals here, applying Lemma 3.1 in [12].

Lemma II1.0.2. Let X be a compact metric space. Let R act freely and minimally on X. Then

the action admits a pseudo-transversal.

Proof: By Lemma 3.1 in [12], there exist a real number € > 0, an element 2y € X, and a closed
subset S C X containing zg such that the map I': (—¢,€) x S — X defined by I'(r,z) =rz is a
homeomorphism onto a neighborhood of .

We first claim that any subset T' C S satisfies condition 2 in Definition II1.0.1. Take
o =¢/2. Let © € T. Suppose that y € ([—o,0]-2z)NT. Then y = rz for some r € [—0,0] C (—¢,¢).
So (r,z) € (—e,€) x S. Therefore y = I'(r,z) = T'(0,y). It follows from the injectivity of I" that
x = y. This proves the claim.

Next we claim that if z,y € S and r € R satisfy y = rz, then either » = 0 or |r| > 2e.

Let z,y € S and r € R satisfy y = rz. Also assume that |r| < 2e. Then —r/2,7/2 € (—¢, €). Since

r((3)#)=(5) == (5) v=r(-(3) )

By the injectivity of I", we have » = 0. This proves the claim.

y = rz, we have

Let d be the metric on X. For each r > 0 and each = € X, let B(z,r) denote the open ball

{y € X: d(z,y) < r}. Now, since (—¢,€) - S is a neighborhood of =z, there exists some § > 0 such
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that B(zo,6) C (—€,€) - S. Let Z = B(zo,6/2) N S. Note that since S is closed in X, the set Z is
contained in S. With o = ¢/2, condition 2 in Definition II1.0.1 holds by the first claim above.

We now show that Z satisfies condition 1 in Definition II1.0.1. Fix some z € X and some
z € B(zo,6/2) N S. Note that 2z € B(zg,d) N S. Choose a sequence {r,} of strictly positive real
numbers such that B(z,r,) C B(zg,d) for all n and such that lim,, . 7, = 0. Since the action is
minimal, the set (R-z)NB(z,r,) is nonempty for all n > 1. So for each n > 1, we can choose some
2n, € B(2,7,) N (R - z). Then z, is in the image of the map I" for each n > 1. Thus, for each n > 1,
there exists (sn,yn) € (—¢€,€) X S such that I'(sp,, yn) = 25. It is clear that z, — 2. That is, we have
T'(sp, yn) — I'(0, 2). Then, since I is a homeomorphism, we have y,, — z. Because spyn, = 2, € R-z
for all n > 1, we have y, € R -z for all n > 1. Now, because y, — 2z and z € B(zo,6/2), we can
assume, passing to a subsequence if necessary, that y, € B(z,6/2) for all n > 1. Then we have
yn € ZN(R-x) for all n > 1. We have now shown that for all z € B(zo,/2)N.S there is a sequence
in ZNR -z that converges to z. Then it is clear that ZNR -z is dense in Z. This finishes the proof

of the lemma. a

For the rest of the chapter, fix a pseudo-transversal Z, and use ¢ to denote the real number
in the second condition of the definition above. Before we start describing the construction, we
look as some examples of R actions.

The most trivial example is R acting trivially on an arbitrary metric space X. That is,
for every r € R and every z € X, we have rz = z. In this case, the action is not free and is
minimal only when X contains only one element. The corresponding crossed product C* (X, R) is
well known (for instance, Example 2.53 in [17]) to be isomorphic to C(X) ® C*(R), where C*(R)
is the group C*-algebra of R, which we will not describe here. (See Section 3.1 in [17] for the
definition of the group C*-algebra.) It is also well known (for instance, Proposition 3.1 in [17])
that C*(R) is isomorphic to Co(R). So C*(X,R) is isomorphic to C(X) ® Co(R) = Co(X x R).

When R acts on itself by translation, the action is free and minimal. The corresponding
crossed product C*(R,R) is isomorphic to the algebra of all compact operators on L%(R). In
fact, more generally, when a locally compact group G acts on itself by left translation, the crossed
product is isomorphic to the algebra of compact operators on L?(G). This fact is essentially proven

in [14], and is the motivation behind the map defined by Equation III.9 in this chapter .
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Another class of examples is the class of flows under ceiling functions. Take a locally
compact space X. Let k: X — X be a homeomorphism. Then % induces a Z action on X. Let Y
be the quotient space ([0, 1] X X')/~, where the equivalence relation ~ is given by (1,z) ~ (0, h(z)).
Now let points in Y flow upward at unit speed. When a point reaches the ceiling (i.e. the set
{1} x X), it jumps to the floor (i.e. the set {0} x X) and keeps moving up at unit speed. This
gives a flow under the ceiling function that is constantly one. When the Z action on X is free and
minimal, the R action on Y is also free and minimal. If X is compact, then so is Y. It was shown in
[15] that the crossed product C*(Y,R) is stably isomorphic to C*(X,Z). So this class of examples
is also essentially trivial. A similar construction can be used to allow the ceiling function to be an
arbitrary strictly positive continuous function from X to R. In this case, the corresponding crossed
product C*(Y,R) is still stably isomorphic to C*{X,Z). See [15] for more details.

The examples we have described so far are all more or less trivial. Less trivial examples
would be free minimal actions on compact metric spaces that are not flows under ceiling functions.

It was shown in an unpublished work by N. C. Phillips that such actions indeed exist.

IT1.1. Entering Times and Return Times

Definition ITI.1.1. Let X be a compact metric space, let R act on X freely and minimally, and
let Z C X be a pseudo-transversal. Let Z° denote the complement of Z with respect to X. Define

the forward entering time §: Z¢ — R by

B(z) =inf{r > 0: rz € Z};
define the backward entering time «: Z¢ — R by

a(z) =sup{r < 0: rx € Z};
and define the return time R: Z — R by

R{z) =inf{r > 0: rz € Z}.

Note that the entering times are well defined because Z meets every orbit of the action.

Now we fix some notation for the rest of the chapter
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Notation II1.1.2. For the rest of the chapter we use o and f to denote, respectively, the forward
and backward entering times associated with the pseudo-transversal, and use R to denote the

return time for the transversal. We first establish some elementary properties of ¢, § and R.

Lemma II1.1.3. For allz € Z¢, we have (o), B(z))-x C Z°. For allz € Z, we have (0, R(2))-z C
Z¢. (We use the notation (a(z), B(z)) and (0, R(2)) to denote open intervals of the real line, the
notation (a(z), B(z)) - z to denote the set {rz: r € (afx),B(x))}, and the notation (0, R(2)) - z to
denote the set {rz: r € (0, R(2))}.)

Proof: Let z € Z¢ and let r € (a(z), 8(z)). Suppose that ro € Z. If » > 0, then

B(z) =inf{s > 0: sz € Z} <r < (),

a contradiction. So r < 0. If r < 0, then

alz) =sup{r <0:rz € Z} > r > ax),

contradiction. So 7 = 0. But then z = rz € Z, contradicting the assumption. Thus (a(z), 3(2)) -
z C Z°.

Let z € Z and let r € (0,R(z)). Suppose that rz € Z. Then R(z) < r < R(2), a
contradiction. So rz € Z°. Thus (0, R(z)) - z C Z°. O

Lemma III.1.4. For all z € Z¢, we have a(z) < 0 and B{z) > 0. Also, for all z € Z, we have

R(z) > 0.

Proof:  Let x € Z°¢. There exists € > 0 such that (—¢, e)z C Z¢. Then by definition, a(z) < —e <0
and B(z) > e€> 0.
Let z € Z. It is clear that we have (0,0)z C Z° Then by definition, R(z) > . d

Lemma IIL.1.5. For oll x € Z¢, we have a(z) -z € Z and B(x) -z € Z. Also, for all z € Z, we
have R(z) -z € Z.

Proof: ~ We know that 8 > 0 and a < 0, by Lemma I11.1.4.
Let x € Z°. Suppose that a(z) -z ¢ Z. The map r — r - (a(z) - ¢) is a continuous map

from R to X, so the inverse image of Z¢ under the map, which contains 0 since we assumed
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a(z) -z € Z° is open in R. Thus there exists € > 0 such that (—e¢,€) - (a(z)z) C Z°¢. Then for all
r € (—e+ a(z), a(z)], we have rz ¢ Z¢. Now Lemma II1.1.3 implies that (a(z),0) -z C Z¢. So for
all 7 € (—e+a(z),0), we have rz ¢ Z. Then a(z)—e is an upper bound to the set {r < 0: rz € Z},
contradicting the fact that a(z) = sup{r < 0: rz € Z}. Thus a(z)z € Z.

Very similar arguments show that f(x) -z € Z for all x € Z¢ and R(z) -z € Z for all

2€ 7. |

Lemma III.1.6. The map « is upper semi-continuous, and the maps B and R are lower

semi-continuous.

Proof:  Let r € R. We will show that a=!([r,00)) is closed in Z¢. If » > 0, then by Lemma
I11.1.4, we know that a~!([r,c0)) = &, and then we are done. So assume that r < 0. Suppose
that {z,},>1 Is a sequence in Z¢ such that a(z,) > r for all n > 1, and suppose that there is
x € Z° such that z,, — z. Since the sequence {a(z,)} is bounded, it has a convergent subsequence
{a(zk,)}. Say a(zk,) — s with s € [r,0]. Then a(zk,)zr, — sz. By Lemma II1.1.5, we have
oz, )2k, € Z for all n > 1. So sz € Z, since Z is closed. Also, s # 0, since z ¢ Z. Then by the
definition of «, we have a(z) > s > 7. Thus z € a~!([r,0)), and so « is upper semi-continuous.

Let r € (0,00) and let {x,} be a sequence in 87!((—o0,r]) such that z,, — = for some
z € Z¢. Then {B(z,)} has a subsequence {f(zx,)} such that 8(zx,) — s for some s € [0,7]. For
each n > 1, we have B(z, )2k, € Z, 50 sz € Z. Also, z € Z°¢ implies that s # 0. So B(z) < s <.
This shows that 3 is lower semi-continuous.

In the previous paragraph, if we replace all occurrences of g by R and suppose that z € Z

instead of Z¢, then we get the argument that shows that R is lower semi-continuous. |

Lemma III.1.7. For oll x € Z° and for oll v € (a(x),B(z)), we have a(rz) = alz) —7r and
Blrz) = B(z) — .

Proof:  Let x € Z¢ and let r € (a(z), 8(z)). We know that 8(z) —r > 0 and (B(z) —r)(rz) =
B(x)z € Z. Therefore by the definition of 3, we have 8(x) —r > B(rz). Also, a(z) —r < 0 and

(a(z) —r)(rz) € Z imply that a(rz) > af{x) — r. Then it follows from Lemma III1.1.3 that

(a(z) =7, B(z) = 7) - (rz) = (a(2), B(2)) - = C Z°.

Then B(rz) > B(z) —r and a(rz) < a(z) —r. O
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Lemma IIL1.8. Let Z = [—0,0]- Z, let Z_ = [—0,0]- Z, and let Z+ =10,0]-Z. Then Z, Zy and

Z_ are all closed and have nonempty interior.

Proof: It is clear that A , 2+ and Z_ are all closed, because they are all continuous images of
compact sets. Suppose that Z_ has empty interior. Then for every n € Z, the set (on) - Z_ has

empty interior also, since the map = — (on)z is a homeomorphism. Now

XD U((an)Z_) 2 (U[an—a,an]) Z=R-Z=2X.
new new

So X = U, cz((on) - 2_) Since each (an)Z_ is closed and has empty interior, (on)Z_ is nowhere

dense for each n € Z. Then we see that X is a countable union of nowhere dense set. But X is a

compact metric space, hence complete. This contradicts the Baire Category Theorem. Thus Z_

has nonempty interior. Similarly, 2+ and Z have nonempty interior also. |
Lemma II1.1.9. The functions o, 8 and R are all bounded functions.

Proof:  Let U be the interior of Z_. Then U is open in X. By Lemma III.1.8, U # &. Since
the action is minimal, for each @ € X, there exists some r € [0,00) such that rz € U. That is,
for all z € X, there exists r € [0,00) such that z € (—r)U. So {(—r)U: r € [0,00)} is an open
cover for X. Since X is compact, there exist ry,...,7, € R such that X = {J]_,(—r;)U. Let

r = max{ry,..., . Then
X =[-r,0U C [-r,0] - ([-0,012) C [-r — 0,0] Z.

Thus, if z € Z¢, we have z = (—t)z for some t € (0,7 + o] and some z € Z. Then f(z) <t <r+o.
Thus 8 is bounded above by o + r. It is clear that § is bounded below by 0. If z € Z, then
(0/2)z € Z° and (0/2)z = (—s)2' for some 2’ € Z and some s € (0,7 + o). Then (s +0/2)z = 2.
We have s + ¢/2 > 0, so then R(2) < s+ 0/2 <r+0+0/2. So R is bounded.

An argument similar to the one that shows § is bounded shows that o is bounded. O

Notation II1.1.10. For the rest of the chapter, let M denote some positive real number such
that M > |B(z)| for all z € Z¢, M > |a(z)| for all z € Z¢, and M > |R(2)| for all z € Z. Also for
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the rest of the chapter, define

Gz ={(r,z) eRx X:z € Z% —r € (a(z), B(x))}. (I11.1)

Lemma II1.1.11. The set Gz is an open subset of R x X with compact closure. Further, if
(r,x),(s,y) € Gz satisfy x = (—s)y, then (r + s,y) € Ggz; also (r,z) € Gz if and only if
(—r,(—r)z) € Ggz.

Proof: Let (r,z) € Gz. Then z € Z¢ and —~r € (a(z), H(z)). Let

= (1/2) min{B(z) +r, - — a(z)}.

It is clear that € > 0. Let

U=pF"1(-r+¢00) Na~{(—o0,—r —¢)).

Note that U contains z. Also, since § is lower semi-continuous, and since « is upper
semi-continuous, we see that U is open. Let (¢,y) € (r —e,r+¢) xU. Then a(y) < —r —e < —t <
—r+€e < B(y). So (t,y) € Gz. Thus (r—e,7+¢)xU C Gz. Then we have (r,z) € (r—e,r+¢)xU C
Gz. So (r,z) is an interior point of Gz. This holds for all (r,z) € Gz, so Gz is open. To see that
Gz has compact closure, note that Gz C [-M, M] x X, which is compact.

Let (r,z),(s,y) € Gz satisfy z = (—s)y. Then

So —r € (a(z), f(x)) implies that —s — r € (a(y), B(y)), whence (r + 5,y) € Gz.
If (r,z) € Gz, then (a((—7)z),B((—r)z)) = (a(z), B(z)) + r. Since 0 € (a(z), B(x)), we
have 7 € (a(z), B(z)) +r = (a((-r)2), B((-7)x)). So (-7, (=r)z) € Gz. Applying the previous

argument to (—r, (—r)z), we see that if (—r, (—r)z) € Gz, then (r,z) € Gz. O

It follows from Lemma III.1.11 that Cy(Gz) is a linear subspace of Cc(R x X'). Recall that
the linear space C.(R x X) is endowed with a multiplication and a *-operation, as defined by the

formulas in 1.1 and L2 respectively. Thus C.(R x X) is a *-algebra.
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Lemma III.1.12. Cy(Gz) is a *-subalgebra of C.(R x X).

Proof:  We only need to show that Co(Gz) is closed under involution and convolution.

Let f,g € Co(Gz). We only need to show that (f * g)|(cz)e = 0 and (f*)|(g,)e = 0. Let
(r,z) € (Gz)°. Then (—r, (—7)z) ¢ Gz by Lemma II1.1.11, so f*(r,z) = f(—r, (—r)z) = 0. Now,
suppose that (f * g)(r,z) # 0. Since f and g are continuous, for some t € R, we have f(t,z) # 0
and g(r — ¢, (—t)x) # 0. Then (¢t,z) € Gz and (r — t,(—t)z) € Gz. So (r,z) € Gz by Lemma
IT1.1.11 again, a contradiction. Hence (f * g)(r,z) = 0. Therefore f * g, f* € Co(Gz). O

For the rest of the chapter define

Az = Co(Gz), (I111.2)

where the closure is taken in the crossed product C*(X,R).

By Lemma I11.1.12, it is clear that Az is a C*-subalgebra of the crossed product. This
subalgebra Az will be the subalgebra that is analogous to the subalgebras Ay in [3]. In fact,
the subset Gz of R x X is a subgroupoid of the transformation groupoid R x X. See [13] for
definitions of groupoids and groupoid C*-algebras. We find it more convenient to work directly
with the construction we have given then to formulate the construction in terms of groupoids. In

particular, we will not use any machinery from the theory of groupoids.

I11.2. Continuous Extensions of the Entering Times

We wish to obtain a stable recursive subhomogeneous decomposition for Az. We first find
finitely many subsets of Gz that are closed in Gz whose union covers Gz. We will show that each
of those subsets is locally compact with compact closure, and that spaces of continuous functions
on those subsets that vanish at infinity are in fact pre-C*-algebras whose closures have the form
C(F,K), where F is a compact metric space. Finally, we show that Gz is obtained by gluing these
(C*-algebras together.

To obtain the subset of Gz mentioned above, we first need to cut Z¢ into finitely many
pieces so that a and § are continuous on each piece, and can be extended continuously to the
closure of the each piece. The continuity of the entering times is required if we want to identify
the components of the of a stable recursive subhomogeneous decomposition of Az as “continuous”

functions from a compact metric space into K.
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Lemma I11.2.1. For every D € (0,00) and for every z € Z, there exists a compact neighborhood

K of z (K contains a set U that is open in X and z € U) such that {(0, D]-(KNZ)}N(KNZ) = @.

Proof:  This will be a proof by contradiction. Suppose that the statement is not true. Then
there exists D € (0,00) and some z € Z such that for every compact neighborhood of K of 2z
we have {(0,D]- (KNZ)}N(KNZ)+# @ Foreachn € N, let K, = {z € X: d(z,2) < 1/n}.
Then K, is a compact neighborhood of 2z for every n € N. So for each n € N, there exists
rn € (0,D] and z, € K, N Z such that vz, € K, N Z. Then z, — z and r,z, — 2. Since {r,}
is a bounded sequence, it has a subsequence {ry, } such that ri, — r for some r € [0, D]. Then
limy oo 2k, = liMp—oco(—7k, ) (T, 2k, ) = (—=7)z. But lim,—,00 2k, = 2, so (—7)z = z. Since the
action is free, we have r = 0. Therefore there exists m € N such that 0 < r,,, <o. Now 2z, € Z,
Thon 2k € Z, 80d 2k, # Tk,, 2k, 50 ([0, 0] - 2, ) N Z contains two distinct elements, namely z,,

and rg,, 2k,,, which contradicts the definition of Z. O
Lemma II1.2.2. There exist ny €N and Z,, 25, ..., Zn, C Z such that

1. for everyi € {1,...,nv}, the set Z; 1s compact;

2. for everyi € {1,...,ny}, every x € Z;, and every r € (0,8M], we have rz ¢ Z;;

5. Uili Zi = 2

4. for every i € {1,...,nv}, the map [0,8M] x Z; — [0,8M] - Z; defined by (r,z) = rz is a

homeomorphism.

Proof:  For each z € Z, let K, be the compact neighborhood obtained from Lemma I11.2.1 where
the real number D in Lemma I11.2.1 is taken to be 8M. Use K to denote the interior of K, for
each z € Z. Now, the collection {K3: z € Z} is an open cover for Z, which is compact, so there
exists ny such that |JIY, K, D Z. For each i € {1,...,ny}, let Z; = K,, N Z. Then part 1 and

part 3 of the lemma hold. Also, by the choice of the sets K, we have
@ =[(0,8M] - (K,,NZ)| N (K, NZ)=((0,8M]-Z;) N Z;

for i € {1,...,nv}. So part 2 holds.
The map {0,8M] x Z; — [0,8M] - Z;, defined by (r, z) + rz, is certainly continuous and

surjective. Now suppose that (r,z) € [0,8M] x Z; and (s,y) € [0,8M] X Z;, and that rz = sy.
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Without loss of generality, assume that 7 < s. Then s —r € [0,8M] and z = (s—r)y. But z,y € Z;
and s —r € [0,8M], so, by part 2, we have s — r = 0. Therefore (r,z) = (s,y). Thus the map
is injective. Since both [0,8M] x Z; and [0,8M] - Z; are compact and Hausdorff, the map is a

homeomorphism. Hence part 4 holds. O

Notation II1.2.3. Now we use the return time function R to partition Z. For each i € N, let

r=n (57 8)):

Note that, because R is bounded above by M and below by o, we have T = & for all but

finitely many i, and that {T%: ¢+ € N} partitions Z. Let A = {n € N:n > 1,7" # &}. Then
for some ng € N, we have A = {k1,ks,...,kn, }. Re-indexing if necessary, we can assume that
ki < ka <+ < kp,. For each i € {1,...,ng}, let Z¢ = T* Then it is clear that {Z!,...,Z"%}
partitions Z. For each i € {1,...,ny} and each j € {1,...,ng}, let Y;; = Z; N ZJ. It is clear that

{Y;;:1<i<ny,1 <j<ng} covers Z.

Lemma II1.2.4. Let ny be as in Lemma II1.2.2 and let ngr, Z7 and Y; ; be as given above. For

each i € {1,...,nv} and each j € {1,...,nr}, we have:
1. if {z,} is a Cauchy sequence in Z7, then {R(z,)} is Cauchy;
2. R|z; is continuous;
3. the map [0,8M] x Y, ; — [0,8M] Y, ; is a homeomorphism.

Proof: Fixie€ {1,...,nv}and j € {1,...,ng}. We show part 1 first. Suppose that {z,} is a
Cauchy sequence in Z7. Then z, — z for some z € Z. Since {R(z,)} is a bounded sequence, it
has a convergent subsequence {R(z,)}. Let r = lim,_, R(zk, ). Then R(z,)zk, — rz. Since
R(zk, )z, € Z for all n > 1, we have rz € Z. Suppose that {R(z,)} does not converge to r. Then
there exists € > 0 and a subsequence {R(z;,)} of {R(zn)} such that |R(z;,) — r| > € for every
n > 1. We know that {R(z;,)} is bounded, so it has a convergent subsequence {R(z;, )}. Say

R(z;, ) — s. Then sz € Z. Also, |R(zj, ) —r| > € for all n > 1 implies that 7 # s, and so rz # sz.
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Then by the second condition in the definition of a pseudo-transversal, we have |r — s| > 0. But

r = s| <|r — R(zy, )| + |R(zk,) — Rlzj0,)| + |R(25,,) — 5]

< |r — R(zy,)| + 0/16 + |R(z;, ) — 5|,

which converges to /16, a contradiction. Thus R(z,) — 7. So {R(z,)} is Cauchy, and part 1 is
proven.

Now suppose that {z,} is a sequence in Z7 such that z, — z for some z € Z7. Then
by part 1, R(z,) — 7 for some r € R. We will show that » = R(z). Suppose that r # R(z).
Then rz # R(z)z. Also we have R(z)x € Z, rx € Z, and (R(z) — r)(rz) = R(z)z. So we have

|R(z) —r| > ¢. But
|R(z) — | < [R(z) — R(zn)| + |R(zn) — 7| < /16 + |R(xs) — 7},

and the last expression converges to o/16, a contradiction. So R(z) =r, and so part 2 holds.
For the last part, we note that the map in part 3 is the restriction of the map in part 4 of

Lemma II1.2.2, and that the map in part 3 is surjective. O
Now we fix some more notation for this chapter.

Notation III.2.5. Recall the definition of the integers ny and ng from Lemma II1.2.2 and
Notation II1.2.3, respectively. Enumerate the collection of sets {¥;;: 1 < i < ny,1 < j < ng}
by Y; in the following order: Y] = Y1,1,Y2 = Yo1,..., Y0y, = Yo, 1, Yap41 = Y12, Y042 =
Yoo, s Yony = Yoy 2, Yimg—nv+1 = Yings+ o> Yngny = Yay,ng. Lhrow away the empty
members of {Yx: 1 < k < ngny}, and let N be the number of nonempty sets in the collection,
then relabel the nonempty members of {¥;: 1 < k < ngny} without changing the relative order.
That is, if we let ¢: {1,...,N} — {1,...,nyng} be a strictly increasing function such that
{Y.): 1 £ k < N} is the collection of all nonempty members of {Y;: 1 < k < nyng}, then
we relabel Y (k) as Y. It is clear that {Y;: 1 <k < N} covers Z. For the rest of the chapter, let
Y, denote the sets just mentioned, and for each i € {1,...,N}, let C; = {(R—gzl)z z € Y}, let
W; = {rz: z€ Y;,7r € (0,R(2))} and let X; = C;.
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Lemma II1.2.6. Let o and B are the maps in II1.1.2. For each i € {1,...,N}, let of = aw;,
and let 89 = Blw,. Then

1. For each i € {1,...,N}, the map Rly, is continuous.
2. For eachi€{l,...,N}, we have C; CW; C Z°.

N c
3. We have |J;_, W; = Z°.

4. For each i € {1,...,N}, for each z € Y; and each r € (0, R(2)), we have of(rz) = —r, and
B(r) = R() —r.

5. For each i € {1,...,N}, the map of and 3 are continuous.
6. For each i € {1,...,N}, each x € W;, and each r € (a5 (z), 55 (z)), we have rz € W;.

Proof:  For each i € {1,..., N}, the set Y; is contained in some Z7, and R|z; is continuous, so
Rly, is continuous. It is clear that for each i € {1,..., N} we have C; C W;; and W,; C Z° follows
from Lemma III.1.3.

Let z € Z° Then a(z)z € Y; for some ¢ € {1,...,N}. Since (a(z),B(z))z C Z°, we
have (0,8(z) — a(z))(a(z)z) C Z°. Also, B(z) — a(z) > 0 and (B(z) — a(z)) - (a(z)z) € Z, s0
R(afz)z) = B(z) — afz). So —a(z) € (0, R(a(z)z)), and then z = (—a(z)) - (a(z)x) € W;. Thus
Z¢ = JN., W;. (Here we used the fact that & < 0 < 4.)

Now fix ¢ € {1,...,N}. Let z € Y; and let r € (0, R(z)). Then by Lemma III.1.3, we
have (—r,R(2) — r) - (rz) = (0, R(2))z C Z°. Also, we have (—r)(rz),(R(z) — r)}(rz) € Z, and
—r < 0 < R(2) — r. So by the definition of & and 3, we have a5 (rz) = —r and 8 (rz) = R(z) —r.

Now let {z,} be a sequence in W; such that z, — z for some x € W;. Then for each
n > 1, there exist z, € Y; and r, € (0, R(z,)) such that z, = rpz,; and there exist z € Y;
and r € (0, R(2)) such that z = rz. By Lemma I11.2.4, we have 2, — 2z and r,, — r. Now, by
part 4, for each n > 1, we have a(z,) = —r, and B(z,) = R(z,) — m»; and also a(z) = —r and
B(z) = R(z) — r. Then we have a(z,) = —rn — —7 = a(z); and since Ry, is continuous, we have
B(zrn) = R(zn) — mn — R(z) — r = B(z). Thus af and g are continuous.

Now let z € W;, and let r € (af(z),B7(z)). Then z = sz for some z € Y; and some
s € (0,R(z)). So af(z) = —s and B9(z) = R(z) — s. Then r € (af(z),S{(x)) implies that
r € (—s,R(2) — s), and so r + s € (0, B(2)). Therefore rz = (r +s)z € W;. O
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The next lemma is used to extend the entering times. It is a well known result in analysis,

so we will omit its proof here.

Lemma II1.2.7. Let X be any metric space, and let Y C X be an arbitrary subset. Let f: Y — R
be a continuous function. Suppose that for every Cauchy sequence {y,} in'Y, the sequence {f(yn)}
is a Cauchy sequence in R. Then there exists g: Y — R such that gly = f, and g is continuous.

Moreover, g(y) = lim, oo f(yn), where {yn} is any sequence in Y that converges to y.
Now we extend the maps o and 87 in Lemma II1.2.6 continuously to the closures of W.

Lemma III.2.8. For eachi € {1,...,N}, the maps of and 37 from Lemma III.2.6 can be extended

to continuous functions on W;.

Proof: Fixi e {l,...,N}. By Lemma II1.2.7 and II1.2.6, we only need to show that «f and £
preserve Cauchy sequences.

Let {z5,} be a Cauchy sequence in W;. Note that W; C [0,8M] - Y;, which is compact, so
T, — x for some x € [0,8M] -Y;. For each n > 1, we have z,, = ryz, for some 2, € Y; and some
Tn € (0, R(2,)); and = = 7z for some z € Y; and some r € [0,8M]. Then by Lemma I11.2.4, 7,, — 7
and 2z, — z. Now, by Lemma II1.2.6, we have of () = o (rnzn) = —Tn, and 82(zn) = R(z,) —7n.
Then it follows that {af(x,)} is Cauchy. By Lemma I11.2.4, the sequence {R{z,)} is Cauchy, so
then {87 (zn)} = {R(2n) — ra} is also Cauchy. The lemma now follows from Lemma I11.2.7. O

Notation III.2.9. For the rest of the chapter, let o; and §; denote the extensions of of and f7,
respectively, obtained from Lemma II1.2.8. We will let V; = {rc: ¢ € X;,r € (o4(c), Bi(c))} for

each i € {1,...,N}. Note that V; C W;, but in general, we do not expect V; to equal to W; or W;.
ITI1.3. Properties of «;, 8;, W; and V;
Lemma II1.3.1. Leti € {1,...,N}, let x € W, and let r € [o;(z), B;(2)]. Then:

1. ai(z)x € Y; and Bi(z)x € Z.

2. —M < ay(z) <0< Bi(z) < M.

3. Bi(z) — a;(x) > 0.

4. rx € W,
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5. ai(re) = ay(z) —r and B;(rz) = Bi(z) —r.
6. If ai(z) =0 then z € Y;; if Bi(z) =0, then x € Z.
7. If x € Z°, then ay(z) < az) < 0 < B(z) < Bi(x), where o and B are the maps in II1.1.2.

Proof:  Let {z,} be a sequence in W, that converges to z. For each n > 1, we have z,, = rp2,
for some z, € ¥; and some r, € (0, R(z,)). Then «;(z,) = —r, and f;(z,) = R(zn) — ry, for each
n > 1 by Lemma II1.2.6(4)

Since ;(2n)Tn = 2n — o)z, and z, € Y; for each n > 1, we have a;(z)z € ;. Also,
' Bi(xn)zyn € Z for all n > 1, and B;(zn)zn — Bi(z)z, so Bi(x)z € Z. So part 1 holds.

Note that —M < a(y) <0< B(y) < M for all y € Z° and 0 < R(2) < M for all z € Z.
So —M < alz,) = a;(z,) < 0 < B(zn) = Bi(z,) < M, for every n. Then part 2 follows from
continuity of a; and ;.

For each n > 1, Bi(z,) — ai(zn) = R(z,) > 0. Part 3 now follows from continuity of o
and ;.

We first claim that (o;(z), Bi(z))x C W;. Let s € (o4(z), Bi(x)). Since a;(zr) — a;(x) and
Bi(zrn) — Bi(z), we can assume that, taking a subsequence if necessary, s € (a;(zy), Bi(z,)) for all
n > 1. Then sz, € W; for all n > 1. Since sz, — sz, we have sz € W;. This proves the claim. Now,
for each n > 1, let s, = B;(z) — %ﬁli(”) Then s, € (a;(z), Bi(z)) for all n > 1, so s,z € W; for
all n > 1. Since s,z — Bi(x)z, we have fB;(z)r € W;. Similarly, taking s, = o;(z) + %ﬁi(x),
we have a;(z)z € W;. So part 4 holds.

Next we prove part 5. First assume that » € (ay(x), 8:(z)). Recall from the beginning of
the proof that {x,} is a sequence in W; that converges to . Without loss of generality, assume

that r € (ai{xn), Bi(xy,)) for all n > 1. Then rz,, € W; for all n > 1, and then

oy(rz) = nh_)ngo ai(re,) = nli_)ngo alrz,) = nli_)ngo a(xy) — 1 = ay(z) — 1.

Similarly, B;(rz) = fi(x) — r. Now, let s, = Gi(z) — %AI—) Then s, € (oy(z), Bi(x)), so

Bi(snz) = Bi(x) — sp, and a;(snz) = ay(x) — sn, by what we just proved. Thus

ai(ﬁi(x)x) = nl_i_'r{.lo ai(snx) = nh_)n;o ai(x) — 8p = ai(x) - ﬁi(x)a
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and

Bi(Bi(z)) = lim fi(snz) = lim Bi(z) — sn = Bi(z) — fi(2).

By taking s, = a;(z) + ﬁi—(i%i(m), we have oy (o (z)z) = ay(z) — oy (), and
Bi(cu(z)) = Biz) — cu(2).

So part 5 holds.

By part 1, we see that a;(z) = 0 implies that z = a;(z)z € Y;; and that B;(z) = 0 implies
that z = B;(z)z € Z. So part 6 holds.

By part 1, we know that a;(z)z € Z, and G;(z)z € Z. Since x € Z¢, by part 6, we have
a;(x) # 0, and B;(z) # 0. Then part 2 implies that a;(z) < 0, and G;(z) > 0. Part 7 follows from
the definition of & and g. 0

Lemma II1.3.2, Letic {1,...,N}. Then:
1. X, CW, Y, CW;, and W; C [0, M]-Y; C [0,8M] - Y.
2. Ifz€Y;, then Bi(2) = R(2). If z € Y, then a;(2) = 0.

3 X;= {(—ai(m);ﬁi(m)) ~zixT € VZ}, and
W; ={rc: c € Xy,r € [as(c), Bi(0)]} = {rz: z € Vi, € [0, Bi(2)]}-

4. The map X; — Y; defined by c — as(c)c is a homeomorphism.
5. Suppose that ¢, ¢’ € X;, that ¢ # ¢/, and that re = ¢. Then |r| > 6 M.
6. The map
{(ry¢c) eRx X:c€ X;,7 € [ailc), Bi(0)]} —» Wi,
defined by (r,c¢) = rc, is a homeomorphism.
7. For all ¢ € X;, we have ay;(c) = —f;(c).

Proof:  We already know that C; C W;, s0 X; = C; C W;. If z € Y, then (R(2)/2n)z € Wy

and then z € W, since (R(z)/2n)z — z. So Y; C W,. Tt is clear that W; C [0,M]-Y;, so
W; C[0,M]-Y; C[0,8M]-Y;. So part 1 holds.
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Now we show part 2. Let z € ¥;. For each n > 1, let s, = %. Then s, € (0, R(z)) for
all n > 1, and s,z — z; so by continuity, we have 3;(s,2) — Bi(2), and that a;(snz) — a;(z). By
Lemma II1.2.6, we have f5;(s,z) = R(z) — s, and a;(sp,2) = —sp. So

Bi(z) = lim Bi(sp2) = lim R{z) — s, = R(2);

n—oo n—oo

and

ai(z) = nh_)ngo i(spz) = nllngo -8, =0,

Then it is clear that a;|3- = 0. So part 2 holds.
Now we show part 3. Let

let -
B ={rc: ce X;,r € [a;(c), B ()]},

and let
C={rz:zeY,r€|0,5(2)]}

Let ¢ € X;. If ¢ € C;, then ¢ = (R(2)/2)z for some z € Y;, and ¢ € W;. Thus «;(c) = —R(z2)/2,
and B;(c) = R(z)/2. Then ¢ = (ﬂ%l) -c € A. Thus C; C A. Now, W; is compact, and A is
the image of the continuous map = — (w) - x, so A is compact, and hence closed. Then
X;=0C, C A Thus X; = A.
Let
B' = {(r,¢) eRx X: ce X;,r € |au(c), Bi(c)]},

and let
C'={(r,2): z€Y,r €0,B:(2)]}.

Note that B’ C [-M, M|x X, and C’ C [0, M]x X. We first show that B’ and C’ are closed. Suppose
that (rp,cn) € B, and (rn,¢,) — (r,¢). Then ¢ € X, since X; is closed. Now, a;(z,) < rp <
Bi(zy) for each n > 1; also ay(z,) — au(z), Bi(zn) — Bi(z), and v, — 7. So as{z) < r < Bi(),

and so (r,c) € B’. Thus B’ is closed. Similarly, C’ is closed. Then both B’ and C’ are compact,
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since both are contained in compact sets. So B and C are also compact, because they are the
images of B’ and C’ under a continuous map, and so B and C are closed.

From part 2 and the definition of Wj;, it is clear that W; C C, and so W; C C. Now let
z €Y, and let r € [0, B;(2)]. Let ¢ = (B:(2)/2)z. Now, there exists a sequence {z,} in Y; such that
zn — 2. Then (R(z,)/2)z, € C; for each n > 1. But by part 2, (R(2z,)/2)zn = (Bi(2n)/2)2n — ¢,

so ¢ € X;. Now
[ai(e), Bile)] = [ai(2) — (Bi(2)/2), Bi(2) — (Bi(2)/2)] = [~(Bi(2)/2), (B:(2)/2)].

The r € [0, B;(z)] implies that r — §;(z) € [as(c), Bi(c)]. Then rz = (r — f;(z))c € B. Thus C C B.
By part 1 and part 4 of Lemma 111.3.1, we have B C W,. Thus W; = B = C. So part 3 holds.

Now we show part 4. By Lemma, I11.3.1, we see that the map does map to Y;. Continuity
is clear. If z € Y;, then (B:(2)/2)z € X;, and z = oy ((ﬁiéz )z) : ((&2(—2—)) z) . So the map is
surjective. Now suppose that a;(c)c = a;(c’)¢’ with ¢,¢’ € X;. Then a;(c)c, as(c)c’ € Y; C Zy, for
some k. Since (o (') — ai(e)){ai(c)e) = a;(c’)c, by Lemma I11.2.2, we see that |a;(c) — a,;(c¢’)| =0
or |a;(c) — a;(c)| > 8M. But |a;(c) — a4 (¢')| < 2M, so o4(c) = a;(c’). Then ¢ = ¢’ by freeness of
the action. So the map is bijective and continuous, and since both X; and Y; are compact and
Hausdorff, it is a homeomorphism. Part 4 is proven.

Now we show part 5. Since rc = ¢/, we have
a;i(c)(d) = au(c)(re) = r(ai(c)e) = (r + au(c’) — cu(e))(i(e)e).

Both a;(c’)c’ and a;(c)c are in Y; C Z for some k, so by Lemma I11.2.2, we have |r+oy(c')—ay(c)| =
0or [rta;(c)~a;(c)] > 8M. If |r +o4(c") —ay(c)| > 8M, then we done, since |a;(c) —a;(c')] < 2M.
So suppose that 7 = a;(c) — a;(¢). Then ¢ = re = (a;(c) — a;(c))e. So a;(¢’)e’ = ay(c)e. Then
part 4 implies that ¢ = ¢/, contradicting the hypothesis ¢ # ¢. So part 5 is proven.

In part 6, the map is well defined and surjective by part 3, and continuity is clear. Suppose
that rc = r'c’. Then (r — r')c = ¢/. By part 5, either ¢/ = ¢/, or |r| > 6M. But |r — r'| < 2M, so
¢ = ¢'. So the map is injective. We have already shown in the proof of part 3 that the domain is
compact. Thus the map is a homeomorphism.

Part 7 follows directly from part 3. ]



Notation II1.3.3. For the rest of the chapter, let m;: W; — X; denote the map

o (SELEEEY

Lemma I11.3.4. Letie {1,...,N}. Then:

1. We have
Vi = Wi\ ({aulc)e: c € X} U{Bilc)e: c € Xi})
=W\ ({os(z)z: z € Wi} U {Bi(z)z: = € W;})
=W\ ({Bi(2)z: z € V;} UY)
=W\ {z e W;: a;(z) = 0 or Bi(z) = 0}
={rz: zeY;,r € (0,5(2))}.
2. X;CV,.

3. For all z € V;, we have —M < a;(z) <0 < Bi(z) < M.
4. For allz € Vi, and for all r € (a(z), Bi(x)), we have rz € V;.

5. The map
{{rie) eRx X:ce X;,re (a(c), Bi(e)} = V4

defined by (r,c) — rc is a homeomorphism.
6. z° C UjL, Vi

7. V.n Z¢ is closed in Z°.

71



72
Proof:  We first show part 1. Let
A=W\ ({ailc)e: c € X;}U{Bi(c)c: c € Xi});
B =W;\ ({fi(2)2: z € i} UYi);
C=W;\{z € Wi: ay(z) =0 or f;(z) =0};
D={rz: z€Y;,r €(0,8:(2))}

E=W;\ {as(z)z: z e W;} U {Bi(z)z: z € W}).

Let A1 = {ai(c)e: c € X;}, let Ay = {Bi(c)e: c € Xi}, let By = {B;(2)z: z € i}, let Bo =5, let
Cy = {z € W;: a;(z) = 0}, let Cy = {z € W;: Bi(z) = 0}, let By = {e;(z)z: = € W;}, and let
E, = {Bi(z)z: x € W;}. Tt is clear that C; € By C A; C E; C Cy. Now, if z € Cy, then we have

z = fi(z)z = (Bi(z) — ai(2)) - (as(z)z) = Bi(@i(2)z) - (2u(z)) € B
So C; C By. Let z € Y;. Let 7 = (a4(2) + B:(2))/2. Then rz € X;. So
Bi(rz)(rz) = (Bi(z) — r)(r2) = Bi(2)z,

which implies that £;(z)z € Ay. Thus By C As. Then it is clear that Cy C By € Ay C FEy C Cy;
and so it follows that A= B =C = E.

Let z € V;, then z = rc for some ¢ € X;, and some r € (a;(c), B;(c)). Thus

r —a;(e) € (0, Bi(c) — as(c)) = (0, Bi(cu(c)e).

Then 7c = (r — ai(c)) - (as(c)e) € D. Thus V; C D. Let € D. Then z = rz for some z € ¥}, and

some 7 € (0, 3;(2)). So

r—Bi(2)/2 € (=Bi(2)/2, Bi(2)/2) = (ai((B:(2)/2)2), Bi((B:(2) /2)2)).-

Also, (8:i(2)/2)z € X;, 50 ¢ = (r — B:(2)/2) - (Bi(2)/2)z) € V;. Thus V; = D.
If x € V;, then ¢ = rc for some ¢ € X; and some r € (;(c),Bi(c)). We thus have

a;(z) = ay(c) =7 # 0, and Fi(x) = Bi(c) —r # 0. Thus ¢ ¢ C1 UCy, s0 z € C. So V; C C. Now
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let z € C. Then oi(z) # 0, and G;(z) # 0. Let 7 = (a;(x) + Bi(x))/2. Then ¢ = rz € X;. Also
(i(e), Bi(c)) = (au(x), Bi(x)) — 7. Since ay;(z) # 0, and B;(z) # 0, so 0 € (a;(x), Bi(x)), and so
—r € (oy(x), Bi(x)) — r = (evi(c), Bi(¢)). Then z = (—r)(rx) € V;. Thus V; = C. Part is 1 proven.

For part 2, let ¢ € X;. By part 3 of Lemma II1.3.1, we have 8;(c) — a;(c) > o. Since
a;(c) = —Bi(c), we have a;(c) # 0, and B;(c) £0. Soce C=V,.

Part 3 follows immediately from part 1 and part 2 of Lemma I11.3.1. Part 4 follows from
part 1 and part 5 of Lemma II1.3.1. Part 5 follows from part 1 and part 6 of Lemma II1.3.2.

For part 6, let z € Z¢. Then z € W; for some j € {1,...,N}. So a;(z) = az) < 0 <
B(z) = Bi(x). Therefore z € V.

For part 7, let {z,} be a sequence in V; N Z¢ that converges to z for some x € Z°. Since

V; C W, we see that z € W;. Since = € Z¢, ay(z) # 0 and Bi(x) #0. So z € V;. O
Lemma II1.3.5. Leti,j € {1,...,N}. Then m;(V;N'V;) is closed in X;.

Proof: ~ We only need to show that m;(V; N V;) is closed in Xj;; the other statements follows from
symmetry. If V;N'V; = @, then we are done. So assume that V; NV, # &.

Let {wy} be a sequence in 7;(V;NV;) that converges to some w € X. Since X; is compact,
w € X;. Choose z, € V;NVj such that m;(z,) = w,. But V;NV; C WiﬂW;, which is compact,

s0 zn, has a subsequence, say {y}, that converges to some y € W; N W;. We claim that

(@i (¥), Bi(¥)) N (o5 (y), B; () # 2.

Suppose that (a4(y), :(v)) N (050), B (1)) = 2. But 0 € [aa(v), B:(w)] 1 o5 ), B W),
so either B;(y) = a;(y) = 0 or as(y) = B;(y) = 0. First assume that 8;(y) = o;(y). Then we
have Bi(yn) — ;(yn) — Bi(y) — aj(y) = 0. Now, yn € ViN Vj, 50 Bi(yn) > 0 and a;(ys) <0
for all n > 1. Then Bi(yn) — a;(yn) > 0 for all n > 1. For each n > 1, let 2z, = o;(Yn)¥n.
Then R(2,) < Bi(yn) — @j(yn) — 0, which contradicts the fact that R > . Similarly, we get a
contradiction if we assume §;(y) = a;(y). Therefore (o (y), B:(y)) N (o; (), B; () # @.

Let 7 € (cu(y), Bi(y)) N (e (), B (y))- Then ry € VinV;. Now, yn — y, 50 oi(yn) — ci(y),
and B;i(yn) — Bi(y). Passing to a subsequence if necessary, we can assume that r € (o;i(yn), Bi(yn))
for all n > 1. Then ry, € V; for all n > 1, and so m;(ry,) — mi(ry). But m(ryn) = mi(yn) — w, so

w = m(ry) € m(V; NV;). We have shown that m;(V; N'V;) is closed in Xj. O
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Notation ITI.3.6. We fix the following notation for the rest of the chapter. For each z € X, let

T* ={r € R: rz € Z}. Then T” is an infinite discrete set, hence countable. So index T as
<l <al <o <ali<af<al < <ap_y <ap <o

Also note that for each n € Z, we have af  ; —a% > 0. For i € {1,..., N} and for each z € V;, let

Ve ={rz: r € (a(z), Bi(x))} = (cu(z), Bi(2)) - .
The following lemma shows that the sets V; are ordered in the correct order.

Lemma II11.3.7. Let k € {2,...,N}, and let z € Vi.. Suppose that T* N [ (x), Be(x)] contains 3

or more elements. Then Z°NVF =L (VEnV) n Ze.

Proof: Let T = T° N [ag(z),Pr(x)]. Then for some m,l € Z with m < [, there exist
ag, 0% . q,...,af € [ag(x),Bk(x)] such that ar(z) = af, < af,; < -+ < af = Pi(z) and
T ={a},a% .1,...,af}. Foreachn € {m,m+1,...,1 — 1}, let z, = alz.

Then for each n € {m,m +1,...,1— 1}, we have
R(zn) = ag 1 — ay, < (Br(z) — ag(x)) — 0.

We claim that for each n € {m,m +1,...,1 — 1}, there exists k, < k such that z, € ¥} _. So fix
ne{mm+1,...,1—1}

Now Yy, =Y, ; for some 1 <4 < ny and some 1 < j < ng. Also, ¥ ; = Z;NZi C Z; = Tt
for some 1 < t; < np. See Lemma III.2.2, Notation III.2.3 and Notation II1.2.5 for the definitions
of Z;, Z29,Y, j, T% and ng. If y € Wy, then ax(y)y € Y C T%, and

Br(y) — ax(y) = Br(ax(v)y) = R(e(y)y) € <(tj ;61)0’ ?_g} '

Then {Bk(y) —ox(y): y € Vi } C [(—tj—l_ﬁl)—”, %’] . In particular, Gi(z) —ax(z) € [(—til_ﬁﬁ, 51%] . Thus

R(zn) < (Br(x) — ax (@) — 0 < tf_g 0= %

Then there exists some h with 1 < h < t; such that R(z,) € ((h_lé)a, ’{—g} , which implies that

zn € TP, In particular, T" is not empty, hence it is relabeled as Z¢ for some d < j (see Notation
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I11.2.3). So z, € Y, for some 1 < ¢t < ny. From the definition of ¥; for s € {1,...,N} (see
Notation III.2.5), it is clear that Y; j, = Y%, for some k,, < k. This proves the claim.
Now, if y € V¥ N Z¢, then there exists some r € (ay,al, ) such that y = rz. Then
r—ap € (0,al 1 —a2) = (0, R(2,)). So we have
k—1

y=rx=(r—oi)(alz)=(r—al)z, € Vg, C U Vi.

i=1

Lemma IIL3.8. Letk € {2,...,N} and let z € Vi 0 (U5 V4) - Then

k—1
zenvE=|JWEnvi)nze

i=1

Proof:  Note that T = T* N [ax(2), Bx(2)] contains 2 or more elements. First suppose that T
contains only 2 elements. Since & € Vj,, we see that 0 € (o (x), Bx(z)). Also (ay(x), Br(z))z C Z°¢
by assumption, so we see that x = 0z € (o4 (), Be(2)) -  C Z°. Then we have (ax(z), Br(z)) C
(az), B(z)) C (oy(z), Bi(x)) for every i € {1,...,N} such that = € V;. Since z € V; for some
1 <i <k, we have V¥ = (ar(z), Bk(z))z C (a;(z), Bi(z))x = V. Then we are done.

If T contains 3 or more elements, then we are done by Lemma II1.3.7. [

II1.4. Properties of @;, F®*) and G

Now we define the subspaces G; of R x X which will be used to define the components of

the stable recursive subhomogeneous decomposition of Az.

Notation I11.4.1. For each i € {1,..., N}, let
Gi={(rz) eRx X:z €V, —r € (a;(x), Bi(x))}. - (IIL3)

For each k € {1,...,N — 1}, let

k
FO® =y (Vk+1 nlJ v;-) : (111.4)

i=1

Note that by Lemma IIL.3.5 the set F*) is closed in Xj 1. For each ¢ € {1,...,N} and each
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F C Xi, let
Gir = {(r,s¢): c€ F,s € (a;(c), Bi(c), s —r € (ai(c), Bi(c)) }- (I1L.5)

Note that G; = G, x,. (Lemma II1.4.4 part 1.) For each k € {1,...,N — 1}, let
G®) = Gpyr . (I11.6)

The subsets G; of R x X defined above are in fact subgroupoids of the transformation
groupoid R x X. For each %, the subgroupoid G; is contained in (R x X)“Zf, where (R x X)“Z is the
set of all elements of R x X whose sources and ranges are both contained in V;. Due to minimality
of the action, the subgroupoid (R x X )“2 is too large. The subgroupoid Gj, in some sense, is the
largest continuous piece in (R x X )52 See [13] for more details about groupoids.

Recall that Gz = {(r,z): x € Z¢,—r € (a{z), B(z))}.
Lemma I11.4.2. G, C Gz.
Proof:  First of all, we know that Y; is closed in X. By Lemma II1.2.6, for all z € Y7, we have
R(z) = f1(z), and so by Lemma II1.3.4, we have

Vi={rz:zeY,r€(0,8:(2))} = {rz: z€ Y;,r € (0,R(2))} = W; C Z°.

Then if (r,z) € Gy, we have z € Vi = W1 C Z° and —r € (a1(z), Bi(z)) = (afz), B(z)), since
ailw, = alw,, so (r,z) € Gz, and thus Gy C Gz. O
Lemma II11.4.3. Gz C Y, Gi.

Proof: ~ Let (r,z) € Gz. Then z € Z¢, and —r € (a(z),B(z)). So z € V; for some 1 < i < N.

Then z € Z¢ N V; implies that a;(z) < a{z) < —r < f(z) < Bi(z). So (r,z) € G,. O

Part 2 and part 3 of next lemma essentially show that G; r is a subgroupoid of R x X for

1€{l,...,N} and F C X,.
Lemma I11.4.4. Leti € {1,...,N}. Then the following hold:

1. Gy ={(r,tc): ce X;,t,t —r € {ay(c), Bilc))}.
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2. Let F C X;. Let e1,¢p € F. Let rq,t1,72 and to be real numbers that satisfy
t1,t1 — 71 € (as(cr), Bilcr))s

ta,ta — T2 € (as(ce), Bilca));

and

ticy = (ta — r2)ca.

Then (ry + 79,tace) € GiF, and (=71, (t1 —711)c1) € Gip. Let s: R x X — X be defined by

(r,x) —x. Then G p = G; N s‘l(ﬂi’l(F)) and G; g has compact closure.

3. IfFC X;,ce X, t € (ae),Bi(e), and —r € (a;(c), Bi(c)) — ¢, then (r,tc) € Gir if and

only if c € F.
4. If F,F' C X;, then G; pupr = Gi,rp UGy and Gy par = Gyr N Gy .

Proof:  Part 1 is clear.
Now we show part 2. Since (ri,tic1),(re,taca) € Gy p, we see that ¢;,c0 € F, that
t1,t1 — 11 € (as(c1), Bi(er)), and that ty,t2 — 12 € (au(c2), Bi(ce)). Now t1 — 11 € (au(er), Bi(er))

implies that

—r1 € (ai(er), Bi(er)) — t1 = (au(tier), Bilticr))

= (o4((ta — re)ez), Bi(t2 — r2)c2)) = (u(ca), Bi(c2)) — (t2 — r2).
So ty — (7‘1 —I—’f‘z) € (Ozi(CQ),ﬂi(Cz)) and (7‘1 —I—’f‘z,tQCQ) S G@F. Also,
ti1—1r € (ozi(cl),,@i(cl)) and (tl — 7‘1) — (-7‘1) =1 € (ozi(cl),,@i(cl))

imply that (—7‘1, (tl - 7‘1)01) € G r.
To see that G; g is pre-compact, note that G; p C [-M, M| x X.

Let (r,tc) € Gi p. Then c € F and ¢,t —r € (a4(c), Bi(c)). Also,

i (s(r,te)) = mi(te) = mi(c) =c € F.
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So Gir C GyNs~ w7 Y (F)). Let (r,z) € GyNs~Ynw; '(F)). Then z € V; and —7 € (os(), Bi(z)).
Therefore z = tc for some ¢ € X; and some ¢ € (a;(c), B;(c)). Thus m;(s(r, z)) = m;(tc) = mi(c) =
c € F. Since

—r € (a(z), Bi(z)) = (ai(te), Bi(te)) = (a(c), Bi(c)) — t,

we see that ¢ — r € (ay(c), Bi(c)) — s, and so (r,z) = (r,tc) € GiF.

For part 3, (r,tc) € G;, r implies that there exists ¢’ € F and t/,t' — " € (o;(c), B;i(c)) such
that (r,tc) = (v, t'c’). Then ¢ = m(tc) = mi(t'c’) = ¢’ € F. Thus (r,tc) € G; r implies that ¢ € F.
The other direction is trivial.

Let F, F' C X;. Then

G; FuF = G; ﬂs_l(ﬂ'i_l(FUFI))

=GN [sTH (a7 (F) Us™H (x (F")] = Gip U Gypr.

1

Also, since (r,tc) € G, pnp if and only if ¢ € F'N F', if and ounly if (r,tc) € G; r N G; 51, part 4
follows. O

Corollary II1.4.5. For eachi € {1,...,N} and each E' C X;, if F' is closed (open) in X;, then

G r is closed (open) in G;.
Lemma II1.4.6. Leti € {1,...,N}. Then G;N Gz is closed in Gz.

Proof: ~ Let {(rn,zn)} be a sequence in G; N Gz that converges to some (r,z) € Gz. Then
Tp € V;NZt foralln > 1, and z € Z° By part 7 of Lamma I11.3.4, we have x € V;. Since x € Z¢,
and since (r,z) € Gz, we see that —r € (a(z), (z)) C (a;(z), Bi(z)). Thus (r,z) € G;, and so

G; NGz is closed in Gz. O

Lemma I11.4.7. Letk € {1,...,N—1}. Then for alli € {1,...,k}, we have G;NG®) = G;NGry1;

and Gz N G; NG¥) is closed in G NGy, in G; NGz, and in Grr1 NGz,

Proof: TFixke{l,...,N—1}, and fixi€ {1,...,k}. We first show that G;NG*) = G; N Gr41.
The inclusion G; N G*) C Gy N Gy is clear. Let (r,xz) € G;N Giy1. Then by the definition of
sets G; (Notation I11.4.1), we have z € V; N Viey1. So met1(8(r, 2)) = mr41(z), which is contained

in 44 1(Vi N Viey1) € F®), Thus (r,z) € G¥),
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Now we claim that if 4 is any topological space, and B,C, D C A are arbitrary subspaces
such that B is closed in C, then BN D is closed in C' N D. To prove this, since B is closed in C,
there exists F' closed in A such that FNC = B. Then BND = FNCND is closed in CND. This
proves the claim.

Now we know that G;NGz is closed in G z, and Gx4+1NGz is closed in Gz. So G;NG+1NGz

is closed in Gz. Then by the claim above,
GiNGr1 NGz = (Gi NGrr1 N Gz) NG;

is closed in G; N G z. Similarly G; N Gry1 NGz is closed in Ggy1 NGy

Then by the first statement of the lemma, Gz N G; N G¥) is closed in G; N Gz, and in
Gr+1NGz. But then Gz NG, NG® = (GzNGiN G®)N G® is closed in G® NG NGz =
G® NGy. O

Lemma II1.4.8. Letk € {1,...,N —1}. Then

k k
G®) NGz = U(Gi NnG® N Gz) = U(Gi NGre1 N Gz).

i=1 i=1

Proof:  The last equality of the lemma follows from Lemma I11.4.7. Also it is clear that

k
J@ine® naz) cc®nas.
i=1
We will show that G®) NGz € UF_,(Gin G® N Gy).
Let (r,z) € G® NGz. Then x € Vi1 N Z¢ and —r € (o), B(x)). Now consider

Vg = {rz: 7 € (ak+1(%), Bry1(z))}

We first check that V{7, = Viy1 N W;il(ﬂ'k.{_l(m)). It is clear that Vi¥ ; € Vi1 N W;il(ﬂ'k_{_l(m)).
Let y € Vi1 ﬂw;jl(wkﬂ(m)), let r; = w, let 7y = “—"Jﬁw, let ¢; = 7.z,
and let ¢, = ryy. Then ¢, = mpy1(z) and ¢, = 7mp11(y). By assumption, ¢z = ¢,. Part 3 of
Lemma II1.3.1 implies that v, € (ak+1(2), Be+1(z)) and ry € (ar+1(y),Br+1(y)), so we have

~7y € (agt1{cs), Br+1(cz)) and —ry € (art1{cy), Br+1{cy)). Note that z,y € V41 implies that
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arpt+1(z) < 0 < Brt1(z) and that apy1(y) < 0 < Bry1(y). Now, if 7, — ry > Br41(x), we have

(art1(z) + Bry1(2)) — (s 1(y) + Brs1(y)) = 26k+1(z), and so

ak+1(Y) + Brr1(y) < art1(2) — Bre+1(z) = arti(cs) — Brta(cs)

= ary1(cy) — Br+1(cy) = ak+1(y) — Br+1(y).

Then Br11(y) < 0, contradiction. Similarly, 7, — 7y < agy1(z) implies that aey1(y) > 0, also
a contradiction. So 7, —ry € (pt1(z), Bry1(z)). Thus y = (re —ry)(z) € Vi, and Vi, =
Viet1 N1 (mrg1(z)). Also, note that if y € V¥, then y = sz for some s € (art1(z), Brr1(2)),

and then

Vbt = (@11(0), Bet1 )y = (ak41(52), Brta(s7)) (s7)

= (ak+1(2) — 8, Bpt1(z) — 8)(s7) = Vi 1.

Now, (r,z) € G* implies that mx11(z) € Te41 (Vk+1 n (Ule V;)) . Thus there exists
y € Ve n (UL, Vi) such that myy1(s) = mey1(y). Then y € Vig,y, s0 V¥ = V& But by
Lemma II1.3.8, we know that Z°NV/}, = Z°n (Ule Ve, n Vi) . So we have Z° NV, =
zZ°n (Ui-;l VEan V,;) . Since z € Vi, N Z°, there exists i € {1,...,k} such that x € V{ , NV, C
Vi+1 NVi. Then z € V; N Z¢, and then (a(z), B(z)) C (au(z), fs(x)), and so —r € (au(z), Bi(z)).
Thus (r,z) € G;. Hence

k
(rz) eGP NGznG €| J(GinGP NGy).
i=1

Lemma II1.4.9. Let k€ {1,...,N —1}. Then Gr41 \ G® C Gz.
Proof:  Let (r,z) € Ggq1 \ G, First of all, if V2, N (U§=1 V;) # &, there exists

k k
Yy € Vk$+1 N (U V;) C Ve N (U V,,) .

i=1 i=1

Then mg41(z) = mpr1(y) € F®). Hence (r,z) € G®). This contradicts our assumption that (r,z)

is not contained in G®, Therefore V& ; N (Ule V;) =0g.
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Now, if Z¢N V&, = 2N (Ule(v,f“ N w)) , then
k
Z°NVEL =Z°NVE N (U W) =,
i=1

a contradiction. So V%, ; € Z. That is, (ak41(2), Ber1(z))z € Z. Let
w = min{o, fr41(x)/2, —ow+1(z)/2}.

Since z € V41, we have agy1(z) <0 < Brt1(z). So w > 0. Then [—w,wlz C Z. But
([~w,wlz) N Z C ([—0o,0]z)N Z = {x}.

So, because the action is free, w = 0, which is a contradiction. Therefore
k
ZeNVEL#2°N (U V&N w) .
i=1

By Lemma II1.3.7, the set T N [ag+1(x), Be+1(x)] contains only 2 elements, namely
ok+1(z) and Frs1(z). Then for all s € (o y1(2), Br+1(2)), we have sz € Z°. So z € Z°¢ (because
ap+1(x) < 0 < Brri(x)), a(z) = arr1(z), and B(z) = PBrt1(z). Since (r,z) € Gri1, we have

=1 € (@p41(2), Br41(2)) = (a(z), B(x)), and so (r,z) € Gz. O
Lemma I11.4.10. Leti € {1,...,N}, and let F' C X, be closed. Then:
1. we have Gy = {(r,z) € R x W;: m(z) € F, —r € [ (x), Bi(z)]}-
2. we have
Giyr \Gir ={(r,2) € Gi,r: o(z) = 0}
U{(r,z) € Gir: i(z) =0}

U{(rz) € Gir: —7=oy(z)}

U{(r,z) € G, r: —r = Bi(x)}.

3. the set G, g \ Gy,r is closed in R x X, and G; r is open in G; .
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Proof: Let
A={(rz) eER xW;: m(z) € F,—r € [a;(z), Bi(z)]}.

We first show that A is closed. Well, if (r,,z,) € 4, and (r,,z,) — (r,z) for some (r,z) € R x X,
then z € W; and m;(z) € F, because F and W; are closed in X, and because a;(z,) — as(z),
Bi(zyn) — Bilx), and —r, — —r. Since ~r, € [ (zy),Bi(zy)] for all n > 1, we have —r €
[ai(z), Bi(z)]. Hence (r,z) € A, and so A is closed.

Now let (r,z) € A. Let s = (ai(z) + Bi(z))/2, and let ¢ = sz = m;(z) € F C V;. Since
—r € [ai(z), Bi(x)], there exists a sequence {ry} in (—f;(z), —a;(z)) such that r, — r. Now since
a;(z) < Bi(z), we see that o;(z) < s < Bi(x). Since a;(x) < 0, we see that a;(z) < a;(z)/(2n) for

all n > 1; since B;(z) > 0, we have §;(z)/(2n) < Bi(z) for all n > 1. Then
ai(z) < ai(x)/(2n) < s/(2n) < fi(z)/(2n) < Bi(=)

for all n > 1. Thus s/(2n) € (oy(x),Bi(z)) for all n > 1. Then (£)z € Wi, ou((55)z) # 0, and
Bi((55)z) # 0 for all n > 1. Thus (5 )z € V; for all n > 1. Since —ry, € (ai(z), Bi(z)) for all n > 1,
we have

~rn — 8/(2n) € (au(z), Bi(z)) — 8/(2n) = (ai ((%) “’) > Bi ((%) “’))

for all n > 1, so (rn, + s/(2n), (s/2n)z) € G, for all n > 1. Since
7i(s((rn + 8/(2n), (s/2n)z)) = 7i(z) € F,

we have (r, + 5/(2n), (s/2n)z) € G, F for all n > 1. Since (r, + s/(2n), (55)z) — (7, 1), We see
that (r,z) € G; p. Thus part 1 holds.

Let Ay = {(r,z) € G;r: as(z) = 0}, let Ay = {(r,z) € G, r: Bi(z) = 0}, let A3 =
{(r,z) € Gip: —r=ay(x)},let Ag={(r,z) €Gir: —7=ps(z)},and let A= A;U---UAy. To
show part 2, we only need to show that Gy, p N A =@ and G; pUA = m We first show that

GirNA; =0 forall j€{1,...,4}.
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Note that

Gip ={(r,sc) eERx X:ce F,s,s—71 € (as(c), Bi(c)}

={(r,z) € G;: mi(z) € F}.

If (r,z) € G, then z € V;, and so a;(z) # 0 and B;(z) # 0. Then (r,z) ¢ A; and (r,z) ¢ As.
Thus A, N Gir = @, and Ay NGy r = @. Also, (r,z) € G, implies that —r # «a;(z) and
—r # Bi(z). Then (r,z) ¢ As and (r,z) ¢ A4. Thus AsNG;r = @, and A4 NGy r = @. Then
GirNA=o.

Now let (r,z) € G p. Then z € W;, m;(z) € F, and —r € [a4(z), B;(z)]. Suppose that
(r,z) ¢ A. Then a;(z) # 0, Bi(z) # 0, —r # a;(z), and —r # B;(z). So z € V;, —r € (a;(x), Bi(x)),
and (r,z) € G;. Since m;(z) € F, we see that (r,z) € G; r. Thus T,F = AUG,,r, and part 2 holds.

Now let {(rn, )} be a sequence in A; that converges to some (r,z) € R x X. Since G, p
is closed, we see that (r,z) € G; r. Then by continuity of a;, we have o;(z) = 0. So (r,z) € 4,
and so A; is closed in R x X. Similarly, Ay is closed. Now let {(rn,z,)} be a sequence in Az
that converges to some (r,z) € R x X. Then (r,z) € G p. Since r, = o;(z,) for all n > 1, since
a;(Tn) — a;(z), and since r, — 7, we have a;(z) = r. Thus (r,z) € As. So Az is closed in R x X.

Similarly A4 is closed in R x X; and so A is closed in R x X. Then G; r = G; r N A€ is open in
Gir. O

Corollary I11.4.11. Leti € {1,...,N}. Then
1. we have G; = {(r,z) e R x W;: —r € [o4(z), Bi(z)]},
2. we have
Gi\G; = {(r,z) € G;: ay(z) =0}
U{(r,z) € G;: Bi(z) = 0}

U{(r,z) € Gi: —r = a;(z)}

U{(r,z) € G;: —r = Bi(z)},

3. the set G; \ Gi.r is closed in R x X, and G; is open in G;.
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II1.5. The C*-Algebra of G;

In this section we will define *-algebra structures and C*-norms on Co(G;) and Co(G¥).
Let f,g € C(G; ), and let (r,z) € G, r. For each t € [—8;(z), ~a;(z)], (¢,z) and (r — ¢, (~t)z)
are elements of G; p (by Lemma II1.4.4), so we can define h: [~8;(z), —c;(z)] — C by h(t) =

f(t,2)g(r — t,(—t)z). Then h is certainly continuous, and hence in L!([—g;(z), —a;(z)]), and so

f__gf((f)) f(t,2)g(r—t, (—t)z)dt exists. Also, (~r, (—r)z) is also an element of G; f, so f(—r, (—r)z)

exists. Then we can define convolution on G; p by

—a;(z)

G = [ s aate b (o= (1117)

and involution by

f*(r,z) = f(—r,(-7r)x). (111.8)

We verify through the next three lemmas that the above formulas make Co(G; r) into a *-algebra.
In fact, if we take the groupoid structure of G; r into consideration, the above formulas are the

ones used in the construction of groupoid C*-algebras in [13].

Lemma IIL.5.1. Leti€ {1,...,N}, let F # & be a closed subspace of X;, and let f,g € C(G, r).

Then f g and f* are continuous. That is f g, f* € C(Gy,F).

Proof: It is clear that f* is continuous.

Let {(rn,zn)} be a sequence in G, r that converges to some (r,z) € G; r. Let € > 0. For
eachn > 1, let h,,: R — C be defined by h,,(t) = f(t,2,)g(rn—t, (—t)z,) if t € [-Bi(zn), —i(zna)],
and h,(t) = 0 otherwise. Then h, is measurable for each n > 1. Define h: R — C by h(t) =

ft,z)g(r—t,(—r)x) for t € [—Bi(x), —ou(x)], and h,(t) = 0 otherwise. Then h is measurable. Let

§ = min {§ﬂf||o:||g||oo’ ﬂi(x)zai(x) } . Then § > 0. Since oy(z,) — i), and Bi(z,) — Bi(z), there
exists M > 1 such that n > M implies that |o;(z,) — ay(z)| < 4, and |B;{z) — Bi{zn)| < d. Now, if
t € [-Bi(z) + 9, —as(z) — 6], then t € [—fi(zn), —as(zy)] for all n > M’| and ¢ € [-G;(z), —a:(z)].
Therefore

hn(t) = f(t,:cn)g(rn —t, (_t)xn) - f(t,x)g(r —t, (—T)I) = h‘(t)



Since |hn (t)| < || flloollglloo for all n > 1 and all ¢ € [—f;(z) + 6, —a;(x) — 6], and since
1 £lleollglloo € L*([—Bi(x) + 8, —ai(z) — 0],
by the Lebesgue Dominated Convergence Theorem, we have

oi(z)—8
/ I () — h(2)] dt — 0.
—Bi(z)+d

So there exists M’ > 1 such that n > M’ implies that

oy (z)—8
/ b (£) — B(2)| dt < /2.

—pi(z)+8

Let M" = M’ + M. Then if n > M”, we have

—ai(zn) —ai(z)
/ o (£) dt — / ht) dt

—y (mn)_é
/ (hn(t) — h(t)) dt
—B4 (In)+5

< 26| hnlloo + 28| hfloo +

< 48[ flloollglloo +€/2 < €/2 + €/2

= €.
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So |(f*9)(rn, ) = (fxg)(r,2)| <eforalln > M". Thus (f *g)(rn,2n) — (f*g)(r, z). Therefore

f * g is continuous.

a

Lemma IIL.5.2. Leti€ {1,...,N}, and let F # & be a closed subset of X;. Let f,g € Co(G; r)-

Then f* g € Co(Gyr) and f* € Co(Gy F).

Proof: By Lemma II1.4.10, we have

Gi,r\Gir = {(r,z) € Gy r: a;(z) = 0}
U{(r,z) € G;,r: B;(z) = 0}
U{(rz) € Gor: —7 = ay(z)}

U{(r,z) € Gir: —r = fi(z)}.



86

Next we define four different subsets of G, r, which can be thought of as the faces of G; . Define

Ay ={(r,z) € G; r: a;(z) = 0},

and

Ay = {(r,m) € Gi,pi -7 :,81("13)}

To show that f x g, f* € Co(Gy,r), we just need to show that (f * g)|a, = 0 and f*|4;, = 0 for
jed{l,...,4}.

Let (r,z) € A; U As. Either o(z) = 0 or Bi(x) = 0. Then for all ¢t € [—0;(z), —a;(x)], we
have (t,z) € A1 U Asg. So f(t,z) = 0 for all ¢t € [-B;(x), —a;(z)], and so

— (z)

(f*g)(r,z) = /_ﬁ_( ) f(t,2)g(r —t,(—t)z) dt = 0.

Thus (f * g)|a,ua, = 0.
Let (r,z) € As U Ay. Then either (r,z) = (—a;(z),z) or (r,z) = (—Bi(z),z). So for all

t € [-Bi(z), —a;(z)], we have
r—t=—aylz) —t=—(u(z) +1) = —(cu((—t)z)),
r—t=—03z)—-t=—(0(x) +t) = —(B:i((—1t)x)),

and so (r —t, (—t)z) € Az U Ay; and then g(r —t, (—t)z) = 0. Therefore we have

—a )

(f*g)(r,x)z/_ﬁ_() £t 2)g(r —t, (~t)z) dt = 0.

Thus (f * g)|a;ua, =0, and so f x g € Co(Gy F).
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Next we counsider f*. Now (r,z) € Ay U Ay implies a;(z) = 0 or F;(z) = 0, which implies
that 7 = o;((—r)z) or r = B;((—r)z), which in turn implies that (—r,(—r)z) € As U A4. Also,
(r,z) € A3 U Ay implies that —r = o;(z) or —r = f;(z), which implies that a;((—7)z) = 0 or
Bi((—=7)z) = 0, which means that (r,z) € 4; U Ap. Thus if (r,z) € G; F, then so is (-7, (—7)z),
and so f*(r,z) = f(—r, (—r)z)) = 0. Therefore f* € Co(Gi r). O

Lemma II1.5.3. The set C(G; p) is a *-algebra, and Co(G; F) is a *-subalgebra of C(Gy r).

Proof: 1t is clear that C(G, r) is a linear space. Lemma IIL5.1 shows that convolution and
involution are well-defined.

Let f,g,h € C(GiF), let (r,z) € Gir, and let A € C. To simplify the notation, let
a = a;(z) and b = G;(z). It is clear that A\(f * g) = (Af) x g = f * (\g). Now, applying the Fubini

Theorem to interchange integrals, we check that convolution is associative:

[(f * g) x hl(r,z) = /_a(f * 9)(t, 2)h(r —t, (—t)z) dt

—b

= /_a ( _af(S,m)g(t — 5, (—8)x) dS) h(r —t,(—t)z)dt

—b —b
a

= /_; _;a f(s,2)g(t — s, (—s)x)h(r —t,(—t)z) dtds
- /_; /_;__ (5, 2)9(t, (—S)B)h(r — (t + 5), (—(t + 8))z) di ds

—a;((—3)z)
= f(s,x) (/ g(t, (—s)x)h((r — 8) — t), (—t)((——s)m))dt) ds
-b —Bi((—s)x)

—a

= . f(s,2)(g*h)(r —s,(—s)x)ds

= [f* (g x h)](r,).

Thus convolution is associative. It is clear that convolution is distributive. Now we check that
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involution is anti-commutative:

(f*x9)"(rz) = (f xg)(-, (-7)2)

@y
- / £t (=1)@)g(=r —t, (=1 — £)) dt
—Bi((—r)z)

—(ai(x)+r)

- / £t (=r)z)g(=r — t, (= — £)z) dt

—(Bi(z)+r)

_ ; 75— (=1)2) 9(—3, (—s)a) ds

—-a

= \ i —s,(=s)x)g*(s,z) ds

= (g* * f*)('n .’l?)

So involution is anti-commutative. It is clear that involution is conjugate linear. It is also clear
that (f*)* = f for all f € C(Gir). Thus C(Gyr) is a *-algebra. By Lemma IIL.5.2, Co(Gi,F) is a
*-subalgebra of C(G;,r). O

Next, we will define a family of *-representations of G; r for each i = 1,..., N, and each
F C X;.Foreachie {1,...,N} and for each z € X, let x7: R — R be the characteristic function
of the interval (a;(x), Bi(z)) C R, and define a projection in p? € B(L?(R)) by p?(£) = x%¢&. For

each 4 € {1,..., N}, each nonempty closed subset F' C X;, and each z € F, define
A i Co(Gyp) — B(L*(R))
by, for f € Co(Gir), £ € L*(R), and r € R,
Bi(=)
DO = [ oot (11L.9)
Notation ITL.5.4. For the rest of the chapter, let A7 denote A{ y. for each i € {1,..., N}, and
let A% denote A7, | o, foreach k=1,...,N —1.

Lemma IIL5.5. For eachi € {1,...,N}, each nonempty closed subset F C X; and each x € F,
the map AYp is a *~homomorphism. Further, if f € Co(Gi,r), and if {xn} is a sequence in F that

converges to some x € F, then A[w(f) — Afp(f). Moreover, if f € Co(Gir) and x € F, then
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Af p(f) = 0 if and only if f|n, =0, where

Hy ={(r —t,rz): r,t € (au(x),Bi(x))} ={(,r2): r € (ai(x), Bi(x)),r — t € (as(x), Bi(x)}.

Proof:  TFixie{l,...,N} and F C X closed for the entire proof.
Let z € F. Linearity of A{ i is clear. Now let f,g € Co(G; ). Then for all £ € L?(R) and

all r € (a;(), B:(z)), we have, applying the Fubini Theorem,

Bi(x)

AL r(fxg)(€)(r) = /am X3 (r)xi RE@)(f * g)(r — t,rz) dt

Bi(x) —a;(rz)
= / Xi (r)xi (£)§(t) (/ f(s,rz)g(r —t—s,(—s+7)z) dS) di

ai(T) —Bi(rz)

Bi(x) fi(rz)
= /'( ) Xi ()x3 (£)E() (/( ) f(=s,rz)g(r —t +3,(s +1)x) ds) dt

Bi(x) Bi(x)
= / X3 (r)xF ()ER) (/ f(r—s,rz)g(s —t,sz) ds) dt
i(x) a;i(x)

Bi(z) pBilx)
/ xi (r)xf @) ER)f(r — s,rx)g(s — t, sz) dt ds
oi(x)

Bi(z) Bi(x)
= / f(r—s,rz)xi(r) ( / X; (t)&()g(s — ¢, sz) dt) ds

() i{(z)

Now we show that for all s € R, we have x¥(s)f(r — s,rz) = f(r — s,rz). If f(r —s,rz) =0, then
we are done, so assume that f(r —s,rz) # 0. Then (r —s,7z) € G, p. So s—r € (a;(rz), fi(rz)) =
(as(x), Bi(z)) — r, and thus s € (a;(x), B;(x)). Then x¥(s) = 1. So xZ(s)f(r — s,rz) = f(r — s,rx)
for all s € R. Then

Bi(x)

Bi(z)
Nr(F €)= [ X s rong () ( R GCLOERAD dt) ds

i(z)

P Bi@)
= /A( ) xZ(s) f(r — s,72) X% (r) (/( xZ(s)xF()E®)g(s —-t,s:z;)dt) ds

Bi(z)
- / o O =5 N @) () ds

=X r(HEF(@)(©](r)-
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It r & (ou(z), Bi(2)), then AL o (f * 9)(§)(r) = 0 = AT p(F)AE p(9)(€)](r). Thus
Aor(f *9)(€) = A r(NIXF(9)(]

for all £ € L*(R). So AZp(f * g) = AZ o(f)AF p(9). Therefore A; r is multiplicative.
For all f € Co(G;,r) and all &,1 € L%(R), we have, applying the Fubini Theorem,

2 L (F)(E) ) = /R ME (£ (E) (r)iT(r) dr

Bi(x)
=/(/ EONEES <r—tm>dt) Wy

Bi(z) ,PBi(z

-/ )xz PN (OE( " (r =t ra)n(e) dr
I3 :E) % :E) -

- / / EOXEOERFE—r emyn(r) dr dt

() B; () -
:/ o SOXE® / GO = ta)n(r) dr dt

Bi(z) - @
- [ew ( / X OTET, tm)n(r)dr) i

/g ON () (@) dt
= (&, M, r (F)())-

So Af p(f*) = A p(f)*. Thus AJp is a *-homomorphism.

Let f € Co(Gir), and let {z,} be a sequence in F' that converges to z € F. We now
show that | A7%(f) = AF p(f)| — 0. For each n > 1, let xy: R? — R be the characteristic function
of (a; (), Bi(xn)) X (i(xn), Bs(zn)) € R?, and let x: R? — R be the characteristic function of
(a;(x), Bi(z)) x (as(z), Bi(x)) C R2. Because B; is continuous on F' and because z,, — z, we see
that the sequence {B;(zn)} is bounded. Let D = sup,>; Bi(z5) and let xp: R* — R be the
characteristic function of the square (—D, D) x (—D, D). Since a;(y) = —B;(y) for all y € X,
we see that x, < xp for all n > 1 and x < xp. For each n > 1, define h,: R? — C by
hu(r,t) = f(r —t,rzy,). Also define h: R? — C by h(r,t) = f(r —t,rz).
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It is clear that for all n > 1, either x, > x or x = X». Then either

o b == Jn= [ x= o) - B,

/Rz Xn — x| = /Rz X~ /Rz Xn = (26:(x))* — (2B:(z0))?.

But in either case [p, [xn — x| — 0, and so

1/2 1/2
len—XIIzZ(/ Ixn—x|2> =( / Ixn—xl) .
R2 R2

Therefore ||Xnh — XxE|l2 < |Flloo - [[Xn — X|l2 = 0. Also, for every n > 1, we have |xphn, — xph|* =
XD " |hn — h|2 < 4xp| fll%- Since 4xp||fl%, € L'(R?) and since h,, converges to h point-wise, it

follows from the Lebesgue’s Dominated Convergence Theorem that ||xphn — xph|l2 — 0. Then
||X'nh'n - X'nh”Z = ”X'nXDhn - X'nXDhHZ < ”XDh'n - XDh”Z — 0.

Thus we have

[Xnhn = xhllz < [Xnhn = Xnhll2 + [|Xnh — xhl2 — 0.
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Note that x,(r,t) = xF*(r)x7™(t) and x(r,t) = x¥(r)x2(t). So for each ¢ € L*(R), we have
IOSH() = A (DO
= [ oz s
= [ i) - xpee)| o

Bi(zn)
N /R / XE ()X (€@ F(r — t,ray)dt

(27 (En)

2
dr

Bi(x)
- / XEPERER F(r —t,73) dt

(s 7] (ZE)
2
dr

/ X (1 EYEE i (r, )t — / X(r, OER)h(r, ) dt
R R

2

/R[xn(r, e hn(r, t) — x(r, )EE)R(r, 1)) dt| dr

2
dr

i
— o

/R E(8) [ (s ) (1, 1) — X(r, ), 2)]

IN

/IR [/}R [E@®)] - |xn (7 t) B (7, 8) — x(r, B)h(r,t)]| dt] zdr

1/2 17272

</ [( LieePar) - [ bt o) - xtr o et } dr

< [ [1ewpa] | [ et = xroptrop] -

e [ [ Do) = X 0 O e

= [I€1I* - lIxnhn — xhl3-
Thus, [[A7(f) = Af p(HI < lIxnhn — xhll2 — 0.

Next we show that for all z € F, if ¢ € L?*(R) is continuous on (a;(z),8;(z)) and

bounded, then Afp(f)(§) is continuous on (a;(z),Bi(z)). Let z € F, and let § € L*(R)

be continuous on (a;(z),B;(z)) and bounded. Suppose that r, — r in (o;(z),F;(z)). Then

hn(t) = XF@)XF (rn)E®) f(rn — t, Tnz) converges to
h(t) = X7 (O)x3i (r)E@R)f(r -t rz)

pointwise on (a;(z), Bi(x)). Therefore, since |hn| < XZ|€llcollflle € L*((as(z), Bi(z)), by the
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Lebesgue Dominated Convergence Theorem, we have

n—o0 n—oo

lim M p()(Oa) = Hm [ X (X ()0 (e —1,703) dt

- /R XEEXEER) (r — t,72) dt = A p(F)(E)():

Thus Af (f)(€) is continuous on (a;(x), Bi()).

Now, let f € Co(Gir), and let z € F. Suppose that A7 z(f) = 0. Let r € (a;(z), Bi(z)).
Define £: R — C by &(t) = f(r — t,rz) for t € (oy{x),Bi(z)), and zero otherwise. Then ¢
is continuous on (e;(x),Bi(x)), and ¢ is bounded. Therefore Af -(f)(£) is continuous. Since

A p(f)(€) =0, we have

Bi(x)
0= RO = [ OO —tre)fde= [ i —tro)Par

ai(z)

But t = |f(r —t,7x)|? is continuous on (a;(x), Bi(z)), so f(r —t,rx) = 0 for all t € (a;(x), B;(2)).
This holds for all r € (a;(z), B;(z)), so f(r—¢,rz) = 0 for all ,t € (a;(z), Bi(x)). That is f|m, = 0.
It is clear that if f|m, = 0, then Af o (f) = 0. a

The following proposition is an immediate consequence of Lemma IIL.5.5.

Proposition I11.5.6. For each i € {1,...,N} and each nonempty closed subset F' C X, define
(,Zsi,FZ Co(Gi,F) -— C(F, K(L2(R))) by

bi,7(f)(x) = 2] p(f)-

If F =@, put ¢;,r = 0. Then ¢;  is a *-homomorphism such that ||¢; r(f)|| = sub,er [|AF r(f)]l
for all f € Co(Gi,f).

111.6. Stable Recursive Subhomogeneous Decomposition of Az

Notation III.6.1. We fix the following notations for the rest of the chapter. Now for each
i € {1,...,N}, and each closed F C X; define a C*- norm || - ||;,7 on Co(Gir) by ||flli,r =
suPgep ||Af ()| Note that Lemma ITI.5.5 ensures that || ||;, 7 is a C*-norm. Let || |l; = || - [ls,x,,
for each i € {1,...,N}; and let || - [*) = || [|y41,p0 for each k € {1,...,N = 1}. (If F® = g,
let || - |**) be the obvious norm on Co(G*)).) For each i € {1,..., N} and each closed F C X;, let
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A; r be the completion of Cy(G,,r) with respect to || - ||; p. For each ¢ € {1,..., N} let A; denote
A; x,, and for each k € {1,..., N —1} let A®) denote A1 pw. For each i € {1,..., N} and each
nonempty closed subset F' C X, let ¢; p denote the map in Proposition II1.5.6. It is then clear
that ¢; p is isometric and extends to an injective *-homomorphism from 4; r into C(F,K(L%(R))),
and we will also use ¢; r to denote the extension. Let ¢; denote ¢; x, for ¢ € {1,..., N}, and let

#%*) denote Pra1,re - For each i € {1,..., N} and each nonempty closed subset F' C X, let
Kip={f € C(F,K(L*(R))): p? f(z)p? = f(z) for all z € F}.

If F = @, then let K; = 0. Let K; denote K; x, and let K*) denote Ky, 70

The C*-algebras A; will be the components of a SRSH decomposition of Az. We proceed
to obtain a SRSH decomposition of Az as follows: We first identify A; with C(X;,K) for each i €
{1,..., N}. Note that Proposition II1.5.6 already shows that Cy(G;) is isometrically *-isomorphic
to a *-subalgebra of C'(X;,K). Thus we only need to identify the range of the map, and show that
the norm closure of the range is isomorphic to C(X;,K). Then we glue the *-algebras Cy(G;) to
obtain Co(Gz). After the gluing, we extend the gluing to the A; to obtain a decomposition of Az.
Finally, we use the identifications between the algebras A; and the algebras C'(X;,K) to obtain a
SRSH decomposition of Az.

The next lemma is a standard result in operator algebra.

Lemma II1.6.2. Let H be a Hilbert space, let {a,} be a sequence in B(H) that converges to some
a € B(H) in strong operator topology, and let {b,} be a sequence in K(H) that converges to some

b € K(H) in the norm topology. Then a,bnal, — aba* in the norm topology.

Lemma IIL.6.3. For eachi € {1,... N}, and for each nonempty closed subset F' C X, let K; g

be as in II1.6.1. Then we have:
1. K; r is a C*-subalgebra of C(F, K(L*(R))).
2. ¢ 7r(Co(Gir)) C K F.
3. 6,7 (Co(GiF)) = Kir.

4. For each i € {1,...,N}, and for each z € X;, define u;,: L2(R) — L2(R) by u; . (£)(r)
fﬂ:(f)i)(f)z. Then for each i € {1,...,N}, and each x € X;, u;, is a unitary, with u}, given

fI
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by uy(6)(r) = (Bi(x))?€(Bs(x)r). Further, for each i = 1,...,N, if {z.} is a sequence

in X; that converges to some © € X, then {u;q,} and {uj, } converge to u;,; and uj,,

respectively, in the strong operator topology.

5. Let I = (—1,1), let pr € B(L%(R)) be the projection given by p;(€) = x1€, and let
Q: prK(L*(R))pr — K(L*(1))

be the canonical *-isomorphism. For each i € {1,...,N}, and each closed subset F C X,
define @ p: K;p — C(F,K(L*(I))) by ®; r(f)(x) = Qu} ,f(@)usz). Then i is a well
defined *-isomorphism for all ¢ € {1,...,N}, and all closed FF C X;. (If F = @, take
C(F,K(L*(I))) =0, and &, =0.)

Proof:  Part 1 and part 2 are clear.

Now we show that for each x € F, theset S; = {¢i,r(f)(2): f € Co(Gi,F)}isdensein T, =
{a € K(L?(R)): pfap? = a}. Let If = (au(x), Bi(x)). Note that T, = p? K (L*(R))p? = K(L?(IF))
is C*-subalgebra of K(L?(R)). Let &,1 € C.({(aui(x), Bi(x)). Let E = {(r,tz) e Rx X : t,r—t € I}
Then E C G 7. It follows from Lemma I11.3.2 that the map h: IF x I¥ — E defined by h(r,t) =
(t —r,tz) is a homeomorphism. (The inverse is given by (r,tz) — (t —7,t).) Let f”: I xI — C be
defined by f”(r,t) = £&(t)n(r). Then f” € Co(I x I). Let f': E — C be defined by f' = f" o h~L,
Then f' € Co(E), and f'(r,tz) = f"(t — r,tx) = £(E)n(t —r). Now E is closed in Gy, so there
exists f € Co(Gi r) such that f|g = f’. Then for all 7 € R and all ¢ € L?(I¥) we have

65,0 ())@)(Q)(r) = N p(FC)(r)
- /R XX Fr — t,r) dt

- /R X)X CRE )T dt
- / C(t)e(rynlE) dt

R
= {{,mé(r).

For any Hilbert space H and any &/,n' € H, we use the notation & ® 1 to denote the rank one
operator defined by ¢ — (¢,7')¢’. Then ¢; p(f)(z) =€ ®n, and £ ® nn € S;. Since C,(I7) is dense



96

in L2(I¥) = p?(L?(R)), we see that £ @ € S, for all &,n € p?(L2(R)). Since

{pf(€) ®pf(m): &,m € L*(R)}

spans a dense subset of T,,, we see that S, is dense in Tj,.

Now we show that for all f € K, r, for all z € F) and for all € > 0, there exists an open
subset U C F containing = and g € Co(G; r) such that for all y € U, we have ||¢; 7 (g)(v)— f(y)| <
e.Let f € K; g,z € F and € > 0 be given. Then, by the paragraph above, there exists g € Co(G; r)
such that ||¢s r(g)(z) — f(z)|| < €/2. Now the map y — |¢;,r(9)(y) — f(v)| is continuous, so
U={ye F:|¢:ir(9)(y) — f(y)|| <e}isan open set containing z. It is clear that for all y € U, we
have ||¢:,7(9)(v) = F (W)l <e.

Now we show that if f € Co(Gir) and h € C(F), then h¢; p(f) € Im ¢; . Define
h: Gir — C by ﬁ(r,x) = h(m;(z)). Then he C(G; r), and hf € Co(Gi,r). So for all z € F, all
¢ € L*(R), and all r € R, we have

5,7 (RF)(@)(E)(r) = A p(RF)(E)(r)
- /R SN D@ — t,rm) f(r — t, ) de

= [ X0 OOrE) ¢ - tre) i
= @) [ XEEPEOO S~ o) de

= (R(@)AEF(£))(E)(r)
= (h(z)¢s,r (F) (@) (€)(r).

Thus hs r(f) = ¢5,r(hf) € Im ¢y F.

Now we finish the proof of part 3. Let ¢ € K; r, and let € > 0. For each z € F, let
Ve € F be an open subset containing z, and let f, € Co(G; F) be such that for all y € V, we
have ||¢:, p(f2)(y) — 9(y)}| < e. The existence of V, and f, are shown above. Then {V,: z € F'}
is an open cover of F, which is compact; so there exist y1,...,ym such that F = U;";_l Vy;- Let
{hj:1<5< m} be a partition of unity subordinate to {V;: 1 < j < m}. By what is shown above,
we have h;¢; r(fy,) € Im ¢; r for each j € {1,...,m}. Then f = 3777, hi¢ir(fy;) € Im ¢y p.
Now let z € F, and let 1 <j <m. If x ¢ V,, then h;(z) = 0 and h;(z)||¢s,r(fy,) (@) — 9(z)|| = 0;
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and if z € Vj;, then hj(z)||¢i 7 (fy,)(x) — 9(z)|| < ehj(z) Thus, for all z € F, we have

m

If(z) — Zj ()¢5, 7 (fy;)(z) = ()

|'M3

hi(@)di, r(fy; ) (2 Zha (z)g(z)

.
|
—_

[
1l
-

h; (@) 64,7 (fy;) () — g(@)]|

Ms

hj(z)e =e.

[
]
—

Part 3 proven.

Now we show part 4. It is clear that for each 4 € {1,...,N} and each z € X;, u;z Is a
unitary, and that u; , is given by the formula in the statement. Fix i € {1,...,N}. Now we show
that if z, — = in X;, then u;,, — u;, in strong operator topology, and u;, — u;, in strong
operator topology.

Let z, — z in X;, and let & € C.(R). Since B;(z,) — Bi(z), we have

E(r/Bi(zn))  E(r/Bi=))?

B p@ |

for every r € R. Suppose that supp £ C [—b, b]. Since §; is continuous and strictly positive on the
compact set X;, it is bounded above by some real number M and below by some real number

L > 0. Then
4 X[-mo,m6)(7) - 1€,
= L )

ﬂz -'E'n 1/2 ﬂi(x)l/z

for all 7 € R. Since (4 x[—ms,my - [€]|%) L~ € L*(R), by the Lebesgue Dominated Convergence

{& r/Bi(xa)) _ &(r/Bi())|*

Theorem, we have

£(r/Bi(wn))  E(r/Bi(x))|?

Bi(zn)t/? Bi(z)/?
That is, |4z, (€) — vi,z(§)]| — 0. Thus ||usz, (§) — uiz(€)]| — 0 for all £ € Cc(R).

dr — 0.
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Now let £ € L?(R), and let € > 0. Choose 7 € C.(R) such that || — &|| < ¢/3. Let N > 1

be an integer such that n > N implies that ||u; 4, (1) —us,z(1)|| < €/3. Then for all n > N, we have

[,z (€) — wia ()l
< wsen (€) = tizn M + 1wz, (1) = vea (M + lluie(7) — sz (E)]

<€ —nll +e/3+[€—nll=e

Thus u;,, — U, in the strong operator topology. Since the strong and *-strong operator
topologies agree on the set of all unitaries in B(L?(R)), we have uj, — u; , in the strong operator
topology as well. This proves Part 4.

Now we show part 5. Fix ¢ € {1,..., N} and fix a nonempty closed subset F C X,. Note
that for all z € F, we have u%p?u, = p;. Now define ¢: C(F, K(L?(R))) — C(F,K(L*(R))) by
Y(f)(z) = uk f(x)u,. Continuity of ¥(f) follows from the previous three paragraphs and Lemma
I11.6.2. Tt is clear that ¢ is a *-isomorphism. We claim that ¥(K; ) = C(F,pr K(L*(R))pr). Let
fée K;p. Then

W(f)(x) = ul f(@)us = uppf f(x)pfu, = pulf(z)usp € prK(L*(R))p;

for all z € F. Thus ¢(K;, F) C C(F,prK(L?(R))pr). Now let f € C(F,prK(L?*(R))pr). Then for
all x € F, we have f(z) = pf(z)p = wipFu,f(z)uipfu,. Define g: F — K(L?(R)) by g(z) =
piug f(z)ukip?. Then g € K; r (continuity follows from the fact that if z,, —  in F, then pf» — p?
in the strong operator topology), and ¥(g) = f. Thus ¥(K; r) = C(F,pr K (L*(R))p;).

Since for all f € K; r and all x € F, we have ®; p(f)(z) = Q([¥(f)|(z)), it is clear that

®; p is a well defined *-homomorphism. It is also clear that ®; g is invertible. O

Notation I11.6.4. For the rest of the chapter, let ®; » be the *-isomorphism from Lemma. III.6.3.
Use @, to denote @; x, for each ¢ € {1,...,N}, and use @) to denote D@1, ru0 for all k with

1<k<N-1

Lemma II1.6.5. For each k € {1,...,N — 1}, if G # @, define Ry: Co(Gry1) — Co(GR)
by Ri(f) = flow; if G*) = @, let Ri: Co(Gry1) — Co(GR) be the zero map. Then for each

ke {l,...,N —1}, the map Rg is a norm decreasing surjective *-homomorphism.
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Proof:  Fix k € {1,...,N — 1}. Since G*) is closed in Gy11, the map Ry is a well defined
surjective linear map.

Let f,9 € Co(Gry1). Note that if (r,z) € G*), then (¢, z), (r—t, (~t)z), (=, (~r)z) € G*)
for all t € (—B;(z), —ai(x)). Then for all (r,z) € G*), we have

~a;(x)

Ri(f*xg)(rz) = (f*xg)(r,z) = /_ﬂ_( ) ft,x)g(r —t,(—t)x)dt

—ai(w)
_ / Ri(f)(t, 2)Relg)(r — t, (—t)z) dt
—Bi(x)

= (Ri(f) * Ri(9))(r, z);

and

Rk(f*)('r’m) = f*(T’ :I:) = f(-—'l‘, (—T):I:) = Rk(f)(—'ra (——T):I:) = Rk(f)*(T7 "E)

Thus Ry is a *-homomorphism.

Let f € Co(Gx+1). Then for each z € F*), we have A(¥)}=(Ry(f)) = AZ,{(f). Thus

|Re@)[|®) = sup |AF=(Ry(f))]
zeF(k)

sup || Ag+1(f)|l
zeF (k)

< sup (A1 (N)I = [[fllx+1-
r€X;

So Ry is norm-decreasing. |

Lemma I11.6.6. Letk € {1,...,N—1}. For each e > 0, and for each f € Co(G®)) with || f||®) < e,
there exists g € Co(Gr1) such that ||g||k+1 < € and Ri(g) = f, where Ry is the map defined in
Lemma I11.6.6.

Proof:  Fix k € {1,...,N — 1}. First note that for all f € Co(Gr+1) we have ¢*)(Ri(f)) =

Pr41(f)| peo -
Let € > 0, and let f € Co(G¥). Extend f to f’ € Co(Gr+1). Let

U={ze X |¢rr1(f) )] <e}.
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Then U is an open set in X;. If z € F*) then

601 () @)l = 6™ (Re (@)l = 6 (@) < 18P ()l = £ <.

Thus FF) C U,

Let h € C.(X;) satisfy 0 < h < 1, supp h C U, and h|pw = 1. Define b’ € C(Gry1)
by h'(r,y) = h(met1(y)). Then g = h'f" € Co(Gyy1). Note that ¢ri1(g) = hpi1(f'). Now, if
z € X;\ U, then ¢i,1(g)(z) = h(z)dr1(f)(z) = 0; if x € U, then

8k+1(9) (@) = 1h(@) k41 (f) (@) = b2 (f) (@) <&
Thus ||gllx+1 = l|¢r+1(9)]| < €. Also,
Ri(9)(ryz) = W (r,z) f'(r,x) = h(mps1 () f(r,z) = f(r, z).

So Ry(g) = f. (I

Lemma IIL.6.7. For each i € {1,...,N}, define Q;: Co(Gz) — Co(Gi) by Qi(f) = flauncs-

Then Q; is a norm decreasing *-homomorphism for each i € {1,...,N}.

Proof: ~ We first show that Q; is a *-homomorphism. Let ¢ € {1,...,N}.

By Lemma III.4.6, the set G;N Gy is closed in G'z. Thus we see that Q;(f) € Co(G:NGz)
for all f € Co(Ggz). Since G; NGz is open in G;, we see that Q;(f) € Co(G;). So @; is well defined.
Linearity of ¢J; is clear.

Let f,g € Co(Gz). Note that if (r,z) € Gz N Gy, then (a(z),B(z)) C (ai(z),Bi(z)),
and so for all ¢ € (-pf(z),—a(z)), we have (t,z) € Gz NGy, (r — ¢, (—t)z) € G; N Gz, and
(=r,(-r)z) € GiN Ggz. Thus for all (r,z) € Gz N G; and all ¢t € (—f(z), ~a(z)), we have
Qi(H)(t,z) = f(t,z) and Qs(g)(r — ¢, (—t)x) = g(r — t,(—¢t)x). Then for every (r,z) contained in
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Gz NGy, we have

Qu(f % 9)(rz) = (f * 9)(r,2) = /R F(t,2)g(r —t, (~t)z) dt

—a(z)

_ / f(t,2)g(r — t, (~t)z) dt
—fB(zx)
—afx)
- / Q) (6, 2)Qu(g)(r — t, (—t)z) dt
—O{(x)

—ai(z)
_ / Qi(f)(t,2)Qi(g)(r —t, (—t)z) dt
—Bi(z)

= (Qi(f) * Qi(9)) (r, z).

Also, for all (r,z) € G; NGz, we have

Qi(f)(rx) = f*(r,z) = f(=7, (=r)z) = Qi(f) (=7, (=r)z) = Q:(f)*(r, 2).

Now we consider what happens if (7, 2) € G; \ (Gz N G;). Suppose that

(Qi(f) * Qi(g))(r, ) #0

for some (r,z) € G;. Then for some t € (—pg;(z), —ay(x)), we have (t,z) € G; N Gz and
(r-t, (-t)x) € G; N Gz. Thus, by the first statement in part 2 of Lemma II[.4.4, we have
(rz) = (r — ¢, (~t)z)t,z) € GiNGgz. Soif (r,z) € G; \ Gz, then (Q;(f) * Qi(¢9))(r,z) = 0;
and clearly Q;(f * ¢)(r,z) = 0 for all (r,z) € G; \ Gz as well. Thus for all (r,z) € G,
we have Q;(f * ¢)(r,z) = (Qi(f) * Q:(9))(r,x). Also, if (r,z) ¢ G; N Gz, then (—r,(—r)z) =
(r,z)"1 ¢ Gz NG;. So (r,z) ¢ Gi NGz implies that Q;(f*)(r,z) = 0= @Q;(f)*(r,z). Thus Q; is a
*_homomorphism.

Now we prove that @; is norm-decreasing. Let z € X;, let » € R, and let t € R. If
7 ¢ (0i(), Bi(x)) or t ¢ (ou(z), Bi(z)), then

XF(0)xi (1) f(r — t,rz) = 0= X7 (Ox7 (NQi(f)(r — t,rz).

If r,t € (a(z), Bi(z)), then (r —t,7t) € G;, and then Q;(f)(r —t,rz) = f(r —t,rz). Thus for each
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T € X;, each f € Cy(Gyz), each &€ € L2(R), and each r € R, we have

—a;(x)
AF(Qi(f))E)(r) =/_ﬂ_(z) X; (Mxg €@ Qi(f)(r — t,rz) dt

—ai(x)
- / ) Xi (r)xi @)E@) f(r —t,rz) dt
—ai(z)
=x(r) / xi (@) f(r —t,rz) dt
—B:(x)

—ai(z)
=0 [ e OWIe —tra)d

= x; (MA@ (E)))(r)
= (PF A ()P )(E)(r).

Then for each € X, we have [[A7(Qi(/))]| = IPf A= (F)p7ll < 1Aa(f)l. Thus [Q:(H)lls < [IF]l- So

@; is norm-decreasing. O

Lemma II1.6.8. Let H be a Hilbert space. For each n € Z, let p, € B(H) be a projection.
Suppose that pmpn = 0 for all m # n, and that Y, ., pn converges to 1 in the strong operator

topology. Let a € B(H) satisfy pnapn = app for alln € Z. Then ||a| = sup,cz ||[pnapn -

Proof: ~ We first show that ) ., pr,apn converges to o in the strong operator topology. Let
¢ € H. Then limy_,00 3F__, pu(€) = £, 50 limp_, 0 a(XF__, pn(€)) = a(€). Thus

k k
kli—{lgo Z Pnapn(§) = klirlgo Z app(€)
n=—k n=—k
k
= klirgoa ( _Z_kpn(ﬁ)> = a(§).

50 )_,.czPnapn converges to a in the strong operator topology.
Now, let £ € H. For each k£ > 1, let &, = Eﬁz_k Pn(€). Then by assumption, & — €. For

each k > 1, we have

k k k
(6, €5) = < 3 ), 3 pm<5>> = 3 Bn(©),pa®)
n=-k m=-—k m,n=—k

n

k
S Ba(©), @) = 3 Ipa(©I”
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Since (¢x, &) — |1€]1%, we see that [[€]|2 = 3,z Ipn(€)|2. Thus for all £ € H, we have ||¢]|> =
>onez IPn ()12

For each k > 1, let ar = Z:z_k pnap,. Then we have shown that ay — a in the strong
operator topology. Let R = sup,¢z, ||pﬁapn||. For each n € Z, we have ||ppap,| < |lal|, so R < |al.

Now for each k£ > 1 and each £ € H, we have

lax (@I = Y lpalar @)

nez
k 2
= Z pn( Z pm“?m(f))
neZ m=—k
k 2
= Z Z pnpmapm(g)
neZ llm=-k
= Z Ipnapn (€)1
n=—k
k
< Y lpnapnlPllpa(©))?
n=—*k
< R? Z I (€)1
n=—*k
< R?|j€||?.

Thus for each k > 1, |lax|| < R.Let B = {b e B(H): ||b|| < R}. Now, ax € B forall k, and ay — a
in the strong operator topology. Since B is closed in the strong operator topology, we have a € B,

and so ||a|| < R. 0

Notation II1.6.9. Recall from II1.3.6 that for each z € X, the set 7% = {r € R:rz € Z} is

indexed by Z in the increasing order:
T = { - <af, <a%, <-a%) <ag<al<-af<.-}

For each z € X and each n € Z, define a projection g € B(L*(R)) by ¢5(€) = X(az ez, )¢

Proposition II1.6.10. 1. Letr,t € R, and let z € X. Suppose that (r — t,7z) € Gz. Then for
all n € Z, we have r € (ay,a%,,) if and only if t € (af,al ), where aZ is as defined in

II16.9.
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2. For all z € X, and for all n # m, we have ¢%,q% = 0; and Y., g5 converges to 1 in strong

operator topology, where ¢~ is as defined in I111.6.9.
3. For all f € Co(Gz), allz € X, and all n € Z, we have gZA; ()% = Az(f)gZ.

4. For all f € Co(Gz) and all z € X, we have || Az (f)|| = subPpez |g5A:(f)azl, where Ay is as
defined by Equation (1.4).

Proof:  Part 1: Suppose that r € (a%,aZ,,). Then B(rz) = a%,; —r, and a(rz) = af, —r. Since
(r—t,rz) € Gz, we see that t —r € (a(rz), B(rz)) = (a% —r,al; —7). Thus t € (af;,a%, ). Thus
r € (a%,a? ) implies that ¢ € (a%, a},, ). Now suppose that r ¢ (aj,al, ). Then r € (a7, a5, ;)
for some m # n, whence t € (a%,,a%,,,), and so t ¢ (aZ,al ).

Part 2: It is clear that ¢f¢% =0 if m # n. For each k > 1, let ¢z = Z:z_k g=. Then g
is an increasing sequence of projections, hence converges in the strong operator topology to some
projection ¢ (Theorem 4.1.2 in [6]). It is clear that grg = g for all k£ > 1. Suppose that ¢(€¢) = 0 for
some &. Then gx(§) = qrg(§) =0 forall k > 1. So X(az , ,az)§ = 0 for all k > 1. That is f;m_’fk €2 =0
for all k. So € =0. Thus ¢ = 1.

Part 3: Fix f € Cy(Gz), z € X, and n € Z. Let x,: R — R denote the characteristic

function of (af,a% ;). Now, if r € (af,a%,,), then

Xn(T)xn () f(r = t,72) = Xn (8) f(r — t,72)
forallt € R. If r ¢ (a},a%, ), then
Xn(r)xn(8)f(r —t,rz) = 0.

If t € (a%,al,,), then by part 1, we have (r — t,rz) ¢ Gz, and so f(r — t,rz) = 0; then

Xn(T)Xn () f(r —t,r2) = 0= xu(t)f(r —t,7r2). If t ¢ (a, a7y 1), then
Xn(T)Xn () f(r —t,rz) =0 = Xn(t)f(r —t,7T)

also. Thus for all ,t € R, we have X (r)xn(6)f(r —t,rz) = Xn () f(r —t,rz). Then for all r € R
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we have

= Xn(r)Az(f)an (€)(r)
= guA(f)an (E)(r)
So grAe(f)an = Ao (f)an-
Part 4: This follows from part 2 and 3, and Lemma I11.6.8. O

Proposition IIL1.6.11. Let Q); be the map defined in Lemyma II1.6.7. Define

N

Q: Co(Gz) — @Co(Gi)

i=1
by Q(f) = (Q1(f), Q2(f),...,@n(f)). Then Q is an isometric *-homomorphism.

Proof:  Since each Q; is a *-homomorphism, so is Q.

Recall that || - ||, denotes that reduced norm on C.(R x X), which contains Co(Gz) as
a *-subalgebra. We now show that ||Q(f)|l = || fll-. Let f € Co(Gz), let z € X, and let n € Z.
Let 7o € (afq,a5). Then roz € V; for some ¢ € {1,...,N}. Let ¢ = mi(roz) € Xy, let 5o =
(ai(roz) + Bi(roxz))/2, and let s = ro + 8o. Then ¢ = (sg + 79)z = sz. Let xn: R — R be the
characteristic function of (af,aZ,,). Define x(t) = xn(t + s). We first show that xx§ = x. Let

t € R. First suppose that x(t) # 0. Then t + s € (af;,a; ), and
t+ so € (ay —ro, a1 — 7o) = (a(roz), B(rox)) € (as(roz), Bi(roz)).

So t € (ai(roz) — s0, B(roz) — s0) = (ci(c), Bi(c)). Thus xi(t) = 1. So xF(t)x(t) = x(¢£). If x(t) =0,

then X(t)Xf(t) =0= X(t). Thus XX5 = X-
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Let p € B(L%(R)) be the projection defined by p(¢) = x&. Define v: L?(R) — L2(R) by
v(€)(r) = &(r + 5). It is easily checked that v is a unitary with v* defined by v*(€)}(r) = &(r — s).
Then for all £ € L2(R) and all 7 € R, we have

(Vg Az (£ v*](€)(r) = (g e (f)anv™](€)(r + 5)
= Xn (7 + 8)Aa(Fazv* (§)(r + 3)

=X(r) [ GO ONOSr+ 5 =+ s)e)
= X(1) [ xalt)elt = 5)(r+ 3 —tiro)de
=X() [ xalt+ (O (r =ty

= x(r) [ X0~ )

= X(r) [ XWX £ = tore)dt

= X(r) [ XECIXOR OO~ tir)di
= X(r) [ X OPO QT —tore)

= x(r)A{(Q:(1))(p(§))(r)
= (PA{(Qi(NP)(€))(r).

Thus vgZA;(f)gEv* = pAL(Q:(f))p, and hence

g2 A (F)anll = llvan e (Fanv™ll = lpAE(Q:(f))pll

S M@ < N1Q:(Fll: < QU II-

This holds for all n € Z, so || Ax(f)|| = suppez ¢S A= (f)gE (| < |Q(F)[|. This holds for all z € X, so
I/l = supgex [A=(HF < HQAI-

For |Q(NII £ IIfll-, we have shown in Lemma II1.6.7 that |Q;(f)|l; < ||f]l» for all i €
{1,...,N}. So [|Q(N = sup{IlQ:(NHs:i=1,..., N} < || fll-. Thus @ is isometric. O

At this point, we are almost ready to glue the *-algebras Co(G;) together to form Cy(Gz).
Before we do that, let us recall some of the notation that we have used in this chapter so far, and

let us fix further notation for the rest of this chapter.
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Notation II1.6.12. For each i € {1,..., N}, the set Co(G;) (G; is defined in Notation III.4.1)
is a *-algebra; A; is the completion of Co(G;) with respect to || - ||; (|| - ||; is defined in Notation
II1.6.1);

K;={f € C(X;, K(L?>(R))): p¥ f(z)p? = f(z) for all z € X;};

¢i: Co(Gi) — K, is an isometric *-homomorphism with dense range (¢; is defined in Notation
II1.6.1); A; = K; via the extension of ¢;; and ®;: K; — C(X;, K(L?(I))) is a *-isomorphism,
where [ is the interval (—1,1) (@, is defined in Notation I11.6.4).

For each k € {1,..., N — 1} the space Co(G¥) is a *-algebra (G*) is defined in II1.4.1);
A® is the completion of Co(G®)) = Co(Gyyq ) with respect to || - [|*) (| - | %) is defined in

Notation III.6.1);
K® =K.\ pow = {f € CF® K(L2(R))): p2f(z)p® = f(z) for all z € F®)};

p®): Co(G®) — KM is an isometric *-homomorphism with dense range (¢*) is defined in
Notation 111.6.1); A% = K() via the extension of ¢(®); ). K®) . C(F®) K(L2(I))) is a
*_isomorphism (®(*) is defined in Notation III.6.4); the restriction map Ry : Co(Gr+1) — Co(G™®)
is a norm-decreasing surjective *-homomorphism such that an element with small norm lifts to
some element with small norm.

Let @; be the map defined in II1.6.7, and let @@ be the map defined in II1.6.11. Then
Qi Co(Gz) — Cp(G,) is a norm-decreasing *-homomorphism, and Q: Co(Gz) — @il Co(Gy) is

an isometric *-homomorphism.

The next statement is used in the decompostion of Co(Gz). The proof is easy and is

omitted.

Lemma II1.6.13. Let X be any locally compact Hausdorff space, and let Fy,...,F, be closed
subsets of X such that |\, F; = X. Let f: X — C an arbitrary function. Also suppose that
fr € Co(F) for each i € {1,...,n}. Then f € Co(X).

Proposition II1.6.14. Let E|, = Cy(G1). For each k = 2,..., N, there exists a *-subalgebra
E, CCo(G1) ®---®Co(Gr) and a *homomorphism y_1: Ex_1 — Co(G*—1) such that
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—

. Yr—_1 18 norm decreasing.
2. By = Er_4 @OO(G(k~1)) Co(Gk) = {(6, f) €CE, 1 ® Co(Gk): ’lﬁk_l(e) = Rk_l(f)}.

3. If (fi,---,fx) € Ex, then for all i € {1,...,k}, we have f; € Co(G; N Gz). (We treat
Co(GiNG3z) as a subspace of Co(G;).)

. If (f17 s 7fk) € Eka then fOT‘ all 7',.7 € {17 . '7k}7 we have fiIGiﬁGjﬁGz = fleiﬁGjﬁGz'

Ao

N

- If(f1,-.-, fr) € Ex, then for allj € {1,...,k — 1}, we have (fi1,..., f;) € E;.

Proof:  This is a proof by induction. We first simplify the base case of the induction by making
the first algebra of the gluing process trivial. Fix some zp € Xi. Let FO = {zo} and let
Go =GO = G| jw. It is clear that Go = G is a closed subset of G1. Then by Lemma I11.5.3, we
see that Cp(Go) = Go(G®) is a *-algebra with the involution and convolution given by Equations
111.7 and II1.8. Let Ro: Co(G1) — Co(G(?) be the restriction map. Then an argument identical
to the one given in Lemma II1.6.5 shows that Ry is a norm decreasing surjective *-homomorphism.

Now, instead of proving the statemem‘; of this lemma, we prove the following instead, which
is the same as the the statement of the lemma except that the index k ranges from 1 through n

instead of 2 through n. The statement of this lemma follows immediately.

Let Eg = Cy(Go). For each k € {1,..., N}, there exists a *-subalgebra
E, C Co(Gr) @ & Co(Gr)

and a *-homomorphism ¥ _1: Ex_3 — Co(G*~1) such that
1. k-1 is norm decreasing.
2. By = Ex—1 gy g0y Co(Gr) = {{e, f) € Ex-1® Co(Gr): Yx—1(e) = Rp—1(f)}-

3. If (fo,..-,fx) € Ek, then for all i € {0,...,k}, we have f; € Co(G; N Gz). (We treat
Oo(Gi n Gz) as a subspace of Oo(Gl))

4. If (fo,.. -, fi) € Eg, then for all 4,5 € {0,...,k}, we have fi|GiﬂGjﬂGz = fj‘GiﬂGjﬂGz-

5. If (fo,..-, fx) € Bk, then for all j € {0,...,k — 1}, we have (fo,..., f;) € E;.
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Induct on k. For the base case when k = 1, let 9o: Eg — Co(G®) be the identity map and let
Ey = {(f,9) € Eo ® Co(G1): ¥o(f) = Ro(g)}. Then conditions 1 through 5 hold trivially. This
proves the base case.

Inductive step: Suppose that for 1 < & < N, there exist E, and 1;_; that satisfy conditions
1 through 5 in the statement.

If F®) = @, then let ¢y, = 0, and let Eyx, ) = Ex @ Co(Gr41). Then condition 1, 2, 4, and
5 are clear; and condition 3 follows from Lemma I11.4.9.

Now assume that F*) £ @, Then G*) # @,

Define ¢y, : Er, — Co(G®) by ¢e(fo,..., fr)(w) = fi(w) if w € G; for some i = 0,...,k,
and 0 otherwise. We first show that for all (fo,...,fx) € Ek, ¥x(fo,-..,fx) is a well defined
function. We only need to show that the definition does not depend on the choice of i. Let
(f1,..., fx) € Ey, and suppose that w € G;NG;. If w ¢ Gz, then f;(w) =0 = f;(w) by condition
3 in the inductive hypothesis. So suppose that w € Gz. Then w € G; N G; N Gz, and then
fi(w) = f;(w) by condition 4 in the inductive hypothesis. Thus ¥, (fo,..., fi) is well defined.

Note that if (r,z) € G*) \ Gz, then for all i = 0,...,k, we have (r,z) ¢ G; N Gz; and
then ¥i(fo,..., fr)(r,z) = 0 by condition 3 in the inductive hypothesis and by the definition of
Yi(fo -~ fi)-

Next we show that if (fo,...,fx) € Ex, then ¥ (fo,..., fx) € Co(Gz N G®)). Now we

know, by Lemma I11.4.8, that

k k
G nGz=JGinG¥nGz=JGinG¥ NGy,

i=1 1==0

and by Lemma II11.4.7, that G; N G*) N Gy is closed in G® N Gz. From the definition of

e (fo,-- -, fr), we see that

Yi(fos -5 F)lainazne® = filgine zna® -

Now G; NGz N G® is closed in G; N Gz, by Lemma 111.4.7. By condition 3 in the inductive
hypothesis, each f; is in Co(G:NGz). So filg,ngzne® € Co(GiNGzN G(k)). By Lemma I11.6.13,
we have ¥ (fo, ..., fx) € Co(Gz N G®)) C Co(G™)). Thus 4y, is a well defined map.
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Next we show that  is a *-homomorphism. Linearity is clear. Also, vy preserves
the involution because (r,z) € G; if and only if (—r,(—r)z) € G; (by the first statement in
part 2 of Lemma II1.4.4). Let (fo,..., fx),(g0,.-..,9x) € Ex. Let hy = ¥p(fo,..., fx), let by =
Ye(90y -+ -5 9x), and let h = ¥ (fo * go, ..., fr * gx). We only need to show that h = hy % hy. Note
that hg, by, h € Co(Gz N G®). Let (r,z) € G¥). If

—ak+1(w)

(hs = hg)(r’ T) = /—ﬁ @) hf(ti .’L‘)hg(’/’ -t (—-t).’l;) dt # 0,

then for some t € (—fk41(2), —ak41(z)), we have (t,z),(r — t,(—t)z) € Gz. Then by the first
statement in part 2 of Lemma II1.4.4, we have (r,z) € Gz. Thus if (r,z) ¢ Gz, then h(r,z) =0=
(hgxhg)(r, 7). Now suppose that (r, ) € Gz. Then by Lemma II1.4.8, we have (r,2) € G;NG®NGz

for some ¢ € {1,...,k}. So h(r,z) = (fi * g;)(r,z). Also, we have

—agy1(z)
(hy s ho)ra) = [ byt @hy(r — t, (~0)0) .
—Br+1(z)

If t ¢ (—B(z), —a(x)), then (t,z) ¢ Gz, and then hs(t,z) = 0. So we have

—a(z)

(hf*hg)(r,z)zlﬂ(x) hy (6, @)y (r — £, (—)) dt.

Now, (r,z) € GiNGzNG®) soz €V ﬂVkH N Z¢. Then for all t € (—a(z),—0(z)), we have
t € (—fi(z), —ai(x)), and t € (—fr41(x), —ar41(2)), since a;(y) < afy) <0 < (y) < fG;(y) for all
j€{l,...,N}and ally € Z¢NV;. Thus for all t € (—f(z), —a(z)), we have (t,z) € GzNG;NG®).
Then by Lemma I11.4.4, (r — ¢, (~t)z) € Gz NG; NG for all t € (—F(x), —a(z)). Thus we have

~a(z)

(hy hy)(r,) = [ o, SRl =t () d

Now, by condition 3 in the inductive hypothesis, f; vanishes outside of G; N\ Gz. Then we have

—oy(z)
(hf* hg)(r,z) = /—ﬂ'( ) fit,2)gi(r — t, (—t)z) dt = (fi * g;)(r,z) = h(r,z).

Therefore 1)y preserves convolution, and so ¥y, is a *-homomorphism.
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Next we show that 1, is norm decreasing. Let (fq,..., fx) be an element of Ey, and let

h = r(fo,. .., fr). Let z € F*) Note that there exist m < n and ag,, a5 1,...,05 € Rsuch that

T* 0 [ak+1(2), Brer1(@)] = {af, oy -+ 0}

and axy1(x) = of, < af, . < <af = Prs1(x). Foreachl =m,...,n—1, let x;: R — R be the
characteristic function of (af, af, ,), and let g; be the projection in B(L?(R)) defined by ¢;(¢) = xi€-
It is clear that q;qp = 0 if [ #£ I’, and that Z?;nlz q = pfy - (Recall that pf, , is the projection in
B(L*(R)) defined by pf ,(€) = x%,,£.) Then it is clear that A(¥)=(h) = p2 AR (R)pP | We
claim that

IA®2 (R)|| = sup{[|gA® = (R)gi||: L =m,...,n —1}.

Let | € {m,...,n—1}. Let r,¢t € R. If (r — t,rz) ¢ Gz, then h(r — t,rz) = 0, and so
xi(r)h(r—t,rz) = 0 = x;(¢t)h(r —t,rz). Suppose that (r—t,rz) € Gz. By Proposition II1.6.10 part
1, we have r € (af,af,,) if and only if ¢ € (af,af, ). Therefore x:(t) = 1 if and only if x;(r) = 1,
and x;(t)h(r — t,rz) = xi(r)h(r — t,rz). Thus x;(r)h(r —t,rz) = x1(t)h(r — t,rz) for all r,t € R.
Then for all £ € L2(R) and all r € R, we have

Brr1(x)
B2 (R)gy(€)(r) = / XXX OEOMr ~trz)
Bry1(x)
- / XX OOk —tre) e
Bry1(x)
= () / X 41 ()X 41 (OE@(r — t,7)
apt1(x)
= X (PAEE(R)E) (7).

Thus A*)2 (R)g; = gA®Z(R) for all | € {m,...,n —1}. Then it is clear that
1A= (R = |41 X ()Pl = sup{l@A® " (Ral: L= m,...,n -1},

Now we show that for each I € {m,...,n—1}, we have ||gA®=(R)q|| < ||(fo, F1,- - fr)]-
Let [ € {m,...,n—1}. Since z € F®), there exists zg € V1N (Ule W) such that m¢41(z0) = .
Let ro € (af,af,,). Then rox € Z° NV = Z°NV;7?,. Thus by Lemma II1.3.8, there exists some
i with 1 < ¢ < k such that roz € Z° N V;. Let so = (ai(rox) + Bi(rox))/2, let ¢ = (so + 7o)z,
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and let s = rg + sg. Then ¢ belongs to X;. We claim that for every real number r, we have

xi(r+ 8)x§(r) = xi(r + 3).
Let r € R. If xi(r + s) = 0, then we are done. Suppose that x;(r + s) # 0. Then

r+ s € (af,af, ), and then
T+ 50 € (af —70,0fy1 —10) = (a(roz), B(roz)) € (2i(ro), Bi(rox)).
Because so € (a;(roz), Bi(roz)), we have
7 € (i(roz) = 0, Bi(roT) — s0) = (ui(c), Bi(c))-

So x¢(r) =1, and so xi(r + 8)xi(r) = xi(r + ).
Define u: L2(R) — L2(R) by u(€)(r) = &(r + s). Then u is a unitary with u* given by
u*(€)(r) = &(r — 5). For all £ € L2(R), and for all 7 € R, we have

[uqA® (h)qu*](€)(r)
= [@A® 2 (W) qu*)(€)(r + 5)
= xu(r + $) A= (W) g (€)](r + 5)

= (e +5) [ XErlr+ NE (0 €O + 5 =1, + o) ds
= xi(r + 5) /R Xerr (1 + XEn (X (OE(E — Yh(r + 5 — &, (r + 5)z) dt
= +5) [ X+ OXEn 6+ St + SO ) de

= xi(r+9) /R it + S)E(@OR(r — ¢, ) dt

=l +s) | OO + LD~ tredr.

Now for all 7,t € (a;(c), Bi(c)), we have (r ~ t,7¢c) € Gy, so h(r — t,r¢) = fi(r — t,rc) for all

7t € (ai(c), Bi(c)). Then, letting p be the projection in B(L?(R)) given by p(€)(r') = xi(r'+8)é(r),
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we have

[ugA®® (h)qru*](€)(r) = xa(r + 5) Axf(r)xf(t)p(ﬁ)(t)fi(r —t,rc)dt

= xu(7 - )X (fo) ((€))(r)
= [pA{(fa)p)(E)(r).

Thus ugA®® (h)gu* = pA¢(f;)p. Then

A (Rarl| = lugA®* (R)qru*|| = IpAG(f)p

< IXUN < M1fells < M1CFos - - Sl

Thus |AX®)2(R)|| < [|[{fo, ..., fx)| for all z € F*) and so

1o, -, Fi) I = 1RI® < [1(fo,- -, Fol

So 1y is norm-decreasing.

Now, let
Eit1 = Ex Ogy gy Co(Gr1) = {(e, f) € Ex © Co(Gr+1): ¢r(e) = Re(f)}-

Condition 5 is clear.

Now let (fo,...,fe+1) € Ext1. By condition 5 and inductive hypothesis (condition 3),
fi € Co{G;NGg) for all i = 0,...,k. To show that fiy1 € Co(Grr1 N Gz), we only need to
show that fri1 vanishes outside Gz, since fry1 € Co(Gi+1) and Gz N Gg1 is open in Giy1. Let

w € Gry1 \ Gz. Then by Lemma I11.4.9, w € G*), and

fk+1(w) = Rk(fk-l—l)(w) = wk(f(h ey fk)(w)

Ifwée G forall e =0,...,k, then ¥r(f1,..., fr)(w) = 0 by the definition of 1. Suppose that
w € Gy for some i € {0,...,k}. Then ¥r(fo,..., fr)(w) = fi(w). But f; € Co(Gz N Gy), so
fi(w) = 0. Thus fi4+1 vanishes outside of Gz, and so fr+1 € Co(Gz N Giy1). So condition 3 holds.
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Now we show that condition 4 holds. Let (fo,. .., fi, fs+1) be an element of By 1, and let
i,7 € {0,...,k+1}. Without loss of generality, assume that ¢ < 7. If j < k41, then by condition 4
in the inductive hypothesis and condition 5, fi|¢,nc:ne; = fileznaing;- So assume that j = k+1.
Let w € GzNG;NGgy1. By Lemma IT1.4.7, if 4 > 1, then we have GzNGiNGry1 = GzNG;NGHE),
Also,

GzNGoNGry1 =GzNGoNGINGry1 =GzNGNGINGR =Gz N GoN G,

Then
Fer1(w) = Re(feg1)(w) = e(f1,. .., fi)(w) = fi(w).

So fileznGinGrrr = fe+1laznGinGi.,. - This proves condition 4 and finishes the proof. O

Lemma II1.6.15. For each k € {1,...,N}, let Qx be the map defined in Lemma IIL6.7 and
let Ey be the algebra defined in Proposition II1.6.14. For each k € {1,...,N}, define a map
pr: Co(Gz) — @le Co(Gy) by pi(f) = (@Q1(f), ..., Qr(f)). (Note that pn s the same as the map
Q defined in Proposition I11.6.11.) Then for each k =1,...,N, we have Im py, C Ey. Further, py

is an isometric *-isomorphism from Co(Gz) onto En.

Proof:  To show that Im p, C Ej, induct on k. This is clear when k = 1, since p1 = @1 and
E1 = Co(G1) = Co(G1 N Gz).

Let k satisfy 1 < k < N, and suppose that Im py C Ej. Let f € Co(Gz). Then pi(f) € Ex.
Let 1)y, be the map defined in Proposition I11.6.14. Let w € G®. If w ¢ Gz. Then vy, (o (f))(w) =
0 = R(Qr+1(f))(w). Suppose that w € Gz, then w € Gz N G*). By Lemma II1.4.8, there exists

some i with 1 <4 < k such that w € G; NGz N G*), Then

P (e (f)) (W) = Pr(Q1(f), - -, Q) (w) = Qe(F)(w) = (flaingz)(w) = f(w),

and

B Qi1 () (W) = Qrnr(N)(w) = (flexane)(w) = f(w).

Thus Ye(pe(f)) = Ri(Qr+1(f)), and so pet1(f) = (pk(f), Q+1(f)) € Egt1. Thus Im pria C

Erpr.
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Next we show that py is an isometric *-isomorphism. First of all, piy = @ is an isometric
*_homomorphism. So we just need to show that the range of py is Ey.

Let (f1,...,fn) € En. Define f: Gz — C by f(w) = fi(w) if w € G;N Gz. We first show
that f is well-defined. Well, we know that Gz = Uf;l Gz NG; by Lemma 111.4.3, so f(w) exists.

Suppose that w € G; N G; N Gz. By Proposition II1.6.14, we have
fi(w) = (fi|GiﬁGjﬂGZ)(w) = (fj|GiﬂGjﬁGz)(w) = f](w)

Thus f is a well defined function. It is clear that f|g,nc, = filazng, € Co(G;NGz).

Now G; NGz is closed in Gz for all 4 € {1,...,N} by Lemma II[.4.6. Applying Lemma
II1.6.13 to Gz, G1NGz,...,Gny NGz, and f, we see that f € Co(Gz).

Finally, we check that pn(f) = (f1,...,fn) - Let 1 <{ < N, and let w € G;. f w ¢ Gz,
then fi(w) =0 = Q;(f)(w); if w € Gz, then fi(w) = f(w) = Qi(f)(w). Thus f; = Q;(f) for all
i=1,...,N, and so

pN(f) = (@1(f),-,Qn () = (f1,-- ., fN).

Hence pp is surjective.

This finishes the proof. O

The previous two lemmas give a recursive decomposition of Co(Gz) with components
Co(G;). Next we use the fact that Az and A; are closures of, respectively, Co(Gr) and Cp(G;) in
C*(X,R) to extend the decomposition to Az with components A;. We need a technical lemma

first.

Lemma I11.6.16. Let B, D, and F be C*-algebras. Let A,C and E be dense *-subalgebras of B, D,
and F, respectively. Let pa: A — E and ¢c: C — E be norm-decreasing *-homomorphisms. Let
G=A®pC ={(a,c) e A®C: ¢pa(a) = ¢pc(c)}. Let pp: B — F and ¢p: D — F be continuous
extensions of ¢4 and ¢c, respectively. Let H = B@®p D = {(b,d) € B® D: ¢5(b) = ¢p(d)}.
Suppose that ¢c is surjective, and that for every € > 0 and every e € E with |e|| < ¢, there exists

¢ € C such that ¢c(c) = e and ||c| < e. Then G is a *-subalgebra of H, and G = H.

Proof: Tt is clear that G is a *-subalgebra of H. Let (b,d) € H, and let ¢ > 0. Since A is dense

in B and C is dense in D, there exist a € A and ¢ € C such that |la —b|| < /4 and |c—d|| < /4.
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Let e = ¢pa(a) — ¢pco(c). Then

lell < liga(a) = 5®) + ldn(d) — ¢cle)] <e/2.

By assumption, there exists f € C such that ||f|| < ¢/2 and ¢¢(f) = e. Then
dc(f +c) = dc(f) + ¢clc) = e+ ¢clc) = dala).
Thus (a, f +¢) € G, and
If+e—dll <lle=dll + I/ <e/d+e/2<e.

So [[{(a,c+ f) — (b,d)]| <€, and hence G is dense in H. O

Lemma II1.6.17. For each k € {1,... N}, let Ry: Co(Grs1) — Co(G®) be the restriction map
defined in Lemma II1.6.5. Let Dy = Ay, and let }~2k: Agy1 — AR e the continuous extension
of Ri. Then Ry is surjective. Moreover for each k € {2,..., N}, there exists a *-subalgebra

Dy C @le A; and a *-homomorphism Pr—1: Dp_1 — A®=Y such that
1. Dy = Diy @ g0 A = {(a,0): Dy @ A P_1(a) = Rya (D)}
2. Ex is a dense *-subalgebra of Dy,

3. sz_llEk_l = 1p_1, where the map ¥y is the one defined in Proposition 111.6.14 for each
ke{l,...,N -1}

Proof: It is clear from Lemma II1.6.5 that Ry is surjective for all k.

‘We prove other statements by induction on k. The base case is when k£ = 2. Let Jl be the
continuous extension of 11, and let Dy = {(a,b) € Dy & Asz: Jl[a) = ﬁl(b)} It is clear that E» is
a *-subalgebra of Dy. Condition 1 is clear, condition 2 follows from Lemma II1.6.16 and Lemma
I11.6.6, and condition 3 follows immediately from condition 2.

Suppose that result holds from some k. By the inductive hypothesis, Ej is dense in Dy,

so we can extend Y : Ey — C'O(G(’“)) continuously to {Ek: D, — AW Let

Dit1 = {(a,b) € Dy @ App1: Prla) = Ri(b)}.
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It is clear that Eyy is a *-subalgebra of Dg;. Condition 1 is clear, and condition 2 follows from

Lemma II1.6.16 and Lemma II1.6.6. Condition 3 is also clear. O

Corollary T11.6.18. Az = Dy as C*-algebras, where Dy is the C*-algebra obtained in Lemma
111.6.17.

Proof:  The map py: Cy(Gz) — Ep is an isometric *-isomorphism, Co(Gz) is dense in Az, and

Ey is dense in Dy. So py extends to a *-isomorphism from Az to Dy. 0

Lemma II1.6.17 and Corollary II1.6.18 give a recursive decomposition of Az. Now we use
the fact that each of the components A; in the decomposition is isomorphic to the corresponding

C(X;,K) to obtain a stable recursive subhomogeneous decomposition of Az.

Theorem I11.6.19. Let K = K(L?((—1,1))). For each k € {1,...,N — 1}, let
Vit C(Xet1, K) = C(F® K)

be the restriction map. For k € {1,...,N}, let ® be the map defined in Notation IIL6.12. Let
B, =C(X1,K), and let 8,: Dy — B; be given by 8y = O, 0¢y. For each k =2,..., N, there exists
a *-subalgebra of By C @?:1 C(X;, K), a *homomorphism Uy_1: By_1 — C(F(k‘l),K), and a

*_homomorphism Oy : Dy — By, such that
1. By = By_1 ®cre-v,kx) C(Xk, K) = {(a,b) € Be—1 & C(Xi, K): Ug_1(a) = 1-1(0)}.
2. O 1s a *-isomorphism.

Proof:  First of all, some routine computation shows that for all £ € {1,...,N — 1}, and all
f € Co(Giy1), we have vy (Op 11 (drr1(f))) = @F) (¢ (R (f))) , where B, $i, R, @*), and ¢
are as defined in Notation II1.6.12. Since Cy(Gg41) is dense in Agyy, for each k € {1,...,N -1},

we have the following commutative diagram:

[}
A 225 K 2L O(Xegn, K)

| Rx (7

AR ﬂ, K& ¥, C(F®), K).

Let ¢, and Jk be the maps obtained from Proposition I11.6.14 and Lemma III.6.17, respectively.
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Now we proceed to induct on k. When k& = 2, let ¥;: B; = C(X1,K) — C(F(k—l),K) be
defined by \Ill = ((D(l) o¢(1)) o 1;1 o ((Dl o ¢1)—1 : let

By = B, @C(F(l),K) C(XQ,K) = {(a,b) € B & C(XQ,K): \Ill(a) = "yk(b)};

and let 63: Dy — By be defined by 0y = (®1 0 ¢1) @ (P2 0 h2).
We first show that 6, does map into By. Let (a,b) € Dy Then ;(a) = Ry(b). Then

U1 (D1 0 $y(a)) = (q><1> o ¢<1>) o P1(a) = (q><1> o ¢<1>) o R1(b) = 71 (®2 0 3 (b)).

Thus 85(a,b) = (®1 0 ¢p1(a), P35 0 ¢2(b)) € Ba. So §; maps into Bs.

Next we show that 65 is surjective. Let (¢,d) € By, and let

(a,0) = ((®10 1)1 (c), (D20 ¢2) "' (d)) .

Now, (c,d) € By implies that ¥1(c) = 7 (d), that is ¥1((P1 0 ¢1)(a)) = 71((P2 0 ¢2)(b)). But
U1 (@) 0 ¢1(a)) = (<I>(1) o ¢(1)) o 11(a), and 1 (P2 0 $2)(b)) = (<I>(1) oMo Ry (b). So

<q)(1) o ¢(1)> ° 1&1((1) = <<I)(1) o ¢(1)> oRl(b).

Thus 91 (a) = Ry(b), since 1) o ¢() is injective. Therefore (a,b) € Dy. It is clear that 85(a,b) =
(c,d). Hence 05 is surjective.

It is clear that 8, is an injective *-homomorphism. So 6, is a *-isomorphism.

Now suppose that result holds for some & with 2 < k& < N. Let ¥: B, — C(F®*) K) be
given by Ty = (8% 0 ¢®) 0 4y, 0 6%, let

Bit1 = Bk ®cro,ky C(Xikt1, K) = {(a,b) € B ® C(Xp41, K): Yi(a) = v(b) },

and let Oxy1: Diy1 — Bry1 be given by k11 = 0 ® (Ppi1 © Prp1)-
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We first show that 61 maps Dyyq to Bit1- Let (a,0) € Dgtq. Then

1 (0:()) = (0¥ 04 0 (@)

= 3k 5 (k) (ﬁk(b)) = W((Pr+1 0 Prr1) (0))-

Thus 9k+1(a, b) = (9k (a), (‘Dk-}-l o} ¢k+1)(b)) S Bk+1.
Next we show that k4, is surjective. Let (c,d) € Byt1, and let (a,b) = (67 '(c), (Pr41 0

$rr1)”1(d)). Since

() = e (0k(0)) = (2% 0 6™ Gin(a) = w(d)

= e((@rr1 0 Brs1) (0)) = (28 0 M) 0 R (b),

we see that 9 (a) = Rg(b). Thus (a,b) € Diy1, and it is clear that 8, 1(a,b) = (¢, d). Therefore
Or+1 is surjective. Since Ors1 is clearly an injective *-homomorphism, we see that Oy is a

*_isomorphism. O
Corollary 111.6.20. Let Oy and py be the *-isomorphisms obtained in Corollary II1.6.18 and
Lemma I11.6.15, respectively. Then Oy o pn is a *~isomorphism between Az and By.

At this moment, we essentially have a SRSH decomposition of Az. We only need to verify

that the attaching maps are non-vanishing:

Lemma 111.6.21. Let Oy be as in Lemma II1.6.19, let py be as in Corollary I11.6.18, and let
Dy, P, Qr be as in Notation I11.6.12. Let f € Co(Gz).

1. We have On o pn(f) = (@10 ¢10Q1(f), P20 ¢20Q2(f),..., PN 0 dn 0 QN(f))-

2. Let1 <k <N, let x € Xy, and let
T, = {(r,sz): s € (ar(z), Br(x)),s — 7 € (au(z), Bi(z))}

Then Ty = G (g} is a closed subset of Gi, Ty NGz # B, and @k 0 ¢y 0 Q(f)(x) =0 if and
only if ¢ o Qr(f)(z) = 0, which happens if and only if flg,nr, = 0.

3. For each k = 2,...,N, and for each x € F* 71 there exists some a € By_, such that

W_1(a)(x) # 0, where ¥y is the map defined in Lemma II1.6.19.
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Proof:  From the construction of the maps §; in the proof of Lemma II1.6.19, we see that

ON(fiyo s IN) = (@1 0¢1(f1),..., PN 0N (fN)),

for all (f1,...,fn) € Dn. From the definition of the maps pi in Lemma II1.6.15, we see that

on(f) = (@Q1(f),...,Qn(f)) for all f € Co(Gz). So part 1 is clear.
It is clear that T, = Gy (4} is a closed subset of Gy, and T, N Gz is nonempty. From the

definition of the the maps ®;, it is clear that @y o ¢y oQx(f)(z) = 0 if and only if ¢ 0 Qr(f)(x) = 0.
By Lemma IIL5.5, we have ¢ ((Qx(f))(z) = A{(Qk(f)) = 0 if and only if Qx(f)|r, = 0. So
Py 0 dr 0 Qr(f)(x) = 0 if and only if Qi (f)|r, = 0, if and only if Q& (f)|T,na, = 0 (Qk(f) vanishes
outside of Gz), if and only if (f|g,ne,)|Tunc, =0, if and only if f|r,ng, = 0.

For part 3, we use the notation in Lemma I11.6.19. Note that U;_; = ®*Dog*—Dog,_;0
6; 1. It is clear that there exists some f € C¢(Gz) such that f|r,ng, # 0. Let a = 8x_1 0 pp—1(F).

Then a € By_1. By part 2 we have

Tp1(a)() = 25D 0 647D 0 s (o1 (£))(2)
= k-1 4 ¢(k—1) o 1/~)k_1(Q1(f)’ o Qr-1()) ()
= Yr—1((® 0 Pr(Qr(f))) (z)

= (Pr © Pe(Qk(f))(z)
# 0.
O
Corollary II1.6.22. Az is a SRSHA.
Proof: By Lemma II1.6.19, and part 3 of Lemma II1.6.21, we see that
X1, By (Xk PED @) vy Bk)N
b ) ) * ) b k=2

is a SRSH system, so Az & By is a SRSHA. O

The following lemma is known as the gluing lemma. It a standard result in point-set

topology, so we will omit its proof.
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Lemma 111.6.23. Let X be a topological space. Let Y and Z be two subsets of X. Let f: Y — C
and g: Z — C be continuous functions such that flynz = glvnz. If either both Y and Z are closed

in X or bothY and Z are both open in X, then the function h: X — C defined by

flz freY
= 7@

g(z) fzeZ

18 continuous.
The next lemma will be used in the next chapter.

Lemma 111.6.24, Let

N
(XhBla (Xka F(k—l)a \Ilk—l”yk—lyBk) k—2)

be the SRSH decomposition for Az asin IIL.6.22. For each k € {1,...k}, let Hy = GZO(UL] G’i) .
For each k with 1 < k < N, if I C By is a non-zero ideal, then I N gk(Cc(Hk)) #0.

Proof:  Define 1: Co(Hy) — Ex by 1(f) = (flaingz))i=1,...k- By Lemma II1.4.6, for each k
with 1 < k < N, the set Hy is a closed subset of Gz. Hence each f € Co(Hy) extends to some
' € Co{Gz). Thus 7(f) = px(f’), where pg is the map in the proof of Lemma 1I1.6.15. Thus we
see that 7i indeed sends elements of Co(Hy) into Ey. It is clear that 74 is injective. Also, since
Gz NG, is closed in Hy, for every 1 with 1 <4 < k+ N, surjectivity of 7, follows easily from Lemma
I11.6.23. Linearity of 73 is clear as well.

For each k with 1 < k < n, define gk: Co(Hy) — By by gk = ;. o1y, where By and 8; are
as in Lemma I11.6.19. We will also use 7 and gk to denote their restrictions to C.(Hg).

Now we proceed by induction. If & = 1, then there exists a closed subset F' C X, such
that I = {f € B1: f|r = 0}. Then G1,r is a closed subset of G1 = G; NGz by Corollary I11.4.5.
If G1,r = G4, then it is clear that F' = X, which implies that I = 0. Thus ' # X, and so
G1,r # G1 = Hy. Then there exists f € Cc(G1) = Cc(Hi) such that flg,, = 0 and f # 0. So
01(f) € 1N 61(Co(Hy)) and 8;(F) # 0. Thus the lemma holds for k = 1.

Now suppose that the lemma holds for some k with 1 < & < N. Let I C Bgy41 be a

non-zero ideal. We can assume that I # Bg4q. Then we know that for each ¢ with 1 <i < k41,
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there exists a closed subset F; C X; such that

I={(f1s--, fe+1) € Bet1: filp, =0fori=1,...,k+1}.

First assume that X1 \ F®) is not contained in Fi;1. (Recall that F) is the k-th attaching
space.) Now, by Lemma I11.4.6, we know that G;NGz is closed in Gz for every ¢ with 1 < ¢ < k+1.
So Ule(Gi NGz) is closed in Gz. Thus Ule(G,; NGz) is closed in Hyy1, because Hyy is also
contained in Gz. Similarly, Gz 0 Giy1 is closed in Hiyq as well. Also, by Corollary I11.4.5, we
know that Gx41,r,,, is closed in Ggy1. Thus Gz NGry1,F,,, is closed in Gg4+1 NGz, which implies
that Gz NGr41,ky,, is closed in Hgyq. Therefore Gz N [Gk+1,Fk+1 U (Uéll Gi)} is closed in Hg,1.

IfGzn [Gk+1;Fk+1 U (Uf=1 G,;)} = Hpy11, then we have, by Lemma II1.4.8 and Lemma
111.4.4,

Gz NGry1 = Gr+1 N GzN Hk+1
k
=Gr1 NGz N ,:Gk+1,Fk+1 U (U Gi)}
i=1

k
= [Gr41 NGz N Gry1,Fey, ] U [Gk+1 NGzN (U Gi)}

i=1
= (Gz N Grt1,Fpy,) Y (G(k) NGz)

= Gz N (Gr1,Frpy UGH)

=Gz NGry1,Fpur®-

Then Xj.; = F®) U Fyyq, which contradicts our assumption that Xip1 \ F® ¢ Fpyq. Thus
Gz N (Gk+1,Fk+1 U <Uf=1 Gi)] # Hp+1. Then there exists a nonzero element f € C.(Hg41) such
that f|Gzﬂ[Gk+1,F,c+1U(Ui-"=1 ¢ = 0. Then Ox+1(f) # 0 and 6x+1(f) vanishes on F; for all ¢ with
1<i<k+1 ThusInN 9k+1(CO(Hk+1)) # 0.

Now assume that X1 \ F®) C Fyy1. Let F = Xp11 \ F® and let

J ={(f1,--+, fe+1) € Bri1: frarlp = 0}.

Let P: Byy1 — By be defined by P(f1,..., fx+1) = (f1,..., fx). Then P is surjective (this follows

because the map vx: C(Xgr1, K) — C(F®), K) is surjective) and P|; is injective (this follows
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from the construction of By and the definition of J). Also J is an ideal of By, F C Fiy1, and

I C J. Note that

ker P = {(0,...,0, fx41): frs1lpm = 0}

If I C ker P, then for every a = (f1,..., fut1) € I, we have fxi1|pw = 0 and f; = 0 for every
i with 1 <4 < k. But fr41 also vanishes on Fy1, which contains X4, \ F*) as a subset. So
fre1 = 0. Consequently, we have @ = 0. This contradicts the assumption that I # 0. Thus [
is not contained in ker P, which implies that P(I) is a non-zero ideal of Bj. Therefore we have
P(I)n g;c(C’c(Hk)) # 0 by the inductive hypothesis. So pick g € C.(H) such that g # 0 and
Ox(g) € P(I). Now we prove some claims.

Claim 1: Let R: Co(Hg41) — Co(Hy) be defined by R(f) = f|m,. Then R is a linear

surjection. Also the following diagram commutes:

g

Co(Hi+1) —*% DBiyi
| R | P
Co(Hy) 2 By,

It is clear that R is a linear surjection. If f € Co(Hg41), then
P(Br11(f)) = P(Ors1(rr41(£)))

= P(ek‘l‘l(flGlnGz’ . 'afle+1ﬂGz))

= P(0r(fleincz> -+ s flai), Pr+1 © Prv1(flaryanas))

= Oc(fleinczs -+ flencz)

= 0c(R(f)lcincz, - - R(Hlewnc.)
= On(7(R(f)))

= B, (R(/))-

So Claim 1 is proven.

Claim 2: We have P=Y(P(I)) C {(f1,--., fx, fx41) € Brs1: fri1lpare =0}

Suppose that f = (f1,..., fe+1) € P7Y(P(I)). Then there exists a = (g1,...,0k+1) € I
such that P(f) = P(a). So (f1,..., f&) = (91,-..9k). Then by the construction of Byy1, we have
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Fet1lpe = gry1|Fao. Therefore fri1|par® = grr1lrnre =0, since a € I and FNF®) C Fyq.
Claim 2 is proven.

Claim 3: (Recall that the element g is chosen, right before Claim 1 above, to satisfy g # 0
and 6 (g) € P(I).) We have 9161 pni, =00r Gepr,p N Hy = 2.

Suppose that Gxy1,rNHy, # @ and gle,, pna, 7 0. Using Claim 1, choose h € Co(Hit1)

such that R(h) = g. Note that

Gi+1,Fr N Hy = Giy1,r NGz N Grq1 N Hy
= (Gr+1,r N Gz) N (Gz N Gy1,70)

=Gz N Gryy,rarm.

So hlc # 0. Then by Lemma IIL5.5, 6. 1(h)| pr oo # 0. By Claim 2, P(fr41(h)) ¢ P(I).
But by Claim 1, P(fx41(h)) = 0x(R(R)) = §k(g) € P(I). This is a contradiction, so Claim 3 is

k+1,Pnpk)

proven.

Now,

k
Gi+1 N[(Ge41,F NGz) UHE) = Gry1 NGz N le+1,F U (U Gi):|

i=1
k
= (GZ N Gk+1,F) U l:(GZ N Gigt1) N (U Gi)}
=1

= (GzNGr41,r) U(Gz N Gip,p)
=Gz N Gry1,rour

=GznN Grt1.
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So we have

His1 = (Gz N Giyr) U Hy
= {Gk4+1 N [(Gr41,Fr N Gz) U Hg]} U Hy,
= {Git1 UH N {[(Grsrr N Gz) U Hy U Hy}
= {Gr+1 U Hr} N {(Gr41,r N Gz) U Hy}
= [Gk41 N (Gr41,r NGz)| U Hy

= (Gk+1,F N Gz) U Hg.

Both Giy1,r N Gz and Hy are closed in Hyy;. Also, by Claim 3, regardless of whether or not

Grt1,r NH = (Grg1,r N Gz) N Hy, is empty, the function g agrees with the zero function on
Gry1,Fr N Hig = (Gry1,p N Gz) N H.

Thus by Lemma II1.6.23, g can be extended to some g’ € Co(Hy1) such that glleH,pﬂGz =0.
Then by Lemma II1.5.5, §k+1(g’) vanishes on F. So §k+1(g’) € J. It is clear that 5k+1(g’) # 0.
Also, since g’ vanishes outside of Hy, the support of ¢’ is the same as g, so g’ € C.(Hy1).
Finally we check that 6x41(¢’) € I. By Claim 1, P(fr41(¢")) = 0x(g) € P(I). So there
exists some ¢’ € I such that P(§k+1(g’)) = P(g"). But P|, is injective, and both §k+1(g’) and g”

are in J, so §k+1(g’ ) = g € I. This completes the proof. O
Corollary 111.6.25. If I C Az is a non-zero ideal, then I N C.(Gz) # 0.
Proof: Let I C Az be a non-zero ideal. Note that (6x o PN)|Co(Gz) = §N, Since Oy o pn(I) is a

non-zero ideal of By, we see that

0 # On o o (1) N BN (Ce(G2))
=@no pN(I) NOy o PN(CC(GZ))

=0y o pn(INCe(Gz))-

So I NCu(Gyz) #0. O



126

CHAPTER IV

INDUCTIVE LIMITS OF SRSHAS AS C*-SUBALGEBRAS OF C*(X,R)

In this chapter, we show that when X is a compact metric space and when R acts on X
freely and minimally, the crossed product C*(X,R) contains C*-subalgebras that are isomorphic
to simple inductive limits of SRSHAs. These subalgebras are the analogs of the algebras A, =
C*(C(X),uCo(X \ {y})), the C*-subalgebra generated by C(X) and uCo(X \ {y}), in the crossed

product obtained from a free minimal action of Z on a compact metric space X.

IV.1. Definition of the Subalgebra A,

To define the subalgebras A,, we will first need a different description of the set Gz defined

in Notation II1.1.10.

Lemma IV.1.1. Let Z be a pseudo-transversal of a free minimal action of R on a compact metric
space. Let Gz be the set defined in Notation III.1.10. For each r € [0,00), let D, = [0,7]- Z, and

for each v € (—00,0], let D, = [r,0] - Z, where we take [0,0] to be the degenerate closed interval
{0}. Then Gz = (U,cr({s} x Ds))°.

Proof:  Let H = (U,cp({s} x Ds))°. Let (r,z) € Gz. Then z € Z¢, and —r € (o(z), B()),
where o and 3 are the backward and forward entering times for Z, respectively. First assume that
r 2> 0. If (r,z) ¢ H, then (r,x) € J,cg({s} x Ds), and then x € D, = [0,7] - Z, so there exists
t € [0,r] and z € Z such that z = tz. Then (—t)z = z € Z. Since ¢ € Z¢, we see that t # 0, and
so —t < 0. Then a(x) > —t by the definition of the backward entering time. But —r > a(z) > —t,
so r < t, contradicting the fact that t € [0,7]. Thus (r,z) € H. With a very similar argument, we
see that (r,z) € H when r <0. So Gz C H.

Now suppose that (r,z) € H. Then ¢ ¢ D,. First assume that » > 0. Since x ¢ D, =

[0,7] - Z, for all s € [—7,0], we have sz ¢ Z. In particular x ¢ Z and (—r)z ¢ Z. Also, a(z) < —r.
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But a(z) # —r, for otherwise, (—r)z = a(z)z € Z. Thus a(z) < —r £ 0 < f(x). So (r,z) € Gz.

With a very similar argument, we see that (r,z) € Gz if r <0.So H C Gz. O

Notation IV.1.2. Let Z be a compact pseudo-transversal of a free minimal action of R on a
compact metric space X. For each y € X, let DY = [0,7] -y if r > 0, let DY = [r,0] -y if

7 < 0, where [0,0] = {0}, and let Gy = (U,r({r} x D¥))°. For each y € Z and each r > 0, let
B(y,r)={x € X:d(z,y) <r}, let Z}! = ZNB(y,r), and let Z¢¥ = —Z?

Lemma IV.1.3. Using the notation in Notation IV.1.2, forally € Z, allT > 0, and all x € X,

we have

4. ZY¥ is a pseudo-transversal, and Z¥ C Z.

Proof: FixyeZr>0andze X. Let S=(R-z)NZ.

Since Z is a pseudo-transversal, we have S = Z. This implies that SN B(y,7)N Z # @,
which implies that (R - ) N Z¥ # @. This proves part 1.

Let z € Z}!. Then there exists € > 0 such that B(z,¢) C B{y,r). By part 1, for all n > 1,
we have (R-z)N Zez/zn # @. So for each n > 1, choose z,, € (R-z) N Z:/TL. Now, for each n > 1,
we have B(z,¢/2") C B(z,€) C B(y,7), 50 Tn € ZY N (R - z) for all n > 1. Since d(zn, 2) < /2"
for each n > 1, we see that x,, — 2. So part 2 holds. Then Z¥ = Z_ﬁ - m C m
Since (R-z) N ZY C Z¥, and since ZY is clearly compact, we see that (R - z) N Z¥ C Z¥. So part 3

holds. Part 4 follows immediately from part 3. This finishes the proof. O

IV.2. Simplicity and Topological Stable Rank of A,

Notation IV.2.1. For the rest of the chapter, we fix a pseudo-transversal Z, a point y € Z, and
a strictly decreasing sequence {r,} of positive real numbers that converges to 0. For each n > 1,
let Z, = Z¥ , where Z¥ is as in Notation IV.1.2, let Gz, be the set defined in Notation III.1.10,

let A, = Co(Ggz,), and let Ay = C,(G,). Note that Z; 2 Z; 2 ---, and that (o, Z, = {y}.
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Lemma IV.2.2. We have
1. Gz, CGz, C - and U, Gz, = Gy.
2. Co(Gz,) CCo(Gz,) C -+ and Ce(Gy) = U, Ce(Gz,)-
3. A1 C Ay C - andAy:m.

Proof:  For each r € R, let D¥ be as in Notation IV.1.2; and for each n > 1, and each r € R,
let D7 be the set D, in Lemma IV.1.1 for the pseudo-transversal Z,. Then by Lemma IV.1.1, we
have Gz, = (U,er({r} x D))°. We first claim that for all 7 € R, we have DY = (5>, D7

It is clear that for all 7 € R, we have DY C (2, D?. So we just need to prove the other
inclusion. Let r € R. We will only prove the inclusion for the case when r > 0, because the case
when r < 0 is similar, and the case when r = 0 is trivial. Let = € {75, D}. Then for each n > 1,
there exist s, € [0,7] and z, € Z, such that z = s,2,. It is clear that 2, — y. Since {s,} is a
bounded sequence, we can assume, passing to a subsequence if necessary, that s, — s for some
s € [0,r]. Then z = sp2, — sy € DY. Thus [,,5, DI C D}. So the claim is proven.

Thus (s,z) € (Gy)° if and only if (s,z) € U,cp({r} x Dy), if and only if z € DY, if
and only if z € (,,5; DY, if and only if (s,z) € (,5,{s} x Dy, if and only if (s,z) belongs to
Mozt (Urer({r} x D7) ,if and only if (5,) € Ma51(G%,) = (Unz Gzn)c. 80 Upsy Gz, = Gy
Since D} D Df D ... forall 7 € R, it follows immediately that Gz, C Gz, C --- . Part 1 is proven.

The first statement of part 2 and the first statement of part 3 follow immediately from
the first statement of part 1. Now let f € C.(G,), and let K be the support of f. Then K C
G, = Un2 1 Gz, . Since Gz, is open, and since K is compact, there exists N > 1 such that K C
US_1 Gz, =Gz, So f € Ce(Gz,) € Ups1 Ce(Gaz,). It is clear that (J,5; Co(Gz,) C Cu(Gy). So
part 2 is proven.

It follows immediately from part 1 and 2 and the first statement of part 3 that A, C
m. For the other inclusion, note that for each n > 1, C.(Gz,) C C.(R x X) is dense in

Co(Gz,) C C.(R x X) when C.(R x X) has the inductive limit topology, and so C.(Gz,) is dense

in Co(Gz,) in the norm topology. Then for all n > 1, we have A, = C.(Gz,) C C.(G,) = A,.

The desired inclusion follows. O
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Lemma IV.2.3. If I C A, is a non-zero ideal, then I N C.(G,) # 0.

Proof:  Since I = |J,5,(An NI), we know that for some n > 1, IN Ap # 0. Then IN A, is a
non-zero ideal in A, so by Corollary I11.6.25, we have INA,NC.(Gz,) # 0. But INA,NC.(Gz,) C
INCA(Gy), so C.(Gy) NI #0. O

Lemma IV.2.4. Let U be an open set in R X X. For each n > 1, let R,, denote the return time

for Z,, and for each n > 1 and each z € Z,, let
T? ={(r,sz): s € (0, Rn(2)),s — 7 € (0, Rp(2))}.

Then there exists N > 1 such that for alln > N and all 2 € Z,,, we have T} NU # @.

Proof: ~ We first show that for each I' € (0,00), there exists m > 1 such that R, (z) > T
for all 2 € Z,,. By Lemma 1I1.2.1, there exists a compact neighborhood K of y that satisfies
[(0,T]-(KNZ)IN(KNZ)=a. Let § > 0 satisfy B(y,d) C K, and let m > 1 satisfy r,, < 8. Then

Zm =By,rm)NZC B(y,0)NnZC By, d)nZC KnNZ.

So for all 2z € Z,,,, we have

[(0,T]- 21N Zm C[(0,T] - (KN Z) N (KNZ) =2,

and so R, (z) > T.

Now let 7 C R be a nonempty bounded open interval, and let V' C X be an open set such
that I x V' C U. Let r¢g > 0 be such that I C (—7rg,7g), and let sg > 7 be such that so-y € V. (The
existence of sy is guaranteed by the minimality of the action.) Pick N such that s - B(y,rny) €V
and Ry(z) > so+rg for all z € Zy. Note that By < Ry < ---.Let n > N. Then s¢-Z, C V. Now

let 2 € Z,. Then sg-z € V. Let t € I. Then —rg < —t < rg, s0

0<s89—79 < 80—t <80+70 < Ry(2) < Rn(2).

Also R,(z) > 7o+ 89 > so > 0, so (t,80z) € T It is clear that (¢,s02) € I x V C U. Thus

T AU # 2. O
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Proposition IV.2.5. Let A, be the C*-algebra defined in Notation IV.2.1. Then A, is simple.

Proof:  Recall that for each n > 1, the set Z, denotes the pseudo-transversal that gives rise
to An. Let I C A, be a non-zero ideal. By Lemma IV.2.3, we have I N C,(Gy) # 0. So let
0# feCc(Gy)NI. Let U = {z € Rx X: f(z) # 0}. Then U is open. Use Part 2 of Lemma IV.2.2
and Lemma IV.2.4 to get N such that for all n > N, the function f belongs to C.(Gz, ), and for
alln > N and for all z € Z,,, we have T? NU # &, where T} = {(r,s2): 5,5 — r € (0, R.(2))}.
Now fix n > N.

Let X1, Xq,...,X,, be the compact subsets of X associated with the pseudo-transversal
7, as defined in Notation I11.2.5. Let «g,...,a,, be the extensions of the backward entering
times associated with Xi,..., X,,, as obtained in Lemma II1.2.8. Let 31,..., B be the extensions
of the forward entering times associated with Xi,..., X,,, as obtained in Lemma III.2.8. Then
Xi,..., X are the base spaces of the stable recursive decomposition of A, with components
C(X:, K), for i =1,...,m, as in Corollary II1.6.22. For each i € {1,...,m} and each z € X, let
Hf = {(r,sz): 5,5 — 1 € (a;(x), Bs(x))}. We claim that HF NGz NU # @ for each i € {1,...,m}
and each z € X;.

Leti € {1,...,m}, and let z € X;. Let z = o;(z)z € Z,. Then R, (z) < Bi(z) — a;(z). Let
(r,sz) € T}. Then (r,sz) = (r, (s+ oy(x))z). Since 0 < s < Ry (z), we see that oy (z) < s+o4(z) <

R, (z) + ai(z) < Bi(z), s0 s + ay(z) € (as(z), Bs(z)). Since 0 < s — 7 < R, (z), we have

a(z) < oy(z) + 5 — 7 < Ro(z) + oy(x) < Bi(z).

So (r,sz) = (r, (as(z) + s)z) € HF. Thus T} C HY. Then, since TI C Gz, we see that T C
HYNGz. Thus @ #UNT} C UNHF N Gz. This proves the claim.

To finish the proof, let (fi,..., fm) be the image of f in the recursive decomposition B of
Ap. Let i € {1,...,m} and let z € X;. We just showed that Hf NGz NU # @. So f|arnc, # 0.
Then by Lemma II1.6.21, we have f;(z) # 0. This holds for all i € {1,...,m} and all z € X,.
So (f1,...,fm) is not contained in any primitive ideal of B, so (f1,...,fm) is not contained any

proper closed ideal B, so neither can f be contained in any proper closed ideal of A,. Therefore

INAp = Ay This holds for all n > N. So I = J,_,(INAn) = U,>y Av = Ay. Thus A, is

simple. O
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The next lemma shows that the connecting maps in the direct system (A,, t,,), where A,

is as in Notation IV.2.1 and ¢, is the inclusion map, are non-vanishing.

Lemma IV.2.6. Let A, and A, be as in IV.2.1. Let vn: Ap — Any1 be the inclusion. For each
n > 1, let XT',..., X" be the spaces associated with the pseudo-transversal Zni1 as defined in
Notation III.2.5. Then for eachn > 1, for each k € {1,...,1,}, and for each T € X, there exists
some f € Ce(Gz,) such that vn(f)|T, # 0, where

T; = {(7'7 333): s € ((an+1($),ﬂn+1(x))>3 —rc (a'n+1($)’ﬂn+1(x))},

and where apy1 and Ppiy are the entering times (not the extensions) associated with the

pseudo-transversal Zn11.

Proof: ~ We know that Gz, C Gz, ,. We show that T, N Gz, is nonempty. Because Z, and

n+41
Zn+1 are pseudo-transversals, there exists some s € (@n+1(z), fnr1(z)) such that sz ¢ Z,. Take
r > 0 small enough so that —r € (an41(sz), Bnyi1(sz)), and that (—2r,2r) - (sz) C ZS. Then
(rysz) € Gz, NTy. Thus T, NGy, # 2.

Then it is clear that there exists some f € C.(Gz,) such that f|r, 7 0. O

Theorem IV.2.7. The algebra A, is isomorphic to a simple inductive limit of SRSHAs such that
all connecting the maps of the inductive system are injective and non-vanishing. Let X, be the total
space of the n-th SRSHA in the inductive system. Then dim(X,,) < d for some d € N. Moreover,

Ay has topological stable rank one.

Proof: For each n > 1, let ty: A, — An4q be the inclusion map. Let B, be the SRSHA
assoclated with the SRSH decomposition obtained in previous chapter, and let h,: A, — B, be
the isomorphism in Corollary 111.6.20. Define (,: Bp, — Bpt1 by ¢ = Anyq 0t 0 byt

It is clear that the total space of B,, has dimension less or equal to the dimension of X,
which is finite. It is also clear that (, is injective. Lemmas I11.6.21 and IV.2.6 show that (, is
non-vanishing.

So the first statement of the theorem holds. It follows from Theorem I11.3.23 and

Porposition IV.2.5 that A, has topological stable rank one. O
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