A DISSERTATION

Presented to the Department of Mathematics and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

University of Oregon Graduate School

Confirmation of Approval and Acceptance of Dissertation prepared by:

Hutian Liang

Title:
"The Crossed Product of $\mathrm{C}(\mathrm{X})$ by a Free and Minimal Action of R"
This dissertation has been accepted and approved in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Mathematics by:

Christopher Phillips, Chairperson, Mathematics
Boris Botvinnik, Member, Mathematics
Huaxin Lin, Member, Mathematics
Yuan Xu, Member, Mathematics
Dietrich Belitz, Outside Member, Physics
and Richard Linton, Vice President for Research and Graduate Studies/Dean of the Graduate School for the University of Oregon.

June 14, 2010
Original approval signatures are on file with the Graduate School and the University of Oregon Libraries.
(c) 2010 Hutian Liang
An Abstract of the Dissertation of
Hutian Liang for the degree of
in the Department of Mathematics \quad Doctor of Philosophy
Title: THE CROSSED PRODUCT OF $C(X)$ BY A FREE MINIMAL ACTION OF \mathbb{R}

Approved: \qquad

> Dr. Christopher Phillips

In this dissertation, we will study the crossed product C^{*}-algebras obtained from free and minimal \mathbb{R} actions on compact metric spaces with finite covering dimension. We first define stable recursive subhomogeneous algebras (SRSHAs), which differ from recursive subhomogeneous algebras introduced by N. C. Phillips in that the irreducible representations of SRSHAs are infinite dimensional instead of finite dimensional. We show that simple inductive limits of SRSHAs with no dimension growth in which the connecting maps are injective and non-vanishing have topological stable rank one. We then construct C^{*}-subalgebras of the crossed product that are analogous to the C^{*}-subalgebras in the studies of free minimal \mathbb{Z} actions on compact metric spaces with finite covering dimension. Finally, we prove that these C^{*}-algebras are in fact simple inductive limits of SRSHAs in which the connecting maps are injective and non-vanishing. Thus these C^{*}-subalgebras have topological stable rank one.

ACKNOWLEDGMENTS

I would like to thank my advisor Chris Phillips for the endless and enlightening advises he has given me during the past five years. I would also like to thank my wife and my parents who have given me much encouragement and console. I also want to thank my dissertation committee for their prompt responses, and the Math department of University of Oregon for the financial support.

For my parents and my wife.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. STABLE RECURSIVE SUBHOMOGENEOUS ALGEBRAS 7
II.1. Definitions 7
II.2. Ideals and Homomorphisms of SRSHAs 9
II.3. Topological Stable Rank of Simple Inductive Limits of SRSHAs 23
III. STABLE RECURSIVE SUBHOMOGENEOUS C^{*}-SUBALGEBRAS OF $C^{*}(X, \mathbb{R})$ 53
III.1. Entering Times and Return Times 56
III.2. Continuous Extensions of the Entering Times 61
III.3. Properties of $\alpha_{i}, \beta_{i}, W_{i}$ and V_{i} 66
III.4. Properties of $G_{i}, F^{(k)}$ and $G^{(k)}$ 75
III.5. The C^{*}-Algebra of G_{i} 84
III.6. Stable Recursive Subhomogeneous Decomposition of A_{Z} 93
IV. INDUCTIVE LIMITS OF SRSHAS AS $C^{*}-S U B A L G E B R A S$ OF $C^{*}(X, \mathbb{R})$ 126
IV.1. Definition of the Subalgebra A_{y} 126
IV.2. Simplicity and Topological Stable Rank of A_{y} 127
REFERENCES 132

CHAPTER I

INTRODUCTION

This dissertation is on crossed product C^{*}-algebras obtained from free and minimal \mathbb{R} actions on unital abelian C^{*}-algebras, or transformation group C^{*}-algebras. A C^{*}-algebra can either be regarded as a subalgebra of the algebra $B(H)$ of the bounded operators on a Hilbert space H that are closed in norm and adjoint operation, or be defined abstractly using a set of axioms:

Definition I.0.1. Let A be a Banach algebra with a^{*}-operation $A \rightarrow A$, denoted $a \mapsto a^{*}$. We say A is a C^{*}-algebra if

1. the ${ }^{*}$-operation is conjugate linear;
2. for all $a, b \in A$, we have $(a b)^{*}=b^{*} a^{*}$;
3. for all $a \in A$, we have $\left(a^{*}\right)^{*}=a$;
4. for all $a \in A$, we have $\left\|a^{*} a\right\|=\|a\|^{2}$.

The condition $\left\|a^{*} a\right\|=\|a\|^{2}$ for all $a \in A$ is called the C^{*}-norm condition, and a norm that satisfies this condition is called a C^{*}-norm.

When a topological group G acts on a C^{*}-algebra A by automorphisms, we can form the crossed product C^{*}-algebra. Let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be a group homomorphism that is continuous when $\operatorname{Aut}(A)$ has the topology of pointwise convergence. For each $s \in G$, we use α_{s} to denote the image of s under α. Then on the linear space $C_{c}(G, A)$ of all continuous functions from G into A with compact support, we can define multiplication and a ${ }^{*}$-operation, which are often respectively called convolution and involution in this context, as follows: for all $f, g \in C_{c}(G, A)$,
define convolution by

$$
(f * g)(s)=\int_{G} f(t) \alpha_{t}\left(g\left(t^{-1} s\right)\right) d t, \text { for all } s \in G
$$

for all $f \in C_{c}(G, A)$, define involution by

$$
f^{*}(s)=\Delta(s)^{-1} \alpha_{s}\left(f\left(s^{-1}\right)^{*}\right), \text { for all } s \in G
$$

where the measure on G is taken to be the left Haar measure, and where Δ is the modular function associated with the left Haar measure. With convolution and involution defined as above $C_{c}(G, A)$ becomes a ${ }^{*}$-algebra. On $C_{c}(G, A)$, we can put the norm defined by $\|f\|_{1}=\int_{G}\|f(s)\| d s$, which is called the L^{1}-norm for obvious reasons. Denote the completion of $C_{c}(G, A)$ with respect to the L^{1}-norm by $L^{1}(G, A)$. Then $L^{1}(G, A)$ becomes a Banach-*-algebra. However $L^{1}(G, A)$ is not a C^{*}-algebra because the L^{1}-norm is not a C^{*}-norm.

In general, there are two different C^{*}-norms, the universal norm and the reduced norm, that we can put on $L^{1}(G, A)$ that will make $L^{1}(G, A)$ into a C^{*}-algebra after completion. The universal norm is defined to be

$$
\|f\|=\sup \left\{\|\pi(f)\|: \pi \text { is a representation of } L^{1}(G, A)\right\}
$$

A representation of a ${ }^{*}$-algebra B is a pair (π, H), where H is a Hilbert space, and where $\pi: B \rightarrow B(H)$ is a linear and multiplicative map that also preserves the *-operation. In order for the supremum to be well defined, we need to ensure that there is at least one representation of $L^{1}(G, A)$, and that $\left\{\|\pi(f)\|: \pi\right.$ is a representation of $\left.L^{1}(G, A)\right\}$ is a bounded set. The boundedness of $\left\{\|\pi(f)\|: \pi\right.$ is a representation of $\left.L^{1}(G, A)\right\}$ is automatic because any representation of any Banach-*-algebra is automatically norm reducing (Theorem 2.1.7 in [6]). To exhibit one representation of $L^{1}(G, A)$, we invoke the GNS construction. By the GNS construction, we know that any C^{*}-algebra has a representation (Section 3.4 in [6]), so the C^{*}-algebra A has a representation (π, H). The space $L^{2}(G, H)$ of all L^{2} integrable measurable functions is a Hilbert space; or equivalently $L^{2}(G, H)$ is the Hilbert space tensor product $L^{2}(G) \otimes H$. Then we can define
a representation $\lambda_{\pi}: C_{c}(G, A) \rightarrow B\left(L^{2}(G, H)\right)$ by

$$
\lambda_{\pi}(f)(\xi)(r)=\int_{G}\left[\pi\left(\alpha_{r}^{-1}(f(s))\right)\right]\left[\xi\left(s^{-1} r\right)\right] d s
$$

for all $f \in C_{c}(G, A)$, all $\xi \in L^{2}(G, H)$, and all $r \in G$. Routine calculations show that λ_{π} is L^{1}-norm decreasing, and hence extends to a representation of $L^{1}(G, A)$. See Chapter 2 in [17] for more details. The representation $\left(\lambda_{\pi}, L^{2}(G, H)\right)$ obtained from the representation (π, H) is known as the left regular representation induced by (π, H). The reduced norm on $L^{1}(G, A)$ is defined to be

$$
\|f\|_{r}=\sup \left\{\left\|\lambda_{\pi}(f)\right\|: \pi \text { is a representation of } A\right\} .
$$

The completion of $L^{1}(G, A)$ in the universal norm is called full crossed product, or just the crossed product, and will be denoted by $C^{*}(A, G, \alpha)$. The completion of $L^{1}(G, A)$ in the reduced norm is called the reduced crossed product and will be denoted $C_{r}^{*}(A, G, \alpha)$.

It is well known that when the group G is amenable, the universal norm and the reduced norm coincide (Theorem 7.13 in [17]). We will not go into details about amenability of groups, but it follows from Proposition A. 16 in [17] that \mathbb{R} is amenable. In this dissertation we only consider the group \mathbb{R}, so we will not distinguish the reduced crossed product from the full crossed product, nor the reduced norm from the universal norm. Further, we will only consider the crossed products of $C(X)$, the algebra of all continuous functions from X into \mathbb{C}, by \mathbb{R}, where X is a compact metric space with finite covering dimension, and where the action on $C(X)$ is induced by a free and minimal action of \mathbb{R} on X. In this case, we will denote the crossed product by $C^{*}(X, \mathbb{R})$. We will use $s \cdot x$, or just simply $s x$ to denote the action, for $s \in \mathbb{R}$ and $x \in X$. It is clear that we can identify the linear space $C_{c}(\mathbb{R}, C(X))$ with $C_{c}(\mathbb{R} \times X)$, the space of all continuous functions from the product space $\mathbb{R} \times X$ into the complex number \mathbb{C} with compact support. Also, it is known that the Lebesgue measure on \mathbb{R} is the left Haar measure for \mathbb{R}, and that the modular function Δ for the Lebesgue measure is the constant 1 , i.e. \mathbb{R} with the Lebesgue measure is unimodular. Then the convolution on $C_{c}(\mathbb{R} \times X)$ is given by the formula

$$
\begin{equation*}
(f * g)(r, x)=\int_{\mathbb{R}} f(t, x) g(r-t,(-t) x) d t \tag{I.1}
\end{equation*}
$$

and the involution on $C_{c}(\mathbb{R} \times X)$ is given by the formula

$$
\begin{equation*}
f^{*}(r, x)=\overline{f(-r,(-r) x)} \tag{I.2}
\end{equation*}
$$

It is known that the reduced normed on a crossed product $C^{*}(A, G, \alpha)$ can be obtained from just one of left regular representations induced by a faithful (injective) representations of A (Theorem 7.13 in [17]). That is, if (π, H) is a faithful representation of A, then $\|f\|_{r}=\left\|\lambda_{\pi}(f)\right\|$. Since the direct sum of all irreducible representations of $C(X)$ is faithful, and since the irreducible representations of $C(X)$ are the point evaluations, the universal norm (which is the same as the reduced norm) on $C_{c}(\mathbb{R} \times X)$ is given by

$$
\begin{equation*}
\|f\|=\sup _{x \in X}\left\|\lambda_{x}(f)\right\|, \tag{I.3}
\end{equation*}
$$

where for each $x \in X$, the representation $\lambda_{x}: C_{c}(\mathbb{R} \times X) \rightarrow L^{2}(\mathbb{R})$ is the left regular representation induced by the evaluation map ev_{x} of $C(X)$ at x. We can quickly verify that λ_{x} is given by

$$
\begin{equation*}
\lambda_{x}(f)(\xi)(r)=\int_{\mathbb{R}} f(r-t, r x) \xi(t) d t, \tag{I.4}
\end{equation*}
$$

for all $f \in C_{c}(\mathbb{R} \times X)$, all $\xi \in L^{2}(\mathbb{R})$, and all $r \in \mathbb{R}$.
If we consider the action of the group on a single orbit and forget about the topology, we quickly realize that the action is essentially the action of the group on itself by left translation. However, due to the minimality of the action, every orbit of the action is dense in the space X, and it becomes quite difficult to see how the orbits are tied together topologically. So we resort to the method of "orbit breaking" to simplify the dynamics, and obtain a structure theorem for certain distinguished C^{*}-subalgebras of $C^{*}(X, \mathbb{R})$.

The "orbit breaking" method was introduced by I. F. Putnam in the study of free and minimal actions of the group \mathbb{Z} of integers on the Cantor set. Let $u \in C^{*}(X, \mathbb{Z})$ be the standard unitary, let $Y \subseteq C(X)$ be a closed subset, and let $C_{0}(X \backslash Y)$ be the space of all continuous functions from $X \backslash Y$ into \mathbb{C} that vanish at infinity. In this case, finite dimensional C^{*}-subalgebras are constructed using partitions of the Cantor set X into clopen sets, and it is shown that the C^{*}-subalgebra A_{Y} of the crossed product generated by $C(X)$ and $u C_{0}(X \backslash Y)$ is an inductive limit of those finite dimensional subalgebras. See [10] and [11] for more details.

In [5], a similar idea is used on the crossed product of $C(X)$ by a free and minimal \mathbb{Z} action, where X is an arbitrary compact metric space X with finite covering dimension, to obtain a structure theorem for the C^{*}-subalgebras A_{Y} generated by $C(X)$ and $u C_{0}(X \backslash Y)$. In this case, closed subsets Y of X with nonempty interior are used to break the orbits. Every orbit is broken into partial orbits that start and end in Y which do not go through Y in between. Upon collecting the partial orbits together, it is shown that the C^{*}-subalgebra A_{Y} is obtained by "gluing" finitely many homogeneous algebras together, i.e. is a recursive subhomogeneous algebra. Then shrinking a sequence of decreasing closed subsets with nonempty interior to the point y, it was shown that A_{y}, the C^{*}-subalgebra generated by $C(X)$ and $u C_{0}(X \backslash\{y\})$, is a simple inductive limit of recursive subhomogeneous algebras with no dimension growth.

Recursive subhomogeneous algebras were introduced by N. C. Phillips in [8]. This class of C^{*}-algebras is a useful technical tool for studying transformation group C^{*}-algebras. In [9], a stable rank reduction theorem is obtained, i.e. it is shown that a simple inductive limit of recursive subhomogeneous algebras with no dimension growth has topological stable rank one. (See [16] for the definition of topological stable rank.) In [3], H. Lin and N. C. Phillips show that the subalgebras A_{y} of the crossed product of $C(X)$ by a free and minimal action of \mathbb{Z} have tracial rank zero given that certain hypothesis about traces hold. In the same paper, this result is used to show that the crossed product has tracial rank zero under the same hypothesis about traces.

In this dissertation, we similarly use the "orbit breaking" method to study the crossed products of $C(X)$ by free and minimal \mathbb{R} actions. When the group that is acting is \mathbb{R}, the subalgebras A_{Y} are no longer obtained by "gluing" homogeneous algebras together; but rather, they are obtained by "gluing" algebras of the form $C(Z) \otimes \mathbb{K}$, where Z is a compact metric space with finite covering dimension, and \mathbb{K} is the algebra of compact operators on the separable infinite dimensional Hilbert space. Thus we first define "stable recursive subhomogeneous algebras", analogous to recursive subhomogeneous algebras, to accommodate this change. We will also obtain a stable rank reduction theorem for simple inductive limits stable recursive subhomogeneous algebras with no dimension growth. Then we construct the analogs for actions of \mathbb{R} of A_{Y} and A_{y}. Recall that, in the integer case, A_{Y} is defined to be the C^{*}-subalgebra generated by $C(X)$ and $u C_{0}(X \backslash Y)$, and A_{y} is defined to be the C^{*}-subalgebra generated by $C(X)$ and $u C_{0}(X \backslash\{y\})$. However, when the group is not discrete, the unitaries that implement the action and the algebra $C(X)$ are not contained in the crossed product. So we have to resort to other methods to define
the analogous subalgebras. Finally we will show that the A_{Y} is a stable recursive homogeneous algebra, and that A_{y} is a simple inductive limit of the algebras A_{Y} with no dimension growth, and has have topological stable rank one.

CHAPTER II

STABLE RECURSIVE SUBHOMOGENEOUS ALGEBRAS

Recursive subhomogeneous algebras, abbreviated RSHA, are introduced by N. C. Phillips in [8]. Essentially, a RSHA is an iterated pull back of algebras of the form $C\left(X, M_{n}\right)$, where the spaces X are taken to be compact Hausdorff space, M_{n} is the algebra of $n \times n$-matrices, and $C\left(X, M_{n}\right)$ is the algebra of all continuous functions from X into M_{n}. It is well known that $C(X, A)=C(X) \otimes A$ for any C^{*}-algebra A. In some sense, a recursive subhomogeneous algebra is formed by "gluing" finitely many algebras of the form $C\left(X, M_{n}\right)$ together. In this chapter, we introduce an analogous "stable" version of RSHA, and establish a topological stable rank reduction result.

We will use \mathbb{K} to denote the algebra of all compact operators on the separable infinite dimensional Hilbert space throughout the dissertation. If A is a C^{*}-algebra, we will take $C(\varnothing, A)$ to be the zero algebra.

II.1. Definitions

Definition II.1.1. Let A, B be C^{*}-algebras, let X be a compact Hausdorff space, and let $\phi: A \rightarrow C(X, B)$ be a^{*}-homomorphism. We say ϕ is non-vanishing if for all $x \in X$, there exists some $a \in A$ such that $\phi(a)(x) \neq 0$.

Note that in the above definition, if $X=\varnothing$, then ϕ is vacuously non-vanishing.

Definition II.1.2. Let H be a separable infinite dimensional Hilbert space and let \mathbb{K} denote the set of all compact operators on H. Let n be a positive integer, let X_{1}, \ldots, X_{n} be compact Hausdorff spaces, let $X_{k}^{(0)} \subseteq X_{k}$ be closed subspaces for $k=2, \ldots, n$, and let $R_{k}: C\left(X_{k}, \mathbb{K}\right) \rightarrow C\left(X_{k}^{(0)}, \mathbb{K}\right)$ be the restriction map for $k=2, \ldots, n$. For each k with $2 \leq k \leq n$, let $\phi_{k}: A^{(k-1)} \rightarrow C\left(X_{k}^{(0)}, \mathbb{K}\right)$ be a
non-vanishing *-homomorphism, let $A^{(1)}=C\left(X_{1}, \mathbb{K}\right)$, and inductively define

$$
A^{(k)}=\left\{(a, b) \in A^{(k-1)} \oplus C\left(X_{k}, \mathbb{K}\right): \phi_{k}(a)=R_{k}(b)\right\} .
$$

We call

$$
\left(X_{1}, A^{(1)},\left(X_{k}, X_{k}^{(0)}, \phi_{k}, R_{k}, A^{(k)}\right)_{k=2}^{n}\right)
$$

a stable recursive sub-homogeneous system, abbreviated $S R S H$ system, and call the algebra $A^{(n)}$ the stable recursive sub-homogeneous algebra, abbreviated by SRSHA, corresponding to the system.

Let A be a C^{*}-algebra. We say that A has a stable recursive sub-homogeneous decomposition if there exists a stable recursive sub-homogeneous system

$$
\left(X_{1}, A^{(1)},\left(X_{k}, X_{k}^{(0)}, \phi_{k}, R_{k}, A^{(k)}\right)_{k=2}^{n}\right)
$$

such that $A \cong A^{(n)}$, in which case we also say that A is a stable recursive sub-homogeneous algebra, and call the system a stable recursive sub-homogeneous decomposition of A.

The integer n is called the length of the system (or the decomposition). The spaces X_{1}, \ldots, X_{n} are called the bases spaces of the system. The space $X=\bigsqcup_{k=1}^{n} X_{k}$ is called the total space of the system. The spaces $X_{2}^{(0)}, \ldots, X_{n}^{(0)}$ are called the attaching spaces of the system. The maps R_{2}, \ldots, R_{k} are called the restriction maps of the system. The maps $\phi_{2}, \phi_{3}, \ldots, \phi_{n}$ are called the attaching map of the system. For each $k \in\{1, \ldots, n\}$, the algebra $A^{(k)}$ is called k-th partial algebra of the system.

Note that a SRSH system of length 1 is simply $\left(X_{1}, C\left(X_{1}, \mathbb{K}\right)\right)$. For a SRSHA A, the decomposition is by no means unique. We allow any or all of the attaching spaces to be the empty set. If $X_{k}^{(0)}=\varnothing$ for some k, then $A^{(k)}$ is simply $A^{(k-1)} \oplus C\left(X_{k}, \mathbb{K}\right)$. If A has a stable SRSH decomposition

$$
\left(X_{1}, A^{(1)},\left(X_{k}, X_{k}^{(0)}, \phi_{k}, R_{k}, A^{(k)}\right)_{k=2}^{n}\right),
$$

then A is a C^{*}-subalgebra of $\bigoplus_{k=1}^{n} C\left(X_{k}, \mathbb{K}\right)$; also for each $k \in\{1, \ldots, n\}$, the k-th partial algebra is also a SRSHA with the decomposition being

$$
\left(X_{1}, A^{(1)},\left(X_{i}, X_{i}^{(0)}, \phi_{i}, R_{i}, A^{(i)}\right)_{i=2}^{k}\right) .
$$

Let $a=\left(a_{1}, \ldots, a_{n}\right) \in A$ and let x be in the total space X. Then there exists unique k such that $x \in X_{k}$. We will use $a(x)$ to denote $a_{k}(x)$. So for each $x \in X$, the map $A \rightarrow \mathbb{K}$ sending $a \mapsto a(x)$ is a clearly *-homomorphism. If $I \leq k \leq l \leq n$, then it is easily verified that the map $p_{l, k}: A^{(l)} \rightarrow A^{(k)}$ defined by $p_{l, k}\left(a_{1}, \ldots, a_{l}\right)=\left(a_{1}, \ldots, a_{k}\right)$ is a surjective ${ }^{*}$-homomorphism. If $1 \leq k \leq l \leq m \leq n$, then $p_{m, k}=p_{l, k} \circ p_{m, l}$.

II.2. Ideals and Homomorphisms of SRSHAs

In this section we establish some results about the spectrum, primitive ideal space, and ideals of a SRSHA. We will use \hat{A} to denote the spectrum of A, i.e. the space of all irreducible representations of A, and if π is an irreducible representation of A, we will use $[\pi]$ to denote the corresponding element in \widehat{A}. We will use $\operatorname{Prim}(A)$ to denote the primitive ideal space of A. The next lemma is a standard result.

Lemma II.2.1. Let X be a locally compact Hausdorff space and let $A=C_{0}(X, \mathbb{K})$. For each $x \in X$, let $\mathrm{ev}_{x}: A \rightarrow \mathbb{K}$ be defined by $\mathrm{ev}_{x}(f)=f(x)$. Then

1. the map $X \rightarrow \widehat{A}$ defined by $x \mapsto\left[\mathrm{ev}_{x}\right]$ is a well defined bijection;
2. the map $X \rightarrow \operatorname{Prim}(A)$ defined by $x \mapsto\{f \in A: f(x)=0\}$ is a well-defined bijection.

Lemma II.2.2. Let n be a positive integer. Let

$$
\left(X_{1}, A^{(1)},\left(X_{k}, X_{k}^{(0)}, \psi_{k}, R_{k}, A^{(k)}\right)_{k=2}^{n}\right)
$$

be a stable recursive sub-homogeneous system and let $A=A^{(n)}$. Let $X_{1}^{(0)}=\varnothing$. Then

1. the $\operatorname{map} M: \bigsqcup_{k=1}^{n}\left(X_{k} \backslash X_{k}^{(0)}\right) \rightarrow \operatorname{Prim}(A)$ defined by $M(x)=\{a \in A: a(x)=0\}$ is a well defined bijection.
2. for each $x \in \bigsqcup_{k=1}^{n}\left(X_{k} \backslash X_{k}^{(0)}\right)$, the evaluation map $\mathrm{ev}_{x}: A \rightarrow \mathbb{K}$, given by a $\mapsto a(x)$, is non-zero; also the map $S: \bigsqcup_{k=1}^{n}\left(X_{k} \backslash X_{k}^{(0)}\right) \rightarrow \widehat{A}$ defined by $S(x)=\left[\mathrm{ev}_{x}\right]$ is a well defined bijection.

Proof: Induct on n. The case when $n=1$ is given by Lemma II.2.1. Suppose that statement holds for some n, let

$$
\left(X_{1}, A^{(1)},\left(X_{k}, X_{k}^{(0)}, \psi_{k}, R_{k}, A^{(k)}\right)_{k=2}^{n+1}\right)
$$

be a SRSH system of length $n+1$ and let $A=A^{(n+1)}$.
Let $1 \leq i \leq n+1$ and let $x \in X_{i} \backslash X_{i}^{(0)}$. Define $\pi: A^{(n+1)} \rightarrow \mathbb{K}$ by $\pi\left(f_{1}, \ldots, f_{n+1}\right)=f_{i}(x)$. Then π is a clearly a *-homomorphism. Let $a \in \mathbb{K}$. Choose $h \in C\left(X_{i}\right)$ such that $h(x)=1$ and supp $h \subseteq X_{i} \backslash X_{i}^{(0)}$, and let $f \in C\left(X_{i}, \mathbb{K}\right)$ be defined by $f(y)=h(y) a$. Then supp $f \subseteq X_{i} \backslash X_{i}^{(0)}$. Hence $R_{i}(f)=\left.f\right|_{X_{i}^{(0)}}=0=\psi_{i}(0)$, and so $(0, \ldots, 0, f) \in A^{(i)}$. Since the map $A^{(n+1)} \rightarrow A^{(i)}$ defined by $\left(g_{1}, \ldots, g_{n+1}\right) \mapsto\left(g_{1}, \ldots, g_{i}\right)$ is surjective, there exist g_{i+1}, \ldots, g_{n+1} such that $\xi=$ $\left(0, \ldots, 0, f, g_{i+1}, \ldots, g_{n+1}\right) \in A^{(n+1)}$. Then $\pi(\xi)=f(x)=a$. Thus $\pi=\operatorname{ev}_{x}$ maps onto \mathbb{K}, and so π is non-zero and irreducible. This shows that the map S defined in part 2 of the statement of the lemma is well defined. Further, this also shows that

$$
\left\{\left(g_{1}, \ldots, g_{n+1}\right) \in A^{(n+1)}: g_{i}(x)=0\right\}=\operatorname{ker} \pi \in \operatorname{Prim}\left(A^{(n+1)}\right)
$$

and so M defined in part 1 of the statement of the lemma is well defined.
Now consider

$$
I_{n+1}=\left\{\left(f_{1}, \ldots, f_{n}, f_{n+1}\right) \in A^{(n+1)}:\left(f_{1}, \ldots, f_{n}\right)=0\right\} .
$$

Then it is clear that I_{n+1} is a closed two sided ideal of A. Note that if $\left(f_{1}, \ldots, f_{n+1}\right) \in I_{n+1}$, then $0=\psi_{n+1}\left(f_{1}, \ldots, f_{n}\right)=R_{n+1}\left(f_{n+1}\right)$, and so f_{n+1} vanishes on $X_{n+1}^{(0)}$. Define

$$
\phi: I_{n+1} \rightarrow C_{0}\left(X_{n+1} \backslash X_{n+1}^{(0)}, \mathbb{K}\right)
$$

by $\phi\left(f_{1}, \ldots, f_{n+1}\right)=\left.f_{n+1}\right|_{X_{n+1} \backslash X_{n+1}^{(0)}}$. This map is well defined because if $\left(f_{1}, \ldots, f_{n+1}\right) \in I_{n+1}$, then f_{n+1} vanishes on $X_{n+1}^{(0)}$, so $f_{n+1} \in C_{0}\left(X_{n+1} \backslash X_{n+1}^{(0)}, \mathbb{K}\right)$. Then it is clear that ϕ is a *-isomorphism.

Now let $\pi: A \rightarrow B(H)$ be a non-zero irreducible representation. First assume that $\left.\pi\right|_{I_{n+1}}: I_{n+1} \rightarrow B(H)$ is not the zero representation. Then $\left.\pi\right|_{I n_{n+1}}$ is also irreducible. Thus $\pi \circ \phi^{-1}$ is an irreducible representation of $C_{0}\left(X_{n+1} \backslash X_{n+1}^{(0)}, \mathbb{K}\right)$, and so by Lemma II.2.1 there exists $x \in X_{n+1} \backslash X_{n+1}^{(0)}$, such that $\left[\pi \circ \phi^{-1}\right]=\left[\mathrm{ev}_{x}\right]$. Then there exists a unitary u such that
$\pi \circ \phi^{-1}=\operatorname{Ad}(u) \circ \mathrm{ev}_{x}$, where $\operatorname{Ad}(u): \mathbb{K} \rightarrow \mathbb{K}$ is defined by $\operatorname{Ad}(u)(a)=u a u^{*}$. Define $\pi^{\prime}: A \rightarrow B(H)$ by $\pi^{\prime}\left(f_{1}, \ldots, f_{n+1}\right)=\operatorname{Ad}(u)\left(f_{n+1}(x)\right)$. Then $\left.\pi\right|_{I_{n+1}}=\left.\pi^{\prime}\right|_{I_{n+1}}$. Since $\left.\pi\right|_{I_{n+1}}=\left.\pi^{\prime}\right|_{I_{n+1}}$ is irreducible, hence non-degenerate, we have $\pi=\pi^{\prime}$. Then $S(x)=\left[\pi^{\prime}\right]=[\pi]$.

Now suppose that $\left.\pi\right|_{I_{n+1}}=0$. Define $\psi: A^{(n+1)} \rightarrow A^{(n)}$ by $\psi\left(f_{1}, \ldots, f_{n+1}\right)=\left(f_{1}, \ldots, f_{n}\right)$.
Consider the short exact sequence

$$
0 \rightarrow I_{n+1} \rightarrow A^{(n+1)} \xrightarrow{\psi} A^{(n)} \rightarrow 0 .
$$

Since π restricts to zero on I_{n+1}, π factors through $A^{(n)}$. That is, there exists $\widetilde{\pi}: A^{(n)} \rightarrow B(H)$ such that $\widetilde{\pi} \circ \psi=\pi$. Then $\operatorname{Im} \pi=\operatorname{Im} \tilde{\pi}$. Since π is irreducible, we see that $\widetilde{\pi}$ is also irreducible. Thus by the inductive hypothesis, we see that there exists some $1 \leq i \leq n$ and some $x \in X_{i} \backslash X_{i}^{(0)}$ such that $[\widetilde{\pi}]=\left[\mathrm{ev}_{x}\right]$. So there exists a unitary such that $\widetilde{\pi}(f)=\operatorname{Ad}(u)(f(x))$ for all $f \in A^{(n)}$. Then for all $f=\left(f_{1}, \ldots, f_{n}, f_{n+1}\right) \in A^{(n+1)}$, we have $\pi(f)=\widetilde{\pi}(\psi(f))=\widetilde{\pi}\left(f_{1}, \ldots, f_{n}\right)=\operatorname{Ad}(u)\left(f_{i}(x)\right)$. Thus $[\pi]=S(x)$, and hence S is surjective. If $J \in \operatorname{Prim}(A)$, then there exists some irreducible representation π of A such that $J=$ ker π. So there exists $x \in \bigsqcup_{k=1}^{n+1}\left(X_{k} \backslash X_{k}^{(0)}\right)$ such that $\left[\mathrm{ev}_{x}\right]=[\pi]$. It follows that

$$
J=\operatorname{ker} \pi=\operatorname{ker}^{\operatorname{ev}}{ }_{x}=\{a \in A: a(x)=0\}=M(x) .
$$

Thus M is also surjective.
Next we show that M and S are injective. Let $x, y \in \bigsqcup_{k=1}^{n+1}\left(X_{k} \backslash X_{k}^{(0)}\right)$ and suppose that $x \neq y$. First assume that there exist $1 \leq j<k \leq n$ such that $x \in X_{j} \backslash X_{j}^{(0)}$ and $y \in X_{k} \backslash X_{k}^{(0)}$. Let $h \in C\left(X_{k}\right)$ satisfy $h(y)=1$ and supp $h \subseteq X_{k} \backslash X_{k}^{(0)}$, let $a \in \mathbb{K}$ be a non-zero element, let $f=a h$, and let $b=(0, \ldots, 0, f) \in A^{(k)}$. Let f_{k+1}, \ldots, f_{n+1} be such that $g=\left(b, f_{k+1}, \ldots, f_{n+1}\right) \in A^{(n+1)}$. Then $g(x)=0$, but $g(y)=a \neq 0$. Thus $g \in M(x)$, but $g \notin M(y)$, and so $M(x) \neq M(y)$. Since $M(x)=\operatorname{kerev}_{x}$ and $M(y)=\operatorname{kerev}_{y}$, we have $S(y)=\left[\mathrm{ev}_{y}\right] \neq\left[\mathrm{ev}_{x}\right]=S(x)$. Now suppose that $x, y \in X_{k} \backslash X_{k}^{(0)}$ for some $1 \leq k \leq n$. Since x, y are different, there exists an open $U \subseteq X_{k} \backslash X_{k}^{(0)}$ such that $y \in U$, but $x \notin U$. Choose $h \in C\left(X_{k}\right)$ such that $h(y)=1$ and h vanishes outside of U. Let $a \in \mathbb{K}$ be non-zero. Let $f=a h$. Then f vanishes on $X_{k}^{(0)}$. So there exist

$$
g_{k+1} \in C\left(X_{k+1}, \mathbb{K}\right), \ldots, g_{n+1} \in C\left(X_{n+1}, \mathbb{K}\right)
$$

such that $g=\left(0, \ldots, 0, f, g_{k+1}, \ldots, g_{n+1}\right)$ belongs to A. Then $g(x)=f(x)=0$ and $g(y)=f(y)=a$. It follows that $g \in M(x)$, but $g \notin M(y)$. So $M(y) \neq M(x)$, and consequently $S(x) \neq S(y)$.

Corollary II.2.3. Let

$$
\left(X_{1}, A^{(1)},\left(X_{k}, X_{k}^{(0)}, \psi_{k}, R_{k}, A^{(k)}\right)_{k=2}^{n}\right)
$$

be a stable recursive sub-homogeneous system and let $A=A^{(n)}$. Let $X_{1}^{(0)}=\varnothing$. Then for all $x, y \in \bigsqcup_{k=1}^{n}\left(X_{k} \backslash X_{k}^{(0)}\right)$ with $x \neq y$, there exist some $a, b \in A$ such that $a(x)=0, a(y) \neq 0$, $b(x) \neq 0$, and $b(y)=0$.

Proof: First suppose that $x \in X_{j} \backslash X_{j}^{(0)}$ and $y \in X_{k} \backslash X_{k}^{(0)}$, where $1 \leq j<k \leq n$. Then the element $a \in A$ needed is constructed in the last paragraph of the proof of II.2.2. Next we construct the element b. Let $h \in C\left(X_{j}\right)$ be such that $h(x)=1$ and h vanishes on $X_{j}^{(0)}$, let $\xi \in \mathbb{K}$ be non-zero, and let $f=h \xi$. Then $(0, \ldots, 0, f) \in A^{(j)}$. Choose $b^{\prime} \in A^{(k-1)}$ such that the first j entries of b^{\prime} are $(0, \ldots, 0, f)$. Let $c=\phi_{k}\left(b^{\prime}\right)$. Let V be an open neighborhood of $X_{k}^{(0)}$ that does not contain y, and choose $h^{\prime} \in C\left(X_{k}\right)$ such that $\left.h^{\prime}\right|_{X_{k}^{(0)}}=1$ and h^{\prime} vanishes outside of V. Let c^{\prime} be any extension of c over X_{k}, and let $f^{\prime}=h^{\prime} c^{\prime}$. Then $\left.f^{\prime}\right|_{X_{k}^{(0)}}=c=\phi_{k}\left(b^{\prime}\right)$. So $\left(b^{\prime}, f^{\prime}\right) \in A^{(k)}$. Choose $b \in A$ such that the first k entries of b are $\left(b^{\prime}, f^{\prime}\right)$. Then $b(x)=f(x)=\xi \neq 0$, and $b(y)=f^{\prime}(y)=h^{\prime}(y) c^{\prime}(y)=0$.

Now suppose that $x, y \in X_{k} \backslash X_{k}^{(0)}$. Let U_{x} and U_{y} be two disjoint open sets contained in $X_{k} \backslash X_{k}^{(0)}$ such that $x \in U_{x}$ and $y \in U_{y}$. Choose $h_{x} \in C\left(X_{k}\right)$ and $h_{y} \in C\left(X_{k}\right)$ such that $h_{x}(x)=1$ and $h_{y}(y)=1, h_{x}$ vanishes outside of U_{x}, and h_{y} vanishes outside of U_{y}. Let $\xi \in \mathbb{K}$ be non-zero. Let $f_{x}=h_{x} \xi$, and $f_{y}=h_{y} \xi$. Then $a^{\prime}=\left(0, \ldots, f_{y}\right) \in A^{(k)}$ and $b^{\prime}=\left(0, \ldots, 0, f_{x}\right) \in A^{(k)}$. Let $a, b \in A$ be such that the first k entries of a and b are, respectively, a^{\prime} and b^{\prime}. Then

$$
\begin{aligned}
& a(x)=a^{\prime}(x)=f_{y}(x)=0, \\
& a(y)=a^{\prime}(y)=f_{y}(y)=\xi \neq 0, \\
& b(x)=b^{\prime}(x)=f_{x}(x)=\xi \neq 0, \\
& b(y)=b^{\prime}(y)=f_{x}(y)=0 .
\end{aligned}
$$

Corollary II.2.4. Let n be a positive integer. Let

$$
\left(X_{1}, A^{(1)},\left(X_{k}, X_{k}^{(0)}, \psi_{k}, R_{k}, A^{(k)}\right)_{k=2}^{n}\right)
$$

be a stable recursive sub-homogeneous system, and let $A=A^{(n)}$. Let $X_{1}^{(0)}=\varnothing$. Let $I \subseteq A$ be a closed two sided ideal of A. Then there exists a closed set $F \subseteq X=\bigsqcup_{k=1}^{n} X_{k}$ such that $I=\left\{a \in A:\left.a\right|_{F}=0\right\}$.

Proof: Let I be a closed two sided ideal of A. If $I=0$, then take $F=X$. If $I=A$, then take $F=\varnothing$. Now assume that I is proper and non-zero. Recall that for any C^{*}-algebra B and for any closed two sided ideal I of B, the hull of I, denoted by hull (I), is the set of all primitive ideals of B that contain I; and for any subset $S \subseteq \operatorname{Prim}(B)$, the kernel of S, denoted by $\operatorname{ker}(S)$ is the intersection of all the members of S. We know that $I=\operatorname{ker}(\operatorname{hull}(I))$. Let M be as in Lemma II.2.2. Let $F=\overline{M^{-1}(\operatorname{hull}(I))}$. We will verify that $I=\left\{a \in A:\left.a\right|_{F}=0\right\}$. Let J denote $\left\{a \in A:\left.a\right|_{F}=0\right\}$.

Let $a \in I$, and let $x \in M^{-1}(\operatorname{hull}(I))$. Then $M(x) \in \operatorname{hull}(I)$, and so $a \in I \subseteq M(x)$. So $a(x)=0$. This holds for all $x \in M^{-1}(\operatorname{hull}(I))$. Thus a vanishes on $M^{-1}(\operatorname{hull}(I))$. Since a is continuous, $\left.a\right|_{F}=0$. So $a \in J$, and so $I \subseteq J$. Now suppose that $a \in J$. Let $L \in$ hull (I). Then there exists $x \in X$ such that $L=M(x)$, and so $x \in M^{-1}(\operatorname{hull}(I)) \subseteq F$. The condition $a \in J$ implies that $a(x)=0$, which implies that $a \in M(x)=L$. This holds for all $L \in \operatorname{hull}(I)$, so $a \in \operatorname{ker}(\operatorname{hull}(I))=I$. Thus $J \subseteq I$, and so $I=J$.

The next theorem is a restatement of Theorem 1.4.4 in [1].
Theorem II.2.5. Let H be an arbitrary Hilbert space, and let $A \subseteq K(H)$ be a non-zero C^{*}-subalgebra. Then there exists an index set I and a family $\left(p_{i}\right)_{i \in I}$ of mutually orthogonal projections in $B(H)$, indexed by I, such that

1. $p_{i} \in A^{\prime}$ for all $i \in I$, where A^{\prime} denotes the commutant of A;
2. $p_{i} A p_{i}=K\left(p_{i} H\right)$ for all $i \in I$ (we identify $K\left(p_{i} H\right)$ with $p_{i} K(H) p_{i}$ in an obvious way);
3. $\|a\|=\sup _{i \in I}\left\|p_{i} a p_{i}\right\|$ for all $a \in A$;
4. $\sum_{i \in I} p_{i} a p_{i}$ converges to a in norm for all $a \in A$;
5. for all $a \in A$ and for all $\epsilon>0$, there exists a finite subset $F \subseteq I$ such that $\left\|p_{i} a p_{i}\right\|<\epsilon$ for all $i \notin F$.

Proposition II.2.6. Let H be a separable infinite dimension Hilbert space and let \mathbb{K} denote the set of all compact operators on H. Let

$$
\left(X_{1}, A^{(1)},\left(X_{k}, X_{k}^{(0)}, \phi_{k}, R_{k}, A^{(k)}\right)_{k=2}^{n}\right)
$$

be a SRSH system whose underlying Hilbert space is H. Let $A=A^{(n)}$. Let $X_{1}^{(0)}=\varnothing$. Let $\phi: A \rightarrow K(H)$ be a non-zero ${ }^{*}$-homomorphism. Then there exists an index set I, a family $\left(p_{i}\right)_{i \in I}$ of mutually orthogonal projections in $B(H)$, a family $\left(w_{i}\right)_{i \in I}$ of isometries in $B(H)$, and a family $\left(x_{i}\right)_{i \in I}$ of elements in $\bigsqcup_{k=1}^{n}\left(X_{k} \backslash X_{k}^{(0)}\right)$ (note that we do not assume that the x_{i} are mutually distinct) such that

1. $p_{i} \in \phi(A)^{\prime}$ for all $i \in I$, where $\phi(A)^{\prime}$ denotes the commutant of $\phi(A)$;
2. $w_{i}^{*} w_{i}=1$ and $w_{i} w_{i}^{*}=p_{i}$ for all $i \in I$;
3. $\phi(a)=\sum_{i \in I} w_{i} a\left(x_{i}\right) w_{i}^{*}$ for all $a \in A$, where the convergence is in norm;
4. $\|\phi(a)\|=\sup _{i \in i}\left\|a\left(x_{i}\right)\right\|$ for all $a \in A$;
5. I is a finite set.

Proof: It is clear that $\phi(A)$ is a non-zero C^{*}-subalgebra of \mathbb{K}. Apply Theorem II. 2.5 to $\phi(A)$ to get the index set I and the family of mutually orthogonal projections $\left(p_{i}\right)_{i \in I}$. Then part 1 of the proposition holds holds. For each $i \in I$, define $\phi_{i}: A \rightarrow K\left(p_{i} H\right)$ by $\phi_{i}(a)=p_{i} \phi(a) p_{i}$. By part 1 of this proposition, ϕ_{i} is a well defined *-homomorphism. It is clear that

$$
\phi_{i}(A)=p_{i} \phi(A) p_{i} \subseteq p_{i} K(H) p_{i}=K\left(p_{i} H\right) .
$$

Then part 2 of Theorem II. 2.5 implies that $\phi_{i}(A)=K\left(p_{i} H\right)$. Thus $\left(\phi_{i}, p_{i} H\right)$ is an irreducible representation of A. So by Lemma II.2.2, there exists a unitary $w_{i}: H \rightarrow p_{i} H$ and some $x_{i} \in \bigsqcup_{k=1}^{n}\left(X_{k} \backslash X_{k}^{(0)}\right)$ such that $\phi_{i}(a)=w_{i} a\left(x_{i}\right) w_{i}^{*}$ for all $a \in A$. Identifying w_{i} as an element of $B(H)$ in the obvious way (identify w_{i} with the composition inclusion $p_{i} H \rightarrow H$ followed by w_{i}), the element w_{i} is an isometry in $B(H)$. Then it is clear that part 2 of this proposition holds. By
part 4 of Theorem II.2.5, we have

$$
\phi(a)=\sum_{i \in I} p_{i} \phi(a) p_{i}=\sum_{i \in I} \phi_{i}(a)=\sum_{i \in I} w_{i} a\left(x_{i}\right) w_{i}^{*}
$$

for all $a \in A$, where the convergence is in norm. So part 3 holds. By part 3 of Theorem II.2.5, we have

$$
\|\phi(a)\|=\sup _{i \in I}\left\|p_{i} \phi(a) p_{i}\right\|=\sup _{i \in I}\left\|\phi_{i}(a)\right\|=\sup _{i \in I}\left\|w_{i} a\left(x_{i}\right) w_{i}^{*}\right\|=\sup _{i \in I}\left\|a\left(x_{i}\right)\right\|
$$

So 4 holds.
Finally we show that I is a finite set by contradiction. Suppose that I is an infinite set. Let S denote the set $\left\{x_{i} \in X: i \in I\right\}$, where $X=\bigsqcup_{k=1}^{n} X_{k}$. We claim that there are distinct $i_{l} \in I$ for $l \in \mathbb{N}$ such that $i_{l} \neq i_{l^{\prime}}$ if $l \neq l^{\prime}$, and that the sequence $\left(x_{i_{l}}\right)_{l=1}^{\infty}$ converges to some $x_{0} \in X$. To prove this claim, if S is finite, then there exists some $y \in S$ such that the set $\left\{i \in I: x_{i}=y\right\}$ is infinite. In this case take a sequence of mutually distinct indices $\left(i_{l}\right)_{l=1}^{\infty}$ in $\left\{i \in I: x_{i}=y\right\}$. Then clearly $x_{i_{l}}=y \rightarrow y$. If S is infinite, then, since X is compact, we can pick a countable mutually distinct subset elements $y_{1}, y_{2}, \ldots \in \subseteq S$ such that $y_{n} \rightarrow x_{0}$ for some $x \in X$. For each $l \geq 1$, choose $i_{l} \in I$ such that $x_{i_{l}}=y_{l}$. Then the indices i_{1}, i_{2}, \ldots are necessarily mutually distinct, and $x_{i_{l}}=y_{l} \rightarrow x_{0}$. This proves the claim .

Now we show that for all $a \in A,\left\|a\left(x_{i_{l}}\right)\right\| \rightarrow 0$. Let $a \in A$, and let $\epsilon>0$. By part 5 of Theorem II.2.5, there exists a finite subset $F \subseteq I$ such that $i \notin F$ implies that

$$
\left\|p_{i} \phi(a) p_{i}\right\|=\left\|\phi_{i}(a)\right\|=\left\|w_{i} a\left(x_{i}\right) w_{i}\right\|=\left\|a\left(x_{i}\right)\right\|<\epsilon .
$$

Since F is finite, there exists $l_{0} \geq 1$ such that if $l \geq l_{0}$ then $i_{l} \notin F$. Thus for all $l \geq l_{0}$, we have $\left\|a\left(x_{i_{l}}\right)\right\|<\epsilon$. This shows that $\left\|a\left(x_{i_{l}}\right)\right\| \rightarrow 0$ for all $a \in A$.

Since a is continuous for all $a \in A$, we have $a\left(x_{0}\right)=0$ for all $a \in A$. Then the map $A \rightarrow \mathbb{K}$ defined by $a \mapsto a\left(x_{0}\right)$ is the zero map, hence $x_{0} \in \bigsqcup_{k=1}^{n} X_{k}^{(0)}$, because by Lemma II.2.2, for all $y \in X \backslash\left(\bigsqcup_{k=1}^{n} X_{k}^{(0)}\right)$, the map $a \mapsto a(y)$ is an irreducible representation and hence cannot be the zero map. Suppose that $x_{0} \in X_{k}^{(0)}$ for some $k \in\{1, \ldots, n\}$. Now, we assumed that the map $\phi_{k}: A^{(k-1)} \rightarrow C\left(X_{k}^{(0)}, \mathbb{K}\right)$ is non-vanishing, so there exists some $b \in A^{(k-1)}$ such that $\phi_{k}(b)\left(x_{0}\right) \neq 0$. Then, since the $\operatorname{map} A^{(n)} \rightarrow A^{(k-1)}$ defined by $\left(a_{1}, \ldots, a_{n}\right) \mapsto\left(a_{1}, \ldots, a_{k-1}\right)$ is surjective, there
exists some $a=\left(a_{1}, \ldots, a_{n}\right) \in A$ such that $\left(a_{1}, \ldots, a_{k-1}\right)=b$. Thus

$$
a\left(x_{0}\right)=R_{k}\left(a_{k}\right)\left(x_{0}\right)=\phi_{k}(b)\left(x_{0}\right) \neq 0
$$

This contradicts the fact that $a\left(x_{0}\right)=0$ for all $a \in A$. This means that I has to be finite.

Definition II.2.7. Let

$$
\left(X_{1}, A^{(1)},\left(X_{k}, X_{k}^{(0)}, \psi_{k}, R_{k}, A^{(k)}\right)_{k=2}^{n}\right)
$$

be a SRSH system, and let $A=A^{(n)}$. Let $\phi: A \rightarrow \mathbb{K}$ be a non-zero *-homomorphism. Then by Proposition II.2.6, there exists $x_{1}, \ldots, x_{m} \in \bigsqcup_{k=1}^{n}\left(X_{k} \backslash X_{k}^{(0)}\right)$ and isometries w_{1}, \ldots, w_{m} with orthogonal ranges such that $\phi(a)=\sum_{i=1}^{m} w_{i} a\left(x_{i}\right) w_{i}^{*}$ for all $a \in A$. We call the set $\left\{x_{1}, \ldots, x_{n}\right\}$ (not counting multiplicity) the spectrum of ϕ, and we will denote the spectrum of ϕ by $\operatorname{sp}(\phi)$. Let

$$
\left(Y_{1}, B^{(1)},\left(Y_{k}, Y_{k}^{(k)}, \phi_{k}, Q_{k}, B^{(k)}\right)_{k=2}^{m}\right)
$$

be another SRSH system, let $B=B^{(m)}$, and let $\phi: A \rightarrow B$ be a^{*}-homomorphism. We say that ϕ is non-vanishing if, for all $y \in \bigsqcup_{k=1}^{m} Y_{k}$, the map $A \rightarrow \mathbb{K}$ defined by $\mathrm{ev}_{y} \circ \phi$ is not the zero map. In this case, will call $\operatorname{sp}\left(\mathrm{ev}_{y} \circ \phi\right)$ the $\operatorname{spectrum~of~} \phi$ at y and write $\operatorname{sp}_{y}(\phi)$.

In the previous definition, it is not necessary to insist on ϕ being non-vanishing to define $\operatorname{sp}_{y}(\phi)$. If $\mathrm{ev}_{y} \circ \phi=0$ for some y, then $\mathrm{sp}_{y}(\phi)$ would simply be the empty set. The condition that ϕ is non-vanishing guarantees that $\operatorname{sp}_{y}(\phi) \neq \varnothing$ for all $y \in \bigsqcup_{i=1}^{m} Y_{i}$.

The spectrum of a *-homomorphism between homogeneous algebras was used in [2] to show that simple inductive limits of homogeneous algebras with no dimension growth have topological stable rank one. One of the key steps is that if the inductive limit is simple, then the spectra of the connecting *-homomorphisms of the inductive system, in a sense, become more and more "dense" when we follow the comnecting maps of the inductive limit further and further out. We will prove a similar result in our situation. We will first need a few preliminary results, and some results that will be used later in this dissertation.

Lemma II.2.8. Let

$$
\begin{aligned}
& \left(X_{1}, A^{(1)},\left(X_{k}, X_{k}^{(0)}, \phi_{k}, R_{k}, A^{(k)}\right)_{k=2}^{n}\right) \\
& \left(Y_{1}, B^{(1)},\left(Y_{k}, Y_{k}^{(0)}, \psi_{k}, T_{k}, B^{(k)}\right)_{k=2}^{m}\right)
\end{aligned}
$$

and

$$
\left(Z_{1}, C^{(1)},\left(Z_{k}, Z_{k}^{(0)}, \theta_{k}, S_{k}, C^{(k)}\right)_{k=2}^{l}\right)
$$

be three SRSH systems, and let $A=A^{(n)}, B=B^{(m)}$, and $C=C^{(l)}$. Let $\phi: A \rightarrow B$ and $\psi: B \rightarrow C$ be non-vanishing *-homomorphisms. Then $\psi \circ \phi$ is non-vanishing.

Proof: Let $z \in \bigsqcup_{i=1}^{l} Z_{k}$. Since ψ is non-vanishing, the map $\mathrm{ev}_{z} \circ \psi$ is non-zero. So there exists $t \in \mathbb{N}$ with $t>0$, and isometries w_{1}, \ldots, w_{t}, with orthogonal ranges such that $\psi(b)(z)=$ $\sum_{i=1}^{t} w_{i} b\left(y_{i}\right) w_{i}^{*}$ for all $b \in B$, where $\left\{y_{1}, \ldots, y_{t}\right\}=\operatorname{sp}_{z}(\psi) \neq \varnothing$. Since ϕ is non-vanishing, there exists some $a \in A$ such that $\phi(a)\left(y_{1}\right) \neq 0$. Then $\|\psi(\phi(a))(z)\| \geq\left\|\phi(a)\left(y_{1}\right)\right\|>0$, and hence $\psi \circ \phi$ is non-vanishing.

Lemma II.2.9. Let n be a positive integer. Let

$$
\left(X_{1}, A^{(1)},\left(X_{k}, X_{k}^{(0)}, \phi_{k}, R_{k}, A^{(k)}\right)_{k=2}^{n}\right)
$$

be a SRSH system and let $A=A^{(n)}$. Let $X_{1}^{(0)}=\varnothing$ and let $X=\bigsqcup_{k=1}^{n} X_{k}$.

1. Let $U \subseteq X$ be an open subset. Then $I_{U}=\left\{a \in A:\left.a\right|_{U c}=0\right\}$ is a closed two sided ideal of A. Further, let $U_{k}=U \cap X_{k}$ for $k \in\{1, \ldots, n\}$, and let

$$
W_{k}=\left\{x \in X_{k}^{(0)}: \mathrm{sp}_{x}\left(\phi_{k}\right) \cap\left(\bigsqcup_{i=1}^{k-1} U_{i}\right) \neq \varnothing\right\}
$$

for each $k=2, \ldots, n$. Suppose that

$$
\begin{equation*}
U \neq \varnothing \text { and } W_{k}=U_{k} \cap X_{k}^{(0)} \text { for } k=2, \ldots, n \tag{II.1}
\end{equation*}
$$

Then $I_{U} \neq 0$, and

$$
U=\left\{x \in X: \text { there exists some } a \in I_{U} \text { such that } a(x) \neq 0\right\} .
$$

2. Let $I \subseteq A$ be a non-zero ideal. Then the set

$$
U=\{x \in X: \text { there exists some } a \in A \text { such that } a(x) \neq 0\}
$$

is open in X and satisfies the condition II. 1 in part 1. Also $I_{U}=I$.

Proof: For part 1, we induct on the length of the SRSH system. If $n=1$, then result is trivial. Suppose that result holds for systems of length n, and let

$$
\left(X_{1}, A^{(1)},\left(X_{k}, X_{k}^{(0)}, \phi_{k}, R_{k}, A^{(k)}\right)_{k=2}^{n+1}\right)
$$

be a system of length $n+1$. Let $U, U_{1}, \ldots, U_{n+1}$ and W_{1}, \ldots, W_{n+1} be as given in the statement of the lemma.

It is clear that I_{U} is a closed two sided ideal of A. Let $V=\bigsqcup_{k=1}^{n} U_{k}$. First suppose that $V \neq \varnothing$. Then by the induction hypothesis, $J_{V}=\left\{a \in A^{(n)}:\left.a\right|_{V^{c}}=0\right\}$ is a non-zero ideal. So let $b \in J_{V}$ be nonzero. Now, for all $x \in X_{n+1}^{(0)} \backslash W_{n+1}$, we have $\operatorname{sp}_{x}\left(\phi_{n+1}\right) \subseteq V^{c}$. Since b vanishes on V^{c}, the function $\phi_{n+1}(b)$ also vanishes outside of W_{n+1}. If $W_{n+1}=\varnothing$, then $\phi_{n+1}(b)=0$. Thus $(b, 0) \in I_{U}$ and $(b, 0) \neq 0$. So assume that $W_{n+1} \neq \varnothing$. Since W_{k} is closed in U_{n+1}, we can extend $\phi_{n+1}(b)$ to some $f \in C_{0}\left(U_{n+1}, \mathbb{K}\right)$. Since $U_{n+1} \subseteq X_{n+1}$ is open, we can define $f(x)=0$ for all $x \notin U_{n+1}$, so that $f \in C\left(X_{n+1}, \mathbb{K}\right)$. Then $R_{n+1}(f)=\phi_{n+1}(b)$, and so $(b, f) \in I_{U}$ and $(b, f) \neq 0$. Thus $I_{U} \neq 0$.

Now suppose that $V=\varnothing$. Then $W_{n+1}=\varnothing$, and so $U_{n+1} \subseteq X_{n+1} \backslash X_{n+1}^{(0)}$. Since $U_{n+1} \neq \varnothing$ (otherwise $U=\varnothing$), there exists $f \in C\left(X_{n+1}, \mathbb{K}\right)$ such that f vanishes outside of U_{n+1} and $f \neq 0$. Then $(0, \ldots, 0, f) \in I_{U}$ and $(0, \ldots, 0, f) \neq 0$. So $I_{U} \neq 0$.

It is clear that

$$
\left\{x \in X: \text { there exists some } a \in I_{U} \text { such that } a(x) \neq 0\right\} \subseteq U
$$

Now let $x \in U$. Let k be the integer such that $x \in U_{k}$. First suppose that $1 \leq k \leq n$. Let $W=\bigsqcup_{i=1}^{n} U_{i}$. Then by the induction hypothesis, we have

$$
W=\left\{x \in X: \text { there exists some } a \in I_{W} \subseteq A^{(n)} \text { such that } a(x) \neq 0\right\}
$$

So there exists some $b \in I_{W}$ such that $b(x) \neq 0$. An argument similar to the one given in the second paragraph of this proof give some $f \in C\left(X_{n+1}, \mathbb{K}\right)$ such that $a=(b, f) \in I_{U}$. Then $a(x)=b(x) \neq 0$. Therefore

$$
x \in\left\{y \in X: \text { there exists some } a \in I_{U} \text { such that } a(y) \neq 0\right\} .
$$

Now suppose that $k=n+1$. Assume that $x \in X_{n+1}^{(0)}$. Then $x \in W_{n+1}$, which means that there exists some $y \in \mathrm{sp}_{x}\left(\phi_{n+1}\right) \cap\left(\bigsqcup_{i=1}^{n} U_{i}\right)$. By what is shown in the previous paragraph, there exists some $a \in I_{U}$ such that $a(y) \neq 0$. Then

$$
\|a(x)\|=\sup _{z \in \operatorname{sp}_{x}\left(\phi_{n+1}\right)}\|a(z)\| \geq\|a(y)\|>0
$$

so $a(x) \neq 0$, and so
$x \in\left\{y \in X\right.$: there exists some $a \in I_{U}$ such that $\left.a(y) \neq 0\right\}$.

Finally assume that $x \notin X_{n+1}^{(0)}$. Let $\xi \in \mathbb{K}$ be non-zero and choose $h \in C\left(X_{n+1}\right)$ such that $h(x)=1$ and h vanishes outside of $U_{n+1} \cap\left(X_{n+1} \backslash X_{n+1}^{(0)}\right)$. Let $f=\xi h$. Then $a=(0, \ldots, 0, f) \in A$, and a vanishes outside of U. So $a \in I_{U}$, and $a(x)=f(x)=\xi \neq 0$. Therefore
$x \in\left\{y \in X\right.$: there exists some $a \in I_{U}$ such that $\left.a(y) \neq 0\right\}$.

Thus

$$
U=\left\{x \in X: \text { there exists some } a \in I_{U} \text { such that } a(x) \neq 0\right\} .
$$

For part 2, we first note that $U=\bigcup_{a \in I}\{x \in X: a(x) \neq 0\}$ is open in X, and that U cannot be empty. Let U_{1}, \ldots, U_{n+1} and W_{2}, \ldots, W_{n} be as given in part 1 . Let $k \in\{2, \ldots, n\}$. Let $x \in W_{k}$ and let $y \in \operatorname{sp}_{x}\left(\phi_{k}\right) \cap\left(\bigsqcup_{i=1}^{k-1} U_{i}\right)$. Let $a \in I$ satisfy $a(y) \neq 0$. Then

$$
\|a(x)\|=\sup _{z \in \operatorname{sp}_{x}\left(\phi_{k}\right)}\|a(z)\| \geq\|a(y)\|>0 .
$$

Thus $a(x) \neq 0$. So $x \in U_{k}$, and so $x \in U_{k} \cap X_{k}^{(0)}$.
Now suppose that $x \in U_{k} \cap X_{k}^{(0)}$. Then $a(x) \neq 0$ for some $a \in I$. Let $a=\left(b, g_{1}, \ldots, g_{l}\right)$, where $b \in A^{(k-1)}$. Then $\|a(x)\|=\sup _{z \in \operatorname{sp}_{x}\left(\phi_{k}\right)}\|b(z)\|$. Now, since b vanishes outside of $\bigsqcup_{i=1}^{k-1} U_{i}$, if
$\operatorname{sp}_{x}\left(\phi_{k}\right) \subseteq\left(\bigsqcup_{i=1}^{k-1} U_{i}\right)^{c}$, then $\|a(x)\|=0$, and so $a(x)=0$. Since $a(x) \neq 0$, we have

$$
\operatorname{sp}_{x}\left(\phi_{k}\right) \cap\left(\bigsqcup_{i=1}^{k-1} U_{i}\right) \neq \varnothing
$$

So $x \in W_{k}$. Thus $W_{k}=U_{k} \cap X_{k}^{(0)}$.
It is clear that $I \subseteq I_{U}$. Now we know that there exists some closed subset $F \subseteq X$ such that $I=\left\{a \in A:\left.a\right|_{F}=0\right\}$. Since for all $x \in U$, there exists some $a \in I$ such that $a(x) \neq 0$, we have $F \subseteq U^{c}$. Then a belonging to I_{U} implies a vanishes on U^{c}, and so a vanishes on F. So $a \in I$. Thus $I_{U} \subseteq I$, and hence $I=I_{U}$.

Lemma II.2.10. Let

$$
\left(X_{1}, A^{(1)},\left(X_{k}, X_{k}^{(0)}, \phi_{k}, R_{k}, A^{(k)}\right)_{k=2}^{n}\right)
$$

be a SRSH system, and let $A=A^{(n)}$. Let $X=\bigsqcup_{k=1}^{n} X_{k}$. Then there exists some $a \in A$ such that $a(x) \neq 0$ for all $x \in X$.

Proof: Induct on the length of the system. The result clearly holds for $n=1$. Suppose that result holds for systems of length n, let

$$
\left(X_{1}, A^{(1)},\left(X_{k}, X_{k}^{(0)}, \phi_{k}, R_{k}, A^{(k)}\right)_{k=2}^{n+1}\right)
$$

be a SRSH system, and let $A=A^{(n+1)}$.
Now,

$$
\left(X_{1}, A^{(1)},\left(X_{k}, X_{k}^{(0)}, \phi_{k}, R_{k}, A^{(k)}\right)_{k=2}^{n}\right)
$$

is a system of length n, so by inductive hypothesis, $A^{(n)}$ contains some a_{0} such that $a_{0}(x) \neq 0$ for all $x \in \bigsqcup_{k=1}^{n} X_{k}$. Let $a=a_{0}^{*} a_{0}$. Then $a(x) \geq 0$ for all $x \in X$, and $a(x) \neq 0$ for all $x \in X$. Let $b=\phi_{n+1}(a)$. Because a vanishes nowhere, and because ϕ_{n+1} is non-vanishing, we have $b(x) \neq 0$ and $b(x) \geq 0$ for all $x \in X_{n+1}^{(0)}$. Extend b to some positive element $b^{\prime} \in C\left(X_{n+1}, \mathbb{K}\right)$. Let

$$
U=\left\{x \in X_{n+1}: b^{\prime}(x) \neq 0\right\} .
$$

It is clear that U is an open neighborhood of $X_{n+1}^{(0)}$. Then $\left\{U, X_{n+1} \backslash X_{n+1}^{(0)}\right\}$ is an open cover
for X_{n+1}. Let $\left\{h_{1}, h_{2}\right\}$ be a partition of unity subordinate to $\left\{U, X_{n+1} \backslash X_{n+1}^{(0)}\right\}$. (Without loss of generality, assume that $\operatorname{supp} h_{1} \subseteq U$, and $\operatorname{supp} h_{2} \subseteq X_{n+1} \backslash X_{n+1}^{(0)}$.) Let $\xi \in \mathbb{K}$ be a non-zero positive element. Let $f=h_{1} b^{\prime}+h_{2} \xi$. Then if $x \in X_{n+1}^{(0)}$, we have

$$
f(x)=h_{1}(x) b^{\prime}(x)+h_{2}(x) \xi=b^{\prime}(x)=b(x)=\phi_{n+1}(a)(x) .
$$

Thus $(a, f) \in A$. Now let $x \in X_{n+1}$. If $h_{1}(x) \neq 0$, then $x \in U$, and then $h_{1}(x) b^{\prime}(x) \neq 0$. Since $f(x) \geq h_{1}(x) b^{\prime}(x)$, we have $f(x) \neq 0$. If $h_{1}(x)=0$, then $h_{2}(x)=1$, and so $h_{2}(x) \xi=\xi \neq 0$. Since $f(x) \geq h_{2}(x) \xi$, we have $f(x) \neq 0$. Thus f vanishes nowhere. Then the element (a, f) vanishes nowhere on X. (That is (a, f) is not contained in any non-zero proper ideal of A.)

The next proposition shows that in a simple inductive limit in which the connecting maps are injective and non-vanishing, the spectra of the connecting maps become more and more dense, in some sense. If A is a set and if B is a subset of A, we use B^{c} to denote the complement of B.

Proposition II.2.11. Let $\left(A_{n}, \psi_{n}\right)$ be an inductive system of SRSHAs and let A be the inductive limit. Let X_{n} be the total space for A_{n}. Suppose that ψ_{n} is injective for all n, that ψ_{n} is non-vanishing for all n, and that A is simple. Then for all $n \geq 1$, and for all open set $U \subseteq X_{n}$ such that $I_{U}=\left\{a \in A_{n}:\left.a\right|_{U^{c}}=0\right\}$ is a non-zero ideal, there exists $n_{0} \geq n$ such that for all $k \geq n_{0}$ and for all $x \in X_{k}$, we have $\operatorname{sp}_{x}\left(\psi_{n, k}\right) \cap U \neq \varnothing$, where $\psi_{i, j}=\psi_{j-1} \circ \cdots \circ \psi_{i+1} \circ \psi_{i}$ for $i \leq j$.

Proof: This will be a proof by contradiction. Suppose that there exists $m \geq 1$ and some open set $U \subseteq X_{m}$ with $I_{U} \neq 0$, such that for all $n \geq m$, there exists some $k_{n} \geq n$ and some $x \in X_{k_{n}}$ such that $\mathrm{sp}_{x}\left(\psi_{m, k_{n}}\right) \cap U=\varnothing$. Then U certainly cannot be the entire space X_{n}. Without loss of generality, we can assume that $k_{n}<k_{n+1}<k_{n+2}<\cdots$. Then, passing to a subsequence of the inductive system and truncating if necessary, we can assume that $m=1$, and that $k_{n}=n$ for all $n \geq 1$. Thus we are assuming that there exists some open subset $U \subseteq X_{1}$ with $I_{U} \neq 0$ such that for all $n \geq 1$, there exists some $x \in X_{n}$ such that $\operatorname{sp}_{x}\left(\psi_{1, n}\right) \cap U=\varnothing$. It is clear that $U \neq X_{1}$.

For each $n \geq 1$, let $\psi^{n}: A_{n} \rightarrow A$ be the natural injection that comes with the inductive limit. Also let

$$
V=\left\{x \in X_{1}: \text { there exists some } b \in I_{U} \text { such that } b(x) \neq 0\right\} .
$$

It is clear that $V \subseteq U$. Then for all $n \geq 1$, there exists some $x \in X_{n}$ such that

$$
\operatorname{sp}_{x}\left(\psi_{1, n}\right) \cap V \subseteq \operatorname{sp}_{x}\left(\psi_{1, n}\right) \cap U=\varnothing .
$$

By Lemma II.2.9, we have $I_{V}=I_{U} \neq 0$. For each $n \geq 2$, let $F_{n}=\overline{\left\{x \in X_{n}: \operatorname{sp}_{x}\left(\psi_{1, n}\right) \cap V=\varnothing\right\}}$. Then $F_{n} \neq \varnothing$ for all $n \geq 2$. Let $I_{n}=\left\{a \in A_{n}:\left.a\right|_{F_{n}}=0\right\}$. Let $I_{1}=I_{V}$. For each $n \geq 1$, let $J_{n}=\psi^{n}\left(I_{n}\right)$, and let $B_{n}=\psi^{n}\left(A_{n}\right)$. Then J_{n} is a closed two sided ideal of B_{n}. We first show that $J_{1} \subseteq J_{2} \subseteq J_{3} \subseteq \cdots$. Fix $n \geq 1$, and let $a \in I_{n}$. Let $x_{0} \in\left\{x \in X_{n+1}: \operatorname{sp}_{x}\left(\psi_{1, n+1}\right) \cap V=\varnothing\right\}$. Let $y \in \operatorname{sp}_{x_{0}}\left(\psi_{n}\right)$.

Suppose that $\operatorname{sp}_{y}\left(\psi_{1, n}\right) \cap V \neq \varnothing$. Let $z \in \operatorname{sp}_{y}\left(\psi_{1, n}\right) \cap V$, and let $b \in I_{1}=I_{V}$ be such that $b(z) \neq 0$. Then

$$
\left\|\psi_{1, n+1}(b)\left(x_{0}\right)\right\|=\left\|\psi_{n}\left(\psi_{1, n}(b)\right)\left(x_{0}\right)\right\| \geq\left\|\psi_{1, n}(b)(y)\right\| \geq\|b(z)\|>0 .
$$

But b vanishes outside of V, so if $x \in X_{n+1}$ satisfies $\mathrm{sp}_{x}\left(\psi_{1, n+1}\right) \cap V=\varnothing$, then

$$
\left\|\psi_{1, n+1}(b)(x)\right\|=\sup _{z^{\prime} \in \operatorname{sp}_{x}\left(\psi_{1, n+1}\right)}\left\|b\left(z^{\prime}\right)\right\|=0
$$

hence in particular $\psi_{1, n+1}(b)\left(x_{0}\right)=0$. This contradicts the fact that $\left\|\psi_{1, n+1}(b)\left(x_{0}\right)\right\|>0$. Thus $\mathrm{sp}_{y}\left(\psi_{1, n}\right) \cap V=\varnothing$.

Then $y \in F_{n}$, and so $a(y)=0$. This holds for all $y \in \operatorname{sp}_{x_{0}}\left(\psi_{n}\right)$, so $\psi_{n}(a)\left(x_{0}\right)=0$. This holds for all $x_{0} \in X_{n+1}$ such that $\operatorname{sp}_{x_{0}}\left(\psi_{1, n+1}\right) \cap U=\varnothing$, so $\left.\psi_{n}(a)\right|_{F_{n+1}}=0$, and so $\psi_{n}(a) \in I_{n+1}$. Then $\psi^{n}(a)=\psi^{n+1}\left(\psi_{n}(a)\right) \in \psi^{n+1}\left(I_{n+1}\right)=J_{n+1}$. This holds for all $a \in I_{n}$, so $J_{n}=\psi^{n}\left(I_{n}\right) \subseteq J_{n+1}$. This holds for all $n \geq 1$, so we have $J_{1} \subseteq J_{2} \subseteq \cdots$.

Then $J=\overline{\bigcup_{n \geq 1} J_{n}}$ is an ideal of A. The ideal J cannot be 0 , because ψ^{1} is injective and $I_{1} \neq 0$. Finally we show that $J \neq A$. Let $a \in A_{1}$ satisfy $a(x) \neq 0$ for all $x \in X_{1}$. Then compactness of X_{1} gives that there exists $\epsilon>0$ such that $\|a(x)\| \geq \epsilon$ for all $x \in X_{1}$. For all $n \geq 2$ and for all $x \in X_{n}$, we have $\left\|\psi_{1, n}(a)(x)\right\|=\sup _{y \in \operatorname{sp}_{x}\left(\psi_{1, n}\right)}\|a(y)\| \geq \epsilon$. For all $n \geq 2$, and for all $b \in I_{n}$, we have

$$
\left\|\psi_{1, n}(a)-b\right\| \geq\left\|\left.\psi_{1, n}(a)\right|_{F_{n}}-\left.b\right|_{F_{n}}\right\|=\left\|\left.\psi_{1, n}(a)\right|_{F_{n}}\right\| \geq \epsilon .
$$

Then for all $n \geq 1$ and for all $b \in I_{n}$, we have

$$
\left\|\psi^{1}(a)-\psi^{n}(b)\right\|=\left\|\psi^{n}\left(\psi_{1, n}(a)\right)-\psi^{n}(b)\right\|=\left\|\psi_{1, n}(a)-b\right\| \geq \epsilon .
$$

Thus $\psi^{1}(a) \notin J$. So $J \neq A$.
This shows that J is a non-zero proper ideal of A, which contradicts the simplicity of A.

II.3. Topological Stable Rank of Simple Inductive Limits of SRSHAs

The first few lemmas of this section will be some trivial or nearly trivial results about functional calculus and semi-continuity of spectral projections at self-adjoint elements in \mathbb{K}, which the author of this dissertation has not encountered. These may or may be be written down explicitly in the literature. Then, through several lemmas, we adapt Lemma 3.3 in [9], which is the key lemma in showing that simple inductive limits of RSHAs with no dimension growth have topological stable rank one, to our situation. The last portion of the section will be dedicated to showing that if A is simple inductive limit of SRSHAs with no dimension growth such that all the connecting maps are injective and non-vanishing, then A has topological stable rank one.

Lemma II.3.1. Let π be a polynomial with complex coefficients, let $M>0$ be a positive real number, and let $\epsilon>0$. Then there exists $\delta>0$ such that if A is a unital C^{*}-algebra, and if $a, b \in A$ satisfy $\|a\| \leq M,\|b\| \leq M$, and $\|a-b\|<\delta$, then $\|\pi(a)-\pi(b)\|<\epsilon$.

Proof: \quad Let $n \in \mathbb{N}$ and let $\lambda_{0}, \lambda_{1} \ldots, \lambda_{n} \in \mathbb{C}$ be such that $\pi(\xi)=\sum_{i=0}^{n} \lambda_{i} \xi^{i}$ for all $\xi \in \mathbb{C}$. If $\lambda_{0}=\lambda_{1}=\cdots=\lambda_{n}=0$, then $\pi(a)=0$ for all $a \in A$, and the result follows trivially. So assume that not all of $\lambda_{0}, \ldots, \lambda_{n}$ are 0 . Let

$$
\delta=\frac{\epsilon}{\sum_{k=1}^{n}\left(k\left|\lambda_{k}\right| M^{k-1}\right)}>0 .
$$

Then $\delta>0$. Let A be a unital C^{*}-algebra, and let $a, b \in A$ satisfy $\|a\| \leq M,\|b\| \leq M$, and
$\|a-b\|<\delta$. Then

$$
\begin{aligned}
\|\pi(a)-\pi(b)\|= & \left\|\sum_{k=0}^{n} \lambda_{k}\left(a^{k}-b^{k}\right)\right\|=\left\|\sum_{k=1}^{n} \lambda_{k}\left(a^{k}-b^{k}\right)\right\| \\
\leq & \sum_{k=1}^{n}\left(\left|\lambda_{k}\right| \cdot\left\|a^{k}-b^{k}\right\|\right) \\
= & \sum_{k=1}^{n}\left[| \lambda _ { k } | \cdot \left(\| a^{k}-a^{k-1} b+a^{k-1} b-a^{k-2} b^{2}\right.\right. \\
& \left.\left.\quad+a^{k-2} b^{2}-\cdots-a b^{k-1}+a b^{k-1}-b^{k} \|\right)\right] \\
\leq & \sum_{k=1}^{n}\left[\left|\lambda_{k}\right| \cdot\left(\left\|a^{k}-a^{k-1} b\right\|+\left\|a^{k-1} b-a^{k-2} b^{2}\right\|+\cdots+\left\|a b^{k-1}-b^{k}\right\|\right)\right] \\
< & \sum_{k=1}^{n}\left[\left|\lambda_{k}\right| \cdot k M^{k-1} \delta\right] \\
= & \delta \sum_{k=1}^{n}\left[\left|\lambda_{k}\right| \cdot k M^{k-1}\right]=\epsilon .
\end{aligned}
$$

Corollary II.3.2. Let $M>0$ be a real number, let $f \in C([-M, M])$, and let $\epsilon>0$. Then there exists a $\delta>0$ such that if A is a unital C^{*}-algebra, and if $a, b \in A$ are self-adjoint elements such that $\|a\| \leq M,\|b\| \leq M$, and $\|a-b\|<\delta$, then $\|f(a)-f(b)\|<\epsilon$.

Proof: \quad Since $[-M, M]$ is compact, there exists a polynomial π such that $\left\|\left.\pi\right|_{[-M, M]}-f\right\|_{\infty}<\epsilon / 3$. Apply Lemma II.3.1 to π, M, and $\epsilon / 3$ to get $\delta>0$. Let A be a unital C^{*}-algebra, and let $a, b \in A$ be self-adjoint elements such that $\|a\| \leq M,\|b\| \leq M$, and $\|a-b\|<\delta$. Then

$$
\begin{aligned}
\|f(a)-f(b)\| & \leq\|f(a)-\pi(a)\|+\|\pi(a)-\pi(b)\|+\|\pi(b)-f(b)\| \\
& \leq\left\|\left.f\right|_{\operatorname{sp}(a)}-\left.\pi\right|_{\operatorname{sp}(a)}\right\|_{\infty}+\epsilon / 3+\left\|\left.f\right|_{\operatorname{sp}(b)}-\left.\pi\right|_{\operatorname{sp}(b)}\right\|_{\infty} \\
& <\epsilon / 3+\epsilon / 3+\epsilon / 3 \\
& =\epsilon .
\end{aligned}
$$

Corollary II.3.3. Let $M>0$ be a real number, let $f \in C([0, M])$, and let $\epsilon>0$. Then there exists some $\delta>0$ such that if A is a unital C^{*}-algebra, and if $a, b \in A$ are positive elements such that
$\|a\| \leq M,\|b\| \leq M$, and $\|a-b\|<\delta$, then $\|f(a)-f(b)\|<\epsilon$.
Proof: Extend f to f^{\prime} over $[-M, M]$, then apply Corollary II. 3.2 with f replaced by f^{\prime}.
Lemma II.3.4. Let A be a C^{*}-algebra, let \widetilde{A} denote the unitization of A, and let 1 be the adjoined identity. (Here, we add a new identity to A even if A is already unital.) Let $a \in A$ be self-adjoint and let $\widetilde{a}=a+1$. Then

1. $\operatorname{sp}(a)+1=\operatorname{sp}(\widetilde{a})$ where both spectra are taken with respect to \widetilde{A}.
2. Let $h: \operatorname{sp}(\widetilde{a}) \rightarrow \operatorname{sp}(a)$ be defined by $h(\xi)=\xi-1$ and let $h^{*}: C(\operatorname{sp}(a)) \rightarrow C(\operatorname{sp}(\widetilde{a}))$ be defined by $h^{*}(f)=f \circ h$. Let $F: C(\operatorname{sp}(a)) \rightarrow \widetilde{A}$ and let $\widetilde{F}: C(\operatorname{sp}(\widetilde{a})) \rightarrow \widetilde{A}$ be the functional calculus (with respect to \widetilde{A}) at a and \widetilde{a} respectively. Then $F=\widetilde{F} \circ h^{*}$.

Proof: Part 1 is trivial. To prove part 2, note that $\widetilde{a}=h^{-1}(a)$. Then if $f \in C(\operatorname{sp}(a))$, we have

$$
\widetilde{F} \circ h^{*}(f)=h^{*}(f)(\widetilde{a})=h^{*}(f)\left(h^{-1}(a)\right)=(f \circ h)\left(h^{-1}(a)\right)=\left(f \circ h \circ h^{-1}\right)(a)=f(a)=F(f) .
$$

For all C^{*}-algebras A and all $a \in A$, we use $|a|$ to denote $\left(a^{*} a\right)^{1 / 2}$. We use $\chi_{\alpha}: \mathbb{R} \rightarrow \mathbb{R}$ to denote the characteristic function of $(-\infty, \alpha)$ for all $\alpha \in \mathbb{R}$. Also, for all C^{*}-algebras A and all self-adjoint $a \in A$, we use $p_{\alpha}(a)$ to denote $\chi_{\alpha}(a)$. Even though $p_{\alpha}(a)$ may not be in A for some combinations of a, A and α, it is still in the double commutant of A when A is faithfully represented on a Hilbert space. For our purposes, A will be either the algebras of compact operators on separable Hilbert spaces, or their unitization; and α will be less then the limit point of $\operatorname{sp}(a)$ (if any). In these cases $p_{\alpha}(a)$ will be a finite rank projection, and hence in A. Then the next corollary follows immediately from Lemma II.3.4.

Corollary II.3.5. Let $a \in \mathbb{K}_{\text {s.a. }}$, let $1>\alpha>0$, and let $\widetilde{a}=a+1$. Then $p_{\alpha}(\widetilde{a})=p_{\alpha-1}(a)$.
Lemma II.3.6. Let A be a unital C^{*}-algebra and let $p_{1}, p_{2} \in A$ be orthogonal projections such that $p_{1}+p_{2}=1$. Let A_{1} and A_{2} be C^{*}-subalgebras of A such that p_{i} is the identity of A_{i} for $i=1,2$. Let $a_{1} \in A_{1}$ and $a_{2} \in A_{2}$.

1. Then $\operatorname{sp}_{A}\left(a_{1}+a_{2}\right)=\operatorname{sp}_{A_{1}}\left(a_{1}\right) \cup \operatorname{sp}_{A_{2}}\left(a_{2}\right)$, where $\mathrm{sp}_{B}(b)$ denotes the spectrum of b with respect to B for all C^{*}-algebra B and any $b \in B$.
2. Suppose that a_{1} and a_{2} are self-adjoint. Let F_{i} be the functional calculus of a_{i} with respect to A_{i}, for $i=1,2$, and let F be the functional calculus of $a_{1}+a_{2}$ with respect to A. Then for all $f \in C\left(\operatorname{sp}_{A}\left(a_{1}+a_{2}\right)\right.$), we have $F(f)=F_{1}(f)+F_{2}(f)$, that is, $f\left(a_{1}+a_{2}\right)=f\left(a_{1}\right)+f\left(a_{2}\right)$.

Proof: First assume that $A_{i}=p_{i} A p_{i}$ for $i=1,2$. Let $\lambda \in \mathbb{C}$. If $\lambda-\left(a_{1}+a_{2}\right)$ is invertible in A, then there exists some $b \in A$ such that $b\left(\lambda-a_{1}-a_{2}\right)=\left(\lambda-a_{1}-a_{2}\right) b=1=p_{1}+p_{2}$, and b commutes with p_{1} and p_{2}. So $p_{1} b p_{1}$ and $p_{2} b p_{2}$ are the inverses of $\lambda p_{1}-a_{1}$ and $\lambda p_{2}-a_{2}$ in A_{1} and A_{2}, respectively, and so $\lambda p_{1}-a_{1}$ and $\lambda p_{2}-a_{2}$ are both invertible. On the other hand, if both $\lambda p_{1}-a_{1}$ and $\lambda p_{2}-a_{2}$ are invertible, then there exists $b_{i} \in A_{i}$ such that $b_{i}=\left(\lambda p_{i}-a_{i}\right)^{-1}$ for $i=1,2$. Then $b_{1}+b_{2}=\left(\lambda-a_{1}-a_{2}\right)^{-1}$. Thus $\lambda \notin \mathrm{sp}_{A}\left(a_{1}+a_{2}\right)$ if and only if $\lambda \notin \mathrm{sp}_{A_{1}}\left(a_{1}\right) \cap \mathrm{sp}_{A_{2}}\left(a_{2}\right)$. So result follows. Now assume that A_{i} is an arbitrary C^{*}-algebra of A that contains p_{i} as its identity, for $i=1,2$. Then for $i=1,2, A_{i}$ is a C^{*}-algebra of $p_{i} A p_{i}$ that contains the identity of $p_{i} A p_{i}$, so $\operatorname{sp}_{p_{i} A p_{i}}\left(a_{i}\right)=\operatorname{sp}_{A_{i}}\left(a_{i}\right)$. Thus

$$
\operatorname{sp}_{A}\left(a_{1}+a_{2}\right)=\operatorname{sp}_{p_{1} A p_{1}}\left(a_{1}\right) \cup \operatorname{sp}_{p_{2} A p_{2}}\left(a_{2}\right)=\operatorname{sp}_{A_{1}}\left(a_{1}\right) \cup \operatorname{sp}_{A_{2}}\left(a_{2}\right)
$$

and part 1 or the lemma is proven.
Since $a_{1} a_{2}=a_{2} a_{1}=0$, it is easy to verify that if π is a polynomial on $\mathrm{sp}_{A}\left(a_{1}+a_{2}\right)$, then $\pi\left(a_{1}\right)+\pi\left(a_{2}\right)=\pi\left(a_{1}+a_{2}\right)$, where functional calculus on the left side of the equation is taken in the subalgebras $A_{i}, i=1,2$, and the functional calculus on the right side of the equation is taken in A. So the continuous map $C\left(\operatorname{sp}_{A}\left(a_{1}+a_{2}\right)\right) \rightarrow A$ defined by $f \mapsto f\left(a_{1}\right)+f\left(a_{2}\right)$, where the respective functional calculus is taken in the subalgebra, agrees with the map $f \mapsto f\left(a_{1}+a_{2}\right)$ on the set of all polynomials, which is dense in $C\left(\operatorname{sp}_{A}\left(a_{1}+a_{2}\right)\right)$. Hence the result follows.

From II.3.6, a standard induction argument shows the following:

Corollary II.3.7. Let A be a unital C^{*}-algebra, and let $p_{1}, \ldots, p_{n} \in A$ be orthogonal projections such that $p_{1}+p_{2}+\cdots+p_{n}=1$. Let A_{i} be a C^{*}-subalgebra of A such that p_{i} is the identity of A_{i} for $i=1,2, \ldots, n$. Let $a_{i} \in A_{i}, i \in\{1, \ldots, n\}$.

1. Then $\operatorname{sp}_{A}\left(\sum_{i=1}^{n} f a_{i}\right)=\bigcup_{i=1}^{n} \operatorname{sp}_{A_{i}}\left(a_{i}\right)$.
2. Suppose that a_{i} is self-adjoint for $i \in\{1, \ldots, n\}$. Let F_{i} be the functional calculus of a_{i} with respect to A_{i} for $i \in\{1, \ldots, n\}$ and let F be the functional calculus of $\sum_{i=1}^{n} a_{i}$ with
respect to A. Then for all $f \in C\left(\operatorname{sp}_{A}\left(\sum_{i=1}^{n} a_{i}\right)\right)$, we have $F(f)=\sum_{i=1}^{n} F_{i}(f)$, that is, $f\left(\sum_{i=1}^{n} a_{i}\right)=\sum_{i=1}^{n} f\left(a_{i}\right)$.

The next few results are about the semicontinuity of spectral projections.
Lemma II.3.8. Let $\epsilon>0$, let $0<\alpha_{1}<\alpha_{2}<1$, and let $M \geq 1$ be a real number. Then there exists some $\delta>0$ such that if $a, b \in \mathbb{K}_{\text {s.a. }}, \widetilde{a}=a+1, \widetilde{b}=b+1,\|\widetilde{a}\| \leq M,\|\widetilde{b}\| \leq M$, and $\|\widetilde{a}-\widetilde{b}\|<\delta$, then

$$
\left\|p_{\alpha_{1}}(\widetilde{a}) p_{\alpha_{2}}(\widetilde{b})-p_{\alpha_{1}}(\widetilde{a})\right\|<\epsilon
$$

and

$$
\operatorname{rank}\left(p_{\alpha_{1}}(\widetilde{a})\right) \leq \operatorname{rank}\left(p_{\alpha_{2}}(\widetilde{b})\right) .
$$

Proof: We know that there exists a $\sigma_{0}>0$ such that if p, q are projections in \mathbb{K} such that $\|p q-q\|<\sigma_{0}$, then $\operatorname{rank}(q) \leq \operatorname{rank}(p)$. Let $\sigma=\min \left\{\epsilon, \sigma_{0}\right\}$.

Define $f:[-M, M] \rightarrow[0,1]$ by

$$
f(t)= \begin{cases}1 & t \in\left[-M, \alpha_{1}\right] \\ \frac{\alpha_{2}-t}{\alpha_{2}-\alpha_{1}} & t \in\left[\alpha_{1}, \alpha_{2}\right] \\ 0 & t \in\left[\alpha_{2}, M\right]\end{cases}
$$

Then it is clear that $f \in C([-M, M])$. Apply Corollary II.3.2 to M, f, and $\sigma / 2$, to get $\delta>0$. Let $a, b \in \mathbb{K}_{s . a}, \widetilde{a}=a+1$, and $\widetilde{b}=b+1$. Then $\widetilde{a}, \widetilde{b} \in \widetilde{\mathbb{K}}$, which is unital. Suppose that $\|\widetilde{a}\| \leq M$, $\|\widetilde{b}\| \leq M$, and that $\|\widetilde{a}-\widetilde{b}\|<\delta$. By the choice of δ, we have $\|f(\widetilde{a})-f(\widetilde{b})\|<\sigma / 2$. Now, $\chi_{\alpha_{1}} f=\chi_{\alpha_{1}}$ and $\chi_{\alpha_{2}} f=f$ on $[-M, M]$. Thus $p_{\alpha_{1}}(\widetilde{a}) f(\widetilde{a})=p_{\alpha_{1}}(\widetilde{a})$, and $p_{\alpha_{2}}(\widetilde{b}) f(\widetilde{b})=f(\widetilde{b})$. Then we have

$$
\begin{aligned}
\left\|p_{\alpha_{1}}(\widetilde{a})-p_{\alpha_{1}}(\widetilde{a}) p_{\alpha_{2}}(\widetilde{b})\right\| & =\left\|p_{\alpha_{1}}(\widetilde{a}) f(\widetilde{a})-p_{\alpha_{1}}(\widetilde{a}) f(\widetilde{a}) p_{\alpha_{2}}(\widetilde{b})\right\| \\
\leq & \left\|p_{\alpha_{1}}(\widetilde{a}) f(\widetilde{a})-p_{\alpha_{1}}(\widetilde{a}) f(\widetilde{b})\right\| \\
& \quad+\left\|p_{\alpha_{1}}(\widetilde{a}) f(\widetilde{b})-p_{\alpha_{1}}(\widetilde{a}) f(\widetilde{a}) p_{\alpha_{2}}(\widetilde{b})\right\| \\
\leq & \|f(\widetilde{a})-f(\widetilde{b})\|+\left\|f(\widetilde{b})-f(\widetilde{a}) p_{\alpha_{2}}(\widetilde{b})\right\| \\
= & \|f(\widetilde{a})-f(\widetilde{b})\|+\left\|f(\widetilde{b}) p_{\alpha_{2}}(\widetilde{b})-f(\widetilde{a}) p_{\alpha_{2}}(\widetilde{b})\right\| \\
\leq & \|f(\widetilde{a})-f(\widetilde{b})\|+\|f(\widetilde{b})-f(\widetilde{a})\| \\
& <\sigma \leq \epsilon .
\end{aligned}
$$

Then by the choice of σ, we have $\operatorname{rank}\left(p_{\alpha_{1}}(\widetilde{a})\right) \leq \operatorname{rank}\left(p_{\alpha_{2}}(\widetilde{b})\right)$.
Corollary II.3.9. Let $\epsilon>0$, let $0 \leq \alpha_{1}<\alpha_{2}<1$, and let $M \geq 1$ be a real number. Then there exists $\delta>0$ such that if X is compact Hausdorff space, and if $a, b \in C(X, \mathbb{K})_{s . a .}, \tilde{a}=a+1$, $\widetilde{b}=b+1,\|\widetilde{a}\| \leq M,\|\widetilde{b}\| \leq M$, and $\|\widetilde{a}-\widetilde{b}\|<\delta$, then

$$
\left\|p_{\alpha_{1}}(\widetilde{a}(x)) p_{\alpha_{2}}(\widetilde{b}(x))-p_{\alpha_{1}}(\widetilde{a}(x))\right\|<\epsilon, \quad \text { for all } x \in X
$$

and

$$
\operatorname{rank}\left(p_{\alpha_{1}}(\widetilde{a}(x))\right) \leq \operatorname{rank}\left(p_{\alpha_{2}}(\widetilde{b}(x))\right), \quad \text { for all } x \in X . .
$$

Proof: First of all, we identify $\widetilde{C(X, \mathbb{K})}$ as a subalgebra of $C(X, \widetilde{\mathbb{K}})$ by identifying $(a, \lambda) \in \widetilde{C(X, \mathbb{K})}$ with $a+\lambda 1_{X}$, where 1_{X} is the constant function on X at $i d_{H}$. Then it is clear that $\tilde{a}(x)=\widetilde{a(x)}$ for all $x \in X$.

Apply II.3.8 to $\epsilon, \alpha_{1}, \alpha_{2}$ and M to get a $\delta>0$. The result follows.
Corollary II.3.10. Let X be a compact Hausdorff space, let $0<\alpha<1$, let $a \in C(X, \mathbb{K})_{\text {s.a. }}$, let $\widetilde{a}=a+1$. Then there exists some $n \in \mathbb{N}$ such that $\operatorname{rank}\left(p_{\alpha}(\widetilde{a}(x))\right) \leq n$ for all $x \in X$.

Proof: If $a=0$, then nothing to prove. So assume $a \neq 0$.
Let $\alpha<\sigma<1$. Apply Corollary II.3.8 to $\epsilon=1,0<\alpha<\sigma<1$, and $M=\|\tilde{a}\|$, to get $\delta>0$. For each $x \in X$, let $U_{x}=\{y \in X:\|\widetilde{a}(x)-\widetilde{a}(y)\|<\delta\}$. Then there exists $x_{1}, \ldots, x_{m} \in X$ such that $\bigcup_{i=1}^{m} U_{x_{i}}=X$. Let $n=\max \left\{\operatorname{rank}\left(p_{\sigma}\left(\widetilde{a}\left(x_{i}\right)\right)\right): i=1, \ldots, m\right\}$. Let $x \in X$. Then $x \in U_{x_{k}}$ for some k. So $\left\|\widetilde{a}(x)-\widetilde{a}\left(x_{k}\right)\right\|<\delta$. Also $\|\widetilde{a}(x)\| \leq\|\widetilde{a}\|$ and $\left\|\widetilde{a}\left(x_{k}\right)\right\| \leq\|\widetilde{a}\|$. So by the choice of δ, we have $\operatorname{rank}\left(p_{\alpha}(\widetilde{a}(x))\right) \leq \operatorname{rank}\left(p_{\sigma}\left(\widetilde{a}\left(x_{k}\right)\right)\right) \leq n$.

Lemma II.3.11. Let $n \geq \mathbb{N}$, let $\alpha>0$, let $M>0$ be a real number, and let $a \in M_{n}$ be self-adjoint. Then $p_{\alpha}(a)=p_{\alpha / M}(a / M)$.

Proof: Let $\operatorname{sp}(a) \cap(-\infty, \alpha)=\left\{r_{1}, \ldots, r_{k}\right\}$. Then

$$
\operatorname{sp}(a / M) \cap(-\infty, \alpha / M)=\left\{r_{1} / M, r_{2} / M, \ldots, r_{k} / M\right\} .
$$

Then $p_{\alpha}(a)=\sum_{i=1}^{k} p_{i}$, where p_{i} is the projection to the eigenspace of a corresponding to r_{i}, and $p_{\alpha / M}(a / M)=\sum_{i=1}^{k} q_{i}$, where q_{i} is the projection onto the eigenspace of a / M corresponding to r_{i} / M. But for all $i \in\{1, \ldots, k\}$ and all $\xi \in \mathbb{C}^{n}, a(\xi)=r_{i} \xi$ if and only if $(a / M)(\xi)=\left(r_{i} / M\right) \xi$. So $p_{i}=q_{i}$ for all $i \in\{1, \ldots, n\}$, and so the result follows.

Lemma II.3.12. Let $1>\alpha>0$, let $a \in \mathbb{K}_{s . a .}$, and let $\widetilde{a}=a+1 \in \widetilde{\mathbb{K}}$. Then there exists a $\delta>0$ such that if $b \in \widetilde{\mathbb{K}}_{s . a}$, and if $\|b-\widetilde{a}\|<\delta$, then $\operatorname{rank}\left(p_{\alpha}(\widetilde{a})\right) \leq \operatorname{rank}\left(p_{\alpha}(b)\right)$.

Proof: Fix $1>\alpha>0$ and $a \in \mathbb{K}_{\text {s.a. }}$. Since $\alpha<1, \operatorname{sp}(\widetilde{a}) \cap(-\infty, \alpha)$ is a finite set. So there exists $\delta_{1}>0$ such that $\operatorname{sp}(\widetilde{a}) \cap\left(\alpha-3 \delta_{1}, \alpha+3 \delta_{1}\right) \subseteq\{\alpha\}$. Let $F_{1}=\left[-\|\widetilde{a}\|-\delta_{1}, \alpha-2 \delta_{1}\right]$, and $F_{2}=\left[\alpha-\delta_{1},\|\widetilde{a}\|+\delta_{1}\right]$. Then

$$
\operatorname{sp}(\widetilde{a}) \subseteq\left(-\|\widetilde{a}\|-\delta_{1}, \alpha-2 \delta_{1}\right) \cup\left(\alpha-\delta_{1},\|\widetilde{a}\|+\delta_{1}\right) \subseteq F_{1} \cup F_{2}
$$

Let $K=F_{1} \cup F_{2}$. Let $\phi=\chi_{F_{1}}$. Then $\phi \in C(K)$. Since $K \subseteq \mathbb{R}$ is compact, there exists a polynomial $\pi \in C(K)$ such that $\|\pi-\phi\|_{\infty}<1 / 3$. The map $x \mapsto \pi(x)$ is continuous, so there exists $\delta_{2}>0$ such that if $\|x-\widetilde{a}\|<\delta_{2}$, then $\|\pi(x)-\pi(\widetilde{a})\|<1 / 4$. Let $\delta=\min \left\{\delta_{1} / 2, \delta_{2}\right\}$.

Let $b \in \widetilde{\mathbb{K}}_{\text {s.a. }}$ satisfy $\|b-\widetilde{a}\|<\delta$. Then $\operatorname{sp}(b) \subseteq \cup\{(r-\delta, r+\delta): r \in \operatorname{sp}(\widetilde{a})\}$. If $r \in \operatorname{sp}(\widetilde{a})$, then $-\|\widetilde{a}\| \leq r \leq \alpha-3 \delta_{1}$ or $\alpha \leq r \leq\|\widetilde{a}\|$, and then

$$
(r-\delta, r+\delta) \subseteq\left(-\|\widetilde{a}\|-\delta, \alpha-3 \delta_{1}+\delta\right) \cup(\alpha-\delta,\|\widetilde{a}\|+\delta) .
$$

So

$$
\begin{aligned}
\operatorname{sp}(b) & \subseteq\left(-\|\widetilde{a}\|-\delta, \alpha-3 \delta_{1}+\delta\right) \cup(\alpha-\delta,\|\widetilde{a}\|+\delta) \\
& \subseteq\left(-\|\widetilde{a}\|-\delta_{1}, \alpha-2 \delta_{1}\right) \cup\left(\alpha-\delta_{1},\|\widetilde{a}\|+\delta_{1}\right) \subseteq K .
\end{aligned}
$$

Then

$$
\|\phi(\widetilde{a})-\phi(b)\| \leq\|\phi(\widetilde{a})-\pi(\widetilde{a})\|+\|\pi(\widetilde{a})-\pi(b)\|+\|\pi(b)-\phi(b)\|<1
$$

Thus $\phi(\widetilde{a})$ and $\phi(b)$ are unitarily equivalent projections, and so $\operatorname{rank}(\phi(\widetilde{a}))=\operatorname{rank}(\phi(b))$. But $\phi(\widetilde{a})=p_{\alpha}(\widetilde{a})$, so $\operatorname{rank}\left(p_{\alpha}(\widetilde{a})\right)=\operatorname{rank}(\phi(b))$. Also $\phi \leq \chi_{(-\infty, \alpha)}$, so $\phi(b) \leq p_{\alpha}(b)$, and so $\operatorname{rank}\left(p_{\alpha}(\widetilde{a})\right)=\operatorname{rank}(\phi(b)) \leq p_{\alpha}(b)$.

The remaining portion of this section will be dedicated to obtaining a topological stable rank reduction theorem for SRSHAs. The idea is to obtain an approximate polar decomposition for elements a in a SRSHA such that the dimensions of the eigenspaces of $|a(x)|$ corresponding to small eigenvalues are large enough for every $x \in X$. This can be easily done in $\widehat{C(X, \mathbb{K})}$, where X is just a one-point space and $\widehat{C(X, \mathbb{K})}$ denotes the unitization of $C(X, \mathbb{K})$, which can always be taken to be the first base space of any SRSH system. We then have an approximate polar decomposition for the image of the first coordinate of a under the first attaching map. In order to obtain an approximate polar decomposition for a, we will need to be able to extend the image of the unitary used in the approximate polar decomposition for the first coordinate of the element a to a unitary in $\widehat{C\left(X_{2}, \mathbb{K}\right)}$, where X_{2} is the second base space in the SRSH system. Thus we will need an extension result for such unitaries. This extension result for RSHAs is given by Lemma 3.3 in [9]. We will modify this lemma to suit our situation.

The following lemma is a slight modification of Lemma 3.3 in [9]. In fact, the original proof of Lemma 3.3 in [9] also proves the following lemma.

Lemma II.3.13. Let $\epsilon, \alpha>0$ and let $n \in \mathbb{N}$. Then there exists a $\delta>0$ such that the following holds. Let X be a compact Hausdorff space with $\operatorname{dim}(X)=d<\infty$, and let $X^{(0)} \subseteq X$ be a closed subspace. Let $m \in \mathbb{N}$, and let $a \in C\left(X, M_{m}\right)$ satisfy $\|a\| \leq 1$. For each $x \in X$, let

$$
p(x)=\chi_{(-\infty, \alpha)}\left(\left[a(x)^{*} a(x)\right]^{1 / 2}\right)
$$

Suppose that $n \geq \operatorname{rank}(p(x)) \geq d / 2$ for all $x \in X$. Let $u^{(0)} \in U_{0}\left(C\left(X, M_{m}\right)\right)$ be a unitary such that

$$
\left\|\left[u^{(0)}(x)\left[a(x)^{*} a(x)\right]^{1 / 2}-a(x)\right][1-p(x)]\right\|<\delta
$$

for every $x \in X^{(0)}$. Let $t \mapsto u_{t}^{(0)}$ be a homotopy from 1 to $u^{(0)}$ in $U\left(C\left(X^{(0)}, M_{m}\right)\right)$. Then there
exists a unitary $u \in U_{0}\left(C\left(X, M_{m}\right)\right)$ and a homotopy $t \rightarrow u_{t}$ in $U\left(C\left(X, M_{m}\right)\right)$ from 1 to u such that $\left.u\right|_{X^{(0)}}=u^{(0)},\left.u_{t}\right|_{X^{(0)}}=u_{t}^{(0)}$ for all t, and such that

$$
\left\|\left[u(x)\left[a(x)^{*} a(x)\right]^{1 / 2}-a(x)\right][1-p(x)]\right\|<\epsilon
$$

for all $x \in X$.

Now we remove the condition that the element $\|a\|$ has norm less or equal to 1 from Lemma II.3.13.

Corollary II.3.14. Let $\epsilon, \alpha>0$, let $n \in \mathbb{N}$, and let $M \geq 1$ be a real number. Then there exists a $\delta>0$ such that the following holds. Let X be a compact Hausdorff space with $\operatorname{dim}(X)=d<\infty$, and let $X^{(0)} \subseteq X$ be a closed subspace. Let $m \in \mathbb{N}$, and let $a \in C\left(X, M_{m}\right)$ satisfy $\|a\| \leq M$. For each $x \in X$, let

$$
p(x)=p_{\alpha}(|a(x)|) .
$$

Suppose that $n \geq \operatorname{rank}(p(x)) \geq d / 2$ for all $x \in X$. Let $u^{(0)} \in U_{0}\left(C\left(X^{(0)}, M_{m}\right)\right)$ be a unitary such that

$$
\left\|\left[u^{(0)}(x)|a(x)|-a(x)\right][1-p(x)]\right\|<\delta
$$

for every $x \in X^{(0)}$. Let $t \mapsto u_{t}^{(0)}$ be a homotopy in $U\left(C\left(X^{(0)}, M_{m}\right)\right.$) from 1 to $u^{(0)}$. Then there exists a unitary $u \in U_{0}\left(C\left(X, M_{m}\right)\right)$ and a homotopy $t \mapsto u_{t}$ in $U\left(C\left(X, M_{m}\right)\right.$) from 1 to u such that $\left.u\right|_{X^{(0)}}=u^{(0)},\left.u_{t}\right|_{X^{(0)}}=u_{t}^{(0)}$ for all t, and that

$$
\|[u(x)|a(x)|-a(x)][1-p(x)]\|<\epsilon
$$

for all $x \in X$.
Proof: Apply Lemma II. 3.13 to $\epsilon / M, \alpha / M, n$ to get δ. Let $X, X^{(0)}, m, a, p, u^{(0)}$ be as given in the statement of this corollary. Let $t \mapsto u_{t}^{(0)}$ be a path from 1 to $u^{(0)}$.

Let $b=a / M$. Then $\|b\| \leq 1$. Let $q(x)=p_{\alpha / M}(|b(x)|)$. By Lemma II.3.11, we have $q(x)=p(x)$ for all $x \in X$. Then we have $n \geq \operatorname{rank}(q(x)) \geq d / 2$ for all $x \in X$. Also,

$$
\left\|\left[u^{(0)}(x)|b(x)|-b(x)\right][1-q(x)]\right\|<\delta / M \leq \delta
$$

for all $x \in X^{(0)}$. So by the choice of δ, there exists a unitary $u \in U_{0}\left(C\left(X, M_{m}\right)\right)$, and a homotopy $t \mapsto u_{t}$ in $U\left(C\left(X, M_{m}\right)\right)$ from 1 to u such that $\left.u\right|_{X^{(0)}}=u^{(0)},\left.u_{t}\right|_{X^{(0)}}$ for all t, and that

$$
\|[u(x)|b(x)|-b(x)][1-q(x)]\|<\epsilon / M
$$

Then

$$
\|[u(x)|a(x)|-a(x)][1-p(x)]\|<M \cdot \frac{\epsilon}{M}=\epsilon
$$

The next lemma adapts the above to unitizations of $C(X) \otimes M_{n}$.

Lemma II.3.15. Let $1>\alpha, \epsilon>0$, let $n \in \mathbb{N}$, and let $M \in[1, \infty)$. Then there exists $\delta>0$ such that the following holds. Let X be a compact Hausdorff space such that $\operatorname{dim}(X)=d<\infty$, and let Y be a closed subspace. Let $m \in \mathbb{N}$, let $a \in C\left(X, M_{m}\right)$, and let $\widetilde{a}=a+1_{X} \in C\left(X, M_{m}\right)^{\sim}$, where 1_{X} denotes the adjoined identity. Suppose that $\|\widetilde{a}\| \leq M$. For each $x \in X$, let $\widetilde{p}(x)=p_{\alpha}(|\widetilde{a}(x)|)$. Suppose that $n \geq \operatorname{rank}(\widetilde{p}(x)) \geq d / 2$. Let $u_{0} \in U_{0}\left(C\left(Y, M_{m}\right)^{\sim}\right)$ satisfy

$$
\begin{equation*}
\left\|\left[u_{0}(x)|\widetilde{a}(x)|-\widetilde{a}(x)\right][1-\widetilde{p}(x)]\right\|<\delta \quad \text { for all } x \in Y \tag{II.2}
\end{equation*}
$$

Let $t \mapsto w_{t}$ be a homotopy in $U\left(C\left(Y, M_{m}\right)^{\sim}\right)$ from 1 to u_{0}. Then there exists a unitary u contained in $U_{0}\left(C\left(X, M_{m}\right)^{\sim}\right)$ and a homotopy $t \rightarrow v_{t}$ in $U\left(C\left(X, M_{m}\right)^{\sim}\right)$ from 1 to u such that $\left.u\right|_{Y}=u_{0}$, $\left.v_{t}\right|_{Y}=w_{t}$ for all t, and that

$$
\begin{equation*}
\|[u(x)|\widetilde{a}(x)|-\widetilde{a}(x)][1-\widetilde{p}(x)]\|<\delta \quad \text { for all } x \in X \tag{II.3}
\end{equation*}
$$

Proof: Let $0<\epsilon, \alpha<1, n \in \mathbb{N}$, and $M \in[1, \infty)$ be given. Apply Corollary II.3.14 to ϵ, α, n, and M to obtain $\delta^{\prime}>0$, and let $\delta=\min \left\{\epsilon, \delta^{\prime} / 2\right\}$. Let $X, Y, m, a, \widetilde{p}$, and u_{0} satisfy the conditions in the statement of the lemma. Let $t \mapsto w_{t}$ be a homotopy in $U\left(C\left(Y, M_{m}\right)^{\sim}\right)$ from 1 to u_{0}.

We set up some notations first. We use 1 to denote the adjoined identity of $\widetilde{M_{m}}$, and use e to denote the identity of M_{m}. Use 1_{X} and 1_{Y} to denote the adjoined identity of $C\left(X, M_{m}\right)^{\sim}$ and $C\left(Y, M_{m}\right)^{\sim}$, respectively. Use e_{X} and e_{Y} to denote the identities of $C\left(X, M_{m}\right)$ and $C\left(Y, M_{m}\right)$ respectively.

For each $x \in X$, or Y, use ev_{x} to denote the $\operatorname{map} C\left(X, M_{m}\right) \rightarrow M_{m}$, or $C\left(Y, M_{m}\right) \rightarrow M_{m}$, defined by $\mathrm{ev}_{x}(a)=a(x)$. By identifying (a, λ) with $a+\lambda \cdot 1_{X}$, or $a+\lambda \cdot 1_{Y}$, we treat $C\left(X, M_{m}\right)^{\sim}$ and $C\left(Y, M_{m}\right)^{\sim}$ as subalgebras of $C\left(X, \widetilde{M_{m}}\right)$ and $C\left(Y, \widetilde{M_{m}}\right)$ respectively. For each $x \in X$, or Y, use $\widetilde{\mathrm{ev}_{x}}$ to denote the map $C\left(X, M_{m}\right)^{\sim} \rightarrow \widetilde{M_{m}}$ or $C\left(Y, M_{m}\right)^{\sim} \rightarrow \widetilde{M_{m}}$, defined by $\widetilde{\mathrm{ev}_{x}}(a)=a(x)$. Let τ denote the standard map from the unitization of any C^{*}-algebra to \mathbb{C}.

Define

$$
\begin{gathered}
\Phi_{X}: C\left(X, M_{m}\right)^{\sim} \rightarrow C\left(X, M_{m}\right) \oplus \mathbb{C} \quad \text { by }(a, \lambda) \mapsto\left(a+\lambda e_{X}, \lambda\right), \\
\Phi_{Y}: C\left(Y, M_{m}\right)^{\sim} \rightarrow C\left(Y, M_{m}\right) \oplus \mathbb{C} \quad \text { by }(a, \lambda) \mapsto\left(a+\lambda e_{Y}, \lambda\right),
\end{gathered}
$$

and

$$
\Phi: \widetilde{M_{m}} \rightarrow M_{m} \oplus \mathbb{C} \quad \text { by }(a, \lambda) \mapsto(a+\lambda e, \lambda) .
$$

Define $\widetilde{R}: C\left(X, M_{m}\right)^{\sim} \rightarrow C\left(Y, M_{M}\right)^{\sim}$ by $R\left(a+\lambda 1_{X}\right)=\left.a\right|_{Y}+\lambda 1_{Y}$, and define $R: C\left(X, M_{m}\right) \rightarrow C\left(Y, M_{m}\right)$ by $R(a)=\left.a\right|_{Y}$. Then for every $x \in X$ and every $y \in Y$, we have the following commutative diagram:

Now, since for all $x \in X$, we have

$$
\tau(\widetilde{p}(x))=\tau\left(\chi_{\alpha}(|\widetilde{a}(x)|)\right)=\chi_{\alpha}(\tau(|\widetilde{a}(x)|))=\chi_{\alpha}(|\tau(\widetilde{a}(x))|)=\chi_{\alpha}(1)=0,
$$

we see that for all $x \in X, \widetilde{p}(x)=(p(x), 0)$ for some projection $p(x) \in X$. Since $u_{0} \in C\left(Y, M_{m}\right)^{\sim}$, there exists some $w_{0} \in C\left(Y, M_{m}\right)$ and some unitary $\mu \in \mathbb{C}$ such that $u_{0}=\left(w_{0}, \mu\right)$. Note that (II.2) implies that

$$
\begin{equation*}
|\mu-1|=\left\|\tau\left[\left[u_{0}(x)|\widetilde{a}(x)|-\widetilde{a}(x)\right][1-\widetilde{p}(x)]\right]\right\|<\delta \leq \epsilon, \quad \text { for all } x \in X . \tag{II.4}
\end{equation*}
$$

Let $\widehat{v}_{0}=w_{0}+\mu e_{Y}$, so that $\Phi_{Y}\left(u_{0}\right)=\left(w_{0}+\mu e_{Y}, \mu\right)=\left(\widehat{v}_{0}, \mu\right)$. Since Φ_{Y} is an isomorphism, we have $\widehat{v}_{0} \in U_{0}\left(C\left(Y, M_{m}\right)\right)$. Let $\widehat{a}=a+e_{X}$, so $(\widehat{a}, 1)=\Phi_{X}(\widetilde{a})$. Next we compute: for each $x \in Y$, we have

$$
\begin{aligned}
& \Phi\left(\left[u_{0}(x)\right.\right.|\widetilde{a}(x)|-\widetilde{a}(x)][1-\widetilde{p}(x)]) \\
&=\left[\Phi\left(u_{0}(x)\right)|\Phi(\widetilde{a}(x))|-\Phi(\widetilde{a}(x))\right] \Phi[1-\widetilde{p}(x)) \\
& \quad=\left[\left(\widehat{v}_{0}(x), \mu\right) \cdot(|\widehat{a}(x)|, 1)-(\widehat{a}(x), 1)\right](e-p(x), 1) \\
& \quad=\left[\left(\widehat{v}_{0}(x)|\widehat{a}(x\rangle|, \mu\right)-(\widehat{a}(x), 1)\right](e-p(x), 1) \\
& \quad=\left(\widehat{v}_{0}(x)|\widehat{a}(x)|-\widehat{a}(x), \mu-1\right) \cdot(e-p(x), 1) \\
& \quad=\left(\left[\widehat{v}_{0}(x)|\widehat{a}(x)|-\widehat{a}(x)\right][e-p(x)], \mu-1\right) .
\end{aligned}
$$

Thus, since Φ is isometric, we obtain the following from (II.2)

$$
\begin{equation*}
\left\|\left[\widehat{v}_{0}(x)|\widehat{a}(x)|-\widehat{a}(x)\right][e-p(x)]\right\|<\delta<\delta^{\prime}, \quad \text { for all } x \in Y \tag{II.5}
\end{equation*}
$$

Now, let $\pi: M_{m} \oplus \mathbb{C} \rightarrow M_{m}$ be the standard map. Then we compute again: for every $x \in X$, we have

$$
\begin{aligned}
p(x) & =\pi(p(x), 0)=\pi \circ \Phi(p(x), 0)=\pi \circ \Phi(\widetilde{p}(x)) \\
& =\pi \circ \Phi\left(\chi_{\alpha}(|\widetilde{a}(x)|)\right)=\chi_{\alpha}(\pi \circ \Phi(|\widetilde{a}(x)|)) \\
& =\chi_{\alpha}(|\pi \circ \Phi(\widetilde{a}(x))|)=\chi_{\alpha}(|\pi \circ \Phi(a(x), 1)|) \\
& =\chi_{\alpha}(|\pi(a(x)+e, 1)|)=\chi_{\alpha}(|\pi(\widehat{a}(x), 1)|) \\
& =\chi_{\alpha}(\mid \widehat{a}(x, \mid) .
\end{aligned}
$$

Also, we have $n \geq \operatorname{rank}(p(x))=\operatorname{rank}(\widetilde{p}(x)) \geq d / 2$ and $\|\widehat{a}\| \leq M$. Let $\widehat{w}_{t}=\pi\left(\Phi_{Y}\left(w_{t}\right)\right)$ for each t. Then $t \mapsto \widehat{w}_{t}$ is a homotopy in $U\left(C\left(Y, M_{m}\right)\right)$ from $\widehat{w}_{t}=\pi\left(\Phi_{Y}((0,1))=\pi\left(e_{Y}, 1\right)=e_{Y}\right.$, to $\widehat{w}_{1}=\pi\left(\Phi_{Y}\left(u_{0}\right)\right)=\pi\left(\widehat{v}_{0}, \mu\right)=\widehat{v}_{0}$.

Thus by the choice of δ^{\prime}, there exist $\widehat{v} \in U_{0}\left(C\left(X, M_{m}\right)\right)$ and a homotopy $t \mapsto \widehat{v}_{t}$ in $U\left(C\left(X, M_{m}\right)\right)$ for e_{X} to \widehat{v} such that $\left.\widehat{v}\right|_{Y}=\widehat{v}_{0},\left.\widehat{v}_{t}\right|_{Y}=\widehat{w}_{t}$, and

$$
\begin{equation*}
\|[\widehat{v}(x)|\widehat{a}(x)|-\widehat{a}(x)][e-p(x)]\|<\epsilon, \quad \text { for all } x \in X . \tag{II.6}
\end{equation*}
$$

Let $u=\left(\hat{v}-\mu e_{X}, \mu\right)$. Then $\Phi_{X}(u)=\Phi\left(\widehat{v}-\mu e_{X}, \mu\right)=(\widehat{v}, \mu)$. Since

$$
(\widehat{v}, \mu) \in U_{0}\left(C\left(X, M_{m}\right) \oplus \mathbb{C}\right)
$$

and since Φ_{X} is a *-isomorphism, we have $u \in U_{0}\left(C\left(X, M_{m}\right)^{\sim}\right)$. Also for all $x \in Y$, we have

$$
\begin{aligned}
u(x) & =(\widehat{v}(x)-\mu e, \mu)=\left(\widehat{v}_{0}(x)-\mu e, \mu\right) \\
& =\left(w_{0}(x)+\mu e-\mu e, \mu\right)=\left(w_{0}(x), \mu\right)=u_{0}(x) .
\end{aligned}
$$

Thus $\left.u\right|_{Y}=u_{0}$.
Then for all $x \in X$, we have

$$
\begin{aligned}
\Phi([u(x) & |\widetilde{a}(x)|-\widetilde{a}(x)][1-\widetilde{p}(x)]) \\
\quad & =[\Phi(u(x))|\Phi(\widetilde{a}(x))|-\Phi(\widetilde{a}(x))] \Phi(1-\widetilde{p}(x)) \\
\quad & =[(\widehat{v}(x), \mu)(|\widehat{a}(x)|, 1)-(\widehat{a}(x), 1)](e-p(x), 1) \\
\quad & =[(\widehat{v}(x)|\widehat{a}(x)|-\widehat{a}(x), \mu-1)](e-p(x), 1) \\
\quad & =([\widehat{v}(x)|\widehat{a}(x)|-\widehat{a}(x)][e-p(x)], \mu-1) .
\end{aligned}
$$

Thus for all $x \in X$, we have, by (II.4), (II.6), and the fact that Φ is isometric,

$$
\begin{aligned}
& \|[u(x)|\widetilde{a}(x)|-\widetilde{a}(x)][1-\widetilde{p}(x)]\| \\
& \quad=\|([\widehat{v}(x)|\widehat{a}(x)|-\widehat{a}(x)][e-p(x)], \mu-1)\|
\end{aligned}
$$

(the norm above is now taken in $M_{m} \oplus \mathbb{C}$)

$$
=\max \{\|[\widehat{v}(x)|\widehat{a}(x)|-\widehat{a}(x)][e-p(x)]\|,|\mu-1|\}
$$

$$
<\epsilon
$$

Let $v_{t}=\Phi_{X}^{-1}\left(\widehat{v}_{t}, \tau\left(w_{t}\right)\right)$. Then $t \mapsto v_{t}$ is a homotopy in $U\left(C\left(X, M_{m}\right)^{\sim}\right)$. For each t and each $y \in Y$, we have $\widehat{v}_{t}(y)=\widehat{w}_{t}(y)$, so we have $\left(\widehat{v}_{t}(y), \tau\left(w_{t}\right)\right)=\left(\widehat{w}_{t}(y), \tau\left(w_{t}\right)\right)$. So

$$
R \oplus i d\left(\widehat{v}_{t}, \tau\left(w_{t}\right)\right)=\left(\widehat{w}_{t}, \tau\left(w_{t}\right)\right)=\Phi_{Y}\left(w_{t}\right)
$$

and

$$
\Phi_{Y}\left(w_{t}\right)=R \oplus i d\left(\Phi_{X}\left(v_{t}\right)\right)=\Phi_{Y}\left(\widetilde{R}\left(v_{t}\right)\right) .
$$

Thus $w_{t}=\widetilde{R}\left(v_{t}\right)$. So $\left.w_{t}\right|_{Y}=v_{t}$. Also $v_{0}=\Phi_{X}^{-1}\left(e_{X}, 1\right)=1_{X}$ and $\left.v_{1}=\Phi_{X}^{-1}\left(\widehat{v}, \tau\left(u_{0}\right)\right)\right)=\Phi_{X}^{-1}(\widehat{v}, \mu)=$ u. This finishes the proof.

The next lemma will "stabilize" the above lemma, and will be the one that we will need.
Lemma II.3.16. Let $0<\epsilon<1$ and let $0<\alpha_{1}<\alpha_{2}<1$. Let X be a compact Hausdorff space with $\operatorname{dim}(X)=d<\infty$. Let $Y \subseteq X$ be a closed subset. Let $a \in C(X, \mathbb{K})$ and let $\widetilde{a}=a+1 \in C(X, \mathbb{K})^{\sim}$. For all $x \in X$, let $p_{1}(x)=p_{\alpha_{1}}(|\widetilde{a}(x)|)$ and let $p_{2}(x)=p_{\alpha_{2}}(|\widetilde{a}(x)|)$. Suppose that for all $x \in X$, $\operatorname{rank}\left(p_{1}(x)\right) \geq d / 2$. Then there exists $\delta>0$ such that: if $u_{0} \in U_{0}\left(C(Y, \mathbb{K})^{\sim}\right)$ is a unitary and $h_{0}:[0,1] \rightarrow U\left(C(Y, \mathbb{K})^{\sim}\right)$ is a homotopy such that $h_{0}(0)=1, h_{0}(1)=u_{0}$, and

$$
\begin{equation*}
\left\|\left[u_{0}(x)|\widetilde{a}(x)|-\widetilde{a}(x)\right]\left[1-p_{1}(x)\right]\right\|<\delta \quad \text { for all } x \in Y, \tag{II.7}
\end{equation*}
$$

then there exists a unitary $u \in U_{0}\left(C(X, \mathbb{K})^{\sim}\right)$ and a homotopy $h:[0,1] \rightarrow U\left(C(X, \mathbb{K})^{\sim}\right)$ such that $h(0)=1, h(1)=u$, that $\left.h(t)\right|_{Y}=h_{0}(t)$ for all t, that $\left.u\right|_{Y}=u_{0}$, and that

$$
\left\|[u(x)|\widetilde{a}(x)|-\widetilde{a}(x)]\left[1-p_{2}(x)\right]\right\|<\delta \quad \text { for all } x \in X .
$$

Proof: Let $\epsilon, \alpha_{1}, \alpha_{2}, X, Y, a, p_{1}$, and p_{2} satisfy the hypothesis of the lemma, and let $M=2\|\widetilde{a}\|$. Note that $M \geq\|\widetilde{a}\| \geq 1$.

First of all, it is clear that there exists some $c \in C(X, \mathbb{K})_{s . a}$. such that $|\widetilde{a}|=c+1$. Denote $c+1$ by \tilde{c}. Note that $\|\tilde{c}\|=\|\widetilde{a}\|$, since $(\tilde{c})^{2}=(\widetilde{a})^{*}(\widetilde{a})$. Let $\alpha^{\prime}=\frac{\alpha_{1}+\alpha_{2}}{2}$, and for each $x \in X$, let $p^{\prime}(x)=p_{\alpha^{\prime}}(|\widetilde{a}(x)|)$. Note that for all $x \in X$, we have $p_{2}(x) \geq p^{\prime}(x) \geq p_{1}(x) \geq d / 2$, and so we have

$$
\operatorname{rank}\left(p_{2}(x)\right) \geq \operatorname{rank}\left(p^{\prime}(x)\right) \geq \operatorname{rank}\left(p_{1}(x)\right) \geq d / 2 .
$$

By Lemma II.3.10, there exists $n \in \mathbb{N}$ such that $\operatorname{rank}\left(p_{2}(x)\right)=\operatorname{rank}\left(p_{\alpha_{2}}(\widetilde{c})\right) \leq n$ for all $x \in X$. Apply Lemma II.3.15 to $\epsilon /(16 M)>0,1>\alpha^{\prime}>0, n$, and M, to get $\delta_{1}>0$. Without loss of generality, assume that $\delta_{1}<\epsilon /(16 M)$. Apply Corollary II.3.9 to $\delta_{1} /(4 M)$ in place of $\epsilon, \alpha_{1}, \alpha^{\prime}$ in place of α_{2}, and M, to get $\sigma_{1}>0$. Apply Corollary II.3.9 again to $\delta_{1} /(4 M)$ in place of $\epsilon, \alpha^{\prime}$ in place of α_{1}, α_{2}, and M to get $\sigma_{2}>0$. Let

$$
\delta=\min \left\{\epsilon /(16 M), \delta_{1} /(16 M), \sigma_{1} /(16 M), \sigma_{2} /(16 M), \alpha_{2} /(16 M)\right\}
$$

Now let $u_{0} \in U_{0}\left(C(Y, \mathbb{K})^{\sim}\right)$ be a unitary such that (II.7) holds, and let $h_{0}:[0,1] \rightarrow U\left(C(Y, \mathbb{K})^{\sim}\right)$ be a homotopy from 1 to u_{0}.

For each $k \in \mathbb{N}$, embed M_{k} into M_{k+1} in the standard, and embed M_{k} into \mathbb{K} in the standard way. Then we have $\mathbb{K}=\overline{\bigcup_{k \geq 1} M_{k}}$ and $\widetilde{\mathbb{K}}=\overline{\bigcup_{k \geq 1} \widetilde{M_{k}}}$, where the adjoined identity of each $\widetilde{M_{k}}$ is the same as the adjoined identity of $\widetilde{\mathbb{K}}$. We will use 1 to denote the adjoined identity of $\widetilde{\mathbb{K}}$ and $\widehat{M_{k}}$, for $k \geq 1$. The above embeddings give the embedding of $C\left(X, M_{k}\right)$ into $C\left(X, M_{k+1}\right)$ and into then $C(X, \mathbb{K})$. Then $C(X, \mathbb{K})=\overline{\bigcup_{k \geq 1} C\left(X, M_{k}\right)}$ and $C(X, \mathbb{K})^{\sim}=\overline{\bigcup_{k \geq 1} C\left(X, M_{k}\right)^{\sim}}$. Again, we assume that the adjoined identity of $C(X, \mathbb{K})^{\sim}$ is the same as the adjoined identity of $C\left(X, M_{k}\right)^{\sim}$ for every $k \geq 1$. We will use 1_{X} to denote the adjoined identity of $C(X, \mathbb{K})^{\sim}$ and $C\left(X, M_{k}\right)^{\sim}$ for all $k \geq 1$. Similarly, we use 1_{Y} to denote the adjoined identity of $C(Y, \mathbb{K})^{\sim}$ and $C\left(Y, M_{k}\right)^{\sim}$ for all $k \geq 1$.

Then, we can find some $m \in \mathbb{N}$, some $b \in C\left(X, M_{m}\right)$, and some homotopy

$$
f_{0}:[0,1] \rightarrow U\left(C\left(Y, M_{m}\right)^{\sim}\right)
$$

such that

$$
\begin{gather*}
\|a-b\|<\delta /(8 M),\|\widetilde{a}-\widetilde{b}\|<\delta /(8 M), \quad\|\widetilde{b} \mid-\widetilde{c}\|<\delta /(8 M) \tag{II.8}\\
\|\widetilde{b}\| \leq M \tag{II.9}\\
f_{0}(0)=1 \text { and }\left\|f_{0}-h_{0}\right\|<\delta /(8 M), \tag{II.10}
\end{gather*}
$$

where $\tilde{b}=b+1$. Let $v_{0}=f_{0}(1)$. Then $\left\|v_{0}-u_{0}\right\|<\delta /(8 M)$. Let $b^{\prime} \in C\left(X, M_{m}\right)_{s . a}$. be such that
$|\widetilde{b}|=b^{\prime}+1$. Then $\left\|b^{\prime}+1\right\|=\|\widetilde{b}\| \leq M$. Then (II.8) implies that

$$
\begin{equation*}
\left\|b^{\prime}-c\right\|<\delta /(8 M) \tag{II.11}
\end{equation*}
$$

For each $x \in X$, let $q^{\prime}(x)=p_{\alpha^{\prime}}(|\widetilde{b}(x)|)$ and let $q_{2}(x)=p_{\alpha_{2}}(|\widetilde{b}(x)|)$. By the choice of σ_{1}, which is greater than $\delta /(8 M)$, we have (the space X, and elements a and b in Corollary II.3.9 are taken to be X, c and b^{\prime}, respectively)

$$
\begin{equation*}
\left\|p_{1}(x) q^{\prime}(x)-p_{1}(x)\right\|<\delta_{1} /(4 M) \text { and } \operatorname{rank}\left(p_{1}(x)\right) \leq \operatorname{rank}\left(q^{\prime}(x)\right) \tag{II.12}
\end{equation*}
$$

for all $x \in X$. By the choice of σ_{2}, we have (the space X, and the elements a and b in Corollary II.3.9 are taken to be X, b^{\prime} and c, respectively)

$$
\begin{equation*}
\left\|q^{\prime}(x) p_{2}(x)-q^{\prime}(x)\right\| \leq \delta_{1} /(4 M) \text { and } \operatorname{rank}\left(q^{\prime}(x)\right) \leq \operatorname{rank}\left(p_{2}(x)\right) \tag{II.13}
\end{equation*}
$$

for all $x \in X$. Then

$$
\begin{equation*}
n \geq \operatorname{rank}\left(p_{2}(x)\right) \geq \operatorname{rank}\left(q^{\prime}(x)\right) \geq \operatorname{rank}\left(p_{1}(x)\right) \geq d / 2 \tag{II.14}
\end{equation*}
$$

Now, by (II.8), for all $x \in Y$, we have

$$
\begin{aligned}
& \left\|\left[v_{0}(x)|\widetilde{b}(x)|-\widetilde{b}(x)\right]-\left[u_{0}(x)|\widetilde{a}(x)|-\widetilde{a}(x)\right]\right\| \\
& \quad \leq\left\|v_{0}(x)|\widetilde{b}(x)|-u_{0}(x)|\widetilde{a}(x)|\right\|+\|\widetilde{b}(x)-\widetilde{a}(x)\| \\
& \quad \leq\left\|v_{0}(x)|\widetilde{b}(x)|-v_{0}(x)|\widetilde{a}(x)|\right\|+\left\|v_{0}(x)|\widetilde{a}(x)|-u_{0}(x)|\widetilde{a}(x)|\right\|+\delta /(8 M) \\
& \quad \leq\left\|\widetilde { b } (x) \left|-|\widetilde{a}(x)|\|+M\| v_{0}(x)-u_{0}(x) \|+\delta /(8 M)\right.\right. \\
& \quad<2 \delta /(8 M)+\delta / 8 \leq 3 \delta / 8
\end{aligned}
$$

Also, by (II.12), for all $x \in X$, we have

$$
\begin{aligned}
& \left\|\left(1-p_{1}(x)\right)\left(1-q^{\prime}(x)\right)-\left(1-q^{\prime}(x)\right)\right\| \\
& \quad=\left\|1-q^{\prime}(x)-p_{1}(x)+p_{1} q^{\prime}(x)-1+q^{\prime}(x)\right\| \\
& \quad=\left\|p_{1}(x) q^{\prime}(x)-p_{1}(x)\right\| \\
& \quad<\delta_{1} /(4 M) .
\end{aligned}
$$

Then combining the above two calculations and (II.7), we have

$$
\left.\begin{array}{l}
\left\|\left[v_{0}(x)|\widetilde{b}(x)|-\widetilde{b}(x)\right]\left[1-q^{\prime}(x)\right]\right\| \\
\leq\left\|\left[v_{0}(x)|\widetilde{b}(x)|-\widetilde{b}(x)\right]\left[1-p_{1}(x)\right]\left[1-q^{\prime}(x)\right]\right\| \\
\quad \quad+\left\|\left[v_{0}(x)|\widetilde{b}(x)|-\widetilde{b}(x)\right]\left\{\left[1-q^{\prime}(x)\right]-\left[1-p_{1}(x)\right]\left[1-q^{\prime}(x)\right]\right\}\right\| \\
\leq \|
\end{array} \quad\left[v_{0}(x)|\widetilde{b}(x)|-\widetilde{b}(x)\right]\left[1-p_{1}(x)\right]\|+2 M\|\left[1-q^{\prime}(x)\right]-\left[1-p_{1}(x)\right]\left[1-q^{\prime}(x)\right] \|\right]
$$

for all $x \in Y$. Then by the choice of δ_{1} (with $X, Y, m, a \widetilde{p}, w_{t}$, and u_{0} in Lemma II.3.15 taken to be, respectively, $X, Y, m, b, q^{\prime}, f_{0}$ and $\left.v_{0}\right)$, there exists a unitary $v \in U_{0}\left(C\left(X, M_{m}\right)^{\sim}\right) \subseteq U_{0}\left(C(X, \mathbb{K})^{\sim}\right)$ and a homotopy $f:[0,1] \rightarrow U\left(C\left(X, M_{m}\right)^{\sim}\right) \subseteq U\left(C(X, \mathbb{K})^{\sim}\right)$, such that $f(0)=1, f(1)=v$, $\left.f(t)\right|_{Y}=f_{0}(t)$ for all t, and $\left.v\right|_{Y}=v_{0}$, and that

$$
\begin{equation*}
\left\|[v(x)|\widetilde{b}(x)|-\widetilde{b}(x)]\left[1-q^{\prime}(x)\right]\right\|<\epsilon /(16 M), \quad \text { for all } x \in X . \tag{II.15}
\end{equation*}
$$

Since, by (II.10), $\left\|f_{0}-h_{0}\right\|<\delta /(8 M)$, and since $\left.f(t)\right|_{Y}=f_{0}(t)$ for all $t \in[0,1]$, there exists $h:[0,1] \rightarrow U\left(C(X, \mathbb{K})^{\sim}\right)$ such that $h(0)=1,\left.h(t)\right|_{Y}=h_{0}(t)$ for all t, and $\|h-f\|<\delta /(4 M)$.

Let $u=h(1)$. Then $\|u-v\|<\delta /(4 M)$, and $\left.u\right|_{Y}=h_{0}(1)=u_{0}$. By (II.8), we have

$$
\begin{aligned}
& \|[u(x)|\widetilde{a}(x)|-\widetilde{a}(x)]-[v(x)|\widetilde{b}(x)|-\widetilde{b}(x)]\| \\
& \quad \leq\|u(x)|\widetilde{a}(x)|-v(x)|\widetilde{b}(x)|\|+\|\widetilde{a}(x)-\widetilde{b}(x)\| \\
& \quad \leq\|u(x)|\widetilde{a}(x)|-u(x)|\widetilde{b}(x)|\|+\|u(x)|\widetilde{b}(x)|-v(x)|\widetilde{b}(x)|\|+\delta /(8 M) \\
& \quad \leq\||\widetilde{a}(x)|-|\widetilde{b}(x)|\|+M\|u(x)-v(x)\|+\delta /(8 M) \\
& \quad<2 \delta /(8 M)+\delta / 4 \leq \delta / 2,
\end{aligned}
$$

for all $x \in X$. Also by (II.13), we have

$$
\left\|\left[1-q^{\prime}(x)\right]\left[1-p_{2}(x)\right]-\left[1-p_{2}(x)\right]\right\|<\delta_{1} /(4 M)
$$

for all $x \in X$. Thus by the two estimates above and (II.15), for all $x \in X$, we have

$$
\begin{aligned}
& \left\|[u(x)|\widetilde{a}(x)|-\widetilde{a}(x)]\left[1-p_{2}(x)\right]\right\| \\
& \leq\left\|[u(x)|\widetilde{a}(x)|-\widetilde{a}(x)]\left[1-q^{\prime}(x)\right]\left[1-p_{2}(x)\right]\right\| \\
& +\left\|[u(x)|\widetilde{a}(x)|-\widetilde{a}(x)]\left\{\left[1-p_{2}(x)\right]-\left[1-q^{\prime}(x)\right]\left[1-p_{2}(x)\right]\right\}\right\| \\
& \leq\left\|[u(x)|\widetilde{a}(x)|-\widetilde{a}(x)]\left[1-q^{\prime}(x)\right]\right\|+2 M \delta_{1} /(4 M) \\
& \leq\left\|\{[u(x)|\widetilde{a}(x)|-\widetilde{a}(x)]-[v(x)|\widetilde{b}(x)|-\widetilde{b}(x)]\}\left[1-q^{\prime}(x)\right]\right\| \\
& +\left\|\mid[v(x)|\widetilde{b}(x)|-\widetilde{b}(x)]\left[1-q^{\prime}(x)\right]\right\|+2 M \delta_{1} /(4 M) \\
& <\|[u(x)|\widetilde{a}(x)|-\widetilde{a}(x)]-[v(x)|\widetilde{b}(x)|-\widetilde{b}(x)]\| \\
& +\epsilon /(16 M)+2 M \delta_{1} /(4 M) \\
& <\delta / 2+\epsilon /(16 M)+2 M \delta_{1} /(4 M) \\
& \leq \delta+\epsilon / 16+\delta_{1} / 2 \\
& \leq \epsilon / 16+\epsilon / 16+\epsilon / 16<\epsilon .
\end{aligned}
$$

This finishes the proof.

Let A, B, and C be C^{*}-algebras. Let $\phi: A \rightarrow C$ and $R: B \rightarrow C$ be *-homomorphisms. Let $D=\{(a, b) \in A \oplus B: \phi(a)=R(b)\}$. If we unitize A, B, C, ϕ and R, and let

$$
E=\{((a, \lambda),(b, \mu)) \in \widetilde{A} \oplus \widetilde{B}: \widetilde{\phi}(a)=\widetilde{R}(b)\}
$$

then $((a, \lambda),(b, \mu)) \in E$ if and only if $(a, b) \in D$ and $\lambda=\mu$. So the map $E \rightarrow \widetilde{D}$ defined by $((a, \lambda),(b, \lambda)) \mapsto((a, b), \lambda)$ is a *-isomorphism. Thus, given a SRSH system

$$
\left(X_{1}, A^{(1)},\left(X_{i}, X_{i}^{(0)}, \phi_{i}, R_{i}, A^{(i)}\right)_{i=2}^{n}\right)
$$

and $A=A^{(n)}$, we can inductively unitize all the algebras and maps to obtain the unitized system

$$
\left(X_{1}, \widetilde{A^{(1)}},\left(X_{i}, X_{i}^{(0)}, \widetilde{\phi_{i}}, \widetilde{R_{i}}, \widetilde{A^{(i)}}\right)_{i=2}^{n}\right)
$$

Then $\left(a_{i}, \lambda_{i}\right)_{i=1}^{n} \in \widetilde{A}$ if and only if $\left(a_{i}\right)_{i=1}^{n} \in A$ and $\lambda_{1}=\cdots=\lambda_{n}$; and each element $\left(\left(a_{i}\right)_{i=1}^{n}, \lambda\right) \in \widetilde{A}$ can be uniquely written as $\left(a_{i}, \lambda\right)_{i=1}^{n}$. Also, if $a \in \widetilde{A}$ and $x \in X_{k}$ for some k, then $a=\left(a_{i}, \lambda\right)_{i=1}^{n}$ for some $\left(a_{1}, \ldots, a_{n}\right) \in A$, and we will use $a(x)$ to denote $\left(a_{k}, \lambda\right)(x)=\left(a_{k}(x), \lambda\right)$.

Lemma II.3.17. Let

$$
\left(X_{1}, A^{(1)},\left(X_{i}, X_{i}^{(0)}, \phi_{i}, R_{i}, A^{(i)}\right)_{i=2}^{n}\right)
$$

be a SRSH system and let $A=A^{(n)}$. Let Y be a compact Hausdorff space and let $\phi: A \rightarrow C(Y, \mathbb{K})$ be a *-homomorphism (not necessarily non-vanishing). Let $\widetilde{\phi}$ denote the unitization of ϕ. Let $\epsilon>0$, let $1>\alpha>0$, let $a \in A$, and let $\widetilde{a}=a+1 \in \widetilde{A}$. Let $u \in U_{0}(\widetilde{A})$ be a unitary such that for all $x \in \bigsqcup_{i=1}^{n}\left(X_{i} \backslash X_{i}^{(0)}\right)$,

$$
\begin{equation*}
\left\|[u(x)|\widetilde{a}(x)|-\widetilde{a}(x)]\left[1-p_{\alpha}(|\widetilde{a}(x)|)\right]\right\|<\epsilon \tag{II.16}
\end{equation*}
$$

Then $\left.\widetilde{\phi}(u) \in U_{0}(\widehat{C(Y, \mathbb{K}})\right)$ and all $y \in Y$, we have

$$
\begin{equation*}
\left\|[\widetilde{\phi}(u)(y)|\widetilde{\phi}(\widetilde{a})(y)|-\widetilde{\phi}(\widetilde{a})(y)]\left[1-p_{\alpha}(|\widetilde{\phi}(\widetilde{a})(y)|)\right]\right\|<\epsilon \tag{II.17}
\end{equation*}
$$

Proof: Let H denote the separable infinite dimensional Hilbert space and let 1 denote the identity of $B(H)$. We identify the $\widetilde{\mathbb{K}}$ with $\mathbb{K} \oplus(\mathbb{C} \cdot 1)$ using the $\operatorname{map}(a, \lambda) \mapsto a+\lambda \cdot 1$. For any compact Hausdorff space Z, let 1_{Z} denote the identity of $C(Z, B(H))$. We identify the algebra
$C(Z, \mathbb{K}) \oplus\left(\mathbb{C} \cdot 1_{Z}\right)$ as a subalgebra of $C(Z, B(H))$ using the map $\left(a, \lambda \cdot 1_{Z}\right) \mapsto a+\lambda \cdot 1_{Z}$. Then we identify $\widetilde{C(Z, \mathbb{K})}$ with $C(Z, \mathbb{K}) \oplus\left(\mathbb{C} \cdot 1_{Z}\right) \subseteq C(Z, B(H))$ using the map $(f, \lambda) \mapsto f+\lambda \cdot 1_{Z}$.

Let

$$
\left(X_{1}, A^{(1)},\left(X_{i}, X_{i}^{(0)}, \phi_{i}, R_{i}, A^{(i)}\right)_{i=2}^{n}\right)
$$

be a SRSH system and let $A=A^{(n)}$. Let Y be a compact Hausdorff space and let $\phi: A \rightarrow C(Y, \mathbb{K})$ be a *-homomorphism (not necessarily non-vanishing). Let $\widetilde{\phi}$ denote the unitization of ϕ. Let $\epsilon>0$, let $1>\alpha>0$, let $a \in A$, and let $\widetilde{a}=a+1 \in \widetilde{A}$. Let $u \in U_{0}(\widetilde{A})$ be a unitary that satisfies (II.16) for all $x \in \bigsqcup_{i=1}^{n}\left(X_{i} \backslash X_{i}^{(0)}\right)$. With the above identifications, we can treat \widetilde{A} as a subalgebra of $C(X, B(H))$ using the maps $(b, \lambda) \mapsto b+\lambda 1_{X}$, where X is the total space of A, and then the identity of \widetilde{A} is 1_{X}. So every element in \widetilde{A} can be uniquely written as $\left(\left(a_{1}, \lambda 1_{X_{1}}\right), \ldots,\left(a_{n}, \lambda 1_{X_{n}}\right)\right)$, where $\lambda \in \mathbb{C}$ and $\left(a_{1}, \ldots, a_{n}\right) \in A$. Then for all $b+\lambda 1_{X} \in \widetilde{A}$, we have $\widetilde{\phi}\left(b+\lambda 1_{X}\right)=\phi(b)+\lambda 1_{Y}$.

It is clear that $\widetilde{\phi}(u) \in U_{0}\left(C(Y, \mathbb{K})^{\sim}\right)$. Fix $y \in Y$. If the map $A \rightarrow \mathbb{K}$ defined by $b \mapsto \phi(b)(y)$ is the zero map, then for all $b \in A$, we have $\widetilde{\phi}(\widetilde{b})(y)=1=|\widetilde{\phi}(\widetilde{a})(y)|$, and so $p_{\alpha}(|\widetilde{\phi}(\widetilde{a})(y)|)=p_{\alpha}(1)=0$. Since $u=(v, \mu) \in U_{0}(\widetilde{A})$ satisfies (II.16), we have $|\mu-1|<\epsilon$, and then the left side of (II.17) reduces to $\|[\mu \cdot 1-1][1-0]\|=|\mu-1|<\epsilon$. So we can assume that the map $A \rightarrow \mathbb{K}$ given by $b \mapsto \phi(b)(y)$ is not the zero map.

Let $\left(p_{i}\right)_{i=1}^{m}$ be the family of mutually orthogonal projections in $B(H)$, let $\left(w_{i}\right)_{i=1}^{m}$ be the family of isometries in $B(H)$ and let $\left(x_{i}\right)_{i=1}^{m}$ be the family of elements of $\rfloor_{k=1}^{n}\left(X_{k} \backslash X_{k}^{(0)}\right)$ that satisfy the conclusion of Proposition II.2.6. Let $p_{m+1}=1-\sum_{i=1}^{m} p_{i}$. Then $\left(p_{i}\right)_{i=1}^{m+1}$ is still a mutually orthogonal family of projections. For all $b+\lambda 1_{X} \in \widetilde{A}$, we have

$$
\begin{aligned}
\widetilde{\phi}\left(b+\lambda 1_{X}\right)(y) & =\phi(b)(y)+\lambda 1=\sum_{i=1}^{m} w_{i} b\left(x_{i}\right) w_{i}^{*}+\lambda \sum_{i=1}^{m} p_{i}+\lambda p_{m+1} \\
& =\sum_{i=1}^{m} w_{i} b\left(x_{i}\right) w_{i}^{*}+\lambda \sum_{i=1}^{m} w_{i} w_{i}^{*}+\lambda p_{m+1} \\
& =\sum_{i=1}^{m} w_{i}\left(b\left(x_{i}\right)+\lambda \cdot 1\right) w_{i}^{*}+\lambda p_{m+1} \\
& =\sum_{i=1}^{m} w_{i}\left(b+\lambda 1_{X}\right)\left(x_{i}\right) w_{i}^{*}+\lambda p_{m+1} .
\end{aligned}
$$

Let $v \in A$ and $\mu \in \mathbb{C}$ satisfy $v+\mu 1_{X}=u$. Then

$$
\begin{equation*}
\widetilde{\phi}(u)(y)=\widetilde{\phi}\left(v+\mu 1_{X}\right)=\sum_{i=1}^{m} w_{i} u\left(x_{i}\right) w_{i}^{*}+\mu p_{m+1} . \tag{II.18}
\end{equation*}
$$

Also, we have

$$
\begin{equation*}
\widetilde{\phi}(\widetilde{a})(y)=\widetilde{\phi}\left(a+1_{X}\right)=\sum_{i=1}^{m} w_{i} \tilde{a}\left(x_{i}\right) w_{i}^{*}+p_{m+1} \tag{II.19}
\end{equation*}
$$

and

$$
\begin{equation*}
|\widetilde{\phi}(\widetilde{a})(y)|=\widetilde{\phi}(|\widetilde{a}|)(y)=\sum_{i=1}^{m} w_{i}|\widetilde{a}|\left(x_{i}\right) w_{i}^{*}+p_{m+1}=\sum_{i=1}^{m} w_{i}\left|\widetilde{a}\left(x_{i}\right)\right| w_{i}^{*}+p_{m+1} \tag{II.20}
\end{equation*}
$$

Then (II.18) and (II.20) give

$$
\begin{equation*}
\widetilde{\phi}(u)(y)|\widetilde{\phi}(\widetilde{a})(y)|=\sum_{i=1}^{m} w_{i} u\left(x_{i}\right)\left|\widetilde{a}\left(x_{i}\right)\right| w_{i}^{*}+\mu p_{m+1} \tag{II.21}
\end{equation*}
$$

Also, by Corollary II.3.7, we have

$$
p_{\alpha}(|\widetilde{\phi}(\widetilde{a})(y)|)=p_{\alpha}\left(\sum_{i=1}^{m} w_{i}\left|\widetilde{a}\left(x_{i}\right)\right| w_{i}^{*}+p_{m+1}\right)=\sum_{i=1}^{m} p_{\alpha}\left(w_{i}\left|\widetilde{a}\left(x_{i}\right)\right| w_{i}^{*}\right)+p_{\alpha}\left(p_{m+1}\right)
$$

where the functional calculus in the last expression is taken in $p_{i} B(H) p_{i}$ for $i \in\{1, \ldots, m+1\}$. Now, for each $i \in\{1, \ldots, m\}$, the map $B(H) \rightarrow p_{i} B(H) p_{i}$ defined by $T \mapsto w_{i} T w_{i}^{*}$ is a unital ${ }^{*}$-isomorphism, so we have $p_{\alpha}\left(w_{i}\left|\widetilde{a}\left(x_{i}\right)\right| w_{i}^{*}\right)=w_{i} p_{\alpha}\left(\left|\widetilde{a}\left(x_{i}\right)\right|\right) w_{i}^{*}$, where the last functional calculus is now taken in $B(H)$. So we have

$$
\begin{equation*}
p_{\alpha}(|\widetilde{\phi}(\widetilde{a})(y)|)=\sum_{i=1}^{m} w_{i} p_{\alpha}\left(\left|\widetilde{a}\left(x_{i}\right)\right|\right) w_{i}^{*} \tag{II.22}
\end{equation*}
$$

(functional calculus on both sides is taken in $B(H)$, i.e. the identity used in the functional calculus is id_{H} on both sides).

Note that (II.16) implies that $|\mu-1|<\epsilon$. Then from (II.16), (II.19), (II.21), and (II.22), we have

$$
\begin{aligned}
& \left\|[\widetilde{\phi}(u)(y)|\widetilde{\phi}(\widetilde{a})(y)|-\widetilde{\phi}(\widetilde{a})(y)]\left[1-p_{\alpha}(|\widetilde{\phi}(\widetilde{a})(y)|)\right]\right\| \\
& =\|\left[(\mu-1) p_{m+1}+\sum_{i=1}^{m} w_{i}\left[u\left(x_{i}\right)\left|\widetilde{a}\left(x_{i}\right)\right|-\widetilde{a}\left(x_{i}\right)\right] w_{i}^{*}\right] \\
& \quad \cdot\left[p_{m+1}+\sum_{i=1}^{m} w_{i}\left[1-p_{\alpha}\left(\left|\widetilde{a}\left(x_{i}\right)\right|\right)\right] w_{i}^{*}\right] \| \\
& =\left\|(\mu-1) p_{m+1}+\sum_{i=1}^{m} w_{i}\left[u\left(x_{i}\right)\left|\widetilde{a}\left(x_{i}\right)\right|-\widetilde{a}\left(x_{i}\right)\right]\left[1-p_{\alpha}\left(\left|\widetilde{a}\left(x_{i}\right)\right|\right)\right] w_{i}^{*}\right\| \\
& =\max \left(\{|\mu-1|\} \cup\left\{\left\|\left[u\left(x_{i}\right)\left|\widetilde{a}\left(x_{i}\right)\right|-\widetilde{a}\left(x_{i}\right)\right]\left[1-p_{\alpha}\left(\left|\widetilde{a}\left(x_{i}\right)\right|\right)\right]\right\|: 1 \leq i \leq m\right\}\right) \\
& \quad<\epsilon .
\end{aligned}
$$

This estimate holds for all $y \in Y$, so result follows.

Lemma II.3.18. Let

$$
\left(X_{1}, A^{(1)},\left(X_{i}, X_{i}^{(0)}, \phi_{i}, R_{i}, A^{(i)}\right)_{i=2}^{n}\right)
$$

be a $S R S H$ system, let $A=A^{(n)}$ and let X be the total space. Suppose that $\operatorname{dim}(X)=d<\infty$. Let $1>\epsilon>0$ and let $1>\alpha>0$. Let $a \in A$, and let $\widetilde{a}=a+1 \in \widetilde{A}$. Suppose that for all $x \in X$, we have $\operatorname{rank}\left(p_{\alpha / 2}(|\widetilde{a}(x)|)\right) \geq d / 2$. Then there exists $u \in U_{0}(\widetilde{A})$ such that for all $x \in X$, we have

$$
\begin{equation*}
\left\|[u(x)|\widetilde{a}(x)|-\widetilde{a}(x)]\left[1-p_{\alpha}(|\widetilde{a}(x)|)\right]\right\|<\epsilon \tag{II.23}
\end{equation*}
$$

Proof: \quad First of all, if we let $x_{0} \in X_{1}$, let $X_{1}^{(0)}=X_{0}=\left\{x_{0}\right\}$, let $R_{1}: C\left(X_{1}, \mathbb{K}\right) \rightarrow C\left(X_{1}^{(0)}, \mathbb{K}\right)$ be the restriction map, let $\phi_{1}: C\left(X_{0}, \mathbb{K}\right) \rightarrow C\left(X_{1}^{(0)}, \mathbb{K}\right)$ be the identity map, and let $A^{(0)}=C\left(X_{0}, \mathbb{K}\right)$, then

$$
\left(X_{0}, A^{(0)},\left(X_{i}, X_{i}^{(0)}, \phi_{i}, R_{i}, A^{(i)}\right)_{k=1}^{n}\right)
$$

is again a SRSH system that gives the same SRSHA as the original system. This change does not affect any of the hypotheses or the conclusion of the lemma. Thus without loss of generality, assume that X_{1} is just one point set, and so $A^{(1)} \cong \mathbb{K}$.

Now suppose

$$
\left(X_{1}, A^{(1)},\left(X_{i}, X_{i}^{(0)}, \phi_{i}, R_{i}, A^{(i)}\right)_{i=2}^{n}\right)
$$

where X_{1} is a one-point set, $1>\epsilon>0,1>\alpha>0$, and $a \in A$ satisfy the hypothesis of the lemma. Write $a=\left(a_{1}, \ldots, a_{n}\right)$ with $a_{k} \in C\left(X_{k}, \mathbb{K}\right)$ for $k \in\{1, \ldots n\}$.

Choose $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{R}$ such that $0<\alpha / 2=\alpha_{1}<\cdots<\alpha_{n}=\alpha$. Now we inductively pick $\delta_{1}, \ldots, \delta_{n}>0$. Let $\delta_{n}=\epsilon / 2$. Suppose that $\delta_{k}>0$ is picked. Note that $\operatorname{dim}\left(X_{k}\right) \leq \operatorname{dim}(X)=d$, and that for each $x \in X_{k}$, we have

$$
\operatorname{rank}\left(p_{\alpha_{k-1}}\left(\left|\widetilde{a}_{k}(x)\right|\right)\right)=\operatorname{rank}\left(p_{\alpha_{k-1}}(|\widetilde{a}(x)|)\right) \geq \operatorname{rank}\left(p_{\alpha / 2}(|\widetilde{a}(x)|)\right) \geq d / 2
$$

So we can apply Lemma II.3.16, with $\epsilon, \alpha_{1}, \alpha_{2}, X, Y$, and a in Lemma II. 3.16 respectively taken to be $\min \left\{\delta_{k} / 2, \epsilon /\left(2^{k}\right)\right\}, \alpha_{k-1}, \alpha_{k}, X_{k}, X_{k}^{(0)}$, and a_{k}, to obtain $\delta_{k-1}^{\prime} . \operatorname{Set} \delta_{k-1}=\min \left\{\delta_{k} / 2, \delta_{k-1}^{\prime}\right\}$. Next we inductively choose $u_{k} \in C\left(X_{k}, \mathbb{K}\right)^{\sim}$ for $k \in\{1, \ldots, n\}$, and homotopies $h_{k}:[0,1] \rightarrow U\left(C\left(X_{k}, \mathbb{K}\right)^{\sim}\right.$ for $k \in\{1, \ldots, n\}$, such that

$$
\begin{align*}
& h_{k}(0)=1, h_{k}(1)=u_{k}, \text { for } k \in\{1, \ldots, n\}, \tag{II.24}\\
& \left(h_{1}(t), \ldots h_{k}(t)\right) \in U\left(\widetilde{A^{(k)}}\right), \text { for } t \in[0,1] \tag{II.25}\\
& \left(u_{1}, \ldots, u_{k}\right) \in U_{0}\left(\widetilde{A^{(k)}}\right), \text { for } k \in\{1, \ldots, n\}, \tag{II.26}\\
& \left\|\left[u_{k}(x)\left|\widetilde{a}_{k}(x)\right|-\widetilde{a}_{k}(x)\right]\left(1-p_{\alpha_{k}}\left(\mid \widetilde{a}_{k}(x)\right)\right)\right\|<\delta_{k}, \text { for all } x \in X_{k} \tag{II.27}
\end{align*}
$$

For each $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \widetilde{A}$, we will use $\xi^{(k)}$ to denote the first k entries of ξ. Note that $\left(\xi_{1}, \ldots, \xi_{k}\right) \in \widehat{A^{(k)}}$. Since X_{1} is just a one-point space, it is clear that there exists $u_{1} \in U_{0}\left(\widehat{A^{(1)}}\right)$ and a homotopy $h_{1}:[0,1] \rightarrow U\left(\widetilde{A^{(1)}}\right)$ such that $h_{1}(0)=1$ and $h_{1}(1)=u_{1}$, and that (II.24), (II.26), and (II.27) hold for $k=1$. Suppose that u_{k} and h_{k} are chosen to satisfy (II.24), (II.25), (II.26), and (II.27).

Let $v=\widetilde{\phi}_{k+1}\left(u^{(k)}\right)$, where $u^{(k)}=\left(u_{1}, \ldots, u_{k}\right) \in \widetilde{A^{(k)}}$, and define

$$
f_{0}:[0,1] \rightarrow U\left(C\left(X_{k+1}^{(0)}, \mathbb{K}\right)^{\sim}\right)
$$

by $f_{0}(t)=\widetilde{\phi}_{k+1}\left(h_{1}(t), \ldots, h_{k}(t)\right)$. Then $v \in U_{0}\left(C\left(X_{k+1}^{(0)}, \mathbb{K}\right)^{\sim}\right)$ and f_{0} is a homotopy in $U\left(C\left(X_{k+1}^{(0)}, \mathbb{K}\right)^{\sim}\right)$ from 1 to v. Also, applying Lemma (II.3.17) to $A^{(k)}$ in place of $A, X_{k+1}^{(0)}$ in place
of Y, ϕ_{k+1} in place of $\phi, a^{(k)}$ in place of a, δ_{k} in place of ϵ, α_{k} in place of α, and $u^{(k)}=\left(u_{1}, \ldots, u_{k}\right)$ in place of u, we have

$$
\left.\|\left[v(x) \mid \widetilde{\phi}\left(\widetilde{a}^{(k)}\right)(x)\right) \mid-\tilde{\phi}\left(\widetilde{a}^{(k)}\right)(x)\right]\left[1-p_{\alpha_{k}}\left(\mid \widetilde{\phi}\left(\widetilde{a}^{(k)}(x) \mid\right)\right] \|_{1}<\delta_{k}\right.
$$

for all $x \in X_{k+1}^{(0)}$. Since $\widetilde{\phi}_{k+1}\left(\widetilde{a}^{(k)}\right)=\widetilde{R}\left(\widetilde{a}_{k+1}\right)$, we have

$$
\left\|\left[v(x)\left|\widetilde{a}_{k+1}(x)\right|-\widetilde{a}_{k+1}(x)\right]\left[1-p_{\alpha_{k}}\left(\left|\widetilde{a}_{k+1}(x)\right|\right)\right]\right\|<\delta_{k}
$$

for all $x \in X_{k+1}^{(0)}$. Then by the choice of δ_{k}, there exists $u_{k+1} \in U_{0}\left(C\left(X_{k+1}, \mathbb{K}\right)^{\sim}\right)$ and a homotopy h_{k+1} in $U\left(C\left(X_{k+1}, \mathbb{K}\right)^{\sim}\right)$ such that $h_{k+1}(0)=1$, such that $h_{k+1}(1)=u_{k+1}$, such that $\left.h_{k+1}(t)\right|_{X_{k+1}^{(0)}}=f_{0}(t)$ for all $t \in[0,1]$, such that $\left.u_{k+1}\right|_{X_{k+1}^{(0)}}=v$, and such that

$$
\left\|\left[u_{k+1}(x)\left|\widetilde{a}_{k+1}(x)\right|-\widetilde{a}_{k+1}(x)\right]\left[1-p_{\alpha_{k+1}}\left(\left|\widetilde{a}_{k+1}(x)\right|\right)\right]\right\|<\delta_{k+1}
$$

for all $x \in X_{k+1}$. It is clear that $\left(u_{1}, \ldots, u_{k}, u_{k+1}\right)$ is a unitary $A^{(k+1)}$, and that for each $t \in[0,1]$, we have

$$
\left(h_{1}(t), \ldots, h_{k}(t), h_{k+1}(t)\right) \in U\left(C\left(X_{k+1}, \mathbb{K}\right)^{\sim}\right)
$$

Then $t \mapsto\left(h_{1}(t), \ldots, h_{k+1}(t)\right)$ is a homotopy in $U\left(C\left(X_{k+1}, \mathbb{K}\right)^{\sim}\right)$ from 1 to $\left(u_{1}, \ldots, u_{k}\right)$. So $\left(u_{1}, \ldots, u_{k}\right) \in U_{0}\left(\widetilde{A^{(k+1)}}\right)$. This completes the inductive step.

Now take $u=\left(u_{1}, \ldots, u_{n}\right)$. Since for all $k \in\{1, \ldots, n\}$ and for all $x \in X_{k}$, we have $1-p_{\alpha_{k}}(|\widetilde{a}(x)|) \geq 1-p_{\alpha}(|\widetilde{a}(x)|)$, and since $\delta_{1}<\delta_{2}<\cdots<\delta_{k}<\epsilon$, (II.27) implies (II.23). This finishes the proof.

As a consequence of the above lemma, the next proposition will give an approximate polar decomposition for elements a in a SRSHA such that the dimension of the the eigenspaces of the small eigenvalues of $|a(x)|$ is large enough.

Proposition II.3.19. Let

$$
\left(X_{1}, A^{(1)},\left(X_{i}, X_{i}^{(0)}, \phi_{i}, R_{i}, A^{(i)}\right)_{i=2}^{n}\right)
$$

be a SRSH system, let $A=A^{(n)}$, and let X be the total space. Suppose that $\operatorname{dim}(X)=d<\infty$. Let
$1>\epsilon>0$ and let $1>\alpha>0$. Let $a \in A$, and let $\widetilde{a}=a+1 \in \widetilde{A}$. Suppose that for all $x \in X$, we have $\operatorname{rank}\left(p_{\alpha / 2}(|\widetilde{a}(x)|)\right) \geq d / 2$. Then there exists $u \in U_{0}(\widetilde{A})$ such that $\|u|\widetilde{a}|-\widetilde{a}\|<\epsilon+2 \alpha$.

Proof: Let u be the unitary obtained using Lemma II.3.18. Then for all $x \in X$ and all $\xi \in H$, where H is the underlying Hilbert space, we have

$$
\begin{aligned}
& \|[u(x)|\widetilde{a}(x)|-\widetilde{a}(x)](\xi)\| \\
& \quad \leq\left\|[u(x)|\widetilde{a}(x)|-\widetilde{a}(x)]\left(1-p_{\alpha}(|\widetilde{a}(x)|)(\xi)\right)\right\| \\
& \quad \quad+\left\|[u(x)|\widetilde{a}(x)|-\widetilde{a}(x)] p_{\alpha}(|\widetilde{a}(x)|)(\xi)\right\| \\
& \quad<\epsilon\|\xi\|+\left\|(|\widetilde{a}(x)|) p_{\alpha}(|\widetilde{a}(x)|)(\xi)\right\|+\left\|\widetilde{a}(x) p_{\alpha}(|\widetilde{a}(x)|)(\xi)\right\| \\
& \quad \leq \epsilon\|\xi\|+2 \alpha\|\xi\| .
\end{aligned}
$$

Thus $\|[u(x)|\widetilde{a}(x)|-\widetilde{a}(x)]\| \leq \epsilon+2 \alpha$ for all $x \in X$. So $\|u|\widetilde{a}|-\widetilde{a}\| \leq \epsilon+2 \alpha$.

Corollary II.3.20. Let

$$
\left(X_{1}, A^{(1)},\left(X_{i}, X_{i}^{(0)}, \phi_{i}, R_{i}, A^{(i)}\right)_{i=2}^{n}\right)
$$

be a SRSH system, let $A=A^{(n)}$, and let X be the total space. Suppose that $\operatorname{dim}(X)=d<\infty$. Let $1>\epsilon>0$. Let $a \in A$ and let $\widetilde{a}=a+1 \in \widetilde{A}$. Suppose that for all $x \in X$, we have $\operatorname{rank}\left(p_{\epsilon / 8}(|\widetilde{a}(x)|)\right) \geq$ $d / 2$. Then there exists $b \in \widetilde{A}$ such that b is invertible and $\|\widetilde{a}-b\|<\epsilon$.

Proof: Apply Proposition II. 3.19 to $A, \epsilon / 4$ in place of $\epsilon, \epsilon / 4$ in place of α, and $a \in A$, to obtain a unitary $u \in U_{0}(\widetilde{A})$ such that $\|u|\widetilde{a}|-\widetilde{a}\|<\epsilon / 4+\epsilon / 2=3 \epsilon / 4$. Let $b=u(|\widetilde{a}|+\epsilon / 4)$. Then b is invertible and

$$
\|b-\widetilde{a}\| \leq\|b-u|\widetilde{a}|\|+\|u|\widetilde{a}|-\widetilde{a}\|<\epsilon / 4+3 \epsilon / 4=\epsilon .
$$

Lemma II.3.21. Let

$$
\left(X_{1}, A^{(1)},\left(X_{i}, X_{i}^{(0)}, \phi_{i}, R_{i}, A^{(i)}\right)_{i=2}^{n}\right)
$$

be a SRSH system, let $A=A^{(n)}$, and let X be the total space. Let $a \in A$ and let $\widetilde{a}=a+1 \in \widetilde{A}$. Let $1>\alpha>0$. Then the set $U=\left\{x \in X: \operatorname{rank}\left(p_{\alpha}(|\widetilde{a}(x)|) \geq 1\right\}\right.$ is open. Further, if $U \neq \varnothing$, then $I_{U}=\left\{a \in A:\left.a\right|_{U^{c}}=0\right\}$ is a non-zero ideal of A.

Proof: If $U=\left\{x \in X: \operatorname{rank}\left(p_{\alpha}(|\widetilde{a}(x)|)\right) \geq 1\right\}$ is empty, then we are done. So assume that $U \neq \varnothing$. To show that U is open, it is enough to show that every $x \in U$ is an interior point, i.e. there exists some open $V \subseteq U$ such that $x \in V$. Fix $x_{0} \in U$.

Apply Lemma II.3.12 to α and $\left|\widetilde{a}\left(x_{0}\right)\right|$ to obtain $\delta>0$. The map $x \mapsto|\widetilde{a}(x)|$ is continuous, and the set $V=\left\{x \in X:\left\||\widetilde{a}(x)|-\left|\widetilde{a}\left(x_{0}\right)\right|\right\|<\delta\right\}$ is open and contains x_{0}. If $x \in V$, then the choice of δ implies that $1 \leq \operatorname{rank}\left(p_{\alpha}\left(\left|\widetilde{a}\left(x_{0}\right)\right|\right)\right) \leq \operatorname{rank}\left(p_{\alpha}(|\widetilde{a}(x)|)\right)$. Therefore $V \subseteq U$, and hence U is open.

To show that $I_{U} \neq 0$, we verify the condition in part 1 of Lemma II.2.9. For each $k \in\{1, \ldots, n\}$, let $U_{k}=X_{k} \cap U$, and for each $k=2, \ldots, n$, let

$$
W_{k}=\left\{x \in X_{k}^{(0)}: \operatorname{sp}_{x}\left(\phi_{k}\right) \cap\left(\bigsqcup_{i=1}^{k-1} U_{i}\right) \neq \varnothing\right\} .
$$

Let $2 \leq k \leq n$ and let $x \in W_{k}$. Then $\operatorname{sp}_{x}\left(\phi_{k}\right) \cap U \neq \varnothing$, so let $y_{0} \in \operatorname{sp}_{x}\left(\phi_{k}\right) \cap U$. Let w_{1}, \ldots, w_{l} be the family of isometries with orthogonal ranges such that $\phi_{k}(f)=\sum_{i=1}^{l} w_{i} f\left(y_{i}\right) w_{i}^{*}$ for all $f \in A^{(k-1)}$, where $y_{i} \in \operatorname{sp}_{x}\left(\phi_{k}\right)$ for $i \in\{1, \ldots, l\}$. Let i_{0} be an integer such that $1 \leq i_{0} \leq l$ and $y_{i_{0}}=y_{0}$. Let $c \in A_{s . a}$. be such that $|\widetilde{a}|=c+1$. Then

$$
\begin{aligned}
p_{\alpha}(|\widetilde{a}(x)|)=p_{\alpha} & (c(x)+1)=p_{\alpha-1}(c(x)) \\
& =\sum_{i=1}^{l} w_{i} p_{\alpha-1}\left(c\left(y_{i}\right)\right) w_{i}^{*} \geq w_{i_{0}} p_{\alpha-1}\left(c\left(y_{0}\right)\right) w_{i_{0}}^{*} \\
& =w_{i_{0}} p_{\alpha}\left(c\left(y_{0}\right)+1\right) w_{i_{0}}^{*}=w_{i_{0}} p_{\alpha}\left(\left|\widetilde{a}\left(y_{0}\right)\right|\right) w_{i_{0}}^{*} .
\end{aligned}
$$

So, since $y_{0} \in U$, we have $\operatorname{rank}\left(p_{\alpha}(|\widetilde{a}(x)|)\right) \geq \operatorname{rank}\left(p_{\alpha}\left(\left|\widetilde{a}\left(y_{0}\right)\right|\right)\right) \geq 1$. Hence $x \in U_{k}$, and so $x \in U_{k} \cap X_{k}^{(0)}$. Therefore $W_{k} \subseteq U_{k} \cap X_{k}^{(0)}$.

Now let $x \in U_{k} \cap X_{k}^{(0)}$. Let w_{1}, \ldots, w_{l} be the family of isometries with orthogonal ranges such that $\phi_{k}(f)=\sum_{i=1}^{l} w_{i} f\left(y_{i}\right) w_{i}^{*}$ for all $f \in A^{(k-1)}$, where $y_{i} \in \operatorname{sp}_{x}\left(\phi_{k}\right)$ for all $i \in\{1, \ldots, l\}$. Then

$$
\operatorname{rank}\left(p_{\alpha}(|\widetilde{a}(x)|)\right)=\operatorname{rank}\left(\sum_{i=1}^{l} w_{i} p_{\alpha}\left(\left|\widetilde{a}\left(y_{i}\right)\right|\right) w_{i}^{*}\right)=\sum_{i=1}^{l} \operatorname{rank}\left(p_{\alpha}\left(\left|\widetilde{a}\left(y_{i}\right)\right|\right)\right) .
$$

Since $x \in U$, for some $i \in\{1, \ldots, l\}$, we have $\operatorname{rank}\left(p_{\alpha}\left(\left|\widetilde{a}\left(y_{i}\right)\right|\right)\right) \geq 1$. Thus $y_{i} \in \bigsqcup_{j=1}^{k-1} U_{j}$. So $\mathrm{sp}_{x}\left(\phi_{k}\right) \cap\left(\bigsqcup_{j=1}^{k-1} U_{j}\right) \neq \varnothing$, and so $x \in W_{k}$. Hence $U_{k} \cap X_{k}^{(0)} \subseteq W_{k}$.

Thus by Lemma II.2.9, $I_{U} \neq 0$.

Lemma II.3.22. Let $\left(A_{n}, \psi_{n}\right)$ be an inductive system of SRSHAs and let A be the inductive limit. Let X_{n} be the total space for A_{n}. Suppose that ψ_{n} is injective for all n, that ψ_{n} is non-vanishing for all n, and suppose that A is simple. Let $1>\alpha>0$. Then for all $n \geq 1$ and all $a \in A_{n}$ such that $\widetilde{a}=a+1$ is not invertible in \widetilde{A}_{n}, there exists some $m \geq n$ such that for all $k \geq m$ and all $x \in X_{k}$, we have $\operatorname{rank}\left(p_{\alpha}\left(\left|\widetilde{\psi}_{n, k}(\widetilde{a})(x)\right|\right)\right) \geq 1$, where $\widetilde{\psi}_{n, k}$ is the unitization of the map $\psi_{n, k}$.

Proof: Let $U=\left\{x \in X_{n}: \operatorname{rank}\left(p_{\alpha}(|\widetilde{a}(x)|)\right) \geq 1\right\}$. We first show that $U \neq \varnothing$. Since \widetilde{a} is not invertible, there exists some x_{0} in the total space of A_{n} such that $\tilde{a}\left(x_{0}\right)$ is not invertible. Then by the Fredholm Alternative, the operator $\widetilde{a}\left(x_{0}\right)$ is not injective, which implies that $\left|\widetilde{a}\left(x_{0}\right)\right|$ is not injective. Then $p_{\alpha}\left(\left|\widetilde{a}\left(x_{0}\right)\right|\right) \neq 0$, which implies that $x_{0} \in U$. This shows that $U \neq \varnothing$.

By Lemma II.3.21, $I_{U}=\left\{a \in A_{n}:\left.a\right|_{U^{c}}=0\right\}$ is a non-zero ideal. Then by Proposition II.2.11, there exists $m \geq N$ such that for all $k \geq m$, and for all $x \in X_{k}$, we have $\operatorname{sp}_{x}\left(\psi_{n, k}\right) \cap U \neq \varnothing$. Let $k \geq m$, let $x \in X_{k}$, and let w_{1}, \ldots, w_{l} be the family of isometries with orthogonal ranges such that $\psi_{n, k}(f)(x)=\sum_{i=1}^{l} w_{i} f\left(y_{i}\right) w_{i}^{*}$ for all $f \in A_{n}$, where $\left\{y_{i}: i=1, \ldots, l\right\}=\operatorname{sp}_{x}\left(\psi_{n, k}\right)$. Let $y_{0} \in \operatorname{sp}_{x}\left(\psi_{n, k}\right) \cap U$ and choose $1 \leq i_{0} \leq l$ such that $y_{i_{0}}=y_{0}$. Let $c \in\left(A_{n}\right)_{s . a}$. be such that $|\widetilde{a}|=\tilde{c}$. Then $\left|\widetilde{\psi}_{n, k}(\widetilde{a})\right|=\widetilde{\psi}_{n, k}(|\widetilde{a}|)=\widetilde{\psi}_{n, k}(\widetilde{c})=\psi_{n, k}(c)+1$. Thus

$$
\begin{aligned}
\operatorname{rank}\left(p_{\alpha}\left(\left|\widetilde{\psi}_{n, k}(\widetilde{a})(x)\right|\right)\right) & =\operatorname{rank}\left(p_{\alpha}\left(\left|\tilde{\psi}_{n, k}(\widetilde{a})\right|(x)\right)\right) \\
& =\operatorname{rank}\left(p_{\alpha}\left(\psi_{n, k}(c)(x)+1\right)\right) \\
& =\operatorname{rank}\left(p_{\alpha-1}\left(\psi_{n, k}(c)(x)\right)\right) \\
& =\sum_{i=1}^{l} \operatorname{rank}\left(p_{\alpha-1}\left(c\left(y_{i}\right)\right)\right) \geq \operatorname{rank}\left(p_{\alpha-1}\left(c\left(y_{i_{0}}\right)\right)\right. \\
& =\operatorname{rank}\left(p_{\alpha-1}\left(c\left(y_{0}\right)\right)\right. \\
& =\operatorname{rank}\left(p_{\alpha}\left(c\left(y_{0}\right)+1\right)\right) \\
& =\operatorname{rank}\left(p_{\alpha}\left(\widetilde{c}\left(y_{0}\right)\right)\right)=\operatorname{rank}\left(p_{\alpha}\left(\left|\widetilde{a}\left(y_{0}\right)\right|\right)\right) \geq 1 .
\end{aligned}
$$

The last inequality above holds because $y_{0} \in U$.
Theorem II.3.23. Let $\left(A_{n}, \psi_{n}\right)$ be an inductive system of SRSHAs and let A be the inductive limit. Let X_{n} be the total space for A_{n}. Suppose that ψ_{n} is injective and non-vanishing for all n, and suppose that A is simple. Also assume that there exists $d \in \mathbb{N}$ such that $\operatorname{dim}\left(X_{n}\right) \leq d$ for all $n \geq 1$. Then A has topological stable rank one.

Proof: We first show that an element of the form $b+1 \in \widetilde{A}$, where $b \in A$, can be approxmiated arbitrarily closely by some invertible element in \widetilde{A}.

Let $b \in A$, let $1>\epsilon>0$, and let $\widetilde{b}=b+1$. Let $n \geq 1$, and let $a \in A_{n}$ satisfy $\left\|\widetilde{\psi}^{n}(\widetilde{a})-\widetilde{b}\right\|<$ $\epsilon / 2$, where $\psi^{n}: A_{n} \rightarrow A$ is the standard map that comes with the inductive limit. If \tilde{a} is invertible in A_{n}, then $\widetilde{\psi}^{n}(\widetilde{a})$ is invertible in \widetilde{A}, and we are done. So assume that \widetilde{a} is not invertible in A_{n}. Then by Lemma II.3.22, using $\epsilon / 16$ as α, find some $m_{1} \geq n$ such that for all $k \geq m_{1}$, $\operatorname{rank}\left(p_{\epsilon / 16}\left(\left|\widetilde{\psi}_{n, k}(\widetilde{a})(x)\right|\right)\right) \geq 1$ for all $x \in X_{k}$.

For each $n \geq 1$, let $X_{n, 1}, \ldots, X_{n, l(n)}$ be the base spaces of A_{n}, let $X_{n, 2}^{(0)}, \ldots, X_{n, l(n)}^{(0)}$ be the attaching spaces, and let $X_{n, 1}^{(0)}=\varnothing$. If for all $k \geq m_{1}$, the set $\bigsqcup_{i=1}^{l(k)}\left(X_{k, i} \backslash X_{k, i}^{(0)}\right)$ is a finite set, then for all $k \geq m_{1}$ the algebra A_{k} is simply a finite direct sum of copies of \mathbb{K}. This means that A_{k} has topological stable rank one for all $k \geq m_{1}$, which implies that A has topological stable rank one, and we are done. So we can assume that there exists some $m_{2} \geq m_{1}$ such that $\bigsqcup_{i=1}^{l\left(m_{2}\right)}\left(X_{m_{2}, i} \backslash X_{m_{2}, i}^{(0)}\right)$ is infinite. Let $1 \leq l \leq l\left(m_{2}\right)$ be the largest integer such that $X_{m_{2}, l} \backslash X_{m_{2}, l}^{(0)}$ is infinite. Then $A_{m_{2}}$ is isomorphic to $A_{m_{2}}^{(l)} \oplus\left(\bigoplus_{i=1}^{l^{\prime}} \mathbb{K}\right)$ for some $l^{\prime} \in \mathbb{N} \cup\{0\}$, via some isomorphism

$$
h: A_{m_{2}} \rightarrow A_{m_{2}}^{(l)} \oplus\left(\bigoplus_{i=1}^{l^{\prime}} \mathbb{K}\right)
$$

such that the composition $A_{m_{2}} \xrightarrow{h} A_{m_{2}}^{(l)} \oplus\left(\bigoplus_{i=1}^{l^{\prime}} \mathbb{K}\right) \rightarrow A_{m_{2}}^{(l)}$ (the map on the right is the standard projection) is the restriction map $A_{m_{1}} \rightarrow A_{m_{1}}^{(l)}$. Let d_{1} be an integer greater that $d / 2$ and let $x_{1}, \ldots, x_{d_{1}} \in X_{m_{2}, l} \backslash X_{m_{2}, l}^{(0)}$. For each $i \in\left\{1, \ldots, d_{1}\right\}$, let $V_{i} \subseteq X_{m_{2}, l} \backslash X_{m_{2}, l}^{(0)}$ be an open neighborhood of x_{i} such that $\left\{V_{i}: i=1, \ldots, d_{1}\right\}$ is disjoint. For each $i \in\left\{1, \ldots, d_{1}\right\}$, let

$$
J_{i}=\left\{a \in A_{m_{2}}^{(l)}:\left.a\right|_{V_{i}^{c}}=0\right\} .
$$

Then each J_{i} is a non-zero closed two sided ideal of $A_{m_{2}}^{(l)} \oplus\left(\bigoplus_{i=1}^{l^{\prime}} \mathbb{K}\right)$. For each $i \in\left\{1, \ldots, d_{1}\right\}$, let $I_{i}=h^{-1}\left(J_{i}\right)$. Since $\left\{J_{i}: i=1, \ldots, d_{1}\right\}$ is orthogonal, so is $\left\{I_{i}: i=1, \ldots, d_{1}\right\}$. For each $i \in$ $\left\{1, \ldots, d_{1}\right\}$, let

$$
W_{i}=\left\{x \in X_{m_{1}}: \text { there exists some } a \in I_{i} \text { such that } a(x) \neq 0\right\} .
$$

Then for each $i=1, \ldots, d_{1}$, we have $V_{i} \subseteq W_{i}$ and $W_{i} \cap\left(\bigsqcup_{j=1}^{l\left(m_{2}\right)}\left(X_{m_{2}, j} \backslash X_{m_{2}, j}^{(0)}\right)\right)=V_{i}$.

Now, for each $i \in\left\{1, \ldots, d_{1}\right\}$, apply Proposition II.2.11, to obtain some $n_{i} \geq m_{2}$ such that for all $k \geq n_{i}$, and for all $x \in X_{k}, \operatorname{sp}_{x}\left(\psi_{m_{1}, k}\right) \cap W_{i} \neq \varnothing$. Let $n_{0}=\max \left\{n_{1}, \ldots, n_{d_{1}}\right\}$. Let $k \geq n_{0}$ and let $x \in X_{k}$. Then $\mathrm{sp}_{x}\left(\psi_{m_{2}, k}\right) \cap W_{i} \neq \varnothing$ for each $i \in\left\{1, \ldots, d_{1}\right\}$. So for each $i \in\left\{1, \ldots, d_{1}\right\}$, we can choose $y_{i} \in \mathrm{sp}_{x}\left(\psi_{m_{2}, k}\right) \cap W_{i}$. Since for each $i \in\left\{1, \ldots, d_{1}\right\}$,

$$
y_{i} \in W_{i} \cap\left(\bigsqcup_{i=1}^{l\left(m_{2}\right)}\left(X_{m_{2}, i} \backslash X_{m_{2}, i}^{(0)}\right)\right)=V_{i},
$$

and since $V_{1}, \ldots, V_{d_{2}}$ are pairwise disjoint, we see that $y_{1}, \ldots, y_{d_{1}}$ are distinct. Let w_{1}, \ldots, w_{t} be isometries with mutually orthogonal ranges such that for all $f \in A_{m_{2}}$ we have $\psi_{m_{2}, k}(f)(x)=\sum_{i=1}^{t} w_{i} f\left(z_{i}\right) w_{i}^{*}$, where $\left\{z_{i}: i=1, \ldots, t\right\}=\mathrm{sp}_{x}\left(\psi_{m_{2}, k}\right)$. Since $m_{2} \geq m_{1}$, we have $\operatorname{rank}\left(p_{\epsilon / 16}\left(\left|\widetilde{\psi}_{n, m_{2}}(\widetilde{a})\left(y_{i}\right)\right|\right)\right) \geq 1$ for each $i \in\left\{1, \ldots, d_{1}\right\}$. Let $c \in\left(A_{m_{2}}\right)_{s . a}$. satisfy $\left|\widetilde{\psi}_{n, m_{2}}(\widetilde{a})\right|=\widetilde{c}$. Then

$$
\begin{aligned}
\operatorname{rank}\left(p_{\epsilon / 16}\left(\left|\widetilde{\psi}_{n, k}(\widetilde{a})(x)\right|\right)\right. & =\operatorname{rank}\left(p_{\epsilon / 16}\left(\left|\widetilde{\psi}_{m_{2}, k}\left(\widetilde{\psi}_{n, m_{2}}(\widetilde{a})\right)(x)\right|\right)\right) \\
& =\operatorname{rank}\left(p_{\epsilon / 16}\left(\widetilde{\psi}_{m_{2}, k}\left(\left|\widetilde{\psi}_{n, m_{2}}(\widetilde{a})\right|\right)(x)\right)\right) \\
& =\operatorname{rank}\left(p_{\epsilon / 16}\left(\widetilde{\psi}_{m_{2}, k}(\widetilde{c})(x)\right)\right) \\
& =\operatorname{rank}\left(p_{\epsilon / 16}\left(\psi_{m_{2}, k}(c)(x)+1\right)\right) \\
& =\operatorname{rank}\left(p_{(\epsilon / 16)-1}\left(\psi_{m_{2}, k}(c)(x)\right)\right) \\
& =\operatorname{rank}\left(p_{(\epsilon / 16)-1}\left(\sum_{i=1}^{t} w_{i} c\left(z_{i}\right) w_{i}^{*}\right)\right) \\
& =\sum_{i=1}^{t} \operatorname{rank}\left(p_{(\epsilon / 16)-1}\left(c\left(z_{i}\right)\right)\right) \\
& \geq \sum_{i=1}^{d_{2}} \operatorname{rank}\left(p_{(\epsilon / 16)-1}\left(c\left(y_{i}\right)\right)\right) \\
& =\sum_{i=1}^{d_{2}} \operatorname{rank}\left(p_{\epsilon / 16}\left(\widetilde{c}\left(y_{i}\right)\right)\right) \\
& =\sum_{i=1}^{d_{2}} \operatorname{rank}\left(p_{\epsilon / 16}\left(\left|\widetilde{\psi}_{n, m_{2}}(\widetilde{a})\left(y_{i}\right)\right|\right)\right) \\
& =d_{1} \geq d / 2 \geq \operatorname{dim}\left(X_{k}\right) / 2 .
\end{aligned}
$$

Then by Corollary II.3.20, there exists some invertible element $c \in \widetilde{A}_{k}$ such that $\left\|\widetilde{\psi}_{n, k}(\widetilde{a})-c\right\|<\epsilon / 2$.

So $\widetilde{\psi}^{k}(c)$ is invertible in \widetilde{A}, and

$$
\begin{aligned}
\left\|\widetilde{\psi}^{k}(c)-\widetilde{b}\right\| & \leq\left\|\widetilde{\psi}^{k}(c)-\widetilde{\psi}^{k}\left(\widetilde{\psi}_{n, k}(\widetilde{a})\right)\right\|+\left\|\widetilde{\psi}^{k}\left(\widetilde{\psi}_{n, k}(\widetilde{a})\right)-b\right\| \\
& =\left\|c-\widetilde{\psi}_{n, k}(\widetilde{a})\right\|+\left\|\widetilde{\psi}^{n}(\widetilde{a})-b\right\| \\
& <\epsilon / 2+\epsilon / 2
\end{aligned}
$$

Thus we have shown that for all $b \in A$ and all $\epsilon>0$, there exists some invertible element $c \in \widetilde{A}$ such that $\|\widetilde{b}-c\|<\epsilon$. Next will show that for all $b \in A$ and all $\epsilon>0$, there exists some $c \in A$ such that $c+1$ is invertible and $\|\widetilde{c}-\widetilde{b}\|<\epsilon$.

Let $b \in A$ and let $1>\epsilon>0$. By what we just proved above, $\widetilde{b} \in \overline{\operatorname{inv}(\widetilde{A})}$, where $\operatorname{inv}(\widetilde{A})$ denote the set of all invertible elements of \widetilde{A}. So there exists a sequence $\left(a_{n}, \lambda_{n}\right) \in \operatorname{inv}(\widetilde{A})$ such that $\left\|\left(a_{n}, \lambda_{n}\right)-(b, 1)\right\| \rightarrow 0$. Then $\lambda_{n} \rightarrow 1$. So $\left(\lambda_{n}^{-1} a_{n}, 1\right)=\lambda_{n}^{-1}\left(a_{n}, \lambda_{n}\right) \rightarrow \widetilde{b}$. Thus we can pick some n such that $\left\|\left(\lambda_{n}^{-1} a_{n}, 1\right)-\widetilde{b}\right\|<\epsilon$. Setting $c=\lambda_{n}^{-1} a_{n}$, we see that $\widetilde{c}=\lambda_{n}^{-1}\left(a_{n}, \lambda_{n}\right)$ is invertible and $\|\widetilde{c}-\widetilde{b}\|<\epsilon$. Then by Proposition 4.2 of [16], the algebra A has topological stable rank one.

Many arguments in this chapter may be simplified greatly if every SRSHA is the tensor product of a RSHA with \mathbb{K}; however we were not able to determine whether every SRSHA is the tensor product of a RSHA with \mathbb{K}. In the approach we used when trying to resolve this question, we found that in order to show that a SRSHA is the tensor product of a RSHA with \mathbb{K}, we needed to extend projection valued functions over a closed subspace of a compact metric space to the entire space. This cannot be done in general, and so we feel that it is not true that every SRSHA is the tensor product of a RSHA with \mathbb{K}.

Also, SRSHAs are likely to be \mathbb{K}-stable. If A is a SRSHA, then A is contained in $B=$ $\bigoplus_{i=1}^{n} C\left(X_{i}, \mathbb{K}\right)$ as a C^{*}-subalgebra, which implies that $A \otimes \mathbb{K}$ is a C^{*}-subalgebra of $B \otimes \mathbb{K}$. The obvious ${ }^{*}$-isomorphism from $B \otimes \mathbb{K}$ to B restricted to $A \otimes \mathbb{K}$ may very well be a ${ }^{*}$-isomorphism from $A \otimes \mathbb{K}$ to A.

CHAPTER III

STABLE RECURSIVE SUBHOMOGENEOUS C^{*}-SUBALGEBRAS OF $C^{*}(X, \mathbb{R})$

In general, when X is a compact metric space, and G is a topological group acting on X freely and minimally, the structure and properties of the crossed product $C^{*}(X, G)$ are often very difficult to study, even if G is as familiar as \mathbb{Z} or \mathbb{R}. So we would like to look at certain distinguished C^{*}-subalgebras of the crossed product instead. Often, properties and the structure of those C^{*}-subalgebras can be used to study the entire crossed product.

In [10], X was taken to by the Cantor set, G was taken to be \mathbb{Z}, and the action was assumed to be free and minimal. For $Y \subseteq X$ closed, define A_{Y} to be the C^{*}-subalgebra of the crossed product $C^{*}(X, \mathbb{Z})$ generated by $C(X)$ and $u C_{0}(X \backslash Y)$. When Y is also open, it was shown that A_{Y} is an AF-algebra. For $y \in X$, let A_{y} denote $A_{\{y\}}$. If $\left(Y_{n}\right)_{n \geq 1}$ is a decreasing sequence of clopen sets such that $\bigcap_{n \geq 1} Y_{n}=\{y\}$, then it is easy to see that A_{y} is the closure of the increasing union $\bigcup_{n \geq 1} A_{Y_{n}}$. Hence, $A_{\mathcal{Y}}$ is an AF-algebra as well.

When \mathbb{Z} acts freely and minimally on a arbitrary compact metric space X with finite covering dimension, it is shown in [5] that the C^{*}-subalgebra A_{Y} generated by $C(X)$ and $u C_{0}(X \backslash Y)$ is a RSHA. This fact is used in [3] to show that, under certain hypothesis, the crossed product has tracial rank zero.

When we consider free minimal actions of \mathbb{R} on compact metric spaces with finite covering dimension, we would like to look at C^{*}-subalgebras of the crossed product that are analogous to the ones mentioned above. However, we immediately run into a difficulty: the algebra $C(X)$ and the unitaries that implement the action are not contained in the crossed product; they are contained in the multiplier algebra of the crossed product instead. So we cannot define the C^{*}-algebras A_{Y} and A_{y} as the C^{*}-algebras generated by certain sets of elements of the crossed product. We need to take a more explicit approach. In retrospect, we realize that the subalgebra A_{Y} in the integer case, in some sense, is the "algebra of partial orbits": orbits are broken at a chosen subset Y,
then partial orbits are grouped together according to their lengths to make C^{*}-subalgebras of the crossed product. This is the approach we take in this chapter to construct the C^{*}-subalgebras analogous to A_{Y} and A_{y} in the integer case.

In the rest of this dissertation, we fix a compact metric space X, and fix a free minimal action of \mathbb{R} on X. The construction that we will describe in this chapter requires that the action admits "pseudo-transversals," which we define below.

Definition III.0.1. Let X be a compact metric space and let \mathbb{R} act on X freely and minimally. A nonempty closed subset Z of X is called a pseudo-transversal if

1. For all $x \in X$, the set $(\mathbb{R} \cdot x) \cap Z$ is dense in Z.
2. There exists $\sigma>0$ such that for all $x \in Z$, we have $([-\sigma, \sigma] \cdot x) \cap Z=\{x\}$.

The existence of pseudo-transversals is essentially guaranteed by Lemma 3.1 in [12]. Only the density condition is not explicitly stated in the statement of that lemma. We include the proof of the existence of pseudo-transversals here, applying Lemma 3.1 in [12].

Lemma III.0.2. Let X be a compact metric space. Let \mathbb{R} act freely and minimally on X. Then the action admits a pseudo-transversal.

Proof: By Lemma 3.1 in [12], there exist a real number $\epsilon>0$, an element $x_{0} \in X$, and a closed subset $S \subseteq X$ containing x_{0} such that the map $\Gamma:(-\epsilon, \epsilon) \times S \rightarrow X$ defined by $\Gamma(r, x)=r x$ is a homeomorphism onto a neighborhood of x_{0}.

We first claim that any subset $T \subseteq S$ satisfies condition 2 in Definition III.0.1. Take $\sigma=\epsilon / 2$. Let $x \in T$. Suppose that $y \in([-\sigma, \sigma] \cdot x) \cap T$. Then $y=r x$ for some $r \in[-\sigma, \sigma] \subseteq(-\epsilon, \epsilon)$. So $(r, x) \in(-\epsilon, \epsilon) \times S$. Therefore $y=\Gamma(r, x)=\Gamma(0, y)$. It follows from the injectivity of Γ that $x=y$. This proves the claim.

Next we claim that if $x, y \in S$ and $r \in \mathbb{R}$ satisfy $y=r x$, then either $r=0$ or $|r| \geq 2 \epsilon$. Let $x, y \in S$ and $r \in \mathbb{R}$ satisfy $y=r x$. Also assume that $|r|<2 \epsilon$. Then $-r / 2, r / 2 \in(-\epsilon, \epsilon)$. Since $y=r x$, we have

$$
\Gamma\left(\left(\frac{r}{2}\right), x\right)=\left(\frac{r}{2}\right) \cdot x=\left(-\frac{r}{2}\right) \cdot y=\Gamma\left(-\left(\frac{r}{2}\right), y\right) .
$$

By the injectivity of Γ, we have $r=0$. This proves the claim.
Let d be the metric on X. For each $r>0$ and each $x \in X$, let $B(x, r)$ denote the open ball $\{y \in X: d(x, y)<r\}$. Now, since $(-\epsilon, \epsilon) \cdot S$ is a neighborhood of x_{0}, there exists some $\delta>0$ such
that $B\left(x_{0}, \delta\right) \subseteq(-\epsilon, \epsilon) \cdot S$. Let $Z=\overline{B\left(x_{0}, \delta / 2\right) \cap S}$. Note that since S is closed in X, the set Z is contained in S. With $\sigma=\epsilon / 2$, condition 2 in Definition III. 0.1 holds by the first claim above.

We now show that Z satisfies condition 1 in Definition III.0.1. Fix some $x \in X$ and some $z \in B\left(x_{0}, \delta / 2\right) \cap S$. Note that $z \in B\left(x_{0}, \delta\right) \cap S$. Choose a sequence $\left\{r_{n}\right\}$ of strictly positive real numbers such that $B\left(z, r_{n}\right) \subseteq B\left(x_{0}, \delta\right)$ for all n and such that $\lim _{n \rightarrow \infty} r_{n}=0$. Since the action is minimal, the set $(\mathbb{R} \cdot x) \cap B\left(z, r_{n}\right)$ is nonempty for all $n \geq 1$. So for each $n \geq 1$, we can choose some $z_{n} \in B\left(z, r_{n}\right) \cap(\mathbb{R} \cdot x)$. Then z_{n} is in the image of the map Γ for each $n \geq 1$. Thus, for each $n \geq 1$, there exists $\left(s_{n}, y_{n}\right) \in(-\epsilon, \epsilon) \times S$ such that $\Gamma\left(s_{n}, y_{n}\right)=z_{n}$. It is clear that $z_{n} \rightarrow z$. That is, we have $\Gamma\left(s_{n}, y_{n}\right) \rightarrow \Gamma(0, z)$. Then, since Γ is a homeomorphism, we have $y_{n} \rightarrow z$. Because $s_{n} y_{n}=z_{n} \in \mathbb{R} \cdot x$ for all $n \geq 1$, we have $y_{n} \in \mathbb{R} \cdot x$ for all $n \geq 1$. Now, because $y_{n} \rightarrow z$ and $z \in B\left(x_{0}, \delta / 2\right)$, we can assume, passing to a subsequence if necessary, that $y_{n} \in B\left(x_{0}, \delta / 2\right)$ for all $n \geq 1$. Then we have $y_{n} \in Z \cap(\mathbb{R} \cdot x)$ for all $n \geq 1$. We have now shown that for all $z \in B\left(x_{0}, \delta / 2\right) \cap S$ there is a sequence in $Z \cap \mathbb{R} \cdot x$ that converges to z. Then it is clear that $Z \cap \mathbb{R} \cdot x$ is dense in Z. This finishes the proof of the lemma.

For the rest of the chapter, fix a pseudo-transversal Z, and use σ to denote the real number in the second condition of the definition above. Before we start describing the construction, we look as some examples of \mathbb{R} actions.

The most trivial example is \mathbb{R} acting trivially on an arbitrary metric space X. That is, for every $r \in \mathbb{R}$ and every $x \in X$, we have $r x=x$. In this case, the action is not free and is minimal only when X contains only one element. The corresponding crossed product $C^{*}(X, \mathbb{R})$ is well known (for instance, Example 2.53 in $[17]$) to be isomorphic to $C(X) \otimes C^{*}(\mathbb{R})$, where $C^{*}(\mathbb{R})$ is the group C^{*}-algebra of \mathbb{R}, which we will not describe here. (See Section 3.1 in [17] for the definition of the group C^{*}-algebra.) It is also well known (for instance, Proposition 3.1 in [17]) that $C^{*}(\mathbb{R})$ is isomorphic to $C_{0}(\mathbb{R})$. So $C^{*}(X, \mathbb{R})$ is isomorphic to $C(X) \otimes C_{0}(\mathbb{R})=C_{0}(X \times \mathbb{R})$.

When \mathbb{R} acts on itself by translation, the action is free and minimal. The corresponding crossed product $C^{*}(\mathbb{R}, \mathbb{R})$ is isomorphic to the algebra of all compact operators on $L^{2}(\mathbb{R})$. In fact, more generally, when a locally compact group G acts on itself by left translation, the crossed product is isomorphic to the algebra of compact operators on $L^{2}(G)$. This fact is essentially proven in [14], and is the motivation behind the map defined by Equation III. 9 in this chapter .

Another class of examples is the class of flows under ceiling functions. Take a locally compact space X. Let $h: X \rightarrow X$ be a homeomorphism. Then h induces a \mathbb{Z} action on X. Let Y be the quotient space $([0,1] \times X) / \sim$, where the equivalence relation \sim is given by $(1, x) \sim(0, h(x))$. Now let points in Y flow upward at unit speed. When a point reaches the ceiling (i.e. the set $\{1\} \times X$), it jumps to the floor (i.e. the set $\{0\} \times X$) and keeps moving up at unit speed. This gives a flow under the ceiling function that is constantly one. When the \mathbb{Z} action on X is free and minimal, the \mathbb{R} action on Y is also free and minimal. If X is compact, then so is Y. It was shown in [15] that the crossed product $C^{*}(Y, \mathbb{R})$ is stably isomorphic to $C^{*}(X, \mathbb{Z})$. So this class of examples is also essentially trivial. A similar construction can be used to allow the ceiling function to be an arbitrary strictly positive continuous function from X to \mathbb{R}. In this case, the corresponding crossed product $C^{*}(Y, \mathbb{R})$ is still stably isomorphic to $C^{*}(X, \mathbb{Z})$. See [15] for more details.

The examples we have described so far are all more or less trivial. Less trivial examples would be free minimal actions on compact metric spaces that are not flows under ceiling functions. It was shown in an unpublished work by N. C. Phillips that such actions indeed exist.

III.1. Entering Times and Return Times

Definition III.1.1. Let X be a compact metric space, let \mathbb{R} act on X freely and minimally, and let $Z \subseteq X$ be a pseudo-transversal. Let Z^{c} denote the complement of Z with respect to X. Define the forward entering time $\beta: Z^{c} \rightarrow \mathbb{R}$ by

$$
\beta(x)=\inf \{r>0: r x \in Z\} ;
$$

define the backward entering time $\alpha: Z^{c} \rightarrow \mathbb{R}$ by

$$
\alpha(x)=\sup \{r<0: r x \in Z\} ;
$$

and define the return time $R: Z \rightarrow \mathbb{R}$ by

$$
R(x)=\inf \{r>0: r x \in Z\} .
$$

Note that the entering times are well defined because Z meets every orbit of the action. Now we fix some notation for the rest of the chapter

Notation III.1.2. For the rest of the chapter we use α and β to denote, respectively, the forward and backward entering times associated with the pseudo-transversal, and use R to denote the return time for the transversal. We first establish some elementary properties of α, β and R.

Lemma III.1.3. For all $x \in Z^{c}$, we have $(\alpha(x), \beta(x)) \cdot x \subseteq Z^{c}$. For all $z \in Z$, we have $(0, R(z)) \cdot z \subseteq$ Z^{c}. (We use the notation $(\alpha(x), \beta(x))$ and $(0, R(z))$ to denote open intervals of the real line, the notation $(\alpha(x), \beta(x)) \cdot x$ to denote the set $\{r x: r \in(\alpha(x), \beta(x))\}$, and the notation $(0, R(z)) \cdot z$ to denote the set $\{r z: r \in(0, R(z))\}$.)

Proof: Let $x \in Z^{c}$ and let $r \in(\alpha(x), \beta(x))$. Suppose that $r x \in Z$. If $r>0$, then

$$
\beta(x)=\inf \{s>0: s x \in Z\} \leq r<\beta(x),
$$

a contradiction. So $r \leq 0$. If $r<0$, then

$$
\alpha(x)=\sup \{r<0: r x \in Z\} \geq r>\alpha(x),
$$

contradiction. So $r=0$. But then $x=r x \in Z$, contradicting the assumption. Thus $(\alpha(x), \beta(x))$. $x \subseteq Z^{c}$.

Let $z \in Z$ and let $r \in(0, R(z))$. Suppose that $r z \in Z$. Then $R(z) \leq r<R(z)$, a contradiction. So $r z \in Z^{c}$. Thus $(0, R(z)) \cdot z \subseteq Z^{c}$.

Lemma III.1.4. For all $x \in Z^{c}$, we have $\alpha(x)<0$ and $\beta(x)>0$. Also, for all $z \in Z$, we have $R(z) \geq \sigma$.

Proof: Let $x \in Z^{c}$. There exists $\epsilon>0$ such that $(-\epsilon, \epsilon) x \subseteq Z^{c}$. Then by definition, $\alpha(x) \leq-\epsilon<0$ and $\beta(x) \geq \epsilon>0$.

Let $z \in Z$. It is clear that we have $(0, \sigma) z \subseteq Z^{c}$. Then by definition, $R(z) \geq \sigma$.
Lemma III.1.5. For all $x \in Z^{c}$, we have $\alpha(x) \cdot x \in Z$ and $\beta(x) \cdot x \in Z$. Also, for all $z \in Z$, we have $R(z) \cdot z \in Z$.

Proof: We know that $\beta>0$ and $\alpha<0$, by Lemma III.1.4.
Let $x \in Z^{c}$. Suppose that $\alpha(x) \cdot x \notin Z$. The map $r \mapsto r \cdot(\alpha(x) \cdot x)$ is a continuous map from \mathbb{R} to X, so the inverse image of Z^{c} under the map, which contains 0 since we assumed
$\alpha(x) \cdot x \in Z^{c}$, is open in \mathbb{R}. Thus there exists $\epsilon>0$ such that $(-\epsilon, \epsilon) \cdot(\alpha(x) x) \subseteq Z^{c}$. Then for all $r \in(-\epsilon+\alpha(x), \alpha(x)]$, we have $r x \notin Z^{c}$. Now Lemma III.1.3 implies that $(\alpha(x), 0) \cdot x \subseteq Z^{c}$. So for all $r \in(-\epsilon+\alpha(x), 0)$, we have $r x \notin Z$. Then $\alpha(x)-\epsilon$ is an upper bound to the set $\{r<0: r x \in Z\}$, contradicting the fact that $\alpha(x)=\sup \{r<0: r x \in Z\}$. Thus $\alpha(x) x \in Z$.

Very similar arguments show that $\beta(x) \cdot x \in Z$ for all $x \in Z^{c}$ and $R(z) \cdot z \in Z$ for all $z \in Z$.

Lemma III.1.6. The map α is upper semi-continuous, and the maps β and R are lower semi-continuous.

Proof: Let $r \in \mathbb{R}$. We will show that $\alpha^{-1}([r, \infty))$ is closed in Z^{c}. If $r \geq 0$, then by Lemma III.1.4, we know that $\alpha^{-1}([r, \infty))=\varnothing$, and then we are done. So assume that $r<0$. Suppose that $\left\{x_{n}\right\}_{n \geq 1}$ is a sequence in Z^{c} such that $\alpha\left(x_{n}\right) \geq r$ for all $n \geq 1$, and suppose that there is $x \in Z^{c}$ such that $x_{n} \rightarrow x$. Since the sequence $\left\{\alpha\left(x_{n}\right)\right\}$ is bounded, it has a convergent subsequence $\left\{\alpha\left(x_{k_{n}}\right)\right\}$. Say $\alpha\left(x_{k_{n}}\right) \rightarrow s$ with $s \in[r, 0]$. Then $\alpha\left(x_{k_{n}}\right) x_{k_{n}} \rightarrow s x$. By Lemma III.1.5, we have $\alpha\left(x_{k_{n}}\right) x_{k_{n}} \in Z$ for all $n \geq 1$. So $s x \in Z$, since Z is closed. Also, $s \neq 0$, since $x \notin Z$. Then by the definition of α, we have $\alpha(x) \geq s \geq r$. Thus $x \in \alpha^{-1}([r, \infty))$, and so α is upper semi-continuous.

Let $r \in(0, \infty)$ and let $\left\{x_{n}\right\}$ be a sequence in $\beta^{-1}((-\infty, r])$ such that $x_{n} \rightarrow x$ for some $x \in Z^{c}$. Then $\left\{\beta\left(x_{n}\right)\right\}$ has a subsequence $\left\{\beta\left(x_{k_{n}}\right)\right\}$ such that $\beta\left(x_{k_{n}}\right) \rightarrow s$ for some $s \in[0, r]$. For each $n \geq 1$, we have $\beta\left(x_{k_{n}}\right) x_{k_{n}} \in Z$, so $s x \in Z$. Also, $x \in Z^{c}$ implies that $s \neq 0$. So $\beta(x) \leq s \leq r$. This shows that β is lower semi-continuous.

In the previous paragraph, if we replace all occurrences of β by R and suppose that $x \in Z$ instead of Z^{c}, then we get the argument that shows that R is lower semi-continuous.

Lemma III.1.7. For all $x \in Z^{c}$ and for all $r \in(\alpha(x), \beta(x))$, we have $\alpha(r x)=\alpha(x)-r$ and $\beta(r x)=\beta(x)-r$.

Proof: Let $x \in Z^{c}$ and let $r \in(\alpha(x), \beta(x))$. We know that $\beta(x)-r>0$ and $(\beta(x)-r)(r x)=$ $\beta(x) x \in Z$. Therefore by the definition of β, we have $\beta(x)-r \geq \beta(r x)$. Also, $\alpha(x)-r<0$ and $(\alpha(x)-r)(r x) \in Z$ imply that $\alpha(r x) \geq \alpha(x)-r$. Then it follows from Lemma III.1.3 that

$$
(\alpha(x)-r, \beta(x)-r) \cdot(r x)=(\alpha(x), \beta(x)) \cdot x \subseteq Z^{c} .
$$

Then $\beta(r x) \geq \beta(x)-r$ and $\alpha(r x) \leq \alpha(x)-r$.

Lemma III.1.8. Let $\widehat{Z}=[-\sigma, \sigma] \cdot Z$, let $\widehat{Z}_{-}=[-\sigma, 0] \cdot Z$, and let $\widehat{Z}^{+}=[0, \sigma] \cdot Z$. Then $\widehat{Z}, \widehat{Z}_{+}$and \hat{Z}_{-}are all closed and have nonempty interior.

Proof: It is clear that $\widehat{Z}, \widehat{Z}_{+}$and \widehat{Z}_{-}are all closed, because they are all continuous images of compact sets. Suppose that \widehat{Z}_{-}has empty interior. Then for every $n \in \mathbb{Z}$, the set (σn) $\cdot \widehat{Z}_{-}$has empty interior also, since the map $x \mapsto(\sigma n) x$ is a homeomorphism. Now

$$
X \supseteq \bigcup_{n \in \mathbb{Z}}\left((\sigma n) \cdot \widehat{Z}_{-}\right) \supseteq\left(\bigcup_{n \in \mathbb{Z}}[\sigma n-\sigma, \sigma n]\right) \cdot Z=\mathbb{R} \cdot Z=X
$$

So $X=\bigcup_{n \in \mathbb{Z}}\left((\sigma n) \cdot \widehat{Z}_{-}\right)$. Since each $(\sigma n) \widehat{Z}_{-}$is closed and has empty interior, $(\sigma n) \widehat{Z}_{-}$is nowhere dense for each $n \in \mathbb{Z}$. Then we see that X is a countable union of nowhere dense set. But X is a compact metric space, hence complete. This contradicts the Baire Category Theorem. Thus \widehat{Z}_{-} has nonempty interior. Similarly, \widehat{Z}_{+}and \widehat{Z} have nonempty interior also.

Lemma III.1.9. The functions α, β and R are all bounded functions.
Proof: Let U be the interior of \widehat{Z}_{-}. Then U is open in X. By Lemma III.1.8, $U \neq \varnothing$. Since the action is minimal, for each $x \in X$, there exists some $r \in[0, \infty)$ such that $r x \in U$. That is, for all $x \in X$, there exists $r \in[0, \infty)$ such that $x \in(-r) U$. So $\{(-r) U: r \in[0, \infty)\}$ is an open cover for X. Since X is compact, there exist $r_{1}, \ldots, r_{n} \in \mathbb{R}$ such that $X=\bigcup_{i=1}^{n}\left(-r_{i}\right) U$. Let $r=\max \left\{r_{1}, \ldots, r_{n}\right\}$. Then

$$
X=[-r, 0] U \subseteq[-r, 0] \cdot([-\sigma, 0] Z) \subseteq[-r-\sigma, 0] Z .
$$

Thus, if $x \in Z^{c}$, we have $x=(-t) z$ for some $t \in(0, r+\sigma]$ and some $z \in Z$. Then $\beta(x) \leq t \leq r+\sigma$. Thus β is bounded above by $\sigma+r$. It is clear that β is bounded below by 0 . If $z \in Z$, then $(\sigma / 2) z \in Z^{c}$ and $(\sigma / 2) z=(-s) z^{\prime}$ for some $z^{\prime} \in Z$ and some $s \in(0, r+\sigma]$. Then $(s+\sigma / 2) z=z^{\prime}$. We have $s+\sigma / 2>0$, so then $R(z) \leq s+\sigma / 2 \leq r+\sigma+\sigma / 2$. So R is bounded.

An argument similar to the one that shows β is bounded shows that α is bounded.
Notation III.1.10. For the rest of the chapter, let M denote some positive real number such that $M \geq|\beta(x)|$ for all $x \in Z^{c}, M \geq|\alpha(x)|$ for all $x \in Z^{c}$, and $M \geq|R(z)|$ for all $z \in Z$. Also for
the rest of the chapter, define

$$
\begin{equation*}
G_{Z}=\left\{(r, x) \in \mathbb{R} \times X: x \in Z^{c},-r \in(\alpha(x), \beta(x))\right\} \tag{III.1}
\end{equation*}
$$

Lemma III.1.11. The set G_{Z} is an open subset of $\mathbb{R} \times X$ with compact closure. Further, if $(r, x),(s, y) \in G_{Z}$ satisfy $x=(-s) y$, then $(r+s, y) \in G_{Z} ;$ also $(r, x) \in G_{Z}$ if and only if $(-r,(-r) x) \in G_{Z}$.

Proof: Let $(r, x) \in G_{Z}$. Then $x \in Z^{c}$ and $-r \in(\alpha(x), \beta(x))$. Let

$$
\epsilon=(1 / 2) \min \{\beta(x)+r,-r-\alpha(x)\}
$$

It is clear that $\epsilon>0$. Let

$$
U=\beta^{-1}((-r+\epsilon, \infty)) \cap \alpha^{-1}((-\infty,-r-\epsilon))
$$

Note that U contains x. Also, since β is lower semi-continuous, and since α is upper semi-continuous, we see that U is open. Let $(t, y) \in(r-\epsilon, r+\epsilon) \times U$. Then $\alpha(y)<-r-\epsilon<-t<$ $-r+\epsilon<\beta(y)$. So $(t, y) \in G_{Z}$. Thus $(r-\epsilon, r+\epsilon) \times U \subseteq G_{Z}$. Then we have $(r, x) \in(r-\epsilon, r+\epsilon) \times U \subseteq$ G_{Z}. So (r, x) is an interior point of G_{Z}. This holds for all $(r, x) \in G_{Z}$, so G_{Z} is open. To see that G_{Z} has compact closure, note that $G_{Z} \subseteq[-M, M] \times X$, which is compact.

Let $(r, x),(s, y) \in G_{Z}$ satisfy $x=(-s) y$. Then

$$
(\alpha(x), \beta(x))=(\alpha((-s) y), \beta((-s) y))=(\alpha(y), \beta(y))+s
$$

So $-r \in(\alpha(x), \beta(x))$ implies that $-s-r \in(\alpha(y), \beta(y))$, whence $(r+s, y) \in G_{Z}$.
If $(r, x) \in G_{Z}$, then $(\alpha((-r) x), \beta((-r) x))=(\alpha(x), \beta(x))+r$. Since $0 \in(\alpha(x), \beta(x))$, we have $r \in(\alpha(x), \beta(x))+r=(\alpha((-r) x), \beta((-r) x))$. So $(-r,(-r) x) \in G_{Z}$. Applying the previous argument to $(-r,(-r) x)$, we see that if $(-r,(-r) x) \in G_{Z}$, then $(r, x) \in G_{Z}$.

It follows from Lemma III.1.11 that $C_{0}\left(G_{Z}\right)$ is a linear subspace of $C_{c}(\mathbb{R} \times X)$. Recall that the linear space $C_{c}(\mathbb{R} \times X)$ is endowed with a multiplication and a ${ }^{*}$-operation, as defined by the formulas in $I .1$ and $I .2$ respectively. Thus $C_{c}(\mathbb{R} \times X)$ is a *-algebra.

Lemma III.1.12. $C_{0}\left(G_{Z}\right)$ is a^{*}-subalgebra of $C_{c}(\mathbb{R} \times X)$.
Proof: We only need to show that $C_{0}\left(G_{Z}\right)$ is closed under involution and convolution.
Let $f, g \in C_{0}\left(G_{Z}\right)$. We only need to show that $\left.(f * g)\right|_{\left(G_{Z}\right)^{c}}=0$ and $\left.\left(f^{*}\right)\right|_{\left(G_{Z}\right)^{c}}=0$. Let $(r, x) \in\left(G_{Z}\right)^{c}$. Then $(-r,(-r) x) \notin G_{Z}$ by Lemma III.1.11, so $f^{*}(r, x)=\overline{f(-r,(-r) x)}=0$. Now, suppose that $(f * g)(r, x) \neq 0$. Since f and g are continuous, for some $t \in \mathbb{R}$, we have $f(t, x) \neq 0$ and $g(r-t,(-t) x) \neq 0$. Then $(t, x) \in G_{Z}$ and $(r-t,(-t) x) \in G_{Z}$. So $(r, x) \in G_{Z}$ by Lemma III.1.11 again, a contradiction. Hence $(f * g)(r, x)=0$. Therefore $f * g, f^{*} \in C_{0}\left(G_{Z}\right)$.

For the rest of the chapter define

$$
\begin{equation*}
A_{Z}=\overline{C_{0}\left(G_{Z}\right)} \tag{III.2}
\end{equation*}
$$

where the closure is taken in the crossed product $C^{*}(X, \mathbb{R})$.
By Lemma III.1.12, it is clear that A_{Z} is a C^{*}-subalgebra of the crossed product. This subalgebra A_{Z} will be the subalgebra that is analogous to the subalgebras A_{Y} in [3]. In fact, the subset G_{Z} of $\mathbb{R} \times X$ is a subgroupoid of the transformation groupoid $\mathbb{R} \times X$. See [13] for definitions of groupoids and groupoid C^{*}-algebras. We find it more convenient to work directly with the construction we have given then to formulate the construction in terms of groupoids. In particular, we will not use any machinery from the theory of groupoids.

III.2. Continuous Extensions of the Entering Times

We wish to obtain a stable recursive subhomogeneous decomposition for A_{Z}. We first find finitely many subsets of G_{Z} that are closed in G_{Z} whose union covers G_{Z}. We will show that each of those subsets is locally compact with compact closure, and that spaces of continuous functions on those subsets that vanish at infinity are in fact pre- C^{*}-algebras whose closures have the form $C(F, \mathbb{K})$, where F is a compact metric space. Finally, we show that G_{Z} is obtained by gluing these C^{*}-algebras together.

To obtain the subset of G_{Z} mentioned above, we first need to cut Z^{c} into finitely many pieces so that α and β are continuous on each piece, and can be extended continuously to the closure of the each piece. The continuity of the entering times is required if we want to identify the components of the of a stable recursive subhomogeneous decomposition of A_{Z} as "continuous" functions from a compact metric space into \mathbb{K}.

Lemma III.2.1. For every $D \in(0, \infty)$ and for every $z \in Z$, there exists a compact neighborhood K of z (K contains a set U that is open in X and $z \in U$) such that $\{(0, D] \cdot(K \cap Z)\} \cap(K \cap Z)=\varnothing$.

Proof: This will be a proof by contradiction. Suppose that the statement is not true. Then there exists $D \in(0, \infty)$ and some $z \in Z$ such that for every compact neighborhood of K of z we have $\{(0, D] \cdot(K \cap Z)\} \cap(K \cap Z) \neq \varnothing$. For each $n \in \mathbb{N}$, let $K_{n}=\{x \in X: d(x, z) \leq 1 / n\}$. Then K_{n} is a compact neighborhood of z for every $n \in \mathbb{N}$. So for each $n \in \mathbb{N}$, there exists $r_{n} \in(0, D]$ and $z_{n} \in K_{n} \cap Z$ such that $r_{n} z_{n} \in K_{n} \cap Z$. Then $z_{n} \rightarrow z$ and $r_{n} z_{n} \rightarrow z$. Since $\left\{r_{n}\right\}$ is a bounded sequence, it has a subsequence $\left\{r_{k_{n}}\right\}$ such that $r_{k_{n}} \rightarrow r$ for some $r \in[0, D]$. Then $\lim _{n \rightarrow \infty} z_{k_{n}}=\lim _{n \rightarrow \infty}\left(-r_{k_{n}}\right)\left(r_{k_{n}} z_{k_{n}}\right)=(-r) z$. But $\lim _{n \rightarrow \infty} z_{k_{n}}=z$, so $(-r) z=z$. Since the action is free, we have $r=0$. Therefore there exists $m \in \mathbb{N}$ such that $0<r_{k_{m}}<\sigma$. Now $z_{k_{m}} \in Z$, $r_{k_{m}} z_{k_{m}} \in Z$, and $z_{k_{m}} \neq r_{k_{m}} z_{k_{m}}$, so $\left([-\sigma, \sigma] \cdot z_{k_{m}}\right) \cap Z$ contains two distinct elements, namely $z_{k_{m}}$ and $r_{k_{m}} z_{k_{m}}$, which contradicts the definition of Z.

Lemma III.2.2. There exist $n_{V} \in \mathbb{N}$ and $Z_{1}, Z_{2}, \ldots, Z_{n_{V}} \subseteq Z$ such that

1. for every $i \in\left\{1, \ldots, n_{V}\right\}$, the set Z_{i} is compact;
2. for every $i \in\left\{1, \ldots, n_{V}\right\}$, every $x \in Z_{i}$, and every $r \in(0,8 M]$, we have $r x \notin Z_{i}$;
3. $\bigcup_{i=1}^{n_{V}} Z_{i}=Z$;
4. for every $i \in\left\{1, \ldots, n_{V}\right\}$, the map $[0,8 M] \times Z_{i} \rightarrow[0,8 M] \cdot Z_{i}$ defined by $(r, z) \mapsto r z$ is a homeomorphism.

Proof: For each $z \in Z$, let K_{z} be the compact neighborhood obtained from Lemma III.2.1 where the real number D in Lemma III. 2.1 is taken to be $8 M$. Use K_{z}° to denote the interior of K_{z} for each $z \in Z$. Now, the collection $\left\{K_{z}^{\mathrm{o}}: z \in Z\right\}$ is an open cover for Z, which is compact, so there exists n_{V} such that $\bigcup_{i=1}^{n_{V}} K_{z_{i}} \supset Z$. For each $i \in\left\{1, \ldots, n_{V}\right\}$, let $Z_{i}=K_{z_{i}} \cap Z$. Then part 1 and part 3 of the lemma hold. Also, by the choice of the sets $K_{z_{i}}$, we have

$$
\varnothing=\left[(0,8 M] \cdot\left(K_{z_{i}} \cap Z\right)\right] \cap\left(K_{z_{i}} \cap Z\right)=\left((0,8 M] \cdot Z_{i}\right) \cap Z_{i}
$$

for $i \in\left\{1, \ldots, n_{V}\right\}$. So part 2 holds.
The map $[0,8 M] \times Z_{i} \rightarrow[0,8 M] \cdot Z_{i}$, defined by $(r, z) \mapsto r z$, is certainly continuous and surjective. Now suppose that $(r, x) \in[0,8 M] \times Z_{i}$ and $(s, y) \in[0,8 M] \times Z_{i}$, and that $r x=s y$.

Without loss of generality, assume that $r \leq s$. Then $s-r \in[0,8 M]$ and $x=(s-r) y$. But $x, y \in Z_{i}$ and $s-r \in[0,8 M]$, so, by part 2 , we have $s-r=0$. Therefore $(r, x)=(s, y)$. Thus the map is injective. Since both $[0,8 M] \times Z_{i}$ and $[0,8 M] \cdot Z_{i}$ are compact and Hausdorff, the map is a homeomorphism. Hence part 4 holds.

Notation III.2.3. Now we use the return time function R to partition Z. For each $i \in \mathbb{N}$, let

$$
T^{i}=R^{-1}\left(\left(\frac{(i-1) \sigma}{16}, \frac{i \sigma}{16}\right]\right) .
$$

Note that, because R is bounded above by M and below by σ, we have $T^{i}=\varnothing$ for all but finitely many i, and that $\left\{T^{i}: i \in \mathbb{N}\right\}$ partitions Z. Let $\Lambda=\left\{n \in \mathbb{N}: n \geq 1, T^{n} \neq \varnothing\right\}$. Then for some $n_{R} \in \mathbb{N}$, we have $\Lambda=\left\{k_{1}, k_{2}, \ldots, k_{n_{R}}\right\}$. Re-indexing if necessary, we can assume that $k_{1}<k_{2}<\cdots<k_{n_{R}}$. For each $i \in\left\{1, \ldots, n_{R}\right\}$, let $Z^{i}=T^{k_{i}}$. Then it is clear that $\left\{Z^{1}, \ldots, Z^{n_{R}}\right\}$ partitions Z. For each $i \in\left\{1, \ldots, n_{V}\right\}$ and each $j \in\left\{1, \ldots, n_{R}\right\}$, let $Y_{i, j}=Z_{i} \cap Z^{j}$. It is clear that $\left\{Y_{i, j}: 1 \leq i \leq n_{V}, 1 \leq j \leq n_{R}\right\}$ covers Z.

Lemma III.2.4. Let n_{V} be as in Lemma III.2.2 and let n_{R}, Z^{j} and $Y_{i, j}$ be as given above. For each $i \in\left\{1, \ldots, n_{V}\right\}$ and each $j \in\left\{1, \ldots, n_{R}\right\}$, we have:

1. if $\left\{z_{n}\right\}$ is a Cauchy sequence in Z^{j}, then $\left\{R\left(z_{n}\right)\right\}$ is Cauchy;
2. $\left.R\right|_{Z^{j}}$ is continuous;
3. the map $[0,8 M] \times \overline{Y_{i, j}} \rightarrow[0,8 M] \cdot \overline{Y_{i, j}}$ is a homeomorphism.

Proof: Fix $i \in\left\{1, \ldots, n_{V}\right\}$ and $j \in\left\{1, \ldots, n_{R}\right\}$. We show part 1 first. Suppose that $\left\{x_{n}\right\}$ is a Cauchy sequence in Z^{j}. Then $x_{n} \rightarrow x$ for some $x \in Z$. Since $\left\{R\left(x_{n}\right)\right\}$ is a bounded sequence, it has a convergent subsequence $\left\{R\left(x_{k_{n}}\right)\right\}$. Let $r=\lim _{n \rightarrow \infty} R\left(x_{k_{n}}\right)$. Then $R\left(x_{k_{n}}\right) x_{k_{n}} \rightarrow r x$. Since $R\left(x_{k_{n}}\right) x_{k_{n}} \in Z$ for all $n \geq 1$, we have $r x \in Z$. Suppose that $\left\{R\left(x_{n}\right)\right\}$ does not converge to r. Then there exists $\epsilon>0$ and a subsequence $\left\{R\left(x_{j_{n}}\right)\right\}$ of $\left\{R\left(x_{n}\right)\right\}$ such that $\left|R\left(x_{j_{n}}\right)-r\right| \geq \epsilon$ for every $n \geq 1$. We know that $\left\{R\left(x_{j_{n}}\right)\right\}$ is bounded, so it has a convergent subsequence $\left\{R\left(x_{j_{l_{n}}}\right)\right\}$. Say $R\left(x_{j_{l_{n}}}\right) \rightarrow s$. Then $s x \in Z$. Also, $\left|R\left(x_{j_{l_{n}}}\right)-r\right| \geq \epsilon$ for all $n \geq 1$ implies that $r \neq s$, and so $r x \neq s x$.

Then by the second condition in the definition of a pseudo-transversal, we have $|r-s|>\sigma$. But

$$
\begin{aligned}
|r-s| & \leq\left|r-R\left(x_{k_{n}}\right)\right|+\left|R\left(x_{k_{n}}\right)-R\left(x_{j_{n}}\right)\right|+\left|R\left(x_{j_{l_{n}}}\right)-s\right| \\
& \leq\left|r-R\left(x_{k_{n}}\right)\right|+\sigma / 16+\left|R\left(x_{j_{l_{n}}}\right)-s\right|,
\end{aligned}
$$

which converges to $\sigma / 16$, a contradiction. Thus $R\left(x_{n}\right) \rightarrow r$. So $\left\{R\left(x_{n}\right)\right\}$ is Cauchy, and part 1 is proven.

Now suppose that $\left\{x_{n}\right\}$ is a sequence in Z^{j} such that $x_{n} \rightarrow x$ for some $x \in Z^{j}$. Then by part $1, R\left(x_{n}\right) \rightarrow r$ for some $r \in \mathbb{R}$. We will show that $r=R(x)$. Suppose that $r \neq R(x)$. Then $r x \neq R(x) x$. Also we have $R(x) x \in Z, r x \in Z$, and $(R(x)-r)(r x)=R(x) x$. So we have $|R(x)-r| \geq \sigma$. But

$$
|R(x)-r| \leq\left|R(x)-R\left(x_{n}\right)\right|+\left|R\left(x_{n}\right)-r\right| \leq \sigma / 16+\left|R\left(x_{n}\right)-r\right|,
$$

and the last expression converges to $\sigma / 16$, a contradiction. So $R(x)=r$, and so part 2 holds.
For the last part, we note that the map in part 3 is the restriction of the map in part 4 of Lemma III.2.2, and that the map in part 3 is surjective.

Now we fix some more notation for this chapter.
Notation III.2.5. Recall the definition of the integers n_{V} and n_{R} from Lemma III.2.2 and Notation III.2.3, respectively. Enumerate the collection of sets $\left\{Y_{i, j}: 1 \leq i \leq n_{V}, 1 \leq j \leq n_{R}\right\}$ by Y_{k} in the following order: $Y_{1}=Y_{1,1}, Y_{2}=Y_{2,1}, \ldots, Y_{n_{V}}=Y_{n_{V}, 1}, Y_{n_{V}+1}=Y_{1,2}, Y_{n_{V}+2}=$ $Y_{2,2}, \ldots, Y_{2 n_{V}}=Y_{n_{V}, 2}, \ldots, Y_{\left(n_{R}-1\right) n_{V}+1}=Y_{1, n_{R}}, \ldots, Y_{n_{R} n_{V}}=Y_{n_{V}, n_{R}}$. Throw away the empty members of $\left\{Y_{k}: 1 \leq k \leq n_{R} n_{V}\right\}$, and let N be the number of nonempty sets in the collection, then relabel the nonempty members of $\left\{Y_{k}: 1 \leq k \leq n_{R} n_{V}\right\}$ without changing the relative order. That is, if we let $\iota:\{1, \ldots, N\} \rightarrow\left\{1, \ldots, n_{V} n_{R}\right\}$ be a strictly increasing function such that $\left\{Y_{\iota(k)}: 1 \leq k \leq N\right\}$ is the collection of all nonempty members of $\left\{Y_{k}: 1 \leq k \leq n_{V} n_{R}\right\}$, then we relabel $Y_{\iota(k)}$ as Y_{k}. It is clear that $\left\{Y_{k}: 1 \leq k \leq N\right\}$ covers Z. For the rest of the chapter, let Y_{k} denote the sets just mentioned, and for each $i \in\{1, \ldots, N\}$, let $C_{i}=\left\{\left(\frac{R(z)}{2}\right) z: z \in Y_{i}\right\}$, let $W_{i}=\left\{r z: z \in Y_{i}, r \in(0, R(z))\right\}$ and let $X_{i}=\overline{C_{i}}$.

Lemma III.2.6. Let α and β are the maps in III.1.2. For each $i \in\{1, \ldots, N\}$, let $\alpha_{i}^{\circ}=\left.\alpha\right|_{W_{i}}$, and let $\beta_{i}^{\circ}=\left.\beta\right|_{W_{i}}$. Then

1. For each $i \in\{1, \ldots, N\}$, the map $\left.R\right|_{Y_{i}}$ is continuous.
2. For each $i \in\{1, \ldots, N\}$, we have $C_{i} \subseteq W_{i} \subseteq Z^{c}$.
3. We have $\bigcup_{i=1}^{N} W_{i}=Z^{c}$.
4. For each $i \in\{1, \ldots, N\}$, for each $z \in Y_{i}$ and each $r \in(0, R(z))$, we have $\alpha_{i}^{\circ}(r z)=-r$, and $\beta_{i}^{\circ}(r z)=R(z)-r$.
5. For each $i \in\{1, \ldots, N\}$, the map α_{i}° and β_{i}° are continuous.
6. For each $i \in\{1, \ldots, N\}$, each $x \in W_{i}$, and each $r \in\left(\alpha_{i}^{\circ}(x), \beta_{i}^{\circ}(x)\right)$, we have $r x \in W_{i}$.

Proof: For each $i \in\{1, \ldots, N\}$, the set Y_{i} is contained in some Z^{j}, and $\left.R\right|_{Z^{j}}$ is continuous, so $\left.R\right|_{Y_{i}}$ is continuous. It is clear that for each $i \in\{1, \ldots, N\}$ we have $C_{i} \subseteq W_{i}$; and $W_{i} \subseteq Z^{c}$ follows from Lemma III.1.3.

Let $x \in Z^{c}$. Then $\alpha(x) x \in Y_{i}$ for some $i \in\{1, \ldots, N\}$. Since $(\alpha(x), \beta(x)) x \subseteq Z^{c}$, we have $(0, \beta(x)-\alpha(x))(\alpha(x) x) \subseteq Z^{c}$. Also, $\beta(x)-\alpha(x)>0$ and $(\beta(x)-\alpha(x)) \cdot(\alpha(x) x) \in Z$, so $R(\alpha(x) x)=\beta(x)-\alpha(x)$. So $-\alpha(x) \in(0, R(\alpha(x) x))$, and then $x=(-\alpha(x)) \cdot(\alpha(x) x) \in W_{i}$. Thus $Z^{c}=\bigcup_{i=1}^{N} W_{i}$. (Here we used the fact that $\alpha<0<\beta$.)

Now fix $i \in\{1, \ldots, N\}$. Let $z \in Y_{i}$ and let $r \in(0, R(z))$. Then by Lemma III.1.3, we have $(-r, R(z)-r) \cdot(r z)=(0, R(z)) z \subseteq Z^{c}$. Also, we have $(-r)(r z),(R(z)-r)(r z) \in Z$, and $-r<0<R(z)-r$. So by the definition of α and β, we have $\alpha_{i}^{\circ}(r z)=-r$ and $\beta_{i}^{\circ}(r z)=R(z)-r$.

Now let $\left\{x_{n}\right\}$ be a sequence in W_{i} such that $x_{n} \rightarrow x$ for some $x \in W_{i}$. Then for each $n \geq 1$, there exist $z_{n} \in Y_{i}$ and $r_{n} \in\left(0, R\left(z_{n}\right)\right)$ such that $x_{n}=r_{n} z_{n}$; and there exist $z \in Y_{i}$ and $r \in(0, R(z))$ such that $x=r z$. By Lemma III.2.4, we have $z_{n} \rightarrow z$ and $r_{n} \rightarrow r$. Now, by part 4, for each $n \geq 1$, we have $\alpha\left(x_{n}\right)=-r_{n}$ and $\beta\left(x_{n}\right)=R\left(z_{n}\right)-r_{n}$; and also $\alpha(x)=-r$ and $\beta(x)=R(z)-r$. Then we have $\alpha\left(x_{n}\right)=-r_{n} \rightarrow-r=\alpha(x)$; and since $\left.R\right|_{Y_{i}}$ is continuous, we have $\beta\left(x_{n}\right)=R\left(x_{n}\right)-r_{n} \rightarrow R(x)-r=\beta(x)$. Thus α_{i}° and β_{i}° are continuous.

Now let $x \in W_{i}$, and let $r \in\left(\alpha_{i}^{\circ}(x), \beta_{i}^{\circ}(x)\right)$. Then $x=s z$ for some $z \in Y_{i}$ and some $s \in(0, R(z))$. So $\alpha_{i}^{\circ}(x)=-s$ and $\beta_{i}^{\circ}(x)=R(z)-s$. Then $r \in\left(\alpha_{i}^{\circ}(x), \beta_{i}^{\circ}(x)\right)$ implies that $r \in(-s, R(z)-s)$, and so $r+s \in(0, R(z))$. Therefore $r x=(r+s) z \in W_{i}$.

The next lemma is used to extend the entering times. It is a well known result in analysis, so we will omit its proof here.

Lemma III.2.7. Let X be any metric space, and let $Y \subseteq X$ be an arbitrary subset. Let $f: Y \rightarrow \mathbb{R}$ be a continuous function. Suppose that for every Cauchy sequence $\left\{y_{n}\right\}$ in Y, the sequence $\left\{f\left(y_{n}\right)\right\}$ is a Cauchy sequence in \mathbb{R}. Then there exists $g: \bar{Y} \rightarrow \mathbb{R}$ such that $\left.g\right|_{Y}=f$, and g is continuous. Moreover, $g(y)=\lim _{n \rightarrow \infty} f\left(y_{n}\right)$, where $\left\{y_{n}\right\}$ is any sequence in Y that converges to y.

Now we extend the maps α_{i}° and β_{i}° in Lemma III.2.6 continuously to the closures of W_{i}.

Lemma III.2.8. For each $i \in\{1, \ldots, N\}$, the maps α_{i}° and β_{i}° from Lemma III.2. 6 can be extended to continuous functions on $\overline{W_{i}}$.

Proof: Fix $i \in\{1, \ldots, N\}$. By Lemma III.2.7 and III.2.6, we only need to show that α_{i}° and β_{i}° preserve Cauchy sequences.

Let $\left\{x_{n}\right\}$ be a Cauchy sequence in W_{i}. Note that $W_{i} \subseteq[0,8 M] \cdot \overline{Y_{i}}$, which is compact, so $x_{n} \rightarrow x$ for some $x \in[0,8 M] \cdot \overline{Y_{i}}$. For each $n \geq 1$, we have $x_{n}=r_{n} z_{n}$ for some $z_{n} \in Y_{i}$ and some $r_{n} \in\left(0, R\left(z_{n}\right)\right)$; and $x=r z$ for some $z \in \overline{Y_{i}}$ and some $r \in[0,8 M]$. Then by Lemma III.2.4, $r_{n} \rightarrow r$ and $z_{n} \rightarrow z$. Now, by Lemma III.2.6, we have $\alpha_{i}^{\circ}\left(x_{n}\right)=\alpha_{i}^{\circ}\left(r_{n} z_{n}\right)=-r_{n}$, and $\beta_{i}^{\circ}\left(x_{n}\right)=R\left(z_{n}\right)-r_{n}$. Then it follows that $\left\{\alpha_{i}^{\circ}\left(x_{n}\right)\right\}$ is Cauchy. By Lemma III.2.4, the sequence $\left\{R\left(z_{n}\right)\right\}$ is Cauchy, so then $\left\{\beta_{i}^{\circ}\left(x_{n}\right)\right\}=\left\{R\left(z_{n}\right)-r_{n}\right\}$ is also Cauchy. The lemma now follows from Lemma III.2.7.

Notation III.2.9. For the rest of the chapter, let α_{i} and β_{i} denote the extensions of α_{i}° and β_{i}°, respectively, obtained from Lemma III.2.8. We will let $V_{i}=\left\{r c: c \in X_{i}, r \in\left(\alpha_{i}(c), \beta_{i}(c)\right)\right\}$ for each $i \in\{1, \ldots, N\}$. Note that $V_{i} \subseteq \overline{W_{i}}$, but in general, we do not expect V_{i} to equal to $\overline{W_{i}}$ or W_{i}.

III.3. Properties of $\alpha_{i}, \beta_{i}, W_{i}$ and V_{i}

Lemma III.3.1. Let $i \in\{1, \ldots, N\}$, let $x \in \overline{W_{i}}$, and let $r \in\left[\alpha_{i}(x), \beta_{i}(x)\right]$. Then:

1. $\alpha_{i}(x) x \in \overline{Y_{i}}$ and $\beta_{i}(x) x \in Z$.
2. $-M \leq \alpha_{i}(x) \leq 0 \leq \beta_{i}(x) \leq M$.
3. $\beta_{i}(x)-\alpha_{i}(x) \geq \sigma$.
4. $r x \in \overline{W_{i}}$.
5. $\alpha_{i}(r x)=\alpha_{i}(x)-r$ and $\beta_{i}(r x)=\beta_{i}(x)-r$.
6. If $\alpha_{i}(x)=0$ then $x \in \overline{Y_{i}}$; if $\beta_{i}(x)=0$, then $x \in Z$.
7. If $x \in Z^{c}$, then $\alpha_{i}(x) \leq \alpha(x)<0<\beta(x) \leq \beta_{i}(x)$, where α and β are the maps in III.1.2.

Proof: Let $\left\{x_{n}\right\}$ be a sequence in W_{i} that converges to x. For each $n \geq 1$, we have $x_{n}=r_{n} z_{n}$ for some $z_{n} \in Y_{i}$ and some $r_{n} \in\left(0, R\left(z_{n}\right)\right)$. Then $\alpha_{i}\left(x_{n}\right)=-r_{n}$ and $\beta_{i}\left(x_{n}\right)=R\left(x_{n}\right)-r_{n}$ for each $n \geq 1$ by Lemma III.2.6(4)

Since $\alpha_{i}\left(x_{n}\right) x_{n}=z_{n} \rightarrow \alpha_{i}(x) x$, and $z_{n} \in Y_{i}$ for each $n \geq 1$, we have $\alpha_{i}(x) x \in \overline{Y_{i}}$. Also, $\beta_{i}\left(x_{n}\right) x_{n} \in Z$ for all $n \geq 1$, and $\beta_{i}\left(x_{n}\right) x_{n} \rightarrow \beta_{i}(x) x$, so $\beta_{i}(x) x \in Z$. So part 1 holds.

Note that $-M \leq \alpha(y)<0<\beta(y) \leq M$ for all $y \in Z^{c}$ and $0<R(z) \leq M$ for all $z \in Z$. So $-M \leq \alpha\left(x_{n}\right)=\alpha_{i}\left(x_{n}\right)<0<\beta\left(x_{n}\right)=\beta_{i}\left(x_{n}\right) \leq M$, for every n. Then part 2 follows from continuity of α_{i} and β_{i}.

For each $n \geq 1, \beta_{i}\left(x_{n}\right)-\alpha_{i}\left(x_{n}\right)=R\left(z_{n}\right) \geq \sigma$. Part 3 now follows from continuity of α_{i} and β_{i}.

We first claim that $\left(\alpha_{i}(x), \beta_{i}(x)\right) x \subseteq \overline{W_{i}}$. Let $s \in\left(\alpha_{i}(x), \beta_{i}(x)\right)$. Since $\alpha_{i}\left(x_{n}\right) \rightarrow \alpha_{i}(x)$ and $\beta_{i}\left(x_{n}\right) \rightarrow \beta_{i}(x)$, we can assume that, taking a subsequence if necessary, $s \in\left(\alpha_{i}\left(x_{n}\right), \beta_{i}\left(x_{n}\right)\right)$ for all $n \geq 1$. Then $s x_{n} \in W_{i}$ for all $n \geq 1$. Since $s x_{n} \rightarrow s x$, we have $s x \in \overline{W_{i}}$. This proves the claim. Now, for each $n \geq 1$, let $s_{n}=\beta_{i}(x)-\frac{\beta_{i}(x)-\alpha_{i}(x)}{n+1}$. Then $s_{n} \in\left(\alpha_{i}(x), \beta_{i}(x)\right)$ for all $n \geq 1$, so $s_{n} x \in \overline{W_{i}}$ for all $n \geq 1$. Since $s_{n} x \rightarrow \beta_{i}(x) x$, we have $\beta_{i}(x) x \in \overline{W_{i}}$. Similarly, taking $s_{n}=\alpha_{i}(x)+\frac{\beta_{i}(x)-\alpha_{i}(x)}{n+1}$, we have $\alpha_{i}(x) x \in \overline{W_{i}}$. So part 4 holds.

Next we prove part 5. First assume that $r \in\left(\alpha_{i}(x), \beta_{i}(x)\right)$. Recall from the beginning of the proof that $\left\{x_{n}\right\}$ is a sequence in W_{i} that converges to x. Without loss of generality, assume that $r \in\left(\alpha_{i}\left(x_{n}\right), \beta_{i}\left(x_{n}\right)\right)$ for all $n \geq 1$. Then $r x_{n} \in W_{i}$ for all $n \geq 1$, and then

$$
\alpha_{i}(r x)=\lim _{n \rightarrow \infty} \alpha_{i}\left(r x_{n}\right)=\lim _{n \rightarrow \infty} \alpha\left(r x_{n}\right)=\lim _{n \rightarrow \infty} \alpha\left(x_{n}\right)-r=\alpha_{i}(x)-r .
$$

Similarly, $\beta_{i}(r x)=\beta_{i}(x)-r$. Now, let $s_{n}=\beta_{i}(x)-\frac{\beta_{i}(x)-\alpha_{i}(x)}{n+1}$. Then $s_{n} \in\left(\alpha_{i}(x), \beta_{i}(x)\right)$, so $\beta_{i}\left(s_{n} x\right)=\beta_{i}(x)-s_{n}$, and $\alpha_{i}\left(s_{n} x\right)=\alpha_{i}(x)-s_{n}$, by what we just proved. Thus

$$
\alpha_{i}\left(\beta_{i}(x) x\right)=\lim _{n \rightarrow \infty} \alpha_{i}\left(s_{n} x\right)=\lim _{n \rightarrow \infty} \alpha_{i}(x)-s_{n}=\alpha_{i}(x)-\beta_{i}(x),
$$

and

$$
\beta_{i}\left(\beta_{i}(x)\right)=\lim _{n \rightarrow \infty} \beta_{i}\left(s_{n} x\right)=\lim _{n \rightarrow \infty} \beta_{i}(x)-s_{n}=\beta_{i}(x)-\beta_{i}(x) .
$$

By taking $s_{n}=\alpha_{i}(x)+\frac{\beta_{i}(x)-\alpha_{i}(x)}{n+1}$, we have $\alpha_{i}\left(\alpha_{i}(x) x\right)=\alpha_{i}(x)-\alpha_{i}(x)$, and

$$
\beta_{i}\left(\alpha_{i}(x)\right)=\beta_{i}(x)-\alpha_{i}(x)
$$

So part 5 holds.
By part 1 , we see that $\alpha_{i}(x)=0$ implies that $x=\alpha_{i}(x) x \in \overline{Y_{i}}$; and that $\beta_{i}(x)=0$ implies that $x=\beta_{i}(x) x \in Z$. So part 6 holds.

By part 1, we know that $\alpha_{i}(x) x \in Z$, and $\beta_{i}(x) x \in Z$. Since $x \in Z^{c}$, by part 6 , we have $\alpha_{i}(x) \neq 0$, and $\beta_{i}(x) \neq 0$. Then part 2 implies that $\alpha_{i}(x)<0$, and $\beta_{i}(x)>0$. Part 7 follows from the definition of α and β.

Lemma III.3.2. Let $i \in\{1, \ldots, N\}$. Then:

1. $X_{i} \subseteq \overline{W_{i}}, \overline{Y_{i}} \subseteq \overline{W_{i}}$, and $\overline{W_{i}} \subseteq[0, M] \cdot \overline{Y_{i}} \subseteq[0,8 M] \cdot \overline{Y_{i}}$.
2. If $z \in Y_{i}$, then $\beta_{i}(z)=R(z)$. If $z \in \overline{Y_{i}}$, then $\alpha_{i}(z)=0$.
3. $X_{i}=\left\{\left(\frac{\alpha_{i}(x)+\beta_{i}(x)}{2}\right) \cdot x: x \in \overline{W_{i}}\right\} ;$ and

$$
\overline{W_{i}}=\left\{r c: c \in X_{i}, r \in\left[\alpha_{i}(c), \beta_{i}(c)\right]\right\}=\left\{r z: z \in \overline{Y_{i}}, r \in\left[0, \beta_{i}(z)\right]\right\} .
$$

4. The map $X_{i} \rightarrow \overline{Y_{i}}$ defined by $c \mapsto \alpha_{i}(c) c$ is a homeomorphism.
5. Suppose that $c, c^{\prime} \in X_{i}$, that $c \neq c^{\prime}$, and that $r c=c^{\prime}$. Then $|r| \geq 6 M$.
6. The map

$$
\left\{(r, c) \in \mathbb{R} \times X: c \in X_{i}, r \in\left[\alpha_{i}(c), \beta_{i}(c)\right]\right\} \rightarrow \overline{W_{i}}
$$

defined by $(r, c) \mapsto r c$, is a homeomorphism.
7. For all $c \in X_{i}$, we have $\alpha_{i}(c)=-\beta_{i}(c)$.

Proof: We already know that $C_{i} \subseteq W_{i}$, so $X_{i}=\overline{C_{i}} \subseteq \overline{W_{i}}$. If $z \in Y_{i}$, then $(R(z) / 2 n) z \in W_{i}$; and then $z \in \overline{W_{i}}$, since $(R(z) / 2 n) z \rightarrow z$. So $\overline{Y_{i}} \subseteq \overline{W_{i}}$. It is clear that $W_{i} \subseteq[0, M] \cdot \overline{Y_{i}}$, so $\overline{W_{i}} \subseteq[0, M] \cdot \overline{Y_{i}} \subseteq[0,8 M] \cdot \overline{Y_{i}}$. So part 1 holds.

Now we show part 2. Let $z \in Y_{i}$. For each $n \geq 1$, let $s_{n}=\frac{R(z)}{2 n}$. Then $s_{n} \in(0, R(z))$ for all $n \geq 1$, and $s_{n} z \rightarrow z$; so by continuity, we have $\beta_{i}\left(s_{n} z\right) \rightarrow \beta_{i}(z)$, and that $\alpha_{i}\left(s_{n} z\right) \rightarrow \alpha_{i}(z)$. By Lemma III.2.6, we have $\beta_{i}\left(s_{n} z\right)=R(z)-s_{n}$ and $\alpha_{i}\left(s_{n} z\right)=-s_{n}$. So

$$
\beta_{i}(z)=\lim _{n \rightarrow \infty} \beta_{i}\left(s_{n} z\right)=\lim _{n \rightarrow \infty} R(z)-s_{n}=R(z) ;
$$

and

$$
\alpha_{i}(z)=\lim _{n \rightarrow \infty} \alpha_{i}\left(s_{n} z\right)=\lim _{n \rightarrow \infty}-s_{n}=0
$$

Then it is clear that $\left.\alpha_{i}\right|_{\overline{Y_{i}}}=0$. So part 2 holds.
Now we show part 3. Let

$$
A=\left\{\left(\frac{\alpha_{i}(x)+\beta_{i}(x)}{2}\right) \cdot x: x \in \overline{W_{i}}\right\}
$$

let

$$
B=\left\{r c: c \in X_{i}, r \in\left[\alpha_{i}(c), \beta_{i}(c)\right]\right\},
$$

and let

$$
C=\left\{r z: z \in \overline{Y_{i}}, r \in\left[0, \beta_{i}(z)\right]\right\} .
$$

Let $c \in X_{i}$. If $c \in C_{i}$, then $c=(R(z) / 2) z$ for some $z \in Y_{i}$, and $c \in W_{i}$. Thus $\alpha_{i}(c)=-R(z) / 2$, and $\beta_{i}(c)=R(z) / 2$. Then $c=\left(\frac{\alpha_{i}(c)+\beta_{i}(c)}{2}\right) \cdot c \in A$. Thus $C_{i} \subseteq A$. Now, $\overline{W_{i}}$ is compact, and A is the image of the continuous map $x \mapsto\left(\frac{\alpha_{i}(x)+\beta_{i}(x)}{2}\right) \cdot x$, so A is compact, and hence closed. Then $X_{i}=\overline{C_{i}} \subseteq A$. Thus $X_{i}=A$.

Let

$$
B^{\prime}=\left\{(r, c) \in \mathbb{R} \times X: c \in X_{i}, r \in\left[\alpha_{i}(c), \beta_{i}(c)\right]\right\},
$$

and let

$$
C^{\prime}=\left\{(r, z): z \in \overline{Y_{i}}, r \in\left[0, \beta_{i}(z)\right]\right\} .
$$

Note that $B^{\prime} \subseteq[-M, M] \times X$, and $C^{\prime} \subseteq[0, M] \times X$. We first show that B^{\prime} and C^{\prime} are closed. Suppose that $\left(r_{n}, c_{n}\right) \in B^{\prime}$, and $\left(r_{n}, c_{n}\right) \rightarrow(r, c)$. Then $c \in X_{i}$, since X_{i} is closed. Now, $\alpha_{i}\left(x_{n}\right) \leq r_{n} \leq$ $\beta_{i}\left(x_{n}\right)$ for each $n \geq 1$; also $\alpha_{i}\left(x_{n}\right) \rightarrow \alpha_{i}(x), \beta_{i}\left(x_{n}\right) \rightarrow \beta_{i}(x)$, and $r_{n} \rightarrow r$. So $\alpha_{i}(x) \leq r \leq \beta_{i}(x)$, and so $(r, c) \in B^{\prime}$. Thus B^{\prime} is closed. Similarly, C^{\prime} is closed. Then both B^{\prime} and C^{\prime} are compact,
since both are contained in compact sets. So B and C are also compact, because they are the images of B^{\prime} and C^{\prime} under a continuous map, and so B and C are closed.

From part 2 and the definition of W_{i}, it is clear that $W_{i} \subseteq C$, and so $\overline{W_{i}} \subseteq C$. Now let $z \in \overline{Y_{i}}$, and let $r \in\left[0, \beta_{i}(z)\right]$. Let $c=\left(\beta_{i}(z) / 2\right) z$. Now, there exists a sequence $\left\{z_{n}\right\}$ in Y_{i} such that $z_{n} \rightarrow z$. Then $\left(R\left(z_{n}\right) / 2\right) z_{n} \in C_{i}$ for each $n \geq 1$. But by part $2,\left(R\left(z_{n}\right) / 2\right) z_{n}=\left(\beta_{i}\left(z_{n}\right) / 2\right) z_{n} \rightarrow c$, so $c \in X_{i}$. Now

$$
\left[\alpha_{i}(c), \beta_{i}(c)\right]=\left[\alpha_{i}(z)-\left(\beta_{i}(z) / 2\right), \beta_{i}(z)-\left(\beta_{i}(z) / 2\right)\right]=\left[-\left(\beta_{i}(z) / 2\right),\left(\beta_{i}(z) / 2\right)\right] .
$$

The $r \in\left[0, \beta_{i}(z)\right]$ implies that $r-\beta_{i}(z) \in\left[\alpha_{i}(c), \beta_{i}(c)\right]$. Then $r z=\left(r-\beta_{i}(z)\right) c \in B$. Thus $C \subseteq B$. By part 1 and part 4 of Lemma III.3.1, we have $B \subseteq \overline{W_{i}}$. Thus $\overline{W_{i}}=B=C$. So part 3 holds.

Now we show part 4. By Lemma III.3.1, we see that the map does map to $\overline{Y_{i}}$. Continuity is clear. If $z \in \overline{Y_{i}}$, then $\left(\beta_{i}(z) / 2\right) z \in X_{i}$, and $z=\alpha_{i}\left(\left(\frac{\beta_{i}(z)}{2}\right) z\right) \cdot\left(\left(\frac{\beta_{i}(z)}{2}\right) z\right)$. So the map is surjective. Now suppose that $\alpha_{i}(c) c=\alpha_{i}\left(c^{\prime}\right) c^{\prime}$ with $c, c^{\prime} \in X_{i}$. Then $\alpha_{i}(c) c, \alpha_{i}(c) c^{\prime} \in \overline{Y_{i}} \subseteq Z_{k}$ for some k. Since $\left(\alpha_{i}\left(c^{\prime}\right)-\alpha_{i}(c)\right)\left(\alpha_{i}(c) c\right)=\alpha_{i}\left(c^{\prime}\right) c^{\prime}$, by Lemma III.2.2, we see that $\left|\alpha_{i}(c)-\alpha_{i}\left(c^{\prime}\right)\right|=0$ or $\left|\alpha_{i}(c)-\alpha_{i}\left(c^{\prime}\right)\right| \geq 8 M$. But $\left|\alpha_{i}(c)-\alpha_{i}\left(c^{\prime}\right)\right| \leq 2 M$, so $\alpha_{i}(c)=\alpha_{i}\left(c^{\prime}\right)$. Then $c=c^{\prime}$ by freeness of the action. So the map is bijective and continuous, and since both X_{i} and \bar{Y}_{i} are compact and Hausdorff, it is a homeomorphism. Part 4 is proven.

Now we show part 5. Since $r c=c^{\prime}$, we have

$$
\alpha_{i}\left(c^{\prime}\right)\left(c^{\prime}\right)=\alpha_{i}\left(c^{\prime}\right)(r c)=r\left(\alpha_{i}\left(c^{\prime}\right) c\right)=\left(r+\alpha_{i}\left(c^{\prime}\right)-\alpha_{i}(c)\right)\left(\alpha_{i}(c) c\right)
$$

Both $\alpha_{i}\left(c^{\prime}\right) c^{\prime}$ and $\alpha_{i}(c) c$ are in $\overline{Y_{i}} \subseteq Z_{k}$ for some k, so by Lemma III.2.2, we have $\left|r+\alpha_{i}\left(c^{\prime}\right)-\alpha_{i}(c)\right|=$ 0 or $\left|r+\alpha_{i}\left(c^{\prime}\right)-\alpha_{i}(c)\right| \geq 8 M$. If $\left|r+\alpha_{i}\left(c^{\prime}\right)-\alpha_{i}(c)\right| \geq 8 M$, then we done, since $\left|\alpha_{i}(c)-\alpha_{i}\left(c^{\prime}\right)\right| \leq 2 M$. So suppose that $r=\alpha_{i}(c)-\alpha_{i}\left(c^{\prime}\right)$. Then $c^{\prime}=r c=\left(\alpha_{i}(c)-\alpha_{i}\left(c^{\prime}\right)\right) c$. So $\alpha_{i}\left(c^{\prime}\right) c^{\prime}=\alpha_{i}(c) c$. Then part 4 implies that $c=c^{\prime}$, contradicting the hypothesis $c \neq c^{\prime}$. So part 5 is proven.

In part 6 , the map is well defined and surjective by part 3 , and continuity is clear. Suppose that $r c=r^{\prime} c^{\prime}$. Then $\left(r-r^{\prime}\right) c=c^{\prime}$. By part 5 , either $c^{\prime}=c^{\prime}$, or $|r| \geq 6 M$. But $\left|r-r^{\prime}\right| \leq 2 M$, so $c=c^{\prime}$. So the map is injective. We have already shown in the proof of part 3 that the domain is compact. Thus the map is a homeomorphism.

Part 7 follows directly from part 3.

Notation III.3.3. For the rest of the chapter, let $\pi_{i}: \overline{W_{i}} \rightarrow X_{i}$ denote the map

$$
x \mapsto\left(\frac{\alpha_{i}(x)+\beta_{i}(x)}{2}\right) \cdot x .
$$

Lemma III.3.4. Let $i \in\{1, \ldots, N\}$. Then:

1. We have

$$
\begin{aligned}
V_{i} & =\overline{W_{i}} \backslash\left(\left\{\alpha_{i}(c) c: c \in X_{i}\right\} \cup\left\{\beta_{i}(c) c: c \in X_{i}\right\}\right) \\
& =\overline{W_{i}} \backslash\left(\left\{\alpha_{i}(x) x: x \in \overline{W_{i}}\right\} \cup\left\{\beta_{i}(x) x: x \in \overline{W_{i}}\right\}\right) \\
& =\overline{W_{i}} \backslash\left(\left\{\beta_{i}(z) z: z \in \overline{Y_{i}}\right\} \cup \overline{Y_{i}}\right) \\
& =\overline{W_{i}} \backslash\left\{x \in \overline{W_{i}}: \alpha_{i}(x)=0 \text { or } \beta_{i}(x)=0\right\} \\
& =\left\{r z: z \in \overline{Y_{i}}, r \in\left(0, \beta_{i}(z)\right)\right\} .
\end{aligned}
$$

2. $X_{i} \subseteq V_{i}$.
3. For all $x \in V_{i}$, we have $-M \leq \alpha_{i}(x)<0<\beta_{i}(x)<M$.
4. For all $x \in V_{i}$, and for all $r \in\left(\alpha_{i}(x), \beta_{i}(x)\right)$, we have $r x \in V_{i}$.
5. The map

$$
\left\{(r, c) \in \mathbb{R} \times X: c \in X_{i}, r \in\left(\alpha_{i}(c), \beta_{i}(c)\right)\right\} \rightarrow V_{i}
$$

defined by $(r, c) \mapsto r c$ is a homeomorphism.
6. $Z^{c} \subseteq \bigcup_{j=1}^{N} V_{i}$.
7. $V_{i} \cap Z^{c}$ is closed in Z^{c}.

Proof: We first show part 1. Let

$$
\begin{aligned}
& A=\overline{W_{i}} \backslash\left(\left\{\alpha_{i}(c) c: c \in X_{i}\right\} \cup\left\{\beta_{i}(c) c: c \in X_{i}\right\}\right) \\
& B=\overline{W_{i}} \backslash\left(\left\{\beta_{i}(z) z: z \in \overline{Y_{i}}\right\} \cup \overline{Y_{i}} ;\right. \\
& C=\overline{W_{i}} \backslash\left\{x \in \overline{W_{i}}: \alpha_{i}(x)=0 \text { or } \beta_{i}(x)=0\right\} ; \\
& D=\left\{r z: z \in \overline{Y_{i}}, r \in\left(0, \beta_{i}(z)\right)\right\} \\
& E=\overline{W_{i}} \backslash\left(\left\{\alpha_{i}(x) x: x \in \overline{W_{i}}\right\} \cup\left\{\beta_{i}(x) x: x \in \overline{W_{i}}\right\}\right) .
\end{aligned}
$$

Let $A_{1}=\left\{\alpha_{i}(c) c: c \in X_{i}\right\}$, let $A_{2}=\left\{\beta_{i}(c) c: c \in X_{i}\right\}$, let $B_{1}=\left\{\beta_{i}(z) z: z \in \overline{Y_{i}}\right\}$, let $B_{2}=\widetilde{Y_{i}}$, let $C_{1}=\left\{x \in \overline{W_{i}}: \alpha_{i}(x)=0\right\}$, let $C_{2}=\left\{x \in \overline{W_{i}}: \beta_{i}(x)=0\right\}$, let $E_{1}=\left\{\alpha_{i}(x) x: x \in \overline{W_{i}}\right\}$, and let $E_{2}=\left\{\beta_{i}(x) x: x \in \overline{W_{i}}\right\}$. It is clear that $C_{1} \subseteq B_{2} \subseteq A_{1} \subseteq E_{1} \subseteq C_{1}$. Now, if $x \in C_{2}$, then we have

$$
x=\beta_{i}(x) x=\left(\beta_{i}(x)-\alpha_{i}(x)\right) \cdot\left(\alpha_{i}(x) x\right)=\beta_{i}\left(\alpha_{i}(x) x\right) \cdot\left(\alpha_{i}(x) x\right) \in B_{1} .
$$

So $C_{2} \subseteq B_{1}$. Let $z \in \overline{Y_{i}}$. Let $r=\left(\alpha_{i}(z)+\beta_{i}(z)\right) / 2$. Then $r z \in X_{i}$. So

$$
\beta_{i}(r z)(r z)=\left(\beta_{i}(z)-r\right)(r z)=\beta_{i}(z) z
$$

which implies that $\beta_{i}(z) z \in A_{2}$. Thus $B_{1} \subseteq A_{2}$. Then it is clear that $C_{2} \subseteq B_{1} \subseteq A_{2} \subseteq E_{2} \subseteq C_{2}$; and so it follows that $A=B=C=E$.

Let $x \in V_{i}$, then $x=r c$ for some $c \in X_{i}$, and some $r \in\left(\alpha_{i}(c), \beta_{i}(c)\right)$. Thus

$$
r-\alpha_{i}(c) \in\left(0, \beta_{i}(c)-\alpha_{i}(c)\right)=\left(0, \beta_{i}\left(\alpha_{i}(c) c\right)\right.
$$

Then $r c=\left(r-\alpha_{i}(c)\right) \cdot\left(\alpha_{i}(c) c\right) \in D$. Thus $V_{i} \subseteq D$. Let $x \in D$. Then $x=r z$ for some $z \in \overline{Y_{i}}$, and some $r \in\left(0, \beta_{i}(z)\right)$. So

$$
r-\beta_{i}(z) / 2 \in\left(-\beta_{i}(z) / 2, \beta_{i}(z) / 2\right)=\left(\alpha_{i}\left(\left(\beta_{i}(z) / 2\right) z\right), \beta_{i}\left(\left(\beta_{i}(z) / 2\right) z\right)\right) .
$$

Also, $\left(\beta_{i}(z) / 2\right) z \in X_{i}$, so $x=\left(r-\beta_{i}(z) / 2\right) \cdot\left(\left(\beta_{i}(z) / 2\right) z\right) \in V_{i}$. Thus $V_{i}=D$.
If $x \in V_{i}$, then $x=r c$ for some $c \in X_{i}$ and some $r \in\left(\alpha_{i}(c), \beta_{i}(c)\right)$. We thus have $\alpha_{i}(x)=\alpha_{i}(c)-r \neq 0$, and $\beta_{i}(x)=\beta_{i}(c)-r \neq 0$. Thus $x \notin C_{1} \cup C_{2}$, so $x \in C$. So $V_{i} \subseteq C$. Now
let $x \in C$. Then $\alpha_{i}(x) \neq 0$, and $\beta_{i}(x) \neq 0$. Let $r=\left(\alpha_{i}(x)+\beta_{i}(x)\right) / 2$. Then $c=r x \in X_{i}$. Also $\left(\alpha_{i}(c), \beta_{i}(c)\right)=\left(\alpha_{i}(x), \beta_{i}(x)\right)-r$. Since $\alpha_{i}(x) \neq 0$, and $\beta_{i}(x) \neq 0$, so $0 \in\left(\alpha_{i}(x), \beta_{i}(x)\right)$, and so $-r \in\left(\alpha_{i}(x), \beta_{i}(x)\right)-r=\left(\alpha_{i}(c), \beta_{i}(c)\right)$. Then $x=(-r)(r x) \in V_{i}$. Thus $V_{i}=C$. Part is 1 proven.

For part 2, let $c \in X_{i}$. By part 3 of Lemma III.3.1, we have $\beta_{i}(c)-\alpha_{i}(c) \geq \sigma$. Since $\alpha_{i}(c)=-\beta_{i}(c)$, we have $\alpha_{i}(c) \neq 0$, and $\beta_{i}(c) \neq 0$. So $c \in C=V_{i}$.

Part 3 follows immediately from part 1 and part 2 of Lemma III.3.1. Part 4 follows from part 1 and part 5 of Lemma III.3.1. Part 5 follows from part 1 and part 6 of Lemma III.3.2.

For part 6 , let $x \in Z^{c}$. Then $x \in W_{j}$ for some $j \in\{1, \ldots, N\}$. So $\alpha_{i}(x)=\alpha(x)<0<$ $\beta(x)=\beta_{i}(x)$. Therefore $x \in V_{j}$.

For part 7, let $\left\{x_{n}\right\}$ be a sequence in $V_{i} \cap Z^{c}$ that converges to x for some $x \in Z^{c}$. Since $V_{i} \subseteq \overline{W_{i}}$, we see that $x \in \overline{W_{i}}$. Since $x \in Z^{c}, \alpha_{i}(x) \neq 0$ and $\beta_{i}(x) \neq 0$. So $x \in V_{i}$.

Lemma III.3.5. Let $i, j \in\{1, \ldots, N\}$. Then $\pi_{i}\left(V_{i} \cap V_{j}\right)$ is closed in X_{i}.
Proof: We only need to show that $\pi_{i}\left(V_{i} \cap V_{j}\right)$ is closed in X_{i}; the other statements follows from symmetry. If $V_{i} \cap V_{j}=\varnothing$, then we are done. So assume that $V_{i} \cap V_{j} \neq \varnothing$.

Let $\left\{w_{n}\right\}$ be a sequence in $\pi_{i}\left(V_{i} \cap V_{j}\right)$ that converges to some $w \in X$. Since X_{i} is compact, $w \in X_{i}$. Choose $x_{n} \in V_{i} \cap V_{j}$ such that $\pi_{i}\left(x_{n}\right)=w_{n}$. But $V_{i} \cap V_{j} \subseteq \overline{W_{i}} \cap \overline{W_{j}}$, which is compact, so x_{n} has a subsequence, say $\left\{y_{n}\right\}$, that converges to some $y \in \overline{W_{i}} \cap \overline{W_{j}}$. We claim that

$$
\left(\alpha_{i}(y), \beta_{i}(y)\right) \cap\left(\alpha_{j}(y), \beta_{j}(y)\right) \neq \varnothing .
$$

Suppose that $\left(\alpha_{i}(y), \beta_{i}(y)\right) \cap\left(\alpha_{j}(y), \beta_{j}(y)\right)=\varnothing$. But $0 \in\left[\alpha_{i}(y), \beta_{i}(y)\right] \cap\left[\alpha_{j}(y), \beta_{j}(y)\right]$, so either $\beta_{i}(y)=\alpha_{j}(y)=0$ or $\alpha_{i}(y)=\beta_{j}(y)=0$. First assume that $\beta_{i}(y)=\alpha_{j}(y)$. Then we have $\beta_{i}\left(y_{n}\right)-\alpha_{j}\left(y_{n}\right) \rightarrow \beta_{i}(y)-\alpha_{j}(y)=0$. Now, $y_{n} \in V_{i} \cap V_{j}$, so $\beta_{i}\left(y_{n}\right)>0$ and $\alpha_{j}\left(y_{n}\right)<0$ for all $n \geq 1$. Then $\beta_{i}\left(y_{n}\right)-\alpha_{j}\left(y_{n}\right)>0$ for all $n \geq 1$. For each $n \geq 1$, let $z_{n}=\alpha_{j}\left(y_{n}\right) y_{n}$. Then $R\left(z_{n}\right) \leq \beta_{i}\left(y_{n}\right)-\alpha_{j}\left(y_{n}\right) \rightarrow 0$, which contradicts the fact that $R \geq \sigma$. Similarly, we get a contradiction if we assume $\beta_{j}(y)=\alpha_{i}(y)$. Therefore $\left(\alpha_{i}(y), \beta_{i}(y)\right) \cap\left(\alpha_{j}(y), \beta_{j}(y)\right) \neq \varnothing$.

Let $r \in\left(\alpha_{i}(y), \beta_{i}(y)\right) \cap\left(\alpha_{j}(y), \beta_{j}(y)\right)$. Then $r y \in V_{i} \cap V_{j}$. Now, $y_{n} \rightarrow y$, so $\alpha_{i}\left(y_{n}\right) \rightarrow \alpha_{i}(y)$, and $\beta_{i}\left(y_{n}\right) \rightarrow \beta_{i}(y)$. Passing to a subsequence if necessary, we can assume that $r \in\left(\alpha_{i}\left(y_{n}\right), \beta_{i}\left(y_{n}\right)\right)$ for all $n \geq 1$. Then $r y_{n} \in V_{i}$ for all $n \geq 1$, and so $\pi_{i}\left(r y_{n}\right) \rightarrow \pi_{i}(r y)$. But $\pi_{i}\left(r y_{n}\right)=\pi_{i}\left(y_{n}\right) \rightarrow w$, so $w=\pi_{i}(r y) \in \pi_{i}\left(V_{i} \cap V_{j}\right)$. We have shown that $\pi_{i}\left(V_{i} \cap V_{j}\right)$ is closed in X_{i}.

Notation III.3.6. We fix the following notation for the rest of the chapter. For each $x \in X$, let $T^{x}=\{r \in \mathbb{R}: r x \in Z\}$. Then T^{x} is an infinite discrete set, hence countable. So index T^{x} as

$$
\cdots<a_{-n}^{x}<a_{-n+1}^{x}<\cdots<a_{-1}^{x}<a_{0}^{x}<a_{1}^{x}<\cdots<a_{n-1}^{x}<a_{n}^{x}<\cdots .
$$

Also note that for each $n \in \mathbb{Z}$, we have $a_{n+1}^{x}-a_{n}^{x} \geq \sigma$. For $i \in\{1, \ldots, N\}$ and for each $x \in V_{i}$, let $V_{i}^{x}=\left\{r x: r \in\left(\alpha_{i}(x), \beta_{i}(x)\right)\right\}=\left(\alpha_{i}(x), \beta_{i}(x)\right) \cdot x$.

The following lemma shows that the sets V_{i} are ordered in the correct order.

Lemma III.3.7. Let $k \in\{2, \ldots, N\}$, and let $x \in V_{k}$. Suppose that $T^{x} \cap\left[\alpha_{k}(x), \beta_{k}(x)\right]$ contains 3 or more elements. Then $Z^{c} \cap V_{k}^{x}=\bigcup_{i=1}^{k-1}\left(V_{k}^{x} \cap V_{i}\right) \cap Z^{c}$.

Proof: Let $T=T^{x} \cap\left[\alpha_{k}(x), \beta_{k}(x)\right]$. Then for some $m, l \in \mathbb{Z}$ with $m<l$, there exist $a_{m}^{x}, a_{m+1}^{x}, \ldots, a_{l}^{x} \in\left[\alpha_{k}(x), \beta_{k}(x)\right]$ such that $\alpha_{k}(x)=a_{m}^{x}<a_{m+1}^{x}<\cdots<a_{l}^{x}=\beta_{k}(x)$ and $T=\left\{a_{m}^{x}, a_{m+1}^{x}, \ldots, a_{l}^{x}\right\}$. For each $n \in\{m, m+1, \ldots, l-1\}$, let $z_{n}=a_{n}^{x} x$.

Then for each $n \in\{m, m+1, \ldots, l-1\}$, we have

$$
R\left(z_{n}\right)=a_{n+1}^{x}-a_{n}^{x} \leq\left(\beta_{k}(x)-\alpha_{k}(x)\right)-\sigma .
$$

We claim that for each $n \in\{m, m+1, \ldots, l-1\}$, there exists $k_{n}<k$ such that $z_{n} \in Y_{k_{n}}$. So fix $n \in\{m, m+1, \ldots, l-1\}$.

Now $Y_{k}=Y_{i, j}$ for some $1 \leq i \leq n_{V}$ and some $1 \leq j \leq n_{R}$. Also, $Y_{i, j}=Z_{i} \cap Z^{j} \subseteq Z_{j}=T^{t_{j}}$ for some $1 \leq t_{j} \leq n_{R}$. See Lemma III.2.2, Notation III.2.3 and Notation III.2.5 for the definitions of $Z_{i}, Z^{j}, Y_{i, j}, T^{t_{j}}$ and n_{R}. If $y \in W_{k}$, then $\alpha_{k}(y) y \in Y_{k} \subseteq T^{t_{j}}$, and

$$
\beta_{k}(y)-\alpha_{k}(y)=\beta_{k}\left(\alpha_{k}(y) y\right)=R(\alpha(y) y) \in\left(\frac{\left(t_{j}-1\right) \sigma}{16}, \frac{t_{j} \sigma}{16}\right] .
$$

Then $\left\{\beta_{k}(y)-\alpha_{k}(y): y \in V_{k}\right\} \subseteq\left[\frac{\left(t_{j}-1\right) \sigma}{16}, \frac{t_{j} \sigma}{16}\right]$. In particular, $\beta_{k}(x)-\alpha_{k}(x) \in\left[\frac{\left(t_{j}-1\right) \sigma}{16}, \frac{t_{j} \sigma}{16}\right]$. Thus

$$
R\left(z_{n}\right) \leq\left(\beta_{k}(x)-\alpha_{k}(x)\right)-\sigma \leq \frac{t_{j} \sigma}{16}-\sigma=\frac{\left(t_{j}-16\right) \sigma}{16} .
$$

Then there exists some h with $1 \leq h<t_{j}$ such that $R\left(z_{n}\right) \in\left(\frac{(h-1) \sigma}{16}, \frac{h \sigma}{16}\right]$, which implies that $z_{n} \in T^{h}$. In particular, T^{h} is not empty, hence it is relabeled as Z^{d} for some $d<j$ (see Notation
III.2.3). So $z_{n} \in Y_{t, h}$ for some $1 \leq t \leq n_{V}$. From the definition of Y_{s} for $s \in\{1, \ldots, N\}$ (see Notation III.2.5), it is clear that $Y_{t, h}=Y_{k_{n}}$ for some $k_{n}<k$. This proves the claim.

Now, if $y \in V_{k}^{x} \cap Z^{c}$, then there exists some $r \in\left(a_{n}^{x}, a_{n+1}^{x}\right)$ such that $y=r x$. Then $r-a_{n}^{x} \in\left(0, a_{n+1}^{x}-a_{n}^{x}\right)=\left(0, R\left(z_{n}\right)\right)$. So we have

$$
y=r x=\left(r-a_{n}^{x}\right)\left(a_{n}^{x} x\right)=\left(r-a_{n}^{x}\right) z_{n} \in V_{k_{n}} \subseteq \bigcup_{i=1}^{k-1} V_{i} .
$$

Lemma III.3.8. Let $k \in\{2, \ldots, N\}$ and let $x \in V_{k} \cap\left(\bigcup_{i=1}^{k-1} V_{i}\right)$. Then

$$
Z^{c} \cap V_{k}^{x}=\bigcup_{i=1}^{k-1}\left(V_{k}^{x} \cap V_{i}\right) \cap Z^{c} .
$$

Proof: Note that $T=T^{x} \cap\left[\alpha_{k}(x), \beta_{k}(x)\right]$ contains 2 or more elements. First suppose that T contains only 2 elements. Since $x \in V_{k}$, we see that $0 \in\left(\alpha_{k}(x), \beta_{k}(x)\right)$. Also $\left(\alpha_{k}(x), \beta_{k}(x)\right) x \subseteq Z^{c}$ by assumption, so we see that $x=0 \cdot x \in\left(\alpha_{k}(x), \beta_{k}(x)\right) \cdot x \subseteq Z^{c}$. Then we have $\left(\alpha_{k}(x), \beta_{k}(x)\right) \subseteq$ $(\alpha(x), \beta(x)) \subseteq\left(\alpha_{i}(x), \beta_{i}(x)\right)$ for every $i \in\{1, \ldots, N\}$ such that $x \in V_{i}$. Since $x \in V_{i}$ for some $1 \leq i<k$, we have $V_{k}^{x}=\left(\alpha_{k}(x), \beta_{k}(x)\right) x \subseteq\left(\alpha_{i}(x), \beta_{i}(x)\right) x=V_{i}^{x}$. Then we are done.

If T contains 3 or more elements, then we are done by Lemma III.3.7.

III.4. Properties of $G_{i}, F^{(k)}$ and $G^{(k)}$

Now we define the subspaces G_{i} of $\mathbb{R} \times X$ which will be used to define the components of the stable recursive subhomogeneous decomposition of A_{Z}.

Notation III.4.1. For each $i \in\{1, \ldots, N\}$, let

$$
\begin{equation*}
G_{i}=\left\{(r, x) \in \mathbb{R} \times X: x \in V_{i},-r \in\left(\alpha_{i}(x), \beta_{i}(x)\right)\right\} . \tag{III.3}
\end{equation*}
$$

For each $k \in\{1, \ldots, N-1\}$, let

$$
\begin{equation*}
F^{(k)}=\pi_{k+1}\left(V_{k+1} \cap \bigcup_{i=1}^{k} V_{i}\right) . \tag{III.4}
\end{equation*}
$$

Note that by Lemma III.3.5 the set $F^{(k)}$ is closed in X_{k+1}. For each $i \in\{1, \ldots, N\}$ and each
$F \subseteq X_{i}$, let

$$
\begin{equation*}
G_{i, F}=\left\{(r, s c): c \in F, s \in\left(\alpha_{i}(c), \beta_{i}(c)\right), s-r \in\left(\alpha_{i}(c), \beta_{i}(c)\right)\right\} . \tag{III.5}
\end{equation*}
$$

Note that $G_{i}=G_{i, X_{i}}$. (Lemma III.4.4 part 1.) For each $k \in\{1, \ldots, N-1\}$, let

$$
\begin{equation*}
G^{(k)}=G_{k+1, F^{(k)}} \tag{III.6}
\end{equation*}
$$

The subsets G_{i} of $\mathbb{R} \times X$ defined above are in fact subgroupoids of the transformation groupoid $\mathbb{R} \times X$. For each i, the subgroupoid G_{i} is contained in $(\mathbb{R} \times X)_{V_{i}}^{V_{i}}$, where $(\mathbb{R} \times X)_{V_{i}}^{V_{i}}$ is the set of all elements of $\mathbb{R} \times X$ whose sources and ranges are both contained in V_{i}. Due to minimality of the action, the subgroupoid $(\mathbb{R} \times X)_{V_{i}}^{V_{i}}$ is too large. The subgroupoid G_{i}, in some sense, is the largest continuous piece in $(\mathbb{R} \times X)_{V_{i}}^{V_{i}}$. See [13] for more details about groupoids.

Recall that $G_{Z}=\left\{(r, x): x \in Z^{c},-r \in(\alpha(x), \beta(x))\right\}$.

Lemma III.4.2. $G_{1} \subseteq G_{Z}$.

Proof: First of all, we know that Y_{1} is closed in X. By Lemma III.2.6, for all $z \in \overline{Y_{1}}$, we have $R(z)=\beta_{1}(z)$, and so by Lemma III.3.4, we have

$$
V_{1}=\left\{r z: z \in \overline{Y_{1}}, r \in\left(0, \beta_{i}(z)\right)\right\}=\left\{r z: z \in Y_{i}, r \in(0, R(z))\right\}=W_{1} \subseteq Z^{c}
$$

Then if $(r, x) \in G_{1}$, we have $x \in V_{1}=W_{1} \subseteq Z^{c}$ and $-r \in\left(\alpha_{1}(x), \beta_{1}(x)\right)=(\alpha(x), \beta(x))$, since $\left.\alpha_{i}\right|_{W_{i}}=\left.\alpha\right|_{W_{i}}$, so $(r, x) \in G_{Z}$, and thus $G_{1} \subseteq G_{Z}$.

Lemma III.4.3. $G_{Z} \subseteq \bigcup_{i=1}^{N} G_{i}$.

Proof: Let $(r, x) \in G_{Z}$. Then $x \in Z^{c}$, and $-r \in(\alpha(x), \beta(x))$. So $x \in V_{i}$ for some $1 \leq i \leq N$. Then $x \in Z^{c} \cap V_{i}$ implies that $\alpha_{i}(x) \leq \alpha(x)<-r<\beta(x) \leq \beta_{i}(x)$. So $(r, x) \in G_{i}$.

Part 2 and part 3 of next lemma essentially show that $G_{i, F}$ is a subgroupoid of $\mathbb{R} \times X$ for $i \in\{1, \ldots, N\}$ and $F \subseteq X_{i}$.

Lemma III.4.4. Let $i \in\{1, \ldots, N\}$. Then the following hold:

1. $G_{i}=\left\{(r, t c): c \in X_{i}, t, t-r \in\left(\alpha_{i}(c), \beta_{i}(c)\right)\right\}$.
2. Let $F \subseteq X_{i}$. Let $c_{1}, c_{2} \in F$. Let r_{1}, t_{1}, r_{2} and t_{2} be real numbers that satisfy

$$
\begin{aligned}
& t_{1}, t_{1}-r_{1} \in\left(\alpha_{i}\left(c_{1}\right), \beta_{i}\left(c_{1}\right)\right) ; \\
& t_{2}, t_{2}-r_{2} \in\left(\alpha_{i}\left(c_{2}\right), \beta_{i}\left(c_{2}\right)\right) ;
\end{aligned}
$$

and

$$
t_{1} c_{1}=\left(t_{2}-r_{2}\right) c_{2}
$$

Then $\left(r_{1}+r_{2}, t_{2} c_{2}\right) \in G_{i, F}$, and $\left(-r_{1},\left(t_{1}-r_{1}\right) c_{1}\right) \in G_{i, F}$. Let $s: \mathbb{R} \times X \rightarrow X$ be defined by $(r, x) \mapsto x$. Then $G_{i, F}=G_{i} \cap s^{-1}\left(\pi_{i}^{-1}(F)\right)$ and $G_{i, F}$ has compact closure.
3. If $F \subseteq X_{i}, c \in X_{i}, t \in\left(\alpha_{i}(c), \beta_{i}(c)\right)$, and $-r \in\left(\alpha_{i}(c), \beta_{i}(c)\right)-t$, then $(r, t c) \in G_{i, F}$ if and only if $c \in F$.
4. If $F, F^{\prime} \subseteq X_{i}$, then $G_{i, F \cup F^{\prime}}=G_{i, F} \cup G_{i, F^{\prime}}$ and $G_{i, F \cap F^{\prime}}=G_{i, F} \cap G_{i, F^{\prime}}$.

Proof: Part 1 is clear.
Now we show part 2. Since $\left(r_{1}, t_{1} c_{1}\right),\left(r_{2}, t_{2} c_{2}\right) \in G_{i, F}$, we see that $c_{1}, c_{2} \in F$, that $t_{1}, t_{1}-r_{1} \in\left(\alpha_{i}\left(c_{1}\right), \beta_{i}\left(c_{1}\right)\right)$, and that $t_{2}, t_{2}-r_{2} \in\left(\alpha_{i}\left(c_{2}\right), \beta_{i}\left(c_{2}\right)\right)$. Now $t_{1}-r_{1} \in\left(\alpha_{i}\left(c_{1}\right), \beta_{i}\left(c_{1}\right)\right)$ implies that

$$
\begin{aligned}
-r_{1} & \in\left(\alpha_{i}\left(c_{1}\right), \beta_{i}\left(c_{1}\right)\right)-t_{1}=\left(\alpha_{i}\left(t_{1} c_{1}\right), \beta_{i}\left(t_{1} c_{1}\right)\right) \\
& =\left(\alpha_{i}\left(\left(t_{2}-r_{2}\right) c_{2}\right), \beta_{i}\left(\left(t_{2}-r_{2}\right) c_{2}\right)\right)=\left(\alpha_{i}\left(c_{2}\right), \beta_{i}\left(c_{2}\right)\right)-\left(t_{2}-r_{2}\right) .
\end{aligned}
$$

So $t_{2}-\left(r_{1}+r_{2}\right) \in\left(\alpha_{i}\left(c_{2}\right), \beta_{i}\left(c_{2}\right)\right)$ and $\left(r_{1}+r_{2}, t_{2} c_{2}\right) \in G_{i, F}$. Also,

$$
t_{1}-r_{1} \in\left(\alpha_{i}\left(c_{1}\right), \beta_{i}\left(c_{1}\right)\right) \text { and }\left(t_{1}-r_{1}\right)-\left(-r_{1}\right)=t_{1} \in\left(\alpha_{i}\left(c_{1}\right), \beta_{i}\left(c_{1}\right)\right)
$$

imply that $\left(-r_{1},\left(t_{1}-r_{1}\right) c_{1}\right) \in G_{i, F}$.
To see that $G_{i, F}$ is pre-compact, note that $G_{i, F} \subseteq[-M, M] \times X$.
Let $(r, t c) \in G_{i, F}$. Then $c \in F$ and $t, t-r \in\left(\alpha_{i}(c), \beta_{i}(c)\right)$. Also,

$$
\pi_{i}(s(r, t c))=\pi_{i}(t c)=\pi_{i}(c)=c \in F
$$

So $G_{i, F} \subseteq G_{i} \cap s^{-1}\left(\pi_{i}^{-1}(F)\right)$. Let $(r, x) \in G_{i} \cap s^{-1}\left(\pi_{i}^{-1}(F)\right)$. Then $x \in V_{i}$ and $-r \in\left(\alpha_{i}(x), \beta_{i}(x)\right)$. Therefore $x=t c$ for some $c \in X_{i}$ and some $t \in\left(\alpha_{i}(c), \beta_{i}(c)\right)$. Thus $\pi_{i}(s(r, x))=\pi_{i}(t c)=\pi_{i}(c)=$ $c \in F$. Since

$$
-r \in\left(\alpha_{i}(x), \beta_{i}(x)\right)=\left(\alpha_{i}(t c), \beta_{i}(t c)\right)=\left(\alpha_{i}(c), \beta_{i}(c)\right)-t
$$

we see that $t-r \in\left(\alpha_{i}(c), \beta_{i}(c)\right)-s$, and so $(r, x)=(r, t c) \in G_{i, F}$.
For part $3,(r, t c) \in G_{i, F}$ implies that there exists $c^{\prime} \in F$ and $t^{\prime}, t^{\prime}-r^{\prime} \in\left(\alpha_{i}(c), \beta_{i}(c)\right)$ such that $(r, t c)=\left(r^{\prime}, t^{\prime} c^{\prime}\right)$. Then $c=\pi_{i}(t c)=\pi_{i}\left(t^{\prime} c^{\prime}\right)=c^{\prime} \in F$. Thus $(r, t c) \in G_{i, F}$ implies that $c \in F$. The other direction is trivial.

Let $F, F^{\prime} \subseteq X_{i}$. Then

$$
\begin{aligned}
G_{i, F \cup F^{\prime}} & =G_{i} \cap s^{-1}\left(\pi_{i}^{-1}\left(F \cup F^{\prime}\right)\right) \\
& =G_{i} \cap\left[s^{-1}\left(\pi_{i}^{-1}(F)\right) \cup s^{-1}\left(\pi_{i}^{-1}\left(F^{\prime}\right)\right)\right]=G_{i, F} \cup G_{i, F^{\prime}} .
\end{aligned}
$$

Also, since $(r, t c) \in G_{i, F \cap F^{\prime}}$ if and only if $c \in F \cap F^{\prime}$, if and only if $(r, t c) \in G_{i, F} \cap G_{i, F^{\prime}}$, part 4 follows.

Corollary III.4.5. For each $i \in\{1, \ldots, N\}$ and each $F \subseteq X_{i}$, if F is closed (open) in X_{i}, then $G_{i, F}$ is closed (open) in G_{i}.

Lemma III.4.6. Let $i \in\{1, \ldots, N\}$. Then $G_{i} \cap G_{Z}$ is closed in G_{Z}.
Proof: Let $\left\{\left(r_{n}, x_{n}\right)\right\}$ be a sequence in $G_{i} \cap G_{Z}$ that converges to some $(r, x) \in G_{Z}$. Then $x_{n} \in V_{i} \cap Z^{c}$ for all $n \geq 1$, and $x \in Z^{c}$. By part 7 of Lamma III.3.4, we have $x \in V_{i}$. Since $x \in Z^{c}$, and since $(r, x) \in G_{Z}$, we see that $-r \in(\alpha(x), \beta(x)) \subseteq\left(\alpha_{i}(x), \beta_{i}(x)\right)$. Thus $(r, x) \in G_{i}$, and so $G_{i} \cap G_{Z}$ is closed in G_{Z}.

Lemma III.4.7. Let $k \in\{1, \ldots, N-1\}$. Then for all $i \in\{1, \ldots, k\}$, we have $G_{i} \cap G^{(k)}=G_{i} \cap G_{k+1}$; and $G_{Z} \cap G_{i} \cap G^{(k)}$ is closed in $G^{(k)} \cap G_{Z}$, in $G_{i} \cap G_{Z}$, and in $G_{k+1} \cap G_{Z}$.

Proof: Fix $k \in\{1, \ldots, N-1\}$, and fix $i \in\{1, \ldots, k\}$. We first show that $G_{i} \cap G^{(k)}=G_{i} \cap G_{k+1}$. The inclusion $G_{i} \cap G^{(k)} \subseteq G_{i} \cap G_{k+1}$ is clear. Let $(r, x) \in G_{i} \cap G_{k+1}$. Then by the definition of sets G_{i} (Notation III.4.1), we have $x \in V_{i} \cap V_{k+1}$. So $\pi_{k+1}(s(r, x))=\pi_{k+1}(x)$, which is contained in $\pi_{k+1}\left(V_{i} \cap V_{k+1}\right) \subseteq F^{(k)}$. Thus $(r, x) \in G^{(k)}$.

Now we claim that if A is any topological space, and $B, C, D \subseteq A$ are arbitrary subspaces such that B is closed in C, then $B \cap D$ is closed in $C \cap D$. To prove this, since B is closed in C, there exists F closed in A such that $F \cap C=B$. Then $B \cap D=F \cap C \cap D$ is closed in $C \cap D$. This proves the claim.

Now we know that $G_{i} \cap G_{Z}$ is closed in G_{Z}, and $G_{k+1} \cap G_{Z}$ is closed in G_{Z}. So $G_{i} \cap G_{k+1} \cap G_{Z}$ is closed in G_{Z}. Then by the claim above,

$$
G_{i} \cap G_{k+1} \cap G_{Z}=\left(G_{i} \cap G_{k+1} \cap G_{Z}\right) \cap G_{i}
$$

is closed in $G_{i} \cap G_{Z}$. Similarly $G_{i} \cap G_{k+1} \cap G_{Z}$ is closed in $G_{k+1} \cap G_{Z}$.
Then by the first statement of the lemma, $G_{Z} \cap G_{i} \cap G^{(k)}$ is closed in $G_{i} \cap G_{Z}$, and in $G_{k+1} \cap G_{Z}$. But then $G_{Z} \cap G_{i} \cap G^{(k)}=\left(G_{Z} \cap G_{i} \cap G^{(k)}\right) \cap G^{(k)}$ is closed in $G^{(k)} \cap G_{k+1} \cap G_{Z}=$ $G^{(k)} \cap G_{Z}$.

Lemma III.4.8. Let $k \in\{1, \ldots, N-1\}$. Then

$$
G^{(k)} \cap G_{Z}=\bigcup_{i=1}^{k}\left(G_{i} \cap G^{(k)} \cap G_{Z}\right)=\bigcup_{i=1}^{k}\left(G_{i} \cap G_{k+1} \cap G_{Z}\right)
$$

Proof: The last equality of the lemma follows from Lemma III.4.7. Also it is clear that

$$
\bigcup_{i=1}^{k}\left(G_{i} \cap G^{(k)} \cap G_{Z}\right) \subseteq G^{(k)} \cap G_{Z}
$$

We will show that $G^{(k)} \cap G_{Z} \subseteq \bigcup_{i=1}^{k}\left(G_{i} \cap G^{(k)} \cap G_{Z}\right)$.
Let $(r, x) \in G^{(k)} \cap G_{Z}$. Then $x \in V_{k+1} \cap Z^{c}$ and $-r \in(\alpha(x), \beta(x))$. Now consider

$$
V_{k+1}^{x}=\left\{r x: r \in\left(\alpha_{k+1}(x), \beta_{k+1}(x)\right)\right\} .
$$

We first check that $V_{k+1}^{x}=V_{k+1} \cap \pi_{k+1}^{-1}\left(\pi_{k+1}(x)\right)$. It is clear that $V_{k+1}^{x} \subseteq V_{k+1} \cap \pi_{k+1}^{-1}\left(\pi_{k+1}(x)\right)$. Let $y \in V_{k+1} \cap \pi_{k+1}^{-1}\left(\pi_{k+1}(x)\right)$, let $r_{x}=\frac{\alpha_{k+1}(x)+\beta_{k+1}(x)}{2}$, let $r_{y}=\frac{\alpha_{k+1}(y)+\beta_{k+1}(y)}{2}$, let $c_{x}=r_{x} x$, and let $c_{y}=r_{y} y$. Then $c_{x}=\pi_{k+1}(x)$ and $c_{y}=\pi_{k+1}(y)$. By assumption, $c_{x}=c_{y}$. Part 3 of Lemma III.3.1 implies that $r_{x} \in\left(\alpha_{k+1}(x), \beta_{k+1}(x)\right)$ and $r_{y} \in\left(\alpha_{k+1}(y), \beta_{k+1}(y)\right)$, so we have $-r_{x} \in\left(\alpha_{k+1}\left(c_{x}\right), \beta_{k+1}\left(c_{x}\right)\right)$ and $-r_{y} \in\left(\alpha_{k+1}\left(c_{y}\right), \beta_{k+1}\left(c_{y}\right)\right)$. Note that $x, y \in V_{k+1}$ implies that
$\alpha_{k+1}(x)<0<\beta_{k+1}(x)$ and that $\alpha_{k+1}(y)<0<\beta_{k+1}(y)$. Now, if $r_{x}-r_{y} \geq \beta_{k+1}(x)$, we have $\left(\alpha_{k+1}(x)+\beta_{k+1}(x)\right)-\left(\alpha_{k+1}(y)+\beta_{k+1}(y)\right) \geq 2 \beta_{k+1}(x)$, and so

$$
\begin{aligned}
\alpha_{k+1}(y)+\beta_{k+1}(y) & \leq \alpha_{k+1}(x)-\beta_{k+1}(x)=\alpha_{k+1}\left(c_{x}\right)-\beta_{k+1}\left(c_{x}\right) \\
& =\alpha_{k+1}\left(c_{y}\right)-\beta_{k+1}\left(c_{y}\right)=\alpha_{k+1}(y)-\beta_{k+1}(y) .
\end{aligned}
$$

Then $\beta_{k+1}(y) \leq 0$, contradiction. Similarly, $r_{x}-r_{y} \leq \alpha_{k+1}(x)$ implies that $\alpha_{k+1}(y) \geq 0$, also a contradiction. So $r_{x}-r_{y} \in\left(\alpha_{k+1}(x), \beta_{k+1}(x)\right)$. Thus $y=\left(r_{x}-r_{y}\right)(x) \in V_{k+1}^{x}$, and $V_{k+1}^{x}=$ $V_{k+1} \cap \pi_{k+1}^{-1}\left(\pi_{k+1}(x)\right)$. Also, note that if $y \in V_{k+1}^{x}$, then $y=s x$ for some $s \in\left(\alpha_{k+1}(x), \beta_{k+1}(x)\right)$, and then

$$
\begin{aligned}
V_{k+1}^{y} & =\left(\alpha_{k+1}(y), \beta_{k+1}(y)\right) y=\left(\alpha_{k+1}(s x), \beta_{k+1}(s x)\right)(s x) \\
& =\left(\alpha_{k+1}(x)-s, \beta_{k+1}(x)-s\right)(s x)=V_{k+1}^{x} .
\end{aligned}
$$

Now, $(r, x) \in G^{(k)}$ implies that $\pi_{k+1}(x) \in \pi_{k+1}\left(V_{k+1} \cap\left(\bigcup_{i=1}^{k} V_{i}\right)\right)$. Thus there exists $y \in V_{k+1} \cap\left(\bigcup_{i=1}^{k} V_{i}\right)$ such that $\pi_{k+1}(x)=\pi_{k+1}(y)$. Then $y \in V_{k+1}^{x}$, so $V_{k+1}^{y}=V_{k+1}^{x}$. But by Lemma III.3.8, we know that $Z^{c} \cap V_{k+1}^{y}=Z^{c} \cap\left(\bigcup_{i=1}^{k} V_{k+1}^{y} \cap V_{i}\right)$. So we have $Z^{c} \cap V_{k+1}^{x}=$ $Z^{c} \cap\left(\bigcup_{i=1}^{k} V_{k+1}^{x} \cap V_{i}\right)$. Since $x \in V_{k+1}^{x} \cap Z^{c}$, there exists $i \in\{1, \ldots, k\}$ such that $x \in V_{k+1}^{x} \cap V_{i} \subseteq$ $V_{k+1} \cap V_{i}$. Then $x \in V_{i} \cap Z^{c}$, and then $(\alpha(x), \beta(x)) \subseteq\left(\alpha_{i}(x), \beta_{i}(x)\right)$, and so $-r \in\left(\alpha_{i}(x), \beta_{i}(x)\right)$. Thus $(r, x) \in G_{i}$. Hence

$$
(r, x) \in G^{(k)} \cap G_{Z} \cap G_{i} \subseteq \bigcup_{i=1}^{k}\left(G_{i} \cap G^{(k)} \cap G_{Z}\right)
$$

Lemma III.4.9. Let $k \in\{1, \ldots, N-1\}$. Then $G_{k+1} \backslash G^{(k)} \subseteq G_{Z}$.
Proof: \quad Let $(r, x) \in G_{k+1} \backslash G^{(k)}$. First of all, if $V_{k+1}^{x} \cap\left(\bigcup_{i=1}^{k} V_{i}\right) \neq \varnothing$, there exists

$$
y \in V_{k+1}^{x} \cap\left(\bigcup_{i=1}^{k} V_{i}\right) \subseteq V_{k+1} \cap\left(\bigcup_{i=1}^{k} V_{i}\right) .
$$

Then $\pi_{k+1}(x)=\pi_{k+1}(y) \in F^{(k)}$. Hence $(r, x) \in G^{(k)}$. This contradicts our assumption that (r, x) is not contained in $G^{(k)}$. Therefore $V_{k+1}^{x} \cap\left(\bigcup_{i=1}^{k} V_{i}\right)=\varnothing$.

Now, if $Z^{c} \cap V_{k+1}^{x}=Z^{c} \cap\left(\bigcup_{i=1}^{k}\left(V_{k+1}^{x} \cap V_{i}\right)\right)$, then

$$
Z^{c} \cap V_{k+1}^{x}=Z^{c} \cap V_{k+1}^{x} \cap\left(\bigcup_{i=1}^{k} V_{i}\right)=\varnothing,
$$

a contradiction. So $V_{k+1}^{x} \subseteq Z$. That is, $\left(\alpha_{k+1}(x), \beta_{k+1}(x)\right) x \subseteq Z$. Let

$$
\omega=\min \left\{\sigma, \beta_{k+1}(x) / 2,-\alpha_{k+1}(x) / 2\right\}
$$

Since $x \in V_{k+1}$, we have $\alpha_{k+1}(x)<0<\beta_{k+1}(x)$. So $\omega>0$. Then $[-\omega, \omega] x \subseteq Z$. But

$$
([-\omega, \omega] x) \cap Z \subseteq([-\sigma, \sigma] x) \cap Z=\{x\} .
$$

So, because the action is free, $\omega=0$, which is a contradiction. Therefore

$$
Z^{c} \cap V_{k+1}^{x} \neq Z^{c} \cap\left(\bigcup_{i=1}^{k} V_{k+1}^{x} \cap V_{i}\right)
$$

By Lemma III.3.7, the set $T^{x} \cap\left[\alpha_{k+1}(x), \beta_{k+1}(x)\right]$ contains only 2 elements, namely $\alpha_{k+1}(x)$ and $\beta_{k+1}(x)$. Then for all $s \in\left(\alpha_{k+1}(x), \beta_{k+1}(x)\right)$, we have $s x \in Z^{c}$. So $x \in Z^{c}$ (because $\left.\alpha_{k+1}(x)<0<\beta_{k+1}(x)\right), \alpha(x)=\alpha_{k+1}(x)$, and $\beta(x)=\beta_{k+1}(x)$. Since $(r, x) \in G_{k+1}$, we have $-r \in\left(\alpha_{k+1}(x), \beta_{k+1}(x)\right)=(\alpha(x), \beta(x))$, and so $(r, x) \in G_{Z}$.

Lemma III.4.10. Let $i \in\{1, \ldots, N\}$, and let $F \subseteq X_{i}$ be closed. Then:

1. we have $\overline{G_{i, F}}=\left\{(r, x) \in \mathbb{R} \times \overline{W_{i}}: \pi_{i}(x) \in F,-r \in\left[\alpha_{i}(x), \beta_{i}(x)\right]\right\}$.
2. we have

$$
\begin{aligned}
\overline{G_{i, F}} \backslash G_{i, F}=\{(r, x) & \left.\in \overline{G_{i, F}}: \alpha_{i}(x)=0\right\} \\
& \cup\left\{(r, x) \in \overline{G_{i, F}}: \beta_{i}(x)=0\right\} \\
& \cup\left\{(r, x) \in \overline{G_{i, F}}:-r=\alpha_{i}(x)\right\} \\
& \cup\left\{(r, x) \in \overline{G_{i, F}}:-r=\beta_{i}(x)\right\} .
\end{aligned}
$$

3. the set $\overline{G_{i, F}} \backslash G_{i, F}$ is closed in $\mathbb{R} \times X$, and $G_{i, F}$ is open in $\overline{G_{i, F}}$.

Proof: Let

$$
A=\left\{(r, x) \in \mathbb{R} \times \overline{W_{i}}: \pi_{i}(x) \in F,-r \in\left[\alpha_{i}(x), \beta_{i}(x)\right]\right\} .
$$

We first show that A is closed. Well, if $\left(r_{n}, x_{n}\right) \in A$, and $\left(r_{n}, x_{n}\right) \rightarrow(r, x)$ for some $(r, x) \in \mathbb{R} \times X$, then $x \in \overline{W_{i}}$ and $\pi_{i}(x) \in F$, because F and $\overline{W_{i}}$ are closed in X, and because $\alpha_{i}\left(x_{n}\right) \rightarrow \alpha_{i}(x)$, $\beta_{i}\left(x_{n}\right) \rightarrow \beta_{i}(x)$, and $-r_{n} \rightarrow-r$. Since $-r_{n} \in\left[\alpha_{i}\left(x_{n}\right), \beta_{i}\left(x_{n}\right)\right]$ for all $n \geq 1$, we have $-r \in$ $\left[\alpha_{i}(x), \beta_{i}(x)\right]$. Hence $(r, x) \in A$, and so A is closed.

Now let $(r, x) \in A$. Let $s=\left(\alpha_{i}(x)+\beta_{i}(x)\right) / 2$, and let $c=s x=\pi_{i}(x) \in F \subseteq V_{i}$. Since $-r \in\left[\alpha_{i}(x), \beta_{i}(x)\right]$, there exists a sequence $\left\{r_{n}\right\}$ in $\left(-\beta_{i}(x),-\alpha_{i}(x)\right)$ such that $r_{n} \rightarrow r$. Now since $\alpha_{i}(x)<\beta_{i}(x)$, we see that $\alpha_{i}(x)<s<\beta_{i}(x)$. Since $\alpha_{i}(x) \leq 0$, we see that $\alpha_{i}(x) \leq \alpha_{i}(x) /(2 n)$ for all $n \geq 1$; since $\beta_{i}(x) \geq 0$, we have $\beta_{i}(x) /(2 n) \leq \beta_{i}(x)$ for all $n \geq 1$. Then

$$
\alpha_{i}(x) \leq \alpha_{i}(x) /(2 n)<s /(2 n)<\beta_{i}(x) /(2 n) \leq \beta_{i}(x)
$$

for all $n \geq 1$. Thus $s /(2 n) \in\left(\alpha_{i}(x), \beta_{i}(x)\right)$ for all $n \geq 1$. Then $\left(\frac{s}{2 n}\right) x \in \overline{W_{i}}, \alpha_{i}\left(\left(\frac{s}{2 n}\right) x\right) \neq 0$, and $\beta_{i}\left(\left(\frac{s}{2 n}\right) x\right) \neq 0$ for all $n \geq 1$. Thus $\left(\frac{s}{2 n}\right) x \in V_{i}$ for all $n \geq 1$. Since $-r_{n} \in\left(\alpha_{i}(x), \beta_{i}(x)\right)$ for all $n \geq 1$, we have

$$
-r_{n}-s /(2 n) \in\left(\alpha_{i}(x), \beta_{i}(x)\right)-s /(2 n)=\left(\alpha_{i}\left(\left(\frac{s}{2 n}\right) x\right), \beta_{i}\left(\left(\frac{s}{2 n}\right) x\right)\right)
$$

for all $n \geq 1$, so $\left(r_{n}+s /(2 n),(s / 2 n) x\right) \in G_{i}$ for all $n \geq 1$. Since

$$
\pi_{i}\left(s\left(\left(r_{n}+s /(2 n),(s / 2 n) x\right)\right)=\pi_{i}(x) \in F\right.
$$

we have $\left(r_{n}+s /(2 n),(s / 2 n) x\right) \in G_{i, F}$ for all $n \geq 1$. Since $\left(r_{n}+s /(2 n),\left(\frac{s}{2 n}\right) x\right) \rightarrow(r, x)$, we see that $(r, x) \in \overline{G_{i, F}}$. Thus part 1 holds.

Let $A_{1}=\left\{(r, x) \in \overline{G_{i, F}}: \alpha_{i}(x)=0\right\}$, let $A_{2}=\left\{(r, x) \in \overline{G_{i, F}}: \beta_{i}(x)=0\right\}$, let $A_{3}=$ $\left\{(r, x) \in \overline{G_{i, F}}:-r=\alpha_{i}(x)\right\}$, let $A_{4}=\left\{(r, x) \in \overline{G_{i, F}}:-r=\beta_{i}(x)\right\}$, and let $A=A_{1} \cup \cdots \cup A_{4}$. To show part 2, we only need to show that $G_{i, F} \cap A=\varnothing$ and $G_{i, F} \cup A=\overline{G_{i, F}}$. We first show that $G_{i, F} \cap A_{j}=\varnothing$ for all $j \in\{1, \ldots, 4\}$.

Note that

$$
\begin{aligned}
G_{i, F} & =\left\{(r, s c) \in \mathbb{R} \times X: c \in F, s, s-r \in\left(\alpha_{i}(c), \beta_{i}(c)\right)\right\} \\
& =\left\{(r, x) \in G_{i}: \pi_{i}(x) \in F\right\}
\end{aligned}
$$

If $(r, x) \in G_{i, F}$, then $x \in V_{i}$, and so $\alpha_{i}(x) \neq 0$ and $\beta_{i}(x) \neq 0$. Then $(r, x) \notin A_{1}$ and $(r, x) \notin A_{2}$. Thus $A_{1} \cap G_{i, F}=\varnothing$, and $A_{2} \cap G_{i, F}=\varnothing$. Also, $(r, x) \in G_{i, F}$ implies that $-r \neq \alpha_{i}(x)$ and $-r \neq \beta_{i}(x)$. Then $(r, x) \notin A_{3}$ and $(r, x) \notin A_{4}$. Thus $A_{3} \cap G_{i, F}=\varnothing$, and $A_{4} \cap G_{i, F}=\varnothing$. Then $G_{i, F} \cap A=\varnothing$.

Now let $(r, x) \in \overline{G_{i, F}}$. Then $x \in \overline{W_{i}}, \pi_{i}(x) \in F$, and $-r \in\left[\alpha_{i}(x), \beta_{i}(x)\right]$. Suppose that $(r, x) \notin A$. Then $\alpha_{i}(x) \neq 0, \beta_{i}(x) \neq 0,-r \neq \alpha_{i}(x)$, and $-r \neq \beta_{i}(x)$. So $x \in V_{i},-r \in\left(\alpha_{i}(x), \beta_{i}(x)\right)$, and $(r, x) \in G_{i}$. Since $\pi_{i}(x) \in F$, we see that $(r, x) \in G_{i, F}$. Thus $\overline{G_{i, F}}=A \cup G_{i, F}$, and part 2 holds.

Now let $\left\{\left(r_{n}, x_{n}\right)\right\}$ be a sequence in A_{1} that converges to some $(r, x) \in \mathbb{R} \times X$. Since $\overline{G_{i, F}}$ is closed, we see that $(r, x) \in \overline{G_{i, F}}$. Then by continuity of α_{i}, we have $\alpha_{i}(x)=0$. So $(r, x) \in A_{1}$, and so A_{1} is closed in $\mathbb{R} \times X$. Similarly, A_{2} is closed. Now let $\left\{\left(r_{n}, x_{n}\right)\right\}$ be a sequence in A_{3} that converges to some $(r, x) \in \mathbb{R} \times X$. Then $(r, x) \in \overline{G_{i, F}}$. Since $r_{n}=\alpha_{i}\left(x_{n}\right)$ for all $n \geq 1$, since $\alpha_{i}\left(x_{n}\right) \rightarrow \alpha_{i}(x)$, and since $r_{n} \rightarrow r$, we have $\alpha_{i}(x)=r$. Thus $(r, x) \in A_{3}$. So A_{3} is closed in $\mathbb{R} \times X$. Similarly A_{4} is closed in $\mathbb{R} \times X$; and so A is closed in $\mathbb{R} \times X$. Then $G_{i, F}=\overline{G_{i, F}} \cap A^{c}$ is open in $\overline{G_{i, F}}$.

Corollary III.4.11. Let $i \in\{1, \ldots, N\}$. Then

1. we have $\overline{G_{i}}=\left\{(r, x) \in \mathbb{R} \times \overline{W_{i}}:-r \in\left[\alpha_{i}(x), \beta_{i}(x)\right]\right\}$,
2. we have

$$
\begin{aligned}
\overline{G_{i}} \backslash G_{i}=\{(r, x) & \left.\in \overline{G_{i}}: \alpha_{i}(x)=0\right\} \\
& \cup\left\{(r, x) \in \overline{G_{i}}: \beta_{i}(x)=0\right\} \\
& \cup\left\{(r, x) \in \overline{G_{i}}:-r=\alpha_{i}(x)\right\} \\
& \cup\left\{(r, x) \in \overline{G_{i}}:-r=\beta_{i}(x)\right\},
\end{aligned}
$$

3. the set $\overline{G_{i}} \backslash G_{i, F}$ is closed in $\mathbb{R} \times X$, and G_{i} is open in $\overline{G_{i}}$,

III.5. The C^{*}-Algebra of G_{i}

In this section we will define ${ }^{*}$-algebra structures and C^{*}-norms on $C_{0}\left(G_{i}\right)$ and $C_{0}\left(G^{(k)}\right)$. Let $f, g \in C\left(\overline{G_{i, F}}\right)$, and let $(r, x) \in \overline{G_{i, F}}$. For each $t \in\left[-\beta_{i}(x),-\alpha_{i}(x)\right],(t, x)$ and $(r-t,(-t) x)$ are elements of $\overline{G_{i, F}}$ (by Lemma III.4.4), so we can define $h:\left[-\beta_{i}(x),-\alpha_{i}(x)\right] \rightarrow \mathbb{C}$ by $h(t)=$ $f(t, x) g(r-t,(-t) x)$. Then h is certainly continuous, and hence in $L^{1}\left(\left[-\beta_{i}(x),-\alpha_{i}(x)\right]\right)$, and so $\int_{-\beta_{i}(x)}^{-\alpha_{i}(x)} f(t, x) g(r-t,(-t) x) d t$ exists. Also, $(-r,(-r) x)$ is also an element of $\overline{G_{i, F}}$, so $\overline{f(-r,(-r) x)}$ exists. Then we can define convolution on $\overline{G_{i, F}}$ by

$$
\begin{equation*}
(f * g)(r, x)=\int_{-\beta_{i}(x)}^{-\alpha_{i}(x)} f(t, x) g(r-t,(-t) x) d t \tag{III.7}
\end{equation*}
$$

and involution by

$$
\begin{equation*}
f^{*}(r, x)=\overline{f(-r,(-r) x)} \tag{III.8}
\end{equation*}
$$

We verify through the next three lemmas that the above formulas make $C_{0}\left(G_{i, F}\right)$ into a ${ }^{*}$-algebra. In fact, if we take the groupoid structure of $G_{i, F}$ into consideration, the above formulas are the ones used in the construction of groupoid C^{*}-algebras in [13].

Lemma III.5.1. Let $i \in\{1, \ldots, N\}$, let $F \neq \varnothing$ be a closed subspace of X_{i}, and let $f, g \in C\left(\overline{G_{i, F}}\right)$. Then $f * g$ and f^{*} are continuous. That is $f * g, f^{*} \in C\left(\overline{G_{i, F}}\right)$.

Proof: It is clear that f^{*} is continuous.
Let $\left\{\left(r_{n}, x_{n}\right)\right\}$ be a sequence in $\overline{G_{i, F}}$ that converges to some $(r, x) \in \overline{G_{i, F}}$. Let $\epsilon>0$. For each $n \geq 1$, let $h_{n}: \mathbb{R} \rightarrow \mathbb{C}$ be defined by $h_{n}(t)=f\left(t, x_{n}\right) g\left(r_{n}-t,(-t) x_{n}\right)$ if $t \in\left[-\beta_{i}\left(x_{n}\right),-\alpha_{i}\left(x_{n}\right)\right]$, and $h_{n}(t)=0$ otherwise. Then h_{n} is measurable for each $n \geq 1$. Define $h: \mathbb{R} \rightarrow \mathbb{C}$ by $h(t)=$ $f(t, x) g(r-t,(-r) x)$ for $t \in\left[-\beta_{i}(x),-\alpha_{i}(x)\right]$, and $h_{n}(t)=0$ otherwise. Then h is measurable. Let $\delta=\min \left\{\frac{\varepsilon\|f\|_{\infty}\|g\|_{\infty}}{\epsilon}, \frac{\beta_{i}(x)-\alpha_{i}(x)}{4}\right\}$. Then $\delta>0$. Since $\alpha_{i}\left(x_{n}\right) \rightarrow \alpha_{i}(x)$, and $\beta_{i}\left(x_{n}\right) \rightarrow \beta_{i}(x)$, there exists $M \geq 1$ such that $n \geq M$ implies that $\left|\alpha_{i}\left(x_{n}\right)-\alpha_{i}(x)\right|<\delta$, and $\left|\beta_{i}(x)-\beta_{i}\left(x_{n}\right)\right|<\delta$. Now, if $t \in\left[-\beta_{i}(x)+\delta,-\alpha_{i}(x)-\delta\right]$, then $t \in\left[-\beta_{i}\left(x_{n}\right),-\alpha_{i}\left(x_{n}\right)\right]$ for all $n \geq M^{\prime}$, and $t \in\left[-\beta_{i}(x),-\alpha_{i}(x)\right]$. Therefore

$$
h_{n}(t)=f\left(t, x_{n}\right) g\left(r_{n}-t,(-t) x_{n}\right) \rightarrow f(t, x) g(r-t,(-r) x)=h(t) .
$$

Since $\left|h_{n}(t)\right| \leq\|f\|_{\infty}\|g\|_{\infty}$ for all $n \geq 1$ and all $t \in\left[-\beta_{i}(x)+\delta,-\alpha_{i}(x)-\delta\right]$, and since

$$
\|f\|_{\infty}\|g\|_{\infty} \in L^{1}\left(\left[-\beta_{i}(x)+\delta,-\alpha_{i}(x)-\delta\right]\right),
$$

by the Lebesgue Dominated Convergence Theorem, we have

$$
\int_{-\beta_{i}(x)+\delta}^{\alpha_{i}(x)-\delta}\left|h_{n}(t)-h(t)\right| d t \rightarrow 0 .
$$

So there exists $M^{\prime} \geq 1$ such that $n \geq M^{\prime}$ implies that

$$
\int_{-\beta_{i}(x)+\delta}^{\alpha_{i}(x)-\delta}\left|h_{n}(t)-h(t)\right| d t<\epsilon / 2 .
$$

Let $M^{\prime \prime}=M^{\prime}+M$. Then if $n \geq M^{\prime \prime}$, we have

$$
\begin{aligned}
& \left|\int_{-\beta_{i}\left(x_{n}\right)}^{-\alpha_{i}\left(x_{n}\right)} h_{n}(t) d t-\int_{-\beta_{i}(x)}^{-\alpha_{i}(x)} h(t) d t\right| \\
& \quad \leq 2 \delta\left\|h_{n}\right\|_{\infty}+2 \delta\|h\|_{\infty}+\left|\int_{-\beta_{i}\left(x_{n}\right)+\delta}^{-\alpha_{i}\left(x_{n}\right)-\delta}\left(h_{n}(t)-h(t)\right) d t\right| \\
& \quad<4 \delta\|f\|_{\infty}\|g\|_{\infty}+\epsilon / 2 \leq \epsilon / 2+\epsilon / 2 \\
& \quad=\epsilon .
\end{aligned}
$$

So $\left|(f * g)\left(r_{n}, x_{n}\right)-(f * g)(r, x)\right|<\epsilon$ for all $n \geq M^{\prime \prime}$. Thus $(f * g)\left(r_{n}, x_{n}\right) \rightarrow(f * g)(r, x)$. Therefore $f * g$ is continuous.

Lemma III.5.2. Let $i \in\{1, \ldots, N\}$, and let $F \neq \varnothing$ be a closed subset of X_{i}. Let $f, g \in C_{0}\left(G_{i, F}\right)$. Then $f * g \in C_{0}\left(G_{i, F}\right)$ and $f^{*} \in C_{0}\left(G_{i, F}\right)$.

Proof: By Lemma III.4.10, we have

$$
\begin{aligned}
\overline{G_{i, F}} \backslash G_{i, F}=\{(r, x) & \left.\in \overline{G_{i, F}}: \alpha_{i}(x)=0\right\} \\
& \cup\left\{(r, x) \in \overline{G_{i, F}}: \beta_{i}(x)=0\right\} \\
& \cup\left\{(r, x) \in \overline{G_{i, F}}:-r=\alpha_{i}(x)\right\} \\
& \cup\left\{(r, x) \in \overline{G_{i, F}}:-r=\beta_{i}(x)\right\} .
\end{aligned}
$$

Next we define four different subsets of $\overline{G_{i, F}}$, which can be thought of as the faces of $\overline{G_{i, F}}$. Define

$$
\begin{aligned}
& A_{1}=\left\{(r, x) \in \overline{G_{i, F}}: \alpha_{i}(x)=0\right\} \\
& A_{2}=\left\{(r, x) \in \overline{G_{i, F}}: \beta_{i}(x)=0\right\} \\
& A_{3}=\left\{(r, x) \in \overline{G_{i, F}}:-r=\alpha_{i}(x)\right\}
\end{aligned}
$$

and

$$
A_{4}=\left\{(r, x) \in \overline{G_{i, F}}:-r=\beta_{i}(x)\right\}
$$

To show that $f * g, f^{*} \in C_{0}\left(G_{i, F}\right)$, we just need to show that $\left.(f * g)\right|_{A_{j}}=0$ and $\left.f^{*}\right|_{A_{j}}=0$ for $j \in\{1, \ldots, 4\}$.

Let $(r, x) \in A_{1} \cup A_{2}$. Either $\alpha_{i}(x)=0$ or $\beta_{i}(x)=0$. Then for all $t \in\left[-\beta_{i}(x),-\alpha_{i}(x)\right]$, we have $(t, x) \in A_{1} \cup A_{2}$. So $f(t, x)=0$ for all $t \in\left[-\beta_{i}(x),-\alpha_{i}(x)\right]$, and so

$$
(f * g)(r, x)=\int_{-\beta_{i}(x)}^{-\alpha_{i}(x)} f(t, x) g(r-t,(-t) x) d t=0
$$

Thus $\left.(f * g)\right|_{A_{1} \cup A_{2}}=0$.
Let $(r, x) \in A_{3} \cup A_{4}$. Then either $(r, x)=\left(-\alpha_{i}(x), x\right)$ or $(r, x)=\left(-\beta_{i}(x), x\right)$. So for all $t \in\left[-\beta_{i}(x),-\alpha_{i}(x)\right]$, we have

$$
r-t=-\alpha_{i}(x)-t=-\left(\alpha_{i}(x)+t\right)=-\left(\alpha_{i}((-t) x)\right)
$$

or

$$
r-t=-\beta_{i}(x)-t=-\left(\beta_{i}(x)+t\right)=-\left(\beta_{i}((-t) x)\right)
$$

and so $(r-t,(-t) x) \in A_{3} \cup A_{4}$; and then $g(r-t,(-t) x)=0$. Therefore we have

$$
(f * g)(r, x)=\int_{-\beta_{i}(x)}^{-\alpha_{i}(x)} f(t, x) g(r-t,(-t) x) d t=0
$$

Thus $\left.(f * g)\right|_{A_{3} \cup A_{4}}=0$, and so $f * g \in C_{0}\left(G_{i, F}\right)$.

Next we consider f^{*}. Now $(r, x) \in A_{1} \cup A_{2}$ implies $\alpha_{i}(x)=0$ or $\beta_{i}(x)=0$, which implies that $r=\alpha_{i}((-r) x)$ or $r=\beta_{i}((-r) x)$, which in turn implies that $(-r,(-r) x) \in A_{3} \cup A_{4}$. Also, $(r, x) \in A_{3} \cup A_{4}$ implies that $-r=\alpha_{i}(x)$ or $-r=\beta_{i}(x)$, which implies that $\alpha_{i}((-r) x)=0$ or $\beta_{i}((-r) x)=0$, which means that $(r, x) \in A_{1} \cup A_{2}$. Thus if $(r, x) \in \overline{G_{i, F}}$, then so is $(-r,(-r) x)$, and so $f^{*}(r, x)=\overline{f(-r,(-r) x))}=0$. Therefore $f^{*} \in C_{0}\left(G_{i, F}\right)$.

Lemma III.5.3. The set $C\left(\overline{G_{i, F}}\right)$ is a ${ }^{*}$-algebra, and $C_{0}\left(G_{i, F}\right)$ is $a{ }^{*}$-subalgebra of $C\left(\overline{G_{i, F}}\right)$.
Proof: It is clear that $C\left(\overline{G_{i, F}}\right)$ is a linear space. Lemma III.5.1 shows that convolution and involution are well-defined.

Let $f, g, h \in C\left(\overline{G_{i, F}}\right)$, let $(r, x) \in \overline{G_{i, F}}$, and let $\lambda \in \mathbb{C}$. To simplify the notation, let $a=\alpha_{i}(x)$ and $b=\beta_{i}(x)$. It is clear that $\lambda(f * g)=(\lambda f) * g=f *(\lambda g)$. Now, applying the Fubini Theorem to interchange integrals, we check that convolution is associative:

$$
\begin{aligned}
{[(f * g) * h](r, x) } & =\int_{-b}^{-a}(f * g)(t, x) h(r-t,(-t) x) d t \\
& =\int_{-b}^{-a}\left(\int_{-b}^{-a} f(s, x) g(t-s,(-s) x) d s\right) h(r-t,(-t) x) d t \\
& =\int_{-b}^{-a} \int_{-b}^{-a} f(s, x) g(t-s,(-s) x) h(r-t,(-t) x) d t d s \\
& =\int_{-b}^{-a} \int_{-b-s}^{-a-s} f(s, x) g(t,(-s) x) h(r-(t+s),(-(t+s)) x) d t d s \\
& \left.=\int_{-b}^{-a} f(s, x)\left(\int_{-\beta_{i}((-s) x)}^{-\alpha_{i}((-s) x)} g(t,(-s) x) h((r-s)-t),(-t)((-s) x)\right) d t\right) d s \\
& =\int_{-b}^{-a} f(s, x)(g * h)(r-s,(-s) x) d s \\
& =[f *(g * h)](r, x) .
\end{aligned}
$$

Thus convolution is associative. It is clear that convolution is distributive. Now we check that
involution is anti-commutative:

$$
\begin{aligned}
(f * g)^{*}(r, x) & =\overline{(f * g)(-r,(-r) x)} \\
& =\overline{\int_{-\beta_{i}((-r) x)}^{-\alpha_{i}((-r) x)} f(t,(-r) x) g(-r-t,(-r-t) x) d t} \\
& =\overline{\int_{-\left(\beta_{i}(x)+r\right)}^{-\left(\alpha_{i}(x)+r\right)} f(t,(-r) x) g(-r-t,(-r-t) x) d t} \\
& =\int_{-b}^{-a} \overline{f(s-r,(-r) x)} \overline{g(-s,(-s) x)} d s \\
& =\int_{-b}^{-a} f^{*}(r-s,(-s) x) g^{*}(s, x) d s \\
& =\left(g^{*} * f^{*}\right)(r, x) .
\end{aligned}
$$

So involution is anti-commutative. It is clear that involution is conjugate linear. It is also clear that $\left(f^{*}\right)^{*}=f$ for all $f \in C\left(\overline{G_{i, F}}\right)$. Thus $C\left(\overline{G_{i, F}}\right)$ is a ${ }^{*}$-algebra. By Lemma III.5.2, $C_{0}\left(G_{i, F}\right)$ is a *-subalgebra of $C\left(\overline{G_{i, F}}\right)$.

Next, we will define a family of ${ }^{*}$-representations of $G_{i, F}$ for each $i=1, \ldots, N$, and each $F \subseteq X_{i}$. For each $i \in\{1, \ldots, N\}$ and for each $x \in X_{i}$, let $\chi_{i}^{x}: \mathbb{R} \rightarrow \mathbb{R}$ be the characteristic function of the interval $\left(\alpha_{i}(x), \beta_{i}(x)\right) \subseteq \mathbb{R}$, and define a projection in $p_{i}^{x} \in B\left(L^{2}(\mathbb{R})\right)$ by $p_{i}^{x}(\xi)=\chi_{i}^{x} \xi$. For each $i \in\{1, \ldots, N\}$, each nonempty closed subset $F \subseteq X_{i}$, and each $x \in F$, define

$$
\lambda_{i, F}^{x}: C_{0}\left(G_{i, F}\right) \rightarrow B\left(L^{2}(\mathbb{R})\right)
$$

by, for $f \in C_{0}\left(G_{i, F}\right), \xi \in L^{2}(\mathbb{R})$, and $r \in \mathbb{R}$,

$$
\begin{equation*}
\lambda_{i, F}^{x}(f)(\xi)(r)=\int_{\alpha_{i}(x)}^{\beta_{i}(x)} \chi_{i}^{x}(r) \chi_{i}^{x}(t) \xi(t) f(r-t, r x) d t . \tag{III.9}
\end{equation*}
$$

Notation III.5.4. For the rest of the chapter, let λ_{i}^{x} denote $\lambda_{i, X_{i}}^{x}$ for each $i \in\{1, \ldots, N\}$, and let $\lambda^{(k), x}$ denote $\lambda_{k+1, F^{(k)}}^{x}$ for each $k=1, \ldots, N-1$.

Lemma III.5.5. For each $i \in\{1, \ldots, N\}$, each nonempty closed subset $F \subseteq X_{i}$ and each $x \in F$, the map $\lambda_{i, F}^{x}$ is a ${ }^{*}$-homomorphism. Further, if $f \in C_{0}\left(G_{i, F}\right)$, and if $\left\{x_{n}\right\}$ is a sequence in F that converges to some $x \in F$, then $\lambda_{i, F}^{x_{n}}(f) \rightarrow \lambda_{i, F}^{x}(f)$. Moreover, if $f \in C_{0}\left(G_{i, F}\right)$ and $x \in F$, then
$\lambda_{i, F}^{x}(f)=0$ if and only if $\left.f\right|_{H_{x}}=0$, where

$$
H_{x}=\left\{(r-t, r x): r, t \in\left(\alpha_{i}(x), \beta_{i}(x)\right)\right\}=\left\{(t, r x): r \in\left(\alpha_{i}(x), \beta_{i}(x)\right), r-t \in\left(\alpha_{i}(x), \beta_{i}(x)\right\} .\right.
$$

Proof: Fix $i \in\{1, \ldots, N\}$ and $F \subseteq X$ closed for the entire proof.
Let $x \in F$. Linearity of $\lambda_{i, F}^{x}$ is clear. Now let $f, g \in C_{0}\left(G_{i, F}\right)$. Then for all $\xi \in L^{2}(\mathbb{R})$ and all $r \in\left(\alpha_{i}(x), \beta_{i}(x)\right)$, we have, applying the Fubini Theorem,

$$
\begin{aligned}
\lambda_{i, F}^{x}(f * g)(\xi)(r) & =\int_{\alpha_{i}(x)}^{\beta_{i}(x)} \chi_{i}^{x}(r) \chi_{i}^{x}(t) \xi(t)(f * g)(r-t, r x) d t \\
& =\int_{\alpha_{i}(x)}^{\beta_{i}(x)} \chi_{i}^{x}(r) \chi_{i}^{x}(t) \xi(t)\left(\int_{-\beta_{i}(r x)}^{-\alpha_{i}(r x)} f(s, r x) g(r-t-s,(-s+r) x) d s\right) d t \\
& =\int_{\alpha_{i}(x)}^{\beta_{i}(x)} \chi_{i}^{x}(r) \chi_{i}^{x}(t) \xi(t)\left(\int_{\alpha_{i}(r x)}^{\beta_{i}(r x)} f(-s, r x) g(r-t+s,(s+r) x) d s\right) d t \\
& =\int_{\alpha_{i}(x)}^{\beta_{i}(x)} \chi_{i}^{x}(r) \chi_{i}^{x}(t) \xi(t)\left(\int_{\alpha_{i}(x)}^{\beta_{i}(x)} f(r-s, r x) g(s-t, s x) d s\right) d t \\
& =\int_{\alpha_{i}(x)}^{\beta_{i}(x)} \int_{\alpha_{i}(x)}^{\beta_{i}(x)} \chi_{i}^{x}(r) \chi_{i}^{x}(t) \xi(t) f(r-s, r x) g(s-t, s x) d t d s \\
& =\int_{\alpha_{i}(x)}^{\beta_{i}(x)} f(r-s, r x) \chi_{i}^{x}(r)\left(\int_{\alpha_{i}(x)}^{\beta_{i}(x)} \chi_{i}^{x}(t) \xi(t) g(s-t, s x) d t\right) d s .
\end{aligned}
$$

Now we show that for all $s \in \mathbb{R}$, we have $\chi_{i}^{x}(s) f(r-s, r x)=f(r-s, r x)$. If $f(r-s, r x)=0$, then we are done, so assume that $f(r-s, r x) \neq 0$. Then $(r-s, r x) \in G_{i, F}$. So $s-r \in\left(\alpha_{i}(r x), \beta_{i}(r x)\right)=$ $\left(\alpha_{i}(x), \beta_{i}(x)\right)-r$, and thus $s \in\left(\alpha_{i}(x), \beta_{i}(x)\right)$. Then $\chi_{i}^{x}(s)=1$. So $\chi_{i}^{x}(s) f(r-s, r x)=f(r-s, r x)$ for all $s \in \mathbb{R}$. Then

$$
\begin{aligned}
\lambda_{i, F}^{x}(f * g)(\xi)(r) & =\int_{\alpha_{i}(x)}^{\beta_{i}(x)} \chi_{i}^{x}(s)^{2} f(r-s, r x) \chi_{i}^{x}(r)\left(\int_{\alpha_{i}(x)}^{\beta_{i}(x)} \chi_{i}^{x}(t) \xi(t) g(s-t, s x) d t\right) d s \\
& =\int_{\alpha_{i}(x)}^{\beta_{i}(x)} \chi_{i}^{x}(s) f(r-s, r x) \chi_{i}^{x}(r)\left(\int_{\alpha_{i}(x)}^{\beta_{i}(x)} \chi_{i}^{x}(s) \chi_{i}^{x}(t) \xi(t) g(s-t, s x) d t\right) d s \\
& =\int_{\alpha_{i}(x)}^{\beta_{i}(x)} \chi_{i}^{x}(s) f(r-s, r x) \chi_{i}^{x}(r) \lambda_{i, F}^{x}(g)(\xi)(s) d s \\
& =\lambda_{i, F}^{x}(f)\left[\lambda_{i, F}^{x}(g)(\xi)\right](r) .
\end{aligned}
$$

If $r \notin\left(\alpha_{i}(x), \beta_{i}(x)\right)$, then $\lambda_{i, F}^{x}(f * g)(\xi)(r)=0=\lambda_{i, F}^{x}(f)\left[\lambda_{i, F}^{x}(g)(\xi)\right](r)$. Thus

$$
\lambda_{i, F}^{x}(f * g)(\xi)=\lambda_{i, F}^{x}(f)\left[\lambda_{i, F}^{x}(g)(\xi)\right]
$$

for all $\xi \in L^{2}(\mathbb{R})$. So $\lambda_{i, F}^{x}(f * g)=\lambda_{i, F}^{x}(f) \lambda_{i, F}^{x}(g)$. Therefore $\lambda_{i, F}$ is multiplicative.
For all $f \in C_{0}\left(G_{i, F}\right)$ and all $\xi, \eta \in L^{2}(\mathbb{R})$, we have, applying the Fubini Theorem,

$$
\begin{aligned}
\left\langle\lambda_{i, F}^{x}\left(f^{*}\right)(\xi), \eta\right\rangle & =\int_{\mathbb{R}} \lambda_{i, F}^{x}\left(f^{*}\right)(\xi)(r) \overline{\eta(r)} d r \\
& =\int_{\mathbb{R}}\left(\int_{\alpha_{i}(x)}^{\beta_{i}(x)} \chi_{i}^{x}(r) \chi_{i}^{x}(t) \xi(t) f^{*}(r-t, r x) d t\right) \overline{\eta(r)} d r \\
& =\int_{\alpha_{i}(x)}^{\beta_{i}(x)} \int_{\alpha_{i}(x)}^{\beta_{i}(x)} \chi_{i}^{x}(r) \chi_{i}^{x}(t) \xi(t) f^{*}(r-t, r x) \overline{\eta(r)} d r d t \\
& =\int_{\alpha_{i}(x)}^{\beta_{i}(x)} \int_{\alpha_{i}(x)}^{\beta_{i}(x)} \chi_{i}^{x}(r) \chi_{i}^{x}(t) \xi(t) \overline{f(t-r, t x) \eta(r)} d r d t \\
& =\int_{\alpha_{i}(x)}^{\beta_{i}(x)} \xi(t) \chi_{i}^{x}(t) \int_{\alpha_{i}(x)}^{\beta_{i}(x)} \chi_{i}^{x}(r) \chi_{i}^{x}(t) \overline{f(t-r, t x) \eta(r)} d r d t \\
& =\int_{\mathbb{R}} \xi(t)\left(\int_{\alpha_{i}(x)}^{\beta_{i}(x)} \chi_{i}^{x}(r) \chi_{i}^{x}(t) \overline{f(t-r, t x) \eta(r)} d r\right) d t \\
& =\int_{\mathbb{R}} \xi(t) \overline{\lambda_{i, F}^{x}(f)(\eta)(t)} d t \\
& =\left\langle\xi, \lambda_{i, F}(f)(\eta)\right\rangle .
\end{aligned}
$$

So $\lambda_{i, F}^{x}\left(f^{*}\right)=\lambda_{i, F}^{x}(f)^{*}$. Thus $\lambda_{i, F}^{x}$ is a ${ }^{*}$-homomorphism.
Let $f \in C_{0}\left(G_{i, F}\right)$, and let $\left\{x_{n}\right\}$ be a sequence in F that converges to $x \in F$. We now show that $\left\|\lambda_{i, F}^{x_{n}}(f)-\lambda_{i, F}^{x}(f)\right\| \rightarrow 0$. For each $n \geq 1$, let $\chi_{n}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the characteristic function of $\left(\alpha_{i}\left(x_{n}\right), \beta_{i}\left(x_{n}\right)\right) \times\left(\alpha_{i}\left(x_{n}\right), \beta_{i}\left(x_{n}\right)\right) \subseteq \mathbb{R}^{2}$, and let $\chi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the characteristic function of $\left(\alpha_{i}(x), \beta_{i}(x)\right) \times\left(\alpha_{i}(x), \beta_{i}(x)\right) \subseteq \mathbb{R}^{2}$. Because β_{i} is continuous on F and because $x_{n} \rightarrow x$, we see that the sequence $\left\{\beta_{i}\left(x_{n}\right)\right\}$ is bounded. Let $D=\sup _{n \geq 1} \beta_{i}\left(x_{n}\right)$ and let $\chi_{D}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the characteristic function of the square $(-D, D) \times(-D, D)$. Since $\alpha_{i}(y)=-\beta_{i}(y)$ for all $y \in X_{i}$, we see that $\chi_{n} \leq \chi_{D}$ for all $n \geq 1$ and $\chi \leq \chi_{D}$. For each $n \geq 1$, define $h_{n}: \mathbb{R}^{2} \rightarrow \mathbb{C}$ by $h_{n}(r, t)=f\left(r-t, r x_{n}\right)$. Also define $h: \mathbb{R}^{2} \rightarrow \mathbb{C}$ by $h(r, t)=f(r-t, r x)$.

It is clear that for all $n \geq 1$, either $\chi_{n} \geq \chi$ or $\chi \geq \chi_{n}$. Then either

$$
\int_{\mathbb{R}^{2}}\left|\chi_{n}-\chi\right|=\int_{\mathbb{R}^{2}} \chi_{n}-\int_{\mathbb{R}^{2}} \chi=\left(2 \beta_{i}\left(x_{n}\right)\right)^{2}-\left(2 \beta_{i}(x)\right)^{2},
$$

or

$$
\int_{\mathbb{R}^{2}}\left|\chi_{n}-\chi\right|=\int_{\mathbb{R}^{2}} \chi-\int_{\mathbb{R}^{2}} \chi_{n}=\left(2 \beta_{i}(x)\right)^{2}-\left(2 \beta_{i}\left(x_{n}\right)\right)^{2} .
$$

But in either case $\int_{\mathbb{R}^{2}}\left|\chi_{n}-\chi\right| \rightarrow 0$, and so

$$
\left\|\chi_{n}-\chi\right\|_{2}=\left(\int_{\mathbb{R}^{2}}\left|\chi_{n}-\chi\right|^{2}\right)^{1 / 2}=\left(\int_{\mathbb{R}^{2}}\left|\chi_{n}-\chi\right|\right)^{1 / 2} \rightarrow 0 .
$$

Therefore $\left\|\chi_{n} h-\chi h\right\|_{2} \leq\|h\|_{\infty} \cdot\left\|\chi_{n}-\chi\right\|_{2} \rightarrow 0$. Also, for every $n \geq 1$, we have $\left|\chi_{D} h_{n}-\chi_{D} h\right|^{2}=$ $\chi_{D} \cdot\left|h_{n}-h\right|^{2} \leq 4 \chi_{D}\|f\|_{\infty}^{2}$. Since $4_{\chi_{D}}\|f\|_{\infty}^{2} \in L^{1}\left(\mathbb{R}^{2}\right)$ and since h_{n} converges to h point-wise, it follows from the Lebesgue's Dominated Convergence Theorem that $\left\|\chi_{D} h_{n}-\chi_{D} h\right\|_{2} \rightarrow 0$. Then

$$
\left\|\chi_{n} h_{n}-\chi_{n} h\right\|_{2}=\left\|\chi_{n} \chi_{D} h_{n}-\chi_{n} \chi_{D} h\right\|_{2} \leq\left\|\chi_{D} h_{n}-\chi_{D} h\right\|_{2} \rightarrow 0 .
$$

Thus we have

$$
\left\|\chi_{n} h_{n}-\chi h\right\|_{2} \leq\left\|\chi_{n} h_{n}-\chi_{n} h\right\|_{2}+\left\|\chi_{n} h-\chi h\right\|_{2} \rightarrow 0 .
$$

Note that $\chi_{n}(r, t)=\chi_{i}^{x_{n}}(r) \chi_{i}^{x_{n}}(t)$ and $\chi(r, t)=\chi_{i}^{\alpha}(r) \chi_{i}^{x}(t)$. So for each $\xi \in L^{2}(\mathbb{R})$, we have

$$
\begin{aligned}
\|\left(\lambda_{i, F}^{x_{n}}(f)-\right. & \left.\lambda_{i, F}^{x}(f)\right)(\xi) \|^{2} \\
= & \int_{\mathbb{R}}\left|\left(\lambda_{i, F}^{x_{n}}(f)-\lambda_{i, F}^{x}(f)\right)(\xi)(r)\right|^{2} d r \\
= & \int_{\mathbb{R}}\left|\lambda_{i, F}^{x_{n}}(f)(\xi)(r)-\lambda_{i, F}^{x}(f)(\xi)(r)\right|^{2} d r \\
= & \int_{\mathbb{R}} \mid \int_{\alpha_{i}\left(x_{n}\right)}^{\beta_{i}\left(x_{n}\right)} \chi_{i}^{x_{n}}(r) \chi_{i}^{x_{n}}(t) \xi(t) f\left(r-t, r x_{n}\right) d t \\
& \quad-\left.\int_{\alpha_{i}(x)}^{\beta_{i}(x)} \chi_{i}^{x}(r) \chi_{i}^{x}(t) \xi(t) f(r-t, r x) d t\right|^{2} d r \\
= & \int_{\mathbb{R}}\left|\int_{\mathbb{R}} \chi_{n}(r, t) \xi(t) h_{n}(r, t) d t-\int_{\mathbb{R}} \chi(r, t) \xi(t) h(r, t) d t\right|^{2} d r \\
= & \int_{\mathbb{R}}\left|\int_{\mathbb{R}}\left[\chi_{n}(r, t) \xi(t) h_{n}(r, t)-\chi(r, t) \xi(t) h(r, t)\right] d t\right|^{2} d r \\
= & \int_{\mathbb{R}}\left|\int_{\mathbb{R}} \xi(t)\left[\chi_{n}(r, t) h_{n}(r, t)-\chi(r, t) h(r, t)\right] d t\right|^{2} d r \\
\leq & \int_{\mathbb{R}}\left[\int_{\mathbb{R}}|\xi(t)| \cdot\left|\chi_{n}(r, t) h_{n}(r, t)-\chi(r, t) h(r, t)\right| d t\right]^{2} d r \\
\leq & \int_{\mathbb{R}}\left[\left(\int_{\mathbb{R}}|\xi(t)|^{2} d t\right)^{1 / 2} \cdot\left(\int_{\mathbb{R}}\left|\chi_{n}(r, t) h_{n}(r, t)-\chi(r, t) h(r, t)\right|^{2} d t\right)^{1 / 2}\right]^{2} d r \\
\leq & \int_{\mathbb{R}}\left[\int_{\mathbb{R}}|\xi(t)|^{2} d t\right] \cdot\left[\int_{\mathbb{R}}\left|\chi_{n}(r, t) h_{n}(r, t)-\chi(r, t) h(r, t)\right|^{2} d t\right] d r \\
\leq & \|\xi\|^{2} \cdot \int_{\mathbb{R}} \int_{\mathbb{R}}\left|\chi_{n}(r, t) h_{n}(r, t)-\chi(r, t) h(r, t)\right|^{2} d t d r \\
= & \|\xi\|^{2} \cdot\left\|\chi_{n} h_{n}-\chi h\right\|_{2}^{2} .
\end{aligned}
$$

Thus, $\left\|\lambda_{i, F}^{x_{n}}(f)-\lambda_{i, F}^{x}(f)\right\| \leq\left\|\chi_{n} h_{n}-\chi h\right\|_{2} \rightarrow 0$.
Next we show that for all $x \in F$, if $\xi \in L^{2}(\mathbb{R})$ is continuous on $\left(\alpha_{i}(x), \beta_{i}(x)\right)$ and bounded, then $\lambda_{i, F}^{x}(f)(\xi)$ is continuous on $\left(\alpha_{i}(x), \beta_{i}(x)\right)$. Let $x \in F$, and let $\xi \in L^{2}(\mathbb{R})$ be continuous on $\left(\alpha_{i}(x), \beta_{i}(x)\right)$ and bounded. Suppose that $r_{n} \rightarrow r$ in $\left(\alpha_{i}(x), \beta_{i}(x)\right)$. Then $h_{n}(t)=\chi_{i}^{x}(t) \chi_{i}^{x}\left(r_{n}\right) \xi(t) f\left(r_{n}-t, r_{n} x\right)$ converges to

$$
h(t)=\chi_{i}^{x}(t) \chi_{i}^{x}(r) \xi(t) f(r-t, r x)
$$

pointwise on $\left(\alpha_{i}(x), \beta_{i}(x)\right)$. Therefore, since $\left|h_{n}\right| \leq \chi_{i}^{x}\|\xi\|_{\infty}\|f\|_{\infty} \in L^{1}\left(\left(\alpha_{i}(x), \beta_{i}(x)\right)\right.$, by the

Lebesgue Dominated Convergence Theorem, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \lambda_{i, F}^{x}(f)(\xi)\left(r_{n}\right) & =\lim _{n \rightarrow \infty} \int_{\mathbb{R}} \chi_{i}^{x}(t) \chi_{i}^{x}\left(r_{n}\right) \xi(t) f\left(r_{n}-t, r_{n} x\right) d t \\
& =\int_{\mathbb{R}} \chi_{i}^{x}(t) \chi_{i}^{x}(r) \xi(t) f(r-t, r x) d t=\lambda_{i, F}^{x}(f)(\xi)(r)
\end{aligned}
$$

Thus $\lambda_{i, F}^{x}(f)(\xi)$ is continuous on ($\left.\alpha_{i}(x), \beta_{i}(x)\right)$.
Now, let $f \in C_{0}\left(G_{i, F}\right)$, and let $x \in F$. Suppose that $\lambda_{i, F}^{x}(f)=0$. Let $r \in\left(\alpha_{i}(x), \beta_{i}(x)\right)$. Define $\xi: \mathbb{R} \rightarrow \mathbb{C}$ by $\xi(t)=f(r-t, r x)$ for $t \in\left(\alpha_{i}(x), \beta_{i}(x)\right)$, and zero otherwise. Then ξ is continuous on $\left(\alpha_{i}(x), \beta_{i}(x)\right)$, and ξ is bounded. Therefore $\lambda_{i, F}^{x}(f)(\xi)$ is continuous. Since $\lambda_{i, F}^{x}(f)(\xi)=0$, we have

$$
0=\lambda_{i, F}^{x}(f)(\xi)(r)=\int_{\mathbb{R}} \chi_{i}^{x}(t) \chi_{i}^{x}(r)|f(r-t, r x)|^{2} d t=\int_{\alpha_{i}(x)}^{\beta_{i}(x)}|f(r-t, r x)|^{2} d t .
$$

But $t \mapsto|f(r-t, r x)|^{2}$ is continuous on $\left(\alpha_{i}(x), \beta_{i}(x)\right)$, so $f(r-t, r x)=0$ for all $t \in\left(\alpha_{i}(x), \beta_{i}(x)\right)$. This holds for all $r \in\left(\alpha_{i}(x), \beta_{i}(x)\right)$, so $f(r-t, r x)=0$ for all $r, t \in\left(\alpha_{i}(x), \beta_{i}(x)\right)$. That is $\left.f\right|_{H_{x}}=0$. It is clear that if $\left.f\right|_{H_{x}}=0$, then $\lambda_{i, F}^{x}(f)=0$.

The following proposition is an immediate consequence of Lemma III.5.5.

Proposition III.5.6. For each $i \in\{1, \ldots, N\}$ and each nonempty closed subset $F \subseteq X$, define $\phi_{i, F}: C_{0}\left(G_{i, F}\right) \rightarrow C\left(F, K\left(L^{2}(\mathbb{R})\right)\right)$ by

$$
\phi_{i, F}(f)(x)=\lambda_{i, F}^{x}(f) .
$$

If $F=\varnothing$, put $\phi_{i, F}=0$. Then $\phi_{i, F}$ is a ${ }^{*}$-homomorphism such that $\left\|\phi_{i, F}(f)\right\|=\sup _{x \in F}\left\|\lambda_{i, F}^{x}(f)\right\|$ for all $f \in C_{0}\left(G_{i, f}\right)$.

III.6. Stable Recursive Subhomogeneous Decomposition of A_{Z}

Notation III.6.1. We fix the following notations for the rest of the chapter. Now for each $i \in\{1, \ldots, N\}$, and each closed $F \subseteq X_{i}$ define a C^{*} - norm $\|\cdot\|_{i, F}$ on $C_{0}\left(G_{i, F}\right)$ by $\|f\|_{i, F}=$ $\sup _{x \in F}\left\|\lambda_{i, F}^{x}(f)\right\|$. Note that Lemma III.5.5 ensures that $\|\cdot\|_{i, F}$ is a C^{*}-norm. Let $\|\cdot\|_{i}=\|\cdot\|_{i, X_{i}}$, for each $i \in\{1, \ldots, N\}$; and let $\|\cdot\|^{(k)}=\|\cdot\|_{k+1, F^{(k)}}$ for each $k \in\{1, \ldots, N-1\}$. (If $F^{(k)}=\varnothing$, let $\|\cdot\|^{(k)}$ be the obvious norm on $C_{0}\left(G^{(k)}\right)$.) For each $i \in\{1, \ldots, N\}$ and each closed $F \subseteq X_{i}$, let
$A_{i, F}$ be the completion of $C_{0}\left(G_{i, F}\right)$ with respect to $\|\cdot\|_{i, F}$. For each $i \in\{1, \ldots, N\}$ let A_{i} denote $A_{i, X_{i}}$, and for each $k \in\{1, \ldots, N-1\}$ let $A^{(k)}$ denote $A_{k+1, F^{(k)}}$. For each $i \in\{1, \ldots, N\}$ and each nonempty closed subset $F \subseteq X_{i}$, let $\phi_{i, F}$ denote the map in Proposition III.5.6. It is then clear that $\phi_{i, F}$ is isometric and extends to an injective *-homomorphism from $A_{i, F}$ into $C\left(F, \mathbb{K}\left(L^{2}(\mathbb{R})\right)\right)$, and we will also use $\phi_{i, F}$ to denote the extension. Let ϕ_{i} denote $\phi_{i, X_{i}}$ for $i \in\{1, \ldots, N\}$, and let $\phi^{(k)}$ denote $\phi_{k+1, F^{(k)}}$. For each $i \in\{1, \ldots, N\}$ and each nonempty closed subset $F \subseteq X$, let

$$
K_{i, F}=\left\{f \in C\left(F, K\left(L^{2}(\mathbb{R})\right)\right): p_{i}^{x} f(x) p_{i}^{x}=f(x) \text { for all } x \in F\right\} .
$$

If $F=\varnothing$, then let $K_{i, F}=0$. Let K_{i} denote $K_{i, X_{i}}$ and let $K^{(k)}$ denote $K_{k+1, F^{(k)}}$.
The C^{*}-algebras A_{i} will be the components of a SRSH decomposition of A_{Z}. We proceed to obtain a SRSH decomposition of A_{Z} as follows: We first identify A_{i} with $C\left(X_{i}, \mathbb{K}\right)$ for each $i \in$ $\{1, \ldots, N\}$. Note that Proposition III.5.6 already shows that $C_{0}\left(G_{i}\right)$ is isometrically ${ }^{*}$-isomorphic to a *-subalgebra of $C\left(X_{i}, \mathbb{K}\right)$. Thus we only need to identify the range of the map, and show that the norm closure of the range is isomorphic to $C\left(X_{i}, \mathbb{K}\right)$. Then we glue the ${ }^{*}$-algebras $C_{0}\left(G_{i}\right)$ to obtain $C_{0}\left(G_{Z}\right)$. After the gluing, we extend the gluing to the A_{i} to obtain a decomposition of A_{Z}. Finally, we use the identifications between the algebras A_{i} and the algebras $C\left(X_{i}, \mathbb{K}\right)$ to obtain a SRSH decomposition of A_{Z}.

The next lemma is a standard result in operator algebra.
Lemma III.6.2. Let H be a Hilbert space, let $\left\{a_{n}\right\}$ be a sequence in $B(H)$ that converges to some $a \in B(H)$ in strong operator topology, and let $\left\{b_{n}\right\}$ be a sequence in $K(H)$ that converges to some $b \in K(H)$ in the norm topology. Then $a_{n} b_{n} a_{n}^{*} \rightarrow a b a^{*}$ in the norm topology.

Lemma III.6.3. For each $i \in\{1, \ldots N\}$, and for each nonempty closed subset $F \subseteq X$, let $K_{i, F}$ be as in III.6.1. Then we have:

1. $K_{i, F}$ is a C^{*}-subalgebra of $C\left(F, K\left(L^{2}(\mathbb{R})\right)\right)$.
2. $\phi_{i, F}\left(C_{0}\left(G_{i, F}\right)\right) \subseteq K_{i, F}$.
3. $\overline{\phi_{i, F}\left(C_{0}\left(G_{i, F}\right)\right)}=K_{i, F}$.
4. For each $i \in\{1, \ldots, N\}$, and for each $x \in X_{i}$, define $u_{i, x}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ by $u_{i, x}(\xi)(r)=$ $\frac{\xi\left(r / \beta_{i}(x)\right)}{\left(\beta_{i}(x)\right)^{1 / 2}}$. Then for each $i \in\{1, \ldots, N\}$, and each $x \in X_{i}, u_{i, x}$ is a unitary, with $u_{i, x}^{*}$ given
by $u_{i, x}^{*}(\xi)(r)=\left(\beta_{i}(x)\right)^{1 / 2} \xi\left(\beta_{i}(x) r\right)$. Further, for each $i=1, \ldots, N$, if $\left\{x_{n}\right\}$ is a sequence in X_{i} that converges to some $x \in X_{i}$, then $\left\{u_{i, x_{n}}\right\}$ and $\left\{u_{i, x_{n}}^{*}\right\}$ converge to $u_{i, x}$ and $u_{i, x}^{*}$, respectively, in the strong operator topology.
5. Let $I=(-1,1)$, let $p_{I} \in B\left(L^{2}(\mathbb{R})\right)$ be the projection given by $p_{I}(\xi)=\chi_{I} \xi$, and let

$$
\Omega: p_{I} K\left(L^{2}(\mathbb{R})\right) p_{I} \rightarrow K\left(L^{2}(I)\right)
$$

be the canonical ${ }^{*}$-isomorphism. For each $i \in\{1, \ldots, N\}$, and each closed subset $F \subseteq X_{i}$, define $\Phi_{i, F}: K_{i, F} \rightarrow C\left(F, K\left(L^{2}(I)\right)\right)$ by $\Phi_{i, F}(f)(x)=\Omega\left(u_{i, x}^{*} f(x) u_{i, x}\right)$. Then $\Phi_{i, F}$ is a well defined ${ }^{*}$-isomorphism for all $i \in\{1, \ldots, N\}$, and all closed $F \subseteq X_{i}$. (If $F=\varnothing$, take $C\left(F, K\left(L^{2}(I)\right)\right)=0$, and $\Phi_{i, F}=0$.)

Proof: Part 1 and part 2 are clear.
Now we show that for each $x \in F$, the set $S_{x}=\left\{\phi_{i, F}(f)(x): f \in C_{0}\left(G_{i, F}\right)\right\}$ is dense in $T_{x}=$ $\left\{a \in K\left(L^{2}(\mathbb{R})\right): p_{i}^{x} a p_{i}^{x}=a\right\}$. Let $I_{i}^{x}=\left(\alpha_{i}(x), \beta_{i}(x)\right)$. Note that $T_{x}=p_{i}^{x} K\left(L^{2}(\mathbb{R})\right) p_{i}^{x}=K\left(L^{2}\left(I_{i}^{x}\right)\right)$ is C^{*}-subalgebra of $K\left(L^{2}(\mathbb{R})\right)$. Let $\xi, \eta \in C_{c}\left(\left(\alpha_{i}(x), \beta_{i}(x)\right)\right.$ Let $E=\left\{(r, t x) \in \mathbb{R} \times X: t, r-t \in I_{i}^{x}\right\}$. Then $E \subseteq G_{i, F}$. It follows from Lemma III.3.2 that the map $h: I_{i}^{x} \times I_{i}^{x} \rightarrow E$ defined by $h(r, t)=$ $(t-r, t x)$ is a homeomorphism. (The inverse is given by $(r, t x) \mapsto(t-r, t)$.) Let $f^{\prime \prime}: I \times I \rightarrow \mathbb{C}$ be defined by $f^{\prime \prime}(r, t)=\xi(t) \overline{\eta(r)}$. Then $f^{\prime \prime} \in C_{0}(I \times I)$. Let $f^{\prime}: E \rightarrow \mathbb{C}$ be defined by $f^{\prime}=f^{\prime \prime} \circ h^{-1}$. Then $f^{\prime} \in C_{0}(E)$, and $f^{\prime}(r, t x)=f^{\prime \prime}(t-r, t x)=\xi(t) \overline{\eta(t-r)}$. Now E is closed in $G_{i, F}$, so there exists $f \in C_{0}\left(G_{i, F}\right)$ such that $\left.f\right|_{E}=f^{\prime}$. Then for all $r \in \mathbb{R}$ and all $\zeta \in L^{2}\left(I_{i}^{x}\right)$ we have

$$
\begin{aligned}
\phi_{i, F}(f)(x)(\zeta)(r) & =\lambda_{i, F}^{x}(f)(\zeta)(r) \\
& =\int_{\mathbb{R}} \chi_{i}^{x}(r) \chi_{i}^{x}(t) \zeta(t) f(r-t, r x) d t \\
& =\int_{\mathbb{R}} \chi_{i}^{x}(r) \chi_{i}^{x}(t) \zeta(t) \xi(r) \overline{\eta(t)} d t \\
& =\int_{\mathbb{R}} \zeta(t) \xi(r) \overline{\eta(t)} d t \\
& =\langle\zeta, \eta\rangle \xi(r)
\end{aligned}
$$

For any Hilbert space H and any $\xi^{\prime}, \eta^{\prime} \in H$, we use the notation $\xi^{\prime} \otimes \eta^{\prime}$ to denote the rank one operator defined by $\zeta \mapsto\left\langle\zeta, \eta^{\prime}\right\rangle \xi^{\prime}$. Then $\phi_{i, F}(f)(x)=\xi \otimes \eta$, and $\xi \otimes \eta \in S_{x}$. Since $C_{c}\left(I_{i}^{x}\right)$ is dense
in $L^{2}\left(I_{i}^{x}\right)=p_{i}^{x}\left(L^{2}(\mathbb{R})\right)$, we see that $\xi \otimes \eta \in \overline{S_{x}}$ for all $\xi, \eta \in p_{i}^{x}\left(L^{2}(\mathbb{R})\right)$. Since

$$
\left\{p_{i}^{x}(\xi) \otimes p_{i}^{x}(\eta): \xi, \eta \in L^{2}(\mathbb{R})\right\}
$$

spans a dense subset of T_{x}, we see that S_{x} is dense in T_{x}.
Now we show that for all $f \in K_{i, F}$, for all $x \in F$, and for all $\epsilon>0$, there exists an open subset $U \subseteq F$ containing x and $g \in C_{0}\left(G_{i, F}\right)$ such that for all $y \in U$, we have $\left\|\phi_{i, F}(g)(y)-f(y)\right\|<$ ϵ. Let $f \in K_{i, F}, x \in F$ and $\epsilon>0$ be given. Then, by the paragraph above, there exists $g \in C_{0}\left(G_{i, F}\right)$ such that $\left\|\phi_{i, F}(g)(x)-f(x)\right\|<\epsilon / 2$. Now the map $y \mapsto\left\|\phi_{i, F}(g)(y)-f(y)\right\|$ is continuous, so $U=\left\{y \in F:\left\|\phi_{i, F}(g)(y)-f(y)\right\|<\epsilon\right\}$ is an open set containing x. It is clear that for all $y \in U$, we have $\left\|\phi_{i, F}(g)(y)-f(y)\right\|<\epsilon$.

Now we show that if $f \in C_{0}\left(G_{i, F}\right)$ and $h \in C(F)$, then $h \phi_{i, F}(f) \in \operatorname{Im} \phi_{i, F}$. Define $\widetilde{h}: \overline{G_{i, F}} \rightarrow \mathbb{C}$ by $\widetilde{h}(r, x)=h\left(\pi_{i}(x)\right)$. Then $\widetilde{h} \in C\left(\overline{G_{i, F}}\right)$, and $\widetilde{h} f \in C_{0}\left(G_{i, F}\right)$. So for all $x \in F$, all $\xi \in L^{2}(\mathbb{R})$, and all $r \in \mathbb{R}$, we have

$$
\begin{aligned}
\phi_{i, F}(\widetilde{h} f)(x)(\xi)(r) & =\lambda_{i, F}^{x}(\widetilde{h} f)(\xi)(r) \\
& =\int_{\mathbb{R}} \chi_{i}^{x}(r) \chi_{i}^{x}(t) \xi(t) \widetilde{h}(r-t, r x) f(r-t, r x) d t \\
& =\int_{\mathbb{R}} \chi_{i}^{x}(r) \chi_{i}^{x}(t) \xi(t) h(x) f(r-t, r x) d t \\
& =h(x) \int_{\mathbb{R}} \chi_{i}^{x}(r) \chi_{i}^{x}(t) \xi(t) f(r-t, r x) d t \\
& =\left(h(x) \lambda_{i, F}^{x}(f)\right)(\xi)(r) \\
& =\left(h(x) \phi_{i, F}(f)(x)\right)(\xi)(r) .
\end{aligned}
$$

Thus $h \phi_{i, F}(f)=\phi_{i, F}(\widetilde{h} f) \in \operatorname{Im} \phi_{i, F}$.
Now we finish the proof of part 3 . Let $g \in K_{i, F}$, and let $\epsilon>0$. For each $x \in F$, let $V_{x} \subseteq F$ be an open subset containing x, and let $f_{x} \in C_{0}\left(G_{i, F}\right)$ be such that for all $y \in V_{x}$ we have $\left\|\phi_{i, F}\left(f_{x}\right)(y)-g(y)\right\|<\epsilon$. The existence of V_{x} and f_{x} are shown above. Then $\left\{V_{x}: x \in F\right\}$ is an open cover of F, which is compact; so there exist y_{1}, \ldots, y_{m} such that $F=\bigcup_{j=1}^{m} V_{y_{j}}$. Let $\left\{h_{j}: 1 \leq j \leq m\right\}$ be a partition of unity subordinate to $\left\{V_{j}: 1 \leq j \leq m\right\}$. By what is shown above, we have $h_{j} \phi_{i, F}\left(f_{y_{j}}\right) \in \operatorname{Im} \phi_{i, F}$ for each $j \in\{1, \ldots, m\}$. Then $f=\sum_{j=1}^{m} h_{j} \phi_{i, F}\left(f_{y_{j}}\right) \in \operatorname{Im} \phi_{i, F}$. Now let $x \in F$, and let $1 \leq j \leq m$. If $x \notin V_{y_{j}}$, then $h_{j}(x)=0$ and $h_{j}(x)\left\|\phi_{i, F}\left(f_{y_{j}}\right)(x)-g(x)\right\|=0$;
and if $x \in V_{y_{j}}$, then $h_{j}(x)\left\|\phi_{i, F}\left(f_{y_{j}}\right)(x)-g(x)\right\| \leq \epsilon h_{j}(x)$ Thus, for all $x \in F$, we have

$$
\begin{aligned}
\| f(x)- & g(x)\|=\| \sum_{j=1}^{m} h_{j}(x) \phi_{i, F}\left(f_{y_{j}}\right)(x)-g(x) \| \\
& =\left\|\sum_{j=1}^{m} h_{j}(x) \phi_{i, F}\left(f_{y_{j}}\right)(x)-\sum_{j=1}^{m} h_{j}(x) g(x)\right\| \\
& \leq \sum_{j=1}^{m} h_{j}(x)\left\|\phi_{i, F}\left(f_{y_{j}}\right)(x)-g(x)\right\| \\
& <\sum_{j=1}^{m} h_{j}(x) \epsilon=\epsilon .
\end{aligned}
$$

Part 3 proven.

Now we show part 4. It is clear that for each $i \in\{1, \ldots, N\}$ and each $x \in X_{i}, u_{i, x}$ is a unitary, and that $u_{i, x}^{*}$ is given by the formula in the statement. Fix $i \in\{1, \ldots, N\}$. Now we show that if $x_{n} \rightarrow x$ in X_{i}, then $u_{i, x_{n}} \rightarrow u_{i, x}$ in strong operator topology, and $u_{i, x_{n}}^{*} \rightarrow u_{i, x}$ in strong operator topology.

Let $x_{n} \rightarrow x$ in X_{i}, and let $\xi \in C_{c}(\mathbb{R})$. Since $\beta_{i}\left(x_{n}\right) \rightarrow \beta_{i}(x)$, we have

$$
\left|\frac{\xi\left(r / \beta_{i}\left(x_{n}\right)\right)}{\beta_{i}\left(x_{n}\right)^{1 / 2}}-\frac{\xi\left(r / \beta_{i}(x)\right)}{\beta_{i}(x)^{1 / 2}}\right|^{2} \rightarrow 0
$$

for every $r \in \mathbb{R}$. Suppose that $\operatorname{supp} \xi \subseteq[-b, b]$. Since β_{i} is continuous and strictly positive on the compact set X_{i}, it is bounded above by some real number M and below by some real number $L>0$. Then

$$
\left|\frac{\xi\left(r / \beta_{i}\left(x_{n}\right)\right)}{\beta_{i}\left(x_{n}\right)^{1 / 2}}-\frac{\xi\left(r / \beta_{i}(x)\right)}{\beta_{i}(x)^{1 / 2}}\right|^{2} \leq \frac{4 \cdot \chi_{[-M b, M b]}(r) \cdot\|\xi\|_{\infty}^{2}}{L},
$$

for all $r \in \mathbb{R}$. Since $\left(4 \cdot \chi_{[-M b, M b]} \cdot\|\xi\|_{\infty}^{2}\right) L^{-1} \in L^{1}(\mathbb{R})$, by the Lebesgue Dominated Convergence Theorem, we have

$$
\int_{\mathbb{R}}\left|\frac{\xi\left(r / \beta_{i}\left(x_{n}\right)\right)}{\beta_{i}\left(x_{n}\right)^{1 / 2}}-\frac{\xi\left(r / \beta_{i}(x)\right)}{\beta_{i}(x)^{1 / 2}}\right|^{2} d r \rightarrow 0 .
$$

That is, $\left\|u_{i, x_{n}}(\xi)-u_{i, x}(\xi)\right\| \rightarrow 0$. Thus $\left\|u_{i, x_{n}}(\xi)-u_{i, x}(\xi)\right\| \rightarrow 0$ for all $\xi \in C_{c}(\mathbb{R})$.

Now let $\xi \in L^{2}(\mathbb{R})$, and let $\epsilon>0$. Choose $\eta \in C_{c}(\mathbb{R})$ such that $\|\eta-\xi\|<\epsilon / 3$. Let $N \geq 1$ be an integer such that $n \geq N$ implies that $\left\|u_{i, x_{n}}(\eta)-u_{i, x}(\eta)\right\|<\epsilon / 3$. Then for all $n \geq N$, we have

$$
\begin{aligned}
\| u_{i, x_{n}}(\xi) & -u_{i, x}(\xi) \| \\
& \leq\left\|u_{i, x_{n}}(\xi)-u_{i, x_{n}}(\eta)\right\|+\left\|u_{i, x_{n}}(\eta)-u_{i, x}(\eta)\right\|+\left\|u_{i, x}(\eta)-u_{i, x}(\xi)\right\| \\
& <\|\xi-\eta\|+\epsilon / 3+\|\xi-\eta\|=\epsilon .
\end{aligned}
$$

Thus $u_{i, x_{n}} \rightarrow u_{i, x}$ in the strong operator topology. Since the strong and ${ }^{*}$-strong operator topologies agree on the set of all unitaries in $B\left(L^{2}(\mathbb{R})\right)$, we have $u_{i, x_{n}}^{*} \rightarrow u_{i, x}^{*}$ in the strong operator topology as well. This proves Part 4.

Now we show part 5. Fix $i \in\{1, \ldots, N\}$ and fix a nonempty closed subset $F \subseteq X_{i}$. Note that for all $x \in F$, we have $u_{x}^{*} p_{i}^{x} u_{x}=p_{I}$. Now define $\psi: C\left(F, K\left(L^{2}(\mathbb{R})\right)\right) \rightarrow C\left(F, K\left(L^{2}(\mathbb{R})\right)\right)$ by $\psi(f)(x)=u_{x}^{*} f(x) u_{x}$. Continuity of $\psi(f)$ follows from the previous three paragraphs and Lemma III.6.2. It is clear that ψ is a ${ }^{*}$-isomorphism. We claim that $\psi\left(K_{i, F}\right)=C\left(F, p_{I} K\left(L^{2}(\mathbb{R})\right) p_{I}\right)$. Let $f \in K_{i, F}$. Then

$$
\psi(f)(x)=u_{x}^{*} f(x) u_{x}=u_{x}^{*} p_{i}^{x} f(x) p_{i}^{x} u_{x}=p u_{x}^{*} f(x) u_{x} p \in p_{I} K\left(L^{2}(\mathbb{R})\right) p_{I}
$$

for all $x \in F$. Thus $\psi\left(K_{i}, F\right) \subseteq C\left(F, p_{I} K\left(L^{2}(\mathbb{R})\right) p_{I}\right)$. Now let $f \in C\left(F, p_{I} K\left(L^{2}(\mathbb{R})\right) p_{I}\right)$. Then for all $x \in F$, we have $f(x)=p f(x) p=u_{x}^{*} p_{i}^{x} u_{x} f(x) u_{x}^{*} p_{i}^{x} u_{x}$. Define $g: F \rightarrow K\left(L^{2}(\mathbb{R})\right)$ by $g(x)=$ $p_{i}^{x} u_{x} f(x) u_{x}^{*} p_{i}^{x}$. Then $g \in K_{i, F}$ (continuity follows from the fact that if $x_{n} \rightarrow x$ in F, then $p_{i}^{x_{n}} \rightarrow p_{i}^{x}$ in the strong operator topology), and $\psi(g)=f$. Thus $\psi\left(K_{i, F}\right)=C\left(F, p_{I} K\left(L^{2}(\mathbb{R})\right) p_{I}\right)$.

Since for all $f \in K_{i, F}$ and all $x \in F$, we have $\Phi_{i, F}(f)(x)=\Omega([\psi(f)](x))$, it is clear that $\Phi_{i, F}$ is a well defined ${ }^{*}$-homomorphism. It is also clear that $\Phi_{i, F}$ is invertible.

Notation III.6.4. For the rest of the chapter, let $\Phi_{i, F}$ be the ${ }^{\text {-isomorphism from Lemma III.6.3. }}$ Use Φ_{i} to denote $\Phi_{i, X_{i}}$ for each $i \in\{1, \ldots, N\}$, and use $\Phi^{(k)}$ to denote $\Phi_{k+1, F^{(k)}}$ for all k with $1 \leq k \leq N-1$.

Lemma III.6.5. For each $k \in\{1, \ldots, N-1\}$, if $G^{(k)} \neq \varnothing$, define $R_{k}: C_{0}\left(G_{k+1}\right) \rightarrow C_{0}\left(G^{(k)}\right)$ by $R_{k}(f)=\left.f\right|_{G^{(k)}}$; if $G^{(k)}=\varnothing$, let $R_{k}: C_{0}\left(G_{k+1}\right) \rightarrow C_{0}\left(G^{(k)}\right)$ be the zero map. Then for each $k \in\{1, \ldots, N-1\}$, the map R_{k} is a norm decreasing surjective ${ }^{*}$-homomorphism.

Proof: Fix $k \in\{1, \ldots, N-1\}$. Since $G^{(k)}$ is closed in G_{k+1}, the map R_{k} is a well defined surjective linear map.

Let $f, g \in C_{0}\left(G_{k+1}\right)$. Note that if $(r, x) \in G^{(k)}$, then $(t, x),(r-t,(-t) x),(-r,(-r) x) \in G^{(k)}$ for all $t \in\left(-\beta_{i}(x),-\alpha_{i}(x)\right)$. Then for all $(r, x) \in G^{(k)}$, we have

$$
\begin{aligned}
& R_{k}(f * g)(r, x)=(f * g)(r, x)=\int_{-\beta_{i}(x)}^{-\alpha_{i}(x)} f(t, x) g(r-t,(-t) x) d t \\
& \quad=\int_{-\beta_{i}(x)}^{-\alpha_{i}(x)} R_{k}(f)(t, x) R_{k}(g)(r-t,(-t) x) d t \\
& \quad=\left(R_{k}(f) * R_{k}(g)\right)(r, x) ;
\end{aligned}
$$

and

$$
R_{k}\left(f^{*}\right)(r, x)=f^{*}(r, x)=\overline{f(-r,(-r) x)}=\overline{R_{k}(f)(-r,(-r) x)}=R_{k}(f)^{*}(r, x) .
$$

Thus R_{k} is a *-homomorphism.
Let $f \in C_{0}\left(G_{k+1}\right)$. Then for each $x \in F^{(k)}$, we have $\lambda^{(k), x}\left(R_{k}(f)\right)=\lambda_{k+1}^{x}(f)$. Thus

$$
\begin{aligned}
\left\|R_{k}(x)\right\|^{(k)} & =\sup _{x \in F^{(k)}}\left\|\lambda^{(k), x}\left(R_{k}(f)\right)\right\| \\
& =\sup _{x \in F^{(k)}}\left\|\lambda_{k+1}(f)\right\| \\
& \leq \sup _{x \in X_{i}}\left\|\lambda_{k+1}(f)\right\|=\|f\|_{k+1} .
\end{aligned}
$$

So R_{k} is norm-decreasing.
Lemma III.6.6. Let $k \in\{1, \ldots, N-1\}$. For each $\epsilon>0$, and for each $f \in C_{0}\left(G^{(k)}\right)$ with $\|f\|^{(k)}<\epsilon$, there exists $g \in C_{0}\left(G_{k+1}\right)$ such that $\|g\|_{k+1} \leq \epsilon$ and $R_{k}(g)=f$, where R_{k} is the map defined in Lemma III.6.6.

Proof: Fix $k \in\{1, \ldots, N-1\}$. First note that for all $f \in C_{0}\left(G_{k+1}\right)$ we have $\phi^{(k)}\left(R_{k}(f)\right)=$ $\left.\phi_{k+1}(f)\right|_{F^{(k)}}$.

Let $\epsilon>0$, and let $f \in C_{0}\left(G^{(k)}\right)$. Extend f to $f^{\prime} \in C_{0}\left(G_{k+1}\right)$. Let

$$
U=\left\{x \in X_{i}:\left\|\phi_{k+1}\left(f^{\prime}\right)(x)\right\|<\epsilon\right\} .
$$

Then U is an open set in X_{i}. If $x \in F^{(k)}$, then

$$
\left\|\phi_{k+1}\left(f^{\prime}\right)(x)\right\|=\left\|\phi^{(k)}\left(R_{k}\left(f^{\prime}\right)\right)(x)\right\|=\left\|\phi^{(k)}(f)(x)\right\| \leq\left\|\phi^{(k)}(f)\right\|=\|f\|^{(k)}<\epsilon
$$

Thus $F^{(k)} \subseteq U$.
Let $h \in C_{c}\left(X_{i}\right)$ satisfy $0 \leq h \leq 1$, supp $h \subseteq U$, and $\left.h\right|_{F^{(k)}}=1$. Define $h^{\prime} \in C\left(\overline{G_{k+1}}\right)$ by $h^{\prime}(r, y)=h\left(\pi_{k+1}(y)\right)$. Then $g=h^{\prime} f^{\prime} \in C_{0}\left(G_{k+1}\right)$. Note that $\phi_{k+1}(g)=h \phi_{k+1}\left(f^{\prime}\right)$. Now, if $x \in X_{i} \backslash U$, then $\phi_{k+1}(g)(x)=h(x) \phi_{k+1}\left(f^{\prime}\right)(x)=0$; if $x \in U$, then

$$
\left\|\phi_{k+1}(g)(x)\right\|=\left\|h(x) \phi_{k+1}\left(f^{\prime}\right)(x)\right\|=\left\|\phi_{k+1}\left(f^{\prime}\right)(x)\right\|<\epsilon
$$

Thus $\|g\|_{k+1}=\left\|\phi_{k+1}(g)\right\| \leq \epsilon$. Also,

$$
R_{k}(g)(r, x)=h^{\prime}(r, x) f^{\prime}(r, x)=h\left(\pi_{k+1}(x)\right) f(r, x)=f(r, x)
$$

So $R_{k}(g)=f$.
Lemma III.6.7. For each $i \in\{1, \ldots, N\}$, define $Q_{i}: C_{0}\left(G_{Z}\right) \rightarrow C_{0}\left(G_{i}\right)$ by $Q_{i}(f)=\left.f\right|_{G_{i} \cap G_{Z}}$. Then Q_{i} is a norm decreasing *-homomorphism for each $i \in\{1, \ldots, N\}$.

Proof: We first show that Q_{i} is a ${ }^{*}$-homomorphism. Let $i \in\{1, \ldots, N\}$.
By Lemma III.4.6, the set $G_{i} \cap G_{Z}$ is closed in G_{Z}. Thus we see that $Q_{i}(f) \in C_{0}\left(G_{i} \cap G_{Z}\right)$ for all $f \in C_{0}\left(G_{Z}\right)$. Since $G_{i} \cap G_{Z}$ is open in G_{i}, we see that $Q_{i}(f) \in C_{0}\left(G_{i}\right)$. So Q_{i} is well defined. Linearity of Q_{i} is clear.

Let $f, g \in C_{0}\left(G_{Z}\right)$. Note that if $(r, x) \in G_{Z} \cap G_{i}$, then $(\alpha(x), \beta(x)) \subseteq\left(\alpha_{i}(x), \beta_{i}(x)\right)$, and so for all $t \in(-\beta(x),-\alpha(x))$, we have $(t, x) \in G_{Z} \cap G_{i},(r-t,(-t) x) \in G_{i} \cap G_{Z}$, and $(-r,(-r) x) \in G_{i} \cap G_{Z}$. Thus for all $(r, x) \in G_{Z} \cap G_{i}$ and all $t \in(-\beta(x),-\alpha(x))$, we have $Q_{i}(f)(t, x)=f(t, x)$ and $Q_{i}(g)(r-t,(-t) x)=g(r-t,(-t) x)$. Then for every (r, x) contained in
$G_{Z} \cap G_{i}$, we have

$$
\begin{aligned}
Q_{i}(f * g)(r, x) & =(f * g)(r, x)=\int_{\mathbb{R}} f(t, x) g(r-t,(-t) x) d t \\
& =\int_{-\beta(x)}^{-\alpha(x)} f(t, x) g(r-t,(-t) x) d t \\
& =\int_{-\beta(x)}^{-\alpha(x)} Q_{i}(f)(t, x) Q_{i}(g)(r-t,(-t) x) d t \\
& =\int_{-\beta_{i}(x)}^{-\alpha_{i}(x)} Q_{i}(f)(t, x) Q_{i}(g)(r-t,(-t) x) d t \\
& =\left(Q_{i}(f) * Q_{i}(g)\right)(r, x) .
\end{aligned}
$$

Also, for all $(r, x) \in G_{i} \cap G_{Z}$, we have

$$
Q_{i}\left(f^{*}\right)(r, x)=f^{*}(r, x)=\overline{f(-r,(-r) x)}=\overline{Q_{i}(f)(-r,(-r) x)}=Q_{i}(f)^{*}(r, x)
$$

Now we consider what happens if $(r, z) \in G_{i} \backslash\left(G_{Z} \cap G_{i}\right)$. Suppose that

$$
\left(Q_{i}(f) * Q_{i}(g)\right)(r, x) \neq 0
$$

for some $(r, x) \in G_{i}$. Then for some $t \in\left(-\beta_{i}(x),-\alpha_{i}(x)\right)$, we have $(t, x) \in G_{i} \cap G_{Z}$ and (r-t, (-t)x) $\in G_{i} \cap G_{Z}$. Thus, by the first statement in part 2 of Lemma III.4.4, we have $(r, x)=(r-t,(-t) x)(t, x) \in G_{i} \cap G_{Z}$. So if $(r, x) \in G_{i} \backslash G_{Z}$, then $\left(Q_{i}(f) * Q_{i}(g)\right)(r, x)=0$; and clearly $Q_{i}(f * g)(r, x)=0$ for all $(r, x) \in G_{i} \backslash G_{Z}$ as well. Thus for all $(r, x) \in G_{i}$, we have $Q_{i}(f * g)(r, x)=\left(Q_{i}(f) * Q_{i}(g)\right)(r, x)$. Also, if $(r, x) \notin G_{i} \cap G_{Z}$, then $(-r,(-r) x)=$ $(r, x)^{-1} \notin G_{Z} \cap G_{i}$. So $(r, x) \notin G_{i} \cap G_{Z}$ implies that $Q_{i}\left(f^{*}\right)(r, x)=0=Q_{i}(f)^{*}(r, x)$. Thus Q_{i} is a *-homomorphism.

Now we prove that Q_{i} is norm-decreasing. Let $x \in X_{i}$, let $r \in \mathbb{R}$, and let $t \in \mathbb{R}$. If $r \notin\left(\alpha_{i}(x), \beta_{i}(x)\right)$ or $t \notin\left(\alpha_{i}(x), \beta_{i}(x)\right)$, then

$$
\chi_{i}^{x}(t) \chi_{i}^{x}(r) f(r-t, r x)=0=\chi_{i}^{x}(t) \chi_{i}^{x}(r) Q_{i}(f)(r-t, r x) .
$$

If $r, t \in\left(\alpha_{i}(x), \beta_{i}(x)\right)$, then $(r-t, r t) \in G_{i}$, and then $Q_{i}(f)(r-t, r x)=f(r-t, r x)$. Thus for each
$x \in X_{i}$, each $f \in C_{0}\left(G_{Z}\right)$, each $\xi \in L^{2}(\mathbb{R})$, and each $r \in \mathbb{R}$, we have

$$
\begin{aligned}
\lambda_{i}^{x}\left(Q_{i}(f)\right)(\xi)(r) & =\int_{-\beta_{i}(x)}^{-\alpha_{i}(x)} \chi_{i}^{x}(r) \chi_{i}^{x}(t) \xi(t) Q_{i}(f)(r-t, r x) d t \\
& =\int_{-\beta_{i}(x)}^{-\alpha_{i}(x)} \chi_{i}^{x}(r) \chi_{i}^{x}(t) \xi(t) f(r-t, r x) d t \\
& =\chi_{i}^{x}(r) \int_{-\beta_{i}(x)}^{-\alpha_{i}(x)} \chi_{i}^{x}(t) \xi(t) f(r-t, r x) d t \\
& =\chi_{i}^{x}(r) \int_{-\beta_{i}(x)}^{-\alpha_{i}(x)} p_{i}^{x}(\xi)(t) f(r-t, r x) d t \\
& =\chi_{i}^{x}(r)\left(\lambda_{x}(f)\left(p_{i}^{x}(\xi)\right)\right)(r) \\
& =\left(p_{i}^{x} \lambda_{x}(f) p_{i}^{x}\right)(\xi)(r) .
\end{aligned}
$$

Then for each $x \in X_{i}$, we have $\left\|\lambda_{i}^{x}\left(Q_{i}(f)\right)\right\|=\left\|p_{i}^{x} \lambda_{x}(f) p_{i}^{x}\right\| \leq\left\|\lambda_{x}(f)\right\|$. Thus $\left\|Q_{i}(f)\right\|_{i} \leq\|f\|_{r}$. So Q_{i} is norm-decreasing.

Lemma III.6.8. Let H be a Hilbert space. For each $n \in \mathbb{Z}$, let $p_{n} \in B(H)$ be a projection. Suppose that $p_{m} p_{n}=0$ for all $m \neq n$, and that $\sum_{n \in \mathbb{Z}} p_{n}$ converges to 1 in the strong operator topology. Let $a \in B(H)$ satisfy $p_{n} a p_{n}=a p_{n}$ for all $n \in \mathbb{Z}$. Then $\|a\|=\sup _{n \in \mathbb{Z}}\left\|p_{n} a p_{n}\right\|$.

Proof: We first show that $\sum_{n \in Z} p_{n} a p_{n}$ converges to a in the strong operator topology. Let $\xi \in H$. Then $\lim _{k \rightarrow \infty} \sum_{n=-k}^{k} p_{n}(\xi)=\xi$, so $\lim _{k \rightarrow \infty} a\left(\sum_{n=-k}^{k} p_{n}(\xi)\right)=a(\xi)$. Thus

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \sum_{n=-k}^{k} p_{n} a p_{n}(\xi) & =\lim _{k \rightarrow \infty} \sum_{n=-k}^{k} a p_{n}(\xi) \\
& =\lim _{k \rightarrow \infty} a\left(\sum_{n=-k}^{k} p_{n}(\xi)\right)=a(\xi) .
\end{aligned}
$$

So $\sum_{n \in \mathbb{Z}} p_{n} a p_{n}$ converges to a in the strong operator topology.
Now, let $\xi \in H$. For each $k \geq 1$, let $\xi_{k}=\sum_{n=-k}^{k} p_{n}(\xi)$. Then by assumption, $\xi_{k} \rightarrow \xi$. For each $k \geq 1$, we have

$$
\begin{aligned}
\left\langle\xi_{k}, \xi_{k}\right) & =\left\langle\sum_{n=-k}^{k} p_{n}(\xi), \sum_{m=-k}^{k} p_{m}(\xi)\right\rangle=\sum_{m, n=-k}^{k}\left\langle p_{m}(\xi), p_{n}(\xi)\right\rangle \\
& =\sum_{n=-k}^{n}\left\langle p_{n}(\xi), p_{n}(\xi)\right\rangle=\sum_{n=-k}^{k}\left\|p_{n}(\xi)\right\|^{2} .
\end{aligned}
$$

Since $\left\langle\xi_{k}, \xi_{k}\right\rangle \rightarrow\|\xi\|^{2}$, we see that $\|\xi\|^{2}=\sum_{n \in \mathbb{Z}}\left\|p_{n}(\xi)\right\|^{2}$. Thus for all $\xi \in H$, we have $\|\xi\|^{2}=$ $\sum_{n \in \mathbb{Z}}\left\|p_{n}(\xi)\right\|^{2}$.

For each $k \geq 1$, let $a_{k}=\sum_{n=-k}^{k} p_{n} a p_{n}$. Then we have shown that $a_{k} \rightarrow a$ in the strong operator topology. Let $R=\sup _{n \in \mathbb{Z}}\left\|p_{n} a p_{n}\right\|$. For each $n \in \mathbb{Z}$, we have $\left\|p_{n} a p_{n}\right\| \leq\|a\|$, so $R \leq\|a\|$. Now for each $k \geq 1$ and each $\xi \in H$, we have

$$
\begin{aligned}
\left\|a_{k}(\xi)\right\|^{2} & =\sum_{n \in \mathbb{Z}}\left\|p_{n}\left(a_{k}(\xi)\right)\right\|^{2} \\
& =\sum_{n \in \mathbb{Z}}\left\|p_{n}\left(\sum_{m=-k}^{k} p_{m} a p_{m}(\xi)\right)\right\|^{2} \\
& =\sum_{n \in \mathbb{Z}}\left\|\sum_{m=-k}^{k} p_{n} p_{m} a p_{m}(\xi)\right\|^{2} \\
& =\sum_{n=-k}^{k}\left\|p_{n} a p_{n}(\xi)\right\|^{2} \\
& \leq \sum_{n=-k}^{k}\left\|p_{n} a p_{n}\right\|^{2}\left\|p_{n}(\xi)\right\|^{2} \\
& \leq R^{2} \sum_{n=-k}^{n}\left\|p_{n}(\xi)\right\|^{2} \\
& \leq R^{2}\|\xi\|^{2} .
\end{aligned}
$$

Thus for each $k \geq 1,\left\|a_{k}\right\| \leq R$. Let $B=\{b \in B(H):\|b\| \leq R\}$. Now, $a_{k} \in B$ for all k, and $a_{k} \rightarrow a$ in the strong operator topology. Since B is closed in the strong operator topology, we have $a \in B$, and so $\|a\| \leq R$.

Notation III.6.9. Recall from III.3.6 that for each $x \in X$, the set $T^{x}=\{r \in \mathbb{R}: r x \in Z\}$ is indexed by \mathbb{Z} in the increasing order:

$$
T^{x}=\left\{\cdots<a_{-n}^{x}<a_{-n+1}^{x}<\cdots a_{-1}^{x}<a_{0}<a_{1}^{x}<\cdots a_{n}^{x}<\cdots\right\} .
$$

For each $x \in X$ and each $n \in \mathbb{Z}$, define a projection $q_{n}^{x} \in B\left(L^{2}(\mathbb{R})\right)$ by $q_{n}^{x}(\xi)=\chi_{\left(a_{n}^{x}, a_{n+1}^{x}\right)} \xi$.
Proposition III.6.10. 1. Let $r, t \in \mathbb{R}$, and let $x \in X$. Suppose that $(r-t, r x) \in G_{Z}$. Then for all $n \in \mathbb{Z}$, we have $r \in\left(a_{n}^{x}, a_{n+1}^{x}\right)$ if and only if $t \in\left(a_{n}^{x}, a_{n+1}^{x}\right)$, where a_{n}^{x} is as defined in III.6.9.
2. For all $x \in X$, and for all $n \neq m$, we have $q_{m}^{x} q_{n}^{x}=0$; and $\sum_{n \in \mathbb{Z}} q_{n}^{x}$ converges to 1 in strong operator topology, where q_{n}^{x} is as defined in III.6.9.
3. For all $f \in C_{0}\left(G_{Z}\right)$, all $x \in X$, and all $n \in \mathbb{Z}$, we have $q_{n}^{x} \lambda_{x}(f) q_{n}^{x}=\lambda_{x}(f) q_{n}^{x}$.
4. For all $f \in C_{0}\left(G_{Z}\right)$ and all $x \in X$, we have $\left\|\lambda_{x}(f)\right\|=\sup _{n \in \mathbb{Z}}\left\|q_{n}^{x} \lambda_{x}(f) q_{n}^{x}\right\|$, where λ_{x} is as defined by Equation (I.4).

Proof: Part 1: Suppose that $r \in\left(a_{n}^{x}, a_{n+1}^{x}\right)$. Then $\beta(r x)=a_{n+1}^{x}-r$, and $\alpha(r x)=a_{n}^{x}-r$. Since $(r-t, r x) \in G_{Z}$, we see that $t-r \in(\alpha(r x), \beta(r x))=\left(a_{n}^{x}-r, a_{n+1}^{x}-r\right)$. Thus $t \in\left(a_{n}^{x}, a_{n+1}^{x}\right)$. Thus $r \in\left(a_{n}^{x}, a_{n+1}^{x}\right)$ implies that $t \in\left(a_{n}^{x}, a_{n+1}^{x}\right)$. Now suppose that $r \notin\left(a_{n}^{x}, a_{n+1}^{x}\right)$. Then $r \in\left(a_{m}^{x}, a_{m+1}^{x}\right)$ for some $m \neq n$, whence $t \in\left(a_{m}^{x}, a_{m+1}^{x}\right)$, and so $t \notin\left(a_{n}^{x}, a_{n+1}^{x}\right)$.

Part 2: It is clear that $q_{n}^{x} q_{m}^{x}=0$ if $m \neq n$. For each $k \geq 1$, let $q_{k}=\sum_{n=-k}^{k} q_{n}^{x}$. Then q_{k} is an increasing sequence of projections, hence converges in the strong operator topology to some projection q (Theorem 4.1.2 in [6]). It is clear that $q_{k} q=q_{k}$ for all $k \geq 1$. Suppose that $q(\xi)=0$ for some ξ. Then $q_{k}(\xi)=q_{k} q(\xi)=0$ for all $k \geq 1$. So $\chi_{\left(a_{-k}^{x}, a_{k}^{x}\right)} \xi=0$ for all $k \geq 1$. That is $\int_{a_{-k}^{x}}^{a_{k}^{x}}|\xi|^{2}=0$ for all k. So $\xi=0$. Thus $q=1$.

Part 3: Fix $f \in C_{0}\left(G_{Z}\right), x \in X$, and $n \in \mathbb{Z}$. Let $\chi_{n}: \mathbb{R} \rightarrow \mathbb{R}$ denote the characteristic function of $\left(a_{n}^{x}, a_{n+1}^{x}\right)$. Now, if $r \in\left(a_{n}^{x}, a_{n+1}^{x}\right)$, then

$$
\chi_{n}(r) \chi_{n}(t) f(r-t, r x)=\chi_{n}(t) f(r-t, r x)
$$

for all $t \in \mathbb{R}$. If $r \notin\left(a_{n}^{x}, a_{n+1}^{x}\right)$, then

$$
\chi_{n}(r) \chi_{n}(t) f(r-t, r x)=0 .
$$

If $t \in\left(a_{n}^{x}, a_{n+1}^{x}\right)$, then by part 1 , we have $(r-t, r x) \notin G_{Z}$, and so $f(r-t, r x)=0$; then $\chi_{n}(r) \chi_{n}(t) f(r-t, r x)=0=\chi_{n}(t) f(r-t, r x)$. If $t \notin\left(a_{n}^{x}, a_{n+1}^{x}\right)$, then

$$
\chi_{n}(r) \chi_{n}(t) f(r-t, r x)=0=\chi_{n}(t) f(r-t, r x)
$$

also. Thus for all $r, t \in \mathbb{R}$, we have $\chi_{n}(r) \chi_{n}(t) f(r-t, r x)=\chi_{n}(t) f(r-t, r x)$. Then for all $r \in \mathbb{R}$
we have

$$
\begin{aligned}
\lambda_{x}(f) q_{n}^{x}(\xi)(r) & =\int_{\mathbb{R}} q_{n}^{x}(\xi)(t) f(r-t, r x) d t \\
& =\int_{\mathbb{R}} \chi_{n}(t) \xi(t) f(r-t, r x) d t \\
& =\int_{\mathbb{R}} \chi_{n}(r) \chi_{n}(t) \xi(t) f(r-t, r x) d t \\
& =\chi_{n}(r) \int_{\mathbb{R}} \chi_{n}(t) \xi(t) f(r-t, r x) d t \\
& =\chi_{n}(r) \int_{\mathbb{R}} q_{n}^{x}(\xi)(t) f(r-t, r x) d t \\
& =\chi_{n}(r) \lambda_{x}(f) q_{n}^{x}(\xi)(r) \\
& =q_{n}^{x} \lambda(f) q_{n}^{x}(\xi)(r)
\end{aligned}
$$

So $q_{n}^{x} \lambda_{x}(f) q_{n}^{x}=\lambda_{x}(f) q_{n}^{x}$.
Part 4: This follows from part 2 and 3, and Lemma III.6.8.

Proposition III.6.11. Let Q_{i} be the map defined in Lemma III.6.7. Define

$$
Q: C_{0}\left(G_{Z}\right) \rightarrow \bigoplus_{i=1}^{N} C_{0}\left(G_{i}\right)
$$

by $Q(f)=\left(Q_{1}(f), Q_{2}(f), \ldots, Q_{N}(f)\right)$. Then Q is an isometric ${ }^{*}$-homomorphism.

Proof: \quad Since each Q_{i} is a ${ }^{*}$-homomorphism, so is Q.
Recall that $\|\cdot\|_{r}$ denotes that reduced norm on $C_{c}(\mathbb{R} \times X)$, which contains $C_{0}\left(G_{Z}\right)$ as a *-subalgebra. We now show that $\|Q(f)\| \geq\|f\|_{r}$. Let $f \in C_{0}\left(G_{Z}\right)$, let $x \in X$, and let $n \in \mathbb{Z}$. Let $r_{0} \in\left(a_{n+1}^{x}, a_{n}^{x}\right)$. Then $r_{0} x \in V_{i}$ for some $i \in\{1, \ldots, N\}$. Let $c=\pi_{i}\left(r_{0} x\right) \in X_{i}$, let $s_{0}=$ $\left(\alpha_{i}\left(r_{0} x\right)+\beta_{i}\left(r_{0} x\right)\right) / 2$, and let $s=r_{0}+s_{0}$. Then $c=\left(s_{0}+r_{0}\right) x=s x$. Let $\chi_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be the characteristic function of $\left(a_{n}^{x}, a_{n+1}^{x}\right)$. Define $\chi(t)=\chi_{n}(t+s)$. We first show that $\chi \chi_{i}^{c}=\chi$. Let $t \in \mathbb{R}$. First suppose that $\chi(t) \neq 0$. Then $t+s \in\left(a_{n}^{x}, a_{n+1}^{x}\right)$, and

$$
t+s_{0} \in\left(a_{n}^{x}-r_{0}, a_{n+1}^{x}-r_{0}\right)=\left(\alpha\left(r_{0} x\right), \beta\left(r_{0} x\right)\right) \subseteq\left(\alpha_{i}\left(r_{0} x\right), \beta_{i}\left(r_{0} x\right)\right)
$$

So $t \in\left(\alpha_{i}\left(r_{0} x\right)-s_{0}, \beta\left(r_{0} x\right)-s_{0}\right)=\left(\alpha_{i}(c), \beta_{i}(c)\right)$. Thus $\chi_{i}^{c}(t)=1$. So $\chi_{i}^{c}(t) \chi(t)=\chi(t)$. If $\chi(t)=0$, then $\chi(t) \chi_{i}^{c}(t)=0=\chi(t)$. Thus $\chi \chi_{i}^{c}=\chi$.

Let $p \in B\left(L^{2}(\mathbb{R})\right)$ be the projection defined by $p(\xi)=\chi \xi$. Define $v: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ by $v(\xi)(r)=\xi(r+s)$. It is easily checked that v is a unitary with v^{*} defined by $v^{*}(\xi)(r)=\xi(r-s)$. Then for all $\xi \in L^{2}(\mathbb{R})$ and all $r \in \mathbb{R}$, we have

$$
\begin{aligned}
{\left[v q_{n}^{x} \lambda_{x}(f) q_{n}^{x} v^{*}\right](\xi)(r) } & =\left[q_{n}^{x} \lambda_{x}(f) q_{n}^{x} v^{*}\right](\xi)(r+s) \\
& =\chi_{n}(r+s) \lambda_{x}(f) q_{n}^{x} v^{*}(\xi)(r+s) \\
& =\chi(r) \int_{\mathbb{R}} q_{n}^{x}\left(v^{*}(\xi)\right)(t) f(r+s-t,(r+s) x) d t \\
& =\chi(r) \int_{\mathbb{R}} \chi_{n}(t) \xi(t-s) f(r+s-t, r c) d t \\
& =\chi(r) \int_{\mathbb{R}} \chi_{n}(t+s) \xi(t) f(r-t, r c) d t \\
& =\chi(r) \int_{\mathbb{R}} \chi(t) \xi(t) f(r-t, r c) d t \\
& =\chi(r) \int_{\mathbb{R}} \chi_{i}^{c}(r) \chi(t) \chi_{i}^{c}(t) \xi(t) f(r-t, r c) d t \\
& =\chi(r) \int_{\mathbb{R}} \chi_{i}^{c}(r) \chi(t) \chi_{i}^{c}(t) \xi(t) Q_{i}(f)(r-t, r c) d t \\
& =\chi(r) \int_{\mathbb{R}} \chi_{i}^{c}(r) \chi_{i}^{c}(t) p(\xi)(t) Q_{i}(f)(r-t, r c) d t \\
& =\chi(r) \lambda_{i}^{c}\left(Q_{i}(f)\right)(p(\xi))(r) \\
& \left.=\left(p \lambda_{i}^{c}\left(Q_{i}(f)\right) p\right)(\xi)\right)(r) .
\end{aligned}
$$

Thus $v q_{n}^{x} \lambda_{x}(f) q_{n}^{x} v^{*}=p \lambda_{i}^{c}\left(Q_{i}(f)\right) p$, and hence

$$
\begin{aligned}
\left\|q_{n}^{x} \lambda_{x}(f) q_{n}^{x}\right\| & =\left\|v q_{n}^{x} \lambda_{x}(f) q_{n}^{x} v^{*}\right\|=\left\|p \lambda_{i}^{c}\left(Q_{i}(f)\right) p\right\| \\
& \leq\left\|\lambda_{i}^{c}\left(Q_{i}(f)\right)\right\| \leq\left\|Q_{i}(f)\right\|_{i} \leq\|Q(f)\| .
\end{aligned}
$$

This holds for all $n \in \mathbb{Z}$, so $\left\|\lambda_{x}(f)\right\|=\sup _{n \in \mathbb{Z}}\left\|q_{n}^{x} \lambda_{x}(f) q_{n}^{x}\right\| \leq\|Q(f)\|$. This holds for all $x \in X$, so $\|f\|_{r}=\sup _{x \in X}\left\|\lambda_{x}(f)\right\| \leq\|Q(f)\|$.

For $\|Q(f)\| \leq\|f\|_{r}$, we have shown in Lemma III.6.7 that $\left\|Q_{i}(f)\right\|_{i} \leq\|f\|_{r}$ for all $i \in$ $\{1, \ldots, N\}$. So $\|Q(f)\|=\sup \left\{\left\|Q_{i}(f)\right\|_{i}: i=1, \ldots, N\right\} \leq\|f\|_{r}$. Thus Q is isometric.

At this point, we are almost ready to glue the *-algebras $C_{0}\left(G_{i}\right)$ together to form $C_{0}\left(G_{Z}\right)$. Before we do that, let us recall some of the notation that we have used in this chapter so far, and let us fix further notation for the rest of this chapter.

Notation III.6.12. For each $i \in\{1, \ldots, N\}$, the set $C_{0}\left(G_{i}\right)$ (G_{i} is defined in Notation III.4.1) is a ${ }^{*}$-algebra; A_{i} is the completion of $C_{0}\left(G_{i}\right)$ with respect to $\|\cdot\|_{i}\left(\|\cdot\|_{i}\right.$ is defined in Notation III.6.1);

$$
K_{i}=\left\{f \in C\left(X_{i}, K\left(L^{2}(\mathbb{R})\right)\right): p_{i}^{x} f(x) p_{i}^{x}=f(x) \text { for all } x \in X_{i}\right\} ;
$$

$\phi_{i}: C_{0}\left(G_{i}\right) \rightarrow K_{i}$ is an isometric *-homomorphism with dense range (ϕ_{i} is defined in Notation III.6.1); $A_{i} \cong K_{i}$ via the extension of ϕ_{i}; and $\Phi_{i}: K_{i} \rightarrow C\left(X_{i}, K\left(L^{2}(I)\right)\right)$ is a *-isomorphism, where I is the interval $(-1,1)$ (Φ_{i} is defined in Notation III.6.4).

For each $k \in\{1, \ldots, N-1\}$ the space $C_{0}\left(G^{(k)}\right)$ is a ${ }^{*}$-algebra ($G^{(k)}$ is defined in III.4.1); $A^{(k)}$ is the completion of $C_{0}\left(G^{(k)}\right)=C_{0}\left(G_{k+1, F^{(k)}}\right)$ with respect to $\|\cdot\|^{(k)}\left(\|\cdot\|^{(k)}\right.$ is defined in Notation III.6.1);

$$
K^{(k)}=K_{k+1, F^{(k)}}=\left\{f \in C\left(F^{(k)}, K\left(L^{2}(\mathbb{R})\right)\right): p_{i}^{x} f(x) p_{i}^{x}=f(x) \text { for all } x \in F^{(k)}\right\}
$$

$\phi^{(k)}: C_{0}\left(G^{(k)}\right) \rightarrow K^{(k)}$ is an isometric *-homomorphism with dense range ($\phi^{(k)}$ is defined in Notation III.6.1); $A^{(k)} \cong K^{(k)}$ via the extension of $\phi^{(k)} ; \Phi^{(k)}: K^{(k)} \rightarrow C\left(F^{(k)}, K\left(L^{2}(I)\right)\right)$ is a ${ }^{*}$-isomorphism ($\Phi^{(k)}$ is defined in Notation III.6.4); the restriction map $R_{k}: C_{0}\left(G_{k+1}\right) \rightarrow C_{0}\left(G^{(k)}\right)$ is a norm-decreasing surjective ${ }^{*}$-homomorphism such that an element with small norm lifts to some element with small norm.

Let Q_{i} be the map defined in III.6.7, and let Q be the map defined in III.6.11. Then $Q_{i}: C_{0}\left(G_{Z}\right) \rightarrow C_{0}\left(G_{i}\right)$ is a norm-decreasing *-homomorphism, and $Q: C_{0}\left(G_{Z}\right) \rightarrow \bigoplus_{i=1}^{N} C_{0}\left(G_{i}\right)$ is an isometric *-homomorphism.

The next statement is used in the decompostion of $C_{0}\left(G_{Z}\right)$. The proof is easy and is omitted.

Lemma III.6.13. Let X be any locally compact Hausdorff space, and let F_{1}, \ldots, F_{n} be closed subsets of X such that $\bigcup_{i=1}^{n} F_{i}=X$. Let $f: X \rightarrow \mathbb{C}$ an arbitrary function. Also suppose that $\left.f\right|_{F_{i}} \in C_{0}\left(F_{i}\right)$ for each $i \in\{1, \ldots, n\}$. Then $f \in C_{0}(X)$.

Proposition III.6.14. Let $E_{1}=C_{0}\left(G_{1}\right)$. For each $k=2, \ldots, N$, there exists a^{*}-subalgebra $E_{k} \subseteq C_{0}\left(G_{1}\right) \oplus \cdots \oplus C_{0}\left(G_{k}\right)$ and a ${ }^{*}$-homomorphism $\psi_{k-1}: E_{k-1} \rightarrow C_{0}\left(G^{(k-1)}\right)$ such that

1. ψ_{k-1} is norm decreasing.
2. $E_{k}=E_{k-1} \oplus_{C_{0}\left(G^{(k-1)}\right)} C_{0}\left(G_{k}\right)=\left\{(e, f) \in E_{k-1} \oplus C_{0}\left(G_{k}\right): \psi_{k-1}(e)=R_{k-1}(f)\right\}$.
3. If $\left(f_{1}, \ldots, f_{k}\right) \in E_{k}$, then for all $i \in\{1, \ldots, k\}$, we have $f_{i} \in C_{0}\left(G_{i} \cap G_{Z}\right)$. (We treat $C_{0}\left(G_{i} \cap G_{Z}\right)$ as a subspace of $\left.C_{0}\left(G_{i}\right).\right)$
4. If $\left(f_{1}, \ldots, f_{k}\right) \in E_{k}$, then for all $i, j \in\{1, \ldots, k\}$, we have $\left.f_{i}\right|_{G_{i} \cap G_{j} \cap G_{Z}}=\left.f_{j}\right|_{G_{i} \cap G_{j} \cap G_{Z}}$.
5. If $\left(f_{1}, \ldots, f_{k}\right) \in E_{k}$, then for all $j \in\{1, \ldots, k-1\}$, we have $\left(f_{1}, \ldots, f_{j}\right) \in E_{j}$.

Proof: This is a proof by induction. We first simplify the base case of the induction by making the first algebra of the gluing process trivial. Fix some $x_{0} \in X_{1}$. Let $F^{(0)}=\left\{x_{0}\right\}$ and let $G_{0}=G^{(0)}=G_{1, F^{(0)}}$. It is clear that $G_{0}=G^{(0)}$ is a closed subset of G_{1}. Then by Lemma III.5.3, we see that $C_{0}\left(G_{0}\right)=G_{0}\left(G^{(0)}\right)$ is a ${ }^{*}$-algebra with the involution and convolution given by Equations III. 7 and III.8. Let $R_{0}: C_{0}\left(G_{1}\right) \rightarrow C_{0}\left(G^{(0)}\right)$ be the restriction map. Then an argument identical to the one given in Lemma III. 6.5 shows that R_{0} is a norm decreasing surjective ${ }^{*}$-homomorphism.

Now, instead of proving the statement of this lemma, we prove the following instead, which is the same as the the statement of the lemma except that the index k ranges from 1 through n instead of 2 through n. The statement of this lemma follows immediately.

Let $E_{0}=C_{0}\left(G_{0}\right)$. For each $k \in\{1, \ldots, N\}$, there exists a ${ }^{*}$-subalgebra

$$
E_{k} \subseteq C_{0}\left(G_{1}\right) \oplus \cdots \oplus C_{0}\left(G_{k}\right)
$$

and a ${ }^{*}$-homomorphism $\psi_{k-1}: E_{k-1} \rightarrow C_{0}\left(G^{(k-1)}\right)$ such that

1. ψ_{k-1} is norm decreasing.
2. $E_{k}=E_{k-1} \oplus_{C_{0}\left(G^{(k-1)}\right)} C_{0}\left(G_{k}\right)=\left\{(e, f) \in E_{k-1} \oplus C_{0}\left(G_{k}\right): \psi_{k-1}(e)=R_{k-1}(f)\right\}$.
3. If $\left(f_{0}, \ldots, f_{k}\right) \in E_{k}$, then for all $i \in\{0, \ldots, k\}$, we have $f_{i} \in C_{0}\left(G_{i} \cap G_{Z}\right)$. (We treat $C_{0}\left(G_{i} \cap G_{Z}\right)$ as a subspace of $\left.C_{0}\left(G_{i}\right).\right)$
4. If $\left(f_{0}, \ldots, f_{k}\right) \in E_{k}$, then for all $i, j \in\{0, \ldots, k\}$, we have $\left.f_{i}\right|_{G_{i} \cap G_{j} \cap G_{z}}=\left.f_{j}\right|_{G_{i} \cap G_{j} \cap G_{z}}$.
5. If $\left(f_{0}, \ldots, f_{k}\right) \in E_{k}$, then for all $j \in\{0, \ldots, k-1\}$, we have $\left(f_{0}, \ldots, f_{j}\right) \in E_{j}$.

Induct on k. For the base case when $k=1$, let $\psi_{0}: E_{0} \rightarrow C_{0}\left(G^{(0)}\right)$ be the identity map and let $E_{1}=\left\{(f, g) \in E_{0} \oplus C_{0}\left(G_{1}\right): \psi_{0}(f)=R_{0}(g)\right\}$. Then conditions 1 through 5 hold trivially. This proves the base case.

Inductive step: Suppose that for $1<k<N$, there exist E_{k} and ψ_{k-1} that satisfy conditions 1 through 5 in the statement.

If $F^{(k)}=\varnothing$, then let $\psi_{k}=0$, and let $E_{k+1}=E_{k} \oplus C_{0}\left(G_{k+1}\right)$. Then condition 1, 2, 4, and 5 are clear; and condition 3 follows from Lemma III.4.9.

Now assume that $F^{(k)} \neq \varnothing$. Then $G^{(k)} \neq \varnothing$.
Define $\psi_{k}: E_{k} \rightarrow C_{0}\left(G^{(k)}\right)$ by $\psi_{k}\left(f_{0}, \ldots, f_{k}\right)(w)=f_{i}(w)$ if $w \in G_{i}$ for some $i=0, \ldots, k$, and 0 otherwise. We first show that for all $\left(f_{0}, \ldots, f_{k}\right) \in E_{k}, \psi_{k}\left(f_{0}, \ldots, f_{k}\right)$ is a well defined function. We only need to show that the definition does not depend on the choice of i. Let $\left(f_{1}, \ldots, f_{k}\right) \in E_{k}$, and suppose that $w \in G_{i} \cap G_{j}$. If $w \notin G_{Z}$, then $f_{i}(w)=0=f_{j}(w)$ by condition 3 in the inductive hypothesis. So suppose that $w \in G_{Z}$. Then $w \in G_{i} \cap G_{j} \cap G_{Z}$, and then $f_{i}(w)=f_{j}(w)$ by condition 4 in the inductive hypothesis. Thus $\psi_{k}\left(f_{0}, \ldots, f_{k}\right)$ is well defined.

Note that if $(r, x) \in G^{(k)} \backslash G_{Z}$, then for all $i=0, \ldots, k$, we have $(r, x) \notin G_{i} \cap G_{Z}$; and then $\psi_{k}\left(f_{0}, \ldots, f_{k}\right)(r, x)=0$ by condition 3 in the inductive hypothesis and by the definition of $\psi_{k}\left(f_{0}, \ldots, f_{k}\right)$.

Next we show that if $\left(f_{0}, \ldots, f_{k}\right) \in E_{k}$, then $\psi_{k}\left(f_{0}, \ldots, f_{k}\right) \in C_{0}\left(G_{Z} \cap G^{(k)}\right)$. Now we know, by Lemma III.4.8, that

$$
G^{(k)} \cap G_{Z}=\bigcup_{i=1}^{k} G_{i} \cap G^{(k)} \cap G_{Z}=\bigcup_{i=0}^{k} G_{i} \cap G^{(k)} \cap G_{Z}
$$

and by Lemma III.4.7, that $G_{i} \cap G^{(k)} \cap G_{Z}$ is closed in $G^{(k)} \cap G_{Z}$. From the definition of $\psi_{k}\left(f_{0}, \ldots, f_{k}\right)$, we see that

$$
\left.\psi_{k}\left(f_{0}, \ldots, f_{k}\right)\right|_{G_{i} \cap G_{z} \cap G^{(k)}}=\left.f_{i}\right|_{G_{i} \cap G_{z} \cap G^{(k)}} .
$$

Now $G_{i} \cap G_{Z} \cap G^{(k)}$ is closed in $G_{i} \cap G_{Z}$, by Lemma III.4.7. By condition 3 in the inductive hypothesis, each f_{i} is in $C_{0}\left(G_{i} \cap G_{Z}\right)$. So $\left.f_{i}\right|_{G_{i} \cap G_{Z} \cap G^{(k)}} \in C_{0}\left(G_{i} \cap G_{Z} \cap G^{(k)}\right)$. By Lemma III.6.13, we have $\psi_{k}\left(f_{0}, \ldots, f_{k}\right) \in C_{0}\left(G_{Z} \cap G^{(k)}\right) \subseteq C_{0}\left(G^{(k)}\right)$. Thus ψ_{k} is a well defined map.

Next we show that ψ_{k} is a *-homomorphism. Linearity is clear. Also, ψ_{k} preserves the involution because $(r, x) \in G_{i}$ if and only if $(-r,(-r) x) \in G_{i}$ (by the first statement in part 2 of Lemma III.4.4). Let $\left(f_{0}, \ldots, f_{k}\right),\left(g_{0}, \ldots, g_{k}\right) \in E_{k}$. Let $h_{f}=\psi_{k}\left(f_{0}, \ldots, f_{k}\right)$, let $h_{g}=$ $\psi_{k}\left(g_{0}, \ldots, g_{k}\right)$, and let $h=\psi_{k}\left(f_{0} * g_{0}, \ldots, f_{k} * g_{k}\right)$. We only need to show that $h=h_{f} * h_{g}$. Note that $h_{g}, h_{f}, h \in C_{0}\left(G_{Z} \cap G^{(k)}\right)$. Let $(r, x) \in G^{(k)}$. If

$$
\left(h_{f} * h_{g}\right)(r, x)=\int_{-\beta_{k+1}(x)}^{-\alpha_{k+1}(x)} h_{f}(t, x) h_{g}(r-t,(-t) x) d t \neq 0
$$

then for some $t \in\left(-\beta_{k+1}(x),-\alpha_{k+1}(x)\right)$, we have $(t, x),(r-t,(-t) x) \in G_{Z}$. Then by the first statement in part 2 of Lemma III.4.4, we have $(r, x) \in G_{Z}$. Thus if $(r, x) \notin G_{Z}$, then $h(r, x)=0=$ $\left(h_{f} * h_{g}\right)(r, x)$. Now suppose that $(r, x) \in G_{Z}$. Then by Lemma III.4.8, we have $(r, x) \in G_{i} \cap G^{(k)} \cap G_{Z}$ for some $i \in\{1, \ldots, k\}$. So $h(r, x)=\left(f_{i} * g_{i}\right)(r, x)$. Also, we have

$$
\left(h_{f} * h_{g}\right)(r, x)=\int_{-\beta_{k+1}(x)}^{-\alpha_{k+1}(x)} h_{f}(t, x) h_{g}(r-t,(-t) x) d t
$$

If $t \notin(-\beta(x),-\alpha(x))$, then $(t, x) \notin G_{Z}$, and then $h_{f}(t, x)=0$. So we have

$$
\left(h_{f} * h_{g}\right)(r, x)=\int_{-\beta(x)}^{-\alpha(x)} h_{f}(t, x) h_{g}(r-t,(-t) x) d t
$$

Now, $(r, x) \in G_{i} \cap G_{Z} \cap G^{(k)}$, so $x \in V_{i} \cap V_{k+1} \cap Z^{c}$. Then for all $t \in(-\alpha(x),-\beta(x))$, we have $t \in\left(-\beta_{i}(x),-\alpha_{i}(x)\right)$, and $t \in\left(-\beta_{k+1}(x),-\alpha_{k+1}(x)\right)$, since $\alpha_{j}(y) \leq \alpha(y)<0<\beta(y) \leq \beta_{j}(y)$ for all $j \in\{1, \ldots, N\}$ and all $y \in Z^{c} \cap V_{j}$. Thus for all $t \in(-\beta(x),-\alpha(x))$, we have $(t, x) \in G_{Z} \cap G_{i} \cap G^{(k)}$. Then by Lemma III.4.4, $(r-t,(-t) x) \in G_{Z} \cap G_{i} \cap G^{(k)}$ for all $t \in(-\beta(x),-\alpha(x))$. Thus we have

$$
\left(h_{f} * h_{g}\right)(r, x)=\int_{-\beta(x)}^{-\alpha(x)} f_{i}(t, x) g_{i}(r-t,(-t) x) d t
$$

Now, by condition 3 in the inductive hypothesis, f_{i} vanishes outside of $G_{i} \cap G_{Z}$. Then we have

$$
\left(h_{f} * h_{g}\right)(r, x)=\int_{-\beta_{i}(x)}^{-\alpha_{i}(x)} f_{i}(t, x) g_{i}(r-t,(-t) x) d t=\left(f_{i} * g_{i}\right)(r, x)=h(r, x)
$$

Therefore ψ_{k} preserves convolution, and so ψ_{k} is a ${ }^{*}$-homomorphism.

Next we show that ψ_{k} is norm decreasing. Let $\left(f_{0}, \ldots, f_{k}\right)$ be an element of E_{k}, and let $h=\psi_{k}\left(f_{0}, \ldots, f_{k}\right)$. Let $x \in F^{(k)}$. Note that there exist $m<n$ and $a_{m}^{x}, a_{m+1}^{x}, \ldots, a_{n}^{x} \in \mathbb{R}$ such that

$$
T^{x} \cap\left[\alpha_{k+1}(x), \beta_{k+1}(x)\right]=\left\{a_{m}^{x}, a_{m+1}^{x}, \ldots, a_{n}^{x}\right\}
$$

and $\alpha_{k+1}(x)=a_{m}^{x}<a_{m+1}^{x}<\cdots<a_{n}^{x}=\beta_{k+1}(x)$. For each $l=m, \ldots, n-1$, let $\chi_{l}: \mathbb{R} \rightarrow \mathbb{R}$ be the characteristic function of $\left(a_{l}^{x}, a_{l+1}^{x}\right)$, and let q_{l} be the projection in $B\left(L^{2}(\mathbb{R})\right)$ defined by $q_{l}(\xi)=\chi_{l} \xi$. It is clear that $q_{l} q_{l^{\prime}}=0$ if $l \neq l^{\prime}$, and that $\sum_{l=m}^{n-1} q_{l}=p_{k+1}^{x}$. (Recall that p_{k+1}^{x} is the projection in $B\left(L^{2}(\mathbb{R})\right)$ defined by $p_{k+1}^{x}(\xi)=\chi_{k+1}^{x} \xi$.) Then it is clear that $\lambda^{(k), x}(h)=p_{k+1}^{x} \lambda^{(k), x}(h) p_{k+1}^{p}$. We claim that

$$
\left\|\lambda^{(k), x}(h)\right\|=\sup \left\{\left\|q_{l} \lambda^{(k), x}(h) q_{l}\right\|: l=m, \ldots, n-1\right\}
$$

Let $l \in\{m, \ldots, n-1\}$. Let $r, t \in \mathbb{R}$. If $(r-t, r x) \notin G_{Z}$, then $h(r-t, r x)=0$, and so $\chi_{l}(r) h(r-t, r x)=0=\chi_{l}(t) h(r-t, r x)$. Suppose that $(r-t, r x) \in G_{Z}$. By Proposition III.6.10 part 1 , we have $r \in\left(a_{l}^{x}, a_{l+1}^{x}\right)$ if and only if $t \in\left(a_{l}^{x}, a_{l+1}^{x}\right)$. Therefore $\chi_{l}(t)=1$ if and only if $\chi_{l}(r)=1$, and $\chi_{l}(t) h(r-t, r x)=\chi_{l}(r) h(r-t, r x)$. Thus $\chi_{l}(r) h(r-t, r x)=\chi_{l}(t) h(r-t, r x)$ for all $r, t \in \mathbb{R}$. Then for all $\xi \in L^{2}(\mathbb{R})$ and all $r \in \mathbb{R}$, we have

$$
\begin{aligned}
\lambda^{(k), x}(h) q_{l}(\xi)(r) & =\int_{\alpha_{k+1}(x)}^{\beta_{k+1}(x)} \chi_{k+1}^{x}(r) \chi_{k+1}^{x}(t) \chi_{l}(t) \xi(t) h(r-t, r x) d t \\
& =\int_{\alpha_{k+1}(x)}^{\beta_{k+1}(x)} \chi_{k+1}^{x}(r) \chi_{k+1}^{x}(t) \chi_{l}(r) \xi(t) h(r-t, r x) d t \\
& =\chi_{l}(r) \int_{\alpha_{k+1}(x)}^{\beta_{k+1}(x)} \chi_{k+1}^{x}(r) \chi_{k+1}^{x}(t) \xi(t) h(r-t, r x) d t \\
& =\chi_{l}(r) \lambda^{(k), x}(h)(\xi)(r) .
\end{aligned}
$$

Thus $\lambda^{(k), x}(h) q_{l}=q_{l} \lambda^{(k), x}(h)$ for all $l \in\{m, \ldots, n-1\}$. Then it is clear that

$$
\left\|\lambda^{(k), x}(h)\right\|=\left\|p_{k+1}^{x} \lambda^{(k), x}(h) p_{k+1}^{x}\right\|=\sup \left\{\left\|q_{l} \lambda^{(k), x}(h) q_{l}\right\|: l=m, \ldots, n-1\right\} .
$$

Now we show that for each $l \in\{m, \ldots, n-1\}$, we have $\left\|q_{l} \lambda^{(k), x}(h) q_{l}\right\| \leq\left\|\left(f_{0}, f_{1}, \ldots, f_{k}\right)\right\|$. Let $l \in\{m, \ldots, n-1\}$. Since $x \in F^{(k)}$, there exists $x_{0} \in V_{k+1} \cap\left(\bigcup_{i=1}^{k} V_{i}\right)$ such that $\pi_{k+1}\left(x_{0}\right)=x$. Let $r_{0} \in\left(a_{l}^{x}, a_{l+1}^{x}\right)$. Then $r_{0} x \in Z^{c} \cap V_{k+1}^{x}=Z^{c} \cap V_{k+1}^{x_{0}}$. Thus by Lemma III.3.8, there exists some i with $1 \leq i \leq k$ such that $r_{0} x \in Z^{c} \cap V_{i}$. Let $s_{0}=\left(\alpha_{i}\left(r_{0} x\right)+\beta_{i}\left(r_{0} x\right)\right) / 2$, let $c=\left(s_{0}+r_{0}\right) x$,
and let $s=r_{0}+s_{0}$. Then c belongs to X_{i}. We claim that for every real number r, we have $\chi_{l}(r+s) \chi_{i}^{c}(r)=\chi_{l}(r+s)$.

Let $r \in \mathbb{R}$. If $\chi_{l}(r+s)=0$, then we are done. Suppose that $\chi_{l}(r+s) \neq 0$. Then $r+s \in\left(a_{l}^{x}, a_{l+1}^{x}\right)$, and then

$$
r+s_{0} \in\left(a_{l}^{x}-r_{0}, a_{l+1}^{x}-r_{0}\right)=\left(\alpha\left(r_{0} x\right), \beta\left(r_{0} x\right)\right) \subseteq\left(\alpha_{i}\left(r_{0} x\right), \beta_{i}\left(r_{0} x\right)\right) .
$$

Because $s_{0} \in\left(\alpha_{i}\left(r_{0} x\right), \beta_{i}\left(r_{0} x\right)\right)$, we have

$$
r \in\left(\alpha_{i}\left(r_{0} x\right)-s_{0}, \beta_{i}\left(r_{0} x\right)-s_{0}\right)=\left(\alpha_{i}(c), \beta_{i}(c)\right)
$$

So $\chi_{i}^{c}(r)=1$, and so $\chi_{l}(r+s) \chi_{i}^{c}(r)=\chi_{l}(r+s)$.
Define $u: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ by $u(\xi)(r)=\xi(r+s)$. Then u is a unitary with u^{*} given by $u^{*}(\xi)(r)=\xi(r-s)$. For all $\xi \in L^{2}(\mathbb{R})$, and for all $r \in \mathbb{R}$, we have

$$
\begin{aligned}
{\left[u q_{l} \lambda^{(k), x}\right.} & \left.(h) q_{l} u^{*}\right](\xi)(r) \\
& =\left[q_{l} \lambda^{(k), x}(h) q_{l} u^{*}\right](\xi)(r+s) \\
& =\chi_{l}(r+s)\left[\lambda^{(k), x}(h) q_{l} u^{*}(\xi)\right](r+s) \\
& =\chi_{l}(r+s) \int_{\mathbb{R}} \chi_{k+1}^{x}(r+s) \chi_{k+1}^{x}(t) q_{l}\left(u^{*}(\xi)\right)(t) h(r+s-t,(r+s) x) d t \\
& =\chi_{l}(r+s) \int_{\mathbb{R}} \chi_{k+1}^{x}(r+s) \chi_{k+1}^{x}(t) \chi_{l}(t) \xi(t-s) h(r+s-t,(r+s) x) d t \\
& =\chi_{l}(r+s) \int_{\mathbb{R}} \chi_{k+1}^{x}(r+s) \chi_{k+1}^{x}(t+s) \chi_{l}(t+s) \xi(t) h(r-t, r c) d t \\
& =\chi_{l}(r+s) \int_{\mathbb{R}} \chi_{l}(t+s) \xi(t) h(r-t, r c) d t \\
& =\chi_{l}(r+s) \int_{\mathbb{R}} \chi_{i}^{c}(r) \chi_{i}^{c}(t) \chi_{l}(t+s) \xi(t) h(r-t, r c) d t .
\end{aligned}
$$

Now for all $r, t \in\left(\alpha_{i}(c), \beta_{i}(c)\right)$, we have $(r-t, r c) \in G_{i}$, so $h(r-t, r c)=f_{i}(r-t, r c)$ for all $r, t \in\left(\alpha_{i}(c), \beta_{i}(c)\right)$. Then, letting p be the projection in $B\left(L^{2}(\mathbb{R})\right)$ given by $p(\xi)\left(r^{\prime}\right)=\chi_{l}\left(r^{\prime}+s\right) \xi\left(r^{\prime}\right)$,
we have

$$
\begin{aligned}
{\left[u q_{l} \lambda^{(k), x}(h) q_{l} u^{*}\right](\xi)(r) } & =\chi_{l}(r+s) \int_{\mathbb{R}} \chi_{i}^{c}(r) \chi_{i}^{c}(t) p(\xi)(t) f_{i}(r-t, r c) d t \\
& =\chi_{l}(r+s) \lambda_{i}^{c}\left(f_{i}\right)(p(\xi))(r) \\
& =\left[p \lambda_{i}^{c}\left(f_{i}\right) p\right](\xi)(r) .
\end{aligned}
$$

Thus $u q_{l} \lambda^{(k), x}(h) q_{l} u^{*}=p \lambda_{i}^{c}\left(f_{i}\right) p$. Then

$$
\begin{aligned}
\left\|q_{l} \lambda^{(k), x}(h) q_{l}\right\| & =\left\|u q_{l} \lambda^{(k), x}(h) q_{l} u^{*}\right\|=\left\|p \lambda_{i}^{c}\left(f_{i}\right) p\right\| \\
& \leq\left\|\lambda_{i}^{c}\left(f_{i}\right)\right\| \leq\left\|f_{i}\right\|_{i} \leq\left\|\left(f_{0}, \ldots f_{k}\right)\right\|
\end{aligned}
$$

Thus $\left\|\lambda^{(k), x}(h)\right\| \leq\left\|\left(f_{0}, \ldots, f_{k}\right)\right\|$ for all $x \in F^{(k)}$, and so

$$
\left\|\psi_{k}\left(f_{0}, \ldots, f_{k}\right)\right\|^{(k)}=\|h\|^{(k)} \leq\left\|\left(f_{0}, \ldots, f_{k}\right)\right\| .
$$

So ψ_{k} is norm-decreasing.
Now, let

$$
E_{k+1}=E_{k} \oplus_{C_{0}\left(G^{(k)}\right)} C_{0}\left(G_{k+1}\right)=\left\{(e, f) \in E_{k} \oplus C_{0}\left(G_{k+1}\right): \psi_{k}(e)=R_{k}(f)\right\}
$$

Condition 5 is clear.
Now let $\left(f_{0}, \ldots, f_{k+1}\right) \in E_{k+1}$. By condition 5 and inductive hypothesis (condition 3), $f_{i} \in C_{0}\left(G_{i} \cap G_{Z}\right)$ for all $i=0, \ldots, k$. To show that $f_{k+1} \in C_{0}\left(G_{k+1} \cap G_{Z}\right)$, we only need to show that f_{k+1} vanishes outside G_{Z}, since $f_{k+1} \in C_{0}\left(G_{k+1}\right)$ and $G_{Z} \cap G_{k+1}$ is open in G_{k+1}. Let $w \in G_{k+1} \backslash G_{Z}$. Then by Lemma III.4.9, $w \in G^{(k)}$, and

$$
f_{k+1}(w)=R_{k}\left(f_{k+1}\right)(w)=\psi_{k}\left(f_{0}, \ldots, f_{k}\right)(w)
$$

If $w \notin G_{i}$ for all $i=0, \ldots, k$, then $\psi_{k}\left(f_{1}, \ldots, f_{k}\right)(w)=0$ by the definition of ψ_{k}. Suppose that $w \in G_{i}$ for some $i \in\{0, \ldots, k\}$. Then $\psi_{k}\left(f_{0}, \ldots, f_{k}\right)(w)=f_{i}(w)$. But $f_{i} \in C_{0}\left(G_{Z} \cap G_{i}\right)$, so $f_{i}(w)=0$. Thus f_{k+1} vanishes outside of G_{Z}, and so $f_{k+1} \in C_{0}\left(G_{Z} \cap G_{k+1}\right)$. So condition 3 holds.

Now we show that condition 4 holds. Let $\left(f_{0}, \ldots, f_{k}, f_{k+1}\right)$ be an element of E_{k+1}, and let $i, j \in\{0, \ldots, k+1\}$. Without loss of generality, assume that $i<j$. If $j<k+1$, then by condition 4 in the inductive hypothesis and condition $5,\left.f_{i}\right|_{G_{Z} \cap G_{i} \cap G_{j}}=\left.f_{j}\right|_{G_{Z} \cap G_{i} \cap G_{j}}$. So assume that $j=k+1$. Let $w \in G_{Z} \cap G_{i} \cap G_{k+1}$. By Lemma III.4.7, if $i \geq 1$, then we have $G_{Z} \cap G_{i} \cap G_{k+1}=G_{Z} \cap G_{i} \cap G^{(k)}$. Also,

$$
G_{Z} \cap G_{0} \cap G_{k+1}=G_{Z} \cap G_{0} \cap G_{1} \cap G_{k+1}=G_{Z} \cap G_{0} \cap G_{1} \cap G^{(k)}=G_{Z} \cap G_{0} \cap G^{(k)}
$$

Then

$$
f_{k+1}(w)=R_{k}\left(f_{k+1}\right)(w)=\psi_{k}\left(f_{1}, \ldots, f_{k}\right)(w)=f_{i}(w)
$$

So $\left.f_{i}\right|_{G_{Z} \cap G_{i} \cap G_{k+1}}=\left.f_{k+1}\right|_{G_{Z} \cap G_{i} \cap G_{k+1}}$. This proves condition 4 and finishes the proof.
Lemma III.6.15. For each $k \in\{1, \ldots, N\}$, let Q_{k} be the map defined in Lemma III.6.7 and let E_{k} be the algebra defined in Proposition III.6.14. For each $k \in\{1, \ldots, N\}$, define a map $\rho_{k}: C_{0}\left(G_{Z}\right) \rightarrow \oplus_{i=1}^{k} C_{0}\left(G_{i}\right)$ by $\rho_{k}(f)=\left(Q_{1}(f), \ldots, Q_{k}(f)\right)$. (Note that ρ_{N} is the same as the map Q defined in Proposition III.6.11.) Then for each $k=1, \ldots, N$, we have $\operatorname{Im} \rho_{k} \subseteq E_{k}$. Further, ρ_{N} is an isometric ${ }^{*}$-isomorphism from $C_{0}\left(G_{Z}\right)$ onto E_{N}.

Proof: To show that $\operatorname{Im} \rho_{k} \subseteq E_{k}$, induct on k. This is clear when $k=1$, since $\rho_{1}=Q_{1}$ and $E_{1}=C_{0}\left(G_{1}\right)=C_{0}\left(G_{1} \cap G_{Z}\right)$.

Let k satisfy $1<k<N$, and suppose that $\operatorname{Im} \rho_{k} \subseteq E_{k}$. Let $f \in C_{0}\left(G_{Z}\right)$. Then $\rho_{k}(f) \in E_{k}$. Let ψ_{k} be the map defined in Proposition III.6.14. Let $w \in G^{(k)}$. If $w \notin G_{Z}$. Then $\psi_{k}\left(\rho_{k}(f)\right)(w)=$ $0=R_{k}\left(Q_{k+1}(f)\right)(w)$. Suppose that $w \in G_{Z}$, then $w \in G_{Z} \cap G^{(k)}$. By Lemma III.4.8, there exists some i with $1 \leq i \leq k$ such that $w \in G_{i} \cap G_{Z} \cap G^{(k)}$. Then

$$
\psi_{k}\left(\rho_{k}(f)\right)(w)=\psi_{k}\left(Q_{1}(f), \ldots, Q_{k}(f)\right)(w)=Q_{i}(f)(w)=\left(\left.f\right|_{G_{i} \cap G_{Z}}\right)(w)=f(w)
$$

and

$$
R_{k}\left(Q_{k+1}(f)\right)(w)=Q_{k+1}(f)(w)=\left(\left.f\right|_{G_{k+1} \cap G_{Z}}\right)(w)=f(w)
$$

Thus $\psi_{k}\left(\rho_{k}(f)\right)=R_{k}\left(Q_{k+1}(f)\right)$, and so $\rho_{k+1}(f)=\left(\rho_{k}(f), Q_{k+1}(f)\right) \in E_{k+1}$. Thus $\operatorname{Im} \rho_{k+1} \subseteq$ E_{k+1}.

Next we show that ρ_{N} is an isometric *-isomorphism. First of all, $\rho_{N}=Q$ is an isometric *-homomorphism. So we just need to show that the range of ρ_{N} is E_{N}.

Let $\left(f_{1}, \ldots, f_{N}\right) \in E_{N}$. Define $f: G_{Z} \rightarrow \mathbb{C}$ by $f(w)=f_{i}(w)$ if $w \in G_{i} \cap G_{Z}$. We first show that f is well-defined. Well, we know that $G_{Z}=\bigcup_{i=1}^{N} G_{Z} \cap G_{i}$ by Lemma III.4.3, so $f(w)$ exists. Suppose that $w \in G_{i} \cap G_{j} \cap G_{Z}$. By Proposition III.6.14, we have

$$
f_{i}(w)=\left(\left.f_{i}\right|_{G_{i} \cap G_{j} \cap G_{Z}}\right)(w)=\left(\left.f_{j}\right|_{G_{i} \cap G_{j} \cap G_{Z}}\right)(w)=f_{j}(w) .
$$

Thus f is a well defined function. It is clear that $\left.f\right|_{G_{i} \cap G_{Z}}=\left.f_{i}\right|_{G_{Z} \cap G_{i}} \in C_{0}\left(G_{i} \cap G_{Z}\right)$.
Now $G_{i} \cap G_{Z}$ is closed in G_{Z} for all $i \in\{1, \ldots, N\}$ by Lemma III.4.6. Applying Lemma III.6.13 to $G_{Z}, G_{1} \cap G_{Z}, \ldots, G_{N} \cap G_{Z}$, and f, we see that $f \in C_{0}\left(G_{Z}\right)$.

Finally, we check that $\rho_{N}(f)=\left(f_{1}, \ldots, f_{N}\right)$. Let $1 \leq i \leq N$, and let $w \in G_{i}$. If $w \notin G_{Z}$, then $f_{i}(w)=0=Q_{i}(f)(w)$; if $w \in G_{Z}$, then $f_{i}(w)=f(w)=Q_{i}(f)(w)$. Thus $f_{i}=Q_{i}(f)$ for all $i=1, \ldots, N$, and so

$$
\rho_{N}(f)=\left(Q_{1}(f), \ldots, Q_{N}(f)\right)=\left(f_{1}, \ldots, f_{N}\right)
$$

Hence ρ_{N} is surjective.
This finishes the proof.

The previous two lemmas give a recursive decomposition of $C_{0}\left(G_{Z}\right)$ with components $C_{0}\left(G_{i}\right)$. Next we use the fact that A_{Z} and A_{i} are closures of, respectively, $C_{0}\left(G_{n}\right)$ and $C_{0}\left(G_{i}\right)$ in $C^{*}(X, \mathbb{R})$ to extend the decomposition to A_{Z} with components A_{i}. We need a technical lemma first.

Lemma III.6.16. Let B, D, and F be C^{*}-algebras. Let A, C and E be dense *-subalgebras of B, D, and F, respectively. Let $\phi_{A}: A \rightarrow E$ and $\phi_{C}: C \rightarrow E$ be norm-decreasing *-homomorphisms. Let $G=A \oplus_{E} C=\left\{(a, c) \in A \oplus C: \phi_{A}(a)=\phi_{C}(c)\right\}$. Let $\phi_{B}: B \rightarrow F$ and $\phi_{D}: D \rightarrow F$ be continuous extensions of ϕ_{A} and ϕ_{C}, respectively. Let $H=B \oplus_{F} D=\left\{(b, d) \in B \oplus D: \phi_{B}(b)=\phi_{D}(d)\right\}$. Suppose that ϕ_{C} is surjective, and that for every $\epsilon>0$ and every $e \in E$ with $\|e\|<\epsilon$, there exists $c \in C$ such that $\phi_{C}(c)=e$ and $\|c\| \leq \epsilon$. Then G is a *-subalgebra of H, and $\bar{G}=H$.

Proof: It is clear that G is a ${ }^{*}$-subalgebra of H. Let $(b, d) \in H$, and let $\epsilon>0$. Since A is dense in B and C is dense in D, there exist $a \in A$ and $c \in C$ such that $\|a-b\|<\epsilon / 4$ and $\|c-d\|<\epsilon / 4$.

Let $e=\phi_{A}(a)-\phi_{C}(c)$. Then

$$
\|e\| \leq\left\|\phi_{A}(a)-\phi_{B}(b)\right\|+\left\|\phi_{D}(d)-\phi_{C}(c)\right\|<\epsilon / 2 .
$$

By assumption, there exists $f \in C$ such that $\|f\| \leq \epsilon / 2$ and $\phi_{C}(f)=e$. Then

$$
\phi_{C}(f+c)=\phi_{C}(f)+\phi_{C}(c)=e+\phi_{C}(c)=\phi_{A}(a) .
$$

Thus $(a, f+c) \in G$, and

$$
\|f+c-d\| \leq\|c-d\|+\|f\|<\epsilon / 4+\epsilon / 2<\epsilon .
$$

So $\|(a, c+f)-(b, d)\|<\epsilon$, and hence G is dense in H.
Lemma III.6.17. For each $k \in\{1, \ldots N\}$, let $R_{k}: C_{0}\left(G_{k+1}\right) \rightarrow C_{0}\left(G^{(k)}\right)$ be the restriction map defined in Lemma III.6.5. Let $D_{1}=A_{1}$, and let $\widetilde{R}_{k}: A_{k+1} \rightarrow A^{(k)}$ be the continuous extension of R_{k}. Then \widetilde{R}_{k} is surjective. Moreover for each $k \in\{2, \ldots, N\}$, there exists a *-subalgebra $D_{k} \subseteq \oplus_{i=1}^{k} A_{i}$ and a ${ }^{*}$-homomorphism $\widetilde{\psi}_{k-1}: D_{k-1} \rightarrow A^{(k-1)}$ such that

1. $D_{k}=D_{k-1} \oplus_{A^{(k-1)}} A_{k}=\left\{(a, b): D_{k-1} \oplus A_{k}: \widetilde{\psi}_{k-1}(a)=\widetilde{R}_{k-1}(b)\right\}$.
2. E_{k} is a dense *-subalgebra of D_{k}.
3. $\widetilde{\psi}_{k-1} \mid E_{k-1}=\psi_{k-1}$, where the map ψ_{k} is the one defined in Proposition III.6.14 for each $k \in\{1, \ldots, N-1\}$.

Proof: It is clear from Lemma III. 6.5 that \widetilde{R}_{k} is surjective for all k.
We prove other statements by induction on k. The base case is when $k=2$. Let $\widetilde{\psi}_{1}$ be the continuous extension of ψ_{1}, and let $D_{2}=\left\{(a, b) \in D_{1} \oplus A_{2}: \widetilde{\psi}_{1}(a)=\widetilde{R}_{1}(b)\right\}$. It is clear that E_{2} is a *-subalgebra of D_{2}. Condition 1 is clear, condition 2 follows from Lemma III.6.16 and Lemma III. 6.6 , and condition 3 follows immediately from condition 2.

Suppose that result holds from some k. By the inductive hypothesis, E_{k} is dense in D_{k}, so we can extend $\psi_{k}: E_{k} \rightarrow C_{0}\left(G^{(k)}\right)$ continuously to $\tilde{\psi}_{k}: D_{k} \rightarrow A^{(k)}$. Let

$$
D_{k+1}=\left\{(a, b) \in D_{k} \oplus A_{k+1}: \widetilde{\psi}_{k}(a)=\widetilde{R}_{k}(b)\right\} .
$$

It is clear that E_{k+1} is a ${ }^{*}$-subalgebra of D_{k+1}. Condition 1 is clear, and condition 2 follows from Lemma III.6.16 and Lemma III.6.6. Condition 3 is also clear.

Corollary III.6.18. $A_{Z} \cong D_{N}$ as C^{*}-algebras, where D_{N} is the C^{*}-algebra obtained in Lemma III.6.17.

Proof: The map $\rho_{N}: C_{0}\left(G_{Z}\right) \rightarrow E_{N}$ is an isometric ${ }^{*}$-isomorphism, $C_{0}\left(G_{Z}\right)$ is dense in A_{Z}, and E_{N} is dense in D_{N}. So ρ_{N} extends to a ${ }^{*}$-isomorphism from A_{Z} to D_{N}.

Lemma III.6.17 and Corollary III.6.18 give a recursive decomposition of A_{Z}. Now we use the fact that each of the components A_{i} in the decomposition is isomorphic to the corresponding $C\left(X_{i}, \mathbb{K}\right)$ to obtain a stable recursive subhomogeneous decomposition of A_{Z}.

Theorem III.6.19. Let $K=K\left(L^{2}((-1,1))\right)$. For each $k \in\{1, \ldots, N-1\}$, let

$$
\gamma_{k}: C\left(X_{k+1}, K\right) \rightarrow C\left(F^{(k)}, K\right)
$$

be the restriction map. For $k \in\{1, \ldots, N\}$, let Φ_{k} be the map defined in Notation III.6.12. Let $B_{1}=C\left(X_{1}, K\right)$, and let $\theta_{1}: D_{1} \rightarrow B_{1}$ be given by $\theta_{1}=\Phi_{1} \circ \phi_{1}$. For each $k=2, \ldots, N$, there exists a^{*}-subalgebra of $B_{k} \subseteq \bigoplus_{i=1}^{k} C\left(X_{i}, K\right), a^{*}$-homomorphism $\Psi_{k-1}: B_{k-1} \rightarrow C\left(F^{(k-1)}, K\right)$, and a ${ }^{*}$-homomorphism $\theta_{k}: D_{k} \rightarrow B_{k}$ such that

1. $B_{k}=B_{k-1} \oplus_{C\left(F^{(k-1)}, K\right)} C\left(X_{k}, K\right)=\left\{(a, b) \in B_{k-1} \oplus C\left(X_{k}, K\right): \Psi_{k-1}(a)=\gamma_{k-1}(b)\right\}$.
2. θ_{k} is a ${ }^{*}$-isomorphism.

Proof: First of all, some routine computation shows that for all $k \in\{1, \ldots, N-1\}$, and all $f \in C_{0}\left(G_{k+1}\right)$, we have $\gamma_{k}\left(\Phi_{k+1}\left(\phi_{k+1}(f)\right)\right)=\Phi^{(k)}\left(\phi^{(k)}\left(R_{k}(f)\right)\right)$, where $\Phi_{k}, \phi_{k}, R_{k}, \Phi^{(k)}$, and $\phi^{(k)}$ are as defined in Notation III.6.12. Since $C_{0}\left(G_{k+1}\right)$ is dense in A_{k+1}, for each $k \in\{1, \ldots, N-1\}$, we have the following commutative diagram:

$$
\begin{array}{cllll}
A_{k+1} & \xrightarrow{\phi_{k+1}} & K_{k+1} & \xrightarrow{\Phi_{k+1}} & C\left(X_{k+1}, K\right) \\
\downarrow \widetilde{R}_{k} & & & & \downarrow \gamma_{k} \\
A^{(k)} & \xrightarrow{\phi^{(k)}} & K^{(k)} & \xrightarrow{\Phi^{(k)}} & C\left(F^{(k)}, K\right) .
\end{array}
$$

Let ψ_{k} and $\widetilde{\psi}_{k}$ be the maps obtained from Proposition III.6.14 and Lemma III.6.17, respectively.

Now we proceed to induct on k. When $k=2$, let $\Psi_{1}: B_{1}=C\left(X_{1}, K\right) \rightarrow C\left(F^{(k-1)}, K\right)$ be defined by $\Psi_{1}=\left(\Phi^{(1)} \circ \phi^{(1)}\right) \circ \widetilde{\psi}_{1} \circ\left(\Phi_{1} \circ \phi_{1}\right)^{-1}$; let

$$
B_{2}=B_{1} \oplus_{C\left(F^{(1)}, K\right)} C\left(X_{2}, K\right)=\left\{(a, b) \in B_{1} \oplus C\left(X_{2}, K\right): \Psi_{1}(a)=\gamma_{k}(b)\right\} ;
$$

and let $\theta_{2}: D_{2} \rightarrow B_{2}$ be defined by $\theta_{2}=\left(\Phi_{1} \circ \phi_{1}\right) \oplus\left(\Phi_{2} \circ \phi_{2}\right)$.
We first show that θ_{2} does map into B_{2}. Let $(a, b) \in D_{2}$ Then $\widetilde{\psi}_{1}(a)=\widetilde{R}_{1}(b)$. Then

$$
\Psi_{1}\left(\Phi_{1} \circ \phi_{1}(a)\right)=\left(\Phi^{(1)} \circ \phi^{(1)}\right) \circ \tilde{\psi}_{1}(a)=\left(\Phi^{(1)} \circ \phi^{(1)}\right) \circ \tilde{R}_{1}(b)=\gamma_{1}\left(\Phi_{2} \circ \phi_{2}(b)\right) .
$$

Thus $\theta_{2}(a, b)=\left(\Phi_{1} \circ \phi_{1}(a), \Phi_{2} \circ \phi_{2}(b)\right) \in B_{2}$. So θ_{k} maps into B_{2}.
Next we show that θ_{2} is surjective. Let $(c, d) \in B_{2}$, and let

$$
(a, b)=\left(\left(\Phi_{1} \circ \phi_{1}\right)^{-1}(c),\left(\Phi_{2} \circ \phi_{2}\right)^{-1}(d)\right) .
$$

Now, $(c, d) \in B_{2}$ implies that $\Psi_{1}(c)=\gamma_{1}(d)$, that is $\Psi_{1}\left(\left(\Phi_{1} \circ \phi_{1}\right)(a)\right)=\gamma_{1}\left(\left(\Phi_{2} \circ \phi_{2}\right)(b)\right)$. But $\Psi_{1}\left(\left(\Phi_{1} \circ \phi_{1}(a)\right)=\left(\Phi^{(1)} \circ \phi^{(1)}\right) \circ \tilde{\psi}_{1}(a)\right.$, and $\gamma_{1}\left(\left(\Phi_{2} \circ \phi_{2}\right)(b)\right)=\left(\Phi^{(1)} \circ \phi^{(1)}\right) \circ \widetilde{R}_{1}(b)$. So

$$
\left(\Phi^{(1)} \circ \phi^{(1)}\right) \circ \tilde{\psi}_{1}(a)=\left(\Phi^{(1)} \circ \phi^{(1)}\right) \circ \tilde{R}_{1}(b) .
$$

Thus $\widetilde{\psi}_{1}(a)=\widetilde{R}_{1}(b)$, since $\Phi^{(1)} \circ \phi^{(1)}$ is injective. Therefore $(a, b) \in D_{2}$. It is clear that $\theta_{2}(a, b)=$ (c, d). Hence θ_{2} is surjective.

It is clear that θ_{2} is an injective ${ }^{*}$-homomorphism. So θ_{2} is a ${ }^{*}$-isomorphism.
Now suppose that result holds for some k with $2<k<N$. Let $\Psi_{k}: B_{k} \rightarrow C\left(F^{(k)}, K\right)$ be given by $\Psi_{k}=\left(\Phi^{(k)} \circ \phi^{(k)}\right) \circ \widetilde{\psi}_{k} \circ \theta_{k}^{-1}$, let

$$
B_{k+1}=B_{k} \oplus_{C\left(F^{(k)}, K\right)} C\left(X_{k+1}, K\right)=\left\{(a, b) \in B_{k} \oplus C\left(X_{k+1}, K\right): \Psi_{k}(a)=\gamma_{k}(b)\right\},
$$

and let $\theta_{k+1}: D_{k+1} \rightarrow B_{k+1}$ be given by $\theta_{k+1}=\theta_{k} \oplus\left(\Phi_{k+1} \circ \phi_{k+1}\right)$.

We first show that θ_{k+1} maps D_{k+1} to B_{k+1}. Let $(a, b) \in D_{k+1}$. Then

$$
\begin{aligned}
\Psi_{k}\left(\theta_{k}(a)\right) & =\left(\Phi^{(k)} \circ \phi^{(k)}\right) \circ \tilde{\psi}_{k}(a) \\
& =\Phi^{(k)} \circ \phi^{(k)}\left(\widetilde{R}_{k}(b)\right)=\gamma_{k}\left(\left(\Phi_{k+1} \circ \phi_{k+1}\right)(b)\right) .
\end{aligned}
$$

Thus $\theta_{k+1}(a, b)=\left(\theta_{k}(a),\left(\Phi_{k+1} \circ \phi_{k+1}\right)(b)\right) \in B_{k+1}$.
Next we show that θ_{k+1} is surjective. Let $(c, d) \in B_{k+1}$, and let $(a, b)=\left(\theta_{k}^{-1}(c),\left(\Phi_{k+1} \circ\right.\right.$ $\left.\left.\phi_{k+1}\right)^{-1}(d)\right)$. Since

$$
\begin{aligned}
\Psi_{k}(c) & =\Psi_{k}\left(\theta_{k}(a)\right)=\left(\Phi^{(k)} \circ \phi^{(k)}\right) \widetilde{\psi}_{k}(a)=\gamma_{k}(d) \\
& =\gamma_{k}\left(\left(\Phi_{k+1} \circ \phi_{k+1}\right)(b)\right)=\left(\Phi^{(k)} \circ \phi^{(k)}\right) \circ \tilde{R}_{k}(b)
\end{aligned}
$$

we see that $\widetilde{\psi}_{k}(a)=\widetilde{R}_{k}(b)$. Thus $(a, b) \in D_{k+1}$, and it is clear that $\theta_{k+1}(a, b)=(c, d)$. Therefore θ_{k+1} is surjective. Since θ_{k+1} is clearly an injective ${ }^{*}$-homomorphism, we see that θ_{k+1} is a *-isomorphism.

Corollary III.6.20. Let θ_{N} and ρ_{N} be the *-isomorphisms obtained in Corollary III.6.18 and Lemma III.6.15, respectively. Then $\theta_{N} \circ \rho_{N}$ is a ${ }^{*}$-isomorphism between A_{Z} and B_{N}.

At this moment, we essentially have a SRSH decomposition of A_{Z}. We only need to verify that the attaching maps are non-vanishing:

Lemma III.6.21. Let θ_{N} be as in Lemma III.6.19, let ρ_{N} be as in Corollary III.6.18, and let $\Phi_{k}, \phi_{k}, Q_{k}$ be as in Notation III.6.12. Let $f \in C_{0}\left(G_{Z}\right)$.

1. We have $\theta_{N} \circ \rho_{N}(f)=\left(\Phi_{1} \circ \phi_{1} \circ Q_{1}(f), \Phi_{2} \circ \phi_{2} \circ Q_{2}(f), \ldots, \Phi_{N} \circ \phi_{N} \circ Q_{N}(f)\right)$.
2. Let $1 \leq k \leq N$, let $x \in X_{k}$, and let

$$
T_{x}=\left\{(r, s x): s \in\left(\alpha_{k}(x), \beta_{k}(x)\right), s-r \in\left(\alpha_{k}(x), \beta_{k}(x)\right)\right\} .
$$

Then $T_{x}=G_{k,\{x\}}$ is a closed subset of $G_{k}, T_{x} \cap G_{Z} \neq \varnothing$, and $\Phi_{k} \circ \phi_{k} \circ Q_{k}(f)(x)=0$ if and only if $\phi_{k} \circ Q_{k}(f)(x)=0$, which happens if and only if $\left.f\right|_{G_{z} \cap T_{x}}=0$.
3. For each $k=2, \ldots, N$, and for each $x \in F^{(k-1)}$, there exists some $a \in B_{k-1}$ such that $\Psi_{k-1}(a)(x) \neq 0$, where Ψ_{k-1} is the map defined in Lemma III.6.19.

Proof: From the construction of the maps θ_{k} in the proof of Lemma III.6.19, we see that

$$
\theta_{N}\left(f_{1}, \ldots, f_{N}\right)=\left(\Phi_{1} \circ \phi_{1}\left(f_{1}\right), \ldots, \Phi_{N} \circ \phi_{N}\left(f_{N}\right)\right)
$$

for all $\left(f_{1}, \ldots, f_{N}\right) \in D_{N}$. From the definition of the maps ρ_{k} in Lemma III.6.15, we see that $\rho_{N}(f)=\left(Q_{1}(f), \ldots, Q_{N}(f)\right)$ for all $f \in C_{0}\left(G_{Z}\right)$. So part 1 is clear.

It is clear that $T_{x}=G_{k,\{x\}}$ is a closed subset of G_{k}, and $T_{x} \cap G_{Z}$ is nonempty. From the definition of the the maps Φ_{i}, it is clear that $\Phi_{k} \circ \phi_{k} \circ Q_{k}(f)(x)=0$ if and only if $\phi_{k} \circ Q_{k}(f)(x)=0$. By Lemma III.5.5, we have $\phi_{k}\left(\left(Q_{k}(f)\right)(x)=\lambda_{k}^{x}\left(Q_{k}(f)\right)=0\right.$ if and only if $\left.Q_{k}(f)\right|_{T_{x}}=0$. So $\Phi_{k} \circ \phi_{k} \circ Q_{k}(f)(x)=0$ if and only if $\left.Q_{k}(f)\right|_{T_{x}}=0$, if and only if $\left.Q_{k}(f)\right|_{T_{x} \cap G_{Z}}=0\left(Q_{k}(f)\right.$ vanishes outside of G_{Z}), if and only if $\left.\left(\left.f\right|_{G_{Z} \cap G_{k}}\right)\right|_{T_{x} \cap G_{Z}}=0$, if and only if $\left.f\right|_{T_{x} \cap G_{Z}}=0$.

For part 3, we use the notation in Lemma III.6.19. Note that $\Psi_{k-1}=\Phi^{(k-1)} \circ \phi^{(k-1)} \circ \tilde{\psi}_{k-1} \circ$ θ_{k-1}^{-1}. It is clear that there exists some $f \in C_{c}\left(G_{Z}\right)$ such that $\left.f\right|_{T_{x} \cap G_{Z}} \neq 0$. Let $a=\theta_{k-1} \circ \rho_{k-1}(f)$. Then $a \in B_{k-1}$. By part 2 we have

$$
\begin{aligned}
\Psi_{k-1}(a)(x) & =\Phi^{(k-1)} \circ \phi^{(k-1)} \circ \tilde{\psi}_{k-1}\left(\rho_{k-1}(f)\right)(x) \\
& =\Phi^{(k-1)} \circ \phi^{(k-1)} \circ \tilde{\psi}_{k-1}\left(Q_{1}(f), \ldots, Q_{k-1}(f)\right)(x) \\
& =\gamma_{k-1}\left(\left(\Phi_{k} \circ \phi_{k}\left(Q_{k}(f)\right)\right)(x)\right. \\
& =\left(\Phi_{k} \circ \phi_{k}\left(Q_{k}(f)\right)(x)\right.
\end{aligned}
$$

$\neq 0$.

Corollary III.6.22. A_{Z} is a SRSHA.

Proof: By Lemma III.6.19, and part 3 of Lemma III.6.21, we see that

$$
\left(X_{1}, B_{1},\left(X_{k}, F^{(k-1)}, \Psi_{k-1}, \gamma_{k-1}, B_{k}\right)_{k=2}^{N}\right)
$$

is a SRSH system, so $A_{Z} \cong B_{N}$ is a SRSHA.

The following lemma is known as the gluing lemma. It a standard result in point-set topology, so we will omit its proof.

Lemma III.6.23. Let X be a topological space. Let Y and Z be two subsets of X. Let $f: Y \rightarrow \mathbb{C}$ and $g: Z \rightarrow \mathbb{C}$ be continuous functions such that $\left.f\right|_{Y \cap Z}=\left.g\right|_{Y \cap Z}$. If either both Y and Z are closed in X or both Y and Z are both open in X, then the function $h: X \rightarrow \mathbb{C}$ defined by

$$
h(x)= \begin{cases}f(x) & \text { if } x \in Y \\ g(x) & \text { if } x \in Z\end{cases}
$$

is continuous.

The next lemma will be used in the next chapter.

Lemma III.6.24. Let

$$
\left(X_{1}, B_{1},\left(X_{k}, F^{(k-1)}, \Psi_{k-1}, \gamma_{k-1}, B_{k}\right)_{k=2}^{N}\right)
$$

be the SRSH decomposition for A_{Z} as in III.6.22. For each $k \in\{1, \ldots k\}$, let $H_{k}=G_{Z} \cap\left(\bigcup_{i=1}^{k} G_{i}\right)$. For each k with $1 \leq k \leq N$, if $I \subseteq B_{k}$ is a non-zero ideal, then $I \cap \widetilde{\theta}_{k}\left(C_{c}\left(H_{k}\right)\right) \neq 0$.

Proof: Define $\tau_{k}: C_{0}\left(H_{k}\right) \rightarrow E_{k}$ by $\tau_{k}(f)=\left(\left.f\right|_{\left.G_{i} \cap G_{Z}\right)}\right)_{i=1, \ldots, k}$. By Lemma III.4.6, for each k with $1 \leq k \leq N$, the set H_{k} is a closed subset of G_{Z}. Hence each $f \in C_{0}\left(H_{k}\right)$ extends to some $f^{\prime} \in C_{0}\left(G_{Z}\right)$. Thus $\tau(f)=\rho_{k}\left(f^{\prime}\right)$, where ρ_{k} is the map in the proof of Lemma III.6.15. Thus we see that τ_{k} indeed sends elements of $C_{0}\left(H_{k}\right)$ into E_{k}. It is clear that τ_{k} is injective. Also, since $G_{Z} \cap G_{i}$ is closed in H_{k} for every i with $1 \leq i \leq k+N$, surjectivity of τ_{k} follows easily from Lemma III.6.23. Linearity of τ_{k} is clear as well.

For each k with $1 \leq k \leq n$, define $\widetilde{\theta}_{k}: C_{0}\left(H_{k}\right) \rightarrow B_{k}$ by $\widetilde{\theta}_{k}=\theta_{k} \circ \tau_{k}$, where B_{k} and θ_{k} are as in Lemma III.6.19. We will also use τ_{k} and $\widetilde{\theta}_{k}$ to denote their restrictions to $C_{c}\left(H_{k}\right)$.

Now we proceed by induction. If $k=1$, then there exists a closed subset $F \subseteq X_{1}$ such that $I=\left\{f \in B_{1}:\left.f\right|_{F}=0\right\}$. Then $G_{1, F}$ is a closed subset of $G_{1}=G_{1} \cap G_{Z}$ by Corollary III.4.5. If $G_{1, F}=G_{1}$, then it is clear that $F=X_{1}$, which implies that $I=0$. Thus $F \neq X_{1}$, and so $G_{1, F} \neq G_{1}=H_{1}$. Then there exists $f \in C_{c}\left(G_{1}\right)=C_{c}\left(H_{1}\right)$ such that $\left.f\right|_{G_{i, F}}=0$ and $f \neq 0$. So $\widetilde{\theta}_{1}(f) \in I \cap \widetilde{\theta}_{1}\left(C_{0}\left(H_{1}\right)\right)$ and $\widetilde{\theta}_{1}(f) \neq 0$. Thus the lemma holds for $k=1$.

Now suppose that the lemma holds for some k with $1<k<N$. Let $I \subseteq B_{k+1}$ be a non-zero ideal. We can assume that $I \neq B_{k+1}$. Then we know that for each i with $1 \leq i \leq k+1$,
there exists a closed subset $F_{i} \subseteq X_{i}$ such that

$$
I=\left\{\left(f_{1}, \ldots, f_{k+1}\right) \in B_{k+1}:\left.f_{i}\right|_{F_{i}}=0 \text { for } i=1, \ldots, k+1\right\}
$$

First assume that $X_{k+1} \backslash F^{(k)}$ is not contained in F_{k+1}. (Recall that $F^{(k)}$ is the k-th attaching space.) Now, by Lemma III.4.6, we know that $G_{i} \cap G_{Z}$ is closed in G_{Z} for every i with $1 \leq i \leq k+1$. So $\bigcup_{i=1}^{k}\left(G_{i} \cap G_{Z}\right)$ is closed in G_{Z}. Thus $\bigcup_{i=1}^{k}\left(G_{i} \cap G_{Z}\right)$ is closed in H_{k+1}, because H_{k+1} is also contained in G_{Z}. Similarly, $G_{Z} \cap G_{k+1}$ is closed in H_{k+1} as well. Also, by Corollary III.4.5, we know that $G_{k+1, F_{k+1}}$ is closed in G_{k+1}. Thus $G_{Z} \cap G_{k+1, F_{k+1}}$ is closed in $G_{k+1} \cap G_{Z}$, which implies that $G_{Z} \cap G_{k+1, F_{k+1}}$ is closed in H_{k+1}. Therefore $G_{Z} \cap\left[G_{k+1, F_{k+1}} \cup\left(\bigcup_{i=1}^{k} G_{i}\right)\right]$ is closed in H_{k+1}. If $G_{Z} \cap\left[G_{k+1, F_{k+1}} \cup\left(\bigcup_{i=1}^{k} G_{i}\right)\right]=H_{k+1}$, then we have, by Lemma III.4.8 and Lemma

III.4.4,

$$
\begin{aligned}
G_{Z} \cap G_{k+1} & =G_{k+1} \cap G_{Z} \cap H_{k+1} \\
& =G_{k+1} \cap G_{Z} \cap\left[G_{k+1, F_{k+1}} \cup\left(\bigcup_{i=1}^{k} G_{i}\right)\right] \\
& =\left[G_{k+1} \cap G_{Z} \cap G_{k+1, F_{k+1}}\right] \cup\left[G_{k+1} \cap G_{Z} \cap\left(\bigcup_{i=1}^{k} G_{i}\right)\right] \\
& =\left(G_{Z} \cap G_{k+1, F_{k+1}}\right) \cup\left(G^{(k)} \cap G_{Z}\right) \\
& =G_{Z} \cap\left(G_{k+1, F_{k+1}} \cup G^{(k)}\right) \\
& =G_{Z} \cap G_{k+1, F_{k+1} \cup F^{(k)}} .
\end{aligned}
$$

Then $X_{k+1}=F^{(k)} \cup F_{k+1}$, which contradicts our assumption that $X_{k+1} \backslash F^{(k)} \nsubseteq F_{k+1}$. Thus $G_{Z} \cap\left[G_{k+1, F_{k+1}} \cup\left(\bigcup_{i=1}^{k} G_{i}\right)\right] \neq H_{k+1}$. Then there exists a nonzero element $f \in C_{c}\left(H_{k+1}\right)$ such that $\left.f\right|_{G_{Z} \cap\left[G_{k+1, F_{k+1}} \cup\left(\cup_{i=1}^{k} G_{i}\right)\right]}=0$. Then $\widetilde{\theta}_{k+1}(f) \neq 0$ and $\widetilde{\theta}_{k+1}(f)$ vanishes on F_{i} for all i with $1 \leq i \leq k+1$. Thus $I \cap \widetilde{\theta}_{k+1}\left(C_{0}\left(H_{k+1}\right)\right) \neq 0$.

Now assume that $X_{k+1} \backslash F^{(k)} \subseteq F_{k+1}$. Let $F=\overline{X_{k+1} \backslash F^{(k)}}$ and let

$$
J=\left\{\left(f_{1}, \ldots, f_{k+1}\right) \in B_{k+1}:\left.f_{k+1}\right|_{F}=0\right\}
$$

Let $P: B_{k+1} \rightarrow B_{k}$ be defined by $P\left(f_{1}, \ldots, f_{k+1}\right)=\left(f_{1}, \ldots, f_{k}\right)$. Then P is surjective (this follows because the map $\gamma_{k}: C\left(X_{k+1}, K\right) \rightarrow C\left(F^{(k)}, K\right)$ is surjective) and $\left.P\right|_{J}$ is injective (this follows
from the construction of B_{k+1} and the definition of J). Also J is an ideal of $B_{k+1}, F \subseteq F_{k+1}$, and $I \subseteq J$. Note that

$$
\operatorname{ker} P=\left\{\left(0, \ldots, 0, f_{k+1}\right):\left.f_{k+1}\right|_{F^{(k)}}=0\right\}
$$

If $I \subseteq \operatorname{ker} P$, then for every $a=\left(f_{1}, \ldots, f_{k+1}\right) \in I$, we have $\left.f_{k+1}\right|_{F^{(k)}}=0$ and $f_{i}=0$ for every i with $1 \leq i \leq k$. But f_{k+1} also vanishes on F_{k+1}, which contains $X_{k+1} \backslash F^{(k)}$ as a subset. So $f_{k+1}=0$. Consequently, we have $a=0$. This contradicts the assumption that $I \neq 0$. Thus I is not contained in ker P, which implies that $P(I)$ is a non-zero ideal of B_{k}. Therefore we have $P(I) \cap \widetilde{\theta}_{k}\left(C_{c}\left(H_{k}\right)\right) \neq 0$ by the inductive hypothesis. So pick $g \in C_{c}\left(H_{k}\right)$ such that $g \neq 0$ and $\widetilde{\theta}_{k}(g) \in P(I)$. Now we prove some claims.

Claim 1: Let $R: C_{0}\left(H_{k+1}\right) \rightarrow C_{0}\left(H_{k}\right)$ be defined by $R(f)=\left.f\right|_{H_{k}}$. Then R is a linear surjection. Also the following diagram commutes:

It is clear that R is a linear surjection. If $f \in C_{0}\left(H_{k+1}\right)$, then

$$
\begin{aligned}
P\left(\widetilde{\theta}_{k+1}(f)\right) & =P\left(\theta_{k+1}\left(\tau_{k+1}(f)\right)\right) \\
& =P\left(\theta_{k+1}\left(\left.f\right|_{G_{1} \cap G_{Z}}, \ldots,\left.f\right|_{G_{k+1} \cap G_{Z}}\right)\right) \\
& =P\left(\theta_{k}\left(\left.f\right|_{G_{1} \cap G_{z}}, \ldots,\left.f\right|_{G_{k}}\right), \Phi_{k+1} \circ \phi_{k+1}\left(\left.f\right|_{G_{k+1} \cap G_{Z}}\right)\right) \\
& =\theta_{k}\left(\left.f\right|_{G_{1} \cap G_{Z}}, \ldots,\left.f\right|_{G_{k} \cap G_{Z}}\right) \\
& =\theta_{k}\left(\left.R(f)\right|_{G_{1} \cap G_{Z}}, \ldots,\left.R(f)\right|_{G_{k} \cap G_{Z}}\right) \\
& =\theta_{k}\left(\tau_{k}(R(f))\right) \\
& =\widetilde{\theta}_{k}(R(f)) .
\end{aligned}
$$

So Claim 1 is proven.
Claim 2: We have $P^{-1}(P(I)) \subseteq\left\{\left(f_{1}, \ldots, f_{k}, f_{k+1}\right) \in B_{k+1}:\left.f_{k+1}\right|_{F \cap F^{(k)}}=0\right\}$.
Suppose that $f=\left(f_{1}, \ldots, f_{k+1}\right) \in P^{-1}(P(I))$. Then there exists $a=\left(g_{1}, \ldots, g_{k+1}\right) \in I$ such that $P(f)=P(a)$. So $\left(f_{1}, \ldots, f_{k}\right)=\left(g_{1}, \ldots g_{k}\right)$. Then by the construction of B_{k+1}, we have
$\left.f_{k+1}\right|_{F^{(k)}}=\left.g_{k+1}\right|_{F^{(k)}}$. Therefore $\left.f_{k+1}\right|_{F \cap F^{(k)}}=\left.g_{k+1}\right|_{F \cap F^{(k)}}=0$, since $a \in I$ and $F \cap F^{(k)} \subseteq F_{k+1}$. Claim 2 is proven.

Claim 3: (Recall that the element g is chosen, right before Claim 1 above, to satisfy $g \neq 0$ and $\widetilde{\theta}_{k}(g) \in P(I)$.) We have $\left.g\right|_{G_{k+1, F} \cap H_{k}}=0$ or $G_{k+1, F} \cap H_{k}=\varnothing$.

Suppose that $G_{k+1, F} \cap H_{k} \neq \varnothing$ and $\left.g\right|_{G_{k+1, F} \cap H_{k}} \neq 0$. Using Claim 1, choose $h \in C_{0}\left(H_{k+1}\right)$ such that $R(h)=g$. Note that

$$
\begin{aligned}
G_{k+1, F} \cap H_{k} & =G_{k+1, F} \cap G_{Z} \cap G_{k+1} \cap H_{k} \\
& =\left(G_{k+1, F} \cap G_{Z}\right) \cap\left(G_{Z} \cap G_{k+1, F^{(k)}}\right) \\
& =G_{Z} \cap G_{k+1, F \cap F^{(k)}} .
\end{aligned}
$$

So $\left.h\right|_{G_{k+1, F \cap F^{(k)}}} \neq 0$. Then by Lemma III.5.5, $\left.\widetilde{\theta}_{k+1}(h)\right|_{F \cap F^{(k)}} \neq 0$. By Claim 2, $P\left(\widetilde{\theta}_{k+1}(h)\right) \notin P(I)$. But by Claim 1, $P\left(\widetilde{\theta}_{k+1}(h)\right)=\widetilde{\theta}_{k}(R(h))=\widetilde{\theta}_{k}(g) \in P(I)$. This is a contradiction, so Claim 3 is proven.

Now,

$$
\begin{aligned}
G_{k+1} \cap\left[\left(G_{k+1, F} \cap G_{Z}\right) \cup H_{k}\right] & =G_{k+1} \cap G_{Z} \cap\left[G_{k+1, F} \cup\left(\bigcup_{i=1}^{k} G_{i}\right)\right] \\
& =\left(G_{Z} \cap G_{k+1, F}\right) \cup\left[\left(G_{Z} \cap G_{k+1}\right) \cap\left(\bigcup_{i=1}^{k} G_{i}\right)\right] \\
& =\left(G_{Z} \cap G_{k+1, F}\right) \cup\left(G_{Z} \cap G_{k+1, F(k)}\right) \\
& =G_{Z} \cap G_{k+1, F^{(k)} \cup F} \\
& =G_{Z} \cap G_{k+1} .
\end{aligned}
$$

So we have

$$
\begin{aligned}
H_{k+1} & =\left(G_{Z} \cap G_{k+1}\right) \cup H_{k} \\
& =\left\{G_{k+1} \cap\left[\left(G_{k+1, F} \cap G_{Z}\right) \cup H_{k}\right]\right\} \cup H_{k} \\
& =\left\{G_{k+1} \cup H_{k}\right\} \cap\left\{\left[\left(G_{k+1, F} \cap G_{Z}\right) \cup H_{k}\right] \cup H_{k}\right\} \\
& =\left\{G_{k+1} \cup H_{k}\right\} \cap\left\{\left(G_{k+1, F} \cap G_{Z}\right) \cup H_{k}\right\} \\
& =\left[G_{k+1} \cap\left(G_{k+1, F} \cap G_{Z}\right)\right] \cup H_{k} \\
& =\left(G_{k+1, F} \cap G_{Z}\right) \cup H_{k} .
\end{aligned}
$$

Both $G_{k+1, F} \cap G_{Z}$ and H_{k} are closed in H_{k+1}. Also, by Claim 3, regardless of whether or not $G_{k+1, F} \cap H_{k}=\left(G_{k+1, F} \cap G_{Z}\right) \cap H_{k}$ is empty, the function g agrees with the zero function on

$$
G_{k+1, F} \cap H_{k}=\left(G_{k+1, F} \cap G_{Z}\right) \cap H_{k} .
$$

Thus by Lemma III.6.23, g can be extended to some $g^{\prime} \in C_{0}\left(H_{k+1}\right)$ such that $\left.g^{\prime}\right|_{G_{k+1, \mathrm{~F}} \cap G_{z}}=0$. Then by Lemma III.5.5, $\widetilde{\theta}_{k+1}\left(g^{\prime}\right)$ vanishes on F. So $\tilde{\theta}_{k+1}\left(g^{\prime}\right) \in J$. It is clear that $\widetilde{\theta}_{k+1}\left(g^{\prime}\right) \neq 0$. Also, since g^{\prime} vanishes outside of H_{k}, the support of g^{\prime} is the same as g, so $g^{\prime} \in C_{c}\left(H_{k+1}\right)$.

Finally we check that $\widetilde{\theta}_{k+1}\left(g^{\prime}\right) \in I$. By Claim 1, $P\left(\widetilde{\theta}_{k+1}\left(g^{\prime}\right)\right)=\widetilde{\theta}_{k}(g) \in P(I)$. So there exists some $g^{\prime \prime} \in I$ such that $P\left(\widetilde{\theta}_{k+1}\left(g^{\prime}\right)\right)=P\left(g^{\prime \prime}\right)$. But $\left.P\right|_{J}$ is injective, and both $\widetilde{\theta}_{k+1}\left(g^{\prime}\right)$ and $g^{\prime \prime}$ are in J, so $\widetilde{\theta}_{k+1}\left(g^{\prime}\right)=g^{\prime \prime} \in I$. This completes the proof.

Corollary III.6.25. If $I \subseteq A_{Z}$ is a non-zero ideal, then $I \cap C_{c}\left(G_{Z}\right) \neq 0$.
Proof: Let $I \subseteq A_{Z}$ be a non-zero ideal. Note that $\left.\left(\theta_{N} \circ \rho_{N}\right)\right|_{C_{0}\left(G_{Z}\right)}=\tilde{\theta}_{N}$. Since $\theta_{N} \circ \rho_{N}(I)$ is a non-zero ideal of B_{N}, we see that

$$
\begin{aligned}
0 & \neq \theta_{N} \circ \rho_{N}(I) \cap \tilde{\theta}_{N}\left(C_{c}\left(G_{Z}\right)\right) \\
& =\theta_{N} \circ \rho_{N}(I) \cap \theta_{N} \circ \rho_{N}\left(C_{c}\left(G_{Z}\right)\right) \\
& =\theta_{N} \circ \rho_{N}\left(I \cap C_{c}\left(G_{Z}\right)\right) .
\end{aligned}
$$

So $I \cap C_{c}\left(G_{Z}\right) \neq 0$.

CHAPTER IV

INDUCTIVE LIMITS OF SRSHAS AS C^{*}-SUBALGEBRAS OF $C^{*}(X, \mathbb{R})$

In this chapter, we show that when X is a compact metric space and when \mathbb{R} acts on X freely and minimally, the crossed product $C^{*}(X, \mathbb{R})$ contains C^{*}-subalgebras that are isomorphic to simple inductive limits of SRSHAs. These subalgebras are the analogs of the algebras $A_{y}=$ $C^{*}\left(C(X), u C_{0}(X \backslash\{y\})\right)$, the C^{*}-subalgebra generated by $C(X)$ and $u C_{0}(X \backslash\{y\})$, in the crossed product obtained from a free minimal action of \mathbb{Z} on a compact metric space X.

IV.1. Definition of the Subalgebra A_{y}

To define the subalgebras A_{y}, we will first need a different description of the set G_{Z} defined in Notation III.1.10.

Lemma IV.1.1. Let Z be a pseudo-transversal of a free minimal action of \mathbb{R} on a compact metric space. Let G_{Z} be the set defined in Notation III.1.10. For each $r \in[0, \infty)$, let $D_{r}=[0, r] \cdot Z$, and for each $r \in(-\infty, 0]$, let $D_{r}=[r, 0] \cdot Z$, where we take $[0,0]$ to be the degenerate closed interval $\{0\}$. Then $G_{Z}=\left(\bigcup_{s \in \mathbb{R}}\left(\{s\} \times D_{s}\right)\right)^{c}$.

Proof: \quad Let $H=\left(\bigcup_{s \in \mathbb{R}}\left(\{s\} \times D_{s}\right)\right)^{c}$. Let $(r, x) \in G_{Z}$. Then $x \in Z^{c}$, and $-r \in(\alpha(x), \beta(x))$, where α and β are the backward and forward entering times for Z, respectively. First assume that $r \geq 0$. If $(r, x) \notin H$, then $(r, x) \in \bigcup_{s \in \mathbb{R}}\left(\{s\} \times D_{s}\right)$, and then $x \in D_{r}=[0, r] \cdot Z$, so there exists $t \in[0, r]$ and $z \in Z$ such that $x=t z$. Then $(-t) x=z \in Z$. Since $x \in Z^{c}$, we see that $t \neq 0$, and so $-t<0$. Then $\alpha(x) \geq-t$ by the definition of the backward entering time. But $-r>\alpha(x) \geq-t$, so $r<t$, contradicting the fact that $t \in[0, r]$. Thus $(r, x) \in H$. With a very similar argument, we see that $(r, x) \in H$ when $r \leq 0$. So $G_{Z} \subseteq H$.

Now suppose that $(r, x) \in H$. Then $x \notin D_{r}$. First assume that $r \geq 0$. Since $x \notin D_{r}=$ $[0, r] \cdot Z$, for all $s \in[-r, 0]$, we have $s x \notin Z$. In particular $x \notin Z$ and $(-r) x \notin Z$. Also, $\alpha(x) \leq-r$.

But $\alpha(x) \neq-r$, for otherwise, $(-r) x=\alpha(x) x \in Z$. Thus $\alpha(x)<-r \leq 0<\beta(x)$. So $(r, x) \in G_{Z}$. With a very similar argument, we see that $(r, x) \in G_{Z}$ if $r \leq 0$. So $H \subseteq G_{Z}$.

Notation IV.1.2. Let Z be a compact pseudo-transversal of a free minimal action of \mathbb{R} on a compact metric space X. For each $y \in X$, let $D_{r}^{y}=[0, r] \cdot y$ if $r \geq 0$, let $D_{r}^{y}=[r, 0] \cdot y$ if $r \leq 0$, where $[0,0]=\{0\}$, and let $G_{y}=\left(\bigcup_{r \in \mathbb{R}}\left(\{r\} \times D_{r}^{y}\right)\right)^{c}$. For each $y \in Z$ and each $r>0$, let $B(y, r)=\{x \in X: d(x, y)<r\}$, let $\widetilde{Z}_{r}^{y}=Z \cap B(y, r)$, and let $Z_{r}^{y}=\overline{\widetilde{Z}_{r}^{y}}$.

Lemma IV.1.3. Using the notation in Notation IV.1.2, for all $y \in Z$, all $r>0$, and all $x \in X$, we have

1. $(\mathbb{R} \cdot x) \cap \widetilde{Z}_{r}^{y} \neq \varnothing$.
2. $\widetilde{Z}_{r}^{y} \subseteq \widetilde{Z}_{r}^{y} \cap(\mathbb{R} \cdot x)$.
3. $\overline{Z_{r}^{y} \cap(\mathbb{R} \cdot x)}=Z_{r}^{y}$.
4. Z_{r}^{y} is a pseudo-transversal, and $Z_{r}^{y} \subseteq Z$.

Proof: Fix $y \in Z r>0$ and $x \in X$. Let $S=(\mathbb{R} \cdot x) \cap Z$.
Since Z is a pseudo-transversal, we have $\bar{S}=Z$. This implies that $S \cap B(y, r) \cap Z \neq \varnothing$, which implies that $(\mathbb{R} \cdot x) \cap \widetilde{Z}_{r}^{y} \neq \varnothing$. This proves part 1 .

Let $z \in \widetilde{Z}_{r}^{y}$. Then there exists $\epsilon>0$ such that $B(z, \epsilon) \subseteq B(y, r)$. By part 1 , for all $n \geq 1$, we have $(\mathbb{R} \cdot x) \cap \widetilde{Z}_{\epsilon / 2^{n}}^{z} \neq \varnothing$. So for each $n \geq 1$, choose $x_{n} \in(\mathbb{R} \cdot x) \cap \widetilde{Z}_{\epsilon / 2^{n}}^{z}$. Now, for each $n \geq 1$, we have $B\left(z, \epsilon / 2^{n}\right) \subseteq B(z, \epsilon) \subseteq B(y, r)$, so $x_{n} \in \widetilde{Z}_{r}^{y} \cap(\mathbb{R} \cdot x)$ for all $n \geq 1$. Since $d\left(x_{n}, z\right)<\epsilon / 2^{n}$ for each $n \geq 1$, we see that $x_{n} \rightarrow z$. So part 2 holds. Then $Z_{r}^{y}=\overline{\widetilde{Z}_{r}^{y}} \subseteq \overline{(\mathbb{R} \cdot x) \cap \widetilde{Z}_{r}^{y}} \subseteq \overline{(\mathbb{R} \cdot x) \cap Z_{r}^{y}}$.
 holds. Part 4 follows immediately from part 3 . This finishes the proof.

IV.2. Simplicity and Topological Stable Rank of A_{y}

Notation IV.2.1. For the rest of the chapter, we fix a pseudo-transversal Z, a point $y \in Z$, and a strictly decreasing sequence $\left\{r_{n}\right\}$ of positive real numbers that converges to 0 . For each $n \geq 1$, let $Z_{n}=Z_{r_{n}}^{y}$, where $Z_{r_{n}}^{y}$ is as in Notation IV.1.2, let $G_{Z_{n}}$ be the set defined in Notation III.1.10, let $A_{n}=\overline{C_{0}\left(G_{Z_{n}}\right)}$, and let $A_{y}=\overline{C_{c}\left(G_{y}\right)}$. Note that $Z_{1} \supseteq Z_{2} \supseteq \cdots$, and that $\bigcap_{n=1}^{\infty} Z_{n}=\{y\}$.

Lemma IV.2.2. We have

1. $G_{Z_{1}} \subseteq G_{Z_{2}} \subseteq \cdots$ and $\bigcup_{n \geq 1} G_{Z_{n}}=G_{y}$.
2. $C_{0}\left(G_{Z_{1}}\right) \subseteq C_{0}\left(G_{Z_{2}}\right) \subseteq \cdots$ and $C_{c}\left(G_{y}\right)=\bigcup_{n \geq 1} C_{c}\left(G_{Z_{n}}\right)$.
3. $A_{1} \subseteq A_{2} \subseteq \cdots$ and $A_{y}=\overline{\bigcup_{n \geq 1} A_{n}}$.

Proof: For each $r \in \mathbb{R}$, let D_{r}^{y} be as in Notation IV.1.2; and for each $n \geq 1$, and each $r \in \mathbb{R}$, let D_{r}^{n} be the set D_{r} in Lemma IV.1.1 for the pseudo-transversal Z_{n}. Then by Lemma IV.1.1, we have $G_{Z_{n}}=\left(\bigcup_{r \in \mathbb{R}}\left(\{r\} \times D_{r}^{n}\right)\right)^{c}$. We first claim that for all $r \in \mathbb{R}$, we have $D_{r}^{y}=\bigcap_{n=1}^{\infty} D_{r}^{n}$.

It is clear that for all $r \in \mathbb{R}$, we have $D_{r}^{y} \subseteq \bigcap_{n=1}^{\infty} D_{r}^{n}$. So we just need to prove the other inclusion. Let $r \in \mathbb{R}$. We will only prove the inclusion for the case when $r>0$, because the case when $r<0$ is similar, and the case when $r=0$ is trivial. Let $x \in \bigcap_{n \geq 1} D_{r}^{n}$. Then for each $n \geq 1$, there exist $s_{n} \in[0, r]$ and $z_{n} \in Z_{n}$ such that $x=s_{n} z_{n}$. It is clear that $z_{n} \rightarrow y$. Since $\left\{s_{n}\right\}$ is a bounded sequence, we can assume, passing to a subsequence if necessary, that $s_{n} \rightarrow s$ for some $s \in[0, r]$. Then $x=s_{n} z_{n} \rightarrow s y \in D_{r}^{y}$. Thus $\bigcap_{n \geq 1} D_{r}^{n} \subseteq D_{r}^{y}$. So the claim is proven.

Thus $(s, x) \in\left(G_{y}\right)^{c}$ if and only if $(s, x) \in \bigcup_{r \in \mathbb{R}}\left(\{r\} \times D_{r}^{y}\right)$, if and only if $x \in D_{s}^{y}$, if and only if $x \in \bigcap_{n \geq 1} D_{s}^{n}$, if and only if $(s, x) \in \bigcap_{n \geq 1}\{s\} \times D_{s}^{n}$, if and only if (s, x) belongs to $\bigcap_{n \geq 1}\left(\bigcup_{r \in \mathbb{R}}\left(\{r\} \times D_{r}^{n}\right)\right)$, if and only if $(s, x) \in \bigcap_{n \geq 1}\left(G_{Z_{n}}^{c}\right)=\left(\bigcup_{n \geq 1} G_{Z_{n}}\right)^{c}$. So $\bigcup_{n \geq 1} G_{Z_{n}}=G_{y}$. Since $D_{r}^{1} \supseteq D_{r}^{2} \supseteq \cdots$ for all $r \in \mathbb{R}$, it follows immediately that $G_{Z_{1}} \subseteq G_{Z_{2}} \subseteq \cdots$. Part 1 is proven.

The first statement of part 2 and the first statement of part 3 follow immediately from the first statement of part 1 . Now let $f \in C_{c}\left(G_{y}\right)$, and let K be the support of f. Then $K \subseteq$ $G_{y}=\bigcup_{n \geq 1} G_{Z_{n}}$. Since $G_{Z_{n}}$ is open, and since K is compact, there exists $N \geq 1$ such that $K \subseteq$ $\bigcup_{n=1}^{N} G_{Z_{n}}=G_{Z_{N}}$. So $f \in C_{c}\left(G_{Z_{n}}\right) \subseteq \bigcup_{n \geq 1} C_{c}\left(G_{Z_{n}}\right)$. It is clear that $\bigcup_{n \geq 1} C_{c}\left(G_{Z_{n}}\right) \subseteq C_{c}\left(G_{y}\right)$. So part 2 is proven.

It follows immediately from part 1 and 2 and the first statement of part 3 that $A_{y} \subseteq$ $\overline{\bigcup_{n \geq 1} A_{n}}$. For the other inclusion, note that for each $n \geq 1, C_{c}\left(G_{Z_{n}}\right) \subseteq C_{c}(\mathbb{R} \times X)$ is dense in $C_{0}\left(G_{Z_{n}}\right) \subseteq C_{c}(\mathbb{R} \times X)$ when $C_{c}(\mathbb{R} \times X)$ has the inductive limit topology, and so $C_{c}\left(G_{Z_{n}}\right)$ is dense in $C_{0}\left(G_{Z_{n}}\right)$ in the norm topology. Then for all $n \geq 1$, we have $A_{n}=\overline{C_{c}\left(G_{Z_{n}}\right)} \subseteq \overline{C_{c}\left(G_{y}\right)}=A_{y}$. The desired inclusion follows.

Lemma IV.2.3. If $I \subseteq A_{y}$ is a non-zero ideal, then $I \cap C_{c}\left(G_{y}\right) \neq 0$.
Proof: \quad Since $I=\overline{\bigcup_{n \geq 1}\left(A_{n} \cap I\right)}$, we know that for some $n \geq 1, I \cap A_{n} \neq 0$. Then $I \cap A_{n}$ is a non-zero ideal in A_{n}, so by Corollary III.6.25, we have $I \cap A_{n} \cap C_{c}\left(G_{Z_{n}}\right) \neq 0$. But $I \cap A_{n} \cap C_{c}\left(G_{Z_{n}}\right) \subseteq$ $I \cap C_{c}\left(G_{y}\right)$, so $C_{c}\left(G_{y}\right) \cap I \neq 0$.

Lemma IV.2.4. Let U be an open set in $\mathbb{R} \times X$. For each $n \geq 1$, let R_{n} denote the return time for Z_{n}, and for each $n \geq 1$ and each $z \in Z_{n}$, let

$$
T_{z}^{n}=\left\{(r, s z): s \in\left(0, R_{n}(z)\right), s-r \in\left(0, R_{n}(z)\right)\right\}
$$

Then there exists $N \geq 1$ such that for all $n \geq N$ and all $z \in Z_{n}$, we have $T_{z}^{n} \cap U \neq \varnothing$.
Proof: \quad We first show that for each $\Gamma \in(0, \infty)$, there exists $m \geq 1$ such that $R_{m}(z) \geq \Gamma$ for all $z \in Z_{m}$. By Lemma III.2.1, there exists a compact neighborhood K of y that satisfies $[(0, \Gamma] \cdot(K \cap Z)] \cap(K \cap Z)=\varnothing$. Let $\delta>0$ satisfy $B(y, \delta) \subseteq K$, and let $m \geq 1$ satisfy $r_{m}<\delta$. Then

$$
Z_{m}=\overline{B\left(y, r_{m}\right) \cap Z} \subseteq \overline{B(y, \delta) \cap Z} \subseteq \overline{B(y, \delta)} \cap Z \subseteq K \cap Z
$$

So for all $z \in Z_{m}$, we have

$$
[(0, \Gamma] \cdot z] \cap Z_{m} \subseteq[(0, \Gamma] \cdot(K \cap Z)] \cap(K \cap Z)=\varnothing
$$

and so $R_{m}(z) \geq \Gamma$.
Now let $I \subseteq \mathbb{R}$ be a nonempty bounded open interval, and let $V \subseteq X$ be an open set such that $I \times V \subseteq U$. Let $r_{0}>0$ be such that $I \subseteq\left(-r_{0}, r_{0}\right)$, and let $s_{0}>r_{0}$ be such that $s_{0} \cdot y \in V$. (The existence of s_{0} is guaranteed by the minimality of the action.) Pick N such that $s_{0} \cdot B\left(y, r_{N}\right) \subseteq V$ and $R_{N}(z) \geq s_{0}+r_{0}$ for all $z \in Z_{N}$. Note that $R_{1} \leq R_{2} \leq \cdots$. Let $n>N$. Then $s_{0} \cdot Z_{n} \subseteq V$. Now let $z \in Z_{n}$. Then $s_{0} \cdot z \in V$. Let $t \in I$. Then $-r_{0}<-t<r_{0}$, so

$$
0<s_{0}-r_{0}<s_{0}-t<s_{0}+r_{0} \leq R_{N}(z) \leq R_{n}(z) .
$$

Also $R_{n}(z) \geq r_{0}+s_{0}>s_{0}>0$, so $\left(t, s_{0} z\right) \in T_{z}^{n}$. It is clear that $\left(t, s_{0} z\right) \in I \times V \subseteq U$. Thus $T_{z}^{n} \cap U \neq \varnothing$.

Proposition IV.2.5. Let A_{y} be the C^{*}-algebra defined in Notation IV.2.1. Then A_{y} is simple.

Proof: Recall that for each $n \geq 1$, the set Z_{n} denotes the pseudo-transversal that gives rise to A_{n}. Let $I \subseteq A_{y}$ be a non-zero ideal. By Lemma IV.2.3, we have $I \cap C_{c}\left(G_{y}\right) \neq 0$. So let $0 \neq f \in C_{c}\left(G_{y}\right) \cap I$. Let $U=\{x \in \mathbb{R} \times X: f(x) \neq 0\}$. Then U is open. Use Part 2 of Lemma IV.2.2 and Lemma IV.2.4 to get N such that for all $n \geq N$, the function f belongs to $C_{c}\left(G_{Z_{n}}\right)$, and for all $n \geq N$ and for all $z \in Z_{n}$, we have $T_{z}^{n} \cap U \neq \varnothing$, where $T_{z}^{n}=\left\{(r, s z): s, s-r \in\left(0, R_{n}(z)\right)\right\}$. Now fix $n \geq N$.

Let $X_{1}, X_{2}, \ldots, X_{m}$ be the compact subsets of X associated with the pseudo-transversal Z_{n} as defined in Notation III.2.5. Let $\alpha_{1}, \ldots, \alpha_{m}$ be the extensions of the backward entering times associated with X_{1}, \ldots, X_{m}, as obtained in Lemma III.2.8. Let $\beta_{1}, \ldots, \beta_{m}$ be the extensions of the forward entering times associated with X_{1}, \ldots, X_{m}, as obtained in Lemma III.2.8. Then X_{1}, \ldots, X_{m} are the base spaces of the stable recursive decomposition of A_{n} with components $C\left(X_{i}, K\right)$, for $i=1, \ldots, m$, as in Corollary III.6.22. For each $i \in\{1, \ldots, m\}$ and each $x \in X_{i}$, let $H_{i}^{x}=\left\{(r, s x): s, s-r \in\left(\alpha_{i}(x), \beta_{i}(x)\right)\right\}$. We claim that $H_{i}^{x} \cap G_{Z} \cap U \neq \varnothing$ for each $i \in\{1, \ldots, m\}$ and each $x \in X_{i}$.

Let $i \in\{1, \ldots, m\}$, and let $x \in X_{i}$. Let $z=\alpha_{i}(x) x \in Z_{n}$. Then $R_{n}(z) \leq \beta_{i}(x)-\alpha_{i}(x)$. Let $(r, s z) \in T_{z}^{n}$. Then $(r, s z)=\left(r,\left(s+\alpha_{i}(x)\right) x\right)$. Since $0<s<R_{n}(z)$, we see that $\alpha_{i}(x)<s+\alpha_{i}(x)<$ $R_{n}(z)+\alpha_{i}(x) \leq \beta_{i}(x)$, so $s+\alpha_{i}(x) \in\left(\alpha_{i}(x), \beta_{i}(x)\right)$. Since $0<s-r<R_{n}(z)$, we have

$$
\alpha_{i}(x)<\alpha_{i}(x)+s-r<R_{n}(z)+\alpha_{i}(x) \leq \beta_{i}(x)
$$

So $(r, s z)=\left(r,\left(\alpha_{i}(x)+s\right) x\right) \in H_{i}^{x}$. Thus $T_{z}^{n} \subseteq H_{i}^{x}$. Then, since $T_{z}^{n} \subseteq G_{Z}$, we see that $T_{z}^{n} \subseteq$ $H_{i}^{x} \cap G_{Z}$. Thus $\varnothing \neq U \cap T_{z}^{n} \subseteq U \cap H_{i}^{x} \cap G_{Z}$. This proves the claim.

To finish the proof, let $\left(f_{1}, \ldots, f_{m}\right)$ be the image of f in the recursive decomposition B of A_{n}. Let $i \in\{1, \ldots, m\}$ and let $x \in X_{i}$. We just showed that $H_{i}^{x} \cap G_{Z} \cap U \neq \varnothing$. So $\left.f\right|_{H_{i}^{x} \cap G_{Z}} \neq 0$. Then by Lemma III.6.21, we have $f_{i}(x) \neq 0$. This holds for all $i \in\{1, \ldots, m\}$ and all $x \in X_{i}$. So $\left(f_{1}, \ldots, f_{m}\right)$ is not contained in any primitive ideal of B, so $\left(f_{1}, \ldots, f_{m}\right)$ is not contained any proper closed ideal B, so neither can f be contained in any proper closed ideal of A_{n}. Therefore $I \cap A_{n}=A_{n}$. This holds for all $n \geq N$. So $I=\overline{\bigcup_{n=1}\left(I \cap A_{n}\right)}=\overline{\bigcup_{n \geq N} A_{N}}=A_{y}$. Thus A_{y} is simple.

The next lemma shows that the connecting maps in the direct system (A_{n}, ι_{n}), where A_{n} is as in Notation IV.2.1 and ι_{n} is the inclusion map, are non-vanishing.

Lemma IV.2.6. Let A_{n} and A_{y} be as in IV.2.1. Let $\iota_{n}: A_{n} \rightarrow A_{n+1}$ be the inclusion. For each $n \geq 1$, let $X_{1}^{n}, \ldots, X_{l_{n}}^{n}$ be the spaces associated with the pseudo-transversal Z_{n+1} as defined in Notation III.2.5. Then for each $n \geq 1$, for each $k \in\left\{1, \ldots, l_{n}\right\}$, and for each $x \in X_{k}$, there exists some $f \in C_{c}\left(G_{Z_{n}}\right)$ such that $\left.\iota_{n}(f)\right|_{T_{x}} \neq 0$, where

$$
T_{x}=\left\{(r, s x): s \in\left(\left(\alpha_{n+1}(x), \beta_{n+1}(x)\right), s-r \in\left(\alpha_{n+1}(x), \beta_{n+1}(x)\right)\right\},\right.
$$

and where α_{n+1} and β_{n+1} are the entering times (not the extensions) associated with the pseudo-transversal Z_{n+1}.

Proof: We know that $G_{Z_{n}} \subseteq G_{Z_{n+1}}$. We show that $T_{x} \cap G_{Z_{n}}$ is nonempty. Because Z_{n} and Z_{n+1} are pseudo-transversals, there exists some $s \in\left(\alpha_{n+1}(x), \beta_{n+1}(x)\right)$ such that $s x \notin Z_{n}$. Take $r>0$ small enough so that $-r \in\left(\alpha_{n+1}(s x), \beta_{n+1}(s x)\right)$, and that $(-2 r, 2 r) \cdot(s x) \subseteq Z_{n}^{c}$. Then $(r, s x) \in G_{Z_{n}} \cap T_{x}$. Thus $T_{x} \cap G_{Z_{n}} \neq \varnothing$.

Then it is clear that there exists some $f \in C_{c}\left(G_{Z_{n}}\right)$ such that $\left.f\right|_{T_{x}} \neq 0$.
Theorem IV.2.7. The algebra A_{y} is isomorphic to a simple inductive limit of SRSHAs such that all connecting the maps of the inductive system are injective and non-vanishing. Let X_{n} be the total space of the n-th SRSHA in the inductive system. Then $\operatorname{dim}\left(X_{n}\right) \leq d$ for some $d \in \mathbb{N}$. Moreover, A_{y} has topological stable rank one.

Proof: For each $n \geq 1$, let $\iota_{n}: A_{n} \rightarrow A_{n+1}$ be the inclusion map. Let B_{n} be the SRSHA associated with the SRSH decomposition obtained in previous chapter, and let $h_{n}: A_{n} \rightarrow B_{n}$ be the isomorphism in Corollary III.6.20. Define $\zeta_{n}: B_{n} \rightarrow B_{n+1}$ by $\zeta_{n}=h_{n+1} \circ \iota_{n} \circ h_{n}^{-1}$.

It is clear that the total space of B_{n} has dimension less or equal to the dimension of X, which is finite. It is also clear that ζ_{n} is injective. Lemmas III.6.21 and IV.2.6 show that ζ_{n} is non-vanishing.

So the first statement of the theorem holds. It follows from Theorem II.3.23 and Porposition IV.2.5 that A_{y} has topological stable rank one.

REFERENCES

[1] W. Arveson, An Invitation to C^{*}-Algebras, Graduate Texts In Mathematics 39, Springer-Verlag, Berlin, Heidelberg, New York, 1976.
[2] M. Dădărlat, G. Nagy, A. Némethi, C. Pasnicu, Reduction of topological stable rank in inductive limits of C^{*}-algebras, Pacific J. Math. 153(1992), 267-276.
[3] H. Lin, N. C., Phillips, Crossed products by minimal homeomorphisms, J. reine angew. Math., to appear (arXiv:math.OA/0408291).
[4] Q. Lin, Analytic structure of the transformation group C^{*}-algebra associated with minimal dynamical systems, preprint.
[5] Q. Lin, N. C. Phillips, Direct limit decomposition for C*-algebras of minimal diffeomorphisms, pages 107-133 in: Operator Algebras and Applications (Adv. Stud. Pure Math. vol. 38), Math. Soc. Japan, Tokyo, 2004.
[6] G. J. Murphy, C^{*}-Algebras and Operator Theory, Academic Press, San Diego, 1990.
[7] N. C. Phillips, Crossed products of the Cantor set by free minimal actions of \mathbb{Z}^{d}, Commun. Math. Phys. 256(2005), 1-42.
[8] N. C. Phillips, Recursive subhomogeneous algebras, Trans. Amer. Math. Soc., 359(2007), 4595-4623.
[9] N. C. Phillips, Cancellation and stable rank for direct limits of recursive subhomogeneous algebras, Trans. Amer. Math. Soc., 359(2007), 4625-4652.
[10] I. F. Putnam, The C^{*}-algebras associated with minimal homeomorphisms of the Cantor set, Pacific J. Math. 136(1989), 329-353.
[11] I. F. Putnam, On the topological stable rank of certain transformation group C^{*}-algebras, Ergod. Th. Dynam. Sys. 10(1990), 197-207.
[12] A. Ramsay, Local product structure for group actions, Ergod. Th. Dynam. Sys. 11(1991), 209-217.
[13] J. Renault, A Groupoid Approach to C^{*}-Algebras, Springer-Verlag Lecture Notes in Math. no. 793, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[14] M. A. Rieffel, On the uniqueness of the Heisenberg commutation relations, Duke Math. J. 39(1972), 745-752.
[15] M. A. Rieffel, Applications of strong Morita equivalence to transformation group C^{*}-algebras, Proc. Sympos. Pure Math., 38, Amer. Math. Soc., Providence, R.I., 1982.
[16] M. A. Rieffel, Dimension and stable rank in the K-theory of C^{*}-algebras, Proc. London Math. Soc. (3) 46(1983), 301-333.
[17] D. P. Williams, Crossed Products of C^{*}-Algebras, Mathematical Surveys and Monographs no. 134, American Mathematical Society, Providence RI, 2007.

