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Biological molecular motors achieve directed motion and perform work in an

environment dominated by thermal noise and in most cases incorporate thermally

driven motion into the motor process. Inspired by bio-molecular motors, many other

motor systems that incorporate thermal motion have been developed and studied.

These motors are broadly referred to as Brownian motors. This dissertation presents

simulation studies of two particular Brownian motors, the feedback-controlled flashing

ratchet and an artificial molecular motor concept, the results of which not only

drive experimental considerations but also illuminate physical behaviors that may

be applicable to other Brownian motors.

A flashing ratchet rectifies the motion of diffusive particles using a time dependent,

asymmetric potential energy landscape, and the transport speed of the ratchet can
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be increased if information about the particle distribution is incorporated as feedback

in the time dependency of the landscape. Using a Langevin Dynamics simulation, we

compare two implementations of feedback control, a discrete algorithm and a contin

uous algorithm, and find that the discrete algorithm is less sensitive to fluctuations

in the particle distribution. We also model an experimental system with time delay

and find that the continuous algorithm can be improved by adjusting the feedback

criteria to react to the expected state of the system after the delay time rather than

the real-time state of the system.

Motivated by the desire to understand bio-molecular linear stepping motors, we

present a bottom-up approach of designing an artificial molecular motor. We develop

a coarse-grained Molecular Dynamics model that is used to understand physical

contributions to the diffusive stepping time of the motor and discover that partially

reducing the diffusional space from 3D to ID can dramatically increase motor speed.

We also develop a stochastic model based on the classical Master equation for the

system and explore the sensitivity of the motor to currently undetermined experi

mental parameters. We find that a reduced diffusional stepping time is critical to

maintain motor attachment for many successive steps and explore an experimental

design effect that leads to motor misstepping.
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CHAPTER I

INTRODUCTION

The cellular environment is a strange and amazing place. Beyond the remarkable

dance of biological and biochemical processes that keep us alive, much of the physics

that we are used to in the macroscale world is turned upside down [:I.]. For example, at

the cellular size scale, inertial motion is simply irrelevant for any motion longer than

a few hundred nanoseconds, and cellular components are much more sensitive to ther

mal forces than macroscale objects. This chapter will begin by describing a physical

manifestation of thermal forces, diffusion, and its relation to particular components

of the cell called molecular motors. Inspired by these biological molecular motors,

we will then discuss two other motors that take advantage of thermal motion: the

flashing ratchet and artificial molecular motors. Generally, motors that incorporate

thermal motion into the motor process are broadly referred to as Brownian motors,

the study of which will make up the bulk of this dissertation.

Diffusion

From the equipartition theorem of statistical mechanics (Eq. 1.2), we know the

temperature of a fluid is in direct correspondence to the kinetic energy, and thus

the speed, of the molecules that make up the fluid. When a fluid molecule collides
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with an object, it can transfer momentum to the object and cause a displacement. A

fluid is, of course, made up of many millions of moving molecules, and consequently

an object immersed in the fluid will encounter many collisions every second, each in

a random direction. The resulting motion from all these tiny collisions can explain

the wild dance of coal particles that Jan Ingen-Hausz saw through a microscope in

1783, and pollen molecules that Robert Brown saw in his microscope 44 years later:

Brownian motion [2-4].

One interpretation of Brownian motion is the classic random walk [5]. Consider

a particle trajectory in a fluid as series of random collisions each resulting in a

displacement L. In 1-dimension, for a random sequence of N left and right steps

of size L taken in time T, the mean displacement and mean squared displacement

from the origin after time t = NT is

< x(t) > 0

L 2

< x(t? > -t = 2Dt
T

(1.1)

where we have defined the constant of proportionality D between mean squared

displacement and time. This seemingly simple relationship can be determined by cal-

culating the mean squared displacement from a distribution of experimental particle

trajectories, and for a micron sized particle, the diffusion constant D is rv 0.3 J-tm2/s,

such that it traverses on average over half its diameter in one second by thermal forces

alone. But what about the physical origins of D? We know from the equipartition
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theorem that the average kinetic energy of an object in 1D at temperature T is

(1.2)

where k B is Boltzmann's constant, and we have expressed the speed of the particle

in term of the length L that is covers in time T, which can be roughly thought of as

the speed of a particle in between collisions, or a single step in the random walk. If

we now substitute that into Equation 1.1, we get

(1.3)

We now have a relationship between the temperature of particle and its mean squared

displacement. In most cases, the motion of individual fluid molecules cannot be

resolved, and the time between collisions (T) may be difficult to determine. To get

around this problem, consider our particle making random collisions but now under

some external force F, such as gravity or an electric field. During time T, because

each collision is in a random direction, we can take the average initial velocity of our

particle to be zero and the final velocity vI,

F = ma = m V I ::::} vI = ~F = IF
T m

(1.4)

where the constant I is referred to as the viscous drag coefficient of of the particle

in the fluid, which characterizes the 'frictional' dissipation of motion from collisions.

We are now left with the equation

(1.5)
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which is the conclusion of Einstein's seminal 1906 manuscript on Brownian motion

[6]. Historically, this relationship provided indirect proof of the existence of atoms

and molecules and an experimental method of determining Boltzmann's constant

and Avagadro's number [7]. Physically, it provides a simple relationship between the

diffusive motion of a particle in a fluid, thermal fluctuations, and frictional dissipation

from the fluid, which has since been generalized to the fluctuation-dissipation theorem

and linear response theory [8-10].

Molecular Motors

Generally, a motor is a machine that can convert energy (chemical, thermal,

electrical, etc.) into mechanical work. A wide range of biological processes in the

cell, such as cell division and DNA-replication, rely on a combination of protein-bases

molecules that undergo directed transport, i. e. motion in a specific direction [11, 12].

These special molecules are referred to as molecular motors.

There are many types of molecular motors in the cell, but as an example we will

focus on a specific class of motors called linear dimeric motors. A dimeric motor

is a molecule that two distinct monomeric segments joined by a flexible linkage.

The monomers, sometimes referred to as 'heads,' bind to a one dimensional track,

which the motor 'walks' along. In eukaryotic cells, there is a complex and dynamic

network of polar filament-like structures, consisting of microtubules and actin, that is

collectively referred to as the cytoskeleton. Dimeric motors, such as kinesin, myosin-
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types, and dynein, walk along these filaments in a specific direction. For example,

kinesin and dynein both walk along microtubules but in opposite directions. All

three of these motors, and the majority of motors in the cell, use the chemical energy

from hydrolyzing a particular molecule called adenosine triphosphate (ATP) as the

fuel to achieve transport. The stepping of a molecular motor can be thought of as a

coordinated combination of chemical and mechanical processes, collectively referred

to as a mechanochemical cycle. Figure 1.1 shows a schematic of the mechanochemical

cycle of the kinesin motor, although it should be noted the details of the cycle are

somewhat controversial [11-15] . This particular mechanochemical cycle is consid

ered tightly-coupled because a single fuel molecule (ATP) is converted into a single

mechanical step. Through this cycle, kinesin motors in vivo generally take over 100

successive steps at a speed of rv 1 - 2 Mmls [11].

What is especially remarkable about kinesin, and other molecular motors, is they

able to maintain directed transport for many steps in an environment dominated by

thermal forces. Noisy thermal forces, which are inherently in random directions, may

seem initially debilitating to the possibility of transport. Molecular motors, though,

actually incorporate thermally driven motion into their stepping process, and in most

cases their function depends on it. For example, kinesin could not complete a step

without the tethered diffusion of the unbound motor head and the diffusive supply of

ATP from solution. Generally, any motor that incorporates thermally driven motion
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Figure 1.1.: The mechanochemical cycle of kinesin motors. (Clockwise from

top) The lagging head hydrolyzes ATP into ADP and and phosphate (P), which

causes a forward-leaning molecular conformation (right). The lagging head releases

the phosphate molecule and detaches from the track while the forward head stays

tightly bound (bottom). Because of the forward-leaning conformation, the thethered

diffusing head binds in front of the tightly bound head and becomes the new leading

head (left). The lagging head then binds an ATP molecule from solution and the

leaning head looses its ADP molecule, and the cycle starts over (top). The directional

polarity of the microtubule track is indicated by + and -.
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into the motor process, biological or otherwise, can be referred to as a Brownian

motor [16,17].

Because of the ubiquity and functional importance of molecular motors to a

broad range of biological processes, there has been considerable effort to understand

molecular motors on basic physical level. With revolutionary advances in experimen

tal resolution, such as optical tweezers [18] and fluorescence-based microscopy [19],

single-molecule observations of active molecular motors have inspired many successful

models of biological molecular motors [20-24], including kinesin [13, 15,25] and many

myosin-types [26-30]. In addition to bio-molecular motors, many other theoretical

and experimental Brownian motors have been developed. This dissertation will focus

on computational models of two specific Brownian motor constructs: the Brownian

ratchet and an artificial molecular motor.

Brownian Ratchets

A Brownian ratchet (inspired by Smoluchowski's and Feynman's famous ratchet

and pawl [5, 31]) is a model that is useful for investigating the general characteristics

of diffusion, systematic asymmetry, and non-equilibrium processes in a Brownian

motor [17, 32, 33]. One of the simplest established Brownian ratchets is the flashing

ratchet, which incorporates a periodic, spatially asymmetric 'saw-tooth' potential

energy landscape that is temporally switched on and off [34-36]. The energy landscape

is shown in Figure 1.2, where there are alternating steep upward slopes and shallow
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downward slopes that produce a series of asymmetric peaks and valleys. Note that

because the potential is spatially periodic, there is no net gradient across the ratchet

and therefore no net force in the system to globally bias particle motion. The flashing

ratchet functions as follows: initially, the ratchet potential is on such that particles

are confined to the valley's of the potential. The potential is then switched off, and

the particles begin to diffuse isotropically about their equilibrium center of mass.

After a certain amount of time, the potential is switched back on, and because of the

asymmetry of the potential, more particles get trapped in the valley to the right of

the original valley than to the left of the valley. This leads to a shift in the center

of mass of the particle distribution and thus net transport. Notice that the ratchet

not only achieves transport in a noisy environment, but also it relies on the diffusive

motion of particles to spread the distribution in the off-state.

The flashing ratchet illustrates two basic requirements for achieving transport in

a thermal environment: asymmetry and free energy input [17]. Asymmetry, which is

accomplished by the potential shape, introduces directionality into the system. Free

energy input, accomplished by switching the potential on and doing work on particles

to confine them, takes the system out of equilibrium. For the kinesin mechanochemical

cycle discussed above, these two criteria are met by the polarity of the microtubule

track and the steady state supply of ATP as energy (summarized well in the adage

"If you are at thermal equilibrium, then you are dead!").

Many adjustments can be made on the basic flashing ratchet scheme that still
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OFF
-----------------~--

ON~

Time

Figure 1.2.: The flashing ratchet. Diffusive particles interact with periodic, spatially

asymmetry potential landscape that is temporally switched on and off. Particles are

confined in the on-state, spread isotropically in the off-state, and due to the spatial

asymmetry, more particles get confined to the right adjacent well in the next on-state

than the left, resulting in overall center of mass transport.

produce directed motion. For example, the potential can be switched periodically or

randomly [37] or its amplitude can just be modulated, i. e. not turn all the way off

[38]. Perhaps the most drastic adj ustment that can be made to the flashing ratchet is

the addition of feedback-control, in which information about the particle distribution

in the ratchet is used to determine switching events.

Feedback Control in Flashing Ratchets

Feedback control can be thought of as a version of "Maxwell's Demon" [39], a
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thought experiment developed by James Clerk Maxwell in order to understand the

second law of thermodynamics. The thought experiment consists of a two chambered

box filled with gas at a finite temperature with a small 'demon' who can open and

close a small door between the chambers, which we will label as 1 and 2. The idea is

as follows: the temperature of the gas determines the average kinetic energy of the

particles in the gas, which means there are faster moving 'hot' particles mixed with

slower moving 'cold' particles. If the demon is very clever, it will open and close the

door such that only hot particles from chamber 1 are able to pass into chamber 2, and

only cold particles from chamber 2 are able to pass into chamber 1. After a certain

amount of time, the demon will have created a hot chamber and a cold chamber, or

a decrease in entropy, without doing any work on the system, which is an apparent

violation of the second law. The catch here is that we did not include the demon

in our discussion, and it has been shown that the energy and entropy required to

monitor the system is greater than the entropy lost in separating particles [40].

Feedback control in the flashing ratchet is very similar to the demon, but instead

of a small door, the observer is in control of the switch to turn the potential on

and off. The question then becomes: If one has some information about the system,

such as instantaneous particle positions, what is the optimal switching scheme to

achieve the fastest transport? In Chapter III, we present comparisons between two

different feedback schemes: one developed by Cao and Parrondo [41] called the

Maximization of Instantaneous Velocity (MIV) scheme, and one developed by the
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Heiner Linke Research Group called the Maximization of Net Displacement (MND)

scheme [42, 43]. Both schemes make switching decisions based upon the expected

behavior of the particles in the event the potential is switched: the MIV scheme

considers the expected force on each particle, while the MND scheme considers the

expected displacement of the particle distribution. We find that each scheme has its

advantages in certain regimes of particle number and potential strength.

Much of the theoretical work presented in Chapter III was done in conjunction

with a experimental realization of a feedback-controlled flashing ratchet [43]. The

flashing ratchet was created using a scanning-line optical trap technique, where a

focussed laser spot is scanned rapidly back and forth in a line [44]. Dielectric mi

crospheres feel an optical force towards regions of high electromagnetic field gradient

and can be trapped in the focus of a laser beam [18]. By scanning the focus, the

spheres feel a time-averaged zero potential in the direction of the line but remain

trapped in the orthogonal directions, effectively creating a ID system for the diffusive

microspheres. To create the saw-tooth potential shape, the intensity of the beam, or

trapping strength, was spatially modulated accordingly throughout the line. Real

time particle tracking and analysis allowed for feedback implementation, and the two

previously mentioned feedback schemes were compared.

In order to effectively compare simulation and experimental results, a few consid

erations need to be addressed. Firstly, the ratchet systems discussed up to this point

consider point particles interacting with a linear, saw-tooth potential. In practice, the
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microspheres are approximately half the size of the ratchet period, and consequently

feel a spatially averaged potential. Secondly, time delay is inherent in an experimental

system and must be considered. Qualitatively, time delay in a feedback system

has the effect of reducing the effectiveness of switching decisions because the state

of the system may have changed during the time a measurement was taken and

the feedback is implemented. Theoretical studies have shown that time delay in a

flashing ratchet is detrimental for small particle numbers, but in fact can improve the

performance for large particle numbers due to a synchronization effect between the

delay implementation and quasi-stable particle distribution oscillations [42, 45, 46].

Due to experimental limitations, though, we are only able to explore small particle

numbers (N < 3). We find that some of the adverse effects of time delay can be

mitigated by adjusting the criteria of the feedback scheme such that switching events

are triggered earlier. By adjusting the triggering time according to the expected state

of the system after the delay time, the switching event is more likely to be coordinated

with the actual system state.

Artificial Molecular Motors

Biological molecular motors have inspired a host of artificial molecular motor

constructs and designs. Artificial molecular motors offer the unique opportunity

to discover subtle general design and operational principles of biological molecular

motors that may not be apparent through observation alone. Through the process of
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designing a motor from the 'ground-up,' basic parameters that may be fixed in bio

molecular motors, such as size and flexibility, become variables in the artificial motor

design. Furthermore, artificial molecular motors offer a unique modeling opportunity

because the exact structure and function of the molecule is a priori known. Compared

to bio-molecular motors, where experimental limitations may lead to hidden motor

states, the activity of an artificial motor is not only well known but also presumably

designed in a specific manner.

One class of artificial molecular motors revolve around the use of relatively small

chiral molecules whose structural conformation can be changed by external light

signals [47-51]. A particular motor system consists of molecules with three distinct

components, a base, an axel, and a stator. The stator structure can take on four

conformations: two thermally stable structures, (1) and (3), and two thermally

unstable structures, (2) and (4). Transitions from (1)-(2) and (3)-(4) are initiated

by an external light signal, and the transitions from (2)-(3) and (4)-(1) are thermal

relaxations. Each of the aforementioned transitions represents a rotation of the stator

about the base by 90°, thus a complete cycle light pulses and subsequent relaxation

periods leads to a complete 360° rotation. These motors have been attached to sur

faces [52], incorporated in larger linear molecules such that a rotation leads to spiral

like linear movement [53], attached to cantelivers to create 'molecular muscles' [54],

and been the subject of detailed modeling investigations into optimizing performance

[55, 56].
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Another class of artificial molecular motors is defined by its use of oligonucleotide

structures (similar to DNA) as the motor building blocks [57-62]. Oligonucleotides

are especially useful because relatively simple design rules can lead to well-defined,

self-organized structures. A particular design by Bath and Turberfield consists of two

pieces (feet) of single-stranded DNA (ssDNA) attached by a flexible linker [60]. A

complementary ssDNA track is synthesized such that each foot can bind to the track

'heel-to-toe.' The binding sequence is designed in a way that the heel of the leading

foot and toe of the lagging foot physically overlap, such that only one foot at a time

can be bound completely. A ssDNA 'fuel' is then introduced that competitively binds

to each foot. Due to a clever asymmetry in the overlapping region, the fuel can only

bind entirely to the lagging foot, allowing it to disassociate from the track while the

leading foot stays bound. The lagging foot then can rebind to its original location or

diffuse forward and bind to the track in a 'hand-over-hand' stepping process.

Perhaps more akin to bio-molecular protein motors in terms of size and constituent

material, we have recently developed an artificial molecular motor concept consisting

entirely of protein-based components: The Tumbleweed (TW) [63]. The TW is a

linear stepping motor that walks unidirectionally along a track constructed of double

stranded DNA. The motor itself consists of three biologically-occurring DNA-binding

proteins attached to the 'arms' of a V-shaped synthetic protein structure. The

binding-proteins, called repressor proteins, bind strongly to a specific sequence of

DNA only in the presence of a small molecule in solution called a ligand. Thus, the
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spatial location of binding can be controlled by the design of the DNA track, and the

temporal coordination of binding can be controlled by external chemical supply. The

TW then diffusively walks ('tumbles') down the DNA track by cyclically binding and

unbinding the three protein feet, where the direction of walking is determined both

by the binding site order and external ligand supply. Please refer to Chapter IV for

a detailed discussion on TW components, design, and stepping process.

The Thmbleweed motor, as well as biological molecular motors, must coordinate

many processes during the stepping cycle, such as binding, unbinding, and diffusion,

whose timescales may span many orders of magnitude. In Chapter V, we present a

simulation study using a specialized Molecular Dynamics modeling technique called

Langevin Dynamics used to explore of the center-of-mass diffusive time scale. Par

ticularly, we are interested in the physical contributions to the diffusion time from

molecular design choices and the expected experimental environment. It turns out

that the diffusional stepping time can be shortened by reducing the 3D diffusive search

of the leading repressor protein foot to a 1D 'sliding' search along the dsDNA track,

facilitated by a non-specific interaction between the binding proteins and the track. In

Chapter VI, we present a stochastic modeling technique based on the classical Master

equation of the TW system, and use the technique to explore the interactions of many

motor processes across a wide range of time scales. We examine how experimental

timescales, such as the frequency at which ligands can be exchanged, affect the number

of successive steps a single Thmbleweed motor can take without falling off the track.
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CHAPTER II

MODELING TECHNIQUES

Dynamic Models

The basic function of Molecular Dynamics simulations is to computationally solve

the equations of motion of a set of atoms or molecules interacting via a potential V

[64, 65]. Generally, the equations can be written in a Lagrangian formulation,

d 8£ 8£
-(-) -
dt 8qk ~ 8qk'

(2.1 )

where qk is a generalized coordinate and the Lagrangian is defined in terms of kinetic

and potential energy in the usual way,

1-l-V (2.2)

If we consider a system of N atoms labeled by i in cartesian space, we derive

Newton's Second Law,

(2.3)

where F i is the net force on particle i, defined as

(2.4)

The challenge now is to find a computational algorithm to integrate the equations of

motion such that we can get individual particle trajectories, rio Using a computer
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requires one to discretize the calculations, and the most common approach to this

problem is a finite difference method. In a finite difference calculation, particle

information, e. g. position, velocity, and acceleration, at earlier times (t, t - 8t, ... )

are used to update the particle's state at time t+8t. Using a finite difference algorithm

requires that particle trajectories to be smooth as a function of time on the scale of

8t such that each parameter can be expanded in a Taylor series.

The most widely used finite difference algorithm is the Verlet algorithm [64, 66].

We begin by making a Taylor expansion about particle position for two times,

r(t + 8t) = r(t) + f8t + ~r(8t)2 + ~'f'(8t)3 + ...
2 3.

r(t - 8t) = r(t) - f8t + ~r(8t)2 - ~ ·f·(8t)3 + ... ,
2 3.

and then add the two Taylor expansions in Eq. 2.5 together to get the Verlet algorithm:

1
r(t + 8t) = 2r(t) - r(t - 8t) + "2r(8t)2 (2.6)

Notice that by adding the two expansions together, we have reduced our error to

terms of O(8tt Computationally, the only numbers that need to be stored are the

particle's position at time t and t - 8t and the particle's acceleration at time t.

The Verlet algorithm is a compact and efficient way of integrating the equations of

motion in a Molecular Dynamics simulation. In many situations, such as simulating

the center-of-mass diffusion of an entire molecule in a fluid, Molecular Dynamics

models may be more detailed than necessary and consequently require immense

amounts of computer time to produce any meaningful data. One approach to this

problem is a process called coarse-graining, where the level of precision of a model is
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reduced in order to increase simulation run-length. In the case of a diffusive molecule

in a fluid, we begin the process by using a Langevin equation of motion:

dr·
- VV(ri, t) - '"'j dt

2 + ~(t) (2.7)

where ri(t) is the position of a viscous particle i at time t, F i is the net force on

the particle, V is the potential energy of the particle (corresponding to internal and

external forces), and '"'ji is the viscous drag coefficient of the particle. In a simulation

using a Langevin equation, the interaction between the molecule and surrounding

fluid is approximated by a stochastic force term, ~(t), which is a random number

chosen from a Gaussian distribution with mean and correlation

< ~(t) > = a

< ~m(t)~n(t') > = 8mn8(t - t')2'"'jkB T,
(2.8)

where m and n represent directional components. Because this term is a function of

temperature T, it also acts as a thermostat for the system.

All of the dynamic models presented in this dissertation are in the over-damped

regime, in which inertial motion of the molecules is completely damped by the

surrounding viscous fluid. The over-damped limit is a time scale defined by the

particles mass and viscous drag coefficient,

m
dtlimit rv (2.9), /

such that any inertial motion can be neglected for any time scales greater than dtlimit.

As an example, the over-damped limit for a micron sized colloidal particle (discussed
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in Chapter III) is rv 100 ns. This approximation allows us to simplify our Langevin

equation to

(2.10)

which can be discretized in a very similar way to the Verlet algorithm to get

(2.11)

where the thermal force term ~(t) is now a thermal displacement ~/I(t) , though defined

in a similar manner as before,

< C(t) > = a

< ~~(t)~~(t') > = 6mn6(t - t') 2kB T bt
'"Y

(2.12)

We have thus reduced the precision of the system by reducing the atomistic picture

of the molecule to a collection of components with well-defined viscous interactions

with the surrounding fluid, and the Brownian motion of the fluid molecules are

approximated by a stochastic displacement.

Interactions

As an example of the coarse-graining process, consider the simplest representation

of a dimeric molecular motor such as kinesin: two monomer segments joined together

by a single, semi-flexible joint. In a particular coarse-grained model, the molecule

is represented as Figure 2.1, where the complex molecular components have been

replaced by connected spheres. The original molecular geometry is maintained by
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two potentials: a harmonic tethering potential,

(2.13)

where Tik is the distance between spheres (i) and (k), and TO is the equilibrium

separation, and a bending potential,

(2.14)

where ()ij is the angle between monomers (i) and (j) that are separated by a single

joint (k), and ()o is the equilibrium angle between the monomers.

The steric excluded volume of each sphere is maintained by a repulsive Lennard-

Jones potential,

(2.15)

o for Tij > 21
/

6
(

where ( is the steric diameter of each sphere, and Tij is the distance between spheres

Dimensions and Units

In a Langevin Dynamics (LD) program, it is convenient to keep all units dimen-

sionless. Because many of the simulation results in this dissertation are compared to

experimental results, we need to establish a conversion between unit-less program pa-

rameters and experimentally observable parameters. We choose to use the convention

from [67], summarized in Table 2.1. In practice, one chooses a characteristic length

scale, for example Tik in Fig. 2.1, and expresses all other lengths in the program in
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Figure 2.1.: A simple coarse-grained model for a dimeric molecule. The complex

molecule is represented at two monomeric segments joined by a single joint. The

viscous drag (,) and physical size (TLJ) of the molecular components are represented

by spheres (i, j, k), where the sphere separation (Tik) and relative geometry (()ij) are

maintained by harmonic and bending potential, respectively.
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Table 2.1.: Unit conversions between dimensionless Langevin Dynamics (LD)

program parameters and experimentally observable parameters

Parameter

Length
Drag coefficient
Energy
Diffusion constant
Time
Velocity
Force

LD Program Unit

L=l
"'/=1

E = kBT = 1
D = kB T/"'/=l

L2/D
D/L
E/L

terms of that length. One then chooses a viscous drag coefficient, corresponding to

the sphere size rLJ, and a temperature (all simulations presented here are performed

at room temperature), and uses these parameters to convert any other program

parameter.

Stochastic Models

In many cases, one is interested not only in modeling a system with many different

time scales but also understanding the interactions of processes whose characteristic

time scales may be separated by many orders of magnitude. In these situations,

a dynamic model is computationally expensive because all of the fast processes

must be explicitly simulated for long enough to reach the timescales of the slower

processes. Coarse-graining is one solution to this computational problem, but one

may be interested in the interplay between processes at very different time scales.
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For this we use a very different modeling technique called a discrete stochastic model,

which centers around ensemble states of the system [24].

Consider a system with N distinct states, e. g. a simplified set of binding states

of a dimeric molecular motor with head HI bound or unbound and head H2 bound

or unbound, for a total of N = 4 binding states. We define a vector P(t) such that

Pi (t) is the ensemble probability of a motor to be in state i. The time evolution of

the ensemble probabilities is determined by the classical linear Master equation for

the system:
N

L Mij(t)Pi(t) - Mji(t)Pj(t)
j=I

(2.16)

where M(t) is an N x N matrix of transition rates and Mij represents the associated

first order transition rate from state i to j. The second term in the sum of Equa-

tion 2.16 is included to conserve probability, i. e. a transition from state i to state

j necessarily requires that state i loses probability. For our dimeric motor example,

the transition rates in M(t) are the chemical kinetic rates for motor binding and

unbinding. For a system of many states, the Mij(t) terms also determine selection

rules, i. e. what transitions are physically allowed in the model.

The strength of this technique is that all the complicated timescale information

is bundled into the M(t) matrix, though care must be taken in solving the Master

equation because the spread in timescales may lead to a 'stiff equation,' which can

be numerically unstable if the program time step is taken too long. All of the
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results presented here used a specialized differential equation solver designed for stiff

equations (ode5r, GNU Octave [68]).

Technical Details

All Langevin Dynamics simulations presented in this dissertation where performed

using custom programs coded in Fortran 77 using a random number generator routine

developed by Marsaglia [69]. The stochastic, Master equation simulations where

performed using custom programs written in GNU Octave. Programs where compiled

and ran on the Western Canada Research Grid (Bugaboo, Glacier) and an in-house

Mosix computing cluster (ClusterDuck) [70].
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CHAPTER III

FEEDBACK CONTROLLED FLASHING RATCHETS

Introduction

A Brownian ratchet is a system that rectifies thermal motion of diffusive particles

into directed motion, without any net force gradients, by a combination of asymmetry

and non-equilibrium processes [16, 17]. A flashing ratchet [34, 38, 71] is a particular

Brownian ratchet system that induces transport by temporally switching on and

off (flashing) a 'saw-tooth' shaped, asymmetric potential landscape with periodic,

alternating steep and shallow linear potentials (Figure 3.1). The net gradient of the

ratchet potential is zero, though it can exert forces locally, e. g. within one 'valley'.

Because of the asymmetry of the ratchet potential, the local forces felt by a particle

will be higher in one direction than the other.

The flashing ratchet's basic function is as follows: the potential is initially on and

particles at a temperature T (the ratchet cycle is performed isothermally) localize

about the potential minima. The potential is then switched off and the particle

distribution begins to diffusively spread isotropically about the equilibrium center of

mass. After a certain amount of time, discussed in detail later in this chapter, the

potential is turned on again and particles begin to localize. Because of the spatial
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asymmetry of the potential, more particles will now be localized in a well to the right

(in the geometry of Fig. 3.1) of the original well than to the left, and the center of mass

of the ensemble moves to the right. The flashing ratchet can produce net displacement

without a global net force, though there is still energy put into the system by doing

work to localize the particles, which is ultimately dissipated by viscous friction.

In the flashing ratchet described in Figure 3.1, the potentials are switched in a

generic manner. The question is: What is the optimal switching strategy to maximize

the center of mass velocity of our particle distribution?

For the ratchet to function, the potential must be off long enough for particles to

diffuse across the distance of the steep potential (aL); otherwise when the potential is

switched, particles will simply get trapped in the same potential minimum where they

started. Because the distribution spreads isotropically, on average half will diffuse an

equal distance to the left and right, where the average distance is determined by the

diffusion equation,

<x> (3.1)

thus we would want to at least keep the potential off for

(3.2)

But how long should we keep the ratchet potential on? When the potential

is switched, particles 'slide' down the potential slopes and become confined near

the potential minimum. The distance a particle slides in a viscous medium (drag
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Figure 3.1.: The flashing ratchet consists of two distinct energy landscapes: a flat

landscape and a spatially periodic, asymmetric saw-toothed shaped potential with

period length L and asymmetry factor a, such that the lengths of the steep and

shallow sides of the potential are aL and (l-a)L. (a) A particle distribution is initially

confined in a single potential well. (b) The potential is then switched off and the

distribution spreads isotropically about the center of mass (dashed lines represent

the position of the ratchet potential). (c) The potential is then switched on, and

because of the potential asymmetry, more particles on average now become trapped

in the well to the right than to the left, producing a center of mass displacement with

an average speed < v > = (x~m - xcm)/t.
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coefficient,) for a given force (F = -dVIdx) is

Pr, (3.3)

To maximize the center of mass displacement, we would want to keep the potential

on long enough for the particles that have crossed to the next well to slide down the

entire length of the shallow potential, (1 - a)L, or

'Ton -
(1- a)L,

VOI(l - a)L

(1 - a)2 L2

VolkBT D'
(3.4)

where we have used the Einstein-Smoluchowski relation D = kBTI, [6, 72] to put all

times in units of L 2ID for convenience.

This back-of-the-envelope result is surprisingly close to existing simulation results:

For L=l, a=1/3, and VOlkBT = 5, we get 'Ton ('.J 0.080 and'Taff ('.J 0.055, where

the optimal frequency ('Ton = 'Taff) found numerically by Cao and Parrondo [41] is

'Tapt ('.J 0.05 (all in units of L 2I D). We have shown qualitatively that a flashing ratchet

can achieve net particle motion with periodic, or even random, switching if the time

scales of switching are chosen appropriately. But what if we know something about

the system, such as the positions of the particles relative to the ratchet potential? Can

we increase the speed of the ratchet by incorporating this real-time spatial information

into our switching mechanisms? We will spend the rest of this chapter discussing these

feedback-controlled flashing ratchets, introducing two different switching algorithms

and the consequences thereof.
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Switching Schemes and Feedback Control

Consider the earlier discussion about the time scales for switching the two poten

tials, but now for a system of only one particle. Notice that the time scales do not

change, i. e. we still want to leave the potential off long enough for the particle to

diffuse across the steep slope, and on long enough to completely slide down the slope.

But if we know the particle's position at all times, we can guarantee the switch will be

advantageous if we turn the potential on when the particle is over the shallow slope

and off when it is over the steep slope. Thus, the effective potential landscape of the

bead will look like Figure 3.2. The N = 1 case has been solved analytically by solving

the Fokker-Plank equation for a particle moving in this effective potential, and it

gives an average center of mass velocity of 1.74 DIL, nearly an order of magnitude

better than optimal periodic switching (0.29 D/L) [41].

Although the feedback-based switching scheme for N = 1 is fairly straightforward,

it becomes less obvious for N > 1, e. g. where it may be an advantage to switch

the potential for one particle it may be a disadvantage to another. We will discuss

two approaches to this problem: the Maximization of Instantaneous Velocity [41] and

Maximization of Net Displacement [42, 43] feedback schemes.
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Figure 3.2.: Effective potential for N=l with feedback-based switching. The ratchet

potential is on when the particle is over the shallow slope and off otherwise, which

increases the center of mass velocity nearly an order of magnitude over optimal

periodic switching. This figure adapted from (41 j.
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The Maximization of Instantaneous Velocity (MIV) Scheme

The MIV scheme, originally presented by Cao and Parrondo, is defined as follows:

1 N
f(t) = N L F(Xi(t))

i=l

a(t) = 8(f(t))

(3.5)

where F(Xi(t)) is the force on particle i at time t, N is the total number of particles,

and 8 is the Heaviside function (8(z) = 1 for z > 1, aotherwise). a(t) is the control

parameter, such that:

aCt) =c--+ ratchet potential ON

--+ ratchet potential OFF

(3.6)

The MIV scheme calculates the instantaneous net force on the particle distri-

bution, and if the net force is in the preferred direction of transport the potential

is switched on (or kept on). Much theoretical work has been done on the MIV

scheme [41, 45, 46, 73-77]. Generally, the scheme performs better than optimized

periodic flashing for small particle numbers, but fails for larger distributions because

large fluctuations (which are essential for the ratchet potential to switch on and off)

become increasingly rare.

Although the scheme works very well for small particle numbers, there is at

least one situation vvhere it is not optimal. Consider tvvo particles in the ratchet

(Figure 3.3): During the off-state, one particle is very near the potential minimum

and over the steep region of the potential while the other particle is very near the peak
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of the potential over the shallow side. In this case, the net force on the particle system

is negative, so the MIV scheme would keep the potential off. But if the potential was

switched on, the particle over the shallow slope would travel a distance r-v (l-a)L

whereas the other particle would travel a negligible negative distance. We want to

create a feedback scheme that takes advantage of this situation, i. e. maximizes the

expected displacement of the particle distribution: the MND scheme.

The Maximization of Net Displacement (MND) Scheme

We define the MND scheme as:

(3.7)

where a(t) is the same control parameter described above, e is the Heaviside function,

x(i) are the individual particle positions (modulo a single potential well), and Xo is

the final expected position of the particle (measured from the potential minimum),

initially taken as the center of mass of a Boltzmann distribution about the potential

minimum (Figure 3.3). The MND scheme thus considers the expected final state of

the system after a switching event, while the MIV scheme considers the instantaneous

state of the system.

MND versus MIV

Because the MND scheme is partially inspired by improving the MIV scheme, we

would like to explore how the two feedback schemes compare across many particles
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Figure 3.3.: The Maximization of Net Displacement (MND) feedback scheme. In

this situation, the net force on the two-particle system is to the left, so the MIV

algorithm would keep the potential off. But the net displacement of the two-particle

system would be positive (in the preferred direction of transport), thus turning the

potential on is advantageous. The MND scheme takes this into account by summing

all of the expected displacements of the particle distribution, and turning the potential

on if the net displacement is in the preferred direction of transport. Shown here, Xo

is the expected final position of the particle, but we will keep it as a free parameter

in our computational models.
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numbers and potential depths. All simulation results presented in this chapter are cal-

culated using the over-damped Langevin equation described in Chapter II (Eq. 2.11),

(3.8)

where a(t) is the control parameter of the particular feedback scheme being utilized.

Figure 3.4 shows the center of mass velocity (units of D/L) for particle distribu-

tions from N = 2 - 10 for the MND and MIV schemes, with a = 1/3, and Xo chosen as

the center of mass of a Boltzmann particle distribution about the potential minima

(the N = 1 case is not included because Xo for this potential depth is nearly zero,

such that for N = 1 the MND and MIV schemes are exactly the same). The ratchet

potential depth is va = 50 kBT, a relatively high value chosen because the MND

scheme works particularly well at this potential strength. The MND scheme shows

improvement over MIV in the two- and three-particle cases, but the MIV scheme

recovers for N > 3. The local minima at multiples of three in the MIV curve are a

consequence of small particle number and the choice of the asymmetry parameter,

a = 1/3. In the three-particle case, for example, because the force from the steep

potential slope is exactly twice the strength of the shallow slope, all three particles

must be over the shallow slope for the potential to switch on. The MND scheme does

not have this behavior because the net displacement function is continuous, regardless

of particle number.

To understand why the MND scheme performs worse than the MIV scheme for

increasing particle number, consider a point in time where the ratchet potential has



35

8 • • MIV strategy

• • MND strategy
7 - -

6 - -
~ •

E 5 - • -
u •::. •

•4 - • -
• •• •

3 • •- • -
• • •

2 I J I I I

0 2 4 6 8 10 12
Particle nllmber. N

Figure 3.4.: The center of mass velocity (units of D/L) as a function of particle

number for the MND and MIV feedback schemes, with Va = 50, a = 1/3, and Xa

the center of mass of a Boltzmann distribution about the potential minimum. Lines

are included as a guide to the eye, and error bars are less than or equal to the marker

size. The MND scheme does better than the MIV scheme up to N=3, but does worse

otherwise.
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switched from on to off. The confined particle distributions begin to isotropically

spread about the equilibrium center of mass, although for small particle number

there are large fluctuations in the center of mass. Qualitatively, for the ratchet to

function, the off state needs to last long enough for some of the particles to diffuse

to the next potential well. For the MIV scheme, the net force is a discrete function,

such that for ten particles, as long as at least four particles are anywhere over the

steep slope, the potential will stay off. On the other hand, for the continuous net

displacement function, if there is any fluctuation to the left of the center of mass

(in the geometry of Fig: 3.3), the potential will turn on and immediately trap the

particles in the original well. Thus, the center of mass of the particle distribution

must continually remain to the right of Xo long enough to allow some particles to

diffuse to the right, a statistically unlikely event for large particle numbers.

This behavior is also manifested in the previously lauded two-particle case. Fig

ure 3.5 shows the center of mass velocity for the MND and MIV schemes as a function

of the ratchet potential depth va. The velocity for both schemes increases with

potential depth simply because the drift velocity of the particles when the potential

is on is greater, but we see that the MND scheme only does better than the MIV

scheme for va/kBT > 30. This is a combined consequence of the continuous net

displacement function and the choice of Xo at the center of mass of the Boltzmann

particle distribution. As the potential depth is reduced, the distributions begin to

spread because larger regions of the potential are thermally accessible. This has the
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Figure 3.5.: The center of mass velocity (units of D/L) as a function of potential

depth Va/kaT for the MND and MIV feedback schemes, with N = 2, a = 1/3, and

Xa the center of mass of the Boltzmann distribution about a potential minima. The

MND scheme does better than the MIV scheme for Va/kaT > 30, but does worse

otherwise. This is another consequence of the continuous net displacement function,

specifically that as the potential depth is decreased, the Boltzmann distribution center

(Xa) shifts up the shallow side of the ratchet, requiring the particle to diffuse even

further to cruss iuLu Llle next well.
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Figure 3.6.: As the potential depth Vo is lowered, the center of mass of Gaussian

distribution about the minima moves up the shallow slope. If we choose Xo as the

center of mass, particles now must diffuse a distance (aL + xo) to make it to the next

well before getting trapped in the original well, ultimately decreasing the average

velocity of the ratchet.

effect of shifting Xo to the left (up the shallow slope), which has the unintended effect

of requiring that particles have to diffuse that much further to get over the steep

slope, shown schematically in Figure 3.6.

The behaviors in Figures 3.4 and 3.5 subtly point to the fact that our rigid choice

of the Boltzmann center of mass for Xo may not be the best choice to optimize our

MND feedback scheme. Because it is still a free parameter, later in this chapter we

will explore the effects of adjusting Xo to optimize the MND scheme.

Experimental Considerations

Much of this simulation work was done in conjunction with an experimentalist
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in the Linke Group, Mr. Benjamin Lopez, who built the first successful feedback

controlled flashing ratchet system [43J. The ratchet system is based around an

intensity-modulated scanning-line optical trap [44], where a single focussed laser

spot is scanned rapidly back and forth in a line. Optical traps are ubiquitous

tools in biophysics, and work on the principle of radiation pressure, where dielectric

objects feel a force towards high electromagnetic field gradients [18J. In practice, to

successfully trap an object, optical traps must balance the gradient force (toward high

field gradient, such as a focussed laser spot) and the scattering force (along the beam

path, pushing the object out of the focus). In the scanning line trap in the flashing

ratchet, a focussed beam (1064 nm Nd:Yag laser) is scanned back an forth along a

17.3 /-tm line in the x-axis at 2 kHz, such that a 0.9 /-tm silica microsphere (initially

trapped by a stationary optical trap) is trapped in the y- and z-axes, but feels a time

averaged zero force in the x-direction. Thus, the sphere diffuses in ID with a simple

Stokesian diffusion constant (D=kB T/61f1]r). The laser scanning is accomplished by

an acousto-optic deflector (ADD), a solid-state device whose optical properties can be

controlled by voltage, where both the direction and intensity of transmitted light can

be well characterized and controlled at a relatively high frequency. To create the saw

tooth ratchet potential, the intensity of the scanning beam is modulated along the line,

creating periodic high and low field gradients, which manifest themselves as a ratchet

shaped potential for the dielectric microspheres. Images of the the microspheres are

captured in bright-field by a CCD camera and analyzed by real-time particle tracking
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software (LABVIEW). The particle positions are then fed into a feedback scheme

calculation, and the AOD is updated accordingly.

To correctly model Mr. Lopez's feedback ratchet system we need to take a few

experimental effects into account. Firstly, although the AOD is creating a linear

ratchet potential, the microspheres are not point particles and consequently the ideal

linear ratchet potential is smoothed into an effective ratchet potential. To calculate

the effective potential, ~ff(x), as a function of particle radius R we will integrate the

expected linear potential V(x) over the microsphere volume:

3 l x
+

R

~ff(X, R) = 41f-R3 x-R V(x')S(x')dx', (3.9)

where S(x') is the cross-sectional area of volume slices of the bead perpendicular to

the ratchet direction. This integral calculates the effective potential at each point

x' by integrating the linear ratchet potential over the sphere centered about x'. The

result is shown in Figure 3.7 where both the potential depth and asymmetry are

reduced. As an interesting side note, it is possible for certain values of R that the

effective potential has the opposite direction of asymmetry, bringing the possibility

of a single ratchet potential acting as a size sorting device, where objects of different

sizes move in opposite directions [78].

Another inevitable experimental consideration that we must contend with is time

delay. There are two sources of time delay in our system: measurement delay and

implementation delay. Measurement delay is the time required to take successive

measurements, i. e. if a measurement is taken at time t and the next measurement
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t' - t. Implementation delay

is the time is takes after a measurement is recorded to implement any feedback

information on the system. For the scanning-line trap ratchet, the measurement

delay is the maximum frequency of the CCD camera and implementation delay

is the combined computational time (determining particle location and applying

the feedback algorithm) and the AOD response. Time delay always reduces the

performance of feedback ratchet system for small particle numbers because feedback

decisions become increasingly uncorrelated with the actual real-time state of the

system. The effects of feedback delay have been extensively studied computationally

for the MIV scheme [46]. Delay can seriously impact the performance of the ratchet

if the delay time is larger than the timescale of a particle diffusing across the features

of the ratchet potential. For the scanning-line ratchet, the time for a bead to diffuse

across the smallest ratchet feature is TD = aL2
/ D rv 500 ms, whereas the combined

implementation and measurement delay of the system is rv 5 ms, so we should not

expect detrimental effects from delay, but it should be included nevertheless to match

the experiment as closely as possible. With these considerations in hand, we are able

to effectively model the experimental system. For the rest of this chapter we will

focus on exploring the MND scheme further, particularly the role of the parameter

Xo in a system with time delay.
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Figure 3.7.: Although the scanning line optical trap produces a close approximation

of the the linear ratchet potential, a finite sized bead feels a spatially averaged effective

potential (Eq: 3.9), where the sharp ratchet features are smoothed and both the

potential depth and asymmetry factor are reduced.
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Results

The scanning-line optical trap flashing ratchet system quantitatively reproduced

existing theoretical results of periodic switching and the MIV and MND feedback

switching schemes [41-43]. To explore how adjusting Xo impacts the speed of the

ratchet, Mr. Lopez took measurements of the center of mass velocity as a function of

Xo for N = 1. Shown in Figure 3.8, the empirical optimal position of Xo (measured in

reference to the ratchet minimum, increasing positively up the shallow slope) is not

at the ratchet minimum (xo = 0) or the center of mass of a Boltzmann distribution

about the potential minimum (rv 0.06L). To understand this behavior, we simulated

three different situations: an ideal linear ratchet with no time delay, a linear ratchet

with time delay, and a finite sized bead effective potential with time delay.

The first simulation curve is for a linear potential with no time delay, in which the

magnitude of the velocity is twice the experimental results and Xo is nearly zero. We

then include the 5 J-lS combined measurement and implementation delay time and see

both an expected reduction in the maximum velocity and an unexpected shift in the

optimal xo. Finally, we include the finite-sized bead effective ratchet potential, which

expectingly lowers the maximum velocity but also shifts the optimal Xo position to

near perfect agreement with the optimal Xo in the experimental data. The effects of

the finite-bead effective potential are easily explainable by the specific shape of the

potential for 0.9 J-lm beads: (1) the reduction in velocity is due to the reduction in

asymmetry and potential depth, and (2) the shift in Xo is due to a shift in in the



44

Period Fraction (l)
-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

0- Exp., 't = 5 ms

1.5
V , "t=5 ms

..--. cit

J!! V . 't =5 msE n

.::!:
/I
>v

0.5

0

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2
x (pm)

()

Figure 3.8.: Experimental and simulation results of the center of mass velocity as a

function of Xo in the MND feedback scheme for N = 1. Simulations are adjusted in

an effort to qualitatively and quantitatively match experimental data (lowest trace),

in order from top to bottom: a linear ratchet potential with delay time T = 0, a

linear potential with T = 5 /-LS, and finally a finite-sized bead effective potential with

T = 5 /-Ls.

potential minima (reduction in asymmetry). But the reasons for the original shift in

Xo that we see with the addition of time delay are not immediately apparent, and will

be the focus of the rest of this chapter.

The inset of Figure 3.9 shows simulation results of the center of mass velocity

for N = 1 as a function of Xo for many different values of delay time. The red dots

mark the Xo location of the highest velocity and the black dots show the velocity for

Xo = 0, which are plotted in the main figure as a function of delay time T. Both
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Figure 3.9.: The maximum velocity (red circles) and the velocity for Xo = 0 (black

diamonds) as a function of delay time for N = 1. INSET: Simulation results of average

velocity as function of Xo for increasing delay time (from top to bottom). As delay

increases, the Xo position that produces the highest average velocity shifts up the

shallow slop of the ratchet potential.

traces see a reduction in velocity as delay time increases, but immediately apparent

is the fact that adjusting Xo can somewhat mitigate the ill effects of time delay.

An interpretation of this behavior is as follows: consider a single particle over the

shallow side of the ratchet potential just as the potential is turned on. The particle is

pushed to the right at a speed F fry until it reaches the potential minimum, becomes

trapped, and the feedback scheme switches the potential off. If there is time delay

in the system, the time at which the particle reaches the minimum and the time

at which the potential is turned off are offset, such that the particle sits confined
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at the bottom of the well for longer than it optimally should. A way to overcome

this delay-induced reduction in speed is to adjust the feedback scheme such that the

signal to switch potentials is sent earlier, and thus when implemented, will be better

synchronized with the real-time state of the system. In the case of the MND scheme,

switching occurs when the particle passes the Xo position, therefore if we move Xo

up or down the ratchet potential, we can adjust the time a switching signal is sent.

Therefore, one would expect that Xo should be adjusted according to the distance a

particle travels by drift during the delay time, or FTIry (from the shallow potential

slope, F = VOl£(1- a)). But if we plot the drift distance (grey line) and the optimal

Xo position as a function of time delay, as shown in Figure 3.10, we do not see any

agreement. If we also plot the expected displacement from diffusion, (2DT )1/2, we

attain near perfect agreement. On the millisecond time scale, the distance covered by

diffusion is nearly two times further than drift, therefore the optimal scale to adjust

Xo is the mean diffusional distance and not the drift distance. The empirical data

appears to diverge from the T
1

/
2 trend at high delay time, where the distance covered

by drift becomes comparable to diffusion, but the error in Xo also increases because

the velocity curves in Figure 3.9 are less peaked.

Conclusions

We have presented the framework of the flashing ratchet, a system with zero

average force that is able to rectify thermal motion of diffusive particles into directed
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Figure 3.10.: Xo position that produces the highest average velocity as a function

of delay time. As seen in Fig. 3.9, the optimal Xo position shifts up the shallow slope

of the ratchet potential with increasing delay time. We see that optimal Xo data

coincides well with the average distance covered by diffusion, (2Dr) 1/2 (black line),

rather than distance covered by ratchet induced drift, Fr/,y (grey curve).
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Figure 3.11.: To mitigate the ill effects oftime delay, we adjust the Xo position such

that the switching signal is sent some time r earlier, and the particle just reaches the

potential minimum when feedback is implemented.
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transport. The flashing ratchet achieves transport by temporally switching between

a spatially asymmetric, periodic potential landscape and a flat potential landscape.

Switching can be done periodically or randomly, as long as the time scales are

chosen appropriately. If the positions of the particles are known, the center of

mass velocity can be increased dramatically if switching is instead controlled by a

feedback scheme. Two feedback schemes have been presented, the Maximization

of Instantaneous Velocity (MIV) and Maximization of Net Displacement (MND)

schemes, which determine switching criteria based on the expected net force on the

particle distribution or the expected net displacement of the distribution, respectively.

The MND does better than MIV for N<3 and Vo/kBT > 30, but does worse otherwise

because the ratchet potential is not kept off long enough for an appreciable number

of particles to diffuse into a neighboring well.

An experimental feedback controlled flashing ratchet system, based around an

intensity modulated scanning line optical trap, illuminated a subtle relationship

between a control parameter in the MND scheme, xo, and feedback delay time.

Simulations show if there is time delay in the system, either in measurement or

feedback implementation, its ill effects can be somewhat mitigated by adjusting the

feedback scheme such that switching signals are sent to the feedback system earlier.

In the case of the MND scheme, the parameter Xo can be shifted up the shallow

slope of the potential, where the length of shift is determined by the average distance

covered by diffusive motion.
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CHAPTER IV

THE TUMBLEWEED MOTOR

The remainder of this dissertation will primarily focus on an artificial molecular

motor concept called Thmbleweed. In many cases inspired by bio-molecular motors,

artificial molecular motors present the opportunity to discover important design

characteristics of molecular-scale motors that may not be apparent from observation

alone. By designing and building a motor from the 'ground-up', parameters such as

molecular size and flexibility are not only unfixed but also optimizable. In this regard,

artificial motors also offer a unique modeling opportunity because the structure and

function of the molecule is a priori known. Beyond a proof-of-concept treatment, an

artificial motor model allows for the exploration of basic motor parameters that may

or may not be crucial to the performance of the motor. This chapter will introduce

the details of the Thmbleweed motor concept, as well as discuss basic requirements

for its expected function. In Chapter V, we optimize the diffusional stepping time

of the Tumbleweed motor by adjusting two particular design choices, and in Chapter

VI we explore the motor's ability to compete many successive steps as a function of

experimentally adjustable parameters.
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Basic Design

The TUmbleweed (TW) is an artificial molecular motor concept that diffusively

steps 'hand-over-hand' along a linear track by cyclically binding three separate motor

'feet' (Fig. 4.2). Similar to bio-molecular motors, the TW is a protein-based molecule.

It consists of a designed Y-shaped central hub with a unique DNA-binding protein

attached to each arm ofthe hub (Fig. 4.1). The hub is constructed from self-assembled

protein structures called coiled-coils, which are tertiary protein structures of two

a-helices coiled around each other [79]. The individual amphipathic (containing

both hydrophobic and hydrophilic regions) a-helices are designed such that they self

assemble with their partner a-helix in a configuration determined by the orientation

of the hydrophobic and hydrophilic regions, thus producing a well defined shape

that is structurally rigid [80]. The specificity and rigidity of the coiled-coils make

them especially useful for the TW because knowing and maintaining the geometry

of the motor is important for maintaining the asymmetry in the system, which is a

requirement to achieve unidirectional motion.

The key components of TW that allow for coordinated stepping are biologically

occurring DNA-binding proteins called repressor proteins. In vivo, repressor proteins

are regulatory proteins which halt DNA transcription by binding to a specific base

sequence and physically blocking RNA-polymerase (molecular motors that 'slide' up

DNA and copy the sequence into mRNA, which eventually is used to produce a

protein) [12]. The binding activity is controlled by a feedback process in which the
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repressor protein only binds to the DNA when the concentration ofthe product being

produced by the polymerase reaches a critical level. The products, or ligands, bind to

the repressor protein and cause a conformational change in the protein, which allows it

to physically fit into its specific binding sequence [81, 82]. Because repressor proteins

bind to a specific DNA sequence only in the presence of their associated ligand, they

make perfect candidates for a motor because the spatial and temporal coordination of

binding can be controlled by DNA design and the local chemical environment. The

TW molecule has three different repressor proteins, each with a unique associated

ligand and unique DNA-binding sequence, thus the binding location and activity of

each foot can be controlled independently.

Each repressor recognition sequence is approximately the length of one helical

turn of DNA ("-' 3.5 nm). To reduce steric interactions between bound repressors, the

track is designed such that there is an inactive sequence spacer, also the length of a

helical turn, between the active binding sequences. Each binding sequence can then

be considered a unique binding site separated by approximately 11 nm. To build a

directionality into the DNA track, the three unique binding sites, A, B, and C, are

arranged in repeating sequences of A_B_C_A_B_C... , where underscores represent the

inactive spacer sequences. This binding site separation also defines the relative size of

the TW molecule: for the three coiled-coils to be equidistant from each other, i. e. be

separated by 1200 with a tip-to-tip separation of 11 nm, the length of each coiled-coil

complex should be approximately 5 nm.
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Figure 4.1.: Detailed structure of the Tumbleweed molecule. The TW consists of

three unique DNA-binding proteins called repressor proteins, which bind with high

affinity to a specific sequence of DNA in the presence of a small molecule (ligand) in

solution, attached to the 'arms' of a Y-shaped coiled-coil protein hub (structure file

for this image created by Drs. Richard Sessions and Elizabeth Bromley).
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Figure 4.2.: The TW motor process. Ligands (a,b,c) are introduced in plugs,

starting with [a,b] such that RA and RB are bound to adjacent sites. [a,b] is then

replaced by [b, c], causing RA to release and the molecule to undergo tethered diffusion

while RB remains attached until Rc finds its binding site. [b, c] is then replaced by

[c,a] and then [a,b] again.
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The basic stepping process of the Tumbleweed motor is as follows (please refer to

Figure 4.2 for a visual description): Consider repressor protein 'feet' RA , RB , and Rc

with associated binding ligands a, b, and c and binding sites A, B, and C respectively.

Combinations of ligands, called plugs, are introduced externally, beginning with plug

[a, b], such that RA and RB are bound (necessarily to adjacent sites A and B due to

the chosen size of the molecule) and Rc is unbound and undergoing tethered diffusion.

[a,b] is then flushed out and replaced by [b,e], such that RA is no longer ligand bound

to the DNA and disassociates from its binding site while RB stays tightly bound.

With only one foot bound and its associated ligand now in solution, Rc is allowed to

diffusively search for and bind to its binding site. Because of the directionality of the

track and the relative size of the molecule, Rc can only reach the adjacent C binding

site and thus the motor always binds in the 'forward' direction. Once the molecule

has stepped, i. e. bound by RB and Rc, ligand plug [e,a] is introduced such that RB

releases, Rc remains bound, and RA searches for its binding site. Once RA binds,

the ligand plug [a, b] is introduced again and the motor returns to its original binding

state 33 nm down the track. If the ligand plugs are exchanged in the same cyclic

order, the TW molecule will move 33 nm per cycle in a single direction, determined

both by the spatial order of the binding sites (ABCABC or CBACBA both work)

and the temporal order of the ligand plugs.

Compared to the mechanochemical cycle ofkinesin described in Chapter I (Fig. 1.1),

the Tumbleweed cycle is not tightly coupled. Though not well understood, we assume
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the repressor proteins continually exchange their bound ligand with free ligands in

solution to effectively sample the local ligand concentration. In this case, there is no

longer a one-to-one correspondence between a single fuel molecule and a mechanical

step but instead a single step requires a constant chemical potential throughout the

entire step. Furthermore, the entire stepping cycle of TW requires three different

chemical fuels. Therefore, the motor is not powered by single fuel molecules but

instead by modulations in the chemical potential.

Time Scales and the Success Inequality

With the stepping process of the Tumbleweed defined above, we can now consider

basic requirements for the motor to be successful, i. e. take many successive steps

without disassociating from the track. In a a single stepping event, e. g. from ligand

plug [a,b] to [b,c], a coordinated set of processes must occur. Firstly, RA must lose

its ligand, transitioning from its holo- (with ligand) to apo- (without ligand) state

and Rc must gain its ligand. Secondly, RA must release from the track and Rc must

diffusively find its binding site. The ligand plug [b,c] must remain in solution during

this entire process such that RB stays tightly bound, and the time that a holoprotein

(protein with ligand) stays tightly bound should be longer than all of these processes

such that the binding and unbinding coordination is maintained. This coordinated

process can be summed up by the 'Success Inequality:'

1 1
-k-- < Tdiff < Tlig < kho1o'

on/off off
(4.1)
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where kon/ off are the rates for ligand-repressor (dis)association, Tdiff is the diffusional

stepping (searching) time of the motor, Tlig is the temporal length of each ligand plug,

and k~~lo is the rate for holoprotein detachment from the DNA track.

Although this qualitative expression describes the basic requirements for success,

we would like to understand quantitatively what these different time scales are, how

they should compare, and if any of them adjustable through molecular or experimental

design. In building a computational model, the relevant time scales of the system or

process in question largely determine the choice of modeling technique, thus it is also

important to get a rough estimate of each of the time scales in Equation 4.1 such that

an appropriate model can be chosen.

The repressor-ligand association and disassociation rates, kon/ off , are not well

known for our choice of proteins, but are generally thought to be on the order of

the ligand diffusion time scale. To model a system on this time scale, one must use

fully atomistic Molecular Dynamics models, where the trajectories of each atom in

the molecule and surrounding fluid are explicitly calculated. Because this time scale

is largely determined by the molecular structure of the repressor proteins and is many

order's of magnitude away from any experimentally observable time scale, we do not

choose to explicitly model this process and instead use the literature given rates. The

second time scale of Equation 4.1, the diffusional stepping time Tdiff, can be estimated

by considering the time for a sphere with a diameter similar to the size of TW

("-' 20 nm) diffusing one binding site separation ("-' 10 nm), which is approximately
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1 /-lS. For currently available computational power, the maximum simulation run

length of a Molecular Dynamics model is approximately 100 nanoseconds, thus not

applicable to statistically explore Tdiff. In the next chapter we will instead use a coarse

grained Langevin Dynamics model (described in detail in Chapter II) to understand

the physical contributions to Tdiff. The third time scale in Equation 4.1 is the ligand

plug length Tlig' This will be largely determined by experimental limitations, and,

although the final experimental design in incomplete, it is expected to be between

0.1 and 1 s [83]. The final time scale of Equation 4.1 is the holoprotein detachment

rate, l/k~~lo, which is also not well known for our proteins. Bulk experiments place

the holoprotein detachment rate at approximately 100 s [84-87], but it is unknown

how this rate is affected by coupling the proteins to one another. For the following

simulations, we will vary l/k~~lo between 0.1 and 100 s. Because both Tlig and

l/k~~lo are potentially determined, or at least affected, by molecular design choices,

we would like to know how sensitive the Success Inequality is to the range of expected

values for each. Our Langevin Dynamics model is suitable for time scales /-lS - ms,

and therefore not appropriate to model the interactions of processes across many time

scales. In Chapter VI we will instead introduce a stochastic model of the TW based

around the classical Master equation of the system (described in detail in Chapter

II), which sacrifices the single-molecule information of our Langevin Dynamics model

but allows us to model the interactions of processes across a wide range of time scales.
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Figure 4.3.: Time scales and modeling techniques for the Tumbleweed motor.

The fastest time scale in the Success Inequality is ligand-protein (dis)association,

approximately 10-12 s, where atomistic Molecular Dynamics (MD) simulations are

necessary. The diffusional stepping time, TdifT, is rv J-lS where coarse-grained

Langevin Dynamics (LD) simulations are appropriate. The ligand exchange time Tlig,

holoprotein detachment time 1/ k~~lo, and experimental run lengths are all between

0.1 - 100 s, where the stochastic Master equation (ME) model is required to simulate

the interactions of processes across many time scales.
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CHAPTER V

PHYSICAL CONTRIBUTIONS TO DIFFUSIONAL STEPPING

Introduction

In Chapter IV we defined the Success Inequality (Eq. 4.1), in which we qualita

tively defined the relative relationship between important time scales of the Tum

bleweed motor process. In this chapter, we will focus on a particular term in the

inequality, the characteristic diffusional stepping time Tdiff. Although the speed of the

motor will most likely be set by the ligand exchange frequency, decreasing Tdiff as much

as possible will help ensure the motor completes a step during Tlig' In this chapter we

will use a coarse grained Langevin Dynamics model (see Ch. II) to investigate two

physical contributions to Tumblweed's diffusional stepping time: molecular flexibility

and non-specific binding.

Ankle Flexibility

Recall from Chapter IV that the 'I\lmbleweed molecule consists of two main

components: three unique DNA-binding proteins (repressor proteins) attached to

the arms of a Y-shaped, coiled-coil protein structure (hub). The repressors will be

attached to the hub by polypeptide linkers, which are relatively short amino acid
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chains (rv 10 amino acids). The exact length of the linker is not a priori determined

by any structural requirements of the molecule, and it is relatively straightforward to

vary its length in the molecular synthesis process. A basic molecular design question

thus remains: What is the optimal linker length?

Consider a short linker of just a few amino acids. In this case, the tip of the

coiled-coil and the top of the repressor protein are in close proximity, to the point

where they would be physically bumping into each other. Geometrically, the least

constrained configuration would be when the coil-coil arm is completely perpendicular

to the repressor protein, and any excursion from the perpendicular configuration

would result in molecular collision. In this case, the hub-linker-repressor region can

be though of as a rigid joint, which we will refer to as the'ankle', where the equilibrium

position of the joint is in the vertical configuration.

As the linker length is extended, the physical interactions between the coiled

coils and the repressor proteins should be reduced, to the point where the motion

of the coiled-coil arms and the repressor proteins are nearly uncorrelated. In this

case, the ankle would be nearly a completely flexible joint, where the end-to-end

separation between the repressors and coiled-coils stays relatively constant but there

is no energetically preferred direction of the the joint.

From a basic diffusional sense, ankle rigidity will affect the diffusional space that

the leading foot will be able to explore during the step (see Figure 5.1). A rigid

ankle will reduce the thermally accessible space and bring the center of mass of the
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molecule forward more quickly, which could reduce the time that the leading foot

needs to search for its binding site. But an extremely rigid ankle may introduce an

energetic barrier to binding. Geometrically, the ankle must bend a certain amount for

the leading foot to bind, which would most likely increase the total stepping time. On

the other hand, a completely flexible joint would not introduce any energetic barriers

to binding, but the thermally accessible diffusional space of the leading foot will be

larger, and consequently it may take longer for the foot to find its specific binding

site.

Non-Specific Binding

A slightly more subtle physical contribution to Tdiff is non-specific repressor protein

DNA binding. Although the repressor proteins bind very tightly to a specific DNA

sequence, there is also a sequence independent, or non-specific, attraction between the

proteins and DNA. Typically, generic DNA binding proteins have a concave complex

that is involved in DNA binding, where the shape of the active region allows for the

molecule to maximize the number of hydrogen bonds at its specific DNA sequence [88].

DNA is also a relatively highly charged molecule (1 extra electron per nucleotide),

and electrostatic interactions between positively charged side chains in the protein

and the negatively charged phosphate groups in the DNA backbone playa role in

protein binding [12, 88]. The exact nature of non-specific DNA protein binding is

believed to arise from a combination of these two molecular details: Firstly, the
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Figure 5.1.: The approximate diffusional space of the leading foot as a function of

ankle flexibility, where the thermally accessible region of the bound leg is represented

as the grey cone. A rigid ankle (a) reduces the thermally accessible space of the

leading repressor foot allowing it to reduce the time it takes to diffusively search, but

it also may introduce an energetic barrier to binding, where a very flexible ankle (b)

may not have any energetic barriers to leading foot binding, the diffusional space of

the motor is much larger and consequently will require more time to search.
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charged DNA attracts free ions from solution, which get trapped between the DNA

and binding protein due to the concavity of the protein's active region. The number

of hydrogen bonds is greatly reduced in non-specific regions, but an electrostatic

attraction between the proteins and DNA still exists. As the proteins approach the

DNA, the osmotic pressure from the trapped ions cancels the electrostatic attraction,

and the proteins are able to 'slide' nearly freely along the DNA. Thus, the ions in

solution act as a lubricant between the DNA and binding proteins, allowing them to

explore the DNA until they reach their specific sequence, where hydrogen-bonding

overtakes the osmotic pressure and the protein binds tightly to the DNA [89].

So what does non-specific binding have to do with diffusion time? It turns out

that, biologically, DNA-binding proteins make excellent use of non-specific binding to

decrease the diffusional search time for their target sequences. Although the details

are somewhat controversial, it is generally agreed upon that they accomplish this goal

by combining the relatively slow 3D diffusional search with a fast 1D diffusional slide

along DNA. Because DNA is usually tightly packed in the cell, physically adjacent

sections of DNA may sequentially be thousands of bases apart. Binding proteins make

short 3D excursions, or 'hops,' to and from adjacent DNA sections, then undergo a

'facilitated' 1D diffusion along the DNA, until they find their specific sequence or

hop off again. The typical sliding distance is around 50 base pairs, or approximately

17 nm [90].

One may immediately think that non-specific binding will decrease Tdiff for Tum-
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bleweed because the leading foot should be able to find its binding site more quickly.

But the TW has three binding proteins coupled together, and during a step two of

them are both undergoing diffusive motion. So as the leading foot will be helped by

non-specific biding, the lagging foot release will be hindered by non-specific binding,

and the leading foot cannot physically reach the DNA until the lagging foot has

released (see Figure 5.2).

The strength of non-specific binding can be dependent on the ionic concentration

of the TW environment because the binding interaction is partially mediated by free

ions in solution. Since the experimental environment of TW is currently unknown,

and also because we do not know the precise interaction strength of our specific

repressor proteins, we will explore a wide range of non-specific binding strengths in

order to build a general understanding of the affects of non-specific binding.

Model

Because we are necessarily interested in single molecule information, we will need

to use a dynamical model. From the back-of-the-envelope calculation in Chapter IV,

we know that Tdiff should be near the /-LS time scale, which is perfect for the coarse

grained Langevin Dynamics model that we outlined in Chapter II. FUrthermore, the

over-damped limit (T f'V mly) is on the nanosecond scale, so we can neglect any

inertial motion of the molecule as well. Recall that in the coarse-graining process,

the molecule is modeled as a collection of spheres, where the diameter of each sphere
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Figure 5.2.: Non-specific binding effects in the TW stepping process. Although

non-specific binding should decrease the target recognition time of the leading foot

by reducing the 3D diffusional search to ID, it may increase the total stepping time

because the lagging foot, also undergoing non-specific binding, must release from the

track before the leading foot can reach its binding site.
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corresponds to the viscous drag coefficient of the corresponding molecular component,

and the sphere separation and molecular geometry are maintained by a collection of

potentials. For the TW molecule, the coarse-grained model is shown in Figure 5.3,

where the molecule has been reduced to four connected spheres. The molecular

geometry and excluded volume are treated in the same manner as Chapter II, using

a harmonic tethering potential and a repulsive Lennard-Jones potential, respectively.

The central sphere, which models the coiled-coil hub flexibility, is taken to be a free

joint, such that the three legs can be at any angle to each other.

The DNA track is not explicitly simulated in this model, and is instead replaced

by a line of binding sites, separated by XL, along the x-axis. The binding process

can be treated two ways: we can define a binding potential or a binding volume. In

defining a binding volume, characterized by rbind in Fig. 5.3, repressor-DNA binding

is assumed once the correct sphere enters the binding volume. This treatment is

relevant when the binding strength is very high and the binding process is relatively

fast. It is especially useful for simulations where just the timing of the binding event,

rather than the dynamics thereof, is sufficient. In situations where the dynamics of

binding are important, e. g. in a successive stepping trajectory, the following binding

potential is used:

11" _ ~ ~ V; -r2 /r?Vbind - URep Ulig be, (5.1)

where 11 is the characteristic length of attraction, taken to be the approximate Debye

length in solution (""' 1 nm), 6lig is a Kronecker delta function, which is 1 when the
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Figure 5.3.: Coarse-grained Langevin Dynamics model of the Tumbleweed molecule.

The molecule is represented by four spheres, whose steric diameter rlj and viscous drag

coefficient 'Y match molecular components. The equilibrium separation of the spheres

is rhub and the central sphere acts as a free joint. The DNA track is represented by

a line of binding sites separated by XL with binding volume rbind' The orientation

of the ankle joint is characterized bye, the angle the bound leg makes with the z-

axis. Simulations in this chapter use rhub = 6.35 nm, rbind = 1 nm, rlj = 4 nm, and

XL = 11 nm, unless otherwise noted.
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site-specific ligand is present, and 0 otherwise, and ORep is another Kronecker delta

that is 1 only if the repressor matches the binding site, and 0 otherwise. Instead of

explicitly modeling protein-DNA binding, which is very complicated and far beyond

the time scale we are interested in, this potential is a computationally well-behaved

function that simulates strong binding.

As an approximation, this model includes a hard floor in the plane of the DNA

track (z = 0). The interaction between the molecule and the floor is simulated by

specular reflection: if a z-coordinate of any sphere becomes negative, the coordinate

is replaced by its negative value, similar to a ray-optics reflection. This treatment

works well as long as the program time-step is chosen sufficiently small, such that

the displacement at each time step is much less than the characteristic length of the

molecular components.

The orientation of the ankle joint is characterized by the angle, 0, the bound leg

makes with the z vector. To incorporate the ankle rigidity in the model, we can define

a potential,

Vflex = Vf cos(O), (5.2)

where the strength (rigidity) can be controlled by the parameter Vf' This is the same

potential form defined in Chapter II (Eq. 2.14).

Finally, we need to model the non-specific binding potential. From [89], the

potential is symmetric about the DNA (no energetic barrier to slide along the DNA)

and has a minimum rv 0.5 nm away from the DNA. This potential can be qualitatively
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modeled as

{

e-ryz/t:,

_ Vn (r z/~) for r yz > rcut
~sb - y

o for r yz < rcut

(5.3)

where r yz is the distance away from the DNA track and ~ is the characteristic

interaction length (f'V Debye length). Because non-specific binding is partially

mediated by screened electrostatic interactions, the functional form of the potential

is that of a Yukawa, or screened-Coulomb 1 potential. A Yukawa potential is divergent

as r yz approaches zero, so we cut off the potential at rcut = 0.5 nm, which along with

the floor interaction, creates an effective potential well.

Figure 5.4 shows a center-of-mass trajectory of the TW molecule from our coarse-

grained Langevin model. We see relatively fast llnm diffusive steps followed by

long dwell periods where the motor is bound by two feet and waiting for the next

ligand exchange. The fluctuations in the center-of-mass during the dwell periods are

Brownian motion of the molecule in the two-foot bound state. Note that the ligand

exchange time (Tlig) for this simulation is 300 jJ,S, which is far faster than the expected

experimental range, and is used as a computational convenience and not as a model

of the real system.

To confirm the qualitative behavior of the ankle joint and non-specific binding

discussed above, Figure 5.5 shows sample trajectories of the central monomer with

(a) a rigid ankle and (b) a free ankle, and trajectories of the lagging foot with (c) non-

specific binding and (d) without non-specific binding. We see the expected reduction
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Figure 5.4.: Center-of-mass trajectory of Tumbleweed molecule with Tlig = 300 ~LS.

in the diffusional space explored by the central monomer due to a rigid ankle, and

the inclusion of sliding excursions of the lagging foot along the DNA track with non-

specific binding.

To define a characteristic diffusion time, Tdiff, we build a distribution of first passage

times: the time from lagging foot specific release until leading foot specific binding.

Because we are only interested in the time of binding, specific binding is now treated

in the 'binding volume' method described earlier. A typical histogram of first passage

times is shown in Figure 5.6. To reduce histogram binning effects, instead of fitting

the binned raw distribution, we fit the Cumulative Distribution Function, D(X), such

that,

D(X) l X

p(x) dx (5.4)
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Figure 5.5.: Trajectories of the central monomer with (a) rigid ankle joint and

(b) completely free ankle joint, and trajectories of the lagging foot with (c) non-

specific binding and (d) without non-specific binding. The rigid ankle shows smaller

excursions from the equilibrium position of stationary bound leg (x = 0, characterized

by the position of the central monomer) than a free ankle. The lagging foot displays

periods of weakly bound interactions with the DNA track in the presence of non-

specific binding and no noticeable interaction without non-specific binding.
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where p(x) is the probability distribution for the raw data and D(X) is the probability

that a random number from the raw distribution has a value less than or equal to

X. Since the raw data is discrete, the fit parameters of p(x) can be non-trivially

dependent on how the data is binned. By integrating the raw data into D(X), we

build a continuous function that does not introduce binning effects in the fit process.

Assuming individual first passage times are uncorrelated and there exists an average

first passage time (Tdiff), the distribution is treated as a Poisson process and modeled

as single decreasing exponential function of time,

p(t) (5.5)

such that we fit the integrated distribution to

D(T) - iT p(t) dt = - Tdiff Ae-T/Tdiff + C (5.6)

All first passage times presented in this Chapter are fit in this manner using a built-in

MATLAB® (2010a, The MathWorks, Inc., Natick, MA) routine, and error bars are

5% confidence bounds of the fit parameter Tdiff.

Results

Although the effects of non-specific binding and ankle rigidity will more than likely

be combined in the Thmbleweed system, we begin by investigating them separately.

Figure 5.7 shows the characteristic first passage time of TWas a function of (a) ankle

rigidity and (b) non-specific binding strength. We see that the first passage time as
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Figure 5.6.: Typical histogram of Tumbleweed first passage times, defined as the

time from lagging foot release to leading foot binding. The distribution is fit to a

single exponential decay using a cumulative distribution function routine (red curve),

and the resulting time constant is taken as the characteristic diffusion time, Tdi[.

a function of ankle rigidity is always increasing, while as a function of non-specific

binding there is minimum at f'V 8 kET. This implies that the reduction in diffusional

space is not enough to compensate for the energetic barrier to binding that arises

from a rigid ankle, but that the reduction in diffusional space from 3D to ID from

non-specific binding can be advantageous.

In perhaps a more realistic scenario, Figure 5.8 sho'\vs the characteristic first

passage time as a function on non-specific binding for six different values of ankle

rigidity, ranging from nearly free to very rigid. We still see the positive effect of
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Figure 5.7.: Characteristic first passage time as a function of (a) ankle rigidity

and (b) non-specific binding strength. We see that increasing ankle flexibility always

increases the first passage time, while non-specific binding reduces first passage time

up to a strength of I'-.J 8 kbT.
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Figure 5.8.: First passage time as a function of non-specific binding strength for

different values of ankle rigidity. We see a substantial decrease in first passage time

as a function of non-specific binding for increasing ankle rigidity. The minimum first

passage time occurs for non-specific binding strength between 8 - 10 kaT.

non-specific binding, and it is actually amplified for higher ankle rigidity with up to

an order-of-magnitude decrease in first passage time compared to zero non-specific

binding. Thus, non-specific binding can not only decrease the diffusional time of TW,

but it can also mitigate the ill effects of a highly rigid ankle. But what about the

other way around: can a rigid ankle help release a strongly non-specrfically bound

lagging foot?

We might expect that a rigid ankle may help release the non-specifically bound
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lagging foot by imparting a torque, effectively 'tearing' the foot off the track. Fig

ure 5.9 shows the characteristic first passage time now as a function of ankle rigidity

for different non-specific binding strengths. We see that for non-specific binding

strengths below the optimal value, the first passage time always increases with ankle

rigidity, similar to Figure 5.7.(a). But for values higher than the optimal non-specific

binding strength (rv 8 kB T) , the first passage time begins to show a slight decrease as

a function of rigidity. Thus, for very high non-specific binding strength, it is actually

advantageous to have a somewhat rigid ankle, though the maximum reduction is only

rv 30 %, much less dramatic than that of the non-specific binding results.

Why is the rigid ankle not very effectively at mitigating the effects of high non

specific binding? Figure 5.10 schematically shows a motor with rigid ankle and high

non-specific binding. Recall that the central joint in the molecule, representing the

coiled-coil hub joint, is completely flexible. At high non-specific binding strengths,

the first passage time increases because the lagging foot takes longer to release from

the track. In Fig. 5.10(a) the lagging foot has just released from its specific binding

site. The central, stationary foot is bent away from vertical, such that it feels a force

F towards the perpendicular, which is translated to the lagging foot as F'. For the

motor to overcome non-specific binding, the force F~ must be greater than the force of

non-specific binding. But because there is no energetic barrier to slide the foot along

the DNA (besides the work to overcome viscous drag), the lagging foot will simply

slide right next to the stationary foot, Fig. 5.10(b). Although this causes F' to be
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Figure 5.9.: First passage time as a function of ankle rigidity for different values of

non-specific binding strength. For non-specific binding strength below the optimal

value, first passage time increases with ankle rigidity. But for high strength, we see

a slight decrease in first passage time up to f'V 40 kaT. At high non-specific binding,

the lagging foot takes longer to release from the track, and a rigid ankle can help pull

the foot away.
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nearly all in the z-direction, the magnitude is greatly reduced because the stationary

foot is closer to vertical and F is nearly all in the x-direction. For the current design,

when the lagging foot is right next the stationary foot, the bound leg is displaced

18°, which gives Fz rv F~ = 0.2 F. This sliding behavior can be seen in the

distributions of the non-specifically bound lagging foot position along the DNA as

function of ankle rigidity, shown in Figure 5.11, where the distribution shifts towards

the bound stationary foot (at x = 0) as ankle rigidity is increased.

In this situation, the rigidity of the ankle is not translated well to the lagging foot,

and as a consequence its impact on reducing the effects of high non-specific binding

are minimized. In a sense, the molecule is not effectively able to produce enough

intramolecular strain to tear the lagging foot off the track because the molecule is not

rigid enough. The only other source of rigidity in the molecule is the coiled-coil hub

joint, which in the current molecular design is completely free. Compared to the ankle

joint, adjusting the flexibility of the central hub joint is relatively difficult because

the self-assembly of the coiled-coil structure is sensitive to the joint characteristics.

Nevertheless, it is worth theoretically exploring the behavior of a rigid hub joint to

better understand the general impacts of molecular rigidity and non-specific binding.

In the case of a rigid hub joint, each pair of legs forms a 120° angle, and each leg

is co-planar with the other legs. Because the molecule is rigid, the feet can no longer

slide along the DNA track while non-specifically bound. Because the advantages

from non-specific binding arise from the sliding diffusion, we do not expect to see a
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Figure 5.10.: Schematic of a TW motor with rigid ankles and high non-specific

binding (a) Immediately after the lagging foot releases from its specific binding site,

and (b) after a certain amount of time. Because the central joint is completely free,

the force F from the rigid ankle simply slides the lagging foot next to the stationary

foot, where the force needed to release the lagging foot from track, Fz , is diminished.
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Figure 5.11.: Position distributions of the non-specifically bound lagging foot for

different ankle rigidities. As the rigidity is increased, the lagging foot is pulled toward

the bound, stationary foot.
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similar reduction in first passage time as the flexible motor. Figure 5.12 shows the first

passage time of a rigid hub motor (a) as a function of non-specific binding for different

ankle rigidities, and (b) as a function of ankle rigidity for different non-specific binding

values. We notice that non-specific binding no longer decreases the first passage time

of the motor, as expected. But non-specific binding can still increase the first passage

time because the lagging foot still takes longer to release from the track. In the case

of ankle rigidity, there is a slight increase in first passage time for small values of

non-specific binding, and a reduction for larger non-specific binding strengths. The

reduction is more substantial than we saw with the free hub motor, maximally around

40 %. As expected, the rigid-hub motor appears to be more effective at tearing the

lagging foot off the track, but we also notice that the overall diffusion time scale has

increased an order of magnitude. This is most likely due to the loss in the 1D sliding

diffusion facilitated by non-specific binding. Therefore, although the positive effects

of a rigid ankle are amplified, a rigid hub is ultimately not ideal if one is interested

in decreasing the diffusional stepping time as much as possible.

Load Force

One of the functions of many biological molecular motors is to perform work

against an external load, such as intracellular cargo transport (kinesin) and muscular

contraction (myosin II). In an effort to draw comparisons with bio-molecular motors,

we would like to briefly explore how non-specific binding and ankle rigidity combined
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Figure 5.12.: First passage time (a) as a function of non-specific binding for different

ankle rigidities, and (b) as a function of ankle rigidity for different non-specific binding

strengths. We see that non-specific binding no longer helps the motor because the

feet can no longer slide on the DNA, but it still increases the first passage times due to

the lagging foot not releasing from the track. Ankle rigidity shows some improvement

for large non-specific binding values, but the absolute diffusion times are orders of

magnitude longer than the optimized free hub design.
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with external load forces affect the performance of Thmbleweed. Because the stepping

of TW is driven by diffusion, the energy required to perform work is supplied by the

thermal energy kBT = 4.14 pN nm. Thus, to complete an 11 nm step, the motor

can overcome on the order of 4.14 pN nm / 11 nm = 0.4 pN by diffusion alone. We

choose to investigate a range of load force from 0 - 1 pN to get a general idea of the

diffusional behavior of TW under reasonable load.

Figures 5.13 and 5.14 show the first passage time of the motor as a function of

non-specific binding strength and ankle rigidity, respectively, for load forces from 0 

1 pN. For non-specific binding, we see that the motor is fairly resilient to load force for

non-specific binding strengths below the optimal non-specific binding strength (8-10

kBT) (shown in the inset of Fig. 5.13), but that there is a more dramatic increase

in first passage time with increasing binding strength. This is most likely a direct

consequence of the main drawback of high non-specific binding: non-specific binding

of the lagging foot. Geometrically, the central monomer must be bending forward in

order for the leading foot to reach the track. Under load, there is a constant force

pulling the central monomer to the rear. Thus, when the lagging foot does release

from the track, it is more likely that it will simply rebind to the track than for the

molecule to diffuse forward.

One may initially think that a rigid ankle may help reduce the effects of load

force because it would oppose the central monomer from being bent to the rear. But,

as can be seen in Figure 5.14, the first passage time is an increasing function for
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Figure 5.13.: First passage time as a function of non-specific binding for increasing

load force. Inset zoom figure is the region of non-specific binding strength from

o - 12 kBT. 'vVe see that the motor is fairly resilient to load force below the

optimal strength of non-specific binding, but that the first passage time increases

more dramatically for higher non-specific binding strength.
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Figure 5.14.: First passage time as a function of ankle rigidity for increasing load

force. vVe see that the first passage time is an increasing function for increasing load

and rigidity. This is likely due to the rigid ankle applying a force in the same direction

of load while the motor is attempting to bind the leading foot, effectively adding load

to the motor.

all load forces with increasing ankle rigidity. A rigid ankle will oppose load force

on the central monomer, preferentially bringing it normal to the track. But for the

leading foot to bind, the central monomer must be bent forward of normal, in which

the force from the rigid ankle is now in the same direction of load force, effectively

adding more hindrance to leading foot binding than the case of a completely free

ankle (Figure 5.15).
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Figure 5.15.: A rigid ankle counteracts load force while the stationary ankle is bent

towards the rear, but adds to load when the ankle is leaning forward. Because the

ankle must lean forward for the leading foot to reach the track, a rigid ankle effectively

adds load force to the system.
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Conclusions

We have investigated two possible physical contributions to the diffusional step

ping time of the Thmbleweed motor: ankle-joint rigidity and non-specific DNA

protein binding. We find that the diffusional stepping time of the motor always

increases for increasing ankle rigidity (Fig. 5.7(a)) likely because a rigid ankle intro

duces an energetic barrier to leading foot binding. For non-specific binding, we see an

initial decrease in diffusional step time followed by a relatively fast rise (Fig. 5.7(b)).

The reduction in the diffusional search from 3D to a 1D 'slide' is thus advantageous

up to a certain point, above which the lagging foot begins to take longer to release

from the track. In the case of combined non-specific binding and ankle rigidity, we see

that the positive effects from non-specific binding are amplified for increasing ankle

rigidity (Fig. 5.8), such that non-specific binding can mitigate the ill effects from

a rigid ankle. A rigid ankle can somewhat mitigate the effects of high non-specific

binding (Fig. 5.9), but much less dramatically than vice versa.

One of the reasons for a reduced effect of ankle rigidity on a system with high

non-specific binding is the completely free hub joint, where intramolecular strain is

effectively not strongly transmitted to the lagging foot (Fig 5.10). A theoretical way

to reduce this effect is to make the hub joint completely rigid. However, this has

the consequence of removing the positive effects of non-specific binding because the

feet can no longer slide along the track. But the ill effects of non-specific binding,

namely the lack of lagging foot release, still remain. A rigid hub improves a rigid
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ankle's ability to help release a lagging foot (Fig: 5.12), but the overall diffusional

time increases an order of magnitude. Therefore, the overall gains from a rigid hub

joint do not outweigh the losses of non-specific binding.

In terms of molecular design, we are now at a point where we are able make some

preliminary conclusions about the optimal flexibility of the ankle joint. If the non

specific binding strength is experimentally found to be below 10 kBT, then the ankle

joint and hub joint should be as flexible as possible. If by some design constraints

the molecule is required to have a rigid ankle, then tuning the non-specific binding

strength to be rv 8 kBT can substantially decrease the diffusional search time of the

motor.
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CHAPTER VI

TOWARDS A QUANTITATIVE SUCCESS INEQUALITY

Success Inequality Revisited

In Chapter IV, we developed a qualitative relationship between the time scales of

the Thmbleweed's diffusional stepping time (Tdiff), the ligand exchange time hig) and

the average time a ligand bound repressor protein (holoprotein) stays attached to the

1
Tdiff < Tlig < kho1o '

off
(6.1)

In Chapter V we used a Langevin Dynamics model to explore how molecular

design and experimental conditions can affect Tdiff, and determined that it will most

likely be in the range /1S - ms. The other time scales in Equation 6.1 are 0.1 -

100 s, which is far beyond the capabilities of the Langevin Dynamics model. To

quantitatively determine how sensitive TW is to the relative time scales of diffusion,

ligand exchange, and holoprotein detachment, we need to sacrifice the single-molecule

information of the dynamic models and instead use a stochastic modeling technique

that allows for efficient modeling across many time scales: the Master equation.
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The TW Master Equation

The basis of the Master equation approach is motor binding states. A binding state

is defined as a unique configuration of the three repressor proteins, their associated

ligands, and the DNA binding sites. For example, the state j\*:s*C represents the

state where both RA and RB are bound to the DNA with their associated ligands

while Rc is unbound without ligand (* and - representing ligand and DNA bound

respectively), compared to the next step in the motor process A:S*C*, in which RA

loses its ligand and unbinds from the DNA while Rc gains its ligand but is still

searching for its binding site. The TW has 80 distinct binding states; 8 ligand states

and 10 DNA states, which are enumerated in Table 6.1 (this includes three foot bound

states, which will be neglected due to steric constraints in forthcoming simulations,

but are included here for completeness).

The Master equation (ME) is a differential equation that determines the time

dependent transitions between binding states. For the TW motor, assuming first-

order transition rates, the Master equation is

a
atP(t) = M(t)p(t), (6.2)

where p(t) is a 80-row vector in which the numeric value in the n'th row is the

the state numbering scheme from Table 6.1). M(t) is an 80 x 80 matrix of time

dependent transition rates, where the allowed transitions are determined by the
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ABC ABC ABC ABC ABC ABC ABC ABC BCA CAB
ABC 1 9 17 25 33 41 49 57 65 73
A*BC
AB*C + + + + + + + + + +
ABC*
A*B*C
A*BC* + + + + + + + + + +
AB*C*
A*B*C* 8 16 24 32 40 48 56 64 72 80

Table 6.1.: The 80 distinct states of the TUmbleweed motor. In the state vector

p(t), the states are numbered consecutively from 1 to 80 (note that this includes three

foot bound states, which are sterically restricted and thus neglected in subsequent

simulations, but are included here for completeness).

structure and elements of M (t). The allowed transitions for TW are schematically

shown in Figure 6.1. Following these selection rules for allowed transitions, we can

now build the transition matrix M(t) for the TW:

LI D~I D~II D~v 0 0 0 0 0 0
DII LII 0 0 D II D II 0 0 0 0I V VI
DIll 0 L Ill 0 DIll 0 DIll 0 0 0I V VII
DIV 0 0 LIv 0 DIV D{riI 0 0 0I VI

M(t) = ° Dti DtiI 0 Lv 0 0 D~Illa D~Illb D~Illc (6.3)
0 D VI 0 DVI 0 LVI 0 D~~IIa D~~IIb D~~IIcII IV
0 0 Dti~I Di{]I 0 0 LVII D~nIa D~nIb D~nIe
0 0 0 0 D~IIIa D~~IIa D~Wa LVIIIa 0 0

0 0 0 0 D~IIIb D~~IIb D~Wb 0 LVIIIb 0

0 0 0 0 D~IIIc D~~IIc D~Wc 0 0 LVIIIe

where we have defined two sub-matrices

(k~j o. 0 0 0 0 ° no k~J 0 0 0 0 0

o 0 z,ij 0 0 0 0'°3

D! ° 0 0 k ij 0 0 0 ° (6.4)4

J 0 0 0 0 kij 0 0 05

0 0 0 0 0 kij 0 06

0 0 0 0 0 0 kij 07

0 0 0 0 0 0 0 kij
8
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Figure 6.1.: The allowed state transitions for Thmbleweed organized by DNA

binding (-) and ligand binding (*). The three-foot bound DNA binding states are

distinguished by which foot is bound first. In subsequent results, the triply bound

states are not physically possible, but are included here for completeness.
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where k~j describes the transition between two DNA binding configurations i and j,

while keeping the ligand binding configuration f constant, and:

-2: k~AIA k~BIB k~G1G 0 0 0 0

k~AIO -2: 0 0 k~BIAB k~GIAG 0 0

k~BIO 0 -2: 0 k~AIAB 0 k~GIBG 0

k~GIO 0 0 -2: 0 k~AIAG k~BIBG 0
(6.5)L i =

0 k~BIA k~AIB 0 -2: 0 0 k~GIABG
0 k~GIA 0 k~AIG 0 -2: 0 k~BIABG
0 0 k~GIB k~BIG 0 0 -2: k~AIABG
0 0 0 0 k~GIAB k+ BjAG k~AIBG -2:

where k~BIAB is the nomenclature we use to describe the associated rate for the

process A*B*C =} A*BC for the DNA binding configuration i. The term -I; in the

L i matrix is the negative sum of state probabilities in the corresponding column of

the full matrix, which is included to conserve probability, i. e. a transition to a new

state should result in a subtraction from the previous state probability.

With the structure of the TW Master equation complete, we now must determine

the first-order rate constants in M(t). Note that each Li sub-matrix has 24 indepen-

dent rates and each D; sub-matrix has a 8 independent rates, which results in a total of

528 rates to fully parameterize the system. Many of these rates are dependent on the

specific structure and function of the TW molecule, e. g. the rate for RA detachment

while RB remains bound, and these structurally specific kinetic rates simply unknown

because the molecule has not been constructed yet. Ultimately, the rate constants

we will use come from literature values from bulk experiments, where the binding

kinetics of single repressor proteins are measured. To proceed with the ME approach

we need to make a few assumptions and approximations: (i) Each ligand interacts

with its associated repressor independently, (ii) DNA-binding state does not influence



94

Table 6.2.: The reduced set of ME rates for the Thmbleweed. In Ch. V we saw a

range in Tdiff rv 2 /1S - 2 ms, dependent on undetermined molecular design parameters,

but will use Tdiff = 200 /1S unless otherwise noted.

ME Rate

107 8-1

102 8-1

(Tdiff)-l 8-1

10-2 - 10 8-1

(Tdiff/100)-1 8-1

103 8-1

Source

Unknown, assumed to be relatively fast
Unknown, assumed to be rv kon/105

From LD simulations (Chapter V)
Bulk values rv 10-2 8-

1 [84-87]
Assumed rv 100x weaker than holoprotein binding
Preliminary single molecule experiments

the ligand-binding state, (iii) DNA-binding and ligand-binding kinetics are the same

for each repressor, and (iv) three-foot bound states are sterically impossible.

These assumptions reduce the ME parameter space to 6 independent kinetic

rates: ligand-repressor association and disassociation kon/ off , holoprotein binding and

unbinding k~~/~ff' and apoprotein binding and unbinding k:~/off' The ligand-repressor

association rate, kon , is not known for our repressor proteins, but is thought to be

approximately 107 s-\ and ligand disassociation is thought to be 105 slower. The

literature valued for holoprotein detachment from DNA is rv 10-2
S-l [84-87],

although we will vary the value to explore the sensitivity of successful stepping to

this rate. For holoprotein binding to DNA (which is concentration dependent in

bulk experiments), we instead substitute the diffusional stepping rate, (Tdiff-1, the

range of Tdiff = 2 /1S - 2 ms taken from Langevin Dynamics simulations in Ch. V).

The apoprotein binding affinity is thought to be approximately 100 times weaker than



95

holoprotein binding, and thus the rate is 100x slower than holoprotein binding. These

values are summarized in Table 6.2.

It is worth it note here that the 'TUmbleweed Master equation that we have

developed thus far does not contain any spatial information. Technically, spatial

information, such as the binding site location of each repressor, can be included in

a Master equation, but it requires one to define a unique set of transition matrices

at each spatial coordinate, which dramatically increases the complexity and compu

tational time of a simulation. Therefore, the solutions to the Master equation here

do no give molecular trajectories per se, but instead the binding state probability

as a function of time. But we can infer stepping motion by comparing the binding

probabilities to the expected stepping profile determined by the ligand plug cycle.

Figure 6.2 shows the binding probability as a function of time of RA , RB , and Rc

for two complete ligand exchange cycles (shown above the figure for reference). During

the ligand supply plug [a,b] (t = 0 - 1 s), RA and RB have near 100% probability of

being bound, while Rc has zero probability. During the next ligand plug (t = 1 - 2 s),

we now see the binding probability of RA falling to zero as Rc rises to 100%, which

is exactly what we would expect during the transition from [a,b] ----+ [b,c]. We see

the exact same behavior at each ligand exchange, and therefore assume that nearly

all of the motors in our ensemble are performing stepping behavior in the expected

manner.
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Figure 6.2.: Binding probabilities for RA , RB , and Rc (red, blue, and green

respectively) as a function of time. Although spatial information is not included

in our Master equation, stepping behavior can be inferred by the comparing binding

probabilities to the expected repressor binding sequence determined by the ligand

plug cycle (shown schematically above).
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Holoprotein Detachment and Diffusion

We are now fully equipped to explore the Success Inequality (Eq. 6.1) in a quan

titative way. The first question we will examine relates to our original choice of rates:

Although we have bulk kinetic values for the holoprotein detachment rate l/k~~lo, we

do not know how the binding behavior of our repressors will be affected by having

the repressors structurally close to each other. How sensitive is TW the time scales

of 1/k~~lo if the rates turn out to be faster than the literature bulk value? Figure 6.3

shows the probability of motor attachment after 30 ligand exchanges (10 complete

cycles) as a function of 1/ k~~lo with Tlig held constant at 1 s. The different curves

represent different values of Tdiff ranging from 2 /-ls to 2 ms, the window determined

from Langevin Dynamics simulations in Chapter V. We can see in the region of

parameter space where k~~lo 0.01- 0.1 s (the expected literature values), nearly 100%

of motors are attached after 30 ligand exchanges, which implies that nearly all motors

in the ensemble took 30 consecutive steps, approximately 30 x 11 nm = 0.33 /-lm, in

30 x Tlig = 30 sec, with an average speed of 11 nm/s.

For 1/k~~lo = Tlig = 1 s, when the Success Inequality is no longer met, we see that

there is still a high attachment probability for motors with Tdiff < 200 /-lS, but there

is a 20% reduction in attached motors for Tdiff = 2 ms. It is initially surprising that

a process that is happening a thousand times faster than 1/ k~fflu and Tlig can have

such a large effect on motor performance. This result reiterates the importance of a

modeling technique, such as the Master equation, that can explore the interactions
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Figure 6.3.: The ensemble attachment probability for TW after 30 ligand exchanges,

or 10 complete ligand cycles, as a function of the holoprotein detachment rate k~fflo for

different values of Tdiff, holding Tlig = 1 s constant. For k~ffJo equal to the bulk literature

value, we see nearly 100% attachment for all values of Tdiff. As 1/k~fflo = Tlig, we see a

20% reduction in motor attachment for Tdiff = 2 ms, but still near 100% attachment

for smaller Tdiff. Even as 1/k~fflo > Tlig, where the Success Inequality is not met, we

see high attachment for the shortest Tdiff, showing the need for reducing Tdiff as much

as possible.
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between processes at many different time scales. As 1/ k~fflo is increased beyond TJig,

where the Success Inequality is no longer met, we see the attachment probability for

Tdiff = 200 JiB begins to rapidly fall off, but the attachment probability for Tdiff < 20 J-Ls

remains near 100%.

This behavior suggests that having a fast diffusive stepping time is critical for

taking successive steps when 1/ k~fflo becomes equal to or less than TJig. Physically,

this behavior arises from the fact that during the time Tdiff, the motor is only attached

by a single repressor. During this time, a repressor detachment event is necessarily

catastrophic, i. e. leads to complete motor detachment. During the time the motor

is bound by two repressors, though, a single repressor detachment does not lead to

motor detachment. Thus, reducing the total time that the motor is attached by a

single repressor, namely Tdiff, is a way to guard against the possibility that the bulk

repressor kinetic rates are not conserved in the Thmbleweed molecule.

Ligand Mixing and Misstepping

The experimental speed of the molecule will ultimately be determined by how

quickly ligands can be exchanged from solution. Because the ligand concentration

is controlled by a macroscale machine, changing TJig may also turn out to be one of

the most straightforward adjustments that can be made in the Success Inequality.

We would thus like to understand how the motor is affected by reducing TJig. We
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will begin by describing a more physical picture of ligand plugs in the experimental

system, and how diffusional mixing of the plugs may affect motor performance.

As of the current experimental design, ligand plugs will have to travel a finite

distance before they reach a microchamber containing the TW molecules and DNA

track. Within this region, the three different ligand plugs will be traveling in a

sort of 'train,' and some diffusional mixing between the plugs will be unavoidable.

Figure 6.4.(a) qualitatively shows the expected effective ligand concentration as a

function of time for the ideal plugs shown above. Tlig is still defined as the length

of the ideal plug, but two new parameters are introduced to quantify the amount

of mixing: T1 is the temporal length of the unmixed (clean) region of the effective

plug, and T2 is the temporal length of the mixed region. This mixed region becomes

a pseudo-plug, between ideal clean plugs, where all three binding ligands are present.

As of the current TW design, binding all three repressor proteins at the same time

is not sterically possible, so the addition of the ligand pseudo-plugs should not cause

the motor to exhibit three foot bound states. But the triply mixed plugs may reduce

the asymmetric directionality of the ligand sequence.

The Master equation is capable of modeling any time dependent ligand concentra

tion, but it is computationally expensive to model a continuous distribution because

the ligand dependent rates in the transition matrix M (t) must be recalculated at

each time step. Thus, to get a general idea of how plug mixing affects the motor,

we will approximate the effective ligand concentration as a step function, where the
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Figure 6.4.: Qualitative representations of the expected experimental ligand

concentration profiles. (a) Due to diffusional intermixing of the ideal ligand plugs,

the ligand concentration as a function of time is qualitatively shown, where ideal

clean ligand plugs are separated by pseudo-plugs of all three ligands. The amount of

mixing is characterized by Tl and T2, the temporal lengths of the clean and pseudo-

plugs respectively, and Tlig = Tl + T2 still represents the total length of the ideal plug.

(b) To decrease computational time, we chose the step-function concentration profile

shown here in the ME, and approximate linear dependance of binding rates on the

local concentration.

concentrations of the exchanging ligands are both half the full concentration during

the mixed, pseudo-plugs. This approximated concentration profile is shown in Figure

6.4. (b). As a first-order approximation, we also assume the repressor binding rates

are linearly dependent on the local ligand concentration.

Figure 6.5 shows attachment probability of RA during the [b,c,] ligand plug

for different values of the mixing parameter T2/Tlig, with Tlig =1 s held constant
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(Tdiff = 200 /1B, l/k~fflo = 100 s). Compared to the same time period (1 s -+ 2 s)

in Figure 6.2 where the binding probability for RA rapidly falls and remains zero

during the entire ligand plug, we now see an increasing binding probability of RA .

The maximum probability for attachment (t = 2) is plotted in the inset as a function

of the mixing parameter T2/Tlig. This binding behavior is of course not the expected

binding sequence, and therefore a percentage of motors are not exhibiting the ex

pected stepping behavior. Again, we cannot extract any single molecule trajectory

information from the ME, but we can infer at least two possible scenarios that

would account for this anomalous behavior: The binding probability of RA does

initially fall to zero, which implies that the foot does detach from the track when

the ligand plug is exchanged. But during the rest of the plug, the motor either

does not complete the diffusional step to bind Rc and instead re-binds RA , or the

motor does complete the step but Rc detaches and the motor diffuses back to bind

RA . In either case, the motor missteps and it binding state becomes off-sequence

with the ligand supply. If the motor does not make another misstep during the

three-plug ligand cycle, its binding behavior during the rest of the sequence will be:

ABC (misstep) -+ ABC (backstep) -+ ABC (original site). So a misstep not only

causes the motor to stall during a single ligand exchange but also miss (at minimum)

one complete three plug ligand cycle, or until its binding state becomes in sync with

the ligand supply.

Although misstepping events could be detrimental to the speed of the Tumbleweed
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Figure 6.5.: Misstepping events for Ttig = 1 s for different mixing parameters T2/Tlig.

The binding probability of RA during ligand plug [b, c] is expected to be zero for perfect

stepping, but here we see an increasing binding probability during the plug, indicating

that a percentage of motors are not completing the diffusional step and return to the

previous binding state, putting the motors off sequence with the ligand supply and

consequently stalled for an entire three-plug cycle. The maximum probability for

misstepping, taken at t = 2 s, is shown in the inset as a function of T2/Tlig.
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motor, we see in the inset of Figure 6.5 that the percentage of motors misstepping

during a single step is less than 5% for 90% mixed ligand plugs (1'd1'lig = 0.9),

and less than 1% for 10% mixing. If we again consider 10 complete ligand cycles

(30 exchanges) with 1'lig = 1 s and binding site separation 11 nm, the average speed

without misstepping is 11 nm/s. With 10% mixing, there is a (1 - 0.993
) = 3%

chance per cycle a motor will not complete three consecutive steps, i. e. stall at a

single binding site for the entire cycle, so in a 10 cycle run, rv 30% of motors miss

one complete ligand exchange cycle (or three steps), bringing the average speed to

297 nm 330 nm . . . .
(0.7* + 0.3 * ) = 10.2 nm/s, or a 7% reductIOn III speed. ThIs IS

300 s 300 s

a significant reduction, but certainly not disastrous to the experimental observation

of successively stepping motors.

For 1'lig = 1 s we see that plug mixing can reduce the speed of Thmbleweed due to

misstepping and stalling events, but what happens if we also decrease 1'lig to increase

the speed? The inset of Figure 6.6 again shows the binding probability for RA during

ligand plug [b,c], but now for the expected maximum ligand exchange frequency

1'lig = 0.1 s (note the data presented is taken during the second ligand exchange cycle,

t = 0.4 - 0.5 s, such that any transient behavior has disappeared). For 1'd1'lig > 0.5

we now see the binding probability for RA never reaching zero and increasing rapidly

with 1'2. This behavior implies that a percentage of motors have not released R A

before the pseudo-plug arrives and thus totally stall in the ABC binding state. This

initially appears terrible for the speed of the motor, but remember that the step-time
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Figure 6.6.: Stalling events for Tlig = 0.1 s. Compared to Fig. 6.5, the binding

probability of RA during [b,c] never falls to zero (inset), indicating that a percentage

of motors are not releasing RA before the pseudo-plug arrives. Even though the

probability for misstepping is higher than for Tlig = 1 s, we will still see an increase

in average speed because of the ten-fold reduction in Tlig'

Tlig has been reduced by ten, so the motor only has to cover more than a tenth of the

distance to do better than the Tlig = 1 s case. At the extreme value of T2/Tlig = 0.9,

where there is a 30% probability of misstepping per step, for a ten cycle (30 ligand

exchange) run, the motor is expected to misstep nine times. But since a misstep

causes a loss in three productive ligand exchanges, the motor will lose 27 forward

steps for an average speed of (3*11 nm)/(30*Tlig) = 11 nm/s, exactly the same as the

unmixed Tlig - 1 s case.

Interestingly, for the expected range of ligand exchange frequency, diffusional

mixing between the ligand plugs does not seem to have any dire consequences on
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the Thmbleweed motor, besides possibly making its motion less elegant. Plug mixing

also has the unintended consequence of increasing the attachment probability after

multiple ligand cycles because there is simply less chance that a motor will only be

attached by one foot, albeit possibly to the wrong binding sites.

Before we conclude this section, it is worth it to approximate the expected amount

of diffusional plug mixing in the current experimental design. The three ligand plugs

([a. b]' [a. b]' [a. b]) will be sequentially injected into a rv 1 cm long tube before

entering the microchamber containing the TW molecules and DNA track. The

pulses are expected to travel at approximately 1 cm/s, thus they will have 1 s of

diffusional mixing time. As a rough estimate, we can use the 1D diffusion equation,

< x > = V2Dt, to determine the approximate width of the mixed region. For a

diffusion constant D rv 10-5 cm2
/ s, < x > rv 0.004 cm, which gives a 12 = 0.004 s

traveling at 1 cm/s. This gives a mixing parameter '2/'lig = 0.004 and 0.04 for

llig = 1 and 0.1 s respectively, which is orders of magnitude less than where we saw

any dramatic effects of ligand mixing and thus Thmbleweed will most likely not be

noticeably affected by ligand plug mixing.

Conclusions

We have developed a stochastic simulation model based around the classical

Master equation of the Thmbleweed system in order to quantitatively explore the

sensitivity of the motor to variations in the Success Inequality (Eq: 6.1), a relation-
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ship between the diffusional stepping time of the motors (Tdiff), the experimentally

controlled ligand exchange frequency (Tlig) , and the rate for ligand-bound repressor

detachment (l/k;rlo).

We find that successive stepping of the motor is not extremely sensitive to expected

variations in Tlig and 1/k~fflo, even when the inequality is no longer met, as long as the

diffusion time is less than 200 f.tS (Fig. 6.3). But as the diffusion time increases to 2 ms,

there is a dramatic decrease in the fraction of motors attached after many successive

steps even as the time scale of diffusion is three orders of magnitude less than Tlig and

l/k~fflo. The motor is especially sensitive to l/k~fflo while stepping because it is only

attached by one foot, in which a detachment even is necessarily catastrophic, thus the

time for single foot attachment (Tdiff) should be kept minimum such that the motor

is almost always bound by two feet.

We also investigated the effects of a particular experimental design that leads

to diffusional mixing between ligand plugs, effectively creating pseudo-plugs with

all three ligands present. We find that the addition of three ligand plugs leads to

misstepping and stalling events, where the motor becomes off sequence with the

ligand supply and remains at its original binding site for an entire three-plug ligand

cycle. To increase the speed of the motor, the ligand exchange frequency can be

reduced, but the effects from ligand mixing are amplified with a decreases Tlig. But,

we find that although misstepping events are much higher, the reduction in Tlig can

still be enough to increase the speed of the motor.
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CHAPTER VII

CONCLUSIONS AND OUTLOOK

The cellular environment is an inherently noisy an violent system. Thermally

driven collisions are constantly bombarding every component of the cell in ran

dom directions. Special intercellular protein-based molecules are nevertheless able

to achieve directed transport not only in the presence of thermal noise but also

incorporate thermally driven motion into the transport process. These molecular

motors are able to perform work, and are responsible for a host of crucial biological

processes ranging from cell division to DNA replication to locomotion. Inspired by

these biological motors, many other motor systems that incorporate thermal motion

into the motor process have been developed. These motors are broadly referred to

as Brownian motors. There has been considerable effort to understand important

physical principles of a range of Brownian motors. This dissertation set out to

understand physical characteristics of two particular theoretical Brownian motor

systems using a combination of computational modeling techniques.

Summary of Results

The first system, discussed in Chapter III, is the feedback controlled flashing

ratchet. A flashing ratchet is a highly reduced representation of a molecular motor
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that is especially useful to explore the combined roles of thermal motion, systematic

asymmetries, and external energy input in the motor process. It consists of a spatially

asymmetric, periodic saw-tooth shaped potential energy landscape that is switched on

and off in the presence of diffusive particles. During the switching process, particles

undergo free diffusive motion and asymmetric confinement, resulting in a net particle

transport without the need of a global net force gradient. Much of the interesting

physics lies in the method of switching the potential. If the time scales are chosen near

the diffusive time scale of the particles, periodic and random switching can lead to net

particle transport. But, if information about the instantaneous state of the system is

used to determine switching, the average center of mass velocity of transport can be

increased an order of magnitude. This feedback-based switching scheme is analogous

to the famous Maxwell's Demon thought experiment.

Two particular feedback schemes are presented, one which bases switching deci

sions on the net force on the particle distribution (MIV) and one that bases switching

decisions on the expected net displacement of the particle distribution (MND). For

small particle numbers, the MIV scheme is a discrete function while the MND scheme

is continuous, which results in differing behaviors as a function of particle number and

potential depth. Further investigation of the MND scheme, motivated by a concur

rent experimentally realized flashing ratchet, illuminated a non-trivial relationship

between maximum center-of-mass velocity in the ratchet and a control parameter

in the feedback scheme, xo. The experimental system inherently has some time
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delay in measurement and feedback implementation, which reduces the effectiveness

of feedback control because the implementation is not coordinated with the real-time

state of the system. By adjusting the spatial parameter Xo in the feedback scheme

according to the expected displacement of a particle during the delay period, feedback

signals are triggered earlier in the system such that when feedback is implemented

it is more likely to be synchronized with the system. The expected displacement is

dependent on the time scale of delay, where for short delay times diffusive motion

dominates ratchet induced drift.

The second system, presented in Chapter IV, is the protein-based artificial molec

ular motor concept Tumbleweed (TW). Motivated by biological molecular motors,

artificial molecular motors offer the opportunity to understand molecular-scale motors

from the ground-up. Artificial motors also present a unique modeling opportunity

because the structure and function of the molecules are presumably a priori known.

The TW motor is a tri-pedal protein-based molecule that diffusively walks, or 'tum

bles,' along a DNA track by cyclically binding and unbinding its 'feet' to specific

binding sites on the track. The coordination of binding is externally controlled by

modulating the chemical potential of the system, and directionality is determined by

track polarity and external chemical control.

In Chapter V we explored the physical contributions to the diffusive stepping time

scale of the TW motor. Specifically, we focused on molecular flexibility and non

specific molecule-DNA interactions, which reduce some of the 3D diffusional search
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to a ID diffusional 'slide' along the DNA track. Through simulation results, we found

that the reduction in diffusional space from non-specific binding interactions has a

dramatic effect on reducing the the diffusional stepping time of the motor, while

reducing flexibility in the molecule has mainly negative effects. Thus, designing the

molecule with as much joint-flexibility as possible is preferable as a way to reduce the

diffusional stepping time as much as possible.

In Chapter VI we explored the sensitivity of the Tumbleweed motor to interactions

between processes that span many time scales. We focused on a qualitative relation

ship, called the Success Inequality, between diffusive stepping time, experimentally

controlled coordinated binding, and the rate of motor-track disassociation. We found

that the diffusive stepping time can drastically affect motor performance over many

successive stepping events if the time scales of the other two processes in the Success

Inequality become comparable to each other, even if the diffusive time scale is many of

orders of magnitude less than the other processes. We also investigated the affects of

misstepping events as a consequence of the expected experimental design. We found

that misstepping should not be a major hindrance to TW, and that the experimental

speed of the motor will be more dependent on the externally controlled coordinated

binding time scale than misstepping events.

Comparisons to Biological Molecular Motors

Although the two Brownian motors described in detail in this dissertation are fairly
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far removed from biological molecular motors, the results of these simulation studies

may nevertheless be compared to the current understanding of the motor process.

Firstly, the molecular motor kinesin has been interpreted as a feedback controlled

flashing ratchet [91], where the microtubule track is modeled as an asymmetric

potential landscape and the coordinated binding and unbinding of the motor heads are

controlled by a feedback process mediated by intramolecular strain [14]. Specifically,

the kinetic rates of the individual heads are thought to be load dependent. During

a step, the molecule assumes a forward-leaning conformation such that the lagging

head feels a higher load from molecular strain than the leading head, ultimately

causing lagging head release. The results from Chapter III suggest that the feedback

process may have to be discrete, i. e. the strain must reach a threshold value before

triggering release, to reduce sensitivity to thermal fluctuations. For example, if

the strain induced by thermal fluctuations alone is enough to cause release, a two

head bound kinesin may not stay bound long enough to complete the diffusive step

without detaching from the track. This is similar to the requirement that the flashing

ratchet must stay off long enough for particles to diffuse an appreciable distance

before feedback-induced switching. This behavior might be seen in a single-molecule

experiment. For instance, an optical tweezer could be used to pull on a single kinesin

head with a similar force profile as in vivo molecular strain, and the unbinding rate

as a function of force may show a discrete profile.

The results of Chapter V illuminate interesting diffusional behavior as a function of
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molecular rigidity and non-specific binding. Biologically, molecular rigidity is thought

to be crucial in the stepping process of dimeric stepping motors. For example, the

molecular motors kinesin and myosin V are dimeric molecules that step hand-over

hand, i. e. one foot stays bound while the other detaches from the track and diffusively

steps forward. The motors are able to always step in the correct direction because the

free-foot diffusion is biased in the forward direction. The corresponding ankle joint

of kinesin and myosin V preferentially bends forward, effectively moving the center of

mass of the molecule beyond the bound motor head and facilitating forward binding

[30, 92-94].

Furthermore, the binding activity of the feet is also gated by molecular strain.

When the leading ankle is bending forward, it induces strain on the molecule that

changes the binding kinetics of the feet, such that the lagging foot always releases

before the leading foot [95, 96]. The molecule must have some rigidity to build up

mechanical strain. Molecular rigidity in kinesin is also thought to allow the leading leg

to act as a lever arm while transitioning to the forward leaning conformation that can

apply torque to an external load [97]. This may be partially responsible for kinesin's

relatively high stall force, or the maximum load force the motor can withstand and

still take forward steps, of 10-12 pN, nearly twenty times the available thermal energy

[98].

Because we have seen in most cases that symmetric rigidity in the TW molecule

hinders forward stepping, it appears that the asymmetric, forward-leaning joint of
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biological motors is crucial for a molecule with a rigid ankle joint. FUrther modeling

is needed to determine how a similar forward-leaning binding would affect TW, and

significant changes to the molecular structure may be neccesary.

Similar to the previous discussion on DNA-binding proteins, it has been observed

that some biological stepping motors exhibit a similar 1D diffusion in weakly bound

states. For example, the molecular motor dynein and truncated kinesin heads (dis

cussed in Ch. 1) demonstrate 1D diffusion along its microtubule track in the absence

of ATP (fuel), suggesting the motor heads and track have a weakly binding interaction

[99, 100]. It has been hypothesized that this interaction generally helps the motors

stay attached to the track, and may contribute to the stepping process, but the details

of which are not established [101].

The results presented in this chapter give an indication that the presence of a

weakly-bound attraction between a bio-molecular motor and its track may playa

large role in the stepping process. Resolving this behavior experimentally may be

difficult, but a similar coarse-grained model of a dimeric molecular motor with a non

specific interaction may better match existing data on the diffusional stepping time

of bio-molecular motors.

Kinesin motors are known to take hundreds of successive steps at a time, and

it generally believed that a critical component of the motor process that allows for

this high degree of success is a relatively fast diffusion time, where the stepping time

is < 5 % of the total stepping cycle and the motor is in a two-head bound state
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for rv 95 % of the cycle [14]. In vivo, kinesin motors take approximately 5 ms per

step, therefore 5% of the cycle translates into a diffusional stepping time of < 250 f-lS

[11, 101]. We see a very similar behavior in the results of Chapter VI, where a diffusion

time greater than the 100 f-ls time scale can lead to a large reduction in successively

stepping Tumbleweed motors if the ligand bound protein detachment rate becomes

similar to the ligand exchange rate.

Outlook

With the realization of an experimental feedback controlled flashing ratchet, the

demands for detailed computational models are high. Many details about the MND

scheme and the control parameter Xo remain. For example, can a similar adjustment

to Xo in the case of zero time delay help mitigate the problems associated with the

continuous nature of the feedback algorithm? If the Xo position was moved up the

steep side of the ratchet potential, the ratchet may stay off longer to allow particles to

diffuse across the potential landscape. Somewhat removed from the results presented

here, there is also the interesting prospect of a system of two parallel feedback ratchets.

Each ratchet would have a single diffusive particle, but the particles are physically

connected by a tether. This system could be easily realized computationally and

experimentally, and may have highly dynamic feedback behaviors.

Much of the outlook on the theoretical work on the Thmbleweed motor depends

heavily on the experimental realization of the motor. For instance, Chapter V char-
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acterized the expected diffusional behavior of the molecule for a wide range on non

specific binding strengths and ankle fiexibilities. If either interaction is constrained

in some manner, e. g. the ideal ligand-buffer solution leads to minimal non-specific

binding interactions, the molecular design could be adjusted accordingly to reduce

the diffusive stepping time as much as possible.

Characterization of the binding activity of the molecule also needs to be done.

The kinetic rates of the repressor proteins while physically coupled to one another

may be drastically different that the literature reported bulk values. If the time scales

of the single-molecule rates no longer match the Success Inequality, the design of the

motor or experimental system may have to be adjusted accordingly.

There are also many interesting comparisons to biological molecular motors that

have arisen out of Tumbleweed modeling. A coarse-grained model of a dimeric motor,

such as kinesin, with a non-specific binding interaction may better characterize the

diffusive stepping time of the motor. Because the kinesin motor takes a forward lean

ing conformation, molecular rigidity may be far more effective than in Tumbleweed

at reducing the ill effects of high non-specific binding interactions.
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