
 

REPRODUCTIVE TRADE-OFFS IN SKELETAL HEALTH AND PHYSICAL 

ACTIVITY AMONG THE INDIGENOUS SHUAR OF ECUADORIAN  

AMAZONIA: A LIFE HISTORY APPROACH 

 

 

 

 

 

 

by 

FELICIA C. MADIMENOS 

 

 

 

 

 

 

A DISSERTATION 

Presented to the Department of Anthropology 

and the Graduate School of the University of Oregon 

in partial fulfillment of the requirements 

for the degree of 

Doctor of Philosophy 

 

September 2011 



ii 

 

DISSERTATION APPROVAL PAGE 

 

Student: Felicia C. Madimenos 

  

Title: Reproductive Trade-Offs in Skeletal Health and Physical Activity among the 

Indigenous Shuar of Ecuadorian Amazonia: A Life History Approach 

  

This dissertation has been accepted and approved in partial fulfillment of the 

requirements for the Doctor of Philosophy degree in the Department of Anthropology by: 

  

Dr. J. Josh Snodgrass   Chair  

Dr. Lawrence S. Sugiyama  Member 

Dr. John Lukacs   Member  

Dr. John Halliwell   Outside Member 

 

and  

 

Kimberly Andrews Espy  Vice President for Research & Innovation/Dean of 

the Graduate School  

 

Original approval signatures are on file with the University of Oregon Graduate School. 

 

Degree awarded September 2011 

  



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2011 Felicia C. Madimenos  

  



iv 

 

DISSERTATION ABSTRACT 

 

Felicia C. Madimenos    

 

Doctor of Philosophy 

 

Department of Anthropology  

 

September 2011 

  

Title: Reproductive Trade-Offs in Skeletal Health and Physical Activity among the 

Indigenous Shuar of Ecuadorian Amazonia: A Life History Approach 

 

 

Approved: _______________________________________________  
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Reproductive effort is a central element of human biology and ecology. 

Particularly for females, reproduction is energetically demanding, with elevated 

metabolic costs during pregnancy and lactation, followed by high child care costs. To 

satisfy energetic needs, women can adopt various physiological and behavioral strategies. 

On a physiological level, the energetic requirements of offspring may be met by adjusting 

metabolic allocation and/or drawing on maternal bodily reserves. On a behavioral level, 

women may reduce energy expenditure and/or increase energy intake. 

This study examined reproductive trade-offs in activity and skeletal health among 

the indigenous Shuar forager-horticulturalists of Ecuadorian Amazonia and had two main 

objectives. First, this research examined trade-offs in energy use during female 

reproductive states and behavioral adjustments made by females and males to meet high 

reproductive demands. Second, this study investigated skeletal health profiles among 

Shuar, as well non-Shuar Colonos, to identify the relationships between female 

reproductive factors and skeletal health.  
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Research was conducted among adults in four Morona-Santiago communities. 

Skeletal health was measured using calcaneal ultrasonometry, and physical activity was 

measured using accelerometry. Extensive information on sociodemographics and 

reproduction was assessed through structured interviews. 

Age-related declines in bone mineral density (BMD) were observed for Shuar and 

Colonos, while Shuar BMD was significantly higher than that of other populations. These 

results suggest that normative data from developed countries may reflect suboptimal bone 

density levels. Regarding reproductive effects on skeletal health, results indicate that 

earlier menarcheal age and greater stature are associated with better bone health in 

postmenopausal life. These conclusions suggest the importance of the timing of early 

developmental stages in establishing bone status in adulthood.  

Results demonstrate that physical activity levels were similar between 

pregnant/lactating (P/L) and other women. However, P/L women appear to compensate 

for elevated energetic demands by relying on a male partner who has increased his energy 

expenditure, suggesting greater participation in subsistence activities. 

Overall, this study demonstrates the importance of biocultural strategies among 

women to meet high reproductive costs. Further, it emphasizes the utility of a life history 

framework for identifying trade-offs in physiology and behavior.  

      This dissertation contains previously published and unpublished co-authored 

material. 
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CHAPTER I 

 

INTRODUCTION 
 

Natural selection is the only evolutionary mechanism that consistently adapts 

populations to their environments. Although it is common to view natural selection as a 

process that retains variations that increase survival and reproduction, ultimately it is the 

effects of heritable differences on differential reproduction that resonates through 

generations. Even survival only has selective value to the extent that it leads to the 

proliferation of an organism’s genes in future generations, which is ultimately achieved 

through reproduction (Ellison, 2001). While variation in reproductive biology is not the 

sole conduit through which variation in reproductive success can be achieved, it is an 

extremely important one, and one that is shaped by ecological conditions. This highlights 

the critical importance of investigations in reproductive ecology within the field of 

evolutionary biology. 

Reproductive ecology examines the regulation of reproductive effort, and, 

specifically, the allocation of resources to reproduction at the expense of competing 

physiological demands. For human females, reproduction represents the most 

energetically demanding phase of life, with high metabolic costs of pregnancy and 

lactation, followed by the high costs associated with provisioning dependent offspring, 

typically several at once. These costs may be so high that a forager woman could not bear 

them alone (Hill and Hurtado 2009; Hrdy, 2005; Kramer, 2005; Reiches et al., 2009; 
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Snodgrass, 2011). In order to satisfy these high energetic costs, women can adopt a 

variety of physiological, behavioral, or cultural strategies. On a physiological level, the 

high energetic and nutrient requirements of the fetus or neonate may be met by drawing 

on maternal energy and nutrient reserves available from fat, lean muscle, and/or skeletal 

tissues. Reproduction for females is sensitive to energy availability, which affects 

menarche, fecundity, gestation length, lactation, and the resumption of menses post-

parturition (Ellison, 2001; 2003).  On a behavioral level, pregnant and lactating women 

may compensate for the heightened energetic demands of reproduction through strategies 

such as reducing energy expenditure for other activities, or increasing energy intake, 

potentially by recruiting additional investment from others (e.g., Hrdy, 2005; Marlowe, 

2003; Sugiyama and Chacon, 2005). On a cultural level, bridewealth and the widespread 

distribution of game among foragers, for instance, can be seen as normative customs that 

provide females with resources necessary to satisfy reproductive costs. Both local 

ecological conditions (Gray, 1994; Panter Brick, 1993; Singh et al., 1989) and the 

availability of social support (Piperata, 2009; Sellen and Smay, 2001) are thus critical to 

the strategies adopted by different women in a variety of contexts. Regarding the latter, 

assistance through provisioning of food by mates, kin, or others can increase maternal 

energy intake, whereas assistance with chores and work tasks can relieve a woman from 

the energetic requirements of doing work herself. This allows her to conserve energy and 

resources that may then be re-allocated to meet the woman’s elevated metabolic needs of 

pregnancy, lactation, or feeding of her offspring (Gibson and Mace, 2005; Gurven and 

Kaplan, 2008; Hrdy, 2005; Kramer, 2005). Because both physical and social 

environmental conditions are essential to shaping female reproductive ecology, the 
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physiological and social impacts of reproduction will vary among and within human 

populations.  

The three studies presented in this dissertation contribute to research in human 

biology in two main ways. First, this dissertation examines trade-offs in energy use 

during critical female reproductive states, and the biological and social accommodations 

that are made in response to the high costs of these states. This goal is achieved by 

investigating the relationship between reproduction and skeletal health among the 

subsistence-based, natural fertility Indigenous Shuar forager-horticulturalists of 

Ecuadorian Amazonia and then, by documenting the behavioral strategies used by Shuar 

women to compensate for these elevated reproductive needs. Second, this research 

establishes age- and sex- related skeletal health profiles among the Shuar and neighboring 

non-Shuar Colonos. Minimal data on skeletal health and measured physical activity are 

available for subsistence-based populations, largely because of the methodological 

challenges of gathering these data in field settings. However, recent advancements in 

calcaneal ultrasonometry and accelerometry have facilitated the collection of data on 

bone health and activity levels outside of laboratory and clinical settings. This 

dissertation takes advantages of these methodological advances in order to measure bone 

density and physical activity from a remote population of forager-horticulturalists in 

Ecuador. For comparative purposes, bone density data are also presented for the non-

Indigenous Colono population who are biologically unrelated to the Shuar but live in the 

same geographical region. 

The studies described in this dissertation employ a biocultural approach to 

understand aspects of health. A biocultural perspective predicates a dialectical 
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relationship between human biology and cultural forces, and its application in this 

dissertation addresses the influences of socio-cultural elements on biology and 

simultaneously, the ways that biology influence socio-cultural factors. Further, this 

research describes the energetic strategies used to meet the demands of reproduction, 

which, in an energy-constrained environment, will be at the cost of competing 

physiological demands. This fundamental principle of life history theory—that under 

conditions with scarce energetic resources, humans make decisions about the allocation 

towards competing physiological domains—is the underlying theoretical framework 

throughout this dissertation and is examined in greater detail in the next section. 

Following this discussion, the second half of this chapter will provide an ethnographic 

background of the participant population. 

 

LIFE HISTORY THEORY APPROACH 

Like all organisms, humans face trade-offs regarding the allocation of energetic 

resources towards competing functional demands. This basic tenet of life history theory 

posits that in an environment where energy resources are limited, energetic investment 

towards one function will impact and limit energy allocation towards other functions 

(Charnov and Schaffer, 1973; Gadgil and Bossert, 1970; Hill and Hurtado, 1996; Hill and 

Kaplan, 1999; Lessels, 1991; Stearns, 1976; Trivers 1972, 1974). Energetic resources 

may include both the energy available in the environment and the availability of 

metabolic energy. Because optimal energy allocation changes as the individual grows and 

then reproduces, natural selection is expected to have shaped age and context dependent 

strategies of energy allocation to different functions across the lifespan; these allocations 
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are influenced by multiple physiological, neurobiological, and behavioral mechanisms. 

Competing functions are often subsumed under the demands of growth, somatic 

maintenance, and reproduction, although each is comprised of a vast array of different 

functional mechanisms, with trade-offs expected between them. 

 

Maternal Life-History Strategies: Physiological and Behavioral  

In human females of reproductive age, energy is divided to support two main 

types of function, survival and reproduction. Energy allocated to survival is used to keep 

the female alive and support basal metabolic needs, cellular maintenance and repair, 

immune function, many cognitive functions, and non-reproductive behavior such as food 

acquisition. Reproduction, on the other hand, is the most energetically demanding stage 

of life for females and entails additional energy costs, which must be met either by 

increasing energy intake, or reducing energy allocated to other functions (Snodgrass, 

2011). Energy allocated to reproduction is used, for example, to maintain ovarian and 

uterine function, support pregnancy and lactation, and allow the behaviors necessary for 

child care. The energetic costs of pregnancy and lactation are particularly high compared 

to other reproductive functions. For example, the menstrual cycle requires approximately 

6% more energetic resources above that which is allocated to maintain basic biological 

functions, or basal metabolic rate (BMR) (Howe et al., 1993; Meijer et al., 1992; Voland , 

1998). In contrast, pregnancy necessitates on average an additional 85-475 kilocalories 

(kcal) per day, depending on trimester, in order to ensure adequate fetal and placental 

growth, growth of maternal tissues such as breasts and uterus, and fat deposition 

(FAO/WHO/UNU, 2004). The energetic cost of lactation is even more physiologically 
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taxing, although these costs are shaped by the composition and volume of breast milk 

produced (Dewey, 1997). While energetic needs during lactation fluctuate with child’s 

age and nursing intensity, it requires, on average, an additional 675 kcal/day when 

exclusively breastfeeding during the first six months of life, and 460 kcal/day in later 

months (FAO/UNU/WHO, 2004). In some populations, this cost can comprise up to half 

of the mother’s total energy budget. It is important to note, therefore, that these estimates 

are determined from well-nourished women in industrialized nations and may 

overestimate the actual physiological requirements to females (Jasienska, 2001). Several 

ecologically and environmentally-shaped bio-behavioral options are available to meet 

these heightened demands, including increasing energy intake (EI), mobilizing body fat 

stores, decreasing energy expenditure (EE), or a combination of these strategies (Dufour 

et al., 2002; Goldberg et al., 1991; Piperata and Dufour, 2007; Valeggia and Ellison, 

2001).  

In affluent countries, pregnant and lactating women who are well nourished 

generally increase EI and reduce EE in order to maintain and conserve sufficient fat and 

nutrient reserves (Jasienska, 2004). However, among populations with insufficient food 

availability and high female workloads, increasing EI and decreasing EE are not always 

possible. Among Gambian women with poor nutritional status, pregnancy and lactation 

are marked by a down-regulation of BMR, which re-allocates energy from the female’s 

own physiological demands to those of the growing fetus or infant (Jasienska, 2004). 

However, among nutritionally-compromised women with heavy workloads, the energetic 

savings afforded by reduction in BMR may not be sufficient to compensate for the 

intense physical work effort required by their daily life, which may inhibit a woman’s 
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ability to store fat during pregnancy. In turn, insufficient fat stores can lead to poor 

lactational performance and milk quality. It can also reduce maternal fat reserves and lean 

tissue with successive births and lactation periods (Jelliffe and Maddocks, 1964; 

Ulijaszek, 1995). This phenomenon, called the maternal depletion syndrome, is notorious 

in developing countries and may result in premature labor and low neonatal birth weights. 

Tracer (1991) found that Au women of Papua New Guinea exhibited both a short-term 

decline in adiposity following childbirth and a long-term fertility-related decline. Similar 

trade-offs between maternal and fetal conditions have been documented in nutritionally-

stressed populations in Colombia (Gil et al., 1981), Philippines (Popkin et al., 1993), 

Kenya (Little et al., 1992), and Guatemala (Kurz et al., 1993). Thus, while female 

reproductive biology allows for reproduction even when energy supply is limited, this 

may have long-term costs in the form of poor reproductive outcomes, maternal 

physiological deterioration, and diminished future reproductive potential (Jasienska, 

2003). 

Female physiology appears to be adapted to minimize the risk of maternal 

depletion and poor birth outcomes through facultative modulation of ovarian function in 

response to reductions in energy availability. This down-regulation of ovarian function 

reduces the chances of investing in a pregnancy that has a low probability of success. 

Further, it allows for the repair of maternal nutritional status between successive births 

(Jasienska, 2003). Reproductive down-regulation, which under intense energy stress may 

lead to reproductive suppression, has been observed across populations who are 

experiencing transient periods of energetic stress. For example, among !Kung hunter-

gatherers of Botswana, low fertility rates have been associated with heavy EE linked to 
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foraging activities and a nomadic lifestyle (Bentley, 1985). In Lese women from the 

Congo, Ellison et al. (1989) found that during pre-harvest season when little food is 

available, ovarian suppression occurs in response to low energy availability, negative 

energy balance, and low energy flux, a state characterized by low EI and low EE. When 

harvest resumes and food resources are more secure, ovarian function resumes, resulting 

in a seasonal pattern of conceptions and births (Ellison, 2008). Similarly, among Tamang 

agriculturalists of Nepal, Panter-Brick and colleagues (1993) documented that down-

regulation of female ovarian function occurs during seasonal periods of high workload, 

despite a fairly stable annual food supply. In both Lese and Tamang women, the effects 

of intense physical activity on reproductive function are confounded by the effects of 

negative energy balance (i.e., energy imbalance with EE greater than EI). When 

considering women in populations with seasonal periods of high energy flux (e.g., high 

EE and high EI), such as rural Polish farmworkers, ovarian suppression may occur as a 

result of increases in daily energy expenditure despite consistent availability of food 

(Jasienska and Ellison, 1998). These examples suggest that periods of energy imbalance 

associated with high energy expenditure from intense work output coupled with relatively 

low energy intake may signal that not enough energetic resources are available for 

reproduction, and that energy-saving mechanisms such as down-regulation of BMR may 

be insufficient to support pregnancy and lactation (Ellison, 2003; Ellison and Jasienska, 

2007). Temporary down-regulation or full suppression of reproductive function appears, 

therefore, to be an adaptive response that optimizes birth spacing that serves to ensure 

longer term reproductive success.  
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The physiological strategies that females adopt to compensate for reproductive 

demands are further shaped by biosocial conditions within which they live. Both local 

ecological conditions (e.g., rainfall patterns, extent of seasonality, etc.) (Gray, 1994; 

Sellen and Smay, 2001; Singh et al., 1989) and adherence to cultural norms and practices 

such as food taboos and work restrictions immediately post-parturition (Piperata and 

Dufour, 2007; Piperata, 2008) can affect female energetic strategies. Recently, much 

focus has been paid to the effect of maternal social networks on reproduction, especially 

in subsistence-based economies. Kin support can relieve subsistence and domestic chores 

and provide food for the pregnant or lactating female, supplementing her dietary intake 

and activity patterns, and which allow her to modify the extent to which she must utilize 

her body stores (Piperata, 2009). For example, lactating Toba women from Argentina 

who had girl assistants were found to spend less time engaging in domestic work than 

women without support (Bove et al., 2002). Among the Turkana pastoralists of Kenya, 

women with fewer children and co-wives spent more time in herding activities than did 

women in larger, wealthier households (Gray, 1995). Among Amazonian Ribeirinha 

woman, Piperata (2009) noted that lactating women with social support had higher 

overall energy intake, and spent significantly less time in subsistence work than women 

with lower levels of social support. Furthermore, Marlowe (2003) observed that among 

the Hadza of Tanzania, men with pregnant or lactating partners had higher hunting 

returns, which served to compensate for the increased energy demands of their mates. 

Social networks are particularly important in subsistence-based populations where 

reduced work output often translates into a decrease in contribution to food production, 

with repercussions for the well-being of the entire family. Thus, an examination of the 
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physiological strategies used to conserve maternal energetic stores requires thoughtful 

consideration of the larger ecological and social complex that frame the maternal 

condition. 

 

Reproduction and Skeletal Health 

In addition to energy, nutrient stores in specific tissues are drawn upon during 

pregnancy and lactation. Bone is a composite tissue that varies in quantity and quality 

over the course of the lifespan in response to various endogenous and exogenous factors 

(Agarwal and Glencross, 2010). Some key factors implicated in bone integrity and 

maintenance include biological sex, heredity, nutrition, reproductive history (in females) 

and physical activity, the effects of which fluctuate across the lifespan (see details in 

Chapter II). Approaching skeletal health using a life course perspective acknowledges 

that every life stage or transition represents a point along a cumulative progression and 

that the dynamic interaction between developmental phases across the lifecycle is largely 

fueled by the availability of energy and energetic resources necessary to modulate these 

stages (Leidy, 1996). In the case of female reproduction, skeletal growth and 

maintenance may be compromised if reproductive effort is prioritized, and vice versa. 

However, while energetic studies over the past several decades have made great progress 

in applying a life history framework to understanding the regulation of fecundity, few 

studies have applied this perspective to understanding the regulation of reproductive 

trade-offs affecting female skeletal health.  

Human females, like most mammals, exhibit determinate growth; all energy that 

exceeds what is needed for maintenance is allocated to longitudinal growth during the 
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juvenile period and then growth stops as the reproductive phase of life begins, coinciding 

with the onset of menarche (Charnov, 1993). Trade-offs between female reproduction 

and longitudinal skeletal growth have been documented in several studies, showing 

relationships between earlier age at menarche, first birth and shorter adult stature. With 

menarche, influxes of estrogen hormones that function to maintain bone mass also play a 

role in epiphyseal closure (see Chapter II). For example, Kramer and Greaves (2011) 

found that among the indigenous Pumé foragers of Venezuela, girls contribute 

significantly less to subsistence activity than juveniles in other cultures, despite having 

the skills and strength required to increase their subsistence effort. However, the authors 

suggest that the low levels of activity may be a strategy that conserves energy in order to 

support rapid juvenile skeletal growth during an early age at first reproduction. 

Similar trade-offs have been documented for age at first pregnancy. In rural 

Gambia, researchers found that women who were younger at first parturition were 

significantly shorter than other women (Allal et al., 2004; Sear et al., 2004). Additional 

epidemiological studies have also shown that pregnancy during adolescence impairs the 

ability to gain in height (Gigante et al., 2006; Scholl and Hediger, 1993). While bone 

growth in length stops around the time of menarche, bone continues to gain mass and 

grow appositionally until peak bone mass is achieved between 25-35 years of age. 

Pregnancy and lactation represent stages of elevated energetic costs and thus, life 

history trade-offs between energy use, additional key resources such as calcium, and 

other aspects of maternal physiology are expected. The mineralization of the fetal 

skeleton and continued infant skeletal growth requires adjustments to maternal calcium 

metabolism during pregnancy and lactation, respectively. Both fetal and neonatal calcium 
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and bone metabolism are uniquely adapted to satisfy the specific needs of these 

developmental periods. The fetus must actively transport sufficient calcium across the 

placenta to meet the large demands of the rapidly mineralizing skeleton, whereas the 

neonate must quickly adjust to the loss of calcium transport through the placenta, while 

continuing to undergo rapid skeletal growth (Kovacs and Kronenberg, 1997).  

Following the same logic as the maternal depletion syndrome, which specifically 

focuses on fat reserves, if maternal calcium stores continue to be depleted with each 

successive pregnancy and lactation cycle, maternal well-being may be compromised, 

although it remains unclear the extent to which the fetus/infant may be prioritized at the 

expense of the mother. The transient and long-term trade-offs of reproduction are highly 

debated and there is currently no consensus on exactly how reproductive ecology shapes 

bone health (see Chapter II). This lack of consensus may be largely attributed to the 

following factors. First, reproductive biology and bone density are impacted by multiple, 

complex pathways. For example, pregnancy can both decrease maternal bone density 

through heightened calcium demand associated with fetal skeletal growth, and increase 

maternal bone density through increased body weight and elevated estrogen levels (Allali 

et al., 2007). Therefore, establishing causality between specific characteristics of 

pregnancy and lactation with bone density becomes challenging. Second, there may be 

threshold effects, such that after a certain number of births the effects of pregnancy 

and/or lactation shift (Cerroni et al., 2003). Finally, patterns of lactation are extremely 

variable across populations and are dependent on a variety of environmental and social 

conditions that may either permit or inhibit extended breastfeeding periods. Because of 

the heterogeneity of lactation behaviors, the effects of breastfeeding on bone density may 
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not be experienced uniformly across populations. Therefore, the relationship between 

reproductive factors and bone density appear to be inherently population-specific and as 

such, guidelines for preventing bone fragility and loss may not be applied similarly to 

different populations across ecological and geographical space.  

Few studies to date have examined maternal bone status in non-Western, non-

clinical populations and even fewer data are available for subsistence-based, natural 

fertility populations. This is a critical oversight given that reproductive patterns and 

hormonal cycles of women living in non-industrialized populations are dramatically 

different from women in industrialized nations. Women in non-industrialized populations 

typically experience relatively late menarche followed by early first birth, approximately 

3-4 years of lactating, and early menopause (Sperling and Beyene, 1997; Weaver, 1998). 

The estimated average lifetime number of menstrual cycles in non-industrialized groups 

is approximately 50-100 cycles. In contrast, over the reproductive lifetime industrialized 

Western females typically experience early age at menarche, limited breast-feeding 

periods, and an estimated 420 menstrual cycles (Eaton et al. 1994; Strassman, 1997). The 

significantly greater number of cycles in the lifetime of a typical Western woman, 

accompanied by shifts in hormonal levels, undoubtedly has an effect on bone integrity 

that differs from typical non-Western women. Because contemporary subsistence 

populations have reproductive patterns more characteristic of most of our evolutionary 

past than those of Western groups, studies in these populations can improve our 

understanding of the conditions under which the life history trade-offs in skeletal 

metabolism and reproduction evolved.  Furthermore, research in subsistence-based 

groups may allow insight into the complexities of bone loss without the confounding 
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effects of sedentary lifestyles and Westernized diets characteristic of industrialized 

groups. For these reasons, research was conducted among the Indigenous Shuar forager-

horticulturalists of Amazonian Ecuador. Additional comparative data were collected on 

rural, agrarian non-Indigenous Colonos of the same region. 

 

THE SHUAR OF ECUADOR 

The Shuar
1
 are an indigenous population who live in the southern Oriente 

(eastern) neo-tropical forest of Ecuador and the northeastern region of Peru (Figures 1.1 

and 1.2). Traditionally, Shuar lived in scattered households across the Paute and Upano 

River Valley between the eastern Andean foothills and the Cordillera de Cutucu, a steep 

mountain range that forms a barrier to the Yaupi and Morona drainages to the east. In the 

1890s, Shuar began expanding eastward into the territory of the neighboring Achuar so 

that Shuar now live on both sides of the Cutucu, and throughout the Upano River Valley 

from the Peruvian border past the Pastaza River and north almost to the Rio Napo 

(Harner, 1984; Rubenstein, 2001; Stirling, 1938). Recent population estimates for 

Ecuadorian Shuar vary from 50,000 to 110,000, depending on the source; however, 

census estimates for indigenous groups are notoriously inaccurate, often underestimating 

the actual size of the population. Currently, Ecuadorian Shuar are distributed over 668 

communities and primarily reside in the Morona-Santiago and Zamora provinces of 

Ecuador (CODENPE, 2011). 

                                                 
1
 Shuar means “people”. The Shuar may be more precisely referred to as Untsuri Shuar, which specifies 

this particular group as opposed to indigenous people in general or non-indigenous apaci. 
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As part of the Jívaroan
2
 ethno-linguistic group, Shuar are culturally similar to 

other Jívaroan speaking peoples including Aguaruna, Huambisa, and Mayna of Peru, and 

share many cultural features with the Achuar further to the East (Descola, 1994, 1996; 

Harner, 1984; Hendricks, 1993) and Shiwiar to the Northeast (Sugiyama and Chacon, 

2000; Sugiyama, 2004). Other than some minor linguistic differences, extent of 

polygyny, and slight material differences associated with population density and local 

ecology (e.g., navigability of rivers, size of houses, etc.), little separate Shuar, Achuar, 

and Shiwiar in terms of cultural variation.  

 

 

 

 

 

 

 

 

 

 

Figure 1.1. (left) Map of Ecuador with red oval indicating Ecuadorian Shuar territory and 

region of research. (Map Source: Google Maps) 

 

Figure 1.2. (right) Map of Morona Santiago region. The map is based on data from the 

Sistema Integrado de Indicadores Sociales del Ecuador released by the Secretaria 

Technica del Frente Social of Ecuador.  

 

                                                 
2
 Jívaro, in Ecuadorian Spanish, literally means “fierce”, “rebellious” or “savage” people. Until recently, 

Shuar were referred to by this name by Spaniards and foreign ethnographers but because of its derogatory 

implications, the term is not considered polite and is often replaced with other monikers.  

 

Peru 

Ecuador 
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Traditional Shuar Subsistence and Current Lifeways 

Traditional
3
 Shuar subsistence was based on blowgun and spear hunting, fishing, 

and swidden (slash and burn) horticulture (Harner, 1984; Descola, 1994; Descola, 1996; 

Stirling 1938). In the interior Trans-Cutucu region (east of the Cutucu where road access 

ends), most Shuar continue to subsist primarily by hunting, fishing, and horticulture. 

Each Shuar household has either a single large garden (finca in Spanish; aja in Shuar), 

but usually two or three at different stages of production with intercropping and staggered 

planting seasons. These serve as the primary source of carbohydrates, which provide 

approximately 65% of dietary calories (Harner, 1984). Staple foods include tubers such 

as manioc (yucca; mama)
4
, sweet potato (camote; inchi), taro roots (papa china; kenke), 

lime zinger (pelma; sanku), and peanuts (mani; nuse). Shuar also grow non-tuberous food 

plants such as a variety of plantains (plantanos; paantam), a primary staple food, a 

variety of bananas (bananas; páantam), and maize (mais; sháa). Additional crops include 

oranges (naranjillas; kukuch), squash (calabasa; yuwi), onions (sepui; cebollas), papaya 

(papaya; wapái), sugar cane (caña; paat), achiote
5
 (achiote; ipiáku), chiles (chiles; jimia) 

and non-edible plants including barbasco roots and fish poisons (timiu), hayahuasca (a 

hallucinogen) and a variety of medicinal plants for healing. These crops continue to be 

grown in most Shuar villages, with manioc and plantains serving as primary dietary 

staples.  

                                                 
3
 The term “traditional” is used here for convenience in referring to the basic pattern that can be seen 

consistently through sources beginning with Spanish chronicles in the 16
th

 century and as recognized by 

Shuar.  

 
4
 Plant names are presented first in English followed by the Spanish name and when available, Shuar name. 

 
5
Achiote is a fruit that is harvested for its subtle flavor and colorful red hue. It is often used as a food 

additive. 
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Fish and hunted game were traditionally the main Shuar protein sources, and 

continue to be staples in the Trans-Cutucu region. Fishing is done either with hooks and 

line or with fish poisons, baskets, spears, or by hand. In the rainy season, the bulk of fish 

are caught by hooks and line. During the transition to the dry season, emphasis on fishing 

gradually increases as the rivers become shallow and fishing with one of two cultivated 

poisons, timiu or masu, becomes increasingly efficient. In productive areas, these dry-

season fish poisonings can be communal, village-wide events and can produce a large 

surplus (Figure 1.3). Fishing continues in the Upano Valley as well as in the Trans-

Cutucu region. Ethnographic observations, interviews, and unpublished food frequency 

data suggest that fishing remains productive and an extremely important part of the 

subsistence regime in the Trans-Cutucu area. However, informants report declines in 

fishing returns within the Upano Valley to such an extent that fishing no longer provides 

a dietary staple, but rather a periodic supplement to the diet for some but not all 

households. 

In many regions, hunted game also serves as an important source of protein. In a 

recent study focused on the sustainability of hunting in multiple Shuar communities in  

  

 

 

 

Figure 1.3. Shuar women in the 

Upano Valley prepare barbasco root 

by pounding it with rocks to release 

the poison. The roots will be soaked 

in a shallow river bed and the fish 

will be sedated long enough to be 

caught by hand.  
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the Trans-Cutucu region, Zapata-Rios et al. (2009) recorded the following prey
6
: red 

brocket deer (Mazama americana; penke hapa), common woolly monkey (Lagothrix 

lagotricha; Chuu), tapir (Tapirus terrestris; pama), paca (Agouti paca; kashai) and nine-

banded armadillo (Dasypus novemcinctus; shushui). Collared peccary (Pecari tajacu: 

yankipik) was the most important game species in terms of kilograms (kg) of meat taken. 

Other hunted game included howler monkey (Alouatta sp.; yakump), capuchin (Cebus 

sp.; tsere), coati (Nasua nasua; kushi), and Northern Amazonian red squirrel (Sciurus 

igniventris). These hunting data broadly correspond to data from Shiwiar living in more 

traditional communities (Sugiyama and Chacon 2000; Sugiyama 2004; Sugiyama 

personal communication, 2011), suggesting that hunting remains an important part of the 

subsistence regime. In addition to hunted game, several types of palm grubs and insects 

serve as important sources of protein. While at this time no direct observational data on 

hunting productivity are available for the Upano Valley region, Shuar informants report 

that good hunting can still be had by walking 6 hours or more into the Cordillera de 

Cutucu, but that hunting near the communities is unproductive. In the Upano Valley, 

chicken serves as the primary substitute for hunted game, but beef, pork and, to a lesser 

extent, guinea pig (cuy) are also consumed by some families (Figure 1.4). Meat is 

typically served either roasted or boiled. Fish and other meats may also be prepared in 

ayampacos, a traditional Shuar food stuffed with meat, palm hearts (palmito), chard 

(acelga), onions, and garlic in a banana leaf (bijahua) and roasted over a fire. Ayampacos 

                                                 
6
 For ease of identification, primary prey species are listed here in the following way: common name 

(scientific name; Shuar name). 
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may also be prepared with animal intestines, bull testicles, or, in more acculturated areas, 

with a cheese filling.  

Currently in the Upano Valley, many families also participate in small scale 

animal-husbandry, and cattle is typically raised and sold as money is needed (Figure 1.5). 

Timber and a variety of products from small scale agricultural production including 

plantains, papaya, and oranges are also sold.  

 

  

Figure 1.4. (left) Guinea pigs (cuys) roasting over a grill. Although not a traditional 

Shuar delicacy, many Upano Valley Shuar now raise guinea pigs for personal 

consumption and for sale. (Photo Credit: Liebert 2009) 

 

Figure 1.5. (right) Shuar man from the Upano Valley showing off his cow. (Photo 

Credit: Sugiyama 2009) 
 

 

Gender Relations and Sexual Division of Labor 

Shuar gender relations have been subject to debate, with some authors describing 

a highly male dominated society (Seymour-Smith, 1988; Taylor, 1981), while others 

describe male and female gender roles and domains of influence that are complimentary 
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and complex (Descola, 1996; Karsten, 1935; Mader,1999; Mader and Gippelhauser, 

2000). What remains consistent throughout the literature is the complexity of gender 

roles and relations; this has been attributed to the fact that different aspects of gender 

relations are contextually-dependent, as well as complex and fluid (Mader, 1999). 

The nuances of gender relations are beyond the scope of this review, but these 

patterns provide some insight into Shuar life, women’s and men’s work roles, what these 

activities typically entail, and the flexibility of these roles. For instance, the Shuar house 

is divided into male and female sections. The male domain includes the public space 

where visitors are greeted and seated, whereas the female domain constitutes the sleeping 

areas and cooking spaces. Male visitors typically do not have access to the woman’s side 

and cooking areas unless they are close family or friends. In addition to gendered spaces, 

clear divisions of labor exist between men and women both on ideological and physical 

levels. A discussion of one set of ideal Shuar values helps put this in perspective. Penker 

pujustin or shiir waras, mean “good life” or “being,” and includes gender roles and 

norms of behavior, such that to live a good life is to engage in practices expected of one’s 

age and sex, and to engage in them with vigor. For men, this includes tasks such as 

hunting, fishing, clearing gardens, and hauling logs for firewood. It includes protecting 

and speaking strongly (kakaram chicham) in favor of the interests of oneself and one’s 

family, being good to one’s wife and children, and avenging transgressions against 

oneself or one’s kin group. It also incorporates clear thinking, fearlessness and 

independence, and a refusal to submit to anyone. For women, penker pujustin involves 

being a hard worker and maintaining large, well-weeded, productive gardens, and 

harvesting the produce. Equally as important is making and serving good quantities of 
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manioc beer (chicha; nihamanch), caring well for one’s family, preparing and serving 

food, and maintaining a clean house. Ideally, it also includes thinking clearly and 

speaking strongly in support of one’s interests.  

The Shuar concept of kakaram is a useful way to conceptualize how one should 

participate in daily activities. The term simultaneously refers to the personal and/or 

political power acquired through and associated with various spiritual qualities (Mader, 

1999). Kakaram (literally: powerful ones) is used both to refer to men who are killers 

(i.e., mercenaries in warfare), as well as to any individual—man or woman—who speaks 

powerfully to advance or protect their interests, does not complain about hardship, and is 

recognized as a hard worker. As Sugiyama (2004) points out for Shiwiar (who hold 

similar values), the link between the values of penker pujustin and kakaram and everyday 

life has a logical connection to traditional Shuar subsistence economy and settlement 

pattern. Relatively low levels of traditional day-to-day foraging risk, along with large 

productive gardens meant that there was relatively high degree of household autonomy 

within a scattered, low-density pattern of settlement. Thus, it is unsurprising that 

household autonomy in production is closely linked with emphasis on hard work, 

individuality, and independence.  

In actuality, men and women occasionally cross into other gender role activities 

as situations necessitate. With gardening, men are responsible for clearing forest trees 

(slashing) and some planting, as well as periodically helping with weeding or harvesting. 

They are also responsible for recruiting people for communal work parties (mingas). 

Women may help clear underbrush but bear primary responsibility for most planting, 

cultivation, weeding, and harvest activities. However, men with dependents but without a 
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current mate (e.g., widower) will engage in gardening tasks typically reserved for 

females. Conversely, a widow, for example, will organize a minga, although usually by 

recruiting a male relative to make the invitations.  

As noted earlier, women are typically responsible for the cultivation of manioc as 

well as other tuber plants. Manioc may be consumed boiled or in the form of chicha (in 

Shuar: nihamanchi), a locally fermented beer that is made by boiling the tuber and 

mashing it to a soft consistency. A Shuar woman will simultaneously pound the boiled 

manioc into a mash, and chew handfuls of the softened manioc that she then spits back 

into the pot (Figure 1.6); an enzyme in the saliva ensures rapid fermentation of the 

manioc beer over the course of one to five days. While there is some fluidity in the 

gender roles of production, only Shuar women make chicha (Sugiyama personal 

communication, 2011). Drinking chicha is considered a central aspect of being Shuar and 

traditionally adult males can consume a daily average of 3-4 gallons while adult females 

may consume 1-2 gallons (Harner, 1984). 

 

 

 

 

 

 

Figure 1.6. Upano Valley Shuar woman preparing 

chicha. (Photo Credit: Lim 2009) 
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When hunting is available, Shuar men embark on trips, sometimes for weeks at a 

time. Today, these hunting trips rarely involve women but in the past, men would often 

be accompanied by their youngest wives for companionship (Harner, 1984). Hunting 

dogs were often owned by women, so wives also hunted by pursuing small and medium-

sized terrestrial game with dogs. Having sexual relations on the hunt is perceived as 

dangerous, since the Shuar believe that after intercourse the man will be more susceptible 

to a poisonous snake bite; however, in practice, this belief does little to curtail sexual 

activity during hunting trips (Harner, 1984).  

In the past, a man’s role in the system of production was not only to clear gardens 

and hunt, but also to present the casualties of war in a tsantsa ritual, the process of head 

shrinking. Although rarely practiced today, the tsantsa ceremony was the ultimate 

expression of male power (Rubinstein, 2002). During warfare, the enemy’s head would 

be cut off and taken to be incorporated in the tsantsa ceremony. The process of the 

tsantsa ceremony involves removing the skin from the skull, and pouring warm sand in 

the skin to induce it to shrink. A tsantsa ceremony could last many hours as a result of 

the meticulous nature of this process in order to ensure that the avenging soul (musiak) of 

the dead person would not emerge and cause mischief. Further, the killer gained power 

from performance of the ritual, a power that ebbed with time and necessitated further 

tsantsa to reestablish. Although sometimes described as trophies of war that must be 

saved, tsansta were not displayed and were traditionally of no further use once the 

tsantsa ritual was performed (Harner, 1984; Rubenstein, 2002).  
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Socio-Political Organization 

Egalitarian, polygynous, matrilocal, and without explicit lineage or clan structure, 

Shuar household clusters were traditionally centered around a man and his wives.  

Families typically lived in separated clusters of households that may also include 

daughters, unmarried sons, and sons-in-law (Rubinstein, 2002). A man’s 

accomplishments, his courage as a warrior, hunting prowess, and respectability 

determined how many wives he could attain. Today, fewer marriages are polygynous, 

particularly among Upano River Valley populations, but older warriors, shamans 

(uwishin), or other highly productive men may still have more than one wife. The Shuar 

family unit is traditionally large, comprised of a male and one or more female mating 

pairs, and an average of 5-6 offspring. Because of this large family composition, 

allomothering is common practice and may involve older non-reproductive aged siblings 

and extended family members (e.g., grandmothers and maternal sisters).  

The household is the primary economic unit, and traditionally, household clusters 

were separated by a distance of 2-3 kilometers. Similar to other Amazonian populations, 

Shuar power structure was traditionally decentralized with no formal political or social 

stratification. Authority was specific to achievements, and both shamans and powerful 

senior men (juunt) or warriors were respected for their knowledge and personal power.  

While inter-household cooperation remains important in several spheres (e.g., warfare, 

aid in health crises, healing, fish poisoning, forest clearing, and house construction), the 

daily household economy is largely independent (Harner, 1984). In general, even in the 

Upano Valley, Shuar remain exceedingly individualistic in outlook and so consensus is 

hard to achieve. This character, coupled with the formation of more concentrated 
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communities in the 1960s (see below: Shuar Federation), means that intra-village conflict 

is common and sometimes results in violence. Even with recent changes in overt political 

structure, including elected Sindicos (Spanish word for community union president), vice 

Sindicos (vice president), secretary and treasurer, these positions are largely ceremonial 

and have little actual authority or power.  

 

CHANGING SHUAR LIFEWAYS 

Market integration (MI) among the Shuar has, and continues to be, shaped by 

historical, political, economic, and social processes, as well as “traditional”
7
 cultural 

dynamics, including ideologies of power, shamanism, land rights, and politics (Mader 

1999; Rubenstein 2001). Among the Shuar, MI is an ongoing process that is inherently 

intertwined with colonization. Recent clashes and high-profile conflicts between Shuar 

and the Ecuadorian government highlight an ongoing colonization that continues to 

threaten and encroach on Shuar land and alter cultural lifeways. In particular, government 

policies and deals with mining and oil companies since the mid 20
th

 century have 

threatened traditional culture and well-being, although these relations have stimulated the 

establishment of several strong unified fronts that seek to preserve indigenous identity 

(e.g. Shuar Federation, CONAIE). 

 

 

 

                                                 
7
 For convenience, and because Shuar employ similar terms to refer to this system, “traditional”  is used to 

refer to Shuar life prior to significant MI and acculturation, yet recognize the complex and problematic 

issues that arise with the term in the larger anthropological literature. 
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Historical and Present-Day Colonization 

In the 16
th

 century, Spaniards defeated the Inca and were free to explore the 

Andean foothills in search of gold. Although trade networks between Shuar and 

Spaniards were established during this time, this relationship largely ended in 1599 with 

“the Jívaro Revolt,” when Shuar rose up to expel the Spanish in response to increasingly 

onerous Spanish taxation (Rubinstein, 2002). Not until the 1890s were peaceful trade 

relations reestablished with non-Shuar populations in the region (referred to locally as 

Colonos) prompting increased non-Shuar migration into Shuar territory. Over the next 

fifty years Upano Valley Shuar traded the machetes, axes, firearms, and other trade-

goods they acquired with Shuar living further to the east.  

In the 1950s, the collapse of the Panama hat industry in the Ecuadorian highlands 

altered the dynamics of these trade relations by introducing a new wave of non-Shuar 

migration into Shuar territory. A once lucrative export, the decline of the Ecuadorian 

Panama hat industry created a deficit in the economic well-being of the Ecuadorian 

workers who produced these hats. In an effort to incite economic development through 

increased access to lands and thus, agriculture, the Ecuadorian government promoted 

migration in and around Shuar territory by non-Shuar settlers. This marked one of the 

first government initiatives to appropriate Shuar land by encouraging movement into the 

region by non-Shuar Ecuadorians. The legacy of this move continues until today with 

conflict between Upano Valley Shuar and Colonos for access to land.  

Within a few years, the discovery of oil in the Amazon in the early 1960s led to 

the creation of the government institution called the Centro de Reconversión Económica 

del Azuay, Cañar y Morona-Santiago (CREA) in order to establish the infrastructure for 
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massive colonization of Shuar land (Borrini-Feyerabend et al., 2005). The creation of 

CREA was integral in stimulating the formation of a unified Shuar body, which was 

established in 1964. In an effort to preserve the traditional lifeways and culture that were 

being threatened, many Shuar abandoned the Upano Valley and settled in the Trans-

Cutucu region. Others aligned themselves with missionaries, converted to Catholicism, 

and adopted cattle raising in combination with the indigenous swidden horticulture 

practices (Borrini-Feyerabend et al., 2005). The Shuar Federation, or Federación 

Interprovincial de Centros Shuar (FISCH), was founded with missionary support, with 

the goal of defending indigenous land rights against agrarian reforms, ensuring the 

development of Shuar communities, and preserving indigenous cultural and ethnic 

identities (Borrini-Feyerabend et al., 2005). The federation also advocates for the 

registration of Shuar settlements as legally recognized cooperatives (Centros), the 

procurement of communal agricultural land titles, and the extension of bilingual 

education and modern health care. FISCH is directed by a board of officials who are 

elected every three years and who meet regularly to exchange information and coordinate 

strategies to defend their member’s rights, which continue to be under the pressure of oil 

and mining companies (CODENPE, 2011). 

Today, FISCH is comprised of approximately 490 Centros primarily from the 

Upano Valley region
8
. Communication between distant federation-affiliated communities 

has been increased since the early 1990s with the establishment of Shuar Radio, Radio 

ARUTAM.  In 2004, the Shuar were one of four indigenous populations to present a 

                                                 
8
 The Federación Independiente del Pueblo Shuar (FIPSE) is an organization formed by Trans-cutucu 

communities and works closely with FISCH. 
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lawsuit against the Texaco/Chevron oil company for reparations resulting from the 

destruction of Shuar ancestral land (Minority Rights Group International, 2008). The oil 

company is accused of intentionally dumping billions of gallons of toxic waste into the 

rainforest which has resulted in the decimation of indigenous groups by cancer and other 

oil-related health problems. Court decisions for this lawsuit regarding judgment payments 

are still pending.  More recently, in September 2009, indigenous leaders including then 

FISCH president Pepe Acacho, organized protests against the Water Act, which would 

privatize water sources and allow transnational mining companies free reign over water 

supplies throughout Ecuador. The proposed act is especially threatening to indigenous 

communities who rely on local water sources for drinking and cooking water and fish. 

The Ecuadorian government under President Rafael Correa accused the protestors of 

terrorism and sabotage and, in early 2011, Acacho and others were arrested (Ordoñez, 

2011). Among leaders of the Confederación de Nacionalidades Indígenas del Ecuador 

(CONAIE) and the indigenous Pachakutik political party, the arrests were seen as a 

political persecution by the Correa regime to silence the Shuar resistance and to further 

exploitation of mining and oil. Shuar responded through peaceful protests leading to the 

eventual release of Acacho who reportedly said, “We Shuar men are warriors. We are not 

easy prey. They can’t mess around with us” (Caselli, 2011). As of May 2011, this conflict 

has not been resolved. Shuar and other indigenous groups continue to resist the actions of 

the Correa government in an effort to preserve and protect their ancestral land. On May 6, 

2011, Acacho was elected and formally inducted to the office of Vice President of 

CONAIE, largely based on his steadfast resistance to the actions of the Correa regime. 
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Market Integration across Shuar Territory: Basic Characteristics 

Since the 1950s, non-Shuar migration into Shuar territory, specifically in the 

Upano Valley, has increasingly exposed Shuar to lifestyles and goods associated with MI. 

Although subsistence activities remain common throughout much of Shuar territory, 

lifeways are changing most rapidly in the Upano Valley, where a partially paved road 

runs the length of the valley and has facilitated access to nearby market centers, such as 

Sucua and Macas. Completion  in 2009 of the paved road between Sucua and Puyo to the 

North further accelerated change in the area. Over the last decade, other infrastructural 

developments have become available to Upano Valley communities, including expansion 

of a dirt road system to smaller communities, access to the electrical grid, and 

development of a cellular phone network. Housing has shifted from a mix of traditional 

thatch roof dirt floor housing with some milled lumber houses as late as 1998, to almost 

entirely wood houses by 2005, to cinder block housing provided through a government 

sponsored development project in 2010.  

Many Upano Valley Shuar villages have primary schools that are attended by 

most children. For most families, sending children to school is costly as they are required 

to purchase uniforms, shoes, backpacks, and school supplies. This can become a deterrent 

for some families and often, children do not pursue education beyond primary school. 

Fewer adolescents attend secondary school but the numbers are increasing—at present, 

approximately 11% of females and 31% of males from 25-34 years old report having 

attended secondary school (McSweeney and Jokisch, 2006). Most schooling is conducted 

in Spanish, with Spanish slowly becoming the primary language for many Shuar families. 
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Of 1,760 households surveyed across Shuar and Achuar territory in 2005, 52% spoke 

only Shuar, 28% were bilingual in Spanish and Shuar, and 20% only Spanish 

(McSweeney and Jokisch, 2006). The number of families who speak Shuar is almost 

certainly declining as more parents increasingly forego Shuar for Spanish when speaking 

to their children. My own interviews with Shuar suggest that at least in the Upano Valley, 

only among the oldest demographic is Shuar the exclusive language, while the younger 

generations are losing the ability to communicate in Shuar. A similar trend is reported by 

informants in the Trans-Cutucu region as well (Mankash, personal communication, 

2011). 

The degree of economic development and MI in the Upano Valley contrasts 

markedly with that across the Cutucu range. In this area, Shuar villages lack access to the 

electrical grid and there is no telephone access of any kind. A few families own 

generators but this is typically limited to health workers or teachers who have external 

government income. Housing is primarily traditional, with some wood structures. Travel 

to main market centers involves a motor canoe trip ranging from 1-16 hours, followed by 

at least an 8-9 hour bus ride almost entirely along dirt roads. With regard to schooling, 

little information is available regarding education in this region, although in most 

communities primary schools are available for Shuar children. 

The level of MI is particularly accelerated among Shuar who live in larger 

regional centers, such as Sucua or Macas, and to a lesser extent, in communities located 

closest to the Upano Valley main road. In these areas, a significant portion of Shuar 

participate in wage labor (e.g., nurses, bakery workers, or waiters), have children who 

attend high school, own imported goods (e.g., televisions, DVD players, computers), and 
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engage in non-traditional celebrations such as quinceañeras, the birthday celebration and 

rite of passage for girls turning 15 years old similar to “Sweet Sixteens” in the US. E-

mail and, more recently, Facebook, are becoming increasingly the preferred means of 

communication between friends and family living in Ecuador and abroad. Local 

restaurants that serve non-local cuisine (e.g., Chinese and Italian) create an abundance of 

food options for local Shuar and Colonos living in the largest towns in the region. 

Because economic development and lifestyle change is not occurring uniformly 

between communities and among households within communities, an enormous spectrum 

of social, economic, environmental, and health effects related to MI are observable. 

 

Effects of Market Integration on Health among Indigenous Groups 

Increasing MI among indigenous populations can have profound social, economic 

effects on health, yet these are not uniform across populations (Fleming-Moran et al., 

1991; Hawkes et al., 1997; Henrich, 1997; Huss-Ashmore et al., 1992; Gross et al., 1979; 

Godoy, 2000; Godoy and Cardenas, 2000; Shephard and Rode, 1996; Snodgrass et al., 

2007). For those with poor nutrition and high infectious disease burden, increased MI can 

bring education, economic opportunities, better diet, and access to healthcare (Leonard et 

al., 1993; Santos and Coimbra, 1991; Strauss and Thomas, 1988; von Braun and 

Kennedy, 1994). However, it can also bring with it a rise in chronic conditions such as 

cardiovascular disease and type 2 diabetes, (e.g., Lindgärde et al., 2004; Pavan et al., 

1999; Popkin, 2004). Limited research on market integration and health among the Shuar 

and other indigenous Amazonian groups (e.g., the Tsimane of Bolivia) demonstrate 

generally similar trends (Pavan et al., 1999; Lindegärde et al., 2004; Lu, 2007). 
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The mechanisms responsible for this health transition among increasingly market 

integrated populations remain incompletely understood, although factors usually 

implicated include physical inactivity, dietary changes, alcohol consumption, tobacco 

use, and chronic psychosocial stress (Durnin, 1990; Shephard and Rode, 1996; 

WHO/FAO, 2003). Declines in total energy expenditure (EE) may occur as a result of 

decreased participation in energy-intensive subsistence activities, such as hunting and hay 

cutting (Singh et al. 1989; Yao et al. 2002; Tataranni et al. 2003; Snodgrass et al., 2006). 

In addition to drops in EE, substantial dietary changes also typically occur including an 

overall increase in energy intake, heightened stability in food availability, and an increase 

in the consumption of refined carbohydrates, saturated fats, and alcohol (Shephard and 

Rode, 1996; WHO/FAO, 2003; Snodgrass et al., 2007). The process of MI may also 

present new sources of social status that diverge from indigenous systems and are more 

aligned with Western views. These status cues are often tied to ownership of Western 

commodities and, among indigenous populations, may introduce novel stressors due to 

the mismatch between aspirations and the resources necessary to obtain those goods 

(Dressler, 1991; McDade, 2001, 2002). This incongruence appears to lead to chronic 

psychosocial stress, which has effects on immune function, blood pressure regulation, 

and patterns of fat distribution (Chin-Hong and McGarvey, 1996; James and Brown, 

1997; Sorenson et al., 2005). Among the Shuar, individuals in more market-dependent 

communities have poorer measures of insulin, body fat, and leptin than those in 

traditionally living communities (Lindgärde et al., 2004). MI may also have important 

effects on children. Blackwell and colleagues (2009) found that Shuar children have 
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higher prevalence of stunting than closely related but more traditional Shiwiar forager-

horticulturalists.  

Of course, neither the pace nor type of market changes, nor the local social, 

ecological or economic conditions are uniform across societies. Thus, neither the 

decisions or behaviors of those experiencing these changes nor their ultimate health 

outcomes should be uniform. Some peoples’ diets and health may improve with MI, 

while others may decline, and this variation may occur even within a single community 

(Leatherman, 1994; Leonard et al., 1993). Such differences are likely the consequence of 

complex interactions between particular social and economic changes, and the social, 

economic, cultural, and individual circumstances in which these effects take place 

(Snodgrass et al., 2007).  

 

SHUAR HEALTH AND LIFE HISTORY PROJECT 

The studies presented in this dissertation are conducted as part of the Shuar 

Health and Life History Project (http://www.bonesandbehavior.org/shuar). This project is 

an ongoing, multi-year collaborative endeavor that integrates quantitative and qualitative 

techniques in order to examine life history trade-offs along a number of different 

dimensions of health, subsistence, economy, and demography. The project is co-directed 

by Drs. Lawrence Sugiyama and Josh Snodgrass, and is based out of the Department of 

Anthropology at the University of Oregon. Since 2005, our team has forged close 

relationships with several international collaborators including the Federación 

Interprovincial de Centros Shuar (FISCH) and Instituto Ecuatoriano de Seguridad Social 

(IESS). 
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ORGANIZATION OF THE DISSERTATION 

 This dissertation is organized into six chapters that examine Shuar energetics and 

reproduction with specific focus on reproductive effects on skeletal health and physical 

activity. Chapter II presents a review of the literature on bone anatomy and physiology as 

well as a discussion on the major determinants of bone mass. This chapter also includes a 

discussion on the current available techniques of assessing bone health and concludes by 

considering bone loss within an evolutionary framework.  

Chapter III presents a normative bone health profile from bone density data 

collected for the Shuar and non-indigenous Colono population. Colonos, an unrelated 

group who live in the same geographical region as the Shuar, were included in the 

analysis for comparative purposes. Minimal data are available on bone health from 

populations living in developing countries, and no normative datasets are available for 

either sex in the populations addressed. Age-related declines in bone density were 

observed for both sexes of each population. However, the results demonstrate that Shuar 

bone density, particularly among males, is extremely high, when compared with Colonos 

and other global reference populations. Chapter III makes a compelling case for the need 

for more bone health data from similar subsistence-based populations, and calls for a 

reconsideration of what constitutes “normal” bone health references in Western countries. 

This chapter has been accepted for publication in Archives of Osteoporosis, and is co-

authored with Josh Snodgrass, Melissa Liebert, Tara Cepon, Aaron Blackwell, and 

Lawrence Sugiyama.  

Chapter IV presents unique research that investigates various hypotheses 

concerning reproductive variables and their influence on bone density. Reproductive-
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related trade-offs in bone health are expected among women, who must rely on skeletal 

calcium stores to meet the energetic requirements of the growing fetal and neonatal 

skeleton during pregnancy and lactation, respectively. Few studies have explored the 

relationship between reproduction and skeletal health in a subsistence-based group from a 

non-clinical, non-Western field setting. Because Western lifestyles and fertility patterns 

are vastly different from those characteristic of our evolutionary past, our current 

understanding of the mechanisms of reproductive-related bone loss among females are 

obscure. Although cross-sectional rather than longitudinal in design, the results indicate 

the importance of early environmental and energetic conditions as well as the timing of 

developmental stages (e.g., age at menarche) for establishing bone status in advanced life. 

Chapter IV also demonstrates the utility of examining bone health within a life-course 

perspective in order to better conceptualize the complex interactions of developmental 

stages and their role in determining health outcomes later in life. This chapter presents 

unpublished co-authored material; it has been offered publication in the American 

Journal of Human Biology and will be submitted for review in the upcoming months. 

Following Chapter IV’s discussion of life-history trade-offs and bone health, 

Chapter V examines reproductive trade-offs and physical activity in one rural Shuar 

community. Studies with subsistence populations have reported that various bio-

behavioral strategies are adopted by pregnant and lactating women as a means of 

compensating for their elevated metabolic costs. Reductions in energy expenditure, 

increased caloric intake, or a combination of the strategies are among some of the 

strategies available. These strategies are clearly dependent on the available energy and 

energetic resources from the surrounding environment. Results from this cross-sectional 
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study show that when compared to non-pregnant, non-lactating women, pregnant and 

lactating participants do not significantly alter their activity output. However, males with 

pregnant and lactating wives increase their energetic output appreciably when compared 

to other males. This suggests that Shuar males alleviate the higher costs of their partners’ 

reproductive state by increasing their contribution to subsistence activities. Chapter V 

concludes by discussing the applicability of accelerometer devices to record physical 

activity patterns for future research in human biology. This chapter has recently been 

published in the American Journal of Human Biology, and is co-authored with Josh 

Snodgrass, Aaron Blackwell, Melissa Liebert, and Lawrence Sugiyama. 

Finally, Chapter VI synthesizes the results of the dissertation as a whole and 

presents general conclusions and future avenues of research. 

 

BRIDGE TO CHAPTER II 

 Despite the enormity of the problem of osteoporosis on global populations, the 

mechanisms of bone loss are still incompletely understood. Before presenting results on 

skeletal health in the subsequent two chapters, Chapter II presents an overview of the 

literature on bone anatomy and physiology and the major factors that contribute to bone 

loss. This chapter includes a discussion of the common techniques used to measure 

skeletal health and the motivations for employing a calcaneal ultrasonometer for this 

dissertation. In the final section of Chapter II, the skeletal system and the process of 

calcium mobilization are considered within an evolutionary framework. 
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CHAPTER II 

BONE: ANATOMY, PHYSIOLOGY, AND THE FACTORS 

CONTRIBUTING TO SKELETAL HEALTH 

 

Bone is dynamic tissue that serves four main purposes: 1) to provide a framework 

for locomotion and attachment sites for muscles; 2) to protect vital internal organs; 3) to 

store calcium and other minerals; and 4) to produce blood cells critical to immune 

protection. A composite tissue comprised of both organic and inorganic constituents, 

bone is highly vascularized and metabolically active and thus adapts to changing external 

circumstances through processes that balance formation and resorption.  

With advancing age, resorptive activities typically begin to outpace bone 

formation, which causes a loss in strength and elasticity. The eventual result is 

compromised bone health characterized by a decreased bone mineral density (BMD) that 

may lead to the sub-clinical condition, osteopenia. According to World Health 

Organization (WHO) criteria, osteopenia is defined as 1 to 2.5 standard deviations (SDs) 

below the mean for one‘s age group. With continued bone loss, this may develop into the 

more severe condition, osteoporosis, differentiated by a deterioration of bone micro-

architecture, increased bone fragility, and heightened fracture risk. Osteoporosis is 

diagnosed at more than 2.5 SD below the mean for one‘s age group (WHO, 2003). 
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The mechanisms of bone loss are incompletely understood, which is surprising 

given the enormous health effects of osteoporosis. Known as the ―silent epidemic,‖ 

osteoporosis is now identified as a major public health issue affecting populations 

worldwide (Bartl and Frisch, 2004; IOF, 2010). In the United States, an estimated 30 

million people suffer from osteoporosis, with equally high prevalence in Europe and 

other developed countries (IOF, 2010). Of the 1.3 million fractures reported annually 

among US patients over 45 years old, 70% can be attributed to low bone density (Bartl 

and Frisch, 2004). The problem is more severe for women, with osteoporotic fractures 

affecting more women than heart attacks, strokes, and all female cancers combined.  

Epidemiological and clinical literature suggests that osteoporosis is a ―natural‖ or 

―normal‖ component of the aging process, and emphasizes that intervention has little 

effect on this process. However, the assertion that bone loss is universal may be 

premature since most relevant data are exclusively from industrialized countries, such as 

the US. Because of less interest and limited diagnostic resources, relatively few data on 

bone health are available for developing nations and in particular, for subsistence, natural 

fertility populations. These latter populations are particularly interesting because their 

lifestyles, diets, and fertility patterns are more characteristic of our evolutionary past. 

This critical gap in the literature has important consequences for how bone loss is 

approached in clinical and public health contexts. 

 The evolutionary medicine approach and its emphasis on comparative studies 

across human populations have yielded some surprising findings. Research on health and 

aging in non-industrial populations has provided empirical evidence that some age-

related changes observed in industrial societies are not universally experienced. For 
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example, many traditionally-living groups and rural populations do not show the age- 

related increases in blood pressure commonly seen in industrialized countries (Waldron 

et al., 1982). Similarly, Gurven and colleagues (2009) documented that the chronic, 

moderately elevated levels of inflammation typically associated with arterial aging and 

cardiovascular disease in industrialized populations do not appear to have the same effect 

among traditionally-living indigenous groups such as the Tsimane forager-

horticulturalists of Bolivia. In this case, potentially damaging effects of inflammation 

appear to be offset by an active lifestyle, optimal body mass, lean diets, and low serum 

lipid levels. Cross-cultural studies of aging are in their infancy and many chronic 

conditions associated with aging have not been fully investigated. One of the goals of this 

dissertation is to address whether BMD changes with age are universal, or simply an 

artifact of the industrial/post-industrial condition. 

In order to better understand the mechanisms of bone loss and establish the 

fundamental basis for the following chapters of this dissertation, the current chapter 

presents an overview of bone anatomy and physiology, followed by an outline of the 

main factors associated with bone loss and low BMD. The chapter concludes with a 

consideration of bone loss within an evolutionary context.  

 

ANATOMY OF BONE 

Bone is a composite tissue comprised of organic and inorganic compounds that 

primarily include collagen fibers and crystalline salts. These crystalline salts, consisting 

of calcium and phosphate, are deposited into the organic matrix and combine to form 

hydroxyapatite crystals. Together, collagen fibers and calcium salts are responsible for 



 
 

40 
 

the tremendous strength and integrity of bone. While collagen fibers contribute to tensile 

strength, allowing bone to endure stretching forces, calcium salts have compressional 

strength to endure squeezing forces. If growing bone is similar to constructing a brick 

wall, the ―cement‖ would be composed of collagen and the other matrix constituents, 

while calcium crystals and phosphate would be ―bricks‖ (Bartl and Frisch, 2004). 

Bone formation, mineralization, and resorption are directed by cells that interact 

with bone and contribute to its dynamic quality. Formation of bone begins with an 

increase in the number of bone cells and fibers beginning with stem cells that eventually 

develop into osteoprogenitor cells. Because of their role in initiating bone formation, 

osteoprogenitor cells are often utilized in bone grafts. Osteoprogenitor cells are multi-

potential cells that may differentiate into osteoblasts (bone building cells) or 

chondroblasts (cartilage producing cells) (Forwood, 2001). The cells that differentiate 

into osteoblasts are responsible for the synthesis and mineralization of bone during both 

initial bone formation and bone remodeling later in life (Cowin, 2001).  

Osteoblasts, which cling to the periosteum (the outer membrane of bone) and also 

reside in the endosteum (inner membrane of bone) of the marrow cavity, secrete vesicles 

that carry crystalline calcium and phosphate ions (Guyton and Hall, 2011). This secretion 

is called an osteoid, a cartilage-like material that will combine with calcium salts and 

then mineralize (Forwood, 2001). As the osteoid forms, some osteoblasts get entrapped 

within the osteoid matrix; these trapped cells are bone maintaining cells called 

osteocytes. Receptors for various hormones, including parathyroid hormone (PTH) and 1, 

25-dihydroxyvitamin D and sex hormones (e.g., estrogens) are contained in osteocytes. 

Housed within spaces called lacunae, the osteocytes produce an elaborate network of 
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cellular extensions that connect them to each other and to the surface of bone via tiny 

tunnels called canaliculi (Bartl and Frisch, 2004) (Figure 2.1). The exact function of the 

osteocyte is unclear but it appears to maintain the matrix of the bone immediately 

surrounding it by producing a chemical signal that instructs osteoblasts to expand in 

response to strain (Cowin, 2001). Also, the number, or density, of osteocytes is a primary 

determinant of bone mass for both cortical and trabecular bone (Guyton and Hall, 2011). 

Acting in opposition to osteoblasts are osteoclasts, or ―bone breakers,‖ a critical 

cell type that functions to resorb or destroy bone. Osteoclasts exist in small, concentrated 

clusters that are typically found on the surface of the marrow cavity, a hematopoietic cell 

membrane that consists of a ―ruffled border‖ (Forwood, 2001). Here, in between the 

ruffled membrane and bone, osteoclasts produce secretions such as citric and lactic acid, 

that serve to dissolve the bone matrix. Osteoclastic resorption of bone usually occurs at 

sites of greatest compression and torsion (Stini, 1995).  

The rates of osteoblastic formation and osteoclastic resorption are typically equal 

to each other, except in growing bones. During the process leading to bone accretion, 

osteoclasts will first resorb bone and then disappear. The bone resorbing cells are then 

replaced by osteoblasts, which lay down new bone in successive layers of concentric 

lamellae on the inner surfaces of the marrow cavity until the hollow space is filled. 

Deposition of new bone is terminated when this new tissue begins to impinge on the 

blood vessels supplying the area (Njeh et al., 1999). The Haversian canal, through which 

these vessels run, is the only remnant of the original cavity. Each new area of bone 

deposited in this fashion is called an osteon, or Haversian system, the basic unit of 

compact bone (see Figure 2.1).  
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Figure 2.1. Trabecular bone and the Haversian system found in compact bone. 

(Illustration by Tara J. Cepon) 

 

Bone is continually turned over during life and also resorbed and deposited to 

adjust its strength to match the extent of bone stress. This process, in which the density of 

bone in a given locus is dependent upon the magnitude of the applied loads, is known as 

Wolff‘s law. When high levels of mechanical loading are experienced, new bone can be 

added or the existing bone may be redistributed to balance strains which alter diaphyseal 

size and strength. During the process of bone turnover, bone deposition and resorption 

replace old, brittle, and weak bone with new organic matrix. If the rate of bone resorption 

outpaces production, the total quantity of bone decreases and creates a negative ―bone 

balance.‖ In children, the rates of deposition and resorption are rapid, and bones exhibit 

minimal brittleness compared to those of older individuals, where rates of deposition and 

resorption are slow. The homeostasis of the skeletal system is an evolved mechanism that 

operates to prevent brittle bone and loss of tensile strength, both of which will inhibit at 

least two critical functions, support of locomotion and protection of vital internal organs.  
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Microscopic Constituents of Bone 

At a histological level, two types of bone exist – immature (woven) bone and 

mature (lamellar) bone. The formation of new bone begins with a hyaline cartilage 

template, which is largely collagen-based and approximately 75% water (Frost, 1986). 

This structure is then replaced by unorganized woven bone, which is the initial osseous 

tissue produced by osteoblastic activity. Woven bone does not conform to mechanical 

load properties placed upon it but rather builds along the capillary paths that originally 

invaded the cartilaginous model at the onset of the bone formation process (Cowin, 

2001). This initial type of ossification is found throughout fetal bone and in the 

epiphyseal plates of children. In adults, it exists at the subchondral articular cortex and at 

tendon attachment sites, between bone and calcified cartilage (Njeh et al., 1999). Woven 

bone is also the initial bone laid down at fracture sites during the early stages of 

remodeling. 

Over time, woven bone is replaced by more organized mature bone, which is 

distinguished by its finer collagen bundles that give bone its greater mechanical strength. 

Additionally, the collagen bundles are housed within circumferential lamellae and run in 

opposite directions in alternating layers, which contributes to the bone‘s ability to resist 

torsional forces. 

 

Macroscopic Constituents of Bone 

Mature bone consists of two distinct architectural types—cortical bone and 

trabecular bone (Figure 2.2). Cortical bone is significantly denser and stronger than the 

trabecular variety, and forms the outer layer of bone and the shafts of long bones. In 
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contrast, trabecular bone has a weaker constitution and is typically found at the ends of 

long bones, proximal to joints and within the bodies of vertebrae. Cortical, compact bone 

makes up approximately 80% of bone. The remaining approximate 20% is trabecular, 

cancellous bone (Guyton and Hall, 2011). 

Cortical bone is 90% mineral and 10% collagen (Cowin, 2001). It is densely 

packed (hence, ―compact‖) and has a slow metabolic rate so that bone turnover occurs at 

a slower rate than trabecular bone; however, there is considerable inter- and intra-

individual variation in cortical bone turnover rates (Frost, 1960; Guyton and Hall, 2011). 

Cortical bone is composed of three surfaces, or envelopes, which are all sites where 

remodeling occurs: 1) the endosteal envelope, which lies adjacent to the marrow cavity 

and is characterized by a relatively high bone turnover; 2) the periosteal surface, which is 

the outer membrane of bone and the attachment site of tendons, ligaments, and muscles; 

and 3) the intracortical envelope, located inside the cortex within the Haversian systems 

(Guyton and Hall, 2011). 

 

 

 

 

Figure 2.2. Macroscopic 

constituents of bone.  

(Illustration by Tara J. Cepon) 
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Trabecular bone is organized by concentric sheets of bone and generally does not 

contain osteons. Each trabecula is a thin strut of bone surrounded by blood vessels and 

when clustered together form trabecular networks resembling lattice-like structures. The 

strength of trabecular bone depends both on the alignment and density of the trabeculae, 

and the degree of interconnectedness between trabecular struts (Merz and Schenk, 1970; 

Mosekilde et al., 1987; Weinstein and Hutson, 1987). Because trabecular bone has a 

greater surface to volume ratio and more surfaces adjacent to bone marrow, it is generally 

subject to greater metabolic activity and faster rates of turnover than cortical bone 

(Guyton and Hall, 2011). When a trabecula thins to a certain point, active osteoclasts may 

perforate the bone and disconnect it from the remaining trabecular network, which is 

irreversibly weakens that region of bone. A thinning trabecula, however, can thicken 

again if osteoblasts produce more new bone than is resorbed by osteoclasts (Mosekilde, 

2000). 

 

Modeling and Remodeling 

Bone formation can be divided into processes that occur during growth 

(modeling) and repair of adult bone (remodeling). Modeling is a process of organized 

bone cell activity that allows bone to grow, as well as to adjust bone strength in 

adulthood. This process principally controls bone shape and size during growth and in 

adult bone is responsible for the expansion of the cortex and periosteum (Frost, 1986). 

During growth, bone has a greater capacity to react to external loads than during any 

other developmental stage. It is for this reason that this is a crucial period for establishing 

bone mass. Although peak bone mass (maximum bone density) is typically attained 
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between 25-30 years of age, early childhood and adolescent bone modeling play a critical 

part in determining peak bone mass, and also bone mass throughout adulthood. 

Bones possess the ability to regenerate continuously in a process called 

remodeling, which is defined as the production and maintenance of metabolically 

sufficient bone in response to changing external circumstances. The loss of mineral and 

changes in the bone matrix in adult bone compromises its elasticity and strength, and 

heightens risk of fractures (Cho and Stout, 2003). Therefore, regular bone turnover must 

occur in order to mobilize calcium, replace old bone tissue, adapt the micro-architecture 

to different loads and stressors, and repair damaged or fractured bone (Guyton and Hall, 

2011). The remodeling process takes on a new dimension during pregnancy and lactation 

when maternal skeletal calcium stores are drained to meet the requirements of the baby‘s 

growing skeleton. In addition to the positive dimensions of remodeling, this process can 

also have negative effects by removing trabeculae as well as causing an increase in 

cortical bone porosity, which are both actions that will lead to a reduction in bone 

strength. Remodeling processes continue throughout life but as adulthood progresses, 

bone resorption begins to occur at a greater rate than bone formation; this will result in a 

net loss of bone and a consequent reduction in trabeculae, thinner cortices, and expanded 

marrow cavities.  

 

The Role of Calcium 

The process and rate of remodeling relies on the ability of the skeletal system to 

efficiently mobilize calcium. Calcium is the most abundant mineral in the human body. 

Ninety-eight percent of body‘s calcium is contained in the skeleton, and it typically 
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accounts for approximately 1 kilogram (kg) of adult body weight (Guyton and Hall, 

2011; Stini, 1995). Calcium is essential to many vital cellular functions, including 

maintenance of cell membrane permeability, nerve impulse conduction, regulation of 

muscle contraction, and hormonal regulation (Guyton and Hall, 2011). Loss of the 

mineral occurs on a daily basis through shedding of the skin, the hair, and the nails, and 

though excretion processes such as urine, feces, and sweat.  

Calcium Homeostasis: In general, the system of calcium homeostasis has evolved 

efficient and reliable mechanisms to avoid insufficient or overabundant levels of 

circulating calcium by stimulating bone turnover and remodeling processes. However, 

breakdown of homeostasis can occur, which may lead to hypo- or hypocalcaemia states. 

In conditions when the exogenous supply of calcium is insufficient, bone tissue is 

resorbed in an effort to maintain constant serum calcium levels. Insufficient levels of 

circulating calcium, or hypocalcaemia, can produce uncontrollable muscle spasms 

(tetany) and can lead to death by cardiac arrhythmia. In contrast, an excess of calcium, or 

hypocalcaemia, can result in extra-osseous calcification, particularly in the kidney and 

can in some cases lead to renal failure (Stini, 1995). A key mechanism that helps avoid 

hypocalcaemia is the reduction of calcium absorption in the intestine. At most times 

during life, human calcium absorption operates at a relatively low efficiency. However, 

during certain times, such as during the adolescent growth spurt, pregnancy, and 

lactation, calcium absorptive efficiency improves dramatically (Agarwal and Glencross, 

2011). This issue is explored further in Chapter IV. It is clear that the increased calcium 

requirements of the growing embryo or offspring typically mobilize maternal skeletal 

reserves, but that mother‘s improved ability during pregnancy and lactation to absorb 
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calcium from dietary sources helps to offset or reduce the magnitude of this problem. 

This shift in calcium homeostasis can have important implications for bone formation in 

the post-partum, post-lactation state.  

 

ASSESSING SKELETAL HEALTH: BONE MINERAL DENSITY 

Measures of Skeletal Health 

Bone mineral density (BMD) is the most important diagnostic parameter of bone 

health and is commonly used in clinical settings as an objective and reliable predictor of 

future fracture risk (Bartl and Frisch, 2004; Levis and Altman, 1998; Ross et al., 1995). 

Whereas bone mineral content (BMC), measured in grams, is the absolute amount of 

calcium and other minerals in a bone, BMD is measured in terms of area (g/cm
2
) or 

volume (g/cm
3
) (Bartl and Frisch, 2004). BMD represents the amount of bone tissue 

present at the end of skeletal maturation (peak bone mass) minus any bone loss.  

Bone loss is a heterogeneous process and can result in changes to the size and 

organization of cortical bone and/or trabecular bone. Progressive loss of bone density 

with age appears to be typical for both women and men but, as discussed earlier, 

variation in the timing of onset of bone loss and the rate of bone deterioration have not 

been extensively studied. In addition to BMD, fracture risk is also related to bone quality 

changes including overall bone geometry and micro-architecture (Njeh et al., 1999). It is 

possible that in two individuals with the same low bone density, one may exhibit thin 

trabeculae with a normal trabecular network and have a low fracture risk, whereas the 

other individual may display porous bone with a reduction of trabecular connections and 

have a high risk of fracture (Marcus, 1991).   
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Techniques for Assessing Skeletal Health 

Dual-energy x-ray absorptiometry (DXA or DEXA) is the most widely used 

method for assessing BMD and diagnosing osteoporosis in clinical settings. The 

technique involves two x-ray beams positioned on a specific body site and the 

measurement of beam attenuation, a parameter related to bone mineral content; this then 

allows the calculation of BMD. DXA can measure central (hip and spine) and peripheral 

(forearm) sites, and also has the capacity to be used to perform a full body scan. Although 

considered the ―gold standard‖ in bone density techniques, DXA scanners are extremely 

expensive, are not portable, and expose participants to ionizing radiation; these factors 

limit its use for non-clinical purposes. 

Quantitative computed tomography (QCT) is a well-established technique that 

may be applied to the lumbar spine and appendicular skeleton in order to generate BMD 

values as well as cross-sectional images of trabecular and cortical bone (Bartl and Frisch, 

2004). However, the presence of marrow fat in the vertebral bodies may cause an 

underestimation of BMD by up to 15% (Bartl and Frisch, 2004). As with the DXA 

technique, QCT methods also expose participants to radiation, which limits its use to 

clinical or laboratory settings. 

Quantitative ultrasound (QUS) is a relatively new technique that allows for the 

measurement of skeletal health. QUS provides information on both cortical and 

trabecular bone, and its measurements are influenced by several factors, including bone 

micro-architecture, bone mineral constituents, and elastic modulus (Bartl and Frisch, 

2004). QUS shows great promise for both research and population-level screening, in part 

because it is portable, relatively inexpensive, and does not expose participants to ionizing 
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radiation. Quantitative ultrasound involves the placement of transducers on either side of 

the bone of interest and use sound waves to generate three measures of bone: broadband 

ultrasound attenuation (BUA; dB/MHz), speed of sound (SOS; m/s), and heel BMD 

(hBMD). BUA is defined as the slope of this attenuation versus frequency curve. This 

parameter may be understood using the analogy of a slinky toy. When the toy is stretched 

and then released, the rings will oscillate for a period of time, with the oscillations 

subsiding in intensity before finally stopping. A similar process occurs with sound waves 

as they pass through bones; some of the energy is lost from the sound wave and the 

oscillations of the sound wave are diminished (Bonnick and Lewis, 2006). BUA reflects 

the amount of energy that is lost in relation to the density and micro-architecture of the 

bone. The second measure, SOS, is defined as the distance between the two opposing 

transducers divided by the time it takes for the signal to pass from one transducer, 

through the bone of interest, to the other transducer. Higher BUA and SOS values 

indicate greater bone density. While there is generally a linear relationship between BUA 

and SOS, differences in the rate of bone loss in these measures reflect the different 

qualities of bone being measured (Evans and Tavakoli, 1990). 

QUS, particularly when applied to the heel bone (calcaneus), has proven to be an 

excellent screening tool for low BMD. Calcaneal ultrasound measures provide accurate 

and repeatable measures of bone density, and numerous studies have documented an 

excellent correlation between DXA measures and calcaneal ultrasound (Barkmann et al., 

2007; Gerdhem et al., 2008; Nayak et al., 2006). The calcaneus is a weight-bearing site 

rich in trabecular bone and, although there is certainly variation in bone density among 

different skeletal regions, the bone is an ideal single-site measure of bone density. 
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Further, unlike x-ray measures, QUS-transmitted waves not only reflect the amount of 

bone but also the trabecular distribution and orientation (Barkmann et al., 2007). The 

calcaneal ultrasonometer remains one of the few techniques available for the assessment 

of BMD in remote field conditions.  

 

FACTORS THAT AFFECT SKELETAL HEALTH 

A number of factors shape skeletal health by influencing the processes of bone 

formation and resorption. These include hormones, diet, and various environmental 

factors, which affect bone growth, maintenance, and/or fragility. Genes also play a role in 

skeletal metabolism and specific genetic markers controlling bone quantity and quality 

have been isolated (Drake et al., 2001; Van der Weyden et al., 2006). However, genes 

only explain a small proportion of the variation in individual bone mass and do not 

determine the rate of bone loss over the lifespan (Cooper et al., 2002). Rather, 

epidemiological studies have demonstrated the importance of non-genetic factors, 

modifiable factors in influencing the accumulation of bone mineral across life. The 

following section discusses the role of these modifiable agents and focuses on dietary, 

physical activity, hormones, and reproductive factors in determining skeletal health. 

 

Diet 

Nutritional factors are important in determining peak bone mass and the rate of 

bone loss during adulthood. As discussed above, adequate dietary calcium intake is 

critical for maintaining bone integrity. Even more critical for diminishing fracture risk 

than the amount of calcium being ingested is the calcium absorptive abilities of the body 
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(Vieth, 2003). Key sources of dietary calcium include dairy products, broccoli, beans, 

green leafy vegetables, and fish. The National Osteoporosis Foundation (NOF) (2010) 

recommends a daily allowance of dietary calcium of at least 1,200 mg per day. The 

calcium recommendations for pregnant and lactating women are higher and the need for 

supplementation varies across populations depending on availability of reliable calcium 

sources. In general, the effect of calcium supplementation on bone density continues to 

be debated as some studies find no positive effect of calcium intake on bone loss rates 

with aging (Anderson et al., 2004; Dawson-Hughes, 2004). With regard to females and 

reproduction specifically, some studies show a positive association between calcium 

intake and bone density maintenance across the female lifespan, although most studies 

conclude that bone loss occurs despite calcium intake (Cumming and Nevitt, 1997; 

Looker, 2003; Wosje and Specker, 2000). Additional evidence that maternal intake is 

independent of changes in bone is provided by Prentice and colleagues (1995) who 

demonstrate that supplying calcium supplements to women with low calcium intake does 

not affect calcium levels in their breast milk or changes in bone metabolism. The loss of 

bone during lactation occurs in women with high and low calcium intake alike. 

Vitamin D is a key regulator of intestinal calcium absorption and thus contributes 

to bone health. A daily vitamin D allowance of 800-1,000 IU is suggested although this 

quantity may be ingested through sources such as vitamin D-fortified milk, cereals, egg 

yolks, and liver (NOF, 2010). Current guidelines for prevention of osteoporosis strongly 

recommend taking calcium along with vitamin D supplements to obtain maximum 

nutrient benefits. 
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Vitamin C also appears to be an important contributor to skeletal health, as 

epidemiological studies have documented a positive association between vitamin C and 

bone mass (Bunker, 1994). This likely stems from the fact that vitamin C is necessary for 

intercellular substance secretion by all cells, including osteoid formation (Guyton and 

Hall, 2011). This nutrient also stimulates osteoblastic activity and improves calcium 

absorption. The recommended daily allowance of vitamin C for adults is 75-100 mg and 

can be primarily obtained by consuming citrus fruits.  

Vitamin K may also contribute to increased bone mass because of its role in 

synthesizing osteocalcin, a major component of the non-collagenous proteins in bone, 

(Bartl and Frisch, 2004). This nutrient regulates the attachment of calcium to the bone 

matrix and is thus critical for healing fractures. In order to maximally benefit from the 

bone maintaining properties of vitamin K, the suggested daily vitamin K allowance is 

100-300 mg, which may be acquired through supplementation or by consuming dark-

green vegetables (e.g., spinach). 

Several other dietary factors, including caffeine, alcohol, processed foods, 

carbonated cola beverages, and excessive protein have been negatively associated with 

bone mass (Bunker, 1994; Hernandez-Avila et al., 1993; Lazenby, 1997; Sampson, 

2002). However, establishing causality between any one of these factors and bone loss 

can be problematic. 

 

Physical Activity 

Physical activity is a well-established factor that influences bone density. High 

activity levels, especially those that involve weight-bearing, lead to increased bone 
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formation and reduced bone loss (Proctor et al., 2000; Stini, 1995). Following Wolff‘s 

Law, bone adapts to stressors that are placed upon it and thus, bone will respond to low to 

moderate exercise through accretion of new bone. Aside from inhibiting bone loss in 

adulthood, physical activity promotes strength, flexibility, balance, and endurance, and 

thereby decreases the risk of falls in the elderly by up to 20-60% (Bartl and Frisch, 2004; 

Dargeant-Molina et al., 1996; Kemper et al., 2000). The optimal amount of exercise 

necessary to maintain bone density varies by sexes and among individuals. While high 

impact exercise appears to have the greatest positive effect, excessive exercise, 

particularly in women, can reduce circulating estrogens and lead to a concomitant 

decrease in bone density. Additionally, high levels of energy expenditure coupled with 

disordered eating patterns (e.g., anorexia or bulimia) can lead to negative energy balance 

and result in reductions in bone density, and heightened fracture risk (Zanker and Hind, 

2007).  

In addition to the types of mechanical loading on bone, the timing of physical 

activity is also a key factor determining fracture risk since the amount of bone mass 

gained during growth and development significantly contributes to adult bone density 

(Kemper et al., 2000; Streeter and Stout, 2003). Several studies have shown that bone 

mass increases dramatically during puberty; growing bones have a greater potential for 

periosteal expansion than aging bone, and therefore adapt more rapidly and efficiently to 

acute stressors in order to increase strength (Kröger et al., 1993; Matkovic et al., 1994; 

Theintz et al., 1992). Up to 60% of the variance in BMD at age 65 may be the result of 

the peak bone mass attained early in life (Kelly et al., 1995). This relationship 

emphasizes the importance of establishing high peak bone mass for limiting the age and 
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lifestyle-related influences on bone loss. Thus, the contributions of physical activity are 

arguably strongest during pubescent years when there is rapid response of bone to 

stressors that will result in accretion.   

 

Systemic Regulation of Calcium 

The equilibrium of the central calcium pool is maintained by calciotropic 

hormones such as parathyroid hormone, vitamin D, and calcitonin. As a result of their 

effect on calcium regulation, these hormones are agents that contribute to skeletal health. 

Parathyroid Hormone (PTH): Secreted by the thyroid gland, PTH is the primary 

hormone that regulates calcium homeostasis. Its mechanism of action involves inciting 

osteoclastic activity in response to low serum calcium level to stimulate the release of 

calcium and phosphate from the skeleton (Forwood, 2001). PTH also synthesizes 1,25-

dihydroxycholecalciferol, the principle active product of vitamin D, which functions to 

decrease the excretion of calcium by the kidneys (Guyton and Hall, 2011). Shifts in PTH 

occur in response to pregnancy, during which some women experience a reduction in 

PTH; PTH levels typically return to baseline following parturition.  

Vitamin D: Vitamin D, or the hormone calciferol, plays an important role in both 

bone resorption and deposition. Vitamin D is available in two major physiologically 

relevant forms: Vitamin D2 (ergocalciferol) and Vitamin D3 (cholecalciferol). Vitamin D3 

is produced in the skin after exposure to sunlight or artificial sun sources, whereas D2 is 

derived from plants that have been exposed to ultraviolet exposure. Often regarded as 

equivalent and interchangeable (Committee of Revision, 1997; Institute of Medicine, 

1997), some controversy exists over whether Vitamin D2 can fully substitute for the D3 
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variety in the human diet. Recent research has found that Vitamin D2 may be less 

effective in raising serum concentrations of Vitamin D, and identify Vitamin D3 as the 

major endogenous, source of Vitamin D. The studies conclude that Vitamin D2 should 

not be regarded as a nutrient suitable for supplementation (Adams and Hewison, 2010; 

Houghton and Vieth, 2006; Holick, 2008). 

Vitamin D, in general, influences the transport of calcium through cellular 

membranes, affects renal and intestinal absorption of calcium, and enables mobilization 

of calcium from bones (Dawson-Hughes, 2004). Vitamin D also improves muscle 

strength, balance and leg function, which decreases the risk of falling and thereby reduces 

risk of future fractures. This hormone has many beneficial effects across age groups and 

developmental stages. Sufficient levels of vitamin D are especially important during 

childhood growth as deficiencies can result in the childhood disease, rickets. During 

pregnancy, vitamin D rises in serum concentration and remains elevated. This heightened 

presence appears to promote an increased efficiency in transporting of calcium into 

circulation. Vitamin D may be obtained through dietary sources or endogenously 

synthesized exposure to adequate amounts of sunlight (Vitamin D3). Deficiencies of this 

nutrient are rarely found in equatorial populations (Mazess, 1978; da Rocha and Ribiero, 

2003).  

However, despite the availability of sunlight, cultural and religious elements can 

play a significant role in an individual‘s exposure to Vitamin D. For example, high rates 

of hypovitaminosis D are documented among Muslim women in the Middle East and the 

Indian subcontinent where many women maintain a conservative style of dress (e.g., 

burkas) that covers most of their bodies, including hands and faces and limits their 
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exposure to sunlight (El-Hajj Fuleihan and Deeb, 1999; El-Sonbaty and Abdul-Ghaffar, 

1996; Ghannam et al., 1999; Gannage-Yared et al., 2000). 

 Calcitonin: Calcitonin, like PTH, is secreted by the thyroid gland but acts in 

opposition to PTH by reducing serum calcium concentrations (Galloway, 1997). This 

reduction is achieved by suppressing the resorption of bone by inhibiting osteoclastic 

activity, and thus limits the release of calcium into the blood. The effects of calcitonin on 

blood calcium ion concentration are relatively weak and, for this reason, the hormone is 

seldom considered (Bartl and Frisch, 2004). However, during pregnancy, calcitonin 

levels are relatively high and this may inhibit bone resorption while simultaneously 

allowing PTH and vitamin D to activate absorption of dietary calcium and kidney 

reabsorption (Galloway, 1997). 

 

Other Hormones 

Estrogens: Natural estrogens are steroid hormones that come in three major forms. 

The primary form that is present in human females from menarche to menopause is 

estradiol. The two other forms of estrogens are estrone, which is found in higher 

concentrations among postmenopausal women, and estriol, which is only produced in 

significant amounts during pregnancy. In general, studies that address the effects of 

estrogens on bone density refer to the most common estrogen form, estradiol.  

Estrogens appear to play a central role during the course of the female lifespan by 

influencing bone and collagen formation, and increase intestinal absorption and retention 

of calcium. By limiting bone resorption, estrogens help to maintain bone mass. 

Deficiencies in estrogens precipitate production of osteoclastogenic factors, which results 
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in increased porosity of cortical bone and resorption of trabecular bone (Pacifici, 2007); 

this leads to overall bone loss. Estrogens are also responsible for epiphyseal fusion of 

long bones and are stronger than the effect of testosterone in males. As a result, female 

growth usually ceases before males.  

A large body of research suggests that changes in bone mass coincide with levels 

of estrogen during pregnancy, lactation, and menopause (Agarwal and Stuart-Macadam, 

2003; Galloway, 1988; Galloway, 1997; Guyton and Hall, 2011; Pacifici, 2007; Pearce, 

2006).  Estrogen levels fluctuate throughout the female life cycle, with monthly 

fluctuations starting at the onset of menarche. Following menopause, no estrogens are 

secreted by the ovaries and, consequently, osteoclastic activity is no longer inhibited. The 

result is a decrease in the deposition of bone calcium and phosphate and therefore, a 

reduced bone matrix (Guyton and Hall, 2011). Because of their role in bone maintenance, 

estrogen hormone replacement therapy (HRT) may be offered as treatment to inhibit bone 

loss in postmenopausal women. However, it is important to note that several studies have 

found that HRT can have severe health risks for women including increased risk of breast 

cancer, heart attack, stroke, and blood clots (Lindsay et al., 1996). 

Due to the hypoestrogenic states of premenopausal removal of ovaries 

(oophorectomy), premature ovarian failure, anorexia nervosa, and exercise-induced 

amenorrhea, these conditions are characterized by low bone density and an increase 

osteoporosis risk, a relationship that is well-documented in the literature (Meczekalski et 

al., 2010; Popat et al., 2009). 

Progesterone: Progesterone also plays a key role in promoting bone accrual 

through its influence on proliferating osteoblastic activity. Several studies have reported 
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that increased progesterone levels in postmenopausal women result in new bone 

formation with greater effects than even estrogen therapy (Munk-Jensen et al., 1988). 

That is, while estrogens will prevent further bone loss, progesterone may function to 

accumulate new bone. Fluctuations in progesterone are documented during pregnancy 

and lactation and the hormone may be continually secreted before parturition thereby 

initiating birth contractions (Galloway, 1997).  

Growth Hormone (GH) and Insulin-Like Growth Factors (IGFs): GH stimulates 

growth and cell reproduction in humans and other animals. Its effect on the regulation of 

longitudinal bone growth and bone metabolism has only been recently recognized 

(Ohlsson et al., 1998). A number of in vivo and in vitro studies have shown that GH 

controls aspects of bone formation and resorption and plays an important role in the 

process of bone growth until peak bone mass is achieved (Bouillon, 1991; Eriksen et al., 

1993; Eriksen et al., 1996; Slootweg, 1993; Wuster, 1993). Several studies have 

demonstrated that GH increases the local production of IGF-I, one of the most abundant 

growth factors present in bone (Isaksson et al., 1987; Isgaard et al., 1988). IGF-I has 

demonstrated a role in stimulating osteoblastic activity, which results in the formation of 

bone and inhibition of resorption. Studies on genetically modified mice have established 

the importance of IGF-I in the acquisition and maintenance of trabecular bone mass 

(Bikle et al., 2001). 

GH and IGFs affect the epiphyseal growth plate, and some abnormalities in 

skeletal growth have been associated with an excess or deficiency in these hormones 

(Khan et al., 2001). They may also contribute to the accretion and/or maintenance of 

bone mass during young adulthood and with progressing age, GH and IGF declines may 



 
 

60 
 

reduce bone formation. Because of their role in stimulating bone accretion, GH and IGFs 

have been proposed in therapy for osteoporosis.  

 

Reproductive History 

Reproductive patterns among women appear to influence BMD across the 

lifespan. Reproductive parameters linked to changes in skeletal health include parity, 

patterns of breast-feeding, and age at first pregnancy. This relationship is unsurprising 

given that circulating hormones associated with pregnancy, lactation, and menopause 

have been shown to have an effect on bone resorptive and formation processes (see 

earlier section: Other Hormones). For this reason, reproductive biology accounts for 

substantial part of the disparity in bone density between females and males. For example, 

one in five men experience osteoporotic fractures, whereas one-third of women over age 

50 are at risk for future fractures. However, it is important to note that rates of 

osteoporosis-related fractures are increasing among both sexes (IOF, 2010).  

During certain periods of the female life, regulatory hormone levels alter 

according to the variable calcium requirements of the body, with the greatest ―cost‖ 

occurring during pregnancy and lactation. Unsurprisingly, male reproductive patterns 

have less of an effect on skeletal health than women, although men are susceptible to 

increased bone resorption due to testosterone deficiency that occurs in the later stages of 

life.  

The following section reviews evidence for the effects of different female 

reproductive states on skeletal health. 
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Menarche: Menarche, the onset of menses, marks the beginning of female 

reproductive life. Menarche may have a stimulating effect on the development of bone by 

increasing the osteoblastic activity that accompanies the unsettled estrogen (Ito et al., 

1995; Jaffe and Dell‘Acqua, 1985). Because of circulating estrogens that are introduced 

at menarche and their role in bone accretion processes, an earlier age at first menses (<16 

years old) has been linked to higher BMD values (Ito et al., 1995; Roy et al., 2003). 

Additionally, early menarche is typically related to larger body size, which increases 

mechanical load on the skeleton, and to greater adiposity, which leads to increased 

production of estrogens. Thus, both larger body size and greater fat content theoretically 

contribute to increases in bone quantity (Eastell, 2005).  

Pregnancy: Pregnancy is characterized by heightened and continual maternal bone 

turnover, independent of the calcium demands of the fetus (Cerroni et al., 1993). During 

pregnancy, the mother develops mechanisms to balance calcium requirements of the 

developing fetus in order to allow for fetal bone formation. The average newborn 

skeleton contains a total of 25-30 grams of calcium, and 80% of this calcium crosses the 

placenta in the last trimester (Stini, 1995). If maternal bone mineral were the sole source 

of calcium for the fetus, the mother would lose approximately 3% of her skeletal mass 

with each pregnancy (Khan et al., 2001). Mechanisms of calcium absorption appear to 

have evolved to minimize the deleterious effects on maternal skeleton. 

Several studies have documented positive associations between the number of 

full-term pregnancies and bone density. This protective effect of parity against bone loss 

has been linked to pregnancy-related weight gain (which involves increased mechanical 

loading), increased intestinal calcium absorption, heightened cumulative exposure to 
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estrogens, and possible delays in age at menopause (Nguyen et al., 1995; Streeten et al., 

2005). Further, studies comparing bone density in nulliparous and multiparous women 

have generally documented lower BMD in females with no children (Sowers et al., 

1992). However, studies of pregnancy and bone health have not been entirely consistent. 

Several studies have documented negative associations with BMD with increasing parity 

(Allali et al., 2007; Gur et al., 2003), while others documented no significant correlations 

(Ensom et al., 2002; Melton et al., 1993). One potential explanation for these 

contradictory results is that the majority of these studies were conducted among Western 

populations that are typically characterized by low fertility rates; therefore, the effects of 

multiparity may be obscured by relatively small offspring quantities. 

Age at First Parturition: Another reproductive factor that appears to shape bone 

health is age at first parturition. As bone mineralization typically continues until the mid-

twenties, pregnancy and lactation may disrupt bone formation in younger females that 

give birth and lead to impacts on long-term bone mass (Sowers, 1996). One recent 

epidemiological study found that women who were 27 years or older at the time of their 

first pregnancy had a significantly lower risk of developing osteoporosis in 

postmenopausal life (Schnatz et al., 2010). In addition to long-term effects, a younger age 

at first pregnancy may have negative impacts during pre-menopausal years. In several 

epidemiological studies, women who were younger at first parturition (<20 years old) 

demonstrated an impaired ability to gain in height when compared to other women, 

indicating disruptions during early bone development (Allal et al, 2004; Gigante et al., 

2006; Sear et al., 2004). However, the effect of the timing of first pregnancy on bone 
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mass is not consistent across studies with some research finding no significant 

relationship at all (e.g., Sowers et al., 1985).  

Lactation: Lactation is a hypoestrogenic state where the demand for calcium by 

the infant influences the rate of maternal bone turnover (Cerroni et al., 2003). This period 

is characterized by altered levels of calciotropic hormones (e.g., PTH, calcitonin) that 

respond to breast milk production, fluctuating levels of ovarian hormones, and elevated 

levels of hormones associated with breastfeeding (e.g., prolactin and oxytocin). Prolactin 

is involved with the initiation and continuation of lactation, and during pregnancy this 

hormone may increase intestinal calcium absorption (Galloway, 1997; Guyton and Hall, 

2011). The high levels of prolactin associated with repeated suckling appear to deplete 

maternal bone mass. In a six month period of exclusive lactation, approximately 7% of 

maternal bone mass may be lost (Sowers, 2001). After weaning, this process typically 

reverses and bone accretion occurs over the course of a few months.  

Several longitudinal studies that document changes in bone status during post-

partum and weaning periods typically report that bone loss is transient and later restored 

to pre-pregnancy values (Pearce, 2006; Sowers, 1996). The general consensus among 

research studies is that BMD recovers after weaning, although there is debate regarding 

exactly when this recovery occurs—data suggest anywhere from 6-24 months post-

parturition (Ensom et al., 2002; Kalkwarf and Specker, 1995; Matsumoto et al., 1995; 

Sowers et al., 1993).  

Studies on the effects of lactation on bone mass in the long-term, postmenopausal 

life are more replete with inconsistencies. Associations between the duration and 

intensity of lactation on bone density have been documented, but with considerable 
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variation in findings. Several studies have shown that long-term breastfeeding is 

associated with increased bone loss in the postmenopausal years (Chowdhury et al., 2002; 

Grimes and Wimalawansa, 2003; Lopez et al., 1996; Melton et al., 1993; Popivanov and 

Boianonv, 2002; Sowers, 1996), whereas some research has found no such association 

(Feldblum et al., 1992; Johnell and Nillson, 1984), and yet others demonstrate a decrease 

in maternal bone density due to lactation history (Lissner et al., 1991; Wardlaw and Pike, 

1986). 

The lack of consensus regarding the long-term effects of lactation may be largely 

due to the heterogeneity in lactation behaviors on a cross-cultural and inter/intra- 

populational level. Women can resume menstruation as early as two months after 

parturition or as late as 3 years postpartum, with a broad range of lactational amenorrhea 

lengths along the spectrum (Konner and Worthman, 1980; Jones, 1989; Wood, 1994). 

Birth Spacing: Studies on the frequency and spacing of pregnancies suggest that 

the greatest effects of bone mass occur during the first reproductive cycle (Peng et al., 

1987). Further reductions occur with subsequent pregnancy/lactation periods. However, 

after the third cycle, little additional bone loss is observed, which suggests a threshold 

effect on bone integrity (Peng et al., 1987). Again, results of different studies are not 

entirely consistent, and there may be an effect of the total number of births. 

Short spacing between births may be a risk factor for low BMD in pre- and 

postmenopausal years, due to the cumulative periods of BMD loss in quick succession 

(Affinito et al., 1996). However, most longitudinal studies that have investigated intervals 

between childbirth and lactation periods have found that bone health is not compromised 

among women with shorter birth spacing (Laskey and Prentice, 1997; Sowers et al., 
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1995). In some high fertility populations, repeated and closely spaced pregnancies with 

extended lactation, such as the Omani and grand multiparous Finish American women, 

had no significant effect bone density (Bererhi et al., 1996; Henderson et al., 2000).  

Menopause: According to the World Health Organization (WHO), the risk for 

osteoporosis in postmenopausal women is approximately three times higher than in older 

men. The cessation of ovarian function at menopause results in reductions in estrogen and 

progesterone levels, and these declines are associated with precipitous reductions in bone 

mass (Black and Lane, 2002; Bartl and Frisch, 2004). Coupled with changes in the levels 

of female sex steroids are declines in the levels of calcium-regulating hormones with 

advanced age.  

Postmenopausal (or Type I) osteoporosis is characterized by an exaggerated loss 

of trabecular bone, the predominant constituent in vertebrae and the proximal femur. This 

increases the susceptibility of these sites to fracture. Early menopause is widely believed 

to be a risk factor for reduced BMD (Gallagher, 2007; Kritz-Silverstein and Barrett-

Connor, 1993; Ohta et al., 1996; Pouillès et al., 1994). Because of menopause-related 

declines in this sex steroid, women who experience earlier menopause spend more time 

in a hypoestrogenic state, which may place them at greater risk for poor bone health 

(Gallagher, 2007; Kritz-Silverstein and Barrett-Connor, 1993; Ohta et al., 1996; Pouillès 

et al., 1994). However, studies show no consensus on what constitutes ‗early.‘ Sioka et al. 

(2010) found that osteoporosis was higher among Greek women who reported 

menopause onset between 40 and 45 years, when compared to those at an older age. 

Among Iranian and Indian women, Keramat and colleagues (2008) report that women 

with an age at menopause less than 45 years are at higher risk for osteoporosis. In 
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contrast, several studies suggest that age at menopause is unrelated to increased fracture 

risk (Kritz-Silverstein and Barrett-Connor, 1993; Melton et al., 1993; Vico et al., 1991). 

As with most reproductive variables, the relationship between menopausal age and 

skeletal health remains unclear. 

 

BONE LOSS IN AN EVOLUTIONARY PERSPECTIVE 

Evolutionary Basis for Bone Loss 

Bone is a living, dynamic tissue that, like other aspects of our anatomy and 

physiology, is shaped by evolutionary pressures. As discussed earlier in the chapter, bone 

serves multiple purposes and, in order to better understand the evolutionary origins of 

these functions, they must be examined, not only within a strictly adaptionist perspective, 

but also one that considers compromises and trade-offs. The system of calcium 

homeostasis evolved with the dual function of maintaining the mechanical properties 

necessary for bone‘s structural role (e.g., tensile strength), and for the skeleton to store 

calcium for basic bodily functions (e.g., regulation of muscle contractions, nerve 

conduction, and modulation of cell membrane permeability) when adequate dietary 

sources are not available. 

The diet of the earliest hominins was likely similar in many ways to modern 

chimpanzees and bonobos (Pan spp.), with a diet characterized by foods with high 

calcium density (2-2.5 millimoles/liter [mmol] per 100 kcal) (Eaton and Nelson, 1991). 

Contemporary and historically-known hunter-gatherer populations in Africa, South 

America, and New Guinea also have diets that are nearly as high in calcium (1.75-2 

mmol per 100 kcal) (Eaton and Nelson, 1991; Stini, 1995). This contrasts markedly with 
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calcium intake in contemporary industrialized countries. For example, the median 

calcium intake North American women, as well as populations in many European 

countries, is extremely low (<15 mmol per day per 100 kcal). Based on this contrast, 

Stini (1995) posits that calcium homeostasis among humans evolved in a context of a diet 

extremely high in calcium. 

Excessive serum calcium levels, or hypocalcaemia, can have a number of 

negative effects including kidney dysfunction, dementia, vomiting, and may even be 

lethal. Selection appears to have shaped human physiology primarily to protect against 

hypercalcemic states. General human inefficiency to absorb calcium may have evolved to 

include mechanisms that protect against serum calcium concentrations that were too high. 

Thus, while beneficial in some contexts, the evolved inefficiency to mobilize calcium, 

coupled with novel environments that are characterized by lifestyle and reproductive 

patterns strikingly different than those of our evolutionary past, has resulted in the high 

rates of osteoporosis among contemporary, Western populations. 

With senescence, calcium absorptive efficiency decreases with advancing age 

resulting in greater bone resorption relative to formation. There may also be life-history 

tradeoffs in bone formation with age. It seems possible that the selective benefits of 

continued high investment in bone formation are reduced with age, while the need to 

maintain calcium resorptive abilities for various non-skeletal cellular functions declines 

at a slower rate. The result is that the balance between formation and resorption shifts, 

emphasizing resorption with age, and results in reductions in the structural integrity of the 

skeleton. This loss in structural integrity with age is further reduced by the relatively 
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sedentary habits and calcium-deficient diets of many Western populations (see: Lifestyle 

Change and Skeletal Health below). 

The evolution of calcium homeostasis among females has also been shaped by the 

energy and resource-expensive reproductive functions, such as pregnancy and lactation. 

Furthermore, females must balance fetal and neonatal requirements while simultaneously 

maintaining maternal calcium homeostasis and skeletal integrity. Since most female bone 

loss is postmenopausal, selection to maintain bone later in lifetime would be reduced. 

During this life stage, bone physiology would have been decoupled from direct fitness 

benefits, although it may be maintained by other factors such as inclusive fitness benefits 

of somatic maintenance (e.g., Hawkes et al., 1998). Galloway (1997) argues that 

postmenopausal bone loss is an example of antagonistic pleiotropy, which suggests that 

traits beneficial to early reproductive life, including relatively low absorptive efficiency 

but highly effective mechanisms for the mobilization of calcium for offspring, become 

deleterious when coupled with other age-related physiological changes.  

The gradual expansion over the past century of the average life expectancy 

beyond reproductive years appears to have exposed the hidden costs of reproduction. In 

this respect, accelerated bone loss in postmenopausal life can be seen as an 

epiphenomenon related to the rapid depletion of estrogen that occurs at menopause. 

Conversely, however, the pattern of accelerated postmenopausal bone loss may reflect 

the evolution of an optimal age-related trade-off between the benefits of continued 

calcium availability from bone, the need to maintain sufficient structural functions of 

bone across the remaining lifespan, and the parental investment or inclusive fitness 

benefits of continued work and life effort across the later lifespan.  
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Lifestyle Change and Skeletal Health 

While bone density decline with age has been observed in past populations 

(Agarwal and Stuart-Macadam, 2003; Karasik et al., 1998; Mays, 2000), clinically 

recognized osteoporosis and postmenopausal osteoporosis is far more prevalent in 

contemporary, Western populations (Mays, 2000). Few fragility-related hip fractures 

related to age-related bone loss have been reported for archaeological populations. The 

paucity of these findings in skeletal assemblages may be explained by a few factors. 

Firstly, while in past societies there would have been a significant number of individuals 

who reached old age, the proportion of the population living beyond the seventh and 

eighth decades of life would have been substantially smaller than contemporary times 

(Brickley and Agarwal, 2003). Therefore, increases in life expectancy may partially 

explain the differences in rates of low bone mass between modern and past populations. 

However, data from extant hunter-gatherers suggest that even though reproduction ceases 

by 42 years of age or less, over half the women who make it to that age will live another 

20 years (e.g., Hill and Kaplan, 1999; Kaplan et al., 2000). Additionally, even when the 

increased age of Western populations is taken into account, fracture risk is not tied 

exclusively to life expectancy and moreover, rates of osteoporosis continue to rise 

(Brickley and Agarwal, 2003; Mosekilde, 2000). So, as with many chronic diseases such 

as type 2 diabetes and metabolic syndrome, recent increases in the rates of osteopenia and 

osteoporosis may best be explained as the deleterious health consequences of lifestyle 

change associated with market integration. That is, we are paying the price for living an 

evolutionarily novel lifestyle.  
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While the processes of evolution and changed environments have led to increases 

to human longevity, there has been a simultaneous rise in the frequency of diseases 

associated with Westernization. In archaeological populations, the effects of dietary and 

lifestyle change on health are most often exemplified with the comparison of hunter-

gatherers and agriculturalists.  

With the transition to reliance on food production (e.g., agriculture and/or animal 

domestication) as early in some areas as 10,000-12,000 years ago, skeletal populations in 

archaeological assemblages show various negative impacts of these evolutionarily novel 

lifeways. Dietary and other lifestyle factors, including sedentism, increased proximity to 

domesticated animals (and their diseases), and increased population density, produced an 

evolutionarily novel environmental condition. Bioarchaeology research suggests that 

changes in bone integrity accompanied the transitions from hunter-gatherer to 

agriculturalist lifestyle, although because agricultural production can yield calcium-

abundant foods such as dairy products and green vegetables (e.g., broccoli), one might 

expect that bone loss rates would be higher among pre-historic hunter-gatherers than 

early agriculturalists. Further, because high levels of protein can have a negative effect on 

bone health by increasing urinary excretion of calcium, hunter-gatherers who had greater 

animal protein in their diets, could theoretically be expected to exhibit greater risk of 

osteoporosis. Additionally, Roberts and Manchester (2005) argue that farmers are 

relatively less active than hunter-gatherers, such that the regular bouts of weight-bearing 

physical activity among the latter group counteract any effects of bone loss. Yet, early 

agriculturalists were hardly sedentary and agriculture is arguably a more arduous and 

time-consuming activity than hunting and gathering (Bridges, 1989). 
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Comparisons of skeletal assemblages from hunter-gatherer and agricultural 

populations have demonstrated contradictory conclusions regarding the prevalence of low 

bone quantity and quality in past populations. Cohen and Armelagos (1984) documented 

a greater prevalence of cortical bone thinning along with a decrease in bone 

circumference in early agricultural skeletal populations, leading Roberts and Manchester 

(2005) to suggest that these may be indicators of osteoporosis. In a prehistoric, pre-

Hispanic skeletal population from Gran Canaria (Canary Islands), a high prevalence of 

osteopenia was found, with rates of low bone density increasing with age (González-

Reimers et al., 2001). The Gran Canaria sample engaged in a primarily agriculture-based 

economy, with some fishing and herding practices. In contrast, Kelley (1980) found that 

hunter-gatherers from the archaic Indian Knoll skeletal sample exhibited osteoporotic 

bone lesions and factures, which was attributed to a lack of calcium in diet and water 

resources. While the few findings from bioarchaeology are conflicting and often limited 

for our understanding of osteoporosis prevalence in the past, the transition to agriculture 

did mark a critical period of dietary and lifestyle change that resulted in significant and 

unprecedented health outcomes that continue to reverberate into contemporary times.  

The evolution of human calcium homeostasis is critical for understanding the 

ultimate causes of osteoporosis. Although expansions of the human lifespan may partially 

explain the rise in bone fragility and fractures observed in developed countries, key 

proximate mechanisms of bone loss may provide better insight into this epidemic. In 

Western populations, nutritionally-deficient diets and evolutionarily uncharacteristic 

patterns of physical activity over the life course, coupled with changes in reproductive 

behaviors from high to low fertility, have demonstrated major effects on contemporary 
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health. The rise of many chronic diseases, including osteoporosis, illustrates that the 

ultimate factor underlying chronic diseases in Westernized nations is the mismatch 

between the ancestral Homo genome and the lifestyles of affluent nations (Cordain et al., 

2005; Williams and Nesse, 1991). This highlights the compelling need for bone health 

studies from subsistence-based populations with vastly different lifestyles and 

reproductive patterns than Western groups in order to illuminate on the factors affecting 

bone loss and potentially inform global osteoporosis prevention and treatment efforts. 

 

 

BRIDGE TO CHAPTER III 

 

Chapter II establishes the fundamental basis to understand the mechanisms of 

bone loss that will be further discussed in Chapters III and IV. The next chapter presents 

a normative dataset for skeletal health in the Indigenous Shuar and non-Shuar Colonos of 

Amazonian Ecuador. Colonos were included in the analysis for comparative purposes as 

they live in communities close to Shuar, but are not biologically related. Minimal data are 

available on bone health from populations living in developing countries, and no other 

normative datasets are available for either sex in the populations addressed. Chapter III 

concludes with a discussion on the significance of documenting more skeletal health data 

from similar subsistence-based populations.  
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CHAPTER III 

NORMATIVE CALCANEAL QUANTITATIVE 

ULTRASOUND DATA FOR THE INDIGENOUS SHUAR 

AND NON-SHUAR COLONOS OF THE ECUADORIAN 

AMAZON 

 

This chapter has been published as Madimenos FC, Snodgrass JJ, Blackwell AD, 

Liebert MA, Cepon TJ, and Sugiyama LS in Archives of Osteoporosis (pp. 1-11).  All data 

collection for bone density measures, data analyses, and write-up were conducted by the 

author of the dissertation. Additional anthropometrics including stature and weight were 

gathered with the assistance of Blackwell, Liebert, and Cepon. Sugiyama and Snodgrass 

provided editorial assistance.  

  

 

INTRODUCTION 

 

Bone mineral density (BMD) data are limited for non-industrialized, natural 

fertility populations, a gap that obscures our current understanding of the prevalence of 

osteoporosis in developing countries. In part, the lack of epidemiological data on 

osteoporosis in developing countries reflects the limited availability of diagnostic 

resources in these regions. However, relatively non-invasive and portable techniques 

have recently facilitated the collection of BMD data in remote field settings. Calcaneal 

quantitative ultrasound (QUS) techniques in particular have proven to be clinically useful 

as a screening tool for early signs of low BMD, and are highly correlated with dual X-ray 
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absorptiometry (DXA) measures (Barkmann et al., 2007; Gerdhem et al., 2008; Nayak et 

al., 2006).  Additional reasons for the lack of attention to bone health in developing 

countries are assumptions that osteoporosis is a disease of developed nations and an 

inevitable consequence of aging that cannot be effectively treated or prevented (Handa et 

al., 2008). Indeed, key environmental risk factors for the development of osteoporosis are 

typically associated with a Westernized lifestyle, characterized by low levels of physical 

activity and poor diets that include processed foods, coffee, and carbonated soda 

beverages. Yet demographic transition and the aging of the population, as well as 

increasing global trends towards Westernization, appear to be contributing to a dramatic 

rise in the burden of osteoporosis prevalence in developing countries (Woolf and Pfleger, 

2005). The paucity of data on bone density in these countries limits our ability to assess 

osteoporosis prevalence and risk, and complicates prevention and treatment efforts. In 

order to begin addressing these issues, it is critical to gather and present population-

specific normative data on BMD from non-urbanized groups living in developing 

countries.  

The current study was designed to assess bone quality, using calcaneal QUS 

techniques, among the indigenous Shuar and non-Shuar mestizo colonists (Colonos) of 

Ecuadorian Amazonia. As with other indigenous populations, BMD information for the 

Shuar is not presently available. Further, published data are virtually non-existent for any 

subsistence-based, natural fertility population. These type of data are critical because diet, 

activity, and reproductive patterns all contribute to BMD, but it is currently unclear 

whether the BMD trajectories observed in low-fertility Western populations will be 

similar to those of subsistence-based groups.  Further, an investigation of the key factors 



 

75 

 

that structure BMD variation with age among subsistence groups can provide valuable 

information on the myriad of factors that shape bone health and disease risk in 

industrialized populations. Inclusion of the Colono population was intended to provide a 

comparative sample of individuals from the same geographical region who also 

participate in agricultural-based activities but who are not closely related to the Shuar. 

The cross-sectional data reported here are part of a larger, multi-year study on health and 

market integration, the Shuar Health and Life History Project. 

 

MATERIALS AND METHODS 

Study Populations 

Shuar:  From an epidemiological perspective, the Shuar in the current study are 

not a particularly high-risk group for the development of osteoporosis. In the participant 

communities, Shuar engage in consistent levels of moderate subsistence-based activities 

year-round (see Chapter V) and consume a diet that is rich in yuca, plantains, and rice 

with minimal inclusion of foods that are typically associated with poor bone health (e.g., 

caffeine, alcohol, processed foods, excessive protein) (Bunker, 1994; Hernandez-Avila et 

al., 1993; Lazenby, 1997; Sampson, 2002). Additionally, deficiencies in vitamin D, a key 

nutrient for promoting intestinal calcium absorption, are rarely found in equatorial 

populations because of  year-round exposure to sunlight (e.g., Mazess, 1978; da Rocha 

and Ribiero, 2003). While the Upano Valley Shuar are currently shifting towards an 

increased reliance on a market economy, including economic development and lifestyle 

changes similar to those observed in Western countries, the participant communities 

continue to be highly dependent on a subsistence-based lifestyle. 
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Colonos: The settlement of non-Shuar Colonos into Morona Santiago began 

during the mid-20
th

 century at the height of the oil boom. While Upano River Valley 

Colonos and Shuar often reside in communities that are in close proximity, they are 

largely socially and politically divided, a schism that can be attributed to traditional Shuar 

antagonism toward outside colonization of their land and recurrent land feuds 

(Rubinstein, 2001).  

Similar to the Shuar, Colonos in the Upano River Valley live in communities with 

varying degrees of market dependence. Colonos who live in town, particularly in the 

Sucua canton, typically engage in wage labor, attend school, and have minimal 

participation in the subsistence economy. Conversely, in rural areas, many Colonos are 

strongly dependent on household-level animal husbandry and agricultural production. 

The Colonos included in this study are primarily from small rural communities scattered 

across the Upano River Valley where varying degrees of dependence on an agriculture-

based lifestyle exist across individuals. 

 

Participants 

 Typically, there is a high degree of inter-relatedness within rural Shuar 

communities. Potential issues can arise in assessing bone health for a highly related group 

of individuals because this can increase frequencies of population-specific alleles 

responsible for maintaining bone integrity. To avoid these issues, Shuar participants were 

recruited from four Upano Valley communities. Rural Colono communities do not 

exhibit the same degree of relatedness as the Shuar. Nevertheless, Colono participants 
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were recruited from across a large canton in the Upano Valley comprised of several 

smaller rural communities. In total, 227 Shuar (136 females and 91 males; 15-86 years 

old) and 261 Colonos (157 females and 104 males; 15-91 years old) participated in this 

study.  

 Although conditions in this remote part of Ecuador prevented us from obtaining a 

random sample of participants, we made every effort possible to enroll a sample of 

participants that was representative of each community in terms of age and 

sociodemographics. This study used a cross-sectional design and while this approach is 

inherently limited for assessing individual bone loss through time, it is useful for 

determining prevalence of low bone density across a population. 

 All participants gave individual informed verbal consent, with both parental 

consent and child assent for individuals under 18 years old. The study protocol was 

approved by community leaders, the Instituto Ecuatoriano de Seguridad Social (IESS), 

the Federación Interprovincial de Centro Shuar (FISCH) as appropriate for FICSH-

associated communities, and the Office for Protection of Human Subjects at the 

University of Oregon.  

 

Bone Mineral Density Measurements 

Calcaneal QUS parameters were collected on the right heel of each participant 

using the gel-based Sahara® bone ultrasonometer (Hologic, Inc., Waltham, MA). Two 

primary QUS values were used for this analysis: broadband ultrasound attenuation (BUA; 

decibels per megahertz), which is the slope of the ultrasonic attenuation versus frequency 

as it passes through bone; and speed of sound (SOS; meters per second), a value 
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determined by the width of the heel and time delay between initial transmission and 

subsequent receipt of sound waves. BUA is more closely related to the micro-architecture 

of bone such as trabecular connectivity, while SOS is greatly influenced by the elasticity 

and mineral constituents of the bone matrix (Bartl and Frisch, 2004; Lee et al., 2010). A 

third parameter, heel bone mineral density (hBMD), a device-generated measure 

calculated from BUA and SOS values, was also used. Instrumental quality control scans 

of the manufacturer-provided phantoms were performed daily. 

 

Additional Measures of Body Size and Reproduction 

Participant stature (measured to the nearest millimeter [mm]) and weight 

(measured to the nearest 0.1 kilogram [kg]) were recorded using a field stadiometer 

(Seca, Hanover, MD) and digital scale (Tanita BF-558 electronic scale, Tokyo, Japan) 

respectively. Body mass index (BMI) was calculated as weight (kg)/height (in meters
2
).  

Female participants were asked additional questions regarding current 

reproductive status. Women were considered post-menopausal if they reported not having 

experienced a menstrual cycle within the last 12 months and were neither pregnant nor 

lactating. 

 

Statistical Analyses 

Participants were divided into six groups based on age (15-20, 21-30, 31-40, 41-

50, 51-60, > 60 years) with a 10-year age-span within each group (except in the 15-20 

and over 60 age intervals). Two-tailed Student’s t-tests were used to assess differences 

between ethnic groups and sexes for bone density measures and anthropometric variables. 



 

79 

 

Stepwise multiple linear regression analyses were conducted to estimate the variation of 

QUS explained by ethnicity, age, body weight, height, and BMI. All statistical analyses 

were conducted using SPSS 17.0 (Chicago, IL). 

 

Issues with Normative Data Sets in Developing Countries 

Reproductive patterns among women, including parity, breast-feeding behaviors, 

and age at first pregnancy are known to contribute to bone density changes throughout 

the lifespan (e.g., Murphy et al., 1994; Nguyen et al., 1995; Streeten et al., 2005). For 

example, physiological changes characteristic of various reproductive states such as 

pregnancy-related weight gain, cumulative estrogen exposure, and fluctuations in bone 

turnover rates invariably influence bone integrity. As a result, pregnant and/or lactating 

women are typically excluded from normative datasets on bone health. However, 

presenting normative data on a natural fertility, subsistence-dependent population in a 

developing country without including women who are pregnant and/or lactating is 

problematic for several reasons. First, women in many developing countries are pregnant 

and/or lactating for much of their reproductive life spans (Eaton et al., 1994; Sperling and 

Beyene, 1997; Weaver, 1998). Exclusion of these women dramatically reduces the size of 

the participant pool, specifically for critical age intervals when peak bone mass is 

realized. Further, in developing countries, particularly in the type of rural settings 

described here, nulliparous women of reproductive age do not represent the norm, as they 

may be suffering from health or fertility problems. Therefore, presenting normative data 

on the indigenous Shuar and Colono populations without inclusion of this female 

demographic is problematic. However, in order to maximize our ability to compare 
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across populations, data on the subset of females who were not pregnant and/or lactating 

at the time of this study are also presented separately. 

 

RESULTS 

Characteristics of Study Participants 

Anthropometric and QUS measures by ethnic group and sex, and menopausal 

status are presented in Table 3.1. Although height, weight, and BMI of Colono 

participants are higher than for Shuar participants, QUS values are significantly higher 

among the Shuar (p < 0.001). While this trend is consistent across the Shuar group when 

compared to Colonos, the most pronounced difference is found between pre-menopausal 

Shuar and Colono females (BUA: p < 0.05; SOS and hBMD: p < 0.001); the only 

exception is shown among post-menopausal women where there is no discernable 

difference in bone health measures between ethnic groups. In both populations, all QUS 

values are progressively lower in advanced age groups irrespective of sex.  Figure 3.1 

shows a scatter plot of combined sexes for the Shuar and Colono populations compared 

to a US reference population. Shuar exhibit consistently higher bone density values with 

age when compared to both populations. 
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Table 3.1. Anthropometric and QUS data by group, sex, and menopausal status (mean 

[SD]). 

 
Shuar Colono p 

Sexes Combined  
 

 

N 227 261  

Age (years) 34.97 (14.72) 47.43 (19.53) ** 

Height (cm) 152.09 (7.23) 153.83 (10.91) * 

Weight (kg) 58.49 (10.50) 64.72 (12.50) ** 

BMI (kg/m2) 25.19 (3.51) 27.28 (5.18) ** 

BUA (dB/MHz) 82.0 (19.3) 69.4 (19.0) ** 

SOS (m/s) 1571.4 (33.2) 1545.1 (32.9) ** 

hBMD 0.600 (0.131) 0.499 (0.130) ** 

 
 

 
 

Males  
 

 

N 91 104  

Age (years) 37.26 (14.76) 47.30 (20.15) ** 

Height (cm) 157.99 (6.27) 161.13 (8.45) * 

Weight (kg) 63.19 (9.32) 69.49 (13.38) ** 

BMI (kg/m
2
) 25.20 (2.73) 26.90 (5.99) * 

BUA (dB/MHz) 87.5 (19.54) 74.1 (20.38) ** 

SOS (m/s) 1574.4 (34.65) 1550.8 (33.96) ** 

hBMD 0.622 (0.137) 0.527 (0.134) ** 

 
 

 
 

Females  
 

 

N 136 157  

Age (years) 33.44 (14.54) 47.52 (19.18) ** 

Height (cm) 148.32 (4.9) 149.00 (9.6) ** 

Weight (kg) 55.51 (10.14) 61.57 (10.8) ** 

BMI (kg/m
2
) 25.19 (3.95) 27.53 (4.6) ** 

BUA (dB/MHz) 78.4 (18.4) 66.2 (17.43) ** 

SOS (m/s) 1569.4 (32.14) 1541.3 (31.7) ** 

hBMD 0.586 (0.126) 0.481 (.124) ** 

 
 

 
 

Pre-menopausal women  
 

 

N 118 81  

Age (years) 29.52 (10.55) 31.75 (10.44) Ns 

Height (cm) 148.86 (11.31) 152.34 (6.07) ** 

Weight (kg) 56.17 (10.57) 61.76 (11.13) ** 

BMI (kg/m
2
) 25.33 (4.51) 26.58 (4.43) * 
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Table 3.1.  (continued) 

 

BUA (dB/MHz) 80.6 (15.3) 74.3 (15.3) * 

SOS (m/s) 1574.2 (27.9) 1559.2 (23.6) ** 

hBMD 0.605 (0.110) 0.548 (0.095) ** 

 
 

 
 

Post-menopausal women  
 

 

N 13 76  

Age (years) 61.60 (11.35) 64.32 (9.68) Ns 

Height (cm) 144.66 (6.23) 145.40 (11.31) Ns 

Weight (kg) 49.63 (8.75) 61.37 (10.57) ** 

BMI (kg/m
2
) 23.57 (2.85) 28.56 (4.51) ** 

BUA (dB/MHz) 58.7 (21.2) 57.5 (15.3) Ns 

SOS (m/s) 1532.7 (35.8) 1522.2 (27.9) Ns 

hBMD 0.439 (0.144) 0.409 (0.110) Ns 

 

 Ns = not significant 

  *p <  0.05;  ** p < 0.001 (significant difference between ethnic groups) 

 

 

Figure 3.1. Scatter plot of hBMD for Shuar and Colono combined sexes compared to 

values from a US reference population with linear best of fit line. Dotted lines indicate 

99% confidence intervals. 
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Shuar 

Overall, Shuar males exhibit significantly higher bone density parameters than 

their female counterparts for all bone health measures except SOS (BUA: p < 0.001; 

hBMD: p < 0.05). Table 3.2 illustrates Shuar anthropometric and calcaneal QUS results 

by age cohort and sex. For both sexes, all bone health measures are highest in the 21-30 

age cohort and are progressively lower in each subsequent age group. One exception is 

found in males from the 51-60 year old cohort where all QUS parameters are greater than 

among males in the preceding 41-50 age interval. This difference may be attributed to 

small sample size in the older age interval, biased by one outlier with extremely high 

bone density (BUA: 164.2 dB/MHz; SOS: 1712.0 m/s hBMD: 1.177).  

Figure 3.2 (a-c) presents clustered scatterplots of BUA, SOS, and hBMD by age 

for Shuar females and males. In both sexes, there is a significant inverse relationship 

between age and each of the QUS parameters (p < 0.001). From ages 21 to 86, females 

show a cumulative decrease of 34% in BUA, 3.1% in SOS, and 32% in hBMD. Although 

males begin with higher peak bone mass values than females, Shuar males from ages 21 

to 80 show greater total decrease in bone density: 37% in BUA, 3.8% in SOS, and 38% in 

hBMD. Among females, the most pronounced decrease in BUA, SOS, and hBMD by age 

group occurs after 50 years of age, whereas among males the greatest decline is seen 

among individuals over 60.  
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Table 3.2. Age-specific anthropometric and QUS parameters by ethnic group and sex (mean [SD]). 

Ethnic 

Group 
Age Sex n Height (cm) Weight (kg) BMI (kg/m

2
) 

BUA 

(dB/MHz) 
SOS (m/s) hBMD 

Shuar 

15-20 
Female 28 148.77 (4.94) 50.52 (5.03) 22.80 (1.77) 77.5 (17.0) 1577.6 (29.2) 0.604 (0.115) 

Male 12 154.83 (11.6) 54.05 (12.32) 22.20 (2.56) 77.9 (15.6) 1580.4 (23.9) 0.612 (0.098) 

21-30 
Female 38 149.63 (4.51) 55.49 (11.52) 24.81 (4.64) 83.0 (17.2) 1578.4 (28.3) 0.620 (0.112) 

Male 21 158.93 (5.16) 62.53 (6.22) 24.69 (1.21) 95.7 (12.8) 1590.3 (25.4) 0.684 (0.096) 

31-40 
Female 30 149.31 (3.63) 61.44 (9.44) 27.53 (3.81) 80.4 (17.9) 1571.8 (29.2) 0.599 (0.117) 

Male 25 158.38 (3.99) 66.16 (5.97) 26.35 (1.85) 96.1 (15.7) 1582.6 (27.5) 0.665 (0.110) 

41-50 
Female 23 146.86 (4.69) 57.66 (10.44) 26.60 (3.61) 81.2 (14.7) 1567.5 (30.6) 0.591 (0.114) 

Male 19 159.07 (4.02) 68.14 (9.84) 26.85 (3.13) 83.3 (11.5) 1563.6 (20.3) 0.583 (0.077) 

51-60 
Female 9 145.79 (5.57) 55.71 (7.54) 26.15 (2.57) 67.4 (19.8) 1538.6 (29.7) 0.476 (0.125) 

Male 5 162.40 (4.58) 63.97 (3.56) 24.33 (2.25) 86.1 (44.4) 1573.4 (79.0) 0.615 (0.319) 

> 60 
Female 8 143.14 (7.06) 45.79 (6.32) 22.23 (1.20) 56.4 (23.1) 1529.4 (33.5) 0.424 (0.145) 

Male 9 153.38 (4.58) 58.30 (10.45) 24.68 (3.58) 66.5 (20.9) 1529.8 (36.6) 0.452 (0.149) 

       
  

 

Colono 

15-20 
Female 16 151.76 (5.66) 54.73 (13.0) 23.66 (5.04) 66.7 (9.2) 1557.9 (22.5) 0.525 (0.732) 

Male 13 164.41 (7.72) 61.18 (10.39) 22.68 (3.94) 69.6 (21.6) 1556.5 (30.4) 0.535 (0.135) 

21-30 
Female 22 153.96 (5.68) 62.23 (10.22) 26.20 (3.77) 79.5 (16.3) 1563.9 (24.6) 0.574 (0.101) 

Male 13 165.67 (5.85) 68.95 (8.85) 25.17 (3.47) 86.1 (21.0) 1583.9 (36.7) 0.641 (0.141) 

31-40 
Female 22 152.52 (6.52) 63.86 (9.32) 27.57 (4.55) 77.3 (15.1) 1562.8 (24.2) 0.565 (0.981) 

Male 14 159.98 (14.24) 72.46 (11.99) 29.49 (10.98) 91.0 (16.8) 1580.9 (24.7) 0.647 (0.106) 
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Table 3.2. (continued) 

 

41-50 
Female 23 149.96 (6.91) 63.89 (10.37) 28.30 (3.19) 70.7 (14.5) 1549.4 (21.5) 0.513 (0.089) 

Male 21 163.19 (5.39) 80.16 (14.90) 30.04 (5.03) 73.8 (15.5) 1545.5 (19.5) 0.511 (0.086) 

51-60 
Female 27 145.48 (17.75) 67.60 (10.39) 30.65 (4.44) 63.1 (14.0) 1530.9 (22.6) 0.448 (0.092) 

Male 13 160.40 (6.42) 68.86 (13.31) 26.70 (4.48) 70.9 (12.1) 1538.8 (19.6) 0.488 (0.754) 

> 60 
Female 47 145.58 (5.67) 58.04 (9.34) 27.41 (4.31) 54.3 (16.1) 1516.9 (30.3) 0.386 (0.118) 

Male 30 157.23 (8.45) 65.10 (13.38) 26.28 (4.0) 64.8 (21.0) 1528.8 (30.6) 0.448 (0.123) 
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a) 

 

b) 

 

 

Sex 

Females 

Males 

 

Sex 

Females 

Males 
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c) 

 

Figure 3.2 (a-c). Sex differences in the Shuar for SOS (a), BUA (b), and hBMD (c) 

values based on age. Values represent means for the age category with 99% confidence 

intervals. 
 

In the stepwise multiple linear regression analyses (Table 3.3), weight was a less 

important factor for calcaneal QUS than age in both Shuar men and women. In men, all 

QUS parameters were significantly related to age (BUA: β = -0.543, p < 0.001; SOS: β = 

-1.288, p < 0.001; hBMD: β = -0.005, p < 0.001) and BMI (BUA: β = 2.768, p < 0.001; 

SOS: β = 2.682, p < 0.05; hBMD: β = 0.014, p < 0.01). However, in women, SOS was 

dependent only on age (β = -0.889, p < 0.001), while BUA was dependent on age (β = -

0.284, p < 0.05), height (β = 0.740, p < 0.05), and BMI (β = 1.288, p < 0.05). Height was 

not a predictive variable for hBMD, although age (β = -0.003, p < 0.001) and BMI (β = 

0.006, p < 0.05) were significant. Weight alone was not a significant predictor for any 

QUS value among the Shuar. 

Sex 

Females 

Males 
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Table 3.3. Stepwise multivariate linear regression model between QUS values and age (years), weight (kg), height (cm), and 

BMI (kg/m
2
).  

Ethnicity QUS Stepwise multiple regression model* R
2 

Adjusted R
2
 p 

Shuar Male 
    

 
   BUA 38.04-0.543*age+2.768*BMI .224 .204 .000 

 
   SOS 1554.9-1.288*age+2.682*BMI .269 .250 .040 

 
   hBMD 0.443-0.005*age+0.014*BMI .252 .233 .007 

      

 
Female 

    

 
   BUA -53.7-0.284*age+0.74*height +1.288*BMI .192 .172 .029 

 
   SOS 1560.0-0.889*age .159 .152 .000 

 
   hBMD 0.56-0.003*age+0.006*BMI .151 .138 .042 

      
 

Total 
    

 
   BUA -63.1-0.35*age +0.8*height+1.431*BMI .236 .224 .000 

 
   SOS 1497.5-0.94*age+0.705*height .198 .190 .016 

 
   hBMD 0.03-0.003*age+0.004*height+0.006*BMI .202 .191 .017 

      
Colono Male 

    

 
   BUA 62.7-0.289*age+0.363*weight .143 .126 .012 

 
   SOS 1590.2-0.832*age .244 .236 .000 

 
   hBMD 0.175-0.003*age+0.003*height .226 .210 .049 

      

 
Female 

    

 
   BUA 68.1-0.486*age+0.773*BMI .282 .272 .005 

 
   SOS 1588.9-1.001*age .370 .366 .000 

 
   hBMD 0.567-0.004*age+0.004*BMI .357 .348 .043 

      
 

Total 
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Table 3.3. (continued) 

 
   BUA -29.0-0.321*age+0.609*height +0.726*BMI .253 .244 .000 

 
   SOS 1489.7-0.837*age+0.617*height .335 .330 .001 

 
   hBMD 0.195-0.003*age+0.002*height+0.001*weight .322 .314 .039 

 

*QUS parameters that are not in the regression equation are not significant in the model.  
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Colonos 

Among Colonos, sex differences for all QUS measures are more pronounced than 

among Shuar, and higher bone density measures are found among Colono males than 

females (BUA: p = 0.001; SOS: p < 0.05; hBMD: p < 0.01). Analysis of QUS values by 

age cohort (Table 3.2) shows that similar to Shuar, Colono females display the highest 

ultrasound measures in the 21-30 year old cohort, with lower values in each successive 

age cohort. Colono males also have highest SOS in the 21-30 year old cohort, although 

31-40 year olds exhibit the highest BUA and hBMD values. Among Colono females, as 

with their Shuar counterparts, the most pronounced reduction in BUA, SOS, and hBMD 

is apparent after 50 years of age. In contrast, for Colono males, all QUS parameters are 

sharply lower after 40 years of age.  

Clustered scatterplots for BUA, SOS, and hBMD by age for Colono females and 

males (Figure 3.3 [a-c]) show a significant negative relationship between age and QUS 

parameters for both sexes (p < 0.05). Among Colono females between 21 and 90 years 

old, total decline in QUS values with age are 38%, 3.0%, 36% for BUA, SOS, and BMD 

respectively; among Colono males 21 to 91 years old, there is a 31% decrease in BUA, 

3.5% decrease in SOS, and 36% decrease in hBMD. 

The stepwise multiple regression analysis in Table 3.3 shows that age is the sole 

predictive factor for SOS in Colono males (β = -0.832, p < 0.001) and females (β = -

1.001, p < 0.001).  In Colono females, BUA and hBMD were a function of both age 

(BUA: β = -0.486, p < 0.001; hBMD: β = -0.004, p < 0.001) and BMI (BUA: β = 0.773, p 

< 0.01; hBMD: β = 0.004, p < 0.05). In Colono males, BUA was a function of age  
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a) 

 

b) 

 

Sex 

Females 

Males 

 

Sex 

Females 

Males 
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c) 

 

Figure 3.3 (a-c). Sex differences in the Colonos for SOS (a), BUA (b), and hBMD (c) 

values based on age. Values represent means for the age category with  99% confidence 

intervals. 

 

(β = -0.289, p < 0.01) and weight (β = 0.363, p < 0.05) while hBMD was dependent on 

age (β = -0.003, p < 0.001) and height (β = 0.003, p < 0.05). 

 

Reproductive Status 

Table 3.4 shows descriptive statistics of QUS and anthropometric measures for 

Shuar and Colono females who were neither pregnant nor lactating at the time of the 

study. Among the Shuar, nine participants (4%) were pregnant, thirty (13.2%) were 

lactating, and one (0.4%) was both pregnant and lactating at the time of the study. Half of 

Shuar women aged 21-30 years reported being either pregnant and/or lactating at the time 

Sex 

Females 

Males 
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of the bone scan; all women who reported being in a lactating state were from this age 

cohort.  

Among Colono women, four (1.5%) were pregnant and eight (3.1%) were 

lactating at the time of the study. Student’s t-tests were performed comparing QUS 

parameters between Shuar and Colono women based on reproductive status--that is, 

whether they were pregnant, lactating, both, or neither. Significant ethnic group 

differences in bone health measures were found only for non-pregnant/non-lactating 

participants, with Shuar women showing significantly higher bone density than Colono 

women for BUA, SOS, and hBMD (p < 0.001).  

 

Table 3. 4. Descriptive statistics for non-pregnant and non-lactating women by ethnic 

group (mean [SD]). 

 

Shuar  

(n=96) 

Colono 

(n=145) 
p 

Age (years) 35.81 (15.37) 48.50 (19.17) ** 

Height (cm) 148.17 (5.19) 148.84 (9.68) Ns 

Weight (kg) 55.30 (9.17) 61.51 (10.92) ** 

BMI (kg/m2) 25.13 (3.55) 27.54 (4.61) ** 

BUA (dB/MHz) 77.5 (19.4) 64.8 (16.7) ** 

SOS (m/s) 1566.4 (32.6) 1539.1 (30.8) ** 

hBMD 0.576 (0.130) 0.472 (0.119) ** 

 

Ns = not significant; ** P < 0.001 (significant difference between ethnic groups) 

 

 

Menopausal Status 

Analysis by menopausal status revealed that among pre-menopausal women there 

are significant ethnic differences for all QUS parameters (p < 0.001). Menopausal status 

was not reported for four Shuar women (aged 52-55 years old) and thus could not be 
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included in these analyses. Thirteen Shuar (9.6%) and seventy-six Colono women 

(48.4%) were post-menopausal at the time of the study (Table 3.1). Among Colono and 

Shuar post-menopausal women, there is no significant difference in BUA, SOS, and 

hBMD values, which suggests that the highest degree of variation in bone health between 

ethnic groups is present in the pre-menopausal lifespan. 

  

 

DISCUSSION 

 

The main purpose of this paper was to present population-specific normative data 

for bone density in a non-industrialized, natural fertility population from a developing 

country. Minimal bone health data are available from these contexts and this has inhibited 

efforts to quantify the burden of osteoporosis in developing nations, especially among 

rural groups (Handa et al., 2008; Woolf and Pfleger, 2005). Additionally, bone health 

information from diverse populations is necessary to determine the degree to which 

normative data from developed countries may reflect sub-optimal bone density levels. 

The skeletal system and mechanisms of bone turnover evolved under subsistence-based, 

natural fertility conditions with dietary, activity, and reproductive patterns that likely 

produce a vastly different representation of normative bone health than data garnered 

from industrialized, urban populations. The paucity of epidemiological data from non-

urbanized populations in developing countries can be partly attributed to the lack of 

diagnostic resources in these regions. However, portable QUS technology now enables 

the collection of BMD data from remote field settings. Calcaneal ultrasonometers, in 

particular, are increasingly being utilized to obtain data from populations worldwide and 

to compare this information with existing reference populations. The current study 
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focused on the calcaneus in order to maximize future inter-population comparisons, and 

because the calcaneus is a weight-bearing site rich in trabecular bone that is therefore an 

ideal single-site measure of bone density parameters. 

The present study found that Colonos are taller, heavier, and have greater BMI 

values than the Shuar. However, despite this result, and the finding that age-related bone 

loss occurs in both groups, values for BUA, SOS, and hBMD are consistently higher in 

the Shuar population. Higher peak bone mass among the Shuar may partially explain the 

higher QUS values exhibited in all age groups when compared to Colonos. Although both 

ethnic groups participate to a varying degree in an agriculture-based subsistence regime, 

population-specific variability in dietary and lifestyle factors may account for the 

significant QUS differences reported here. Individual and community-level variation in 

diet, activity levels, and smoking/drinking behaviors have been reported elsewhere for 

these populations (see Chapter V) (Liebert et al., 2010) and future research will explore 

the specific effects of these factors on Shuar and Colono bone health. Genetic differences 

between ethnic groups have been established (e.g., African-American versus Caucasian-

American populations) and these factors may also explain the lower BMD documented 

across Colono age cohorts (e.g., Anderson and Pollitzer, 1994; Hinkley et al., 2004; 

Naganathan et al., 2002; Thomas, 2007).  

The most pronounced ethnic group difference in QUS values was documented 

between Shuar and Colono pre-menopausal women who were not pregnant or lactating. 

In post-menopausal women, no significant difference was found, suggesting that 

menopause onset has similar negative effects on bone integrity across ethnic groups. For 

both Shuar and Colono females, the lowest bone health values were found after 50 years 
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old. This finding is consistent with other studies (e.g., Pluskiewicz, 1998; Trovas et al., 

2009) that show that the most profound bone loss occurs for similar age intervals, 

typically at the onset of menopause. 

We also observed the effect of age and body size (height, weight, and BMI) on 

QUS by ethnic group using a stepwise multiple regression analysis. Age is a consistent 

predictor of all QUS parameters, with declining values in older age groups. Among 

female cohorts, the second most reliable predictor of higher QUS values is greater BMI. 

In the current study, the highest QUS values among females are found among 21-30 year 

olds, which coincides with a period when peak bone mass is generally achieved. It is also 

important to recognize that half of the Shuar women in this age cohort reported being 

pregnant and/or lactating which may be variously contributing to calcaneal QUS values. 

However, when comparing females who are not pregnant and lactating, differences 

between the two ethnic groups are maintained.  

Males in both populations show consistently higher QUS parameters than females 

and, similar to women, calcaneal QUS values are a primary function of age. BMI also 

predicts SOS, BUA, and hBMD among Shuar males. However, in Colono males QUS 

values, specifically BUA and hBMD, are not a function of BMI and are better predicted 

by the independent variables, weight and height, respectively. Furthermore, one of the 

earliest and more pronounced declines in QUS values occurs in Colono males after 40 

years old. In contrast, Shuar male QUS data do not show this steep decline until after 60 

years old, more typical of the pattern documented in other studies (e.g., Takeda et al., 

1996; Liu et al., 2006). While the Colono result does not follow the typical trend, a 

similar decrease in heel BMD is reported among Roma males from Croatia after 35 years 
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old (Skarić-Jurić et al., 2006). Potential causes for this apparently early decrease in QUS 

parameters are not addressed in the Roma study, but the authors state that increased 

sedentism and diminutive body size are possible explanations for the low BMD 

characteristic of the entire group. The reason for an early decline among Colono males is 

unclear, but may be related to sampling biases. A larger sample size for each age interval 

is necessary to address this issue. 

Shuar men and women both display comparatively greater QUS parameters than 

other populations whose reference values were determined using the same calcaneal QUS 

instrument. In Korea, in a study by Rhee and colleagues (2009), all QUS values are lower 

than the Shuar population but higher than the Colono group. In a German study on an 

exclusively female cohort (Alenfeld et al., 2002), BUA and SOS parameters are again 

lower than Shuar women but higher than Colono females in our study for similar age 

intervals. Normative data from the Croatian Roma population discussed earlier show 

markedly lower hBMD values when compared to Ecuadorian data; however this disparity 

is minimized after 40 years old for both female cohorts and for Colono males. Shuar 

males maintain among the highest ultrasound values for any comparative population 

presented here. From this cross-study comparison, the Shuar exhibit some of the highest 

QUS values, while Colonos as a group show slightly lower bone density measures than 

other global reference populations. The high values among the Shuar are likely related to 

a suite of lifestyle and activity patterns that are reflective of greater dependency on a 

mixed agriculture and subsistence-based economy than the Colono participants. 
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Study Limitations 

 

The present study has several important limitations. While field-based research is 

a necessary and critical approach to gathering information from populations in remote 

settings, this type of research presents issues when aiming to establish a controlled setting 

for data collection. One study limitation is that participant sample sizes for certain age 

intervals are small, particularly among older cohorts, an issue that is more pronounced in 

the Shuar group. The small sample sizes and non-random selection of participants within 

age categories may inhibit our interpretations of the age effects on BMD that have been 

reported for other reference populations. Also, participants in the current study were 

recruited from a sample pool of individuals who may have been inclined to seek out 

health information provided by this study. Although this may inherently bias the dataset 

towards individuals who demonstrate greater health-related issues, this recruitment 

strategy is not atypical for field-based research in remote settings. Also, as previously 

mentioned, normative data on bone health generally exclude pregnant and lactating 

females, because the modifiable (e.g., diet, activity) and non-modifiable (e.g., hormones) 

factors affecting bone integrity are constantly fluctuating. Yet in many developing 

countries most females are pregnant and lactating for much of their reproductive life 

spans, so inclusion of this demographic was an effort to present a normative 

representation of bone health in these two groups. This inclusion, however, can present 

problems with cross-population comparative studies. Further research on bone health in 

developing countries is necessary in order to determine the most effective approach to 

remedying this issue. Finally, cross-sectional data prevent us from making definitive 
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statements on age-related changes in skeletal health, but is a necessary first step in 

determining patterns of bone loss.   

 

CONCLUSIONS 

The current study established a preliminary dataset for three calcaneal QUS 

parameters in the Shuar and non-Shuar Colono populations of Amazonian Ecuador. It 

investigated ethnic and sex differences for the effect of age and body size variables on 

QUS parameters. The study also addressed relevant issues in gathering bone health data 

in a remote field-based setting within a developing country. The Shuar and Colonos 

represent two populations from the same geographical region who have a range of 

dependency on mixed agricultural and subsistence-based economy. Differences in QUS 

values between the two groups may be attributed to genetics as well as to individual- and 

community-level variation in diet and lifestyle. Future research will examine the specific 

ways in which dietary composition and lifestyle behaviors contribute to Shuar and 

Colono bone health profiles. 

 

BRIDGE TO CHAPTER IV 

 This chapter has examined bone health among the Shuar and Colonos and found 

that Shuar bone health values are significantly higher than that of Colonos and a US 

reference population. While Chapter III presents normative data for Ecuadorian 

populations, Chapter IV examines the association between various reproductive variables 

and skeletal health in Shuar females from four rural Upano Valley communities. 

Specifically, the study applies a retrospective and cross-sectional design to examine 
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BMD and self-report reproductive patterns among 131 Shuar women aged between 14 

and 86 years old.  Chapter IV also presents fertility information for the Shuar 

participants, data that are not previously reported elsewhere for this indigenous 

population. The following chapter includes unpublished co-authored material. 
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CHAPTER IV 

 

REPRODUCTIVE EFFECTS ON SKELETAL HEALTH  

IN SHUAR WOMEN OF AMAZONIAN ECUADOR:  

A LIFE-COURSE PERSPECTIVE 

This chapter contains unpublished co-authored material and has been prepared 

with some assistance from Snodgrass JJ,  Liebert MA, Cepon TJ, and Sugiyama LS.  All 

data collection for bone density measures, data analyses, and write-up were conducted 

by the author of the dissertation. Additional anthropometrics including stature and 

weight were gathered with the assistance of Liebert, and Cepon. Sugiyama and 

Snodgrass provided editorial assistance.  

 

 

INTRODUCTION 

Low bone mineral density (BMD) is a multi-factorial, chronic condition that can 

progress into the debilitating disease, osteoporosis. The factors contributing to bone loss 

are incompletely understood, which is surprising given the enormous health effects of 

osteoporosis. Known as the “silent epidemic,” osteoporosis is now identified as a major 

public health problem that affects populations worldwide (Bartl and Frisch, 2004; 

International Osteoporosis Foundation [IOF], 2010). In the United States, an estimated 30 

million people suffer from osteoporosis, with an equally high prevalence in Europe and 

other developed countries (IOF, 2010). Of the 1.3 million fractures reported annually 

among U.S. individuals over 45 years old, at least 70% can be attributed to low bone 

density (Bartl and Frisch, 2004). The problem is more severe for women, with 



 
 

102 

 

osteoporotic fractures affecting more women than heart attacks, strokes, and all female 

cancers combined. According to the International Osteoporosis Foundation (2010), an 

estimated 54% of postmenopausal Caucasian women in the U.S. have low bone density 

(osteopenia) and 30% have osteoporosis.  

Although advancing age is a key contributor to bone loss in both sexes (Frost, 

2003), a number of genetic and specific environmental factors have been implicated in 

osteoporosis. While peak bone mass is generally accepted to be strongly influenced by 

genetic factors (e.g., Ferrari et al., 1998), these factors only explain a small proportion of 

the variation in individual BMD (Cooper et al., 2001), and age-related bone loss appears 

to be more sensitive to the effects of individual lifestyles (Jouanny et al., 1995; Krall and 

Dawson-Hughes, 1993). In particular, physical activity, especially of the weight bearing 

variety, has been linked to accretion of new bone and maintenance of current bone via 

muscle contractions that stimulate osteoblastic processes (Dargeant-Molina et al., 1996; 

Kemper et al., 2000; Proctor et al., 2000). Numerous studies have also documented the 

contribution of several nutritional factors to bone mass, including calcium, vitamin C, 

and vitamin D, whether through increasing intestinal calcium absorption or by 

stimulating bone formation (Anderson et al., 2004; Bunker, 1994; Dawson-Hughes, 

2004). Additional components of lifestyle that may deleteriously impact bone mass 

include caffeine, alcohol, and excessive protein consumption, as well as a history of 

smoking. Because of the multi-etiological nature of bone loss, establishing a causal 

relationship with bone loss for any one of these factors is challenging (Bunker, 1994; 

Hernandez-Avila et al., 1993; Lazenby, 1997; Sampson, 2002).  
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Among women, the skeletal effects of age and lifestyle are influenced by 

reproductive factors, primarily as a result of the mother’s role in providing calcium to the 

growing fetus during pregnancy and to the neonate during lactation. Clinical and 

epidemiological studies suggest that reproductive factors such as parity, patterns of 

breastfeeding, and age at first pregnancy can significantly impact bone mass changes 

throughout the lifetime as a result of heightened mobilization of calcium and hormone 

shifts, especially estrogens (see review below) (Agarwal and Stuart-Macadam, 2003; 

Galloway, 1988; Galloway, 1997; Guyton and Hall, 2011; Pacifici, 2007; Pearce, 2006). 

Unraveling the skeletal effects of variation in female life history is complicated by the 

inter-relatedness (i.e., non-independence) of various developmental and reproductive 

stages. Each reproductive factor is not an isolated event occurring without connection to 

the series of developmental stages (Agarwal and Glencross, 2010; Leidy, 1996; Pike, 

2001). The timing of pregnancy and duration of lactation, for instance, are potentially 

linked to other factors such as age at menarche and inter-birth interval, which, 

themselves, are shaped by ecological and environmental variables. The influence on 

skeletal health of various developmental and reproductive factors and their potentially 

cumulative effects across the lifespan remains unclear despite decades of research. 

However, this information is critical for the development of clinical guidelines and public 

health policies for osteoporosis prevention.  

One of the most important limitations to understanding the effects of reproductive 

factors on skeletal health is that few studies to date have examined maternal bone status 

in non-Western, non-clinical populations. Even fewer data are available for subsistence-

based, natural fertility groups. This is unfortunate since studies from these populations 
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may allow insight into the complexities of bone loss without the confounding effects of 

sedentary lifestyles and Westernized diets that characterize industrialized groups. In 

addition, fertility patterns in past and present subsistence populations are more 

characteristic of those that would have existed for most of our evolutionary past. As a 

result, research on skeletal health in these populations has the potential to improve our 

current understanding of the conditions under which reproductive trade-offs with skeletal 

health evolved. The following section reviews the published literature on the effects of 

reproduction on skeletal health. 

 

REPRODUCTION AND BONE HEALTH: LITERATURE REVIEW 

The influence of reproductive factors on skeletal health is primarily shaped by 

fluctuations in sex steroids such as estrogens and progesterone (Galloway, 1997). 

Estrogens play a central role during the course of the female lifespan by influencing bone 

and collagen formation, and increasing intestinal absorption and retention of calcium. 

These hormones also inhibit bone remodeling by reducing the number of osteoclasts and 

osteoblasts that are responsible for bone resorption and formation, respectively (Agarwal 

and Stuart-Macadam, 2003; Galloway, 1997; Guyton and Hall, 2011). Similar benefits 

are afforded by progesterone, which has shown to promote bone accrual through 

proliferation of osteoblastic activity (Galloway, 1997). Additional hormones, including 

parathyroid hormone, vitamin D, and calcitonin help to maintain the equilibrium of the 

central calcium pool, and during various reproductive phases the levels of these 

hormones undergo fluctuations that invariably contribute to bone integrity (Bartl and 

Frisch, 2004; Dawson-Hughes, 2004; Forwood, 2001). The female reproductive factors 
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most often linked to bone integrity in clinical and epidemiological literature are: age at 

menarche; age at first pregnancy; patterns of breastfeeding (e.g., intensity and duration); 

and age at menopause. 

Age at Menarche 

Several studies have documented associations between age at menarche and bone 

density, as well as with risk of osteoporosis later in life. A later age at menarche may be 

related to a heightened risk of osteoporosis in the postmenopausal period, whereas an 

earlier menarche age may reduce this probability by increasing the peak bone mass 

achieved earlier in life. Earlier menarcheal age may have a stimulating effect on the early 

development of bone by increasing the osteoblastic activity that coincides with estrogens, 

thereby establishing higher bone density values at peak bone mass attainment (Jaffe and 

Dell’Acqua, 1985). Studies have documented the relationship between better skeletal 

health and early menarcheal age for pre- and postmenopausal women. Ito and colleagues 

(1995) found that delayed menarche, particularly when it occurred after 16 years of age, 

was associated with lower long-term bone mass. Similarly, among postmenopausal 

women, Roy and colleagues (2003) observed that participants with an age at menarche 

after age 16 were eight times more likely to experience vertebral fractures.  

Two explanations have been posited for the relationship between earlier age at 

menarche and higher bone mass. First, delayed menarche results in lower lifetime 

exposure to estrogens and, as described earlier, these hormones are typically associated 

with bone accumulation. Second, early menarche is related to larger body size and greater 

adiposity which, in turn, can increase bone quantity (Eastell, 2005). For these reasons, 

menarcheal age may be more strongly related to postmenopausal bone mass than age at 
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menopause (e.g., Gerdhem and Obrant, 2004; Roy et al., 2003; Silman, 2003), although 

other studies have shown no such relationship (Ito et al., 1995; Ozdemir et al., 2005; 

Sioka et al., 2010; Varenna et al. 1999). 

 

Age at First Parturition 

A later age at first birth has been linked with better skeletal health in both pre- and 

postmenopausal life. Bone density typically continues to increase into the mid-twenties 

when peak bone mass is achieved, but pregnancy and lactation during this time have been 

shown to disrupt bone formation and negatively influence long-term bone mass (Hayslip 

et al., 1989; Kent et al., 1990, 1993; Sowers et al., 1993). A study by Schnatz and 

colleagues (2010) demonstrates that women who were 27 years or older at the time of 

their first pregnancy had a significantly lower risk of developing osteoporosis in 

postmenopausal life. In addition to long-term effects, a younger age at first pregnancy 

may have negative impacts during the pre-menopausal years. In several studies, women 

who were younger at first parturition (<20 years old) demonstrated an impaired ability to 

gain in height when compared to other women, suggesting disruptions during early bone 

development (Allal et al, 2004; Gigante et al., 2006; Sear et al., 2004). These findings for 

height have been documented for Western, industrialized groups and non-Western, rural 

populations alike. However, the effect of the timing of first pregnancy on bone mass is 

not consistent across studies with some research finding no significant relationship at all 

(e.g., Sowers et al., 1985).  

The relationship between age at first parturition and skeletal health is rooted in the 

fundamental nature of life history trade-offs between reproduction and growth. Following 
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the basic tenets of this theoretical approach, in a resource-limited environment, energy 

and energetic resources are allocated to one physiological demand at the expense of 

others. The high costs of pregnancy and the subsequent period of lactation generally 

necessitates directing energy and nutrients away from other somatic functions. Devotion 

of energy to reproduction can theoretically limit allocation to growth, thereby resulting in 

trade-offs between early parturition and longitudinal skeletal gain. 

 

Pregnancy and Parity 

The literature on the long-term effects of pregnancy and parity do not show 

consistent results. Several studies comparing bone status of nulliparous and multiparous 

pre- and perimenopausal women have demonstrated that nulliparous females have lower 

bone values (e.g., Sowers et al., 1992). Similarly, Forsmo and colleagues (2001) found 

that among early postmenopausal women nulliparity predicted lower bone density values. 

However, several studies have reached an opposite conclusion, documenting a negative 

association between bone density and multiple pregnancies (Allali et al., 2007; Gur et al., 

2003). Others have not found any significant associations with number of pregnancies 

(Ensom et al., 2002; Hillier et al., 2003; Lenora et al., 2009; Melton et al., 1993). Even in 

studies of groups characterized by repeated and closely spaced pregnancies, such as 

among Omani women (Bererhi et al., 1996) and multiparous Finish American women 

(Henderson et al., 2000), no significant relationship was documented between number of 

children and bone density.  

The inconsistencies in the literature are largely due to the multiple, complex 

pathways of calcium turnover during pregnancy. For example, pregnancy can decrease 
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maternal bone density through the heightened calcium demand associated with fetal 

growth. During pregnancy, the growing fetus requires approximately 25-30 grams of 

calcium from the mother to develop its skeleton (Holmberg-Marttila et al., 1999); this 

marks a critical period during which significant change in maternal serum calcium 

concentration occurs. However, despite this draw on calcium, the maternal skeleton 

typically exhibits an increase in bone mass during pregnancy, which is most likely due to 

increased estrogen levels that inhibit bone loss, and in some cases, promote bone 

accretion (e.g., Lees et al., 1998). Pregnancy-related weight gain (i.e., increased loading), 

as well as greater intestinal calcium absorption, also contributes to the protective effect 

that being pregnant has on bone mass (Nguyen et al., 1995; Streeten et al., 2005). It is 

unclear whether sheer offspring quantity may shape bone density, and the influence of 

pregnancy and parity may be obscured by the effects of lactation. 

 

Lactation 

The duration, timing, and intensity of lactation all appear to influence bone 

density, yet some studies show a protective effect of breastfeeding (Hreschchyshyn et al., 

1988; Pearce, 2006), and others show a negative impact (Affinito et al., 1996; Drinkwater 

and Chestnut, 1991; Kent et al., 1993; Lamke et al., 1977; Sowers, 1996). These 

seemingly contradictory results appear to reflect the length of time that participants spent 

lactating, and how the studies were designed in order to determine the effects of lactation 

on bone health. For instance, several longitudinal studies that document changes in bone 

status during post-partum and weaning periods typically report that bone loss is transient 

and later restored to pre-pregnancy values (Pearce, 2006; Sowers, 1996). However, other 
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studies have shown complete bone recovery does not occur and that long-term 

breastfeeding leads to progressive bone loss in the pre- and postmenopausal states 

(Chowdhury et al., 2002; Grimes and Wimalawansa, 2003; Lopez et al., 1996; Melton et 

al., 1993; Popivanov and Boianonv, 2002; Sowers, 1996); some research has found no 

such association (Feldblum et al., 1992; Johnell and Nillson, 1984).  

The intensity of nursing may also influence the extent of bone density loss. 

Studies have shown that lactational
 
decrease in bone density correlates with the amount

 
of 

calcium lost in the breast milk output (Laskey et al., 1998). For this reason, women who 

lactate more intensively (i.e., the infant is exclusively
 
breastfed and has frequent 

feedings) may be expected to have greater net calcium losses and
 
lose more bone 

(Kovacs, 2001). However, the few studies that have investigated this relationship have 

found that greater breastfeeding intensity, particularly in the immediate post-partum 

amenorrheic months, may in fact serve to maintain bone integrity (Pearce, 2006). 

During lactation, nursing women typically experience prolonged periods of 

amenorrhea and low levels of circulating estrogens (Sowers et al., 1993). This condition, 

coupled with a loss of approximately 300-400 mg of calcium to breast milk, enhances 

maternal bone loss. This generally lasts until weaning when bone mass is restored 

(Galloway, 1997; Kovacs, 2001; Stuart-Macadam, 1995). In a six month period of 

exclusive lactation, approximately 7% of maternal bone mass may be lost (Sowers, 

2001). If breastfeeding is terminated before nine months, there appears to be a full 

recovery of bone mass within the 18 months postpartum period; this indicates the critical 

contribution of lactation duration to bone status. However, the extent to which multiple 

reproductive cycles, coupled with other characteristics of lactation (e.g., intensity), 
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impact long-term skeletal health is still largely unknown; the differences in results from 

the aforementioned studies may be largely attributed to the heterogeneity of lactation 

behaviors across study populations. 

 

Inter-Birth Interval 

Short spacing between births may be a risk factor for low BMD in pre- and 

postmenopausal years, due to the cumulative periods of bone loss in quick succession 

(Affinito et al., 1996). Yet, most longitudinal studies that have investigated intervals 

between childbirth and lactation periods have found that bone health is not compromised 

among women with shorter birth spacing (Bererhi et al., 1996; Henderson et al., 2000; 

Laskey and Prentice, 1997; Sowers et al., 1995).  

In natural fertility populations, the period between reproductive cycles (inter-birth 

interval [IBI]) is shaped largely by lactation patterns. The period of lactational 

amenorrhea following parturition serves to inhibit ovulation and reduces the probability 

of immediate conception. This state of reduced fecundity allows the child to benefit from 

breast milk without having to compete with a gestating sibling for maternal energy stores, 

and it simultaneously protects the mother from the additional energetic stress of 

metabolizing for three (Valeggia and Ellison, 2001). A shortened IBI may theoretically 

compromise the ability of maternal calcium stores to rebound to pre-pregnancy, pre-

lactation values, and can lead to a substantial drain of bone from the maternal skeleton. 

This phenomenon follows the pattern of the maternal depletion syndrome, where repeated 

cycles of pregnancy and lactation in energy-restricted environments can result in a 

deterioration of fat and lean muscle stores. Adequate spacing between reproductive 
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cycles may permit a woman time to replace her fat reserves and return to pre-pregnancy 

weight (Miller et al., 1994). While the maternal depletion syndrome is typically used to 

explain the effects of repeated pregnancy and lactation cycles on soft tissue reserves, it 

can provide a useful framework for examining the relationship between reproduction and 

bone density. Surprisingly, the few available studies that consider IBI suggest otherwise 

(Henderson et al., 2000; Sowers et al., 1993).  

 

Age at Menopause 

Several research studies have documented a connection between age at 

menopause and postmenopausal bone health, with an earlier menopausal age linked to 

lower BMD (Sioka et al., 2010). This is unsurprising since menopause is marked by a 

cessation of ovarian function and a consequent reduction in the production of estrogens. 

Because of menopause-related declines in this sex steroid, women who experience earlier 

menopause spend more time in a hypoestrogenic state that may place them at greater risk 

for poor bone health (Gallagher, 2007; Kritz-Silverstein and Barrett-Connor, 1993; Ohta 

et al., 1996; Pouillès et al., 1994).  

The present study uses a life-course perspective to investigate effects of the 

reproductive factors outlined above on bone health in pre- and postmenopausal women 

from an Indigenous Amazonian population from Ecuador. 

 

RESEARCH OBJECTIVES AND HYPOTHESES 

The dynamic nature of bone and the functional system of calcium turnover 

evolved under vastly different environmental and life conditions than experienced by 
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Western populations. Research among subsistence groups therefore provides an 

interesting lens to examine bone health, and has the potential to shed new light on the 

evolution of calcium regulatory mechanisms. The current study focuses on the 

Indigenous Shuar women of Ecuadorian Amazonia and evaluates four hypotheses: 

 

1) Women who experienced an earlier menarche will have higher bone density values. 

This hypothesis is based on the logic that an early menarcheal age increases the lifetime 

exposure to estrogens. 

 

2) Women with an older age at first parturition will have higher bone density values. This 

hypothesis is based on older age at first parturition delaying any disruption of bone 

formation prior to achieving peak bone mass. 

 

3) Women with more protracted periods of lactation will have lower bone density values. 

This hypothesis is predicated on the knowledge that rates of calcium turnover are high 

during lactation and thus, extended periods of breastfeeding will result in lower bone 

density values. 

 

4) Women with longer IBIs will have greater bone density values. This hypothesis is 

based on similar processes observed with the maternal depletion syndrome, in which 

longer IBIs allow for a greater period during which maternal bone density can restore to 

pre-pregnancy values.  
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MATERIALS AND METHODS 

Study Population 

The Shuar are a large indigenous population concentrated in the southeastern 

region of the Ecuadorian Amazon. Shuar were traditionally forager-horticulturalists 

although within the last thirty years many communities, particularly in the Upano River 

Valley (Figures 1.1 and 1.2), have experienced the nutritional, demographic, and 

economic repercussions of integration into a market economy. The degree of market 

integration among the Shuar varies widely at an intra- and inter-community level (see 

Chapter I).  

Shuar participants in the present study came from four small, rural Upano Valley 

communities located approximately 40 minutes to one hour by truck and 3-4 hours by 

foot from the nearest market center (Sucua). Population size across participating 

communities ranged from 50 to 150 adults. Members of these communities continue to 

depend on subsistence horticulture for daily dietary needs, while also engaging in a mix 

of small scale agro-pastoralist production for market sale.  

 

Participants 

Participants in this cross-sectional study included 141 Shuar women between 14- 

86 years old. Women who were pregnant at the time of the study (n = 11) were not 

included in the statistical analyses since bone density would likely reflect the acute 

influence of their pregnant state. Further, the small size of the pregnant cohort did not 

significantly reduce the size of the participant sample. The analyses presented here 

include a total of 130 women. 
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Currently lactating women (n = 41) were considered in the statistical analyses as 

they comprised half the reproductive age women in the sample. However, several 

analyses treated them as a separate group. Participants were also separated into pre-

menopausal or postmenopausal cohorts for analyses. Because many of the reproductive 

variables are influenced by current age (e.g., older women typically have had more 

births), pre-menopausal women were further divided into approximately ten-year age 

sub-categories (14-24, 25-34, 35-44, >45) based on standard age divisions in the clinical 

and epidemiological literature. Participants were considered postmenopausal (n = 22) if 

they were not pregnant or lactating at the time of the study and they reported not 

experiencing a menstrual cycle within the last year.  

 All participants gave individual informed verbal consent, with both parental 

consent and child assent for individuals under 18 years old. The study protocol was 

approved by community leaders, the Federación Interprovincial de Centro Shuar 

(FISCH), and the Office for Protection of Human Subjects at the University of Oregon.  

 

Calcaneal Ultrasound: Bone Mineral Density Measurements 

Bone mineral density (BMD) measures were obtained from the right heel of each 

participant using a gel-based Sahara® bone ultrasonometer (Hologic, Inc., Waltham, 

MA). Instrumental quality control scans of the manufacturer-provided phantoms were 

performed daily. The device generates three skeletal health parameters: 1) broadband 

ultrasound attenuation (BUA; decibels per megahertz), which is the slope of the 

ultrasonic attenuation versus frequency as it passes through bone; 2) speed of sound 

(SOS; meters per second), a value determined by the width of the heel and time delay 
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between initial transmission and subsequent receipt of sound waves; and 3) calculated 

heel bone mineral density (BMD), which is a device-generated measure determined by 

combined BUA and SOS values. BUA is more closely related to the micro-architecture of 

bone (e.g., trabecular connectivity) and, because trabecular bone has a greater surface to 

volume ratio, it is generally subject to greater metabolic activity and faster rates of 

turnover than cortical bone. SOS, on the other hand, is greatly influenced by the elasticity 

and mineral constituents of the bone matrix (Bartl and Frisch, 2004; Lee et al., 2010). All 

three parameters are presented here separately as they represent different components of 

bone density and health.  

 

Anthropometric Variables 

Participant stature (measured to the nearest millimeter [mm]) and weight 

(measured to the nearest 0.1 kilogram [kg]) were recorded using a field stadiometer 

(Seca, Hanover, MD) and digital scale (Tanita BF-558 electronic scale, Tokyo, Japan), 

respectively. Body mass index (BMI) was calculated as weight (kg)/height (in meters
2
).  

 

Reproductive History Questions 

Retrospective information on participant reproductive patterns was obtained 

through structured interviews. Each participant answered a series of questions regarding 

their reproductive histories. These included: a) age at menarche (age at first menses); b) 

age at first parturition; c) number of parturitions; d) number of offspring breastfed (in rare 

instances, not all children were breastfed, which accounts for the difference between 

number of parturitions and number of offspring breastfed); e) average duration of 

lactation per birth (women provided either a specific estimate of lactation duration for 
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each child or an average estimate for all children); and f) total lifetime lactation months 

(this variable represents a sum total of months spent lactating during a participant’s 

lifetime but does not account for the intensity of lactation). 

Only five postmenopausal women were able to recall their age at menopause 

onset; this was too small a participant sample to perform meaningful statistical analyses. 

 

Statistical Analyses 

A one-way ANOVA was conducted to determine differences in anthropometric 

and bone health values by menopausal status. Since many of the reproductive variables 

are associated with age, comparing the effects of these variables on skeletal parameters 

from females of different age groups is problematic. Further, controlling for age would 

remove the effects of age-related bone loss trends. For this reason, statistical analyses 

were performed within age-defined categories unless otherwise stated. For each age 

cohort, a stepwise multiple linear regression analysis was performed in order to 

investigate the relationships between bone density values, anthropometrics, and 

reproductive variables and to test the hypotheses. Each bone density parameter (BUA, 

SOS, and BMD) was entered separately as a dependent variable in regression models and 

age, height, and weight were used as the independent variables. Reproductive variables 

used in multivariate models included age at menarche, age at first parturition, number of 

live parturitions, average duration of lactation per birth, total lifetime months spent 

lactating, and IBI. BMI was not included in the multivariate models because of its 

collinearity with body weight and stature and because a univariate correlation with BMD 

was less strong than that of body weight and stature separately.  
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RESULTS 

Table 4.1 presents the proportion of nulliparous and multiparous women by pre- 

and postmenopausal status. Parity information for one pre-menopausal woman was not 

available and is not included in this table. A total of 89 (82.4%) pre-menopausal and 21 

(95.5%) postmenopausal women reported having at least one child.  

 

Table 4.1. Frequency of nulliparous and multiparous women by menopausal status 

 Pre-menopausal Post-menopausal 

Nulliparous 18 (16.7%) 1 (4.5%) 

Multiparous 89 (82.4%) 21 (95.5%) 

 

An ANOVA comparing BMD between nulliparous and parous women by 

menopausal status, controlling for age, indicates no significant differences in these 

values.  

Table 4.2 presents the descriptive statistics and reproductive profiles for 

participants by menopausal status, including lactating women. Most anthropometric 

dimensions and all bone density measures are significantly higher among pre-menopausal 

women than postmenopausal women. Anthropometric, BMD trends, and reproductive 

profiles for pre-menopausal women are shown in Tables 4.3 and 4.4, with data presented 

by age groups. A decline in height is also noted with age. However, all other body size 

and most bone health values show a gradual increase until the mid-30s; weight, BMI, 

SOS and BMD peak in the 25-34 year age category. BUA is the sole bone measure that 

does not show a similar trend and rather, peaks in the 35-44 year age category. 
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Table 4.2. Anthropometric, bone density values, and reproductive profiles for pre- 

and postmenopausal Shuar women (including lactating women). 

 

 

Pre-Menopausal 

n=108 

Post-Menopausal 

n = 22 P 

Mean SD Min Max Mean SD Min Max 

Age (years) 29.82 10.80 14.07 52.55 58.34 10.35 48.04 85.98 ** 

Height (cm) 148.74 4.53 136.00 158.67 144.32 6.07 134.50 153.10 ** 

Weight (kg) 56.01 10.13 24.90 97.40 52.64 11.16 36.70 81.20 Ns 

BMI (kg/m
2
) 25.30 4.05 10.62 41.07 25.11 4.07 20.29 34.64 Ns 

BUA (dB/MHz) 81.3 16.9 37.4 123.0 58.9 16.1 26.0 89.1 ** 

SOS (m/sec) 1574.8 28.2 1524.7 1661.9 1527.6 20.7 1475.9 1567.1 ** 

Heel BMD 0.608 0.112 0.411 0.944 0.427 0.095 0.207 0.607 ** 

Age at Menarche 

(years) 
13.07 1.16 9.00 16.00 13.29 0.92 12.00 15.00 Ns 

Age at First 

Parturition 

(years) 

17.45 3.33 12.00 35.00 17.64 5.68 14.00 39.00 Ns 

Number of 

Parturitions 
4.07 3.58 0.00 13.00 8.81 3.40 0.00 15.00 ** 

Inter-birth 

Interval 

(months) 

31.10 12.96 12.00 73.64 31.58 8.02 20.90 49.07 Ns 

Total Number of 

Offspring 

Breastfed 

3.94 3.52 0.00 13.00 8.81 3.40 0.00 15.00 ** 

Average 

Duration of 

Lactation Per 

Birth (months) 

15.11 7.09 0.00 44.00 16.05 5.28 8.57 25.33 Ns 

Total Duration 

of Lactation over 

Lifetime 

(months) 

66.14 67.73 0.00 312.00 137.24 72.15 0.00 240.00 ** 

 

Ns = not significant; ** p < 0.001 (significant difference between menopausal states) 
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Table 4.3. Anthropometric and bone density values for pre-menopausal women by age cohort (including lactating women). 

 
14-24 

(n=47) 

25-34 

(n=25) 

35-44 

(n=22) 

45> 

(n=14) 

 

Mean 

(SD) 
Min Max 

Mean 

(SD) 
Min Max 

Mean 

(SD) 
Min Max 

Mean 

(SD) 
Min Max 

Height 

(cm) 

149.19 

(4.94) 
136.0 158.67 

148.9 

(4.11) 
140.55 155.1 

148.01 

(4.36) 
139.8 156.4 

147.95 

(4.13) 
140.6 155.0 

Weight 

(kg) 

51.23 

(7.34) 
24.9 65.5 

61.65 

(12.42) 
49.4 97.4 

58.28 

(6.82) 
49.7 76.1 

60.01 

(11.38) 
47.6 90.9 

BMI 

(kg/m
2
) 

22.99 

(2.81) 
10.62 28.87 

27.96 

(4.74) 
22.77 41.07 

26.59 

(2.77) 
22.66 33.38 

27.26 

(3.87) 
23.26 37.84 

BUA 

(dB/MHz) 

79.4 

(17.0) 
44.7 120.9 

82.5 

(18.6) 
37.4 122.5 

83.8 

(17.3) 
55.3 123.0 

82.1 

(13.7) 
64.2 113.8 

SOS 

(m/sec) 

1575.9 

(27.0) 
1524.9 1629.3 

1576.9 

(31.3) 
1524.7 1649.6 

1575.3 

(27.8) 
1535.8 1661.9 

1567.0 

(28.6) 
1529.7 1613.9 

Heel BMD 
0.604 

(0.108) 
0.411 0.848 

0.618 

(0.125) 
0.426 0.878 

0.614 

(0.115) 
0.438 0.944 

0.592 

(0.104) 
0.445 0.792 
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Table 4.4. Reproductive profile of Shuar women by age cohort. 

 
14-24 

(n=47) 

25-34 

(n=25) 

35-44 

(n=22) 

45> 

(n=14) 

 

Mean 

(SD) 
Min Max 

Mean 

(SD) 
Min Max 

Mean 

(SD) 
Min Max 

Mean 

(SD) 
Min Max 

Age at 

Menarche 

(years) 

13.24 

(1.23) 
10.0 16.0 

13.05 

(1.05) 
11.0 15.0 

12.77 

(1.19) 
9.0 14.0 

13.08 

(1.08) 
11.0 15.0 

Age at First 

Parturition 

(years) 

17.07 

(2.21) 
13.0 22.0 

16.90 

(2.47) 
14.0 22.0 

18.10 

(4.46) 
13.0 35.0 

18.14 

(4.44) 
12.0 28.0 

Number of 

Parturitions 

1.17 

(1.18) 
0 4.0 

4.96 

(2.75) 
0 10.0 

7.09 

(3.26) 
1.0 13.0 

7.29 

(3.29) 
1.0 13.0 

Inter-birth 

Interval 

(months) 

25.27 

(10.22) 
14.92 48.0 

26.13 

(9.39) 
12.0 51.93 

35.25 

(14.61) 
12.89 66.18 

39.10 

(12.59) 
21.85 73.64 

Total 

Number of 

Offspring 

Breastfed 

1.15 

(1.19) 
0 4.0 

4.72 

(2.56) 
0 10.0 

7.05 

(3.24) 
1.0 13.0 

6.86 

(3.57) 
1.0 13.0 

Average 

Duration of 

Lactation Per 

Birth 

(months) 

13.54 

(6.97) 
0 28.0 

16.10 

(7.22) 
9.0 44.0 

15.32 

(6.12) 
1.0 24.0 

15.90 

(8.73) 
4.0 36.0 

Total 

Duration of 

Lactation 

over Lifetime 

(months) 

17.44 

(22.23) 
0 84.0 

69.43 

(32.84) 
0 132.0 

116.64 

(75.0) 
1.0 288.0 

117.04 

(87.34) 
8.0 312.0 
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No significant secular trend in age at menarche or age at first parturition is seen in 

this sample. Across all Shuar participants, IBI varies from 1-6 years, with the longest 

average duration between births reported among the oldest pre-menopausal cohort (3.25 

years [39 months]). While most women report breastfeeding all of their children, the total 

number of offspring breastfed is not necessarily identical to the total number of 

parturitions since some infants died immediately following birth and, in one instance, a 

teenage mother did not produce breast milk. On average, children are completely weaned 

at approximately 1 year, 3 months old, although some participants continue to lactate up 

to 3.6 years (44 months). The total duration of lactation across the individual’s lifetime is 

age-dependent as it is related both to number of offspring and breastfeeding practices. 

Older women, therefore, tend to have higher total lifetime lactation, with one 45-year old 

participant nursing for approximately 26 years (312 months).  

Pre-menopausal lactating women were analyzed as a separate group from non-

lactating individuals in the stepwise multiple regression analyses. Among lactating 

women, anthropometric and reproductive parameters were only significantly predictive of 

BUA, SOS, and BMD in 14-24 year olds. Tables 4.5-4.10 show the model parameters 

and coefficients tables from the regressions for each skeletal parameter that was 

significantly related to anthropometrics and/or reproductive variables. When body size 

variables are considered separately in the model, there are significant positive 

associations between stature and BMD (Tables 4.5 and 4.6), SOS (Tables 4.7 and 4.8), 

and BUA (Tables 4.9 and 4.10) with approximately 41%, 37%, and 44% of the variation 

in these values attributable to height, respectively. Weight shows no relationship to any 

bone parameter. When reproductive variables are included in the model, height is no  
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Table 4.5. Model parameters from stepwise linear regression indicating the association between anthropometric and 

reproductive variables on heel BMD among pre-menopausal lactating women. 

Age 

Cohort 
Model R 

R 

Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Change Statistics 

R Square 

Change 

F 

Change 
df1 df2 

Sig. F 

Change 

14-24 
1 .643

a
 .414 .349 .103145 .414 6.357 1 9 .033 

2 .832
b
 .692 .615 .079289 .278 7.231 1 8 .028 

a. Predictors: (Constant), Height 

b. Predictors: (Constant), Height, Age at First Parturition 

 

 

Table 4.6. Coefficients chart from stepwise linear regression indicating the association between anthropometric and 

reproductive variables on heel BMD among pre-menopausal lactating women. 

Age 

Cohort 
Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 
t Sig. 

B 
Std. 

Error 
Beta 

14-24 

1 
(Constant) -1.769 .947 

 
-1.867 .095 

Height .016 .006 .643 2.521 .033 

2 

(Constant) -.655 .838 
 

-.782 .457 

Height .002 .007 .069 .238 .818 

Age at First Parturition .061 .023 .780 2.689 .028 

Dependent Variable: Heel BMD 
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Table 4.7. Model parameters from stepwise linear regression indicating the association between anthropometric and 

reproductive variables on SOS among pre-menopausal lactating women. 

Age 

Cohort 
Model R 

R 

Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Change Statistics 

R Square 

Change 

F 

Change 
df1 df2 

Sig. F 

Change 

14-24 
1 .608

a
 .369 .299 26.6084 .369 5.273 1 9 .047 

2 .804
b
 .646 .558 21.1379 .277 6.261 1 8 .037 

a. Predictors: (Constant), Height 

b. Predictors: (Constant), Height, Age at First Parturition 

 

 

 

Table 4.8. Coefficients chart from stepwise linear regression indicating the association between anthropometric and 

reproductive variables on SOS among pre-menopausal lactating women. 

Age 

Cohort 
Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 
t Sig. 

B 
Std. 

Error 
Beta 

14-24 

1 
(Constant) 1016.301 244.385 

 
4.159 .002 

Height 3.774 1.644 .608 2.296 .047 

2 

(Constant) 1292.523 223.331 
 

5.787 .000 

Height .216 1.930 .035 .112 .914 

Age at First Parturition 15.178 6.066 .778 2.502 .037 

Dependent Variable: SOS 
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Table 4.9. Model parameters from stepwise linear regression indicating the association between anthropometric and 

reproductive variables on BUA among pre-menopausal lactating women. 

Age 

Cohort 
Model R 

R 

Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Change Statistics 

R Square 

Change 

F 

Change 
df1 df2 

Sig. F 

Change 

14-24 
1 .664

a
 .441 .379 14.7201 .441 7.105 1 9 .026 

2 .828
b
 .686 .608 11.7029 .245 6.239 1 8 .037 

a. Predictors: (Constant), Height 

b. Predictors: (Constant), Height, Age at First Parturition 

 

 

 

Table 4.10. Coefficients chart from stepwise linear regression indicating the association between anthropometric and 

reproductive variables on BUA among pre-menopausal lactating women 

Age 

Cohort 
Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 
t Sig. 

B 
Std. 

Error 
Beta 

14-24 

1 
(Constant) -276.579 135.197 

 
-2.046 .071 

Height 2.424 .909 .664 2.665 .026 

2 

(Constant) -123.923 123.646 
 

-1.002 .346 

Height .457 1.069 .125 .428 .680 

Age at First Parturition 8.388 3.358 .732 2.498 .037 

 Dependent Variable: BUA 
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longer a significant predictor of bone density; BMD, SOS, and BUA values are more 

strongly associated with age at first parturition. Females who were older at age of first 

parturition have significantly higher bone density values (BMD, SOS, BUA: p < 0.005). 

No similar trends in bone density for pre-menopausal lactating women in other age 

cohorts were found. A graphical illustration of the relationship between BMD and height 

by lactation status among 14-24 year olds is shown in Figure 4.1. Similar results are seen 

with BUA and SOS but are not presented here. The positive association between BMD 

and age at first parturition among lactating 14-24 year olds is shown in Figure 4.2.  

 

Figure 4.1. Heel BMD and height by lactation status among 14-24 year old pre-

menopausal women.  A significant relationship between heel BMD and lactation was 

determined for women who were lactating at the time of the study. (Not Currently 

Lactating: R
2
 = 0.016; Currently Lactating: R

2
 = 0.079) 
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Figure 4.2. Heel BMD and age at first parturition by lactation status among pre-

menopausal women.  A significant relationship was determined for women who were 

lactating at the time of the study. (Not Currently Lactating: R
2 

= 0.046; Currently 

Lactating: R
2
 = 0.069) 

 

In the non-lactating, pre-menopausal group, the only significant predictor of bone 

health parameters is average duration of lactation per birth and this relationship is only 

found among 35-44 year olds. Women from this age group who had longer bouts of 

nursing per child had significantly higher BUA (p = 0.005), SOS (p = 0.001), and BMD  

(p = 0.001) values. Model parameters are shown in Tables 4.11-4.16. No significant 

relationship between anthropometrics, reproductive variables and bone density were 

documented for any other age group of non-lactating women. 
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Table 4.11. Model parameters from stepwise linear regression indicating the association between anthropometric and 

reproductive variables on heel BMD among pre-menopausal non-lactating women. 

Age 

Cohort 
Model R 

R 

Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Change Statistics 

R Square 

Change 

F 

Change 
df1 df2 

Sig. F 

Change 

35-44 1 .832
a
 .692 .658 .074117 .692 20.259 1 9 .001 

a. Predictors: (Constant), Average Weaned Months (per birth) 

 

 

 

Table 4.12. Coefficients chart from stepwise linear regression indicating the association between anthropometric and 

reproductive variables on heel BMD among pre-menopausal non-lactating women. 

Age 

Cohort 
Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 
t Sig. 

B 
Std. 

Error 
Beta 

35-44 1 

(Constant) .381 .068 
 

5.581 .000 

Average Weaned Months 

(per birth) 
.020 .004 .832 4.501 .001 

 Dependent Variable: Heel BMD 
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Table 4.13. Model parameters from stepwise linear regression indicating the association between anthropometric and 

reproductive variables on SOS among pre-menopausal non-lactating women. 

Age 

Cohort 
Model R 

R 

Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Change Statistics 

R Square 

Change 

F 

Change 
df1 df2 

Sig. F 

Change 

35-44 1 .847
a
 .717 .685 17.7680 .717 22.786 1 9 .001 

a. Predictors: (Constant), Average Weaned Months (per birth) 

 

 

 

Table 4.14. Coefficients chart from stepwise linear regression indicating the association between anthropometric and 

reproductive variables on SOS among pre-menopausal non-lactating women. 

Age 

Cohort 
Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 
t Sig. 

B 
Std. 

Error 
Beta 

35-44 1 

(Constant) 1514.644 16.354 
 

92.618 .000 

Average Weaned Months 

(per birth) 
5.080 1.064 .847 4.773 .001 

 Dependent Variable: SOS 
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Table 4.15. Model parameters from stepwise linear regression indicating the association between anthropometric and 

reproductive variables on BUA among pre-menopausal non-lactating women. 

Age 

Cohort 
Model R 

R 

Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Change Statistics 

R Square 

Change 

F 

Change 
df1 df2 

Sig. F 

Change 

35-44 1 .774
a
 .599 .555 11.7314 .599 13.448 1 9 .005 

 a. Predictors: (Constant), Average Weaned Months (per birth) 

 

 

 

Table 4.16. Coefficients chart from stepwise linear regression indicating the association between anthropometric and 

reproductive variables on BUA among pre-menopausal non-lactating women. 

Age 

Cohort 
Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 
t Sig. 

B 
Std. 

Error 
Beta 

35-44 1 

(Constant) 54.965 10.798 
 

5.090 .001 

Average Weaned Months 

(per birth) 
2.577 .703 .774 3.667 .005 

 Dependent Variable: BUA 
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Stepwise regression analyses of reproductive variables and bone health among 

postmenopausal women indicate that the only reproductive variable that significantly 

predicts bone health values later in life is age at menarche (BUA: p < 0.01; BMD: p < 

0.05). The younger the age at first menses, the higher the bone density values in post-

reproductive life, specifically with regard to BUA and BMD. Model parameters are 

shown in Tables 4.17-4.20. Figures 4.3 and 4.4 illustrate the significant relationship 

between BMD and age at menarche, and BUA and age at menarche, respectively. Age at 

first menses is not predictive of postmenopausal SOS values in this sample. Of the 

anthropometric variables, current height, but not weight, was significantly related to 

postmenopausal BUA. Taller women who were postmenopausal had higher BUA values, 

but this relationship was not maintained for SOS or BMD. Approximately 36% of the 

variation in BUA could be attributed to current height (Figure 4.5). While taller women 

were also the youngest of the postmenopausal age cohort, the relationship between 

greater height and higher BUA values were maintained when controlling for age.  
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Table 4.17. Model parameters from stepwise linear regression indicating the association between anthropometric and 

reproductive variables on heel BMD among post-menopausal women. 

Age Cohort Model R 
R 

Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Change Statistics 

R Square 

Change 

F 

Change 
df1 df2 

Sig. F 

Change 

Post-

Menopausal 
1 .576

a
 .332 .281 .077310 .332 6.463 1 13 .025 

a. Predictors: (Constant), Age at Menarche 

 

 

 

Table 4.18. Coefficients chart from stepwise linear regression indicating the association between anthropometric and 

reproductive variables on heel BMD among post-menopausal women. 

Age Cohort Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 
t Sig. 

B 
Std. 

Error 
Beta 

Post-Menopausal 1 
(Constant) 1.227 .307 

 
3.997 .002 

Age at Menarche -.058 .023 -.576 -2.542 .025 

Dependent Variable: Heel BMD 
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Table 4.19. Model parameters from stepwise linear regression indicating the association between anthropometric and 

reproductive variables on BUA among post-menopausal women. 

Age Cohort Model R 
R 

Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Change Statistics 

R Square 

Change 

F 

Change 
df1 df2 

Sig. F 

Change 

Post-

Menopausal 

1 .514
a
 .264 .208 14.1929 .264 4.668 1 13 .050 

2 .793
b
 .630 .568 10.4822 .365 11.833 1 12 .005 

 a. Predictors: (Constant), Height 

b. Predictors: (Constant), Height, Age at Menarche 

 

 

 

Table 4.20. Coefficients chart from stepwise linear regression indicating the association between anthropometric and 

reproductive variables on BUA among post-menopausal women. 

Age Cohort Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 
t Sig. 

B 
Std. 

Error 
Beta 

Post-Menopausal 

1 
(Constant) -158.358 102.274 

 
-1.548 .146 

Height 1.511 .699 .514 2.161 .050 

2 

(Constant) 3.453 88.984 
 

.039 .970 

Height 1.384 .518 .471 2.672 .020 

Age at Menarche -10.738 3.122 -.606 -3.440 .005 

Dependent Variable: BUA 
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Figure 4.3. Heel BMD by age at menarche among post-menopausal women with error 

bars. 

 

 

Figure 4.4. Mean BUA by age at menarche among post-menopausal women with error 

bars. 
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Figure 4.5. Scatter plot of BUA by height among post-menopausal women with linear 

best fit line (R
2
 = 0.36) 

 

DISCUSSION 

The primary goal of the present study was to test several hypotheses related to the 

association between bone health and reproduction among Shuar women from Ecuadorian 

Amazonia. Shuar females, overall, have modestly higher pre-menopausal bone density 

values than United States reference population (Chapter III; Figure 3.1). However, bone 

density among postmenopausal women are similar to the reference range from the U.S. 

population.  
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Age at Menarche 

Hypothesis 1. Women who experienced an earlier menarche will have higher bone 

density values. 

Among Shuar postmenopausal women, earlier menarche was associated with 

higher bone density values, although a similar trend was not found for pre-menopausal 

women. Postmenopausal women who were younger at first menses (12 or 13 years old) 

had significantly greater skeletal health values than women who reported first menses at 

14 or 15 years old. Earlier menarcheal age was the primary predictor of postmenopausal 

bone mass, suggesting that the timing of this early developmental stage canalizes bone 

density phenotype into later life, despite effects of other reproductive factors such as 

number of live births or inter-birth interval.  

From a mechanistic perspective, the influx of estrogens at menarche contributes to 

bone accretion processes and thus, an early first menses expands the female reproductive 

life and increases cumulative exposure to these hormones. Additionally, early menarcheal 

age is related to larger body size, which increases mechanical loading of the skeleton 

(especially in the lower limbs), and to greater adiposity, the latter of which proliferates 

the production of estrogen. Thus, both larger body size and greater fat content can 

contribute to increases in bone quantity (Eastell, 2005).  

From an evolutionary perspective, the age at which a female experiences her first 

menses reflects a suite of early environmental and social factors that influence nutrition 

and disease (Sloboda et al., 2010). According to life history theory, a developing 

organism will allocate energetic resources to growth, and these resources will only 

become essential for reproduction at the time of sexual maturity. In an energy-deficient 
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environment, organisms will delay reproductive maturation until a time when resources 

are adequate and reproductive activities will be successful (Coall and Chisholm, 2010; 

Ellison, 1982; Garn, 1987). In this study, a younger age at first menses appears to 

indicate better early environmental and energetic states. Postmenopausal Shuar women 

who experienced early menarche were arguably in better phenotypic condition than those 

who experienced first menses later – i.e., they were within a “healthy” range for the 

timing of this developmental stage at an earlier age. Women who are older at menarche 

may reflect more compromised early phenotypic quality that then extends throughout life 

and into postmenopausal life. This finding that key developmental events can serve as an 

indirect proxy for early energetic conditions with effects on phenotypic quality in later 

life is also supported by the positive association between height and skeletal health.  

Height is frequently used as a marker of early environmental and nutritional 

conditions (Benefice et al., 2006; Bogin, 1999; Bogin and Loucky, 1997; Bronte-Tinkew 

and DeJong, 2004), and it is the one anthropometric variable that recurrently 

demonstrates relationships with bone health across pre- and postmenopausal women. As 

with the mechanisms governing menarche onset, shorter stature can reflect poor nutrition 

or adverse circumstances that lead to the devotion of energy towards a competing 

physiological domain, such as immune function, and inhibit skeletal growth in the 

process (Ellison et al., 1993; Gluckman and Hanson, 2006; Jasienska et al., 2006). 

Results from the current study indicate that both greater stature and earlier age at 

menarche may serve as indicators of early energetic conditions, and they remain 

important predictors of phenotypic quality, specifically bone quality and quantity, across 

the lifespan. 
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Age at First Parturition 

Hypothesis 2. Women with an older age at first parturition will have higher bone density 

values. 

The present study found partial support for the second hypothesis. That is, only 

among young, pre-menopausal lactating women were the positive effects of age at first 

parturition on BMD documented; however, a similar relationship was not found for non-

lactating women. Pregnancy and lactation are periods of extensive bone turnover and, if 

normal growth patterns are disrupted to accommodate reproduction, this may result in 

lower peak bone mass. A later age at first parturition, therefore, may provide a protective 

effect for early bone health. Being young (<18 years) at first pregnancy is also linked to 

poorer pregnancy outcomes and greater risk of fetal deaths (Kline et al., 1989; Kramer, 

1987; Wood, 1994), an association that may suggest an evolutionary advantage to a later 

age at first parturition for both optimal maternal and offspring fitness. However, one 

should also consider that a later age at first pregnancy shortens the reproductive life span, 

which reduces the potential number of offspring a female may have and can lower her 

completed fertility. Therefore, there appears to be a quantity/quality trade-off between 

maternal condition and the number or quality of her offspring.  

 

Lactation  

Hypothesis 3. Women with more protracted periods of lactation will have lower bone 

density values.  

This study did not document significant relationships between bone density and 

number of offspring breastfed or total lifetime lactation months, for either pre- or 
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postmenopausal cohorts. The findings did show that, among the Shuar, average weaning 

is relatively short (~15 months) compared to many other subsistence populations 

including the Yanomamo (24-36 months) (Early and Peters, 1990), and the !Kung (36-48 

months) (Lee, 1979). The only significant and positive association between any lactation 

variable and BMD was found among 35-44 year old women; women who reported longer 

periods of breastfeeding per birth had greater BMD values.  

These findings are not entirely surprising given data from several studies that 

suggest the system of calcium homeostasis is efficient at restoring calcium stores to pre-

pregnancy and pre-lactation values (e.g., Sowers et al., 1993). The evolved ability to 

remove and rapidly restore calcium from the skeleton during reproductive states allows 

for frequent cycles of pregnancy and lactation and in the long-term, improves maternal 

and offspring fitness (Stini, 1995). Several longitudinal studies have demonstrated that 

breastfeeding women lose bone mass during the first 6 months, and this typically 

coincides with the period of lactational amenorrhea. With the resumption of menses, 

women who breastfeed typically regain their bone mass (Kalkwarf and Specker, 1995; 

Kolthoff et al., 1998; Lopez et al., 1996; Sowers et al., 1996). Studies have also shown 

that women who do not breastfeed do not experience post-partum bone loss but they do 

not benefit by gaining in bone mass either (Hayslip et al., 1989; Laskey et al., 1998). 

Cross-sectional studies generally do not note this pattern of post-partum bone recovery as 

these women are not followed beyond six months postpartum and thus, only a partial 

picture of lactation-induced bone changes was provided by these studies.  

While the current study was cross-sectional, a scatter plot of BMD by years since 

last birth can offer insights into how BMD fluctuates through time with lactation status 
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(Figure 4.6). Among non-lactating women, BMD appears to be relatively stable through 

time; conversely, among lactating women, BMD is highly variable. Although an 

ANOVA did not reveal significant differences in bone density values between lactating 

and non-lactating women by age cohort, the relatively stable nature of BMD in non-

lactating women is noteworthy and adheres to predictive trends suggesting that post-

partum changes in bone density are transient and effectively restored with the cessation 

of lactation. 

 

Figure 4.6. Scatter plot of heel BMD and time since last birth (years) by lactation status 

among pre-menopausal women with Loess smoothing lines. Individuals to the left of the 

black line (zero) are nulliparous. (Not Currently Lactating: R
2 

= 0.046; Currently 

Lactating: R
2
 = 0.069) 
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The only significant association between bone density and lactation was found 

among pre-menopausal, non-lactating women; the findings indicate that longer periods of 

breastfeeding per child may confer a protective effect on BMD in the 35-44 year old 

cohort. While several studies report a negative association between number of months of 

recalled lactation and bone status (Lissner et al., 1991), the vast majority of 

epidemiological studies of pre- and postmenopausal women have found no adverse effect 

of lactational history on BMD (Feldblum et al., 1992; Kovacs and Kronenberg, 1997; 

Johnell and Nillson, 1984; Sowers, 1996). The precise way that bone loss is experienced 

and subsequently restored during lactation is not clear, and our finding that longer 

nursing periods are related to higher BMD in the 35-44 year cohort, independent of 

quantity of offspring, is somewhat surprising. While speculative at this point, one 

possible explanation is that women who are able to breastfeed their offspring for longer 

duration are essentially those with an enhanced ability to store and mobilize calcium, and 

this in turn reflects better overall bone phenotype. Put simply, having healthier bones 

may allow for better calcium mobilization and thus, an ability to increase lactation time 

per child.  

Few associations between lactation variables and bone mass were documented in 

this study. Because of the heterogeneity in lactation duration and intensity within and 

across populations, the long-term effects of lactation on skeletal health remain unclear. 

Additional research into this relationship is necessary and should also consider the social 

and ecological factors that shape the decisions about lactation duration and intensity (e.g., 

availability of social support) and the implications for skeletal health (e.g., Piperata, 

2009). 
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Inter-Birth Interval 

Hypothesis 4. Women with longer IBIs will have greater bone density values.  

 The current study found no significant association between birth spacing and bone 

BMD for pre- or postmenopausal women. In this study as well as others (e.g., Bererhi et 

al., 1996; Sowers et al., 1995), the effects of the maternal depletion syndrome have not 

been demonstrated for skeletal reserves. One hypothesis for this pattern involves the 

contribution of maternal fat stores to satisfy costs of offspring brain development. The 

mobilization of larger amounts of fat during pregnancy and lactation serves an adaptive 

function that meets the developmental needs of the fetal and neonatal brain (Lassek and 

Gaulin, 2006). Replenishing fat stores rapidly may therefore not be possible because of 

the continuous and critical need to satisfy the requirements of an ever-expanding and 

metabolically expensive human brain. While maternal skeletal calcium stores are drawn 

upon to support offspring skeletal growth in an analogous way, it may be the case that 

replenishing calcium stores is more easily achieved than maternal fat reserves, perhaps 

because of greater availability of calcium from the environment (see Chapter II), thereby 

facilitating the recovery of bone loss between reproductive cycles. 

 

Developmental Origins of Adult Bone Density 

The present study suggests that the timing of early developmental events, 

specifically age at menarche and age at first parturition, may serve as a proxy for 

exogenous conditions that are important for establishing a phenotype of bone density. 

This bone density phenotype appears to persist throughout life despite transient 

perturbations during the reproductive years. This should not be surprising since early 
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developmental origins, especially growth in utero and infancy, have demonstrated an 

important role in structuring adult health outcomes such as obesity, heart disease, 

hypertension, and several cancers (Barker, 1995a, 1995b; Gluckman and Hanson, 2004). 

Other recent studies have suggested similar links between early developmental factors, 

particularly those experienced during intrauterine life, and bone mass and osteoporosis 

risk in adulthood (Agarwal and Glencross, 2011; Cooper et al., 1997; Cooper et al., 2001; 

Oreffo, 2003).  

Some support for early origins of adult bone density has been garnered from 

epidemiology studies of maternal anthropometric and lifestyle effects on bone mineral 

density of their newborn offspring. Godfrey and colleagues (2001) found that neonatal 

bone mass is positively associated with birth weight, birth length, and placental weight. 

Additional determinants include maternal birth weight and tricep skinfold thickness at 28 

weeks gestation. Maternal smoking and high maternal physical activity are negatively 

associated with neonatal bone mass. The study demonstrates that maternal nutrition, body 

size, and lifestyle appear to modify the fetal nutrient supply and subsequent bone 

accumulation (Godfrey et al., 2001). Additionally, longitudinal research on cohorts with 

available birth and childhood growth records and adult fracture information have found 

that low birth weight and poor childhood growth (e.g., height- and weight-for-age) are 

associated with greater risk of fractures in adulthood (Cooper et al., 1997; Cooper et al., 

2000, 2001). 

Several physiological studies have also examined the role of early endocrine 

programming in establishing bone status. Findings suggest that birth and infancy weight 

may predict basal levels of growth hormone (GH) and cortisol in adulthood and these 



 
 

143 

 

hormones, in turn, determine the rate of bone loss in adult life (Dennison, et al., 1999; 

Fall et al., 1998; Phillips et al., 1998). These data are compatible with hypotheses that 

stressors on the maternal body during intrauterine life alter the sensitivity of the 

epiphyseal plate to GH and cortisol. The effects of endocrine programming could lead to 

lower peak bone mass, potentially reduce bone mineralization, and predispose one to an 

accelerated rate of bone loss later in life (Cooper et al., 2002). 

 

Study Limitations 

The present study has several key limitations. First, participant sample sizes are 

small, particularly in the postmenopausal cohort, which limit statistical power; therefore, 

these data should be considered preliminary. Future data collection will augment the size 

of this cohort.  

Second, a number of postmenopausal women could not recall their age at 

menopause, which reduced the sample size and illustrates the limitation of retrospective 

studies. The current study is limited by a reliance on memory for information about past 

reproductive patterns. Relatively close birth spacing, high fertility rates, and 

infant/childhood mortality can make it difficult for participants to accurately recall 

information such as number of births, offspring age, and lactation patterns. These are 

common problems in human biology research that the current study attempted to control 

by corroborating information with relatives.  

Third, the present study was cross-sectional, which, although useful for obtaining 

a relatively large participant sample, provides only a snapshot of bone health. This 
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approach also impairs the ability to establish causality and to discern long-term changes 

in BMD.  

Finally, the influences of diet and physical activity were not addressed in the 

current study.  

 

CONCLUSIONS 

The present study demonstrated that early menarche and greater stature are 

associated with higher BMD among postmenopausal Shuar women. This result highlights 

the importance of early life history events and conditions for establishing phenotypic 

quality appear to extend late into adult life. Further, results suggest that the effects of 

lactation on skeletal health are transient during pre-menopausal years, and are effectively 

restored during weaning. The fertility patterns of Shuar women are vastly different than 

those of Western females, from whom most of current understanding of the relationship 

between reproduction and skeletal health are based. This study represents one of the few 

to investigate the reproductive effects on patterns of bone loss in a non-Western, 

subsistence based population. However, additional data from the Shuar are necessary to 

examine the trade-offs in this relationship in greater detail, and more cross-cultural 

studies approaching skeletal health within a life course perspective are needed.  

 

BRIDGE TO CHAPTER V 

Using a life-course perspective, Chapter IV presented data on Shuar reproductive 

patterns and examined their effects on physiology, specifically bone health. As discussed 

in the previous section, social and environmental conditions motivate the decisions 
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women make regarding the timing and duration of various reproductive factors, such as 

lactation. For pregnant and lactating women, access to social networks and allo-parents 

will invariably impact the decisions made about time allocation and participation in 

economic activities. The next chapter investigates another aspect of reproductive 

energetics in one Upano Valley community and documents the effects of women’s 

reproductive status on their own activity levels and those of their mates. Chapter V is 

predicated on the principle that several bio-behavioral strategies may be adopted by 

females in order to compensate for the high costs of reproduction and these strategies are 

ecologically and environmentally determined. This research employs accelerometry, a 

relatively recent technique developed for objectively measuring physical activity in free-

living populations. Chapter V concludes with a consideration of the utility of 

accelerometry technology to examine activity patterns and energy use regulation in 

human biology research.  
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CHAPTER V 

PHYSICAL ACTIVITY IN AN INDIGENOUS FORAGER-

HORTICULTURALIST POPULATION AS MEASURED 

USING ACCELEROMETRY 

This chapter is published as Madimenos FC, Snodgrass JJ, Blackwell AD, Liebert 

MA, and Sugiyama LS in the American Journal of Human Biology 23(4):488-497. 

Activity data collection was collected primarily by Madimenos in the Summer 2008 and 

2009 field seasons, with some assistance from Liebert in the Winter 2009 field season. 

Data analysis and write-up were conducted by the author of the dissertation. Blackwell, 

Sugiyama, and Snodgrass provided editorial assistance. 
 

INTRODUCTION 

In indigenous societies, increased market integration, defined as the 

commoditization of material, food, and labor (Lu, 2007), has been linked to changes in 

health outcomes such as obesity, type 2 diabetes, and hypertension (Baker et al., 1986; 

Friedlander et al., 1987; Huss-Ashmore et al., 1992; Snodgrass et al., 2007). Changes in 

energy dynamics, or more specifically, increased energy intake and reductions in energy 

expenditure, have been implicated in this health shift as populations transition from 

traditional subsistence economies to increasingly sedentary occupations. Numerous 

studies have documented dietary transitions (e.g., Monteiro et al., 1995; Popkin, 2006), 

yet relatively few studies have systematically measured physical activity in populations 
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undergoing economic development and lifestyle change. This is unfortunate given the 

importance of physical activity data for understanding the health effects of market 

integration and the increasing global prevalence of overweight and obesity.  

The relative lack of available data on activity patterns in subsistence-level 

populations partially reflects the difficulty of accurately quantifying habitual or “free-

living” physical activity under field conditions. Physical activity is typically measured 

using time allocation, doubly-labeled water (DLW), or heart rate (HR) monitors, but all 

these methods have distinct advantages and disadvantages (Snodgrass, 2011; Westerterp, 

2009). Most population-level studies of subsistence groups have used time allocation 

data, but this technique can underestimate energy costs, especially at high levels of 

physical activity (Leonard et al., 1997; Spurr et al., 1996). DLW, generally considered 

the “gold standard” for measuring free-living energy expenditure, estimates activity over 

a relatively long period of time (typically 7-10 days), is expensive and its high cost has 

limited its use in non-Western contexts (Coward, 1998). HR monitoring, on the other 

hand, is far less costly, but requires individual calibration of heart rate/energy expenditure 

relationships, which is time consuming and adds a significant measurement burden for 

participants.  

Recently, technological advances in accelerometry have given researchers a new 

tool for estimating total daily energy expenditure (TDEE) and physical activity level 

(PAL) under field conditions although, as with all methods, there are advantages and 

disadvantages to their use (Chen and Bassett, 2005; Plasqui and Westerterp, 2007; 

Snodgrass, 2011; Swartz et al., 2000). Accelerometers are electronic motion sensors 

typically worn at the waist that can objectively measure the intensity, frequency, and 
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duration of body movement. The devices are also durable, fairly non-intrusive, 

reasonably affordable, and allow for the estimation of activity variation on shorter 

timescales than possible using time allocation studies or DLW. Several models of 

accelerometers have been extensively validated (Blanton et al., 2005; Chen and Bassett, 

2005; Heil, 2006; Hoos et al., 2003; Plasqui and Westerterp, 2007), with data quality 

from accelerometers generally considered second only to DLW (Westerterp, 2009). 

While accelerometry has been widely applied in Western research contexts, particularly 

in clinical studies and among athletes, this technology has rarely been used in non-

Western field settings.  

An area of research where accelerometery could be particularly useful is in 

determining the effects of increasing market integration on patterns of energy expenditure 

and sexual division of labor. Most research to date suggests that a transition from a 

subsistence-based to market economy typically leads to reductions in female activity 

levels. For example, among Inuit from Igloolik, Canada, who were experiencing the 

initial stages of economic development, both males and females demonstrated a reduction 

in subsistence activities, although males maintained relatively higher activity levels than 

females (Shephard and Rode, 1996). In the Yakut (Sakha) of Siberia, a herding 

population that has experienced rapid economic development over the past decade, 

overall population activity levels were generally low, but they were considerably lower 

among females than males (Snodgrass et al., 2006). These sex differences in physical 

activity patterns are shaped by variation in subsistence participation and by other cultural 

factors. Even subsistence groups living in broadly comparable environments and with 

similar subsistence economies can have distinct physical activity levels. For example, the 
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Tukanoan women of Colombia have significantly higher activity levels than Brazilian 

Ribeirinha women (Dufour and Piperata, 2008) despite both populations living in 

Amazonian neo-tropical forest environments. This difference reflects inter-cultural 

variability in household sexual divisions of labor (i.e., male participation in harvesting 

activities), settlement patterns (i.e., proximity to gardens), and minor dietary differences 

(i.e., amount of processing of the cassava staple).  

 Since energy is a fundamental limiting resource that must be allocated to different 

somatic functions, an accelerometry-based energetics approach can provide a useful tool 

to investigate life history trade-offs such as the energy available for reproduction. An 

evolutionary life history framework has been useful in understanding the socio-

behavioral strategies adopted by subsistence populations for economizing energy 

expenditure during costly reproductive states such as pregnancy and lactation (Hill and 

Hurtado, 1996; Stearns, 1992). A small number of studies have addressed the various 

strategies used by rural women in subsistence-based economies, whose energy 

conserving options are more restricted than women from urban settings (e.g., Guillermo-

Tuazon et al., 1992; Piperata and Dufour, 2007). Among subsistence-based populations 

in Nepal (Panter-Brick, 1993) and Brazil (Piperata and Dufour, 2007), women decreased 

energy expenditure for subsistence activities, presumably as a means of offsetting their 

elevated energy needs for reproduction, even at the cost of reducing contributions to food 

production. In some contexts, a decrease in female economic contribution has been 

shown to prompt a compensatory increase in familial support or, more specifically, male 

provisioning. For example, Marlowe (2003) observed greater food returns from Hadza 
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hunter-gatherer men with pregnant and lactating wives, a socio-behavioral strategy that 

extends until the time of weaning.   

The present study was designed as a preliminary step towards addressing the data 

gaps outlined above by using accelerometry to document energetic patterns in the Shuar, 

an indigenous Ecuadorian forager-horticulturalist population. The goals of this study are 

to: 1) compare physical activity levels among the Shuar with other populations for which 

data are available; 2) investigate potential sex differences in physical activity and 

examine the effects of reproductive status on activity; and 3) discuss the advantages and 

disadvantages of accelerometer use in human biology research.  

  

MATERIALS AND METHODS 

Participants 

This study was conducted in one Ecuadorian Upano River Valley community 

located approximately forty minutes by truck from Sucua, the nearest major town center. 

Participants included 49 Shuar adult (14-66 years of age; 23 males, 26 females) 

volunteers, representing approximately 50% of the adult residents in the study 

community. Among the female participants, five were pregnant (P), ten were lactating 

(L), and eleven were non-pregnant/non-lactating (NPNL). Among the male participants, 

16 did not have pregnant or lactating wives while the remaining seven males did.  

All participants gave individual informed verbal consent, with both parental 

consent and child consent for subjects under 15 years old. Research was conducted from 

a Ministerio de Salud health center, and the study design was approved by village leaders, 
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the Federación Interprovincial de Centro Shuar (FISCH), and the Office for Protection 

of Human Subjects at the University of Oregon.  

 

 

Seasonality 

Data were collected over the course of three field seasons: August-September 

2008, February 2009, and August-September 2009. Activity data were recorded for each 

participant for one of the three field seasons. The months of data collection are all 

considered “dry” months (i.e., periods of moderate rainfall of approximately 300-

400mm) (Sirén, 2007). Furthermore, although neo-tropical in flora and fauna, the Upano 

River Valley region (located 1000 meters above sea level at the base of the Andes) 

experiences less rainfall and temperature variation across the year than in the Amazonian 

lowlands east of the Cutucu and, thus, our expectation is that activity will not vary as 

much seasonally as in some subsistence populations in other regions.   

 

 

Anthropometry 

 Participant stature (measured to the nearest mm) and weight (measured to the 

nearest 0.1 kilogram [kg]) were recorded using a field stadiometer (Seca, Hanover, MD) 

and digital scale (Tanita BF-558 electronic scale, Tokyo, Japan) respectively, according 

to established procedures (Lohman et al., 1988). Body mass index (BMI) was calculated 

by dividing body mass (in kg) by height (in meters
2
).  
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Physical Activity 

Physical activity was estimated using Actical accelerometers (Respironics, Bend, 

OR), one of the more widely validated monitoring devices (Plasqui and Westerterp, 

2007). Each monitor was initialized before placing it on the participant, which involves 

entering a start date and time into the Actical 2.1 software platform. During this 

initialization process, the participant’s sex, age, height, and weight were also entered. The 

Actical begins recording automatically at the designated start time and continues to 

record activity until the data are downloaded or the device memory reaches its limit 

(ranging from 11-45 days, depending on the user-defined epoch length selected). Each 

participant wore an Actical at the waist, positioned over their right iliac crest for at least 

two consecutive days irrespective of weekend or weekday. Participants engaged in their 

normal activities or those already planned, and kept the monitor on while bathing and 

sleeping. Following the activity recording period, the data from the Actical were 

downloaded to a computer. 

A shortcoming of the present study is that the number of days the device was 

worn, the time the device was initialized, and when the device was removed varied 

between participants. This limitation in the study design reflects the constraints of 

standardizing the collection of activity data from free-living populations living in remote 

environments. Participants lived various distances from the health center and although all 

individuals wore the device for at least two days, a few individuals were not available to 

remove the device at a precise time and continued to wear the monitor for several 

additional days. No participant wore the device for more than four days. The average 

number of days in which a device was worn was 2.51 days (SD = 0.681). Data were 
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averaged over standardized 24-hour periods, so the specific time the device was 

initialized or removed is unlikely to enter systematic bias in the data. 

The accelerometer devices record Activity Counts (AC), which represent the 

frequency and intensity of acceleration events that occur during user-defined epochs. The 

epoch length is the period of time the device will accumulate and record ACs, and then 

reset the counter to zero. Depending on the user preference, Actical epoch lengths may 

vary between 15 seconds and one minute; this option does not affect the actual 

accumulation of activity counts, only the detail of the data output. The significance of 

accelerometer epoch lengths will vary depending on the type of research being 

implemented. For example, shorter epochs are useful for studies examining short, 

sporadic bouts of activity as with research on children (e.g., Stone et al., 2009). Since the 

purpose of this study was to examine activity patterns over a period of a few days, the 

precise length of the epoch is not critical and therefore, the default setting, a 25-second 

epoch, was used.  

Although the Actical software converts ACs into caloric energy expenditure, two 

additional techniques are employed to estimate energetic parameters from raw 

accelerometry data: 1) a two-regression model by Heil (2006) to determine activity 

energy expenditure (AEE) based on ACs (averaged for the recorded days); and 2) total 

daily energy expenditure (TDEE) calculated as AEE + basal metabolic rate (BMR). 

BMRs for males and NPNL women were estimated using the Oxford predictive equations 

according to weight and age (Henry, 2005). BMR among pregnant participants was 

determined using an appropriate multiplication factor depending on trimester (Prentice et 

al., 1996). Using FAO/UNU/WHO (2004) guidelines, BMR changes in lactating women 
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were determined as approximately 675 kcal above their non-lactating metabolic 

requirements.  

Currently, there is no consensus on the best method for adjusting for the effects of 

body size and composition in energetics, although physical activity level (PAL; 

TDEE/BMR) is the most commonly used method of comparing activity data in human 

biology research. However, using PALs as a measure for pregnant women may be 

complicated by a progressively increasing BMR that occurs throughout the course of 

pregnancy. Thus, a woman participating in the same activities with similar duration and 

intensity would show a decline in PAL throughout her pregnant state. For this reason, we 

also present data for the activity variables AEE and AC in order to examine population-

level differences in activity.  

 

Statistical Analyses 

Pair-wise comparisons were conducted using independent samples t-tests, with 

two-tailed P-values and equal variance assumed. Variance components were assessed in 

R using the lme and VarCorr procedures from the package nlme. Age patterns were fit 

with thin-plate splines using generalized additive modeling (GAM) by using the gam 

procedure in the R package mgcv. ANOVAs were used to assess interactions between sex 

and the reproductive state of females in a household (i.e., pregnant, lactating, NPNL). 

Following ANOVAs, post-hoc comparisons were done using two-tailed t-tests. Statistical 

analyses were performed using a combination of SPSS 17.0 (SPSS, Inc.) and R 2.10.1 

(www.r-project.org).  
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RESULTS 

Descriptive statistics for age, anthropometric, and activity data are presented in 

Table 5.1. Men had significantly higher average AEEs (762 kcal/d vs. 573 kcal/d, t = 

2.56, P = 0.01), PALs (1.54 vs. 1.42, t = 2.24, P = 0.03), and ACs (290,064 vs. 224,900, t 

= 1.97, P = 0.05) than women. However, differences between men and women in TDEE 

(2176 kcal/d for men vs. 2033 kcal/d for women) and estimated BMR were non-

significant (1403 kcal/d for men vs. 1444 kcal/d for women). Controlling for sex, we 

tested for differences between activity parameters collected during August/September 

field seasons compared to the field season in February, and between activity levels from 

weekends (two day averages starting on Friday, Saturday, or Sunday) compared to 

weekdays. Activity levels from February were lower than activity levels in 

August/September (marginal means: AEE: 494 vs. 694 kcal/day, F1,45 = 6.32, P = 0.02; 

PAL: 1.37 vs. 1.46, F1,45 = 5.06, P = 0.03; AC: 199,052 vs. 265,847, F1,45 = 3.23, P = 

0.08). Activity levels from weekends were lower than weekdays, but this difference was 

not statistically significant (AEE: 525 vs. 662 kcal/day, F1,45 = 2.97, P = 0.09; PAL: 1.38 

vs. 1.48, F F1,45 = 2.62, P = 0.11; AC: 207,741 vs. 257,159, F1,45 = 1.78, P = 0.19).  

We used a random effects model to examine the variance in PALs between 

participants, and found that 22% of the variance in PALs was attributable to participant 

identity (variance participant = 0.013, SD = 0.11, Residual = 0.145, SD = 0.21). 

Similarly, a participant’s day one activity level was significantly correlated with his or 

her day two activity level (r = 0.37, P = 0.01). Although correlation coefficients between 

day 1 and day 2 activity levels are modest, Shuar in the study community engage in 

mixed subsistence and agricultural production, so day to day variability in activity 
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Table 5.1. Descriptive statistics for anthropometric and activity data
a,b 

Measure 

Males (n = 23) 

Mean (SD) 

Females (n = 26) 

Mean (SD) P 

Combined (n = 49) 

Mean (SD) 

Age (years) 32.7 (12.9) 27.8 (10.7) ns 30.1 (11.9) 

Height (cm) 155.6 (8.6) 146.0 (4.3) *** 149.5 (8.2) 

Weight (kg) 58.2 (10.5) 50.0 (8.2) *** 53.7  (9.9) 

BMI (kg/m
2
)

c 
23.8 (2.8) 23.4 (2.8) ns 23.6 (2.8) 

TDEE (kcal/d) 2176 (396) 2033 (374) ns 2100 (387) 

BMR (kcal/d)
d
  1403 (170) 1444 (318) ns 1425 (257) 

AC
e
 290,064 (128,589) 224,900 (102,905) * 255,000 (119) 

AEE (kcal/d)
f
 762 (290) 573 (227) * 661 (273) 

PAL
g
 1.54 (0.18) 1.42 (0.19) * 1.48 (0.19) 

 
a 
TDEE, total daily energy expenditure; BMR, basal metabolic rate; AEE, activity energy expenditure; 

PAL, physical activity level. 
b 
Differences between females and males are statistically significant at *P  <  0.05; ***P  < 0.001, ns = no 

significance. 
c
 Weight divided by height in meters squared (kg/m

2
). 

d 
Calculated using the Oxford equations (Henry, 2005). 

e
 Activity counts (AC) represent the frequency and intensity of acceleration events that occur during a user-

defined epoch. 
f 
AEE from activity counts based on two-regression equation (Heil, 2006). 

g 
TDEE/BMR. 

 

 

levels is expected, just as it would be under the traditional foraging economy.  

We examined the age and sex patterning of activity levels using GAM, and fit 

thin plate splines to the age pattern (Table 5.2; Figure 5.1). GAM determines the 

optimum degrees of freedom for the spline fit through GCV minimization. In the GAM 

models the overall effect of sex was significant (t = 2.29, P = 0.03). For females the 

optimum model included no age effect. For males, the overall effect of age was also non-

significant, but did include additional degrees of freedom (F = 1.61, estimated df = 3.44, 

P = 0.19). Examining a plot of the splines and individual data points (Figure 5.1) reveals 

that the AEE difference between males and females is driven largely by males in the 25 

to 35 year age category and that the only obvious age effect is within this age group. 

Examining only individuals age 25-35 years shows that males and females differed 
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significantly in AEE (t = 3.33, df = 17, P < 0.01), PAL (t = 3.05, df = 17, P < 0.01), and 

AC (t = 2.05, df = 17, P = 0.05), whereas sex differences in activity measures were non-

significant for other ages.  

 

Table 5.2. GAM models for age, sex, and reproductive status effects on AEE. 

 
Without Reproductive Status 

 
With Reproductive Status 

 
B SE t P 

 
B SE t P 

Intercept 572.60 49.49 11.57 <.01 
 

653.83 74.68 8.76 <.01 

Sex (Male) 166.62 72.93 2.29 .03 
 

0.73 96.62 0.01 .99 

PL 
     

-136.84 96.27 -1.42 .16 

Sex (Male) x PL 
     

473.82 145.41 3.26 <.01 

 
edf Ref.df F P 

 
edf Ref.df F P 

S(Age) Females 1.00 1.00 0.00 .99 
 

1.00 1.00 0.05 .83 

S(Age) Males 3.44 4.24 1.61 .19 
 

1.00 1.00 0.21 .65 

Model R
2
 (adj) .18 

    
.23 

   

 

When the effect of pregnancy and lactation on activity levels was examined, a 

clearer picture of the sex differences in activity profiles emerged. We coded a variable 

indicating whether the individual (for females) or the individual’s partner (for males) was 

pregnant or lactating (PL) and included this in our GAM (Table 5.2). Including this 

variable eliminated the age effect and revealed a significant interaction between having a 

PL female in the household and sex differences in AEE (B = 473 kcal/d, t = 3.26, P < 

0.01). Removing the age terms from the model, we ran two-way ANOVAs on AEE, AC, 

and PAL with sex and the PL variable. The interaction between sex and family 

reproductive status was highly significant for each activity measure (PAL: F1,45 = 18.8, P 

< 0.01; AEE: F1,45 = 10.9, P < 0.01; ACs: F1,45 = 6.0, P = 0.02). Including variables for 

season of collection and whether the data was collected on a weekend did not  
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Figure 5.1. Activity energy expenditure (kcal/d) by sex and age. Lines are thin plate 

splines from the generalized additive model in Table 2 that does not control for 

reproductive status. Solid lines and circles are females, while dashed lines and triangles 

are males. Lighter colored lines are 95% confidence intervals for the spline value. Note 

that confidence intervals for males and females overlap except for ages from ~25 to ~35. 

 

significantly alter these results (PAL: F1,43 = 15.96, P < 0.01; AEE: F1,43 = 8.45, P < 0.01; 

ACs: F1,43 = 4.46, P = 0.04). Moreover, neither season nor weekend remained significant 

in any model. 

We next ran post-hoc pairwise comparisons between groups (Figure 5.2). In 

households without a pregnant or lactating female there were no significant sex 
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differences in activity levels. In families where the female was either pregnant or 

lactating, males had significantly higher activity levels than females (AEE: t = 4.79, P < 

0.01; PAL: t = 5.80, P < 0.01; AC: t = 3.28, Bonferroni corrected P < 0.01). Compared to 

males without PL partners, males with PL partners had significantly higher AEEs  

 

 

Figure 5.2. Mean activity energy expenditure (AEE) by sex and reproductive status. 

Error bars are 95% confidence intervals for the mean. Two-tailed t-tests were used for 

pairwise comparisons between males and females in each reproductive category and 

between reproductive status within each sex. A Bonferroni correction was applied to P-

values to account for multiple testing. Non-significant P-values are not shown. 

 

(t = 2.95, Bonferroni corrected P = 0.01), and PALs (t = 2.42, Bonferroni corrected P = 

0.05), but not higher ACs (Table 5.3). PL females had lower PALs than non-PL females 
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(t = 3.86, P < 0.01) but not AEEs or ACs. Table 5.4 presents descriptive statistics for 

females based on reproductive status and illustrates that group differences are not the 

result of activity levels but rather the higher BMRs found in the PL sub-group.  

 Of the 49 study participants, 13 had partners who were also in the study. These 

included five monogamous couples and one male with two wives. Of these, four women 

were pregnant or lactating and three were not (Figure 5.3). Note that the male in couple 3 

is polygynous: he lives primarily with female 3, but is also married to female 4, who lives  

in a house a short distance away. Both females were lactating at the time of the study. 

Couple 6 is a young NPNL pair and appears to follow the pattern of PL couples; this 

characteristic may be explained by their ownership of a small store where they sell a 

small amount of basic market goods including noodles, rice, eggs, soap, and oil. The 

NPNL wife often tends the store while caring for her two young children, which may 

account for why her activity level is relatively low compared to that of her husband. 

Although the sample size is small, a trend towards higher activity output by males with 

PL counterparts is evident. 
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Table 5.3. Descriptive statistics for males with pregnant or lactating partners (PL) 

compared to males without PL partners
a,b 

 

Measure 

Males without PL 

partners (n=16) 

Mean (SD) 

Males with PL 

wives (n=7) 

Mean (SD) 

P 

Age (years) 33.4 (15.4) 31.0 (4.4) ns 

Height (cm) 154.2 (9.7) 158.8 (4.8) ns 

Weight (kg) 55.1 (10.7) 65.4 (5.0) * 

BMI (kg/m
2
)

c 
22.9 (2.6) 26.0 (1.8) * 

TDEE (kcal/d) 2035 (347) 2498 (313) * 

BMR (kcal/d)
d
  1360 (174) 1505 (112) * 

AC
e
 263,493 (116,902) 350,798 (142,398) ns 

AEE (kcal/d)
f
 661 (242) 993 (267) * 

PAL
g
 1.48 (0.16) 1.66 (0.17) * 

 

 

 

 

Table 5.4. Descriptive statistics for females during various reproductive states
a,c 

Measure 

Pregnant (n=5) 

Mean (SD) 

Lactating (n=10) 

Mean (SD) 

NPNL (n=11) 

Mean (SD) 

 

P 

Age (years) 24.4 (4.5) 31.6 (7.3) 25.9 (14.3) ns 

Height (cm) 148.2 (4) 146.7 (4.4) 144.3 (4.0) ns 

Weight (kg) 54.1 (7.3) 50.6 (8.4) 47.6 (8.2) ns 

BMI (kg/m
2
)

c 
24.6 (2.8) 23.4 (2.7) 22.8 (2.9) ns 

BMR (kcal/d)
d
  1416 (193) 1769 (194) 1161 (99) *** 

TDEE (kcal/d) 1927 (340) 2331 (234) 1811 (325) *** 

AC
e
 191,847 (121,662) 193,014 (67,560) 268,912 (112,910) ns 

PAL
g
  1.36 (0.15) 1.3 (0.08) 1.55 (0.2) * 

AEE (kcal/d)
f
 511 (238) 519 (180) 650 (257) ns 

 
a 
TDEE, total daily energy expenditure; BMR, basal metabolic rate; AEE, activity energy expenditure; 

PAL, physical activity level. 
b 
Differences between the groups indicated are significant at p  <  0.05 in an independent samples t-test with 

equal variance assumed; ns = no significance. 
c
 Differences between females are statistically significant at *P  <  0.05; ***P  < 0.001; ns = no 

significance. 
d
 Weight divided by height in meters squared (kg/m

2
). 

e 
Calculated using the Oxford equations (Henry, 2005). 

f
 Activity counts (AC) represent the frequency and intensity of acceleration events that occur during a user-

defined epoch. 
g 
AEE from activity counts based on two-regression equation (Heil, 2006). 

h 
TDEE/BMR. 
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Figure 5.3. Activity energy expenditure (AEE) in kcal/d for married couples for which 

both partners participated in this study.  

 

 

DISCUSSION 

The present study used accelerometry to investigate physical activity patterns in 

Upano River Valley Shuar who are currently undergoing rapid economic development 

and lifestyle change. Despite the shift towards increasing market integration, Shuar from 

the region continue to be dependent on subsistence activities, particularly horticultural 

production. Most people in the study community actively engage in subsistence activities, 

spending most mornings and afternoons at their chacras (gardens) cultivating the land 

and harvesting cassava (yuca), plantains, papa china (a local tuber), maize, legumes, and 

other staple foods. 
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Physical activity levels for Shuar males are approximately 1.54, while Shuar 

females exhibit significantly lower PALs of 1.42. Based on FAO/WHO/UNU (2004) 

standards, average PALs among the Shuar are within the light (PAL ~1.4) to moderate 

(PAL ~1.75) range. Other measures of physical activity, including AC and AEE, were 

also significantly lower among females than males.  

It is difficult to compare activity profiles between the Shuar and other subsistence 

populations since other energetics studies have used a variety of different techniques to 

assess physical activity (e.g., DLW, HR monitors, and time allocation). Few studies to 

date have used accelerometry to estimate energy expenditure in remote field settings. 

Further, because various types of accelerometers generate different output (e.g., uni-axial 

versus tri-axial accelerometers), comparing activity levels between studies using different 

types of accelerometers can also be problematic. Converting activity counts into common 

energetic parameters using published regression equations is one means of overcoming 

the obstacle of comparing between accelerometer types. However, comparisons between 

populations using different activity techniques will always introduce error so results must 

be interpreted with caution. Nevertheless, these problems of inter-study comparison are 

not limited to this study. Until researchers employ a standardized means of recording 

activity data, or systematize analytic procedures for cross-methodological comparisons, 

such approaches remain essential in order to address important issues in human biology, 

including those related to global health. 

 Shuar activity values are low when compared to other subsistence populations 

(Table 5.5). Using the DLW method, Snodgrass et al. (2006) found that among the 

indigenous Yakut of Siberia, individuals who participated in fewer subsistence activities 
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had significantly lower activity levels and consumed a greater percentage of market foods 

than individuals with more traditional lifestyles. The Shuar participant community is in 

the process of transitioning towards a market economy, so low activity levels might be 

similarly related to decreased participation in subsistence behaviors and increased market 

good consumption. However, among Gambian (Lawrence and Whitehead, 1988) and 

Andean Aymara (Kashiwazaki et al., 1995) rates of energy expenditure were attributed 

not to short bursts of intensive activity, but to extended periods of activities with 

moderate energy cost. In fact, in a comparison of activity levels across populations in 

developing countries, Dufour and Piperata (2008) show that subsistence activities may 

not necessarily involve high, though highly variable, energy expenditure, and therefore 

they caution researchers from making generalizations about the energy needs of 

subsistence-based lifestyles. Lower than expected activity values among the Shuar may 

therefore be explained by a focus on habitual tasks of long duration requiring relatively 

low energy output (e.g., gathering legumes, clearing weeds from chacras, or processing 

yuca for the production of chicha [a locally-made fermented beverage]). Alternately, the 

low values could be due to the fact that Shuar activity was measured only during dry 

season months. Although we documented variation in activity levels across the dry  

season, it seems unlikely that wet season activity levels would be higher, given that Shuar 

devote less time to hunting, fishing, and garden clearing activities during this rainier 

period. Future data collection is necessary to test this proposition.  
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Sex Differences in Activity Patterns 

 Energetics provides a powerful tool with which to study life history trade-offs 

under different ecological conditions (Snodgrass, 2011). Life history theory examines the 

age- and context-dependent resource allocations that organisms make between competing 

demands such as growth, reproduction, and somatic maintenance (Charnov and Schaffer, 

1973; Gadgil and Bossert, 1970; Hill and Hurtado, 1996; Hill and Kaplan, 1999; Lessels, 

1991; Stearns, 1976). For successful reproduction, women in subsistence-level societies 

must allocate sufficient resources to energy intensive pregnancy and lactation for 

extended periods of time, while simultaneously maintaining essential metabolic function 

and the physical activity levels necessary to acquire food, care for offspring, and engage 

in other critical daily activities (Bogin, 1999; Ellison, 1994; Hrdy, 1999). Biological and 

behavioral strategies regulating the balance of energy allocation to costly reproductive 

effort (e.g., pregnancy and lactation) and the energetic costs of food acquisition, somatic 

maintenance, and parental investment are therefore expected to have evolved. Strategies 

may involve increasing dietary intake or minimizing energy expenditure, such as through 

adjusting metabolic efficiency, drawing on fat stores, or reducing activity costs (Piperata, 

2009; Piperata and Dufour, 2007; Ulijaszek, 1995). Adoption of any of these energetic 

strategies may be dependent upon the degree of social support available to the woman, 

including from husbands or older non-reproductive aged offspring who contribute 

substantially to the high costs of child-rearing. This investment from other community 

members would support heightened energy demands during critical reproductive periods 

by way of provisioning for young infants and mothers themselves (Hill and Hurtado, 

2009; Hrdy, 2005; Marlowe, 2003; Meehan, 2009; Reiches et al., 2009). From this  
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Table 5.5. Activity profile comparison between the Shuar and published data sets
a
 

Population Source Method
b 

Sex n 
Age 

(years) 

Weight 

(kg) 

TDEE
 

(kcal/d) 

AEE 

(kcal/d) 

BMR 

(kcal/d) 
PAL 

Activity 

Level
c 

Shuar This study ACC 

M 23 32.7 (12.9) 
58.2 

(10.5) 

2175.6 

(395.5) 

761.8 

(289.5) 

1403.3 

(169.6) 
1.54 L 

F 26 27.8 (10.7) 
50.0 

(8.2) 

2033.2 

(374.4) 

572.7 

(227.3) 

1443.7 

(317.8) 
1.42 L 

Coastal 

Ecuadoreans 

Leonard et 

al., 1995 
HRM 

M 5 49 (19) 
61.3 

(9.2) 

2414.7 

(353.5) 
885.7 1529 1.58 L-M 

F 5 34 (16) 
55.7 

(11.5) 

1992.0 

(138.5) 
767 1225 1.63 L-M 

Highland 

Ecuadoreans 

Leonard et 

al., 1995 
HRM 

M 11 32 (12) 
61.3 

(9.2) 

3807.2 

(759.5) 
2207.2 1600 2.39 H 

F 11 40 (13) 
55.7 

(11.5) 

2457.7 

(707.0) 
1205.7 1252 1.97 H 

Ache 

(Paraguay) 

Hill et al., 

1984; 

Leonard and 

Robertson, 

1992 

TIME 

M n/a n/a 59.6 3327 1796 1531 2.17 H 

F n/a n/a 51.8 2626 1232 1394 1.88 H 

Yakut 

(Siberia) 

Snodgrass et 

al., 2006 
DLW 

M 14 33.3 (9.8) 
72.2 

(14.5) 

3100.9 

(1939.0) 

1254.3 

(168.7) 

1848.7 

(69.1) 
1.68 L-M 

F 14 31.4 (9.6) 
65.2 

(19.5) 

2297.7 

(124.7) 

765.5 

(84.8) 

1533.9 

(65.0) 
1.5 L 

Burkina 

Faso 

Bleiberg et 

al., 1981 
TIME 

M 11 45 (3.32) 
56.5 

(1.75) 

2261 

(67.4) 
n/a n/a 1.36 L 

F 14 30.6 (2.63) 
49.9 

(0.92) 

2144 

(49.1) 
n/a n/a 1.54 L 
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Table 5.5. (continued) 

 

!Kung 

(Botswana) 

Lee, 1979; 

Leonard and 

Robertson, 

1992 

TIME 

M n/a n/a 46 2319 936 1383 1.68 L-M 

F n/a n/a 41 1712 613 1099 1.56 L 

Huli (PNG) 
Yamauchi et 

al., 2001 
HRM 

M 15 n/a 
63.6 

(7.3) 

3138 

(506.4) 
1434 1704 1.84 M-H 

F 12 n/a 
53.3 

(7.6) 

2639 

(621) 
1248 1391 1.88 H 

 
a 
Means (SD), 

b 
ACC, accelerometry; HRM, heart rate monitors; TIME, time allocation; DLW, doubly labeled water,  

c 
Activity level is determined 

using the FAO/WHO/UNU (2004) classification system of light (L), moderate (M), and heavy (H) activity levels. 
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 perspective, female reproduction and energy dynamics may be better understood within 

the dynamics of a larger cooperative reproductive effort, which would take into account 

familial energetics or, at the very least, those of mating partners. 

The present study was a preliminary investigation of the utility of accelerometry 

to study potential sex differences in energy expenditure and considered activity patterns 

based on reproductive status. Males had significantly higher PALs than females, but as 

over half of the women in the study were either pregnant or lactating, using PALs are 

problematic when comparing between sexes. When AC and AEE were used as the energy 

parameters, significant sex differences were maintained.  

Male AEE was more variable than female AEE, with female activity values 

generally clustering under 600 kcal/d. Male activity peaked between the ages of 25-35 

years. Almost all pregnant and lactating females fell into this age category; they also 

produced the lowest total energetic output in the study population. There were no 

significant differences in energetic output, as measured by AEE and AC, between 

females who were pregnant or lactating and those who were not. PALs did vary 

significantly between PL and NPNL females, a difference attributable to the higher BMR 

costs of energetically costly reproductive states. Interestingly, while BMR requirements 

are higher in PL women, their work output is fairly constant, comparable to that of NPNL 

female participants. A more critical observation is the significantly higher activity levels 

among males with PL partners compared to other males. Although the sample size is 

small, the data suggest that while the higher basal metabolic costs for PL females do not 

cause a decline in their energy expenditure, it appears to incite a compensatory increase 

in the activity output of male partners. 



169 

In some subsistence populations, women reduce energy expenditure during 

pregnancy and lactation, which appears to at least partially offset elevated energy needs 

(Panter-Brick, 1993; Piperata and Dufour, 2007). A decrease in female economic 

contribution can present costs to household production and, therefore, may prompt a 

compensatory increase in male provisioning as noted among the Ache and Hiwi foragers 

(Hurtado et al., 1992) and the Hadza hunter-gatherers (Marlowe, 2003). Our data suggest 

that the increased energetic needs of pregnant or lactating females initiates behavioral 

changes, not by a reduction in activity output by females themselves, but rather through 

an increase in the activity levels of other family members, more specifically, their male 

partners. The necessity to contribute to work output may demand women to maintain 

their baseline activity patterns while men are increasing their own economic contribution 

as a means of offsetting their partner’s up-regulated metabolic costs.  

Although the sample size in this preliminary study is small, the low PALs, AEEs 

and ACs among pregnant and lactating women coupled with significantly higher activity 

levels among men with pregnant or lactating partners suggest a cooperative effort to cope 

with high maternal energy demands. Despite the rapid shift towards increasing market 

integration among Shuar in the Upano Valley, the results of the present study are 

consistent with data from other subsistence-based populations in which male and 

children’s subsistence activities appear to be critical for supplementing women’s 

energetic needs during pregnancy and lactation (e.g., Ivey, 2000; Marlowe, 2003; Reiches 

et al., 2009). Although these data logically fit well with a cooperative breeding model of 

human reproduction (Hill and Hurtado, 2009; Hrdy, 2000), it should be emphasized that 

our results are based on a small sample, and further research is needed to confirm them. 
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Nevertheless, the results do indicate the potential utility of accelerometry for 

investigating such issues. 

 

Field Methods of Measuring Physical Activity 

Measurement of physical activity outside of a laboratory setting is notoriously 

difficult and no method is without problems (Snodgrass, 2011). A variety of methods are 

available for estimating physical activity levels and TDEE, the most accurate of which is 

the doubly labeled water (DLW) technique. DLW yields a measure of TDEE over the 

course of 1-2 weeks, based on the elimination rates of two labeled stable isotopes from 

the body. This technique is generally accepted as the most accurate measure of energy 

expenditure among free-living humans, and has been used extensively in clinical studies 

in industrial nations (Black et al., 1996; FNB/IOM, 2002; Speakman, 1997). DLW 

provides an excellent basis for analysis of average TDEE across longer timescales and is 

particularly useful for characterizing and comparing general activity levels between men 

and women, or between populations. Unfortunately, the high cost of DLW has limited its 

use in populations in the developing world (Coward, 1998). When data are available from 

non-Western groups, sample sizes are generally small (less than 50 individuals), which 

makes comparisons between populations problematic. Further, DLW does not provide 

information on daily or hourly fluctuations in energy use, or the energy costs associated 

with specific activities.  

The time allocation technique is the most commonly used method for estimating 

activity levels in subsistence populations and can provide a record of daily or hourly 

changes in activity. This method estimates physical activity by either observing or using 
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interview techniques to estimate the amount of time an individual spends in different 

activities, and combining this with published information on energy costs of each activity 

(e.g., FAO/WHO/UNU, 2004; James and Schofield, 1990; Ulijaszek, 1995). Summing 

the results for one day thereby provides an estimate of TDEE. However, published values 

for the energy costs of different activities are typically based on only a few individuals 

and no data exist for many common activities researchers observe in field settings. In 

addition to being time and labor-intensive, the time allocation technique often 

substantially underestimates energetic parameters, since it does not record many 

involuntary activities (e.g., fidgeting). This method is most inaccurate at moderate to high 

activity levels, often underestimating TDEE by at least 15% (Kashiwazaki et al., 2009; 

Leonard et al., 1997; Spurr et al., 1996). 

Heart rate (HR) monitoring can also be used to estimate physical activity, based 

on the known relationship of HR to energy expenditure. The HR monitor records HR at a 

designated interval (e.g., every minute) while participants wear the monitors during 

waking hours over the course of several days. At the end of the measurement period, HR 

data is downloaded from the instrument and energy expenditure is calculated. Despite 

proven accuracy of the measurement compared to DLW (e.g., Kashiwazaki, 1999), there 

are also limitations to this technique. For example, in order to obtain accurate results, one 

key issue involves the need for individual calibration of HR with energy expenditure. 

This process requires the relationship of HR to energy expenditure to be established for 

each individual both at rest and during graded sub-maximal exercise (Leonard, 2003). 

Technological advances in accelerometry promise to help overcome some of the 

challenges of affordably quantifying physical activity under field conditions. 
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Accelerometers can objectively measure the movement of the body by detecting and 

recording acceleration in one or multiple planes (Chen and Bassett, 2005; Gerdhem et al., 

2008; Heil, 2006). The devices are durable, non-intrusive, relatively inexpensive, and can 

provide detailed information on physical activity patterns, including the duration and 

intensity of activity. Several accelerometer devices, including the Actical, have been 

validated and show a high correlation with oxygen consumption and DLW (Heil, 2006; 

Hoos et al., 2003; Plasqui and Westerterp, 2007). However, it is important to note that 

most accelerometer validation studies to date have been conducted in laboratory-based 

samples of participants from industrialized nations. 

The Actical is one of the more extensively validated commercially available 

accelerometer devices (Plasqui and Westerterp, 2007). Acticals are small, rugged data 

loggers, equipped with a highly sensitive multi-directional accelerometer. The ability to 

sense motion in more than a single plane is an advantage for measuring complex human 

movements (Heil, 2006). The Actical accelerometer generates a variable voltage based on 

amplitude and frequency of motion and produces an electrical current that varies in 

magnitude. An increase in the intensity of motion will result in an increase in voltage; 

this information is integrated over a user-selected epoch and recorded in onboard memory 

in the form of “Activity Counts.”  An activity count (AC) is an arbitrary dimensionless 

unit that varies between different brands of accelerometer devices, so direct comparisons 

of raw activity counts from assorted devices are not inherently meaningful. However, 

ACs can be used to calculate AEE or TDEE using the device software or through 

accelerometer-specific published regression equations allowing for cross-methodological 

comparisons yet, as noted earlier, with limitations.  
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As with other means of activity recording there are restrictions to using 

accelerometry to determine activity levels and energy expenditure. These limitations vary 

with the type of device used and how it is utilized. For example, placement at the hip 

captures gross body movement but may be less sensitive to upper body movements or the 

energetic costs associated with load-carrying, which may result in underestimations of 

physical activity output (Swartz et al., 2000). Nevertheless, several studies have 

documented the validity of hip-placed activity monitors for estimating whole-body 

energy expenditure when compared to alternative sites such as the wrist and ankle 

(Freedson et al., 1998; Hendelman et al., 2000; Swartz et al., 2000). Another limitation is 

that accelerometers do not provide the context of activity, although this may be obtained 

by simultaneously incorporating other techniques (e.g., daily recall or direct observation). 

Further, as mentioned earlier, an issue with accelerometer devices that can be extended to 

all types of activity monitors is that comparison of activity across populations using 

different models of accelerometers will entail greater measurement error than will studies 

that use the same device, thus small but statistically significant differences must be 

interpreted cautiously. However, if one is interested in documenting relative activity 

differences within a population using identical devices and methods, these are minor 

limitations.  

The current study represents a preliminary step towards greater use of 

accelerometry in non-clinical, non-Westernized contexts. The results presented here are 

consistent with predictions based on a life history theory approach to understanding 

energetics, thus illustrating the potential usefulness of accelerometer devices in 

addressing such questions. Clearly, at this preliminary stage, comparisons of activity 
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patterns with other populations must be interpreted with caution. However, given the 

importance of recognizing how shifts in energy expenditure can inform emerging global 

health issues, and the scant nature of these data from subsistence-level populations, 

researchers must overcome the urge to wait until a perfect dataset is available prior to 

reporting their findings. 

 

CONCLUSIONS 

The present study investigates energetic patterns in an Ecuadorian Shuar 

community undergoing rapid economic development and lifestyle change. It provides 

preliminary evidence that activity levels in this transitioning Shuar community are 

modest, especially when compared with other subsistence populations. This study also 

investigated life history trade-offs related to female reproductive status. With regard to 

the Shuar participant community, it suggests that female reproduction and energy 

dynamics may be better understood within the dynamics of a larger cooperative 

reproductive effort, including that of mating partners. Despite a shift towards market 

integration, Shuar pregnant and lactating females may adopt a cooperative strategy noted 

in other subsistence-based populations where male participation in subsistence activities 

is higher in order to compensate for their partners’ elevated reproductive costs. Finally, 

this study demonstrates the promise of accelerometry use under field conditions and 

argues that despite some limitations, this technique offers useful information regarding 

population-level activity patterns. 
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BRIDGE TO CHAPTER VI 

In Chapter V, I examine the behavioral strategies that may be adopted by Shuar 

participants in an Upano Valley community in order to meet the costs of female 

reproduction. Pregnant and lactating females seem to be adopting a strategy noted in 

other subsistence populations where male participation in subsistence activities increases 

to compensate for their partners’ elevated reproductive costs. Chapter V also shows that 

among Shuar in this study, activity levels not as high as one might assume for a 

subsistence-based population and in fact, are relatively low compared to other non-

Western populations. This chapter also explored the utility of accelerometry in human 

biology research. In the final concluding chapter, I further develop the connections 

between the studies in this dissertation and present general conclusions from these 

studies. 



 
 

176 
 

 

 

 

CHAPTER VI 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

A basic tenet of life history theory is that organisms face trade-offs in the 

allocation of resources between competing demands. Natural selection has shaped 

mechanisms that generate age and context dependent strategies that regulate these 

investments across the life course. In an energy-restricted environment, fundamental 

trade-offs generally exist among the processes of somatic growth and maintenance, and 

reproduction. For women, in particular, reproductive effort entails exceptionally high 

costs to support the fetus during pregnancy and the infant during lactation, and this often 

leads to reduced energy and nutrients available for growth and somatic maintenance.  

The overarching goal of the studies presented in this dissertation was to examine 

the biocultural adjustments that Shuar females make in response to these elevated 

energetic and nutrient costs of reproduction; for this reason, life history theory serves as 

the critical organizing paradigm of this dissertation. The first research objective was to 

examine trade-offs in energy use during critical female reproductive states, and the 

biosocial accommodations that are made in response to the high costs of these states. 

Specifically, this objective was achieved by investigating the relationship between 

reproductive variables and skeletal health among Shuar females, and by documenting the 
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behavioral adjustments made by women and their partners to offset the high energetic 

needs of reproduction. The second objective was to investigate sex- and age-related 

patterns of bone density among Shuar, as well as neighboring non-Shuar Colonos, and to 

establish a profile of activity patterns for the Shuar population.  

In this concluding chapter, I synthesize the themes discussed in preceding 

chapters, and outline important avenues for future research. 

 

SYNTHETIC OVERVIEW 

In Chapter III, I presented a normative sex and age-related bone health profile for 

Indigenous Shuar and non-indigenous Colono populations. Minimal data are available on 

bone health from populations living in developing countries, and no normative datasets 

were previously available for either population. The results from this study demonstrate 

that both Shuar and non-Shuar Colonos experience age-related declines in bone density 

similar to those found among Western populations. These results contribute to cross-

cultural data on skeletal health, and provide support for age-related influences on bone 

loss. Of course, more cross-cultural data from non-industrialized groups are necessary to 

elucidate the extent to which advanced age affects bone integrity within and across 

populations. However, while the gradual decline in bone health with age appears to be a 

universal aspect of the human condition, osteoporosis is not an inevitable end result. This 

condition may be curtailed by adjusting modifiable factors (e.g., lifestyle, activity, diet) 

that contribute to the peak amount of bone attainable and the rate of bone loss in 

adulthood.  
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Compared to other reference populations, Shuar have relatively high peak bone 

mass values, which afford them greater bone health values throughout life; similar 

patterns were found for Shuar women, although values decline in the postmenopausal 

years. Among Shuar men, relatively higher BMD is a stable characteristic even in 

advanced age; among Shuar women, BMD values are consistently higher than among 

Colono women, until peri-menopause. As in other populations, the onset of menopause 

appears to be associated with more rapid decrease in bone density, although it is 

important to remember that pre-menopausal Shuar women have higher bone mass than 

found in most other populations. Furthermore, the Shuar postmenopausal sample size is 

significantly smaller than the Colono group, so the extent to which the pattern of BMD 

values observed in postmenopausal Shuar women can be generalized to the larger 

population must be tested in future research by increasing the sample size of this cohort. 

The relatively high bone density values documented among Shuar, particularly 

males, compared to other global reference populations is a particularly important result 

from Chapter III. This result makes a compelling case for reconsideration of what 

constitutes “normal” bone health in Western countries, and how bone density values 

should be interpreted for diagnostic purposes. As discussed in Chapter II, skeletal and 

general health profiles from Western industrialized populations reflect the collision of 

modern lifestyles with the ancestral Homo genome; specifically, poor-quality diets, 

reduced activity levels, and demographic shifts from high to low fertility, have major 

effects on many aspects of contemporary health. Shuar bone density data illustrate that 

the upper achievable limits of skeletal health may be inhibited by dietary, lifestyle, and 

reproductive factors in Western populations. A further empirical examination of the 
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dynamic influences of these factors on skeletal health among the Shuar is clearly 

necessary (see below: Activity Patterns and Bone Density; Lifestyle Factors and Bone 

Density).  

Chapter IV systematically investigated hypotheses regarding female reproductive 

variables and their effects on bone density. In general, existing data that examine this 

relationship are inconsistent, although research has been largely based on Western, 

industrialized populations. There is a paucity of data from natural fertility subsistence 

populations, which is a critical oversight since reproductive patterns in many of these 

groups are vastly different from industrialized populations. Thus, the effects of high 

fertility and prolonged lactation on female skeletal health have been largely ignored in 

the literature, potentially obscuring the current understanding of the relationship between 

reproduction and BMD. Based on empirical evidence and understandings of the system 

of calcium turnover during various reproductive states, the hypotheses that were tested in 

Chapter IV included: 1) women with earlier menarcheal age will have higher BMD; 2) 

women with an older age at first parturition will have higher BMD; 3) women with more 

protracted periods of lactation will have lower BMD; and 4) women with longer IBIs will 

have greater BMD.   

The most interesting result finds support for the first hypothesis, that is, that 

earlier menarche is associated with higher BMD later in life. This finding emphasizes the 

importance of early environmental and energetic conditions for regulating the timing of 

reproductive phases, which in turn, plays an integral role in establishing female bone 

status later in life. Two explanations accompany this finding. First, girls who experience 

early menarche are exposed to more cycles with fluctuating estrogens than girls with 
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delayed maturation. These estrogens will help to maintain bone mass during the course of 

their expanded reproductive life, and therefore the relationship between early menarche 

and higher postmenopausal BMD may be partly attributed to shifts in these hormones. 

Secondly, as noted in chapter II, human females exhibit determinate growth, with 

investment in longitudinal growth being reduced with the onset of menarche; this 

developmental stage marks the first major energetic investment into reproduction. 

Because positive energy balance (energy intake > energy expenditure) is critical for the 

onset of menarche, better nutritional status is not only related to greater stature, but to 

earlier menarche as well
1
. The finding that early menarcheal age is predictive of 

postmenopausal bone density suggests that bone phenotype responds to these early 

environmental conditions, and is then canalized into a trajectory of higher BMD, despite 

transient perturbations during the lifetime. For future research, the importance of early 

life stages in establishing phenotypic quality throughout the life span emphasizes the 

importance of conducting skeletal health research among children and adolescents (see 

below: Developmental and Early Childhood Origins of Bone Density). 

Confirming the second hypothesis, age at first parturition was positively 

associated with bone density among pre-menopausal lactating women, although not for 

postmenopausal women. Again, this may reflect a classic age-related trade-off between 

somatic and reproductive investment, with bone density traded off against reproduction. 

As discussed in Chapter IV, trade-offs between skeletal growth and early reproduction 

                                                           
1
 Some studies demonstrate that social and life history factors, such as extrinsic mortality risk, also appear 

to shape decisions of allocation. For example, because of a higher extrinsic mortality risk, an organism may 

anticipate a shorter life and therefore invests less into body size gain and accelerates maturation to ensure 

reproductive fitness (e.g., Ellison et al., 1993; Gluckman and Hanson, 2006; Jasienska et al., 2006). 
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have been documented in several studies (e.g., Hayslip et al., 1989; Kent et al., 1990; 

Kent et al., 1993; Sowers et al., 1993). Rooted in the principles of life history, bone 

density phenotype appears to be canalized by the timing of early life history events—a 

later age at first reproduction may allow more time for investment in accruing bone 

density, thereby affording these females higher bone density. In contrast, an early age at 

first pregnancy may channel energy and/or nutrients away from bone density investment.  

 The third and fourth hypotheses are inter-connected since lactation patterns shape 

IBI in natural fertility populations. Therefore, IBI and lactation are considered jointly 

here. Although cross-sectional rather than longitudinal, Chapter IV shows that the effect 

of lactation on bone density appears to be short-term and transient, with no significant 

long-term effects on bone density in postmenopausal life. In general, epidemiological and 

clinical research conducted with women from industrialized populations reach similar 

conclusions, showing that decreased bone density during lactation is recovered during 

weaning (e.g., Karlsson et al., 2005; Laskey and Prentice, 1997). This pattern of bone 

recovery demonstrates that the system of calcium turnover has evolved relatively 

efficient mechanisms to avoid potential depletion of maternal bone density over the 

course of the reproductive period. The evolution of such mechanisms is further supported 

by the finding that short IBIs did not have a deleterious impact on Shuar maternal skeletal 

health either in the pre- and postmenopausal life.  

Chapter IV also shows that, in addition to lactation, parity has no significant 

effect on skeletal health among Shuar women, although this was not presented as a 

specific hypothesis. Independent of the influence of lactation, past studies have presented 

mixed results regarding the effects of offspring number on maternal BMD. While some 
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studies find a positive association between multiparity and bone health, perhaps due to 

the protective effects of increased intestinal calcium absorption, or to weight gain during 

pregnancy (e.g., Forsmo et al., 2001), other studies document a negative relationship; this 

negative association is attributed to the cumulative effects of high rates of bone turnover 

characteristic during pregnancy (e.g., Allali et al., 2007). In studies conducted with 

industrialized groups, there is no consistent relationship between the number of children 

and maternal bone mineral density at advanced ages during the lifespan; however, these 

inconsistent findings may be due to the rather low fertility of women in industrialized 

contexts. The minimal literature on BMD of females with high fertility and long 

breastfeeding periods are also inconclusive. Saudi females show significantly lower 

BMD values among multiparous women (Ghannam et al., 1999); however, this 

population also has a high prevalence of vitamin D deficiency, which may contribute to 

low bone mass. Conversely, studies on high fertility Omani (Bererhi et al., 1996) and 

Finish American women (Henderson et al., 2000) found no correlation between number 

of children and maternal bone density. Similarly, for equatorial Shuar women, who report 

as many as 15 offspring at completed fertility, offspring quantity has no effect on 

postmenopausal bone density. One possible explanation for this relationship among the 

Shuar may be that the capacity for multiple pregnancies reflects better overall phenotypic 

quality. 

As discussed in Chapter II and IV, fecundity and fertility is regulated by energy 

availability (i.e., energy balance, energy storage, and energy flux) (Ellison, 2003). 

Women with good nutritional status generally experience earlier menarche and, therefore, 

have higher levels of reproductive hormones, specifically estrogens (Jasienska, 2009). 
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Higher estrogen levels are also associated with heightened probability of conception 

(Jasienska, 2009; Lipson and Ellison, 1996; Venners et al., 2006), which may 

theoretically lead to higher parity than nutritionally stressed women. In most natural 

fertility populations, women with relatively good nutritional status are thus likely to have 

higher parity, as well as higher bone density; women with lower parity will tend to have 

lower BMD. Therefore, any possible negative effect of high parity on BMD may not be 

detectable because it is those women with higher baseline bone density, potentially the 

result of more high-estrogen cycles, who also have overall positive energy balance and, 

thus, more children. The question that this prompts, then, is why multiple pregnancies 

and lactation cycles lead to depleted maternal fat and lean tissue stores, while similar 

effects are not demonstrated for skeletal reserves? After all, patterns of maternal 

depletion have been observed globally in nutritionally-stressed populations, in New 

Guinea (Garner, 1994; Tracer, 1991), India (Belevady, 1979), the Philippines (Adair, 

1992), Peru (Yu and Shephard, 1998), Zaire (Pagezy, 1984), and Namibia (Kirchengast 

and Winkler, 1996), and even small but significant net loss of fat mass with each live 

birth has been documented in well-nourished women (Lassek and Gaulin, 2006; 

Rodrigues and Da Costa, 2001). A brief consideration of the role of fat deposition during 

reproduction may shed some light onto this issue. 

The accumulation of fat in human evolution has been a major adaptive feature in 

our species, serving to buffer fluctuations in energy supply, and regulate reproduction and 

immune function (Kuzawa, 1998; Wells, 2005). Among women, sufficient fat deposition, 

and positive energy balance, play key role in reproductive fitness, partly through the 

regulation of menarche and conception. Furthermore, fat stores available at conception 
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and deposited during the first trimester, particularly in the gluteal femoral region, also 

fund the high costs of lactation and offspring brain growth. The additional energy 

requirements of lactation for exclusively breastfeeding women is estimated at 675 

kcal/day, and one kilogram of maternal body fat yield may yield approximately 9,500 

kcal of energy (Dewey, 1997; FAO/UNU/WHO, 2004). However, it appears that it is not 

simply fat-as-energy that is important during gestation and lactation, but perhaps more 

critical is the composition of fat. In addition to acting as reserves that provide energy 

necessary to maintain pregnancy and lactation, gluteal-femoral fat has high 

concentrations of certain fatty acids that are essential to fetal and infant brain growth 

(Lassek and Gaulin, 2006). Specifically, long-chain polyunsaturated fatty acids 

(LCPUFA), arachidonic acid (AA), and perhaps most importantly, docosahexaenoic acid 

(DHA) are key resources for neural development (Phinney et al., 1994). Therefore, the 

mobilization of larger amounts of fat during pregnancy and lactation may serve an 

adaptive function that meets the energetic and essential fatty acid requirements of the 

developing fetal and neonatal brain. In short then, because fat stores are critical for 

satisfying the needs of the growing human brain, the benefits of maternal mobilization of 

fat stores are so great that fat tissue cannot be entirely restored during repeated and 

closely spaced pregnancies, a problem exacerbated in an energy-stressed environment.  

In an analogous way, maternal skeletal calcium stores are drawn upon to support 

offspring skeletal growth during pregnancy and lactation, so one might hypothesize that 

multiparity and breastfeeding multiple children would lead to a higher risk of osteopenia 

or osteoporosis later in life. Yet, it appears that the developmental requirements of 

calcium for fetal and neonatal skeleton growth may not be as challenging for the maternal 
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body to replenish than is body fat. Therefore, it may be the case that replenishing calcium 

stores is more easily achieved, perhaps because of greater availability of this nutrient 

from the environment (see Chapter II), than maternal fat reserves, thereby facilitating the 

recovery of bone loss between reproductive cycles. 

Clearly, energy stores and availability are critical for female reproduction. Exactly 

how women access the energy stores necessary for reproduction is less obvious. To shed 

light on this phenomenon, Chapter V examines the energy use during reproduction in one 

rural Shuar community. In other cross-cultural studies, bio-behavioral strategies adopted 

by pregnant and lactating women have been shown to compensate for their elevated 

metabolic costs. Reductions in energy expenditure, increased caloric intake, increased 

investment by partners or kin, or a combination of these strategies are among some of the 

options available to women to offset the high costs of reproduction. These strategies are 

clearly dependent on energy availability in the local environment, as well as the 

availability of social support necessary to accommodate the woman’s energetic state. 

Cross-sectional research presented in Chapter V shows that pregnant and lactating (P/L) 

Shuar women have physical activity levels similar to those of other women, suggesting 

that P/L women do not alter their subsistence activities. In other words, P/L women 

appear to continue to expend energy towards work output, but do not increase their 

energetic output in order to acquire more food to satisfy their elevated metabolic costs. 

However, males with pregnant and lactating wives do appear to increase their energetic 

output compared to other males. This suggests that Shuar males may be supporting the 

higher costs of their partner’s pregnancy and lactation by increasing their contribution to 

subsistence activities. These results are consistent with data from other subsistence-based 
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populations in which subsistence activities of kin appear to be critical for supplementing 

women’s energetic needs during pregnancy and lactation (e.g., Ivey, 2000; Marlowe, 

2003; Reiches et al., 2009). Although the Chapter V results are based on a small sample, 

these data fit well with research on the Hadza that show that compared to other males, 

men with P/L partners increase their provisioning by providing hunted game and other 

high energy food resources, such as honey (Marlowe, 2003). Results from Chapter V also 

align with the cooperative breeding model of human reproduction that emphasizes the 

critical importance of individuals who invest into growing offspring apart from the 

mother, or allomothers (Hill and Hurtado, 2009; Hrdy, 2000).  

Allomaternal support, according to the cooperative breeding hypothesis, was 

essential for the evolution of the human reproductive life history. This life history is 

partially characterized by high fertility coupled with short inter-birth intervals, resulting 

in multiple dependent offspring. Without support from allomothers, estimates from exant 

foraging populations suggest that individual forager women would likely not be able to 

support the energetic demands of their offspring (Kaplan et al., 2000). Allomothers 

would permit forager females to simultaneously support multiple exorbitantly costly 

offspring, and this represents a signature feature of the human reproductive pattern (Hrdy, 

2000). For Shuar, increased work output by males may result in greater food provisioning 

to their P/L wives to offset the high energy costs of reproduction. Because allomothering 

behaviors by grandparents and older siblings have been observed among the Shuar 

(Blackwell et al., 2009), further exploration into their role in shaping maternal energetic 

strategies is warranted.  
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Results from Chapter V also emphasize the misconceptions that continue to 

abound in the literature, specifically with regard to activity patterns in subsistence-based 

populations. In a meta-analysis of traditional societies with varying subsistence strategies 

(e.g., pastoralists, agriculturalists, forager-horticulturalists, hunter-gatherers, swidden 

cultivators), little significant variation in activity levels were found across subsistence 

modes, with the exception of pastoralists who exhibit among the lowest PALs (Ulijaszek, 

2001). Additional comparisons of subsistence-level populations with Western, sedentary 

populations show generally lower activity levels in the latter group (Bassett et al., 2004; 

Hayes et al., 2005; Leonard, 2008; Rode and Shephard 1994a, 1994b; Snodgrass, 2011). 

Based on this literature, activity data from Shuar forager-horticulturalists do not align 

with predictions about work output for subsistence -level groups. While the low to 

moderate PALs recorded for the Shuar may reflect methodological issues with 

accelerometry and underestimations of energy expenditure, the results may also make a 

compelling argument for reconsidering current assumptions about the activity levels in 

subsistence groups: subsistence activities may not necessarily involve high energy 

expenditure (Dufour and Piperata, 2008). Although Shuar participants exhibit lower than 

predicted activity levels, they demonstrate extended periods of activity throughout the 

day, suggesting a focus on habitual tasks of long duration that require relatively low 

energy output. Therefore, daily patterns of activity may be more informative for 

understanding energy dynamics than comparatively crude overall PAL values. More 

detailed studies of Shuar activity patterns, and those of other subsistence-based groups, 

are essential and planned for the near future. In order to contextualize the activities and 

link energetic costs to specific activity behaviors, these studies will include simultaneous 
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recording of data on activity levels using accelerometry and recording of the specific 

activities engaged in through focal-person follows.  

 

FUTURE DIRECTIONS 

 In this section, I address potential avenues for future research among the Shuar, 

in order to better elucidate the dynamic interaction between various factors and skeletal 

health.  

 

Activity and Bone Density 

Physical activity has been associated with accretion and maintenance of bone 

quality and quantity (see Chapter II). This dissertation has demonstrated that the 

techniques of calcaneal ultrasonometry and accelerometry may be successfully employed 

in a remote field setting and thus, integrating activity data with skeletal information is 

entirely feasible. Unfortunately, because of timing and funding issues, technical problems 

that arose with using an ultrasonometer in Ecuadorian Amazonia, and the limited quantity 

of accelerometer devices available for this study, I was unable to link physical activity 

with bone density measures for this dissertation. As a result of these issues, few 

individuals participated in both the activity research and the skeletal diagnostic study, and 

even when these data were available, statistical analyses would be uninformative with 

such a small sample size. Given these pragmatic methodological issues, it is not 

surprising that there is no published research that has linked physical activity levels with 

bone density in a non-clinical, non-Western setting. Furthermore, even in the 

epidemiological and clinical literature where this relationship is considered among 
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industrialized populations, activity is measured using recalls or questionnaires, such as 

the International Physical Activity Questionnaire (IPAQ), which are inherently limiting 

due to their reliance on subjective measures of activity patterns. Additionally, questions 

used in surveys designed for Western industrialized populations, such as those from the 

IPAQ, are not easily applied to the subsistence lifestyle of traditionally-living groups. 

These include questions regarding the amount of time a participant spends engaged in 

vigorous/moderate/and light activity over the course of a day/week/month. The categories 

“vigorous,” “moderate,” and “light” are not easily interpretable and answers may vary 

based on how a participant interprets these words, and cross-cultural comparisons will be 

particularly difficult. Because of limitations in large-scale qualitative assessments of 

activity, there is a need, in both Western and non-Western contexts, for integrating bone 

density data with quantitative output of energy expenditure values from devices like 

accelerometers. As noted above, plans for gathering these data have been made for 

upcoming fieldwork with the Shuar. 

 

Developmental Origins of Bone Density 

The timing of early developmental events, as discussed in Chapter IV, may be 

considered proxies for the confluence of environmental conditions and genotypic quality 

that combine to establish a phenotype of bone density. In turn, bone density phenotype 

appears to be canalized by these early life events, carrying through into postmenopausal 

life, despite transient perturbations during the reproductive lifespan. These results, as well 

those from as other studies (e.g., Godfrey et al., 2001; Kung and Huang, 2007), suggest 

that the bone integrity may have an epigenetic component. Epigenetics refers to heritable 
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changes in gene expression that do not involve changes in the sequence of DNA (Kung 

and Huang, 2007). Several environmental factors interact with genes through epigenetic 

mechanisms, and these interactions act primarily during early life. With regard to bone 

density, it appears that early life environmental conditions coupled with individual 

genotypic quality set the trajectory for bone status that continues across the reproductive 

lifespan. Although genetic markers regulating bone quantity and quality have been 

identified (Drake et al., 2001; Van der Weyden et al., 2006), they may explain less than 

10% of the variation in individual bone mass (Cooper et al., 2002). 

Epigenetic evidence from physiological studies suggests that environmental 

context begins to shape bone density phenotype early in development, and this phenotype 

may be predicted by characteristics of maternal body size and lifestyle. Godfrey and 

colleagues, (2001) found that neonatal bone mass was positively associated with birth 

weight, birth length, and placental weight, and also highly correlated with maternal birth 

weight and tricep skinfold thickness at 28 weeks gestation. In contrast, maternal smoking 

and high maternal physical activity were negatively associated with neonatal bone mass. 

Additional support for intrauterine origins of adult bone density is garnered from research 

on endocrine programming (Dennison, et al., 1999; Fall et al., 1998; Phillips et al., 1998). 

These studies reveal that birth and infant weight may predict basal levels of growth 

hormone (GH) in adulthood, which help regulate longitudinal bone growth (see Chapter 

II). In turn, these hormones determined the rate of bone loss in adulthood. These findings 

are compatible with hypotheses that external stressors on the mother during gestation 

may alter the sensitivity of the epiphyseal plate to GH. This endocrine programming has 

the capacity to reduce peak bone mass, potentially reduce bone mineralization, and 
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predispose one to an accelerated rate of bone loss later in life (Cooper et al., 2002). In 

sum, these studies suggest that while there is a genetic component to establishing bone 

density, the phenotypic expression may be highly influenced by environmental conditions 

during early prenatal life, with resonating effects into adulthood, and potentially into the 

next generation. Controlling for the effects of myriad early environmental factors is a 

daunting, if not impossible task, particularly in a remote field setting. Nonetheless, it is 

important to acknowledge the phenotypic plasticity of the human body, and the extent to 

which development, growth, maturation, and senescence contribute to physiology and 

health across an individual’s life.  

The effect of early developmental life on bone integrity later in life highlights a 

compelling need for more bone health studies with adolescents. A feasible avenue of 

study in a remote field setting would be to collect data on adolescent bone density, and 

consider these values within the context of dietary intake, physical activity (both type and 

intensity), and socioeconomic status. A comprehensive study would also include 

interviews with parents regarding the child’s nursing behaviors and his/her history of 

illness. Furthermore, if the child has older and/or younger siblings, this could impact birth 

spacing, and hence, the child’s critical access to breast milk. The role of siblings in 

determining a child’s growth pattern is rooted in principles of life history.  

According to this theoretical approach, in a resource-constrained context, there 

should be trade-offs between offspring quantity and quality. Controlling for availability 

of resources, the more siblings a child has (i.e, the greater number of offspring a provider 

has), the less investment is available for each child. Within this framework, child growth 

and nutrition (i.e., quality) is predicted to be negatively associated with larger family size 
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(i.e., quantity). Hagen and colleagues (2006) show that these quantity-quality trade-offs 

are evident among larger Shuar families. Their study found that in households with a 

greater number of dependents relative to providers, child growth is inhibited. Examining 

skeletal health within the framework of parental investment, particularly quantity-quality 

trade-offs, would be one step towards further contextualizing the effects of early 

developmental life on bone health. 

 

Lifestyle Factors and Bone Density 

Developmental factors outlined above may be important to long-term skeletal 

health, yet some research suggests that characteristics of adult lifestyle are more 

significant agents of bone loss than fetal or childhood environment (e.g., Kung and 

Huang, 2007; Pearce et al., 2005). A longitudinal study of thousands of families in 

Newcastle, UK that tracked participants’ health and lifestyles, found that intrauterine and 

childhood life predicted less than 10% of the variation in BMD among men and less than 

1% among women in a 49-51 year old cohort (Pearce et al., 2005). While birth weight 

does seem to influence skeletal growth, factors in infancy and childhood, including 

family’s socioeconomic status, nursing duration, and age at menarche (females), 

explained less variation than adult lifestyle factors (e.g., smoking, diet, and physical 

activity), after adjusting for adult height and weight. Pearce and colleagues (2005) 

conclude that the observed effect of fetal life on bone health in adulthood may be 

mediated through adult height and lifestyle. However, it is important to note that the vast 

array of lifestyle factors that may influence bone integrity, including smoking, alcohol, 

sedentism, and calorie-dense though nutrient-deficient diets, were not major forces in our 
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early evolutionary past when the system of calcium turnover evolved. Therefore, the 

deleterious health consequences of adopting lifestyles dramatically different from our 

evolutionary condition are not surprising. 

Lifestyle variables for Shuar participants were collected in conjunction with bone 

density measures. The data that were collected included information regarding the 

ownership of goods that are indicative of increased market integration (MI) (e.g., 

refrigerators, televisions, and cellular phones), and items more aligned with a traditional 

and subsistence lifestyle (e.g., fishing nets, blowguns, and machetes). Based on the 

ownership of these goods, a combined score was created that provided a quantitative 

measure of degree of MI. This massive dataset has yet to be analyzed in its entirety, and 

thus, has not been presented as a data chapter in this dissertation. However, a preliminary 

analysis presented elsewhere (Madimenos et al., 2010) does show that among 46 Shuar 

for whom BMD and extensive lifestyle data were available, greater market integration 

was negatively correlated with bone values (P < 0.05). This suggests that there is a trend 

towards compromised bone health with increased market integration and lifestyle change 

among the Shuar. Future analysis will include lifestyle, dietary and reproductive factors 

to determine the role these variables play in shaping bone density in the short- and long-

term. Similar data are also essential from other natural fertility subsistence populations. 

 

Social Support and Bone Density 

Because social context and availability of kin support play a critical role in 

shaping lactation behaviors, there may be an association between depth of social network 

and female bone integrity. Put simply, if social support in food sharing and work tasks 
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permits women to increase lactation duration for each child, this might be reflected in her 

bone status. Furthermore, because of the critical health benefits of breast milk for the 

growing neonate, investigating the skeletal health of the maternal/child dyad will be 

critical for understanding intergenerational trade-offs between maternal bone density and 

child health outcomes. However, the longitudinal design necessary for this type of study 

may be a limiting factor in a remote field setting. Research such as this would link core 

principles outlined in Chapter IV and V—that availability of social support during 

lactation is expected to determine nursing frequency and intensity, and this, in turn, may 

have implications for skeletal calcium turnover and bone loss in the immediate and long-

term life. While lactation patterns are not significantly related to long-term bone mass in 

Chapter IV, the effects of breastfeeding on BMD has been found, to varying extents, in 

the epidemiological and clinical literature (see Chapter II and IV). As the bone density 

component of the Shuar Health and Life History Project is an ongoing endeavor, future 

research may further elucidate the associations between bone parameters and lactation 

patterns. 

 

SHUAR: FERTILITY IN THE CONTEXT OF LIFESTYLE CHANGE 

The Indigenous Shuar of Amazonian Ecuador is an ideal population with whom to 

examine the negotiations between energetic resources and reproductive strategies. As 

described in Chapter I, the Shuar population’s historically notorious resistance to 

colonization has allowed them to maintain many aspects of their traditional indigenous 

lifeways, even in the face of economic and political change. While both migration by 

non-Shuar into Shuar territory as well as the increasingly aggressive MI in recent years 
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are threatening elements of their social, political, and economic ideology, Shuar in many 

Upano Valley and Trans-Cutucu communities continue to retain a strong sense of 

indigenous identity and pride. This resistance against the encroachment of colonizing 

forces on their land and, in many respects, on Shuar cultural identity is partially 

responsible for the continued participation in subsistence-related activities found in 

Upano Valley communities outside of regional centers such as Sucua and Macas.  

However, as discussed in Chapter I, it is important to recognize that there are 

varying degrees of lifestyle change and MI at both inter- and intra-community levels. In 

addition to increasing access to market goods and foods, fertility patterns may change as 

a response to relatively higher costs of raising offspring, a pronounced issue for Shuar in 

large towns. Furthermore, fertility patterns may be modified as access to contraception 

becomes increasingly available, sought after and accepted. As this dissertation is broadly 

an investigation of Shuar fertility, a brief discussion is warranted regarding contraception 

and the term “natural fertility,” which has been applied throughout the text. 

 

 “Natural Fertility” and Contraception among the Shuar 

The female participants included in this dissertation studies are considered 

“natural fertility,” a term that identifies a population that does not to limit, regulate, or 

control fertility. However, in the strict sense of the word, the Shuar in this study do not 

fully represent a natural fertility population. During the interview process, several 

females reported using medicinal herbs to prevent pregnancy, while others report 

applying the rhythmic method which involves abstaining from sexual intercourse around 

ovulation. A small number of Shuar females that were interviewed, who were not 
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included in the data analyses, reported a history of hormonal contraception use including 

oral, injections, and intrauterine devices (T de cobré). However, these latter methods of 

preventing pregnancy are not widely available in rural Shuar communities, and 

knowledge regarding options for pregnancy prevention is poor.  

Over the course of several years of fieldwork, interviews with Shuar women have 

occasionally prompted a few to inquire about options for preventing pregnancy; a few 

men have also asked about family planning options (Sugiyama, personal communication 

2011). Some women, who were pregnant, expressed that it was unwanted and asked 

about methods to prevent future pregnancies. These women were generally older and 

already had approximately 4-5 offspring. Many stated that the high costs of raising 

children and sending them to school under current conditions were primary factors 

motivating their search for contraceptive options. Only in one instance did a woman, who 

was early in her pregnancy, inquire about abortion. At the time, she was a single mother 

of eight children ranging in age from 2 to 17 and her husband had been sentenced to life 

in prison, leaving her to fend for the entire family. A local health professional who 

accompanied our team told her she had no choice but to have the baby. In the subsequent 

field season, the woman returned for a repeat examination but she had no infant nor did 

she report having a nursing child during the interview process. We did not inquire further. 

Statistics for the country of Ecuador show that 36.3% of total births are 

unintended, including both unwanted and mistimed births, with the highest percentage of 

unintended pregnancies reported in the Amazon Basin region (43.3%) (CEPAR, 2004). It 

is important to note that abortion is illegal in Ecuador so this option is generally not  
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advocated by health workers. These statistics are not specific to the Shuar but they reflect 

a lack of government-sponsored resources for sexual education and contraceptive 

purposes. Although the Ecuadorian government has launched plans to combat unwanted 

pregnancy, including the National Plan for Adolescent Pregnancy Prevention
2
, none have 

explicitly remedied the need to educate the groups that comprise the most vulnerable and 

neglected of Ecuadorian populations: rural and indigenous peoples and those living in 

isolated areas of the country (Goicolea et al., 2009).  

The term “natural fertility” has been applied to the participants in this study, 

however it is important to recognize that options for contraception are available, if not 

easily accessible or acceptable. In general, the Shuar women from these studies 

demonstrate no history of contraception use, high rates of fertility, and extended lactation 

periods (relative to typical Western populations). For a study that investigates energy use 

during reproduction, these are ideal characteristics for a participant population.  

 

CONCLUSIONS 

Three key conclusions arise from this study. First, this dissertation emphasizes the 

importance in applying a biocultural framework to understand aspects of reproductive 

biology. Pregnancy and lactation, in particular, are states that involve adjustments to the 

maternal physiology, and also stimulate changes in the dynamics of the mother’s social 

network. These adjustments are further shaped by a variety of ecological and 

                                                           
2
 The National Plan for Adolescent Pregnancy Prevention is a government-sponsored program that started 

in 2007 in an effort to educate Ecuadorian adolescent girls to exercise their reproductive rights by creating 

access to a network of social services. Critiques of the plan report that adolescents are being told 

contradictory messages by health professionals who believe that while information on contraception should 

be provided, full access to contraception should be limited because adolescents are portrayed as being 

unable to take responsibility or understand sexual intercourse (Goicolea et al., 2009). 
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environmental conditions. A thorough investigation of the responses of female 

physiology during reproduction, therefore, may be incomplete without considering the 

contribution of various facets of a woman’s social environment.  

Second, this dissertation highlights the utility of applying a life-course perspective 

to understand health outcomes, and it recognizes that there may be cumulative effects of 

developmental stages on health across the lifespan. Because of the complex interplay 

between environmental factors, the timing of developmental stages, and bone density, 

broad, one-size-fits-all clinical recommendations for preventing future bone loss are not 

ideal. These general guidelines essentialize the responses of bone to external factors, and 

do not consider the cumulative effect of life stages on bone status, or the 

environmentally-specific stressors that may promote bone loss in an individual and on a 

populational level. Yet, clearly, the amount of resources and time required for developing 

individualized or population-specific recommendations for health issues are luxuries that 

most researchers and clinicians do not have. While providing an alternative to this 

approach is beyond the scope of this dissertation, the studies presented here stress the 

importance of approaching understandings of health processes within this framework.  

Finally, this dissertation makes a compelling argument for the need for more 

health and aging studies from subsistence-based populations. Cross-cultural studies of 

aging, particularly from non-industralized groups, are sparse, and many chronic 

conditions associated with aging have not been fully investigated. Such studies have the 

potential for elucidating the extent to which age-associated health changes are universal, 

or simply an artifact of the industrial/post-industrial condition. Ultimately, these data will 

prove to be an invaluable contribution to informing prevention and treatment efforts.  
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