THE SYNTHESIS OF NOVEL AND STERICALLY DEMANDING TETRA-ORTHOSUBSTITUTED ARYL NAPHTHALENES

by

ADAM CAMERON GLASS

A DISSERTATION

Presented to the Department of Chemistry and the Graduate School of the University of Oregon
in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Student: Adam Cameron Glass

Title: The Synthesis of Novel and Sterically Demanding Tetra-ortho-substituted Aryl Naphthalenes

This dissertation has been accepted and approved in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Chemistry by:

Michael M. Haley
Shih-Yuan Liu
Darren W. Johnson
Victoria J. DeRose
Paul J. Wallace
and
Kimberly Andrews Espy Vice President for Research \& Innovation/Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate School.
Degree awarded September 2011
© 2011 Adam Cameron Glass

DISSERTATION ABSTRACT

Adam Cameron Glass
 Doctor of Philosophy
 Department of Chemistry

September 2011
Title: The Synthesis of Novel and Sterically Demanding Tetra-ortho-substituted Aryl Naphthalenes

Approved: \qquad
Professor Shih-Yuan Liu, Advisor
Tetra-ortho-substituted aryl naphthalenes (TOANs) are a motif of great importance, being present in biologically active natural products, chiral ligands, and building blocks relevant to materials science. The synthesis of sterically demanding and enantioenriched TOANs continues to be a challenge for current synthetic methods.

Herein, we describe the highly effective synthesis of a variety of sterically demanding and enantioenriched TOANs through a rearrangement-based method. Our method utilizes a cyclopropyl carbinol moiety as the key rearrangement precursor. We have demonstrated that carbon-carbon coupling through a simple nucleophilic attack on a cyclopropyl indanone allows for very large aryl substrates to be added and rearranged. We discuss in detail the following: 1) the initial substrate-scope and proof-of-concept studies, 2) our progress in building the most sterically demanding TOANs to date, and 3) the asymmetric synthesis of TOANs through chiral transfer.

This dissertation includes previously published and unpublished co-authored material.

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene
Pacific University, Forest Grove, OR

DEGREES AWARDED:

Doctor of Philosophy in Chemistry, September 2011, University of Oregon Master of Science in Chemistry, March 2008, University of Oregon
Bachelor of Science in Biochemistry, May 2006, Pacific University

AREAS OF SPECIAL INTEREST:

Synthetic Organic Chemistry
Small Molecule Enzymatic Regulation

PROFESSIONAL EXPERIENCE:

Research Assistant, University of Oregon, 2006-2011
Instructor, Lane Community College, 2010
Consultant, WebCo Enterprises, Creswell, OR, 2010
Research Assistant, Pacific University, 2003-2005
Laboratory Technician, NOAA, 2000-2003

GRANTS, AWARDS, AND HONORS:
National Science Foundation GK-12 Fellow 2008-2010

PUBLICATIONS:

Glass, A. C.; Klonoski, S.; Zakharov, L. N.; Liu, S.-Y. Pushing the Limits of Steric Demand Around a Biaryl-Axis: Synthesis of Tetra-Ortho-Substituted Biaryl Naphthalenes. Chem. Comm. 2011, DOI: 10.1039/c0cc02170a.

Glass, A. C.; Morris, B. B.; Zakharov, L. N.; Liu, S.-Y. Synthesis of Substituted Naphthalenes via a Catalytic Ring-Expansion Rearrangement. Org. Lett. 2008, 10, 48554857.

Arkoosh, M. R.; Clemons, E.; Kagley, A. N.; Stafford, C.; Glass, A. C.; Jacobson, K.; Reno, P.; Myers, M. S.; Casillas, E.; Loge, F.; Johnson, L. L.; Collier, T. K. Survey of Pathogens in Juvenile Salmon Oncorhynchus Spp. Migrating through Pacific Northwest Estuaries. J. Aquat. Anim. Health. 2004, 16, 186-196.

ACKNOWLEDGMENTS

I wish to thank my research advisor Professor Shih-Yuan Liu for his guidance and knowledge, without which this project would not have been possible. I would like to also thank professors: Mike Haley, Darren Johnson and Victoria DeRose for their continued support and guidance throughout my graduate career. I wish to extend a special thank you to Professor Paul Wallace who was extremely courteous in his willingness to sit on my committee at the $11^{\text {th }}$ hour. Sam Klonoski and Ben Morris also deserve to be recognized for their exceptional undergraduate research skills, and dedication to the project. I would like to sincerely thank Dr. Lev Zakharov for his unequivocal skills with regards to crystallography. I wish to thank Dr. Eric Abbey, Pat Campbell, Dr. Adam Marwitz and Ashley Lamm for their friendship, and making the Liu Lab a fantastic place to work. I would also like to recognize all other Liu Lab members, past and present, who contributed one way or another to this project. Finally, I would like to thank the NSF GK-12 program for giving me the opportunity to couple my passion for teaching while completing this work.

To my wife Natalie, you never stop caring, and to my parents and brother for teaching me responsibility and patience

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION: TETRA-ORTHO-SUBSTITUTED ARYL NAPHTHALENES (TOANS) 1
General Introduction 1
TOAN Chemical Applications 2
A History of TOAN Synthesis 4
TOAN Synthesis: Oxidative Coupling 5
TOAN Synthesis: Catalytic Cross-Coupling 8
TOAN Synthesis: Direct Arylation 12
TOAN Synthesis: Alternative Approaches 14
Alternative Approaches: Diels-Alder 14
Alternative Approaches: $[2+2+2]$ 15
Alternative Approaches: Rearrangement-Based 16
Conclusions 16
Summary of Dissertation 17
Bridge to Chapter II 19
II. SYNTHESIS OF SUBSTITUTED NAPHTHALENES VIA A CATALYTIC RING-EXPANSION REARRANGEMENT 20
Results and Discussion 20
Experimental 27
Bridge to Chapter III 45
Chapter Page
III. PUSHING THE LIMITS OF STERIC DEMAND
AROUND A BIARYL AXIS: SYNTHESIS OF TETRA- ORTHO-SUBSTITUTED BIARYL NAPHTHALENES 47
Results and Discussion 47
Experimental 54
Bridge to Chapter IV 77
IV. THE ASYMMETRIC SYNTHESIS OF TETRA-ORTHO- SUBSTITUTED ARYL NAPHTHALENES VIA A CATALYTIC REARRANGEMENT PROCESS 78
Introduction 78
Results and Discussion 80
Conclusion 91
Experimental 91
Bridge to Chapter V 134
V. ARYL NAPHTHALENES THROUGH A REARRANGEMENT PROCESS FROM INDENE-BASED PRECURSORS 135
Results and Discussion 135
Experimental 138
Concluding Remarks 140
APPENDIX: CRYSTAL STRUCTURE DATA 141
REFERENCES CITED 321

LIST OF FIGURES

Figure Page
Chapter IV

1. VT NMR and DFT modeling studies of anti-precursor 20 87
2. The two singlets represent the two methoxy peaks 87

LIST OF TABLES

Table Page
Chapter II

1. Catalytic ring-expansion rearrangement 23
2. Nucleophilic addition to 2 24
3. Catalytic ring-expansion of hindered precursors 25
4. Ring-expansion rearrangement: optimization studies 36
Chapter III
5. Nucleophilic addition to $\mathbf{1}$ 49
6. Optimization survey for the regioselective synthesis of $\mathbf{3 a}$ 50
7. Rearrangement of $\mathbf{2}$ under optimized conditions 51
8. Rearrangement of $\mathbf{6}$ under optimized conditions 53
9. Aryl-naphthalene synthesis without isolation of intermediate 54
Chapter IV
10. Yield comparison of TMS and non-TMS 81
11. TOANs bearing an ortho-t-butyl group 82
12. Asymmetric rearrangement of anti-precursor $\mathbf{1 2}$ 84
13. Asymmetric rearrangement of syn-precursor $\mathbf{1 4}$ 85

LIST OF SCHEMES

Scheme Page
Chapter I

1. A general example of an aryl naphthalene $\mathbf{1}$. 2
2. Selected examples of TOANs 3
3. A general mechanism of oxidative coupling 4
4. Noyori's fractional crystallization approach to 5
5. Multiple routes to asymmetric TOAN bisnaphthol 6
6. Kozlowski's synthesis of nigerone through 7
7. TOAN synthesis through catalytic cross-coupling 9
8. Selected cross-coupling ligands that have shown 9
9. Organ's synthesis of the largest TOAN through catalytic 10
10. Selected ligands for use in asymmetric cross-coupling 10
11. Buchwald's successful asymmetric cross-coupling 11
12. Types of direct arylation: A) DA with an aryl halide and 13
13. Biaryl synthesis via intramolecular direct arylation 13
14. Carter and Heller's approach to TOANs via Diels-Alder. 14
15. Tanaka's $[2+2+2]$ annulations approach to TOANs 15
16. Tanabe's rearrangement-based method for 16
Chapter II
17. Synthesis of Naphthalenes from Indenones 20
18. Rearrangement-based Synthesis 21
19. Cyclopropanation of indanone $\mathbf{1}$ 22
Scheme Page
20. Possible intermediate for the rearrangement 26
Chapter III
21. Ring-expansion rearrangement strategy for the synthesis 48
22. Nucleophilic addition to $\mathbf{5}$. 52
Chapter IV
23. Asymmetric route to TOAN 4 79
24. Top face versus bottom face addition and 80
25. Proposed central to axial chirality transfer 83
26. Further functionalization of enantioenriched $\mathbf{1 3 b}$ without 86
27. Representative examples of anti-precursors 88
28. Direction of attack on indanone 21 89
29. Proposed stereochemical model of rearrangement 89
30. Comparison of the rearrangement of 90
Chapter V
31. (Top) traditional view of the mechanism of rearrangement 135
32. Isolation and rearrangement of ring-opened intermediate 6 136
33. Isolation and rearrangement of alcohol intermediate 137

CHAPTER I

INTRODUCTION: TETRA-ORTHO-SUBSTITUTED ARYL NAPHTHALENES (TOANS)

General Introduction

Tetra-ortho-substituted aryl naphthalenes (TOANs) are biaryl compounds of great importance, being present in a variety of chemical applications. ${ }^{1}$ Many biologically active natural products ${ }^{2}$ contain the tetra-ortho-substituted aryl naphthalene moiety, having shown potential as: anticancer, ${ }^{3}$ antifungal, ${ }^{4}$ antibacterial, ${ }^{5}$ and birth control agents, ${ }^{6}$ among others. ${ }^{7}$ Continued identification of novel natural products containing this structure are being discovered. ${ }^{8}$ These compounds have also played a predominant role in the development and continued success of asymmetric transformations due to their unique axial chirality (i.e. BINAP and BINOL). ${ }^{9}$ In most cases these aryl naphthalenes act as transition metal ligands, where they can confer enantioselectivity during the catalytic cycle. ${ }^{10}$ This motif also has shown to be effective in materials applications, e.g., there have been reports describing their use in optoelectronics, ${ }^{11}$ molecular switches, ${ }^{12}$ and ligands in metal organic frameworks (MOF). ${ }^{13}$

Because of their widespread use in the chemical field, many modern methods for the synthesis of tetra-ortho-substituted aryl naphthalenes have been reported in the last decade. ${ }^{14}$ Most common are the metal-mediated cross-coupling reactions (direct arylation, ${ }^{15}$ catalytic cross-coupling, ${ }^{16}$ and oxidative coupling). ${ }^{17}$ A major shortcoming
of the metal-mediated cross-coupling reactions is the difficulty in establishing large groups in the R^{1}, R^{2}, and R^{3} positions (Scheme 1). ${ }^{18}$ Because of this, alternative

A General Aryl Naphthalene

Naphthalene

A Tetra-ortho-substituted Aryl Naphthalene

$R^{1}, R^{2}, R^{3}=$ Anything but H

Scheme 1. A general example of an aryl naphthalene 1 and a tetra-orthosubstituted aryl naphthalene 2.
approaches have been pursued; these methods include: rearrangement-based synthesis, ${ }^{19}$ $[2+2+2]$ cycloannulations, ${ }^{20}$ and Diels-Alder reactions. ${ }^{21}$ A general tetra-orthosubstituted aryl naphthalene is outlined in Scheme 1. Because of the restricted rotation inherent in a TOAN, these compounds are chiral when $\mathrm{R} 1 \neq \mathrm{R} 2$, known as axial chirality (Scheme 1). Herein, we will describe a short history of TOAN synthesis followed by a review of synthetic methods from the last decade, focusing on the ability of each method to provide a regioselective and enantioselective synthesis of tetra-ortho-substituted aryl naphthalenes. Methods focusing solely on biaryls without an example of tetra-orthosubstituted aryl naphthalenes will not be discussed.

TOAN Chemical Applications: There are a multitude of biologically active natural products that contain the TOAN motif which have many beneficial pharmacological properties. Selected examples are shown in Scheme 2 (Top left corner). Gossypol ${ }^{22} 3$ has shown antimalarial, proapoptotic, and antioxidant properties, while ancistrobrevine $\mathbf{5}$
and korupensamine ${ }^{23} 6$ have shown anti-HIV potential. Dioncophylline ${ }^{24} 4$ has demonstrated to be an effective insecticide.

ancistrobrevine C

(+) - korupensamine B

dioncophylline C

BINAP 7

BINOL

Homochiral MOF's

Scheme 2. Selected examples of TOANs.

Chiral ligands are another important area where TOANs have been shown to be quite useful (Scheme 2, top right corner). Two of the most well known chiral ligands are BINAP 7 and BINOL 8. BINAP was a major component of Noyori's Nobel Prize winning asymmetric hydrogenation, and both have demonstrated their prowess in a variety of asymmetric transformations. ${ }^{25}$ In a review by Lemaire it was even stated that
"BINAP appears to be both the most used and the most useful ligand for asymmetric catalysis." ${ }^{\text {25d }}$ In addition, monodentate phosphine (MOP) 9 has shown to be quite effective as a ligand in metal-catalyzed asymmetric transformations; where bisphosphines have been shown to be ineffective. ${ }^{26}$

There are also examples of TOANs in materials science, especially in the area of optoelectronics. TOANs have also shown potential as ligands in homochiral metal organic frameworks. Oligonaphthalene 10 (Scheme 2, bottom) demonstrate unique asymmetric optical properties that can be easily tuned ${ }^{27}$ and HMOFs $\mathbf{1 1}$ have shown usage as chiral chemoselectors. ${ }^{28}$

A History of TOAN Synthesis: Before the $21^{\text {st }}$ century the synthesis of tetra-ortho-

 substituted aryl naphthalenes was rare and only a few examples were reported. ${ }^{29}$ Some of the first examples of TOANs are the bisnaphthalene ligands that were used in asymmetric hydrogenations in the 1980's. In 1873 BINOL was prepared in its racemic form by von Richter. ${ }^{30}$ Since this pioneering work, the oxidative coupling process to provide BINOL has been extensively studied from 2-naphthol using copper complexes, ${ }^{31} \mathrm{TiCl}_{4},{ }^{32}$ and iron ${ }^{33}$ among other metals and methods (Scheme 3). ${ }^{34}$ Once racemic methods were

Scheme 3. A general mechanism of oxidative coupling.
established, effort focused on the asymmetric synthesis of BINOL. One of the earliest examples is through phosphoric acids and Cinchonine salt separation. ${ }^{35}$ Enantioenriched BINOL has since been made through a variety of methods, and substitutions off of the hydroxyl moiety have been accomplished. ${ }^{36}$ Once enantioenriched, BINOL served as a versatile precursor to a variety of enantioenriched tetra-ortho-substituted aryl naphthalenes. ${ }^{37}$ Most notably, Noyori pioneered the asymmetric isolation of BINAP 16 from BINOL 14 through a palladium catalyzed fractional recrystallization 15 (Scheme 4). ${ }^{38}$ BINAP can now be obtained through a simple cross-coupling approach from the enantioenriched bistriflate. ${ }^{39}$

Scheme 4. Noyori's fractional crystallization approach to asymmetric TOAN BINAP.

These initial syntheses of tetra-ortho-substituted aryl naphthalenes and their further functionalization played a key role in understanding axial chirality originating from the restricted rotation around the biaryl bond. From these humble beginnings many routes have become available for the generation of these unique motifs.

TOAN Synthesis: Oxidative Coupling: Since the discovery of the Ullmann reaction over a century ago, oxidative coupling has been one of predominant methods for the synthesis of biaryls. ${ }^{40}$ In the last decade there has been a resurgence in optimizing this methodology to obtain synthetically challenging enantioenriched TOANs, especially with
a focus on natural products. Oxidative coupling has shown to be very effective at generating highly enantioenriched TOANs directly from naphthols. The salient feature of oxidative coupling is the mild reaction conditions that are employed via a one-electron phenolic oxidation process, differentiating them from other cross-coupling processes as they are extremely tolerant of many functional groups. ${ }^{41}$ Unfortunately, regioselectivity can be a problem with oxidative coupling as there is a lack of pre-functionalization which acts as a chemioselector in other methods. ${ }^{42}$ Many unwanted side products are described, especially when the chemical positions on the naphthols are electronically similar. ${ }^{43}$

As previously discussed, there are many metals that can facilitate this coupling (Scheme 5), with the first examples focusing on copper catalysis. Seminal work in this area was done by Wynberg, ${ }^{44}$ Brussee, ${ }^{45}$ Yamamoto, ${ }^{46}$ and Kocovsky ${ }^{47}$ who used chiral

Scheme 5. Multiple routes to asymmetric TOAN bisnaphthol substrates through oxidative coupling.
copper(II) amine oxidants to generate chiral BINOL derivatives. Additional work was performed by Nakajima ${ }^{48}$ who pioneered the catalytic asymmetric coupling of naphthol with chiral amine ligand 19. The Kozlowski group made further modifications and has shown excellent yields and enantioselectivities using copper with chiral amine ligand $\mathbf{2 0}$ and oxygen as the stoichiometric oxidant. ${ }^{49}$ More recently, vanadium-based catalysts have shown to be quite effective at facilitating this coupling. ${ }^{50}$ The Iwasawa group has shown that they can provide TOAN 18 in 93% yield and 90% ee on a silica surface $\mathbf{2 1}$ from vanadium. ${ }^{51}$ Iron-catalyzed coupling has also been demonstrated by the Katsuki group, although the observed enantioselectivity is lower. ${ }^{52}$ The iron-mediated coupling was catalyzed by salan complexes. There have also been many examples of natural product total synthesis utilizing the oxidative coupling method. ${ }^{53}$ An elegant synthesis of nigerone $\mathbf{2 4}$ was performed by the Kozlowski group in $>90 \%$ ee using asymmetric oxidative coupling as the key synthetic step to obtain precursor $\mathbf{2 3}$ in 80% ee. Base mediated rearrangement followed by trituration yielded nigerone in 90% ee (Scheme 6). ${ }^{54}$

Scheme 6. Kozlowski's synthesis of nigerone through asymmetric oxidative coupling.

In all, oxidative coupling is an effective procedure for the coupling of naphthols. However, this method is severely restricted in that regard, being limited solely to a naphthol-based precursor. Large sterically demanding TOANs have not been demonstrated via this method.

TOAN Synthesis: Catalytic Cross-Coupling: Catalytic cross-coupling (Suzuki, Kumada, Stille, etc.) is arguably the most effective and prominent method for the generation of biaryl bond and perhaps even the most effective method for generating a carbon-carbon bond. ${ }^{55}$ Unfortunately, Tetra-ortho-substituted biaryls have historically been problematic for cross-coupling methods. ${ }^{56}$ This is arguably due to difficulties during the reductive elimination step preventing the formation of the critical biaryl bond. ${ }^{57}$ Due to the widespread use of catalytic cross-coupling, from academia to industry, there has been a tremendous effort in the last decade to provide routes to these sterically-encumbered compounds through catalytic cross-coupling. ${ }^{58}$ Because of the amount of research ongoing in this area we will focus primarily on methods that have shown 1) steric bulk around the ortho biaryl bond and those 2) achieving high enantioselectivity.

Seminal work for the synthesis of the first TOAN was accomplished by the Miyano group through a Kumada coupling in 1986. ${ }^{59}$ The Keay group was able to introduce Suzkuki coupling for the synthesis of bismethoxy TOAN 26. ${ }^{60}$ Buchwald was then able to generate a host of TOANs through Suzuki couplings and a monophonsphine naphthalene ligand, ${ }^{61}$ Buchwald was able to generate TOAN 29 in good yield. Although beyond the scope of this review, it should be noted that Fu pioneered non-naphthalene tetra-ortho-substituted biaryls through both Negishi and Stille couplings at the turn of the $21^{\text {st }}$ century. ${ }^{62}$

25

28

Keay 1996

Buchwald 2001

96\%

Scheme 7. TOAN synthesis through Suzuki catalytic crosscoupling.

Continued work led to further success in the generation of even larger TOANs.
Work by Buchwald and Fu demonstrated that large sterically crowded ligands were especially successful in generating TOANs (Scheme 8). It has been reported that the basicity and cone angle of the ligand has a great deal to do with catalytic activity of

SPhos Buchwald

Buchwald

Organ

Scheme 8. Selected cross-coupling ligands that have shown effectiveness with TOANs.
the metal center, which in turn led to even more active ligands. ${ }^{63}$ More recently the groups of Mayer, ${ }^{64}$ Organ, ${ }^{65}$ and Rahimi ${ }^{66}$ have done some elegant work in the preparation of even larger TOANs in good yield utilizing bulky NHC ligands. Organ has
to date, generated the largest TOAN (Scheme 9, 32) with cross-coupling methodology to the author's knowledge.

Scheme 9. Organ's synthesis of the largest TOAN through catalytic cross-coupling, circa 2009.

The asymmetric synthesis of TOANs has also been challenging for catalytic cross-coupling, although in the last decade there have been many examples of excellent chiral control of tri-ortho-substituted aryl naphthalenes. The use of chiral ligands has allowed the catalytic cycle to proceed enantioselectively (Scheme 10).

PPFOMe Hayashi

KenPhos Buchwald

PFNMe

Scheme 10. Selected ligands for use in asymmetric cross-coupling.

Although many groups have reported success with tri-ortho-substituted or smaller biaryls, there have been only a couple of successful TOAN asymmetric syntheses. The first asymmetric TOAN synthesis was by Hayashi in 1988 utilizing a nickel-based

Kumada coupling with a chiral ferrocene ligand. ${ }^{67}$ Hayashi continued asymmetric couplings with a successful Kumada coupling to generate tri-ortho-substituted biaryls with palladium. ${ }^{68}$ Buchwald (Scheme 11, 35) then introduced work on the asymmetric synthesis of tri-ortho-substituted biaryls in 2000 with axially chiral monophosphine ligands using Suzuki coupling. ${ }^{69}$ Buchwald has improved on his first successful asymmetric synthesis of tri-ortho-substituted aryl naphthalenes by developing the

Scheme 11. Buchwald's successful asymmetric crosscoupling of tri-ortho biaryls and Espinet's asymmetric TOAN synthesis.
chiral KenPhos (Scheme 10) ligands achieving ee's from 74 to 92% in a number of biaryl naphthalenes bearing phosphonates and other functional groups. ${ }^{70}$ Since Buchwald's seminal work was published in 2000 many ligands have been used to mediate these reactions. For example, Espinet has shown chiral ferrocene phosphine ligands (PFNMe, Scheme 10) to be capable of generating chiral TOANs with moderate ee (Scheme 11,
38), ${ }^{71}$ Recently, Lassaletta prepared chiral tri-ortho-substituted naphthalenes via bishydrazone ligands. ${ }^{72}$

Catalytic cross-coupling has shown to be quite effective in the synthesis of a variety of natural products and useful compounds containing TOANs. One of the seminal asymmetric natural product works via cross-coupling was the synthesis of Vancomycin by Niccalou, ${ }^{73}$ although not a TOAN, it did demonstrate that cross-coupling could be used for these types of applications.

Catalytic cross-coupling is unquestionably the predominant method for the creation of a biaryl bond; however, difficulties with sterics and chiral synthesis still plague this method, adding to the urgency of successful alternative examples of TOAN synthesis.

TOAN Synthesis: Direct Arylation: Direct arylation (DA) is the formation of a biaryl bond directly from a C-H bond. Direct arylation has the benefit of being free of organometallics (i.e. $\mathrm{B}, \mathrm{Sn}, \mathrm{Mg}, \mathrm{Zn}$, etc.) and aryl halides, in some cases. Similar to other coupling methods DA uses transition metal catalysts (i.e. $\mathrm{Pd}, \mathrm{Rh}, \mathrm{Ru}$) to facilitate the formation of the biaryl bond. The reduced pre-functionalization gives DA a smaller environmental footprint and atom economy. Encouragingly for the method, pharmaceutical companies view the synthesis of biaryls via DA as the preferred method of the future. ${ }^{74} \mathrm{DA}$ is a relatively recent breakthrough, with the first reports emerging about 20 years ago. ${ }^{75}$ Scheme 12 outlines the types of DA reactions. A majority of successful examples continue to pre-functionalize one aryl group to achieve the coupling. Without pre-functionalization of one aryl group, regioselectivity can become quite a
problem. ${ }^{76}$ Furthermore, a directing group is commonly used to avoid further regioselectivity issues. ${ }^{77}$ Current efforts are focused on the direct coupling between two C-H bonds without utilizing pre-functionalization or directing groups. To the author's knowledge there are no examples of TOAN synthesis via intermolecular direct arylation to date, although there was one example of a tetra-ortho substituted biaryl synthesized by

Scheme 12. Types of direct arylation: A) DA with an aryl halide and a directing group, B) Non-functionalized DA, C) Intramolecular DA.
an intramolecular direct arylation (Scheme 13, 40). ${ }^{78}$ Although in its infancy, direct arylation could provide an environmentally benign way to generate TOANs in the future.

Scheme 13. Biaryl synthesis via intramolecular direct arylation.

TOAN Synthesis: Alternative Approaches: Although the lion's share of TOAN synthesis is performed via the cross-coupling methods, alternative approaches have been gaining prominence throughout the last decade. This is arguably due to current difficulties with sterics and enantioselectivity as outlined previously. The major alternative routes to TOANs are: Diels-Alder, $[2+2+2]$ cycloaddition, and rearrangement-based synthesis. Each of these methods has shown to be very effective at generating sterically demanding and enantioenriched TOANs. Combined with cross-coupling these methods enhance our current access to these highly desired motifs.

Alternative Approaches: Diels-Alder: Diels-Alder [4+2] cycloadditions have been used to generate tetra-ortho-substituted biaryls and aryl naphthalenes with high yields and functional group tolerance (Scheme 14). Throughout the last ten years Carter's elegant work has pioneered the "Diels-Alder based approach to biaryls" along with successful examples of natural product synthesis. ${ }^{79}$ His work focuses on a tandem cycloaddition-

Carter

Heller

43

46
cycloelimination approach with electron deficient benzylic alkynes and electron rich cyclohexadienes. ${ }^{80}$ Carter has also demonstrated a total synthesis of the anti-HIV agent Siamenol. ${ }^{81}$ Carter's general method uses alkynyl benzene 41 which undergoes a [4+2] cycloaddition with cyclohexadiene $\mathbf{4 2}$ to yield tetra-ortho-substituted biaryl 43. Interestingly, Carter has not reported on the synthesis of TOANs via his method. Heller has utilized the Diels-Alder method to demonstrate the synthesis of TOAN 46, (among others), however, the reaction does require elevated temperatures. ${ }^{82}$ Other work, in contrast to Carter's proposed mechanism (cycloaddition then cycloelimination), has described this transformation via quantum mechanical calculations that demonstrate the method proceeding via a stepwise diradical intermediate. ${ }^{83}$ In all, [4+2] cycloadditions are an extremely promising route for highly functionalized, sterically demanding TOANs.

Alternative Approaches: $[2+2+2]$: Tanaka has provided a route to asymmetric TOANs through a rhodium-catalyzed $[2+2+2]$ cycloadditon through naphthylic alkynes 47 and diynes to generate TOAN 48 (Scheme 15). ${ }^{84}$ His method shows excellent yields, and can be made to be highly enantioselective by adding BINAP to the rhodium. The enantioselectivities range from 91 to 99% ee. ${ }^{85}$ The catalyst loading of rhodium has

47

Tanaka

48

Scheme 15. Tanaka's $[2+2+2]$ annulation approach to TOANs.
been reported to be 5% and the method has been shown to be adept at generating biaryl chiral monophosphonates, a precursor to the highly desired chiral monophosphine ligand motif. ${ }^{86}$

Alternative Approaches: Rearrangement-Based:_Rearrangement-based methods focus on the ring expansion rearrangement of strained cycloalkanes, usually cyclopropanes (Scheme 16) and cyclobutanes. Typically, the strained ring can be activated towards breakage through a cyclopropyl carbinol moiety that is activated by Lewis acid catalysis. Tanabe's seminal work introduced this type of chemistry, along with the first example of chirality transfer of a rearrangement-based method to generate enantioenriched aryl

Scheme 16. Tanabe's Rearrangement-based method for TOAN synthesis.
naphthalenes $\mathbf{5 0}$ from enantioenriched cyclopropyl carbinol 49. ${ }^{87}$ Tanabe's method focused on tri-ortho-substituted aryl naphthalenes, and no examples of TOANs were reported.

Conclusions

TOANs are an extremely useful motif in all areas of chemistry. This usefulness has led to many methods for the synthesis of these compounds; however, the synthesis of
these compounds is only recently beginning to see successes. Oxidative coupling has shown a great deal of promise with naphthols, but beyond these substrates the method is rather limited. Catalytic cross-coupling still suffers from difficulties in the generation of TOANs with large sterically demanding groups in the ortho position. Reports of successful cross-coupling approaches to TOANs are few. Direct arylation has shown very limited successful TOAN synthesis to date. While work continues on couplingbased strategies, there is still much progress to be made. Current alternative approaches have been successful, but the substrate scopes are limited and the difficulty in generating complex precursors turns many researchers off to these methods. Furthermore, each method has its own sets of limitations. In all, novel routes towards regioselective, highly enantioenriched, and sterically demanding TOANs are urgently needed.

Summary of Dissertation

Due to the lack of a TOAN synthetic method capable of addressing regioselectivity, high yields, sterically demanding substituents and asymmetric transformations into one facile synthesis; our group aimed to provide a method that was capable of providing TOANs with all of the aforementioned characteristics. Towards this end, we have established a rearrangement-based method for the synthesis of a variety of TOANs incorporating all the desired elements previously discussed. Herein, we will discuss our initial development and proof of concept studies, substrate scope development, asymmetric synthesis, the stereochemical model of our transformations, and mechanistic postulations.

Chapter II will introduce the design aspects of our rearrangement-based method, focusing on proof of concept studies, rearrangement optimization, initial substrate scope, and our first example of TOAN synthesis. Mechanistic postulations will also be briefly mentioned. This chapter was published in Organic Letters in 2008. ${ }^{88}$

Chapter III will first address lingering regioselectivity issues unresolved from Chapter II. We will then go into a TOAN-focused substrate scope with examples of unprecedented steric bulk around the ortho position, culminating in a TOAN with three isopropyl groups in the ortho position. We then will discuss purification issues and finally, briefly introduce asymmetric synthesis. This work was published in Chemical Communications in 2011. ${ }^{89}$

Chapter IV focuses heavily on asymmetric TOAN synthesis and a stereochemical model for the chiral transfer. We also discuss our successful incorporation of t-butyl and adamantyl groups into the ortho position. Another major aspect of this chapter is the transition from a TMS-cyclopropyl-based rearrangement into the simple cyclopropylbased rearrangement. The material presented in Chapter IV will be the subject of a manuscript to be submitted. ${ }^{90}$

Chapter V will describe preliminary work on the mechanism of rearrangement. Discussion will include the intermediate of a ring-open species en route to aryl naphthalenes, and the implications of these findings. We will also conclude the dissertation with some final concluding remarks.

Bridge to Chapter II

Chapter II introduces our rearrangement-based method, discussing the rationale behind our experimental design. Once these initial method development studies are addressed, the synthesis of the rearrangement precursor is outlined through a simple cyclopropanation of indenone. This is followed by subsequent nucleophilic addition of aryl lithiates or aryl magnesium salts. A limited precursor substrate scope is outlined in Table 1. We then will describe the substrate scope of the rearrangement, both of the parent cyclopropane-based indanone and the more sterically constricted α-methyl precursor. We include our first example of a TOAN in this chapter, along with our difficulties related to the regioselectivity of the rearrangement. We conclude this chapter with a mechanistic postulation, and summary of work to date, followed by the experimental data for this work. This work was published in Organic Letters in 2008 on pages 4855-4857.

CHAPTER II

SYNTHESIS OF SUBSTITUTED NAPHTHALENES VIA A CATALYTIC RINGEXPANSION REARRANGEMENT

This work was published in volume 10 of the journal Organic Letters in October 2008. Benjamin B. Morris was involved in starting material preparation, Dr. Lev N. Zakharov performed crystal structure analysis, and Prof. Shih-Yuan Liu was the P.I. I was the primary contributor for the manuscript. This Chapter includes Co-Authored material.

Results and Discussion

In this chapter we present a new methodology for the preparation of substituted naphthalenes starting from readily available indenones, organolithium/Grignard reagents, and trimethysilyldiazomethane via a catalytic rearrangement process (Scheme 1).

Scheme 1. Synthesis of naphthalenes from indenones.

We have been engaged in developing synthetic methods that rearrange easily accessible precursors into valuable target structures. In particular, we sought to provide alternative routes toward naphthalene biaryls that might address some of the limitations of conventional cross-coupling technologies.

We envisioned that cyclopropyl carbinol intermediate \mathbf{C} (Scheme 2) could be poised to undergo a ring-expansion rearrangement to furnish naphthalenes \mathbf{D} in a regioselective fashion. Intermediate \mathbf{C} can be prepared from indenones \mathbf{A} via a straightforward two-step process, i.e., cyclopropanation followed by nucleophilic addition. The salient feature of this methodology is that the pivotal $\mathrm{C}-\mathrm{C}$ coupling

Scheme 2. Rearrangement-based synthesis.
between R^{1} and the naphthalene core is accomplished through a simple addition of a nucleophile to a carbonyl.

Treatment of indenones $\mathbf{1}$ with commercially available trimethylsilyldiazomethane in the presence of a catalytic amount of $\mathrm{Pd}(\mathrm{OAc})_{2}$ furnishes silylcyclopropanated adducts $\mathbf{2}$. The exo diastereomer has been isolated as the major
product, the structure of which has been determined by single crystal X-ray crystallography (scheme 3).

Scheme 3. Cyclopropanation of indanone 1.

Table 1 illustrates that addition of nucleophiles to ketones $\mathbf{2}$ can be readily accomplished with organolithiums (entry 1) as well as with functionalized Grignard reagents (entries 2-5). More hindered ortho-substituted nucleophiles also serve as suitable coupling partners (entries 6-7). Entries 8-11 of Table 1 show that the nucleophilic attack at the more sterically demanding electrophile $\mathbf{2 b}$ is feasible as well, even with a 2,6 disubstituted aryl nucleophile (entry 11). With the exception of two examples (entries 8 and 10), only one diastereomer has been observed for the nucleophilic addition. We have structurally characterized the adduct between ketone 2a and 1-naphthylmagnesium bromide, i.e., $\mathbf{3 g}$, via X-ray crystallography. The relative stereochemistry of the structure is consistent with an approach of the nucleophile opposite the blocking silylcyclopropane group.

2 a: $R^{2}=H$
b: $R^{2}=M e$

THF, 16 h

entry	R^{2}	$\mathrm{R}^{1}-\mathrm{M}$	product	yield (\%) ${ }^{\text {a }}$	$\mathrm{dr}{ }^{\text {b }}$
1	H	$\mathrm{Ph}-\mathrm{Li}$	3a	73	>95:5
2	H	4- $\mathrm{MeO}_{2} \mathrm{CC}_{6} \mathrm{H}_{4}-\mathrm{MgX}$	3b	50	>95:5
3	H	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}-\mathrm{MgBr}$	3c	52	>95:5
4	H	4- $\mathrm{ClC}_{6} \mathrm{H}_{4}-\mathrm{MgBr}$	3d	58	>95:5
5	H	4-FC66 $\mathrm{H}_{4}-\mathrm{MgBr}$	3 e	56	>95:5
6	H	$2-\mathrm{MeC}_{6} \mathrm{H}_{4}-\mathrm{Li}$	3 f	67	>95:5
7	H	1-naphthyl-MgBr	3 g	62	>95:5
8	Me	$\mathrm{Ph}-\mathrm{Li}$	3h	70	74:26
9	Me	$2-\mathrm{MeC}_{6} \mathrm{H}_{4}-\mathrm{Li}$	$3 i$	81	>95:5
10	Me	$2-\mathrm{MeOC} 6 \mathrm{H}_{4}-\mathrm{MgBr}$	3j	44	76:24
11	Me	2,6-(MeO) $2^{2} \mathrm{C}_{6} \mathrm{H}_{3}-\mathrm{Li}$	3k	53	>95:5

${ }^{\mathrm{a}}$ Isolated yield. ${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR.

Table 1. Catalytic Ring Expansion Rearrangement

We chose to optimize the synthesis of naphthalenes via the proposed ring expansion rearrangement using substrate 3a. A survey of Lewis acids and solvents reveals that the optimal reaction conditions involve $10 \mathrm{~mol} \% \mathrm{Eu}(\mathrm{OTf})_{3}$ in 1,2dichloroethane as solvent (See experimental for details). The presence of the silicon group is crucial. A control experiment performed with a substrate bearing H in place of SiMe_{3} under the optimized reaction conditions produced very little of the desired naphthalene product.

Cyclopropyl carbinols $\mathbf{3}$ from Table 1 were subjected to the optimized reaction conditions. Table 2 shows that our catalytic ring-expansion rearrangement is compatible with functionalized (entries 2-5), and hindered (entries 6-7) R^{1} groups. We have also prepared a disubstituted naphthalene $\mathbf{4 1}$ in a regioselective fashion from the corresponding precursor $\mathbf{3 1}$ derived from a β-substituted indenone (table 2).

entry	R^{1}	product	yield(\%) ${ }^{\mathrm{a}}$
1	Ph	4 a	84
2	$4-\mathrm{MeO}_{2} \mathrm{CC}_{6} \mathrm{H}_{4}$	4 b	42
3	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	4 c	46
4	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	4 d	56
5	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	4 e	58
6	$2-\mathrm{MeC}_{6} \mathrm{H}_{4}$	4 f	62
7	1-naphthyl	4 g	67

${ }^{a}$ Isolated yield

Table 2. Nucleophilic Addition to 2

Interestingly, we discovered that precursors $\mathbf{3 h} \mathbf{- 3 k}$, which are derived from an α substituted indenone, produce a mixture of naphthalene products $\mathbf{4}$ and $\mathbf{5}$ under our
optimized conditions (Table 3). The desired 1,2-disubstituted regioisomer 4 is formed in high selectivity for substrates $\mathbf{3 h}$ and $\mathbf{3 i}$, furnishing di- and triortho-substituted biaryl naphthalenes 4 in good yield (entries 1-2). A diminished regioselectivity is observed for substrate $\mathbf{3} \mathbf{j}$, which contains the o-methoxyphenyl substituent (entry 3). Noteworthy is the preparation of a tetra-ortho-substituted biaryl $\mathbf{4 k}$ from precursor $\mathbf{3 k}$, although the

entry	R^{1}	product	yield (\%) ${ }^{\mathrm{a}}$	$4: 5^{\mathrm{b}}$
1	Ph	h	70	$93: 7$
2	$2-\mathrm{MeC}_{6} \mathrm{H}_{4}$	i	70	$93: 7$
3	$2-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	j	85	$83: 17$
4	$1,6-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	k	77	$64: 36$

${ }^{\mathrm{a}}$ Isolated yield of a mixture of 4 and 5. ${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR.

Table 3. Catalytic Ring Expansion of Hindered Precursors
regioselectivity of the rearrangement is only moderate (entry 4). We have determined the structure of the rearrangement byproduct $\mathbf{5 k}$ via X-ray crystallography, thus unambiguously establishing the connectivity of the 1,3-disubstituted naphthalene regioisomer 5.

The presence of isomer 5 may provide some insight into the possible mechanism of the rearrangement process. The current mechanistic hypothesis for its formation involves a benzobenzvalene intermediate 6 (Scheme 4). Breaking bond a in 6 produces
the 1,2-disubstituted naphthalene $\mathbf{4}$ whereas breaking bond byields the 1,3-disubstituted isomer 5.

Scheme 4. Possible intermediate for the rearrangement.
In summary, we have developed a new method for the synthesis of substituted naphthalenes based on a catalytic ring-expansion rearrangement process. Starting from readily available indenones, biaryl naphthalenes, including hindered triortho-substituted ones, can be accessed in a few steps. Our method provides an alternative to crosscoupling procedures for the synthesis of biaryl naphthalenes, and it distinguishes itself from coupling protocols by achieving the crucial $\mathrm{C}-\mathrm{C}$ bond-forming step through a simple nucleophilic addition to a carbonyl. Our experimental observations are consistent with a rearrangement mechanism involving a benzvalene-like intermediate. Current efforts are geared toward obtaining a better understanding of the reaction mechanism and improving the substrate scope and reaction efficiency.

Experimental

General

All oxygen- and moisture-sensitive manipulations were carried out under an inert atmosphere using either standard Schlenk techniques or a glove box.

THF, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and pentane were purified by passing through a neutral alumina column under argon. Anhydrous benzene, dichloroethane, and hexane were purchased from Aldrich and used as received. All other reagents were purchased (Aldrich or TCI) and used as received. Indenone, 2-methyl-1-indenone, and o tolyllithium were prepared according known procedures. ${ }^{91}$

Thin layer chromatography and preparatory chromatography were performed on Silicycle glass backed plates with UV indicator. Column chromatography was performed on Silicycle silica gel P60.
${ }^{1}$ H NMR spectra were recorded on a Varian Unity/Inova 300 or Varian Unity/Inova 600 spectrometer. ${ }^{13}$ C NMR spectra were recorded on a Varian Unity/Inova 300 or Varian Unity/Inova 500 spectrometer. All spectra were referenced to their respective solvents: $\mathrm{CDCl}_{3} 7.27 \mathrm{ppm}$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2} 5.30 \mathrm{ppm}$. Gas chromatography was performed on an Agilent 6850 Series II GC with an auto loader using ChemStation. IR spectra were recorded on a Nicolet Magna 550 FT-IR instrument with OMNIC software.

High-resolution mass spectroscopy data were obtained at the Mass Spectroscopy Facilities and Services Core of the Environmental Health Sciences Center at Oregon State

University. Financial support for this facility has been furnished in part by the National Institute of Environmental Health Sciences, NIH (P30 ES00210).

Synthesis of Silylcyclopropyl Indanones 2

Compound 2a. To a nitrogen flushed and dried flask, 1-indenone (360 $\mathrm{mg}, 2.77 \mathrm{mmol})$ and palladium acetate $(62.0 \mathrm{mg}, 0.277 \mathrm{mmol})$ were added. The flask was repurged with N_{2}. Anhydrous benzene (30 mL)
 was added followed by dropwise addition of $\mathrm{TMSCHN}_{2}(3.45 \mathrm{~mL}, 7.00$ mmol, 2.0 M in diethyl ether). The evolution of N_{2} gas is apparent and the solution turns black. The reaction mixture was allowed to stir at room temperature for 16 h . At the conclusion of the reaction, the reaction mixture was filtered through a plug of Celite, and the solvent removed under reduced pressure. The crude material was subjected to column chromatography ($\mathrm{Hex}^{2} \mathrm{Et}_{2} \mathrm{O}=10: 1$), and 2a was isolated as a red oil ($340 \mathrm{mg}, 56 \%$ yield). Single crystals were grown via slow evaporation from a solution of $\mathbf{2 a}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.05(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.76(\mathrm{t}, \mathrm{J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=7.2$
$\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta-2.6,25.4,30.7,41.4,124.0,124.8,126.6$, 133.2, 155.6, 155.7, 203.1. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1708 \mathrm{~s}$, (Carbonyl). HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{OSi}(\mathrm{M}+)$ 216.09705, found 216.09623.

Compound 2b. The procedure for the preparation of 2a has been used for the synthesis of $\mathbf{2 b}$ employing 2-methyl-1-indenone (500 $\mathrm{mg}, 3.44 \mathrm{mmol}$), palladium acetate ($77.0 \mathrm{mg}, 0.344 \mathrm{mmol}$), 35 mL

 benzene, and TMSCHN_{2} ($4.3 \mathrm{~mL}, 8.6 \mathrm{mmol}, 2.0 \mathrm{M}$ in diethyl ether). Cyclopropane 2b was isolated as a pale yellow solid ($367 \mathrm{mg}, 46 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 0.13(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 2.65$ $(\mathrm{d}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta-0.7,11.7,31.6,36.8,46.3,123.6,125.2,126.3,133.1,133.3,156.2,205.3$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1707 \mathrm{~s}$, (Carbonyl). HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{OSi}(\mathrm{M}+)$ 230.11270, found 230.11236

Synthesis of Silylcyclopropyl Carbinols 3 (Table 1)

Compound 3a (Entry 1). An oven-dried flask was charged with 50 mL anhydrous THF and phenyllithium ($7.11 \mathrm{~mL}, 12.8 \mathrm{mmol}, 1.8 \mathrm{M}$ in di- n-butyl ether) and cooled to $-78^{\circ} \mathrm{C}$. Compound 2a ($1.32 \mathrm{~g}, 6.11$
 mmol) in 10.0 mL THF was added to the reaction mixture over 5 minutes at this temperature. The reaction was brought to room temperature after 1 hour and left stirring for 16 more hours. At the conclusion of the reaction, 25 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 50 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography $($ Hex:Ether $=$ 3:1). Compound $3 \mathbf{3}$ was isolated as a pale yellow oil ($1.32 \mathrm{~g}, 73 \%$ yield $)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.08(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.21(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.38(\mathrm{~m}, 7 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-2.2,22.7,27.1,33.1,85.0,123.1,125.1,125.8,126.6$, 126.8, 127.7, 128.2, 146.2, 147.2, 147.4. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3592 \mathrm{~s}$, (alcohol). HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{OSi}(\mathrm{M}+)$ 294.14400, found 294.14391.

Compound 3b (Entry 2). A round-bottomed flask was charged with p Iodomethylbenzoate ($353 \mathrm{mg}, 1.35 \mathrm{mmol}$) in 10.0 mL anhydrous THF. The mixture was cooled to $-10^{\circ} \mathrm{C}$, and isopropylmagnesium bromide ($1.76 \mathrm{~mL}, 1.76 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) was added dropwise. After 2

3b SiMe ${ }_{3}$ hours the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$, and a solution of $\mathbf{2 a}(175 \mathrm{mg}, 0.810$ mmol, in 4.0 mL THF) was added dropwise. After one hour, the mixture was allowed to warm up to room temperature. After 16 hours of stirring at room temperature, the reaction was quenched with $10 \mathrm{~mL} \mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) followed by addition of 15 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was then removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether $=6: 1$). The product was isolated as a clear colorless liquid ($145 \mathrm{mg}, 50 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.08(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.46(\mathrm{~s}, 1 \mathrm{H}), 2.57(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, \mathrm{J}$ $=6.9, \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}) 7.31(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $8.00(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-2.3,22.5$, $27.0,32.8,52.0,84.9,123.2,125.1,125.7,126.7,127.9,128.4,129.5$,
145.8, 147.0, 152.3, 167.0. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3593 \mathrm{~s}$, (alcohol), 3503 b (alcohol), 1718 s (carbonyl). HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+$) 335.14674, found 335.14560 .

Compound 3c (Entry 3). The procedure for the preparation of 3a has been applied for the synthesis of $\mathbf{3 c}$, using $\mathbf{2 a}$ (158 mg , 0.730 mmol) in 5.0 mL THF and 4-methoxyphenylmagnesium
 bromide ($2.19 \mathrm{~mL}, 1.09 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF). Compound $\mathbf{3 c}$ was isolated as a light yellow solid ($123 \mathrm{mg}, 52 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.09(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.30(\mathrm{~s}, 1 \mathrm{H}), 2.55(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-$ $7.23(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta-2.2,22.7,26.9,33.1,55.2,84.8,113.4,123.0,125.8,126.3,126.5,127.6$, 139.8, 146.3, 147.0, 158.3. IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 3589 s , (alcohol). HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+)$ 324.15456, found 324.15392.

Compound 3d (Entry 4). The procedure for the preparation of 3a has been applied for the synthesis of $\mathbf{3 d}$, using $\mathbf{2 a}(153 \mathrm{mg}, 0.708$ mmol) in 5.0 mL THF and 4-chlorophenylmagnesium bromide (1.07
 $\mathrm{mL}, 1.07 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF). Compound $\mathbf{3 d}$ was isolated as a pale yellow oil ($135 \mathrm{mg}, 58 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.06(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.28(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.21(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \mathrm{d}-2.2,22.7,27.0,33.0,84.7,123.2,125.7,126.7,127.9,128.2,132.5$,
145.9, 147.0. Two additional aromatic carbon atoms have overlapping ${ }^{13} \mathrm{C}$ signals with those shown. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 3592 s , (alcohol). HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{OSiCl}(\mathrm{M}+)$ 328.10503, found 328.10382.

Compound 3e (Entry 5). The procedure for the preparation of 3a has been applied for the synthesis of $\mathbf{3 e}$, using $\mathbf{2 a}$ ($151 \mathrm{mg}, 0.700 \mathrm{mmol}$) in 5.0 mL THF and 4-fluorophenylmagnesium bromide $(1.39 \mathrm{~mL}, 1.39$
 mmol, 1.0 M in THF). Compound $\mathbf{3} \mathbf{e}$ was isolated as a pale yellow oil ($123 \mathrm{mg}, 56 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.09(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.25(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.41-7.46(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-2.2,22.8,26.9,33.1,84.7,114.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=\right.$ $21.1 \mathrm{~Hz}), 123.1,125.7,126.6,126.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=8.0 \mathrm{~Hz}\right), 127.8,143.2(\mathrm{~d}$, $\left.{ }^{4} \mathbf{J}_{\mathrm{CF}}=3.1 \mathrm{~Hz}\right), 146.0,147.0,161.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=243 \mathrm{~Hz}\right) . \mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3590 \mathrm{~s}$, (alcohol).

HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{OSiF}(\mathrm{M}+) 312.13458$, found 312.13381 .

Compound $3 f$ (Entry 6). The procedure for the preparation of 3a has been applied for the synthesis of $\mathbf{3 f}$, using $\mathbf{2 a}(144 \mathrm{mg}, 0.667 \mathrm{mmol})$ in 2.5 mL THF and o-tolyllithium ($136 \mathrm{mg}, 1.39 \mathrm{mmol}$) in 2.5 mL THF.
 Compound $\mathbf{3 f}$ was isolated as a pale yellow oil ($137 \mathrm{mg}, 67 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.11(\mathrm{~s}, 9 \mathrm{H}), 0.29(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.21(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 7.12-7.37(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-2.2,21.5,23.2,28.1,32.1,86.1,123.4,125.0,125.2,126.5,126.9$,
$127.3,127.9,132.4,136.4,144.0,145.6,147.7$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3582 \mathrm{~s}$, (alcohol), 3462 b (alcohol). HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{OSi}(\mathrm{M}+)$ 308.15965, found 308.15902.

Compound 3g (Entry 7). The procedure for the preparation of 3a has been applied for the synthesis of $\mathbf{3 g}$, using $\mathbf{2 a}(146 \mathrm{mg}, 0.68 \mathrm{mmol})$ in 10.0 mL THF and 1-naphthylmagnesium bromide ($5.36 \mathrm{~mL}, 0.68$
 mmol, 0.25 M in THF). Compound $\mathbf{3 g}$ was isolated as a white solid ($144 \mathrm{mg}, 62 \%$ yield). Single crystals suitable for X-ray crystallography were grown via slow evaporation from a solution of $\mathbf{3 g}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 3582 s (alcohol). HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{OSi}(\mathrm{M}+) 344.15965$, found 344.15879

Compound 3h (Entry 8). The procedure for the preparation of 3a has been applied for the synthesis of $\mathbf{3 h}$, using $\mathbf{2 b}$ ($190 \mathrm{mg}, 0.826 \mathrm{mmol}$) in 10.0 mL THF and phenyllithium $(0.600 \mathrm{~mL}, 1.08 \mathrm{mmol}, 1.8 \mathrm{M}$ in di- $n-$
 butyl ether). Compound $\mathbf{3 h}$ was isolated as a pale yellow oil ($179 \mathrm{mg}, 70 \%$ yield). ${ }^{1} \mathrm{H}$ NMR indicates a 74:26 ratio of diastereomers.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.14(\mathrm{~s}, 9 \mathrm{H}), 0.060(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 2.22$ $(\mathrm{s}, 1 \mathrm{H}), 2.39(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-$ $7.47(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-0.3,15.6,30.2,33.9,37.7,88.6,122.1$, 126.5, 126.6, 127.9, 144.8, 146.9, 148.9. Three additional aromatic carbon atoms have overlapping ${ }^{13} \mathrm{C}$ signals with those shown. (IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3566 \mathrm{~b}$, (alcohol), 3481 b , (alcohol). HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{OSi}(\mathrm{M}+$) 308.15965, found 308.16027.

Compound 3i (Entry 9). The procedure for the preparation of 3a has been applied for the synthesis of $\mathbf{3 i}$, using $\mathbf{2 b}$ ($150 \mathrm{mg}, 0.650 \mathrm{mmol}$) in 5.0 mL THF and o-tolyllithium ($96 \mathrm{mg}, 0.98 \mathrm{mmol}$) in 3.0 mL THF.
 Compound $\mathbf{3 i}$ was isolated as a pale yellow oil ($170 \mathrm{mg}, 81 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta-0.01$ (apparent s, 10H), $1.65(\mathrm{~s}, 3 \mathrm{H}), 2.072(\mathrm{~s}, 1 \mathrm{H}), 2.27$ $(\mathrm{d}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-$ $7.35(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta-0.6,14.3,23.2,31.0,34.3,40.2,89.6$, 122.7, 124.2, 125.6, 126.6, 126.8, 128.0, 129.8, 132.6, 137.0, 140.6, 148.0, 148.4. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3580 \mathrm{~s}$, (alcohol), 3450 b (alcohol). HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{OSi}(\mathrm{M}+)$ 322.17530, found 322.17464.

Compound 3j (Entry 10). The procedure for the preparation of 3a has been applied for the synthesis of $\mathbf{3 j}$, using $\mathbf{2 b}$ ($350 \mathrm{mg}, 1.52 \mathrm{mmol}$) in 10.0 mL THF and 2-methoxyphenylmagnesium bromide (3.00 mL ,
 $3.00 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF). Compound $\mathbf{3 j}$ was isolated as a white solid ($224 \mathrm{mg}, 44 \%$ yield). ${ }^{1} \mathrm{H}$ NMR indicates a 76:24 ratio of diastereomers.
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 0.14(\mathrm{~s}, 9 \mathrm{H}), 0.53(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 2.17$ $(\mathrm{d}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{dd}, \mathrm{J}=5.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}) 6.77-6.89$ $(\mathrm{m}, 1 \mathrm{H}) 7.02(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}) 7.17-7.32(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-0.2$, $15.6,29.9,35.0,37.9,55.4,90.5,110.9,121.4,122.1,125.9,127.3,127.6,128.2,129.9$, 132.9, 145.7, 149.1, 157.3. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3601 \mathrm{~s}$, (alcohol), 3515 b (alcohol). HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+)$ 338.17021, found 338.16921.

Compound 3k (Entry 11). Under an inert atmosphere, a round bottomed flask was charged with 1,3 -dimethoxybenzene ($750 \mathrm{mg}, 5.28 \mathrm{mmol}$) in 15.0 mL anhydrous ether. $n-\mathrm{BuLi}(1.93 \mathrm{~mL}, 4.88 \mathrm{mmol}, 2.53 \mathrm{M}$ solution in hexanes) was added dropwise at room temperature. The reaction mixture
 was stirred for 16 h after which the solvents were removed under reduced pressure. 15 mL THF was added to the precipitate and the resulting solution was cooled to $-78^{\circ} \mathrm{C}$. Compound 2b ($344 \mathrm{mg}, 1.50 \mathrm{mmol}$) in 5 mL THF was added dropwise. After one hour stirring at $-78^{\circ} \mathrm{C}$, the reaction was allowed to warm to room temperature and stirred for 16 more hours. Then, the reaction was quenched with $10 \mathrm{~mL} \mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous), and 15 mL ether were added. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was then removed under reduced pressure and the crude mixture was subjected to column chromatography (Hex:Ether $=3: 1$). The product was isolated as a white solid ($290 \mathrm{mg}, 53 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.13(\mathrm{~s}, 9 \mathrm{H}), 0.55(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 2.27$ $(\mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ $(\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.24(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $0.1,16.3,27.6,35.9,37.2,56.2,57.0,89.5,105.8,107.8,121.6,122.3,124.6,125.4$, 126.6, 128.5, 149.2, 149.7, 158.4, 158.7. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3494 \mathrm{~s}$, (alcohol). HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+) 368.18078$, found 368.18122.

Ring-Expansion Rearrangement Optimization Survey

A survey of Lewis acids (Table 4, entries 1-8) reveals that $\mathrm{Eu}(\mathrm{OTf})_{3}$ promotes the transformation most efficiently, giving the desired naphthalene product 4a in 69% yield.

A screen for the optimal solvent shows that 1,2-dichloroethane (entry 8) outperforms etheral (entry 9), aromatic (entries 10-11), and saturated hydrocarbon (entry 12) solvents. Gratifyingly, we have determined that the ring expansion rearrangement can be carried out in the presence of catalytic amounts of the Lewis acid (entry 13). However, a lowering of the catalyst loading from $10 \mathrm{~mol} \%$ to $1 \mathrm{~mol} \%$ results in a decrease in yield of $\mathbf{4 a}$ (entry 13 vs. entry 14). Control experiments with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (entry 15) and SnCl_{4} (entry 16) as catalysts demonstrate that these Lewis acids are inferior to $\mathrm{Eu}(\mathrm{OTf})_{3}$ under

${ }^{\text {a }}$ Determined by GC analysis versus a calibrated internal standard. DCE: 1,2-dichloroethane.

Table 4. Ring-Expansion Rearrangement: Optimization Studies
the optimized reaction conditions. The presence of the silicon group is crucial. A control experiment performed with substrate $\mathbf{H}\left(\mathrm{H}\right.$ in place of $\left.\mathrm{SiMe}_{3}\right)$ under the optimized reaction conditions produced only very little desired rearrangement product (entry 17).

General Procedure for the Optimization Survey:

In a nitrogen glovebox, a vial was charged with compound 3a, Lewis acid, hexadecane, and the solvent. The reaction vial was immersed into an oil bath at $80^{\circ} \mathrm{C}$ for 4 hours. At the conclusion of the reaction, the mixture was filtered through a silica gel plug with copious washing using ether. An aliquot of the resulting solution was subjected to GC yield analysis. All GC yields (Table S1) have been corrected for response factors. Entry 1: The general procedure was followed, using 3a ($17 \mathrm{mg}, 0.057 \mathrm{mmol}$), FeCl_{3} (10 $\mathrm{mg}, 0.064 \mathrm{mmol})$, and DCE (1.0 mL). GC analysis indicated the formation of $\mathbf{4 a}$ in 39% yield.

Entry 2: The general procedure was followed, using 3a ($16 \mathrm{mg}, 0.053 \mathrm{mmol}$), $\mathrm{RuCl}_{3}(12$ $\mathrm{mg}, 0.058 \mathrm{mmol})$, and DCE (1.0 mL). GC analysis indicated the formation of $\mathbf{4 a}$ in 17% yield.

Entry 3: The general procedure was followed, using $\mathbf{3 a}$ ($16 \mathrm{mg}, 0.053 \mathrm{mmol}$), TiCl_{4} (11 $\mathrm{mg}, 0.058 \mathrm{mmol})$, and DCE (1.0 mL). GC analysis indicated the formation of $\mathbf{4 a}$ in 6% yield.

Entry 4: The general procedure was followed, using 3a (16 mg, 0.053 mmol), ZrCl_{4} (13 $\mathrm{mg}, 0.058 \mathrm{mmol})$, and DCE $(1.0 \mathrm{~mL})$. GC analysis indicated the formation of $\mathbf{4 a}$ in 4% yield.

Entry 5: The general procedure was followed, using $\mathbf{3 a}(17 \mathrm{mg}, 0.057 \mathrm{mmol}), \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ $(9.0 \mathrm{mg}, 0.063 \mathrm{mmol})$, and $\operatorname{DCE}(1.0 \mathrm{~mL}) . \mathrm{GC}$ analysis indicated the formation of $\mathbf{4 a}$ in 52% yield.

Entry 6: The general procedure was followed, using $\mathbf{3 a}$ ($16 \mathrm{mg}, 0.0530 \mathrm{mmol}$), AlCl_{3} $(8.0 \mathrm{mg}, 0.058 \mathrm{mmol})$, and $\operatorname{DCE}(1.0 \mathrm{~mL}) . \mathrm{GC}$ analysis indicated the formation of $\mathbf{4 a}$ in 12% yield.

Entry 7: The general procedure was followed, using $\mathbf{3 a}(17 \mathrm{mg}, 0.057 \mathrm{mmol}), \mathrm{SnCl}_{4}(11$ $\mathrm{mg}, 0.063 \mathrm{mmol})$, and DCE $(1.0 \mathrm{~mL})$. GC analysis indicated the formation of $4 \mathbf{a}$ in 44% yield.

Entry 8: The general procedure was followed, using 3a ($16 \mathrm{mg}, 0.053 \mathrm{mmol}$), $\mathrm{Eu}(\mathrm{OTf})_{3}$ ($41 \mathrm{mg}, 0.058 \mathrm{mmol}$), and DCE (1.0 mL). GC analysis indicated the formation of $4 \mathbf{a}$ in 69\% yield.

Entry 9: The general procedure was followed, using 3a (13 mg, 0.044 mmol$), \mathrm{Eu}(\mathrm{OTf})_{3}$ ($28 \mathrm{mg}, 0.047 \mathrm{mmol}$), and THF (1.0 mL). GC analysis indicated the formation of $\mathbf{4 a}$ in 36% yield.

Entry 10: The general procedure was followed, using 3a ($13 \mathrm{mg}, 0.044 \mathrm{mmol}$), $\mathrm{Eu}(\mathrm{OTf})_{3}(28 \mathrm{mg}, 0.047 \mathrm{mmol})$, and toluene $(1.0 \mathrm{~mL}) . \mathrm{GC}$ analysis indicated the formation of $\mathbf{4 a}$ in 38% yield.

Entry 11: The general procedure was followed, using 3a ($26 \mathrm{mg}, 0.087 \mathrm{mmol}$), $\mathrm{Eu}(\mathrm{OTf})_{3}(56 \mathrm{mg}, 0.093 \mathrm{mmol})$, and benzene $(1.0 \mathrm{~mL}) . \mathrm{GC}$ analysis indicated the formation of $\mathbf{4 a}$ in 30\% yield.

Entry 12: The general procedure was followed, using 3a ($12 \mathrm{mg}, 0.041 \mathrm{mmol}$), $\mathrm{Eu}(\mathrm{OTf})_{3}(26 \mathrm{mg}, 0.044 \mathrm{mmol})$, and n -hexane $(1.0 \mathrm{~mL}) . \mathrm{GC}$ analysis indicated the formation of $\mathbf{4 a}$ in 8% yield.

Entry 13: The general procedure was followed, using 3a ($15 \mathrm{mg}, 0.051 \mathrm{mmol}$), $\mathrm{Eu}(\mathrm{OTf})_{3}(3 \mathrm{mg}, 0.005 \mathrm{mmol})$, and $\mathrm{DCE}(1.0 \mathrm{~mL}) . \mathrm{GC}$ analysis indicated the formation of $\mathbf{4 a}$ in 81% yield.

Entry 14: The general procedure was followed, using 3a (14 mg, 0.048 mmol), $\mathrm{Eu}(\mathrm{OTf})_{3}(0.33 \mathrm{mg}, 0.00055 \mathrm{mmol})$, and $\mathrm{DCE}(1.0 \mathrm{~mL})$. GC analysis indicated the formation of $\mathbf{4 a}$ in 50% yield.

Entry 15: The general procedure was followed, using 3a ($26 \mathrm{mg}, 0.088 \mathrm{mmol}$), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.2 \mathrm{mg}, 0.0090 \mathrm{mmol})$, and $\mathrm{DCE}(1.0 \mathrm{~mL}) . \mathrm{GC}$ analysis indicated the formation of $\mathbf{4 a}$ in 7% yield.

Entry 16: The general procedure was followed, using $\mathbf{3 a}(28 \mathrm{mg}, 0.095 \mathrm{mmol}), \mathrm{SnCl}_{4}$ ($2.5 \mathrm{mg}, 0.0095 \mathrm{mmol}$), and DCE (1.0 mL). GC analysis indicated the formation of $4 \mathbf{a}$ in 7% yield.

Synthesis of Compound H. Under nitrogen, a vial was charged with 2a ($500 \mathrm{mg}, 2.3 \mathrm{mmol}$) and THF (20 mL). The solution was cooled to 0 ${ }^{\circ} \mathrm{C}$, and tetrabutylammonium fluoride ($2.9 \mathrm{~mL}, 2.9 \mathrm{mmol}, 1.0 \mathrm{M} \mathrm{THF}$)

H was added dropwise. The reaction was allowed to warm to room temperature and stirred overnight. The solvent was then removed under vacuum and the crude mixture was purified via column chromatography (Hex:Ether $=3: 1$) to give the
silicon-free cyclopropyl indanone ($218 \mathrm{mg}, 66 \%$ yield). This material was dissolved in THF (5.0 mL) and transferred dropwise to a solution of $\mathrm{PhLi}(1.09 \mathrm{~mL}, 1.97 \mathrm{mmol}, 1.8$ M in Di-n-butyl ether) in 10.0 mL THF at $-78^{\circ} \mathrm{C}$. After 16 hours of stirring at room temperature, the reaction was quenched with $10 \mathrm{~mL} \mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) followed by addition of 15 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was then removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether $=3: 1$). The product was isolated as a light yellow oil ($260 \mathrm{mg}, 78 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.72-0.76(\mathrm{~m}, 1 \mathrm{H}), 1.13-1.18(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.18(\mathrm{~m}, 1 \mathrm{H})$, $2.27(\mathrm{~s}, 1 \mathrm{H}), 2.62-2.68(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.46(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.8$, $23.5,28.9,85.1,123.6,125.1,125.5,126.9,128.0,128.2,145.8,146.1,147.6$. One aromatic carbon atom has an overlapping ${ }^{13} \mathrm{C}$ signal.

Entry 17: The general procedure was followed, using H ($8.0 \mathrm{mg}, 0.036 \mathrm{mmol}$), $\mathrm{Eu}(\mathrm{OTf})_{3}(1.7 \mathrm{mg}, 0.0028 \mathrm{mmol})$, and $\mathrm{DCE}(1.0 \mathrm{~mL}) . \mathrm{GC}$ analysis indicated the formation of $\mathbf{4 a}$ in 4% yield.

Catalytic Ring-Expansion Rearrangement of 3 (Table 2)

General Procedure: In a nitrogen glovebox, a vial was charged with 3a, 1,2dichloroethane, and $\mathrm{Eu}(\mathrm{OTf})_{3}$. The vessel was sealed and stirred at $80^{\circ} \mathrm{C}$ for 16 h . The reaction was cooled to room temperature, and the mixture was filtered through a silica gel plug with copious ether washings. The solvents were removed under reduced pressure, and the crude material was subjected to either preparatory thin-layer OR column chromatography using hexanes as the eluent.

Compound 4a [605-02-7] (Entry 1). The general procedure has been applied using 3a ($178 \mathrm{mg}, 0.61 \mathrm{mmol}$), 1,2-dichloroethane (5.0 mL), and $\mathrm{Eu}(\mathrm{OTf})_{3}(36 \mathrm{mg}, 0.060 \mathrm{mmol})$. The product was isolated as an oil ($104 \mathrm{mg}, 84 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.46-7.60 (m, 9H), 7.90-7.97 (m, 3H).

Compound 4b [229467-26-9] (Entry 2). The general procedure has been applied using $\mathbf{3 b}(139 \mathrm{mg}, 0.412 \mathrm{mmol}), 1,2$-dichloroethane (5.0 mL), and $\mathrm{Eu}(\mathrm{OTf})_{3}(24 \mathrm{mg}, 0.040$ mmol). The product was isolated as an off-white solid ($45 \mathrm{mg}, 42 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.99(\mathrm{~s}, 3 \mathrm{H}), 7.44-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, \mathrm{J}=9,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.19(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H})$.

Compound 4c [27331-33-5] (Entry 3). The general procedure has been applied using 3c ($206 \mathrm{mg}, 0.640 \mathrm{mmol}$), 1,2-dichloroethane (5.0 mL), and $\mathrm{Eu}(\mathrm{OTf})_{3}$ ($38 \mathrm{mg}, 0.063 \mathrm{mmol}$). The product was isolated as a white solid ($69 \mathrm{mg}, 46 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 3.91(\mathrm{~s}, 3 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.84-7.92(\mathrm{~m}, 3 \mathrm{H})$.

Compound 4d [24382-97-6] (Entry 4). The general procedure has been applied using 3d ($210 \mathrm{mg}, 0.640 \mathrm{mmol}$), 1,2-dichloroethane (5.0 mL), and $\mathrm{Eu}(\mathrm{OTf})_{3}(38 \mathrm{mg}, 0.063$
$\mathrm{mmol})$. The product was isolated as an oil ($85 \mathrm{mg}, 56 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.42-7.58(\mathrm{~m}, 8 \mathrm{H}), 7.88-7.97(\mathrm{~m}, 3 \mathrm{H})$.

Compound 4e [572-52-1] (Entry 5). The general procedure has been applied using 3e ($200 \mathrm{mg}, 0.640 \mathrm{mmol}$), 1,2-dichloroethane (5.0 mL), and $\mathrm{Eu}(\mathrm{OTf})_{3}$ ($38 \mathrm{mg}, 0.063 \mathrm{mmol}$). The product was isolated as an oil ($82 \mathrm{mg}, 58 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.19-7.28 (m, 3H), 7.42-7.58 (m, 5H), 7.87-7.96 (m, 3H).

Compound 4 f [14476-01-8] (Entry 6). The general procedure has been applied using $\mathbf{3 f}$ $(210 \mathrm{mg}, 0.680 \mathrm{mmol}), 1,2$-dichloroethane $(5.0 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(42 \mathrm{mg}, 0.070 \mathrm{mmol})$. The product was isolated off-white solid ($92 \mathrm{mg}, 62 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 2.06(\mathrm{~s}, 3 \mathrm{H}), 7.28-7.59(\mathrm{~m}, 9 \mathrm{H}), 7.93(\mathrm{dd}, \mathrm{J}=3.3,8.4 \mathrm{~Hz}, 2 \mathrm{H})$.

Compound 4g [604-53-5] (Entry 7). The general procedure has been applied using 3g $(120 \mathrm{mg}, 0.350 \mathrm{mmol}), 1,2$-dichloroethane $(5.0 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(20 \mathrm{mg}, 0.033 \mathrm{mmol})$. The product was isolated as a light yellow solid ($60 \mathrm{mg}, 67 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.66(\mathrm{~m}, 8 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthesis of 4l (eq 2)

Compound 31. To a nitrogen flushed and dried flask, 3-methyl-1indenone ($756 \mathrm{mg}, 5.25 \mathrm{mmol}$) and palladium acetate $(173 \mathrm{mg}, 0.780$ mmol) were added. The flask was repurged with N_{2}. Anhydrous
 benzene (50 mL) was added followed by dropwise addition of $\mathrm{TMSCHN}_{2}\left(7.80 \mathrm{~mL}, 15.6 \mathrm{mmol}, 2.0 \mathrm{M}\right.$ in diethyl ether). The evolution of N_{2} gas is apparent and the solution turns black. The reaction mixture was allowed to stir at $45^{\circ} \mathrm{C}$ for 16 h . At the conclusion of the reaction, the reaction mixture was filtered through a
plug of Celite, and the solvent removed under reduced pressure. The crude material was subjected to column chromatography $\left(\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=10: 1\right)$. The isolated material was contaminated with unreacted 3-methyl-1-indenone. This mixture (500 mg in 10 mL THF) was added to phenyllithium ($1.61 \mathrm{~mL}, 2.90 \mathrm{mmol}, 1.8 \mathrm{M}$ in di- n-butyl ether) at $-78{ }^{\circ} \mathrm{C}$. The reaction was brought to room temperature after 1 hour and left stirring for 16 more hours. At the conclusion of the reaction, 10 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 50 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography ($\mathrm{Hex}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1$). Compound $\mathbf{3 1}$ was isolated as a pale yellow oil ($295 \mathrm{mg}, 18 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): d 0.13 (apparent s, 10H), 1.70 (s, 3H), 1.94 (d, J = 5.4Hz, $1 \mathrm{H}), 2.17(\mathrm{~s}, 1 \mathrm{H}), 7.05-7.46(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-0.6,15.1,27.1$, $33.9,40.5,85.0,121.4,125.1,125.6,126.7,127.7,128.2,146.0,147.2,151.0$. One aromatic carbon atom has an overlapping ${ }^{13} \mathrm{C}$ signal. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3587 \mathrm{~s}$ (alcohol), 3473 b, (alcohol). HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{OSi}(\mathrm{M}+$) 308.15965, found 308.15917.

Compound 41 [13280-69-8]. The general procedure for the synthesis of compound $\mathbf{4 a}$ has been applied using 31 ($253 \mathrm{mg}, 0.821 \mathrm{mmol}$), 1,2-dichloroethane (5.0 mL), and $\mathrm{Eu}(\mathrm{OTf})_{3}(52 \mathrm{mg}, 0.087 \mathrm{mmol})$. The product was isolated as an oil $(152 \mathrm{mg}, 85 \%$ yield $)$.). ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 2.78(\mathrm{~s}, 3 \mathrm{H}), 7.36-7.59(\mathrm{~m}, 9 \mathrm{H}), 7.945(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.091(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 4h [29304-63-0] (Entry 1). The general procedure for the synthesis of 4a has been applied using $\mathbf{3 h}$ ($240 \mathrm{mg}, 0.780 \mathrm{mmol}$), 1,2-dichloroethane (5.0 mL), and $\mathrm{Eu}(\mathrm{OTf})_{3}(47 \mathrm{mg}, 0.078 \mathrm{mmol})$. The product was isolated as an oil $(120 \mathrm{mg}, 70 \%$ yield $)$. ${ }^{1} \mathrm{H}$ NMR indicated a $93: 7$ ratio of regioisomers $\mathbf{4 h}: \mathbf{5 h}$. NMR of the major isomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.36(\mathrm{~s}, 3 \mathrm{H}), 7.37-7.63(\mathrm{~m}, 9 \mathrm{H}), 7.92(\mathrm{dd}, \mathrm{J}=8.4,8.7 \mathrm{~Hz}$, 2H).

Compound 4i [93870-58-7] (Entry 2). The general procedure for the synthesis of 4a has been applied using $3 \mathbf{i}(225 \mathrm{mg}, 0.700 \mathrm{mmol})$, 1,2-dichloroethane (5.0 mL), and $\mathrm{Eu}(\mathrm{OTf})_{3}(47 \mathrm{mg}, 0.078 \mathrm{mmol})$. The product was isolated as an oil $(113 \mathrm{mg}, 70 \%$ yield $)$. ${ }^{1} \mathrm{H}$ NMR indicated a $93: 7$ ratio of regioisomers 4i:5i. NMR of the major isomer: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.54(\mathrm{~m}$, $7 \mathrm{H}), 7.92(\mathrm{dd}, \mathrm{J}=8.4,9.3 \mathrm{~Hz}, 2 \mathrm{H})$.

Compound 4j [910784-96-2] (Entry 3). The general procedure for the synthesis of 4a has been applied using $\mathbf{3 j}$ ($183 \mathrm{mg}, 0.540 \mathrm{mmol}$), 1,2-dichloroethane (5.0 mL), and $\mathrm{Eu}(\mathrm{OTf})_{3}(33 \mathrm{mg}, 0.055 \mathrm{mmol})$. The product was isolated as an oil $(110 \mathrm{mg}, 82 \%$ yield $)$. ${ }^{1} \mathrm{H}$ NMR indicated a $83: 17$ ratio of regioisomers $\mathbf{4 j}: \mathbf{5 j}$. NMR of the major isomer: ${ }^{1} \mathrm{H}$ NMR (300 MHx, CDCl_{3}) $\delta 2.31(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 7.12-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.52(\mathrm{~m}$, $5 \mathrm{H}), 7.89(\mathrm{dd}, \mathrm{J}=8.4,5.1 \mathrm{~Hz}, 2 \mathrm{H})$.

Compound 4k (Entry 4). The general procedure for the synthesis of $\mathbf{4 a}$ has been applied using 3k (243 mg, 0.660 mmol), 1,2-dichloroethane (5.0 mL), and $\mathrm{Eu}(\mathrm{OTf})_{3}$ (40 $\mathrm{mg}, 0.067 \mathrm{mmol})$. The product was isolated as an oil ($139 \mathrm{mg}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ NMR indicated a $64: 36$ ratio of regioisomers $\mathbf{4 k} \mathbf{4 k}$. Characterization for $4 \mathrm{k}:{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.28(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H}), 6.78(\mathrm{~d}$, $\mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.52(\mathrm{~m}, 5 \mathrm{H}), 7.86(\mathrm{dd}, \mathrm{J}=4.2,8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 20.7,55.9,104.5,124.8,125.9,126.4,127.5,128.2,128.9,129.5,131.2$, 132.3, 132.4, 133.2, 134.8, 158.6. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3051,3002,1248$. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2}(\mathrm{M}+)$ 278.13068, found 278.13055.

Bridge to Chapter III

In Chapter II we discussed the introduction of our rearrangement-based method and demonstrated an initial substrate scope with one example of tetra-ortho-substitution. Unfortunately, we observed poor regioselectivity with tri and tetra-ortho-substituted naphthalenes. Chapter III begins by addressing this key shortcoming through another GC-based optimization, followed by a thorough exploration of tetra-ortho-substituted aryl naphthalenes, culminating in a tri-isopropyl-substituted TOAN. We focus on both the addition of sterically congested aryl nucleophiles to an α-methyl and isopropyl indanone followed by subsequent rearrangement via our improved optimized conditions. We were also able to demonstrate semi-one pot synthesis of our desired naphthalenes. We end the chapter with our initial results on an asymmetric transformation. The
material described in Chapter III was published in Chemical Communications in 2011 on page 286-288.

CHAPTER III

PUSHING THE LIMITS OF STERIC DEMAND AROUND A BIARYL AXIS: SYNTHESIS OF TETRA-ORTHO-SUBSTITUTED BIARYL NAPHTHALENES

This work was published in volume 47 of the journal Chemical Communications in August 2010. Sam Klonoski was involved in starting material preparation, Dr. Lev N. Zakharov performed crystal structure analysis, and Prof. Shih-Yuan Liu was the P.I. I was the primary contributor for the manuscript. This Chapter includes Co-Authored material.

Results and Discussion

Despite the significant advances that have been made to date, novel strategies for the generation of tetra-ortho-substituted biaryls are still highly desired. We have been pursuing a rearrangement-based approach for the synthesis of substituted biaryl naphthalenes. Scheme 1 illustrates our strategy in which the addition of an arene nucleophile to the starting material \mathbf{A} is followed by a ring-expansion rearrangement to furnish the desired biaryl naphthalene \mathbf{C} via a cyclopropyl carbinol intermediate \mathbf{B}. The distinguishing feature of our approach is that the key $\mathrm{C}-\mathrm{C}$ bond-forming step is accomplished through a simple addition of a nucleophile to a carbonyl. Given the strong thermodynamic driving force for this nucleophilic addition, ${ }^{92}$ we envision that our method could serve as a potential method for the construction of tetra-ortho-substituted biaryl naphthalenes. In this chapter, we demonstrate that a range of tetra-orthosubstituted biaryl naphthalenes can be produced via our method, including a very
hindered tetra-ortho-substituted biaryl naphthalene bearing three isopropyl groups in the ortho positions.

Scheme 1. Ring-expansion rearrangement strategy for the synthesis of tetra-ortho-substituted aryl naphthalenes.

We first investigated the feasibility of the nucleophilic addition to starting material A (Step 1 in Scheme 1). We chose cyclopropyl carbonyl compound 1 (Table 1) as a representative electrophile for our survey. As can be seen from Table 1, the isolated yields of the addition products $\mathbf{2}$ are relatively independent of the electronic nature (entries 1-5) as well as the steric demand (entry 1 vs. entry 8, and entries 5-7) of the nucleophiles. A consistent yield of $\sim 70 \%$ yield was observed. Somewhat surprisingly, the highest isolated yield (81\%) for the generation of $\mathbf{2}$ resulted from the addition of the largest nucleophile, 2,4,6-triisopropylphenyllithium (entry 7).This nucleophilic addition reaction is highly diastereoselective. Only one single diastereomer was observed for each of the products 2 (as analyzed by ${ }^{1} \mathrm{H}$ NMR). We have structurally characterized the
adduct between $\mathbf{2}$ and 2-methoxy-1-naphthyllithium, i.e., 2c, via single crystal X-ray crystallography. The relative stereochemistry of the structure is consistent with an approach of the nucleophile opposite the blocking silylcyclopropane group (see Table 1). Interestingly, compound 2c adopts a conformation in the solid state where the carbinol proton $\mathrm{H}(1)$ engages in hydrogen bonding with the oxygen $\mathrm{O}(2)$ of the methoxynaphthalene $(\mathrm{O}(2)-\mathrm{H}(1)=1.83(2) \AA$, sum of van der Waals radii $=2.72 \AA$).

${ }^{\mathrm{a}}$ Isolated yield, average of two runs.
Table 1. Nucleophilic Addition to 1

Having established the synthesis of an array of rearrangement precursors 2, we turned our attention to the catalytic ring-expansion rearrangement. We determined that the rearrangement of cyclopropyl carbinol $\mathbf{2 a}$ in the presence of a catalytic amount of Lewis acid furnished the desired tetra-ortho-substituted biaryl 3a, however as a 73:27 mixture with its undesired tri-ortho-substituted isomer $\mathbf{4 a}$ (Table 2, entry 1). 11 We discovered that the choice of solvent has a dramatic influence on regioselectivity. When the reaction is performed in toluene instead of 1,2-dichloroethane, the ratio of $\mathbf{3 a}$ to $\mathbf{4 a}$ improves to 93:7 (Table 2, entry 2). Other solvents that we screened did not improve the yield and/or the regioselectivity significantly (Table 2, entries 3-8). Interestingly, a reversal of regioselectivity was observed when acetonitrile was used as the solvent (Table 2, entry 8). We also screened a number of Lewis acids (Table 2, entries 9-12) and found europium triflate (entry 2) to be the most efficient catalyst under our conditions.

${ }^{\text {a }}$ GC yield $(3 \mathbf{a}+\mathbf{4 a})$ vs. a calibrated internal standard, average of two runs.
${ }^{\mathrm{b}}$ Determined by GC.
Table 2. Optimization Survey for the Regioselective Synthesis of 3a

With an optimized rearrangement protocol established, we subjected the various rearrangement precursors $\mathbf{2}$ from Table 1 to these conditions to test the scope of our method. We were pleased to see that a variety of substrates rearranged to furnish the desired biaryl naphthalenes in moderate to good yields (Table 3). With the exception of entry $1(\mathrm{Nu}=2,6$-dimethoxyphenyl), which gave a 93:7 mixture of regioisomers, all other substrates that we tested gave the tetra-ortho-substituted isomer exclusively. Noteworthy is the rearrangement of $\mathbf{2 g}$, which produced a tetra-ortho-substituted biaryl bearing two ortho-isopropyl groups in 86% yield.

Table 3. Rearrangement of $\mathbf{2}$ Under Optimized Conditions

Encouraged by these results, we sought to push the limits of steric demand around the biaryl axis by replacing the α-methyl group in $\mathbf{1}$ with an isopropyl group. The corresponding precursor 5 (Scheme 2) can be synthesized in a few steps from commercially available indanone. Scheme 2 shows that a series of bis-ortho-substituted phenyllithium nucleophiles add to the carbonyl electrophile 5 in modest yield.

Scheme 2. Nucleophilic addition to 5.

We were very pleased to observe that intermediates 6a-6d underwent catalytic ring opening rearrangement under our optimized conditions to yield hindered tetra-orthosubstituted biaryl naphthalenes. As can be seen from Table 4, the isolated yields are independent of the steric demand around the biaryl axis. "Nucleophiles" (Nu in Table 4) containing methoxy, methyl, ethyl, and isopropyl groups in the 2,6-positions rearrange to produce the desired biaryl in reasonable yield (entries 1-4). We were also very pleased to see that the undesired regioisomer $\mathbf{8}$ is not observed under our reaction conditions. Noteworthy is the synthesis of $\mathbf{7 d}$, which is a tetra-ortho-substituted biaryl containing three ortho-isopropyl substituents. To the best of our knowledge, it is the most sterically encumbered biaryl naphthalene that has been synthesized to date. We have structurally
characterized 7d via single crystal X-ray diffraction (see Table 4, bottom), thus unambiguously establishing its identity.

2
6b

$$
73 \quad>95: 5
$$

3
6c

73 $>95: 5$
4

$76>95: 5$
${ }^{\mathrm{a}}$ Isolated yield, average of two runs. ${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR.

7d

Table 4. Rearrangement of 6 Under Optimized Conditions

In order to improve the utility of our synthetic method, we attempted the rearrangement without isolating the cyclopropyl carbinol intermediate (Compound B in Scheme 1). When 1 was treated with organolithium reagents followed by catalytic ring expansion rearrangement, we observed the formation of the desired biaryl naphthalenes $\mathbf{9}$ in up to 65% yield over two steps (Table 5). The undesired tri-ortho-substituted biaryl was not observed under these conditions.

${ }^{\mathrm{a}}$ Isolated yield, average of two runs.

Table 5. Aryl-Naphthalene Synthesis Without Isolation of
Intermediate

We have initiated preliminary studies toward an asymmetric version of this process. To this end, we successfully isolated optically pure $\mathbf{1}$ via semi-preparatory chiral HPLC. Treatment of optically pure 1 with 2-methoxynaphthyllithium and subsequent catalytic rearrangement with $\mathrm{Eu}(\mathrm{OTf})_{3}$ furnished the desired tetra-ortho-substituted biaryl naphthalene $\mathbf{3 c}$ in 54% isolated yield (over two steps) in 52% ee. Current efforts are geared toward optimizing the efficiency of this asymmetric process and developing a better understanding its mechanism.

Experimental

General

All oxygen and moisture-sensitive manipulations were carried out under an inert atmosphere using either standard Schlenk techniques or a glove box.

THF, $\mathrm{Et}_{2} \mathrm{O}$, toluene, and pentane were purified by passing through a neutral alumina column under argon. Anhydrous benzene, 1,2-dichloroethane, acetonitrile, and hexane were purchased from Aldrich and used as received. All other reagents were purchased (Aldrich, TCI, Alfa Aesar, or Acros) and used as received. 2-methyl-1indenone and 2-isopropyl-1-indenone were prepared according to known procedures. ${ }^{93}$

Thin layer chromatography and preparatory chromatography were performed on Silicycle glass backed plates with UV indicator. Column chromatography was performed on Silicycle silica gel P60.
${ }^{1}$ H NMR spectra were recorded on a Varian Unity/Inova 300 or Varian Unity/Inova 600 spectrometer. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Unity/Inova 300 or Varian Unity/Inova 500 spectrometer. All spectra were referenced to their respective solvents: $\mathrm{CDCl}_{3} 7.27 \mathrm{ppm}$, and $\mathrm{CD}_{2} \mathrm{Cl}_{2} 5.32 \mathrm{ppm}$. Gas chromatography was performed on an Agilent 6850 Series II GC with an auto loader using ChemStation.

IR spectra were recorded on a Nicolet Magna 550 FT-IR instrument with OMNIC software.

High-resolution mass spectroscopy data were obtained at the Mass Spectroscopy Facilities and Services Core of the Environmental Health Sciences Center at Oregon State University. Financial support for this facility has been furnished in part by the National Institute of Environmental Health Sciences, NIH (P30 ES00210).

Synthesis of Silylcyclopropyl Indanones 1 and 5

Compound 1 [1072849-07-0]. 2-methyl-1-indenone (1.90 g, 13.1 $\mathrm{mmol})$ and palladium acetate $(289 \mathrm{mg}, 1.31 \mathrm{mmol})$ were added to an oven-dried flask under nitrogen. Anhydrous benzene (100 mL)
 was added followed by dropwise addition of $\mathrm{TMSCHN}_{2}(20.0 \mathrm{~mL}, 39.0 \mathrm{mmol}, 2.0 \mathrm{M}$ in diethyl ether). The evolution of N_{2} gas is apparent and the solution turned black. The reaction mixture was allowed to stir at room temperature for 16 h . At the conclusion of the reaction, the reaction mixture was filtered through a plug of Celite, and the solvent removed under reduced pressure. The crude material was subjected to column chromatography ($\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=9: 1$), and $\mathbf{1}$ was isolated as a light yellow solid ($2.50 \mathrm{~g}, 84$ \% yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.13(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 2.65$ $(\mathrm{d}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 5. The procedure for the preparation of $\mathbf{1}$ has been used for the synthesis of $\mathbf{5}$ employing 2-isopropyl-1-indenone ($762 \mathrm{mg}, 4.40$ $\mathrm{mmol})$, palladium acetate $(98 \mathrm{mg}, 0.44 \mathrm{mmol}), 44.0 \mathrm{~mL}$ benzene, and
 TMSCHN_{2} ($6.50 \mathrm{~mL}, 13.1 \mathrm{mmol}, 2.0 \mathrm{M}$ in diethyl ether). The reaction was run at $50{ }^{\circ} \mathrm{C}$ for 3 h . Compound 5 was isolated as a pale yellow solid ($872 \mathrm{mg}, 76 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.14(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, $3 H), 1.51(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.78$ (septet, J = $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-$
$7.43(\mathrm{~m}, 3 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-0.3,20.3,20.5$, (carbonyl).

Nucleophillic Addition to 1 (Table 1):

Compound 2a (Entry 1) [1072849-18-3]. An oven-dried flask was charged with 50.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and m dimethoxybenzene ($750 \mathrm{mg}, 5.42 \mathrm{mmol}$). $n-\operatorname{BuLi}(2.0 \mathrm{~mL}, 5.0$ $\mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) was added dropwise, and the reaction was
 allowed to stir for 24 h . The ether was removed under reduced pressure to yield a white solid. Anhydrous THF was added (15.0 mL) and the reaction was cooled to $-78{ }^{\circ} \mathrm{C}$. Indanone $\mathbf{1}(500 \mathrm{mg}, 2.17 \mathrm{mmol})$ in THF (5.0 mL) was added dropwise. The reaction was allowed to warm to ambient temperature and stirred for 24 h . At the conclusion of the reaction, 10 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 100 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether $=3: 1$). Compound 2a was isolated as a white solid (596 mg , 75% yield). A second run had a yield of 64%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.13(\mathrm{~s}, 9 \mathrm{H}), 0.55(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 2.27$ $(\mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ $(\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.24(\mathrm{~m}, 2 \mathrm{H})$.

Compound 2b (Entry 2). An oven-dried flask was charged with 2.0 mL anhydrous THF and m-fluoroanisole ($219 \mathrm{mg}, 1.74 \mathrm{mmol}$). The reaction was cooled to $-78^{\circ} \mathrm{C}$, and $n-\operatorname{BuLi}(0.66 \mathrm{~mL}, 1.7$ $\mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) was added dropwise. The reaction was

2b allowed to stir for 2 hours at $-78^{\circ} \mathrm{C}$. Subsequently, indanone $\mathbf{1}(200 \mathrm{mg}, 0.870 \mathrm{mmol})$ in THF (2.4 mL) was added dropwise. The reaction was allowed to warm to ambient temperature and stirred for 24 h . At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography $($ Hex:Ether $=$ 3:1). Compound 2b was isolated as a light yellow oil ($229 \mathrm{mg}, 73 \%$ yield). A second run had a yield of 68%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.12(\mathrm{~s}, 9 \mathrm{H}), 0.52(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 2.31$ $(\mathrm{d}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{dd}, \mathrm{J}=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}) 6.84(\mathrm{~d}, \mathrm{~J}=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}) 7.07-7.28(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-0.3,15.7,28.2,35.2$, $36.8,56.8,88.3,107.7,110.0,110.3,121.9,125.3,125.6,127.2,128.5,128.7,147.7$ (d, $\left.{ }^{1} \mathrm{~J}_{\mathrm{CF}}=82 \mathrm{~Hz}\right), 158.4$, 161.7. IR (Neat): 3501 s , (alcohol).

Compound 2c (Entry 3). An oven-dried flask was charged with 2.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2-methoxynaphthalene (412 $\mathrm{mg}, 1.74 \mathrm{mmol}) . n-\mathrm{BuLi}(0.66 \mathrm{~mL}, 1.7 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) was added dropwise at room temperature, and the reaction was

allowed to stir for 15 minutes. The reaction was cooled to $-78{ }^{\circ} \mathrm{C}$, and indanone 1 (200 $\mathrm{mg}, 0.870 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.4 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred for 24 h . At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether = 3:1). Compound 2c was isolated as a white solid ($236 \mathrm{mg}, 70 \%$ yield). A second run had a yield of 63%. Crystals suitable for diffraction were obtained by slow evaporation of the solvent of a concentrated solution of $\mathbf{2 c}$ in dichloromethane at $-20^{\circ} \mathbf{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.17(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 2.48$ $(\mathrm{d}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 3 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}) 6.97-7.41(\mathrm{~m}, 7 \mathrm{H})$ $7.72(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-0.3$, $16.6,28.3,36.1,38.7,57.3,89.8,114.1,122.7,123.2,125.2,126.0,126.2,126.4,126.5$, $127.5,128.1,129.9,130.1,132.4,147.4,149.9,155.2$. IR (Neat): 3487 s , (alcohol).

Compound 2d (Entry 4). An oven-dried flask was charged with 2.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 9-bromoanthracene (447 mg , $1.74 \mathrm{mmol}) . n-\mathrm{BuLi}(0.66 \mathrm{~mL}, 1.7 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes $)$ was added dropwise at room temperature, and the reaction was allowed to stir for 15 minutes. The reaction was cooled to -78

2d ${ }^{\circ} \mathrm{C}$, and indanone $\mathbf{1}(200 \mathrm{mg}, 0.870 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.4 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred for 24 h . At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over
MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether $=3: 1$). Compound 2d was isolated as an off-white solid ($246 \mathrm{mg}, 69 \%$ yield). A second run had a yield of 71%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-0.17(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 2.40$ $(\mathrm{d}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 1 \mathrm{H}), 6.99-7.51(\mathrm{~m}, 10 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=27 \mathrm{~Hz}, 2 \mathrm{H}), 9.85(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-0.5,16.9,26.8,34.8,42.7,89.9,123.8,124.2$, $126.0,128.4,129.3,130.0,130.4,136.1,144.2,151.2$, the remaining 10 carbon signals appear as broad peaks. IR (Neat): 3543 s , (alcohol).

Compound 2e (Entry 5). An oven-dried flask was charged with 2.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2,6-dimethylbenzene (321 mg , $1.74 \mathrm{mmol}) . n-\mathrm{BuLi}(0.66 \mathrm{~mL}, 1.7 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) was added dropwise at room temperature, and the reaction was allowed
 to stir for 15 minutes. The reaction was cooled to $-78^{\circ} \mathrm{C}$, and indanone $\mathbf{1}(200 \mathrm{mg}, 0.870$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.35 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred for 24 h . At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether $=3: 1$). Compound $\mathbf{2 e}$ was isolated as an oil ($208 \mathrm{mg}, 71 \%$ yield). A second run had a yield of 64%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-0.01(\mathrm{~s}, 9 \mathrm{H}), 0.56(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.68$ $(\mathrm{s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 6.91-7.31(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-$
$0.4,16.0,16.1,25.7,26.3,26.6,42.5,88.8,123.5,125.5,125.8,126.2,128.1,130.8$, 131.5, 135.3, 139.4, 139.7, 144.9, 150.2. IR (Neat): 3535 s , (alcohol).

Compound $2 f$ (Entry 6). An oven-dried flask was charged with 2.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2,6-diethylbenzene (241 $\mathrm{mg}, 1.13 \mathrm{mmol})$. The reaction was cooled to $-78^{\circ} \mathrm{C}$, and $t-\mathrm{BuLi}$ ($1.3 \mathrm{~mL}, 2.3 \mathrm{mmol}, 1.7 \mathrm{M}$ in pentane) was added dropwise. The
 reaction was allowed to stir for 2 hours at $-78^{\circ} \mathrm{C}$. Subsequently, the reaction was warmed to ambient temperature for 30 minutes before it was cooled to $-78{ }^{\circ} \mathrm{C}$ again. Indanone $1(200 \mathrm{mg}, 0.870 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.4 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred for 24 h . At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether =9:1). Compound $2 \mathbf{f}$ was isolated as a clear oil $(224 \mathrm{mg}$, 71% yield). A second run had a yield of 63%.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.02(\mathrm{~s}, 9 \mathrm{H}), 0.42(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.36(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 1 \mathrm{H}), 1.82-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~d}, \mathrm{~J}=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.91(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.67(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.32(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-0.4,15.4,17.8,19.2,26.6,29.0,30.4,33.9,41.4,86.6,123.3,124.5$, 125.7, 126.5, 127.9, 128.8, 130.1, 138.6, 142.0, 144.4, 146.4, 151.0. IR (Neat): 3591 s , (alcohol).

Compound 2g (Entry 7). An oven-dried flask was charged with 2.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2,4,6triisopropylbenzene ($320 \mathrm{mg}, 1.13 \mathrm{mmol}$). The reaction was cooled to $-78^{\circ} \mathrm{C}$ and $t-\mathrm{BuLi}(1.3 \mathrm{~mL}, 2.3 \mathrm{mmol}, 1.7 \mathrm{M}$ in
 pentane) was added dropwise. The reaction was allowed to stir for 2 hours at $-78^{\circ} \mathrm{C}$. Subsequently, the reaction was warmed to ambient temperature for 30 minutes before it was cooled to $-78^{\circ} \mathrm{C}$ again. Indanone $1(200 \mathrm{mg}, 0.870 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.4 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred for 24 h. At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether $=9: 1$). Compound $\mathbf{2 g}$ was isolated as a white solid ($302 \mathrm{mg}, 80 \%$ yield). A second run had a yield of 81%.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.05(\mathrm{~s}, 9 \mathrm{H}), 0.54(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.89-0.92(\mathrm{~m}, 6 \mathrm{H})$, $1.26(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.40(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H})$, $1.80(\mathrm{~s}, 1 \mathrm{H}), 2.09$ (septet, $\mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ (septet, $\mathrm{J}=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.38$ (septet, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-7.29(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $-0.3,15.6,23.7,23.8,24.0,24.126 .0,26.5,26.9,30.6,30.8,33.5,34.3,40.7,88.4,123.0$, $124.0,124.5,125.5,127.7,135.7,141.2,143.9,146.2,146.7,151.2,151.6$. IR (Neat): 3425 s , (alcohol).

Compound 2h (Entry 8). An oven-dried flask was charged with 10.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and m-diisopropylbenzene (337 $\mathrm{mg}, 1.74 \mathrm{mmol}$). $n-\mathrm{BuLi}(2.0 \mathrm{~mL}, 5.0 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) was added dropwise at room temperature, and the reaction was
 allowed to stir for 24 h . The ether was removed under reduced pressure to yield a white solid. Anhydrous THF was added $(2.0 \mathrm{~mL})$ and the reaction was cooled to $-78^{\circ} \mathrm{C}$. Subsequently, indanone $\mathbf{1}$ in THF (2.4 mL) was added dropwise. The reaction was allowed to warm to ambient temperature and stirred for 24 h . At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether = 3:1). Compound $\mathbf{2 h}$ was isolated as a white solid (254 mg , 69% yield). A second run had a yield of 66%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.14(\mathrm{~s}, 9 \mathrm{H}), 0.55(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.61(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}$ $1 \mathrm{H}), 0.99(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.53(\mathrm{~m}, 6 \mathrm{H}), 4.26($ septet, $\mathrm{J}=6.0 \mathrm{~Hz}$, 1H), 4.79 (septet, J = 6.3 Hz, 1H), $6.41(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}) 6.98-$ 7.18 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-0.3,16.2,19.9,21.3,22.0,22.3,27.1,36.1$, $37.3,67.8,72.3,89.0,105.7,106.6,121.7,122.0,124.7,125.0,126.0,127.8,148.9$, $149.9,155.8,156.8$. IR (Neat): 3466 s , (alcohol).

Optimization Survey for the Regioselective Synthesis of 3a (Table 2):

General Procedure: In a glovebox, a vial was charged with compound 2a, Lewis acid, and the solvent. The reaction vial was immersed into an oil bath at $80^{\circ} \mathrm{C}$ for 24 hours. At the conclusion of the reaction, hexadecane as an internal GC standard was added via syringe ($25.0 \mu \mathrm{~L}, 19.2 \mathrm{mg}$), and the mixture was filtered through a silica plug with copious ether washing. An aliquot of the resulting solution was subjected to GC analysis. All GC yields (Table 2) have been corrected for response factors. Because the yields that are reported in Table 2 are the average of two runs, the yields that are reported below for a specific experiment may differ from the values presented in the table.

Entry 1: The general procedure was followed, using 2a (20 mg, 0.054 mmol), 1,2dichloroethane $(0.50 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(3.2 \mathrm{mg}, 0.0054 \mathrm{mmol}) . \mathrm{GC}$ analysis indicated the formation of the biaryl naphthalenes $(\mathbf{3 a}+\mathbf{4 a})$ in 70% yield in 73:27 (3a:4a) ratio.

Entry 2: The general procedure was followed, using 2a ($20 \mathrm{mg}, 0.054 \mathrm{mmol}), \mathrm{Eu}(\mathrm{OTf})_{3}$ ($3.2 \mathrm{mg}, 0.0054 \mathrm{mmol}$), and toluene (0.50 mL). GC analysis indicated the formation of the biaryl naphthalenes $(\mathbf{3 a}+\mathbf{4 a})$ in 81% yield in 92:8 (3a:4a) ratio.

Entry 3: The general procedure was followed, using 2a ($20 \mathrm{mg}, 0.054 \mathrm{mmol}), \mathrm{Eu}(\mathrm{OTf})_{3}$ ($3.2 \mathrm{mg}, 0.0054 \mathrm{mmol}$), and THF (0.50 mL). GC analysis indicated the formation of the biaryl naphthalenes $(\mathbf{3 a}+\mathbf{4 a})$ in 53% yield in $91: 9(\mathbf{3 a}: \mathbf{4 a})$ ratio.

Entry 4: The general procedure was followed, using 2a ($20 \mathrm{mg}, 0.054 \mathrm{mmol}), \mathrm{Eu}(\mathrm{OTf})_{3}$ ($3.2 \mathrm{mg}, 0.0054 \mathrm{mmol}$), and DMF (0.50 mL). GC analysis indicated the formation of the biaryl naphthalenes $(\mathbf{3 a}+\mathbf{4 a})$ in 30% yield in 79:21 (3a:4a) ratio.

Entry 5: The general procedure was followed, using 2a ($20 \mathrm{mg}, 0.054 \mathrm{mmol}$), $\mathrm{Eu}(\mathrm{OTf})_{3}$ ($3.2 \mathrm{mg}, 0.0054 \mathrm{mmol}$), and $t-\mathrm{BuOH}(0.50 \mathrm{~mL})$. GC analysis indicated the formation of the biaryl naphthalenes $(\mathbf{3 a}+\mathbf{4 a})$ in 41% yield in 81:19 (3a:4a) ratio.

Entry 6: The general procedure was followed, using $\mathbf{2 a}(20 \mathrm{mg}, 0.054 \mathrm{mmol}), \mathrm{Eu}(\mathrm{OTf})_{3}$ ($3.2 \mathrm{mg}, 0.0054 \mathrm{mmol}$), and chlorobenzene $(0.50 \mathrm{~mL})$. GC analysis indicated the formation of the biaryl naphthalenes $(\mathbf{3 a}+\mathbf{4 a})$ in 47\% yield in 95:5 (3a:4a) ratio.

Entry 7: The general procedure was followed, using 2a ($20 \mathrm{mg}, 0.054 \mathrm{mmol}), \mathrm{Eu}(\mathrm{OTf})_{3}$ ($3.2 \mathrm{mg}, 0.0054 \mathrm{mmol}$), and 1,3-dichlorobenzene $(0.50 \mathrm{~mL})$. GC analysis indicated the formation of the biaryl naphthalenes $(\mathbf{3 a}+\mathbf{4 a})$ in 48% yield in 93:7 (3a:4a) ratio.

Entry 8: The general procedure was followed, using $\mathbf{2 a}(20 \mathrm{mg}, 0.054 \mathrm{mmol}), \mathrm{Eu}(\mathrm{OTf})_{3}$ (3.2 mg, 0.0054 mmol), and $\mathrm{MeCN}(0.50 \mathrm{~mL})$. GC analysis indicated the formation of the biaryl naphthalenes $(\mathbf{3 a}+\mathbf{4 a})$ in 15\% yield in 27:73 (3a:4a) ratio.

Entry 9: The general procedure was followed, using $\mathbf{2 a}(20 \mathrm{mg}, 0.054 \mathrm{mmol}), \mathrm{Sm}(\mathrm{OTf})_{3}$ ($3.2 \mathrm{mg}, 0.0054 \mathrm{mmol}$), and toluene (0.50 mL). GC analysis indicated the formation of the biaryl naphthalenes $(\mathbf{3 a}+\mathbf{4 a})$ in 78% yield in 80:20 (3a:4a) ratio.

Entry 10: The general procedure was followed, using 2a ($20 \mathrm{mg}, 0.054 \mathrm{mmol}), \mathrm{Er}(\mathrm{OTf})_{3}$ ($3.2 \mathrm{mg}, 0.0054 \mathrm{mmol}$), and toluene (0.50 mL). GC analysis indicated the formation of the biaryl naphthalenes $(\mathbf{3 a}+\mathbf{4 a})$ in 80% yield in 82:18 (3a:4a) ratio.

Entry 11: The general procedure was followed, using $\mathbf{2 a}$ ($20 \mathrm{mg}, 0.054 \mathrm{mmol}$), SnCl_{4} $(1.4 \mathrm{mg}, 0.0054 \mathrm{mmol})$, and toluene $(0.50 \mathrm{~mL}) . \mathrm{GC}$ analysis indicated the formation of the biaryl naphthalenes $(\mathbf{3 a}+\mathbf{4 a})$ in 31% yield in 40:60 (3a:4a) ratio.

Entry 12: The general procedure was followed, using $\mathbf{2 a}(20 \mathrm{mg}, 0.054 \mathrm{mmol}), \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($0.8 \mathrm{mg}, 0.0054 \mathrm{mmol}$), and toluene $(0.50 \mathrm{~mL}) . \mathrm{GC}$ analysis indicated the formation of the biaryl naphthalenes $(\mathbf{3 a}+\mathbf{4 a})$ in 30% yield in 39:61 (3a:4a) ratio.

Rearrangement of 2 under Optimized Conditions (Table 3):

General Procedure: In a glovebox, a vial was charged with 3, toluene, and 10% $\mathrm{Eu}(\mathrm{OTf})_{3}$. The vessel was sealed and stirred at $80^{\circ} \mathrm{C}$ for 24 h . The reaction was cooled to ambient temperature, and the mixture was filtered through a silica plug with copious ether washings. The solvents were removed under reduced pressure, and the crude material was subjected to preparatory thin-layer chromatography using 9:1 hexanes:ether as the eluent.

Compound 3a [1072849-22-9] (Entry 1). The general procedure was applied using 2a ($191 \mathrm{mg}, 0.520 \mathrm{mmol}$), toluene (5.3 mL), and $\mathrm{Eu}(\mathrm{OTf})_{3}(32 \mathrm{mg}, 0.053 \mathrm{mmol})$. The biaryl product was isolated as mixture of 3a and $\mathbf{4 a}$ (106 $\mathrm{mg}, 74 \%$ yield, in $93: 7$ (3a:4a) ratio). A

3a second run had a yield of 68%.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.24(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H}), 6.76(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.49(\mathrm{~m}$, $5 \mathrm{H}), 7.85(\mathrm{~m}, 2 \mathrm{H})$.

Compound 3b (Entry 2). The general procedure was applied using 2b ($181 \mathrm{mg}, 0.516 \mathrm{mmol}$), toluene (5.2 mL), and $\mathrm{Eu}(\mathrm{OTf})_{3}(31 \mathrm{mg}$, 0.052 mmol). The product 3b was isolated as a white solid (56 mg , 41% yield, >95:5 regioselectivity). A second run had a yield of 44%.

3b
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.28(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-$
$7.49(\mathrm{~m}, 5 \mathrm{H}), 7.86(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.3,56.0,106.6106 .7,108.2$
$\left(\mathrm{d}, \mathrm{J}_{\mathrm{CF}}=23 \mathrm{~Hz}\right), 124.7,125.2,125.9,127.9,128.0,128.4,129.3,129.5,131.9,132.6$,
$134.9,158.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CF}}=30 \mathrm{~Hz}\right), 162.3$.

Compound 3c [106909-87-9] (Entry 3). The general procedure was applied using 2c (233 mg, 0.600 mmol$)$, toluene (5.2 mL), and $\mathrm{Eu}(\mathrm{OTf})_{3}$ ($36 \mathrm{mg}, 0.059 \mathrm{mmol}$). The product $\mathbf{3 c}$ was isolated as a fluffy white solid ($110 \mathrm{mg}, 61 \%$ yield, $>95: 5$ regioselectivity). A second run had a yield of
 64%.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.13(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-$ $7.56(\mathrm{~m}, 7 \mathrm{H}), 7.91(\mathrm{~m}, 3 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 3d [191791-93-2] (Entry 4). The general procedure was applied using $\mathbf{2 d}(250 \mathrm{mg}, 0.610 \mathrm{mmol})$, toluene (6.1 mL), and $\mathrm{Eu}(\mathrm{OTf})_{3}$ ($37 \mathrm{mg}, 0.061 \mathrm{mmol}$). The product $\mathbf{3 d}$ was isolated as an off-color solid

($107 \mathrm{mg}, 55 \%$ yield, >95:5 regioselectivity). A Second run had a yield of 55%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.01(\mathrm{~s}, 3 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.62(\mathrm{~m}, 9 \mathrm{H})$, $8.00(\mathrm{dd}, \mathrm{J}=3,12 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{~s}, 1 \mathrm{H})$.

Compound 3e [814254-89-2] (Entry 5). The general procedure was applied using $\mathbf{2 e}(171 \mathrm{mg}, 0.508 \mathrm{mmol})$, toluene $(5.1 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}$ ($30 \mathrm{mg}, 0.051 \mathrm{mmol}$). The product $\mathbf{3 e}$ was isolated as an off-color oil (96 $\mathrm{mg}, 77 \%$ yield, $>95: 5$ regioselectivity). A second run had a yield of 81%.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.87(\mathrm{~s}, 6 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 7.18-7.50(\mathrm{~m}, 7 \mathrm{H}), 7.81-7.91$ (m, 2H).

Compound $3 f$ [1157867-56-5] (Entry 6). The general procedure was applied using $2 \mathbf{f}(250 \mathrm{mg}, 0.690 \mathrm{mmol})$, toluene $(6.9 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}$ $(41 \mathrm{mg}, 0.069 \mathrm{mmol})$. The product $\mathbf{3 f}$ was isolated as a light yellow oil ($141 \mathrm{mg}, 75 \%$ yield, $>95: 5$ regioselectivity). A second run had a yield of
 80%.
${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.06(\mathrm{~m}, 6 \mathrm{H}), 2.17(\mathrm{~m}, 7 \mathrm{H}), 7.25-7.53(\mathrm{~m}, 7 \mathrm{H}), 7.86-7.94$ ($\mathrm{m}, 2 \mathrm{H}$).

Compound 3g (Entry 7). The general was applied using 2g (279 mg, $0.642 \mathrm{mmol})$, toluene $(6.5 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(39 \mathrm{mg}, 0.064 \mathrm{mmol})$. The product $\mathbf{3 g}$ was isolated as an off-color solid ($192 \mathrm{mg}, 87 \%$ yield, $>95: 5$ regioselectivity). A second run had a yield of 85%.

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.01(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.50(\mathrm{~d}$, $\mathrm{J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.40($ septet, $\mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.14($ septet, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28(\mathrm{~s}, 2 \mathrm{H}), 7.41-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.8,24.1,24.7,30.5,34.2,121.0,122.0,124.3,124.7,125.4$, $126.5,126.7,127.7,128.4,131.9133 .0,133.9,136.0,136.5,146.8,148.1$.

Compound 3h (Entry 8). The general procedure was applied using $\mathbf{2 h}$ $(152 \mathrm{mg}, 0.360 \mathrm{mmol})$, toluene $(3.6 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(22 \mathrm{mg}, 0.036$ $\mathrm{mmol})$. The product $\mathbf{3 h}$ was isolated as a light yellow oil ($97 \mathrm{mg}, 81 \%$ yield, $>95: 5$ regioselectivity). A second run had a yield of 77%.

3h
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.92(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 2.26(\mathrm{~s}$, $3 \mathrm{H}), 4.26$ (septet, $\mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 20.4,21.9,22.0$, $70.7,107.9,120.0,124.0,124.9,126.1,126.5,127.5,128.3,128.5,131.6,131.7,133.0$, 134.3, 157.0.

Nucleophillic Addition to 5 (Scheme 2)

Compound 6a. An oven-dried flask was charged with 10.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and m-dimethoxybenzene ($267 \mathrm{mg}, 1.93 \mathrm{mmol}$). $n-\mathrm{BuLi}$ ($0.73 \mathrm{~mL}, 1.8 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) was added dropwise at room temperature, and the reaction was allowed to stir for 24 h . The ether was

6a then removed under reduced pressure to yield a white solid. Anhydrous THF was added
$(4.0 \mathrm{~mL})$ and the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$. Indanone $5(250 \mathrm{mg}, 0.967$ mmol) in THF (1.0 mL) was added dropwise at $-78^{\circ} \mathrm{C}$. The reaction was allowed to warm to ambient temperature and stirred for 24 h . At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography $($ Hex:Ether $=3: 1)$. Compound $\mathbf{6 a}$ was isolated as a clear oil ($46 \mathrm{mg}, 12 \%$ yield). A second run had a yield of 15%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.14(\mathrm{~s}, 9 \mathrm{H}), 0.47(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.72(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.70($ septet, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.04$ $(\mathrm{s}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 6.41(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-$ $7.28(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 0.5,20.0,20.2,30.1,31.3,34.8,48.6,55.0$, $56.8,89.0,105.7,106.8,120.3,122.7,123.7,124.8,126.1,128.4,150.1,150.6,158.1$, 158.7. IR (Neat) 3495 m , (alcohol).

Compound 6b. An oven-dried flask was charged with 3.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2,6-dimethylbenzene ($279 \mathrm{mg}, 1.51 \mathrm{mmol}$). The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$, and $t-\mathrm{BuLi}(1.8 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.7 \mathrm{M}$ in hexanes) was added dropwise. The reaction was allowed to stir for 2 hours
 6b at $-78{ }^{\circ} \mathrm{C}$. Subsequently, the reaction was allowed to warm to ambient temperature for 30 minutes. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ before indanone $5(300 \mathrm{mg}, 1.16$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(3.0 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred for 24 h . At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was
washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether $=6: 1$). Compound $\mathbf{6 b}$ was isolated as a viscous oil ($249 \mathrm{mg}, 59 \%$ yield). A second run had a yield of 54%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.09(\mathrm{~s}, 9 \mathrm{H}), 0.62(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}$, $3 \mathrm{H}), 3.10$ (septet, $\mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-7.32(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.6$, $21.0,23.4,25.3,26.6,26.8,27.6,32.0,53.7,90.9,122.9,125.2,125.4,126.3,128.0$, 131.1, 131.7, 135.4, 139.7, 139.9, 145.3, 150.2. IR (Neat) 3534 m , (alcohol). HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{OSi}(\mathrm{M}+) 364.2223$ found 364.2213

Compound 6c. An oven-dried flask was charged with 3.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2,6-diethylbenzene ($321 \mathrm{mg}, 1.51 \mathrm{mmol}$). The reaction was cooled to $-78{ }^{\circ} \mathrm{C} . t-\mathrm{BuLi}(1.8 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.7 \mathrm{M}$ in pentane) was added dropwise at $-78^{\circ} \mathrm{C}$, and the reaction was allowed to stir for 2 hours.

Subsequently, the reaction was allowed to warm to ambient temperature for 30 minutes. The reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ before indanone $5(300 \mathrm{mg}, 1.16 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(3.0 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred for 24 h At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography $($ Hex:Ether $=$ 9:1). Compound $\mathbf{6 c}$ was isolated as an off color oil ($226 \mathrm{mg}, 50 \%$ yield). A second run had a yield of 46%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.10(\mathrm{~s}, 9 \mathrm{H}), 0.50(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.01(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H}), 1.41(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 1 \mathrm{H})$, $1.94(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.32(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 0.6,18.0,19.3,20.8,23.1,27.5,29.6,32.2,32.4,90.8,122.8$, 124.1, 125.5, 127.1, 127.9, 129.2, 130.6, 138.8, 142.1, 144.5, 146.7, 151.2. IR (Neat) 3594 m , (alcohol). HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{OSi}(\mathrm{M}+) 392.2536$ found 392.2525.

Compound 6d. An oven-dried flask was charged with 3.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2,4,6-triisopropylbenzene ($427 \mathrm{mg}, 1.51$ $\mathrm{mmol})$. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$, and $t-\mathrm{BuLi}(1.8 \mathrm{~mL}$, $3.0 \mathrm{mmol}, 1.7 \mathrm{M}$ in pentane) was added dropwise. The reaction was

6d allowed to stir for 2 hours. Subsequently, the reaction was allowed to warm to ambient temperature for 30 minutes. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ before indanone 5 ($300 \mathrm{mg}, 1.16 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ (2.8 mL) was added dropwise. The reaction was allowed to warm to ambient temperature and stirred for 24 h . At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography $($ Hex:Ether $=9: 1)$. Compound $\mathbf{6 d}$ was isolated as a white solid ($76 \mathrm{mg}, 14 \%$ yield $). \mathrm{A}$ second run had a yield of 12%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.12(\mathrm{~s}, 9 \mathrm{H}), 0.57(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}$, $3 \mathrm{H}), 0.99(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.19-1.37(\mathrm{~m}, 12 \mathrm{H}), 1.61(\mathrm{~s}, 1 \mathrm{H})$, 2.17 (septet, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.90($ septet, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.11$ $(\mathrm{m}, 1 \mathrm{H}), 4.41$ (septet, $\mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-7.28(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$
$0.8,21.3,23.7,23.8,24.1,24.3,24.9$ (2 peaks), 26.7, 27.9, 31.1, 31.6, 31.8, 33.4, 52.7, 85.3, 91.0, 122.6, 123.2, 124.1, 125.4, 127.7, 135.6, 144.0, 146.1, 146.8, 151.3, 151.8 IR (Neat) 3302 s , (alcohol).

Rearrangement of 6 under Optimized Conditions (Table 4):

General Procedure: In a glovebox, a vial was charged with 6, toluene, and 10% $\mathrm{Eu}(\mathrm{OTf})_{3}$. The vessel was sealed and stirred at $80^{\circ} \mathrm{C}$ for 24 h . The reaction was cooled to ambient temperature, and trifluoroacetic acid was added. The reaction mixture was stirred for one hour before it was filtered through a silica plug with copious ether washings. The solvents were removed under reduced pressure, and the crude material was subjected to preparatory thin-layer chromatography using 9:1 hexanes:ether as the eluent.

Compound 7a (Entry 1). The general procedure was applied using $6 \mathbf{~ (4 0}$ $\mathrm{mg}, 0.010 \mathrm{mmol})$, toluene $(1.0 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(6.0 \mathrm{mg}, 0.0010 \mathrm{mmol})$. The product 7b was isolated as an oil $(20 \mathrm{mg}, 65 \%$ yield, $>95: 5$ regioselectivity). A second run had a yield of 60%.

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.20(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.83$ (septet, J = $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.64(\mathrm{~s}, 6 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-$ $7.91(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 23.5,31.1,55.7,103.9,116.2,123.6,124.6$, $125.3,125.5,125.9,127.8,128.2,129.0,131.9,132.8,144.5,158.5$.

Compound 7b (Entry 2). The general procedure was applied using 6b (169 $\mathrm{mg}, 0.464 \mathrm{mmol})$, toluene $(5.0 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(30 \mathrm{mg}, 0.046 \mathrm{mmol})$. The product 7b was isolated as an off-color oil ($89 \mathrm{mg}, 70 \%$ yield, $>95: 5$

7b regioselectivity). A second run had a yield of 75%.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.24(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.91(\mathrm{~s}, 6 \mathrm{H}), 2.78$ (septet, $\mathrm{J}=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.94(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 20.3,23.7,30.5,124.0,125.0,125.5,126.0,127.1,127.4,127.7,127.9$, 131.9, 132.2, 134.8, 137.2, 138.3, 143.0. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22}(\mathrm{M}+) 274.1722$ found 274.1724.

Compound 7c (Entry 3). The general procedure was applied using $\mathbf{6 c}$ (218 $\mathrm{mg}, 0.555 \mathrm{mmol})$, toluene $(5.6 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(33 \mathrm{mg}, 0.056 \mathrm{mmol})$. The product 7c was isolated as a light yellow oil ($122 \mathrm{mg}, 73 \%$ yield, $>95: 5$ regioselectivity). A second run had a yield of 72%.

7c
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.02(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.24(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.12-$ $2.36(\mathrm{~m}, 4 \mathrm{H}), 2.79$ (septet, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.51(\mathrm{~m}, 6 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.89-7.96 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 14.6,23.6,26.1,30.4,123.9,124.9$, 125.1, 125.4, 125.5, 126.5, 127.5, 127.7, 132.0, 132.7, 134.4, 137.1, 142.7, 143.2. HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{26}(\mathrm{M}+) 302.2035$ found 302.2038 .

Compound 7d (Entry 4). The general procedure was applied using $\mathbf{6 d}(50 \mathrm{mg}, 0.011 \mathrm{mmol})$, toluene $(1.1 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(6.5 \mathrm{mg}$, 0.0011 mmol). The product $7 \mathbf{d}$ was isolated as an off-color oil (29 $\mathrm{mg}, 73 \%$ yield, $>95: 5$ regioselectivity). A second run had a yield of

7d 78%. Crystals suitable for diffraction were obtained by slow evaporation of the solvent of a concentrated solution of $\mathbf{7 d}$ in dichloromethane at $-20^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.83(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.22(\mathrm{~d}$, $\mathrm{J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.39(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 2.35(\mathrm{hep}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.87($ hep, $\mathrm{J}=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.03(\mathrm{hep}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}$ $=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.90(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 23.8,23.9,24.1,25.3$, $30.1,30.3$ 30.4, 34.1, 120.9, 123.7, 124.9, 125.0, 127.4, 127.5, 127.7, 132.0, 132.7, 133.5, 134.6, 143.8, 147.3, 147.9. HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{36}(\mathrm{M}+) 372.2817$ found 372.2809.

Biaryl Naphthalene Synthesis without Isolation of Intermediates (Table 5):

Compound 9a (Entry 1). An oven-dried flask was charged with 2.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2,3-dimethoxynaphthalene ($232 \mathrm{mg}, 0.868$ mmol). $n-\mathrm{BuLi}(0.330 \mathrm{~mL}, 0.868 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) was added dropwise at room temperature, and the reaction was allowed to stir for 15
 minutes. The reaction was then cooled to $-78^{\circ} \mathrm{C}$, and indanone $\mathbf{1}(200 \mathrm{mg}, 0.870 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.4 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred for 24 h . At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed
three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to a silica plug (Hex:Ether $=3: 1$). This crude material ($221 \mathrm{mg}, 0.530 \mathrm{mmol}$) was subjected to the optimized rearrangement procedure (Table 3) using toluene (5.3 mL), and $\mathrm{Eu}(\mathrm{OTf})_{3}(32 \mathrm{mg}, 0.053 \mathrm{mmol})$. The product 9a was isolated as a white solid ($176 \mathrm{mg}, 62 \%$ yield from indanone $\mathbf{1}$). A second run had a yield of 60%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.17(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 6.96-7.54(\mathrm{~m}$, $8 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $20.4,55.6,60.3,106.8,124.1,124.7,125.3,125.5,125.9,126.6,127.6,127.8,128.4$, $128.6,128.8,131.3,131.8,131.9,133.2,134.9,146.9,152.3$, one aromatic carbon is not observed.

Compound 9b [32854-84-7] (Entry 2). An oven-dried flask was charged with 2.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2-methylnaphthalene (384 mg , $1.74 \mathrm{mmol}) . n-\mathrm{BuLi}(0.660 \mathrm{~mL}, 1.65 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) was added dropwise, and the reaction was allowed to stir for 15 minutes. The reaction
 was then cooled to $-78{ }^{\circ} \mathrm{C}$, and indanone $\mathbf{1}(200 \mathrm{mg}, 0.870 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.4 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred for 24 h. At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to a silica plug (Hex:Ether $=3: 1$). The crude material $(278 \mathrm{mg}, 0.746$ mmol) was subjected to the optimized rearrangement procedure (Table 3) with toluene
$(7.5 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(45 \mathrm{mg}, 0.075 \mathrm{mmol})$. The product $\mathbf{9 b}$ was isolated as a light yellow solid ($164 \mathrm{mg}, 67 \%$ yield from indanone $\mathbf{1}$). A second run had a yield of 62%.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.09(\mathrm{~s}, 6 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 7.41-$ 7.57 (m, 4H), 7.94 (m, 4H).

Bridge to Chapter IV

In Chapter III we focused on tetra-ortho-substitution, and briefly highlighted the success with regard to two-step naphthalene synthesis without the need for intermediate purification. We also touched on the moderately successful chiral transfer via our method. Unfortunately we did identify a limit to our method's ability to generate sterically demanding naphthalenes through the difficulties observed from the nucleophilic addition step. Furthermore our chiral transfer occurred with modest enantiomeric excess. In Chapter IV we address the steric problem by demonstrating successful rearrangement without the need for a TMS cyclopropyl group, allowing us to employ larger groups in the ortho position. We were then able to introduce t-butyl and adamantyl groups into our naphthalenes structure, further pushing the steric-limits of our method. Once a solution was found for the steric problem, we focused our attention on the asymmetric synthesis. To our delight we witnessed excellent chiral transfer after some solvent modifications, and have developed an effective stereochemical model for this transformation. Chapter IV is a manuscript in preparation.

CHAPTER IV

THE ASYMMETRIC SYNTHESIS OF TETRA-ORTHO-SUBSTITUTED ARYL NAPHTHALENES VIA A CATALYTIC REARRANGEMENT PROCESS

This work is a Manuscript in Preparation that has co-authors. Brian S. Young was involved in the modeling of $\mathbf{1 4 a}$ and $\mathbf{2 0}$, Dr. Lev N. Zakharov performed crystal structure analysis, and Prof. Shih-Yuan Liu was the P.I. I was the primary contributor for the manuscript. This Chapter includes Co-Authored material.

Introduction

Due to the limitations regarding the synthesis of tetra-ortho-substituted and asymmetric biaryls via metal-mediated coupling, novel strategies for the generation of these motifs are desired. These alternative approaches consist of annulation-based strategies (e.g. Diels-Alder and $[2+2+2]$) and rearrangement-based approaches. Our group has been focused on a rearrangement-based method for the asymmetric synthesis of tetra-ortho-substituted aryl naphthalenes.

Scheme 1 illustrates our general strategy for the generation of aryl naphthalenes. Substituted indanone $\mathbf{1}$ can be transformed into rearrangement precursor $\mathbf{3}$ through a simple diastereoselective nucleophilic addition of aryl nucleophile 2. This cyclopropyl carbinol 3 can then undergo catalytic ring-expansion rearrangement via Lewis acid catalysis to generate tetra-ortho-substituted aryl naphthalene 4. We envision that when $R^{\prime} \neq R^{\prime \prime}$ the desired naphthalene can potentially be generated enantioselectively from the
enantiopure indanone. Semi-preparatory HPLC is used to separate the two indanone enantiomers.

Scheme 1. Asymmetric route to TOAN 4.

In previous chapters we have described that our rearrangement-based method works well for the synthesis of very sterically-demanding tetra-ortho-substituted aryl naphthalenes, and preliminary evidence has demonstrated the synthesis of an aryl naphthalene. Herein we will describe the greatly expanded scope of rearrangement to include t-butyl and adamantyl groups in the ortho position. We also discuss our success with rearrangements from precursors lacking TMS, further abbreviated as non-TMSbased rearrangement. Finally, we have achieved excellent control over the asymmetric synthesis of tetra-ortho-substituted aryl naphthalenes, we developed a stereochemical model, and have further functionalized these highly enantioenriched compounds.

Results and Discussion

In Chapter III, our method focused around the ring expansion rearrangement of TMS cyclopropyl carbinol 6e (Scheme 2). While the TMS group allows for the facile rearrangement of $\mathbf{6 e}$ into an aryl naphthalene, it decreases the yield of the nucleophilic addition of the highly sterically demanding tri-isopropyl-ortho substituted aryl nucleophile, presumably through steric repulsion of the nucleophile with the TMS cyclopropane group. In order to further expand the synthesis of sterically-encumbered aryl naphthalenes, we needed to get around the addition problem. We began to envision the rearrangement occurring without the TMS group. Prior work had shown that the TMS was necessary for rearrangement under originally published reaction conditions. We felt however, that this issue warranted further exploration. We began by generating the highly sterically congested rearrangement precursor $\mathbf{6 j}$ (Scheme 2). Our original

5b

High Yielding

Scheme 2. Top face versus bottom face addition and yield
synthesis of this precursor when $\mathrm{R}^{2}=$ TMS was very low yielding (Table 1a, entry 5), however the same synthesis when $\mathrm{R}^{2}=H$ (entry 10) generated the precursor in much higher yield. This compound was then subjected to rearrangement under our optimized conditions, albeit with a higher reaction temperature. We were delighted to observe the quantitative rearrangement of naphthalene $\mathbf{7 j}$ (Table 1b, entry 10). Further studies

Table 1. a) Yield Comparison of TMS and Non-TMS Precursor Synthesis. b) Yield Comparison of TMS and Non-TMS Naphthalene Synthesis
identified the substrate scope of the non-TMS-based rearrangement method, while allowing for a direct comparison against the TMS-based rearrangement. Consistently we
observed improved yields of the addition reaction, especially in the cases of highly congested ortho-substitution (entries 7, 8, 9, and 10 versus entries 2, 3, 4 and 5; Table 1a). Rearrangement yields were also improved, except in the cases of low steric congestion (entries 6 and 8 versus entries 1 and 3; Table 1b). From these results it seems that the non- TMS cyclopropyl substrate undergoes facile rearrangement in the presence of sterically demanding groups, but demonstrates diminished yields when smaller groups are placed in the ortho position.

Due to the success of the TMS-based cyclopropane rearrangement, we pursued a further increase in steric-demand around the biaryl axis to generate novel tetra-orthosubstituted aryl naphthalenes. Table 2 illustrates our success with t-butyl and adamantylbased substitutions at the R^{1} position. As previously discussed (Chapter III), our method works well using a semi-one pot synthesis of the naphthalene. It should be noted that these are the first examples, to the author's knowledge, of tetra-ortho-substituted aryl naphthalenes with either a t-butyl or adamantyl substitution in the ortho position, we were also able to obtain a crystal structure of t-butyl naphthalene 9a, unambiguously determining its identity.

All entries are the average of two runs
Table 2. TOANs Bearing an Ortho-t-butyl Group

Asymmetric Synthesis of TOANs

We next investigated the central to axial chirality transfer of the rearrangement. Central to axial chirality transfer has been reported from the Tanabe group, ${ }^{94}$ and is described briefly with regard to our method in Scheme 3. One can visualize possible chiral transfer from rearrangement precursor $\mathbf{1 0}$ if the pseudo biaryl bond is locked in a single conformation. This will lead to the formation of a single enantiomer of naphthalene $\mathbf{1 1}$ as long as rotation is restricted, and if $\mathbf{1 0}$ is optically pure. In a previous study (Chapter III) we had observed mediocre enantioselectivity for the rearrangement of 10 when the solvent was DCE ($\sim 50 \%$ ee). The enantiopure precursor was obtained from semi-preparatory chiral HPLC of the cyclopropyl indanone followed by selective addition of the aryl nucleophile. Fortuitously, further investigation indicated that performing the rearrangement in toluene led to a marked increase in enantioselectivity of the rearrangement of $\mathbf{1 0}$ (Table 3, entry 1). Once excellent enantioselectivity was established, a series of substrates were screened. Increasing the steric-demand by

Scheme 3. Proposed central to axial chirality transfer. Notice the methoxy naphthalene locked in a single orientation.
introducing an isopropyl group at the R^{1} position led to increased enantioselectivity (entry 2). Direct comparison of the TMS-based precursor (entry 2) and the non-TMSbased precursor (entry 3) demonstrated no loss in the chiral transfer. Aryl groups other than the 2-methoxy naphthyl group (entries 4 and 5) also gave excellent

Table 3. Asymmetric Rearrangement of Anti-precursor 12
enantioselectivities. It is important to note that each of the rearrangement-precursors have the aryl group oriented anti to the cyclopropane, correspondingly bottom-face attack. It seems that this configuration leads to excellent enantioselectivity when this precursor conformation is subjected to rearrangement. We also investigated the chiral transfer when the aryl groups add syn to the cyclopropane (top-face). Syn addition occurs preferentially when the nucleophile is relatively large or if $\mathrm{R}^{1}=t \mathrm{Bu}$. Interestingly, the chiral transfer was degraded for the syn configuration (Table 4, entries 1, 2, and 3). We believe that this is due to increased rotation around the pseudo biaryl bond, which
will be discussed in detail later. Continued study also revealed that coordinating groups present in the ortho position are necessary to facilitate chiral transfer. A methyl

All entries are the average of two runs
Table 4. Asymmetric Rearrangement of Syn-precursor 14
naphthalene (entry 4) in the aryl position showed no chirality transfer. While disappointing, this result did provide insight into the possible mechanism of chiral transfer. We were able to remove the methyl protecting group in $\mathbf{1 3 c}$ to generate naphthol 16 (Scheme 4). This deprotection occurred without loss of optical purity and the OH could be further functionalized to yield phosphinite $\mathbf{1 8}$ in very high ee. We further functionalized this hydroxyl naphthalene to produce a triflate $\mathbf{1 7}$ in the ortho position without loss of enantiomeric excess. Triflates are known precursors for crosscoupling reactions, thus, triflate $\mathbf{1 8}$ was subjected to a Negishi coupling to yield methyl substituted 19 in high enantiomeric excess.

Scheme 4. Further functionalization of enantioenriched 13b without chiral degradation.

In response to the loss of chiral transfer of syn precursors (Table 4, entries 1, 2 and 3) a temperature dependent NMR study was performed in order to quantify the barrier of rotation around the pseudo biaryl axis of syn precursor 14a and anti precursor 20 (Figures 1 and 2). We determined that anti precursor $\mathbf{2 0}$ has a high barrier of rotation around the pseudo biaryl axis $\left(\Delta \mathrm{G}^{\ddagger}=>\mathbf{2 5} \mathrm{kcal} / \mathrm{mol}\right)$ from VT NMR. Because of the the high rotational barrier we were not able to arrive at an exact value for the barrier to rotation, and modelling studies ${ }^{95}$ were performed in order to determine a rotation barrier of $34.61 \mathrm{kcal} / \mathrm{mol}$ for anti precursor $\mathbf{2 0}$ (Figure 1). The high barrier indicates that the precursor is locked in a single conformation throughout the rearrangement. Studies on syn precursor 14a showed a much smaller barrier of rotation (Figure $2, \Delta \mathrm{G}^{\ddagger}=13.68$ $\mathrm{kcal} / \mathrm{mol}$ by coalescence measurements, $14.40 \mathrm{kcal} / \mathrm{mol}$ via DNMR3, ${ }^{96}$ and 13.77 $\mathrm{kcal} / \mathrm{mol}$ via modeling). When rotation is restricted (anti precursor) these compounds are locked into place during the rearrangement, allowing for excellent chiral transfer. When the

Figure 1. VT NMR and DFT modeling studies of anti precursor 20.

Figure 2. The two singlets represent the two methoxy peaks from conformers \mathbf{A} and \mathbf{B} from rearrangement precursor $\mathbf{1 4} \mathbf{a}$. The quartet in the experimental residual ether. Simulated rotational rates were calculated from DNMR3.
rotation is not as restricted (syn precursor) chiral information is lost, indicating restricted rotation around the pseudo biaryl bond is of critical importance to maintain the asymmetric transfer. These cyclopropyl carbinols favor a conformation with the
coordinating moiety of the ortho position aligned with the hydroxyl group, as observed from crystal structures of representative precursors 27, 20, and $\mathbf{1 0}$ (Scheme 5).

27

20

10

Scheme 5. Representative examples of anti-precursors.

Chirality transfer from a central to axially chiral center has been shown to provide stereochemical control. Herein we have utilized this approach to provide efficient chirality transfer to produce axially chiral aryl naphthalenes. As mentioned in previous reports we have observed good diasteroselectivity for the generation of our rearrangement precursors. As our study of these compounds continued we began to see selectivity for either diastereomer depending upon the nature of $\mathrm{Ar}, \mathrm{R}^{2}$ and R^{1}. When R^{1} and Ar were large, while R^{2} was small, top-face attack (Syn) was preferred, leading to
rearrangement precursor 22 (Scheme 6). If R^{1} and Ar were small the nucleophile preferred bottom-face attack (Anti) leading to rearrangement precursor 23.

Scheme 6. Direction of attack on indanone 21.

Scheme 7 outlines our proposed stereochemical model for central-to-axial chirality transfer. When rotation is restricted, the coordinating group \mathbf{X} on general precursor $\mathbf{2 4}$ is aligned with the OH group, and quite possibly the Europium could enforce the restricted rotation. The absolute configuration of general anti-precursors was deduced from a

Absolute Configuration General Precursor

Restricted Rotation
25

26
Absolute Configuration Predicted/Observed

Scheme 7. Proposed stereochemical model of rearrangement.
crystal structure of precursor 27. If rotation is restricted as we predict we would expect to generate the general naphthalene $\mathbf{2 6}$ with the depicted absolute configuration. Indeed our prediction was consistent with the abosulute configuration of naphthalene $\mathbf{1 7}$ (determined by single crystal x-ray analysis).

Further evidence for this stereochemical model was obtained from the direct comparison of the rearrangement of diastereomers 14b and 12e (Scheme 8). Although the cyclopropyl centers were of the same absolute stereochemistry, our model predicts that only the stereocenter containing the pseudo-biaryl bond acts in dictating the stereochemical outcome of the aryl naphthalene. From this comparison we were able to experimentally observe the generation of the two enantiomers from $\mathbf{1 4 b}$ and $\mathbf{1 2 e}$ respectively. Furthermore, the anti precursor 12e continued to show high enantiomeric transfer while the syn configuration 14b saw attenuated transfer.

Stereochemical * Determining Center

Minor Diastereomer Anti Precursor

Restricted Rotation
29

$>95 \%$ ee (S)

Scheme 8. Comparison of the rearrangement of diastereomers
14b and 12e.

Conclusion

In conclusion, we have established a rearrangement-based method for the synthesis of aryl naphthalenes with challenging steric demand in the ortho position (i.e. t butyl and adamantyl groups). We have shown the synthesis of asymmetric tetra-orthosubstituted aryl naphthalenes in ee's up to $>95 \%$. We have shown through VT NMR and molecular modeling studies that restricted rotation is of key importance for the successful chiral transfer of our rearrangement. Through crystal structure analysis, coupled with polarimetry studies we have established a working stereochemical model to predict the absolute stereochemical structure of our aryl naphthalenes. We have further functionalized our enantiopure aryl naphthalenes to generate chiral triflate precursors without loss of optical purity. In all, we have described a novel synthesis to the aryl naphthalene motif, being: 1)regioselective, 2)enantioselective, 3) and having the ability to generate the "holy grail" of biaryl synthesis, highly sterically demanding tetra-orthosubstituted aryl naphthalenes.

Experimental

General

All oxygen and moisture-sensitive manipulations were carried out under an inert atmosphere using either standard Schlenk techniques or a glove box. THF, $\mathrm{Et}_{2} \mathrm{O}$, toluene, and pentane were purified by passing through a neutral alumina column under argon. Anhydrous benzene, 1,2-dichloroethane, and hexane were purchased from Aldrich and used as received. All other reagents were purchased (Aldrich, TCI, Alfa Aesar, or Acros) and used as received. 2-methyl-1-indenone, 2-isopropyl-1-indenone, 2-t-butylindenone,

2-adamantylindenone, and the sulfur ylide were prepared according to known procedures. ${ }^{97}$ Thin layer chromatography and preparatory chromatography were performed on Silicycle glass backed plates with UV indicator. Column chromatography was performed on Silicycle silica gel P60. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Unity/Inova 300 or Varian Unity/Inova 600 spectrometer. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Unity/Inova 300 or Varian Unity/Inova 500 spectrometer. All spectra were referenced to their respective solvents: $\mathrm{CDCl}_{3} 7.27 \mathrm{ppm}$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2} 5.30$ ppm. Gas chromatography was performed on an Agilent 6850 Series II GC with an auto loader using ChemStation. High-resolution mass spectroscopy data were obtained at the Mass Spectroscopy Facilities and Services Core of the Environmental Health Sciences Center at Oregon State University. Financial support for this facility has been furnished in part by the National Institute of Environmental Health Sciences, NIH (P30 ES00210). Chiral Chromatography was performed on an Agilent 1100 HPLC equipped with either a Chiralcel OD-H or OT(+) chiral column. Polarimetry was performed on a Rudolph Research Analytical Autopol IV at either 365 or 583 nm at room temperature. Variable Temperature NMR was performed on a Varian Unity/Inova 500 spectrometer. DNMR3 in SpinWorks 3 was used to simulate rates. $\Delta \mathrm{G}^{\ddagger}$ was determined from the Eyring equation.

General Synthesis of Silylcyclopropyl Indanones

Compound A [1072849-07-0]. To a nitrogen flushed and dried flask, 2-methyl-1-indenone ($1.90 \mathrm{~g}, 13.1 \mathrm{mmol}$) and palladium acetate (289 mg ,
 1.31 mmol) were added. The flask was repurged with N_{2}. Anhydrous benzene (100 mL) was added followed by dropwise addition of $\mathrm{TMSCHN}_{2}(20.0 \mathrm{~mL}$, $39.0 \mathrm{mmol}, 2.0 \mathrm{M}$ in diethyl ether). The evolution of N_{2} gas is apparent and the solution turns black. The reaction mixture was allowed to stir at room temperature for 16 h . At the conclusion of the reaction, the reaction mixture was filtered through a plug of Celite, and the solvent removed under reduced pressure. The crude material was subjected to column chromatography $(\mathrm{Hex}: \mathrm{Et} 2 \mathrm{O}=9: 1)$, and \mathbf{A} was isolated as a light yellow solid $(2.50 \mathrm{~g}, 84$ \% yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.13(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 2.65$ $(\mathrm{d}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 5a [1263064-75-0]. The procedure for the preparation of 5a has been used forthe synthesis of \mathbf{A} employing 2-isopropyl-1-indenone ($762 \mathrm{mg}, 4.40 \mathrm{mmol}$), palladium acetate ($98 \mathrm{mg}, 0.44 \mathrm{mmol}$), 44.0 mL
 benzene, and $\mathrm{TMSCHN}_{2}(6.50 \mathrm{~mL}, 13.1 \mathrm{mmol}, 2.0 \mathrm{M}$ in diethyl ether). The reaction was run at $50{ }^{\circ} \mathrm{C}$ for 3 h . Cyclopropane 5a was isolated as a pale yellow solid ($872 \mathrm{mg}, 76 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.14(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, $3 H), 1.51(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.78($ septet, $\mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-$ 7.43 (m, 3H), $7.60(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$

Compound 5b. To a nitrogen flushed and dried flask, 2-isopropyl-1indenone ($800 \mathrm{mg}, 4.7 \mathrm{mmol}$) was added. Anhydrous THF (15 mL) was added followed by dropwise addition of sulfur ylide ($7.0 \mathrm{~mL}, 4.7 \mathrm{mmol}$,
 0.7 M in THF). The solution turns a crimson red. The reaction mixture was allowed to stir at room temperature for 0.5 h . At the conclusion of the reaction, the reaction mixture was filtered through a plug of silica, and the solvent removed under reduced pressure. The crude material was subjected to column chromatography $\left(\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=9: 1\right)$, and $\mathbf{5 b}$ was isolated as a light yellow oil ($0.865 \mathrm{~g}, 100$ \% yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.06(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~m}$, $1 \mathrm{H}), 1.52(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{hep}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, \mathrm{J}=3.8, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{td}$, $\mathrm{J}=7.1, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 19.5,20.2,25.6,26.7,36.5,42.5,123.9,124.5,126.5,133.4,134.6,154.6,204.4$.

HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}(\mathrm{M}+)$ 186.10447 found 186.10439.

Compound 8a. The procedure for the preparation of $\mathbf{8 a}$ has been used for the synthesis of $\mathbf{5 b}$ employing 2-t-butyl-1-indenone ($1.3 \mathrm{~g}, 7.0 \mathrm{mmol}$), 23 mL THF, and sulfur ylide ($8.7 \mathrm{~mL}, 7.0 \mathrm{mmol}, 0.8 \mathrm{M}$ in THF).

Cyclopropane 8a was isolated as a pale yellow oil ($1.23 \mathrm{~g}, 89 \%$ yield $)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.06(\mathrm{~s}, 9 \mathrm{H}), 2.48(\mathrm{dd}, \mathrm{J}=7.4, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, \mathrm{J}$ $=19, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, \mathrm{J}=19, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 27.5, 29.4, 29.8, 33.7, 56.6, 123.3, 126.1, 127.0, 134.3, 153.2, 207.8. HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}(\mathrm{M}+) 200.12012$ found 200.12002.

Compound $\mathbf{8 b}$. The procedure for the preparation of $\mathbf{8 b}$ has been used for the synthesis of 8a employing 2-adamantyl-1-indenone (1.24 g, 4.7 mmol),
 15.0 mL THF, and sulfur ylide ($4.7 \mathrm{~mL}, 4.7 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF).

Cyclopropane $\mathbf{8 b}$ was isolated as a reddish solid ($1.02 \mathrm{~g}, 78$ \% yield).
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 1.53-1.78(\mathrm{~m}, 10 \mathrm{H}), 1.85-2.01(\mathrm{~m}, 5 \mathrm{H}), 2.10-2.18(\mathrm{~m}$, $1 \mathrm{H}), 2.33-2.40(\mathrm{~m}, 1 \mathrm{H}), 3.07-3.13(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (m, 1H) $7.71\left(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H} ;{ }^{13} \mathrm{C}\right.$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.1$ (broad), 20.3, 36.5 (broad), 37.1, 39.2, 41.5, 75.5, 124.9, 125.9, 127.8, 134.2, 135.4, 149.6, 200.2. HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}(\mathrm{M}+) 278.16707$ found 278.16761.

Nucleophilic Addition to 6 (Table 1a)

Compound 6a (Entry 1) [1263064-86-3]. An oven-dried flask was charged with 10.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and m-dimethoxybenzene ($267 \mathrm{mg}, 1.93 \mathrm{mmol}$), n - $\mathrm{BuLi}(0.73 \mathrm{~mL}, 1.8 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) was added dropwise and the reaction was allowed to stir
 overnight. The ether was removed under reduced pressure to yield a white solid. Anhydrous THF was added $(4.0 \mathrm{~mL})$ and the reaction was cooled to $-78^{\circ} \mathrm{C}$. Indanone $\mathbf{5 a}$ ($250 \mathrm{mg}, 0.967 \mathrm{mmol}$) in THF (1.0 mL) was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column
chromatography (Hex:Ether = 3:1). Compound 6a was isolated as a clear oil (46 mg , 12% yield).

A second run had a yield of 15%
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.14(\mathrm{~s}, 9 \mathrm{H}), 0.47(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.72(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.70($ septet, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.04$ $(\mathrm{s}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 6.41(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-$ 7.28 (m, 5H)

Compound 6b (Entry 2). An oven-dried flask was charged with 1.5 $\mathrm{mLanhydrous} \mathrm{Et}_{2} \mathrm{O}$ and m-diisopropoxybenzene ($73 \mathrm{mg}, 0.38 \mathrm{mmol}$), n BuLi ($0.22 \mathrm{~mL}, 0.35 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) was added dropwise and the reaction was allowed to stir overnight. The reaction was cooled to -78
 ${ }^{\circ} \mathrm{C}$. Indanone $5 \mathbf{5}(75 \mathrm{mg}, 0.29 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether $=3: 1$). Compound $\mathbf{6 b}$ was isolated as a tan solid ($54 \mathrm{mg}, 41 \%$ yield).

A second run had a yield of 40%
${ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.03(\mathrm{~s}, 9 \mathrm{H}), 0.73(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~d}, \mathrm{~J}$ $=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.28(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{hep}, \mathrm{J}=5.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.22($ hep, $\mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.84($ hep, $\mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63$ $(\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-7.22(\mathrm{~m}, 5 \mathrm{H})$. HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{3}(\mathrm{M}+) 381.24298$ found 381.24300 .

Compound 6c (Entry 3) [1263064-87-4]. An oven-dried flask was charged with 3.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2,6-dimethylbenzene $(279 \mathrm{mg}, 1.51 \mathrm{mmol})$, the reaction was cooled to $-78{ }^{\circ} \mathrm{C}$ and $t-\mathrm{BuLi}(1.8$
 $\mathrm{mL}, 3.0 \mathrm{mmol}, 1.7 \mathrm{M}$ in hexanes) was added dropwise and the reaction was allowed to stir for 2 hours. The reaction was warmed to ambient temperature for 30 minutes and reecooled to $-78{ }^{\circ} \mathrm{C}$. Indanone $5 \mathbf{5}(300 \mathrm{mg}, 1.16 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(3.0 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether $=6: 1$). Compound $\mathbf{6 c}$ was isolated as a viscous oil ($249 \mathrm{mg}, 59 \%$ yield).

A second run had a yield of 54%
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.09(\mathrm{~s}, 9 \mathrm{H}), 0.62(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}$, 3 H), 3.10 (septet, J = 7.2 Hz, 1H), 6.95-7.32 (m, 7H)

Compound 6d (Entry 4) [1263064-88-5]. An oven-dried flask was charged with 3.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2,6-diethylbenzene (321 mg, 1.51 mmol), the reaction was cooled to $-78{ }^{\circ} \mathrm{C}$ and $t-\mathrm{BuLi}(1.8$
 $\mathrm{mL}, 3.0 \mathrm{mmol}, 1.7 \mathrm{M}$ in pentane) was added dropwise and the reaction was allowed to
stir for 2 hours. The reaction was warmed to ambient temperature for 30 minutes and recooled to $-78{ }^{\circ} \mathrm{C}$. Indanone $\mathbf{5 a}(300 \mathrm{mg}, 1.16 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(3.0 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether $=9: 1$). Compound $\mathbf{6 d}$ was isolated as an off color oil ($226 \mathrm{mg}, 50 \%$ yield, compound $>90 \%$ pure).

A second run had a yield of 46%
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.10(\mathrm{~s}, 9 \mathrm{H}), 0.50(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.01(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H}), 1.41(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 1 \mathrm{H})$, $1.94(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.32(\mathrm{~m}, 7 \mathrm{H})$

Compound 6e (Entry 5) [1263064-89-6]. An oven-dried flask was charged with 3.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2,4,6triisopropylbenzene ($427 \mathrm{mg}, 1.51 \mathrm{mmol}$), the reaction was cooled to $78^{\circ} \mathrm{C}$ and $t-\mathrm{BuLi}(1.8 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.7 \mathrm{M}$ in pentane) was added
 dropwise and the reaction was allowed to stir for 2 hours. The reaction was warmed to ambient temperature for 30 minutes and re-cooled to $-78{ }^{\circ} \mathbf{C}$. Indanone $\mathbf{5 a}(300 \mathrm{mg}, 1.16$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.8 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography
$($ Hex:Ether $=9: 1)$ two times. Compound $\mathbf{6 e}$ was isolated as a white solid ($76 \mathrm{mg}, 14 \%$ yield).

A second run had a yield of 12%
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.12(\mathrm{~s}, 9 \mathrm{H}), 0.57(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}$, $3 \mathrm{H}), 0.99(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.19-1.37(\mathrm{~m}, 12 \mathrm{H}), 1.61(\mathrm{~s}, 1 \mathrm{H})$, 2.17 (septet, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.90($ septet, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.11$ $(\mathrm{m}, 1 \mathrm{H}), 4.41$ (septet, $\mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-7.28(\mathrm{~m}, 6 \mathrm{H})$

Compound 6f (Entry 6). An oven-dried flask was charged with 3.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and m-dimethoxybenzene ($103 \mathrm{mg}, 0.80 \mathrm{mmol}$), n BuLi ($0.47 \mathrm{~mL}, 0.75 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) was added dropwise and the reaction was allowed to stir overnight. The reaction was cooled to -
 $78{ }^{\circ} \mathrm{C}$. Indanone $\mathbf{5 b}(100 \mathrm{mg}, 0.54 \mathrm{mmol})$ in THF (2.0 mL) was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether $=9: 1$). Compound $\mathbf{6 f}$ was isolated as a clear oil ($106 \mathrm{mg}, 61 \%$ yield).

A second run had a yield of 58\%
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.67(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-$ $1.10(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{hep}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, \mathrm{J}=3.7 \mathrm{~Hz}($ both $), 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H})$, $4.02(\mathrm{~s}, 3 \mathrm{H}), 6.49(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}) 6.82-7.28(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.3,19.4,21.5,22.6,26.4,30.8,43.0,55.3,57.1,90.4,98.4$, $110.6,122.6,123.4,125.8,126.4,127.5,140.9,146.7,150.3,158.7,159.5$. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{3}(\mathrm{M}+) 325.18038$ found 325.18150 .

Compound 6g (Entry 7). An oven-dried flask was charged with 3.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and m-diisopropoxybenzene ($161 \mathrm{mg}, 0.80 \mathrm{mmol}$), $n-\operatorname{BuLi}(0.47 \mathrm{~mL}, 0.75 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) was added dropwise
 and the reaction was allowed to stir overnight. The reaction was cooled to $-78{ }^{\circ} \mathrm{C}$. Indanone $\mathbf{5 b}(100 \mathrm{mg}, 0.54 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether $=9: 1$). Compound $\mathbf{6 g}$ was isolated as a clear oil $(105 \mathrm{mg}$, 52% yield).

A second run had a yield of 49%

Proton and Carbon NMR complex due to a mix of diastereomers 80:20.

Compound 6h (Entry 8). An oven-dried flask was charged with 3.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2,6-dimethylbenzene ($128 \mathrm{mg}, 0.70 \mathrm{mmol}$), the reaction was cooled to $-78{ }^{\circ} \mathrm{C}$ and $t-\operatorname{BuLi}(0.87 \mathrm{~mL}, 1.4 \mathrm{mmol}, 1.6 \mathrm{M}$
 in pentane) was added dropwise and the reaction was allowed to stir for 2 hours. The reaction was warmed to ambient temperature for 30 minutes and re-cooled to $-78^{\circ} \mathrm{C}$. Indanone $\mathbf{5 b}(100 \mathrm{mg}, 0.54 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ was added dropwise. The reaction
was allowed to warm to ambient temperature and stirred overnight. At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography $($ Hex:Ether $=9: 1)$ two times. Compound $\mathbf{6 h}$ was isolated as an oil (102 $\mathrm{mg}, 66 \%$ yield).

A second run had a yield of 59%
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.82(\mathrm{t}, 6 \mathrm{H}), 0.93(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}$, Broad), $2.50(\mathrm{dd}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{~J}=2.92 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{hep}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.89-7.36 (m, 7H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 17.8,20.4,22.2,22.5,26.5,27.5,46.2$, 88.6, 123.8, 124.4, 125.9, 126.3, 128.1, 131.3 (Broad, Multiple Peaks), 139.5, 142.5, 150.5. One aliphatic peak and six aromatic peaks are not visible. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}(\mathrm{M}+)$ 293.19055 found 293.19071.

Compound 6i (Entry 9). An oven-dried flask was charged with 3.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2,6-diethylbenzene ($111 \mathrm{mg}, 0.54 \mathrm{mmol}$), the reaction was cooled to $-78{ }^{\circ} \mathrm{C}$ and t - $\mathrm{BuLi}(0.66 \mathrm{~mL}, 1.1 \mathrm{mmol}, 1.6 \mathrm{M}$
 in pentane) was added dropwise and the reaction was allowed to stir for 2 hours. The reaction was warmed to ambient temperature for 30 minutes and re-cooled to $-78{ }^{\circ} \mathrm{C}$. Indanone $\mathbf{5 b}(75 \mathrm{mg}, 0.40 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent
was removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether =9:1). Compound $\mathbf{6 i}$ was isolated as a white solid (96 mg , 73% yield). Crystals suitable for diffraction were generated from the slow evaporation of dichloromethane at room temperature.

A second run had a yield of 71%
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.80(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{dd}$, $\mathrm{J}=5.6 \mathrm{~Hz}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{dd}, \mathrm{J}=3.1 \mathrm{~Hz}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.62(\mathrm{~s}, 1 \mathrm{H}), 1.78-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{dd}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.79(\mathrm{~m}, 1 \mathrm{H})$, 3.27 (hep, $\mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.87(\mathrm{~m}, 1 \mathrm{H}), 7.02-7.37(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 17.5,18.0,19.0,20.3,22.1,22.7,27.4,29.4,31.6,45.6,88.4,123.4,123.6$, 126.0, 126.6, 128.0, 129.0, 130.4, 138.8, 142.0, 142.1, 146.9, 151.4. HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}(\mathrm{M}+) 320.21402$ found 320.21341.

Compound 6j (Entry 10). An oven-dried flask was charged with 3.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2,4,6triisopropylbenzene ($198 \mathrm{mg}, 0.70 \mathrm{mmol}$), the reaction was cooled to $-78{ }^{\circ} \mathrm{C}$ and $t-\mathrm{BuLi}(0.88 \mathrm{~mL}, 1.4 \mathrm{mmol}, 1.6 \mathrm{M}$ in
 pentane) was added dropwise and the reaction was allowed to stir for 2 hours. The reaction was warmed to ambient temperature for 30 minutes and re-cooled to $-78^{\circ} \mathrm{C}$. Indanone $\mathbf{5 b}(75 \mathrm{mg}, 0.40 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent
was removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether =9:1). Compound $\mathbf{6 j}$ was isolated as a white solid (100 mg , 64% yield).

A second run had a yield of 60%
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.79-1.55(\mathrm{~m}, 25 \mathrm{H}), 2.22(\mathrm{hep}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.52$ $(\mathrm{m}, 1 \mathrm{H}), 2.87(\mathrm{hep}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{hep}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{hep}, \mathrm{J}=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.89-7.33(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.0,20.3,23.0,23.3,23.7,23.9$, $24.8,26.5,27.6,31.0,31.7,33.5,44.2,89.0,122.8,123.1,123.5,125.8,127.7,135.0$, $141.9,146.2,146.6,151.5,151.7$. One aliphatic peak and one aromatic peak are not visible. HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}$ (M+) 390.29227 found 390.29264.

Rearrangement of 6 (Table 1b):

General Procedure: In a nitrogen glovebox, a vial was charged with 3, toluene, and $10 \% \mathrm{Eu}(\mathrm{OTf})_{3}$. The vessel was sealed and stirred at $80^{\circ} \mathrm{C}$ (entries $1-5$) or $110{ }^{\circ} \mathrm{C}$ (entries 6-10) for 24 h . The reaction was cooled to ambient temperature, and the mixture was filtered through a silica plug with copious ether washings. The solvents were removed under reduced pressure, and the crude material was subjected to preparatory thin-layer chromatography using 9:1 hexanes:ether as the eluent.

Compound 7a (Entry 1) [1263064-90-9]. The general procedure has been applied using $\mathbf{6 a}(40 \mathrm{mg}, 0.010 \mathrm{mmol})$, toluene $(1.0 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(6.0 \mathrm{mg}, 0.0010 \mathrm{mmol})$. The product $7 \mathbf{a}$ was isolated as an oil
 ($20 \mathrm{mg}, 65 \%$ yield)

A second run had a yield of 60%
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.20(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.83$ (septet, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.64(\mathrm{~s}, 6 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-$ 7.91 (m, 2H)

Compound 7b (Entry 2). The general procedure has been applied using $\mathbf{6 b}(50 \mathrm{mg}, 0.10 \mathrm{mmol})$, toluene $(1.0 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(6 \mathrm{mg}$, 0.010 mmol). The product $\mathbf{7 b}$ was isolated as a light yellow oil (33 mg ,
 83% yield).

A second run had a yield of 81%
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.88(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.21(\mathrm{~d}$, $\mathrm{J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 2.90(\mathrm{hep}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33($ hep, $\mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.18-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.90(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.7,21.9,23.6,31.0,69.8,106.5,123.4,124.0,124.7,126.4,127.1$, 127.3, 128.3, 130.0, 131.8, 133.0, 144.4, 157.2. HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{2}(\mathrm{M}+)$ 363.23241 found 363.23070 .

Compound 7c (Entry 3) [1263064-91-0]. The general procedure has been applied using $\mathbf{6 c}(169 \mathrm{mg}, 0.494 \mathrm{mmol})$, toluene $(5.0 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}$ (30 $\mathrm{mg}, 0.049 \mathrm{mmol})$. The product $7 \mathbf{c}$ was isolated as an off-color oil (89 mg ,
 70% yield).

A second run had a yield of 75%
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.24(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.91(\mathrm{~s}, 6 \mathrm{H}), 2.78($ septet, $\mathrm{J}=6.9$
$\mathrm{Hz}, 1 \mathrm{H}), 7.18-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.94(\mathrm{~m}, 2 \mathrm{H})$

Compound 7d (Entry 4) [1263064-92-1]. The general procedure has been applied using $\mathbf{6 d}(218 \mathrm{mg}, 0.555 \mathrm{mmol})$, toluene (5.6 mL), and $\mathrm{Eu}(\mathrm{OTf})_{3}(33 \mathrm{mg}, 0.056 \mathrm{mmol})$. The product $7 \mathbf{d}$ was isolated as a light
 yellow oil (122 mg, 73\% yield).

A second run had a yield of 72%
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.02(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.24(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.12-$ $2.36(\mathrm{~m}, 4 \mathrm{H}), 2.79($ septet, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.51(\mathrm{~m}, 6 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.89-7.96 (m, 2H)

Compound 7e (Entry 5) [1263064-93-2]. The general procedure has been applied using $6 \mathbf{e}(50 \mathrm{mg}, 0.011 \mathrm{mmol})$, toluene $(1.1 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}$ ($6.5 \mathrm{mg}, 0.0011 \mathrm{mmol}$). The product $7 \mathbf{e}$ was isolated as an off-color oil (29
 $\mathrm{mg}, 73 \%$ yield).

A second run had a yield of 78%
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.83(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.22(\mathrm{~d}$, $\mathrm{J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.39(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 2.35(\mathrm{hep}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.87($ hep, $\mathrm{J}=7.2$
$\mathrm{Hz}, 1 \mathrm{H}), 3.03(\mathrm{hep}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}$ $=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.90(\mathrm{~m}, 2 \mathrm{H})$

Compound 7f (Entry 6). The general procedure has been applied using 6f $(52 \mathrm{mg}, 0.16 \mathrm{mmol})$, toluene $(1.6 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(10 \mathrm{mg}, 0.016$ mmol). The product $7 \mathbf{f}$ was isolated as an off-color oil ($29 \mathrm{mg}, 60 \%$
 yield).

A second run had a yield of 58%

Same characterization data as $7 \mathbf{7 a}$

Compound 7g (Entry 7). The general procedure has been applied using $\mathbf{6 g}(52 \mathrm{mg}, 0.14 \mathrm{mmol})$, toluene $(1.5 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(8.2 \mathrm{mg}$, 0.014 mmol). The product $7 \mathbf{g}$ was isolated as an off-color oil (45 mg ,
 90% yield).

A second run had a yield of 83%

Same characterization data as 7b

Compound 7h (Entry 8). The general procedure has been applied using $\mathbf{6 h}(102 \mathrm{mg}, 0.35 \mathrm{mmol})$, toluene $(3.5 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(21 \mathrm{mg}, 0.035$ mmol). The product 7h was isolated as an off-color oil ($50 \mathrm{mg}, 53 \%$
 yield).

A second run had a yield of 60%

Same characterization data as 7c

Compound 7i (Entry 9). The general procedure has been applied using $\mathbf{6 i}(78 \mathrm{mg}, 0.24 \mathrm{mmol})$, toluene $(2.4 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(15 \mathrm{mg}, 0.024$ mmol). The product $7 \mathbf{i}$ was isolated as an off-color oil ($70 \mathrm{mg}, 95 \%$
 yield).

A second run had a yield of 91%

Same characterization data as $7 \mathbf{d}$

Compound 7j (Entry 10). The general procedure has been applied using $\mathbf{6 j}(95 \mathrm{mg}, 0.24 \mathrm{mmol})$, toluene $(2.4 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(15 \mathrm{mg}, 0.024$ mmol). The product $7 \mathbf{j}$ was isolated as an off-color oil ($91 \mathrm{mg}, 100 \%$ yield).

A second run had a yield of 100%

Same characterization data as 7e

t-Butyl and Adamantyl Naphthalene Generation (Table 2):

Compound 9a (Entry 1). An oven-dried flask was charged with 10.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and m-dimethoxybenzene ($97 \mathrm{mg}, 0.75 \mathrm{mmol}$), n BuLi ($0.44 \mathrm{~mL}, 0.70 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) was added dropwise and
 the reaction was allowed to stir overnight. The ether was removed under reduced pressure to yield a white solid. Anhydrous $\mathrm{Et}_{2} \mathrm{O}$ was added $(4.0 \mathrm{~mL})$ and the reaction was cooled
to $-78{ }^{\circ} \mathrm{C}$. Indanone $\mathbf{8 a}(100 \mathrm{mg}, 0.50 \mathrm{mmol})$ in THF (2.0 mL) was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to a plug. The crude carbinol ($103 \mathrm{mg}, 0.30 \mathrm{mmol}$) was then subjected to rearrangement conditions using toluene (3.0 mL), $\mathrm{Eu}(\mathrm{OTf})_{3}(18 \mathrm{mg}, 0.030 \mathrm{mmol})$, and heated to $110{ }^{\circ} \mathrm{C}$ for 24 hours. The product $9 \mathbf{a}$ was isolated as an oil $(25 \mathrm{mg}, 16 \%$ from indanone). Crystals suitable for diffraction were obtained from low temperature evaporation from hexane.

A second run had a yield of 17%
${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.37(\mathrm{~s}, 9 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-$ $7.63(\mathrm{~m}, 4 \mathrm{H}), 7.83-8.00(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 31.7,55.4,103.6,119.1$, $124.7,125.4,125.6,126.2,127.2,127.4,129.0,129.4,131.7,133.7,145.3,158.5$.

HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2}(\mathrm{M}+) 320.17763$ found 320.17789 .

Compound 9b (Entry 2). An oven-dried flask was charged with 10.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and m-diisopropoxybenzene ($153 \mathrm{mg}, 0.75 \mathrm{mmol}$), n BuLi ($0.44 \mathrm{~mL}, 0.70 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) was added dropwise and
 the reaction was allowed to stir overnight. The ether was removed under reduced pressure to yield a white solid. Anhydrous $\mathrm{Et}_{2} \mathrm{O}$ was added $(4.0 \mathrm{~mL})$ and the reaction was cooled to $-78{ }^{\circ} \mathrm{C}$. Indanone $\mathbf{8 a}(100 \mathrm{mg}, 0.50 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred
overnight. At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to a plug. The crude carbinol ($115 \mathrm{mg}, 0.29 \mathrm{mmol}$) was then subjected to rearrangement conditions using toluene $(3.0 \mathrm{~mL}), \mathrm{Eu}(\mathrm{OTf})_{3}(18 \mathrm{mg}, 0.030$ $\mathrm{mmol})$, and heated to $110^{\circ} \mathrm{C}$ for 24 hours. The product $9 \mathbf{b}$ was isolated as an oil (57 mg , 30% from indanone).

A second run had a yield of 23%
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.83(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.28(\mathrm{~s}$, $9 \mathrm{H}), 4.35(\mathrm{hep}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.68-7.80$ (m, 3H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 21.7,22.1,22.2,32.0,32.1,37.2,69.5,105.4$, $121.5,124.2,126.1,126.3,126.4,126.9,128.3,129.8,131.6,133.9,145.2,157.3$. One aromatic peak and one aliphatic peak not observed. HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{O}_{2}(\mathrm{M}+)$ 377.24806 found 377.24706 .

Compound 9c (Entry 3). An oven-dried flask was charged with 3.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2,6-dimethylbenzene ($120 \mathrm{mg}, 0.65 \mathrm{mmol}$), t-BuLi ($0.81 \mathrm{~mL}, 1.3 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) was added dropwise at -78
 ${ }^{\circ} \mathrm{C}$ and the reaction was allowed to stir for two hours. The reaction was warmed to room temperature for 10 minutes and re-cooled to $-78{ }^{\circ} \mathbf{C}$. Indanone $\mathbf{8 a}(100$ $\mathrm{mg}, 0.50 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and then brought to $40{ }^{\circ} \mathrm{C}$ overnight. At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether.

The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to a plug. The crude carbinol ($50 \mathrm{mg}, 0.13 \mathrm{mmol}$) was then subjected to rearrangement conditions using toluene $(1.3 \mathrm{~mL}), \mathrm{Eu}(\mathrm{OTf})_{3}(8 \mathrm{mg}, 0.013 \mathrm{mmol})$, and heated to $150{ }^{\circ} \mathrm{C}$ for 24 hours. The product 9 c was isolated as an oil ($23 \mathrm{mg}, 16 \%$ from indanone).

A second run had a yield of 24%
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.22(\mathrm{~s}, 9 \mathrm{H}), 1.88(\mathrm{~s}, 6 \mathrm{H}), 6.90-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.70-7.86$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 20.6,21.4,32.4,33.1,124.9,125.1,125.3$, 124.4, 125.8, 126.0, 127.0, 127.1, 127.4, 127.5, 128.3, 129.5, 136.6, 137.4. HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{25}(\mathrm{M}+) 289.19563$ found 289.19606.

Compound 9d (Entry 1). An oven-dried flask was charged with 1.0 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2,6-dimethylbenzene ($50 \mathrm{mg}, 0.27$ $\mathrm{mmol}), t-\mathrm{BuLi}(0.15 \mathrm{~mL}, 2.5 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) was added
 dropwise at $-78^{\circ} \mathrm{C}$ and the reaction was allowed to stir for two hours. The reaction was warmed to room temperature for 10 minutes and re-cooled to $-78^{\circ} \mathrm{C}$. Indanone $\mathbf{8 b}(50 \mathrm{mg}, 0.18 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and then brought to $40^{\circ} \mathrm{C}$ overnight. At the conclusion of the reaction, 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 20 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to a plug. The crude carbinol ($69 \mathrm{mg}, 0.18 \mathrm{mmol}$) was then subjected to rearrangement conditions using toluene (1.8 mL), $\mathrm{Eu}(\mathrm{OTf})_{3}(11 \mathrm{mg}, 0.018 \mathrm{mmol})$, and
heated to $150{ }^{\circ} \mathrm{C}$ for 24 hours. The product 9 d was isolated as an oil $(17 \mathrm{mg}, 26 \%$ from indanone).

A second run had a yield of 23%
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 1.45-2.48(\mathrm{~m}, 21 \mathrm{H}), 6.91-7.45(\mathrm{~m}, 7 \mathrm{H}), 7.73-7.91(\mathrm{~m}$, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.4,29.1$ (Broad), 36.7 (Broad), 43.0, 43.2 (Broad), 43.5, 122.4, 124.9, 125.2 (Broad), 125.3, 125.4, 125.9, 126.7, 126.9, 127.0 (Broad), 127.3, 128.2, 129.5, 136.4, 137.4. Many peaks not observed due to broad overlap. HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{30}(\mathrm{M}+) 366.23475$ found 366.23314 .

Asymmetric Precursor:

Compound 30a [1263064-77-2]. An oven-dried flask was charged with 0.50 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2-methoxynaphthalene ($27 \mathrm{mg}, 0.11 \mathrm{mmol}$), n -BuLi was added dropwise ($0.07 \mathrm{~mL}, 0.10$ mmol, 1.6 M in hexanes) was added dropwise and the reaction was
 allowed to stir for 5 minutes. The reaction was cooled to $-78{ }^{\circ} \mathrm{C}$. Enantiopure indanone $\mathbf{A}(24 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(0.50 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. At the conclusion of the reaction, 1 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 10 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether = 3:1). Compound 30a was isolated as a clear solid (20 mg , 50\% yield).

The same reaction was run on the opposite enantiomer of indanone to give a 60% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.17(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 2.48$ $(\mathrm{d}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 3 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}) 6.97-7.41(\mathrm{~m}, 7 \mathrm{H})$ $7.72(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H})$

Compound 30b. An oven-dried flask was charged with 0.25 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2-methoxynaphthalene ($15 \mathrm{mg}, 0.07$ mmol), n - BuLi was added dropwise ($0.04 \mathrm{~mL}, 0.06 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) was added dropwise and the reaction was allowed to stir for 5
 minutes. The reaction was cooled to $-78^{\circ} \mathrm{C}$. Enantiopure indanone $\mathbf{5 a}$ ($15 \mathrm{mg}, 0.06$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(0.25 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. At the conclusion of the reaction, 1 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 10 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography $($ Hex:Ether $=3: 1)$. Compound 30b was isolated as a clear solid ($7 \mathrm{mg}, 27 \%$ yield $)$.

The same reaction was run on the opposite enantiomer of indanone to give a 24% yield.

The precursor could not be purified effectively and crude material was taken forward.

Compound 10. An oven-dried flask was charged with 0.50 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2-methoxynaphthalene ($31 \mathrm{mg}, 0.13$ mmol), n - BuLi was added dropwise ($0.07 \mathrm{~mL}, 0.12 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) was added dropwise and the reaction was allowed to stir for 5

minutes. The reaction was cooled to $-78{ }^{\circ} \mathrm{C}$. Enantiopure indanone $\mathbf{5 b}(22 \mathrm{mg}, 0.12$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(0.50 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. At the conclusion of the reaction, 1 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 10 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography $($ Hex:Ether $=3: 1)$. Compound 10 was isolated as a clear solid ($21 \mathrm{mg}, 51 \%$ yield $).$ Crystals suitable for diffraction were obtained from slow evaporation of hexane at $-20^{\circ} \mathrm{C}$

The same reaction was run on the opposite enantiomer of indanone to give a 46% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.60(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-$
$1.30(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 1 \mathrm{H}), 1.89(\mathrm{hep}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, \mathrm{J}$ $=4.4 \mathrm{~Hz}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 3 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.67$ $(\mathrm{dd}, \mathrm{J}=12.2 \mathrm{~Hz}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $18.9,20.2,21.5,26.2,30.9,45.3,58.5,90.5,115.8,122.8,123.7,125.4,125.6,125.7$, 126.4 (Broad), 127.4, 128.2, 130.4, 145.3, 151.5, 155.4. Three aromatic peaks not observed. HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}(\mathrm{M}+) 344.17763$ found 344.17710.

Compound 30c. An oven-dried flask was charged with 0.50 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2-methoxynaphthalene ($31 \mathrm{mg}, 0.13$ $\mathrm{mmol}), \mathrm{n}-\mathrm{BuLi}$ was added dropwise $(0.07 \mathrm{~mL}, 0.12 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) was added dropwise and the reaction was allowed to stir for 5
 minutes. The reaction was cooled to $-78{ }^{\circ} \mathrm{C}$. Enantiopure indanone 8a ($24 \mathrm{mg}, 0.12$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(0.50 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to
ambient temperature and stirred overnight. At the conclusion of the reaction, 1 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 10 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether = 3:1). Compound 30c was isolated as a clear solid (19 $\mathrm{mg}, 45 \%$ yield). The same reaction was run on the opposite enantiomer of indanone to give a 60% yield.
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 1.04$ ($\sigma, 1 \mathrm{H}$, Broad) $1.16(\mathrm{~s}, 9 \mathrm{H}), 1.83(\mathrm{~s}, 1 \mathrm{H}$, Broad), 2.63 ($\mathrm{s}, 1 \mathrm{H}$, Broad), 3.26 ($\mathrm{s}, 1 \mathrm{H}$), 4.19 ($\mathrm{s}, 3 \mathrm{H}$, Broad), 6.84-7.95 (m, 10H, Broad); ${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 21.8$ (b), 28.8 (b), 30.2 (b), 30.9, 34.0 (b), 48.3, 56.5 (b), 113.8 (b), 122.8, 123.0, 124.7 (b), 125.7 (b), 128.1 (b), 128.7, 130.7, 131.0 (b), 142.7. Six aromatic peaks not observed due to broadening. HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{2}(\mathrm{M}+)$ 358.19328 found 358.19319 .

Compound 30d. An oven-dried flask was charged with 0.50 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 2-bromo-3,5-dimethoxytoluene ($36 \mathrm{mg}, 0.15$ $\mathrm{mmol}), \mathrm{n}$-BuLi was added dropwise ($0.09 \mathrm{~mL}, 0.13 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) was added dropwise and the reaction was allowed to stir for 5
 minutes. The reaction was cooled to $-78{ }^{\circ} \mathrm{C}$. Enantiopure indanone $\mathbf{5 b}$ ($25 \mathrm{mg}, 0.13$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(0.50 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. At the conclusion of the reaction, 1 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 10 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under
reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether = 3:1). Compound 30d was isolated as an oil ($6.9 \mathrm{mg}, 15 \%$ yield).

The same reaction was run on the opposite enantiomer of indanone to give a 15% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.67(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.09$ $(\mathrm{dd}, \mathrm{J}=3.3 \mathrm{~Hz}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.21-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{hep}, \mathrm{J}=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.52(\mathrm{dd}, \mathrm{J}=4.4 \mathrm{~Hz}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 6.27(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.49(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-7.31(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 19.3$, $21.5,22.6,26.4,30.8,43.0,53.8,55.4,57.0,90.4,98.4,110.6,122.5,123.4,125.7,126.4$, 127.4, 140.9, 146.7, 150.3, 158.7, 159.5.

Compound 30e. An oven-dried flask was charged with 0.50 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2,3-dimethoxynaphthalene (36 mg , $0.14 \mathrm{mmol}), \mathrm{n}-\mathrm{BuLi}$ was added dropwise $(0.08 \mathrm{~mL}, 0.12 \mathrm{mmol}$, 1.6 M in hexanes) was added dropwise and the reaction was
 allowed to stir for 5 minutes. The reaction was cooled to $-78{ }^{\circ} \mathrm{C}$. Enantiopure indanone $\mathbf{5 b}$ ($23 \mathrm{mg}, 0.12 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(0.50 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. At the conclusion of the reaction, 1 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 10 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether $=3: 1$). Compound 30e was isolated as a white solid (20 mg , 44% yield). The opposite diastereomer was also isolated as a white solid ($5 \mathrm{mg}, 11 \%$ yield, Crude).

The same reaction was run on the opposite enantiomer of indanone to give a 44% yield of the major diastereomer and 11% for the minor diastereomer (Crude).

The Crude material was carried forward for both diastereomers. HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}(\mathrm{M}+) 374.18820$ found 374.18863.

Compound 30f. An oven-dried flask was charged with 0.50 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2-methylnaphthalene ($30 \mathrm{mg}, 0.14 \mathrm{mmol}$), $\mathrm{n}-\mathrm{BuLi}$ was added dropwise ($0.08 \mathrm{~mL}, 0.12 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) was added dropwise and the reaction was allowed to stir for 5 minutes. The
 reaction was cooled to $-78{ }^{\circ} \mathrm{C}$. Enantiopure indanone $\mathbf{5 b}(23 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ $(0.50 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. At the conclusion of the reaction, 1 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 10 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography $($ Hex:Ether $=$ 3:1). Compound $\mathbf{3 0 f}$ was isolated as a crude oil (11.5 mg)

The same reaction was run on the opposite enantiomer of indanone to yield 11 mg .

The precursor could not be purified effectively and crude material was taken forward.

Compound 27. An oven-dried flask was charged with 0.50 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1,6-dibromo-2-hydroxynaphthalene ($54 \mathrm{mg}, 0.17 \mathrm{mmol}$), $\mathrm{n}-\mathrm{BuLi}$ was added dropwise ($0.22 \mathrm{~mL}, 0.34 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) was added dropwise and the reaction was allowed to stir for 5 minutes. The reaction

was cooled to $-78^{\circ} \mathrm{C}$. Enantiopure indanone $\mathbf{5 b}(30 \mathrm{mg}, 0.16 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(0.50 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. At the conclusion of the reaction, 1 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 10 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether $=3: 1$). Compound 27 was isolated as a red solid ($21 \mathrm{mg}, 32 \%$ yield). Crystals suitable for diffraction were obtained from slow evaporation of hexane at $-20^{\circ} \mathrm{C}$.

The same reaction was run on the opposite enantiomer of indanone to give a 30% yield.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.63(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02-$ $1.07(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{dd}, \mathrm{J}=2.9 \mathrm{~Hz}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{hep}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, \mathrm{J}$ $=4.9 \mathrm{~Hz}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-7.40(\mathrm{~m}, 7 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, \mathrm{~J}=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 11.26(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.2,21.2,21.4,25.7,31.3,46.2$, $93.5,115.4,115.8,122.3,123.4,125.4,126.0,127.3,128.7,128.8,129.7,130.4,130.6$, 131.1, 145.3, 148.5, 156.0.

Compound 30g. An oven-dried flask was charged with 0.50 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and 1-bromo-2-methoxymethylnaphthalene ($52 \mathrm{mg}, 0.21$ mmol), n -BuLi was added dropwise ($0.08 \mathrm{~mL}, 0.12 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) was added dropwise and the reaction was allowed to stir for 5
 minutes. The reaction was cooled to $-78{ }^{\circ} \mathrm{C}$. Enantiopure indanone $\mathbf{5 b}$ (32 $\mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(0.50 \mathrm{~mL})$ was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. At the conclusion of the reaction, 1
mL of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) was added followed by 10 mL ether. The organic phase was washed three times with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude mixture was subjected to column chromatography (Hex:Ether = 3:1). Compound $\mathbf{3 0 g}$ was isolated as a fluffy yellowish solid ($28 \mathrm{mg}, 45 \%$ yield Crude).

The same reaction was run on the opposite enantiomer of indanone to give a 25% yield.

The precursor could not be purified effectively and crude material was taken forward.

Anti-Precursor Asymmetric Rearrangement (Table 3):

General Procedure: In a nitrogen glovebox, a vial was charged with rearrangement precursor, toluene, and $10 \% \mathrm{Eu}(\mathrm{OTf})_{3}$. The vessel was sealed and stirred at $80{ }^{\circ} \mathrm{C}$ (entries $1-2$) or $110^{\circ} \mathrm{C}$ (entries 3-10) for 24 h . The reaction was cooled to ambient temperature, and the mixture was filtered through a silica plug with copious ether washings. The solvents were removed under reduced pressure, and the crude material was subjected to preparatory thin-layer chromatography using 9:1 hexanes:ether as the eluent.

Compound 13a (Entry 1) [106909-87-9]. The general procedure has been applied using $\mathbf{3 0 a}$ ($22 \mathrm{mg}, 0.06 \mathrm{mmol}$), toluene (0.6 mL), and $\mathrm{Eu}(\mathrm{OTf})_{3}(3.3 \mathrm{mg}, 0.006 \mathrm{mmol})$. The product 13 a was isolated as an oil ($9.1 \mathrm{mg}, 55 \%$ yield and 90% ee)

A run of the opposite enantiomer had a yield of 59% and 93% ee.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.13(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-$ $7.56(\mathrm{~m}, 7 \mathrm{H}), 7.91(\mathrm{~m}, 3 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 1 \mathrm{H})$.

HPLC Chiralpak OT (+) 99.8:0.2 Hexane:IPA mL/min. $\mathrm{t}_{1}=14.5$ and $\mathrm{t}_{2}=18.2 .[\alpha]_{\mathrm{D}}=(-)$ 14.0 in CHCl_{3} at $\mathrm{c}=0.10$.

Compound 13b (Entry 2). The general procedure has been applied using 30b $(6.5 \mathrm{mg}, 0.016 \mathrm{mmol})$, toluene $(0.16 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(0.94 \mathrm{mg}$, $0.0016 \mathrm{mmol})$. The product $\mathbf{1 3 b}$ was isolated as an oil $(3.0 \mathrm{mg}, 70 \%$ yield
 from crude precursor $\mathbf{3 0 b}$ and $>95 \%$ ee). The same characterization data was observed for 13c.

Compound 13c (Entry 3). The general procedure has been applied using $\mathbf{1 0}(23 \mathrm{mg}, 0.07 \mathrm{mmol})$, toluene $(0.70 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(4.0 \mathrm{mg}, 0.007$ $\mathrm{mmol})$. The product $\mathbf{1 3} \mathbf{c}$ was isolated as an oil ($9.8 \mathrm{mg}, 45 \%$ yield and
 $>95 \%$ ee)

A run of the opposite enantiomer had a yield of 48% and $>95 \%$ ee.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.06(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.66$ (hep, $\mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 7.00-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, \mathrm{~J}$ $=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-8.10(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 23.6,23.7,31.0,56.3$, $113.4,123.5,123.8,124.8,125.4,125.8,126.3,126.4,127.8,127.8,128.1,129.0,129.2$, 129.2, 130.1, 132.1, 133.1, 134.3, 145.1, 154.7. HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}$ (M+) 326.16707 found 326.16768. HPLC Chiralpak OT (+) Hexane $1 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{1}=7.3$ and t_{2} $=7.8 .[\alpha]_{365}=(+) 169.7$ in EtOH at $\mathrm{c}=0.33$

Compound 13d (Entry 4). The general procedure has been applied using $\mathbf{3 0 d}(7 \mathrm{mg}, 0.02 \mathrm{mmol})$, toluene $(0.2 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(1.2 \mathrm{mg}, 0.002$ mmol). The product 13d was isolated as white oil ($5 \mathrm{mg}, 76 \%$ yield and $>95 \%$ ee).

A run of the opposite enantiomer had a yield of 70% and $>95 \%$ ee.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.14-1.31(\mathrm{~m}, 6 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{hep}, \mathrm{J}=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 6.52(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=$ 8.7 Hz, 1H), 7.81-7.94 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.3,23.4,23.7,30.8$, $55.3,55.4,96.0,106.1,120.0,123.7,124.6,125.7,127.6,127.8,131.8,132.2,132.8$, 139.3, 144.4, 158.7, 159.7. One aromatic carbon is not observed. HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2}(\mathrm{M}+) 320.17763$ found 320.17814. HPLC Chiralpak OT (+) Hexane 1 $\mathrm{mL} / \mathrm{min} . \mathrm{t}_{1}=9.8$ and $\mathrm{t}_{2}=10.4$.

Compound 13e (Entry 5). The general procedure has been applied using $\mathbf{3 0 e}(5 \mathrm{mg}, 0.013 \mathrm{mmol})$, toluene $(0.13 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(0.8 \mathrm{mg}, 0.0013$ mmol). The product $\mathbf{1 3 e}$ was isolated as an oil ($3 \mathrm{mg}, 64 \%$ yield and $>95 \%$
 ee).

A run of the opposite enantiomer had a yield of 62% and $>95 \%$ ee.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.17(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 6.96-7.54(\mathrm{~m}$, $8 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$

HPLC Chiralpak OT (+) Hexane $1 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{1}=12.7$ and $\mathrm{t}_{2}=14.3 .[\alpha]_{365}=(+) 120.0 \mathrm{in}$ EtOH at $\mathrm{c}=0.07$

Syn-Precursor Asymmetric Rearrangement (Table 4):

Compound 15a (Entry 1). The general procedure has been applied using $\mathbf{3 0 c}(22 \mathrm{mg}, 0.06 \mathrm{mmol})$, toluene $(0.6 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(3.6 \mathrm{mg}, 0.006$ $\mathrm{mmol})$. The product $\mathbf{1 5 a}$ was isolated as an oil $(13.7 \mathrm{mg}, 69 \%$ yield and 65%
 ee).

A run of the opposite enantiomer had a yield of 72% and 72% ee.
${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.12(\mathrm{~s}, 9 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 6.88-7.45(\mathrm{~m}, 7 \mathrm{H}), 7.81-8.03$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 30.9,32.1,55.9,113.0,123.3,124.4,125.0$, $125.7,126.1,126.2,126.2,126.7,127.3,127.5,127.7,128.7,129.2,130.5,131.9,133.9$, 135.1, 146.0, 154.6. HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}(\mathrm{M}+) 340.18272$ found 340.18213. HPLC Chiralpak OT (+) 98:2 Hexane:IPA $1 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{1}=7.5$ and $\mathrm{t}_{2}=12.7$.

Compound 15b (Entry 2). The general procedure has been applied using 30e, opposite diastereomer ($18 \mathrm{mg}, 0.05 \mathrm{mmol}$), toluene (0.5 $\mathrm{mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(3.0 \mathrm{mg}, 0.005 \mathrm{mmol})$. The product $\mathbf{1 5 b}$ was isolated
 as an oil ($10 \mathrm{mg}, 59 \%$ yield and $68 \% \mathrm{ee}$).

A run of the opposite enantiomer had a yield of 58% and 67% ee.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.05(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.74$ (hep, $\mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H}), 6.97-7.44(\mathrm{~m}, 7 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.81-7.93(\mathrm{~m}, 2 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H})$. HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{2}(\mathrm{M}+)$ 356.17763 found 356.17793. HPLC Chiralpak OT (+) Hexane $1 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{1}=12.7$ and t_{2} $=14.3 \cdot[\alpha]_{365}=(-) 105.4$ in EtOH at $\mathrm{c}=0.27$

Compound 15c (Entry 3). The general procedure has been applied using $30 f(23 \mathrm{mg}, 0.06 \mathrm{mmol})$, toluene $(0.6 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(3.8 \mathrm{mg}, 0.006$ $\mathrm{mmol})$. The product $\mathbf{1 5 d}$ was isolated as an oil ($14 \mathrm{mg}, 64 \%$ yield and 74%
 ee).

A run of the opposite enantiomer had a yield of 65% and 74% ee.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.02(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.59$ (hep, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.00(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.80-8.04 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 23.5,24.0,30.8,58.5,72.3,123.9$, $125.1,125.1,125.7,125.9,126.1,126.2,126.5,127.8,127.9,127.9,128.4,131.9,132.0$, 132.7, 133.0, 133.1, 134.4, 135.0, 144.9. HPLC Chiralpak OT (+) Hexanes $1 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{1}$ $=15.2$ and $\mathrm{t}_{2}=21.1$.

Compound 15d (Entry 4). The general procedure has been applied using $30 f(11.5 \mathrm{mg}, 0.035 \mathrm{mmol})$, toluene $(0.35 \mathrm{~mL})$, and $\mathrm{Eu}(\mathrm{OTf})_{3}(2.1 \mathrm{mg}, 0.0035$ mmol). The product $\mathbf{1 5 d}$ was isolated as an off-color oil ($8.0 \mathrm{mg}, 74 \%$ yield
 and 0% ee).

A run of the opposite enantiomer had a yield of 70% and 0% ee
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.05(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.74$ (hep, $\mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H}), 6.97-7.44(\mathrm{~m}, 7 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, 1H), 7.81-7.93 (m, 2H), $8.00(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 20.4$, $23.6,23.9,30.8,124.0,124.9,125.0,125.8,126.0,126.1,126.1,127.3,127.6,127.8$,
$128.1,128.6,132.0,132.2,132.6,133.4,134.6,135.0,144.5$. One aromatic carbon is not observed. HPLC Chiralpak OT (+) Hexane $1 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{1}=5.1$ and $\mathrm{t}_{2}=5.5$.

Further Functionalization of Enantiopure Naphthalenes (Scheme 4)

Compound 16. To a dried flask was added naphthalene $\mathbf{1 3 c}(44 \mathrm{mg}$, $0.13 \mathrm{mmol})$ and $\mathrm{DCM}(1.5 \mathrm{~mL}) . \mathrm{BBr}_{3}(148 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1 \mathrm{M}$ in

DCM) was added dropwise. The solution was allowed to stir for 12
 hours and then quenched with 1 mL NaHCO 3 (Aqueous, Saturated). $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was then added. The organic phase was washed 2 more times with water, and dried over MgSO_{4}. The desired compound $\mathbf{1 6}$ was isolated as a white solid ($24 \mathrm{mg}, 57 \%$ yield, and $>95 \%$ ee)

A run of the opposite enantiomer had a yield of 53% and $>95 \%$ ee.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.10(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.77$
(hep, J = 6.9 Hz, 1H), $4.78(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.51(\mathrm{~m}, 6 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.97(\mathrm{~m}, 3 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 23.7,24.1,31.0,117.3,117.4,123.4,124.2,124.8,125.7,125.9,126.6,126.8,127.0$, 128.0, 128.1, 129.0, 129.7, 132.6, 133.1, 134.0, 147.7, 151.0, 144.5. HPLC Chiralpak OT (+) 98.5:1.5 Hexane:IPA $1 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{1}=9.3$ and $\mathrm{t}_{2}=11.2 .[\alpha]_{\mathrm{D}}=(+) 11.1 \mathrm{in} \mathrm{EtOH}$ at $\mathrm{c}=0.73$

Compound 17. To a dried flask was added naphthalene 16 ($22 \mathrm{mg}, 0.07$ $\mathrm{mmol})$ and $\mathrm{DCM}(0.13 \mathrm{~mL})$. The solution was then cooled to $0^{\circ} \mathrm{C}$. $i \operatorname{Pr}_{2} \mathrm{NH}(11 \mu \mathrm{~L}, 0.07 \mathrm{mmol})$ was added dropwise, followed by dropwise

addition of $\mathrm{Tf}_{2} \mathrm{O}(26 \mu \mathrm{~L}, 0.14 \mathrm{mmol})$. The solution was allowed to warm to room temperature overnight and then quenched with 1 mL NaHCO 3 (Aqueous, Saturated). $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was then added. The organic phase was washed 2 more times with water, and dried over MgSO_{4}. The desired compound 17 was isolated as an oil ($14 \mathrm{mg}, 47 \%$ yield, and $>95 \%$ ee). Crystals suitable for diffraction were isolated from the cold evaporation of hexanes.

A run of the opposite enantiomer had a yield of 47% and $>95 \%$ ee.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.03(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.62$ (hep, $\mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.71(\mathrm{~m}, 7 \mathrm{H}), 7.91(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.98-8.15(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 23.0,24.3,31.3,119.1,119.4$, 123.7, 125.2, 126.1, 126.3, 126.7, 127.0, 127.5, 127.8, 128.2, 129.5, 129.6, 130.2, 132.0, 132.4, 132.7, 134.0, 145.0, 145.6. HPLC Chiralpak OT (+) Hexane $1 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{1}=7.3$ and $\mathrm{t}_{2}=8.7$.

Compound 19. To a dried flask was added naphthalene 17 ($8 \mathrm{mg}, 0.02$ $\mathrm{mmol})$, diethyl ether $(0.40 \mathrm{~mL})$ and $\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}(1.4 \mathrm{mg}, 0.003 \mathrm{mmol})$. The reaction solution was cooled to $0^{\circ} \mathrm{C} . \mathrm{MeMgBr}(24 \mu \mathrm{~L}, 3 \mathrm{M}$ in diethyl ether) was added dropwise. The reaction was allowed to warm to room
 temperature and was stirred for 48 h . Upon completion, the reaction mixture was washed with $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL}$, saturated, aqueous) and 10 mL of diethyl ether. The organic material was dried over MgSO_{4} and the solvent was removed under reduced pressure. The desired compound 19 was isolated as an oil ($4.6 \mathrm{mg}, 82 \%$ yield, and $>95 \% \mathrm{ee}$)

A run of the opposite enantiomer had a yield of 86% and $>95 \%$ ee.

Characterization data was identical to compound 15d.

Compound 18. To a dried flask was added naphthalene 16 (10 mg , $0.03 \mathrm{mmol})$, diethyl ether $(0.5 \mathrm{~mL})$, triethyl amine ($11 \mu \mathrm{~L}, 0.08$ mmol), and DMAP ($1.0 \mathrm{mg}, 0.008 \mathrm{mmol}$). The reaction vessel was
 cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{ClPPh}_{2}(14 \mu \mathrm{~L}, 0.08 \mathrm{mmol})$ was added dropwise. The reaction was allowed to warm to room temperature and stir overnight. The desired compound $\mathbf{1 8}$ was isolated as a greenish solid ($15 \mathrm{mg}, 94 \%$ yield, and $>95 \%$ ee).

A run of the opposite enantiomer had a 95% yield and the same ee.
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 0.99(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 2.66(\mathrm{hep}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ $(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-7.34(\mathrm{~m}, 12 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.92(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 23.6,24.0$, $31.1,119.2,119.3,123.9,124.4,124.5,125.0,126.0,126.6$ (broad), 126.7, 127.8, 127.9, $128.0,128.1,128.1,128.3,129.2,129.4,129.9,130.0,130.0,130.1,132.3,133.4,134.4$. Many aromatic peaks not observed due to complexity in the aromatic region; ${ }^{31} \mathrm{P}$ (202 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 110.7(\mathrm{~s}) . \quad$ HPLC Chiralpak OT (+) $98: 2$ Hexane:IPA $1 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{1}=$ 9.4 and $\mathrm{t}_{2}=10.4$.

Variable Temperature NMR Data: Syn precursor 14a was subjected to variable temperature NMR in order to calculate the barrier of rotation along the pseudo biaryl axis. Experimental results are described in figure 1 from 0 to 60 degrees centigrade with a coalescence temperature of 44 degrees centigrade. From this value a barrier of rotation
can be calculated from the equation: $\left(\Delta \mathrm{G}^{\ddagger}=a \mathrm{~T}\left[9.972+\log \left(\mathrm{T}_{\mathrm{c}} / \Delta v\right)\right]\right)$ Where $a=4.575$ $\times 10^{-3}$ for $\mathrm{kcal} / \mathrm{mol} ; \mathrm{T}_{\mathrm{c}}$ is the coalescence temperature in Kelvin; $\Delta v=$ peak separation in Hz ; and T being the temperature in Kelvin where Δv is measured.

From our data we determined $\Delta \mathrm{G}^{\ddagger}=12.55 \mathrm{kcal} / \mathrm{mol}$ from coalescence.

Experimental Stack

In order to increase the accuracy of the value of the rotation barrier we utilized SpinWorks 3 and DNMR3 in order to simulate the rates of rotation. These values can be observed in Figure 2. From this data we were able to use the Eyring equation to determine the value of the barrier of rotation at each data point.

The average value when each rate was imported in the Eyring Equation is:
$\Delta \mathrm{G}^{\ddagger}=14.40 \mathrm{kcal} / \mathrm{mol}$ from DNMR3 simulation.

The final piece of data was a DFT modeling study using b3ylp/6-31g* basis set.
$\Delta G^{\ddagger}=13.77 \mathrm{kcal} / \mathrm{mol}$ from modeling.

Simulated DNMR3 Stack

The barrier of rotation was then calculated for anti-precursor 18. Due to the large energy barrier VT NMR was not useful in determining this barrier, even at 130 degrees centigrade broadening was not observed for the two methoxy peaks. Due to this modeling was used to estimate this value.

No broadening observed at $130^{\circ} \mathrm{C}$

Stereochemical Model Data:

We were able to determine the absolute configuration of precursor 27 from single xray crystallography. From this data we were able to deduce the absolute configuration of indanone 5a. Once the absolute configuration was determined we could predict the stereochemical outcome from the general transformation outlined below, from general precursor 24 to general naphthalene 26. This prediction was tested from the absolute configuration of naphthalene $\mathbf{1 7}$ which matched the absolute configuration of the general prediction. Naphthalene 17 was generated from indanone 5a.

Absolute Configuration
General Precursor 24

27

Restricted Rotation

Absolute Configuration Indanone

5a

17

We were able to further test this stereochemical model from methyl indanone A. The absolute configuration was determined from crystallography. The absolute configuration of precursor 30a could be deduced due to the stereochemical control of the nucleophilic addition. Finally, the absolute configuration of naphthalene 13a was determined from literature reported polarimetry values (See manuscript). This configuration matched the general stereochemical prediction.

DFT Modeling Data, Basis Set $=$ b3ylp/6-31g*

| conformation | au | kcal/mol | $\mathrm{kcal} / \mathrm{mol}$ | zpe zpe kcal imaginary |
| :--- | :--- | :--- | :--- | :--- | :--- |
| min1(-42.55) | -1079.40767320 | -677338.57 | 0.00 | 0 |
| min2(114.71) | -1079.40490561 | -677336.83 | 1.74 | 0 |
| high_qst2(-132) | -1079.35251473 | -677303.96 | 34.61 | |
| high2_qst2 | | | | |
| | | 0.00 | $\# \# \# \# \# \# \#$ | |
| -180 | -1079.39216119 | -677328.84 | 9.73 | 0 |

-150	-1079.35973545	-677308.49	30.08	1
-135	-1079.36059091	-677309.02	29.54	0
-120	-1079.38409316	-677323.77	14.80	0
-105	-1079.39550250	-677330.93	7.64	0
-90	-1079.40230314	-677335.20	3.37	0
-75	-1079.40500569	-677336.90	1.67	0
-60	-1079.40717533	-677338.26	0.31	0
-45	-1079.40760420	-677338.53	0.04	0
-30	-1079.40645438	-677337.80	0.76	0
-15	-1079.40276379	-677335.49	3.08	0
0	-1079.39750097	-677332.19	6.38	0
15	-1079.38098072	-677321.82	16.75	0
30	-1079.36717758	-677313.16	25.41	0
45	-1079.35293272	-677304.22	34.35	0
60	-1079.37166877	-677315.98	22.59	0

75	-1079.38285771	-677323.00	15.57	0
90	-1079.39335268	-677329.58	8.99	0
105	-1079.39750819	-677332.19	6.38	0
120	-1079.39893401	-677333.09	5.48	0
135	-1079.40151975	-677334.71	3.86	0
150	-1079.39947789	-677333.43	5.14	0
165	-1079.39400098	-677329.99	8.58	0

conformation	au	$\mathrm{kcal} / \mathrm{mol}$	$\mathrm{kcal} / \mathrm{mol}$	zpe	zpe kcal
imagninary					
$\min 1(-137)$	-1118.70541381	-701998.27	0.00	0	
$\min 2(104)$	-1118.70315963	-701996.86	1.41	0	
high_qst2(151.9)	-1118.68346799	-701984.50	$\mathbf{1 3 . 7 7}$	1	

-180	-1118.68866751	-701987.77	10.51	1
-165	-1118.69887515	-701994.17	4.10	0
-150	-1118.70434052	-701997.60	0.67	0
-135	-1118.70536457	-701998.24	0.03	0
-120	-1118.70318661	-701996.88	1.40	1
-105	-1118.69901385	-701994.26	4.02	1
-90	-1118.70252966	-701996.47	1.81	1
-75	-1118.70424991	-701997.54	0.73	0
-60	-1118.70108834	-701995.56	2.71	0
-45	-1118.68868863	-701987.78	10.50	0
-30	-1118.67948711	-701982.01	16.27	1
-15	-1118.69072648	-701989.06	9.22	0
0	-1118.69804088	-701993.65	4.63	0
15	-1118.69650076	-701992.68	5.59	0
30	-1118.69903986	-701994.28	4.00	0
45	-1118.70588299	-701998.57	-0.29	0
60	-1118.69959303	-701994.62	3.65	0
75	-1118.69689546	-701992.93	5.35	1
90	-1118.70116783	-701995.61	2.66	0
105	-1118.70315345	-701996.86	1.42	0
120	-1118.70048829	-701995.18	3.09	0
135	-1118.69241393	-701990.12	8.16	0
150	-1118.68353359	-701984.54	13.73	1
165	-1118.68531250	-701985.66	12.61	1

Bridge to Chapter V

In chapter IV we discussed the successful synthesis of unprecedented sterically congested aryl naphthalenes containing t-butyl and adamantyl groups in the ortho positions. We also presented an efficient chiral transfer reaction to facilitate the synthesis of asymmetric aryl naphthalenes, and finally demonstrated the ability to perform our rearrangement with non-TMS-based precursors; expanding the scope of the method. In chapter V we will present work that has not yet been published, with a focus on mechanistic details and alternative routes to aryl naphthalenes from indanone. It is important to mention that this work is preliminary; however we feel that it does warrant discussion due to its critical nature in the understanding of our rearrangement-based method.

CHAPTER V

ARYL NAPHTHALENES THROUGH A REARRANGEMENT PROCESS FROM INDENE-BASED PRECURSORS

Results and Discussion

Our rearrangement-based synthesis has shown to be well suited for the generation of highly sterically encumbered and chiral aryl naphthalenes. However, we have yet to determine the mechanistic route of our rearrangement. Although the evidence is preliminary, we believe a discussion on the mechanism of the rearrangement is warranted to further facilitate increased substrate scope and applicability. As previously discussed (Chapter II), our rearrangement-based method proceeds through cyclopropyl carbinol 1, and once exposed to Lewis acid and heat yields the desired aryl naphthalene 2 (Scheme 1). In addition to the benzvalene mechanism discussed in Chapter II we believe the rearrangement could also occur through intermediate 3. Furthermore, through our studies

Scheme 1: (Top) traditional view of the mechanism of rearrangement.
(Bottom) Rearrangement via ring-opened 4.
we have consistently observed ring-opened species 4, possibly opening up another mechanistic route.

Intermediate 4 was first isolated from cold temperatures at $-78{ }^{\circ} \mathrm{C}$ with SnCl_{4}, however we have since observed and isolated this intermediate from a variety of reaction conditions. We have also observed this intermediate rearranging into desired aryl naphthalene 2 when in the presence of a Lewis acid and heat (Scheme 1).

As an illustrative example, Scheme 2 demonstrates the successful synthesis and isolation of the ring-opened intermediate $\mathbf{6}$, of which a low resolution crystal structure was obtained. Intermediate $\mathbf{6}$ rearranges in the presence of SnCl_{4} into aryl naphthalene 7 .

Scheme 2: Isolation and rearrangement of ring-opened intermediate 6.

Further study led us towards a more direct synthesis of derivatives $\mathbf{4}$ via the more available indenenyl anion. Specifically we focused on the synthesis of intermediate 10, which was easily obtained from the nucleophilic addition of phenyl indene $\mathbf{8}$ onto

Scheme 3: Isolation and rearrangement of alcohol intermediate $\mathbf{1 0}$.

1-trimethylsilylethanone 9. We were delighted to witness the rearrangement of the alcohol intermediate into phenyl naphthalene 11, although in only moderate yield.

While in its infancy, we believe that this indene-based synthesis, once optimized, could be a direct route to a host of aryl naphthalenes. Furthermore, the mechanism of rearrangement of our original method seems to be slightly more complicated than originally thought, involving multiple possibilities. Continued work on elucidating the mechanism of our original method, would be useful.

Experimental

Compound 6. To a dried flask was added precursor 5 ($387 \mathrm{mg}, 1.3$ mmol) and DCM (3 mL). $\mathrm{TMSCl}(1.3 \mathrm{mmol})$ was dissolved in DCM (3 mL) and the reaction was allowed to heat to $50^{\circ} \mathrm{C}$ for 2
 hours. The reaction was then quenched with water (10 mL) and extracted with ether (30 mL). The organic layer was dried over MgSO_{4} and purified via preparatory thin-layer chromatography. The desired compound was isolated ($142 \mathrm{mg}, 35 \%$ yield). Crystals suitable for diffraction were isolated for the non-methyl version of the above compound through slow evaporation of DCM.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-0.8(\mathrm{~s}, 9 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~d}, 1 \mathrm{H}), 4.20(\mathrm{~d}, 1 \mathrm{H}), 7.20-$ 7.58 ($\mathrm{m}, 9 \mathrm{H}$).

Compound 7. To a dried bomb was added $\mathbf{6}$ ($139 \mathrm{mg}, 0.45 \mathrm{mmol}$) and DCE (4 mL). $\mathrm{SnCl}_{4}(127 \mathrm{mg}, 0.49 \mathrm{mmol})$ was added dropwise
 and the reaction was allowed to stir overnight at $125^{\circ} \mathrm{C}$. The reaction was purified via preparatory thin-layer chromatography. The desired naphthalene 7 was isolated as an oil ($80 \mathrm{mg}, 88 \%$ yield).

Compound 10. To a dried flask was added compound 9 (0.79
$\mathrm{mmol})$ and THF (3 mL). The reaction was cooled to $-78^{\circ} \mathrm{C}$ and $\mathbf{8}$ (0.79 mmol) was added dropwise. The reaction was allowed to stir
 for 3 hours and then quenched with $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL}$, aqueous, saturated) followed by extraction with ethyl ether (20 mL). The organic layer was then dried over MgSO_{4}. The
crude mixture was then purified via preparatory thin-layer chromatography. The desired compound $\mathbf{1 0}$ was isolated as a mix of diastereomers ($70: 30,64 \mathrm{mg}, 28 \%$ yield).

Characterization data is not reported due to the complexity of the spectra from the mix of diastereomers.

Compound 11. To a dried flask was added 10 ($64 \mathrm{mg}, 0.22 \mathrm{mmol}$) and DCE (1.5 mL). $\mathrm{SnCl}_{4}(57 \mathrm{mg}, 0.22 \mathrm{mmol})$ was dissolved in $\mathrm{DCE}(1 \mathrm{~mL})$ and added dropwise at room temperature. The reaction mixture was
 warmed to $80^{\circ} \mathrm{C}$ and stirred overnight. The reaction was quenched by running the mixture through a plug of silica. The crude material was purified through preparatory thin-layer chromatography. The desired material 11 was isolated as an oil $(10.5 \mathrm{mg}, 26$ \% yield).

Concluding Remarks

In this dissertation we have outlined a novel and regioselective rearrangement-based method for the synthesis of asymmetric and sterically-encumbered tetra-ortho-substituted aryl naphthalenes. We have demonstrated that our method is capable of generating naphthalenes containing large sterically demanding groups around the ortho position, adding to the repertoire of current TOAN synthetic methods. We have been able to incorporate large groups, such as: $i \mathrm{Pr}, t \mathrm{Bu}$, and adamantyl groups among others, with excellent yields and selectivity. Our method has utilized TMS and non-TMS-based precursors to facilitate rearrangement. Furthermore, we have discussed our success regarding the asymmetric synthesis of TOANs through central to axial chirality transfer.

We have determined that the restricted rotation of the pseudo biaryl bond in the rearrangement precursor is of critical to importance. We have observed excellent transfer for highly constricted precursors, while observing mediocre transfer for those precursors lacking substantial pseudo-biaryl restriction. We also quantified these values through modeling and VT NMR studies. Additionally, we were able to introduce an effective stereochemical model for the prediction of absolute stereochemistry through crystal structures and polarimetry values. Finally we were able to demonstrate successful crosscoupling from the chiral biaryl triflate species in order to provide further functionalization for enantioenriched biaryls. We also were able to synthesize a biaryl phosphinite. In conclusion, we feel that our rearrangement-based synthesis is a useful contribution to the current modern synthetic routes towards tetra-ortho-substituted aryl naphthalenes.

APPENDIX

CRYSTAL STRUCTURE DATA

Crystallographic Data for $2 a$ (liu 15) Chapter II

Crystal data and structure refinement for liu15.
Identification code liu15
Empirical formula
C13 H16 O Si
Formula weight
216.35

Temperature
173(2) K
Wavelength
Crystal system
Space group
P2(1)/c
Unit cell dimensions

$$
\begin{array}{ll}
a=9.5789(12) \AA & \alpha=90^{\circ} . \\
b=12.6743(16) \AA & \beta=108.965(2)^{\circ} .
\end{array}
$$

	$\mathrm{c}=10.9538(14) \AA \mathrm{A} \quad \gamma=90^{\circ}$.
Volume	$1257.7(3) \AA^{3}$
Z	4
Density (calculated)	$1.143 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.160 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	464
Crystal size	$0.35 \times 0.24 \times 0.08 \mathrm{~mm} \mathrm{~m}^{3}$
Theta range for data collection	2.25 to 27.00°.
Index ranges	$-12<=\mathrm{h}<=12,-16<=\mathrm{k}<=16,-13<=1<=13$
Reflections collected	13877
Independent reflections	$2744[\mathrm{R}($ int $)=0.0262]$
Completeness to theta = 27.00	

$\mathrm{Si}(1)$	$667(1)$	$1771(1)$	$2196(1)$	$28(1)$
$\mathrm{O}(1)$	$2416(1)$	$-1250(1)$	$5365(1)$	$42(1)$
$\mathrm{C}(1)$	$1733(2)$	$1245(1)$	$3830(1)$	$26(1)$
$\mathrm{C}(2)$	$3408(2)$	$1215(1)$	$4257(1)$	$29(1)$
$\mathrm{C}(3)$	$2563(2)$	$196(1)$	$3958(1)$	$28(1)$
$\mathrm{C}(4)$	$2843(2)$	$-373(1)$	$5213(1)$	$29(1)$
$\mathrm{C}(5)$	$3804(1)$	$326(1)$	$6242(1)$	$28(1)$
$\mathrm{C}(6)$	$4163(1)$	$1224(1)$	$5680(1)$	$29(1)$
$\mathrm{C}(7)$	$5104(2)$	$1968(1)$	$6451(2)$	$37(1)$
$\mathrm{C}(8)$	$5669(2)$	$1795(1)$	$7770(2)$	$42(1)$
$\mathrm{C}(9)$	$5302(2)$	$897(1)$	$8321(2)$	$40(1)$
$\mathrm{C}(10)$	$4356(2)$	$146(1)$	$7563(1)$	$34(1)$
$\mathrm{C}(11)$	$773(2)$	$3233(1)$	$2267(2)$	$42(1)$
$\mathrm{C}(12)$	$-1285(2)$	$1335(2)$	$1752(2)$	$45(1)$
$\mathrm{C}(13)$	$1516(2)$	$1268(2)$	$1004(2)$	$48(1)$

Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for liu 15 .

$\mathrm{Si}(1)-\mathrm{C}(11)$	$1.8564(17)$
$\mathrm{Si}(1)-\mathrm{C}(12)$	$1.8564(17)$
$\mathrm{Si}(1)-\mathrm{C}(13)$	$1.8611(18)$
$\mathrm{Si}(1)-\mathrm{C}(1)$	$1.8719(14)$
$\mathrm{O}(1)-\mathrm{C}(4)$	$1.2141(17)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.5188(19)$

$\mathrm{C}(1)-\mathrm{C}(3)$	1.5328(18)
$\mathrm{C}(1)-\mathrm{H}(1)$	0.996(16)
$\mathrm{C}(2)-\mathrm{C}(6)$	1.490(2)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.5034(19)
$\mathrm{C}(2)-\mathrm{H}(2)$	0.959(18)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.4972(19)
$\mathrm{C}(3)-\mathrm{H}(3)$	0.930(16)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.4925(18)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.389(2)
$\mathrm{C}(5)-\mathrm{C}(10)$	1.388(2)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.386(2)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.386(3)
$\mathrm{C}(7)-\mathrm{H}(7)$	0.957(18)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.386(3)
$\mathrm{C}(8)-\mathrm{H}(8)$	0.943(19)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.389(2)
$\mathrm{C}(9)-\mathrm{H}(9)$	0.937(18)
$\mathrm{C}(10)-\mathrm{H}(10)$	0.990(18)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.92(3)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.93(2)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	0.96(2)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.88(2)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.98(3)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	0.99(3)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.96(3)

$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	$0.91(3)$
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	$0.96(2)$
$\mathrm{C}(11)-\mathrm{Si}(1)-\mathrm{C}(12)$	$110.19(9)$
$\mathrm{C}(11)-\mathrm{Si}(1)-\mathrm{C}(13)$	$109.93(9)$
$\mathrm{C}(12)-\mathrm{Si}(1)-\mathrm{C}(13)$	$110.32(10)$
$\mathrm{C}(11)-\mathrm{Si}(1)-\mathrm{C}(1)$	$108.04(7)$
$\mathrm{C}(12)-\mathrm{Si}(1)-\mathrm{C}(1)$	$109.54(8)$
$\mathrm{C}(13)-\mathrm{Si}(1)-\mathrm{C}(1)$	$108.78(8)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)$	$59.03(9)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Si}(1)$	$119.80(10)$
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{Si}(1)$	$120.13(10)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	$113.4(9)$
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{H}(1)$	$114.5(9)$
$\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{H}(1)$	$117.2(9)$
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(3)$	$106.15(12)$
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(1)$	$115.30(12)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(3)$	$60.95(9)$
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{H}(2)$	$120.9(10)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	$120.1(10)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	$118.4(10)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$106.88(11)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(1)$	$115.78(12)$
$\mathrm{C}(3)-\mathrm{C}(1)$	$60.02(9)$
C	

$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{H}(3)$	119.6(10)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	126.35(13)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	126.74(13)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	106.87(12)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	122.08(13)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	109.41(12)
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(4)$	128.45(13)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	119.56(14)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(2)$	129.85(14)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(2)$	110.59(12)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	118.92(15)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	119.5(11)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	121.5(11)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	121.07(15)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	119.7(11)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	119.3(11)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.70(15)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	120.0(11)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	119.2(11)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	117.67(15)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{H}(10)$	122.1(10)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	120.2(10)
$\mathrm{Si}(1)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	112.1(14)
$\mathrm{Si}(1)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	110.4(13)
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	106(2)

```
Si(1)-C(11)-H(11C) 109.0(12)
H(11A)-C(11)-H(11C) 109(2)
H(11B)-C(11)-H(11C) 110.5(18)
Si(1)-C(12)-H(12A) 112.1(15)
Si(1)-C(12)-H(12B) 108.1(15)
H(12A)-C(12)-H(12B) 104(2)
Si(1)-C(12)-H(12C) 114.1(14)
H(12A)-C(12)-H(12C) 108(2)
H(12B)-C(12)-H(12C) 111(2)
Si(1)-C(13)-H(13A) 111.3(17)
Si(1)-C(13)-H(13B) 108.8(16)
H(13A)-C(13)-H(13B) 109(2)
Si(1)-C(13)-H(13C) 111.4(13)
H(13A)-C(13)-H(13C) 107(2)
H(13B)-C(13)-H(13C) 109.0(19)
```

Symmetry transformations used to generate equivalent atoms:

Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for liu15. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$
U^{11}
U^{22}
U^{33}
U23
U^{13}
U12

$\mathrm{Si}(1)$	$28(1)$	$29(1)$	$24(1)$	$4(1)$	$5(1)$	$1(1)$
$\mathrm{O}(1)$	$49(1)$	$28(1)$	$38(1)$	$6(1)$	$-2(1)$	$-7(1)$
$\mathrm{C}(1)$	$25(1)$	$28(1)$	$25(1)$	$3(1)$	$7(1)$	$3(1)$
$\mathrm{C}(2)$	$26(1)$	$28(1)$	$32(1)$	$3(1)$	$10(1)$	$2(1)$
$\mathrm{C}(3)$	$30(1)$	$26(1)$	$26(1)$	$-1(1)$	$5(1)$	$4(1)$
$\mathrm{C}(4)$	$27(1)$	$25(1)$	$31(1)$	$1(1)$	$3(1)$	$3(1)$
$\mathrm{C}(5)$	$23(1)$	$26(1)$	$30(1)$	$-2(1)$	$4(1)$	$4(1)$
$\mathrm{C}(6)$	$23(1)$	$27(1)$	$34(1)$	$-1(1)$	$7(1)$	$4(1)$
$\mathrm{C}(7)$	$31(1)$	$29(1)$	$48(1)$	$-3(1)$	$7(1)$	$-3(1)$
$\mathrm{C}(8)$	$32(1)$	$39(1)$	$47(1)$	$-15(1)$	$1(1)$	$-2(1)$
$\mathrm{C}(9)$	$33(1)$	$49(1)$	$29(1)$	$-7(1)$	$0(1)$	$5(1)$
$\mathrm{C}(10)$	$29(1)$	$37(1)$	$30(1)$	$1(1)$	$4(1)$	$4(1)$
$\mathrm{C}(11)$	$49(1)$	$34(1)$	$36(1)$	$7(1)$	$5(1)$	$0(1)$
$\mathrm{C}(12)$	$32(1)$	$49(1)$	$46(1)$	$8(1)$	$1(1)$	$-4(1)$
$\mathrm{C}(13)$	$59(1)$	$56(1)$	$31(1)$	$4(1)$	$18(1)$	$7(1)$

Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$
for liu15.

	x	y	z	$U(e q)$
$H(1)$	$1337(18)$	$1397(12)$	$4548(16)$	$32(4)$
$H(2)$	$3891(18)$	$1483(13)$	$3680(16)$	$34(4)$
$H(3)$	$2477(17)$	$-202(13)$	$3224(16)$	$33(4)$

$\mathrm{H}(7)$	$5384(19)$	$2572(14)$	$6059(17)$	$41(5)$
$\mathrm{H}(8)$	$6300(20)$	$2303(14)$	$8300(18)$	$44(5)$
$\mathrm{H}(9)$	$5743(19)$	$770(13)$	$9207(18)$	$42(5)$
$\mathrm{H}(10)$	$4111(18)$	$-498(14)$	$7963(16)$	$38(4)$
$\mathrm{H}(11 \mathrm{~A})$	$1730(30)$	$3470(18)$	$2520(20)$	$76(7)$
$\mathrm{H}(11 B)$	$320(20)$	$3521(16)$	$1450(20)$	$62(6)$
$\mathrm{H}(11 \mathrm{C})$	$310(20)$	$3481(16)$	$2860(20)$	$55(6)$
$\mathrm{H}(12 \mathrm{~A})$	$-1860(30)$	$1667(17)$	$1060(20)$	$70(7)$
$\mathrm{H}(12 \mathrm{~B})$	$-1670(30)$	$1557(19)$	$2440(30)$	$86(8)$
$\mathrm{H}(12 \mathrm{C})$	$-1430(30)$	$570(20)$	$1590(20)$	$81(7)$
$\mathrm{H}(13 \mathrm{~A})$	$2540(30)$	$1460(20)$	$1240(30)$	$98(9)$
$\mathrm{H}(13 B)$	$1030(30)$	$1551(18)$	$220(30)$	$79(7)$
$\mathrm{H}(13 \mathrm{C})$	$1460(20)$	$511(18)$	$940(20)$	$62(6)$

Crystal data and structure refinement for liu30.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
liu30
C23 H24 O Si
344.51

173(2) K
$0.71073 \AA$
Monoclinic
P2(1)/c

$$
\begin{array}{ll}
a=13.397(2) \AA & \alpha=90^{\circ} . \\
b=8.4240(14) \AA & \beta=104.160(3)^{\circ} .
\end{array}
$$

	$\mathrm{c}=17.434(3) \AA{ }^{\text {A }}$ (
Volume	1907.8(5) \AA^{3}
Z	4
Density (calculated)	$1.199 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.130 \mathrm{~mm}^{-1}$
$F(000)$	736
Crystal size	$0.14 \times 0.08 \times 0.06 \mathrm{~mm}^{3}$
Theta range for data collection	1.57 to 25.00°.
Index ranges	$-15<=\mathrm{h}<=15,-10<=\mathrm{k}<=10,-20<=1<=20$
Reflections collected	17217
Independent reflections	$3347[\mathrm{R}(\mathrm{int})=0.1062]$
Completeness to theta $=25.00^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9922 and 0.9820
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3347 / 0 / 286
Goodness-of-fit on F^{2}	0.994
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0558, \mathrm{wR} 2=0.0967$
R indices (all data)	$\mathrm{R} 1=0.1119, \mathrm{wR} 2=0.1182$
Largest diff. peak and hole	0.187 and -0.220 e. \AA^{-3}

Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for liu30. $U(e q)$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	x	y	Z	U(eq)
Si(1)	4534(1)	6802(1)	1088(1)	51(1)
$\mathrm{O}(1)$	1300(2)	8516(2)	477(1)	40(1)
C(1)	3340(3)	7290(4)	338(2)	41(1)
C(2)	3309(3)	8134(4)	-443(2)	39(1)
C(3)	2972(2)	8985(4)	204(2)	36(1)
C(4)	1815(2)	9307(3)	-62(2)	32(1)
C(5)	1514(2)	8499(3)	-868(2)	33(1)
C(6)	2363(2)	7869(3)	-1086(2)	36(1)
C(7)	2243(3)	7078(4)	-1801(2)	46(1)
C(8)	1269(3)	6925(4)	-2296(2)	47(1)
C(9)	425(3)	7519(4)	-2073(2)	45(1)
C(10)	537(3)	8304(4)	-1359(2)	38(1)
$\mathrm{C}(11)$	1589(2)	11085(3)	-72(2)	33(1)
$\mathrm{C}(12)$	1206(2)	11876(4)	-773(2)	40(1)
C(13)	995(3)	13512(4)	-796(2)	45(1)
C(14)	1164(2)	14353(4)	-119(2)	44(1)
C(15)	1573(2)	13627(3)	627(2)	37(1)
C(16)	1755(3)	14515(4)	1334(2)	46(1)
C(17)	2151(3)	13819(4)	2042(2)	51(1)
C(18)	2384(3)	12192(4)	2080(2)	46(1)
C(19)	2209(2)	11292(4)	1409(2)	40(1)
C(20)	1795(2)	11976(3)	653(2)	34(1)
C(21)	4345(3)	7260(5)	2079(2)	79(1)

$\mathrm{C}(22)$	$4780(3)$	$4646(4)$	$1047(2)$	$82(1)$
$\mathrm{C}(23)$	$5612(3)$	$7997(5)$	$903(2)$	$104(2)$

Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for liu30.

$\mathrm{Si}(1)-\mathrm{C}(21)$	$1.847(3)$
$\mathrm{Si}(1)-\mathrm{C}(1)$	$1.848(3)$
$\mathrm{Si}(1)-\mathrm{C}(22)$	$1.850(4)$
$\mathrm{Si}(1)-\mathrm{C}(23)$	$1.852(4)$
$\mathrm{O}(1)-\mathrm{C}(4)$	$1.455(3)$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O})$	$0.77(4)$
$\mathrm{C}(1)-\mathrm{C}(3)$	$1.510(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.527(4)$
$\mathrm{C}(1)-\mathrm{H}(1)$	$0.91(2)$
$\mathrm{C}(2)-\mathrm{C}(6)$	$1.490(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.496(4)$
$\mathrm{C}(2)-\mathrm{H}(2)$	$0.98(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.530(4)$
$\mathrm{C}(3)-\mathrm{H}(3)$	$0.98(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.525(4)$
$\mathrm{C}(4)-\mathrm{C}(11)$	$1.527(4)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.387(4)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.389(4)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.387(4)$

$\mathrm{C}(7)-\mathrm{C}(8)$	1.383(4)
$\mathrm{C}(7)-\mathrm{H}(7)$	0.99(3)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.377(5)
$\mathrm{C}(8)-\mathrm{H}(8)$	0.99(3)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.385(4)
$\mathrm{C}(9)-\mathrm{H}(9)$	0.89(3)
$\mathrm{C}(10)-\mathrm{H}(10)$	0.94(3)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.376(4)
$\mathrm{C}(11)-\mathrm{C}(20)$	1.437(4)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.405(4)
$\mathrm{C}(12)-\mathrm{H}(12)$	0.93(2)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.347(4)
$\mathrm{C}(13)-\mathrm{H}(13)$	0.93(2)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.419(4)
$\mathrm{C}(14)-\mathrm{H}(14)$	0.94(3)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.411(4)
$\mathrm{C}(15)-\mathrm{C}(20)$	1.422(4)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.353(4)
$\mathrm{C}(16)-\mathrm{H}(16)$	0.94(3)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.404(4)
$\mathrm{C}(17)-\mathrm{H}(17)$	0.90(3)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.365(4)
$\mathrm{C}(18)-\mathrm{H}(18)$	0.96(3)
C(19)-C(20)	1.421(4)
$\mathrm{C}(19)-\mathrm{H}(19)$	0.93(2)

$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	0.9800
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9800
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9800
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	0.9800
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9800
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9800
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	0.9800
$\mathrm{C}(21)-\mathrm{Si}(1)-\mathrm{C}(1)$	108.78(16)
$\mathrm{C}(21)-\mathrm{Si}(1)-\mathrm{C}(22)$	107.93(17)
$\mathrm{C}(1)-\mathrm{Si}(1)-\mathrm{C}(22)$	108.84(16)
$\mathrm{C}(21)-\mathrm{Si}(1)-\mathrm{C}(23)$	109.9(2)
$\mathrm{C}(1)-\mathrm{Si}(1)-\mathrm{C}(23)$	109.40(16)
$\mathrm{C}(22)-\mathrm{Si}(1)-\mathrm{C}(23)$	111.9(2)
$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O})$	112(3)
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(2)$	59.01(19)
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{Si}(1)$	120.9(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Si}(1)$	124.4(2)
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{H}(1)$	111.9(16)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	112.3(15)
$\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{H}(1)$	116.0(15)
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(3)$	106.3(3)
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(1)$	115.7(3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	59.93(19)

$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{H}(2)$	121.8(16)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	119.8(16)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	117.3(16)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(1)$	61.1(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	109.1(2)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	118.9(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	120.6(15)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{H}(3)$	116.9(15)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	117.7(15)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	109.3(2)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(11)$	109.4(2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)$	114.8(2)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	109.2(2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	102.7(2)
$\mathrm{C}(11)-\mathrm{C}(4)-\mathrm{C}(3)$	111.2(2)
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)$	119.9(3)
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(4)$	128.2(3)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	111.9(3)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	120.4(3)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(2)$	129.7(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(2)$	109.9(3)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	119.3(3)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	121.7(16)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	118.9(16)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	120.3(3)

$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	122.5(16)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	117.2(16)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.8(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	120.3(19)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	118.8(19)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$	119.3(3)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	123.5(17)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{H}(10)$	117.2(17)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(20)$	118.5(3)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(4)$	121.0(3)
$\mathrm{C}(20)-\mathrm{C}(11)-\mathrm{C}(4)$	120.4(2)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	121.9(3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	118.3(15)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	119.8(15)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	120.1(3)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	123.1(15)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	116.7(15)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	121.4(3)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	120.7(15)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	118.0(15)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	121.2(3)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(20)$	120.1(3)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(20)$	118.8(3)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	120.8(3)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	123.3(17)

$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	115.7(17)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	120.0(3)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	123.2(18)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	116.9(18)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	120.8(3)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	119.2(18)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	120.0(18)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	121.1(3)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$	118.6(15)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19)$	120.3(15)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(15)$	117.2(3)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(11)$	123.5(3)
$\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(11)$	119.3(3)
$\mathrm{Si}(1)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{H}(22 \mathrm{~B})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5

```
Si(1)-C(23)-H(23A) 109.5
Si(1)-C(23)-H(23B) 109.5
H(23A)-C(23)-H(23B) 109.5
Si(1)-C(23)-H(23C) 109.5
H(23A)-C(23)-H(23C) 109.5
H(23B)-C(23)-H(23C) 109.5
```

Symmetry transformations used to generate equivalent atoms:

Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for liu30. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{Si}(1)$	$49(1)$	$58(1)$	$43(1)$	$9(1)$	$3(1)$	$14(1)$
$\mathrm{O}(1)$	$48(2)$	$35(1)$	$35(1)$	$7(1)$	$9(1)$	$-1(1)$
$\mathrm{C}(1)$	$43(2)$	$31(2)$	$47(2)$	$5(2)$	$4(2)$	$0(2)$
$\mathrm{C}(2)$	$39(2)$	$35(2)$	$44(2)$	$5(2)$	$9(2)$	$4(2)$
$\mathrm{C}(3)$	$38(2)$	$27(2)$	$39(2)$	$0(1)$	$1(2)$	$2(2)$
$\mathrm{C}(4)$	$37(2)$	$26(2)$	$33(2)$	$4(1)$	$7(1)$	$1(1)$
$\mathrm{C}(5)$	$42(2)$	$26(2)$	$29(2)$	$6(1)$	$6(1)$	$0(1)$
$\mathrm{C}(6)$	$43(2)$	$27(2)$	$38(2)$	$4(1)$	$9(2)$	$1(2)$
$\mathrm{C}(7)$	$55(2)$	$41(2)$	$43(2)$	$2(2)$	$14(2)$	$10(2)$
$\mathrm{C}(8)$	$67(3)$	$40(2)$	$34(2)$	$-3(2)$	$12(2)$	$1(2)$
				159		

$\mathrm{C}(9)$	$54(3)$	$44(2)$	$33(2)$	$0(2)$	$1(2)$	$-7(2)$
$\mathrm{C}(10)$	$41(2)$	$36(2)$	$37(2)$	$2(2)$	$7(2)$	$2(2)$
$\mathrm{C}(11)$	$35(2)$	$26(2)$	$38(2)$	$4(1)$	$7(1)$	$1(1)$
$\mathrm{C}(12)$	$51(2)$	$31(2)$	$34(2)$	$0(2)$	$6(2)$	$2(2)$
$\mathrm{C}(13)$	$61(2)$	$35(2)$	$36(2)$	$10(2)$	$4(2)$	$0(2)$
$\mathrm{C}(14)$	$48(2)$	$26(2)$	$58(2)$	$6(2)$	$12(2)$	$5(2)$
$\mathrm{C}(15)$	$42(2)$	$24(2)$	$46(2)$	$1(2)$	$10(2)$	$-2(1)$
$\mathrm{C}(16)$	$56(2)$	$30(2)$	$52(2)$	$-4(2)$	$11(2)$	$1(2)$
$\mathrm{C}(17)$	$65(3)$	$42(2)$	$42(2)$	$-13(2)$	$6(2)$	$-9(2)$
$\mathrm{C}(18)$	$57(2)$	$41(2)$	$37(2)$	$1(2)$	$5(2)$	$-6(2)$
$\mathrm{C}(19)$	$48(2)$	$30(2)$	$41(2)$	$1(2)$	$7(2)$	$2(2)$
$\mathrm{C}(20)$	$33(2)$	$32(2)$	$37(2)$	$2(1)$	$6(1)$	$1(1)$
$\mathrm{C}(21)$	$76(3)$	$101(3)$	$52(2)$	$-17(2)$	$-2(2)$	$17(2)$
$\mathrm{C}(22)$	$112(4)$	$81(3)$	$58(3)$	$26(2)$	$32(2)$	$58(3)$
$\mathrm{C}(23)$	$56(3)$	$143(4)$	$95(3)$	$50(3)$	$-18(2)$	$-24(3)$

Hydrogen coordinates ($\mathrm{x} \mathrm{10} 0^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for liu30.

	x	y	z	$U(e q)$
$H(21 A)$	4226	8402	2119	119
$H(21 B)$	4960	6949	2483	119
$H(21 C)$	3747	6673	2160	119

$\mathrm{H}(22 \mathrm{~A})$	4196	4055	1150	123
$\mathrm{H}(22 \mathrm{~B})$	5407	4372	1449	123
$\mathrm{H}(22 \mathrm{C})$	4868	4368	522	123
$\mathrm{H}(23 \mathrm{~A})$	5455	9129	933	156
$\mathrm{H}(23 \mathrm{~B})$	5706	7751	376	156
$\mathrm{H}(23 \mathrm{C})$	6244	7745	1303	156
$\mathrm{H}(1 \mathrm{O})$	$710(30)$	$8560(50)$	$330(20)$	$96(18)$
$\mathrm{H}(1)$	$2808(19)$	$6600(30)$	$298(13)$	$23(7)$
$\mathrm{H}(2)$	$3970(20)$	$8400(30)$	$-557(15)$	$45(9)$
$\mathrm{H}(3)$	$3409(19)$	$9810(30)$	$517(14)$	$34(8)$
$\mathrm{H}(7)$	$2860(20)$	$6670(30)$	$-1950(15)$	$40(8)$
$\mathrm{H}(8)$	$1210(20)$	$6370(30)$	$-2808(17)$	$52(9)$
$\mathrm{H}(9)$	$-200(20)$	$7360(30)$	$-2374(17)$	$45(10)$
$\mathrm{H}(10)$	$-20(20)$	$8730(30)$	$-1183(15)$	$44(9)$
$\mathrm{H}(12)$	$1090(18)$	$11300(30)$	$-1242(14)$	$29(8)$
$\mathrm{H}(13)$	$770(18)$	$13970(30)$	$-1293(14)$	$26(7)$
$\mathrm{H}(14)$	$994(19)$	$15440(30)$	$-127(14)$	$36(8)$
$\mathrm{H}(16)$	$2670(20)$	$11700(30)$	$2579(17)$	$60(10)$
$\mathrm{H}(17)$	$2381(18)$	$10220(30)$	$1454(14)$	$28(7)$
$\mathrm{H}(18)$		$15580(40)$	$1278(16)$	$51(9)$
$\mathrm{H}(19)$	$25350(30)$	$2504(16)$	$46(9)$	

Torsion angles [${ }^{\circ}$] for liu30.

$\mathrm{C}(22)-\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{C}(3)$	-176.8(3)
$\mathrm{C}(23)-\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{C}(3)$	-54.2(3)
$\mathrm{C}(21)-\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	137.3(3)
$\mathrm{C}(22)-\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	-105.3(3)
$\mathrm{C}(23)-\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	17.3(3)
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	-94.7(3)
$\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	157.0(2)
$\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-108.4(3)
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(1)$	110.6(3)
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-2.4(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-113.1(3)
$\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	114.1(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	97.1(3)
$\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	-148.9(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	119.3(3)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	52.5(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	3.4(3)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-63.5(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)$	-119.8(3)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)$	173.3(3)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	58.7(4)
$\mathrm{C}(11)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	-64.7(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	174.5(3)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-119.1(3)
$\mathrm{C}(11)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	117.5(3)

$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-3.3(3)
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	1.6(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	179.6(3)
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(2)$	-176.1(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(2)$	1.9(3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	-177.1(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	-113.1(4)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	0.3(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	64.3(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	0.1(4)
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	177.3(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-1.6(5)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	1.3(5)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$	0.4(5)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	-1.9(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	-179.5(3)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)$	-127.4(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)$	-4.1(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)$	111.9(3)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(20)$	54.1(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(20)$	177.4(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(20)$	-66.6(3)
$\mathrm{C}(20)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-1.4(5)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-179.9(3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	0.0(5)

$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$1.0(5)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$179.6(3)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(20)$	$-0.6(5)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$-179.5(3)$
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$0.7(5)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$-0.2(5)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$-0.5(5)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$0.6(5)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(15)$	$-0.1(5)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(11)$	$-179.6(3)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19)$	$-0.5(4)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19)$	$179.6(3)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(11)$	$179.0(3)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(11)$	$-0.9(4)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(20)-\mathrm{C}(19)$	$-178.7(3)$
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(20)-\mathrm{C}(19)$	$-0.2(4)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(20)-\mathrm{C}(15)$	$1.8(4)$
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(20)-\mathrm{C}(15)$	$-179.7(3)$

Crystal data and structure refinement for liu44 (2c).
Identification code liu44
Empirical formula C 22 H 28 O 3 Si
Formula weight 368.53
Temperature 173(2) K
Wavelength $0.71073 \AA$
Crystal system Orthorhombic
Space group Pna2(1)
Unit cell dimensions $a=13.5758(18) \AA \quad \alpha=90^{\circ}$.

$$
\begin{array}{ll}
\mathrm{b}=8.8613(12) \AA & \beta=90^{\circ} . \\
\mathrm{c}=34.097(5) \AA & \gamma=90^{\circ} .
\end{array}
$$

Volume $\quad 4101.8(10) \AA 3$

Z 8
Density (calculated) $1.194 \mathrm{Mg} / \mathrm{m} 3$
Absorption coefficient $\quad 0.132 \mathrm{~mm}-1$
$\mathrm{F}(000) 1584$
Crystal size $\quad 0.27 \times 0.24 \times 0.18 \mathrm{~mm} 3$
Theta range for data collection $\quad 1.19$ to 27.00°.
Index ranges $-13<=\mathrm{h}<=17,-11<=\mathrm{k}<=10,-43<=\mathrm{l}<=43$
Reflections collected 25158
Independent reflections $\quad 8900[R($ int $)=0.0328]$
Completeness to theta $=27.00^{\circ} \quad 100.0 \%$
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9766 and 0.9652
Refinement method Full-matrix least-squares on F2
Data / restraints / parameters 8900/1/621
Goodness-of-fit on F2 1.058
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})] \mathrm{R} 1=0.0431$, wR2 $=0.1007$
R indices (all data) $\quad \mathrm{R} 1=0.0535, \mathrm{wR} 2=0.1114$
Absolute structure parameter 0.00 (11)
Largest diff. peak and hole 0.382 and - 0.235 e. \AA - -3
Atomic coordinates (x 104) and equivalent isotropic displacement parameters ($\AA 2 \times 103$)
for liu44. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

y		z	$\mathrm{U}(\mathrm{eq})$	
$\mathrm{Si}(1)$	$273(1)$	$2337(1)$	$161(1)$	$34(1)$
$\mathrm{O}(1)$	$889(1)$	$4564(2)$	$-920(1)$	$31(1)$
$\mathrm{O}(2)$	$1360(1)$	$6857(2)$	$-1324(1)$	$39(1)$

$\mathrm{O}(3)$	$-1641(1)$	$6987(2)$	$-628(1)$	$34(1)$
$\mathrm{C}(1)$	$-161(2)$	$3179(3$	$-310(1)$	$25(1)$
$\mathrm{C}(2)$	$-1176(2)$	$3900(3)$	$-380(1)$	$25(1)$
$\mathrm{C}(3)$	$-258(2)$	$4845(2)$	$-398(1)$	$23(1)$
$\mathrm{C}(4)$	$-54(2)$	$5214(2)$	$-838(1)$	$22(1)$
$\mathrm{C}(5)$	$-870(2)$	$4359(2)$	$-1050(1)$	$22(1)$
$\mathrm{C}(6)$	$-1534(2)$	$3688(2)$	$-789(1)$	$23(1)$
$\mathrm{C}(7)$	$-2347(2)$	$2909(3)$	$-927(1)$	$30(1)$
$\mathrm{C}(8)$	$-2472(2)$	$2765(3)$	$-1330(1)$	$32(1)$
$\mathrm{C}(9)$	$-1797(2)$	$3381(3)$	$-1589(1)$	$32(1)$
$\mathrm{C}(10)$	$-995(2)$	$4196(3)$	$-1451(1)$	$27(1)$
$\mathrm{C}(11)$	$-104(2)$	$6917(2)$	$-941(1)$	$23(1)$
$\mathrm{C}(12)$	$599(2)$	$7687(3)$	$-1168(1)$	$25(1)$
$\mathrm{C}(13)$	$520(2)$	$9240(3)$	$-1243(1)$	$33(1)$
$\mathrm{C}(14)$	$-274(2)$	$10035(3)$	$-1106(1)$	$39(1)$
$\mathrm{C}(15)$	$-1015(2)$	$9308(3)$	$-899(1)$	$36(1)$
$\mathrm{C}(16)$	$-925(2)$	$7774(3)$	$-823(1)$	$27(1)$
$\mathrm{C}(17)$	$23(2)$	$5984(3)$	$-90(1)$	$28(1)$
$\mathrm{C}(18)$	$2148(2)$	$7593(4)$	$-1530(1)$	$49(1)$
$\mathrm{C}(19)$	$-2405(2)$	$7804(4)$	$-436(1)$	$40(1)$
$\mathrm{C}(20)$	$-558(3)$	$2742(5)$	$583(1)$	$64(1)$
$\mathrm{C}(21)$	$324(4)$	$249(4)$	$79(1)$	$85(1)$
$\mathrm{C}(22)$	$1537(2)$	$3009(4)$	$280(1)$	$46(1)$
$\mathrm{Si}\left(1^{\prime}\right)$	$-7792(1)$	$7580(1)$	$-8877(1)$	$34(1)$
$-8245(1)$	$5372(2)$	$-7769(1)$	$30(1)$	
	$3048(2)$	$-7367(1)$	$39(1)$	

C(1')	-7311(2)	6744(2)	-8416(1)	24(1)
C(2^{\prime})	-6279(2)	6031(2)	-8369(1)	23(1)
C(3^{\prime})	-7180(2)	5070(2)	-8323(1)	22(1)
C(4')	-7319(2)	4713(2)	-7878(1)	21(1)
C(5')	-6463(2)	5587(2)	-7690(1)	20(1)
C(6')	-5858(2)	6264(2)	-7971(1)	23(1)
C(7')	-5028(2)	7070(3)	-7854(1)	26(1)
C(8')	-4835(2)	7214(3)	-7452(1)	32(1)
C(9')	-5457(2)	6582(3)	-7176(1)	31(1)
C(10')	-6276(2)	5756(3)	-7294(1)	26(1)
C(11')	-7256(2)	3017(2)	-7772(1)	24(1)
C(12')	-7924(2)	2229(3)	-7536(1)	29(1)
C(13')	-7833(2)	695(3)	-7460(1)	39(1)
C(14')	-7030(2)	-77(3)	-7608(1)	44(1)
C(15')	-6331(2)	645(3)	-7824(1)	39(1)
C(16')	-6435(2)	2180(3)	-7903(1)	28(1)
C(17')	-7497(2)	3928(3)	-8626(1)	29(1)
C(18')	-9499(2)	2267(4)	-7195(1)	45(1)
C(19')	-4961(2)	2189(4)	-8290(1)	42(1)
C(20')	-6965(3)	7244(5)	-9301(1)	62(1)
C(21')	-7881(4)	9644(4)	-8788(1)	83(1)
C(22')	-9051(2)	6852(4)	-8993(1)	46(1)

Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for liu44.
$\operatorname{Si}(1)-\mathrm{C}(22) \quad 1.862(3)$
Si(1)-C(20) 1.862(4)
$\operatorname{Si}(1)-\mathrm{C}(1) \quad 1.868(2)$

$\mathrm{Si}(1)-\mathrm{C}(21)$	$1.873(3)$
$\mathrm{O}(1)-\mathrm{C}(4)$	$1.431(3)$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O})$	$0.75(3)$
$\mathrm{O}(2)-\mathrm{C}(12)$	$1.376(3)$
$\mathrm{O}(2)-\mathrm{C}(18)$	$1.436(3)$
$\mathrm{O}(3)-\mathrm{C}(16)$	$1.369(3)$
$\mathrm{O}(3)-\mathrm{C}(19)$	$1.425(3)$
$\mathrm{C}(1)-\mathrm{C}(3)$	$1.513(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.538(3)$
$\mathrm{C}(1)-\mathrm{H}(1)$	$0.93(3)$
$\mathrm{C}(2)-\mathrm{C}(6)$	$1.488(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.503(3)$
$\mathrm{C}(2)-\mathrm{H}(2)$	$0.99(2)$
$\mathrm{C}(3)-\mathrm{C}(17)$	$1.506(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.559(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.525(3)$
$\mathrm{C}(4)-\mathrm{C}(11)$	$1.550(3)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.385(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.400(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.385(3)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.389(4)$
$\mathrm{C}(7)-\mathrm{H}(7)$	$1.05(3)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.386(4)$
$\mathrm{C}(8)-\mathrm{H}(8)$	$0.89(3)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.390(4)$
$\mathrm{C}(9)-\mathrm{H}(9)$	$0.99(3)$
$\mathrm{C}(10)$	$0.93(3)$
C	

$\mathrm{C}(11)-\mathrm{C}(12)$	$1.405(3)$
$\mathrm{C}(11)-\mathrm{C}(16)$	$1.408(3)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.405(3)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.371(4)$
$\mathrm{C}(13)-\mathrm{H}(13)$	$0.94(3)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.386(4)$
$\mathrm{C}(14)-\mathrm{H}(14)$	$0.94(3)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.390(3)$
$\mathrm{C}(15)-\mathrm{H}(15)$	$0.92(3)$
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	$0.95(3)$
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	$0.95(3)$
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	$0.95(4)$
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	$1.02(4)$
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	$0.98(3)$
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	$1.00(4)$
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	$1.03(3)$
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	$1.04(3)$
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	$1.00(3)$
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9800
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9800
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	0.9800
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9800
C	0.9800
C	0.900

$\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(20^{\prime}\right)$	1.854(4)
$\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	1.857(2)
$\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)$	1.858(3)
$\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(22^{\prime}\right)$	1.869(3)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	1.435(2)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{H}\left(1 \mathrm{O}^{\prime}\right)$	0.82(3)
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	1.392(3)
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)$	1.425(3)
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)$	1.358(3)
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)$	1.418(3)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	1.527(3)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	1.545(3)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime}\right)$	0.99(3)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	1.487(3)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	1.499(3)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{H}\left(2^{\prime}\right)$	0.99(2)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)$	1.507(3)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	1.561(3)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	1.537(3)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	1.548(3)
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	1.381(3)
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	1.397(3)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	1.393(3)
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	1.403(4)
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{H}\left(7^{\prime}\right)$	0.93(3)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	1.383(4)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{H}\left(8^{\prime}\right)$	0.97(2)

C(9')-C(10')	1.391(3)
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{H}\left(9^{\prime}\right)$	0.95(3)
$\mathrm{C}\left(10{ }^{\prime}\right)-\mathrm{H}\left(10^{\prime}\right)$	0.95(2)
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	1.400 (3)
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)$	1.412(3)
$\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)$	1.389(4)
$\mathrm{C}\left(13{ }^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	1.382(4)
$\mathrm{C}(13)$)-H(13')	0.93(3)
$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	1.361(4)
$\mathrm{C}\left(14^{\prime}\right)-\mathrm{H}\left(14^{\prime}\right)$	0.96(3)
$\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)$	1.394(4)
$\mathrm{C}\left(15^{\prime}\right)-\mathrm{H}\left(15^{\prime}\right)$	0.91(3)
$\mathrm{C}\left(17{ }^{\prime}\right)-\mathrm{H}(17 \mathrm{D})$	1.01(3)
$\mathrm{C}\left(17{ }^{\prime}\right)-\mathrm{H}(17 \mathrm{E})$	0.93(3)
$\mathrm{C}\left(17{ }^{\prime}\right)-\mathrm{H}(17 \mathrm{~F})$	0.97(3)
$\mathrm{C}\left(18{ }^{\prime}\right)-\mathrm{H}(18 \mathrm{D})$	1.04(4)
$\mathrm{C}\left(18{ }^{\prime}\right)-\mathrm{H}(18 \mathrm{E})$	0.96(4)
$\mathrm{C}\left(18{ }^{\prime}\right)-\mathrm{H}(18 \mathrm{~F})$	0.93(3)
$\mathrm{C}(19$ ')-H(19D)	0.96(3)
$\mathrm{C}(19$ ')-H(19E)	1.01(4)
$\mathrm{C}(19$ ')-H(19F)	0.98(4)
$\mathrm{C}\left(20{ }^{\prime}\right)-\mathrm{H}(20 \mathrm{D})$	0.9800
$\mathrm{C}\left(20{ }^{\prime}\right)-\mathrm{H}(20 \mathrm{E})$	0.9800
$\mathrm{C}\left(20{ }^{\prime}\right)-\mathrm{H}(20 \mathrm{~F})$	0.9800
$\mathrm{C}(21)$-H(21D)	0.9800
$\mathrm{C}(21$ ')-H(21E)	0.9800
$\mathrm{C}(21$)-H(21F)	0.9800

$\mathrm{C}\left(22^{\prime}\right)-\mathrm{H}(22 \mathrm{D})$	0.9800
$\mathrm{C}\left(22^{\prime}\right)-\mathrm{H}(22 \mathrm{E})$	0.9800
$\mathrm{C}\left(22^{\prime}\right)-\mathrm{H}(22 \mathrm{~F})$	0.9800
$\mathrm{C}(22)-\mathrm{Si}(1)-\mathrm{C}(20)$	$109.26(16)$
$\mathrm{C}(22)-\mathrm{Si}(1)-\mathrm{C}(1)$	$110.47(13)$
$\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{C}(1)$	$113.35(15)$
$\mathrm{C}(22)-\mathrm{Si}(1)-\mathrm{C}(21)$	$108.32(18)$
$\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{C}(21)$	$109.2(2)$
$\mathrm{C}(1)-\mathrm{Si}(1)-\mathrm{C}(21)$	$106.09(14)$
$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O})$	$106(2)$
$\mathrm{C}(12)-\mathrm{O}(2)-\mathrm{C}(18)$	$120.4(2)$
$\mathrm{C}(16)-\mathrm{O}(3)-\mathrm{C}(19)$	$118.8(2)$
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(2)$	$59.01(14)$
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{Si}(1)$	$126.04(16)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Si}(1)$	$125.48(17)$
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{H}(1)$	$113.4(15)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	$113.7(16)$
$\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{H}(1)$	$110.5(16)$
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(3)$	$107.50(17)$
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(1)$	$112.53(19)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$59.66(14)$
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{H}(2)$	$119.4(14)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	$121.5(14)-\mathrm{C}(1)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	$121.7(14)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(17)$	$123.62(19)$
$\mathrm{C}(2)-\mathrm{C}(1)$	$61.33(15)$
C	$19)$

$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$107.81(17)$
$\mathrm{C}(17)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.03(19)$
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$112.31(17)$
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$110.91(18)$
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(11)$	$112.76(17)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)$	$110.11(17)$
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$105.28(17)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$102.82(16)$
$\mathrm{C}(11)-\mathrm{C}(4)-\mathrm{C}(3)$	$114.46(17)$
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)$	$120.4(2)$
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(4)$	$127.5(2)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$112.14(18)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$120.5(2)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(2)$	$129.9(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(2)$	$109.46(18)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$118.7(2)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	$119.9(16)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	$121.4(16)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$121.0(2)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	$121.7(18)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	$117.3(18)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$120.4(2)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	$123.7(17)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	$116.0(17)$
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	$119.0(2)$
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{H}(10)$	$121.0(16)$
$\mathrm{C}(10)-\mathrm{H}(10)$	$120.0(16)$

$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	$115.7(2)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(4)$	$124.6(2)$
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(4)$	$119.7(2)$
$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(13)$	$120.7(2)$
$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(11)$	$117.6(2)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$121.7(2)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$120.0(2)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	$123.7(17)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	$116.1(17)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$120.4(2)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	$120.7(16)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	$118.8(16)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$119.1(2)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	$122(2)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	$119(2)$
$\mathrm{O}(3)-\mathrm{C}(16)-\mathrm{C}(15)$	$121.8(2)$
$\mathrm{O}(3)-\mathrm{C}(16)-\mathrm{C}(11)$	$115.2(2)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	$123.0(2)$
$\mathrm{C}(3)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	$112.4(17)$
$\mathrm{C}(3)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	$111.0(18)$
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	
$\mathrm{O}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	
$\mathrm{C}(3)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	$111(2)$
$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	
$\mathrm{H}(17 \mathrm{~B})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	
O	

$\mathrm{O}(2)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	105(2)
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	108(3)
$\mathrm{H}(18 \mathrm{~B})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	122(3)
$\mathrm{O}(3)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	108.8(17)
$\mathrm{O}(3)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	111.0(14)
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	115(2)
$\mathrm{O}(3)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	105.6(17)
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	108(2)
$\mathrm{H}(19 \mathrm{~B})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109(2)
$\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{H}(20 \mathrm{~B})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{H}(22 \mathrm{~B})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5

$\mathrm{C}\left(20^{\prime}\right)-\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	112.50(14)
$\mathrm{C}\left(20^{\prime}\right)-\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)$	108.9(2)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)$	106.14(13)
$\mathrm{C}\left(20^{\prime}\right)-\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(22^{\prime}\right)$	109.46(15)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(22^{\prime}\right)$	111.33(13)
$\mathrm{C}\left(21^{\prime}\right)-\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(22^{\prime}\right)$	108.33(18)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)-\mathrm{H}\left(1 \mathrm{O}^{\prime}\right)$	107(2)
$\mathrm{C}\left(12^{\prime}\right)-\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)$	119.5(2)
$\mathrm{C}\left(16^{\prime}\right)-\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)$	119.3(2)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	58.42(14)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{Si}\left(1^{\prime}\right)$	127.10(15)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{Si}\left(1^{\prime}\right)$	124.73(16)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime}\right)$	110.5(15)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime}\right)$	111.9(16)
$\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime}\right)$	113.3(16)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	107.33(18)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	112.69(18)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	60.18(14)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{H}\left(2^{\prime}\right)$	117.8(14)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{H}\left(2^{\prime}\right)$	122.3(14)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{H}\left(2^{\prime}\right)$	123.1(14)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)$	122.92(19)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	61.40(14)
$\mathrm{C}\left(17^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	118.55(19)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	108.33(17)
$\mathrm{C}\left(17^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	119.62(19)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	112.54(17)

$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	110.43(17)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	112.49(17)
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	110.42(17)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	106.02(16)
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	102.28(16)
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	114.66(17)
$\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	121.0(2)
$\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	126.99(19)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	111.98(18)
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	120.0(2)
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	130.1(2)
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	109.90(18)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	118.5(2)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{H}\left(7^{\prime}\right)$	122.0(18)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{H}\left(7^{\prime}\right)$	119.4(18)
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	121.0(2)
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{H}\left(8^{\prime}\right)$	122.9(15)
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{H}\left(8^{\prime}\right)$	116.0(15)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	120.2(2)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{H}\left(9^{\prime}\right)$	118.4(18)
$\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{H}\left(9^{\prime}\right)$	121.4(18)
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	119.2(2)
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{H}\left(10^{\prime}\right)$	118.8(13)
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{H}\left(10^{\prime}\right)$	122.0(13)
$\mathrm{C}\left(12{ }^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)$	115.6(2)
$\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	125.7(2)
$\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	118.68(19)

$\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)-\mathrm{O}\left(2^{\prime}\right)$	120.0(2)
$\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	122.5(2)
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	117.4(2)
$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	119.1(3)
$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)-\mathrm{H}\left(13^{\prime}\right)$	121.6(17)
$\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)-\mathrm{H}\left(13^{\prime}\right)$	119.1(17)
$\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)$	120.9(3)
$\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(14{ }^{\prime}\right)-\mathrm{H}\left(14^{\prime}\right)$	119.7(19)
$\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{H}\left(14^{\prime}\right)$	119.3(19)
$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)$	119.6(3)
$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{H}\left(15^{\prime}\right)$	116.6(19)
$\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{H}\left(15^{\prime}\right)$	123.8(19)
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	122.3(2)
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	115.6(2)
$\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	122.1(2)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)-\mathrm{H}(17 \mathrm{D})$	110.0(15)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)-\mathrm{H}(17 \mathrm{E})$	115.1(15)
H(17D)-C(17')-H(17E)	E) 104(2)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)-\mathrm{H}(17 \mathrm{~F})$	113.2(17)
H(17D)-C(17')-H(17F)) 106(2)
$\mathrm{H}(17 \mathrm{E})-\mathrm{C}\left(17{ }^{\prime}\right)-\mathrm{H}(17 \mathrm{~F})$) 108(2)
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)-\mathrm{H}(18 \mathrm{D})$	107.0(19)
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)-\mathrm{H}(18 \mathrm{E})$	107(2)
$\mathrm{H}(18 \mathrm{D})-\mathrm{C}\left(18{ }^{\prime}\right)-\mathrm{H}(18 \mathrm{E})$	E) 104(3)
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)-\mathrm{H}(18 \mathrm{~F})$	105.5(18)
H(18D)-C(18')-H(18F)) 110(3)
$\mathrm{H}(18 \mathrm{E})-\mathrm{C}\left(18{ }^{\prime}\right)-\mathrm{H}(18 \mathrm{~F})$) 123(3)

$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)-\mathrm{H}(19 \mathrm{D})$	113.0(19)
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)-\mathrm{H}(19 \mathrm{E})$	105(2)
H(19D)-C(19')-H(19E)	111(3)
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)-\mathrm{H}(19 \mathrm{~F})$	104(2)
$\mathrm{H}(19 \mathrm{D})-\mathrm{C}\left(19^{\prime}\right)-\mathrm{H}(19 \mathrm{~F})$	114(3)
H(19E)-C(19')-H(19F)	109(3)
$\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(20{ }^{\prime}\right)-\mathrm{H}(20 \mathrm{D})$	109.5
$\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(20{ }^{\prime}\right)-\mathrm{H}(20 \mathrm{E})$	109.5
$\left.\mathrm{H}(20 \mathrm{D})-\mathrm{C}(20)^{\prime}\right) \mathrm{H}(20 \mathrm{E})$	109.5
$\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(20{ }^{\prime}\right)-\mathrm{H}(20 \mathrm{~F})$	109.5
H(20D)-C(20')-H(20F)	109.5
H(20E)-C(20')-H(20F)	109.5
$\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)-\mathrm{H}(21 \mathrm{D})$	109.5
$\left.\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}(21)^{\prime}\right) \mathrm{H}(21 \mathrm{E})$	109.5
$\mathrm{H}(21 \mathrm{D})-\mathrm{C}\left(21^{\prime}\right)-\mathrm{H}(21 \mathrm{E})$	109.5
$\left.\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}(21)^{\prime}\right) \mathrm{H}(21 \mathrm{~F})$	109.5
$\mathrm{H}(21 \mathrm{D})-\mathrm{C}\left(21^{\prime}\right)-\mathrm{H}(21 \mathrm{~F})$	109.5
$\mathrm{H}(21 \mathrm{E})-\mathrm{C}\left(21{ }^{\prime}\right)-\mathrm{H}(21 \mathrm{~F})$	109.5
$\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(22^{\prime}\right)-\mathrm{H}(22 \mathrm{D})$	109.5
$\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(22^{\prime}\right)-\mathrm{H}(22 \mathrm{E})$	109.5
$\mathrm{H}(22 \mathrm{D})-\mathrm{C}\left(22^{\prime}\right)-\mathrm{H}(22 \mathrm{E})$	109.5
$\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(22^{\prime}\right)-\mathrm{H}(22 \mathrm{~F})$	109.5
$\mathrm{H}(22 \mathrm{D})-\mathrm{C}\left(22^{\prime}\right)-\mathrm{H}(22 \mathrm{~F})$	109.5
$\mathrm{H}(22 \mathrm{E})-\mathrm{C}\left(22^{\prime}\right)-\mathrm{H}(22 \mathrm{~F})$	109.5

[^0]Anisotropic displacement parameters ($\AA 2$ x 103)for liu44. The anisotropic
displacement factor exponent takes the form: $-2 \pi 2\left[\mathrm{~h} 2 \mathrm{a} * 2 \mathrm{U} 11+\ldots+2 \mathrm{hk} \mathrm{a}\right.$ * $\mathrm{b}^{*} \mathrm{U} 12$]

	U 11	U 22	U 33	U 23	U 13	U 12
$\mathrm{Si}(1)$	$45(1)$	$28(1)$	$29(1)$	$7(1)$	$-12(1)$	$-6(1)$
$\mathrm{O}(1)$	$23(1)$	$26(1)$	$44(1)$	$9(1)$	$9(1)$	$6(1)$
$\mathrm{O}(2)$	$36(1)$	$34(1)$	$47(1)$	$11(1)$	$19(1)$	$-1(1)$
$\mathrm{O}(3)$	$27(1)$	$31(1)$	$45(1)$	$3(1)$	$10(1)$	$10(1)$
$\mathrm{C}(1)$	$30(1)$	$23(1)$	$23(1)$	$2(1)$	$-3(1)$	$-4(1)$
$\mathrm{C}(2)$	$26(1)$	$25(1)$	$24(1)$	$2(1)$	$4(1)$	$-6(1)$
$\mathrm{C}(3)$	$23(1)$	$22(1)$	$23(1)$	$1(1)$	$1(1)$	$0(1)$
$\mathrm{C}(4)$	$21(1)$	$17(1)$	$27(1)$	$3(1)$	$4(1)$	$1(1)$
$\mathrm{C}(5)$	$22(1)$	$17(1)$	$26(1)$	$2(1)$	$2(1)$	$5(1)$
$\mathrm{C}(6)$	$23(1)$	$20(1)$	$26(1)$	$2(1)$	$-1(1)$	$1(1)$
$\mathrm{C}(7)$	$26(1)$	$28(1)$	$35(1)$	$2(1)$	$0(1)$	$-2(1)$
$\mathrm{C}(8)$	$28(1)$	$28(1)$	$41(1)$	$-5(1)$	$-11(1)$	$1(1)$
$\mathrm{C}(9)$	$38(1)$	$31(1)$	$25(1)$	$-3(1)$	$-4(1)$	$8(1)$
$\mathrm{C}(10)$	$31(1)$	$24(1)$	$26(1)$	$1(1)$	$4(1)$	$5(1)$
$\mathrm{C}(11)$	$27(1)$	$20(1)$	$22(1)$	$0(1)$	$-3(1)$	$2(1)$
$\mathrm{C}(12)$	$28(1)$	$24(1)$	$23(1)$	$2(1)$	$-4(1)$	$-2(1)$
$\mathrm{C}(13)$	$48(2)$	$27(1)$	$25(1)$	$4(1)$	$-1(1)$	$-10(1)$
$\mathrm{C}(14)$	$68(2)$	$16(1)$	$31(1)$	$3(1)$	$-6(1)$	$1(1)$
$\mathrm{C}(15)$	$49(2)$	$27(1)$	$32(1)$	$-1(1)$	$-1(1)$	$14(1)$
$\mathrm{C}(16)$	$31(1)$	$22(1)$	$28(1)$	$3(1)$	$-2(1)$	$3(1)$
$\mathrm{C}(17)$	$31(1)$	$24(1)$	$29(1)$	$-3(1)$	$-1(1)$	$-4(1)$
$\mathrm{C}(18)$	$37(2)$	$58(2)$	$53(2)$	$27(2)$	$14(2)$	$-4(2)$
$\mathrm{C}(19)$	$36(2)$	$47(2)$	$37(2)$	$1(1)$	$8(1)$	$14(1)$

```
C(20) 55(2) 105(3) 32(2) 20(2) 2(2) -16(2)
C(21) 153(4) 30(2) 72(2) 13(2) -54(2) -4(2)
C(22) 41(2) 55(2) 42(2) 1(1) -8(1) 9(1)
Si(1') 44(1) 31(1) 27(1) 6(1) -10(1) -3(1)
O(1') 23(1) 28(1) 39(1) 6(1) 12(1) 6(1)
O(2') 40(1) 32(1) 45(1) 6(1) 19(1) -8(1)
O(3') 28(1) 29(1) 48(1) 3(1) 10(1) 8(1)
C(1') 28(1) 20(1) 23(1) 2(1) -1(1) -2(1)
C(2') 24(1) 24(1) 22(1) 2(1) 1(1) -2(1)
C(3') 24(1) 20(1) 22(1) 1(1) 0(1) -1(1)
C(4') 20(1) 20(1) 23(1) 0(1) 4(1) 3(1)
C(5') 21(1) 14(1) 26(1) 0(1) -1(1) 1(1)
C(6') 22(1) 20(1) 25(1) 0(1) 2(1) 1(1)
C(7') 24(1) 27(1) 27(1) 4(1) -1(1) -4(1)
C(8') 32(1) 26(1) 38(1) 6(1) -12(1) -6(1)
C(9') 43(2) 24(1) 26(1) 0(1) -6(1) -2(1)
C(10') 34(1) 21(1) 24(1) 4(1) 4(1) 3(1)
C(11') 28(1) 19(1) 25(1) 0(1) -2(1) -3(1)
C(12') 34(1) 25(1) 27(1) 2(1) 0(1) -4(1)
C(13') 60(2) 22(1) 37(1) 8(1) 2(1) -14(1)
C(14') 70(2) 21(1) 40(1) 2(1) -5(1) 2(1)
C(15') 54(2) 22(1) 41(1) 0(1) -5(1) 11(1)
C(16') 34(1) 22(1) 27(1) -1(1) -1(1) 2(1)
C(17') 31(1) 29(1) 26(1) -5(1) -1(1) -4(1)
C(18') 34(2) 52(2) 49(2) 17(2) 7(1) -9(1)
C(19') 35(2) 47(2) 43(2) -1(2) 7(1) 20(1)
C(20') 50(2) 101(3) 37(2) 23(2) -2(2) -11(2)
```

C(21') 150(4) 33(2) 65(2) 11(2) $-53(2) \quad 2(2)$
$\mathrm{C}\left(22^{\prime}\right) 40(2) \quad 59(2) \quad 40(1) \quad-4(1) \quad-9(1) \quad 6(1)$

Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2x 103) for liu44.

x	y	Z	U(eq)		
H(20A)	-589	3834	626	96	
H(20B)	-304	2245	819	96	
H(20C)	-1220	2361	525	96	
H(21A)	547	-252	319	127	
H(21B)	785	27	-135	127	
H(21C)	-333	-121	9	127	
H(22A)	1525	4101	324	69	
H(22B)	1980	2777	61	69	
H(22C)	1773	2501	517	69	
H(20D)	-6304	7623	-9240	93	
H(20E)	-7222	7771	-9532	93	
H(20F)	-6930	6159	-9355	93	
H(21D)	-7227	10045	-8726	124	
H(21E)	-8328	9833	-8568	124	
H(21F)	-8135	10142	-9024	124	
H(22D)	-9488	7029	-8769	70	
H(22E)	-9015	5768	-9047	70	
H(22F)	-9309	7379	-9224	70	
H(1O)	1130(20)) 5080	(40) -	065(9)	53(10)

H(10')	-8491(19)	4810(30)	-7606(9)	41(8)
H(1)	69(18)	2610(30)	-523(9)	19(7)
H(1')	-7510(20)	7300(30)	-8179(9)	26(7)
H(2)	-1662(17)	4020(30)	-163(7)	28(6)
H(2')	-5814(17)	5900(30)	-8590(7)	25(6)
H(7)	-2870(20)	2490(30)	-729(9)	31(8)
H(7')	-4620(20)	7560(30)	-8033(9)	34(8)
H(8)	-2990(20)	2260(30)	-1412(8)	36(8)
$\mathrm{H}\left(8^{\prime}\right)$	-4230(18)	7720(30)	-7383(7)	26(6)
H(9)	-1850(20)	3280(30)	-1877(9)	51(8)
H(9')	-5300(20)	6710(30)	-6906(9)	48(8)
H(10)	-548(19)	4620(30)	-1627(8)	32(7)
H(10')	-6712(16)	5310(20)	-7112(7)	18(5)
H(13)	1060(20)	9690(30)	-1373(9)	45(8)
H(13')	-8295(19)	230(30)	-7300(8)	35(7)
H(14)	-316(19)	11090(30)	-1141(8)	41(8)
H(14')	-6980(20)	-1150(30)	-7563(9)	58(9)
H(15)	-1540(20)	9820(40)	-794(8)	48(8)
H(15')	-5800(20)	90(40)	-7897(8)	47(8)
H(17A)) 720 (20)	6100(30)	-66(8)	43(8)
H(17B)	-290(20)	6920(40)	-136(8)	39(7)
H(17C)) $-180(20)$	5700(40)	168(11)	56(9)
H(17D)) -7334(18)	4310(30)	-8898(8)	34(7)
H(17E)	$-8170(20)$	3740(30)	-8634(7)	26(6)
H(17F)	-7160(20)	2960(40)	-8600(9)	40(7)
H(18A)) 2620(30)	6710(50)	-1577(12)	82(12)
H(18B)) 1900(20)	7980(30)	-1780(9)	45(8)

$\mathrm{H}(18 \mathrm{C})$	$2460(30)$	$8260(40)$	$-1331(12)$	$78(12)$
$\mathrm{H}(18 \mathrm{D})$	$-9720(20)$	$1450(40)$	$-7396(11)$	$66(10)$
$\mathrm{H}(18 \mathrm{E})$	$-9240(20)$	$1700(40)$	$-6978(11)$	$61(9)$
$\mathrm{H}(18 \mathrm{~F})$	$-9990(20)$	$2980(30)$	$-7167(8)$	$33(8)$
$\mathrm{H}(19 \mathrm{~A})$	$-2830(20)$	$8330(40)$	$-645(9)$	$49(8)$
$\mathrm{H}(19 B)$	$-2119(18)$	$8520(30)$	$-223(8)$	$33(7)$
$\mathrm{H}(19 \mathrm{C})$	$-2820(20)$	$7030(30)$	$-305(9)$	$34(7)$
$\mathrm{H}(19 \mathrm{D})$	$-4560(20)$	$1650(40)$	$-8107(9)$	$51(9)$
$\mathrm{H}(19 \mathrm{E})$	$-5280(30)$	$1480(50)$	$-8486(11)$	$74(12)$
$\mathrm{H}(19 \mathrm{~F})$	$-4610(30)$	$2980(50)$	$-8435(11)$	$74(12)$

Torsion angles [${ }^{\circ}$] for liu44.

```
\(\mathrm{C}(22)-\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{C}(3)-58.7(2)\)
\(\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{C}(3) 64.3\) (3)
\(\mathrm{C}(21)-\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{C}(3)-175.9(2)\)
\(\mathrm{C}(22)-\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{C}(2)-133.4(2)\)
\(\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{C}(2)-10.4(3)\)
\(\mathrm{C}(21)-\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{C}(2) 109.4(3)\)
\(\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6) \quad 97.73(19)\)
Si(1)-C(1)-C(2)-C(6) -147.78(17)
Si(1)-C(1)-C(2)-C(3) 114.5(2)
\(\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(17) 145.5(2)\)
\(\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(17)-108.1(2)\)
\(\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(1)-106.3(2)\)
\(\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-0.1(2)\)
\(\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4) \quad 106.18(19)\)
\(\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(2)-113.6(2)\)
```

$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(17)$	114.5(2)
$\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(17)$	0.9(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	-98.8(2)
$\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	147.63(17)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	-118.96(19)
$\mathrm{C}(17)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	93.5(2)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	-53.3(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-2.7(2)
$\mathrm{C}(17)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-150.3(2)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	62.9(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)$	116.7(2)
$\mathrm{C}(17)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)$	- $-30.9(3)$
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)$	-177.73(18)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	-62.4(3)
$\mathrm{C}(11)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$) 63.1(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	-174.5(2)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	117.11(19)
$\mathrm{C}(11)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-117.4(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	5.0(2)
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-2.9(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	177.6(2)
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(2)$	174.2(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(2)$	-5.4(2)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	-180.0(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	116.3(3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	3.3(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	-60.4(2)

$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	2.1(4)
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-174.3(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	0.2(4)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-1.9(4)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	1.2(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	-179.3(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$	1.2(4)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)$	13.3(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)$	-111.1(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)$	133.6(2)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(16)$	-170.4(2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(16)$	65.2(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(16)$	-50.0(3)
$\mathrm{C}(18)-\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(13)$	7.2(4)
$\mathrm{C}(18)-\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(11)$	-174.6(3)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(2)$	-173.3(2)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(2)$	3.1(3)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$) 4.9(3)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-178.6(2)
$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	176.0(2)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$) -2.1(4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$) -1.6(4)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$) 2.1(4)
$\mathrm{C}(19)-\mathrm{O}(3)-\mathrm{C}(16)-\mathrm{C}(15)$	-11.8(3)
$\mathrm{C}(19)-\mathrm{O}(3)-\mathrm{C}(16)-\mathrm{C}(11)$	168.6(2)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{O}(3)$	-178.6(2)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$) 1.0(4)

$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{O}(3)$	175.2(2)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{O}(3)$	-1.4(3)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	-4.4(3)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	179.0(2)
$\mathrm{C}\left(20^{\prime}\right)-\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	-66.3(3)
$\mathrm{C}\left(21^{\prime}\right)-\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	174.7(2)
$\mathrm{C}\left(22^{\prime}\right)-\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	57.0(2)
$\mathrm{C}\left(20^{\prime}\right)-\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	7.8(2)
$\mathrm{C}\left(21^{\prime}\right)-\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	-111.3(2)
$\mathrm{C}\left(22^{\prime}\right)-\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	131.05(19)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	-97.6(2)
$\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	146.57(17)
$\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	-115.8(2)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)$	-146.1(2)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)$	107.2(2)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	106.67(19)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	0.5(2)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	-106.22(18)
$\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	111.9(2)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)$	-114.1(2)
$\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)$	-2.2(3)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	99.30(19)
$\mathrm{Si}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	-148.78(17)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)$	117.70(18)
$\mathrm{C}\left(17^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)$	-94.4(2)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)$	51.8(2)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	2.0(2)

$\mathrm{C}\left(17^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	149.8(2)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	-63.9(2)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	-117.6(2)
$\mathrm{C}\left(17^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	30.3(3)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	176.55(17)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	62.3(3)
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	-62.7(3)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	174.8(2)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	-116.46(19)
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	118.49(19)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	-4.0(2)
$\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	2.9(3)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	-178.2(2)
$\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	-174.4(2)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	4.5(2)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	-179.9(2)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	-115.6(3)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	-3.0(2)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	61.2(2)
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	-1.7(4)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	174.9(2)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	-0.4(4)
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	1.6(4)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	-1.7(3)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	179.6(2)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	-0.5(4)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	-10.9(3)

```
C(5')-C(4')-C(11')-C(12') 113.0(2)
C(3')-C(4')-C(11')-C(12') -132.2(2)
O(1')-C(4')-C(11')-C(16') 172.72(19)
C(5')-C(4')-C(11')-C(16') -63.4(2)
C(3')-C(4')-C(11')-C(16') 51.5(3)
C(18')-O(2')-C(12')-C(13') -14.5(4)
C(18')-O(2')-C(12')-C(11') 166.7(3)
C(16')-C(11')-C(12')-C(13') -5.2(4)
C(4')-C(11')-C(12')-C(13') 178.4(2)
C(16')-C(11')-C(12')-O(2') 173.5(2)
C(4')-C(11')-C(12')-O(2') -2.9(3)
O(2')-C(12')-C(13')-C(14') -175.5(2)
C(11')-C(12')-C(13')-C(14') 3.2(4)
C(12')-C(13')-C(14')-C(15') 0.2(4)
C(13')-C(14')-C(15')-C(16') -1.2(4)
C(19')-O(3')-C(16')-C(15') 7.9(4)
C(19')-O(3')-C(16')-C(11') -172.6(2)
C(14')-C(15')-C(16')-O(3') 178.3(2)
C(14')-C(15')-C(16')-C(11') -1.1(4)
C(12')-C(11')-C(16')-O(3') -175.4(2)
C(4')-C(11')-C(16')-O(3') 1.4(3)
C(12')-C(11')-C(16')-C(15') 4.1(3)
C(4')-C(11')-C(16')-C(15') -179.2(2)
```

Symmetry transformations used to generate equivalent atoms:

Hydrogen bonds for liu44 [\AA and ${ }^{\circ}$].

| D-H...A $\quad d(D-H) d(H \ldots A)$ | $d(D . . . A)$ | $<(D H A)$ |
| :--- | :--- | :--- | :--- |
| $O(1)-H(1 O) \ldots O(2)$ | $0.75(3) 1.83(3) 2.537(2)$ | $156(3)$ |
| $\mathrm{O}\left(1^{\prime}\right)-\mathrm{H}\left(1 \mathrm{O}^{\prime}\right) \ldots \mathrm{O}\left(2^{\prime}\right)$ | $0.82(3) 1.78(3) 2.546(2)$ | $155(3)$ |

Symmetry transformations used to generate equivalent atoms:

Crystal Structure Information for Compound 7d, Chapter III

Crystal data and structure refinement for liu66 (7d).

Identification code liu66
Empirical formula C28 H36
Formula weight 372.57
Temperature 173(2) K
Wavelength $0.71073 \AA$
Crystal system Monoclinic
Space group $\quad \mathrm{P} 2(1) / \mathrm{n}$
Unit cell dimensions $a=16.297(4) \AA \quad a=90^{\circ}$. $\mathrm{b}=9.649(2) \AA \mathrm{A}=95.118(4)^{\circ}$. $\mathrm{c}=29.806(7) \AA \quad \mathrm{g}=90^{\circ}$.

Volume $\quad 4668(2) \AA 3$
Z 8
Density (calculated) $\quad 1.060 \mathrm{Mg} / \mathrm{m} 3$
Absorption coefficient $\quad 0.059$ mm-1
$\mathrm{F}(000) 1632$
Crystal size $\quad 0.45 \times 0.41 \times 0.02 \mathrm{~mm} 3$
Theta range for data collection $\quad 1.37$ to 24.00°.
Index ranges $-18<=\mathrm{h}<=18,-11<=\mathrm{k}<=11,-34<=\mathrm{l}<=34$
Reflections collected 38119
Independent reflections $7311[R($ int $)=0.0934]$
Completeness to theta $=24.00^{\circ} \quad 100.0 \%$
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9988 and 0.9739
Refinement method Full-matrix least-squares on F2
Data / restraints / parameters 7311/0/511
Goodness-of-fit on F2 1.004
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})] \mathrm{R} 1=0.0687$, $\mathrm{wR} 2=0.1617$

R indices (all data) $\quad \mathrm{R} 1=0.1209, \mathrm{wR} 2=0.2024$
Largest diff. peak and hole 0.343 and - 0.218 e. \AA - -3
Atomic coordinates (x 104) and equivalent isotropic displacement parameters (\AA 2x 103)
for liu66. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

| | | | |
| :--- | :--- | :--- | :--- | :--- |

$\mathrm{C}(21)$	$-1245(3)$	$158(5)$	$6740(2)$	$72(1)$
$\mathrm{C}(22)$	$86(3)$	$-1098(4)$	$6924(2)$	$63(1)$
$\mathrm{C}(23)$	$1277(2)$	$3905(3)$	$7214(1)$	$37(1)$
$\mathrm{C}(24)$	$1286(3)$	$5420(4)$	$7337(2)$	$66(1)$
$\mathrm{C}(25)$	$2112(3)$	$3249(6)$	$7337(2)$	$95(2)$
$\mathrm{C}(26)$	$-566(2)$	$3015(3)$	$8470(1)$	$32(1)$
$\mathrm{C}(27)$	$110(2)$	$3538(4)$	$8816(1)$	$45(1)$
$\mathrm{C}(28)$	$-1235(2)$	$4124(4)$	$8390(1)$	$48(1)$
$\mathrm{C}\left(1^{\prime}\right)$	$7237(2)$	$-1597(3)$	$-88(1)$	$27(1)$
$\mathrm{C}\left(2^{\prime}\right)$	$6573(2)$	$-2352(3)$	$-279(1)$	$32(1)$
$\mathrm{C}\left(3^{\prime}\right)$	$6724(2)$	$-3618(3)$	$-500(1)$	$39(1)$
$\mathrm{C}\left(4^{\prime}\right)$	$7490(2)$	$-4110(3)$	$-530(1)$	$39(1)$
$\mathrm{C}\left(5^{\prime}\right)$	$8187(2)$	$-3387(3)$	$-337(1)$	$31(1)$
$\mathrm{C}\left(6^{\prime}\right)$	$8060(2)$	$-2104(3)$	$-113(1)$	$27(1)$
$\mathrm{C}\left(7^{\prime}\right)$	$8766(2)$	$-1385(3)$	$77(1)$	$33(1)$
$\mathrm{C}\left(8^{\prime}\right)$	$9543(2)$	$-1893(4)$	$48(1)$	$41(1)$
$\mathrm{C}\left(9^{\prime}\right)$	$9658(2)$	$-3164(4)$	$-169(1)$	$47(1)$
$\mathrm{C}\left(10^{\prime}\right)$	$8998(2)$	$-3881(4)$	$-354(1)$	$42(1)$
$\mathrm{C}\left(11^{\prime}\right)$	$5686(2)$	$-1864(4)$	$-271(1)$	$45(1)$
$\mathrm{C}\left(12^{\prime}\right)$	$5169(2)$	$-2931(4)$	$-41(2)$	$60(1)$
$\mathrm{C}\left(13^{\prime}\right)$	$5302(2)$	$-1555(4)$	$-751(2)$	$65(1)$
$\mathrm{C}\left(14^{\prime}\right)$	$7144(2)$	$-226(3)$	$146(1)$	$27(1)$
$\mathrm{C}\left(15^{\prime}\right)$	$7181(2)$	$1020(3)$	$-104(1)$	$30(1)$
$\mathrm{C}\left(16^{\prime}\right)$	$7197(2)$	$2274(2)$	$130(1)$	$39(1)$
$\mathrm{C}\left(18^{\prime}\right)$	$7109(2)$	$1123(2)$	$828(1)$	$39(1)$
$\mathrm{C}(192(2)$	$-166(3)$	$613(1)$	$30(1)$	
	$1014(3)$	$-612(1)$	$35(1)$	

C(21')	8076(2)	1464(4)	-733(1)	53(1)
C(22')	6547(3)	1909(4)	-857(1)	54(1)
C(17')	7174(2)	2351(3)	592(1)	40(1)
C(23')	7235(3)	3753(4)	829(2)	76(2)
C(25')	6517(5)	4477(10)	860(5)	79(4)
C(17A)	7174(2)	2351(3)	592(1)	40(1)
C(23A)	7235(3)	3753(4)	829(2)	76(2)
C(25A)) 6799(8)	3965(10)	1198(4)	79(4)
C(24')	8022(3)	4483(4)	775(2)	61(1)
C(26')	7019(2)	-1463(3)	897(1)	39(1)
C(27')	7715(3)	-1591(4)	1278(1)	57(1)
C(28')	6181(2)	-1537(4)	1095(1)) 52(1)

Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for liu66.


```
C(7)-H(7A) 0.9500
C(8)-C(9) 1.409(5)
C(8)-H(8A) 0.9500
C(9)-C(10) 1.365(5)
C(9)-H(9A) 0.9500
C(10)-H(10A) 0.9500
C(11)-C(12) 1.526(5)
C(11)-C(13) 1.530(5)
C(11)-H(11A) 1.0000
C(12)-H(12A) 0.9800
C(12)-H(12B) 0.9800
C(12)-H(12C) 0.9800
C(13)-H(13A) 0.9800
C(13)-H(13B) 0.9800
C(13)-H(13C) 0.9800
C(14)-C(15) 1.408(4)
C(14)-C(19) 1.416(4)
C(15)-C(16) 1.398(4)
C(15)-C(20) 1.524(4)
C(16)-C(17) 1.389(4)
C(16)-H(16A) 0.9500
C(17)-C(18) 1.388(4)
C(17)-C(23) 1.526(4)
C(18)-C(19) 1.393(4)
C(18)-H(18A) 0.9500
C(19)-C(26) 1.525(4)
C(20)-C(22) 1.524(5)
```

```
C(20)-C(21) 1.530(6)
C(20)-H(20A) 1.0000
C(21)-H(21A) 0.9800
C(21)-H(21B) 0.9800
C(21)-H(21C) 0.9800
C(22)-H(22A) 0.9800
C(22)-H(22B) 0.9800
C(22)-H(22C) 0.9800
C(23)-C(24) 1.506(5)
C(23)-C(25) 1.517(5)
C(23)-H(23A) 1.0000
C(24)-H(24A) 0.9800
C(24)-H(24B) 0.9800
C(24)-H(24C) 0.9800
C(25)-H(25A) 0.9800
C(25)-H(25B) 0.9800
C(25)-H(25C) 0.9800
C(26)-C(27) 1.526(5)
C(26)-C(28) 1.531(5)
C(26)-H(26A) 1.0000
C(27)-H(27A) 0.9800
C(27)-H(27B) 0.9800
C(27)-H(27C) 0.9800
C(28)-H(28A) 0.9800
C(28)-H(28B) 0.9800
C(28)-H(28C) 0.9800
C(1')-C(2') 1.384(4)
```

$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	1.437(4)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(14{ }^{\prime}\right)$	1.510(4)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	1.421(4)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	1.522(5)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	1.345(5)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{H}\left(3^{\prime} \mathrm{A}\right)$	0.9500
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	1.410(5)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime} \mathrm{A}\right)$	0.9500
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	1.411(5)
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	1.431(4)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	1.416(4)
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	1.367(4)
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{H}\left(7^{\prime} \mathrm{A}\right)$	0.9500
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	1.407(5)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{H}\left(8^{\prime} \mathrm{A}\right)$	0.9500
$\mathrm{C}\left(9^{\prime}\right)$-C(10')	1.354(5)
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{H}\left(9^{\prime} \mathrm{A}\right)$	0.9500
$\mathrm{C}\left(10{ }^{\prime}\right)-\mathrm{H}(10 \mathrm{~B})$	0.9500
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12{ }^{\prime}\right)$	$1.529(5)$
$\mathrm{C}\left(11^{\prime}\right)$-C(13')	1.539(6)
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{H}(11 \mathrm{~B})$	1.0000
$\mathrm{C}\left(12{ }^{\prime}\right)-\mathrm{H}(12 \mathrm{D})$) 0.9800
$\mathrm{C}\left(12{ }^{\prime}\right)-\mathrm{H}(12 \mathrm{E})$	0.9800
$\mathrm{C}\left(12{ }^{\prime}\right)-\mathrm{H}(12 \mathrm{~F})$	0.9800
$\mathrm{C}\left(13{ }^{\prime}\right)-\mathrm{H}(13 \mathrm{D})$	0.9800
$\mathrm{C}\left(13{ }^{\prime}\right)-\mathrm{H}(13 \mathrm{E})$	0.9800
$\mathrm{C}\left(13{ }^{\prime}\right)-\mathrm{H}(13 \mathrm{~F})$	0.9800

```
C(14')-C(19') 1.402(5)
C(14')-C(15') 1.419(4)
C(15')-C(16') 1.396(4)
C(15')-C(20') 1.520(5)
C(16')-C(17') 1.384(4)
C(16')-H(16B) 0.9500
C(18')-C(17') 1.387(4)
C(18')-C(19') 1.399(4)
C(18')-H(18B) 0.9500
C(19')-C(26') 1.521(5)
C(20')-C(21') 1.531(5)
C(20')-C(22') 1.532(5)
C(20')-H(20B) 1.0000
C(21')-H(21D) 0.9800
C(21')-H(21E) 0.9800
C(21')-H(21F) 0.9800
C(22')-H(22D) 0.9800
C(22')-H(22E) 0.9800
C(22')-H(22F) 0.9800
C(17')-C(23') 1.526(5)
C(23')-C(25') 1.373(9)
C(23')-C(24') 1.484(5)
C(23')-H(23B) 1.0000
C(25')-H(25D) 0.9800
C(25')-H(25E) 0.9800
C(25')-H(25F) 0.9800
C(25A)-H(25G) 0.9800
```

$\mathrm{C}(25 \mathrm{~A})-\mathrm{H}(25 \mathrm{H})$	0.9800
$\mathrm{C}(25 \mathrm{~A})-\mathrm{H}(25 \mathrm{I})$	0.9800
$\mathrm{C}\left(24^{\prime}\right)-\mathrm{H}(24 \mathrm{D})$	0.9800
$\mathrm{C}\left(24^{\prime}\right)-\mathrm{H}(24 \mathrm{E})$	0.9800
$\mathrm{C}\left(24^{\prime}\right)-\mathrm{H}(24 \mathrm{~F})$	0.9800
$\mathrm{C}\left(26^{\prime}\right)-\mathrm{C}\left(27{ }^{\prime}\right)$	$1.536(5)$
$\mathrm{C}\left(26^{\prime}\right)-\mathrm{C}\left(28^{\prime}\right)$	$1.537(5)$
$\mathrm{C}\left(26^{\prime}\right)-\mathrm{H}(26 \mathrm{~B})$	1.0000
$\mathrm{C}\left(27^{\prime}\right)-\mathrm{H}(27 \mathrm{D})$	0.9800
$\mathrm{C}\left(27^{\prime}\right)-\mathrm{H}(27 \mathrm{E})$	0.9800
$\mathrm{C}\left(27^{\prime}\right)-\mathrm{H}(27 \mathrm{~F})$	0.9800
$\mathrm{C}\left(28^{\prime}\right)-\mathrm{H}(28 \mathrm{D})$	0.9800
$\mathrm{C}\left(28^{\prime}\right)-\mathrm{H}(28 \mathrm{E})$	0.9800
$\mathrm{C}\left(28^{\prime}\right)-\mathrm{H}(28 \mathrm{~F})$	0.9800
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$120.0(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(14)$	$120.3(3)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(14)$	$119.7(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$119.1(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(11)$	$122.9(3)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(11)$	$118.0(3)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$121.8(3)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	119.1
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	119.1
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$120.8(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	119.6
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	119.6
$122.2(3)$	

```
C(10)-C(5)-C(6) 119.6(3)
C(4)-C(5)-C(6) 118.2(3)
C(1)-C(6)-C(7) 122.8(3)
C(1)-C(6)-C(5) 120.0(3)
C(7)-C(6)-C(5) 117.2(3)
C(8)-C(7)-C(6) 121.6(3)
C(8)-C(7)-H(7A) 119.2
C(6)-C(7)-H(7A) 119.2
C(7)-C(8)-C(9) 120.6(4)
C(7)-C(8)-H(8A) 119.7
C(9)-C(8)-H(8A) 119.7
C(10)-C(9)-C(8) 119.8(3)
C(10)-C(9)-H(9A) 120.1
C(8)-C(9)-H(9A) 120.1
C(9)-C(10)-C(5) 121.2(4)
C(9)-C(10)-H(10A) 119.4
C(5)-C(10)-H(10A) 119.4
C(2)-C(11)-C(12) 111.1(3)
C(2)-C(11)-C(13) 112.1(3)
C(12)-C(11)-C(13) 110.7(3)
C(2)-C(11)-H(11A) 107.6
C(12)-C(11)-H(11A) 107.6
C(13)-C(11)-H(11A) 107.6
C(11)-C(12)-H(12A) 109.5
C(11)-C(12)-H(12B) 109.5
H(12A)-C(12)-H(12B) 109.5
C(11)-C(12)-H(12C) 109.5
```

```
H(12A)-C(12)-H(12C) 109.5
H(12B)-C(12)-H(12C) 109.5
C(11)-C(13)-H(13A) 109.5
C(11)-C(13)-H(13B) 109.5
H(13A)-C(13)-H(13B) 109.5
C(11)-C(13)-H(13C) 109.5
H(13A)-C(13)-H(13C) 109.5
H(13B)-C(13)-H(13C) 109.5
C(15)-C(14)-C(19) 119.0(3)
C(15)-C(14)-C(1) 120.9(3)
C(19)-C(14)-C(1) 120.1(3)
C(16)-C(15)-C(14) 118.7(3)
C(16)-C(15)-C(20) 119.4(3)
C(14)-C(15)-C(20) 121.8(3)
C(17)-C(16)-C(15) 122.9(3)
C(17)-C(16)-H(16A) 118.5
C(15)-C(16)-H(16A) 118.5
C(18)-C(17)-C(16) 117.4(3)
C(18)-C(17)-C(23) 123.0(3)
C(16)-C(17)-C(23) 119.6(3)
C(17)-C(18)-C(19) 122.1(3)
C(17)-C(18)-H(18A) 119.0
C(19)-C(18)-H(18A) 119.0
C(18)-C(19)-C(14) 119.7(3)
C(18)-C(19)-C(26) 119.3(3)
C(14)-C(19)-C(26) 121.0(3)
C(15)-C(20)-C(22) 113.3(3)
```

```
C(15)-C(20)-C(21) 110.8(3)
C(22)-C(20)-C(21) 110.1(3)
C(15)-C(20)-H(20A) 107.5
C(22)-C(20)-H(20A) 107.5
C(21)-C(20)-H(20A) 107.5
C(20)-C(21)-H(21A) 109.5
C(20)-C(21)-H(21B) 109.5
H(21A)-C(21)-H(21B) 109.5
C(20)-C(21)-H(21C) 109.5
H(21A)-C(21)-H(21C) 109.5
H(21B)-C(21)-H(21C) 109.5
C(20)-C(22)-H(22A) 109.5
C(20)-C(22)-H(22B) 109.5
H(22A)-C(22)-H(22B) 109.5
C(20)-C(22)-H(22C) 109.5
H(22A)-C(22)-H(22C) 109.5
H(22B)-C(22)-H(22C) 109.5
C(24)-C(23)-C(25) 111.0(4)
C(24)-C(23)-C(17) 114.1(3)
C(25)-C(23)-C(17) 109.8(3)
C(24)-C(23)-H(23A) 107.2
C(25)-C(23)-H(23A) 107.2
C(17)-C(23)-H(23A) 107.2
C(23)-C(24)-H(24A) 109.5
C(23)-C(24)-H(24B) 109.5
H(24A)-C(24)-H(24B) 109.5
C(23)-C(24)-H(24C) 109.5
```

```
H(24A)-C(24)-H(24C) 109.5
H(24B)-C(24)-H(24C) 109.5
C(23)-C(25)-H(25A) 109.5
C(23)-C(25)-H(25B) 109.5
H(25A)-C(25)-H(25B) 109.5
C(23)-C(25)-H(25C) 109.5
H(25A)-C(25)-H(25C) 109.5
H(25B)-C(25)-H(25C) 109.5
C(19)-C(26)-C(27) 113.5(3)
C(19)-C(26)-C(28) 110.9(3)
C(27)-C(26)-C(28) 109.6(3)
C(19)-C(26)-H(26A) 107.5
C(27)-C(26)-H(26A) 107.5
C(28)-C(26)-H(26A) 107.5
C(26)-C(27)-H(27A) 109.5
C(26)-C(27)-H(27B) 109.5
H(27A)-C(27)-H(27B) 109.5
C(26)-C(27)-H(27C) 109.5
H(27A)-C(27)-H(27C) 109.5
H(27B)-C(27)-H(27C) 109.5
C(26)-C(28)-H(28A) 109.5
C(26)-C(28)-H(28B) 109.5
H(28A)-C(28)-H(28B) 109.5
C(26)-C(28)-H(28C) 109.5
H(28A)-C(28)-H(28C) 109.5
H(28B)-C(28)-H(28C) 109.5
C(2')-C(1')-C(6') 119.9(3)
```

$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	123.0(3)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	117.1(3)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	118.8(3)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	122.6(3)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	118.6(3)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	122.3(3)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{H}\left(3^{\prime} \mathrm{A}\right)$	118.8
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{H}\left(3^{\prime} \mathrm{A}\right)$	118.8
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	121.1(3)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime} \mathrm{A}\right)$	119.4
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime} \mathrm{A}\right)$	119.4
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	122.8(3)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	118.3(3)
$\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	118.9(3)
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	117.7(3)
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	122.8(3)
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	119.5(3)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	121.5(3)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{H}\left(7^{\prime} \mathrm{A}\right)$	119.2
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{H}\left(7^{\prime} \mathrm{A}\right)$	119.2
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	120.2(4)
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{H}\left(8^{\prime} \mathrm{A}\right)$	119.9
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{H}\left(8^{\prime} \mathrm{A}\right)$	119.9
$\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	120.0(3)
$\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{H}\left(9^{\prime} \mathrm{A}\right)$	120.0
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{H}\left(9^{\prime} \mathrm{A}\right)$	120.0
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	121.7(3)

```
C(9')-C(10')-H(10B) 119.2
C(5')-C(10')-H(10B) 119.2
C(2')-C(11')-C(12') 111.2(3)
C(2')-C(11')-C(13') 110.6(3)
C(12')-C(11')-C(13') 110.6(3)
C(2')-C(11')-H(11B) 108.1
C(12')-C(11')-H(11B) 108.1
C(13')-C(11')-H(11B) 108.1
C(11')-C(12')-H(12D) 109.5
C(11')-C(12')-H(12E) 109.5
H(12D)-C(12')-H(12E) 109.5
C(11')-C(12')-H(12F) 109.5
H(12D)-C(12')-H(12F) 109.5
H(12E)-C(12')-H(12F) 109.5
C(11')-C(13')-H(13D) 109.5
C(11')-C(13')-H(13E) 109.5
H(13D)-C(13')-H(13E) 109.5
C(11')-C(13')-H(13F) 109.5
H(13D)-C(13')-H(13F) 109.5
H(13E)-C(13')-H(13F) 109.5
C(19')-C(14')-C(15') 119.7(3)
C(19')-C(14')-C(1') 120.8(3)
C(15')-C(14')-C(1') 119.3(3)
C(16')-C(15')-C(14') 118.1(3)
C(16')-C(15')-C(20') 120.0(3)
C(14')-C(15')-C(20') 121.9(3)
C(17')-C(16')-C(15') 122.8(3)
```

```
C(17')-C(16')-H(16B) 118.6
C(15')-C(16')-H(16B) 118.6
C(17')-C(18')-C(19') 121.7(3)
C(17')-C(18')-H(18B) 119.1
C(19')-C(18')-H(18B) 119.1
C(18')-C(19')-C(14') 119.4(3)
C(18')-C(19')-C(26') 118.4(3)
C(14')-C(19')-C(26') 122.1(3)
C(15')-C(20')-C(21') 110.9(3)
C(15')-C(20')-C(22') 112.3(3)
C(21')-C(20')-C(22') 110.8(3)
C(15')-C(20')-H(20B) 107.5
C(21')-C(20')-H(20B) 107.5
C(22')-C(20')-H(20B) 107.5
C(20')-C(21')-H(21D) 109.5
C(20')-C(21')-H(21E) 109.5
H(21D)-C(21')-H(21E) 109.5
C(20')-C(21')-H(21F) 109.5
H(21D)-C(21')-H(21F) 109.5
H(21E)-C(21')-H(21F) 109.5
C(20')-C(22')-H(22D) 109.5
C(20')-C(22')-H(22E) 109.5
H(22D)-C(22')-H(22E) 109.5
C(20')-C(22')-H(22F) 109.5
H(22D)-C(22')-H(22F) 109.5
H(22E)-C(22')-H(22F) 109.5
C(16')-C(17')-C(18') 118.1(3)
```

```
C(16')-C(17')-C(23') 120.2(3)
C(18')-C(17')-C(23') 121.8(3)
C(25')-C(23')-C(24') 121.0(5)
C(25')-C(23')-C(17') 117.4(5)
C(24')-C(23')-C(17') 113.1(3)
C(25')-C(23')-H(23B) 99.8
C(24')-C(23')-H(23B) 99.8
C(17')-C(23')-H(23B) 99.8
C(23')-C(25')-H(25D) 109.5
C(23')-C(25')-H(25E) 109.5
H(25D)-C(25')-H(25E) 109.5
C(23')-C(25')-H(25F) 109.5
H(25D)-C(25')-H(25F) 109.5
H(25E)-C(25')-H(25F) 109.5
H(25G)-C(25A)-H(25H) 109.5
H(25G)-C(25A)-H(25I) 109.5
H(25H)-C(25A)-H(25I) 109.5
C(23')-C(24')-H(24D) 109.5
C(23')-C(24')-H(24E) 109.5
H(24D)-C(24')-H(24E) 109.5
C(23')-C(24')-H(24F) 109.5
H(24D)-C(24')-H(24F) 109.5
H(24E)-C(24')-H(24F) 109.5
C(19')-C(26')-C(27') 112.8(3)
C(19')-C(26')-C(28') 111.6(3)
C(27')-C(26')-C(28') 109.6(3)
C(19')-C(26')-H(26B) 107.5
```

```
C(27')-C(26')-H(26B) 107.5
C(28')-C(26')-H(26B) 107.5
C(26')-C(27')-H(27D) 109.5
C(26')-C(27')-H(27E) 109.5
H(27D)-C(27')-H(27E) 109.5
C(26')-C(27')-H(27F) 109.5
H(27D)-C(27')-H(27F) 109.5
H(27E)-C(27')-H(27F) 109.5
C(26')-C(28')-H(28D) 109.5
C(26')-C(28')-H(28E) 109.5
H(28D)-C(28')-H(28E) 109.5
C(26')-C(28')-H(28F) 109.5
H(28D)-C(28')-H(28F) 109.5
H(28E)-C(28')-H(28F) 109.5
```

Symmetry transformations used to generate equivalent atoms:

Anisotropic displacement parameters ($\AA 2 \times 103$)for liu66. The anisotropic displacement factor exponent takes the form: $-2 \mathrm{p} 2\left[\mathrm{~h} 2 \mathrm{a} * 2 \mathrm{U} 11+\ldots+2 \mathrm{hka} \mathrm{a}^{*} \mathrm{U} 12\right]$

	U11	U22	U33	U23	U13	U12
C(1)	$31(2)$	$19(2)$	$24(2)$	$-3(1)$	$5(1)$	$-2(1)$
C(2)	$38(2)$	$23(2)$	$25(2)$	$-3(1)$	$2(2)$	$-4(2)$
C(3)	$49(2)$	$25(2)$	$31(2)$	$5(2)$	$2(2)$	$-3(2)$
C(4)	$46(2)$	$33(2)$	$38(2)$	$0(2)$	$9(2)$	$-13(2)$
C(5)	$40(2)$	$29(2)$	$32(2)$	$-5(2)$	$4(2)$	$-5(2)$

```
C(6) 37(2) 22(2) 27(2) -6(1) 1(2) -1(2)
C(7) 37(2) 31(2) 33(2) -5(2) 0(2) 3(2)
C(8) 47(2) 42(2) 42(2)
C(9) 33(2) 53(2) 58(3) -15(2) -6(2) 5(2)
C(10) 33(2) 47(2) 54(3) -12(2) 6(2) -11(2)
C(11) 36(2) 27(2) 33(2) 5(2) 0(2) 1(2)
C(12) 54(3) 56(3) 76(3) -15(2) -5(2) 17(2)
C(13) 47(2) 71(3) 45(2) 4(2) -9(2) 0(2)
C(14) 28(2) 22(2) 26(2) 5(1) -1(1) 4(1)
C(15) 42(2) 23(2) 26(2) 2(1) 3(2) 2(2)
C(16) 47(2) 29(2) 26(2) 2(2) 10(2) 3(2)
C(17) 35(2) 24(2) 35(2) 7(2) 6(2) 1(2)
C(18) 37(2) 22(2) 33(2) -1(1) 9(2) -3(2)
C(19) 30(2) 22(2) 28(2) 0(1) 2(2) 2(1)
C(20) 60(2) 28(2) 33(2) -5(2) 11(2) -5(2)
C(21) 90(4) 65(3) 58(3) -26(2) -12(3) -3(3)
C(22) 88(3) 35(2) 69(3) -15(2) 25(3) 4(2)
C(23) 39(2) 34(2) 40(2) 3(2) 12(2) -2(2)
C(24) 83(3) 45(2) 76(3) -5(2) 39(3) -23(2)
C(25) 46(3) 109(4) 135(5) 64(4) 31(3) 10(3)
C(26) 39(2) 25(2) 31(2) -4(2) 9(2) -6(2)
C(27) 48(2) 49(2) 37(2) -6(2) 0(2) 7(2)
C(28) 45(2) 58(2) 42(2) -19(2) 4(2) 13(2)
C(1') 34(2) 19(2) 27(2) 1(1) 3(2) 2(1)
C(2') 37(2) 23(2) 35(2) -2(2) 5(2) -3(2)
C(3') 53(2) 24(2) 39(2) -3(2) 1(2) -9(2)
C(4') 61(3) 23(2) 35(2) -4(2) 8(2) 2(2)
```

```
C(5') 46(2) 24(2) 24(2) 2(1) 9(2) 6(2)
C(6') 34(2) 24(2) 23(2) 7(1) 3(2) 5(1)
C(7') 34(2) 30(2) 33(2) -1(2) 0(2) 4(2)
C(8') 37(2) 47(2) 39(2) 2(2) 0(2) 6(2)
C(9') 44(2) 56(3) 41(2) 13(2) 11(2) 23(2)
C(10') 57(3) 31(2) 38(2) 1(2) 12(2) 17(2)
C(11') 30(2) 37(2) 66(3) -9(2) 0(2) -4(2)
C(12') 42(2) 66(3) 73(3) -6(2) 12(2) -17(2)
C(13') 42(2) 54(3) 95(4) 11(2) -16(2) -2(2)
C(14') 24(2) 21(2) 35(2) -3(1) 5(2) 2(1)
C(15') 27(2) 24(2) 40(2) -1(2) 9(2) -1(1)
C(16') 39(2) 22(2) 58(3) -2(2) 16(2) -2(2)
C(18') 37(2) 42(2) 40(2) -15(2) 10(2) -2(2)
C(19') 28(2) 28(2) 36(2) -4(2) 6(2) 3(1)
C(20') 39(2) 28(2) 39(2) 2(2) 6(2) -2(2)
C(21') 61(3) 52(2) 48(2) -1(2) 19(2) -13(2)
C(22') 71(3) 37(2) 52(3) 8(2) -2(2) 5(2)
C(17') 35(2) 29(2) 57(3) -16(2) 19(2) -5(2)
C(23') 74(3) 45(3) 116(4) -47(3) 49(3) -24(2)
C(25') 33(5) 48(6) 156(12) -58(7) 10(7) -3(4)
C(17A) 35(2) 29(2) 57(3) -16(2) 19(2) -5(2)
C(23A) 74(3) 45(3) 116(4)-47(3) 49(3) -24(2)
C(25A) 122(10) 45(6) 78(8) -34(5) 56(7) -20(6)
C(24') 62(3) 43(2) 78(3) -20(2) 6(2) -16(2)
C(26') 52(2) 33(2) 32(2) -3(2) 9(2) 5(2)
C(27') 60(3) 57(3) 53(3) 7(2) 2(2) 11(2)
C(28') 60(3) 44(2) 56(3) 3(2) 18(2) -3(2)
```

Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2x 103)
for liu66.

$\mathrm{H}(22 \mathrm{C})$	-150	-1944	6784	94
$\mathrm{H}(23 \mathrm{~A})$	1165	3844	6879	44
$\mathrm{H}(24 \mathrm{~A})$	1729	5888	7194	99
$\mathrm{H}(24 \mathrm{~B})$	1378	5518	7665	99
$\mathrm{H}(24 \mathrm{C})$	756	5839	7231	99
$\mathrm{H}(25 \mathrm{~A})$	2538	3789	7203	143
$\mathrm{H}(25 \mathrm{~B})$	2112	2298	7221	143
$\mathrm{H}(25 \mathrm{C})$	2227	3236	7665	143
$\mathrm{H}(26 \mathrm{~A})$	-824	2187	8602	38
$\mathrm{H}(27 \mathrm{~A})$	537	2827	8867	68
$\mathrm{H}(27 \mathrm{~B})$	-126	3740	9099	68
$\mathrm{H}(27 \mathrm{C})$	353	4384	8703	68
$\mathrm{H}(28 \mathrm{~A})$	-1667	3787	8166	72
$\mathrm{H}(28 \mathrm{~B})$	-993	4972	8278	72
$\mathrm{H}(28 \mathrm{C})$	-1474	4321	8673	72
$\mathrm{H}\left(3^{\prime} \mathrm{A}\right)$	6269	-4136	-632	46
$\mathrm{H}\left(4{ }^{\prime} \mathrm{A}\right)$	7563	-4957	-684	47
$\mathrm{H}\left(7^{\prime} \mathrm{A}\right) 8698$	-531	227	39	
$\mathrm{H}\left(8^{\prime} \mathrm{A}\right) 10006$	-1385	175	49	
$\mathrm{H}\left(9^{\prime} \mathrm{A}\right) 10198$	-3519	-186	56	
$\mathrm{H}(10 \mathrm{~B})$	9084	-4739	-499	50
$\mathrm{H}(11 \mathrm{~B})$	5689	-985	-93	54
$\mathrm{H}(12 \mathrm{D})$	5423	-3117	263	90
$\mathrm{H}(12 \mathrm{E}) 5142$	-3792	-216	90	
$\mathrm{H}(12 \mathrm{~F}) 4611$	-2568	-24	90	
$\mathrm{H}(13 \mathrm{D})$	5641	-871	-892	98
$\mathrm{H}(13 \mathrm{E}) 4744$	-1186	-737	98	

$\mathrm{H}(13 \mathrm{~F}) 5276$	-2411	-928	98	
$\mathrm{H}(16 \mathrm{~B})$	7225	3112	-36	47
$\mathrm{H}(18 \mathrm{~B})$	7076	1159	1145	47
$\mathrm{H}(20 \mathrm{~B})$	7133	38	-718	42
$\mathrm{H}(21 \mathrm{D})$	8498	879	-573	79
$\mathrm{H}(21 \mathrm{E}) 8171$	2434	-646	79	
$\mathrm{H}(21 \mathrm{~F}) 8105$	1368	-1059	79	
$\mathrm{H}(22 \mathrm{D})$	6007	1606	-774	81
$\mathrm{H}(22 \mathrm{E}) 6567$	1811	-1183	81	
$\mathrm{H}(22 \mathrm{~F}) 6635$	2882	-772	81	
$\mathrm{H}(23 \mathrm{~B})$	7342	3437	1149	91
$\mathrm{H}(25 \mathrm{D})$	6639	5351	1020	118
$\mathrm{H}(25 \mathrm{E}) 6139$	3924	1025	118	
$\mathrm{H}(25 \mathrm{~F}) 6261$	4673	556	118	
$\mathrm{H}(23 \mathrm{C})$	6874	4294	604	91
$\mathrm{H}(25 \mathrm{G})$	6901	4906	1314	118
$\mathrm{H}(25 \mathrm{H})$	6975	3292	1434	118
$\mathrm{H}(25 \mathrm{I}) 6209$	3848	1110	118	
$\mathrm{H}(24 \mathrm{D})$	8026	5373	934	92
$\mathrm{H}(24 \mathrm{E}) 8074$	4646	454	92	
$\mathrm{H}(24 \mathrm{~F}) 8484$	3914	901	92	
$\mathrm{H}(26 \mathrm{~B})$	7058	-2281	694	46
$\mathrm{H}(27 \mathrm{D})$	8249	-1542	1151	85
$\mathrm{H}(27 \mathrm{E}) 7667$	-2479	1432	85	
$\mathrm{H}(27 \mathrm{~F}) 7673$	-831	1493	85	
$\mathrm{H}(28 \mathrm{D})$	5738	-1449	851	79
$\mathrm{H}(28 \mathrm{E}) 6140$	-780	1311	79	

Torsion angles [${ }^{\circ}$] for liu66.

```
C(6)-C(1)-C(2)-C(3) -0.5(4)
C(14)-C(1)-C(2)-C(3) 179.5(3)
C(6)-C(1)-C(2)-C(11) 179.2(3)
C(14)-C(1)-C(2)-C(11) -0.8(4)
C(1)-C(2)-C(3)-C(4) 0.8(5)
C(11)-C(2)-C(3)-C(4)-178.9(3)
C(2)-C(3)-C(4)-C(5) 0.2(5)
C(3)-C(4)-C(5)-C(10) 178.6(3)
C(3)-C(4)-C(5)-C(6) -1.4(5)
C(2)-C(1)-C(6)-C(7) 179.4(3)
C(14)-C(1)-C(6)-C(7) -0.6(4)
C(2)-C(1)-C(6)-C(5) -0.7(4)
C(14)-C(1)-C(6)-C(5) 179.3(3)
C(10)-C(5)-C(6)-C(1)-178.3(3)
C(4)-C(5)-C(6)-C(1) 1.6(4)
C(10)-C(5)-C(6)-C(7) 1.5(4)
C(4)-C(5)-C(6)-C(7) -178.5(3)
C(1)-C(6)-C(7)-C(8) 178.8(3)
C(5)-C(6)-C(7)-C(8) -1.1(5)
C(6)-C(7)-C(8)-C(9) -0.2(5)
C(7)-C(8)-C(9)-C(10) 1.0(5)
C(8)-C(9)-C(10)-C(5) -0.5(5)
C(4)-C(5)-C(10)-C(9) 179.3(3)
C(6)-C(5)-C(10)-C(9) -0.8(5)
```

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	$-112.3(4)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	$67.4(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(13)$	$123.2(3)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(13)$	$-57.1(4)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(15)$	$91.6(4)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(15)$	$-88.3(4)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(19)$	$-86.5(4)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(19)$	$93.5(4)$
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$2.7(5)$
$\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$-175.5(3)$
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(20)$	$-176.4(3)$
$\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(20)$	$5.4(5)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$1.0(5)$
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$-179.9(3)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$-3.5(5)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(23)$	$174.4(3)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$2.4(5)$
$\mathrm{C}(23)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$-175.5(3)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	$1.2(5)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(26)$	$-177.6(3)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	$-3.8(4)$
$\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	$174.4(3)-\mathrm{C}(21)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(26)$	$175.0(3)$
$\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(26)$	$-6.8(4)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(22)$	$47.6(4)$
$\mathrm{C}(14)-\mathrm{C}(22)$	$-133.2(3)$
C	

$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(21)$	102.5(4)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(23)-\mathrm{C}(24)$	-30.4(5)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(23)-\mathrm{C}(24)$	151.8(4)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(23)-\mathrm{C}(25)$	94.9(4)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(23)-\mathrm{C}(25)$	-83.0(4)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(26)-\mathrm{C}(27)$	-44.7(4)
$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(26)-\mathrm{C}(27)$	136.5(3)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(26)-\mathrm{C}(28)$	79.3(4)
$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(26)-\mathrm{C}(28)$	-99.5(4)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	-0.4(5)
$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	178.7(3)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	-179.1(3)
$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	-0.1(5)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	0.0(5)
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	178.8(3)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	0.6(5)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	178.8(3)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	-0.8(5)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	-179.5(3)
$\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	0.8(4)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	0.4(4)
$\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	-179.2(3)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	-179.9(3)
$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	1.0(4)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	0.1(4)
$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	-178.9(3)
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	-0.1(5)

$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	180.0(3)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	-0.7(5)
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	0.7(5)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	0.1(5)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	179.5(3)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	-0.8(5)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	-122.0(4)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	59.3(4)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)$	114.7(4)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)$	-64.0(4)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)$	93.1(4)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)$	-87.9(4)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	-92.4(4)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	86.6(4)
$\mathrm{C}\left(19^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)$	2.4(4)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)$	-172.1(3)
$\mathrm{C}\left(19^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(20^{\prime}\right)$	-178.9(3)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(20^{\prime}\right)$	6.5(4)
$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)$	-0.4(4)
$\mathrm{C}\left(20^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)$	-179.0(3)
$\mathrm{C}\left(17^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	0.1(4)
$\mathrm{C}\left(17^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)-\mathrm{C}\left(26^{\prime}\right)$	-179.9(3)
$\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)$	-2.3(5)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)$	172.1(3)
$\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)-\mathrm{C}\left(26^{\prime}\right)$	177.7(3)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)-\mathrm{C}\left(26^{\prime}\right)$	-7.8(5)
$\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(20^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)$	69.5(4)

```
C(14')-C(15')-C(20')-C(21') -109.1(4)
C(16')-C(15')-C(20')-C(22') -55.1(4)
C(14')-C(15')-C(20')-C(22') 126.3(3)
C(15')-C(16')-C(17')-C(18') -1.8(5)
C(15')-C(16')-C(17')-C(23') 177.0(3)
C(19')-C(18')-C(17')-C(16') 1.9(5)
C(19')-C(18')-C(17')-C(23') -176.9(3)
C(16')-C(17')-C(23')-C(25') 87.1(8)
C(18')-C(17')-C(23')-C(25') -94.2(8)
C(16')-C(17')-C(23')-C(24') -61.4(6)
C(18')-C(17')-C(23')-C(24') 117.4(4)
C(18')-C(19')-C(26')-C(27') -57.6(4)
C(14')-C(19')-C(26')-C(27') 122.4(3)
C(18')-C(19')-C(26')-C(28') 66.3(4)
C(14')-C(19')-C(26')-C(28') -113.7(4)
```

[^1]
Crystallographic Data for 6i (liu 78) Chapter IV

Crystal data and structure refinement for liu78 (6i).
Identification code liu78
Empirical formula C 23 H 28 O
Formula weight 320.45
Temperature 173(2) K
Wavelength $0.71073 \AA$
Crystal system Monoclinic
Space group $\mathrm{P} 2(1) / \mathrm{c}$
Unit cell dimensions $\mathrm{a}=10.227(5) \AA \quad \alpha=90^{\circ}$.

$$
\begin{array}{ll}
\mathrm{b}=10.182(5) \AA & \beta=105.030(9)^{\circ} . \\
\mathrm{c}=18.333(9) \AA & \gamma=90^{\circ} .
\end{array}
$$

Volume $\quad 1843.8(15) \AA 3$

Z 4

Density (calculated) $\quad 1.154 \mathrm{Mg} / \mathrm{m} 3$
Absorption coefficient $\quad 0.068 \mathrm{~mm}-1$
F(000) 696
Crystal size $\quad 0.25 \times 0.25 \times 0.08 \mathrm{~mm} 3$
Theta range for data collection $\quad 2.06$ to 24.99°.
Index ranges $-12<=\mathrm{h}<=12,-12<=\mathrm{k}<=12,-21<=1<=21$
Reflections collected 16965
Independent reflections $3235[R($ int $)=0.0845]$
Completeness to theta $=24.99^{\circ} \quad 100.0 \%$
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9946 and 0.9831
Refinement method Full-matrix least-squares on F2
Data / restraints / parameters 3235/0/332
Goodness-of-fit on F2 1.034
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})] \mathrm{R} 1=0.0561, \mathrm{wR} 2=0.1062$
R indices (all data) $\mathrm{R} 1=0.0998, \mathrm{wR} 2=0.1259$
Largest diff. peak and hole 0.152 and -0.172 e. \AA - 3
Atomic coordinates (x 104) and equivalent isotropic displacement parameters ($\AA 2 \times 103$)
for liu78. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

x	y	$z \quad U(e q)$		
$O(1)$	$8726(2)$	$9181(2)$	$9939(1)$	$33(1)$
$C(1)$	$8956(2)$	$8990(2)$	$8675(1)$	$30(1)$

$\mathrm{C}(2)$	$8516(3)$	$9338(3)$	$7850(2)$	$43(1)$
$\mathrm{C}(3)$	$9277(3)$	$10351(3)$	$8403(1)$	$37(1)$
$\mathrm{C}(4)$	$8406(2)$	$11306(2)$	$8660(1)$	$34(1)$
$\mathrm{C}(5)$	$7572(2)$	$10671(2)$	$9036(1)$	$29(1)$
$\mathrm{C}(6)$	$7940(2)$	$9225(2)$	$9157(1)$	$26(1)$
$\mathrm{C}(7)$	$8334(3)$	$12669(3)$	$8588(2)$	$43(1)$
$\mathrm{C}(8)$	$7430(3)$	$13351(3)$	$8885(2)$	$46(1)$
$\mathrm{C}(9)$	$6611(3)$	$12720(3)$	$9256(2)$	$44(1)$
$\mathrm{C}(10)$	$6675(3)$	$11356(2)$	$9338(2)$	$37(1)$
$\mathrm{C}(11)$	$10014(3)$	$7911(3)$	$8907(2)$	$39(1)$
$\mathrm{C}(12)$	$9446(4)$	$6582(3)$	$8587(2)$	$57(1)$
$\mathrm{C}(13)$	$11323(3)$	$8172(4)$	$8688(2)$	$53(1)$
$\mathrm{C}(14)$	$6752(2)$	$8243(2)$	$9037(1)$	$27(1)$
$\mathrm{C}(15)$	$5555(2)$	$8417(2)$	$8444(1)$	$29(1)$
$\mathrm{C}(16)$	$4533(3)$	$7479(3)$	$8334(2)$	$36(1)$
$\mathrm{C}(17)$	$4611(3)$	$6407(3)$	$8791(2)$	$38(1)$
$\mathrm{C}(18)$	$5752(3)$	$6241(3)$	$9371(2)$	$36(1)$
$\mathrm{C}(19)$	$6839(2)$	$7117(2)$	$9503(1)$	$31(1)$
$\mathrm{C}(20)$	$5223(3)$	$9544(3)$	$7881(2)$	$37(1)$
$\mathrm{C}(21)$	$3969(3)$	$10316(3)$	$7926(2)$	$51(1)$
$\mathrm{C}(22)$	$7995(3)$	$6714(3)$	$10165(2)$	$43(1)$
$\mathrm{C}(23)$	$7751(4)$	$7137(5)$	$10914(2)$	$67(1)$

Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for liu 78.
$\mathrm{O}(1)-\mathrm{C}(6) \quad 1.451(3)$

```
O(1)-H(1O) 0.93(7)
O(1)-H(1OA) 1.01(7)
C(1)-C(2) 1.503(4)
C(1)-C(11) 1.523(3)
C(1)-C(3) 1.536(4)
C(1)-C(6) 1.549(3)
C(2)-C(3) 1.513(4)
C(2)-H(2A) 1.02(3)
C(2)-H(2B) 1.01(3)
\(\mathrm{C}(3)-\mathrm{C}(4) \quad 1.477(4)\)
C(3)-H(3) 0.99(3)
C(4)-C(5) 1.386(3)
C(4)-C(7) 1.394(4)
C(5)-C(10) 1.377(3)
C(5)-C(6) 1.522(3)
C(6)-C(14) 1.544(3)
C(7)-C(8) 1.376(4)
C(7)-H(7) 0.98(3)
C(8)-C(9) 1.369(4)
C(8)-H(8) 0.93(3)
C(9)-C(10) 1.397(4)
C(9)-H(9) 0.99(3)
C(10)-H(10) 1.00(3)
C(11)-C(13) 1.518(4)
C(11)-C(12) 1.528(4)
```

```
C(11)-H(11) 0.98(2)
C(12)-H(12A) 1.02(3)
C(12)-H(12B) 1.00(3)
C(12)-H(12C) 1.00(3)
C(13)-H(13A) 0.97(3)
C(13)-H(13B) 1.00(3)
C(13)-H(13C) 1.03(3)
C(14)-C(19) 1.419(3)
C(14)-C(15) 1.422(3)
C(15)-C(16) 1.392(3)
C(15)-C(20) 1.521(3)
C(16)-C(17) 1.365(4)
C(16)-H(16) 0.94(2)
C(17)-C(18) 1.371(4)
C(17)-H(17) 1.00(3)
C(18)-C(19) 1.396(3)
C(18)-H(18) 0.97(2)
C(19)-C(22) 1.515(3)
C(20)-C(21) 1.524(4)
C(20)-H(20A) 1.03(3)
C(20)-H(20B) 1.01(2)
C(21)-H(21A) 1.04(3)
C(21)-H(21B) 0.99(3)
C(21)-H(21C) 1.06(3)
C(22)-C(23) 1.520(5)
```

$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A}) 1.02$ (3)	
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B}) 1.00$ (2)	
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A}) 1.06$ (4)	
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B}) 0.95$ (4)	
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C}) 1.02$ (3)	
$\mathrm{C}(6)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O}) 105(5)$	
$\mathrm{C}(6)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{OA}) 106(4)$	
$\mathrm{H}(1 \mathrm{O})-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{OA}) 87(5)$	
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(11) \quad 117.2(2)$	
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3) \quad 59.69(17)$	
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(3) \quad 123.1(2)$	
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6) \quad 117.9(2)$	
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(6) \quad 119.0(2)$	
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(6) \quad 106.09$ (19)	
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3) \quad 61.23(17)$	
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A}) \quad 122.0(14)$	
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A}) \quad 120.5(14)$	
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B}) \quad 114.8(15)$	
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B}) \quad 115.1(15)$	
$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B}) \quad 114(2)$	
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2) \quad 114.5(2)$	
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(1) \quad 107.1(2)$	
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(1) \quad 59.09(17)$	
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3) \quad 123.0(15)$	
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	115.0(14)

$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{H}(3)$	121.6(14)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)$	119.2(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	110.6(2)
$\mathrm{C}(7)-\mathrm{C}(4)-\mathrm{C}(3)$	130.3(2)
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(4)$	121.5(2)
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)$	126.6(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	111.3(2)
$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	103.13(17)
$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(14)$	109.54(18)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(14)$	116.76(19)
$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(1)$	106.11(18)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	104.06(18)
$\mathrm{C}(14)-\mathrm{C}(6)-\mathrm{C}(1)$	116.01(18)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(4)$	119.2(3)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	123.0(15)
$\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{H}(7)$	117.8(15)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	121.4(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	120.1(16)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	118.6(16)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.1(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	122.6(15)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	117.3(15)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	118.6(3)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{H}(10)$	121.1(15)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	120.3(15)

```
C(13)-C(11)-C(1) 114.2(3)
C(13)-C(11)-C(12) 109.1(3)
C(1)-C(11)-C(12) 111.1(2)
C(13)-C(11)-H(11) 107.4(13)
C(1)-C(11)-H(11) 106.5(13)
C(12)-C(11)-H(11) 108.4(13)
C(11)-C(12)-H(12A) 110.3(18)
C(11)-C(12)-H(12B) 110.2(19)
H(12A)-C(12)-H(12B) 108(3)
C(11)-C(12)-H(12C) 112.9(17)
H(12A)-C(12)-H(12C) 108(2)
H(12B)-C(12)-H(12C) 107(3)
C(11)-C(13)-H(13A) 112.4(16)
C(11)-C(13)-H(13B) 111.1(16)
H(13A)-C(13)-H(13B) 108(2)
C(11)-C(13)-H(13C) 110.1(16)
H(13A)-C(13)-H(13C) 107(2)
H(13B)-C(13)-H(13C) 108(2)
C(19)-C(14)-C(15) 117.9(2)
C(19)-C(14)-C(6) 120.9(2)
C(15)-C(14)-C(6) 121.2(2)
C(16)-C(15)-C(14) 119.3(2)
C(16)-C(15)-C(20) 113.1(2)
C(14)-C(15)-C(20) 127.5(2)
C(17)-C(16)-C(15) 122.6(3)
```

```
C(17)-C(16)-H(16) 119.4(14)
C(15)-C(16)-H(16) 118.0(14)
C(16)-C(17)-C(18) 118.5(3)
C(16)-C(17)-H(17) 120.0(14)
C(18)-C(17)-H(17) 121.5(14)
C(17)-C(18)-C(19) 122.3(3)
C(17)-C(18)-H(18) 120.1(15)
C(19)-C(18)-H(18) 117.5(15)
C(18)-C(19)-C(14) 119.3(2)
C(18)-C(19)-C(22) 112.7(2)
C(14)-C(19)-C(22) 127.9(2)
C(15)-C(20)-C(21) 113.3(2)
C(15)-C(20)-H(20A) 109.6(14)
C(21)-C(20)-H(20A) 108.6(14)
C(15)-C(20)-H(20B) 111.0(13)
C(21)-C(20)-H(20B) 109.8(13)
H(20A)-C(20)-H(20B) 104.1(19)
C(20)-C(21)-H(21A) 108.8(16)
C(20)-C(21)-H(21B) 114.9(16)
H(21A)-C(21)-H(21B) 108(2)
C(20)-C(21)-H(21C) 108.1(16)
H(21A)-C(21)-H(21C) 112(2)
H(21B)-C(21)-H(21C) 105(2)
C(19)-C(22)-C(23) 111.7(3)
C(19)-C(22)-H(22A) 108.5(14)
```

```
C(23)-C(22)-H(22A) 110.6(14)
C(19)-C(22)-H(22B) 111.7(13)
C(23)-C(22)-H(22B) 112.3(14)
H(22A)-C(22)-H(22B) 102(2)
C(22)-C(23)-H(23A) 110(2)
C(22)-C(23)-H(23B) 107(2)
H(23A)-C(23)-H(23B) 114(3)
C(22)-C(23)-H(23C) 112.5(17)
H(23A)-C(23)-H(23C) 107(3)
H(23B)-C(23)-H(23C) 107(3)
```

Symmetry transformations used to generate equivalent atoms:

Anisotropic displacement parameters ($\AA 2 \times 103$)for liu78. The anisotropic
displacement factor exponent takes the form: $-2 \pi 2\left[\mathrm{~h} 2 \mathrm{a} * 2 \mathrm{U} 11+\ldots+2 \mathrm{hk} \mathrm{a} \mathrm{a}^{*} \mathrm{U} 12\right.$]

U11	U22	U33	U23	U13	U12

$\mathrm{O}(1) \quad 31(1) \quad 36(1) \quad 28(1) \quad-3(1) \quad 0(1) \quad-2(1)$
$\mathrm{C}(1) \quad 25(1) \quad 35(2) \quad 29(1) \quad-5(1) \quad 3(1) \quad-5(1)$
$\mathrm{C}(2) \quad 36(2) \quad 62(2) \quad 28(2) \quad-8(1) \quad 4(1) \quad-3(2)$
$\mathrm{C}(3) \quad 32(2) \quad 48(2) \quad 29(2) \quad 3(1) \quad 6(1) \quad-8(1)$
C(4) 29(1) 38(2) $30(1) \quad 4(1) \quad-1(1) \quad-6(1)$
C(5) 28(1) 29(1) $26(1) \quad-2(1) \quad-3(1) \quad-4(1)$
C(6) 24(1) 27(1) 24(1) $-2(1) \quad-1(1) \quad-2(1)$

```
C(7) 41(2) 40(2) 40(2) 11(1) -1(1) -13(1)
C(8) 51(2) 28(2) 52(2) 4(1) -1(2) 0(2)
C(9) 44(2) 31(2) 54(2) -2(1) 6(2) 1(1)
C(10) 37(2) 29(1) 42(2) -3(1) 7(1) -3(1)
C(11) 32(2) 44(2) 41(2) -9(1) 9(1) 1(1)
C(12) 49(2) 47(2) 77(3) -14(2) 19(2) 3(2)
C(13) 34(2) 71(2) 55(2) -7(2) 13(2) 3(2)
C(14) 26(1) 26(1) 29(1) -4(1) 7(1) -2(1)
C(15) 25(1) 30(1) 30(1) -4(1) 3(1) -2(1)
C(16) 26(1) 37(2) 41(2) -6(1) 1(1) -4(1)
C(17) 31(2) 31(2) 51(2) -6(1) 10(1) -7(1)
C(18) 39(2) 24(1) 46(2) 1(1) 15(1) -1(1)
C(19) 29(1) 27(1) 37(2) -1(1) 7(1) 1(1)
C(20) 29(2) 41(2) 36(2) 7(1) -1(1) -3(1)
C(21) 31(2) 48(2) 66(2) 14(2) 1(2) 2(2)
C(22) 37(2) 33(2) 52(2) 13(1) 0(1) 0(1)
C(23) 55(2) 102(3) 38(2) 24(2) 3(2) -17(2)
```

Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2x 103) for liu78.

x	y	z	$U(e q)$

$\mathrm{H}(1 \mathrm{O}) 9360(60) \quad 9850(80) \quad 9980(40) \quad 98(18)$
$\mathrm{H}(1 \mathrm{OA}) \quad 8230(70) \quad 9770(70) \quad 10230(40) \quad 98(18)$

$\mathrm{H}(23 \mathrm{~B})$	$8480(40)$	$6800(30)$	$11300(20)$	$98(13)$
$\mathrm{H}(23 \mathrm{C})$	$6880(30)$	$6750(30)$	$10998(16)$	$73(10)$

Torsion angles [${ }^{\circ}$] for liu78.

```
C(11)-C(1)-C(2)-C(3)-114.2(2)
C(6)-C(1)-C(2)-C(3) 93.1(2)
C(1)-C(2)-C(3)-C(4) -95.9(2)
C(2)-C(1)-C(3)-C(4) 108.8(2)
C(11)-C(1)-C(3)-C(4)-146.6(2)
C(6)-C(1)-C(3)-C(4) -4.5(2)
C(11)-C(1)-C(3)-C(2) 104.5(3)
C(6)-C(1)-C(3)-C(2) -113.3(2)
C(2)-C(3)-C(4)-C(5) 61.5(3)
C(1)-C(3)-C(4)-C(5) -1.7(3)
C(2)-C(3)-C(4)-C(7) -119.4(3)
C(1)-C(3)-C(4)-C(7) 177.4(2)
C(7)-C(4)-C(5)-C(10) 0.0(4)
C(3)-C(4)-C(5)-C(10) 179.2(2)
C(7)-C(4)-C(5)-C(6) -171.7(2)
C(3)-C(4)-C(5)-C(6) 7.5(3)
C(10)-C(5)-C(6)-O(1)-70.6(3)
C(4)-C(5)-C(6)-O(1) 100.6(2)
C(10)-C(5)-C(6)-C(14) 49.6(3)
C(4)-C(5)-C(6)-C(14)-139.2(2)
C(10)-C(5)-C(6)-C(1) 178.8(2)
```

```
C(4)-C(5)-C(6)-C(1) -10.0(2)
C(2)-C(1)-C(6)-O(1) -163.8(2)
C(11)-C(1)-C(6)-O(1) 44.0(3)
C(3)-C(1)-C(6)-O(1) -100.0(2)
C(2)-C(1)-C(6)-C(5) -55.4(3)
C(11)-C(1)-C(6)-C(5) 152.4(2)
C(3)-C(1)-C(6)-C(5) 8.4(2)
C(2)-C(1)-C(6)-C(14) 74.3(3)
C(11)-C(1)-C(6)-C(14) -77.9(3)
C(3)-C(1)-C(6)-C(14) 138.07(19)
C(5)-C(4)-C(7)-C(8) -0.5(4)
C(3)-C(4)-C(7)-C(8) -179.5(2)
C(4)-C(7)-C(8)-C(9) 0.7(4)
C(7)-C(8)-C(9)-C(10) -0.4(4)
C(4)-C(5)-C(10)-C(9) 0.3(4)
C(6)-C(5)-C(10)-C(9) 170.7(2)
C(8)-C(9)-C(10)-C(5) -0.1(4)
C(2)-C(1)-C(11)-C(13) 57.1(3)
C(3)-C(1)-C(11)-C(13) -12.9(4)
C(6)-C(1)-C(11)-C(13) -150.5(2)
C(2)-C(1)-C(11)-C(12) -66.8(3)
C(3)-C(1)-C(11)-C(12) -136.7(3)
C(6)-C(1)-C(11)-C(12) 85.6(3)
O(1)-C(6)-C(14)-C(19) -26.6(3)
C(5)-C(6)-C(14)-C(19) -143.3(2)
```

$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{C}(19)$	$93.5(3)$
$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{C}(15)$	$155.4(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{C}(15)$	$38.7(3)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{C}(15)$	$-84.6(3)$
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$-0.9(3)$
$\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$177.2(2)$
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(20)$	$179.3(2)$
$\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(20)$	$-2.6(4)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$2.1(4)$
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$-178.1(2)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$-1.1(4)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$-0.9(4)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	$2.0(4)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(22)$	$-178.9(2)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	$-1.0(3)$
$\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	$-179.1(2)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(22)$	$180.0(2)$
$\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(22)$	$1.9(4)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(21)$	$61.4(3)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(21)$	$-118.8(3)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(22)-\mathrm{C}(23)$	$-82.2(3)$
$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(22)-\mathrm{C}(23)$	$96.8(3)$
C	

Symmetry transformations used to generate equivalent atoms:

Hydrogen bonds for liu78 [$\AA{ }^{\circ}$ and ${ }^{\circ}$].

| D-H...A $\quad d(D-H) d(H \ldots A)$ | $d(D \ldots A)$ | $<(D H A)$ |
| :--- | :--- | :--- | :--- |
| $O(1)-H(1 O) \ldots O(1) \# 10.93(7) 2.16(6) 3.053(4)$ | $160(6)$ | |

Symmetry transformations used to generate equivalent atoms:
\#1-x+2,-y+2,-z+2

Crystallographic Data for 9a (liu 103) Chapter IV

Crystal data and structure refinement for liu103 (9a).
Identification code liu103
Empirical formula C 22 H 24 O 2
Formula weight 320.41
Temperature 173(2) K
Wavelength $0.71073 \AA$
Crystal system Monoclinic
Space group P2(1)/c

Unit cell dimensions $\mathrm{a}=14.878(3) \AA \quad \alpha=90^{\circ}$.

$$
\begin{array}{ll}
\mathrm{b}=7.8605(14) \AA & \beta=107.402(3)^{\circ} . \\
\mathrm{c}=15.924(3) \AA & \gamma=90^{\circ} .
\end{array}
$$

Volume $\quad 1777.0(6) \AA 3$
Z 4
Density (calculated) $\quad 1.198 \mathrm{Mg} / \mathrm{m} 3$
Absorption coefficient $\quad 0.075 \mathrm{~mm}-1$
F(000) 688
Crystal size $\quad 0.41 \times 0.17 \times 0.04 \mathrm{~mm} 3$
Theta range for data collection $\quad 1.43$ to 25.00°.
Index ranges $-17<=\mathrm{h}<=17,-9<=\mathrm{k}<=9,-18<=1<=18$
Reflections collected 16468
Independent reflections $\quad 3120[R($ int $)=0.0353]$
Completeness to theta $=25.00^{\circ} \quad 100.0 \%$
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9970 and 0.9699
Refinement method Full-matrix least-squares on F2
Data / restraints / parameters 3120/0/217
Goodness-of-fit on F2 1.029
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})] \mathrm{R} 1=0.0576, \mathrm{wR} 2=0.1420$
R indices (all data) $\quad \mathrm{R} 1=0.0787, \mathrm{wR} 2=0.1581$
Largest diff. peak and hole 0.489 and -0.401 e. \AA - 3
Atomic coordinates (x 104) and equivalent isotropic displacement parameters ($\AA 2 \times 103$)
for liu103. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	$x \quad y$	z		
$\mathrm{O}(1)$	1166(1)	6390(2)	1749(1)	48(1)
$\mathrm{O}(2)$	2878(1)	1363(2)	1953(1)	50(1)
C(1)	2893(2)	4723(3)	2346(2)	31(1)
C(2)	3460(2)	5297(3)	1809(2)	34(1)
C(3)	3173(2)	5101(3)	886(2)	46(1)
C(4)	3727(2)	5625(4)	392(2)	61(1)
C(5)	4604(2)	6383(4)	792(2)	60(1)
C(6)	4902(2)	6612(3)	1677(2)	47(1)
C(7)	4341(2)	6086(3)	2205(2)	36(1)
C(8)	4624(2)	6342(3)	3118(2)	43(1)
C(9)	4074(2)	5809(3)	3610(2)	45(1)
C(10)	3201(2)	4949(3)	3248(2)	36(1)
$\mathrm{C}(11)$	2668(2)	4347(4)	3895(2)	52(1)
$\mathrm{C}(12)$	1883(3)	5583(7)	3880(3)	128(2)
C(13)	2264(3)	2508(5)	3684(2)	88(1)
C(14)	3319(2)	4247(4)	4842(2)	50(1)
C(15)	1998(2)	3838(3)	1854(1)	34(1)
C(16)	1141(2)	4692(3)	1547(2)	41(1)
C(17)	328(2)	3837(4)	1071(2)	56(1)
C(18)	384(2)	2135(4)	887(2)	62(1)
C(19)	1220(2)	1263(4)	1163(2)	55(1)
C(20)	2020(2)	2114(3)	1639(2)	41(1)
C(21)	288(2)	7195(4)	1681(2)	63(1)

```
C(22) 2932(2) -454(3)1947(2) 67(1)
```

Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for liu103.

```
O(1)-C(16) 1.371(3)
O(1)-C(21) 1.426(3)
O(2)-C(20) 1.359(3)
O(2)-C(22) 1.430(3)
C(1)-C(10) 1.382(3)
C(1)-C(2) 1.442(3)
C(1)-C(15) 1.499(3)
C(2)-C(3) 1.410(3)
C(2)-C(7) 1.417(3)
C(3)-C(4) 1.362(4)
C(3)-H(3A) 0.9500
C(4)-C(5) 1.402(4)
C(4)-H(4A) 0.9500
C(5)-C(6) 1.357(4)
C(5)-H(5A) 0.9500
C(6)-C(7) 1.412(3)
C(6)-H(6A) 0.9500
C(7)-C(8) 1.402(3)
C(8)-C(9) 1.356(3)
C(8)-H(8A) 0.9500
C(9)-C(10) 1.424(3)
C(9)-H(9A) 0.9500
```

```
C(10)-C(11) 1.549(3)
C(11)-C(12) 1.515(4)
C(11)-C(14) 1.531(3)
C(11)-C(13) 1.563(5)
C(12)-H(12A) 0.9800
C(12)-H(12B) 0.9800
C(12)-H(12C) 0.9800
C(13)-H(13A) 0.9800
C(13)-H(13B) 0.9800
C(13)-H(13C) 0.9800
C(14)-H(14A) 0.9800
C(14)-H(14B) 0.9800
C(14)-H(14C) 0.9800
C(15)-C(16) 1.393(3)
C(15)-C(20) 1.401(3)
C(16)-C(17) 1.394(4)
C(17)-C(18) 1.377(4)
C(17)-H(17A) 0.9500
C(18)-C(19) 1.372(4)
C(18)-H(18A) 0.9500
C(19)-C(20) 1.379(4)
C(19)-H(19A) 0.9500
C(21)-H(21A) 0.9800
C(21)-H(21B) 0.9800
C(21)-H(21C) 0.9800
```

$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9800
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9800
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	0.9800
$\mathrm{C}(16)-\mathrm{O}(1)-\mathrm{C}(21)$	117.0(2)
$\mathrm{C}(20)-\mathrm{O}(2)-\mathrm{C}(22)$	118.6(2)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)$	120.4(2)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(15)$	124.7(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(15)$	114.9(2)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	117.6(2)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	122.4(2)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(1)$	120.0(2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	121.5(2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	119.3
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	119.3
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	120.5(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	119.7
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	119.7
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	119.9(2)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	120.0
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	120.0
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	120.7(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	119.6
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	119.6
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	121.9(2)

$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(2)$	$118.4(2)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	$119.8(2)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$120.6(2)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	119.7
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	119.7
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$123.2(2)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	118.4
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	118.4
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$117.4(2)$
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	$125.1(2)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$117.6(2)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(14)$	$107.8(3)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$109.8(2)$
$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(10)$	$111.8(2)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	$110.2(3)$
$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(13)$	$104.7(2)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(13)$	$112.4(2)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(123)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
C	

```
H(13A)-C(13)-H(13B) 109.5
C(11)-C(13)-H(13C) 109.5
H(13A)-C(13)-H(13C) 109.5
H(13B)-C(13)-H(13C) 109.5
C(11)-C(14)-H(14A) 109.5
C(11)-C(14)-H(14B) 109.5
H(14A)-C(14)-H(14B) 109.5
C(11)-C(14)-H(14C) 109.5
H(14A)-C(14)-H(14C) 109.5
H(14B)-C(14)-H(14C) 109.5
C(16)-C(15)-C(20) 117.8(2)
C(16)-C(15)-C(1) 122.5(2)
C(20)-C(15)-C(1) 119.6(2)
O(1)-C(16)-C(15) 115.4(2)
O(1)-C(16)-C(17) 123.8(2)
C(15)-C(16)-C(17) 120.9(3)
C(18)-C(17)-C(16) 119.1(3)
C(18)-C(17)-H(17A) 120.5
C(16)-C(17)-H(17A) 120.5
C(19)-C(18)-C(17) 121.6(3)
C(19)-C(18)-H(18A) 119.2
C(17)-C(18)-H(18A) 119.2
C(18)-C(19)-C(20) 119.0(3)
C(18)-C(19)-H(19A) 120.5
C(20)-C(19)-H(19A) 120.5
```

```
O(2)-C(20)-C(19) 123.6(2)
O(2)-C(20)-C(15) 114.8(2)
C(19)-C(20)-C(15) 121.6(3)
O(1)-C(21)-H(21A) 109.5
O(1)-C(21)-H(21B) 109.5
H(21A)-C(21)-H(21B) 109.5
O(1)-C(21)-H(21C) 109.5
H(21A)-C(21)-H(21C) 109.5
H(21B)-C(21)-H(21C) 109.5
O(2)-C(22)-H(22A) 109.5
O(2)-C(22)-H(22B) 109.5
H(22A)-C(22)-H(22B) 109.5
O(2)-C(22)-H(22C) 109.5
H(22A)-C(22)-H(22C) 109.5
H(22B)-C(22)-H(22C) 109.5
```

Symmetry transformations used to generate equivalent atoms:

Anisotropic displacement parameters (Å2x 103)for liu103. The anisotropic displacement factor exponent takes the form: $-2 \pi 2\left[\mathrm{~h} 2 \mathrm{a} * 2 \mathrm{U} 11+\ldots+2 \mathrm{hk} \mathrm{a} \mathrm{a}^{*} \mathrm{U} 12\right.$]

	U11	U22	U33	U23	U13	U12
$\mathrm{O}(1)$	$32(1)$	$47(1)$	$65(1)$	$15(1)$	$15(1)$	$10(1)$
$\mathrm{O}(2)$	$56(1)$	$28(1)$	$72(1)$	$0(1)$	$29(1)$	$1(1)$

```
C(1) 27(1) 27(1) 40(1) 3(1) 11(1) 3(1)
C(2) 36(1) 26(1) 43(1) 2(1) 17(1) 1(1)
C(3) 50(2) 45(2) 45(2) -3(1) 19(1) -15(1)
C(4) 74(2) 67(2) 51(2) -4(1) 31(2) -24(2)
C(5) 65(2) 59(2) 67(2) 0(2) 39(2) -20(2)
C(6) 43(1) 39(1) 64(2) 0(1) 25(1) -9(1)
C(7) 33(1) 29(1) 50(2) 1(1) 16(1) 2(1)
C(8) 30(1) 43(1) 51(2) -2(1) 8(1) -1(1)
C(9) 30(1) 61(2) 39(1) -2(1) 6(1) 2(1)
C(10) 27(1) 43(1) 39(1) 3(1) 9(1) 7(1)
C(11) 33(1) 84(2) 39(1) 13(1) 12(1) 9(1)
C(12) 94(3) 229(6) 87(3) 83(3) 67(2) 105(3)
C(13) 82(2) 137(3) 42(2) 12(2) 12(2) -66(2)
C(14) 49(2) 60(2) 40(1) 1(1) 13(1) 2(1)
C(15) 33(1) 37(1) 33(1) 6(1) 12(1) -4(1)
C(16) 34(1) 47(2) 43(1) 10(1) 14(1) -4(1)
C(17) 33(1) 85(2) 48(2) 14(2) 6(1) -10(1)
C(18) 57(2) 78(2) 51(2) -8(2) 14(1) -37(2)
C(19) 65(2) 52(2) 55(2) -7(1) 27(2) -26(2)
C(20) 45(1) 40(1) 43(1) 2(1) 22(1) -9(1)
C(21) 39(2) 71(2) 84(2) 31(2) 27(2) 23(1)
C(22) 94(2) 31(2) 86(2) 3(1) 44(2) 1(2)
```

Hydrogen coordinates (x 104) and isotropic displacement parameters ($\AA 2$ x 103) for liu103.

```
    x y y U(eq)
```

H(3A) $2580 \quad 4593 \quad 603 \quad 55$

$\mathrm{H}(4 \mathrm{~A})$	3517	5475	-228
73			

H(5A) $4989 \quad 6735 \quad 444 \quad 71$
H(6A) $5495 \quad 7133 \quad 1945 \quad 56$
$\mathrm{H}(8 \mathrm{~A}) 5205 \quad 6893 \quad 3395 \quad 51$
$\mathrm{H}(9 \mathrm{~A}) 4282 \quad 6019 \quad 4225 \quad 53$

$\mathrm{H}(12 \mathrm{~A})$	2144	6730	4014	192

$\mathrm{H}(12 \mathrm{~B})$	1579	5242	4321	192

$\mathrm{H}(12 \mathrm{C}) \quad 1418 \quad 5576 \quad 3295 \quad 192$
$\mathrm{H}(13 \mathrm{~A}) \quad 1936 \quad 2181 \quad 4109 \quad 133$

$\mathrm{H}(13 \mathrm{~B})$	2782	1711	3723	133

$\mathrm{H}(13 \mathrm{C})$	1822	2478	3088	133

$\mathrm{H}(14 \mathrm{~A})$	3594	5370	5026	75

$\mathrm{H}(14 \mathrm{~B})$	3823	3426	4873	75

$\mathrm{H}(14 \mathrm{C})$	2956	3882	5232	75

$\mathrm{H}(17 \mathrm{~A})$	-258	4419	876	68

$\mathrm{H}(18 \mathrm{~A})$	-169	1550	561	75

$\mathrm{H}(19 \mathrm{~A})$	1247	91	1027	66

$\mathrm{H}(21 \mathrm{~A})$	396	8399	1840	94

$\mathrm{H}(21 B)$	-8	6639	2082	94

$\mathrm{H}(21 \mathrm{C})$	-127	7100	1076	94

$\mathrm{H}(22 \mathrm{~A}) \quad 3590 \quad-809 \quad 2190 \quad 100$

| $\mathrm{H}(22 \mathrm{~B})$ | 2682 | -869 | 1341 | 100 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}(22 \mathrm{C})$ | 2560 | -928 | 2306 | 100 |

Torsion angles [${ }^{\circ}$] for liu 103.

```
C(10)-C(1)-C(2)-C(3)-179.7(2)
C(15)-C(1)-C(2)-C(3) 2.5(3)
C(10)-C(1)-C(2)-C(7) 0.5(3)
C(15)-C(1)-C(2)-C(7)-177.3(2)
C(7)-C(2)-C(3)-C(4) 1.0(4)
C(1)-C(2)-C(3)-C(4) -178.8(2)
C(2)-C(3)-C(4)-C(5) -0.1(5)
C(3)-C(4)-C(5)-C(6) -0.6(5)
C(4)-C(5)-C(6)-C(7) 0.4(4)
C(5)-C(6)-C(7)-C(8) -178.6(3)
C(5)-C(6)-C(7)-C(2) 0.5(4)
C(3)-C(2)-C(7)-C(8) 178.0(2)
C(1)-C(2)-C(7)-C(8) -2.2(3)
C(3)-C(2)-C(7)-C(6) -1.2(3)
C(1)-C(2)-C(7)-C(6) 178.6(2)
C(6)-C(7)-C(8)-C(9) -179.4(2)
C(2)-C(7)-C(8)-C(9) 1.5(4)
C(7)-C(8)-C(9)-C(10) 1.0(4)
C(2)-C(1)-C(10)-C(9) 1.9(3)
C(15)-C(1)-C(10)-C(9) 179.5(2)
C(2)-C(1)-C(10)-C(11) -178.3(2)
```

$\mathrm{C}(15)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	-0.7(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1)$	-2.8(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	177.5(2)
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-79.3(4)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	100.4(3)
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(14)$	161.1(2)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(14)$	-19.2(3)
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(13)$	43.7(3)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(13)$	-136.6(3)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(16)$	88.5(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(16)$	-93.8(3)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(20)$	-95.8(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(20)$	82.0(3)
$\mathrm{C}(21)-\mathrm{O}(1)-\mathrm{C}(16)-\mathrm{C}(15)$	-162.2(2)
$\mathrm{C}(21)-\mathrm{O}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	17.6(3)
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{O}(1)$	-177.8(2)
$\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{O}(1)$	-1.9(3)
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	2.5(3)
$\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	178.3(2)
$\mathrm{O}(1)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	178.6(2)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	-1.7(4)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	0.2(4)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	0.3(4)
$\mathrm{C}(22)-\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{C}(19)$	-12.9(4)
$\mathrm{C}(22)-\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{C}(15)$	165.7(2)

$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{O}(2)$	$179.1(2)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(15)$	$0.5(4)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{O}(2)$	$179.4(2)$
$\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{O}(2)$	$3.5(3)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19)$	$-1.9(3)$
$\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19)$	$-177.8(2)$

Symmetry transformations used to generate equivalent atoms:
Crystallographic Data for 10 (liu 93a) Chapter IV

1

Crystal data and structure refinement for liu93a.
Identification code liu93a
Empirical formula C24 H23 O2
Formula weight 343.42
Temperature 173(2) K
Wavelength $0.71073 \AA$
Crystal system Monoclinic
Space group P2(1)/c
Unit cell dimensions $a=9.427(3) \AA \alpha=90^{\circ}$.

$$
\begin{aligned}
& b=24.184(8) \AA \quad \beta=99.676(6)^{\circ} . \\
& c=8.051(3) \AA \gamma=90^{\circ} .
\end{aligned}
$$

Volume $\quad 1809.5(10) \AA 3$
Z 4
Density (calculated) $1.261 \mathrm{Mg} / \mathrm{m} 3$
Absorption coefficient $\quad 0.079 \mathrm{~mm}-1$
$\mathrm{F}(000) 732$
Crystal size $\quad 0.42 \times 0.07 \times 0.02 \mathrm{~mm} 3$
Theta range for data collection $\quad 1.68$ to 25.00°.
Index ranges $-11<=\mathrm{h}<=11,-28<=\mathrm{k}<=28,-9<=\mathrm{l}<=9$
Reflections collected 16234
Independent reflections $3193[R($ int $)=0.0687]$
Completeness to theta $=25.00^{\circ} \quad 100.0 \%$
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9984 and 0.9678
Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3193/0/327
Goodness-of-fit on F2 1.080
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})] \mathrm{R} 1=0.0603$, wR2 $=0.1333$
R indices (all data) $\quad \mathrm{R} 1=0.0890, \mathrm{wR} 2=0.1478$
Largest diff. peak and hole 0.546 and -0.228 e. \AA - 3
Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A 2 x 103)
for liu93a. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	$x \quad y$	Z		
$\mathrm{O}(1)$	1367(2)	6485(1)	9568(2)	28(1)
$\mathrm{O}(2)$	3605(2)	6719(1)	11675(2)	34(1)
C(1)	1229(3)	5469(1)	6578(3)	26(1)
C(2)	448(3)	5437(1)	8068(4)	29(1)
C(3)	2003(3)	5597(1)	8348(3)	23(1)
C(4)	2238(3)	6240(1)	8459(3)	21(1)
C(5)	1547(3)	6437(1)	6714(3)	23(1)
C(6)	1005(3)	6002(1)	5652(3)	25(1)
C(7)	326(3)	6105(1)	4027(4)	32(1)
C(8)	125(3)	6650(1)	3475(4)	34(1)
C(9)	592(3)	7084(1)	4561(4)	33(1)
C(10)	1320(3)	6980(1)	6169(4)	28(1)
C(11)	3105(3)	5216(1)	9378(3)	25(1)
C(12)	3097(4)	5289(1)	11259(4)	32(1)
C(13)	2890(3)	4604(1)	8897(4)	34(1)
251				

$\mathrm{C}(14) 3850(3)$	$6420(1)$	$8916(3)$	$22(1)$
$\mathrm{C}(15) 4416(3)$	$6690(1)$	$10407(3)$	$25(1)$
$\mathrm{C}(16) 5812(3)$	$6926(1)$	$10674(4)$	$31(1)$
$\mathrm{C}(17) 6673(3)$	$6872(1)$	$9506(4)$	$30(1)$
$\mathrm{C}(18) 6243(3)$	$6558(1)$	$8042(3)$	$27(1)$
$\mathrm{C}(19) 4831(3)$	$6320(1)$	$7753(3)$	$23(1)$
$\mathrm{C}(20) 4513(3)$	$5964(1)$	$6322(3)$	$27(1)$
$\mathrm{C}(21) 5486(3)$	$5859(1)$	$5290(4)$	$32(1)$
$\mathrm{C}(22) 6852(3)$	$6111(1)$	$5566(4)$	$37(1)$
$\mathrm{C}(23) 7215(3)$	$6452(1)$	$6911(4)$	$35(1)$
$\mathrm{C}(24) 4107(4)$	$7046(1)$	$13142(4)$	$35(1)$

Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for liu93a.
$\mathrm{O}(1)-\mathrm{C}(4) \quad 1.439(3)$
$\mathrm{O}(2)-\mathrm{C}(15) \quad 1.376(3)$
$\mathrm{O}(2)-\mathrm{C}(24) \quad 1.434(3)$
$\mathrm{C}(1)-\mathrm{C}(6) \quad 1.486(3)$
$\mathrm{C}(1)-\mathrm{C}(2) \quad 1.512(4)$
$\mathrm{C}(1)-\mathrm{C}(3) \quad 1.520(4)$
$\mathrm{C}(1)-\mathrm{H}(1) \quad 0.99(3)$
$\mathrm{C}(2)-\mathrm{C}(3) \quad 1.496(4)$
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A}) \quad 1.00(3)$
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B}) \quad 0.99(3)$
$\mathrm{C}(3)-\mathrm{C}(11) \quad 1.525(3)$
$\mathrm{C}(3)-\mathrm{C}(4) \quad 1.570(3)$

$\mathrm{C}(4)-\mathrm{C}(5)$	1.523(4)
$\mathrm{C}(4)-\mathrm{C}(14)$	1.564(3)
$\mathrm{C}(5)-\mathrm{C}(10)$	1.389(3)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.396 (3)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.379(4)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.394(4)
$\mathrm{C}(7)-\mathrm{H}(7)$	0.97(3)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.390(4)
$\mathrm{C}(8)-\mathrm{H}(8)$	0.97(3)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.383(4)
$\mathrm{C}(9)-\mathrm{H}(9)$	0.93(3)
$\mathrm{C}(10)-\mathrm{H}(10)$	0.99(3)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.525(4)
$\mathrm{C}(11)-\mathrm{C}(13)$	1.535(4)
$\mathrm{C}(11)-\mathrm{H}(11)$	1.02(3)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.98(4)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.98(3)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	0.99(3)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.97(3)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	1.03(4)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	1.03(3)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.392(4)
$\mathrm{C}(14)-\mathrm{C}(19)$	1.443(4)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.417(4)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.349(4)

$\mathrm{C}(16)-\mathrm{H}(16) \quad 0$	0.96(3)
$\mathrm{C}(17)-\mathrm{C}(18) \quad 1$	1.403(4)
$\mathrm{C}(17)-\mathrm{H}(17) \quad 0$	0.97(3)
$\mathrm{C}(18)-\mathrm{C}(23) \quad 1$	1.419(4)
$\mathrm{C}(18)-\mathrm{C}(19) \quad 1$	1.433(4)
$\mathrm{C}(19)-\mathrm{C}(20) \quad 1$	1.428(4)
$\mathrm{C}(20)-\mathrm{C}(21) \quad 1$	$1.362(4)$
$\mathrm{C}(20)-\mathrm{H}(20) \quad 1$	1.03(3)
$\mathrm{C}(21)-\mathrm{C}(22) \quad 1$	1.408(4)
$\mathrm{C}(21)-\mathrm{H}(21) \quad 1$	1.04(3)
$\mathrm{C}(22)-\mathrm{C}(23) \quad 1$	1.359(4)
$\mathrm{C}(22)-\mathrm{H}(22) \quad 1$	1.03(3)
$\mathrm{C}(23)-\mathrm{H}(23) \quad 0$	0.99(3)
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.99(3)
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B}) 0$	0.98(3)
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C}) 1$	1.06(3)
$\mathrm{C}(15)-\mathrm{O}(2)-\mathrm{C}(24$	24) 119.4(2)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$) 113.3(2)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(3)$) 107.4(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)$) 59.16(17)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1)$) 118.7(16)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$) 120.4(16)
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{H}(1)$) 124.0(16)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$) 60.69(17)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A}$	A) 113.8(16)

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	$116.2(16)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	$119.8(14)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	$117.1(15)$
$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	$117(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(1)$	$60.15(17)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)$	$119.1(2)$
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(11)$	$124.2(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$113.0(2)$
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$107.2(2)$
$\mathrm{C}(11)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.3(2)$
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$104.05(18)$
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(14)$	$111.85(19)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(14)$	$112.2(2)$
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$110.72(19)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$102.88(19)$
$\mathrm{C}(14)-\mathrm{C}(4)-\mathrm{C}(3)$	$114.33(19)$
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)$	$119.8(2)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	$118.9(16)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	$121.8(16)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$127.3(2)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$112.6(2)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(1)$	$129.5(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$109.9(2)$
$\mathrm{C}(6)-\mathrm{C}(8)$	$119.3(3)$
C	

$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	120.1(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	118.4(18)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	121.5(18)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	120.5(3)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	119.1(16)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	120.4(16)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$	119.6(3)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	123.6(15)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{H}(10)$	116.7(15)
$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	110.7(2)
$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(13)$	113.3(2)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	109.8(2)
$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{H}(11)$	106.8(14)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	106.8(14)
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{H}(11)$	109.1(14)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.6(19)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	113.6(18)
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$) $107(3)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	112.5(16)
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$) 110(2)
$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$) 104(2)
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.4(17)
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	110.3(19)
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$) 109(3)
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	111.0(16)

$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	
$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)$	$116.4(2)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(4)$	$123.4(2)$
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(4)$	$120.2(2)$
$\mathrm{O}(2)-\mathrm{C}(15)-\mathrm{C}(14)$	$118.9(2)$
$\mathrm{O}(2)-\mathrm{C}(15)-\mathrm{C}(16)$	$119.0(2)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$122.1(2)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$120.5(3)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	$121.1(18)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	$118.4(17)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$121.1(3)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	$121.2(16)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	$117.7(16)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(23)$	$120.6(3)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$118.9(2)$
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(19)$	$120.4(3)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	$115.8(2)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	$120.8(17)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$121.0(3)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	$123.7(2)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	$120.4(2)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20)$	$120.1(15)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	$117.7(15)$
C	

```
C(22)-C(21)-H(21) 118.3(17)
C(23)-C(22)-C(21) 119.3(3)
C(23)-C(22)-H(22) 118.3(15)
C(21)-C(22)-H(22) 121.9(15)
C(22)-C(23)-C(18) 121.2(3)
C(22)-C(23)-H(23) 123.2(18)
C(18)-C(23)-H(23) 115.7(18)
O(2)-C(24)-H(24A) 104.9(19)
O(2)-C(24)-H(24B) 107.2(19)
H(24A)-C(24)-H(24B) 116(3)
O(2)-C(24)-H(24C) 109.1(16)
H(24A)-C(24)-H(24C) 111(2)
H(24B)-C(24)-H(24C) 109(2)
```

Symmetry transformations used to generate equivalent atoms:

Anisotropic displacement parameters ($\AA 2 \times 103$) for liu93a. The anisotropic displacement factor exponent takes the form: $-2 \pi 2\left[\mathrm{~h} 2 \mathrm{a} * 2 \mathrm{U} 11+\ldots+2 \mathrm{hk} \mathrm{a} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U} 12\right]$

	U11	U22	U33	U23	U13	U12
$\mathrm{O}(1)$	$30(1)$	$21(1)$	$36(1)$	$-4(1)$	$11(1)$	$3(1)$
$\mathrm{O}(2)$	$42(1)$	$29(1)$	$31(1)$	$-11(1)$	$9(1)$	$-9(1)$
$\mathrm{C}(1)$	$27(1)$	$15(1)$	$33(2)$	$-1(1)$	$0(1)$	$-3(1)$
$\mathrm{C}(2)$	$27(2)$	$15(1)$	$45(2)$	$3(1)$	$6(1)$	$-4(1)$

```
C(3) 23(1) 13(1) 33(2) 0(1) 3(1) -2(1)
C(4) 25(1) 13(1) 27(1) -3(1) 7(1) -1(1)
C(5) 21(1) 18(1) 30(1) 1(1) 5(1) 1(1)
C(6) 25(1) 18(1) 30(2) -3(1) 2(1) 0(1)
C(7) 30(2) 30(2) 33(2) -4(1) 0(1) -4(1)
C(8) 34(2) 35(2) 31(2) 8(1) 2(1) 0(1)
C(9) 36(2) 22(2) 43(2) 11(1) 9(1) 4(1)
C(10) 29(2) 20(1) 35(2) 0(1) 6(1) -1(1)
C(11) 26(1) 13(1) 35(2) 2(1) 1(1) -3(1)
C(12) 36(2) 24(2) 34(2) 3(1) -2(1) -1(1)
C(13) 35(2) 16(1) 45(2) 0(1) -5(2) 2(1)
C(14) 28(1) 9(1) 29(1) 1(1) 3(1) 0(1)
C(15) 30(1) 15(1) 31(2) 1(1) 5(1) -1(1)
C(16) 36(2) 19(1) 34(2)
C(17) 27(2) 21(1) 41(2) 3(1) 0(1) -7(1)
C(18) 27(1) 17(1) 35(2) 6(1) 2(1) 1(1)
C(19) 25(1) 12(1) 30(2) 4(1) 3(1) 1(1)
C(20) 26(2) 21(1) 33(2) 1(1) 4(1) 2(1)
C(21) 34(2) 28(2) 32(2) -3(1) 6(1) 2(1)
C(22) 32(2) 41(2) 42(2) 2(2) 14(1) 3(1)
C(23) 28(2) 31(2) 47(2) 5(1) 8(1) 0(1)
C(24) 45(2) 26(2) 32(2) -9(1) 3(2) -1(1)
```

Hydrogen coordinates (x 104) and isotropic displacement parameters ($\AA 2 \times 103$) for liu93a.
$\begin{array}{llll}x & y & z & U(e q)\end{array}$

H(1)	1390(30)	5132(12)	5950(30)	34(7)
H(2A)	270(30)	5057(13)	8480(30)	40(8)
H(2B)	-290 (30)	5720(11)	8140(30)	23(7)
H(7)	-30(30)	5806(12)	3250(30)	35(8)
H(8)	-300(30)	6737(12)	2320(40)	44(9)
H(9)	450(30)	7448(12)	4200(30)	29(7)
$\mathrm{H}(10)$	1650(30)	7272(11)	7000(30)	30(7)
H(11)	4090(30)	5340(10)	9170(30)	24(7)
H(12A)	2140(40)	5211(14)	11500(40)	57(10)
H(12B)	3340(30)	5662(15)	11670(40)	50(9)
$\mathrm{H}(12 \mathrm{C})$	3820(30)	5052(12)	11960(30)	37(8)
H(13A)) 3670(30)	4388(12)	9520(30)	36(8)
H(13B)) 1920(40)	4463(14)	9170(40)	63(10)
H(13C)	2850(30)	4549(12)	7620(40)	40(8)
H(16)	6110(30)	7139(12)	11670(40)	39(8)
H(17)	7620(30)	7039(11)	9660(30)	32(7)
H(20)	3520(30)	5775(11)	6110(30)	28(7)
H(21)	5240(30)	5585(13)	4290(40)	49(9)
H(22)	7530(30)	6089(11)	4690(40)	36(8)
H(23)	8160(30)	6643(12)	7170(40)	44(8)
H(24A)	3360(40)	7009(13)	13850(40)	52(10)
H(24B)	4270(30)	7421(15)	12750(40)	51(9)

$\mathrm{H}(24 \mathrm{C}) \quad 5090(30) \quad 6881(12) \quad 13770(40) \quad 42(8)$

Torsion angles [${ }^{\circ}$] for liu93a.

```
C(6)-C(1)-C(2)-C(3) -97.0(2)
C(1)-C(2)-C(3)-C(11) -115.0(3)
C(1)-C(2)-C(3)-C(4) 97.3(2)
C(6)-C(1)-C(3)-C(2) 107.2(2)
C(6)-C(1)-C(3)-C(11) -146.1(2)
C(2)-C(1)-C(3)-C(11) 106.7(3)
C(6)-C(1)-C(3)-C(4) 0.1(3)
C(2)-C(1)-C(3)-C(4) -107.0(2)
C(2)-C(3)-C(4)-O(1) 47.2(3)
C(1)-C(3)-C(4)-O(1) 111.5(2)
C(11)-C(3)-C(4)-O(1) -100.3(3)
C(2)-C(3)-C(4)-C(5) -63.4(3)
C(1)-C(3)-C(4)-C(5) 0.8(2)
C(11)-C(3)-C(4)-C(5) 149.0(2)
C(2)-C(3)-C(4)-C(14) 174.7(2)
C(1)-C(3)-C(4)-C(14) -121.1(2)
C(11)-C(3)-C(4)-C(14) 27.1(3)
O(1)-C(4)-C(5)-C(10) 57.5(3)
C(14)-C(4)-C(5)-C(10) -63.6(3)
C(3)-C(4)-C(5)-C(10) 173.0(2)
O(1)-C(4)-C(5)-C(6) -117.2(2)
C(14)-C(4)-C(5)-C(6) 121.7(2)
```

```
C(3)-C(4)-C(5)-C(6) -1.6(3)
C(10)-C(5)-C(6)-C(7) 4.2(4)
C(4)-C(5)-C(6)-C(7) 179.2(2)
C(10)-C(5)-C(6)-C(1) -173.3(2)
C(4)-C(5)-C(6)-C(1) 1.8(3)
C(2)-C(1)-C(6)-C(7) -115.1(3)
C(3)-C(1)-C(6)-C(7) -178.3(3)
C(2)-C(1)-C(6)-C(5) 62.1(3)
C(3)-C(1)-C(6)-C(5) -1.2(3)
C(5)-C(6)-C(7)-C(8) -2.9(4)
C(1)-C(6)-C(7)-C(8) 174.0(3)
C(6)-C(7)-C(8)-C(9) -0.7(4)
C(7)-C(8)-C(9)-C(10) 3.2(4)
C(8)-C(9)-C(10)-C(5) -1.9(4)
C(6)-C(5)-C(10)-C(9) -1.7(4)
C(4)-C(5)-C(10)-C(9) -176.0(2)
C(2)-C(3)-C(11)-C(12) -78.7(3)
C(1)-C(3)-C(11)-C(12) -150.6(2)
C(4)-C(3)-C(11)-C(12) 66.9(3)
C(2)-C(3)-C(11)-C(13) 45.3(3)
C(1)-C(3)-C(11)-C(13) -26.6(4)
C(4)-C(3)-C(11)-C(13) -169.2(2)
O(1)-C(4)-C(14)-C(15) 12.2(3)
C(5)-C(4)-C(14)-C(15) 128.7(2)
C(3)-C(4)-C(14)-C(15) -114.6(3)
```

$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(19)$	-166.45(19)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(19)$	-50.0(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(19)$	66.7(3)
$\mathrm{C}(24)-\mathrm{O}(2)-\mathrm{C}(15)-\mathrm{C}(14)$	-173.4(2)
$\mathrm{C}(24)-\mathrm{O}(2)-\mathrm{C}(15)-\mathrm{C}(16)$	8.0(3)
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(2)$	-169.7(2)
$\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(2)$	11.6(4)
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	8.9(3)
$\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	-169.8(2)
$\mathrm{O}(2)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	175.3(2)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	-3.3(4)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	-3.3(4)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(23)$	-173.1(3)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	3.6(4)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	-174.5(2)
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	2.2(3)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	2.4(3)
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	179.1(2)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(20)$	168.2(2)
$\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(20)$	-13.0(3)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	-8.4(3)
$\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	170.4(2)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	-0.3(4)
$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	-177.0(2)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	-1.8(4)

$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$1.9(4)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(18)$	$0.1(4)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(22)$	$174.5(3)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(22)$	$-2.1(4)$

Symmetry transformations used to generate equivalent atoms:

Crystallographic Data for 20 (liu 100) Chapter II

Crystal data and structure refinement for liu100.
Identification code liu100
Empirical formula C21 H24 O3
Formula weight 324.40
Temperature 173(2) K
Wavelength $0.71073 \AA$
Crystal system Triclinic
Space group $\mathrm{P}-1$
Unit cell dimensions $a=8.3715(11) \AA \quad \alpha=94.572(2)^{\circ}$.

$$
\begin{array}{ll}
\mathrm{b}=8.9396(11) \AA & \beta=92.290(2)^{\circ} . \\
\mathrm{c}=12.4788(16) \AA & \gamma=111.493(2)^{\circ} .
\end{array}
$$

Volume $\quad 863.77(19) \AA 3$
Z 2
Density (calculated) $1.247 \mathrm{Mg} / \mathrm{m} 3$
Absorption coefficient $\quad 0.082 \mathrm{~mm}-1$
$\mathrm{F}(000) 348$
Crystal size $\quad 0.29 \times 0.11 \times 0.07 \mathrm{~mm} 3$
Theta range for data collection $\quad 1.64$ to 27.00°.
Index ranges $-10<=\mathrm{h}<=10,-11<=\mathrm{k}<=11,-15<=\mathrm{l}<=15$
Reflections collected 9676
Independent reflections $3730[\mathrm{R}(\mathrm{int})=0.0142]$
Completeness to theta $=27.00^{\circ} \quad 99.0 \%$
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9943 and 0.9766
Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3730/0/313
Goodness-of-fit on F2 1.048
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})] \mathrm{R} 1=0.0385, \mathrm{wR} 2=0.0995$
R indices (all data) $\quad \mathrm{R} 1=0.0442, \mathrm{wR} 2=0.1047$
Largest diff. peak and hole 0.317 and -0.216 e. \AA - -3
Atomic coordinates (x 104) and equivalent isotropic displacement parameters (\AA 2x 103) for liu100. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	y	z	$\mathrm{U}(\mathrm{eq})$	
$\mathrm{O}(1)$	$8543(1)$	$648(1)$	$651(1)$	$29(1)$
$\mathrm{O}(2)$	$11438(1)$	$3014(1)$	$869(1)$	$39(1)$
$\mathrm{O}(3)$	$8839(1)$	$999(1)$	$4002(1)$	$28(1)$
$\mathrm{C}(1)$	$6153(2)$	$-1437(1)$	$2588(1)$	$24(1)$
$\mathrm{C}(2)$	$5433(2)$	$-1271(2)$	$1487(1)$	$27(1)$
$\mathrm{C}(3)$	$6761(1)$	$184(1)$	$2134(1)$	$22(1)$
$\mathrm{C}(4)$	$8618(1)$	$538(1)$	$1785(1)$	$21(1)$
$\mathrm{C}(5)$	$8943(2)$	$-978(1)$	$2032(1)$	$22(1)$
$\mathrm{C}(6)$	$7574(2)$	$-2051(1)$	$2520(1)$	$23(1)$
$\mathrm{C}(7)$	$7656(2)$	$-3488(1)$	$2814(1)$	$27(1)$
$\mathrm{C}(8)$	$9114(2)$	$-3836(2)$	$2612(1)$	$30(1)$
$\mathrm{C}(9)$	$10464(2)$	$-2768(2)$	$2115(1)$	$30(1)$
$\mathrm{C}(10)$	$10385(2)$	$-1327(1)$	$1819(1)$	$26(1)$
$\mathrm{C}(11)$	$6231(2)$	$1594(2)$	$2492(1)$	$26(1)$
$\mathrm{C}(12)$	$5719(2)$	$2283(2)$	$1509(1)$	$36(1)$

$\mathrm{C}(13)$	$4808(2)$	$1169(2)$	$3270(1)$	$35(1)$
$\mathrm{C}(14)$	$10027(1)$	$2029(1)$	$2425(1)$	$21(1)$
$\mathrm{C}(15)$	$11370(2)$	$3208(1)$	$1965(1)$	$23(1)$
$\mathrm{C}(16)$	$12616(2)$	$4506(1)$	$2588(1)$	$26(1)$
$\mathrm{C}(17)$	$12564(2)$	$4644(2)$	$3691(1)$	$30(1)$
$\mathrm{C}(18)$	$11306(2)$	$3498(2)$	$4190(1)$	$29(1)$
$\mathrm{C}(19)$	$10077(2)$	$2196(1)$	$3561(1)$	$23(1)$
$\mathrm{C}(20)$	$12592(2)$	$4268(2)$	$339(1)$	$37(1)$
$\mathrm{C}(21)$	$8690(2)$	$1170(2)$	$5136(1)$	$36(1)$

Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for liu 100 .
$\mathrm{O}(1)-\mathrm{C}(4) \quad 1.4272(13)$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O}) \quad 0.859(19)$
$\mathrm{O}(2)-\mathrm{C}(15) \quad 1.3711(14)$
$\mathrm{O}(2)-\mathrm{C}(20) \quad 1.4146(15)$
$\mathrm{O}(3)-\mathrm{C}(19) \quad 1.3600(14)$
$\mathrm{O}(3)-\mathrm{C}(21) \quad 1.4269(15)$
$\mathrm{C}(1)-\mathrm{C}(6) \quad 1.4842(17)$
$\mathrm{C}(1)-\mathrm{C}(3) \quad 1.5140(16)$
$\mathrm{C}(1)-\mathrm{C}(2) \quad 1.5184(17)$
$\mathrm{C}(1)-\mathrm{H}(1) \quad 0.958(14)$
$\mathrm{C}(2)-\mathrm{C}(3) \quad 1.5100(16)$
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A}) \quad 0.989(15)$
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B}) \quad 0.981(15)$
$\mathrm{C}(3)-\mathrm{C}(11) \quad 1.5246(17)$

$\mathrm{C}(3)-\mathrm{C}(4)$	$1.5562(16)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.5281(16)$
$\mathrm{C}(4)-\mathrm{C}(14)$	$1.5518(15)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.3834(17)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.3956(16)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.3890(17)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.3931(18)$
$\mathrm{C}(7)-\mathrm{H}(7)$	$0.953(15)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.3907(19)$
$\mathrm{C}(8)-\mathrm{H}(8)$	$0.970(15)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.3915(18)$
$\mathrm{C}(9)-\mathrm{H}(9)$	$0.988(16)$
$\mathrm{C}(10)-\mathrm{H}(10)$	$0.973(15)$
$\mathrm{C}(11)-\mathrm{C}(13)$	$1.5248(18)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.5292(19)$
$\mathrm{C}(11)-\mathrm{H}(11)$	$0.995(15)$
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	$0.981(18)$
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	$0.985(18)$
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	$1.020(18)$
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	$0.989(19)$
$\mathrm{C}(14)-\mathrm{C}(19)$	$1.4109(16)$
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	$0.986(18)$
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	$0.995(17)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.4084(16)$
C	

$\mathrm{C}(16)-\mathrm{C}(17) \quad 1$	1.3759(18)
$\mathrm{C}(16)-\mathrm{H}(16) \quad 0$	0.978(15)
$\mathrm{C}(17)-\mathrm{C}(18) \quad 1$	1.3819(18)
$\mathrm{C}(17)-\mathrm{H}(17) \quad 0$	0.967(17)
$\mathrm{C}(18)-\mathrm{C}(19) \quad 1$	$1.3932(17)$
$\mathrm{C}(18)-\mathrm{H}(18) \quad 0$	$0.959(15)$
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	1.00(2)
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.990 (16)
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	0.98(2)
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	1.008(18)
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.994(18)
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	1.003(16)
$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O}$	O) 109.4(12)
$\mathrm{C}(15)-\mathrm{O}(2)-\mathrm{C}(20)$	(20) 120.01(10)
$\mathrm{C}(19)-\mathrm{O}(3)-\mathrm{C}(21)$	(21) 118.60(10)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(3)$) 106.99(10)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$) 112.55(10)
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(2)$) 59.73(7)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1)$) 120.1(8)
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{H}(1)$) 122.5(8)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$) 120.3(9)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$) 59.99(7)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A}$	A) 115.7(8)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A}$	A) 117.3(8)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B}$	B) 117.5(9)

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	116.7(9)
$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	117.2(12)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(1)$	60.28(8)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)$	117.73(10)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(11)$	125.29(10)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	112.91(9)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	107.83(9)
$\mathrm{C}(11)-\mathrm{C}(3)-\mathrm{C}(4)$	119.14(9)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	110.57(9)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(14)$	113.21(9)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(14)$	108.62(9)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	106.35(9)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	102.89(9)
$\mathrm{C}(14)-\mathrm{C}(4)-\mathrm{C}(3)$	114.72(9)
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)$	121.19(11)
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(4)$	126.81(10)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	112.00(10)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	119.93(11)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(1)$	129.84(11)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	110.15(10)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	119.06(11)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	121.1(9)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	119.9(9)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	120.61(12)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	118.7(9)

$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8) \quad 1$	120.7(9)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.45(12)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	121.2(9)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	118.4(9)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	118.76(11)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{H}(10)$	120.6(8)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	120.6(8)
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(3)$	113.50(10)
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(12)$	110.93(11)
$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(12) \quad 1$	110.13(11)
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{H}(11) \quad 1$	106.5(8)
$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{H}(11)$	107.7(8)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	107.8(8)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	110.8(10)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	110.8(10)
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$) 106.4(14)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	111.2(9)
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	108.2(14)
$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.2(14)
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	113.7(10)
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.9(10)
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$) 106.6(14)
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	111.8(9)
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$) 106.5(14)
$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	108.1(13)

```
C(15)-C(14)-C(19) 115.73(10)
C(15)-C(14)-C(4) 124.96(10)
C(19)-C(14)-C(4) 119.16(10)
O(2)-C(15)-C(16) 120.52(10)
O(2)-C(15)-C(14) 117.33(10)
C(16)-C(15)-C(14) 122.14(11)
C(17)-C(16)-C(15) 119.62(11)
C(17)-C(16)-H(16) 120.3(9)
C(15)-C(16)-H(16) 120.1(9)
C(16)-C(17)-C(18) 120.78(11)
C(16)-C(17)-H(17) 120.4(9)
C(18)-C(17)-H(17) 118.8(9)
C(17)-C(18)-C(19) 119.17(12)
C(17)-C(18)-H(18) 121.7(9)
C(19)-C(18)-H(18) 119.1(9)
O(3)-C(19)-C(18) 122.18(11)
O(3)-C(19)-C(14) 115.38(10)
C(18)-C(19)-C(14) 122.45(11)
O(2)-C(20)-H(20A) 109.8(11)
O(2)-C(20)-H(20B) 106.4(9)
H(20A)-C(20)-H(20B) 109.6(14)
O(2)-C(20)-H(20C) 109.2(11)
H(20A)-C(20)-H(20C) 111.3(16)
H(20B)-C(20)-H(20C) 110.4(14)
O(3)-C(21)-H(21A) 109.8(10)
```

```
O(3)-C(21)-H(21B) 104.1(10)
H(21A)-C(21)-H(21B) 110.7(14)
O(3)-C(21)-H(21C) 112.0(9)
H(21A)-C(21)-H(21C) 111.5(13)
H(21B)-C(21)-H(21C) 108.4(13)
```

Symmetry transformations used to generate equivalent atoms:

Anisotropic displacement parameters (Å2x 103)for liu100. The anisotropic displacement factor exponent takes the form: $-2 \pi 2\left[\mathrm{~h} 2 \mathrm{a}^{*} 2 \mathrm{U} 11+\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U} 12\right]$

	U 11	U 22	U 33	U 23	U 13	U 12
$\mathrm{O}(1)$	$27(1)$	$32(1)$	$18(1)$	$4(1)$	$1(1)$	$0(1)$
$\mathrm{O}(2)$	$42(1)$	$32(1)$	$25(1)$	$0(1)$	$12(1)$	$-10(1)$
$\mathrm{O}(3)$	$28(1)$	$29(1)$	$19(1)$	$4(1)$	$2(1)$	$1(1)$
$\mathrm{C}(1)$	$22(1)$	$22(1)$	$25(1)$	$3(1)$	$4(1)$	$2(1)$
$\mathrm{C}(2)$	$21(1)$	$25(1)$	$28(1)$	$1(1)$	$-1(1)$	$2(1)$
$\mathrm{C}(3)$	$20(1)$	$22(1)$	$21(1)$	$3(1)$	$1(1)$	$3(1)$
$\mathrm{C}(4)$	$22(1)$	$20(1)$	$17(1)$	$2(1)$	$2(1)$	$3(1)$
$\mathrm{C}(5)$	$23(1)$	$19(1)$	$19(1)$	$-1(1)$	$-1(1)$	$4(1)$
$\mathrm{C}(6)$	$23(1)$	$21(1)$	$20(1)$	$0(1)$	$0(1)$	$3(1)$
$\mathrm{C}(7)$	$28(1)$	$21(1)$	$25(1)$	$3(1)$	$0(1)$	$2(1)$
$\mathrm{C}(8)$	$35(1)$	$21(1)$	$31(1)$	$1(1)$	$-4(1)$	$9(1)$
$\mathrm{C}(9)$	$28(1)$	$28(1)$	$33(1)$	$-2(1)$	$0(1)$	$11(1)$

```
C(10) 24(1) 24(1) 24(1) 0(1) 2(1) 4(1)
C(11) 23(1) 24(1) 29(1) 1(1) 0(1) 7(1)
C(12) 41(1) 33(1) 38(1) 7(1) -1(1) 17(1)
C(13) 29(1) 40(1) 37(1) 2(1) 7(1) 14(1)
C(14) 20(1) 19(1) 22(1) 2(1) 1(1) 6(1)
C(15) 24(1) 21(1) 24(1) 3(1) 4(1) 7(1)
C(16) 21(1) 21(1) 33(1) 3(1) 2(1) 3(1)
C(17) 27(1) 24(1) 31(1) -3(1) -5(1) 2(1)
C(18) 31(1) 29(1) 22(1) 0(1) -3(1) 6(1)
C(19) 22(1) 22(1) 23(1) 4(1) 1(1) 6(1)
C(20) 38(1) 33(1) 29(1) 7(1) 10(1) -1(1)
C(21) 37(1) 41(1) 21(1) 4(1) 5(1) 6(1)
```

Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2x 103)
for liu100.

x	y	z	$U(e q)$

$\mathrm{H}(1 \mathrm{O})$	$9540(20)$	$1230(20)$	$470(15)$	$53(5)$
$\mathrm{H}(1)$	$5431(19)$	$-1659(17)$	$3178(12)$	$27(3)$
$\mathrm{H}(2 \mathrm{~A})$	$4248(19)$	$-1276(17)$	$1431(11)$	$29(4)$
$\mathrm{H}(2 \mathrm{~B})$	$5807(19)$	$-1754(18)$	$860(12)$	$31(4)$
$\mathrm{H}(7)$	$6740(20)$	$-4231(18)$	$3154(12)$	$32(4)$
$\mathrm{H}(8)$	$9208(19)$	$-4828(18)$	$2814(12)$	$32(4)$
$\mathrm{H}(9)$	$11490(20)$	$-3014(19)$	$1955(12)$	$38(4)$

$\mathrm{H}(10)$	$11322(19)$	$-583(17)$	$1464(11)$	$28(3)$
$\mathrm{H}(11)$	$7251(18)$	$2458(17)$	$2887(11)$	$27(3)$
$\mathrm{H}(12 \mathrm{~A})$	$5520(20)$	$3280(20)$	$1725(14)$	$48(5)$
$\mathrm{H}(12 \mathrm{~B})$	$6650(20)$	$2580(20)$	$1015(14)$	$48(5)$
$\mathrm{H}(12 \mathrm{C})$	$4620(20)$	$1470(20)$	$1103(13)$	$44(4)$
$\mathrm{H}(13 \mathrm{~A})$	$3750(20)$	$260(20)$	$2980(14)$	$54(5)$
$\mathrm{H}(13 \mathrm{~B})$	$4470(20)$	$2110(20)$	$3441(14)$	$47(5)$
$\mathrm{H}(13 \mathrm{C})$	$5180(20)$	$864(19)$	$3958(13)$	$39(4)$
$\mathrm{H}(16)$	$13535(19)$	$5300(18)$	$2243(12)$	$33(4)$
$\mathrm{H}(17)$	$13410(20)$	$5550(20)$	$4131(13)$	$40(4)$
$\mathrm{H}(18)$	$11258(19)$	$3574(18)$	$4958(13)$	$34(4)$
$\mathrm{H}(20 \mathrm{~A})$	$13810(30)$	$4450(20)$	$593(15)$	$62(6)$
$\mathrm{H}(20 B)$	$12390(20)$	$3892(19)$	$-440(13)$	$39(4)$
$\mathrm{H}(20 \mathrm{C})$	$12340(20)$	$5250(20)$	$481(15)$	$57(5)$
$\mathrm{H}(21 \mathrm{~A})$	$8430(20)$	$2170(20)$	$5341(14)$	$48(5)$
$\mathrm{H}(21 B)$	$7710(20)$	$180(20)$	$5265(13)$	$46(4)$
$\mathrm{H}(21 \mathrm{C})$	$9740(20)$	$1190(18)$	$5559(13)$	$36(4)$

Torsion angles [${ }^{\circ}$] for liu 100.

```
C(6)-C(1)-C(2)-C(3) -97.12(11)
C(1)-C(2)-C(3)-C(11)-116.83(12)
C(1)-C(2)-C(3)-C(4) 98.14(11)
C(6)-C(1)-C(3)-C(2) 106.62(11)
C(6)-C(1)-C(3)-C(11)-148.75(11)
C(2)-C(1)-C(3)-C(11) 104.63(13)
```

```
C(6)-C(1)-C(3)-C(4) -0.07(12)
C(2)-C(1)-C(3)-C(4) -106.69(10)
C(2)-C(3)-C(4)-O(1) 53.77(12)
C(1)-C(3)-C(4)-O(1) 118.34(10)
C(11)-C(3)-C(4)-O(1) -90.72(11)
C(2)-C(3)-C(4)-C(5) -62.50(11)
C(1)-C(3)-C(4)-C(5) 2.07(11)
C(11)-C(3)-C(4)-C(5) 153.01(10)
C(2)-C(3)-C(4)-C(14) 179.73(9)
C(1)-C(3)-C(4)-C(14) -115.70(10)
C(11)-C(3)-C(4)-C(14) 35.24(14)
O(1)-C(4)-C(5)-C(10) 63.15(14)
C(14)-C(4)-C(5)-C(10) -61.63(14)
C(3)-C(4)-C(5)-C(10) 176.38(11)
O(1)-C(4)-C(5)-C(6) -116.81(10)
C(14)-C(4)-C(5)-C(6) 118.41(10)
C(3)-C(4)-C(5)-C(6) -3.59(12)
C(10)-C(5)-C(6)-C(7) 0.84(17)
C(4)-C(5)-C(6)-C(7) -179.20(10)
C(10)-C(5)-C(6)-C(1) -176.21(10)
C(4)-C(5)-C(6)-C(1) 3.76(13)
C(3)-C(1)-C(6)-C(7) -178.90(11)
C(2)-C(1)-C(6)-C(7) -115.25(13)
C(3)-C(1)-C(6)-C(5) -2.24(13)
C(2)-C(1)-C(6)-C(5) 61.42(12)
```

```
C(5)-C(6)-C(7)-C(8) -0.11(17)
C(1)-C(6)-C(7)-C(8) 176.28(11)
C(6)-C(7)-C(8)-C(9) -0.57(18)
C(7)-C(8)-C(9)-C(10) 0.53(19)
C(6)-C(5)-C(10)-C(9) -0.87(17)
C(4)-C(5)-C(10)-C(9) 179.17(11)
C(8)-C(9)-C(10)-C(5) 0.19(18)
C(2)-C(3)-C(11)-C(13) 63.94(14)
C(1)-C(3)-C(11)-C(13) -7.76(17)
C(4)-C(3)-C(11)-C(13) -153.25(11)
C(2)-C(3)-C(11)-C(12) -61.11(14)
C(1)-C(3)-C(11)-C(12) -132.81(12)
C(4)-C(3)-C(11)-C(12) 81.69(13)
O(1)-C(4)-C(14)-C(15) -14.05(16)
C(5)-C(4)-C(14)-C(15) 109.16(12)
C(3)-C(4)-C(14)-C(15) -136.36(11)
O(1)-C(4)-C(14)-C(19) 170.55(10)
C(5)-C(4)-C(14)-C(19) -66.24(13)
C(3)-C(4)-C(14)-C(19) 48.23(14)
C(20)-O(2)-C(15)-C(16) -10.77(19)
C(20)-O(2)-C(15)-C(14) 170.76(12)
C(19)-C(14)-C(15)-O(2) 175.15(10)
C(4)-C(14)-C(15)-O(2) -0.39(17)
C(19)-C(14)-C(15)-C(16) -3.29(17)
C(4)-C(14)-C(15)-C(16) -178.83(10)
```

$\mathrm{O}(2)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$-177.45(12)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$0.95(18)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$1.0(2)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$-0.3(2)$
$\mathrm{C}(21)-\mathrm{O}(3)-\mathrm{C}(19)-\mathrm{C}(18)$	$6.50(18)$
$\mathrm{C}(21)-\mathrm{O}(3)-\mathrm{C}(19)-\mathrm{C}(14)$	$-173.41(11)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{O}(3)$	$177.80(11)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	$-2.30(19)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{O}(3)$	$-176.11(10)$
$\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{O}(3)$	$-0.29(15)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	$3.98(17)$
$\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	$179.80(11)$

Symmetry transformations used to generate equivalent atoms:
Hydrogen bonds for liu100 [$\AA \AA^{\circ}$ and ${ }^{\circ}$.

D-H...A	d(D-H)d(H...A)	$d(D \ldots A)$	$<(D H A)$	
$O(1)-H(1 O) \ldots O(2)$	$0.859(19)$	$1.806(19)$	$2.5536(12)$	$144.3(17)$

Symmetry transformations used to generate equivalent atoms:

Crystallographic Data for 27 (liu 98) Chapter IV

Crystal data and structure refinement for liu98.
Identification code liu98
Empirical formula C 23 H 21 Br O 2
Formula weight 409.31
Temperature 173(2) K
Wavelength $0.71073 \AA$
Crystal system Monoclinic
Space group P2(1)
Unit cell dimensions $\mathrm{a}=10.6135(12) \AA \alpha=90^{\circ}$.

$$
\begin{array}{ll}
\mathrm{b}=7.9057(9) \AA & \beta=108.594(2)^{\circ} . \\
\mathrm{c}=11.4416(13) \AA & \gamma=90^{\circ} .
\end{array}
$$

Volume $\quad 909.92(18) \AA 3$
Z 2
Density (calculated) $1.494 \mathrm{Mg} / \mathrm{m} 3$
Absorption coefficient $\quad 2.273$ mm-1
F(000) 420
Crystal size $\quad 0.19 \times 0.13 \times 0.08 \mathrm{~mm} 3$
Theta range for data collection $\quad 1.88$ to 26.99°.
Index ranges $-13<=\mathrm{h}<=13,-10<=\mathrm{k}<=10,-14<=\mathrm{l}<=14$
Reflections collected 10130
Independent reflections $3932[\mathrm{R}(\mathrm{int})=0.0222]$
Completeness to theta $=26.99^{\circ} \quad 100.0 \%$
Absorption correction None
Max. and min. transmission 0.8391 and 0.6719
Refinement method Full-matrix least-squares on F2
Data / restraints / parameters 3932/1/243
Goodness-of-fit on F2 1.056
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})] \mathrm{R} 1=0.0296, \mathrm{wR} 2=0.0706$
R indices (all data) $\quad \mathrm{R} 1=0.0325, \mathrm{wR} 2=0.0717$
Absolute structure parameter 0.024(7)
Largest diff. peak and hole 0.485 and -0.184 e. \AA - 3
Atomic coordinates (x 104) and equivalent isotropic displacement parameters ($\AA 2 \times 103$)
for liu98. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

$\mathrm{C}(21)$	$6942(2)$	$7628(3)$	$-777(2)$	$26(1)$
$\mathrm{C}(22)$	$7830(3)$	$8446(3)$	$-1272(2)$	$28(1)$
$\mathrm{C}(23)$	$9051(2)$	$8910(4)$	$-546(2)$	$29(1)$

Bond lengths $\left[\AA\right.$] and angles $\left[{ }^{\circ}\right]$ for liu 98.
$\operatorname{Br}(1)-\mathrm{C}(22) \quad 1.899(2)$
$\mathrm{O}(1)-\mathrm{C}(4) \quad 1.456(3)$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O}) \quad 0.63(3)$
$\mathrm{O}(2)-\mathrm{C}(15) \quad 1.371(3)$
$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{O}) \quad 0.75(3)$
$\mathrm{C}(1)-\mathrm{C}(6) \quad 1.481(3)$
$\mathrm{C}(1)-\mathrm{C}(2) \quad 1.501(3)$
$\mathrm{C}(1)-\mathrm{C}(3) \quad 1.526(3)$
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A}) \quad 1.0000$
$\mathrm{C}(2)-\mathrm{C}(3) \quad 1.508(3)$
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A}) \quad 0.9900$
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B}) \quad 0.9900$
$\mathrm{C}(3)-\mathrm{C}(11) \quad 1.533(3)$
$\mathrm{C}(3)-\mathrm{C}(4) \quad 1.551(3)$
$\mathrm{C}(4)-\mathrm{C}(5) \quad 1.527(3)$
$\mathrm{C}(4)-\mathrm{C}(14) \quad 1.553(3)$
$\mathrm{C}(5)-\mathrm{C}(10) \quad 1.376(4)$
$\mathrm{C}(5)-\mathrm{C}(6) \quad 1.396(3)$
$\mathrm{C}(6)-\mathrm{C}(7) \quad 1.386(4)$
$\mathrm{C}(7)-\mathrm{C}(8) \quad 1.394(4)$

```
C(7)-H(7A) 0.9500
C(8)-C(9) 1.383(4)
C(8)-H(8A) 0.9500
C(9)-C(10) 1.394(4)
C(9)-H(9A) 0.9500
C(10)-H(10A) 0.9500
C(11)-C(12) 1.530(3)
C(11)-C(13) 1.529(4)
C(11)-H(11A) 1.0000
C(12)-H(12A) 0.9800
C(12)-H(12B) 0.9800
C(12)-H(12C) 0.9800
C(13)-H(13A) 0.9800
C(13)-H(13B) 0.9800
C(13)-H(13C) 0.9800
C(14)-C(15) 1.391(3)
C(14)-C(19) 1.441(3)
C(15)-C(16) 1.403(4)
C(16)-C(17) 1.346(3)
C(16)-H(16A) 0.9500
C(17)-C(18) 1.419(3)
C(17)-H(17A) 0.9500
C(18)-C(19) 1.425(3)
C(18)-C(23) 1.420(3)
C(19)-C(20) 1.425(3)
```

$\mathrm{C}(20)-\mathrm{C}(21) \quad 1.369(3)$	
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A}) \quad 0.9500$	
$\mathrm{C}(21)-\mathrm{C}(22) \quad 1.402(3)$	
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A}) \quad 0.9500$	
$\mathrm{C}(22)-\mathrm{C}(23) \quad 1.348(3)$	
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A}) \quad 0.9500$	
$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O})$	1O) 117(3)
$\mathrm{C}(15)-\mathrm{O}(2)-\mathrm{H}(2 \mathrm{O}$	(2O) 105(2)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	(2) 111.9(2)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(3)$	(3) 106.9(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)$	3) $59.76(15)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	1A) 120.9
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	1A) 120.9
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	1A) 120.9
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	3) 60.95(15)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	2A) 117.7
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	2A) 117.7
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	2B) 117.7
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	2B) 117.7
$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B}$	H(2B) 114.8
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(1)$	1) $59.29(15)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)$	11) $117.5(2)$
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(11)$	11) 125.1(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	4) 114.1(2)

$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	107.38(19)
$\mathrm{C}(11)-\mathrm{C}(3)-\mathrm{C}(4)$	119.4(2)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	107.84(19)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	109.81(19)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	103.22(19)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(14)$	107.19(19)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(14)$	110.11(19)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(14)$	118.26(19)
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)$	121.0(2)
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(4)$	127.2(2)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	111.8(2)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	119.9(2)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(1)$	129.5(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	110.2(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	119.0(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	120.5
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	120.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	120.8(2)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	119.6
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	119.6
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.1(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	120.0
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	120.0
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	119.2(2)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	120.4

$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	120.4
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	$110.1(2)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(3)$	$110.64(19)$
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(3)$	$113.8(2)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	107.3
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	107.3
$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	107.3
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{O}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$122.2(2)$
$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)$	$116.6(2)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(4)$	$121.8(2)$
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(4)$	$121.42(19)$
$\mathrm{O}(15)-\mathrm{C}(14)$	$124.9(2)$
O	

```
C(17)-C(16)-C(15) 121.6(2)
C(17)-C(16)-H(16A) 119.2
C(15)-C(16)-H(16A) 119.2
C(16)-C(17)-C(18) 119.8(2)
C(16)-C(17)-H(17A) 120.1
C(18)-C(17)-H(17A) 120.1
C(17)-C(18)-C(19) 119.3(2)
C(17)-C(18)-C(23) 120.1(2)
C(19)-C(18)-C(23) 120.7(2)
C(18)-C(19)-C(20) 115.9(2)
C(18)-C(19)-C(14) 120.5(2)
C(20)-C(19)-C(14) 123.7(2)
C(21)-C(20)-C(19) 122.5(2)
C(21)-C(20)-H(20A) 118.8
C(19)-C(20)-H(20A) 118.8
C(20)-C(21)-C(22) 119.6(2)
C(20)-C(21)-H(21A) 120.2
C(22)-C(21)-H(21A) 120.2
C(23)-C(22)-C(21) 121.0(2)
C(23)-C(22)-Br(1) 120.81(18)
C(21)-C(22)-Br(1) 118.21(19)
C(22)-C(23)-C(18) 120.3(2)
C(22)-C(23)-H(23A) 119.9
C(18)-C(23)-H(23A) 119.9
```

Symmetry transformations used to generate equivalent atoms:
Anisotropic displacement parameters ($\AA 2$ x 103)for liu98. The anisotropic displacement factor exponent takes the form: $-2 \pi 2\left[h 2 a * 2 U 11+\ldots+2 h k a^{*} b^{*} U 12\right]$

	U 11	U 22	U 33	U 23	U 13	U 12
$\mathrm{Br}(1)$	$45(1)$	$54(1)$	$27(1)$	$12(1)$	$14(1)$	$3(1)$
$\mathrm{O}(1)$	$38(1)$	$26(1)$	$23(1)$	$9(1)$	$-6(1)$	$-6(1)$
$\mathrm{O}(2)$	$26(1)$	$34(1)$	$27(1)$	$-2(1)$	$0(1)$	$-4(1)$
$\mathrm{C}(1)$	$23(1)$	$24(1)$	$24(1)$	$2(1)$	$6(1)$	$-2(1)$
$\mathrm{C}(2)$	$28(1)$	$20(1)$	$28(1)$	$1(1)$	$7(1)$	$-4(1)$
$\mathrm{C}(3)$	$23(1)$	$19(1)$	$22(1)$	$2(1)$	$4(1)$	$2(1)$
$\mathrm{C}(4)$	$23(1)$	$19(1)$	$20(1)$	$3(1)$	$2(1)$	$1(1)$
$\mathrm{C}(5)$	$25(1)$	$24(1)$	$21(1)$	$5(1)$	$10(1)$	$-1(1)$
$\mathrm{C}(6)$	$28(1)$	$24(1)$	$24(1)$	$4(1)$	$11(1)$	$-1(1)$
$\mathrm{C}(7)$	$27(1)$	$34(2)$	$40(2)$	$6(1)$	$13(1)$	$5(1)$
$\mathrm{C}(8)$	$39(2)$	$28(2)$	$44(2)$	$7(1)$	$24(1)$	$10(1)$
$\mathrm{C}(9)$	$49(2)$	$23(1)$	$29(1)$	$1(1)$	$20(1)$	$0(1)$
$\mathrm{C}(10)$	$35(1)$	$26(1)$	$22(1)$	$1(1)$	$10(1)$	$-7(1)$
$\mathrm{C}(11)$	$26(1)$	$22(1)$	$25(1)$	$2(1)$	$6(1)$	$1(1)$
$\mathrm{C}(12)$	$31(1)$	$31(1)$	$33(1)$	$2(1)$	$12(1)$	$9(1)$
$\mathrm{C}(13)$	$37(2)$	$40(2)$	$45(2)$	$-15(1)$	$6(1)$	$-1(1)$
$\mathrm{C}(14)$	$19(1)$	$17(1)$	$25(1)$	$-2(1)$	$6(1)$	$1(1)$
$\mathrm{C}(15)$	$21(1)$	$21(1)$	$26(1)$	$-5(1)$	$2(1)$	$4(1)$
$\mathrm{C}(16)$	$17(1)$	$32(2)$	$37(1)$	$-7(1)$	$7(1)$	$-4(1)$

$\mathrm{C}(17) \quad$ 23(1) $32(1) \quad 40(1)-3(2) \quad 16(1) \quad-4(1)$
C(18) 23(1) 24(2) 30(1) $-3(1) \quad 12(1) \quad 2(1)$
C(19) 20(1) 19(1) 26(1) $-1(1) \quad 8(1) \quad 2(1)$
$\mathrm{C}(20) \quad 19(1) \quad 25(1) \quad 28(1) \quad 5(1) \quad 7(1) \quad 0(1)$
$\mathrm{C}(21) \quad 22(1) \quad 30(1) \quad 24(1) \quad 5(1) \quad 5(1) \quad 4(1)$
$\mathrm{C}(22) \quad 33(1) \quad 32(2) \quad 22(1) \quad 7(1) \quad 14(1) \quad 8(1)$
$\mathrm{C}(23) \quad 32(1) \quad 28(1) \quad 34(1) \quad 2(2) \quad 19(1) \quad 1(2)$

Hydrogen coordinates (x 104) and isotropic displacement parameters ($\AA 2 \times 103$)
for liu98.

X	y	z	U(eq)	
$\mathrm{H}(1 \mathrm{~A})$	5180	4942	1365	29
H(2A)	6180	2777	2951	31
H(2B)	6608	4300	4014	31
H(7A)	3866	7582	2315	40
H(8A)	4247	10077	3485	41
H(9A)	6403	10910	4585	38
H(10A)	8223	9303	4472	33
$\mathrm{H}(11 \mathrm{~A})$	8269	4359	1187	30
$\mathrm{H}(12 \mathrm{~A})$	9324	1769	1977	47
H(12B)	8631	1802	3031	47
H(12C)	9700	3218	3007	47
H(13A)	7241	1814	300	63

$\mathrm{H}(13 \mathrm{~B})$	6150	3249	204	63	
$\mathrm{H}(13 \mathrm{C})$	6384	1795	1224	63	
$\mathrm{H}(16 \mathrm{~A})$	12042	8924	3198	35	
$\mathrm{H}(17 \mathrm{~A})$	11367	9526	1136	36	
$\mathrm{H}(20 \mathrm{~A})$	6698	6780	789	29	
$\mathrm{H}(21 \mathrm{~A})$	6081	7317	-1297	31	
$\mathrm{H}(23 \mathrm{~A})$	9626	9506	-890	35	
$\mathrm{H}(1 \mathrm{O})$	$8880(30)$	$5000(40)$	$4550(30)$	$18(9)$	
$\mathrm{H}(2 \mathrm{O})$	$10440(30)$	$6950(30)$	$4670(20)$	$13(7)$	

Torsion angles [${ }^{\circ}$] for liu 98.

```
C(6)-C(1)-C(2)-C(3) -97.4(2)
C(1)-C(2)-C(3)-C(11)-116.4(2)
C(1)-C(2)-C(3)-C(4) 96.6(2)
C(6)-C(1)-C(3)-C(2) 106.0(2)
C(6)-C(1)-C(3)-C(11)-150.2(2)
C(2)-C(1)-C(3)-C(11) 103.8(3)
C(6)-C(1)-C(3)-C(4) -2.2(2)
C(2)-C(1)-C(3)-C(4) -108.1(2)
C(2)-C(3)-C(4)-O(1) 56.5(3)
C(1)-C(3)-C(4)-O(1) 120.0(2)
C(11)-C(3)-C(4)-O(1)-89.7(3)
C(2)-C(3)-C(4)-C(5) -58.2(2)
C(1)-C(3)-C(4)-C(5) 5.3(2)
C(11)-C(3)-C(4)-C(5) 155.51(19)
```

```
C(2)-C(3)-C(4)-C(14) 179.94(19)
C(1)-C(3)-C(4)-C(14)-116.6(2)
C(11)-C(3)-C(4)-C(14) 33.7(3)
O(1)-C(4)-C(5)-C(10) 54.5(3)
C(3)-C(4)-C(5)-C(10) 170.7(2)
C(14)-C(4)-C(5)-C(10) -62.1(3)
O(1)-C(4)-C(5)-C(6) -123.1(2)
C(3)-C(4)-C(5)-C(6) -6.9(2)
C(14)-C(4)-C(5)-C(6) 120.2(2)
C(10)-C(5)-C(6)-C(7) 1.9(4)
C(4)-C(5)-C(6)-C(7) 179.7(2)
C(10)-C(5)-C(6)-C(1)-171.9(2)
C(4)-C(5)-C(6)-C(1) 5.9(3)
C(2)-C(1)-C(6)-C(7) -111.7(3)
C(3)-C(1)-C(6)-C(7) -175.2(2)
C(2)-C(1)-C(6)-C(5) 61.4(3)
C(3)-C(1)-C(6)-C(5) -2.2(3)
C(5)-C(6)-C(7)-C(8) -1.0(4)
C(1)-C(6)-C(7)-C(8) 171.4(2)
C(6)-C(7)-C(8)-C(9) -0.6(4)
C(7)-C(8)-C(9)-C(10) 1.3(4)
C(6)-C(5)-C(10)-C(9)-1.1(4)
C(4)-C(5)-C(10)-C(9)-178.6(2)
C(8)-C(9)-C(10)-C(5) -0.5(4)
C(2)-C(3)-C(11)-C(12) -73.1(3)
```

$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	-143.4(2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	72.0(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(13)$	51.4(3)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(13)$	-18.8(4)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(13)$	-163.5(2)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(15)$	-15.5(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(15)$	101.5(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(15)$	-140.2(2)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(19)$	169.6(2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(19)$	-73.4(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(19)$	44.9(3)
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(2)$	175.5(2)
$\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(2)$	0.3(3)
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	-3.7(3)
$\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	-178.9(2)
$\mathrm{O}(2)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	-178.0(3)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	1.3(4)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	1.2(4)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	-1.0(4)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(23)$	179.4(3)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	178.1(2)
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	-2.3(3)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	-1.6(3)
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	178.1(2)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	3.8(3)

$\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	$179.0(2)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(20)$	$-175.8(2)$
$\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(20)$	$-0.7(3)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$4.5(3)$
$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$-175.9(2)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$-3.2(4)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$-0.6(4)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{Br}(1)$	$178.33(19)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(18)$	$2.7(4)$
$\mathrm{Br}(1)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(18)$	$-176.2(2)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(22)$	$178.4(3)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(22)$	$-1.2(4)$

Symmetry transformations used to generate equivalent atoms:
Hydrogen bonds for liu98 [\AA° and ${ }^{\circ}$].
D-H...A $\quad d(D-H) d(H \ldots A) \quad d(D . . . A) \quad<(D H A)$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O}) \ldots \mathrm{O}(2) \# 10.63(3) 2.21(3) 2.828(3) \quad 164(3)$
$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{O}) \ldots \mathrm{O}(1) \quad 0.75(3) 1.77(3) 2.465(3) \quad 154(3)$

Symmetry transformations used to generate equivalent atoms:
\#1-x+2,y-1/2,-z+1

Crystallographic Data for 17 (liu 110) Chapter IV

Crystal data and structure refinement for liu110.
Identification code liu110
Empirical formula C24 H19 F3 O3 S
Formula weight 444.45
Temperature 173(2) K
Wavelength $0.71073 \AA$
Crystal system Hexagonal
Space group P6(5)

Unit cell dimensions $a=11.5918(4) \AA \quad \alpha=90^{\circ}$.

$$
\begin{array}{ll}
\mathrm{b}=11.5918(4) \AA & \beta=90^{\circ} . \\
\mathrm{c}=55.440(4) \AA & \gamma=120^{\circ} .
\end{array}
$$

Volume $\quad 6451.4(6) \AA 3$
Z 12
Density (calculated) $1.373 \mathrm{Mg} / \mathrm{m} 3$
Absorption coefficient $\quad 0.199$ mm-1
$\mathrm{F}(000) 2760$
Crystal size $\quad 0.19 \times 0.18 \times 0.10 \mathrm{~mm} 3$
Theta range for data collection $\quad 2.03$ to 25.00°.
Index ranges $-13<=\mathrm{h}<=13,-13<=\mathrm{k}<=8,-65<=1<=63$
Reflections collected 35199
Independent reflections $7553[\mathrm{R}($ int $)=0.0552]$
Completeness to theta $=25.00^{\circ} \quad 100.0 \%$
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9803 and 0.9631
Refinement method Full-matrix least-squares on F2
Data / restraints / parameters 7553 / 1 / 559
Goodness-of-fit on F2 1.033
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})] \mathrm{R} 1=0.0569, \mathrm{wR} 2=0.1399$
R indices (all data) $\quad \mathrm{R} 1=0.0700, \mathrm{wR} 2=0.1490$
Absolute structure parameter 0.03(9)
Largest diff. peak and hole 0.660 and -0.273 e. \AA - 3
Atomic coordinates (x 104) and equivalent isotropic displacement parameters (\AA 2x 103)
for liu110. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	$x \quad y$	$\mathrm{z} \quad \mathrm{U}(\mathrm{eq})$		
S(1)	8402(1)	7494(1)	1448(1)	42(1)
$\mathrm{O}(1)$	7894(3)	8060(3)	1247(1)	40(1)
$\mathrm{O}(2)$	7423(4)	6780(4)	1623(1)	67(1)
$\mathrm{O}(3)$	9108(3)	6960(3)	1330(1)	56(1)
F(1)	10450(4)	9865(4)	1430(1)	103(1)
$\mathrm{F}(2)$	9130(4)	9545(5)	1725(1)	108(2)
F(3)	10394(4)	8700(4)	1736(1)	83(1)
C(1)	9671(6)	9018(7)	1595(1)	66(2)
C(2)	6785(4)	8245(4)	1295(1)	35(1)
C(3)	7083(5)	9492(4)	1386(1)	43(1)
C(4)	6074(5)	9721(5)	1435(1)	43(1)
C(5)	4738(5)	8715(4)	1392(1)	38(1)
C(6)	3673(5)	8927(5)	1439(1)	50(1)
C(7)	2404(5)	7986(6)	1394(1)	56(1)
C(8)	2119(5)	6764(5)	1291(1)	46(1)
C(9)	3135(4)	6529(4)	1236(1)	35(1)
C(10)	4469(4)	7480(4)	1286(1)	31(1)
C(11)	5536(4)	7235(4)	1240(1)	30(1)
C(12)	5297(4)	5948(4)	1131(1)	30(1)
C(13)	4656(4)	4754(4)	1275(1)	29(1)
C(14)	4256(4)	4747(4)	1516(1)	31(1)
C(15)	3630(4)	3593(4)	1646(1)	38(1)

$\mathrm{C}(16)$	$3368(4)$	$2380(5)$	$1543(1)$
$\mathrm{C}(17)$	$3739(4)$	$2347(4)$	$1310(1)$
$\mathrm{C}(18)$	$4384(4)$	$3526(4)$	$1169(1)$

$\mathrm{C}\left(10^{\prime}\right) 5259(4)$	$8581(4)$	$9559(1)$	$27(1)$
$\mathrm{C}\left(11^{\prime}\right) 5836(4)$	$8941(4)$	$9324(1)$	$27(1)$
$\mathrm{C}\left(12^{\prime}\right) 5041(4)$	$8302(4)$	$9099(1)$	$27(1)$
$\mathrm{C}\left(13^{\prime}\right) 4750(4)$	$6989(4)$	$9035(1)$	$29(1)$
$\mathrm{C}\left(14^{\prime}\right) 5170(4)$	$6231(4)$	$9171(1)$	$37(1)$
$\mathrm{C}\left(15^{\prime}\right) 4847(5)$	$4973(5)$	$9105(1)$	$46(1)$
$\mathrm{C}\left(16^{\prime}\right) 4110(5)$	$4398(5)$	$8897(1)$	$45(1)$
$\mathrm{C}\left(17^{\prime}\right) 3698(5)$	$5089(5)$	$8757(1)$	$41(1)$
$\mathrm{C}\left(18^{\prime}\right) 3992(4)$	$6389(4)$	$8820(1)$	$34(1)$
$\mathrm{C}\left(19^{\prime}\right) 3534(4)$	$7106(4)$	$8685(1)$	$33(1)$
$\mathrm{C}\left(20^{\prime}\right) 3802(4)$	$8348(4)$	$8754(1)$	$35(1)$
$\mathrm{C}\left(21^{\prime}\right) 4555(4)$	$8953(4)$	$8963(1)$	$31(1)$
$\mathrm{C}\left(22^{\prime}\right) 4792(4)$	$10335(4)$	$9033(1)$	$38(1)$
$\mathrm{C}\left(23^{\prime}\right) 3469(5)$	$10276(6)$	$9083(1)$	$59(1)$
$\mathrm{C}\left(24^{\prime}\right) 5540(6)$	$11368(5)$	$8836(1)$	$58(1)$

Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for liu 110 .
$\mathrm{S}(1)-\mathrm{O}(2) \quad 1.406(4)$
$\mathrm{S}(1)-\mathrm{O}(3) \quad 1.408(3)$
$\mathrm{S}(1)-\mathrm{O}(1) \quad 1.548(3)$
$\mathrm{S}(1)-\mathrm{C}(1) \quad 1.832(6)$
$\mathrm{O}(1)-\mathrm{C}(2) \quad 1.429(5)$
$\mathrm{F}(1)-\mathrm{C}(1) \quad 1.317(8)$
$\mathrm{F}(2)-\mathrm{C}(1) \quad 1.291(7)$
$\mathrm{F}(3)-\mathrm{C}(1) \quad 1.325(6)$

$\mathrm{C}(2)-\mathrm{C}(11)$	$1.366(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.402(6)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.349(7)$
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	0.9500
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.418(7)$
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9500
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.399(6)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.429(6)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.346(7)$
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9500
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.406(7)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9500
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.369(6)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9500
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.407(6)$
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9500
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.424(6)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.501(5)$
$\mathrm{C}(12)-\mathrm{C}(21)$	$1.389(6)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.441(6)$
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9500
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.414(6)$
$\mathrm{C}(13)-\mathrm{C}(18)$	$1.403(6)$
$\mathrm{C}(1424(6)$	
$\mathrm{C}(15)$	$1.366(6)$
C	

```
C(15)-H(15A) 0.9500
C(16)-C(17) 1.373(7)
C(16)-H(16A) 0.9500
C(17)-C(18) 1.420(6)
C(17)-H(17A) 0.9500
C(18)-C(19) 1.402(6)
C(19)-C(20) 1.350(6)
C(19)-H(19A) 0.9500
C(20)-C(21) 1.414(6)
C(20)-H(20A) 0.9500
C(21)-C(22) 1.568(6)
C(22)-C(23) 1.472(8)
C(22)-C(24) 1.522(7)
C(22)-H(22A) 1.0000
C(23)-H(23A) 0.9800
C(23)-H(23B) 0.9800
C(23)-H(23C) 0.9800
C(24)-H(24A) 0.9800
C(24)-H(24B) 0.9800
C(24)-H(24C) 0.9800
S(1')-O(3') 1.393(4)
S(1')-O(2') 1.403(4)
S(1')-O(1') 1.558(3)
S(1')-C(1') 1.824(6)
O(1')-C(2') 1.445(5)
```

$\mathrm{F}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	1.273(7)
$\mathrm{F}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	1.343(8)
$\mathrm{F}\left(3^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	1.313(6)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	1.366(6)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	1.402(6)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	1.348(6)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{H}\left(3^{\prime} \mathrm{B}\right)$	0.9500
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	1.417(6)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime} \mathrm{A}\right)$	0.9500
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	1.401(6)
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	1.429(6)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	1.357(7)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{H}\left(6^{\prime} \mathrm{A}\right)$	0.9500
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	1.390 (7)
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{H}\left(7^{\prime} \mathrm{A}\right)$	0.9500
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	$1.355(6)$
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{H}\left(8^{\prime} \mathrm{A}\right)$	0.9500
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	1.423(6)
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{H}\left(9^{\prime} \mathrm{A}\right)$	0.9500
$\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	$1.427(5)$
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	$1.507(5)$
$\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)$	1.373(6)
$\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)$	1.430 (6)
$\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	1.418(6)
$\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)$	1.434(6)

```
C(14')-C(15') 1.362(6)
C(14')-H(14B) 0.9500
C(15')-C(16') 1.392(7)
C(15')-H(15B) 0.9500
C(16')-C(17') 1.361(7)
C(16')-H(16B) 0.9500
C(17')-C(18') 1.412(6)
C(17')-H(17B) 0.9500
C(18')-C(19') 1.407(6)
C(19')-C(20') 1.367(6)
C(19')-H(19B) 0.9500
C(20')-C(21') 1.407(6)
C(20')-H(20B) 0.9500
C(21')-C(22') 1.534(6)
C(22')-C(23') 1.526(7)
C(22')-C(24') 1.529(7)
C(22')-H(22B) 1.0000
C(23')-H(23D) 0.9800
C(23')-H(23E) 0.9800
C(23')-H(23F) 0.9800
C(24')-H(24D) 0.9800
C(24')-H(24E) 0.9800
C(24')-H(24F) 0.9800
O(2)-S(1)-O(3) 122.4(2)
O(2)-S(1)-O(1) 112.28(19)
```

```
O(3)-S(1)-O(1) 106.4(2)
O(2)-S(1)-C(1) 106.3(3)
O(3)-S(1)-C(1) 105.5(2)
O(1)-S(1)-C(1) 101.8(2)
C(2)-O(1)-S(1) 119.4(3)
F(2)-C(1)-F(1) 110.5(6)
F(2)-C(1)-F(3) 109.2(5)
F(1)-C(1)-F(3) 108.9(5)
F(2)-C(1)-S(1) 111.0(4)
F(1)-C(1)-S(1) 109.2(4)
F(3)-C(1)-S(1) 108.0(4)
C(11)-C(2)-C(3) 125.0(4)
C(11)-C(2)-O(1) 118.5(4)
C(3)-C(2)-O(1) 116.5(4)
C(4)-C(3)-C(2) 119.0(4)
C(4)-C(3)-H(3B) 120.5
C(2)-C(3)-H(3B) 120.5
C(3)-C(4)-C(5) 120.1(4)
C(3)-C(4)-H(4A) 119.9
C(5)-C(4)-H(4A) 119.9
C(6)-C(5)-C(4) 121.4(4)
C(6)-C(5)-C(10) 118.9(4)
C(4)-C(5)-C(10) 119.6(4)
C(7)-C(6)-C(5) 121.7(5)
C(7)-C(6)-H(6A) 119.2
```

$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	119.2
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$120.2(5)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	119.9
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	119.9
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$119.9(5)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	120.0
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	120.0
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$121.2(4)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	119.4
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	119.4
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$122.2(4)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$	$118.0(4)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(5)$	$119.8(4)$
$\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	$116.3(4)$
$\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	$122.1(4)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$121.6(3)$
$\mathrm{C}(21)-\mathrm{C}(12)-\mathrm{C}(13)$	$120.0(4)$
$\mathrm{C}(21)-\mathrm{C}(12)-\mathrm{C}(11)$	$121.1(4)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$118.8(3)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$	$118.6(4)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$122.7(4)$
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(12)$	$118.7(4)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	$121.2(4)$
$\mathrm{C}(14 \mathrm{~A})$	119.4
C	

```
C(14)-C(15)-C(16) 120.7(4)
C(14)-C(15)-H(15A) 119.7
C(16)-C(15)-H(15A) 119.7
C(17)-C(16)-C(15) 119.9(4)
C(17)-C(16)-H(16A) 120.1
C(15)-C(16)-H(16A) 120.1
C(16)-C(17)-C(18) 121.0(4)
C(16)-C(17)-H(17A) 119.5
C(18)-C(17)-H(17A) 119.5
C(19)-C(18)-C(17) 122.1(4)
C(19)-C(18)-C(13) 119.2(4)
C(17)-C(18)-C(13) 118.8(4)
C(20)-C(19)-C(18) 121.2(4)
C(20)-C(19)-H(19A) 119.4
C(18)-C(19)-H(19A) 119.4
C(19)-C(20)-C(21) 121.8(4)
C(19)-C(20)-H(20A) 119.1
C(21)-C(20)-H(20A) 119.1
C(12)-C(21)-C(20) 119.0(4)
C(12)-C(21)-C(22) 121.6(4)
C(20)-C(21)-C(22) 119.2(4)
C(23)-C(22)-C(24) 112.8(5)
C(23)-C(22)-C(21) 107.6(4)
C(24)-C(22)-C(21) 113.3(4)
C(23)-C(22)-H(22A) 107.6
```

$\mathrm{C}(24)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	2A) 107.6
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	2A) 107.6
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	3A) 109.5
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	3B) 109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B}$	(23B) 109.5
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	3C) 109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C}$	(23C) 109.5
$\mathrm{H}(23 \mathrm{~B})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C}$	(23C) 109.5
$\mathrm{C}(22)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	4A) 109.5
$\mathrm{C}(22)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	4B) 109.5
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B}$	(24B) 109.5
$\mathrm{C}(22)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	4C) 109.5
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C}$	(24C) 109.5
$\mathrm{H}(24 \mathrm{~B})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C}$	(24C) 109.5
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{O}\left(2^{\prime}\right) \quad 123$	123.3(3)
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right) \quad 108$	108.5(2)
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right) \quad 110$	110.9(2)
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	105.2(3)
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	106.5(3)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	99.7(2)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)$	119.2(3)
$\mathrm{F}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{F}\left(3^{\prime}\right)$	110.4(5)
$\mathrm{F}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{F}\left(2^{\prime}\right)$	107.1(6)
$\mathrm{F}\left(3^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{F}\left(2^{\prime}\right)$	107.6(5)
$\mathrm{F}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)$	113.8(4)

$\mathrm{F}\left(3^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)$	108.1(4)
$\mathrm{F}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)$	109.7(4)
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	125.1(4)
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)$	117.4(3)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)$	117.4(3)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	118.5(4)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{H}\left(3^{\prime} \mathrm{B}\right)$	120.8
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{H}\left(3^{\prime} \mathrm{B}\right)$	120.8
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	121.3(4)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime} \mathrm{A}\right)$	119.4
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime} \mathrm{A}\right)$	119.4
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	121.9(4)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	119.5(4)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	118.5(4)
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	120.8(4)
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{H}\left(6^{\prime} \mathrm{A}\right)$	119.6
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{H}\left(6^{\prime} \mathrm{A}\right)$	119.6
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	120.0(4)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{H}\left(7^{\prime} \mathrm{A}\right)$	120.0
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{H}\left(7^{\prime} \mathrm{A}\right)$	120.0
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	121.8(4)
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{H}\left(8^{\prime} \mathrm{A}\right)$	119.1
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{H}\left(8^{\prime} \mathrm{A}\right)$	119.1
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	120.0(4)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{H}\left(9^{\prime} \mathrm{A}\right)$	120.0

```
C(10')-C(9')-H(9'A) 120.0
C(9')-C(10')-C(11') 121.6(4)
C(9')-C(10')-C(5') 117.8(4)
C(11')-C(10')-C(5') 120.5(4)
C(2')-C(11')-C(10') 116.0(4)
C(2')-C(11')-C(12') 122.0(3)
C(10')-C(11')-C(12') 121.9(3)
C(21')-C(12')-C(13') 120.3(4)
C(21')-C(12')-C(11') 120.2(3)
C(13')-C(12')-C(11') 119.4(3)
C(14')-C(13')-C(12') 123.7(4)
C(14')-C(13')-C(18') 117.3(4)
C(12')-C(13')-C(18') 119.0(4)
C(15')-C(14')-C(13') 121.6(4)
C(15')-C(14')-H(14B) 119.2
C(13')-C(14')-H(14B) 119.2
C(14')-C(15')-C(16') 120.7(5)
C(14')-C(15')-H(15B) 119.7
C(16')-C(15')-H(15B) 119.7
C(17')-C(16')-C(15') 120.2(4)
C(17')-C(16')-H(16B) 119.9
C(15')-C(16')-H(16B) 119.9
C(16')-C(17')-C(18') 121.2(4)
C(16')-C(17')-H(17B) 119.4
C(18')-C(17')-H(17B) 119.4
```

```
C(19')-C(18')-C(17') 122.5(4)
C(19')-C(18')-C(13') 118.4(4)
C(17')-C(18')-C(13') 119.0(4)
C(20')-C(19')-C(18') 121.2(4)
C(20')-C(19')-H(19B) }119.
C(18')-C(19')-H(19B)119.4
C(19')-C(20')-C(21') 120.9(4)
C(19')-C(20')-H(20B) 119.6
C(21')-C(20')-H(20B) 119.6
C(12')-C(21')-C(20') 120.1(4)
C(12')-C(21')-C(22') 121.7(4)
C(20')-C(21')-C(22') 118.2(4)
C(23')-C(22')-C(24') 109.3(4)
C(23')-C(22')-C(21') 110.4(4)
C(24')-C(22')-C(21') 111.8(4)
C(23')-C(22')-H(22B) 108.4
C(24')-C(22')-H(22B) 108.4
C(21')-C(22')-H(22B) 108.4
C(22')-C(23')-H(23D) 109.5
C(22')-C(23')-H(23E) 109.5
H(23D)-C(23')-H(23E) 109.5
C(22')-C(23')-H(23F) 109.5
H(23D)-C(23')-H(23F) 109.5
H(23E)-C(23')-H(23F) 109.5
C(22')-C(24')-H(24D) 109.5
```

```
C(22')-C(24')-H(24E) 109.5
H(24D)-C(24')-H(24E) 109.5
C(22')-C(24')-H(24F) 109.5
H(24D)-C(24')-H(24F) 109.5
H(24E)-C(24')-H(24F) 109.5
```

Symmetry transformations used to generate equivalent atoms:
Anisotropic displacement parameters ($\AA 2 \times 103$)for liu110. The anisotropic displacement factor exponent takes the form: $-2 \pi 2\left[\mathrm{~h} 2 \mathrm{a} * 2 \mathrm{U} 11+\ldots+2 \mathrm{hk} \mathrm{a} \mathrm{a}^{*} \mathrm{U} 12\right.$]

	U 11	U 22	U 33	U 23	U 13	U 12
$\mathrm{~S}(1)$	$33(1)$	$49(1)$	$48(1)$	$-1(1)$	$1(1)$	$22(1)$
$\mathrm{O}(1)$	$30(2)$	$47(2)$	$38(2)$	$-1(1)$	$2(1)$	$16(1)$
$\mathrm{O}(2)$	$51(2)$	$96(3)$	$62(2)$	$31(2)$	$14(2)$	$41(2)$
$\mathrm{O}(3)$	$51(2)$	$57(2)$	$70(2)$	$-12(2)$	$-1(2)$	$35(2)$
$\mathrm{F}(1)$	$59(2)$	$70(2)$	$124(3)$	$1(2)$	$-26(2)$	$-11(2)$
$\mathrm{F}(2)$	$113(3)$	$143(4)$	$116(3)$	$-80(3)$	$-69(3)$	$101(3)$
$\mathrm{F}(3)$	$83(2)$	$126(3)$	$72(2)$	$-39(2)$	$-40(2)$	$75(2)$
$\mathrm{C}(1)$	$64(4)$	$90(5)$	$62(4)$	$-30(3)$	$-28(3)$	$52(4)$
$\mathrm{C}(2)$	$30(2)$	$37(2)$	$40(2)$	$-1(2)$	$6(2)$	$18(2)$
$\mathrm{C}(3)$	$34(2)$	$25(2)$	$54(3)$	$-6(2)$	$-10(2)$	$2(2)$
$\mathrm{C}(4)$	$52(3)$	$33(2)$	$46(3)$	$-5(2)$	$-2(2)$	$22(2)$
$\mathrm{C}(5)$	$47(3)$	$33(2)$	$36(2)$	$8(2)$	$2(2)$	$22(2)$
$\mathrm{C}(6)$	$68(4)$	$57(3)$	$44(3)$	$-4(2)$	$1(3)$	$47(3)$

```
C(7) 57(3) 74(4) 60(3) -4(3) 0(3) 51(3)
C(8) 37(3) 59(3) 48(3) -1(2) -4(2) 27(2)
C(9) 32(2) 40(2) 37(2) -2(2) -4(2) 20(2)
C(10) 34(2) 33(2) 24(2) 4(2) 4(2) 16(2)
C(11) 31(2) 26(2) 30(2) 0(2) 5(2) 10(2)
C(12) 23(2) 32(2) 34(2)
C(13) 19(2) 29(2) 38(2) -1(2) -4(2) 12(2)
C(14) 26(2) 29(2) 36(2) 2(2) 1(2) 11(2)
C(15) 30(2) 40(3) 41(2) 1(2) -4(2) 17(2)
C(16) 33(2) 33(2) 55(3) 12(2) -2(2) 12(2)
C(17) 37(2) 31(2) 55(3) -3(2) -11(2) 20(2)
C(18) 21(2) 30(2) 46(3) -6(2) -7(2) 14(2)
C(19) 34(2) 35(2) 48(3) -11(2) -4(2) 18(2)
C(20) 42(3) 52(3) 34(2) -14(2) -1(2) 27(2)
C(21) 29(2) 34(2) 40(2) -6(2) 2(2) 14(2)
C(22) 36(2) 62(3) 28(2) -11(2) 1(2) 26(2)
C(23) 74(4) 69(4) 72(4) 30(3) -4(3) 27(3)
C(24) 92(5) 72(4) 109(5) 21(4) 58(4) 45(4)
S(1') 37(1) 49(1) 42(1) -1(1) 3(1) 21(1)
O(1') 33(2) 55(2) 35(2) 8(1) 6(1) 24(2)
O(2') 90(3) 70(3) 102(3) 37(2) 45(3) 61(3)
O(3') 58(2) 137(4) 38(2) -24(2) -4(2) 50(3)
F(1') 49(2) 180(4) 82(3) -63(3) -12(2) 42(3)
F(2') 82(3) 64(2) 150(4) 12(3) 47(3) 31(2)
F(3') 51(2) 97(3) 79(2) -13(2) 5(2) 44(2)
```

```
C(1') 36(3) 89(5) 62(4) -11(3) 3(3) 32(3)
C(2') 32(2) 30(2) 31(2) 5(2) 5(2) 17(2)
C(3') 29(2) 28(2) 48(3) 0(2) -2(2) 10(2)
C(4') 34(2) 34(2) 36(2) -10(2) -8(2) 11(2)
C(5') 28(2) 32(2) 33(2) -4(2) -4(2) 16(2)
C(6') 42(3) 47(3) 31(2) -6(2) -4(2) 22(2)
C(7') 36(2) 63(3) 29(2) 6(2) 8(2) 22(2)
C(8') 27(2) 42(3) 41(2) 9(2) 7(2) 15(2)
C(9') 28(2) 29(2) 34(2) 1(2) -5(2) 10(2)
C(10') 30(2) 28(2) 28(2) 3(2) 2(2) 19(2)
C(11') 25(2) 28(2) 29(2) 1(2) -4(2) 14(2)
C(12') 22(2) 27(2) 27(2) 2(2) 4(2) 9(2)
C(13') 23(2) 32(2) 32(2) 3(2) 9(2) 13(2)
C(14') 35(2) 36(2) 40(2) 1(2) 1(2) 17(2)
C(15') 46(3) 38(3) 57(3) -1(2) 0(2) 23(2)
C(16') 51(3) 32(2) 52(3) -8(2) 9(2) 20(2)
C(17') 43(3) 38(3) 37(2) -6(2) 3(2) 18(2)
C(18') 31(2) 32(2) 27(2) -1(2) 7(2) 6(2)
C(19') 33(2) 34(2) 21(2) -3(2) -2(2) 9(2)
C(20') 34(2) 38(2) 24(2) 7(2) 4(2) 12(2)
C(21') 30(2) 31(2) 32(2) 2(2) 4(2) 16(2)
C(22') 42(2) 40(3) 35(2) -9(2) -13(2) 24(2)
C(23') 56(3) 70(4) 66(3) -18(3) -7(3) 43(3)
C(24') 84(4) 34(3) 54(3) 7(2) -2(3) 27(3)
```

Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2x 103)
for liu110.

x	y	z	$U(e q)$

H(3B) $7981 \quad 10166 \quad 1413 \quad 51$
H(4A) $6260 \quad 10557 \quad 1499 \quad 52$
H(6A) $3850 \quad 9757 \quad 1505 \quad 59$
H(7A) $1699 \quad 8148 \quad 1433 \quad 67$
H(8A) $1223 \quad 6103125956$
$\mathrm{H}(9 \mathrm{~A}) 2935 \quad 5708 \quad 1163 \quad 42$
$\begin{array}{lllll}\mathrm{H}(14 \mathrm{~A}) & 4427 & 5559 & 1589 & 38\end{array}$
$\begin{array}{lllll}\mathrm{H}(15 \mathrm{~A}) & 3369 & 3612 & 1808 & 45\end{array}$
$\begin{array}{lllll}\mathrm{H}(16 \mathrm{~A}) & 2935 & 1582 & 1635 & 50\end{array}$
$\begin{array}{lllll}\mathrm{H}(17 \mathrm{~A}) & 3562 & 1523 & 1241 & 48\end{array}$
$\begin{array}{lllll}\mathrm{H}(19 \mathrm{~A}) & 4607 & 2702 & 859 & 46\end{array}$
$\begin{array}{lllll}\mathrm{H}(20 \mathrm{~A}) & 5630 & 4609 & 636 & 49\end{array}$
$\begin{array}{lllll}\mathrm{H}(22 \mathrm{~A}) & 6638 & 7945 & 826 & 50\end{array}$
$\begin{array}{lllll}\mathrm{H}(23 \mathrm{~A}) & 5388 & 7885 & 494 & 113\end{array}$
$\begin{array}{lllll}\mathrm{H}(23 \mathrm{~B}) & 4467 & 7148 & 722 & 113\end{array}$
$\begin{array}{lllll}\mathrm{H}(23 \mathrm{C}) & 4581 & 6292 & 506 & 113\end{array}$
$\begin{array}{lllll}\mathrm{H}(24 \mathrm{~A}) & 7564 & 8005 & 446 & 134\end{array}$
$\begin{array}{lllll}\mathrm{H}(24 \mathrm{~B}) & 6851 & 6414 & 444 & 134\end{array}$
$\begin{array}{lllll}\mathrm{H}(24 \mathrm{C}) & 7995 & 7254 & 637 & 134\end{array}$
H(3'B) 879711347949645

H(4'A) 7840	10812	9872	44	
H(6'A) 5898	9410	10133	48	
H(7'A) 3740	7694	10176	52	
H(8'A) 2513	6527	9840	45	
H(9'A) 3397	7051	9459	38	
H(14B)	5691	6610	9312	45
H(15B)	5126	4482	9202	55
H(16B)	3895	3522	8852	55
H(17B)	3204	4690	8614	49
H(19B)	3030	6721	8542	40
H(20B)	3474	8808	8660	41
H(22B)	5339	10626	9184	45
H(23D)	3636	11162	9130	88
H(23E)3005	9646	9215	88	
H(23F)2915	9982	8938	88	
H(24D)	6392	11411	8804	87
H(24E)5704	12243	8890	87	
H(24F) 5003	11112	8689	87	

Torsion angles [${ }^{\circ}$] for liu110.

```
O(2)-S(1)-O(1)-C(2) 21.9(4)
O(3)-S(1)-O(1)-C(2) 158.4(3)
C(1)-S(1)-O(1)-C(2) -91.4(4)
O(2)-S(1)-C(1)-F(2) -43.7(5)
O(3)-S(1)-C(1)-F(2) -175.1(5)
```

```
O(1)-S(1)-C(1)-F(2) 74.0(5)
O(2)-S(1)-C(1)-F(1) -165.7(4)
O(3)-S(1)-C(1)-F(1) 62.8(5)
O(1)-S(1)-C(1)-F(1) -48.1(4)
O(2)-S(1)-C(1)-F(3) 76.0(5)
O(3)-S(1)-C(1)-F(3) -55.4(5)
O(1)-S(1)-C(1)-F(3) -166.3(4)
S(1)-O(1)-C(2)-C(11) -92.1(4)
S(1)-O(1)-C(2)-C(3) 90.7(4)
C(11)-C(2)-C(3)-C(4) 3.1(7)
O(1)-C(2)-C(3)-C(4) -179.9(4)
C(2)-C(3)-C(4)-C(5) -0.7(7)
C(3)-C(4)-C(5)-C(6) -179.6(5)
C(3)-C(4)-C(5)-C(10) -2.7(7)
C(4)-C(5)-C(6)-C(7) 178.7(5)
C(10)-C(5)-C(6)-C(7) 1.9(7)
C(5)-C(6)-C(7)-C(8) -1.8(8)
C(6)-C(7)-C(8)-C(9) 0.2(8)
C(7)-C(8)-C(9)-C(10) 1.2(7)
C(8)-C(9)-C(10)-C(11) 177.4(4)
C(8)-C(9)-C(10)-C(5) -1.1(6)
C(6)-C(5)-C(10)-C(9) -0.4(6)
C(4)-C(5)-C(10)-C(9) -177.3(4)
C(6)-C(5)-C(10)-C(11) -179.0(4)
C(4)-C(5)-C(10)-C(11) 4.1(6)
```

$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	-1.7(6)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	-178.6(3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	176.8(4)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	-0.1(6)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(2)$	179.6(4)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(2)$	-1.9(6)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	1.0(6)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	179.5(4)
$\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(21)$	-72.0(5)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(21)$	106.5(5)
$\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	110.5(4)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-71.0(5)
$\mathrm{C}(21)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-178.4(4)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-0.8(5)
$\mathrm{C}(21)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	0.1(5)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	177.6(3)
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	0.4(6)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	178.9(4)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	0.1(6)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	-0.2(6)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	-0.2(6)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	-180.0(4)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	0.7(6)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(19)$	179.9(4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(19)$	1.4(5)

$\mathrm{O}\left(2^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{F}\left(2^{\prime}\right)$	-173.2(4)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{F}\left(2^{\prime}\right)$	-57.9(4)
$\mathrm{S}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	-92.1(4)
$\mathrm{S}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	91.8(4)
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	0.9(6)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	176.7(4)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	1.0 (6)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	-179.9(4)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	-1.0(6)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	-179.9(4)
$\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	1.2(6)
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	-0.6(7)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	-0.3(7)
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	0.7(7)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	-179.1(4)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	-0.1(6)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	-0.8(6)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	-179.7(4)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	178.3(4)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	-0.7(6)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	-2.5(6)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	-178.3(3)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	174.6(4)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	-1.2(6)
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	-178.7(4)

```
C(5')-C(10')-C(11')-C(2') 2.3(5)
C(9')-C(10')-C(11')-C(12') 4.2(6)
C(5')-C(10')-C(11')-C(12') -174.8(3)
C(2')-C(11')-C(12')-C(21') -76.3(5)
C(10')-C(11')-C(12')-C(21') 100.7(4)
C(2')-C(11')-C(12')-C(13') 106.3(4)
C(10')-C(11')-C(12')-C(13') -76.8(5)
C(21')-C(12')-C(13')-C(14') -177.5(4)
C(11')-C(12')-C(13')-C(14') -0.1(6)
C(21')-C(12')-C(13')-C(18') 2.5(5)
C(11')-C(12')-C(13')-C(18') 180.0(3)
C(12')-C(13')-C(14')-C(15') 178.7(4)
C(18')-C(13')-C(14')-C(15') -1.4(6)
C(13')-C(14')-C(15')-C(16') 1.4(7)
C(14')-C(15')-C(16')-C(17') -0.4(7)
C(15')-C(16')-C(17')-C(18') -0.6(7)
C(16')-C(17')-C(18')-C(19') -177.4(4)
C(16')-C(17')-C(18')-C(13') 0.6(6)
C(14')-C(13')-C(18')-C(19') 178.5(4)
C(12')-C(13')-C(18')-C(19') -1.6(5)
C(14')-C(13')-C(18')-C(17') 0.4(5)
C(12')-C(13')-C(18')-C(17') -179.7(4)
C(17')-C(18')-C(19')-C(20') 178.1(4)
C(13')-C(18')-C(19')-C(20') 0.1(6)
C(18')-C(19')-C(20')-C(21') 0.6(6)
```

```
C(13')-C(12')-C(21')-C(20') -2.0(6)
C(11')-C(12')-C(21')-C(20') -179.4(3)
C(13')-C(12')-C(21')-C(22') 177.1(4)
C(11')-C(12')-C(21')-C(22') -0.3(6)
C(19')-C(20')-C(21')-C(12') 0.4(6)
C(19')-C(20')-C(21')-C(22') -178.7(4)
C(12')-C(21')-C(22')-C(23') -117.7(4)
C(20')-C(21')-C(22')-C(23') 61.4(5)
C(12')-C(21')-C(22')-C(24') 120.5(4)
C(20')-C(21')-C(22')-C(24') -60.4(5)
```

Symmetry transformations used to generate equivalent atoms:

REFERENCES CITED

1) de Koning, C. B.; Rousseau, A. L.; van Otterlo, W. A. L. Tetrahedron 2003, 59, 7-36.
2) Bringmann, G.; Gulder, T.; Gulder, T. A. M.; Breuning, M. Chem. Rev., 2011, 111, 563639.
3) Band, V.; Hoffer, A. P.; Band, H.; Rhinehardt, A. E.; Knapp, R. C.; Matlin, S. A.; Anderson, D. J. Gynecol. Oncol. 1989, 32, 273.
4) Gorst-Allman, D. P.; Stern, P. S.; Rabie, C. J. J. Chem. Soc., Perkin Trans. 1980, 2474.
5) Y. Auffray; P. Boutibonnes, Mutat. Res., Genet. Toxicol., 1986,171, 79-82.
6) Wu, F.C. Baillieres Clin. Obstet. Gynaecol. 1996, 10, 1-23.
7) Manfredi, K. P.; Blunt, J. W.; Cardellina, J. H., II; McMahon, J. B.; Pannell, L. L.; Cragg, G. M.; Boyd, M. R. J. Med. Chem. 1991, 34, 3402.
8) Xu M.; Bruhn, T.; Hertlein, B.; Brun, R.; Stich, A.; Wu, J.; Bringmann, G. Chem. Eur. J., 2010, 16, 4206-4216.
9) a) Noyori, R.; Takaya, H. Acc. Chem. Res., 1990, 23, 345-350. b) Brunel, J. M. Chem. Rev., 2005, 105, 857-897.
10) Ohta, T.; Takaya, H.; Kitamura, M.; Nagai, K.; Noyori, R. J. Org. Chem., 1987, 52, 3176-3178.
11) Takaishi, K.; Kawamoto, M.; Tsubaki, K. Org. Lett., 2010, 12, 1832-1835.
12) Feringa, B. L.; Koumura, N.; Van Delden, R. A.; Ter Wiel, M. K. J. Appl. Phys. A, 2002, 75, 301-308.
13) Bao, X.; Snurr, R. Q.; Broadbelt L. J. Langmuir, 2009, 25, 10730-10736.
14) See 1 and 2.
15) McGlacken, G. P.; Bateman, L. M. Chem. Soc. Rev., 2009, 38, 2447-2464.
16) Martin, R.; Buchwald, S. L. Acc. Chem. Res., 2008, 41, 1461-1473.
17) Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Chem. Soc. Rev., 2009, 38, 3193-3207.
18) Wurtz, S.; Glorius, F. Acc. Chem. Res., 2008, 41, 1523-1533.
19) a) Nishii, Y.; Wakasugi, K.; Koga, K.; Tanabe, Y. J. Am. Chem. Soc., 2004, 126, 53585359. b) Lu, J.-M.; Shi, M. Tetrahedron, 2007, 63, 7545-7549. c) Glass, A. C.; Klonoski, S.; Zakharov, L. N.; Liu, S.-Y. Chem. Commun., 2011, 47, 286-288.
20) Nishida G.; Suzuki, N.; Noguchi, K.; Tanaka, K. Org. Lett., 2006, 8, 3489-3492.
21) Perkins, J. R.; Carter, R. G. J. Am. Chem. Soc., 2008, 130, 3290-3291.
22) a) Razakantoanina, V.; Phung, N. K. P.; Jaureguiberry, G. Prasitol. Res., 2000, 86, 665668. b) Wang, X.; Wang, J.; Wong, S. C. H.; Chow, L. S. N.; Nicholls, J. M.; Wong, Y. C.; Liu, Y.; Kwong, D. L. W.; Sham, J. S. T.; Tsao, S. W. Life Sciences, 2000, 67, 26632671. c) Laughton, M. J.; Halliwell, B.; Evans, P. J.; Robin, J.; Hoult, S. Biochem. Pharm., 1989, 38, 2859-2865.
23) Hallock, Y. F.; Manfredi, K. P.; Dai, J.-R.; Cardellina, J. H.; Gulakowski, R. J.; McMahon, J. B.; Schaffer, M.; Stahl, M.; Gulden, K.-P.; Bringmann, G.; Francois, G.; Boyd, M. R. J. Nat. Prod., 1997, 60, 677-683.
24) Bringmann G.; Holenz, J.; Wiesen, B.; Nugroho, B. W.; Proksch, P. J. Nat. Prod., 1997, 60, 342-347.
25) a) See: 9 and 10. b) Wang, Z.-J.; Deng, G.-D.; Li, Y.; He, Y.-M.; Tang, W.-J.; Fan, Q.-H. Org. Lett., 2007, 9, 1243-1246. c) Arai, N.; Suzuki, K.; Sugizaki, S.; Sorimachi, H.; Ohkuma, T.; Angew. Chem. Int. Ed., 2008, 47, 1770-1773. d) Berthod, M.; Mignani, G.; Woodward, G.; Lemaire, M. Chem. Rev., 2005, 105, 1801-1836.
26) Hayashi, T. Acc. Chem. Res., 2000, 33, 354-362.
27) Takaishi, K.; Kawamoto, M.; Tsubaki, K. Org. Lett., 2010, 12, 1832-1835
28) Bao, X.; Snurr, R. Q.; Broadbelt, L. J. Langmuir, 2009, 25, 10730-10736.
29) A Scifinder search of TOAN's before 2000 turns up only examples using oxidative coupling which is discussed in detail. After 2000 many examples for the generation of TOAN's are reported.
30) Von Richter, V. Chem. Ber., 1873, 6, 1252
31) a) Taylor, W. I.; Battersby, A.R. Oxidative Coupling of Phenols, 1967, Marcel Dekker, New York, New York. b)Feringa, B.; Wynberg, H. Tetrahedron Lett., 1977, 4447-4450.
32) Doussot, J.; Guy, A.; Ferroud, C. Tetrahedron Lett., 2000, 41, 2545-2547.
33) Pummerer, R.; Rieche, A.; Prell, E. Chem. Ber., 1926, 59, 2159
34) See: 9b.
35) Love, B. E. Current Organic Synthesis, 2006, 3, 169-185.
36) See: 9b
37) Yamada, S.-I.; Akimoto, H. Tetrahedron Letters, 1968, 3967-3970.
38) Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R. J. Am. Chem. Soc., 1980, 102, 7932-7934.
39) Organic Syntheses, 2004, 10, 112
40) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev., 2002, 102, 1359-1469.
41) See: 17.
42) See: 17.
43) See: 17 .
44) Feringa, B.; Wynberg, H. Bioorg. Chem., 1978, 7, 397-408.
45) Brussee, J.; Groenendijk, J. L. G.; te Koppele, J. M.; Jansen, A. C. A. Tetrahedron, 1985, 41, 3313-3319.
46) Yamamoto, K.; Fukushima, H.; Nakazaki, M. Chem. Commun., 1984, 1490-1491.
47) Smrcina, M.; Lorenc, M.; Hanus V.; Sedmera, P.; Kocovsky, P.; J. Org. Chem., 1992, 57, 1917-1920.
48) Nakajima, M; Kanayama, K.; Miyoshi, I.; Hashimoto, S.; Tetrahedron Lett., 1995, 36, 9519-9520.
49) Li, X.; Hewgley, B.; Mulrooney, C. A.; Yang, J.; Kozlowski, M. C. J. Org. Chem., 2003, 68, 5500-5511.
50) a) Barhate, N. B.; Chen, C.-T.; Org. Lett., 2002, 4, 2529-2532. b) Chu, C.-Y.; Uang, B.-J. Tetrahedron: Asymmetry, 2003, 14, 53-55.
51) Tada, M.; Taniike, T.; Kantam, L. M.; Iwasawa, Y. Chem. Commun., 2004, 2542-2543.
52) Egami, H.; Katsuki, T. J. Am. Chem. Soc., 2009, 131, 6082-6083.
53) See: 17.
54) DiVirgilio, E. S.; Dugan, E. C.; Mulrooney, C. A.; Kozlowski, Org. Lett., 2007, 9, 385388.
55) Denmark, S. E.; Sweis, R. F. Acc. Chem. Res. 2002, 35, 835-846.
56) "...this high degree of steric hindrance presents a serious challenge to many crosscoupling transformations." Shen, S.; Jones, G. O.; Watson, D. A.; Bhayana, B.; Buchwald, S. L. J. Am. Chem. Soc., 2010, 132, 11278-11287.
57) Phan, N. T. S.; Van Der Sluys, M.; Jones, C. W. Adv. Synth. Catal., 2006, 348, 609-679.
58) Martin, R.; Buchwald, S. L. Acc. Chem. Res., 2008, 41, 1461-1473.
59) Miyano, S.; Okada, S.-I.; Suzuki, T.; Handa, S.; Hashimoto, H. Bull. Chem. Soc. J. 1986, 59, 2044-2046
60) Anderson, N. G.; Maddaford, S. P.; Keay, B. A. J. Org. Chem., 1996, 61, 9556-9559.
61) Yin, J.; Rainka, M. P.; Zhang, X.-X.; Buchwald, S. L. J. Am. Chem. Soc., 2001, 124, 1162-1163.
62) a) Dai, C.; Fu, G. C. J. Am. Chem. Soc., 2000, 123, 2719-2724. b) Littke, A. F.; Schwarz, L.; Fu, G. C. J. Am. Chem. Soc., 2001, 124, 6343-6348.
63) Fleckenstein, C. A.; Plenio, H. Chem. Soc. Rev., 2010, 39, 694-711
64) Ackermann, L.; Potukuchi, H. K.; Althammer, A.; Born, R.; Mayer, P.; Org. Lett., 2010, 12, 1004-1007.
65) a) Organ, M. G.; Calimsiz, S.; Sayah, M.; Hoi, K. H.; Lough, A. Angew. Chem. Int. Ed., 2009, 48, 2383-2387. b) Calimsiz, S.; Sayah, M.; Mallik, D.; Organ, M. G. 2010, 49, 2014-2017.
66) Schmidt, A.; Rahimi, A. Chem. Commun., 2010, 46, 2995-2997.
67) a) Hayashi, T.; Hayashizaki, K.; Kiyoi, T.; Ito, Y. J. Am. Chem. Soc. 1988, 110, 81538156. b)
68) Hayashi, T.; Niizuma, S.; Kamikawa, T.; Suzuki, N.; Uozumi, Y. J. Am. Chem. Soc., 1995, 117, 9101-9102.
69) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc., 2000, 122, 12051-12052
70) See: 56.
71) a)Genov, M.; Almorin, A.; Espinet, P. Chem. Eur. J. 2006, 12, 9346-9352. b) Genov, M.; Almorin, A.; Espinet, P. Tetrahedron Asymmetry, 2007, 18, 625-627.
72) Bermejo, A.; Ros, A.; Fernandez R.; Lassaletta, J. J. Am. Chem. Soc., 2008, 130, 1579815799.
73) Nicolau, K. C.; Boddy, C. N. C.; Brase, S.; Winssinger, N. Angew. Chem. Int. Ed., 1999, 38, 2097-2152.
74) a) See: 15. b) Alberico, D.; Scott, M. E.; Lautens M. Chem. Rev., 2007, 107, 174-238.
75) Ames, D. E.; Opalko, A.; Synthesis, 1983, 234-235.
76) This area has been heavily reviewed, see: a) Pascual S.; de Mendoza, P.; Echavarren, A. M. Org. Biomol. Chem., 2007, 5, 2727-2734. b) Baudoin, O. Angew. Chem. Int. Ed. 2007, 46, 1373-1375.
77) Daugulis, O.; Zaitsev, V. G.; Shabashov, D.; Lazareva, A. Synlett, 2006, 3382.
78) Ackermann, L.; Jeyachandran, R.; Potukuchi, K.; Novak, P,; Buttner, L. Org. Lett., 2010, 12, 2056-2059.
79) a) Ashburn, B. O.; Carter, R. G. Angew. Chem. Int. Ed. 2006, 45, 6737-6741. b) Perkins, J. R.; Carter, R. G. J. Am. Chem. Soc. 2008, 130, 3290-3291. c) Ashburn, B. O.; Carter, R. G.; Zakharov, L. N. J. Am. Chem. Soc., 2007, 129, 9109-9116.
80) Perkins, J. R.; Carter, R. G. J. Am. Chem. Soc., 2008, 130, 3290-3291.
81) a) b) Naffziger, M. R.; Ashburn, B. O.; Perkins, J. R.; Carter, R. G. J. Org. Chem. 2007, 72, 9857-9865.
82) Hapke, M.; Gutnov, A.; Weding, N.; Spannenberg, A.; Fischer, C.; Benkhauser-Schunk, C.; Heller, B. Eur. J. Org. Chem. 2010, 509-514.
83) Kirk, B. H.; Ess, D. H. Tetrahedron Letters, 2011, 52, 1245-1249.
84) Nishida, G.; Suzuki, N.; Noguchi, K.; Tanaka, K. Org. Lett., 2006, 8, 3489-3492.
85) Nishida, G.; Noguchi, K.; Hirano, M.; Tanaka, K. Angew. Chem. Int. Ed., 2007, 46, 3951-3954.
86) Hara, H.; Hirano, M.; Tanaka, K. Org. Lett., 2009, 11, 1337-1340.
87) a)Wakasugi, K.; Nishii, Y.; Tanabe, Y. Tetrahedron Letters, 2000, 41, 5937-5942. b) Nishii, Y.; Yoshida, T.; Tanabe, Y. Tetrahedron Letters, 1997, 41, 7195-7198. c) Nishii, Y.; Wakasugi, K.; Koga, K.; Tanabe, Y. J. Am. Chem. Soc., 2004, 126, 5358-5359.
88) Glass, A. C.; Morris, B. B.; Zakharov, L. N.; Liu, S.-Y. Org. Lett., 2008, 10, 4855-4857.
89) See: 19c.
90) Glass, A. C.; Young, B.; Zakharov, L. N.; Liu, S.-Y. Manuscript in Preparation, 2011.
91) a) Zimmerman, H. E.; Suryanarayan, V. Eur. J. Org. Chem., 2007, 4091-4102. b) The synthesis of 2-methyl indenone was adapted from a procedure used by Clive et al., see: Clive, D. L. J.; Yu, M.; Sannigrahi, M. J. Org. Chem. 2004, 69, 4116-4125. c) Capparelli, M. P.; Deschepper, R. E.; Swenton, J. S. J. Org. Chem. 1987, 52, 4953-4961.
92) For example, the enthalpy of the addition of MeMgBr to di- t-butyl ketone has been determined to be $-150 \mathrm{~kJ} \mathrm{~mol}^{-1}$, see: T. Holm, Acta Chem. Scand., Ser. B, 1976, 30, 985-990.
93) Malosh, C. F.; Ready, J. M. J. Am. Chem. Soc. 2004 126, 10240-10241.
94) See: 86c.
95) At $130^{\circ} \mathrm{C}$ we observed no line broadening of the two methoxy peaks of 20. Modeling was conducted using DFT, with a basis set b3ylp/6-31g* for both $\mathbf{1 4 a}$ and $\mathbf{2 0}$.
96) For a published report using DNMR3, see: K. D. Zimmer, R. Shoemaker and R. R. Ruminski, Inorganic Chimica Acta, 2006, 359, 1478-1484. For further details on the stereochemical model please see the Supporting Information.
97) Reetz, M. T.; Maier, W. F.; Chatziiosifidis, I.; Giannis, A.; Heimbach, H.; Loewe, U. Chemische Berichte, 1980, 113, 3741-3757.

[^0]: Symmetry transformations used to generate equivalent atoms:

[^1]: Symmetry transformations used to generate equivalent atoms:

