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The nemertean worm Carcinonemertes errans is an egg predator on the Dungeness 

crab, Cancer magister, an important fishery species along the west coast of North America. 

This study examined the estuarine distribution and larval biology of C. errans.  Parasite 

prevalence and mean intensity of C. errans infecting C. magister varied along an estuarine 

gradient in the Coos Bay, Oregon.  Crabs nearest the ocean carried the heaviest parasite 

loads, and larger crabs were more heavily infected with worms.  Seasonal infection patterns 

were seen at some sites within the bay.  Crabs from coastal waters carried significantly 

more worms than did crabs from the bay, suggesting that the estuary may be acting as a 

parasite refuge for estuarine crabs.  In laboratory experiments, C. errans all died in 

salinities below 10 within 6 days, but C. errans showed some tolerance to salinities 20 and 

above.  These results suggest that salinity alone does not likely account for the estuarine 

gradient of C. errans in Coos Bay.   

Larvae of C. errans raised from hatching never settled in the laboratory.  

Competent larvae taken in plankton tows were morphologically distinct from larvae raised 
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in laboratory cultures and did settle successfully on C. magister under laboratory 

conditions.  Initial settlement was reversible within a 24-hour window.  After 48 hours, a 

non-reversible metamorphosis occurred wherein worms lost one pair of eyes and the 

propensity to swim.  In field settlement experiments, C. errans was capable of infecting 

hosts from the water column and preferred to settle on crabs already infected with juvenile 

worms, although this preference was density dependent.  In monthly plankton tows, larvae 

of C. errans were found only between August and November, suggesting a long larval life 

for this species.  Larvae did not feed under laboratory conditions, nor did they absorb 

dissolved organics.  When exposed to a natural angular light distribution, larvae of C. 

errans were rarely photopositive.  Larvae were most sensitive to blue-green light.  Low 

intensity light invoked a photonegative response.  Larvae were geopositive at hatching but 

geonegative thereafter. 

 



 

vi 

CURRICULUM VITAE 
 
NAME OF AUTHOR:  Paul Hayven Dunn 
 

 

 
 
 
GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED: 
 
 University of Oregon, Eugene, Oregon 
 Brigham Young University, Provo, Utah 
 
 
DEGREES AWARDED: 
 
 Doctor of Philosophy, Biology, 2011, University of Oregon 
 Bachelor of Science, Integrative Biology, 2006, Brigham Young University 
 
 
AREAS OF SPECIAL INTEREST: 
 
 Marine Biology 
 Invertebrate Biology 
 Larval Ecology 
 
 
PROFESSIONAL EXPERIENCE: 
 

Research Assistant, Oregon Institute of Marine Biology, University of Oregon, 
Charleston, Oregon, 2009-2010 

  
Teaching Assistant, Oregon Institute of Marine Biology, University of Oregon, 

Charleston, Oregon, 2009-2011 
 

Administrative Graduate Teaching Fellow, Oregon Institute of Marine Biology, 
Charleston, Oregon, University of Oregon, 2010-2011 

  
National Science Foundation GK-12 Fellow, Oregon Institute of Marine Biology, 

University of Oregon, Charleston, Oregon, 2006-2009 
 
 
GRANTS, AWARDS, AND HONORS: 
 
 Research Grant, Oregon Dungeness Crab Commission, 2008 



 

vii 

 
 NSF GK-12 Fellowship, Oregon Institute of Marine Biology, 2006-2009 
 
 Gordon B. Hinckley Scholarship, Brigham Young University, 2000-2006 
 
 Magna cum laude, Brigham Young University, 2006 
 
 
PUBLICATIONS: 
 

Dunn, P. H., Davidson T.M.  2009. One Fish, Two Fish: Balancing economy with 
ecology as a fishery manager.  Sci. Act. 46(4): 31-34. 

 
 
  
 
 



 

viii 

ACKNOWLEDGMENTS 
 
First, I am deeply indebted to my advisor, Dr. Craig Young, for accepting me into 

his lab, supporting me during this project’s duration, providing me with fantastic research 

opportunities along the way, and always lending his expert advice.  I would also like to 

thank Dr. Svetlana Maslakova for sharing her nemertean and microscopy expertise and 

Dr. Alan Shanks for invaluable experimental design suggestions.  Many thanks to Dr. 

Brendan Bohannan for his excellent questions and his ability to keep everyone moving 

forward, to Dr. James Schombert for helping me see the larger picture, and to Dr. 

William Orr for his willingness to lend his help and advice on short notice.  I’d also like 

to thank Dr. Lee Braithwaite for introducing me to the wonders of marine biology and 

Drs. George von Dassow and Will Jaeckle for their helpful advice with the dissolved 

organics experiments.  And many thanks to Drs. Jon Norenburg, Pamela Roe, and 

Armand Kuris for their excellent counsel on all things nemertean, especially in choosing 

the subject of this dissertation. 

The Oregon Institute of Marine Biology has been the perfect environment to 

perform my graduate studies, and I thank the members of OIMB’s faculty and staff for 

their excellent work in making OIMB the wonderful place it is.  Shirley Pedro and Joyce 

Croes did the vital office work that made my graduate studies possible.  Barb Butler 

provided excellent information resources.  Bill Powell and Mike Allman helped in the 

shop and provided excellent crabbing advice.  Most especially, thanks to Larry Draper for 

teaching me how to drive a boat, for helping me rig traps, and for keeping the vital 

seawater system of OIMB up and running year-round.  I am also indebted to the workers 

at the Bandon Pacific fish processing plant as well as the crab fishermen of Charleston, 



 

ix 

particularly Mike Lane, for giving me access to crabs taken in their pots and also aiding 

me in the collection of egg-bearing female crabs.  Much of my work would not have been 

possible without their help. 

I would also like to acknowledge all of the OIMB graduate students who provided 

immeasurable support, advice, sympathy, and good times through the years.  I’d 

especially like to thank Shawn Arellano, Tracey Smart, and Maya Wolf for teaching me 

the grad school ropes, reading drafts, and providing me with listening ears when I needed 

them.  Thanks also to Holly Keammerer, who started her PhD studies with me, helped me 

to prepare for the many examinations along the way, and was always a good friend. 

Finally, my sincere thanks to my wife Heidi Harris, who, in addition to lending 

invaluable help in making GIS images for this project, also provided constant support and 

friendship, especially when it was needed most. 

This investigation was partially funded by a NSF GK-12 grant to Drs. Jan Hodder 

and Alan Shanks at OIMB, a NSF Biological Oceanography grant to Dr. Craig Young, and 

a grant from the Oregon Dungeness Crab Commission. 

 



 

x 

 
 
 
 
 
 
 
This dissertation is dedicated to my parents, who taught me how to work hard and always 

supported me in the pursuit of my dreams, and to my wonderful wife, whose love, 
patience, and abilities make the present joyful and the future exciting. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

xi 

TABLE OF CONTENTS 

Chapter Page 
 
 
I. GENERAL INTRODUCTION ................................................................................ 1 

 Life History of Carcinonemertes errans .......................................................... 2 

 Parasite Refuges ............................................................................................... 5 
 
 Larval Biology ................................................................................................. 7 

 Scope and Objectives ....................................................................................... 8 

 

II. FINDING REFUGE: THE ESTUARINE DISTRIBUTION OF THE  
NEMERTEAN EGG PREDATOR CARCINONEMERTES ERRANS ON THE 
DUNGENESS CRAB, CANCER MAGISTER ........................................................ 11 
 

 Introduction ...................................................................................................... 11 

 Materials and Methods ..................................................................................... 14 

 Study Site ................................................................................................... 14 

 Estuarine Distribution of Carcinonemertes errans .................................... 15 

 Statistical Analysis ..................................................................................... 20 

 Results .............................................................................................................. 20 

 Parasite Prevalence by Site ........................................................................ 20 

 Mean Intensity by Site ............................................................................... 23 

 Parasite Prevalence and Mean Intensity by Size ........................................ 23 

 Parasite Prevalence and Mean Intensity by Sex ........................................ 28 

 Parasite Prevalence and Mean Intensity by Season ................................... 28 

 Discussion ........................................................................................................ 30 



 

xii 

Chapter Page 
 
 
 Dungeness Crab Life History Artifact ....................................................... 32 

 Estuarine Environment ............................................................................... 38 

 Conclusion ....................................................................................................... 42 

 Bridge ............................................................................................................... 43 

 

III. PHYSIOLOGICAL TOLERANCES OF THE NEMERTEAN EGG  
PREDATOR CARCINONEMERTES ERRANS TO SALINITY AND 
TEMPERATURE STRESS ................................................................................... 45 
 

 Introduction ...................................................................................................... 45 

 Materials and Methods ..................................................................................... 49 

 Juvenile Salinity and Temperature Tolerance ............................................ 49 

 Larval Salinity and Temperature Tolerance .............................................. 57 

 Results .............................................................................................................. 58 

 Juvenile Salinity and Temperature Tolerance ............................................ 58 

 Larval Salinity and Temperature Tolerance .............................................. 60 

 Discussion ........................................................................................................ 64 

 Bridge ............................................................................................................... 70 

 

IV. LARVAL SETTLEMENT OF THE NEMERTEAN EGG PREDATOR 
CARCINONEMERTES ERRANS ON THE DUNGENESS CRAB,  
CANCER MAGISTER ............................................................................................ 71 
 

 Introduction ...................................................................................................... 71 

 Methods............................................................................................................ 75 

 Study Organisms ........................................................................................ 75 



 

xiii 

Chapter Page 
 
 
 Laboratory Settlement Experiments .......................................................... 75 

 Field Settlement Experiments .................................................................... 77 

 Plankton Tows………… ........................................................................... 82 

 Results .............................................................................................................. 83 

 Laboratory Settlement Experiments .......................................................... 83 

 Field Settlement Experiments .................................................................... 88 

 Plankton Tows ………………. ................................................................. 90 

 Discussion ........................................................................................................ 93 

 Laboratory Settlement Experiments .......................................................... 93 

 Field Settlement Experiments .................................................................... 96 

 Plankton Tows ………………. ................................................................. 99 

 Bridge…. .......................................................................................................... 103 

 

V. PHOTOTAXIS AND FEEDING IN LARVAE OF THE OOPHAGOUS 
NEMERTEAN CARCINONEMERTES ERRANS ................................................... 104 
 

 Introduction ...................................................................................................... 104 

 Materials and Methods ..................................................................................... 108 

 Study Organisms ........................................................................................ 108 

 Particulate Feeding ..................................................................................... 109 

 Dissolved Organics .................................................................................... 109 

 Phototaxis Experiments: Wavelength (λ) .................................................. 112 

 Phototaxis Experiments: Light Intensity .................................................... 113 



 

xiv 

Chapter Page 
 
 
 Field Light Measurements ......................................................................... 114 

 Phototaxis Experiments: Effects of Pressure ............................................. 116 

 Results .............................................................................................................. 116 

 Particulate Feeding ..................................................................................... 116 

 Dissolved Organics .................................................................................... 117 

 Phototaxis Experiments: Wavelength (λ)  ................................................. 118 

 Phototaxis Experiments: Light Intensity .................................................... 123 

 Field Light Measurements ......................................................................... 130 

 Phototaxis Experiments: Effects of Pressure ............................................. 130 

 Discussion ........................................................................................................ 132 

 Larval Feeding Biology ............................................................................. 132 

 Larval Phototaxis ....................................................................................... 135 

 

VI. GENERAL CONCLUSION .................................................................................. 141 

 

REFERENCES CITED ................................................................................................ 145 



 

xv 

LIST OF FIGURES 
 
Figure Page 
 
 
1.1. Egg Strings of Carcinonemertes errans ............................................................... 4 
 
2.1. Sites for Trapping Survey ..................................................................................... 16 
 
2.2. Fukui FT-100 Multi-species Marine Trap ............................................................ 18 

2.3. Prevalence of Carcinonemertes errans on Cancer magister in Offshore Waters  
and within the Coos Bay Estuary ......................................................................... 22 
 

2.4. Mean Intensity of Carcinonemertes errans on Dungeness Crabs in Offshore  
Waters and within the Coos Bay Estuary ............................................................. 24 
 

2.5. Prevalence of Carcinonemertes errans on Various Size Classes of  
Cancer magister from the Coos Bay Estuary ....................................................... 25 
 

2.6. Relationship between Crab Size and Mean Intensity of Carcinonemertes errans  
from the Coos Bay Estuary .................................................................................. 26 
 

2.7. Relationship between Crab Size and Mean Intensity of Carcinonemertes errans  
in Offshore Waters ............................................................................................... 27 
 

2.8. Presence of Carcinonemertes errans by Season and Site ..................................... 29 

2.9. Average Parasite Density and Average Carapace Width for Cancer magister  
Taken during the Wet and Dry Seasons ............................................................... 31 
 

3.1. Average Bottom Salinities in the Coos Bay Estuary during the Dry Season  
 and the Wet Season ……………  ........................................................................ 50 
 
3.2. Bottom Salinity Extremes Experienced in the Coos Bay Estuary ........................ 51 

3.3. Average Bottom Temperatures in the Coos Bay Estuary during the Dry Season  
 and the Wet Season .............................................................................................. 52 

 
3.4. Average Salinities in the South Slough during the Dry Season and  
 the Wet Season ..................................................................................................... 53 

 
3.5. Salinity Extremes Experienced in the South Slough ............................................ 54 

 
3.6. Average Temperatures in the South Slough during the Dry Season and  
 the Wet Season ..................................................................................................... 55 



 

xvi 

Figure Page 
 
 
3.7. Design for Temperature and Salinity Tolerance Experiments .............................. 56 

 
3.8. Average Percent Survival of Juvenile Carcinonemertes errans ........................... 59 

3.9. Average Percent Survival of Larval Carcinonemertes errans .............................. 62 
 
4.1. Location of Caging Sites during Field Settlement Trials ...................................... 79 
 
4.2. Design for Field Caging Experiment .................................................................... 80 

4.3. Larval Stages of Carcinonemertes errans ............................................................ 85 
 

4.4. Metamorphosis of Carcinonemertes errans ......................................................... 86 
 

4.5. Regression Analysis of the Change in Parasite Intensity of  
 Carcinonemertes errans in Relation to Host Size ................................................ 90 

 
4.6. Regression Analysis of the Change in Parasite Intensity of  
 Carcinonemertes errans in Relation to Initial Intensity ....................................... 91 

 
4.7. Results from Plankton Tows in the Coos Bay Estuary ......................................... 93 

 
5.1. Design for Larval Dissolved Organics (DOM) Experiment ................................. 111 
 
5.2. Results for Dissolved Organics (DOM) Experiment ............................................ 119 

5.3. Larval Phototaxis in Carcinonemertes errans Exposed to Different  
 Wavelengths of Light ........................................................................................... 121 

 
5.4. Response of Larval Carcinonemertes errans to Different Wavelengths  
 of Light.1-Day-Old Larvae and 2-Day-Old Larvae ............................................. 122 

 
5.5. Response of Larval Carcinonemertes errans to Different Wavelengths  
 of Light.4-Day-Old Larvae and 7-Day-Old Larvae ............................................. 124 

 
5.6. Response of Larval Carcinonemertes errans to Different Wavelengths  
 of Light.14-Day-Old Larvae and 28-Day-Old Larvae ......................................... 125 

 
5.7. Phototaxis in Larval Carcinonemertes errans during Day 7 Trials ...................... 126 

 
5.8. Phototaxis in Larval Carcinonemertes errans during Day 14 Trials .................... 127 

 



 

xvii 

Figure Page 
 
 
5.9. Phototaxis in Larval Carcinonemertes errans during Day 28 Trials .................... 128 
 
5.10. Effect of Pressure on Larval Phototaxis of Carcinonemertes errans ................. 133 
 

 



 

xviii 

LIST OF TABLES 
 
Table Page 
 
 
2.1. Description of Trapping Sites for Survey of Carcinonemertes errans  

Infecting Cancer magister in the Coos Bay and South Slough, Oregon .............. 17 
 

2.2. Summary of all Individual Cancer magister Examined during the  
Trapping Survey  .................................................................................................. 21 

 
2.3. Mean Parasite Density Calculations for Each of the Sites within the  

Coos Bay Estuary and Offshore ........................................................................... 35 
  
3.1. Salinity and Temperature Tolerance ANOVAR Results for Juvenile  
 Carcinonemertes errans ....................................................................................... 61 

 
3.2. Results of a two-way ANOVA testing survival of larval  
 Carcinonemertes errans after 24 hours ................................................................ 63 
 
3.3. Results of a two-way ANOVA testing survival of larval  
 Carcinonemertes errans after 72 hours ................................................................ 64 
 
4.1. Results for Field Caging Experiment Trial 1 ........................................................ 87 
  
4.2. Results for Field Caging Experiment Trial 2 ........................................................ 88 

 
4.3. Results for Field Caging Experiment Trial 3 ........................................................ 89 
 
4.4. Results for Plankton Tows Performed in Coos Bay Estuary and Offshore .......... 92 
 
5.1. Irradiance Values for the Treatment Levels Used in Light Intensity Trials ......... 115 
  
5.2. Effect of Dissolved Organics on Larval Survival of  
 Carcinonemertes errans ....................................................................................... 117 

 
5.3. Results of a Two-way ANOVA Examining Larval Length During the  
 Dissolved Organics Feeding Experiment ............................................................. 120 
 
5.4. Results of a Two-way ANOVA Examining Average Larval Height in the 
 Water Column ...................................................................................................... 120 
 
5.5. Results of 4 Two-way ANOVAs Examining the Difference between the  
 Average Heights of Larvae in the Water Column when Exposed to Varying  
 Intensities of White Light, Red Light, Green Light, and Blue Light ................... 129 
  



 

xix 

Table Page 
 
 
5.6. Field Light Measurements from the Mouth of the Coos Bay Estuary .................. 131 

 
5.7. Results of 2 Two-way ANOVAs Examining the Difference between  
 the Average Heights of Larvae in the Water Column when Exposed to  
 Hydrostatic Pressure ............................................................................................. 132 
 



 
 

1 
 

CHAPTER I 

GENERAL INTRODUCTION 

 

Although far from being the most conspicuous organisms in any given habitat, 

parasites form a large proportion of the diversity of life on the earth (Smyth 1994).  Using 

a rough and conservative estimate of known insect fauna, Price (1980) predicted that 

insect parasites alone represent nearly half of all known animal species.  When other 

groups of parasites such as nematodes, flatworms, and protozoa are added to this number, 

it becomes clear that “parasitism as a way of life is more common than all other feeding 

strategies combined” (Price 1980).  Considering this astounding diversity, it stands to 

reason that parasites should be important research subjects in evolution and ecology.  

Parasites provide interesting systems for studying reproductive strategies, organismal 

complexity, dispersal, population dynamics, coevolution, ecological niches, niche 

restriction, and community structuring (Rohde 1982).  Although the definitions of 

parasite differ depending on author and situation, I will use the definition presented by 

Price (1980): “an organism living in or on another living organism, obtaining from it part 

or all of its organic nutriment, commonly exhibiting some degree of adaptive structural 

modification, and causing some degree of real damage to its host.” 

 Marine parasites are less familiar than many of their terrestrial counterparts, but 

they are equally diverse and prolific.  The 1000 fish species occurring in the vicinity of 

Heron Island in the Great Barrier Reef are infected with at least 2,000 species of 

monogenean flukes alone, and the total number of fish parasite species in the region has 

been estimated at 20,000 (Rohde 1982).  In addition to such common marine parasitic 
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groups as monogeneans, copepods, and rhizocephalan barnacles are the nemertean worms 

of the genus Carcinonemertes (Nemertea: Enopla: Hoplonemertea; Coe 1902).  

Originally thought to be parasitic on the gills of their crab hosts, it wasn’t until Wickham 

(1978) first observed these worms feeding on host eggs that the true nature of the host-

parasite relationship was resolved.  This discovery led some to argue that the term 

“parasite” should be replaced by “egg predator” when describing Carcinonemertes.  

However, these worms spend their lives on one or a few host individuals, relying on these 

hosts for food as well as the completion of their life cycle.  The harmful effects of 

Carcinonemertes, which cause a partial loss of host reproductive output, can also be 

modeled well as parasitic castration (Kuris and Lafferty 1992).  Using Price’s definition 

(1980), therefore, these worms are both egg predators and parasites of their decapod 

hosts. 

 

Life history of Carcinonemertes errans 

Carcinonemertes errans Wickham 1978 has received considerable attention in the 

literature due to its occurrence on the Dungeness crab Cancer magister1Dana 1852, an 

important fishery species off the west coast of North America from Alaska to central 

California (Wickham 1979a).  Unlike Carcinonemertes epialti, the congener with which 

it shares much of its range, C. errans is considered to be species-specific in its host 

choice (Wickham 1978; Wickham and Kuris 1985).  The validity of this proposition has 

recently been put in doubt, however.  As part of an ongoing genetic study of the genus 

                                                 
1 Based on morphological data, Schweitzer and Feldman (2000) rearranged the genus Cancer and placed 
the Dungeness crab into the genus Metacarcinus.  This classification has not been widely accepted, 
however, and for this dissertation, I will follow the classification proposed in the new Light’s Manual 
(Carlton 2007) and use the name Cancer magister. 
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Carcinonemertes, three specimens identified morphologically as C. errans from Alaska 

C. magister were found within a cluster of worms identified as C. epialti obtained from 

three other host species (J. Norenburg, pers. comm.).  Although preliminary, these results 

suggest that C. errans and C. epialti may be one species, and that all sources referring to 

either of these species should be considered with that possibility in mind.   

The major life events of Carcinonemertes errans are closely linked to those of its 

host, Cancer magister.  Juvenile worms can be found on the exoskeleton of both male 

and female hosts, usually concentrated on and around limb joints, eye stalks, sternal 

regions, abdomen, and the copulatory appendages of males (Wickham 1979b).  Although 

the juveniles can move about the external surfaces of the crab, they spend much of their 

time curled up on the arthrodial membranes of the host (Wickham et al. 1984).  Crow et 

al. (1982) suggested that juvenile worms subsist on their crab hosts when eggs are not 

available by absorbing dissolved organics leaking out of their crab hosts through these 

membranes (see also Roe et al., 1981).   

During host molting, juveniles of Carcinonemertes errans migrate to the 

developing fissure and move onto the new exoskeleton of the crab as it crawls out of its 

old shell (Wickham et al., 1984).  Worms also migrate from male crabs to females during 

host mating, which in Cancer magister involves a prolonged copulatory embrace 

(Wickham et al. 1984).  This migration is vital to the life history of C. errans because 

maturation can only occur on an ovigerous female crab (Wickham 1979a).  Within a day 

or two of host oviposition, C. errans individuals migrate to the host egg mass and begin 

to feed, potentially causing significant brood loss (Wickham 1979b).  As they feed, 

worms grow larger, develop gonads, and mate (Wickham 1980).  Females then lay egg 
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strings that wrap around the host eggs (Fig. 1.1).  Worm embryos develop within these 

strings for 1-2 weeks until they hatch out as swimming larvae (Wickham 1980; Roe 

1986).  Following mating and egg deposition, adult worms begin to shrink and resemble 

juveniles again.  It is not known if the same individuals can reproduce more than once or 

if they die following their first reproductive episode (Roe 1984).  After hatching, the 

larvae are planktonic for an unknown amount of time, possibly several months (Wickham 

1980), before reaching a competent stage and finding a new host to infect. 

 

 

 

Fig. 1.1. Egg Strings of Carcinonemertes errans.  Developing embryos of C. errans 
(arrow) are laid in strings wrapped around the much larger embryos of the host, 
Cancer magister. 
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Parasite refuges 

An important ecological aspect of any host-parasite interaction is the geographical 

overlap of the two species’ ranges (Price 1980).  The range of host-specific parasites is 

necessarily limited to that of their hosts, but the reverse is not necessarily true.  A 

parasite’s distribution within a host’s range may be limited by mode of transmission, 

availability of intermediate hosts, dispersal potential of parasite vectors, and 

physiological tolerances (Bush et al. 2001).  In the case of Carcinonemertes errans, 

worms have been found on Cancer magister along the entire length of the host’s range 

(Wickham 1980).  However, samples have almost exclusively been taken from adults of 

coastal crab populations (Wickham 1979a; Wickham 1979b; Wickham 1980).  Cancer 

magister is also a common inhabitant of estuaries (Cleaver 1949; Waldron 1958; Pauley 

et al. 1989; Armstrong et al. 2003).  In the only study where the distribution of C. errans 

on C. magister within an estuary was examined, the authors reported a clear gradient in 

infection, with crabs farther up the estuary less often infected with C. errans (McCabe et 

al. 1987).  Lower instances of parasite infections in some hosts living in estuaries have 

led several authors to suggest that these host populations may be experiencing “salinity 

refuges” from their parasites (Haskin and Ford 1982; Reisser and Forward 1991; Kvach 

2004; Tolley et al. 2006).   Could the movement into estuaries by some Dungeness crabs 

serve as a refuge from C. errans? 

Temperature and salinity tolerance 

Temperature supplies the energy to disrupt bonds between atoms and molecules.  

Although some bonds are more susceptible to breaking than others, all proteins are 

eventually denatured, nucleic acids are damaged, and the permeability of cell membranes 
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is altered at some threshold (Kinne 1970).  While some organisms have the ability to 

regulate their body temperature, most marine animals conform to the temperature of their 

surroundings (Whittow 1970).  Among these thermal conformers, there is large variation 

in the temperature range that different species can tolerate.  The vast majority of marine 

organisms are considered stenothermic, meaning that they can tolerate a relatively narrow 

range of temperatures before entering into a temperature-induced coma and dying (Moore 

1940).  Some organisms, however, are considered eurythermic and can survive larger 

variations in temperature (Kinne 1970). 

 Salinity is a unitless measure of the dissolved ion concentrations in a body of 

water (UNESCO United Nations Educational Scientific and Cultural Organization 1985).  

While salinity does change the physical properties of the water itself (density, osmotic 

pressure, dissolved gases, radiation, surface tension, and sound transmission), it affects 

marine organisms directly by altering the ionic composition of the environment (Anger 

2003).  This alteration can lead to 1) net movement of water into or out of the organism, 

potentially damaging cells, and 2) disruption of favorable gradients of biologically 

essential ions, forcing the organism to expend extra energy to maintain ionic balance 

(Kinne 1971).  In addition to the direct effects of osmotic imbalance, salinity stress can 

also affect an organism’s metabolism by altering its ability to move, changing the salt 

and/or water contents of body and intracellular fluids, modifying internal ion ratios, and 

interfering with neuromuscular, hormonal, and enzymatic mechanisms (Kinne 1966).  

Some organisms are better able to cope with changes in salinity than others.  Termed 

“euryhaline,” these species can typically tolerate changes in salinity of 10-30 (Kinne 
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1971).  Most marine organisms, however, can tolerate salinity ranges of 10 or less and are 

classified as stenohaline (Evans 2009).   

 When considering temperature or salinity as a potential environmental stressor, 

one must not only examine the extreme values, but also past and present patterns of 

variation.  An organism may be able to tolerate a brief encounter with very high 

temperatures, for example, but may die when exposed over longer periods to a relatively 

modest increase (Kinne 1963).  Within estuaries, the fluctuations in temperature and 

salinity can be much more extreme than most marine environments because of shallower 

water, proximity to land, and freshwater runoff (Kennish 1986).  If a parasite is less 

eurythermic or euryhaline than its host, the possibility exists that host individuals 

entering an estuary could experience a refuge from their parasite created by differences in 

physiological tolerance. 

 

Larval biology 

 The larval stage of marine invertebrates is vital in determining the distribution of 

the species (Crisp 1976).  Although often viewed as passive particles, larvae are capable 

of exhibiting active responses to environmental stimuli that determine their vertical 

position in the water column (Young 1995).  The two most important stimuli for larval 

orientation and vertical navigation are light and gravity (Young and Chia 1987; Forward 

1988).  A larva’s response to these two stimuli will determine to a large extent where that 

larva will be carried and what habitats it will be exposed to (Crisp 1979).  This becomes 

particularly important at the time of settlement when the larva ends its pelagic life and 

begins its existence as a benthic juvenile (Crisp 1974; Pawlik 1992; Hadfield and Paul 
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2001).  Settlement is an important event for all planktonic larvae of marine invertebrates, 

but it may be especially so for parasitic larvae that must find an appropriate host or perish 

(Pawlik 1992).  Because larval settlement is the exact moment at which the host and the 

parasite begin their relationship, this event is one of the most important aspects of host-

parasite ecology and evolution.  Parasites should potentially experience strong selection 

favoring the ability to locate an appropriate host as well as potential mates on that host, 

making larval settlement of a parasite an excellent opportunity to study both associative 

and gregarious settlement patterns (Chia 1978; Pawlik 1992; Boone et al. 2004). 

 

Scope and objectives 

 My primary objectives in developing this dissertation project were to examine the 

interaction between Carcinonemertes errans and Cancer magister within an estuarine 

system and to describe several aspects of the parasite’s larval biology with special 

emphasis on larval settlement. 

 Chapters II and III of this dissertation focus on the ecology of Carcinonemertes 

errans within the Coos Bay Estuary, Oregon.  Chapter II describes a three-year field 

survey I conducted to track the infection of Cancer magister by C. errans within the 

estuary.  I describe the distribution of the parasite based on location within the estuary 

and the size and sex of the host, as well as the seasonal variations observed in that 

distribution.  I also compare these findings to C. magister sampled in Oregon coastal 

waters.  In Chapter III, I focus on the physiological tolerances of C. errans across life 

stages.  I conducted temperature and salinity tolerance experiments on both juvenile and 

larval worms in the laboratory and measured the survival of the animals when exposed to 



 

9 

various temperature-salinity combinations.  I then compare these results to the conditions 

found within the Coos Bay Estuary and consider the possible existence of a salinity 

refuge for C. magister. 

 In Chapters IV and V, I present data dealing with the larval biology of 

Carcinonemertes errans.  Chapter IV is focused on the processes surrounding larval 

settlement.  I describe the first recorded instance of Carcinonemertes settlement under 

laboratory conditions, as well as the subsequent metamorphosis that signals the beginning 

of the juvenile stage on Cancer magister.  I also describe a series of field experiments 

that examined patterns of larval settlement within the Coos Bay Estuary.  Mode of 

infection by competent larvae and the effect of location in the bay on larval settlement 

patterns were tested using cages placed along the estuarine gradient.  The possibility of 

gregarious settlement behavior in larvae of C. errans was tested using crabs that carried 

various numbers of juvenile worms.  Finally, plankton tows were performed within the 

Coos Bay Estuary and offshore waters to determine the distribution of the competent 

larvae of C. errans both in time and space. 

 In Chapter V, I describe feeding trials performed with the larvae of 

Carcinonemertes errans, both with particulate food choices and with dissolved organic 

matter (DOM).  I then discuss possible feeding mechanisms for uniformly ciliated 

planuliform larvae.  Experiments to test the phototactic behavior of larvae from the time 

of hatching until one month old are then described.  Trials examined the response of 

larvae to light of varying intensity and wavelength, as well as increased hydrostatic 

pressure under an experimental design made to mimic the natural light field of the ocean 

rather than the narrow-beam light stimulus commonly used in laboratory experiments.  I 
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then compare these findings with light intensities found in natural conditions and discuss 

the possible ecological consequences of observed behaviors.
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CHAPTER II 

FINDING REFUGE: THE ESTUARINE DISTRIBUTION OF THE NEMERTEAN 

EGG PREDATOR CARCINONEMERTES ERRANS ON THE DUNGENESS CRAB, 

CANCER MAGISTER 

 

INTRODUCTION 

Estuaries have played an important role in human history as the natural crossroads 

of rivers and oceans.  In addition to being major hubs of commerce, estuaries have 

functioned as a significant source of food for people (Lotze et al. 2006).  Many kinds of 

estuarine fishes and shellfishes, such as crabs and oysters, are the targets of major 

fisheries in areas around the world.  This dependence on estuaries has led to many studies 

examining the physical, chemical, and biological processes associated with these zones of 

rapid transition (reviewed in Kennedy 1982, Kennish 1986).  While the estuarine 

distribution and ecology of macrofauna such as crabs and fish have garnered much 

attention, parasitic organisms remain largely overlooked, even though they often 

represent the majority of biodiversity in a given habitat (Price 1980, Rohde 1982).  A 

recent study by Kuris et al. (2008) showed that the biomass of parasites in three estuaries 

exceeded that of top predators.  It is therefore likely that parasitic organisms have great 

influence over important ecological factors such as species distribution and population 

size within the estuarine environment (Haskin & Ford 1982). 

In many cases, transitions in temperature and salinity along an estuarine gradient 

have been shown to affect the ecology and distribution of organisms within the estuary 

(Kennish 1986).  This is also true of some parasites (Barber et al. 1997, Kvach 2004, 
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Tolley et al. 2006).  Additionally, characteristics of host-parasite populations may vary 

with the seasonal changes in temperature and salinity that accompany periods of high or 

low runoff in estuarine environments (Crosby & Roberts 1990).  Lower instances of 

parasite infections in some hosts living in estuaries have led several authors to suggest 

that these host populations may be experiencing “salinity refuges” from their parasites 

(Reisser & Forward 1991, Tolley et al. 2006).  

 Most studies of salinity refuges have examined the relationships between the 

Atlantic oyster Crassostrea virginica and its parasites, the sporozoan Haplosporidium 

nelsoni and the apicomplexan protozoan Perkinsus marinus (Andrews 1964, Haskin et al. 

1965, Haskin et al. 1966, Sprague et al. 1969, Haskin & Ford 1982, Crosby & Roberts 

1990, Burreson & Ragone Calvo 1993, Chu et al. 1996, Barber et al. 1997).  The data 

from these studies suggest that C. virginica may find refuge from its parasites by living in 

parts of estuaries where low salinities and high temperatures do not allow the parasite to 

either infect the oysters or proliferate within them.  Another study showed that prevalence 

of the rhizocephalan barnacle Loxothylacus panopaei in the xanthid crab Panopeus 

obesus was reduced upstream during seasonally wet months, when salinity gradients were 

more fully expressed, leading the authors to conclude that estuaries may act as 

spaciotemporal refuges for successful reproduction by potential host crabs (Tolley et al. 

2006). The refuge concept may also work in reverse.  Childers et al. (1996) found that 

prevalence of the microsporan parasite Nadelspora canceri in the crab Cancer magister 

was higher within crabs in estuaries than in oceanic crabs. 

The Dungeness crab, Cancer magister Dana 1852, is an important commercial 

and sport fishery species that occurs along the Pacific coast of North America from 
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Alaska to California (Pauley et al. 1989).  Although the majority of crabs are found 

offshore on sandy bottoms, many move into estuaries for part or all of their lives 

(Armstrong et al. 2003).  Adult Dungeness crabs are known to tolerate salinities ranging 

from 11 to 35, though juveniles tolerate less saline conditions (Cleaver 1949, Robinson & 

Potts 1979).  Could the movement into estuaries by some crabs serve as a refuge from 

parasitism? 

Cancer magister is known to host the nemertean worm Carcinonemertes errans 

Wickham 1978 (Wickham 1979a).  Worms of the genus Carcinonemertes (Nemertea: 

Enopla: Hoplonemertea) are egg predators of decapod crustaceans (Coe 1902, Humes 

1942, Wickham 1978, Roe 1984).  The descriptive term “egg predator” has been adopted 

by some authors instead of “parasite” because the worms feed on many host embryos 

during their lifetime, mimicking the feeding behavior of a predator more closely than that 

of a parasite (Kuris 1997).  However, since these worms spend their life on one or a few 

host individuals and their biology is closely attuned to that of their hosts, they can easily 

be modeled as parasitic castrators, having an effect on host reproductive output (Kuris & 

Lafferty 1992).  

The majority of studies involving the relationship between Cancer magister and 

Carcinonemertes errans have been carried out using oceanic populations of adult crabs, 

where parasite intensity can be in the tens of thousands on single host specimens 

(Wickham 1979b).  The one study that examined the estuarine dynamics of this 

relationship found that the occurrence of C. errans on C. magister followed a salinity 

gradient in the river-dominated Columbia River Estuary (McCabe et al. 1987).  Within 

this estuary, parasite prevalence was 6% compared to 79% in offshore waters.  



 

14 

Prevalence at the estuary mouth was intermediate (25%; McCabe et al. 1987).  Although 

no rigorous studies have tested the salinity tolerance of C. errans (but see Chapter III), no 

worms were found on crabs where salinity reached 0 (McCabe et al. 1987).  Scrocco and 

Fabianek (1970) found adult specimens of the Atlantic congener Carcinonemertes 

carcinophila to be tolerant to salinities above 10.  Below that threshold, however, all 

worms died within two days.  No studies have examined long-term changes in prevalence 

or intensity of C. errans within or between estuaries, although such data would be ideal 

for understanding these dynamic environments where conditions are highly dependent on 

both freshwater runoff and tidal influence and vary widely from one estuary to another.   

In this study, I conducted a multi-year survey of the distribution of 

Carcinonemertes errans on Cancer magister along an estuarine gradient in a Pacific 

Northwest estuary and assessed the potential of such estuarine habitats to provide salinity 

refuges for Dungeness crabs. 

 

MATERIALS AND METHODS 

Study site  

Coos Bay is a drowned river estuary 54 km2 in area located along the southern 

coast of Oregon.  Input from rivers and streams varies seasonally, from 150 m3 s-1 during 

the rainy winter to <3 m3 s-1 in the dry summer months (Roegner et al. 2007).  The bay 

can be divided into four distinct salinity regimes: the euhaline regime (>30) which is 

located near the mouth of the bay, the polyhaline regime (18-30) which stretches from 

about river mile 5 to river mile 12, the mesohaline regime (5-18) which consists of most 

of the upper-bay sloughs, and the oligohaline regime (<5) which is riverine (Davidson 
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2006).  Based on pilot trapping surveys, I chose seven sampling sites that spanned the 

distribution of adult Cancer magister within the estuary and were accessible by shore and 

boat (Fig. 2.1).  Three of the sites (OIMB Boathouse, Clam Island, and Empire Docks) 

were located within the euhaline, or lower, region of the bay.  The OIMB Boathouse is 

closest to the mouth of the bay (1.74 km away), Clam Island is 5.38 km from the mouth, 

and Empire Docks is 7.98 km upriver from the mouth (Fig. 2.1).  The Jordan Cove and 

Highway sites lie between the polyhaline main bay and the mesohaline North Slough and 

Haynes Inlet, 14.41 km and 15.32 km from the mouth, respectively (Fig. 2.1).  The final 

two sites were in the South Slough, a branch off the main bay.  Collver Point is a marine 

to polyhaline site, approximately 5.1 km from the mouth of the bay.  Valino Island is a 

polyhaline to mesohaline site 1.7 km up river from Collver Point and 6.82 km from the 

mouth of the bay (Table 2.1). 

 

Estuarine distribution of Carcinonemertes errans 

Dungeness crabs were captured year-round in the Coos Bay Estuary.  Sampling 

occurred monthly between June 2008 and June 2011, and each site was sampled at least 

once quarterly.  All trapping was performed using baited Fukui FT-100 multi-species 

marine traps (60 cm x 45 cm x 20 cm; Fig. 2.2).  The 12 mm mesh size of these traps 

captured nearly all size classes of crabs.  Bait was typically tuna, but squid, herring, and 

halibut were also occasionally used.  To maximize the size range of crabs available for 

examination, trapping was conducted both intertidally and subtidally.  Intertidal traps 

were set during a low tide, allowed to soak through an entire tidal cycle, and then 
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examined the next day.  Subtidal traps were deployed by boat, allowed to soak 2-4 hours 

before and after a slack tide, then collected.   

 

 

 

Fig. 2.1.  Sites for trapping survey within the Coos Bay Estuary and the South 
Slough, Oregon.  The three regions of the bay are represented by dark gray (South 
Slough), gray (Lower Bay), and light gray (Upper Bay).  Site abbreviations: BH = 
OIMB Boathouse, CI = Clam Island, ED = Empire Docks, JC = Jordan Cove, HW = 
Highway, CP = Collver Point, VI = Valino Island. 
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Table 2.1. Description of trapping sites for survey of Carcinonemertes errans 
infecting Cancer magister in the Coos Bay and South Slough, Oregon.  Salinity 
regions are defined as in Davidson (2006).  Trapping depths represent averages of 
subtidal sampling. 

 

Site 
River km 

(distance from 
jetties) 

Salinity Region Trapping Depth 

OIMB Boathouse 1.74 km 
Euhaline  

(lower bay) 
8 meters 

Clam Island 5.38 km 
Euhaline  

(lower bay) 
6 meters 

Empire Docks 7.98 km 
Euhaline 

 (lower bay) 
6 meters 

Jordan Cove 14.41 km 
Mesohaline  
(upper bay) 

3 meters 

Highway 15.32 km 
Mesohaline  
(upper bay) 

3 meters 

Collver Point 5.10 km 
Euhaline  

(South Slough) 
5 meters 

Valino Island 6.82 km 
Mesohaline  

(South Slough) 
5 meters 
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Fig. 2.2.  Fukui FT-100 multi-species marine trap used to sample Cancer magister.  
Crabs enter the trap through side openings (arrow). 

 

 

Short trapping durations were necessary to avoid substantial drifting (and subsequent 

loss) of traps left for more than a few hours.  Temperature and salinity were measured at 

each sampling site at the time of trapping using a hand-held YSI meter (YSI Model 30 

Salinity, Conductivity, and Temperature System).  Crabs taken from offshore waters with 

the aid of commercial fishermen were also examined, mostly at the time of collection on 

the fishing vessel.  The rest were examined at a fish processing plant, where I would 

examine a subset of crabs as they were offloaded from fishing vessels. 

 The carapace width (CW) of each captured crab was measured just anterior to the 

10th lateral spine.  The sex of the crab was also noted.  Infections by Carcinonemertes 

errans were determined using two standard parasite metrics: parasite prevalence and 

parasite intensity (Margolis et al. 1982).  To determine parasite prevalence, each crab was 

carefully examined for the presence of nemerteans.  Most worms were found under the 
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abdomen and on the arthrodial membranes of the walking legs.  In very heavy infections, 

they were also present around the eye stalks, especially on female hosts (Wickham 

1979b).  If worms were found on a crab, the individual was given a prevalence score of 1.  

If no worms were found, the score was 0.  Parasite intensity is determined by counting 

the individual worms on each infected crab.  This was performed at the collection sites 

whenever possible.  When an individual crab carried more worms than could be counted 

on site, the crab was taken to the laboratory at the Oregon Institute of Marine Biology.  

There the worms were removed from the crab using a water pick and counted with the aid 

of a dissecting microscope.  Following enumeration of all worms, the mean intensity for 

crabs at each site was calculated.   All crabs were returned to the bay following 

examination. 

 To determine if parasite prevalence or mean intensity varied seasonally, crabs 

were trapped at the same sites during different months of the year.  Using rainfall, 

salinity, and water temperature data retrieved from data loggers maintained by the 

System-wide Monitoring Program of the South Slough National Estuarine Research 

Reserve (National Oceanic and Atmospheric Administration 2008), I divided the year 

into two seasons.  The wet season went from November through April and was defined 

by 5+ inches of average rainfall per month and average salinities <30 at the Valino Island 

SWMP station, 6.82 km from the mouth of the bay.  The dry season ran from May 

through October, months in which average rainfall was less than 5 inches per month and 

average monthly salinities >30 at the Valino Island station.  The parasite prevalence and 

mean intensity of Carcinonemertes errans were compared for each site between the wet 

and dry season. 
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Statistical analysis   

Despite relatively equal sampling effort, the number of crabs captured at each site 

varied widely in this survey.  Thus, sample sizes were uneven and the variances in both 

prevalence and mean intensity were unequal.  I therefore analyzed the data using non-

parametric tests.  Variation in parasite prevalence and mean intensity of Carcinonemertes 

errans within Coos Bay and offshore waters were compared by using site and crab size as 

factors in Kruskal-Wallis H tests (Sokal & Rohlf 1981).  Individual differences between 

levels of a given factor were examined using post-hoc Mann-Whitney U tests or Dunn’s 

tests, both of which allow for unequal sample sizes.  Differences in parasite prevalence 

and intensity by season and by sex were examined using Mann-Whitney U tests and t-

tests, respectively (Zar 2010). 

 

RESULTS 

 Within the Coos Bay Estuary and nearshore waters, I captured 896 individual 

Cancer magister.   Of these, 577 were infected with Carcinonemertes errans.  The site-

by-site breakdown of animals examined is shown in Table 2.2. 

 

Parasite prevalence by site 

Parasite prevalence of Carcinonemertes errans within the Coos Bay Estuary and 

offshore waters varied significantly with site (Kruskal-Wallace H test, H = 453.07, p < 

0.001).  All crabs collected offshore during the study were infected with C. errans.  

Within the estuary, three distinct groups emerged (Fig. 2.3).  Like offshore crabs, 



 

21 

 

Table 2.2. Summary of all individual Cancer magister examined during the trapping survey.  CW = crab carapace width.    
The wet season was defined as November-April, and the dry season was May-October. 

Site 
Total 

sampled
# 

infected 
mean CW 

(cm) 
median CW 

(cm) 
# of 

males 
# of 

females 

# 
sampled 
in wet 
season 

# 
sampled 
in dry 
season 

Offshore 101 101 13.02 12.7 70 31 49 52 

OIMB Boathouse 158 158 11.60 11.6 85 73 47 111 

Clam Island 73 72 11.75 11.9 58 15 50 23 

Empire Docks 85 84 11.35 11.3 61 24 47 38 

Jordan Cove 35 6 8.06 8 20 15 0 35 

Highway 82 8 7.50 7 39 43 21 61 

Collver Point 58 27 11.87 11.95 47 11 0 58 

Valino Island 304 121 10.16 10 238 66 48 256 

         

Total 896 577 10.66 10.56 618 278 262 634 
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prevalence was at or near 100% at lower bay sites OIMB Boathouse (100% ± SE 0), 

Clam Island (98.63% ± SE 1.4%), and Empire Docks (98.82%, ± SE 1.2%; Fig. 2.3).   

A second group consisted of the two upper bay sites where prevalence ranged from 

17.14% ± SE 6.4% (Jordan Cove) to 9.76% ± SE 3.3% (Highway).  The two South 

Slough sites formed a third group, with intermediate parasite prevalence values of 

46.55% ± SE 6.6% at Collver Point and 39.80% ± SE 2.8% at Valino Island. 

 

 

 

Fig. 2.3. Prevalence of Carcinonemertes errans on Cancer magister in offshore 
waters and within the Coos Bay Estuary.  Error bars represent 1 standard error.  
Coloration within bars represent different regions within the bay (Stripes = offshore, 
white = lower bay, checkered = upper bay, gray = South Slough.  Lines above bars 
represent significant differences determined by Mann-Whitney post-hoc tests.  
Abbreviations: OS = offshore, BH = OIMB Boathouse, CI = Clam Island, ED = 
Empire Docks, JC = Jordan Cove, HW = Highway, CP = Collver Point, VI = Valino 
Island. 
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Mean intensity by site 

 Mean intensity of Carcinonemertes errans varied significantly with site (Kruskal-

Wallace H test, H = 338.88, p < 0.001).  The mean intensity of worms infecting offshore 

crabs (872.15 ± SE 40.81) was significantly higher than anything observed within the 

Coos Bay Estuary (Fig. 2.4a).  An estuarine gradient in mean intensity of worms was 

observed.  Crabs caught at the three lower bay sites had significantly higher mean 

intensities of infection (OIMB Boathouse = 129.61 ± SE 15.12, Clam Island = 101.49 ± 

SE 15.65, and Empire Docks = 102.85 ± SE 22.82), than the upper bay (Jordan Cove = 

5.33 ± SE 3.08, Highway = 5.25 ± SE 2.41) and South Slough sites (Collver Point site = 

46.48 ± SE 27.69, Valino Island = 12.81 ± SE 3.94; Fig. 2.4b).  Though not significant, a 

gradient in worm infections was also apparent on crabs within the South Slough branch 

of the estuary, with a higher mean intensity in the more marine Collver Point than the 

more riverine Valino Island (Fig. 2.4b). 

   

Parasite prevalence and mean intensity by size 

 A significant positive relationship between size and parasite prevalence was 

detected in bay crabs (Kruskal-Wallis H = 185.93, p < 0.001; Fig. 2.5).  Dunn’s post-hoc 

tests detected four groups: crabs <8 cm CW, 8-10 cm CW, 10-14 cm CW, and >12 cm 

CW (Fig. 2.5).  Because all crabs taken offshore were infected, there was no relationship 

between size and prevalence for this group. 

 Mean intensity of Carcinonemertes errans on bay crabs varied significantly with 

size (Fig. 2.6).  A regression analysis of carapace width against mean intensity detected a 

significantly positive relationship (p < 0.001, r2 = 0.137; Fig. 2.6a).   
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Fig. 2.4. (A) Mean intensity of Carcinonemertes errans on Dungeness crabs in offshore 
waters and within the Coos Bay Estuary and (B) mean intensity only within the Coos 
Bay.  Error bars represent 1 standard error.  Coloration within bars represent different 
regions within the bay (Stripes = offshore, white = lower bay, checkered = upper bay, 
gray = South Slough.  Lines above bars represent significant results of Mann-Whitney 
post-hoc tests.  Abbreviations: OS = offshore, BH = Boathouse, CI = Clam Island, ED = 
Empire Docks, JC = Jordan Cove, HW = Highway, CP = Collver Point, VI = Valino 
Island. 
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Likewise, there was a significant difference in mean intensity among crab size classes 

(Kruskal-Wallis H = 75.691, p < 0.001; Fig. 2.6b).  Dunn’s post-hoc tests found four 

significantly different groups: <10 cm CW, 8- 12 cm CW, 10-14 cm CW, and >14 cm 

CW (Fig. 2.6b).  Similar patterns were observed among crabs sampled offshore, with a 

significant correlation between size and mean intensity (p < 0.001, r2 = 0.281; Fig. 2.7a) 

and between size class and mean intensity (Kruskal-Wallis, H = 38.002, p < 0.001).  

Dunn’s post-hoc tests determined a significant difference between crabs 8 to 11.9 cm CW 

and crabs larger than 12 cm CW (Fig. 2.7b). 

 

 

 

Fig. 2.5. Prevalence of Carcinonemertes errans on various size classes of Cancer 
magister from the Coos Bay Estuary.  Error bars represent 1 standard error.  Lines above 
bars represent significant results of Dunn’s post-hoc tests. 
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Fig. 2.6. Relationship between crab size and mean intensity of Carcinonemertes errans 
from the Coos Bay Estuary.  (A) linear regression of crab carapace width (CW) vs. 
intensity, and (B) mean intensity of C. errans on different size classes of Dungeness 
crabs.  Error bars represent 1 standard error.  Lines above bars represent significant 
results of Dunn’s post-hoc tests. 
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Fig. 2.7. Relationship between crab size and mean intensity of Carcinonemertes errans in 
offshore waters.  (A) linear regression of crab carapace width (CW) vs. intensity, and (B) 
mean intensity of C. errans on different size classes of Dungeness crabs.  Error bars 
represent 1 standard error.  Lines above bars represent significant results of Dunn’s post-
hoc tests. 
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Parasite prevalence and mean intensity by sex 

 There was a significant difference in parasite prevalence between male and 

female crabs trapped in the Coos Bay Estuary (t-test, p = 0.016), with male crabs 

(61.14% ± SE 2.1%) being more likely to carry Carcinonemertes errans than female 

crabs (52.16% ± SE 3.1%).  Male crabs were also significantly larger than females (t-test, 

p < 0.001), however, suggesting that the pattern has more to do with the size of the crab 

than its sex.  No significant difference in mean intensity was found between male and 

female crabs in the estuary (t-test, p = 0.832). 

 

Parasite prevalence and mean intensity by season 

 Parasite prevalence of Carcinonemertes errans was significantly higher in the wet 

season (86.39% ± SE 2.4%) than in the dry season (48.42% ± SE 2%) in the Coos Bay 

Estuary (Mann-Whitney U test, p < 0.001).  When the sites that had sufficient numbers of 

crabs sampled during both seasons (all except Jordan Cove and Collver Point) were 

examined separately, it became clear that Valino Island was the site driving the seasonal 

pattern (Mann-Whitney U test, p < 0.001).  None of the other sites showed significant 

differences between seasons (Fig. 2.8a). 

 A significant seasonal effect was also seen in the mean intensity of infection 

(Mann-Whitney U test, p < 0.001), with crabs carrying heavier parasite loads during the 

wet season (107.91 ± SE 13.74) than the dry season (51.03 ± SE 7.85).  This time it was 

the OIMB Boathouse site that was driving the pattern (Mann-Whitney U test, p < 0.001), 

while all other sites, including Valino Island, showed no significant change between 

seasons (Fig. 2.8b).  Interestingly, the same significant pattern in mean intensity 
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Fig. 2.8. Presence of Carcinonemertes errans by season and site.  (A) Prevalence and (B) 
mean intensity of C. errans on Cancer magister from the Coos Bay Estuary and offshore 
waters.  Error bars represent 1 standard error.  *= significant result of Mann-Whitney 
post-hoc test between seasons. 
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between wet and dry seasons at the OIMB Boathouse was also observed for offshore 

crabs (Mann-Whitney U test, p < 0.001). 

 T-tests showed that crabs taken during the wet season at Valino Island (t = 3.863, 

p < 0.001), the OIMB Boathouse (t = 4.154, p<0.001), and offshore (t = 5.826, p<0.001) 

were significantly larger than crabs taken during the dry season.  Size did not vary 

significantly with season at any of the sites where no seasonal pattern was detected (T-

tests, α = 0.05).  To determine whether the size of the crabs caught was driving the 

seasonal differences in parasite intensity, I calculated the parasite density by dividing the 

mean intensity of each crab by its estimated surface area.  These density values were then 

used in separate Mann-Whitney U tests to determine if density changed significantly with 

season within each site.  The results are given in Fig. 2.9.  For offshore crabs, parasite 

density did not vary significantly between seasons (U = 1109, p = 0.264), suggesting that 

size was significantly affecting the observed seasonal difference in parasite intensity (Fig. 

2.9).  The parasite density during the wet season at the OIMB Boathouse site, however, 

remained significantly higher than the density during the the dry season (U = 0, p < 

0.001), suggesting that size alone did not explain the observed pattern (Fig. 2.9). 

 

DISCUSSION 

 The distribution of Carcinonemertes errans followed a distinct estuarine gradient 

in the Coos Bay Estuary.   When measured by parasite prevalence, no significant change 

in prevalence of C. errans occurred until one reached the upper bay and South Slough  
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Fig. 2.9. Average parasite density and average carapace width for Cancer magister taken 
during the wet and dry seasons within the Coos Bay Estuary and offshore waters.  Error 
bars represent 1 standard error.  *=significant difference between seasons for either 
density or carapace width (Mann-Whitney U tests, α=0.05). 

 

 
sites, with crabs captured at lower bay sites just as likely to carry C. errans as crabs from 

offshore waters (Fig. 2.3).  The pattern in mean intensity, however, showed a distinct, 

highly significant change in the number of worms per infected crab immediately upon 

entering the estuary (Fig. 2.4a).  Once inside the bay, the pattern resembled that of 

parasite prevalence, with similar infection levels at the three lower bay sites that were 

much higher than those seen in upper bay sites or the South Slough (Fig. 2.4b).  Although 

there appears to be a trend of intermediate mean intensity at the South Slough sites, low 

numbers of infected individuals there and at the two upper bay sites probably made 

statistical detection of this difference much more difficult.  I propose two major 
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mechanisms for the observed distribution pattern: 1) The pattern is an artifact of the life 

history of Cancer magister, and 2) The pattern is a function of one or more parameters of 

the estuarine environment itself. 

 

Dungeness crab life history artifact 

 Many of the Dungeness crabs found within the estuaries of the Pacific Northwest 

enter these habitats as megalopae on their return journey from offshore waters (Lough 

1976).  These megalopae ride the rising tide into the bay, some settling out early on, 

while others are carried far into the upper reaches of tidal waters.  Once there, the 

megalopae molt into first instar juveniles and begin their benthic existence (Brown & 

Terwilliger 1992).  During their first few years of life, juvenile Dungeness crabs tend to 

remain in relatively shallow waters, moving into the intertidal to forage, particularly at 

night (Holsman et al. 2006).  This tendency to remain shallow and forage intertidally, 

coupled with a better ability to osmoregulate than adult crabs, keeps juveniles somewhat 

segregated from their larger, cannibalistic conspecifics.  Living in higher temperature 

waters and having access to the large amount of potential food items allows juveniles 

within estuaries to grow at a significantly higher rate than the vast majority of their 

cohort that ended up settling on the coastal shelf (Gunderson et al. 1990). 

 As the juvenile crabs grow larger, they move into deeper water.  This may be due 

to their increased ability to compete with large conspecifics, their decreased ability to 

tolerate low salinity water and large changes in salinity, or both (Brown & Terwilliger 

1992).  Particularly in the case of possible osmotic stress, this migration to deeper water 

may also coincide with a migration to more marine regions of the estuary.  Eventually, 
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most crabs that settle in an estuary find their way out of the bay and into the ocean 

(Armstrong et al. 2003).  This movement, however, is not unidirectional.  Tagging studies 

have clearly shown that crabs tagged in coastal waters are recovered in bays (Cleaver 

1949, Waldron 1958).  Some crabs have been known to move repeatedly into and out of 

the same and different bays tens of kilometers apart (Waldron 1958). 

 Given this ontogenetic migration of Dungeness crabs within estuaries, one 

possible explanation for the observed estuarine gradients in parasite prevalence and mean 

intensity is that these patterns are simply an artifact of crab age and size.  The mean size 

of crabs sampled at sites in the upper bay and South Slough was smaller than that of 

crabs caught in the lower bay and offshore (Table 2.2).  During my three-year study, crab 

carapace width was consistently a significant predictor of parasite prevalence in the Coos 

Bay Estuary as well as mean intensity of Carcinonemertes errans both within the estuary 

and in coastal waters.  A positive relationship between parasite prevalence (and intensity) 

and host size is common in many host-parasite systems, particularly parasitic castrators 

(Lim & Heyneman 1972, Baudoin 1975, Sorensen & Minchella 2001, Hechinger 2010).  

In the Carcinonemertes-Cancer system, the positive relationship between parasite load 

and host size could be due to a number of factors.  First, there is a direct relationship 

between crab age and crab size (Pauley et al. 1989).  Larger crabs have had a longer 

possible “exposure time” to the infective stage of C. errans and thus have a higher 

probability of both being infected by the worm and also carrying more worms (Baudoin 

1975).  Second, larger crabs may be more attractive to C. errans larvae.  This could be a 

question of providing more of some chemical cue that the parasite could use to locate the 

host or possibly even providing a different kind of cue than smaller crabs do.  Third, 
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larger crabs may be more likely to become infected because they have a larger area for 

infecting C. errans larvae to encounter (Crisp 1965).  If larvae are not able to track hosts 

from a large distance and are contacting them by random chance, then a larger target 

would be a better target for encounter.  Finally, the pattern might be a function of the 

molting cycle of Cancer magister.  During the first few years of life, Dungeness crabs 

grow rapidly and molt frequently (Butler 1961).  Once they reach maturity at about two 

years old, however, crabs average only one molt per year (Pauley et al. 1989).  As C. 

errans inhabits the exoskeleton of its host, the possibility exists that some or all of the 

worms infecting an individual crab will be left behind on the old shell following a 

molting event (Kuris 1978).  Even if this possibility is small, a higher frequency of 

molting could still lead to a higher number of worms being lost. 

 The hypothesis that the correlation of crab size and infection by Carcinonemertes 

errans is a function of crab size independent of “exposure time” and location is refuted 

by the field settlement experiments described in Chapter IV of this dissertation.  Briefly, 

when crabs of different sizes were placed next to each other in cages and left for a known 

amount of time, the number of worms recruiting to larger crabs was not higher than the 

number recruiting on smaller individuals.  This suggests that any possible settlement 

cue(s) emitted by crabs are the same regardless of size and that the surface area of the 

crab did not play a significant role.  A second, independent measure that refutes this 

hypothesis is the result of the parasite density calculations (Table 2.3).  The average 

density of C. errans on crabs offshore (1.664 ± 0.053 worms cm-2) was much higher than 

that of lower bay crabs (0.217 ± 0.034 worms cm-2), and parasite density still decreased 

as you moved up the estuary (Table 2.3). 



 

35 

Table 2.3. Mean parasite density calculations for each of the sites within the Coos Bay 
Estuary and offshore.  Parasite density (worms/cm2) is equal to the number of worms on a 
crab (intensity) divided by the crab’s estimated surface area. 

Site Mean Parasite Density error 

Offshore 1.664 0.053 
OIMB Boathouse 0.195 0.027 
Clam Island 0.217 0.035 
Empire Docks 0.201 0.033 
Jordan Cove 0.015 0.005 
Highway 0.015 0.004 
Collver Point 0.085 0.045 
Valino Island 0.031 0.009 

 

 

The molt-frequency hypothesis is also unlikely to play a major role in determining 

the distribution of Carcinonemertes errans in the Coos Bay because worms are known to 

transfer to their host’s new exoskeleton with near 90% efficiency (Wickham et al. 1984).  

Although some worms may still be occasionally lost in the molting process, the size-

infection pattern appears to be too large to be driven by a small proportion of worms 

being left behind during relatively infrequent molting events.  The hypothesis that the 

pattern is a function of possible “exposure time” to parasite vectors cannot be refuted by 

any available data and is possibly supported by results of other settlement experiments 

described in Chapter IV, wherein crabs held in cages for longer periods of time tended to 

carry higher parasite loads than those caged for shorter periods. 

  Crab mobility is another possible explanation for the observed patterns in parasite 

distribution.  Although many tagged crabs do seem to exhibit some level of fidelity to a 

given area, others are known to move in and out of coastal estuaries (Waldron 1958).  

There is also the problem of crabs moving from one area of the bay to another.  My 

sampling regime was not designed to track crab movements whether within the bay or 
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between the bay and coastal waters.  It is therefore highly probable that some proportion 

of crabs trapped at any given site on any given day represented crabs that had only 

recently moved to that site from elsewhere.  Although such movements undoubtedly 

occurred between sampling, the clear gradient in mean intensity between ocean crabs and 

bay crabs and in both prevalence and mean intensity between different regions within the 

bay seems to indicate that mixing is happening mostly within the regions shown in Fig. 

2.1 rather than between them.  The Collver Point site is probably an exception to this, 

with possible influences coming from both the direction of the OIMB Boathouse and 

Valino Island.  Clearly, the mechanism(s) driving the gradient are strong enough to 

overcome crab motility. 

 Finally, reproductive biology of both Cancer magister and Carcinonemertes 

errans could influence the observed estuarine gradient in parasite prevalence and 

intensity.  Although large female crabs can often be found in estuarine habitats along the 

Oregon coast, most are located in coastal waters (pers. comm., S. Groth, Oregon 

Department of Fish and Wildlife).  This means that a large proportion of ovigerous 

female crabs will spend their incubating time on the near-shore shelf.  Juvenile 

Carcinonemertes worms feed, grow, mature, mate, and lay their egg strings within the 

egg masses of their crab hosts.  About two weeks after being deposited, the embryos 

within the worm egg strings hatch out as small planuliform larvae, which then begin a 

planktonic existence of unknown duration before becoming competent to settle and infect 

a new host (see Chapter IV).  Thus, the source for the majority of competent larvae of C. 

errans is the coastal ocean. 
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 Some larvae of estuarine invertebrates, particularly crustaceans, are known to 

utilize tidal movements to reinvade estuaries (Forward & Rittschof 1994).  As described 

above, the megalopae of Dungeness crabs appear to be capable of riding the tides deep 

into estuaries (Lough 1976).  Whether the competent stage of Carcinonemertes errans is 

capable of using tidal currents in a similar fashion is unknown.  Assuming that C. errans 

is not capable of behavior-related transport into estuaries and is only passively washed in 

and out during each tidal cycle, one would hypothesize a gradient in the number of larvae 

available as one moves from the ocean to the lower bay and from there to the upper bay 

and the South Slough.  The pattern of flow within the Coos Bay Estuary reinforces this 

pattern.  Water in the lower estuary is thoroughly flushed every tidal cycle.  The water 

from the upper estuary, however, is only replaced every 2-3 high tides (pers. comm.., S. 

Rumrill, South Slough National Estuarine Research Reserve).  The same is true for the 

South Slough branch of the estuary (Rumrill 2006).  Thus, although the Empire Docks 

site is slightly farther from the mouth of the bay than is the Valino Island site (4.96 km 

vs. 4.24 km), the volume of oceanic water that reaches the former is much higher than 

that which reaches the latter.  This coincides perfectly with the observed distribution of 

juvenile worms on crabs.  In Chapter IV of this dissertation, I describe the results of a 

one-year plankton tow survey within the Coos Bay Estuary.  The larvae were most 

common at lower bay sites and much less common or absent in the upper bay and South 

Slough.  The results of larval settlement experiments conducted along the estuarine 

gradient suggest that while competent larvae are present even in the upper bay, they are 

more common in the lower bay region. 
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Estuarine environment 

 Estuaries are natural mixing bowls.  The environment that an organism encounters 

within an estuary can be vastly different than that of the subtidal zone of the coastal 

ocean (Kinne 1966).  Whereas the environment of the coastal subtidal remains relatively 

static through time with regard to water properties such as temperature, salinity, dissolved 

oxygen, etc., estuaries can experience dramatic changes in these factors on tidal and 

seasonal timescales (Kennish 1986).  If a given organism is not adapted to cope well with 

these fluxes and extremes, the estuary could represent a highly stressful environment.  

For a marine organism, these stresses would presumably become more acute as the 

organism moves away from the ocean-estuary interface and farther up the estuary 

(Chapter III).  In the case of Carcinonemertes errans on crabs in the Coos Bay Estuary, 

possible environmental stressors unique to or magnified within the estuary could be 

acting in two ways to create the observed gradient.  First, stressors could act directly on 

the larval stage, killing any unfortunate larvae that are brought into intolerable estuarine 

waters before they can infect their hosts (Anger 2003).  Second, juvenile or adult worms 

already present on the exoskeleton of a host individual could be eliminated if the host 

moved into a part of the estuary where conditions were not tolerable to the worms. 

 Although the Coos Bay Estuary is not river-dominated like the Columbia River 

estuary in the study of McCabe et al. (1987), it can still experience low average salinities 

and occasional strong freshets during the wet season (November-April; Queen & Burt 

1955).  For example, during the 2008 sampling season, the salinity at Valino Island 

regularly dropped below 10 during the wet season and bottomed out at 3.1 on February 4 

(National Oceanic and Atmospheric Administration 2008).  In 2009 at the Empire Docks 
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site in the main bay, average salinities varied between 34.3 in the dry season and 27.8 in 

the wet season but could dip down below salinity 5 on occasion (Confederated Tribes 

2010).  Although no monitoring data exists for Jordan Cove or Highway sites, their 

position farther upriver from Empire Docks as well as their proximity to freshwater 

inputs at North Slough and Haynes Inlet suggest that both average and extreme salinities 

would be lower than that at Empire Docks. 

 Chapter III of this dissertation deals directly with the questions regarding the 

physiological tolerances of the different life stages of Carcinonemertes errans to 

temperature and salinity stress.  One of the results of these studies was that both larval 

and juvenile worms have somewhat similar tolerances to salinity as do their crab hosts.  

This along with the seasonal data discussed below suggests that while physical factors 

such as salinity and temperature may play some role in creating and maintaining the 

observed gradients, they are probably not acting alone. 

 

Seasonal changes 

 In their study examining the infection intensity of the protozoan Perkinsus 

marinus in an estuarine population of oysters (Crassostrea virginica), Crosby and 

Roberts (1990) found a significant difference between the infections observed during the 

hot dry summer when infections were highest and the cool wet winter when infections 

reached their lowest point.  They concluded that the parasite may be controlled in part by 

low temperatures and salinities.  Although I predicted that the same would be true of 

Carcinonemertes errans on Dungeness crabs in the Coos Bay Estuary, the data did not 

support this hypothesis (Figs. 2.8 & 2.9).   
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In five of the six sites where enough crabs were sampled during both seasons to 

compare prevalence (Fig. 2.8a), there was no observed difference between crabs caught 

during the wet season (November-April) and the dry season (May-October).  At Valino 

Island, the one site where a significant difference between seasons was observed, 

prevalence during the wet season was more than double what it was during the dry 

season.  Data from the Valino Island SWMP station (National Oceanic and Atmospheric 

Administration 2008) showed significantly lower salinities at Valino Island during the 

wet season months, suggesting that some mechanism(s) apart from salinity was driving 

the pattern.  One possibility is a change in average crab size.  Crabs caught at Valino 

Island during the wet season were significantly larger than those trapped during the dry 

season (Mann-Whitney U test, p < 0.001).  This observed increase in average crab 

carapace width might be the function of molting, which typically occurs during late 

summer and fall for adult males and late fall and early winter for females.  If one molting 

event is all that separated the crabs caught during the wet season from those caught 

during the dry season, however, one would expect to see similar instances of infection, 

which is not the case.  Another alternative is that these larger crabs may be arriving at the 

Valino Island site from offshore or from more marine regions of the bay where they may 

have been exposed to more parasites and brought their higher prevalence rates with them.  

The factors driving this proposed migration of larger crabs into the lower salinity waters 

of the estuary is unknown, although anecdotal evidence among crab fishermen certainly 

supports the idea of a migration of oceanic crabs into the bay around November (pers. 

comm., M. Lane, commercial crab fisherman).  It is also possible that smaller crabs from 
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upriver are moving through the Valino Island area during the dry season, driving down 

both the average size and parasite prevalence of crabs trapped there. 

Along with the size and possible migration of crab hosts, the supply of competent 

larvae may also be a significant factor forcing the seasonal differences.  Competent larvae 

of Carcinonemertes errans were most commonly captured in the plankton during the late 

summer and early fall (Chapter IV).  Although no larvae were captured during tows at the 

Valino Island site, some were found at Collver Point (Chapter IV).  The larvae disappear 

from the plankton in November, leading one to hypothesize that the peak in larval 

settlement should be during September and October.  Although these two months are part 

of the dry season, data from Valino Island crabs captured during September and October 

show 80% prevalence, just like in the wet season months of November and December.  

This doesn’t come through in the seasonal data because the September and October crabs 

are overwhelmed in numbers by crabs caught during June, July, and August when 

prevalences are much lower.  Within the wet season itself, crabs show the highest 

prevalence of C. errans during November and December followed by a decline, possibly 

caused by worms dying from the physiological stresses of low salinity conditions.  It is 

also possible that the larger crabs seen in the early wet season move out of the area as the 

season progresses. 

The mean intensity of Carcinonemertes errans varied significantly with season as 

well, both in offshore crabs and in crabs within the estuary.  The estuarine pattern, 

however, was completely driven by one site: OIMB Boathouse.  Again, the data showed 

higher mean intensity values during the wet season than the dry, the opposite of what one 

might predict with a salinity-based gradient model.   As with parasite prevalence at 
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Valino Island, at least part of the pattern seems to be explained by the size of the crabs; 

crabs sampled offshore and at OIMB Boathouse site were significantly larger during the 

wet season than the dry (Mann-Whitney U tests, p < 0.001).  Correcting for size by 

calculating parasite density eliminated the significant size effect for offshore crabs, but 

not for crabs from OIMB Boathouse, suggesting that additional factor(s) may be at play.  

Possible candidates for this factor(s) are similar to those described for the prevalence 

pattern at Valino Island: 1) migration of crabs from areas of higher parasite infections 

(offshore in the case of OIMB Boathouse) during the wet season, 2) migration of crabs 

from areas of lower infection during the dry season, and 3) a peak of larval settlement at 

the end of the dry season and the beginning of the wet season followed by a slow die-off 

of juvenile worms due to natural mortality, physiological stress, or both.  Unlike 

prevalence at the mesohaline Valino Island site, mean intensity at euhaline OIMB 

Boathouse did remain high throughout most of the wet season, suggesting that salinity 

stress may play a role at the former but not at the latter.  By June, however, intensities 

were back to much lower levels.  This makes it seem likely that seasonal migration 

patterns are occurring, with crabs moving in from the ocean during the fall and coming 

from the upper estuary during the summer. 

 

CONCLUSION 

The presence of a distinct estuarine gradient in both parasite prevalence and mean 

intensity of Carcinonemertes errans within the Coos Bay Estuary suggests that individual 

Dungeness crabs may indeed experience a spaciotemporal refuge from some or all of the 

effects of their nemertean egg predator by inhabiting an estuary rather than coastal 
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waters.  This gradient, which varies seasonally, is potentially the product of one or more 

life history traits of Cancer magister and C. errans, the physical parameters of the estuary 

itself, or some combination of the two.   

It is not clear if the same patterns exist in every estuary in the Pacific Northwest.  

However, the fact that similar patterns were observed in the two largest estuaries in 

Oregon (the Columbia and the Coos), each with quite different flow regimes, suggests 

that it may be widespread (McCabe et al. 1987).  Preliminary results from the Alsea Bay 

estuary on the central Oregon coast also showed very few nemerteans on crabs 

(unpublished data), but sample sizes were too low to make any conclusions as yet.   It is 

also not yet clear to what extent crabs actually take advantage of the estuarine refuges 

that do exist. Although many crabs inhabit estuaries from Alaska to California, the 

majority of all Dungeness crabs, both juvenile and adult, inhabit the subtidal sandy 

substrate of the nearshore coastal shelf (Armstrong et al. 2003).  It is therefore unlikely 

that estuarine refuges from Carcinonemertes errans play a significant role in the 

population dynamics of this important fishery species.  However, for those crabs 

fortunate enough to have settled in an estuary and to have spent their early years there or 

migrated into an estuary later on, the resultant lower worm load would certainly result in 

more potential offspring surviving to hatching, and, possibly, higher fitness. 

 

BRIDGE 

 In Chapter II, I examined the estuarine distribution of Carcinonemertes errans on 

its host Cancer magister and discovered a clear estuarine gradient in both parasite 

prevalence and mean intensity.  The possible mechanisms creating this infection gradient 
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will now be examined.  In the following chapter, I present experiments in which I tested 

the physiological tolerances of two life stages of C. errans to salinity and temperature 

combinations the nemerteans could experience within the Coos Bay Estuary. 
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CHAPTER III 

PHYSIOLOGICAL TOLERANCES OF THE NEMERTEAN EGG PREDATOR 

CARCINONEMERTES ERRANS TO SALINITY AND TEMPERATURE STRESS 

 

Introduction 

All organisms must cope with the demands of their physical environment.  The 

nature of the physical environment is not uniform in either time or space, however, and 

each environmental variation presents its inhabitants with a unique suite of potentially 

harmful stressors (Kinne, 1970).  In marine systems, these environmental stressors may 

include light, pressure, availability of dissolved gasses, pH, temperature, and salinity 

(Rankin and Davenport, 1981).  The importance of these last two factors in the biology of 

marine organisms has long been recognized, and studies of each have produced an 

extensive literature.  Here I will summarize some of the effects of temperature and 

salinity on marine life as they pertain to the estuarine environment, but more extensive 

reviews are provided by Bullock (1955), Gunter (1957), Kinne (1963), Rose (1967), 

Whittow (1970), and Prosser (1991) for temperature and Schleiper (1955), Pearse and 

Gunter (1957), Robertson (1957), Shaw (1960), Potts and Parry (1964), Kinne (1966), 

Rankin and Davenport (1981), and Evans (2009) for salinity. 

 Estuaries are of particular interest when examining biotic responses to changes in 

temperature and salinity.  An estuary’s location at the junction of fresh and marine water 

as well as its semi-enclosed nature present excellent opportunities for examining life’s 

ability to deal with physical stressors at many temporal and spatial scales (Kennish, 

1986).  Almost any location within an estuary will experience moderate to large 
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fluctuations in both temperature and salinity within a single tidal cycle (Kennedy, 1982).  

Even larger changes can be observed seasonally (Crosby and Roberts, 1990).  Because 

they live in a constantly changing environment, organisms inhabiting estuarine (or 

brackish) waters are often both eurythermic and euryhaline.  But even these species have 

their limits, and the distribution of a given species within an estuary is often determined 

by its physiological tolerances to physical factors such as temperature and salinity 

(Haskin and Ford, 1982). 

 Within an estuary, the extreme ranges and periodicities of physical stressors 

frequently interact and organisms must cope with multiple physical factors at once, often 

experiencing synergistic interactions as well.  This fact has not escaped researchers, and 

the literature is full of studies where the responses of organisms to multiple 

environmental variables were examined simultaneously (for an extensive review, see 

Alderdice, 1972).  In general, optimal intensities of other simultaneous environmental 

stressors are required for the maximum tolerance of any one stressor (Kinne, 1970). 

 Salinity and temperature affect organisms within many estuaries by creating clear 

horizontal gradients as one moves from the riverine part of the estuary to the marine end 

(Kennish, 1986).  Some estuaries also experience vertical gradients in temperature and/or 

salinity, with cooler, more saline waters being found on the bottom while the fresher, 

warmer water floats on top.  Other estuaries experience extensive mixing so that little or 

no distinct vertical gradient forms.  This can also change seasonally, as greater freshwater 

input allows for less mixing, creating a stratified water column (Kennish, 1986).  These 

variations in temperature and salinity can be lethal to marine organisms brought into the 
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estuary on the rising tide, potentially causing abnormal or delayed development of 

embryos and larvae (Morgan, 1995). 

Although the constant demands of the estuarine environment are thought to keep 

the biodiversity of estuaries lower than that of both freshwater and marine systems, it is 

common for some marine organisms to enter estuaries.  While some of these marine 

species exploit estuarine habitats only during certain life stages, others may invade 

throughout their lives.  These invasions may be temporary or permanent and may vary 

from individual to individual within a population (Kennish, 1986).   

Whenever a primarily marine organism does invade an estuarine habitat, it must 

cope with the new combination of stressors found there, particularly salinity.  Coping 

strategies may include ionic regulation, volume regulation, intracellular regulation, or 

behavioral control (Rankin and Davenport, 1981).   The physical factors of the estuary 

may also exert indirect ecological effects on invaders by modifying the species 

composition of the ecosystem in which they are now found.  The invading species may 

need to cope with predators not found in its previous habitat and potentially find new 

sources of food.  Invasion of the estuarine environment may also cause changes between 

the invader and its parasites.  An obligate parasite, particularly an ectoparasite, is exposed 

to nearly the same environmental conditions as its host.  If only a portion of the host’s 

population invades an estuary, and the parasite proves to have a lower tolerance than the 

host to the conditions experienced there, the possibility exists that host individuals 

entering the estuary could experience a refuge from their parasite based on this difference 

in physiological tolerance (Tolley et al., 2006).  Such “salinity refuges” have been 

studied in several systems on the east coast of North America, including the Virginia 
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oyster Crassostria virginica with its protozoan parasite Haplosporidium nelsoni (Haskin 

et al., 1965; Haskin et al., 1966; Haskin and Ford, 1982; Barber et al., 1997) and the mud 

crab Panopeus obesus with its rhizocephalan parasite Loxothylacus panopaei (Tolley et 

al., 2006). 

 Another excellent model relationship for testing this hypothesis exists in the 

estuaries of the Pacific Northwest of the United States and Canada.  The Dungeness crab, 

Cancer magister, can be found in the coastal waters off the west coast of North America 

from Alaska to California.  Although the majority of crabs inhabit nearshore sandy 

bottoms from the intertidal zone to at least 180 m depth, a significant number of crabs 

also inhabit estuarine systems (Pauley et al., 1989).  This is particularly true of younger 

crabs, which may invade the estuary as megalopae and experience a significant advantage 

in growth over those crabs that do not settle in the estuary (Armstrong et al., 2003).  

Within estuaries, Dungeness crabs tend to inhabit the euhaline (salinity >30) and 

polyhaline (salinity 18-30) regions while only occurring in the mesohaline (salinity 5-18) 

and oligohaline (salinity <5) regions rarely or as very early instars (see Chapter II). 

Throughout its range, Cancer magister is infected by the nemertean egg-predator 

Carcinonemertes errans.  These ectoparasitic worms feed on their host’s developing 

embryos while the female crab incubates them under her abdominal flap, potentially 

causing significant brood loss (Wickham, 1979).  However, there is a clear difference in 

infection rate between crabs in the ocean and those in estuaries, both in parasite 

prevalence and mean intensity (Chapter II). 

Although no rigorous studies have tested the salinity tolerance of 

Carcinonemertes errans, it was not found on any crabs where salinity reached 0 in a 
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Columbia River survey of Dungeness crabs (McCabe et al., 1987).  Wickham (1980) also 

noted that worms placed in distilled water died within minutes.  No data exist for the 

tolerance of C. errans to varying temperatures.  The following study tested the hypothesis 

that the distribution of C. errans on Cancer magister within Pacific Northwest estuaries 

is limited by low physiological tolerance to salinity and temperature stress. 

 

Materials and Methods 

Juvenile salinity and temperature tolerance 

The physiological tolerance of juvenile Carcinonemertes errans to salinity and 

temperature stress was tested experimentally in the laboratory.  Juvenile worms taken 

from crabs captured in the Coos Bay Estuary, Oregon, in the spring of 2009 were 

subjected to salinity treatments of 5, 10, 20, 25, and 30 and temperature treatments of 8, 

12, 16 and 20 °C.  These specific salinity and temperature treatments were chosen 

because they represent the range that worms could realistically encounter along the 

estuarine gradient of Coos Bay and the South Slough, the areas examined during my 

trapping survey (Figs. 3.1-3.6).   

Three replicate water baths at each temperature treatment were placed in one 

recirculating sea table at the Oregon Institute of Marine Biology, Charleston, Oregon.  

The water temperature in the sea table was maintained at 8 °C by a chiller.  Each water 

bath was kept at the appropriate treatment temperature using aquarium heaters and was 

tested for consistency twice a day for three days leading up to the beginning of the 

experiment and daily during the course of the experiment.  
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Figure 3.1. Average bottom salinities in the Coos Bay Estuary during (A) the dry season (May-October) and (B) the wet season 
(November-April).  Bracketed values on scale bars represent the salinity range present in each map.  Data for these figures was 
taken from monthly surveys performed by Queen and Burt (1955).  All maps in this chapter were created using Spatial Analyst and 
3D Analyst in ArcMap 10.  Interpolation between points used IDW (Inverse Distance Weighted) methodology with a power of 2 
and cell size of 10 m2. The analysis covered the entire region surrounding the bay but was masked using the bay outline polygon 
shape. Subsequently, this is not a precise hydrologic model, but still qualifies as a valid gradient analysis for this water body. 
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Figure 3.2. Bottom salinity extremes experienced in the Coos Bay Estuary include (A) average salinity at high slack tide in the 
dry season (May-October) and (B) average salinity at low slack tide in the wet season (November-April).  Bracketed values on 
scale bars represent the salinity range present in each map.  Data for these figures was taken from monthly surveys performed by 
Queen and Burt (1955). 
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Figure 3.3. Average bottom temperatures in the Coos Bay Estuary during (A) the dry season (May-October) and (B) the wet 
season (November-April).  Bracketed values on scale bars represent the temperature range present in each map.  Data for these 
figures was taken from monthly surveys performed by Queen and Burt (1955). 
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Figure 3.4. Average salinities in the South Slough during (A) the dry season (May-October) and (B) the wet season (November-
April).  Bracketed values on scale bars represent the salinity range present in each map.  Data for these figures was taken from 
SWMP data monitoring stations (National Oceanic and Atmospheric Administration, 2008). 
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Figure 3.5. Salinity extremes experienced in the South Slough include (A) average salinity at high slack tide in the dry season 
(May-October) and (B) average salinity at low slack tide in the wet season (November-April).  Bracketed values on scale bars 
represent the salinity range present in each map.  Data for these figures was taken from SWMP data monitoring stations (National 
Oceanic and Atmospheric Administration, 2008). 
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Figure 3.6. Average temperatures in the South Slough during (A) the dry season (May-October) and (B) the wet season 
(November-April).  Bracketed values on scale bars represent the temperature range present in each map.  Data for these figures 
was taken from SWMP data monitoring stations (National Oceanic and Atmospheric Administration, 2008).  
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The position of each of the 12 water baths in the sea table was determined using a 

random number table and can be seen in Fig. 3.7.  Five 20-ml scintillation vials with lids, 

each containing one of the five salinity treatments and ten juvenile worms, were placed 

into each water bath.  I checked each of the vials under a dissecting microscope every 

other day, noted any mortality that had occurred, and changed the water within each vial. 

 

 

 
 

Figure 3.7.  Design for temperature and salinity tolerance experiments.  Each water 
bath was randomly assigned a temperature treatment and was kept at that 
temperature using aquarium heaters.  Five vials, each containing a different salinity 
treatment as well as juvenile worms or larvae, were placed in each bath.  Ambient 
water temperature of the seatable was 8 °C. 
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A worm was considered dead if it: 1) did not respond to being nudged with forceps, 2) 

was beginning to decay, or 3) was missing entirely from the vial.  The experiment ran for 

10 days, but because there was no change in worm mortality between Days 8 and 10, 

only data for the first 8 days are presented.  Because each vial was checked multiple 

times during the experiment, I analyzed the results using an ANOVA of repeated 

measures (ANOVAR) with salinity and temperature as fixed factors (Zar, 2010).  Post-

hoc Bonferroni tests were used to detect significant differences between treatments.  All 

percentages were arcsine square-root transformed for the analysis and were back-

transformed for figures (Zar, 2010). 

 

Larval salinity and temperature tolerance 

I conducted two separate experiments to test the physiological tolerances of 

Carcinonemertes errans larvae to salinity and temperature.  The larvae used for these 

experiments hatched from egg strings taken from the egg masses of female Dungeness 

crabs captured in the Coos Bay Estuary during the winter of 2009 and kept in a running 

seawater aquarium.  Prior to the beginning of the experiment, all larvae were cultured in 

containers of 0.45 µm filtered seawater and stirred in sea tables at the Oregon Institute of 

Marine Biology. 

The first experiment used the same methodology as the juvenile tolerance 

experiment described above with the following exceptions: 1) 20 one-week-old larvae 

(rather than 10 juvenile worms) were placed in each vial containing one of the five 

salinity treatments, and 2) the experiment lasted 24 hours, after which time I examined 

the contents of each vial under a dissecting microscope and determined how many larvae 
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were still alive.  Due to the results of the 24-hour larval tolerance experiment, the two 

lowest salinity treatments (5 and 10) were not used in the second experiment and were 

replaced by a salinity 15 treatment in an attempt to determine more closely the lower 

salinity threshold that larvae could tolerate.  The second experiment was allowed to run 

for 72 hours before I checked the vials for mortality.  The 24-hour and the 72-hour 

experiments were analyzed using two two-way ANOVAs, with salinity and temperature 

as fixed factors.  These were followed by post-hoc Tamhane tests, which do not assume 

equal variance.  All percentages were arcsine square-root transformed for the analysis 

and were back-transformed for figures (Zar, 2010). 

 

Results 

Juvenile salinity and temperature tolerance 

 After two days, all of the juvenile worms in the salinity 5 treatment were dead, 

regardless of temperature (Fig. 3.8A).  Survival at salinity 10 varied from 0.55 ± 0.03 SE 

at 20 °C to 0.7 ± 0.18 SE at 12 °C (Fig. 3.8B).  Survival at salinity 20 was 0.91 ± 0.09 SE 

at 8 °C, but remained at 100% for the other temperature treatments (Fig. 3.8C).  No 

mortality occurred at salinities 25 or 30 (Fig. 3.8D).  By Day 4 of the experiment, 

survival at salinity 10 had dropped considerably, reaching zero at 16°C.  At salinity 20, 

survival at 8 °C was 0.86 ± 0.13 SE, but remained at 100% for the other temperatures.  

No mortality occurred at the two higher salinity treatments.  At Day 6, survival at salinity 

10 was zero across all temperature treatments.  Survival at salinity 20 also dropped below 

100% in all of the temperature treatments for the first time, ranging from 0.82 ± 0.12 SE 

at 16 °C to 0.68 ± 0.10 SE at 12 °C.  No mortality occurred at salinities 25 or 30.  
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Figure 3.8 Average percent survival of juvenile Carcinonemertes errans over 8 days when exposed to four different temperature 
treatments at salinities of 5 (A), 10 (B), 20 (C), and 25 & 30 (D).  Error bars represent one standard error.
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No large changes in survival occurred between Days 6 and 8.  Survival at salinity 20 

decreased slightly, reaching as low as 0.63 ± 0.15 SE at 12 °C, but there was no change at 

salinities 25 or 30. 

 The results of the ANOVAR are shown in Table 3.1.  The assumption of 

sphericity was violated (Mauchley’s W=0.23, p<0.001), but the value of the Huynh-Feldt 

Epsilon was greater than 0.7 (ϵ = 0.702).  I therefore used the Huynh-Feld adjusted 

degrees of freedom for within-subject factors (Zar, 2010).  Both the effect of day (F = 

45.506, p<0.001) and the interaction between day and salinity (F = 21.891, p < 0.001) 

were highly significant, while all other within-subjects effects were not significant.  The 

test of between-subject effects showed that salinity was highly significant (F = 300.355, p 

< 0.001), while temperature (F = 0.204, p = 0.893) and the salinity-temperature 

interaction (F = 0.346, p = 0.974) were not significant.  Post-hoc Bonferroni tests (α = 

0.05) showed that all salinity treatments were significantly different from each other with 

the exception of salinities 25 and 30. 

 

Larval salinity and temperature tolerance 

 At the end of the 24-hour tolerance experiment, all of the larvae in salinity 

treatments 5 and 10 were dead, regardless of temperature (Fig. 3.9A).  Survival at 

salinities 20 (0.97 ± 0.01 SE) and 25 (0.99 ± 0.004 SE) was very high, and there was no 

mortality at salinity 30, again regardless of temperature.  The ANOVA results are shown 

in Table 3.2.  The transformed data violated the ANOVA assumptions of normality and 

equal variance (Levene’s Test, p < 0.01), which could lead to rejecting the null   



 

61 

Table 3.1. Salinity and temperature tolerance ANOVAR results for juvenile 
Carcinonemertes errans. 

 
A. Within-Subjects Effects 
 
Source of Variation DF  SS  MS  F  PH  

 
day 

 
2.105 

 
3.504 

 
1.665 

 
45.506 

 
<0.001 

day x salinity 8.419 6.742 0.801 21.891 <0.001 

day x temp 6.314 0.866 0.020 0.545 0.781 

day x sal x temp 25.258 3.080 0.034 0.937 0.557 

residual 84.193 0.397 0.037   
      

B. Between-Subjects Effects 

Source of Variation DF   SS   MS  F   P  

 
salinity 

 
3 

 
104.725 

 
26.181 

 
300.355 

 
<0.001 

temperature 3 0.053 0.018 0.204 0.893 

temp x salinity 9 0.362 0.030 0.346 0.974 

residual 32 3.487 0.087    
 
The two-way ANOVAR compared survival of juvenile worms exposed to four 
temperature treatments and five salinity treatments across eight days.  Within-subject 
effects (A) show the differences between treatment days.  Between-subjects effects (B) 
show the differences in survival with salinity and temperature as factors.  PH is the 
Huynh-Feldt adjusted P value, used because the data violated the assumption of 
sphericity. 
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Figure 3.9. Average percent survival of larval Carcinonemertes errans when exposed to 
temperature and salinity treatment combinations for (A) 24 hours and (B) 72 hours.  Error 
bars represent one standard error. 

 
 
hypothesis of no difference between treatments when it should not be rejected (false 

positive; Sokal and Rohlf, 1981).  I therefore adopted a more stringent α value of 0.01.  
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The effect of salinity was highly significant (p < 0.001), while the effects of temperature 

(p = 0.583) and the salinity-temperature interaction (p = 0.644) were not significant.  The 

Tamhane tests showed that none of the temperature treatments were significantly 

different from one another, but that the salinity treatments were neatly divided into two 

significantly-different (p < 0.001) groups: salinities 5 and 10 and salinities 20, 25, and 30. 

 

 

Table 3.2. Results of a two-way ANOVA testing survival of larval Carcinonemertes 
errans after 24 hours with salinity and temperature as fixed factors. 

 
Source of 
Variation 

 
 DF  

 
 SS  

  
MS  

 
F  

 
 P  

 

temp 

 

3 

 

0.0115 

 

0.00384 

 

0.658 

 

0.583 
salinity 4 33.283 8.321 1424.557 <0.001 
temp x salinity 12 0.0564 0.00470 0.805 0.644 
Residual 39 0.228 0.00584   
Total 58 33.726 0.581   

 
 
 
 

 After the 72-hour exposure, the larvae at the lowest salinity treatment (15) were 

once again all dead, regardless of temperature (Fig. 3.9B).  At salinity 20, average 

survival ranged from 0.22 to 0.35 (mean=0.31 ± 0.02 SE), with no clear trend in the 

effect of temperature.  Survival at salinities 25 and 30 was higher than at 20 (mean = 0.67 

± 0.04 SE and mean = 0.83 ± 0.04 SE, respectively) and varied with temperature, but 

with no clear trend as well.  The ANOVA results are shown in Table 3.3. 

 

 



 

64 

Table 3.3. Results of a two-way ANOVA testing survival of larval Carcinonemertes 
errans after 72 hours with salinity and temperature as fixed factors. 

 
Source of 
Variation 

  
DF  

  
SS  

  
MS  

 
 F  

 
 P  

 

temp 

 

3 

 

0.278 

 

0.0928 

 

7.490 

 

<0.001 

salinity 3 9.882 3.294 265.796 <0.001 

temp x salinity 9 0.319 0.0354 2.859 0.014 

Residual 32 0.397 0.0124   

Total 47 10.876 0.231   
 

 

Like the 24-hour experiment, the transformed data violated the ANOVA 

assumptions of normality and equal variance (Levene’s Test F = 5.199, p < 0.01), so I 

adopted a more stringent α value of 0.01.  This lower α value resulted in a non-significant 

interaction between temperature and salinity (F = 2.859, p = 0.014).  The effect of 

temperature remained significant (F = 7.490, p < 0.001), but the effect of salinity was by 

far the leading explanation for the exhibited pattern (F = 265.796, p < 0.001).  The 

Tamhane tests showed that none of the temperature treatments was significantly different 

from any other, but that all of the salinity treatments were significantly different (p < 

0.001) except treatments 25 and 30 (p = 0.057). 

 

Discussion 

The ability to tolerate changes in temperature, salinity, or the combination of the 

two is often linked to ontogeny (Anger, 2003).  Although the vast majority of tolerance 
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experiments in the literature have been performed on adult or sub-adult individuals, there 

is some evidence for drastic changes in physiological tolerance based on life stage 

(Kinne, 1971).  Gametes and developing embryos typically show the lowest ability to 

tolerate large changes in either salinity or temperature, and salinity has been identified as 

one of the major causes of death in estuarine and coastal plankton (Calabrese and Davis, 

1970; Metaxas, 1998; Anger, 2003; Kashenko and Korn, 2003; Bravo et al., 2007; 

Nurdiani and Zeng, 2007).  This is thought to result from insufficient development of  

systems for coping with physiological stress (Kinne, 1970).  The trend is not universal, 

however, with the larvae of some species requiring lower salinities for proper 

development (Khlebovich, 1969). 

In the case of Carcinonemertes errans, both the juvenile and the larval stages 

appear to exhibit a relatively high tolerance to salinities that would occur in the euhaline 

(salinity >30) and most of the polyhaline (salinity 18-30) regions while failing to survive 

exposure to mesohaline (salinity 5-18) conditions for extended periods of time.  Juvenile 

worms all died within 48 hours when exposed to the salinity 5 treatment.  When salinity 

increased to 10, however, some juveniles were able to survive for at least 4 to 6 days, 

suggesting that a brief foray by the host into salinity 10 waters would probably not be 

enough to eliminate its entire parasite load.  Over sixty percent of the juvenile worms 

exposed to salinity 20 were still alive after 8 days, and not a single juvenile died at 

salinities 25 and 30, suggesting that juveniles of C. errans could survive at these salinities 

for longer periods or possibly indefinitely. 

 Although similar patterns in salinity tolerance were seen at the one-week-old 

larval stage of Carcinonemertes errans, the larval mortality rate at lower salinities was 
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higher than that of juvenile worms.  This was clear at the salinity 10 level, where all 

larvae were dead within 24 hours, while some juveniles were able to survive at salinity 10 

for up to 6 days.  Survival among larvae exposed to salinity 20 for 72 hours was similar 

to that of juveniles exposed to the same salinity for 8 days. These results, which suggest a 

potential difference in the ability of different life stages to survive the salinity stresses 

tested, should be interpreted carefully, however, due to the increased mortality seen 

among larvae at all salinity treatments, including 25 and 30. 

The effect of temperature, at least within the range that was tested, was not a 

significant source of mortality among juvenile worms.  On Days 2 and 4 of the 

experiment, there appeared to be an inverse relationship between temperature and 

survival of worms given the salinity 10 treatment, but this was not found to be 

significant.  The same pattern was not observed when mortality began to increase at 

salinity 20 beginning on Day 6. 

After the 24-hour larval experiment, temperature treatments explained very little 

of the observed variance.  During the 72-hour experiment, however, temperature did play 

a significant role in larval survival.   More larvae died at 20 °C than at any other 

temperature across salinity treatments, but after that the trend is less clear.  At salinity 25, 

survival increased from 8 °C to 16 °C, while at salinity 30, survival at 12 °C was lower 

than at 8 °C or 16 °C.  The most likely explanation for this pattern is that the low sample 

size used for the experiment did not give me the power to differentiate a real pattern from 

the noise of natural variation.  If I assume that the pattern is real, however, it appears that 

the ideal temperature for larval survival of Carcinonemertes errans is 16 °C.  Although 
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temperature was a significant factor in the 72-hour experiment, it was clearly secondary 

to the effect of salinity. 

This represents the first study to examine the physiological tolerances of 

Carcinonemertes errans to salinity and temperature.  The ability of nemerteans to cope 

with salinity stress has been examined in just a handful of other species.  The littoral 

nemertean Lineus ruber is known to survive salinities as low as 5 for up to seven days 

(Gibson, 1972).  Charmantier et al. (1991) found that the nemertean 

Pseudocarcinonemertes homari, an egg predator on the American lobster, has a lethal 

salinity threshold of 11 at 7 °C, but a threshold of 19 at 14.5 °C.  Scrocco and Fabianek 

(1970) found adult specimens of Carcinonemertes carcinophila, an Atlantic congener of 

C. errans, to be tolerant to salinities above 10.  Below that threshold, however, all worms 

were dead within two days.   

Osmoregulation in nemerteans is thought to involve both excretory nephridial 

networks (Gibson, 1972; Bartolomaeus and von Döhren, 2010) and the cerebral organs, 

which produce mucopolysaccharides hypothesized to offset the effects of body fluid 

dilution (Ling, 1970; Ferraris, 1979; Moore and Gibson, 1985; but see Amerongen and 

Chia, 1983).  Unlike many freshwater, terrestrial, and brackish water nemerteans that are 

known to possess elaborate networks of nephridia that extend almost the entire length of 

their bodies (Moore and Gibson, 1985; Maslakova and Norenburg, 2008), members of 

the genus Carcinonemertes have only a single pair of protonephridia located in the 

foregut region, a common design among marine nemertean osmoconformers (Moore and 

Gibson, 1985; Bartolomaeus and von Döhren, 2010).  The cerebral organs are also absent 
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in the Carcinonemertidae (Coe, 1902), further suggesting that members of 

Carcinonemertes are not capable of significant osmoregulation. 

In order for a hypothesized salinity refuge to have any effect, the host must have 

higher tolerance to lower salinities than its parasite.  The physiological tolerances and 

osmoregulatory abilities of the Dungeness crab have been well studied (Jones, 1941; 

Engelhardt and Dehnel, 1973; Hunter and Rudy, 1975; Brown and Terwilliger, 1992).  

Cancer magister is a weak osmoregulator as an adult, suggesting it may be a relative 

new-comer to estuarine life (Engelhardt and Dehnel, 1973).   Cleaver (1949) reported that 

adult Cancer magister could not tolerate salinities below 11 for longer than a few hours, 

but did not provide any data to support this statement.  Englehardt and Dehnel (1973) 

called the ionic regulatory system of Cancer magister “well-developed” and noted that 

while crabs left in salinity 8 water for four days exhibited 50% mortality, no mortality 

was seen in crabs kept at salinity 16 for up to nine days.  Curtis and McGaw (2010) found 

that prolonged sub-lethal exposure of Cancer magister to low salinity water also leads to 

decreased oxygen uptake, increased digestion time, and decreased ability to forage.  

These authors proposed that crabs possibly adopt an “eat-and-run” strategy, moving into 

less saline conditions to forage when necessary, but retreating to less stressful conditions 

to digest.  

Cancer magister also exhibits a clear ontogenetic component to its salinity 

tolerance (Brown and Terwilliger, 1992).  As megalopae and young instars, crabs migrate 

to the upper reaches of the estuary.  This occurs during the late spring and summer 

months when salinities are still relatively low compared to lower bay regions, but rarely 

reach zero (Lough, 1976).  These life stages are better osmoregulators than adults and 
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often remain in shallow, intertidal waters where they forage and possibly avoid contact 

with larger members of their cannibalistic species (Holsman et al., 2006).  Larger crabs 

remain almost exclusively in subtidal habitats where salinity and temperature changes are 

less extreme and frequent.  By the time the crabs reach maturity, they are almost 

exclusively found within the euhaline and polyhaline regions of the estuary (Chapter II). 

Unlike the river-dominated Columbia River Estuary, the Coos Bay Estuary is 

tidally dominated much of the year, experiencing strong flushing each tidal cycle and 

exhibiting coastal conditions during high tides (Roegner and Shanks, 2001).  This means 

that at least during the dry season, adult Dungeness crabs can move throughout much of 

the Coos Bay and South Slough without encountering bottom salinities below 20 (Queen 

and Burt, 1955; McAlister and Blanton, 1963).  During the wet season, however, some 

polyhaline regions turn into mesohaline regions, with salinity values dipping below 20, 

particularly during low tides.  Valino Island in the South Slough is one of these places 

(Figs. 3.4B, 3.5B), as are the upper bay sites of Jordan Cove and Highway (Chapter II; 

Figs. 3.1B, 3.2B).  Although crabs probably would not remain for long periods of time in 

low saline conditions (Curtis and McGaw, 2010), any movement into or through low 

salinity areas to forage could possibly result in at least a partial removal of juvenile 

Carcinonemertes.  Juvenile worms living on the crab carapace could die as a result of 

exposure to salinities below 25 (Fig. 3.8).  The juvenile tolerance results suggest that 

each relatively short stint of two to four days in salinity 20 water (well within the ability 

of Cancer magister to tolerate) could potentially kill off around 15% of the crab’s 

parasite load (Fig. 3.8).  A longer stay or any time spent in less saline conditions, even if 

the crab were burrowed into the sand while waiting for conditions to improve, would be 
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even more effective at removing worms.  A series of short-term low-salinity exposures 

could therefore represent a spacio-temporal refuge for the Dungeness crab from 

Carcinonemertes errans based on a salinity gradient within the Coos Bay Estuary.  Given 

the clear difference in infections of C. errans seen within the regions of the estuary and 

the relatively similar salinity tolerance range of C. magister and C. errans, however, it 

seems unlikely that salinity stress on the parasite alone is accounting for the entire 

observed pattern in host infection.  Other factors, particularly the ontogenetic movements 

of the host and the supply of competent larvae of C. errans in the estuary probably play a 

large role in the creation of the observed refuge (see Chapters II and IV). 

 

Bridge 

 In Chapter III, I tested the physiological tolerances of Carcinonemertes errans to 

temperature and salinity stress and found that this species has a similar tolerance range to 

that of its host Cancer magister.  It is therefore probable that other mechanisms 

contributed to the observed gradient in infections of C. errans on its host within the 

estuary.  One possibility is that the gradient reflects the extent to which competent larvae 

of C. errans invade the estuary in search of hosts.  In the following chapter, I present 

results of settlement experiments conducted within the estuary to test where and how C. 

errans infects C. magister.  I also performed plankton tows within the estuary over one 

year to discover when competent larvae were available to recruit to crabs.  Finally, I 

studied the process of larval settlement for C. errans in the laboratory and determined the 

stage at which larvae are competent to settle.
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CHAPTER IV 

LARVAL SETTLEMENT OF THE NEMERTEAN EGG PREDATOR 

CARCINONEMERTES ERRANS ON THE DUNGENESS CRAB, CANCER MAGISTER 

 

Introduction 

Over 90,000 species of marine invertebrates have biphasic life histories, with 

benthic adults producing planktonic larvae (Thorson 1964).  For some of these species, 

the planktonic larval phase lasts only a few minutes to a few hours (e.g. many ascidian 

and bryozoan larvae), while the larvae of other species (e.g. many crab zoeas and snail 

veligers) can remain in the plankton from weeks to months (Crisp 1976).  At some point, 

however, all larvae must either leave their pelagic existence and begin life on the 

substratum or perish.  Larval settlement is one of the most critically important events in 

the life of a biphasic organism and has been the subject of many studies and excellent 

reviews (e.g. Crisp 1974; Scheltema 1974; Chia & Rice 1978; Pawlik 1992; Hadfield 

1998).  Not only does settlement bring about major changes in the physical and biotic 

interactions that the animal will experience, it often coincides with a dramatic 

metamorphosis wherein larval structures are lost and a new body plan is created 

(Herrmann 1995).  In many invertebrate groups (e.g. bryozoans, sponges, ascidians, and 

barnacles) settlement also means the end of the motile stage and the beginning of a 

sedentary life (Thorson 1950). 

How larvae find their way to an appropriate habitat for their next life stage has 

been the focus of studies dating back to the beginning of the last century (reviewed in 

Wilson 1952).  Originally, it was widely supposed that larvae acted as passive particles, 
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the distribution of settlers being entirely random and controlled by the currents and waves 

(Nelson 1928).  The work of D. P. Wilson (1952), Knight-Jones (1953), Crisp (1955), 

Scheltema (1961) and others, however, showed that larvae were equipped with sensory 

structures and, at least under laboratory conditions, were capable of active substrate 

choice.  The present understanding of settlement suggests that larvae are moved by 

currents in the large scale and actively select substrata on the small scale (e.g. Pawlik et 

al. 1991; Koehl 2007). 

The search for the stimuli, or cues, that induce larval settlement responses has 

also been a subject of focused research (for reviews, see Morse 1990; Pawlik 1992; 

Hadfield & Paul 2001).  Stimuli may include physical factors, such as light, gravity, 

hydrostatic pressure, temperature, salinity, and properties of the substratum itself (Pawlik 

1992).  Cues also include biogenic chemicals such as those produced by microbial films, 

conspecifics, and food sources (Crisp 1974).  Crisp (1965) argued that larvae must 

necessarily rely solely on tactile stimuli for the induction of settlement because 1) any 

water soluble cue released from a substratum would be immediately diluted to negligible 

concentrations directly above the viscous boundary layer, and 2) the small size of larvae 

makes it difficult to detect a chemical gradient across their bodies, and also makes them 

move with parcels of water rather than through them.  Recent studies have shown, 

however, that larvae are not only able to detect dissolved cues in flowing water 

conditions, but that they can respond rapidly to these cues (Turner et al. 1994; Hadfield & 

Koehl 2004; Elbourne & Clare 2010; Koehl & Hadfield 2010). 

Although often overlooked, parasites represent a huge fraction of marine 

biodiversity (Rohde 1982).  Like their terrestrial counterparts, marine parasites can affect 
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the size and distributions of host populations, thus potentially altering entire ecosystems 

(Price 1980).  This becomes particularly apparent when the animals affected happen to be 

an important fishery species (Haskin et al. 1966).  In order to disperse from one host to 

another, marine parasitic species also tend to have planktonic larvae (Pawlik 1992).  

While finding an appropriate place to settle is important for any larva, this is especially 

true for the larvae of parasites.  Here, settlement represents the end of the free-living 

phase and the beginning of the parasitic one, and failure to locate the appropriate host 

will almost certainly result in death (Boone et al. 2004).  In the case of a parasite, the host 

itself represents both the food source and a site where conspecifics may potentially be 

found.  This idea led Chia (1978) to predict that settlement cues for parasitic larvae 

should be imperative and are likely associated with the host species.  Clearly, parasitic 

species offer excellent opportunities to study specificity in the patterns of larval 

settlement, but thus far studies involving settlement for parasitic species have mostly 

been confined to digenean flukes (James 1971) and some crustacean groups, especially 

rhizocephalan barnacles (Boone et al. 2003; 2004).   

The nemertean worm Carcinonemertes errans WICKHAM 1978 presents an 

excellent opportunity to better understand parasitic settlement patterns in marine systems.  

This species is an egg-predator on the Dungeness crab, Cancer magister DANA 1852, an 

important fishery species along the Pacific Northwest of the United States and Canada 

(Wickham 1979a).  Although some have argued that the egg-predator nemerteans of the 

genus Carcinonemertes are not true parasites (Kuris 1997), their dependence on crab 

hosts for food and subsequent completion of their life cycle is certainly parasitic in nature 

(Roe 1988).  Since C. errans has the potential to cause an average of 50-60% brood loss 
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on infected female Dungeness crabs (Wickham 1979a; b), the larval biology of 

Carcinonemertes, particularly at the time of settlement, has been singled out as an area of 

much-needed research (Kuris 1997). 

Unlike their free-living hoplonemertean relatives that produce relatively large, 

yolky, short-lived planuliform larvae similar in form to the adults (Norenburg & Stricker 

2002), reproduction in Carcinonemertes errans and its congeners appears to reflect an r-

selected parasitic lifestyle; larvae are produced in much higher numbers, and are small 

(~110µm at hatching), contain relatively little yolk, and possibly remain planktonic for 

long periods of time (Stricker & Reed 1981; Roe 1988).  Although several studies have 

attempted to induce larval settlement in C. errans and its congeners (Roe 1979; Stricker 

& Reed 1981; Bauman 1983), none has done so successfully.  This has left the questions 

of timing and specificity of larval settlement in the genus Carcinonemertes unresolved.  

Most known nemertean species are free-living benthic predators that are unlikely to show 

considerable specificity in substratum selection during settlement (Stricker 1987).  Given 

their dependence on their crab hosts, it seems likely that members of Carcinonemertes 

would exhibit much higher specificity in substratum choice.  It is, however, possible that 

worms could settle less discriminately and then seek out their host by crawling, as has 

been suggested for the larvae of Gononemertes australiensis, a parasite of an ascidian 

(Egan & Anderson 1979). 

The goals of the present study were fourfold:  1) to discover the stage at which 

larvae of Carcinonemertes errans are capable, or competent, to settle, 2) to induce larval 

settlement of C. errans in the laboratory, 3) to observe patterns of settlement of C. errans 

in the field and test for evidence of associative and gregarious settlement, and 4) to 
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determine when the competent larvae are available to infect crab hosts in the coastal 

ocean and estuaries. 

 

Methods 

Study organisms 

Larvae of Carcinonemertes errans were collected from egg masses of Dungeness 

crabs captured in Oregon coastal waters during the winter and spring of 2009-2011 and 

reared in aquaria at the Oregon Institute of Marine Biology, Charleston, Oregon.  Larvae 

were kept in 1.5 liter containers of 0.45 µm filtered seawater that were placed in a 

flowing seawater table with a stirring rack.  Water in the cultures was changed every 3-4 

days.  Competent larvae of C. errans were collected in plankton tows in the Coos Bay 

Estuary, as described below. 

 Dungeness crabs, Cancer magister, used in both lab and field studies were 

captured in the Coos Bay Estuary, Oregon, using trapping methods described in Chapter 

II of this dissertation.  Crabs were brought back to the Oregon Institute of Marine 

Biology and kept in tanks with flowing seawater until use in the experiments.  Other 

species of crabs used in settlement trials were also taken from the Coos Bay, by either 

hand (Hemigrapsus nudus and Hemigrapsus oregonensis) or trap (Cancer productus and 

Carcinus maenas). 

 

Laboratory settlement experiments 

 Larvae of Carcinonemertes errans were exposed to possible settlement cues 

beginning one day after hatching.  Potential cues included 1) small living Cancer 
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magister juveniles that had been cleaned of all worms, 2) juveniles of C. magister that 

carried a known number of juvenile nemerteans, 3) pieces of exoskeleton from C. 

magister, 4) tissue from C. magister, 5) water from containers where individuals of C. 

magister were kept, and 6) juvenile conspecific worms.  Living crabs were carefully 

examined for worms prior to use in experiments.  Only male crabs were used in 

settlement trials because they are known to carry the parasite with at least equal 

frequency as females (Chapter II) and are much easier to examine thoroughly under their 

abdominal flap.  Each crab was placed in a clean closed-system container along with a 

known number of larvae.  At the end of the experiment, the crab was carefully examined 

under a dissecting microscope for signs of larval settlement.  To test for the presumed 

host specificity of C. errans (Wickham 1980), living species of other crabs inhabiting the 

Coos Bay Estuary (shore crabs, Hemigrapsus nudus and Hemigrapsus oregonensis, the 

red rock crab, Cancer productus, and the invasive green crab, Carcinus maenas) were 

also tested using the same procedures.  Cues other than living crabs (i.e. conspecific 

worms, C. magister exoskeleton, C. magister tissue, and water with crab “essence”) were 

tested using a Latin square design (Sokal & Rohlf 1981).  Small dishes containing one 

cue each and filled with 0.45 µm filtered seawater were placed on a tray in rows.  Each 

row contained only one replicate of each cue.  A known number of larvae were 

introduced into each dish.  The tray was kept in a table with running seawater to ensure 

constant temperature.  After 24 hours, each dish was removed from the tray and 

examined under a dissecting microscope for settled larvae. 

 To test for larval age at competency, settlement trials were repeated on larvae 

each week after hatching until larvae were six weeks old.  After six weeks, too few larvae 
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remained in cultures to conduct experiments.  Prior to each of these trials, a subsample of 

larvae were relaxed and examined with a compound microscope (Olympus BX50) for 

evidence of morphological changes that could signal the arrival of competency.  

Micrographs of larvae were taken using a camera mounted on the microscope (Optronics 

MicroFire True Color firewire digital camera).   

 Advanced larvae of Carcinonemertes errans were collected in plankton tows as 

described below, examined with the compound microscope, measured, photographed, 

and kept in finger bowls to use in settlement experiments.  These trials were performed in 

closed containers with live male Dungeness crabs known to be uninfected with juvenile 

C. errans.  Larvae were added to the containers and left for 24 hours.  On the occasion of 

successful larval settlement, a subsample of newly-settled worms was removed from the 

crab, relaxed, and again measured and photographed under the compound microscope.  

These worms were then placed in a finger bowl of filtered seawater and observed for 

swimming or crawling behavior for 24 hours.  This procedure was repeated 48 and 72 

hours after successful larval settlement. 

 

Field settlement experiments 

Study site   

Coos Bay is a drowned river estuary 54 km2 in area located along the southern 

coast of Oregon.  Input from rivers and streams varies seasonally, from 150 m3 s-1 during 

the rainy winter to <3 m3 s-1 in the dry summer months (Roegner et al. 2007).  Regions of 

the lower estuary are well flushed during each tidal cycle (Roegner & Shanks 2001), but 

2-3 tidal cycles are needed to flush areas of the upper bay (S. Rumrill, pers. comm.) and 
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South Slough branch of the estuary (Rumrill 2006).  The bay can be divided into four 

distinct salinity regimes: the euhaline regime (>30) which is located near the mouth of the 

bay, the polyhaline regime (18-30) which stretches from about river mile 5 to river mile 

12, the mesohaline regime (5-18) which consists of most of the upper-bay sloughs, and 

the oligohaline regime (<5) which is riverine (Davidson 2006).   

 

Field trials  

 To determine the settlement patterns of Carcinonemertes errans in the Coos Bay 

Estuary, three caging trials were conducted.  The first and second trials occurred in 

August and September of 2009.  In the first trial, I examined: 1) whether larvae of C. 

errans could infect their hosts directly from the water column or only when the host was 

in contact with the substratum, and 2) whether crabs that were previously infected with 

juvenile worms were more likely to attract new parasites.  I deployed three cages at each 

of six sites around the bay, each corresponding with one of my trapping sites described in 

Chapter II of this dissertation (Fig. 4.1).  Three of the sites (Boathouse, Clam Island, and 

Empire) were in the most marine-influenced part of the estuary where prevalence of 

juvenile C. errans on Cancer magister was always at or near 100% and intensities were 

typically high (Chapter II).  The other three sites were in the upper bay (Jordan Cove and 

Highway) and the South Slough (Valino Island) where both prevalence and mean 

intensity of C. errans was much lower (Chapter II).  For cages, I used Fukui fish traps 

(60cm x 45cm x 20cm, ½ inch mesh) with their entrances wired shut (see Chapter II for 

image).  Two of the cages at each site were weighted down on the substratum, and a line 

with a float was attached to each.  Floatation was attached to the third cage to make it 
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positively buoyant.  The floating cage was held in place by a line attached to an anchor 

that had been drilled into the substratum (Fig. 4.2).    To ensure that cages remained 

submerged throughout the experiment, all were deployed during the lowest tide cycle of 

the month in which the trial took place.  One male Dungeness crab was placed in each of  

 

 

 

Fig.4.1.  Location of caging sites during field settlement trials for Carcinonemertes 
errans in Coos Bay and South Slough, Oregon.  Abbreviations: BH = OIMB 
Boathouse, CI = Clam Island, VI = Valino Island, ED = Empire Docks, JC = Jordan 
Cove, HW = Highway. 
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Fig.4.2. Design for field caging experiment.  During the first trial, one floating cage 
and two bottom cages were deployed at each of six sites.  The floating cage and one of 
the bottom cages held a previously-uninfected Cancer magister individual.  The other 
bottom cage held a previously-infected C. magister carrying a known number of 
nemerteans.  For the second trial, only the two bottom cages were deployed at each 
site.  Both trials lasted one month. 

 

 

the traps at all of the sites.  Crabs placed in the floating cage and one of the two bottom 

cages were checked on three separate occasions and known to be free of any juvenile C. 

errans.  The crab placed in the second bottom cage was infected with a known number of 

worms.  The carapace width of all crabs was measured prior to the beginning of the trial.  

I checked the cages once a week, recorded the infestation level of each crab, and fed the 

crabs.  Crabs were monitored for one month.   

The second round of caging experiments was conducted because the losses 

sustained during the first trial were too heavy for a clear pattern to emerge.  The second 
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trial was nearly identical to the first, but the floating cages were omitted.  Bottom cages 

still contained one crab with a known parasite load and one uninfected crab. 

 The third caging experiment was conducted in September 2010.  Ten cages (25cm 

x 15cm x 10cm) were constructed out of ½ inch Vexar mesh and weighted down using 

scrap iron and rocks attached to the bottom of each cage with zip ties.  The cages were 

attached every 1.3 meters along a 20 meter-long line that was anchored to the end of the 

dock at the OIMB Boathouse, near the mouth of the Coos Bay (Fig. 4.1).  Each crab 

being used in the experiment was measured and carefully examined on three separate 

occasions to be sure of its infection state (5 infected, 5 uninfected).  Once again, only 

male crabs were used in the trial.  The size of infected crabs was not significantly 

different from that of uninfected crabs (t-test, p=0.349).  Each crab was randomly 

assigned its own cage and wired inside.  I then lowered the cages into the water off the 

south side of the dock and checked them daily for one week to make sure all of the crabs 

were still present and alive.  After one week, I removed each crab and carefully counted 

the number of worms present. 

 The results of the first two trials were not analyzed separately due to losses 

described below.  For the third trial, a t-test was performed to test for a difference in the 

mean change of intensity between previously infected and previously uninfected crabs 

(Sokal & Rohlf 1981).  Combining the data from the three trials along with the pilot 

conducted before the third trial (identical methods to those described for Trial 3), I ran 

two regression analyses (Zar 2010).  The first examined the relationship of crab carapace 

width on the change in parasite load during the trials.  The second included only crabs 

that were previously-infected before the beginning of the trial and examined the 
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relationship between the initial parasite load and the number of new larval recruits that a 

crab acquired during the trials. 

 

Plankton tows 

Beginning in July 2010 and ending in June 2011, I conducted plankton tows over 

my trapping sites in the Coos Bay Estuary.  Not every site was sampled every month, but 

all sites were sampled at least five times throughout the year.  From March through June 

2011, I also took plankton tows in coastal waters just outside of the Coos Bay Estuary.  

The purpose of these tows was to: 1) discover if and when competent larvae of 

Carcinonemertes errans are present in the water column at each site, and 2) to collect 

larvae to use in settlement experiments.  All tows were taken by boat using a 150µm net 

and lasted five minutes.  In preliminary surveys, larvae were found most often in 

subsurface water and were more common during flood tides than ebb cycles.  For this 

reason, the depth of each tow was usually ~2-3 meters off the bottom, and plankton were 

collected either during high slack water or during an incoming tide. 

 Plankton from each tow were brought back to the laboratory at the Oregon 

Institute of Marine Biology and sorted live with a dissecting microscope.  Larvae of 

Carcinonemertes errans from Coos Bay plankton were initially identified by S. A. 

Maslakova using sequence data from COI and 16S genes (Maslakova pers. comm.), and 

sequences of C. errans were kindly provided by J. Norenburg (Smithsonian Institution).  

Larvae thus identified possessed characteristic coloration, size, and two pairs of eyes.  

Larvae I collected were morphologically identical to those identified by the sequence data 

as belonging to C. errans, and thus are assumed to belong to the same species.  Any 
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larvae of C. errans found in a sample were photographed as described above and kept for 

settlement experiments.   

 

Results 

Laboratory settlement experiments 

 No larvae of Carcinonemertes errans raised from hatching in the laboratory were 

induced to settle during experimental trials.  This was true for every trial up to the death 

of the cultures around six weeks after hatching.  Larvae in dishes were always observed 

to be swimming, never crawling along the bottom or exhibiting anything that might be 

identified as “searching” behavior.  Directly after hatching, larvae were nearly round, an 

average of 104.67 ± 1.02SE µm long (n=30), opaque due to yolk, and had one pair of 

ocelli directly over the brain as well as posterior and anterior cirri (Fig. 4.3A).  By the 

third week after hatching, larvae had elongated to a mean length of 272.73 ± 9.25SE µm 

long (n=30) and begun to look more worm-like (Fig. 4.3B).  The first pair of ocelli and 

cirri were still present, but most of  the yolk reserves were gone, presumably having been 

used for elongation and metabolism.  This resulted in a somewhat transparent appearance.  

Little to no change occurred in larval morphology from this point until larvae in all 

cultures died around week 6. 

 Larvae collected in plankton tows differed substantially from those in raised in 

laboratory cultures.  Larvae from tows were much larger (mean length= 643.85 ± 

14.61SE µm, n = 20), lacked posterior and anterior cirri, and contained a pink-orange 

pigment concentrated especially around the gut.  The first pair of ocelli observed in 

laboratory specimens was present, but a second pair of ocelli, positioned anterior to the 
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first pair and spaced farther apart, was also observed in all larvae (Fig. 4.3C).  Internal 

organs, especially the brain, lateral nerve cords, and proboscis structure, were more 

clearly developed than in any of the specimens raised in the laboratory (Fig. 4.3C). 

Larvae taken from the plankton were competent to settle.  During one trial in 

which 30 larvae of Carcinonemertes errans collected in a plankton tow were incubated 

for 24 hours with a juvenile male Cancer magister, 12 new recruits were found under the 

crab’s abdominal flap.  These newly-settled worms closely resembled the competent 

larvae taken in plankton tows (Figs. 4.4A, 4.4B): no cirri, pink-orange coloration, and 

two pairs of ocelli.  New settlers were found to be slightly longer than pre-settled larvae 

from the plankton (833 ± 13.86SE µm, n = 3).  When these three newly-settled worms 

were placed in a finger bowl of filtered seawater and observed over 24 hours, all swam 

like pre-settled larvae rather than crawling on the bottom. 

 When newly-settled worms were allowed to remain on the crab for 48 hours 

before removal, a clear morphological change occurred (Figs. 4.4C, 4.4D).  The first pair 

of ocelli disappeared in all individuals.  These worms were also longer on average (945 ± 

31.80SE µm, n = 3) than worms examined 24 hours after introduction to the crab host.  

When these nemerteans were placed in a finger bowl and checked over 24 hours, all of 

them consistently crawled on the bottom of the dish rather than swimming. 

 No noticeable change occurred between worms left on the host for 48 hours and 

those left on the host after 72 hours.  Worms in the latter group also lost the first pair of 

eyes, were longer on average than worms left for 24 hours, and crawled rather than swam 

when placed in finger bowls. 
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Fig. 4.3.  Larval stages of Carcinonemertes errans.  A.  Larva from laboratory culture at 
hatching.  B.  Larva from laboratory culture three weeks after hatching.  C.  Competent 
larva of unknown age from a plankton tow in the Coos Bay Estuary.  Note the differences 
in scale.  Abbreviations: ac = anterior cirrus, pc = posterior cirrus, fo = first pair of ocelli, 
so = second pair of ocelli, br = brain. 
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Fig. 4.4.  Metamorphosis of Carcinonemertes errans.  A.  Settled larva removed from 
Cancer magister 24 hours after the beginning of the trial.  B.  Magnification of cephalic 
region of 24- hour larva.  C.  Metamorphosed juvenile removed from C. magister 48 
hours after the beginning of the trial.  D.  Magnification of cephalic region of 48-hour 
juvenile. Abbreviations: fo = first pair of ocelli, so = second pair of ocelli, br = brain, st = 
stylet.
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Table 4.1.  Results for field caging experiment Trial 1.  Number of individual Carcinonemertes errans observed on crabs 
placed in floating and bottom cages at six sites.  All crabs in floating cages were uninfected at the beginning of the trial.  Half 
of the bottom cages contained uninfected crabs, while the other half contained crabs infected with a known number of worms.  
Abbreviations:  Int0 = initial parasite intensity (number of worms) each crab carried, IntF = final parasite intensity, ΔInt = 
change in parasite intensity during the trial, NA = lost cages. 

 
Site 

 
Floating Cage 

  
Bottom Cage Uninfected 

  
Bottom Cage Infected 

 Int0 IntF ΔInt  Int0 IntF ΔInt  Int0 IntF ΔInt 
 
OIMB Boathouse 0 NA NA 

 
0 14 14 

 
7 86 79 

Clam Island 0 11 11  0 18 18  21 115 94 
Empire Docks 0 10 10  0 NA NA  13 NA NA 
Jordan Cove 0 NA NA  0 11 11  5 12 7 
Highway 0 5 5  0 NA NA  7 NA NA 
Valino Island 0 NA NA  0 2 2  440 450 10 
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Table 4.2.  Results for field caging experiment Trial 2.  Number of individual 
Carcinonemertes errans observed on crabs placed in bottom cages at six sites.  Half of 
the cages contained uninfected crabs, while the other half contained crabs infected with 
a known number of worms.  Abbreviations:  Int0 = initial parasite intensity (number of 
worms) each crab carried, IntF = final parasite intensity, ΔInt = change in parasite 
intensity during the trial, NA = lost cages. 

 

 

Field settlement experiments 

 In the first and second field settlement trials, a combination of strong tidal 

currents, high waves, and equipment theft left me with about half of my original cages. 

Despite these losses, a few patterns emerged (Tables 4.1, 4.2).  First, all of the crabs in 

the bottom cages picked up new settlers by the end of the month (range = 2 to 94).  

Second, crabs in floating cages also became infected with Carcinonemertes errans.  

Third, the change in infection did vary from site to site, but all sites saw at least some 

new settlement.  And finally, for those sites in which both a previously-infected and a 

previously-uninfected crab were available at the end of the experiment, previously-

infected crabs tended to show a larger increase in new settlers, especially in lower bay 

sites. 

 
Site 

 
Bottom Cage Uninfected 

  
Bottom Cage Infected 

 Int0 IntF ΔInt  Int0 IntF ΔInt 

OIMB Boathouse 0 15 15  7 73 66 

Clam Island 0 NA NA  20 48 28 

Empire Docks 0 NA NA  9 NA NA 

Jordan Cove 0 NA NA  12 17 5 

Highway 0 3 3  11 NA NA 

Valino Island 0 7 7  16 26 10 
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 The results of the third field trial are shown in Table 4.3.  All of the crabs became 

infected after one week of exposure.  The five crabs that were uninfected at the beginning 

of the experiment had an average increase in parasite intensity of 10.2 ± 2.06 SE (range 6 

to18).  The average increase of previously-infected crabs was twice as large (mean=20, ± 

3.24 SE, range = 13 to 32).  A t-test found the difference between infection state to be 

statistically significant when α = 0.05 (p = 0.034).   

 

 

Table 4.3.  Results for field caging experiment Trial 3.  Number of individual 
Carcinonemertes errans observed on crabs placed in Vexar cages deployed along a 
line from the dock of the OIMB Boathouse.  Half of the cages contained uninfected 
crabs (shaded rows), while the other half contained crabs infected with a known 
number of worms.  Abbreviations:  CW= crab carapace width measured just anterior to 
the 10th lateral spine, Int0 = initial parasite intensity (number of worms) each crab 
carried, IntF = final parasite intensity, ΔInt = change in parasite intensity during the 
trial. 

 
Crab CW (mm) Int0 IntF ΔInt % Increase 

 
1 112 72 88 16 22.22 

2 123 0 8 8  

3 126 2 15 13 650 

4 116 0 10 10  

5 127 0 18 18  

6 107 19 39 20 105.26 

7 96 17 49 32 188.24 

8 120 2 21 19 950 

9 126 0 6 6  

10 103 0 9 9  
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A slightly negative relationship was observed between the change in parasite 

intensity and crab carapace width (Fig. 4.5), but the trend was not significant (r2 = 0.052, 

p = 0.102; n = 52).  As shown in Fig. 4.6, among previously-infected crabs only, the 

negative relationship between initial parasite intensity and the change in intensity over 

one week was found to be significant (r2 = 0.303, p < 0.001; n = 37). 

 

 

 

Fig. 4.5.  Regression analysis of the change in parasite intensity of Carcinonemertes 
errans in relation to host size.  Crabs used in the regression included both 
previously-infected and previously-uninfected individuals from a combination of 
Trials 1, 2, and 3 as well as pilot experiments (n=52). 

 

 

Plankton tows 

 The results of the plankton tows conducted in the Coos Bay Estuary and offshore 

waters are shown in Table 4.4.  There was a clear gradient in where larvae were found 
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within the bay. No larvae were ever found at Jordan Cove, Highway, or Valino Island.  

However, larvae were present in tows performed at Boathouse, Clam Island, Empire, and 

Collver Point sites.  The number of larvae at Boathouse, Clam Island, and Empire were 

similar, but relatively few larvae were found at Collver Point.  A clear seasonal pattern 

was observed as well, with larvae only present in plankton samples from August through 

early November, with peak occurrence in October 2010 (Figure 4.7).  No larvae of 

Carcinonemertes errans were taken in offshore plankton tows. 

 

 

 

Fig.4.6.  Regression analysis of the change in parasite intensity of Carcinonemertes 
errans in relation to initial intensity.  Only crabs that were infected at the beginning 
of the trials were included.  Data from a combination of Trials 1, 2, and 3 as well as 
pilot experiments (n=37).
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Table 4.4.  Results for plankton tows performed in Coos Bay Estuary and offshore.  Number of individual Carcinonemertes errans 
larvae taken in plankton samples at each of 8 sampling sites.  Sampling began in July of 2010 and continued until June 2011.  
Blank spaces represent months in which no tow was performed at a given site. 

 
 

 
Site 

 
Jan ‘11 

 
Feb ‘11 

 
Mar ‘11

 
Apr ‘11

 
May ‘11

 
Jun ‘11

 
Jul  ‘10 

 
Aug ‘10

 
Sep ‘10

 
Oct ‘10

 
Nov ‘10

 
Dec ‘10

 

Boathouse 

 

0 

 

0 

  

0 

  

0 

 

0 

 

10 

 

15 

 

16 

 

0 

 

Clam Is. 0 0 0  0 0  3 12 16 0  

Empire 0  0 0  0 0 7 8 30 1  

Jordan   0   0  0 0  0  

Highway   0   0  0  0 0  

Collver Pt. 0  0   0 0 1 1 1 0  

Valino Is. 0  0   0  0 0 0   

Offshore   0 0  0       
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Fig. 4.7.  Results from plankton tows in the Coos Bay Estuary.  The total number of 
larvae of Carcinonemertes errans that were taken at each sampling site between July 
2010 and June 2011.  No tows were performed in December 2010. 

 
 
 

Discussion 

Laboratory settlement experiments 

 Larval settlement of Carcinonemertes errans is described here for the first time 

under laboratory conditions.  There remains, however, a gap between those larvae taken 

in plankton tows that were induced to settle and those that were raised from hatching in 

the laboratory, which never settled during experiments.  This disparity could have been 

the result of several factors (or combinations of factors) present in the laboratory cultures 

including the lack of the appropriate larval food source, failure to be provided with the 
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appropriate substratum for settlement, failure to provide the correct conditions for normal 

development, or contamination and subsequent death of laboratory cultures.  The last 

possibility seems quite unlikely based on the consistent timing of the death of nearly all 

of my larval cultures in two separate years.  In every case, cultures appeared healthy for 

several weeks and then deteriorated quickly.  A culture that was started two weeks after 

another culture typically crashed around two weeks after the first rather than both 

crashing simultaneously.  

The substratum choice also seems unlikely because field-caught larvae settled in 

response to the live crab cue to which laboratory-reared larvae failed to respond.  Given 

the clear morphological differences present between field-caught larvae and lab-raised 

larvae, the difference in environmental conditions, particularly possible food sources, 

seems the likely explanation.  Larvae taken in plankton tows were nearly twice as large, 

on average, than the largest larvae ever observed in laboratory cultures.  The relatively-

clear appearance of older lab-reared larvae is also in stark contrast to the pink-orange 

coloration of the larvae from the plankton.  This coloration, which appears to be 

concentrated around the gut in some specimens, could very well be a by-product of 

planktivorous feeding.  It is therefore likely that lab-reared larvae did not settle when 

exposed to the correct settlement cues because they had failed to reach the stage at which 

they were competent to settle.   

Competency represents an example of convergent evolution; many different phyla 

have developed a larval stage that is, in effect, a loaded gun (Hadfield et al. 2001).  In a 

typical competent larva, the development of juvenile structures is all or mostly complete, 

making a rapid transition possible.  In this way, larvae can begin the change from pelagic 
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life to benthic almost immediately upon contacting the appropriate substrate.  Clearly, 

Carcinonemertes errans has also developed a morphologically-distinct competent stage.  

The most telling features of this stage are the two pairs of eyes, the first pair being 

present from the time of hatching and lost following settlement and the second pair 

present beginning in the competent larval stage and remaining during the juvenile and 

adult stages. 

The process of larval settlement in Carcinonemertes is distinctive.  Competent 

larvae settle directly onto their crab host within 24 hours of exposure in the laboratory.  

The exact location of initial settlement is unknown, but all new settlers were found 

underneath the abdomen after 24 hours.  Larval settlement in Carcinonemertes errans 

does appear to be reversible, at least for a limited period of time.  Individuals taken off 

the crab after only 24 hours of exposure still looked and behaved like competent larvae, 

possessing two pairs of eyes and swimming continually in a finger bowl.  Continued 

contact with the host, however, appears to induce the process of metamorphosis, here 

defined  as the phenomenon involved with the morphological changes an animal 

experiences as it permanently transitions from a swimming larva to a benthic juvenile or 

adult (Pawlik 1992).  The worm loses its first set of larval eyes, which were presumably 

used for navigating in a pelagic world, but retains the second pair.  As a side note, 

juvenile and adult C. errans are negatively phototactic.  It therefore stands to reason that 

the development of this second pair of eyes could signal the beginning of photonegative 

behavior in the competent larva.  This could potentially bring the larva into contact with 

the host at the exact time when it is capable of infecting a crab (Chapter V).   
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Along with the loss of the first pair of eyes, the metamorphosing settler also 

ceases to swim when taken off its crab host and adopts a longer, thinner body plan (just 

under 1 mm long).  Such elongation is common among the larvae of hoplonemerteans at 

the time of settlement (Stricker 1987).  In short, it looks exactly like a slightly smaller 

version of any juvenile worm taken from a crab host.  Although far from the dramatic 

metamorphosis observed in nemerteans with a pilidium larva, the physical changes 

following settlement in Carcinonemertes errans are the most dramatic of any 

hoplonemertean for which settlement has been described (Stricker 1987).  The loss of the 

first pair of eyes is particularly interesting, as the larval eyes are typically retained in 

hoplonemertean juvenile and adult stages (Norenburg & Stricker 2002).  The clear 

morphological change between larva and juvenile can act as a helpful indicator in any 

future studies involving settlement of C. errans, as any examined settlers retaining larval 

features will be known to have settled in the last 48 hours. 

 

Field settlement experiments 

 In his two-tiered caging experiment to determine whether larvae of 

Carcinonemertes epialti infect crabs from the water column or the substrate, Bauman 

(1984) observed that shore crabs in the bottom tier became more infected with C. epialti 

than those in the upper tier.  Hosts in the upper tier (30 cm off the bottom) did carry some 

worms, however, suggesting that either some worms do infect from the water column or 

they are capable of crawling 30 cm to the second tier.  This mixed result left the issue 

unresolved.  The results of my first field trial clearly showed that the larvae of C. errans 

are capable of infecting their crab host directly from the water column.  The height of my 
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floating cages above the substratum would have varied through tidal cycles, but at low 

tide no cage would have been closer than one meter off the bottom.  It remains a 

possibility that at least some competent larvae may settle on the substrate and seek out 

their hosts by crawling, but in all of my laboratory observations of competent larvae, I 

never saw any of them stop swimming and begin crawling until after metamorphosis. 

 In his seminal review on larval settlement, Crisp (1974) described the patterns of 

associative settlement and gregarious settlement, both of which are commonly observed 

among the settling larvae of marine invertebrates.  Associative settlement, the enhanced 

or specific settlement of one species on another, has been observed for many marine 

species (Crisp 1974; Hadfield & Paul 2001), and is probably the rule for parasitic larvae 

(Chia 1978; Pawlik 1992).  The results of both field and laboratory work in this study 

clearly show that Carcinonemertes errans exhibits associative settlement with its host, 

Cancer magister.   

The second pattern, gregarious settlement, is defined as the process wherein 

larvae of the colonizing species are induced to settle by established individuals of the 

same species (Knight-Jones 1953).  Such a behavior would clearly result in several 

advantages such as choosing a habitat that is likely to support postlarval growth (Jensen 

1989), increased likelihood of reproductive success (Crisp 1979; Pennington 1985), and 

even protection from predation (Highsmith 1982).  Gregarious settlement has been 

reported in at least 35 invertebrate species in 8 phyla (Burke 1986) and is particularly 

prevalent among hard-bottom, sessile animals such as barnacles (Knight-Jones 1953), 

bivalves (Bayne 1969), polychaetes (Wilson 1968), and ascidians (Young & Braithwaite 

1980).  This study represents the first clear evidence for gregarious settlement in a 



 

98 

nemertean.  The infection of previously worm-free crabs during all field trials proves that 

larvae of Carcinonemertes errans do not require the presence of conspecifics to settle, 

but significantly more larvae did settle on hosts that already carried at least a few juvenile 

worms.  Carcinonemertes errans has separate sexes, and although Roe (1986) showed 

that some females are capable of reproducing parthenogenetically, the low success rate of 

this strategy made sexual reproduction the most viable reproductive option.  Natural 

selection should therefore favor larvae that seek out hosts where they would be more 

likely to encounter a worm of the opposite sex.  A similar pattern is seen for 

rhizocephalan barnacles, where the host is first infected by a female larva and then by a 

male (Boone et al. 2003). 

 Gregariousness has its costs as well.  Aggregated individuals must compete for 

space and resources, which may decrease individual fitness (Pawlik 1992).  To minimize 

this effect, some species that exhibit gregarious settlement also exhibit a “spacing-out” 

behavior (Hui & Moyse 1987) sometimes called “territoriality” in the literature (Knight-

Jones & Moyse 1961).  The results of the regression analysis (Figure 4.6) suggest that 

something similar may be happening with Carcinonemertes errans.  Wickham (1979b) 

reported that there is a negative relationship between the number of worms present in a 

crab egg mass and the number of eggs that each worm eats, even when food does not 

appear to be limiting.  Fewer crab eggs eaten translates into fewer offspring produced per 

worm (Wickham 1979b).  He suggested that worms may produce some sort of 

intraspecific feeding inhibitor, similar to those seen in some amphibians (Rose 1960).  

Another possibility may be an increase in time spent in agonistic behaviors as worms 

increase in density.  Whether chemical or behavioral in nature, this potential decrease in 
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fitness could provide the selective force necessary for C. errans to develop territorial 

behavior at the time of larval settlement, rejecting hosts that carry too many conspecifics. 

 The field trials also showed that the size of the host crab did not determine how 

many new settlers it gained in a given time (Figure 4.5).  This is a particularly interesting 

result given the clear positive relationship between size and parasite prevalence and 

intensity observed during the three-year trapping survey in the Coos Bay Estuary 

(Chapter II).  If the size of the crab itself is not a good predictor for larval settlement, then 

the observed pattern must be attributable to one or both of the controlled factors during 

the field experiments: location within the estuary and length of exposure.  Although 

sample sizes were small for field trials, it appeared that the increase in mean intensity of 

Carcinonemertes errans on crabs left in cages for one month during trials 1 and 2 was 

much higher than that of crabs left for only one week in trial 3 (Tables 4.1, 4.2, 4.3). 

Also, crabs in cages at sites in the lower bay had a larger increase in mean intensity on 

average than crabs at upper bay or South Slough sites (Tables 4.1, 4.2).  It therefore 

seems likely that both location and exposure time contribute to the number of worm 

larvae settling on a crab host.  Since larger crabs in the Coos Bay Estuary have 

potentially been exposed to larvae longer than smaller crabs and also tend to spend more 

time in waters closer to the mouth of the bay (Chapter II, this dissertation), both factors 

could be working to create the observed pattern. 

 

Plankton tows 

 The larvae of Carcinonemertes errans were the most common nemertean larvae 

found in plankton tows conducted in the Coos Bay Estuary.  Given that individual worms 
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can produce hundreds to thousands of larvae (Wickham, 1980) and infections on an 

ovigerous female Dungeness crab can number in the thousands to tens of thousands 

(Wickham 1979a), this is not particularly surprising.  The distribution of larvae collected 

in tows appeared to mirror that of both field settlement trials and field trapping surveys, 

with the most larvae present in lower bay sites where both prevalence and mean intensity 

of juvenile C. errans were highest (Chapter II).  Occasional larvae were also found at the 

Collver Point site, which showed intermediate infection rates during the trapping survey.  

Although no competent larvae of C. errans were found in tows at Jordan Cove, Highway, 

or Valino Island sites, some settlement did occur there during caging experiments (Tables 

4.1, 4.2), proving that the competent larvae can reach these areas and that the infected 

crabs trapped there were not necessarily migrants from another part of the bay. 

 Pulling on the observation that young-of-the-year Cancer magister first became 

infected with Carcinonemertes in August and September, Wickham (1980) suggested 

that the larval duration for C. errans may be around 8 to 9 months, an exceptionally long 

larval period.  Given the small number of young-of-the-year crabs Wickham was able to 

examine, however, this proposition seemed tenuous at best.  However, my plankton tows 

for 2010-2011 showed a clear peak in larval abundance during August-October, exactly 

8-10 months after the peak of larval hatching for C. errans on Dungeness crabs 

(Wickham 1980).  The fact that larvae of C. errans still have not been raised from 

hatching to competency in the lab means that the actual length of larval duration for this 

species remains unknown.  However, larvae were completely absent from bay tows after 

the start of November 2010 and were never present in coastal ocean tows between 

March-June 2011.  If the larvae do reach competency within a few months of hatching, 
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one would definitely expect their presence in March tows.  Interestingly, both Kuris 

(1978) and Roe (1979) saw peaks in abundance of C. epialti on Hemigrapsus oregonensis 

in September-November as well.  This peak in larval abundance can also help explain the 

counterintuitive seasonal patterns observed at some sites within the estuary during the 

trapping survey (Chapter II). 

 In summary, Carcinonemertes errans is now known to have a competent larval 

stage that is significantly larger than the early-stage larvae that have been raised in the 

laboratory.  The increased size and pink-orange coloration of the competent stage suggest 

that these larvae are planktotrophic and grow considerably while in the plankton.  

Competent larvae retain the first pair of larval eyes but have also developed their juvenile 

pair of eyes which could possibly alter their phototactic behavior in favor of seeking out a 

benthic host.  Upon contact with Cancer magister, competent larvae of C. errans settle 

on the crab’s exoskeleton and migrate under the abdominal flap within 24 hours.  When 

removed from the host, recently-settled worms retain their larval characteristics.  If larvae 

remain on a host for 48 hours, however, a metamorphosis takes place and worms look 

and behave like juveniles.  In the field, competent larvae are present in the waters of the 

Coos Bay Estuary during the months of August through early November, can infect crab 

hosts from the water column, and exhibited density-dependent gregarious settlement on 

caged Dungeness crabs. 

 Many questions still remain regarding the larval life and settlement of 

Carcinonemertes errans.  Filling in the current life-cycle gap between the 6-week-old 

post-hatching larvae raised in the laboratory and the competent larvae from the plankton 

will most likely involve finding the required food source for larval development and 
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growth (Chapter V).  One possible avenue to discovering this source would be to perform 

a genetic analysis on the contents of the pink-orange larval gut.  If the food source is non-

animal in nature (e.g. bacteria, phytoplankton) it may be distinguishable from the genes 

of the larva itself.  Raising larvae from hatching to settlement would also answer the 

question of how long the larvae of C. errans actually remain in the plankton, proving if 

the estimated 8-9 month larval duration is accurate.   

Genetic work on the genus Carcinonemertes now in progress (J. Norenburg, pers. 

comm.), suggests the possibility that Carcinonemertes errans and C. epialti are the same 

species.  If this is true, larvae hatching from Cancer magister hosts could possibly infect 

other crab species and vice versa.  This leaves the possibility that the larvae found in 

plankton tows in August-November were hatched from the egg masses of Hemigrapsus 

spp. or Cancer productus, and were therefore only a few months old.  However, with 

Dungeness crabs in coastal waters numbering in the tens of thousands, the complete 

absence of larvae from March through June makes this hypothesis less likely.  A study in 

which some larvae from a plankton tow are sequenced while others from the same tow 

are used in settlement experiments with different species of potential hosts could help to 

test this possibility. 

Using competent larvae of Carcinonemertes errans to further examine the details 

of larval settlement could yield interesting results.  It is quite possible that settlement in 

C. errans involves at least three separate cues: 1) an associative settlement cue that 

begins the process settlement process on the crab, 2) a gregarious settlement cue to help 

the worm decide if it’s going to stay on the crab, and 3) another crab-produced cue that 

induces worm metamorphosis. The specificity of these cues is also an interesting question 
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that warrants further research.  While it may seem obvious that parasite settlement cues 

should be host-specific, this is not always the case.  James (1971) found surprisingly little 

specificity in some fluke larvae, and the same is true of at least some rhizocephalan 

barnacle species (Boone et al. 2004).  While lower specificity may result in large 

numbers of larvae dying in the short-term, over evolutionary time this strategy may result 

in a successful transition to infecting a new host species.  Such a strategy may explain the 

ability of Carcinonemertes epialti to infect so many host species while many of its 

congeners remain host-specific. 

 

Bridge 

 In Chapter IV, I examined the settlement patterns of Carcinonemertes errans in 

the field, determined when competent larvae are present in the estuary, and documented 

the process of larval settlement and metamorphosis.  I found that larvae raised in the 

laboratory are morphologically distinct from competent larvae found in plankton tows, 

suggesting that the larval stage of C. errans is likely long-lived and planktophic.  In the 

following chapter, I tested the ability of lab-reared larvae to ingest a variety of particulate 

food sources as well as dissolved organic matter (DOM).  The ability of larvae of C. 

errans to detect a variety of light stimuli under simulated natural light conditions was 

also examined, helping me to predict the possibility of vertical migration in larvae of this 

species. 
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CHAPTER V 

PHOTOTAXIS AND FEEDING IN LARVAE OF THE OOPHAGOUS NEMERTEAN 

CARCINONEMERTES ERRANS 

 

Introduction 

The life cycles of many benthic marine invertebrates include a planktonic larval 

stage (Thorson, 1950).  The selective advantages of such a stage may include 1) 

broadening the range of a species through dispersal, 2) avoiding direct competition with 

parents and siblings, and 3) increasing access to energy and materials beyond what 

parents provide (Garstang, 1928; Thorson, 1950; Scheltema, 1971; Jägersten, 1972; 

Strathmann, 1978; Wray, 1995).  However, these potential benefits are countered by 

considerable costs; larval wastage, or death during the larval stage, is estimated to be 

enormous for most species (Thorson, 1950; Rumrill, 1990).  Environmental stressors (e.g. 

UV radiation, unfavorable temperatures or salinities, low dissolved oxygen, and 

pollution), starvation, sinking, advection away from suitable habitats, and predation can 

all reduce larval survival (Thorson, 1950; Morgan, 1995).  Through adaptive behaviors, 

however, larvae are capable of controlling their vertical position in the water column, 

thus enhancing their access to prey, promoting avoidance of predators, and controlling 

horizontal transport (Thorson, 1964; Forward, 1988; Young 1995).   

Larval orientation is accomplished by reacting to environmental stimuli such as 

pressure, salinity, temperature, currents, gravity, and light (Young, 1995).  Responses to 

these stimuli function in depth regulation by creating positive and negative feedback 

systems, with the former resulting in net migration and the latter leading to maintenance 
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of a particular vertical position (Sulkin, 1984).  Gravity is probably the most important of 

the vector cues used for larval orientation (Young, 1995).  Larvae respond to gravity by 

moving toward the center of the earth (positive geotaxis) or away from it (negative 

geotaxis).  Light intensity, wavelength, and angular distribution change considerably with 

time of day, atmospheric conditions, water turbidity, and depth (Thorson, 1964).  Still, 

the downward ambient flux of light at a given depth is ~100 times that of the upward flux 

(Clarke and Denton, 1962), and many larvae are able to detect and use this stimulus for 

orientation and depth regulation.  Larvae may be attracted to light (positive phototaxis) or 

repelled by it (negative phototaxis), or they may change their activity patterns at different 

light intensities (photokinesis). 

Stimuli can act in concert with one another or be in direct competition.  There are 

several species, for example, that exhibit geonegative and photonegative behavior 

simultaneously.  If the light stimulus dominates during the day and only gravity is 

available at night, one would observe the nocturnal migration pattern that is common 

among many zooplankters (Young, 1995).  A negative interaction between two stimuli 

could also be used to maintain a given depth.  For example, the larvae of the mud crab 

Rhithropanopeus harrisii stay in an isolume by being negatively phototactic at low light 

intensities then exhibiting geonegative behavior when they can no longer detect light 

(Forward, 1985). 

One major issue with most phototaxis experiments in the literature is the use of a 

narrow beam of highly directional light as a stimulus (Forward, 1988).  This method 

often induces phototaxis, but it does not accurately simulate the angular distribution of 

light in the ocean where photons converge on a given point from different directions in 



 

106 

space (Buchanan and Goldberg, 1981).  In studies where light fields that do simulate 

angular light distribution are used, few species have exhibited positive phototaxis 

(Buchanan and Goldberg, 1981; Buchanan et al., 1982; Stearns and Forward, 1984).  

Forward (1986) compared the larval phototactic response of Rhithropanopeus harrisii in 

a natural light distribution field to the response in a narrow beam.  Whereas larvae 

showed a negative response to low intensity light and a positive response to high intensity 

light in narrow beams, larvae in the simulated natural light field failed to show the 

positive phototactic response.  Given the growing evidence, Forward (1988) concluded 

that under natural conditions, positive phototaxis is probably not common among 

zooplankton. 

In addition to depth regulation and orientation behaviors, the ability of a larva to 

obtain food is vital to its success in the plankton.  As a larva develops, its nutritional 

requirements may change (Boidron-Metairon, 1995).  Some stages of larval development 

may be lecithotrophic while others are planktotrophic (e.g. barnacle cyprids vs. nauplii).  

Two feeding stages of a life cycle may also have different mechanisms for capturing food 

and may target different food sources (e.g. crab zoea vs. megalops; Lough, 1976).  For 

many meroplankters, the dominant food source is phytoplankton (Boidron-Metairon, 

1995), but other food options are often available to and exploited by larvae (Olson et al., 

1987).  Bacteria are selectively ingested in Antarctic echinoderm, polychaete, and 

nemertean larvae (Rivkin, 1991).  Many larvae are also predators on other zooplankters, 

from ciliates and flagellates to copepods and other meroplankters (Baldwin and Newell, 

1991). 
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Along with feeding on particulate matter, marine invertebrate larvae across 

several taxa also tap into the supply of dissolved organic material (DOM) present in 

seawater (Wendt and Johnson, 2006).  DOM is readily available in seawater; reduced 

carbon concentration is ten times that of particulate matter (Stephens, 1981).  Many soft-

bodied invertebrates (both larvae and adults) are known to absorb DOM via 

transepidermal transport (for a review, see Wendt and Johnson, 2006).  This supply can 

supplement, or in some cases fully supply, a larva’s nutritional needs for both metabolism 

and growth (Cowell and Jaeckle, 1990; Shilling and Manahan, 1991).  

Worms of the genus Carcinonemertes are egg predators on decapod crustaceans 

(Coe, 1902).  During the juvenile stage, these worms live encysted on the exoskeleton or 

between the gill lamellae of their crab hosts, presumably surviving from dissolved 

organics leaking out of the host (Crowe et al., 1982).  When the female crab lays her 

eggs, the worms become active, move into the egg mass, and begin to feed.  At this time 

they mature, mate, and lay egg strings of their own among the eggs of their host 

(Wickham, 1980).  Several days to a few weeks later, worm larvae hatch out of these 

strings and begin the planktonic stage of the life cycle.  In the case of Carcinonemertes 

errans Wickham 1978, which infects the Dungeness crab, Cancer magister Dana 1852, 

along the west coast of North America, this planktonic stage can last several months 

before the larvae become competent to settle and infect a new host (Wickham, 1980).  

Larvae of C. errans are quite small at hatching (~100 µm long) and are filled with a small 

amount of yolk (Stricker and Reed, 1981).  Larvae also hatch with one pair of simple 

ocelli positioned directly above the brain (Hyman, 1951). 
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This combination of characteristics, along with the potential importance of the 

species as an egg predator on a commercially important shellfish species, makes 

Carcinonemertes errans a good candidate for studies examining possible larval 

phototaxis and feeding behaviors.  Bauman (1983) described the phototactic behavior of 

the larvae of C. errans as being positively phototactic under lighted conditions and 

positively geotactic in the dark for the first two weeks following hatching.  This study, 

however, had the following limitations: 1) only narrow beam light was used to test 

phototactic responses, 2) only white light was tested, 3) only one intensity of light was 

tested, 4) most of the results were for larvae five days old and younger, and 5) larval 

mortality was very high during the experiments, making the results difficult to interpret.  

The purpose of this study was to examine several aspects of the larval ecology of 

Carcinonemertes errans including: 1) phototactic responses in a more natural light field 

generated in the laboratory, 2) spectral responses of larvae to blue, green, and red 

wavelengths of light, 3) the effect of light intensity on larval phototaxis, 4) the effect of 

pressure on larval phototaxis, and 5) the feeding behavior of C. errans larvae when 

offered a variety of potential food sources, including DOM. 

 

Materials and Methods 

Study organisms 

 Larvae of Carcinonemertes errans were collected from egg masses of Dungeness 

crabs captured in Oregon coastal waters during winter and spring 2009-2011 and reared 

in aquaria at the Oregon Institute of Marine Biology, Charleston, Oregon.  Larvae were 

held in 1.5 liter containers of 0.45µm filtered seawater that were placed in a flowing 
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seawater table and kept stirred with a stirring rack.  Water in the cultures was changed 

every 3-4 days. 

 

Particulate feeding 

The ability of larvae of Carcinonemertes errans to consume particulate prey items 

was tested.  Larvae were offered several possible food items, including the 

phytoplankters Dunaliella tertiolecta, Isochrysis galbana, Monochrysis lutheri, 

Rhodomonas lens, Skeletonema costatum, and Thalassiosira pseudonana, various ciliates, 

and natural plankton mixes (seawater filtered through a 200 µm nylon mesh).  In each 

case, ~100 Carcinonemertes larvae were placed in a custard dish and incubated with the 

potential food item for 24 hours.  A subsample of larvae was then examined with a 

compound microscope to determine whether any food items could be detected in the 

larval gut.  To test whether larvae might be ingesting small particles indiscriminately, 100 

larvae were incubated in a dish with fluorescent spheres ~2 µm in diameter for 24 hours.  

Larvae were then examined with an epifluorescence microscope to see if any of these 

spheres could be found in the larval gut. 

 

Dissolved organics 

Two methodologies were applied to assess whether larvae of Carcinonemertes 

errans may feed on dissolved organic material (DOM).  First, 200 two-week-old larvae 

were placed in custard dishes of 0.45µm filtered seawater containing one of four 

treatments: no DOM or antibiotics added (control), only antibiotics added (antibiotic 

control), a 1 to 9 mixture of cell culture media and filtered seawater and antibiotics (low 
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DOM), and a 1 to 4 mixture of cell culture media and filtered seawater and antibiotics 

(high DOM).  All antibiotics added to treatments consisted of 100 µg each of penicillin G 

(Sigma, P-3414) and streptomycin sulfate (Sigma, S-0890) and were included to control 

bacterial growth.  Antibiotics are known to be somewhat toxic to some larvae (M. 

Strathmann, 1987), so the antibiotics only treatment acted as a control for possible effects 

caused by their addition.  Dissolved organics added to treatments consisted of minimum 

essential cell medium (Invitrogen, 41061-029), chosen because it contained several 

sugars, ribonucleosides, deoxyribonucleosides, fatty acids, and 21 different amino acids.  

Both the high and low DOM treatments represented higher concentrations of dissolved 

organics than are normally found in seawater, but were within the range of those tested 

for DOM uptake in marine invertebrate larvae (Wendt and Johnson, 2006).  Three 

replicate dishes of each treatment were randomly assigned positions in a 3x4 grid (Fig. 

5.1).  The grid was kept in a flowing seawater table at the Oregon Institute of Marine 

Biology. 

 Every two days, the living larvae in each dish were counted and the percent 

surviving from the original 200 was calculated.  Larvae were then placed in a new dish 

with new treatment materials.  A subset of 10 larvae from each of the four treatments was 

relaxed in 7.5% MgCl2 and larval length along the longest body axis was estimated using 

an ocular micrometer on a compound microscope.  This continued until Day 12 of the 

experiment when most of the larvae had died.  Larval survival data were analyzed using a 

repeated measures analysis of variance (ANOVAR) with treatment as a fixed factor (Zar, 

2010).  Because survival values were measured in percentages, all values were arcsine 

square root transformed prior to analysis and back-transformed for  
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Figure 5.1.  Design for larval dissolved organics (DOM) experiment.  Dishes 
containing one of four treatments were randomly assigned positions on the tray.  
Treatments: H= high DOM, L= low DOM, A= antibiotics only, C= control. 

 

 
figures (Sokal and Rohlf, 1981).  Larval length data were analyzed with a two-way 

ANOVA with treatment dish and day as fixed factors.  Bonferroni post-hoc tests were 

used to test between treatment groups (Zar, 2010). 

 Fluorescent labeling was also used to test for larval uptake of dissolved proteins.   

Larvae were exposed to bovine serum albumin (BSA) with a fluorescein conjugate 

(Invitrogen, A23015).  Concentrations of BSA tested ranged from 20 nM to 1 µM (W. 

Jaeckle, Illinois Wesleyan University, pers. comm.).  In each test, ten larvae were placed 

in each of three replicate wells containing one of the BSA treatments or a control of 

filtered seawater and were allowed to soak for 24 hours.  After this time, larvae were 

examined under an epifluorescence microscope for glowing label in the epidermis, the 

gut, or both. 
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Phototaxis experiments: wavelength (λ) 

The phototactic response of larvae of Carcinonemertes errans to light of varying 

wavelengths was quantified.  A 12.7 cm x 11.43 cm x 10.795 cm Plexiglas container 

(experimental column) was filled with 0.45 µm filtered seawater and ~2000 dark-

acclimated larvae of C. errans and sealed.  The column was then placed in a 40 cm x 28 

cm x 17 cm water bath with glass sides that was filled with water until it was level with 

the top of the Plexiglas container.  Larvae were allowed to acclimate to their 

surroundings for 15 minutes in the dark and were then exposed to one of five light 

treatments: white light, red light (λ = 650nm), green light (λ = 550nm), blue light (λ = 

465nm), or a darkened control.  Each cohort of larvae was exposed to all five treatments 

in random order, with a 15-minute dark acclimation period between subsequent 

treatments.  Light for this experiment was provided by a Kodak Carousel 4600 slide 

projector with a 300 W 82 V bulb, chosen because it closely mimicked natural light 

intensity (Johnson and Forward, 2003).  Light of specific wavelengths was projected 

through a red, green, or blue gel filter mounted in a 35 mm slide.  The transmission peak 

for each of these gels was tested using a spectrophotometer.   

As described in Buchanan et al. (1982), a mirror was positioned above the water 

bath so that light from the projector reflected off of the mirror and onto the water bath 

and experimental column from above, mimicking the angular light distribution in the 

natural environment.  Prior to sampling, the swimming behavior of larvae during lighted 

trials was examined with a dissecting microscope mounted on a side arm next to the 

experimental column.  Fifteen minutes after each treatment trial began, I simultaneously 

sampled the water at three vertical levels with syringes attached to the column with 
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valves.  The valves were located 1.27 cm (bottom), 5.08 cm (middle), and 8.89 cm (top) 

from the bottom of the column, respectively.  A 4-ml sample of water was taken from 

each position in the column and examined under a dissecting microscope.  The number of 

larvae in each sample was recorded.  Because the number taken across samples varied, 

these values were converted to the percent of the total larvae in a given water column 

sample (top, middle, and bottom combined) for all figures.  Larvae were tested the day of 

hatching (Day 1) and then subsequently on Days 2, 4, 7, 14, and 28 after hatching.  Each 

trial was repeated twice with new cohorts of larvae for a total of 3 replicates for each 

treatment x age combination. 

Using the positions of the three sampling valves, I calculated the average height 

from the bottom of the column for the total sample of larvae in each treatment replicate.  I 

then compared these average height responses of larvae to the different wavelength 

treatments using a two-way ANOVA with day and wavelength as fixed factors (Sokal 

and Rohlf, 1981).  Post-hoc Bonferroni tests were used to detect differences between 

days.  Post-hoc Dunnett’s t-tests were performed to determine if a given wavelength 

treatment varied significantly from the darkened control (Zar, 2010). 

 

Phototaxis experiments: light intensity 

 I tested for the potential effect of varying light intensity on the phototactic 

behavior of larval Carcinonemertes errans.  Light intensity levels for each light treatment 

were measured with a LI-193SA spherical quantum sensor attached to a LI-COR LI-

250A light meter (Table 5.1).  High-intensity light trials were conducted as described 

above in the wavelength trials, with white light as well as red, green, and blue wavelength 
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light as treatments.  During the medium- and low-light intensity trials, neutral density 

filters were placed in front of the projector to reduce the amount of light available to the 

larvae while retaining the same spectral distribution.  All sampling methods were 

identical to those described above.  Because light was transmitted selectively through the 

colored filters, the light intensity was higher in some wavelength treatments than others.  

However, the relative amount of light between intensity treatments remained the same 

across wavelength treatments.  Medium-intensity light was always ~60% as bright as 

high intensity-light, and low-intensity light was always ~25% as bright as medium-

intensity light.  Intensity trials were performed for Day 7, Day 14, and Day 28 after 

hatching. 

 The average height off the bottom of the column for the total sample of larvae in 

each treatment replicate was calculated.  Because the light intensity values were not equal 

across wavelength treatments, a two-way ANOVA was performed for each wavelength 

treatment with day and light intensity as fixed factors (Sokal and Rohlf, 1981).  

Bonferroni tests were used for post-hoc analyses. 

 

Field light measurements 

 To determine the practical relevance of the light intensity experiments to natural 

conditions, I measured light intensity at different depths within the Coos Bay Estuary.  A 

LI-193SA spherical quantum sensor was attached to a LI-COR LI-250A light meter and 

lowered into the water column of the channel near the mouth of the bay.  A ~4 kg weight 

was tied to the end of the rope to prevent drifting.  Data were collected every 1.5 meters 
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to 18 m.  Data collection occurred during midday on a sunny day, an overcast day when 

the water was relatively clear, and an overcast day when the water was turbid. 

 

 

 

Table 5.1.   Irradiance values for the treatment levels used in light intensity trials. 

 
Light Treatment 

 
Intensity Treatment 

 
µmol s-1 m-2 

 
Photons s-1 m-2 

White Light High 68.06 4.1E+19 
 

Medium 41.93 2.52E+19 
 

Low 9.22 5.55E+18 

Red Light (λ = 650 nm) High 21.72 1.31E+19 

 Medium 13.51 8.13E+18 

 Low 3.2 1.93E+18 

Green Light (λ = 550 nm) High 2.83 1.7E+18 

 Medium 1.77 1.07E+18 

 Low 0.48 2.89E+17 

Blue Light (λ = 465 nm) High 3.05 1.84E+18 

 Medium 1.9 1.14E+18 

 Low 0.5 3.01E+17 

Darkened Control NA 0 0 
 

Values can be expressed in µmol s-1 m-2 or photons s-1 m-2.  Although intensity values 
varied between light treatments, the relative values of intensities within treatments 
(high to medium to low) remained relatively constant. 
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Phototaxis experiments: effects of pressure 

 The effect of pressure on phototaxis in Carcinonemertes errans was tested.  The 

methods were the same as described above for the wavelength experiments with the 

following exceptions: 1) half of the trials were conducted while the container was 

pressurized, and 2) only white light and darkened control treatments were tested.  

Hydrostatic pressure was added to the sealed experimental column by attaching tubing to 

one of the valves, attaching a water-filled syringe to the other end of the tubing, and 

applying constant force to the syringe.  The pressure within the container was measured 

by placing a SCUBA depth gauge inside with the larvae.  All pressure experiments were 

conducted at a pressure mimicking 3 meters depth (1.3 atmospheres).  Larvae were tested 

on Days 1, 2, 4, 7, 14, and 28 after hatching. 

The average height off the bottom of larvae during each trial was calculated as 

described above.  The effect of pressure in both the lighted and the darkened 

experimental column was examined using 2 two-way ANOVAs with day and pressure as 

fixed factors (Sokal and Rohlf, 1981).  Bonferroni tests were used for post-hoc analyses. 

 

Results 

Particulate feeding 

No larvae were observed with any particulate food material in their guts.  

Regardless of whether they were offered potential food items or not, larval cultures 

tended to survive for 3-4 weeks if left in large, stirred containers.  Following 3-4 weeks, 

larvae typically deteriorated within 15 days.  No larvae lived longer than 53 days.  The 

results of the fluorescent ball experiments were also negative. 
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Dissolved organics 

The results of the ANOVAR are shown in Table 5.2.  There was a significant 

difference between sampling days in the within-subjects effects (F = 271.308, p < 0.001) 

because of steady mortality during the experimental trial.  However, no significant 

difference between any of the treatment levels was detected (F = 0.327, p = 0.806).   

 

 

Table 5.2.  Effect of dissolved organics on larval survival of Carcinonemertes errans.  
Results of ANOVAR showing within-subjects effects (A) across six days of 
sampling and between-subjects effects (B).  Treatment refers to amount of dissolved 
organics or antibiotics larvae received. 

 
*represents statistically significant values at α = 0.05 

 

 

 
A. Within-Subjects Effects
 
Source of Variation 

  
DF  

  
SS  

  
MS  

 
F 

  
P  

 
day 

 
6 

 
22.965 

 
3.827 

 
271.308 

 
<0.001* 

day x treatment 18 0.097 0.005 0.382 0.986 
residual 48 0.677 0.014   

 
B. Between-Subjects Effects 

 
Source of Variation 

 
 DF  

  
SS  

  
MS  

 
 F  

 
P  

 
treatment 

 
3 

 
0.044 

 
43.523 

 
0.327 

 
0.806 

residual 8 0.360 0.015   
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Larvae in all cultures, irrespective of antibiotic or DOM treatments died at similar 

rates and most larvae (99.5%) were dead after 12 days (Fig. 5.2A).  Larvae in all 

treatments exhibited similar growth patterns, elongating with age regardless of the 

presence or absence of DOM (Fig. 5.2B).  A two-way ANOVA (Table 5.3) showed that 

the effect of day on larval length was significant (F = 44.847, p < 0.001), but that of the 

DOM treatments was not (F = 1.001, p = 0.401).  Larvae did not exhibit any observable 

uptake of fluorescently-labeled BSA.  Individuals placed under the epifluorescent 

microscope did not fluoresce after 24 hours of exposure, suggesting no uptake in the 

epidermis or the gut. 

 

Phototaxis experiments: wavelength (λ) 

 The effect of wavelength on average larval height in the experimental column was 

significant (F = 10.349, p < 0.001).  Results for the two-way ANOVA are shown in Table 

5.4.  Dunnett post-hoc tests (α = 0.05) showed that larvae responded to the blue 

wavelength light treatment by moving significantly closer to the bottom of the column 

when compared to the darkened control (p = 0.008).  Average larval height also varied 

significantly with the age of the larvae (F = 21.725, p < 0.001; Fig. 5.3).  Bonferroni tests 

(α = 0.05) confirmed that the average height of larvae on Day 1 was significantly lower 

than the average height on all other days tested (p < 0.001).  There was also a significant 

difference between the average height of larvae on Day 28 and the average height of all 

other ages except Day 14. 

A general trend of larval movement was apparent, with larvae moving from the 

bottom position at hatching to the top position by the end of the trial period.  As shown in  
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Figure 5.2.  Results for dissolved organics (DOM) experiment.  (A) The average 
percent survival of larvae during the trial.  (B) The average relaxed length of larvae 
given DOM and antibiotic treatments.  Error bars represent one standard error. 
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Table 5.3. Results of a two-way ANOVA examining larval length during the 
dissolved organics feeding experiment with treatment and day as fixed factors. 

 
*represents statistically significant values at α = 0.05   

 

 

 

Table 5.4. Results of a two-way ANOVA examining average larval height in the 
water column with day and wavelength treatments as fixed factors. 

 
*represents statistically significant values at α = 0.05 

 

 

 
Source of 
Variation 

 
DF 

 
SS 

 
MS 

 
F 

 
P 

 
day 

 
6 

 
4,266.261 

 
711.044 

 
44.847 

 
<0.001*

treatment 3 47.593 15.864 1.001 0.401 

day x treatment 17 70.240 4.132 0.261 0.998 

residual 48 761.037 15.855     

 
Source of Variation 

 
DF 

 
SS 

 
MS 

 
F 

 
P 

wavelength 
 
4 

 
15.909 

 
3.977 

 
10.349 

 
<0.001* 

day 5 41.746 8.349 21.725 <0.001* 

wavelength x day 20 13.227 0.661 1.721 0.055 

residual 60 23.058 0.384     



 

121 

 

Figure 5.3.  Larval Phototaxis in Carcinonemertes errans exposed to different 
wavelengths of light.  The average height of larvae sampled in the water column is 
shown from hatching (Day 1) to 28 days after hatching.  Error bars represent one 
standard error. 

 
 
Fig. 5.4A, a plurality of larvae was found in the bottom sample on Day 1 for all 

treatments except green light, which was evenly split between the middle and bottom 

positions.  One day later, the highest percent of larvae were taken from the top position 

for the control, red light, and green light treatments.  For the white and blue light 

treatments, however, the highest percent of larvae were still found in the bottom samples 

(Fig. 5.4B).  Larvae continued to exhibit similar phototactic behaviors on Day 4 (Fig. 

5.5A).  More larvae were taken from the top samples than the middle or the bottom 

samples for the control, red light and green light treatments.  The percentage of larvae 

was again highest in bottom samples in the blue light treatment, but in the white light  
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Figure 5.4. Response of larval Carcinonemertes errans to different wavelengths of 
light.  (A) 1-day-old larvae.  (B) 2-day-old larvae.  All larvae were sampled from the 
three positions in the water column simultaneously.  Error bars represent one 
standard error. 
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treatment, the percentage of larvae in the middle and the bottom treatments were 

approximately equal.  There were no major changes in phototactic behavior between Day 

4 and Day 7 (Fig. 5.5B).  A major shift in phototactic behavior occurred between Day 7 

and Day 14 (Fig. 5.6A).  At least 40% of the larvae sampled were taken from the top for 

all treatments, including blue and white light.  Very little change occurred in the 

percentages of larvae found in the different positions between Day 14 and Day 28 (Fig. 

5.6B). 

 

Phototaxis experiments: light intensity 

 The results of the light intensity trials are shown in Fig. 5.7 for Day 7, Fig. 5.8 for 

Day 14, and Fig. 5.9 for Day 28.  The effect of light intensity was significant for all 

wavelength trials except red light (Table 5.5), with lower light intensities resulting in 

lower average heights in the experimental column.  For white light (Table 5.5A), the 

effect of larval age (F = 12.668, p < 0.001) and the interaction between age and intensity 

were also significant (F = 12.516, p < 0.001).  Bonferroni tests showed that all three light 

intensities produced significantly different average larval heights from each other (p < 

0.001), and larvae on Day 28 were significantly higher in the water column than those on 

Day 7or Day 14. 

 There was no significant change in average height of larvae in the water column 

after exposure to the different intensities of red light (Table 5.5B).  Both light intensity 

and larval age significantly affected the average height of larvae when exposed to green 

light (Table 5.5C).  Bonferroni tests showed significant differences between high-

intensity green light and the medium- and low-intensity treatments, but no significant  
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Figure 5.5. Response of larval Carcinonemertes errans to different wavelengths of 
light.  (A) 4-day-old larvae.  (B) 7-day-old larvae.  All larvae were sampled from the 
three positions in the water column simultaneously.  Error bars represent one 
standard error. 
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Figure 5.6. Response of larval Carcinonemertes errans to different wavelengths of 
light.  (A) 14-day-old larvae.  (B) 28-day-old larvae.  All larvae were sampled from 
the three positions in the water column simultaneously.  Error bars represent one 
standard error.
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Figure 5.7. Phototaxis in larval Carcinonemertes errans during Day 7 trials.  Three light intensities were tested with each of the 
four light wavelength treatments.  Note the scale for each of the wavelengths.  Error bars represent one standard error. 
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Figure 5.8. Phototaxis in larval Carcinonemertes errans during Day 14 trials.  Three light intensities were tested with each of the 
four light wavelength treatments.  Note the scale for each of the wavelengths.  Error bars represent one standard error. 



 

128 

 
Figure 5.9. Phototaxis in larval Carcinonemertes errans during Day 28 trials.  Three light intensities were tested with each of the 
four light wavelength treatments.  Note the scale for each of the wavelengths.  Error bars represent one standard error.
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Table 5.5. Results of 4 two-way ANOVAs examining the difference between the 
average heights of larvae in the water column when exposed to varying intensities of 
(A) white light, (B) red light, (C) green light, and (D) blue light on Days 7, 14, and 28 
after hatching 

 
A. Light Intensity: White Light 

Source of Variation DF SS MS F P 
intensity 2 7.205 3.603 40.433 <0.001* 

day 2 2.257 1.129 12.668 <0.001* 

intensity x day 4 4.461 1.115 12.516 <0.001* 

residual 18 1.604 0.0891   

      
B. Light Intensity: Red Light (λ=650nm) 

Source of Variation DF SS MS F P 
intensity 2 0.386 0.193 1.301 0.297 

day 2 0.850 0.425 2.868 0.083 

intensity x day 4 0.0672 0.0168 0.113 0.976 

residual 18 2.666 0.148   

      
C. Light Intensity: Green Light (λ=550nm) 

Source of Variation DF SS MS F P 
intensity 2 10.617 5.308 22.068 <0.001* 

day 2 1.928 0.964 4.008 0.036* 

intensity x day 4 0.724 0.181 0.753 0.569 

residual 18 4.330 0.241   

      
D. Light Intensity: Blue Light (λ=465nm) 

Source of Variation DF SS MS F P 
intensity 2 16.033 8.017 75.385 <0.001* 

day 2 0.00474 0.00237 0.0223 0.978 

intensity x day 4 5.134 1.284 12.070 <0.001* 

residual 18 1.914 0.106   

 
*represents statistically significant values at α = 0.05 
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difference between medium-intensity and low-intensity green light.  Bonferroni tests also 

found a significant difference between the average height of larvae on Day 7 and Day 14.  

When exposed to lower intensities of blue light, larvae showed significantly lower 

average heights in the water column (Table 5.5D).  There was also a significant 

interaction between larval age and light intensity.  This was because the average height of 

larvae exposed to high-intensity blue light from Day 7 (4.764 cm) to Day 28 (6.075 cm) 

increased while the average height of larvae exposed to low-intensity blue light decreased 

across this same period (from 3.936 cm on Day 7 to 3.641 on Day 28).  Bonferroni tests 

found significant differences between the high light intensity treatment and the two lower 

intensity treatments. 

 

Field light measurements 

 Light intensity readings measured in the field are shown in Table 5.6.  In general, 

intensity varied with day, atmospheric conditions, and the turbidity of the water.  The 

amount of light attenuation with increasing depth remained relatively constant however, 

around a 30-40% decrease in light intensity per 1.5 meters increase in depth.  Measured 

values were comparable to those tested in the laboratory experiments. 

 

Phototaxis experiments: effects of pressure 

The average height of larvae in the water column did not change significantly 

when the container was pressurized to the equivalent of 3 meters depth (Table 5.7).  This 

was true for larvae exposed to white light (F = 0.003, p = 0.954) and those kept in dark 

conditions (F = 1.110, p = 0.303).  A significant effect of larval age was observed,  
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reflecting the age-related patterns described above in the wavelength section.  The results 

of the pressure experiment on Day 7 shown in Fig. 5.10 were typical. 

 

 

 
Table 5.6. Field light measurements from the mouth of the Coos Bay Estuary. All 
light measurements are given in µmol s-1 m-2

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Depth (m) 

 
 

Sunny 
 
 

Overcast,  
Low Turbidity 

 

Overcast,  
High Turbidity 

 

0 944.2 223 154.7 

1.5 734.1 158.8 109.8 

3 462.4 110.4 76.6 

4.5 310.7 78.9 52.5 

6 203 53.4 36.6 

7.5 139.8 38.8 27.8 

9 86.1 24.1 14.9 

10.5 57.3 15.2 10.7 

12 34.9 10.7 6.8 

13.5 25.2 6.1 4.2 

15 16.5 4.2 3 

16.5 9.3 2.2 1.9 

18 5.7 1.3 1.1 
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Table 5.7. Results of 2 two-way ANOVAs examining the difference between the 
average heights of larvae in the water column when exposed to hydrostatic pressure 
under (A) white light and (B) no light on Days 1, 2, 4, 7, 14, and 28 after hatching. 

 
A. White Light 
Source of Variation DF SS MS F P 
 
pressure 

 
1 

 
0.00105

 
0.00105

 
0.00339 

 
0.954 

day 5 33.723 6.745 21.749 <0.001* 
pressure x day 5 0.537 0.107 0.346 0.880 
residual 24 7.443 0.310   
      
B. Darkened 

Source of Variation DF SS MS F P 
 
pressure 

 
1 

 
0.365 

 
0.365 

 
1.110 

 
0.303 

day 5 21.045 4.209 12.795 <0.001* 
pressure x day 5 0.204 0.0408 0.124 0.986 
residual 24 7.895 0.329   

 
* represents statistically significant value at α = 0.05 

 

 

Discussion 

Larval feeding biology 

Hoplonemertean planuliform larvae typically originate from large, yolky eggs and live a 

short lecithotrophic planktonic existence before settling without a noticeable 

metamorphosis event (Norenburg and Stricker, 2002).  As hoplonemerteans, members of 

the genus Carcinonemertes would be expected to produce lecithotrophic, short-lived 

larvae as well (Kuris, 1993).  However, like their small size and modified proboscis 

structure, the reproductive biology of these worms appears to be modified to better meet 

their parasitic existence (Wickham, 1980; Roe, 1988).  The oocytes of Carcinonemertes  
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Figure 5.10.  Effect of pressure on larval phototaxis of Carcinonemertes errans on 
Day 7.  The pressurized treatment was the equivalent of 3 meters depth.  Error bars 
represent one standard error. 

 

 

are smaller than those of other hoplonemerteans (70 µm in Carcinonemertes errans 

compared to 300 µm for Paranemertes peregrina and 350 µm in Amphiporus 

formadabilis), and females produce many more eggs than the typical hoplonemertean 

(Stricker, 1987).  The larval morphology of C. epialti was described by Stricker and Reed 

(1981).  Although these larvae are small and contain limited yolk, some authors have 

argued that they are lecithotrophic (Bauman, 1983). 

 The larvae of Carcinonemertes errans used in my experiments were nearly 

identical to those of C. epialti.  Yolk reserves were present upon hatching, but within a 

few weeks, this resource was exhausted.  At this stage, larvae were somewhat elongated 

and appeared mostly transparent (Chapter IV).  Once the yolk was gone, growth and 
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development became arrested.  Larvae continued to survive for 2-3 weeks past this point 

in laboratory cultures, but all of these larvae eventually died, presumably of starvation.  

Larvae were not observed to consume any of the offered food items and “fed” larvae died 

at the same rate as larvae in filtered seawater.  The larvae of C. errans did not appear to 

have any obvious mechanism for capturing food.  Most planktotrophic larvae have bands 

of cilia or appendages for concentrating food and directing it to the mouth (Hart and 

Strathmann, 1995), but no such bands or appendages were present in the uniformly 

ciliated larvae of C. errans.  Some anthozoan planulae, which have a similar morphology 

to C. errans, capture food by trailing a thread of mucus behind them, allowing particles to 

stick to the thread, and then pulling it into their posteriorly-located mouth.  Other 

planulae temporarily attach themselves mouth down to a substratum, evert their 

stomodeum, and take food directly off the surface (R. Strathmann, 1987).  Although I 

observed larvae of C. errans both trailing mucus threads and attaching themselves to the 

bottom of culture dishes with these threads, it seems unlikely that this is a normal feeding 

behavior for the following reasons: 1) these behaviors do not occur often; seen in ~20 

larvae out of thousands observed, 2) the mouth of C. errans was in the anterior position 

rather than the posterior and larvae always swim anterior end forward, and 3) larvae that 

did attach themselves to the bottom or sides of the culture dish with mucus threads and 

were not liberated died within one to two days.  I therefore concluded that thread trailing 

in C. errans was indicative of a moribund condition rather than food collection. 

The planuliform larvae of some palaeonemerteans have been observed feeding on 

a large range of particles.  Norenburg and Stricker, (2002) described the larval feeding of 

Carinoma tremaphoros, which concentrates microplankton by flattening and extending 
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the body margin on each side of the mouth to form “pseudo lappets.”  Palaeonemertean 

larvae are also capable of capturing much larger prey; Jägersten (1972) observed one 

such larva feeding on a pilidium of its own size.  If the early larval stages of 

Carcinonemertes errans are capable of either of these types of feeding behaviors, they 

did not exhibit this capacity during feeding trials. 

 Larvae did not benefit from exposure to elevated dissolved organics in my 

experiments, nor did they show any evidence of DOM uptake in the labeling experiment.  

Given the current hypothesis that juvenile worms of many Carcinonemertes species 

subsist on organic matter leaking from their hosts (Crowe et al., 1982), this result was 

especially surprising.  Larvae used in the DOM survival experiment did not survive in 

any of the treatments for longer than 12 days, which falls within the time frame of 

measurable DOM uptake results in the literature (Wendt and Johnson, 2006).  

  

Larval phototaxis 

During the course of my experiments under a simulated natural light field, larvae 

never demonstrated positive phototaxis.  If, however, I repeated Bauman’s (1983) 

experiments with larvae in a column and narrow beam light, I observed the photopositive 

behavior he reported.  I therefore conclude that the photopositive response currently 

ascribed to the larvae of Carcinonemertes errans is an artifact of the narrow beam light 

stimulus and should not be considered when discussing the larval ecology of C. errans in 

its natural environment.  Rather than being photopositive, the dominant pattern exhibited 

by larvae was one of positive geotaxis directly after hatching transitioning to a negative 

geotactic pattern as demonstrated by the darkened controls.  Distinguishing between 
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active geotactic behavior and passive floating and sinking can be difficult (Young and 

Chia, 1987).  Although I could not observe the behavior of larvae during darkened 

control trials, observations made during red light trials, which never produced 

significantly different results from darkened controls, showed that larvae continued to 

swim actively rather than to passively sink, drift, or float. 

Unless the intensity of the light treatment was altered, the only detectable larval 

response to light was negative phototaxis, and even this was limited in duration (Days 2-

7).  Only the blue wavelength (465 nm) induced a significant photonegative response.  

The lack of response to red light, the limited response to green and white lights, and the 

short-term response to blue light corroborate with what is known about larval spectral 

sensitivity.  A majority of larvae across several taxa exhibit sensitivity maxima in the 

blue to blue-green light range (wavelengths that attenuate least in the ocean), but are 

usually not sensitive to red light (Young and Chia, 1987; Forward, 1988). 

 The response of larvae of Carcinonemertes errans to light of varying intensities 

was consistent with the hypothesis that the larvae are capable of detecting changes in 

intensity and responding appropriately.  Decreasing the intensity of white light by 40% in 

Day 14 and Day 28 caused negative phototaxis in the larvae of C. errans that overrode 

the negative geotactic response and brought more of them from the top of the container to 

the middle or the bottom.  A further 35% decrease in intensity invoked a similar response 

on Days 7, 14, and 28, with larvae swimming down from the top and middle positions to 

the bottom (Figs. 5.7, 5.8, 5.9).  Similar responses were seen for green and blue 

wavelengths, suggesting that these are likely the wavelengths driving the response in the 

observed pattern for white light.  No significant responses were seen with changes to the 
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intensity of red light, further supporting the hypothesis that larvae of C. errans do not 

respond to this wavelength. 

 The effect of pressure was not significant at the simulated depth of 3 meters.  

Larvae of Carcinonemertes errans are known to occur at depths greater than 3 meters in 

the estuary (Chapter IV, this dissertation).  It is possible that higher pressures play a role 

in determining the vertical distribution of larvae, whether by providing a direct cue at a 

certain depth (barokinesis) or interacting with another cue to produce a response of 

varying intensity (Young and Chia, 1987).  For example, most decapods become more 

sensitive to light cues as pressure increases (Rice, 1964).  This could help larvae maintain 

their vertical position within the water column (Crisp, 1974).  However, at depths that 

larvae are likely to encounter in Oregon estuaries, the larvae of C. errans showed no 

barokinetic response.  

 The larvae of Carcinonemertes errans occur in the temperate coastal ocean and 

estuaries where they must develop for several months before seeking a new host.  The 

positively geotactic response exhibited by larvae of C. errans immediately after hatching 

would likely retain larvae near the bottom.  Since larvae are not competent to settle on 

new crab hosts during this time (Chapter IV) and they transition to negative geotaxis one 

day later, this response is puzzling.  Perhaps the response is linked to some aspect of 

larval development.  Larvae of C. errans do not have any statocyst-like structures, so the 

mechanism whereby they detect gravity is unknown (Gibson, 1972).  It is possible that 

this unknown mechanism is still developing at the time of hatching and is not functional 

until 2 days after hatching.  Another hypothesis is that newly hatched larvae are weak 

swimmers.  Tests with individuals relaxed in MgCl2 showed that the larvae of C. errans 
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are negatively buoyant and will sink if they stop swimming.  The weak swimmer 

hypothesis does not seem likely, however, because observations made with an arm-

mounted microscope during the experiments failed to reveal any difference between the 

vertical swimming speeds of larvae on Day 1 compared to those on other days.  A third 

possibility is that positive geotaxis is an ancestral artifact preserved in C. errans; the 

larvae of some species of Carcinonemertes are thought to have a very brief larval stage 

and might even practice autoinfection on their hosts (Kuris, 1993). 

 After the switch to geonegative behavior on Day 2, larvae could begin to make 

their way toward the surface (at least at night) where they would experience greater 

dispersal potential and come in contact with potential food sources.  During the day, 

larvae in the ocean would potentially move into deeper water as they detect and move 

away from the available blue light.  Within estuaries, this pattern may be less distinct due 

to higher attenuation of blue light in these environments, particularly during times of high 

freshwater runoff (Forward, 1988).  Such a pattern aligns with the well-studied 

phenomenon of diel vertical migration, common among many mero- and holoplanktonic 

organisms.  The most common pattern, nocturnal migration, brings zooplankters to the 

surface at night to feed and to depth during the day to avoid predation (Temple and 

Fischer, 1965; Pennington and Emlet, 1986; Shanks, 1986; Hobbs and Botsford, 1992).  

Beginning on Day 7, however, the photonegative response to blue light begins to 

disappear, and on Days 14 and 28, larvae are more likely to be at the surface than at depth 

at all times of day. 

The effect of varying light intensity on larval behavior predicts another pattern, 

however.  Under the highest intensity tested on Day 7, there was a slight pattern of 
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negative phototaxis already occurring for white, green, and blue treatments.  Decreasing 

the intensity strengthened this existing pattern, suggesting that a decrease in light 

intensity might promote a photokinetic response (Young and Chia, 1987) and cause 

larvae that were already heading away from the light to do so more strongly (e.g. beat 

cilia at a faster rate).  On Days 14 and 28, the decrease in light intensity to medium and 

low levels actually reversed the behavior seen at the higher light intensity and larvae 

moved down to the middle and lower positions.  A photokinetic response may still be 

active in this case, but there is almost certainly a phototactic response occurring as well. 

Lower light intensities are experienced in surface waters during certain times of 

day (e.g. dawn or dusk) and at greater depths (Forward, 1988).  In the first case, the 

observed response would serve to shift larvae away from the surface water during the 

first hours of sunlight (negative geotactic behavior would concentrate them there during 

the night).  Once at depth, the low intensity light would continue to provide a positive 

feedback loop, keeping larvae deep.  If larvae reached a depth where light was no longer 

detectable, however, their geonegative behavior would bring them back toward the 

surface until light was again available, creating a negative feedback loop.   

The light intensities tested do appear to be within the range a larva could 

experience within an estuary and coastal waters.  From measurements taken in the Coos 

Bay Estuary on a sunny day at midday, the highest intensity of white light tested in the 

laboratory corresponded to a depth of 9.5 meters, the medium intensity to 11 meters, and 

the lowest intensity to 16.5 meters (Table 5.6).  On an overcast day, the values tested as 

high, medium, and low intensities in the laboratory occurred at depths around 5, 7, and 
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12.5 meters, respectively, in the estuary.  When overcast conditions were coupled with 

turbid estuarine waters, corresponding depths were around 3.5, 5, and 11 meters.   

In conclusion, there is still much to learn about the larval ecology of 

Carcinonemertes errans.  Larvae began their lives with a small yolk reserve, but this was 

exhausted within only a few weeks, suggesting that another nutritional source was needed 

for larvae to complete development.  The nature of this food source remains unknown, as 

does the mechanism by which it is collected.  Despite the negative results of my 

experiments, dissolved organic matter remains an intriguing possibility, especially 

considering the current hypothesis that juvenile worms subsist on DOM leaking from 

crab hosts.   

Larvae of Carcinonemertes errans were not positively phototactic when placed in 

a column simulating natural light conditions.  They were, however, negatively geotactic 

beginning two days after hatching and had a spectral sensitivity maximum in the blue to 

blue-green wavelength range.  This spectral sensitivity could result in larvae conducting 

diel vertical migrations during the early morning and at dusk, when light intensities are 

low enough to activate the intensity dependent photonegative response.  It is important to 

note that all experiments were conducted with larvae that were not yet competent to settle 

on crab hosts.  Competent larvae retain their original set of eyes, but have also developed 

a second pair of eyes, which they then retain as juveniles (see Chapter IV).  Since 

juvenile worms are negatively phototactic, development of this second set of eyes 

suggests that competent larvae might be negatively phototactic as well.  Examining the 

phototactic and geotactic responses of competent larvae would be a highly relevant 

addition to the work reported here.



 

141 

CHAPTER VI 

GENERAL CONCLUSION 

 

Host-parasite interactions provide excellent opportunities to study evolutionary 

and ecological interactions between species and their environment (Price 1980).  In this 

dissertation project, I examined several aspects of the interaction between the nemertean 

egg predator Carcinonemertes errans and its host, Cancer magister. 

Although Carcinonemertes errans is known to occur on coastal Dungeness crabs 

from Alaska to central California (Wickham 1980), the distribution of the worm in 

estuarine populations of Cancer magister has not been well studied (McCabe et al. 1987).  

I examined the infection status of C. magister within the Coos Bay Estuary, Oregon, for 

three years, trapping adult and juvenile crabs from the mouth of the bay to the edge of the 

adult range in the upper estuary.  Crabs nearest the ocean carried the heaviest parasite 

loads, both when measured in terms of parasite prevalence and mean intensity.  Larger 

crabs were more likely to be infected and also carried greater numbers of nemerteans.  

One site within the bay showed a significant difference in parasite prevalence between 

the wet season and the dry season, and another site showed a significant seasonal effect in 

mean intensity.  In both cases, infection rates were higher in the wet season than the dry, 

suggesting that salinity changes within the estuary were not the sole cause of the 

estuarine gradient in infection with C. errans.  The likely source of seasonal variation is a 

combination of crab migration, both ontogenetic and otherwise, as well as an increased 

number of competent Carcinonemertes larvae present in the plankton during the 

beginning of the wet season.  Throughout the study, crabs taken from coastal waters 
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carried significantly more worms than crabs from the bay, suggesting that the estuary 

may be acting as a parasite refuge for estuarine crabs.   

Some hosts experience salinity refuges from their parasites within estuaries (e.g. 

Haskin and Ford 1982; Barber et al. 1997; Tolley et al. 2006).  To examine whether the 

estuarine refuge of Cancer magister might be linked with the physiological tolerances of 

Carcinonemertes errans, juvenile and larval worms were subjected to temperature and 

salinity tolerance experiments in the laboratory.  Salinities tested ranged from 5 to 30 and 

temperatures ranged from 8 °C to 20 °C.  Both larvae and juveniles showed low tolerance 

to salinities 10 and lower, although juveniles were slightly more robust to these insults.  

Salinity 20 was near the limit of physiological tolerance for C. errans, especially in the 

larval stage.  Temperature did not play a significant role in juvenile survival and only 

factored significantly into larval survival after prolonged exposure to the treatment.  

Since C. magister can survive in salinities from 11 to 35 but prefers salinities above 20 

(Cleaver 1949; Engelhardt and Dehnel 1973; Hunter and Rudy 1975; Curtis and McGaw 

2010), these results suggest that salinity may play a role in creating the estuarine gradient 

of C. errans in Coos Bay, but probably does not act alone.   

Settlement is an important event for all planktonic larvae of marine invertebrates, 

but this may be especially true for parasitic larvae that must find an appropriate host or 

perish (Pawlik 1992).  I examined the process and ecology of larval settlement in 

Carcinonemertes errans using both laboratory and field experiments.  Larvae of C. 

errans raised from hatching were never induced to settle despite being offered the 

appropriate settlement substratum (live Cancer magister).  This was a function of their 

not having reached competency.  Larvae taken in plankton tows were morphologically 
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distinct from larvae raised in laboratory cultures and did successfully settle on C. 

magister under laboratory conditions.  These competent larvae possessed two pairs of 

simple eyes and the pink-orange coloration observed in juvenile worms.  Initial 

settlement was reversible within a 24-hour window.  After 48 hours, however, a non-

reversible metamorphosis occurred wherein newly-settled worms lost one pair of eyes as 

well as the propensity to swim when removed from their host crab.  This represents the 

first description of larval settlement of Carcinonemertes in the literature. 

In field settlement experiments where live crabs of known infection status were 

placed in cages in the Coos Bay Estuary, larvae of Carcinonemertes errans were shown 

to be capable of infecting hosts directly from the water column and exhibited a preference 

to settle on crabs already infected with juvenile conspecifics.  However, this gregarious 

settlement behavior appeared to be density-dependent, with lightly infected hosts more 

likely to gain more worms than heavily infected hosts.  Settlement also occurred near all 

of my trapping sites, suggesting that parasite settlement as well as host migration 

contributed to infection rates throughout the bay.  In monthly plankton tows, larvae of C. 

errans were found only between August and November.  Since most larvae of C. errans 

hatch out between January and March along the Oregon coast, this suggests that 

Wickham’s prediction (1980) that larvae of C. errans may remain in the plankton for 8-9 

months may be correct.  Larvae were mostly collected near lower bay sites, confirming 

that the coastal ocean is the likely source of competent larvae. 

Larvae of Carcinonemertes errans in laboratory cultures survived around six 

weeks and then died, suggesting possible starvation following the exhaustion of yolk 
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resources.  Despite being offered a variety of food choices, larvae did not feed under 

laboratory conditions, and trials using dissolved organics were negative.   

To better understand their ecology and distribution potential, larvae of 

Carcinonemertes errans were exposed to laboratory tests designed to mimic the natural 

angular light distribution of a water column.  In these conditions, larvae of C. errans were 

rarely photopositive, directly contradicting the findings of Bauman (1983), who 

conducted his experiments with narrow beam light.  When larvae did respond to light, 

they were most sensitive to blue-green wavelengths, which is common among many taxa 

(Forward 1988).  Low intensity light invoked photonegative responses.  Larvae were 

geopositive at hatching but geonegative from the second day until Day 28 after hatching.  

This combination of geonegative behavior in the dark and photonegative behavior under 

low light conditions could result in daily vertical migrations.
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