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THESIS ABSTRACT 

 

Timothy Sheehan 

 

Master of Science 

 

Department of Biology 

 

December 2011 

 

Title: Modeling Wildfire and Ignitions for Climate Change and Alternative Land 

Management Scenarios in the Willamette Valley, Oregon 

 

 

I developed software to incorporate the FlamMap fire model into an agent-based 

model, Envision, to enable the exploration of relationships between wildfire, land use, 

climate change, and vegetation dynamics in the Willamette Valley. 

A dynamic-link library plug-in utilizing row-ordered compressed array lookup 

tables converts parameters between polygon-based Envision data and grid-based 

FlamMap data. Modeled fires are determined through Monte-Carlo draws against a set of 

possible fires by linking historic fire data to future climate projections. 

I used classification and regression tree (CART) and logistic regression to relate 

ignitions to human and land use factors in the Willamette Valley above the valley floor 

from 2000-2009. Both methods showed decreasing distance to major and minor roads as 

key factors that increase ignition probability for human ignitions but not for lightning 

ignitions. The resulting statistical model is implemented in the FlamMap plug-in to 

provide a dynamic ignition probability map over time. 
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CHAPTER I 

INTRODUCTION 

Wildfire regimes, that is the frequency, intensity, size, and timing of wildfires, are 

heavily influenced by climate and are expected to be altered by global climate change. 

Changes in growing season onset and duration, precipitation patterns, and temperatures 

will affect many drivers of wildfire, including fuel loads, fuel condition, humidity, 

temperature, and wind. In the United States’ Pacific Northwest, for example, future 

climate projections indicate a 0.1 to 0.6 °C per decade increase in annual temperature; 

warmer, wetter winters; longer growing seasons; and hotter summers with longer periods 

of drought (Mote and Salathé, 2010; Karl et al., 2009; Millar et al. 2007; Pachauri and 

Reisinger, 2007; Rapp, 2004). The resulting increases in annual fuel production and fuel 

combustibility are projected to lead to an increase in wildfire (Karl et al., 2009; Millar et 

al., 2007; Rapp, 2004). 

Calculating the costs of wildfire and its management is complex and must take 

into consideration suppression, human infrastructure losses, and the loss of ecosystem 

products and services. In the United States alone, annual wildfire suppression costs can 

exceed one billion dollars (Busby and Albers, 2010). Annual home losses can range into 

the thousands, and forest product losses are substantial (Kauffman, 1990). Fire 

suppression and human-caused ignitions can both lead to undesirable ecological changes  

(Snider et al., 2006; Keeley and Fotheringham, 2003; Keeley and Keeley, 2000; 

Kauffman, 1990). Wildfire management seeks to mitigate these impacts, and wildfire 

simulation modeling has become a key element of wildfire management planning. 
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My research is part of a collaborative interdisciplinary project entitled “The 

Interactions of Climate Change, Land-Management Policies, and Forest Succession on 

Fire Hazard and Ecosystem Trajectories in the Wildland-Urban Interface,” and is 

subsequently referred to by the acronym ICLF. ICLF is being conducted by researchers at 

the University of Oregon, Oregon State University and the USDA Forest Service, and is 

funded by the National Science Foundation’s Dynamics of Coupled Natural and Human 

Systems Program. The project integrates computer simulation models of climate change, 

vegetation dynamics, wildfire, human population growth, and landowner decision making 

within an alternative futures scenarios framework (Hulse et al., 2009) that focuses on 

testing how different sets of land use and land management policies could affect 

landscape trajectories. The model as a whole is considered a “coupled systems” model in 

that it simulates the interactions and feedbacks among these different biophysical and 

human factors. The specifics of my research include the software engineering involved in 

integrating an existing spatially explicit fire model into the coupled systems model, and 

an analysis of the distribution of ignitions in the Willamette Valley based on human 

factors, land use / land cover, vegetation, and lightning occurrence.  

The remainder of this chapter provides context and background for my thesis. 

Topics covered include climate modeling, the ICLF project, fire models, and ignitions 

modeling. 

Climate Change Modeling 

In recent decades, global climate change has moved from the realm of theoretical 

possibility to that of an observed phenomenon (Pachauri and Reisinger, 2007). Global 

mean temperature rose over 0.5 ˚C between 1970 and 2004 (Hansen et al., 2006). Over 
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the same period, some regions have experienced an increase of up to 3.5˚C, and projected 

global temperature increases for the last decade of the twenty-first century range from 1.1 

to 6.4˚C compared to 1980-1999 (Pachauri and Reisinger, 2007). 

Projecting the consequences of rising global temperatures and other climatic 

changes is an important and complex scientific challenge. The relationships among 

climatic, environmental, and socioeconomic factors are manifold and complex (Figure 1) 

and a combination of techniques are used to study them including historical data analysis 

(e.g., Mann et al., 1998), empirical analyses (e.g., Zemp et al., 2006; Menge and Field, 

2007)  and computational modeling. 

The interrelated causes and effects associated with climate change can be 

separated into three categories: climatic factors, ecological and environmental factors, 

and human activities (Figure 1). Different types of computational models are best suited 

for each of these categories. Models that account for physical processes over the entire 

planet or that are downscaled to regional climate are used for simulating the spatial and 

temporal trends and variability in future climate. Dynamic global vegetation models 

(DGVMs) are used to model the effects of biogeochemical and climate change on 

vegetation and are commonly used on global to regional scales. While their use in climate 

modeling is relatively new (e.g., Natarajan et Al., 2011), agent-based models are used to 

model the effects of human decisions on the environment. 
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Figure 1. Climate drivers and impacts. Schematic framework representing anthropogenic 

drivers, impacts of, and responses to climate change and their linkages (after Pachauri 

and Reisinger, 2007). 

For climate projections on the global scale, a variety of model types are used. 

These include Atmosphere-Ocean General Circulation Models (AOGCMs), Earth System 

Models of Intermediate Complexity (EMICs), and Simple Climate Models (SCMs) 

(Pachauri and Reisinger, 2007). As a check for consistency and range of possible 

outcomes, results from these models are commonly compared (Pachauri and Reisinger, 

2007). 

Such models are driven or “forced” by conditions such as changing atmospheric 

composition. To cover the uncertainty associated with those conditions, a range of 

projected scenarios are used. Perhaps the most widely used scenarios are those outlined in 

the IPCC Special Report on Emissions Scenarios (SRES) (Nakićenović and Swart, 2000) 
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based on four different “storylines” of projected future economic and human 

development. Scenarios range from those resulting in high greenhouse gas production to 

those under which greenhouse gas production is reduced.  

Dynamic Global Vegetation Models (DGVMs) have proven useful for projecting 

the ecological effects of climate change (e.g., Lenihan et al., 2008; Sato et al., 2010; 

Zaehle et al., 2007). These models couple the biogeochemistry of carbon, nutrients, 

water, and energy to simulate changes in vegetation type ( Nielson and Running, 1996). 

Processes modeled in DGVMs include plant physiology, ecosystem function, and 

vegetation dynamics, but they do not include individual-based tree dynamics. Commonly, 

estimates are generated for short- and long-term changes in net primary productivity, 

resource competition among plant functional types, mortality, and disturbance effects. 

External forcings often include soil characteristics and climate (Bachelet and Price, 

2008). 

DGVMs generally do not account for the effects of human land use and land 

management. Agent-based models (ABMs) are used to study socio-ecological processes 

(Matthews et al., 2007; e.g., Hulse et al., 2009; Topping et al., 2003). In these computer 

simulation models, a system comprises a collection of autonomous agents, or decision-

making entities (Bonabeau, 2002). These models are useful for modeling systems in 

which individual behavior cannot be clearly defined, individual behavior is complex, 

model validation and calibration utilize expert judgment, or behavior has an element of 

stochasticity (Bonabeau, 2002). Human decision modeling is most often based on 

empirical qualitative and/or quantitative data derived from expert knowledge, surveys, 

interviews, and participant observation (Matthews et al., 2007). 
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The ICLF Project 

The ICLF is a modeling project investigating interactions and feedbacks among 

climate change, vegetation succession, wildfire, and urbanization in Oregon’s Willamette 

Valley ecoregion. A specific focus of the project is the reduction of catastrophic wildfire 

risk through oak savanna and prairie habitat restoration. The project uses an alternative 

futures scenario framework based on a two-by-two-by-two matrix of contrasting factors. 

The first pair of factors are the scenarios of higher versus lower effects of climate change 

on vegetation succession and wildfire. The second pair comprises compact versus 

dispersed land development to accommodate the projected 74% increase in population 

during the first half of the 21
st
 century (Hulse et al., 2002). The final pair of factors 

contrasts two approaches to catastrophic wildfire risk management. The conventional fuel 

treatments policy set emphasizes fire suppression and the protection of individual homes. 

The mixed fuels-biodiversity policy set emphasizes landscape-scale restoration of fire-

adapted oak ecosystems as a means to reduce wildfire severity and associated risks to 

people and residences when wildfire occurs. 

The study area chosen for the project is an approximately 1000-km
2
 exurban 

landscape located in the valley foothills to the south and east of the Eugene-Springfield 

metropolitan area (population ~250,000). This area includes a mosaic of farmland, 

forestland and rural residential housing, as well as a number of small cities and towns.  

The coupled systems model integrates four modeling subsystems: climate, 

vegetation succession, human decision-making, and wildfire (Figure 2). The model as a 

whole and each submodel will be run on an annual time step for 50-100 years.  
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Figure 2. The ICLF coupled model. Schematic representation of the ICLF coupled model components. Components show in 

yellow were developed as part of this thesis. Components shown in blue are computed prior to the running of the coupled 

model.
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Climate inputs to the model come from runs of two contrasting climate models 

using the IPCC A2 scenario, which projects increasing global population growth, with 

relatively slow and fragmented economic growth and technological change (Nakićenović 

and Swart, 2000). This data is downscaled using PRISM (parameter-elevation regressions 

on independent slopes model) (Daly et al., 2002) and used as input to the MC1 DVGM 

(Bachelet et al., 2001). Outputs from MC1 include calculated energy release component 

(an indicator of total possible heat energy release from a fire) data used to generate model 

fires, as well as vegetation types and vegetation productivity used by the state and 

transition model. The data provided by MC1 is computed prior to running the coupled 

model in Envision. 

Vegetation modeling is performed using a state and transition vegetation 

succession model. In the state and transition model each landscape unit (described below) 

is assigned one of a suite of defined vegetation states based on its species composition 

and vegetation structure (e.g., tree canopy cover, and dominant species). Landscape units 

change states via transitions. Transitions in the ICLF project were based on the projected 

outcomes of tree growth and competition over time (for example a young conifer forest 

may transition to a mature conifer forest after a certain number of model years), or 

disturbance (for example a young mixed oak-conifer forest may transition to a young oak 

savanna after a moderate severity wildfire). Transitions were based on probabilities 

calculated from over 3,000 regional forest plots using the Forest Vegetation Simulator 

(FVS) (Crookston and Dixon, 2005) with modifications for Oregon white oak growth and 

mortality developed by members of our research team (Gould et al. 2011). Because FVS 

is an individual-based statistical forest growth and succession model parameterized 
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using current and historical growth conditions, MC1 was used to modify transitions 

based on its projections of future site productivity and potential vegetation in our 

study area (Yospin et al. in preparation).  

The Envision agent-based modeling program (Bolte, 2011; Bolte et al., 2006 and 

Bolte, 2004 describe Envision’s predecessor, Evoland; software download available at 

http://envision.bioe.orst.edu/) provides both the agent-based human decision component 

and the spatially explicit GIS-based framework of the coupled systems model. The 

landscape representation within the computer model (model landscape) is divided into 

polygons referred to as integrated decision units (IDUs). For the ICLF project, IDUs were 

created in GIS by intersecting the boundaries of taxlot parcels, the fundamental units of 

land use and management decisions in the U.S., with soils polygons, used to represent 

basic units influencing tree growth and vegetation dynamics. Each IDU is controlled by 

an agent or actor that makes decisions reflecting their values or mandates. Actors make 

decisions based on the state of their IDU and on policies – fundamental descriptors of 

criteria and actions. The results of actors’ decisions are reflected in changes to the 

landscape. In the ICLF project, actors’ propensities for decisions are based on the results 

of landowner surveys, and policies are being created by experts in land use and land 

management under the guidance of a stakeholder advisory group. 

The work covered by this thesis lies at the interface of the models described 

above. Modeled fire probabilities, fire weather, and fire duration are based on data that 

links analyses of historic fire occurrences to  potential fire intensity outputs produced by 

MC1. Each vegetation state from the state and transition model has been assigned fuels 

characteristics that are converted into landscape parameters used by the fire model, and 
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results from the fire model are used to update vegetation states. The results of the 

ignitions research in this thesis are incorporated into the fire model integration software. 

Fire Modeling 

Fire models have been developed for many different purposes and on many 

spatial and temporal scales. A fire model may be implemented as a standalone 

application, as portable software module, or as an integral part of a model with a fire 

component. Fire models typically compute area burned, burn severity expressed in terms 

of factors such as intensity, flame length, and temperature. They may also provide data 

on spatio-temporal factors such as spread rate and path. Within fire models, ignitions may 

be specified by input or generated deterministically or stochastically by the fire model 

itself. Burn extent calculations, in terms of  both spatial extent and burn severity, may be 

based on the simple, static conditions in a single model cell, to the complex interplay of 

multiple processes both spatially and temporally. 

Choosing a fire model for the ICLF project involved weighing the benefits of 

various fire models against several factors. It had to be computationally efficient enough 

to run repeatedly in on the order of a minute per time step of the coupled systems model. 

It needed to allow the input of ignition locations so they could be based on a probability 

distribution determined from an analysis of recent fires. The fire model also needed to 

operate at a  spatial grain similar to the ~0.1 to 5 ha spatial grain of IDUs. Finally, it 

needed to be implemented as a plug-in module for Envision. The remainder of this 

section surveys a variety of computer models that perform fire modeling and provides an 

overview of FlamMap, the model chosen by the ICLF primary investigators for the 

project. FlamMap is described in greater detail in Chapter 2. 
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Fire Models 

Fire is one of the disturbances often modeled within dynamic global vegetation 

models (DGVMs). Fire modeling in DGVMs is commonly driven by conditions 

computed within the model with deterministic ignitions occurring without regard to 

ignition cause. Burning is commonly modeled on an intra-cellular level with no fire 

spread between cells. MC1, for example, bases fire occurrence on an assumed ignition 

when a threshold based on fuel condition, fine-fuel flammability, and fire spread is 

reached (Bachelet et al., 2001). Surface and crown fire are both simulated, and fire effects 

include crown kill, root kill, and fuel consumption. While MC1 was used in the coupled 

systems model to produce vegetation states and energy release components, its fire 

modeling capabilities were not used because the project used the more mechanistic 

FlamMap model. 

The Glob-FIRM fire model (Thonicke et al., 2001) was developed as a module for 

use with LPJ-DGVM (Sitch et al., 2000) and is also used in the individual-based SEIB-

DGVM (Sato et al., 2007). Plant functional type (the classification of vegetation by 

characteristics such as phylogeny, morphology, size, leaf characteristics, leaf seasonality, 

etc.), plant functional type fire resistance, and fire season length are the main drivers of 

fire effects in Glob-FIRM. Ignitions are deterministic, based on a fire probability 

computed from observed relationships between daily litter moisture and fire season 

length. Like MC1, Glob-FIRM does not take into account land-use or human-altered fire 

regimes. 

Crevoisier et al. (2007) developed PBA (for Potential Burned Area), a boreal 

forest fire model created for use in DGVMs and evaluated it over a coarse spatial and 

temporal scale (2 x 2.5, 1 month). PBA includes the human-related factor of road 
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density, in addition to the more typical factors of precipitation, temperature, soil water 

content, and relative humidity. 

LANDIS (Forest Landscape Disturbance and Succession) (Mladenoff, 2004) is a 

spatial landscape simulation model that allows for more detailed modeling of forests than 

most DGVMs. LANDIS models cells as forest stands based on species-specific 

composition and maturity with associated biophysical characteristics. In the LANDIS fire 

module (He et al., 2004), fire occurrence is stochastic with probabilities based on the fire 

return interval for the landscape and the time since last fire. Burn intensity is based on the 

combination of coarse and fine fuels. While fire is not modeled based on physical factors 

(e.g., detailed fuel properties, air temperature, wind speed), it can spread from cell to cell. 

LANDIS-II (Scheller et al., 2007), the successor to LANDIS, includes an extensible, 

modular software architecture, as well as options for variable fire return intervals and fire 

size distribution. 

Fire behavior models, commonly used in wildland fire management, are more 

mechanistic than those previously discussed, and take into account fuels, weather, and 

terrain. Outputs from these models may include fuel and fire characteristics such as fuel 

moisture, flame lengths, rate of spread, area burned, and fire type (surface, passive crown 

fire, active crown fire). 

Fire behavior models are designed with varying levels of complexity. BEHAVE 

Plus (Andrews, 2007) is a relatively simple model that utilizes uniform conditions 

temporally and spatially on a landscape having a constant slope. FlamMap (Finney, 2006; 

Firemodels.org, 2010) (discussed in more detail below), on the other hand, holds 

conditions constant temporally, and varies conditions spatially. FARSITE (Fire Area 
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Simulator) (Finney, 1998) varies conditions in time diurnally and by day as well as 

spatially. FSPro 

(http://www.wy.blm.gov/fireuse/2008workshop/presentations/12fspro4rx.pdf) produces 

probabilities of fire spread by performing thousands of model runs with differing weather 

scenarios. 

The FlamMap Fire Behavior Model in the ICLF Project 

The FlamMap fire behavior model provides the functionality and computational 

performance needed in the ICLF project. In addition, it is available as dynamic link 

library (DLL) usable with the Windows operating system. This allows it to be adapted 

into an Envision plug-in DLL module. As used in the project, inputs include fuel 

moistures, fire weather conditions, burn period, ignition location, and landscape 

parameters consisting of slope, aspect, elevation, fuel model (a specification of fuel 

characteristics), extent of canopy cover, canopy base height, canopy height, and crown 

bulk density. 

Input files for fuel moistures, fire weather, and burn period are read at the start of 

each multiyear Envision model run. Ignition locations are generated by the FlamMap 

Interpreter for each individual model fire via a Monte Carlo method with a probability 

surface generated from the ignitions model from this thesis. FlamMap reads the 

landscape parameters from a landscape (LCP) file. These parameters come from a 

combination of input file data and data generated by the FlamMap interpreter. 

FlamMap and its use in the ICLF project are described in greater detail in Chapter 

2 and in Appendices A and B. 
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Factors for Ignition Modeling on the Landscape 

Modeling the spatial distribution of ignition probability is a critical component of 

wildfire simulation models and an important part of the ICLF fire-modeling component. 

Accurately modeling burn areas, which depends in part on ignition locations, is important 

for several aspects of the ICLF model: the fine-scale modeling of vegetation, actor 

behavior in response to nearby fires, and fire locations themselves. Several key factors 

need to be considered when modeling wildfire ignitions: study area size and spatial 

resolution, data source and choice, statistical techniques, ignition source, and analytical 

factors. 

Study Area Size and Spatial Resolution 

A study area may range from all land on the globe to a region on the order of 

hundreds of km
2
 with the analytic unit size generally, but not always, roughly scaling 

with the area covered. For instance, Krawchuk et al. (2009) did an analysis of the entire 

globe at a resolution of 100 km. Parisien and Moritz (2009) used data on a 1-km grid for 

analyses of the United States, California, and several subregions of California. Pu et al. 

(2007) generated and analyzed a forest fire dataset for the United States at a 1-km 

resolution. Cardille et al. (2001) analyzed a 280,000-km
2
 area in the upper Midwest with 

dimensions of 10-km and 5-km grids. In an analysis covering the state of California, 

Syphard et al. (2007) summarized data on a county-by-county basis. On a 1,287-km
2
 area 

of the Missouri Ozark Highlands, Yang et al. (2007) analyzed human-caused ignitions on 

an individual basis with a 30-m resolution for landscape characteristics. In a study of the 

Santa Monica Mountains National Recreation Area (approximately 600 km
2
), Syphard et 

al. (2008) treated ignitions as point data, using a 10-m resolution for distance variables, 
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and a 30-m resolution for biophysical variables with the exception of 1-km resolution for 

temperature. 

Data Source and Choice 

Sources used for ignition and fire data include fire databases (e.g., Parisien and 

Moritz, 2009; Syphard et al., 2007; Cardille et al. 2001), remote sensing data (e.g., Pu et 

al., 2007), aerial photos (e.g., Vazquez and Moreno, 2001), and field research (e.g., 

Vazquez and Moreno, 2001). 

Which wildfire data are used in a study can depend on data availability as well as 

the aspect of ignition or fire being studied. For instance, for their study of lands suitable 

for wildfire in the conterminous United States, Parisien and Moritz (2009) only used data 

from federal agencies for fires on federal lands. In addition, they limited the data to fires 

larger than 121 ha to be consistent with the data they obtained for California wildfires. 

Studies concerned with “wildfires” as opposed to “ignitions” commonly disregard fires 

smaller than a certain size (e.g., Cardille et al., 2001), and in some cases evaluate fires of 

different sizes separately (e.g., Brosofske et al., 2007; Cardille et al. 2001). In contrast, 

studies specifically concerned with ignitions generally do not filter events by the size of 

the burn (e.g., Reineking et al., 2010; Syphard et al., 2008; Romero-Calcerrada et al., 

2008; Yang et al. 2007). 

Data may be partitioned based on ignition source, commonly human-caused 

versus lightning-caused fires. For example, Yang et al. (2007) and Zhang et al. (2010) 

considered only human-caused ignitions in their studies in the Missouri Ozarks and the 

Inner Mongolia grasslands, respectively. Rorig and Ferguson (1999) examined factors 

affecting lightning-caused ignitions in the northwestern United States, as did Castedo-
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Dorado et al. (2011) in the Leon province of northwestern Spain. Reineking et al. (2010) 

analyzed human- and lightning-caused fires separately in order to understand differences 

based on ignition source. 

Statistical Techniques 

A wide variety of techniques have been used to analyze and model ignition and 

wildfire data (Seidl et al., 2011 summarized many of these). These include logistic 

regression (Peng et al., 2002), classification and regression tree (CART) (Breiman et al., 

1984), geographically weighted regression (GWR) (Brunsdon et al., 1996), weight of 

evidence (WofE) (Albert, 1990), multivariate adaptive regression splines (MARS) 

(Friedman, 1991), neural networks (Vega-Garcia and Chuvieco, 2006), and fuzzy logic 

(Zedah, 1983). 

Logistic regression is a well-known statistical method for generating a continuous 

probability function based on data with binary outcomes and has been used in many 

ignition and wildfire studies (e.g., Badia et al., 2011; Syphard et al., 2008; Brosofke et al. 

2007; Diaz-Avalos et al., 2001). 

CART analysis is a nonparametric technique in which data is recursively 

partitioned into a tree structure through the use of rules that divide the data into cohesive 

groups. CART produces discrete categories of data, and maps produced from results 

display sharp boundaries between areas represented by the categorical data (e.g., 

Amatulli et al., 2006). This method has been successfully used by Brosofke et al. (2007) 

and Amatulli et al. (2006). 

With GWR (geographically weighted regression), the formula for linear 

regression is extended to allow local variation in the rate of change factor. Using a GWR, 
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Koutsias et al. (2010) were able to increase the power of their explanatory model to 78% 

as compared to 52% with ordinary least squares regression. One limitation of GWR is 

that it does not permit discrete binary explanatory variables (Amatulli and Camia, 2007). 

WofE (weight of evidence) uses multiple independent variables and conditional 

probabilities to determine the effect of independent variables on the dependent variable 

(Romero-Calcerrada et al., 2008). Romero-Calcerrada et al. (2008) and Romero-

Calcerrada et al. (2010) have used this method to study human-caused ignitions in an area 

of Central Spain. Dilts et al. (2009) also used this method for fire occurrence in Lincoln 

County, Nevada. 

MARS (multivariate adaptive regression splines) is a nonparametric regression 

method that, unlike recursive partitioning (e.g., CART), produces continuous models 

with continuous derivatives (Friedman, 1991). Amatulli and Camia (2007) applied both 

CART and MARS methods on data from the Arno River Basin in Italy. While they found 

CART more accurate, MARS produced smoothed, more homogenous values. 

Artificial neural networks process data by connecting data elements in layers. 

“Learning” is achieved by modifying the weights of connections between elements 

(Vega-Garcia and Chuvieco, 2006). Vega-Garcia and Chuvieco (2006) used neural 

networks to study the relationship between landscape heterogeneity and wildfire 

occurrence in a region in Eastern Spain. In a study of impacts of population density and 

weather on wildfire risk in Japan, Li et al. (2009) found results from neural networks 

better captured the nonlinear relationships in the data than did polynomial regression. 

Fuzzy logic is based on the concept of a continuum between true and false instead 

of the traditional binary view. This concept has led to analytical techniques that can be 
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applied in many fields. Loboda and Csiszar (2007) utilized a fuzzy logic model to create 

a fire threat model in the Russian Far East. Nadeau and Edgefield (2006) used fuzzy logic 

to produce a map of fuel types in an area of Alberta, Canada. The use of fuzzy logic 

allows for a degree of uncertainty in the encoding of explanatory variables used in the 

analyses. 

Ignition Source 

The relative proportions of human- versus lightning-caused wildfires vary 

regionally. A number of areas have few lightning-caused fires (<= 5%) such as the 

United States upper Midwest (Cardille et al. 2001), Missouri’s Ozark Highland (Yang et 

al., 2007), California’s Santa Monica Mountains (Syphard et al., 2008), and the State of 

California as a whole (Syphard et al., 2008). In contrast, other areas have a substantial 

percentage of lightning-caused fires, such as Bages County, Catalonia, Spain (58%) 

(Badia et al., 2011), the Inner Mongolia Autonomous Region in northeast China (58%) 

(Zhang et al., 2010), the Northwest United States (Rorig and Ferguson, 1999), and 

Canada (35%) (Weber and Stocks, 1998). 

Many studies focus only on human-caused fires and ignitions. This is common 

where human causes account for the vast majority of fires (e.g., Syphard et al., 2008; 

Yang et al., 2007). In other studies, lightning-caused fires are not considered separately 

because of the dominance of human-caused fires (e.g., Cardille et al. 2001). The relative 

proportions of human- and lightning-caused fires are not the only reason a researcher 

may concentrate on human-caused fires. For example, Pew and Larsen (2001) limited 

their study of wildfires in the temperate rainforest of Vancouver Island, Canada to 

human-caused fires due to the potential to control ignitions caused by human activity. 
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However, the causes and effects of lightning and human caused ignitions can 

differ substantially and may justify their separate consideration, even in areas where 

human fires dominate. Reineking et al. (2010) examined human- and lightning-caused 

fires separately and found that explanatory factors differed significantly. They also found 

that the suitability of certain fire indices differed for human- and lightning-caused fires. 

The effects of fires from these two classes of fires can also differ significantly. In 

Canada,  lightning accounted for only 35% of wildfires but  was responsible for 85% of 

the area burned (Weber and Stocks, 1998). 

The factors affecting the spatial distribution of lightning-caused ignitions may be 

complex. For instance, human activities would not be expected to influence lightning-

caused ignitions (Reineking et. al., 2010), yet in a study within the Canadian western 

boreal forest, road network density correlated with increased lightning-caused fire 

(Arienti et al., 2009). The correlation was attributed to vegetation changes along roads. 

Furthermore, lightning-caused ignition occurrence may vary on different landscapes. In 

Nevada, Dilts et al. (2009) found lightning ignitions more common in mountains than in 

basins. Castedo-Dorada et al. (2011), however, found lightning ignitions more common 

at lower elevations, and attributed this to higher rainfall and lower temperatures at higher 

elevations. 

Analytical Factors 

A variety of biophysical and human factors are commonly considered in modeling 

ignitions and fire distribution (see for example: Zhang et al., 2010; Dilts et al., 2009; 

Syphard et al., 2008; Yang et al., 2007; and Dickson et al., 2006). Biophysical factors 

commonly include slope, aspect and vegetation type; climatic factors such as rainfall, 
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temperature, humidity, and lightning frequency; and roughness of terrain. Human factors 

include distance to roads and road density, distance to railroad, distance to development 

and development density, presence within and distance to the wildland urban interface, 

human population density, and land use/land cover. 

Thesis Objectives 

The general architecture of the ICLF coupled systems model required linking 

models and data from differing temporal and spatial domains. Careful consideration of 

global climate scenarios, regional climate projections, fire models, vegetation models, 

and human models has led to the specific architecture of the system being implemented. 

Likewise data issues and analytical techniques for ignitions modeling were carefully 

considered for the ignitions modeling portion of the ICLF project. 

This thesis deals specifically with two aspects of the fire-modeling portion of the 

ICLF. The first is the FlamMap Interpreter, software I developed that provides the 

linkage between the agent-based Envision human decision model and the FlamMap 

spatially explicit fire model. This software allows FlamMap to be run as an Envision 

plug-in module, providing the necessary data manipulation, file generation, and software 

execution. Chapter 2 contains more detailed descriptions of Envision and FlamMap as 

well as a description of the FlamMap Interpreter. The Envision FlamMap Interpreter 

User’s Guide and The Envision FlamMap Interpreter Programmer’s Guide, are 

contained in appendices A and B respectively. 

The second aspect of my thesis research was the development of an ignition 

probability model for a portion of the Willamette Valley, which has been implemented 

within the FlamMap Interpreter. Chapter 3 presents the ignitions probability research. 
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Topics covered include the development of the dataset, descriptive statistical analysis, 

CART and logistic regression modeling of the data, as well as the results and 

interpretation of the model. 
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CHAPTER II 

THE ENVISION – FLAMMAP INTERFACE 

Introduction 

Landscape characteristics and wildfire are intimately related. Given an ignition, 

vegetation characteristics influence whether a wildfire will occur, and if so, how it will 

burn. Wildfire, in turn, can influence what vegetation grows, and how it grows. When 

humans are included in the mix – causing ignitions, suppressing wildfire, altering 

vegetation, and shaping the landscape – these interrelationships become much more 

complex. 

The relationships among vegetation, human activity, and wildfire are central to 

the interdisciplinary project entitled “The Interactions of Climate Change, Land-

Management Policies, and Forest Succession on Fire Hazard and Ecosystem Trajectories 

in the Wildland-Urban Interface,” and subsequently referred to by the acronym ICLF. 

The agent-based human decision model Envision (Bolte, 2011; Bolte et al., 2006 and 

Bolte, 2004 describe Envision’s predecessor, Evoland) serves as the unifying software for 

the ICLF’s coupled systems model. Some components of the model, notably future 

climate projection, are utilized pre-runtime to generate model input. Others are 

implemented as software plug-in modules and exhibit feedback behavior with various 

model components, including a vegetation state and transition model and a fire model. At 

runtime, these plug-in modules perform data processing and exchange data with 

Envision. 

The spatially explicit FlamMap fire model (Finney, 2006) was chosen for the 

ICLF project because of its computational efficiency, its ability to model wildfire at a 
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spatial grain and extent commensurate with that used in the rest of the project, and its 

availability as a Windows dynamic link library (DLL). At a high level, the desired 

capabilities of the fire model were to take landscape data from Envision and climate data 

from an external source and use these to model fires on the model study area landscape 

each annual model time step. This provided several challenges for the use of any fire 

model in general and specifically for the FlamMap DLL including: 

 Burn parameters: climate-driven probabilistic ignition occurrence, fire 

weather, and fire duration all based on future climate projections. 

 Ignition placement: the placement of ignitions on the landscape based on a 

spatially explicit probability distribution function as opposed to 

deterministically or completely randomly. 

 Landscape characteristic conversion: the conversion and exchange of 

landscape characteristics between those used by Envision and those used 

by FlamMap. 

 Spatial domain translation: the conversion of data between the polygon-

based Envision and grid-based FlamMap spatial domains. 

This chapter describes the Envision software program, the FlamMap software 

program, pre-runtime protocols used to generate fire weather parameters and burn 

probabilities, and the FlamMap Interpreter, which utilizes data from pre-runtime 

protocols and implements ignition placement, data conversion between Envision and 

FlamMap, and the running of model fires (fires within the modeling software, i.e., 

FlamMap). 
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Envision 

Envision is a geographic information systems (GIS) based alternative futures 

modeling program (Bolte, 2011; Bolte et al., 2006 and Bolte, 2004 describe Envision’s 

predecessor, Evoland; software download available at http://envision.bioe.orst.edu/) 

implemented using the C++ programming language (Stroustrup, 2000). Envision includes 

components that allow modeling multiple processes on a landscape and evaluating the 

results of their interactions and feedbacks. These components include a spatially explicit 

landscape, actors (also called agents), policies, autonomous processes, and landscape 

evaluators. 

A landscape is composed of polygons termed integrated decision units (IDUs). 

IDUs are defined by the user based on criteria useful to the modeling goals. In the ICLF 

project they are defined by the intersection of taxlot parcels and soil polygons, and range 

from <0.1 ha to 5 ha. 

Actors represent groups or individuals and make management decisions about 

individual IDUs. These decisions reflect actors’ values and mandates in light of the 

characteristics of the IDUs they control and are reflected by changes to those IDUs. Two 

surveys of study area landowners (Nielsen-Pincus et al. 2010) were used to parameterize 

actor characteristics in the ICLF project. 

Polices guide and constrain actors’ decisions about IDUs. In Envision, policies 

are the fundamental descriptors of actions that may be taken by actors, including the 

criteria that determine whether or not a policy is adopted by a given actor in a given IDU 

in a given model time step. Policies may represent the choices of individuals based purely 

on their values, as well as regulations and incentives implemented by public agencies to 

guide land-use decisions. In the ICLF project, contrasting pairs of policy sets are use to 
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compare the potential outcomes of compact versus dispersed development, and a 

conventional versus mixed fuels-biodiversity approach to wildfire management. 

In addition to the spatially defined landscape and IDUs, actors, and policies, 

Envision can accommodate additional components that influence model outcomes. 

Autonomous processes can be created to affect the landscape without actor input. 

Wildfire is an example of an autonomous process. Furthermore, landscape evaluators can 

be defined to produce landscape metrics, for instance the scarcity or abundance of certain 

resources, that change as a result of actor decisions and autonomous processes. These 

landscape metrics can, in turn, influence actor behaviors. 

In Envision, real world variation in decision-making is reflected by the 

probabilistic responses of actors to policies and landscape conditions. For example, an 

actor strongly inclined towards economic development might be 70% likely to harvest 

timber if prices rise to a certain level, while an actor strongly inclined towards ecological 

restoration might be only 30% likely. Envision normally is run on the order of tens or 

hundreds of times for a given set of policies, actors, and initial landscape conditions, so 

that trends in the output from multiple runs can examined and compared. 

Envision provides an interface for the incorporation of externally developed DLL 

plug-ins for evaluative models and autonomous processes. This interface allowed for the 

development of the FlamMap Interpreter as a DLL-based Envision plug-in. 

FlamMap and the FlamMap DLL 

FlamMap was designed to model fire behavior under constant fuel moistures, 

wind speed, and wind direction over a spatially explicit model landscape (Finney, 2006). 

Landscape inputs include parameters for topography, vegetation structure, and fuel 
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loading. Inputs also include ignition points, lines, or polygons. FlamMap uses these 

parameters along with fire weather parameters (wind speed and wind direction) to 

compute fire behavior, intensity, and spread within cells on a regularly spaced grid. An 

option also exists to perform inter-cell fire spread computations. Inputs and outputs are 

described in greater detail in the remainder of this section. 

Fuel moistures provide FlamMap with fuel condition data for different types of 

vegetation and are provided to FlamMap via a fuel moistures input file. Each row of the 

fuel moistures file consists of six columns. The first column is a numeric identifier for a 

fire behavior fuel model, a mathematical characterization of live and dead ground layer 

fuels that control surface fire behavior (Scott and Burgan, 2005; Rothermal, 1972). The 

remaining five columns are moisture percentage values for 1-hr (hour), 10-hr, and 100-hr 

dead fuels, live herbaceous, and live woody fuels, respectively. One-hr, 10-hr, and 100-hr 

are classes of fuels based on the time needed for fuels of different sizes to reach 

approximately 63% of the difference between its moisture content and the equilibrium 

moisture content reflecting ambient weather conditions. FlamMap allows for the optional 

use of a fuel-conditioning algorithm. This option computes 1- and 10-hr fuel moistures 

based on an input weather stream before modeling a fire. 

FlamMap uses a regularly spaced, two-dimensional grid to represent the 

landscape. Each grid cell is assigned parameters that define the fuel and landscape 

characteristics used in computing fire behavior and spread. Eight parameters, or layers 

are required. The first three of these, slope, aspect, and elevation, define the landscape 

topography. The fourth, fuel model value, is used to index into the fuel models input data 

described above. The next three, canopy cover (the horizontal percent coverage of forest 
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canopy), canopy base height, and canopy height, define the extent of the forest canopy. 

The final layer, crown bulk density, is a measure of  the canopy in mass per unit volume. 

Landscape parameters are input via a binary landscape (LCP) file (format 

description available at http://www.gdal.org/frmt_lcp.html) consisting of a header that 

contains information about the landscape and its descriptive data. Included in the header 

are the units used for each parameter, grid cell size and units, and the spatial extent of the 

model landscape. The body of the LCP file contains the parameters for each cell of the 

model landscape. Other FlamMap inputs include wind speed and direction which 

contribute to fire spread calculations and are specified interactively. 

FlamMap can model burns as either static, in which each cell burns independently 

without influence or spread from other cells, or as fires which spread from ignition 

locations. The latter case, used for the ICLF project, requires the option for the minimum 

travel time (MTT) algorithm (Finney, 2002). This algorithm provides efficient 

computation of fire spread on the model landscape. FlamMap uses the MTT algorithm 

with a user-specified maximum simulation time parameter to determine the model fire 

perimeter. The MTT algorithm requires the additional input of one or more ignition 

locations. Ignition locations can be one or more points, lines, or polygons and may be 

specified interactively or read from an ArcGIS shapefile (ESRI, 1998). 

Available outputs from FlamMap depend on the algorithmic options chosen. In 

every case, those parameters produced by intra-cell burn computations are available. 

These are all rasters, and include results related to fire behavior, intensity, and spread. 

With the MTT option, rasters and vectors primarily related to inter-cell fire spread are 
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available. The fuel-conditioning option produces rasters for solar radiation, as well as 

computed 1- and 10-hr fuel moistures. 

One output from FlamMap, fireline intensity – the rate of heat energy released per 

unit time per unit length of fire front – is important for the ICLF project. This output is 

used to compute the flame length for cells that burn in a model fire. This flame length is 

in turn used by another Envision plug-in module to impose vegetation changes on the 

model landscape due to fire disturbance. 

The ICLF project is designed to use spatially explicit fire modeling and thus 

requires the use of the FlamMap MTT option. An MTT FlamMap DLL is available and 

was used in the coupled systems model. More detail on how the MTT DLL is used with 

Envision in the ICLF project is found later in this chapter and in Appendices A and B, 

The Envision FlamMap Interpreter User’s Guide, and The Envision FlamMap Interpreter 

Programmer’s Guide, respectively. 

Challenges to FlamMap Implementation 

A variety of approaches were taken to meet the implementation challenges 

outlined in the introduction to this chapter. This section discusses how these challenges 

were met. 

Burn Parameters 

Historic weather data from Remote Automated Weather Stations (RAWS) were 

used to correlate wildfire probability and size to the energy release component (ERC) (an 

index of the total energy available to a fire) at the time of each fire over an area reaching 

from the southern Willamette Valley south to the California border (Ager, Johnson and 

Evers, unpublished data). RAWS data collection included areas south of the ICLF study 
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area to include the higher ERCs that are projected under future climate. Future weather 

projections were then used to calculate daily ERCs in future model years (Johnson and 

Evers, unpublished data), which in turn were used to calculate future daily fire 

probability and burn time (used as a surrogate for fire size). Correlating historic fire size 

to burn time under expected fuel moistures allows the team to use burn time for modeled 

fires, which in turn allows extant fuels to control the rate of spread and thus fire size. 

During an Envision model run, the FlamMap Interpreter uses a Monte Carlo draw 

with the Julian day fire probability to determine which fires are modeled during each 

Envision annual time step. Those fires are run on the model landscape using their defined 

wind direction, wind speed, and burn time in conjunction with the model landscape fuels 

and topography. 

Model fire data are pre-computed prior to starting the Envision software. With a 

Monte Carlo draw determining which fires are modeled, a single dataset of fires can 

produce variation in fire occurrence and fire severity that reflect the expected 

probabilistic nature of wildfire occurrence in relation to climatic conditions. 

Ignition Placement 

As part of this thesis, a study was undertaken to determine the factors affecting 

the probability of ignitions based on landscape characteristics (Chapter 3). Using a 

logistic regression model from this study and landscape attributes from the Envision 

landscape, an ignitions probability grid for the model landscape is generated once per 

annual time step. For each model fire that is run, a Monte Carlo draw is performed 

against the ignitions probability grid to produce an ignition point. This probabilistic 
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method allows for variation in ignition placement while taking into account factors 

influencing ignition occurrence.  

Landscape Characteristic Conversion 

FlamMap requires eight data layers to model a landscape. Three of these – slope, 

aspect, and elevation – do not change over time. The other five – fuel model, canopy 

cover, canopy base height, canopy height, and crown bulk density – are based on 

dynamic vegetation characteristics that change with changes in vegetation state. In the 

ICLF project, Envision does not store the vegetation characteristics used by FlamMap, 

but does store a vegetation state for each IDU that can be used to derive these 

characteristics. 

Other members of the ICLF team investigated the fuels and structural 

characteristics of each vegetation state in the state-transition model based on 1260 plots 

of forest stand data derived from regional data sources (Johnson, Gould and Ulrich, 

unpublished data). Based on their results, they produced a lookup table that indexed the 

fuels and stand structure characteristics required by FlamMap to the vegetation states 

used in Envision. Using this lookup table, the FlamMap Interpreter generates the values 

written to the LCP file using vegetation states it obtains from Envision IDUs. 

Spatial Domain Translation 

The Envision model landscape is comprised of IDUs – polygons of varying 

shapes and sizes. FlamMap, in contrast, operates on a regularly-spaced grid. In order to 

translate data between Envision’s polygon space and FlamMap’s grid space, spatial 

domain mapping software called PolyGridLookups was implemented as part of the 

FlamMap Interpreter. PolygridLookups is implemented as a C++ object. An object is a 
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data structure containing both data elements and functions (commonly called methods) 

that perform computational operations using the object’s own data elements. 

Using the spatial overlap between IDU polygons and FlamMap grid cells, 

PolyGridLookups creates a pair of lookup tables, one to translate data from grid space 

into polygon space and one to translate data from polygon space into grid space. Because 

the majority of entries in these tables have a value of zero, indicating no overlap, these 

tables are implemented using row-compressed arrays 

(http://web.eecs.utk.edu/~dongarra/etemplates/node373.html, Appendix B). A row-

compressed array is a memory-efficient data construct that reduces the storage required 

for an array in which most elements have the same value. 

 A PolyGridLookups object is generated through a four-step process (Appendix 

B): 

1. Obtain the polygon landscape representation from Envision. 

2. Create a grid-based landscape representation matching that used by FlamMap. 

3. Compute the approximate area of intersection of each grid cell with each 

polygon and store the results in a lookup table. This lookup table allows for 

the fast translation of data from grid space into data in polygon space. 

4. Create a transpose (row and column entries reversed) of that created in step 3. 

This lookup allows for the fast translation of data from polygon space into 

data in grid space. 

The creation of a PolyGridLookups C++ object from the initial polygon and grid 

landscape representations is computationally intensive and can take on the order of hours 

to execute. Options to read/write a PolyGridLookups object as a binary file have been 
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implemented in the FlamMap Interpreter so that the object needs to be created from the 

initial polygon and grid representations only one time per landscape. In subsequent 

Envision sessions the PolyGridLookups object can be created from the binary file. 

The FlamMap Interpreter 

While FlamMap, via the minimum travel time dynamic link library (MTT DLL), 

provides the core fire modeling functionality needed by the ICLF project, the fire 

parameters, ignition locations, and landscape description must be managed or produced 

by a software component that interfaces with Envsion, the MTT DLL, and external files. 

That software component is the FlamMap Interpreter. This section provides a high level 

view of the FlamMap Interpreter by describing its behavior during an Envision session, 

making clear its interactions with Envision, the MTT DLL, and input and output files. 

More detailed descriptions of its use an implementation can be found in Appendix A, The 

Envision FlamMap Interpreter User’s Guide and Appendix B, The Envision FlamMap 

Interpreter Programmer’s Guide. 

During an Envision session, four different methods are called, each at a different 

point in the Envision code execution: startup, the start of a run, during each time step of a 

run, and at the end of a run (Figure 3). The processing executed during each of these 

steps is described separately below. 
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Figure 3. Overview of FlamMap Interpreter. Schematic diagram of the FlamMap 

Interpreter (yellow) illustrating its interactions with Envision (blue), files (grey), and 

FlamMap (red).  

Envision Startup 

Init() reads a master configuration file with parameters used to set options, the 

working data directory, and file names. Options include whether to create the 

PolyGridLookups object from scratch or read it from a file. The working data directory is 

the directory where files are read and written. File names include the names of the file for 

the vegetation class to LCP parameter data, the PolyGridLookups file, the fires file, the 

starting LCP file, the FlamMap input parameters file, and the root names for files 

produced during the Envision session including the LCP files, the FlamMap input files, 

and the ignition files. 

After reading the input parameters, Init() creates C++ objects for managing the 

LCP file, performing the vegetation state to landscape parameter translation, and the 

PolyGridLookups. If the PolyGridLookups is to be written to file, this is also done. 
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Start of an Envision Run 

At the start of an Envision run, the InitRun() method is called. First, the fires file – 

containing the model year, Julian day, fire occurrence probability, wind direction, wind 

speed, and burn period – is read and for each fire in the file a Monte Carlo draw 

determines whether that fire will be modeled during its model year. Those fires to be 

modeled are saved, and the others are discarded. Next, a file containing parameters that 

would have been specified interactively in the standalone version of FlamMap, and fuel 

moistures files are read. Data from these files are stored in computer memory so that they 

can be written for each run of FlamMap. Finally all values in the matrix that will hold the 

maximum flame length reached on each grid cell are set to zero. 

Envision Run Time Step 

During a run, Envision calls the FlamMap Interpreter Run() method one time for 

each annual model time step. Run() first prepares the LCP file used by FlamMap. For 

each polygon in the Envision landscape, Run() obtains the vegetation class from 

Envision. Using the PolyGridLookups object and the vegetation class-to-landscape values 

lookup, Run() converts the vegetation class values into gridded landscape parameters. 

These parameters are written to the LCP file. The LCP file is created once per Envision 

time step. The same LCP file is used for each fire modeled during a time step. Next Run() 

obtains the appropriate values it needs from Envision to generate the ignitions probability 

grid for the current model year. 

 Run() then loops over the fires for the model year, running each one 

independently of the others. For each model fire, it creates two more input files used by 

FlamMap: a file containing wind direction, wind speed, simulation duration time, fuel 

moistures, and user options; and an ignition location file. It then calls the MTT DLL to 
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run the model fire. Flame lengths are computed based on fire line intensity results from 

FlamMap. Flame lengths are accumulated in the flame length matrix. If multiple model 

fires affect the same grid cell, then the value of the greatest flame length modeled for the 

cell is used. After all fires for a model year have been run, Run() uses the 

PolyGridLookups object with the flame lengths matrix to compute the mean flame length 

for each IDU polygon and writes the data to the Envision data structure. Once written to 

the Envision data structure, flame length data are available to the vegetation model plug-

in which uses flame lengths to modify vegetation states. 

End of an Envision Run 

EndRun() deletes the object that executed the fires for the run, a step necessary for 

the next run of the model. 

Conclusion 

The goals of the ICLF project required a fire-modeling component that could 

simulate spatially explicit fires on a model landscape that changes between time steps of 

a model run. FlamMap can provide such spatially explicit modeling on a fire-by-fire 

basis. However, the functionality to interface with a landscape changing in terms of both 

vegetation, and the number and location of ignitions, and to take into account the effect 

of a changing climate on wildfire frequency, size and severity had to be provided by other 

means. While inputs from Envision, along with pre-computed fire probabilities and 

parameters provide the data necessary to initialize FlamMap, the FlamMap Interpreter 

provides the missing functionality to convert external data into a form usable by 

FlamMap, to place ignitions on the landscape, to manage the running of multiple model 
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fires that are driven by different climatic conditions, and to provide Envision with the 

resultant flame length data needed to compute changes to vegetation states. 

With the FlamMap Interpreter in place, the ICLF’s coupled model now has the 

functionality to generate feedbacks among human decisions, vegetation succession, 

climate, and wildfire. Chapter 3 discusses how the critical linkage between human factors 

and wildfire ignitions used by the coupled model was generated through the statistical 

analysis of historical wildfires in the Willamette Valley. 
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CHAPTER III 

THE SPATIAL DISTRIBUTION OF WILDFIRE IGNITIONS  

IN THE WILLAMETTE VALLEY, OREGON, USA 

Introduction 

Wildfire is both a costly hazard to humans and a key ecological process. In the 

United States alone, annual suppression costs can exceed one billion dollars and annual 

homes destroyed can number in the thousands (Busby and Albers, 2010). Harder to 

quantify are the consequences of forest product destruction (Kauffman, 1990) and the 

alteration of ecosystem function resulting from changes to historical fire regimes (Keeley 

and Fotheringham, 2003; Snider et al., 2006). Understanding wildfire – its causes, 

behavior, intensity, and extent – is important in predicting its likelihood and managing 

both its negative and positive effects. The spatial distribution of wildfire ignitions is a key 

component of this understanding. 

Nearly all wildfire ignitions can be attributed to human activity or lightning. Both 

human and biophysical factors are important in predicting ignitions, with their relative 

importance depending primarily on ignition cause (Seidl et al., 2011). In areas where 

human ignitions are substantial, ignition probability is typically greater closer to roads 

(e.g., Syphard et al., 2008; Yang et al., 2007; Amatulli and Camia, 2007) and with greater 

road density (e.g., Amatulli and Camia, 2007; Cardille et al., 2001). Despite the 

importance of roads, to my knowledge only two studies have distinguished the effects of 

primary and secondary roads. Vasiliakos et al. (2009) found major roads had a stronger 

influence on ignitions; in contrast, Amatulli and Camia (2007) found a stronger influence 

from minor roads, which they attributed to a greater density of secondary roads in 
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wildland areas. Human ignitions also occur more frequently in and near areas of human 

habitation, such as the wildland urban interface (WUI) (e.g., Syphard et al., 2008; 

Syphard et al, 2007) and villages (e.g., Zhang et al., 2010) and cities (e.g., Cardille et al., 

2001). Ignitions have also been found to be higher in areas of greater human population 

density (e.g., Sturtevant and Cleland, 2007; Cardille et al., 2001). However, Syphard et 

al. (2007) found that the number of ignitions peaked at intermediate population densities 

with the initial increase due to greater human presence and then a decrease due to 

insufficient fuels. In addition to human factors, a number of biophysical factors often are 

significantly correlated with human ignitions, including slope (e.g., Amatulli and Camia, 

2007; Yang et al., 2007), vegetation type (e.g., Syphard et al., 2008; Syphard et al., 2007; 

Yang et al., 2007), elevation (e.g., Yang et al., 2007),  aspect (Vasilakos et al., 2009), 

rainfall (e.g., Cardille et al., 2001; Pew and Larsen, 2001), and temperature (e.g., Syphard 

et al., 2008; Cardille et al., 2001; Pew and Larsen, 2001).  

Factors associated with lightning ignitions often differ from those associated with 

human ignitions. Commonly, weather is a dominant factor. While the total number of 

lightning strikes has been shown to have little or no relationship to the number of 

ignitions (Rorig and Ferguson, 1999), dry lightning (lightning with little or no 

precipitation) is closely associated (Castedo-Dorado et al., 2011; Reineking et al., 2010; 

Rorig and Ferguson, 1999), and dry fuel conditions also contribute to lightning ignitions 

(Reineking et al., 2010; Rorig and Ferguson, 2002). The relationship of lightning 

ignitions to elevation is not straightforward. In Nevada, Dilts et al. (2009) found lightning 

ignitions more common in mountains than in basins. Castedo-Dorada et al. (2011), 

however, found lightning ignitions more common at lower elevations, and attribute this to 
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higher rainfall and lower temperatures at higher elevations. Vegetation also has been 

found to play a role, with lightning ignitions occurring more frequently in conifer forests 

than in broadleaf forests (Reineking et al., 2010; Pezzatti et al., 2009; Krawchuk et al., 

2006), and in woodlands as opposed to non-forested areas (Dilts et al., 2009). A study in 

a western Canadian boreal forest found lightning ignitions were more frequent closer to 

roads (Arienti et al. 2009). This was attributed to the increased presence of native and 

invasive grasses along roads and the associated increased fuel flammability.  

The complex and varied interactions between ignition cause and the factors 

affecting their distribution highlight the importance of assessing human and lightning 

ignitions in landscapes where both are present. Oregon’s Willamette Valley offers such a 

location. It contains a spatially diverse mosaic of population centers, large areas of WUI, 

rural areas managed for agriculture, forestry and wilderness, and a network of roads 

ranging from major travel routes to seldom-used forest roads. Using data from this area, I 

examine two questions: How do various human and land-use factors influence wildfire 

ignition distribution? and How do the relationships with these factors vary among all 

ignitions, human ignitions, and lightning ignitions? 

Methods 

Study Area  

The Willamette River Basin is situated in western Oregon between the crests of 

the Cascade Mountains to the east and the Coastal range to the west. It is approximately 

290 km from north to south and 160 km from east to west, encompassing 29,727 square 

kilometers. The valley floor is comprised primarily of agricultural land, urban and rural 

residential development, and small amounts of remnant riparian forest, prairies and oak 
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habitats. The valley foothills contain a mixture of conifer, broadleaf and mixed forests, 

agriculture (particularly pasture), and rural residential development. Conifer forests 

dominate the slopes of the Cascades and the Coastal Ranges. The area is subject to wet, 

mild winters and dry, mild summers (Hulse et al., 2002). 

 The three major urban areas in the valley, Portland, Salem, and Eugene-

Springfield, all lie on the valley floor. Human population is generally higher on the valley 

floor, the surrounding foothills, and along major tributaries of the Willamette River. 

Major and minor roads (interstate highways, principal arterials, minor arterials, major 

urban collectors, minor urban collectors, and local roads) are concentrated in the same 

areas. Unidentified roads and trails are common from the foothills to the higher reaches 

of the mountains on both sides of the valley (Hulse et al., 2002).  

Ignition Data 

Ignitions data, comprising all fire events logged by a federal or state agency, were 

derived from the Oregon Department of Forestry Fire Database (ODF, 2010) and data 

from the Bureau of Land Management Northwest Interagency Coordination Center (May, 

2010). No reliable data were available for the valley floor and it was excluded from the 

study, resulting in an approximately 21,600-km
2 

horseshoe-shaped area comprised mostly 

of hilly-to-mountainous, forested, sparsely populated terrain, with small areas of towns, 

agriculture, and WUI. The resulting dataset consisted of 3505 ignitions from the years 

2000 through 2009, each with the date, location (as ArcGIS shapefile points (ESRI, 1999-

2008) from ODF, and as latitude and longitude from BLM), area burned, and ignition 

cause.  
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Two further sets of points were needed for analyses: a) a set of random points to 

represent overall landscape characteristics, and b) a set of random non-ignition points for 

statistical model development, which utilized equal numbers of ignition and non-ignition 

data points. . Using ArcMap (ESRI, 1999-2008), a 30-m grid of cells was superimposed 

over the study area and grid cells were selected randomly using a Perl 5.8.8 

(http://perldoc.perl.org/5.8.8/index.html) script. The centers of the randomly selected grid 

cells defined the random points. Because no random point was within 30 m (the 

resolution of grid data for the study) of an ignition, the same points were used to 

represent landscape characteristics and the set of non-ignition points.  

Explanatory Variables 

Nineteen explanatory variables (Table 1) were derived from Pacific Northwest 

Ecosystem Research Consortium (PNW-ERC) GIS datasets 

(http://www.fsl.orst.edu/pnwerc/wrb/access.html). For distance to road variables, I 

reduced their seven road types into three categories: major roads (interstate highways, 

principal and minor arterials, and major/urban collectors); minor roads (minor collectors 

and local roads); and unidentified roads (unidentified or unconfirmed roads or trails). 

Population density was converted from source data units of square miles to the equivalent 

metric units, 2.59 km
2
. To explore non-linear effects with logistic regression, quadratic 

terms were included for all continuous and integer variables, and cubic terms were 

included for distance to major roads, distance to minor roads, and population density. 
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Table 1. Model explanatory variables.Summary of explanatory variables used in 

statistical analysis of ignition location. 

Numeric Explanatory Variables (units) Data Type 

Mean 

Value 

Std. 

Dev. 

Distance to major road (m) Continuous 4,603  3,895 

Distance to minor road (m) Continuous 2,503 2,922 

Distance to unidentified road (m) Continuous 576 759 

Distance to railroad (m) Continuous 16,482 14,063 

2.59-km
2
 population density (people / 2.59 km

2
) Integer 24 203 

25.9-km
2
 population density (people / 25.9 km

2
) Integer 290 1,186 

Land Use / Land Cover Categories: 

 Percent of 

Landscape 

Hardwood forest Binary 7.90   

Younger conifer forest Binary 36.03 

Older conifer forest Binary 12.23   

Open forest Binary 0.37 

Semi-closed forest Binary 1.74 

Closed forest Binary 29.70 

Shrub Binary 2.51 

Prairie Binary 0.17 

Crops Binary 5.91 

Developed Binary 0.40 

Roads Binary 0.68 

Rural structures Binary 0.31 

Other Binary 2.02 

 

The sixty PNW-ERC land use/land cover (LULC) classes were grouped into 12 

categories (Table 1). Conifer forests greater than 200 years old were categorized as older 

conifer, with the remainder of conifer forest categorized as younger conifer. The other 

category included LULC classes for water, marshes, snow, rural non-vegetated, and 

barren. The roads LULC class was excluded from analysis because it was redundant with 

the distance to roads variables. 

Statistical Samples 

Explanatory variable values were assigned to ignition points using ArcMap. To 

avoid edge affects along the interior boundary of the study area, the valley floor was 

clipped after grids were computed. On the outer edge of the study area, variation in 
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human population and roads is minimal so there is little to no edge effect. Thirty-meter 

grids were computed for all explanatory variables. The 25.9-km
2
 population density for 

each cell was computed from the 2.59-km
2
 densities using a 25.9-km

2
 circle around each 

grid cell center. Distances of ignition points to roads were calculated using Euclidian 

distance. Autocorrelation among explanatory variables was checked by using the non-

ignition dataset to compute Pearson product moment correlations between all pairs of 

continuous explanatory variables. No correlation exceeded 0.57, and all variables were 

retained for analysis. 

Ignitions were assigned to three classes: all (3,505 ignitions), human (2,364 

ignitions), and lightning (995 ignitions). No cause was available for 146 points. For 

statistical modeling, each of these groups was matched with an equal number of non-

ignitions. Each dataset was then randomly divided into two equal-sized training datasets, 

one for model development and one for model evaluation (De’ath and Fabricius, 2000). 

Statistical Methods 

Mean fire sizes for the three ignitions datasets were examined using the non-

parametric Kolmogorov-Smirnov test (Chakravarti et al., 1967) to determine if the fire 

size distributions were statistically different for human and lightning ignitions. T-tests 

were performed using log-transformed data for distance and population density variables 

between datasets for landscape, all ignitions, human ignitions, and lightning ignitions. 

Histograms, medians, and percentages of the individual explanatory variables (Table 1) 

were compared between the landscape and ignition datasets to assess their effects on the 

spatial distribution of ignition locations. For LULC categories, G-tests were performed to 
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characterize differences between proportional occurrences in the ignition datasets and the 

overall landscape. 

To explore differences and similarities in the results from different multivariate 

statistical techniques and to provide a means of qualitative cross-validation, I analyzed 

the all ignitions data with two methods: classification and regression tree analysis 

(CART) and logistic regression.  

Classification and Regression Tree (CART) 

CART analysis was performed only on the all-ignitions dataset (Breiman et al., 

1984; Therneau and Atkison, 1977; De’ath and Fabricius, 2000; Urban, 2002). CART is a 

non-parametric technique in which data are recursively split into mutually exclusive 

groups (or nodes) to form a tree structure, with final groups of data residing at the 

terminal nodes, or leaves. Splits maximize homogeneity within groups and the same 

explanatory variable may be used to generate multiple splits in a tree. CART’s one-step 

look-ahead algorithm does not necessarily produce optimal partitioning. Models 

produced by CART are commonly over-fitted, so pruning was done by removing splits 

that resulted in < 0.02 increase in the misclassification rate as determined by using the 

evaluation dataset. CART analysis was done using R statistics software (http://www.r-

project.org/) and the RPART package (http://cran.r-

project.org/web/packages/rpart/index.html). The ANOVA method was used for splitting 

data into groups.  

Logistic Regression 

Logistic regression was performed using datasets for all, human, and lightning 

ignitions. However, with over 134 million possible candidate models for each dataset, it 
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was necessary to use a two-phase process to limit the number of models considered. 

Phase one eliminated variables with little explanatory power, while phase two determined 

sets of “best-candidate” final models. 

In phase one, subsets of models with different numbers of variables were 

considered, with an upper limit of ten variables to avoid overly complex models. For a 

given subset size, if fewer than 100,000 models existed, all possible models were 

considered. Otherwise, 100,000 models were randomly generated. Akaike Information 

Criterion (AIC: Burnham and Anderson, 2002) was used to choose a candidate set of 

models from the approximately 600,000 models generated in phase one. Variables 

present in any model whose AIC value was within 2 of the minimum AIC were included 

in the phase 2 analysis. In addition, any variable present in more than 20 of the models 

with the 100 minimum AIC values were included with the idea that variables with strong 

explanatory power would be more commonly present in models with lower AIC values. 

Phase two consisted of an analysis on all-possible-subsets of ten or fewer of the 

explanatory variables yielded by phase one. Models with an AIC within 2 of the 

minimum AIC were considered as “best-candidate models”.  

Model Evaluation 

Three methods were used to more fully evaluate one best-candidate model from 

each dataset: misclassification rates (Pearce and Ferrier, 2000); plots of binned, averaged 

actual data values versus computed model values (after Pearce and Ferrier, 2000); and 

calculations of a statistic, “quasi R
2
,” that I developed for this study. The first method is 

suitable for evaluating both CART and logistic regression models, while the latter two are 

only suitable for logistic regression models. 
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To determine the misclassification rate, the statistical model was applied to the 

evaluation dataset. The proportion of data points whose modeled outcome differs from its 

actual outcome is the misclassification rate. CART models are binary, producing 

true/false results that can be compared to the actual true/false values in the evaluation 

dataset. For logistic models, which produce a continuous probability distribution, a 

calculated probability cutoff value was used to classify calculated results as true or false. 

For instance, if the cutoff value is 0.4, those data points with a calculated probability ≥ 

0.4 are counted as correctly classified, whereas those with a calculated probability value 

< 0.4 are counted as misclassified. The cutoff value used to determine the final 

misclassification rate for a continuous probability model is that cutoff value which yields 

the lowest misclassification rate. A misclassification rate of 0.50 is expected from 

random choices due to the equal size of the ignitions and non-ignitions datasets. 

Plots of averaged actual data values versus computed model probabilities were 

produced by first dividing the predicted probabilities into 20 equal-sized bins. For each 

bin, the mean of the values of points whose calculated probability fell within the bin was 

plotted against the midpoint of the observed probability for points in the bin (after Pearce 

and Ferrier, 2000). This provides a visual representation of how closely the observed data 

fit the calculated probability. 

Finally, to evaluate the relative closeness of model fit for the binned plots, I 

calculated what I term a “quasi R
2
” (



R
Q

2

) that
 
is identical to the general definition of the 

coefficient of determination except that the sums of squares are weighted by the number 

of observations in each bin. The resulting formula is: 
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where m is the number of bins, ni is the number of observations in bin i, 



o 
i
 is the mean 

value of observed data in the bin, 



c 
i
 is the mean probability of model values calculated in 

the bin, and 



O  is the mean value for all observations.  

Ignition Probability Maps 

Using the single model generated by the CART analysis and one model selected 

from each of the logistic regression analyses based on best-candidate model results, 

ignition probability values were generated for each 30-m grid cell in the study area. 

These are relative probabilities that would be normalized to sum to 1 for all cells in the 

landscape if used to predict the location of an individual ignition. ArcMap was used to 

convert these sets of probability values into ignition probability surface maps. 

Results 

Descriptive Statistics 

For all ignitions, the total area burned was 8,087 ha over 10 years with a mean fire 

size of 2.3 ha. Differences in the fire size distribution of human and lightning ignitions 

were statistically significant. Human ignitions comprised 67% of ignitions and accounted 

for 42% of area burned with a mean fire size of 1.4 ha. Lightning ignitions comprised 

28% of ignitions and accounted for 52% of area burned with a mean fire size of 4.2 ha. 

Ignitions of unknown cause comprised 4% of ignitions and accounted for 6% of area 

burned with a mean fire size of 3.5 ha. 
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Human ignitions occurred nearer to major roads, minor roads, and railroads than 

the landscape as a whole (Table 2, Figure 4, a, c, e, and g) while lightning ignitions 

showed the opposite relationship (Table 2, Figure 4, a, d, e, and h). These trends were 

stronger for major roads than for minor roads and railroads. All ignitions showed trends 

similar to those shown by human ignitions, but less pronounced (Table 2, Figure 4, a, b, 

e, and f) due to the effect of the inclusion of lightning ignitions. No such trends were 

observed for unidentified roads (Table 2). 

Table 2. Median road distances and population densities. Median distances to major and 

minor roads, and 2.59- and 25.9-km
2
 population densities, for all, human, and lightning 

ignitions. Lower case letters after values indicate significantly different groups. 

 Expected 

(Landscape) All Ignitions 

Human 

Ignitions 

Lightning 

Ignitions 

Distance to major road 3,617 a 1,797 b 1,025 c 4,823 d 

Distance to minor road 1,345 a 637 b 361 c 2,911 d 

Distance to unidentified road 351 a 409 bc 428 b 388 c 

Distance to railroad 11,758 a 10,001 b 7,432 c 21,380 d 

2.59-km
2
 population density 0 a 2 b 14 c 0 d 

25.9-km
2
 population density 14 a 91 b 246 c 0 d 

 

Both all ignitions and human ignitions occur in areas of higher-population density 

(both 2.59 km
2
 and 25.9 km

2
) than that of the landscape as a whole (Table 2, Figure 4, i-

k). The opposite is true for lightning ignitions (Table 2, Figure 4, i and l). 
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Figure 4. Distributions of distance to roads and population density. Histograms for distance to major roads (a-d), 

distance to minor roads (e-h), and 2.59-km
2
 population density (i-l). Intervals for distances (a-h) are 30 m. Population 

density histograms were truncated at 200 people per 2.59 km
2
, which includes 98.5% of the landscape and 95.3% of 

ignitions.
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Figure 5. LULC categories in datasets. Percentages of LULC categories within the 

expected (whole landscape), all ignitions, human ignitions, and lightning ignitions 

datasets for categories comprising greater than one percent of the non-ignitions dataset. 

Symbols at the end of the bars indicate the significance of differences between the factor 

for the ignition datasets and the “expected” dataset. *** ≤0.001; ** ≤  0.01; ns = not 

significant. 

Several of the LULC categories showed significant differences between their  

occurrence in the ignitions dataset and in landscape as a whole (Figure 5). All three types 

of ignitions occurred less frequently than expected in younger conifer forest. All ignitions 

and human ignitions occurred less frequently than expected in closed forest. Ignitions in 

old-growth conifer forest were lower than expected for human ignitions but nearly twice 

as high as expected for lightning ignitions. All ignitions and human ignitions occurred 



 51 

more frequently than expected in the shrubs, crops, and the “other” categories, while 

lightning ignitions occurred less frequently than expected in shrubs and crops. 

CART 

Distances to major and minor roads were the only two explanatory variables for 

ignition probability in the CART analysis (Figure 6). Each accounted for a single split: at 

359 m for major roads and at 294 m for minor roads. 

 

Figure 6. All-ignitions classification and regression tree. Classification and regression 

tree computed from the all-ignitions training dataset. T and F indicate the branches of the 

tree corresponding to whether the condition was met or not, respectively. The decimal 

fraction at each leaf indicates the proportion of data points from the parent node with an 

ignition. “n” indicates the number of data points from the evaluation dataset associated 

with each leaf. 

Logistic Regression 

In phase one, 16, 14, and 23 variables met one or both criteria for all, human, and 

lightning ignitions, respectively (Table 3). Phase two yielded three best-candidate models 

(within 2 of the lowest AIC value) for all ignitions, one for human ignitions, and 141 for 
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lightning ignitions. For all ignitions, the model with the lowest AIC was chosen for 

further analysis. Its explanatory variables (Table 4) included all terms for distance to 

major and minor roads, the quadratic term for distance to railroad, and variables for 

hardwood forest, younger conifer forest, and closed forest. All variables were statistically 

significant. 

Table 3. Phase 1 explanatory variables. Explanatory variables considered in phase 1 of 

the logistic regression analysis. Variables present in 20 or more of the models with the 

lowest 100 AICs or in any model within 2 of the lowest AIC were used in the phase 2 

analysis. (Abbreviations: All: All ignitions; Hum: human ignitions; Ltg: lightning 

ignitions). 

Explanatory Variable 

Presence within 2 of 

minimum AIC 

Presence in lowest 

100 AICs 
Used in phase 2 of 

analysis 

All Hum Ltg All Hum Ltg All Hum Ltg 

Distance to major road X X X 100 100 69 X X X 

(Distance to major road)
2
 X X X 100 97 24 X X X 

(Distance to major road)
3
 X X X 94 74 12 X X X 

Distance to minor road X X X 100 100 100 X X X 

(Distance to minor road)
2
 X X X 96 100 94 X X X 

(Distance to minor road)
3
 X X X 81 91 26 X X X 

Distance to unidentified road  X X 15 38 30  X X 

(Distance to unidentified road)
2
   X 20 12 8 X  X 

Distance to railroad X  X 18 14 97 X  X 

(Distance to railroad)
2
 X  X 31 6 6 X  X 

2.59-km
2
 population density  X  X 24 48 9 X X X 

(2.59-km
2
 population density)

2
 X   20 22 12 X X  

(2.59-km
2
 population density)

3
  X X 25 28 15 X X X 

25.9-km
2
 population density   X 9 14 45   X 

(25.9-km
2
 population density)

2
    11 9 6    

Hardwood forest X  X 25 11 23 X  X 

Younger conifer forest X X X 43 34 22 X X X 

Older conifer forest   X 16 14 93   X 

Open forest   X 17 9 9   X 

Semi-closed forest   X 8 12 19   X 

Closed forest X  X 30 19 57 X  X 

Shrub    18 18 7    

Prairie X   12 12 5 X   

Crops  X X 16 35 13  X X 

Developed  X X 9 23 15  X X 

Rural structures  X X 9 16 6  X X 

Other   X 9 7 9   X 

Total into Phase 2 14 12 23 14 13 12 16 14 23 

 

For human ignitions, the single best-candidate model (Table 4) was analyzed 

further. It included all explanatory variables for distance to major and minor roads, the 
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linear term for distance to unidentified road, and all terms for 2.59-km
2
 population 

density. All variables were statistically significant. 

For lightning ignitions, nine explanatory variables were present in more than 70% 

of best candidate models (Figure 7): the linear terms for distance to major road, minor 

road, unidentified road, and railroad; the quadratic term for distance to minor road; 25.9-

km
2
 population density; older conifer; and mixed closed forest. No other variables were 

present in more than 33% of best candidate models. For further analysis, the model using 

only those nine most prevalent values was chosen (Table 3). Its AIC value was within 

0.02 of the lowest AIC value. Of the nine explanatory variables in the model, three were 

not statistically significant: distance to unidentified road, 25.9-km
2
 population density, 

and closed forest. 

For explanatory variables in common between the all ignitions and human 

ignitions models, the signs of coefficients were similar. For explanatory variables in 

common between lightning ignitions and all ignitions, and between lightning and human 

ignitions, the signs of the coefficients were opposite (Table 4).  
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Table 4. Explanatory variable coefficients. Coefficients for explanatory variables for 

selected logistic models for all ignitions, human ignitions, and lightning ignitions. 

Significance (p-value) codes: *** ≤ 0.001; ** ≤ 0.01; * ≤ 0.05; † ≤0.1; ns = not 

significant. 

Coefficient All Ignitions Human Ignitions Lightning Ignitions 

Intercept +1.172e+00  *** +1.250e+00  *** -1.223e+00  *** 
Distance to major road -4.375e04  *** -5.533e04  *** +4.273e05  * 
(Distance to major road)

2
 +4.902e08  *** +6.869e08  ***   

(Distance to major road)
3
 -1.550e12  *** -2.539e12  ***   

Distance to minor road -3.515e04  *** -6.681e04  *** +1.959e04  *** 
(Distance to minor road)

2
 +5.213e08  *** +1.017e07  *** -1.337e08  ** 

(Distance to minor road)
3
 -2.142e12  *** -4.098e12  ***   

Distance to unidentified road   -1.905e04  *** +1.729e04  ns 
(Distance to unidentified road)

2
       

Distance to railroad     +2.107e05  *** 
(Distance to railroad)

2
 +1.397e10   *     

2.59-km
2
 population density   +1.243e02  ***   

(2.59-km
2
 population density)

2
   -3.843e05  ***   

(2.59-km
2
 population density)

3
   +2.759e08  ***   

25.9-km
2
 population density     -1.778e-04  ns 

Hardwood forest -3.473e01  *     
Younger conifer forest -3.730e01  ***     
Older conifer forest     +6.514e-01  *** 
Closed forest -3.132e01  ***   +2.740e-01  † 

Model Evaluation 

Misclassification rates for all models were between 0.30 and 0.40 (Table 5), and 



R
Q

2
 values for logistic models were approximately 0.9, indicating a strong fit between the 

models and the data. Both misclassification rates and 



R
Q

2
 values were better for the 

human and lightning models than for the all-ignitions model. Plots of binned mean 

observed values versus binned mean calculated logistic probabilities (Figure 8) show a 

close fit between the plotted points for each dataset, with most values very close to the 

1:1 line, especially those representing larger numbers of data points.  
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Figure 7. Explanatory variables in best-candidate models. Percent presence of 

explanatory values in candidate logistic regression models within 2 of the lowest AIC for 

all ignitions, human ignitions, and lightning ignitions. The number in parentheses after 

key titles is the number of candidate models. (Note that with a single candidate model, 

variables for human-caused ignitions are either 0% or 100%.) Variables present in less 

than 10 percent of models for all datasets are not shown. 
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Table 5. Model evaluation measures. Misclassification rates and quasi-R
2
 values for 

CART analysis of all ignitions and minimum AIC logistic regression models of all, 

human, and lightning ignitions. 

Analysis Misclassification Rate Quasi R
2 

CART 0.390 NA 

Logistic: All Ignitions 0.393 0.878 

Logistic: Human Ignitions 0.305 0.931 

Logistic: Lightning Ignitions 0.359 0.894 

 

 

Figure 8. Logistic model  evaluation plots. Binned mean actual values versus binned 

mean calculated logistic probabilities for A all ignitions, B human ignitions, and C 

lightning ignitions. Bin size is 0.05. Plotted points are labeled with the number of data 

points comprising the mean value it represents. 
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Ignition Probability Maps 

Ignition probability surface maps for a portion of the study area (approximately 

4,400 km
2
 or 5% of the study area) illustrate the results of the logistic and CART models 

(Figure 9). High probability areas in the all-ignitions logistic model were concentrated 

near roads. The CART model produced three probability classes of 0.78 near major 

roads, 0.62 near minor roads, and 0.39 over the remainder of the landscape. In the logistic 

model for human ignitions, high probabilities were concentrated near roads, more so near 

major than minor roads, and in areas of higher population. In contrast, the logistic model 

for lightning ignitions showed low probabilities concentrated near roads and higher 

probabilities away from roads. The human ignitions logistic model showed a sharper 

contrast near roads than did the all-ignitions logistic model (Figure 9 b and d). The 

probability ranges were greater for both the human ignitions logistic model (0.0 to 1.00) 

and the lightning ignitions logistic model (0.0 to 0.97) than for the all ignitions logistic 

model (0.027 to 0.84).
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Figure 9. Ignition distributions in the study area. Distribution of ignitions over a portion of the study area. (a) digital elevation 

model with all ignitions, (b) probability surface and ignitions for the all ignitions logistic model, (c) probability surface and 

ignitions for the all ignitions CART model, (d) probability surface and ignitions for the human ignitions logistic model, and (e) 

probability surface and ignitions for the lightning ignitions logistic model. Mapped area covers valley foothills from north of 

Springfield, OR in the southwest corner to the Lebanon, OR area in the northwest corner and to the crest of the Cascade range 

on the east.  
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Discussion 

The factors controlling the probabilities of human and lightning ignitions differed 

substantially and considering each type of ignition separately improved ignition location 

prediction. Compared to the landscape, human ignitions were more common nearer to 

indicators of human presence and activity. The higher relative probabilities along major 

roads as compared to along minor roads suggest a proportional relationship between the 

level of human activity and ignition probability. This is consistent with Vasiliakos et al., 

(2009), but stands in contrast to Amatulli and Camia (2007). Ignition probabilities are 

higher in areas of higher population, which is consistent with other studies (e.g., 

Sturtevant and Cleland, 2007; Cardille et al., 2001). There is no apparent reduction of  

probability in the most highly populated areas as found by Syphard et al. (2007), this 

effect would likely not be present due to the absence of large, densely populated regions 

within the study area. 

Lightning ignitions, on the other hand, were more common further from 

indicators of human presence and activity. Although Arienti et al. (2009), found the 

opposite relationship for lightning ignitions and distance to roads, no other study I am 

aware of has found any association between human factors and lightning ignitions. I do 

not attribute a causal relationship between lightning ignitions and human factors, 

however. Instead, it appears that the human factors serve as surrogates for high elevation 

and ridgelines in the model. As is visually apparent in Figure 9(a) and in a map shown in 

Rorig and Ferguson (1999), lightning ignitions are more common at higher elevations in 

the study area. Major and minor roads tend to run through valleys in the study area. 

Population centers tend to be at lower elevations near the Willamette Valley floor, and to 
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a lesser extent along roads in the foothills and mountains. Increased lightning ignition 

probability with higher elevation is consistent with Dilts et al. (2009). 

Other studies have found lightning ignitions to be correlated with conifer forest 

area (Reineking et al., 2010; Pezzatti et al., 2009; Krawchuk et al., 2006). I found 

lightning fires to be strongly associated with the area of older conifer stands, and to be 

somewhat negatively associated with the area of younger conifer stands. Whether these 

relationships are due to vegetation type or vegetation distribution with respect to 

elevation is unclear. 

Analyzing all ignitions together produces meaningful results, but masks the more 

accurate and precise relationships that are revealed when they are analyzed separately. 

For the all-ignitions dataset, increasing ignition probability is strongly influenced by 

closeness to major and minor roads. This is apparent in both the sharply delineated 

CART probability surface map, with its three probability zones, as well as the more 

nuanced map produced by the logistic model. With over two thirds of ignitions caused by 

humans, it is not unexpected that the logistic models for human ignitions and all ignitions 

produce similar probability surface maps. However, the effects of population density that 

appear in the logistic model for human ignitions are lost, as is the negative association 

between lightning ignitions  and roads. Furthermore a dampening effect is apparent with 

a less sharply defined probability surface map and a narrow range of probabilities than 

for either the human ignitions or lightning ignitions logistic models. Also lost in 

considering the two groups of ignitions together is the fact that fires from human 

ignitions tend to be smaller than those from lightning ignitions. This is likely due to 
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greater difficulties associated with fighting the more remote lightning fires (Weber and 

Stocks, 1998). 

Conclusions 

The differences between human and lightning ignitions are striking and they 

should be considered separately in terms of both cause and effect. Including lightning 

ignitions with human ignitions in predictive models can have a confounding effect on 

results. Excluding them altogether can mask their disproportionate effects on area burned 

and present a false impression about the proportion of ignitions that occur close to human 

infrastructure. Unless lightning ignitions in a study area can truly be considered 

negligible, studies seeking to present a complete picture of wildfires and their ignitions 

should consider both human ignitions and lightning ignitions, and consider them 

separately. 

 The absence of topographic factors, most notably elevation, was a weakness of 

this study, especially in light of the apparent importance of elevation in determining the 

distribution of lightning ignitions in the study area. A reevaluation of the data with slope, 

aspect, and elevation as explanatory factors is planned and will likely result in a more 

satisfactory model for lightning ignitions. 

The differing degrees of probability associated with major and minor roads 

illustrates the importance of considering not just the presence of human activity on the 

landscape, but also the level of that activity. More precision in factors associated with 

human presence and activity, for instance utilizing factors such as vehicle traffic levels in 

conjunction with road class, may provide more accuracy in ignition location models and 

would be worth pursuing in future research. 
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CHAPTER IV 

CONCLUSIONS 

This thesis has dealt with two very different aspects of  The Interactions of 

Climate Change, Land-Management Policies, and Forest Succession on Fire Hazard and 

Ecosystem Trajectories in the Wildland-Urban Interface (ICLF) project: the more 

theoretical ignitions study and the more practical FlamMap Interpreter development. 

Both have been valuable to the project, but the ignitions study stands out as having a 

more direct contribution to the broader field of wildfire science and I summarize it first in 

this chapter. 

Wildfire Ignitions Study 

The wildfire ignitions study examined the statistical relationships between 

wildfire ignitions and explanatory values related to human presence and activity as well 

as land use/land cover classifications. Three different groups of ignitions were 

considered: all ignitions, human ignitions, and lightning ignitions. 

Summary 

Results from the ignitions study reinforce the importance of considering human 

and lightning ignitions separately. Descriptive statistics and logistic models both showed 

that the effects of many explanatory variables were not just different but were 

qualitatively opposite for these two classes of ignitions. These effects were apparent for 

both human factors – for example human ignitions were more likely closer to roads and 

lightning ignitions further from roads – and vegetation factors – human ignitions less 

likely in older conifer forest (< 200 years old) and lightning ignitions much more likely. 

The probability surfaces derived from the models showed how considering human and 
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lightning ignitions together can lead to an explanatory model that is less precise and less 

accurate than those models which consider the two classes of ignitions separately. 

The importance of roads for ignition probability was clear in the results of both 

the CART and logistic models. Also clear was the larger relative effect of major roads as 

compared to that of minor roads. While class of road is a good indicator of the level of 

human presence – major roads being generally more well traveled than minor roads – one 

can infer that level of human presence and activity near roads is also important from the 

fact that ignition probabilities did not fall suddenly with distance from roads, but tapered 

off. Along with class of road, other factors indicating levels of associated human activity 

bear examination, for instance scenic routes where travelers make frequent stops, or roads 

through popular hiking areas. This also points to the consideration of other factors that 

might draw human activity, such as parks, campgrounds, and scenic destinations. 

The probability surface maps produced by the CART model and its logistic 

counterpart illustrate the categorical nature of CART results in contrast to the continuous 

nature of logistic results. In some cases a measure of accuracy, such as the 

misclassification rate, may be used to consider one of these methods “better” than the 

other. But ultimately, the utility of model results must be considered. The simpler nature 

of CART results may be more appropriate in some contexts, for instance a zonal ignitions 

risk map that might be distributed to the general public, while the more nuanced nature of 

logistic results might better serve fire managers and land planners attempting to design 

specific plans of action. 

Methods from the ignitions study made contributions beyond the scope of the 

ICLF project. The two-phase process used to generate logistic models provided a novel 
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way to reduce the number of explanatory variables for logistic model development with 

large numbers of potential explanatory variables. In a situation where the number of 

variables and size of the datasets combine to make an all-possible-subsets approach to 

model development computationally intractable, this method can be used. The quasi-R
2
 

statistic developed to evaluate the logistic model results provides a new method to 

evaluate the predictive power of logistic regression models. 

Study Weakness 

The exclusion of topographic factors, especially elevation, was a weakness of the 

ignitions study. Visual inspection of ignitions data plotted on a digital elevation model of 

the study area suggested a strong correlation with elevation and ridgelines for lightning 

ignitions. The conclusion from the study is that the human-related explanatory variables 

correlated with lightning ignitions are surrogates for elevation. The possibility that 

vegetation effects are also ultimately driven by elevation or topography must be 

considered in the absence of topographic explanatory variables. 

Future Study 

Three aspects of the ignitions study deserve consideration for further study. First, 

adding topographic factors to explanatory variables in the current study might result in a 

more accurate model for lightning ignitions, and would likely produce a model less 

dependent on human factors. Reevaluating this study’s data with topographic factors 

included is planned. 

Second, considering classes of roads separately showed that discerning level of 

human activity can lead to more precision in model results. Future studies might examine 

factors relating to the amount of travel along transportation corridors such as traffic data 
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or population levels along or near the ends of corridor sections. Other indicators of 

human presence, such as permits for trails and campgrounds might prove useful for 

backcountry areas. 

Finally, logistic regression is a popular statistical technique but does not have an 

equivalent to the coefficient of determination (commonly known as R
2
). Further 

evaluation of the quasi-R
2
 statistic would determine its potential as an equivalent to or 

stand-in for the coefficient of determination to quantify the predictive value of logistic 

models. 

The FlamMap Interpreter 

The FlamMap Interpreter is the software plug-in module developed as this thesis. 

It creates the necessary interface between Envision and the FlamMap dynamic link 

library, which in turn provides spatially explicit wildfire modeling for the ICLF coupled 

systems model. 

Development 

As part of the ICLF coupled systems model, the FlamMap Interpreter provides 

key functionality needed to integrate not only spatially explicit wildfire modeling, but 

also the influences of a changing climate and human activity on the occurrence and extent 

of wildfire. The logistic modeling results from the ignitions probability study provide the 

central equation used to create model ignition locations. 

In a software development context, the FlamMap Interpreter illustrates a 

successful software implementation for linking models with differing data requirements 

and differing representations of the same landscape. Data that neither model was able to 

generate, notably fire weather and duration parameters, were precomputed and provided 
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via an input file. Where possible, data was converted between the domains of Envision 

and FlamMap. This was done with vegetation data definitions using a predefined lookup 

table to translate Envision’s vegetation states into the vegetation-related landscape 

characteristics used by FlamMap. This was also done for the spatial distribution of 

vegetation states and flame lengths using the PolyGridLookups algorithm. These 

techniques provide a template that developers can follow to incorporate other modeling 

components into the Envision software framework, or to link models in other projects. 

Software Deployment 

The success of software developed for research purposes will be determined in 

part by its use after it is completed. The ICLF project will be using the FlamMap 

Interpreter for in the coupled systems model. Currently, it is being tested along with its 

input data for the ICLF project. The FlamMap Interpreter will also be used for a project 

similar to the ICLF project but for a study area located in central Oregon. 

The PolyGridLookups component of the FlamMap Interpreter is being used in at 

least two additional Envision-based projects. One project utilizes it as part of a habitat 

model, and another to interface with gridded data from the MC1 dynamic global 

vegetation model. PolyGridLookups is also being used in Envision by general-purpose 

code that interfaces with gridded data conforming to a standard format. 

Final Remarks 

As is the case in many regions over the globe, the Willamette Valley is facing a 

future that includes climate change and rapid population growth. By utilizing data and 

components from a variety of sources, the ICLF project seeks to model landscape 

changes over a portion of the Willamette Valley using a variety of projected future 
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scenarios. The relationships between roads, population and ignitions found in the 

ignitions study and implemented in the FlamMap interpreter provides a key coupling 

between human presence and wildfire. The FlamMap Interpreter is also key to a further 

feedback implemented in Envision that couples human decisions, land use, vegetation 

changes, fire regime, and wildfire. As the ICLF project moves from development to 

production modeling, a more detailed characterization of these interactions will emerge. 

Possibly as important as those modeling outcomes will be the proof of concept that 

through science and software engineering alternative futures modeling can link climate 

projections to vegetation, wildfire, and human activity to model future development and 

its ecological effects. 
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THE ENVISION FLAMMAP INTERPRETER USER’S GUIDE 
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Audience 

This guide is intended for Envision users who wish to incorporate fire modeling into their 

Envision scenarios. It assumes that users are familiar with both the Envision software 

package (Envision) and FlamMap (Finney, 2006; Missoula Fire Sciences Laboratory, 

2006). It also assumes that users have a working knowledge of the csv file format, and 

the ability to edit and save csv files as well as ASCII files. 

Guide Organization 

This guide is divided into the following chapters: 

 Overview of Structure and Files 

An overview of how the FlamMap Interpreter works, what files are needed by 

different functions in the Interpreter, and what files must be provided by the user.   

 File Descriptions 

A detailed description of the content and format of each user-provided file. 

 Factors Affecting Model Fires 

A brief description of how various inputs affect the number of ignitions, model 

fire intensity, and model fire spread. 

 Example Run 

A walk-through of setting up a hypothetical Envision run that uses the FlamMap 

Interpreter. 

Overview of Structure and Files 

Introduction 

The FlamMap Interpreter is a plug-in software module that allows the Envision computer 

program to run and exchange input and output data with the FlamMap fire-modeling 

program. It is implemented as a Dynamic Link Library (DLL) and, like Envision, is 

designed to work only with the Microsoft Windows operating system. Envision makes 

function calls to the FlamMap Interpreter, which reads input, prepares data for output, 

calls the FlamMap DLL, and returns data to Envision (Figure 1). 

Note: In this guide, an Envision session refers to an execution 
of Envision from the time the user invokes Envision until the 
time the user exits Envision. An Envision run refers to the 
execution of a series of time steps associated with a single 
Envision scenario. 
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Figure 1. Relationship between Envision, the FlamMap Interpreter, and the FlamMap 

DLL. Software components are shown in color, files in grey. 

Session Initialization 

The Init function in the FlamMap Interpreter handles all the initialization necessary for 

one Envision session (Figure 2). Envision passes the name of the initialization file to the 

Init function. Init reads the file and sets the values of parameters that guide the execution 

of the FlamMap Interpreter. These parameters include the names and locations of other 

files used by the FlamMap Interpreter. 

The starting FlamMap model landscape file (LCP file) should cover the same 

spatial extent as used by Envision. If both do not match exactly, results may still be 

produced but will be invalid. This file is used as a starting template for the creation of the 

LCP files that FlamMap uses during the course of an Envision run and is also used to 

create the polygrid data structure (described below) if no polygrid file is specified in the 

FlamMap Interpreter initialization file. The starting LCP file must have accurate values 

for slope, aspect, and elevation. The vegetation-related values for fuel model, canopy 

cover, stand height, crown base height, and canopy bulk density may contain any value, 

as these values will be reset by the FlamMap Interpreter during an Envision run. 
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Figure 2. Functionality diagram of FlamMap Interpreter Init function. 

The vegetation class lookup file provides a one-to-one mapping between the 

Envision’s vegetation class values and the vegetation-related LCP values used by 

FlamMap. The data structure for the translation is created by Init and is used by the 

FlamMap Interpreter during an Envision run. 

The term polygrid refers to the translation of data between Envision’s polygon 

format and FlamMap’s grid format. Envision “divides” a landscape into non-overlapping 

polygons termed integrated decision units (IDUs). Each polygon may have a different 

shape and size. FlamMap, on the other hand, divides a landscape into a regular grid of 

identically sized, square cells. In order for FlamMap to use data from Envision, values 

must be translated from polygon space into grid space. Likewise, for Envision to use data 

from FlamMap, the data must be translated from grid space into polygon space. An array-

based algorithm called “polygrid lookup” or simply polygrid was developed to do this. 

The array and associated parameters used by the algorithm are unique to any pair of 

Envision and FlamMap landscapes. If Envision’s polygon definitions or FlamMap’s grid 

cell size are changed, a new polygrid must be defined.  

Generating a polygrid can consume substantial computational time. Once it is 

generated for a landscape, it is more efficient to save the polygrid to a file and read that 
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file for subsequent Envision sessions. Options for creating, reading, and writing polygrid 

files are specified in the FlamMap Interpreter initialization file. Polygrid files are stored 

in binary format and should not be modified. 

Run Initialization 

An Envision run performs computations over a series of model years. The InitRun 

function in the FlamMap Interpreter handles all the initialization necessary for one 

Envision run (Figure 3).  

 

Figure 3. Functionality diagram of FlamMap Interpreter InitRun function. 

The fires file contains a list of potential fires for each model year. Each fire has a 

year, a Julian date, a probability, and parameters for wind speed, wind direction, and burn 

duration. Using a Monte-Carlo technique, InitRun determines which fires will be 

modeled and saves a list of these fires in a data structure accessed during the Envision 

run. 

The FlamMap parameter file contains options used by the FlamMap DLL that 

would normally be specified interactively with the standalone version of FlamMap. These 

include wind speed, wind direction, options for the minimum travel time (MTT) 

algorithm, and other options. For each model fire, wind speed, wind direction, and  the 

time of simulation (MTT_SIM_TIME) are changed by the FlamMap Interpreter before 

the FlamMap DLL is invoked. The other parameters from the FlamMap parameter file 

are used without change. 

The FlamMap fuels moisture file contains a list of fuel models and their fuel 

moistures used by the FlamMap DLL. This data is not changed when it is read in. It is 

combined with FlamMap parameters and written to the FlamMap input parameters file 

during the Run function. 
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Run 

The FlamMap Interpreter Run function is called once per Envision time step. Run creates 

a single LCP file used by each fire modeled during a single Envision time step. Run then 

steps through each model fire for the Envision time step, creating an ignition file and a 

FlamMap input parameters file, and then running the FlamMap DLL. After executing the 

FlamMap DLL, Run adds the flame lengths to a data structure that stores the maximum 

flame length attained for every FlamMap grid cell during the Envision time step (Figure 

4).  

 

Figure 4. Functionality diagram of FlamMap Interpreter Run function. Software 

components are shown in color, files in grey. 

The LCP file for one Envision time step contains the FlamMap landscape 

parameters used by each run of the FlamMap DLL during the time step. The file contains 

eight layers. The three layers describing topography (slope, aspect, and elevation) do not 

change during an Envision session. The five layers related to vegetation and fuels 

characteristics (fuel model, stand height, canopy cover, crown base height, and crown 

bulk density) are initialized every time step by an algorithm using the vegetation class 

obtained from Envision and the conversion table read from the vegetation class lookup 

file during the Init routine. . 

For each model fire, a probabilistic algorithm generates an ignition point location. 

This algorithm uses values for distance to major road, distance to minor road, and 
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population density obtained at runtime from Envision IDU attributes to generate an 

ignitions probability map. A Monte Carlo draw determines the ignition point location that 

is then written to the ignition file. 

The names of the input files for the run of FlamMap along with parameters from 

the FlamMap parameters file read by the InitRun function are written to the FlamMap 

input parameters file. (Note that the FlamMap parameters file (Figure 3) is not the same 

as the FlamMap input parameters file (Figure 4). 

After all of these files have been written, Run executes the FlamMap DLL. When 

the FlamMap DLL finishes its execution, Run reads FlamMap’s flame lengths for the 

entire landscape. For any grid cell on the FlamMap landscape, if a calculated flame 

length from the run is greater than the currently recorded flame length, the new flame 

length replaces the currently recorded flame length. In other words, for an Envision time 

step, the maximum flame length for each grid cell on the FlamMap model landscape is 

recorded. 

After all the fires for an Envision time step have been run, the maximum flame 

lengths are converted into polygon space. For each IDU polygon, the weighted mean of 

flame lengths for overlapping FlamMap grid cells is written to a data structure in 

Envision. These same values are also output to disk as an ASCII file. 

File Location 

The name and path of the FlamMap Interpreter initialization file are specified in the 

Envision .envx file. All other files must reside in one directory whose name is specified in 

the FlamMap Interpreter initialization file. 

File Descriptions 

FlamMap Interpreter Initialization File 

The FlamMap Interpreter initialization file (File Listing 1) is read by the FlamMap 

Interpreter Init function. The parameters in this file determine the names of all other files 

used by the Interpreter as well as options needed to direct how the interpreter runs. The 

user should pay special attention to the options dealing with units. If the specified units 

do not match the units in the vegetation class lookup file, the FlamMap DLL will run 

without error or warning but the results will be invalid. 

File Listing 1. Example FlamMap Interpreter initialization file. 

 
# Initialization File For Running FlamMap from Envision 
# 
# Pound sign in the first column indicates comment 
# Blank lines ignored 
# 
# Lines with an invalid Field Name or Value will 
# cause an error and program exit 
# 
# Strings must be quoted if they contain spaces 
 
# Paths for input and output files 
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WorkingPath:   C:\Envision\StudyAreas\Lebanon\FlamMap\ 
 
# Logging for profiling, etc. 
 
DoLogging:   false 
LogFName:   FlamMapAPLog.txt 
 
# Options and filenames for Poly/Grid Lookup Table 
# if not read from file, then generated 
 
PolyGridReadFromFile: true 
PolyGridSaveToFile: false 
PolyGridReadFName:  PolyGridLkUp90Meter.pgl               
PolyGridSaveFName:  PolyGridLkUp90Meter.pgl 
 
# Files and options for Veg Class to LCP conversion 
 
VegClassLCPLookupFName: vegclass_fire_vddt_transitions.csv 
 
# Units used in the VegClassLCPLookup file 
# Height: 
#  1 = meters, 2 = feet, 3 = m x 10, 4 = ft x 10 
# Bulk Density: 
# 1 = kg/m^3, 2 = lb/ft^3, 3 = kg/m^3 x 100, 4 = lb/ft^3 x 1000 
# Canopy Cover: 
# 0 = categories (0-4), 1 = percent 
 
VegClassHeightUnits:  1  
VegClassBulkDensUnits:  1 
VegClassCanopyCoverUnits: 1 
 
# Files associated with FlamMap runs 
 
# RunParams are the run parameters needed for each run of 
# FlamMap, these are used to build the .input file. 
 
FiresFName:   LebanonFires.csv 
StartingLCPFName:  Lebanon90Meter.lcp 
StartingFAParamsFName: FlamMapInputParams.txt 
FuelMoisturesFName: FlamMapFuelMoistures.fms 
 
#   root names for files which are unique to each 
#   run of FlamMap 
 
LCPFNameRoot:             Lebanon90Meter 
InputFNameRoot:           FlamMapInput 
IgnitionFNameRoot:        LebanonIgnitions 
 

 

The syntax used in the Interpreter init file is as follows: 

 A comment line begins with a pound sign (#): 

# This is a comment line 
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 A parameter name is terminated by a colon and must be one of: 

WorkingPath: 
DoLogging: 
LogFName: 
PolyGridReadFromFile: 
PolyGridSaveToFile: 
PolyGridReadFName:  
PolyGridSaveFName: 
VegClassLCPLookupFName: 
VegClassHeightUnits: 
VegClassBulkDensUnits: 
VegClassCanopyCoverUnits: 
FiresFName: 
StartingLCPFName: 
StartingFAParamsFName: 
FuelMoisturesFName: 
LCPFNameRoot: 
InputFNameRoot: 
IgnitionFNameRoot: 

 Any parameter value with a space in it must be quoted (using spaces in name 

parameters is discouraged): 

VegClassLCPLookupFName:  “My Spaced Name” 
 

Using valid values (Table 1) for parameters is important to insure that the 

FlamMap Interpreter executes in the desired manner. Each parameter should only be 

present one time in the initialization file. If it appears multiple times, the value of the last 

occurrence will be used. 

Table 1. FlamMap Interpreter parameters specified in the Interpreter’s initialization file. 

Parameter Name Valid Values Description 

WorkingPath: Valid file path 

specification 

The file path (i.e. directory) from which 

all files are read and to which all files are 

written. 

DoLogging: true 
false 

Whether to log certain debugging 

information to a log file. Used by 

developers. 

LogFName: Valid file name 

(without path) 

File to which log information is written. 

Used by developers. 

PolyGridReadFromFile: true 
false 

Whether to read polygrid data from a file 

(true); or to generate polygrid data 

from scratch (false). 

PolyGridSaveToFile: true 
false 

Whether to write polygrid data to a file 

(true); or not (false). 

PolyGridReadFName:  Valid file name 

(without path) 

Name of polygrid file to read. 

PolyGridSaveFName: Valid file name 

(without path) 

Name of polygrid file to write. 

VegClassLCPLookupFName: Valid file name 

(without path) 

Name of file used to convert vegetation 

class values into landscape values. 
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VegClassHeightUnits: 1, 2, 3, 4 1 = meters, 2 = feet,  

3 = m x 10, 4 = ft x 10 

VegClassBulkDensUnits: 1, 2, 3, 4 1 = kg/m^3, 2 = lb/ft^3, 

3 = kg/m^3 x 100, 4 = lb/ft^3 x 1000 

VegClassCoverUnits 0, 1 0 = categories (0-4), 1 = percent 

FiresFName: Valid file name 

(without path) 

Name of file containing candidate fires 

to run. 

StartingLCPFName: Valid file name 

(without path) 

Name of LCP file used as a base to build 

LCP files during Interpreter run. 

StartingFAParamsFName: Valid file name 

(without path) 

Name of file containing FlamMap 

parameters used by FlamMap runs. 

FuelMoisturesFName: Valid file name 

(without path) 

Name of fuel moistures file used by all 

FlamMap runs. 

LCPFNameRoot: Valid file base name 

(without path or 

extension) 

Base name for all LCP files written by 

the FlamMap Interpreter and used by the 

FlamMap DLL. 

InputFNameRoot: Valid file base name 

(without path or 

extenstion) 

Base name for all parameter files written 

by the FlamMap Interpreter and used by 

the FlamMap DLL. 

IgnitionFNameRoot: Valid file base name 

(without path or 

extenstion) 

Base name for all ignition files write by 

the FlamMap Interpreter and used by the 

FlamMap DLL. 

Polygrid lookup file 

A polygrid lookup file can only be generated within the FlamMap Interpreter. FlamMap 

can either read the file from a saved version, or generate one from scratch. For large 

landscapes, generation is computationally intensive. A polygrid file can be saved by 

specifying true for the PolyGridSaveToFile: option and a valid file name for the 

PolyGridSaveFName: option in the FlamMap Interpreter initialization file. 

LCP (Landscape) file 

An LCP is a binary file used by the FlamMap DLL. The FlamMap Interpreter reads a 

starting version of this file to get the number of rows and columns in the FlamMap grid 

and to create a starting template for building the LCP files used by the FlamMap DLL 

during the course of a run. 

NOTE: The slope, aspect, and elevation values in the starting 
LCP file are never changed and must be accurate for the 
landscape. 

NOTE: The spatial extent of the starting LCP file must match 
the spatial extent of the Envision landscape. 

There are various ways to create the starting LCP file. One of the most 

straightforward is by using the utility lcpmake.exe (part of the FARSITE download 

package at http://www.firemodels.org/index.php/farsite-software/farsite-downloads), 

which takes a set of Arc Grid ASCII files, each ASCII file representing an LCP layer, and 

converts them into an LCP file. 
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Fires file 

The fires file (File Listing 2) is a csv (comma separated variables) file that lists possible 

fires by fire year. Its first row must contain column names. Subsequent rows contain 

fields identifying year, fire probability, day, and fire weather parameters (Table 2). For 

any line entry in this file that is used to model a fire, the values for burn period (in 

minutes), wind mph, and azimuth are included in the FlamMap Input Parameters file 

(Figure 4) for that model fire. 

File Listing 2. Sample rows from a FlamMap Interpreter fires file as they would appear 

in a Microsoft Excel spreadsheet. 

year prob julian burn period wind mph azimuth 

2010 0.01 120 1 20 270 

2010 0.01 121 1 20 270 

2010 0.01 122 1 20 270 

2010 0.02 123 1 20 270 

2010 0.02 124 1 20 270 

2010 0.02 125 1 20 270 

2010 0.02 126 1 20 270 

2010 0.02 127 1 20 270 

2010 0.03 128 1 20 270 

2010 0.03 129 1 20 270 

2010 0.03 130 1 20 270 

2010 0.02 131 1 20 270 

2010 0.03 132 1 20 270 

2010 0.03 133 13.51 20 270 

2010 0.03 134 1 20 270 

2010 0.04 135 28.02 20 270 

2010 0.03 136 525.41 20 270 

2010 0.03 137 84.07 20 270 

2010 0.02 138 0 20 270 

2010 0.03 139 30.02 20 270 

 

Table 2. Columns in the FlamMap Interpreter fires file. 

Col # Col Name Valid Values Description 

1 Year 0 to number of run 

years 

The model year of the run. This is not the same as a 

calendar year. 

2 Probability 0.00 to 1.00 The probability that the fire described in the row will 

be run. 

3 Julian Date 1 to 365 The Julian date of the year. 

4 Burn Period 0 to max fire 

duration 

The length of time in minutes the fire will be run. Units 

are minutes. 

5 Wind Speed 0 to max wind 

speed 

The wind speed. 

6 Wind Azimuth 0 to 360 The wind direction. 
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Fuel moistures file 

The fuel moistures file (File Listing 3) is an ASCII file that is virtually identical to that 

used by the standalone version of FlamMap, the difference being the first line of the file. 

The version for the DLL file requires the first line identify the number of lines in the file. 

The first column in the file is the fuel model, the next three are fuel moistures for 1-hr, 

10-hr, and 100-hr dead fuel moistures, and the final two are fuel moistures for live 

herbaceous and live woody fuel. The contents of this file are used in part to create the 

FlamMap Input Parameters file (Figure 4). 

File Listing 3. A portion of an example fuel moistures file. 

 
FUEL_MOISTURES_DATA: 257 
0 3 4 6 125 125 
1 3 4 6 125 125 
2 3 4 5 120 100 
3 3 4 6 125 125  
    . . . 
[Lines deleted from this example] 
    . . . 
252 3 4 6 125 125 
253 3 4 6 125 125 
254 3 4 6 125 125 
255 3 4 6 125 125 
256 3 4 6 125 125 

FlamMap parameters file 

The FlamMap parameters file (File Listing 4) is an ASCII file containing parameters used 

by the FlamMap DLL. Parameters WIND_SPEED, WIND_DIRECTION, and MTT_SIM_TIME are 

updated by the FlamMap Interpreter. The other parameters remain unchanged. The 

contents of this file are used in part to create the FlamMap Input Parameters file (Figure 

4). 

File Listing 4. Sample FlamMap parameters file. 

 
InputFileHeader: ShortTerm-Inputs-File-Version-1 
 
WIND_SPEED: 6 
WIND_DIRECTION: 299 
GRIDDED_WINDS_GENERATE: No 
GRIDDED_WINDS_RESOLUTION: 200 
FOLIAR_MOISTURE_CONTENT: 100 
CROWN_FIRE_METHOD: Finney 
NUMBER_PROCESSORS: 1 
SPREAD_DIRECTION_FROM_NORTH: 0 
 
MTT_RESOLUTION: 30 
MTT_SIM_TIME: 200 
MTT_TRAVEL_PATH_INTERVAL: 500 
MTT_SPOT_PROBABILITY: 0.0 
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# Request some flammap output as well... 
FLAMELENGTH: true 

Vegetation class lookup file 

The vegetation class lookup file (File Listing 5) is a csv (comma separated variable) file 

that matches a vegetation class to its associated LCP values. The file commonly used for 

this is dual purposed and includes flame length threshold values used by another Envision 

plug-in to interpret the effects of different flame lengths returned from FlamMap on 

Envision vegetation states. This does not affect the FlamMap Interpreter as long as the 

first 7 columns contain the expected data. The first row of the vegetation class lookup file 

must be column names. The VEGCLASS and VARIANT columns correspond to the vegetation 

class and vegetation class variant values that are stored by Envision for each IDU. The 

remaining columns correspond to LCP values for fuel model, canopy cover, canopy 

height, canopy base height, and canopy bulk density. 

File Listing 5. Sample rows from a FlamMap Interpreter vegetation class lookup file as 

they would appear in a Microsoft Excel spreadsheet. There may be more columns than 

shown in this example, as long as the first seven columns match the seven columns 

shown here. 

VEGCLASS VARIANT LCP_FUEL_MODEL LCP_CNPY_COV LCP_CNPY_HT LCP_CNPY_BS_HT LCP_CNPY_BLK_DNS 

1 1 91 0 0 0 0 

2 1 91 0 0 0 0 

3 1 91 0 0 0 0 

4 1 91 0 0 0 0 

92 1 161 55 18 6 0.03 

93 1 181 50 8 1 0.02 

95 1 183 65 60 15 0.09 

200 1 104 0 1 -999 0 

201 1 104 9 12 8 0.00301741 

202 1 104 11 21 12 0.00206693 

203 1 104 12 29 17 0.00191507 

204 1 104 5 48 -999 0 

210 1 141 47 37 15 0.0199068 

Factors Affecting Model Fires 

For a single model year, the number, intensity, and spread of modeled fires all contribute 

to the flame length data returned to the Envision model landscape. A qualitative 

understanding of which inputs affect the different aspects of a model fire year can help 

the user make adjustments for desired outcomes. This section provides an overview of 

how adjusting certain inputs can change the number, intensity, and spread of model fires, 

but it is incumbent on the user to understand the implications of changes to input and to 

insure that inputs are scientifically well founded. 
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Number of Ignitions 

Two input factors influence the number of fires in a given model year; both are 

characteristics of the fires file. The first is the number of Julian days for which there can 

be a fire. All things being equal, the greater the number of potential fire days, the greater 

the number of fires that will be selected to run. 

The second factor is the probability of a fire. The higher a potential fire’s 

probability, the more likely it is to be run. To guarantee a potential fire be run, its 

probability can be set to 1. A fire year with overall higher probability values for potential 

fires will generally have more fire occurrences. 

Intensity 

Modeled fire intensity is affected by fuel moisture and wind. Lower fuel moistures lead 

to a more intense fire. These can be altered in the fuel moistures file. Wind also affects 

burn intensity, so increasing the wind speed in the fires file will generally lead to more 

intense model fires. 

Spread 

Three factors influence the spread of model fires: fuel moisture, wind, and burn period. 

Lower fuel moistures lead to a faster burning fire. These can be adjusted in the fuel 

moistures file. Higher winds spread fire faster. Winds can be adjusted in the fire file. The 

longer a fire burns, the more it will spread. Burn period, set in the fire file, can be 

increased in order to increase the area burned. 

Example Run 

Setting up a directory 

The first step is to choose or create the directory where all files associated with the 

FlamMap Interpreter will reside. For this example we will use this directory: 

 
C:\MyEnvisionData\Lebanon\FlamMap 

 

With the exception of the initialization file, all files used by the FlamMap 

Interpreter must be in this directory. In this example, we include the initialization file in 

the same directory. The files in this directory are: 

 
FlamMapFuelMoistures.fms 
FlamMapInputParams.txt 
FlamMapInterpreter.ini 
Lebanon90Meter.lcp 
LebanonFires.csv 
vegclass_fire_vddt_transitions.csv 

 

Each of these is one of the input files described earlier in this guide: 

 FlamMapFuelMoistures.fms is the FlamMap DLL fuels moisture file. 
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 FlamMapInputParams.txt is the FlamMap parameters file, containing the input 

parameters used by the FlamMap DLL. 

 FlamMapInterpreter.ini is the FlamMap Interpreter initialization file. 

 Lebanon90Meter.lcp is the starting LCP file. 

 LebanonFires.csv is the fires file. 

 vegclass_fire_vddt_transitions.csv is the vegetation class lookup file. 

Note that there is no polygrid file in the directory. This means we will have to 

make sure that the FlamMap Interpreter creates one. 

The FlamMap Interpreter initializtion file 

The FlamMap Interpreter initialization file, FlamMapInterpreter.ini, should look 

something like this: 

File Listing 6. Example FlamMap Interpreter initialization file. 

# Initialization File For Running FlamMap from Envision 
# 
# Pound sign in the first column indicates comment 
# Blank lines ignored 
# 
# Lines with an invalid Field Name or Value will 
# cause an error and program exit 
# 
# Strings must be quoted if they contain spaces 
 
# Paths for input and output files 
 
WorkingPath:   C:\MyEnvisionData\Lebanon\FlamMap 
 
# Options and filenames for Poly/Grid Lookup Table 
# if not read from file, then generated 
 
PolyGridReadFromFile: false 
PolyGridSaveToFile: true 
PolyGridReadFName:  PolyGridLkUp90Meter.pgl               
PolyGridSaveFName:  PolyGridLkUp90Meter.pgl 
 
# Files and options for Veg Class to LCP conversion 
 
VegClassLCPLookupFName: vegclass_fire_vddt_transitions.csv 
 
# Units used in the VegClassLCPLookup file 
# Height: 
#  1 = meters, 2 = feet, 3 = m x 10, 4 = ft x 10 
# Bulk Density: 
# 1 = kg/m^3, 2 = lb/ft^3, 3 = kg/m^3 x 100, 4 = lb/ft^3 x 1000 
# Canopy Cover: 
# 0 = categories (0-4), 1 = percent 
 
VegClassHeightUnits:  1  
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VegClassBulkDensUnits:  1 
VegClassCanopyCoverUnits: 1 
 
# Files associated with FlamMap runs 
 
# RunParams are the run parameters needed for each run of 
# FlamMap, these are used to build the .input file. 
 
FiresFName:   LebanonFires.csv 
StartingLCPFName:  Lebanon90Meter.lcp 
StartingFAParamsFName: FlamMapInputParams.txt 
FuelMoisturesFName: FlamMapFuelMoistures.fms 
 
# base names: used to build the names of files 
# read by or written by the FlamMap DLL 
 
LCPFNameRoot:             Lebanon90Meter 
InputFNameRoot:           FlamMapInput 
IgnitionFNameRoot:        LebanonIgnitions 

NOTE: It is up to the user to specify the correct values for 
VegClassHeightUnits:, VegClassBulkDensUnits:, and 
VegClassCanopyCoverUnits:. If these do not match the units in the 
vegetation class lookup file, results will invalid. 

The parameter values for LCPFNameRoot, InitFNameRoot, and IgnitionFNameRoot 

are used to create the filenames for input files used by the FlamMap DLL. 

The .envx file 

The Envision .envx file must be configured to run the FlamMap Interpreter and it must 

have the full path and name of the initialization file. For this example, we need to put the 

following in the <autonomous processes> section of the .envx file: 

 

<autonomous_process 
      name         ='FlamMap' 
      path         ='FlamMapAP.dll' 
      id           ='0' 
      use          ='1' 
      timing       ='0' 
      freq         ='1' 
      sandbox      ='0' 
    fieldName      ='' 
    initInfo     =' C:\MyEnvisionData\Lebanon\FlamMap\FlamMapInterpreter.ini’ 
 
 /> 

Files produced by the FlamMap Interpreter 

During an Envision run, the FlamMap Interpreter will create a number of files associated 

with FlamMap runs. The names of these files are built from the base names in the 

initialization file, the time step number (preceded by the letters “TS”), and where needed, 
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the Julian date of the model fire. Here are an example name and a description for each of 

these files: 

 Lebanon90Meter_TS0001.lcp: The LCP file read by every run of FlamMap during 

time step 1. This is a binary file, but it can be accessed using the standalone 

version of FlamMap. 

 FlamMapInputTS0001_123.input: The FlamMap input parameter file read by 

FlamMap to run the model fire on Julian date 123 of time step 1. This ASCII file 

is user-readable. 

 LebanonIgnitions_TS0001_123.dbf, LebanonIgnitions_TS0001_123.shp, 

LebanonIgnitions_TS0001_123.shx: The three files making up the ignition 

location for the model fire on Julian date 123 of time step 1. These files may be 

used together as an ArcGIS shapefile and accessed using ArcMap. 

 FlameLength_TS0001.txt: A user-readable ASCII text grid of maximum flame 

lengths produced during time step 1. 

In this sample run, we specified that the polygrid was to be created and written to 

a file. This file, PolyGridLkUp90Meter.pgl, would have also been created, and available 

for reading by the FlamMap Interpreter in future Envision sessions. 
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Audience 

This guide is intended for programmers who wish to modify, debug, or copy and use the 

C++ code for the Envision FlamMap Interpreter. It assumes that users are familiar with 

the Envision software package (Envision), FlamMap (Finney, 2006; Missoula Fire 

Sciences Laboratory, 2006), and the C++ programming language in the Microsoft 

Windows 7 environment, including Dynamic Link Library creation. 

Guide Organization 

This guide is divided into the following sections: 

 Introduction 

Brief description of the FlamMap Interpreter and its purpose. 

 FlamMap Interpreter Description 

A description of the FlamMap Interpreter, and its functional architecture.. 

 Input and Output Files 

Files used by and produced by the FlamMap Interpreter. 

 Code Walkthrough 

A description of code logic. This walkthrough is should be used with the source 

files for the FlamMap Interpreter. 

 Polygrid Lookup Logic and Implementation 

A detailed description of polygrid lookup and how it is implemented. 

 Conclusion 

Brief thoughts on the FlamMap Interpreter and the transient nature of software 

documentation. 

Introduction 

The FlamMap Interpreter is a Dynamic Link Library (DLL) plug-in that allows the 

Envision computer program to run and exchange input and output data with the FlamMap 

fire-modeling program. Like Envision, it is designed to work only with the Microsoft 

Windows operating system. For a complete description of how to use the FlamMap 

Interpreter and the format of I/O files, see the The Envision FlamMap Interpreter User’s 

Guide. 
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The main functional steps executed by the FlamMap are: 

 Take vegetation state data from the Envision landscape and use this data to 

characterize the landscape in a form usable by the FlamMap DLL. 

 From external files, read FlamMap DLL execution options and data describing 

fire and fuels parameters. 

 Generate model fire ignition points on the landscape. 

 Write files used by the FlamMap DLL 

 Call the FlamMap DLL to execute the runs of model fires. 

 Update the Envision delta array with flame lengths from the model fires so that 

changes in vegetation states can be generated on burned areas of the landscape. 

FlamMap Interpreter Description 

Note: In this guide, an Envision session refers to the use of 
Envision from the start of the executable until the executable 
is terminated. An Envision run, or model run refers to a single 
simulation run, comprising a number of time steps. Multiple 
Envision runs can take place during an Envision session. 

Figure 1 shows an overview of how Envision relates to the FlamMap Interpreter and how 

the Interpreter relates to input and output files. The highest level class in the FlamMap 

Interpreter, FlamMapAP, provides the four entry points methods for Envision: Init(), 

InitRun(), Run(), and EndRun(). 
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Figure 1. Relationship between Envision, the FlamMap Interpreter, and the FlamMap 

DLL. 

During an Envision session, Envision calls Init() (Figure 2) one time only, as part of its 

startup. Init() reads configuration parameters, initializes variables, and instantiates 

classes that persist throughout the Envision session. 

Envision calls InitRun() at the start of an Envision run (Figure 3). InitRun(), reads files, 

initializes variables, and instantiates classes used for the duration of a model run.  

Envision calls Run() once per time step during an Envision run (Figure 4). Run() takes 

vegetation state data from Envision, prepares input files for the FlamMap DLL, runs the 

FlamMap DLL, and writes flame lengths to the Envision delta array. 

Envision calls EndRun() at the end of a model run. EndRun() does some minor object 

management. 
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Figure 2. Functionality diagram of FlamMap Interpreter Init function. 

 

Figure 3. Functionality diagram of FlamMap Interpreter InitRun function. 
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Figure 4. Functionality diagram of FlamMap Interpreter Run function. 

Input and Ouptut Files 

This section provides an overview of input and output files read and written by the 

FlamMap Interpreter. These are described in detail in The Envision FlamMap Interpreter 

User’s Guide.  

The files read or written by the FlamMap::Init() method are: 

 The FlamMap Interpreter initialization file (input), containing the names and 

locations of files and directories used during the session as well as options for the 

run. The name of this file is passed to FlamMapAP::Init() by Envision. 

 The starting LCP file (input) is specified in the FlamMap Interpreter initialization 

file. This file must contain an appropriate header as well as layer data for slope, 

aspect, and elevation. The data layers for vegetation characteristics can contain 

any values, as these are initialized by the FlamMap Interpreter by later processing.  

 The vegetation class lookup file (input) is specified in the initialization file. It 

contains the data used to convert Envision vegetation states into the landscape 

attributes used to produce the LCP files during runs. 
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 The polygrid file (input) is specified in the initialization file. It is an optional file 

used to initialize the PolyGridLookups object  used to translate spatial domains 

between Envision’s polygon landscape representation and FlamMap’s grid 

landscape representation. 

 The polygrid file (output) is specified in the initialization file. It is an optional file 

that can be used to initialize the PolyGridLookups object  in future runs. 

The files read or written by the FlamMap::InitRun() method (Figure 3) are: 

 The fires file (input). It contains a list of potential model fires for each model year 

along with parameters needed to run each of the model fires. 

 The FlamMap parameters file (input). It contains input parameters that would be 

specified interactively with the standalone version of FlamMap. These are used by 

the FlamMap DLL. 

 The FlamMap fuel moistures file (input). It contains the fuel moistures data used 

by the FlamMap DLL. 

The files read or written by the FlamMap::Run() method (Figure 4) are: 

 The LCP file, output once per  Envision time step, input to the FlamMap DLL 

once per model fire. This is the landscape data used to model all fires during a 

single time step. 

 Ignition file, output once per model fire, input to the FlamMap DLL once per 

model fire. This is the location of the model ignition point as a point shapefile in 

ArcGIS format. 

 FlamMap input parameters file (note this is not the same as the FlamMap 

parameters file read by InitRun()), output once per model fire, input to the 

FlamMap DLL once per model fire. This file includes fuel moisture parameters, 

model fire weather parameters, model fire duration. 

 Flame length text file, output once per time step. This is an ASCII file of the 

maximum flame length attained on each model grid point. 

Source Code Walkthrough 

This section discusses the more complex aspects of the source code for the FlamMap 

Interpreter. The reader should access the source files from the Envision source repository 

and refer to the source code as needed. 

Figure 4 shows the static relationships among the classes used by the FlamMap 

Interpreter. All classes in Figure 4 were written as part of the Interpreter with the 

exception of CMinTravelTime which is the class that runs FlamMap.  
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Figure 4. Static relationships among classes that are part of the FlamMap Interpreter. The 

class CMinTravelTime is the class for the FlamMap DLL and was not produced as part of 

the FlamMap Interpreter. Classes marked with an asterisk (*) are used with global scope 

in the FlamMap Interpreter. 

Code Walkthrough 

This code walkthrough should be used in conjunction with the FlamMapAP source files 

to provide an understanding of the code structure and to clarify the logic of those code 

segments that bear explanation. Much of the source code is not described in this 

walkthrough.  

FlamMapAP is the class providing the entry point methods for the FlamMap Interpreter, 

and it is worth looking at the .h file in which it is declared.  

FlamMapAP.h 

In FlamMapAP.h,  

#include <EnvExtension.h> 
#include <Maplayer.h> 

are includes for Envision classes. The remaining includes are for classes that are part of 

the FlamMap Interpreter. 

typedef enum FlamMapRunState.. 
#define FLAMELENGTH  0 … 

are needed for CMinTravelTime. 

class FAGrid 

is a grid map layer that is needed to generate the polygrid lookup. 

class FlamMapAP 
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is the declaration for the FlamMapAP class. The four entry point methods are: 

BOOL Init   ( EnvContext *pEnvContext, LPCTSTR initStr ); 
BOOL InitRun( EnvContext *pEnvContext, bool useInitSeed); 
BOOL Run( EnvContext *pContext ); 
BOOL EndRun(EnvContext *pContext); 

The EnvContext pointer in each of these prototypes provides a pointer that can be used 

access Envision’s methods. The LPCTSTR in Init() is a string that Envision reads from its 

initialization file and passes through. It is the full pathname to the FlamMapAP initialization 

file. 

Instantiations of LCPGenerator and FlameLengthUpdater are only needed by methods 

within the FlamMapAP class, so rather than declare them as pointers which can be easily 

passed to methods in other classes, they are instantiated at the time of declaration: 

LCPGenerator 
   m_LCPGenerator; 
FlameLengthUpdater 
   m_FlameLengthUpdater; 

class CFlamMap is the class declaration for the FlamMap DLL. This could have been 

handled by including a .h file with the declaration, but was instead added to the 

FlamMapAP.h file. 

Global Classes 

There are two classes with instantiations that are used globally throughout the FlamMap 

Interpreter. The instantiations of these are done in FlamMapAp.cpp. The first of these is 

TLogger, which stands for Tim’s Logger. Its instantiation is g_MyLog. This class provides 

methods useful for profiling and logging during code execution. It is used globally so that 

all logging information can be written to a single file. Its primary purpose is as a tool for 

debugging and performance tuning. It contains methods for turning logging on and off, so 

its use can be easily controlled. It is implemented completely in a .h file. 

The second class with a global instantiation is ParamLookup. It, is instantiated as 

g_RunParams in FlamMapAP.cpp. This class allows for the dynamic creation of, update of, 

and access to variables associated with names. The FlamMap Interpreter deals with many 

parameters that are set in one part of the code and accessed in others. During 

development, and likely continuing with updates of the code, parameters have been added 

and removed. Rather than trying to track these parameters and modify variable 

declarations in any number of classes, g_RunParams is used as a means of parameter 

management. 

BOOL FlamMapAP::Init(EnvContext *pEnvContext, LPCTSTR initStr) 

Init() is the entry point called by Envision as part of its session startup. pEnvContext is a 

pointer that can be used access Envision’s methods. initStr is a string that Envision 

reads from its initialization file and passes through. It is the full pathname to the 

FlamMapAP initialization file. 
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If any part of the FlamMap Interpreter fails, the desired behavior is for it to stop what it is 

doing and return a value of false to Envision. In several places throughout the code, 

macros are defined to do this. Two of these are defined in Init(): FailAndReturn() and 

FailAndReturnOnBadStatus().  

g_RunParams.ProcessInitFile(initStr) 

sets the initialization parameters for the Envision session. 

g_RunParams.SetBoolParam(_T("RunStatus"),true); 

sets the global RunStatus to true.  

RunStatus is maintained as a parameter in g_RunParams and may be set to false by a 

method that fails to complete successfully. RunStatus can be checked by other methods 

to determine if a failure has been triggered elsewhere in the code. 

The code block 

g_RunParams.AddReqStrParam(_T("WorkingPath")); 
… 
if(!g_RunParams.CheckAllReqParams()) { 
FailAndReturn(" parameters missing from initialization file."); 
} else { 
 Report::InfoMsg(_T("  Required input parameters read.")); 
} 

checks to make sure all the required parameters were read from the initialization file. 

m_LCPGenerator.InitLCPValues(g_RunParams.GetStrParam(_T("StartingLCPFName"))) 

initializes the LCP file image in the m_LCPGenerator object using an initial LCP file. 

Values specifying the FlamMap grid are read from this file: Rows, Cols, and CellDim. 

m_LCPGenerator.InitVegClassLCPLookup(g_RunParams.GetStrParam( 
_T("VegClassLCPLookupFName"))) 

instantiates the LCPGenerator. 

The block of code 

MapLayer *m_pPolyMapLayer = (MapLayer *)(pEnvContext->pMapLayer); 
. . . 
ASSERT(gridRslt); 

creates an Envision grid that can be used to check extents and to instantiate the 

PolyGridLookups. 

The block of code 

// Initializing PolyGrid. Using g_RunParams to figure out what to do 
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. . . 
FailAndReturnOnBadStatus("PolyGrid initialization failed"); 

Determines whether m_pPolyGridLkUp is read from file or created from the landscape in 

Envsion and calls the appropriate constructor. Once created, m_LCPGenerator is given the 

pointer m_pPolyGridLkUp. 

BOOL FlamMapAP::InitRun(EnvContext *pEnvContext, bool 
useInitSeed)  

InitRun() is called by Envision at the beginning of each Envision run. 

The scenario name is the name associated with an Envision run and is obtained via 

pEnvContext. At this time it is not clear how data for and from FlamMap runs is to be 

managed in light of changing scenarios, so while the scenario name is accessed and set in 

InitRun(), it is not used to create an input or output path, instead the path set by the 

initialization parameter WorkingPath is used to set the paths for input and output files 

associated with a FlamMap DLL run. 

After paths for input and output files are set, delta array columns for FlameLen, VegClass, 

and Scenario are set locally from their Envision values by accessing them via 

pEnvContext. 

A new FireYearRunner, m_pFireYearRunner, is instantiated for the run. 

BOOL FlamMapAP::Run(EnvContext *pEnvContext) 

First, the LCP file for all the current model year’s fires is created by the call 

m_LCPGenerator.PrepLandscape(pEnvContext) 

This method converts the current Envision vegetation states to the LCP layer values 

needed by the FlamMap DLL, and writes the LCP file. 

Second, the fires for the current model year are run by the call 

m_pFireYearRunner->RunFireYear(pEnvContext) 

This method zeros out the flame length array, loops over all the fires for the current 

model year, runs each one, and updates the flame length array. 

Finally, the flame lengths generated by the fires for the current model year are written to 

the Envision delta array by the call 

m_FlameLengthUpdater.UpdateDeltaArray( 
pEnvContext, 

 m_pFireYearRunner, 
 m_pPolyGridLkUp 
 ) 
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Note that this method requires pEnvContext, m_pFireYearRunner, and m_pPolyGridLkUp. 

BOOL FlamMapAP::EndRun( EnvContext *pContext ) 

The FireYearRunner object created for the time step is deleted in this method. 

class ParamLookup 

This class can be thought of as a set of hashes, or maps which associate a string with a 

value.  There is one map for each of these variable types: CString, int, bool, float, and 

int. ParamLookup’s methods provide access to these maps, allowing for adding, updating, 

checking for the existence of, and retrieving the value of  elements in the maps. Maps and 

methods are also maintained for required parameters. This allows the programmer to set 

parameter names as required and to check if required parameter names are present in the 

ParamLookup object. Worth noting is the BOOL ProcessInitFile() method which reads an 

input file line by line and uses private parsing methods to determine the type of variable 

specified on the line of the input file and adds the variable to the appropriate map. 

class PolyGridLookups 

The abstraction provided by PolyGridLookups is that of a lookup table that associates a 

polygon and gridcell with the proportion of overlap the two have. It maintains its data 

using the CompressedRow2dArray class. PolygridLookups is explained in greater detail in a 

subsequent chapter. Here it will be described only briefly. 

Three constructors are available. The first, 

PolyGridLookups( 
    int numGridRows, 
    int numGridCols, 
    int numPolys, 
    BLD_FROM bldFrom, 
    int maxElements,  
    int defaultVal, 
    int nullVal) 

creates but does not initialize the instantiated object. It is recommended that this 

constructor not be used unless necessary. If this method is used, then the set methods 

must be used to fill the objects data structures. Note that, as described in 

PolyGridLookups.h, due to limitations imposed by CompressedRow2dArray, filling must be 

done in row-column order or CompressedRow2DArray will fail with an error. 

The second builds the array from a grid map layer and a polygon map layer: 

PolyGridLookups ( 
    MapLayer *m_pGridMapLayer, 
    MapLayer *m_pPolyMapLayer, 
    int cellSubDivisions, 
    int maxElements, 
    int defaultVal, 
    int nullVal) 
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The final constructor reads a saved version of a PolyGridLookups object: 

PolyGridLookups(const char *fName) 

Constructing a PolyGridLookups object is can be computationally intensive so if a large 

number of polygons and grid cells are being used, or if a large number of subcells is used 

to compute the overlap, then it is strongly recommended that the PolyGridLookups object 

be saved after it is created and instantiated from file in future runs. 

Class variables are described in PolyGridLookups.h, but four are worth discussing in 

more detail here. 

cellSubDivisions, present in the second constructor listed above, is used to determine 

how many subcells of each gridcell will be used to calculate the grid cell’s overlap with 

polygons. If cellSubDivisions is set to 1, then only the center of the gridcell will be 

checked to determine which polygon the gridcell overlaps. If it is set to 2, then the 

gridcell is divided into 4 equal subcells and the overlap of the center of each of those 

cells is determined. In this scenario, a cell could be determined to have a 0.25 overlap 

with each of 4 polygons for instance. If cellSubDivisions is set to 10, then the overlap 

would be determined by the center of each of 100 subcells. 

maxElements is the estimate of how many elements the CompressedRow2dArray object will 

need. For instance if for each polygon were overlapped by three grid cells, maxElements 

would need to be 3 X the number of polygons. Slightly overestimating maxElements will 

use more memory than necessary, so small overestimates have little penalty, larger 

overestimates could impact performance or prevent a successful run. Underestimating 

will result in one or more memory reallocations, which are computationally expensive for 

large datasets. 

defaultVal is passed through to CompressedRow2DArray and is the value 

CompressedRow2DArray does not actually store in the compressed array. In other words if 

0 is the default value, CompressedRow2DArray will actually store any element with any 

value other than 0. It will not actually store an element with a value of 0. When an 

element not actually stored in the CompressedRow2DArray is requested, 

CompressedRow2DArray will return 0. 

nullVal is passed through to CompressedRow2DArray, and must be a value that is not used 

as a legitimate entry in the PolyGridLookups data. Since the data is a tally of overlap 

between grids and polygons, any negative value will work. nullVal is used to initialize 

allocated memory before it is filled with valid data. 

An Envision polygon index is simply an integer, however, a gridcell has both a row and a 

column index which must be converted to a single index for use with 

CompressedRow2DArray and converted back to row and column indexes for values 

obtained from CompressedRow2DArray. These conversions are done by the methods  

int xyToCArrayCoord(const POINT &pt) 
void CArrayCoordToxy(const int &CArrayCoord, POINT *pt) 
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The second of the above-listed constructors merits a discussion. Its definition can be 

found in PolyGridLookups.cpp. After its  class variables are initialized, the following 

statement creates the lookup array used to relate multiple polygons to each grid cell: 

gridToPolyLkUp = new CompressedRow2DArray<int>( 
   numGridRows * numGridCols, 
   numPolys, 
   maxElements, 
   defaultVal, 
   nullVal) 

To fill the compressed array each cell in the grid is accessed through nested for loops 

over rows and columns. Then for each subcell within the gridcell (a pair of nested do 

loops) the polygon in which the subcell resides (if there is one) is determined, and the 

count for that polygon is incremented: 

polygonWt[pPoly->m_id]++; 

After the subcells are traversed, the weights for each polygon are stored in 

gridToPolyLkUp by the call 

SetGridPtElement( 
row, 
col, 
it->first, 
it->second) 

Note that the weights entered into gridToPolyLkUp do not need to be normalized. The 

proportions of polygons in a gridcell or of grid cells in a polygon are calculated by the 

appropriate get… methods. 

After all grid cells have been traversed, gridToPolyLkUp is complete. 

The call 

CreatePolyLookupFromGridPtLookup() 

creates the polyToGridLkUp, also a compressed2DArray. This array is the transpose of 

gridToPolyLkUp. 

NOTE: The values stored in the CompressedRow2DArray objects 
used by PolyGridLookups are tallies for the proportion of the 
gridcell in a polygon. The computation of the proportion of a 
polygon contained in a gridcell is calculated with this in mind. 

The Get… methods are used to obtain characteristics about the relationships between a 

polygon (gridcell) and the grid cells (polygons) it. The values returned by these can be 

used as needed to calculate an average, a plurality, minimum, maximum, etc. Those 

Get… methods for indexes, values, and proportions return vectors of values. For the same 
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polygon or grid point, the vector returned by any one of these methods corresponds to the 

vectors returned by the others. 

Two methods in the code use the single  instantiation of PolyGridLookups. 

LCPGenerator::PrepLandscape() 

uses it in the conversion of Envision vegetation states into gridded LCP layers, and 

FlameLengthUpdater::UpdateDeltaArray() 

uses it in the conversion of gridded flame lengths into flame lengths for Envision 

polygons. 

class CompressedRow2DArray 

CompressedRow2DArray implements a 2D array abstraction based on Dongarra’s 

(http://web.eecs.utk.edu/~dongarra/etemplates/node373.html) description of compressed 

row storage. Because it is implemented using templates, it is wholly written in a .h file. 

The idea behind this implementation is to store only non-default values of the abstracted 

array and use a set of vectors for value and array cell index storage. 

CompressedRow2DArray has been extensively tested and will likely not need to be accessed 

in order to make changes to the FlamMap Interpreter. 

PolyGridLookups is the only class that uses CompressedRow2DArray. For polygons, the 

index of the polygon is used as is, for grid cells, the row and column are converted to a 

single index which is used in calls to CompressedRow2DArray methods. 

The storage structure used by CompressedRow2DArray is ordered. Because of this, the cells 

in the abstracted array must be filled in row-column order. Cells with the default value 

for the array (in the case of the FlamMap Interpreter, this value is 0), need not be filled. 

So, for example abstracted array cells could be filled in the order (1,7), (1,9), (2,3), (2,4), 

(3,6), but could not be filled in the order (1,7), (1,6), or in the order (2,3), (1,9). 

PolyGridLookups and CompressedRow2DArray are described in greater detail in a later 

section.  

class Fire 

class fire contains and provides access to the variables associated with one model fire: 

year (Yr), Julian date (JulDate), wind speed (WindSpd), wind direction or azimuth 

(WindAzmth), occurrence probability (BurnProb), length of burn (BurnPeriod), and whether 

the fire is to be run or not (DoRun). 

class FireQueue 

As the name implies, class FireQueue is a queue of fires. It is instantiated by 

FireYearRunner. The queue is filled by the constructor which reads lines of a file and 

performs a Monte Carlo draw on each one to determine if it is to be run or not. If a fire is 

to be run a fire object is instantiated, and it is added to the queue. If not, it is discarded. 
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Methods are provided for accessing fire class variables from the fire object at the head of 

the queue and for deleting the head of the queue. FireYearRunner uses these methods to 

access the fire characteristics for the model fires it runs. 

class FireYearRunner 

FireYearRunner is the class that coordinates inputs and outputs for the FlamMap runs and 

makes the calls to the MinTravelTime DLL which runs FlamMap. FireYearRunner is 

instantiated by FlamMapAP::InitRun() at the start of each Envision run and deleted by 

FlamMapAP::EndRun() at the end of each Envision run. 

The constructor sets up the object for running the model fires. In large part, it does the 

following: 

1. Instantiates a FireQueue which determines which potential fires will be run and 

stores them. 

2. Instantiates  an IgnitGenerator which will be used to determine the ignition 

location of each model fire. 

3. Allocates space for m_pYrFlameLens which, for each grid cell, stores the maximum 

flame lengths produced by model fires in a single model year. 

4. Using a file, instantiates m_FAParams, a ParamLookup object that manages the 

parameters used by FlamMap. 

5. Reads fuel moistures from a file into the CString m_FuelMoistures. 

The FireYearRunner::RunFireYear() method is called one time per Envision time step. 

This method executes some preparatory steps, then steps through the model fires for the 

current model year executing each one. The preparatory steps are: 

1. Create flameLens, the storage for the flame lengths from one FlamMap run. 

2. Reset m_pYrFlameLens,the storage holding the maximum flame lengths, to 0. 

3. Update the ignition generator to reflect the current landscape state: 
m_pIgnitGenerator->UpdateProbArray(pEnvContext); 

4. Delete any fires on the queue from previous years. 

The loop that runs the fires for the year begins with 

while(m_pFireQ->FireCnt() > 0) 

The steps executed within this loop are: 

1. Break out of the loop if the next fire to run is not from the current model year. 

2. If a fire is not to be run, delete it from the queue and loop. 
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3. Create an ignition file using the ignition generator. 

4. Create the FlamMap parameters file containing the initialization data for 

FlamMap. 

5. Create the names for flame length and fire intensity output files from FlamMap. 

6. Delete the current fire from the m_pFireQ. 

7. Create mtt, a new CMinTravelTime object that will be used to run FlamMap. 

8. Tell mtt the name of the LCP file. 

9. Have mtt load the input file. 

10. Run FlamMap using mtt->LaunchMTT() and loop if it fails. 

11. Get the flame lengths for the run. Note that the flame lengths provided by 

CMinTravelTime are not the flame lengths for the model burn. The flame lengths 

for the model burn are calculated from the values from fire line intensity. 

float *flameLenLayer = mtt->GetFliMapGrid() 

gets the fire line intensity, and 

flameLens[i] = 0.0775f * (float)pow((float)flameLenLayer[i], 

(float)0.46) 

computes the flame length from fireline intensity. 

12. Write ASCII files for the flame length and fire line intensity. 

13. Update m_pYrFlameLens which holds the maximum annual flame length for each 

grid cell. 

After a fire year is run, the flame lengths for the model fire year are entered into the 

Envsion delta array by the FlameLengthUpdater class. FireYearRunner::GetFlameLen() 

is the method that the allows that allows the FlameLengthUpdater class to access the 

flame lengths accumulated by FireYearRunner during the run of a fire year. 

The destructor for FireYearRunner deletes the objects and data structures that were 

dynamically allocated during its run. 

class FlameLengthUpdater 

class FlameLengthUpdater is instantiated by declaration in the FlamMapAP class definition 

in FlamMapAP.h. FlameLengthUpdater::UpdateDeltaArray() is the method through which 

this class does its real work: computing the mean flame length for each Envision polygon 

by taking the weighted mean of flame lengths of grid cells that intersect with the polygon 
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and assigning that value to the polygon. The first step in the UpdateDeltaArray() method 

is to traverse the FireYearRunner’s flame length array to determine the maximum and 

mean flame lengths. 

The second step is to loop over Envisions polygons and compute the mean flame length 

for each. For each polygon, the steps involved in this are: 

1. Insure sufficient space for the vectors returned by method calls to the 

PolyGridLookups object, pPolyGridLkUp, and initialize these vectors to 0. 

2. Get the indexes for the grid cells overlapping the polygon:  

pPolyGridLkUp->GetGridPtNdxsForPoly(Poly, pGridPtNdxs) 

3. Get the proportions of the polygon for each overlapping grid cell (i.e. the 

proportions used to compute the weighted average flame length for the polygon): 
pPolyGridLkUp->GetGridPtProportionsForPoly(Poly, GridPtProportions) 

4. For each of the grid points obtained in step 2., add its weighted contribution to the 

flame length for the polygon: 

for(GridPt=0;GridPt<GridPtCnt;GridPt++) { 
TtlPolyFlameLength +=  
pFireYearRunner->GetFlameLen( 

pGridPtNdxs[GridPt].x,pGridPtNdxs[GridPt].y) * 
GridPtProportions[GridPt]; 

} // for(GridPt=0;GridPt<nGridPtCnt;GridPt++) 

5. Enter the result into Envision’s delta array using the call: 

AddDelta(…) 

NOTE: Due to the algorithm used to compute polygon/grid cell 
overlap in PolyGridLookups, it is possible that a polygon can 
be computed to overlap with no grid cells. If this situation 
arises, the polygon’s flame length value will always be 
updated to 0. 

class IgnitGenerator 

IgnitGenerator maintains a probability surface for ignitions and provides a method for 

performing Monte Carlo draw(s) against that surface to produce an Arc shapefile of 

ignition points. It is instantiated by the FireYearRunner class 

In its constructor, it allocates and zeros out m_MonteCarloIDUProbs, the vector it uses to 

store probabilities for Monte Carlo draws. The vector contains one entry for each 

Envision polygon. 

The UpdateProbArray() method steps through the Envision polygons, gets the fields 

needed to compute the probability for a polygon, and then computes the polygon’s 
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probability based on a hard-coded probability function. A running total of probabilities is 

kept in m_MonteCarloIDUProbs so that it can be used with a Monte Carlo draw. 

the GenIgnition() method generates one or more ignition points and saves them to an 

Arc shapefile. 

class LCPGenerator 

Using a starting LCP file, a PolyGridLookups object, and a VegClassLCPLookup object,  

LCPGenerator effectively manages an LCP file image in memory and writes it to an LCP 

file when its WriteFile() method is called. The contents of the LCP file are stored in two 

separate structures. The header is stored in a struct, and the body, containing the 8 LCP 

layers, is stored in pointer to a short. 

The header of the LCP file is implemented as a struct. Because some of the fields in the 

header align on 2 byte blocks, memory alignment must be set to 2 bytes before the struct 

is declared and then set back to the default afterwards. This is done by two #pragma 

directives in LCPGenerator.h. The code for that is: 

#pragma pack(push,2) 
struct LCPHeader { 

… struct member declarations here … 

} 
#pragma pack (pop) 

Starting LCP data is read from an existing LCP file. The landscape represented by the 

LCP file must align with the extent of the Envision landscape in order for the FlamMap 

Interpreter to return valid results. The header of the starting LCP file and the layers for 

slope, aspect, and elevation should all be correct. The five layers associated with 

vegetation characteristics will be updated when the FlamMap Interpreter runs. 

LCPGenerator is instantiated by declaration in FlamMapAP.h and is initialized in 

FlamMapAP::Init() at run time. 

LCPGenerator::InitLCPValues() opens the LCP file whose name is passed in as an 

argument. The head of this file is read into the header struct m_pLCPHeader. Height, 

canopy cover, and bulk density units must match with the values in the lookup data used 

by the VegClassLCPLookup object, or results will be meaningless. The LCPGenerator sets 

and checks these units after the header is read in to memory. After m_pLCPHeader is 

complete, the constructor reads in the data for the 8 LCP data layers. 

LCPGenerator’s VegClassLCPLookups object, m_pVegClassLCPLookup, is instantiated by a 

call to LCPGenerator::InitVegClassLCPLookup(). This call is made in 
FlamMapAP::Init(). 

LCPGenerator’s PolyGridLookup object, m_pPolyGridLkUp is not instantiated by 

LCPGenerator, but is passed in as a pointer in FlamMapAP::Init() in a call to 
LCPGenerator::InitPolyGridLookup(). 
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LCPGenerator::PrepLandscape() is the method that loads the values associated with 

vegetation into the in-memory representation of the LCP layers. Two polygon fields from 

Envision are used to do the lookup using the VegClassLCPLookup object: VegClass and 

Variant. A nested pair of loops runs over the grid rows and columns, to determine the 

LCP values for each cell in the LCP file the steps are: 

1. Get the index of the polygon that most overlaps the grid cell (i.e. plurality rules):  

nPluralPolyNdx = m_pPolyGridLkUp->GetPolyPluralityForGridPt(i,j) 

2. Get the vegClass and variant for that polygon: 

pEnvContext->pMapLayer->GetData(nPluralPolyNdx, vegClassCol, vegClass); 
pEnvContext->pMapLayer->GetData(nPluralPolyNdx, variantCol, variant); 

3. Update the LCP fields with the fields corresponding to the vegClass and variant: 

SetFuelModel(i,j,m_pVegClassLCPLookup->GetFuelModel(vegClass, variant)); 
SetCanopyCover(i,j,m_pVegClassLCPLookup->GetCanopyCover(vegClass, 

variant)); 
SetStandHeight(i,j,m_pVegClassLCPLookup->GetStandHeight(vegClass, 

variant)); 
SetBaseHeight(i,j,m_pVegClassLCPLookup->GetBaseHeight(vegClass, 

variant)); 
SetBulkDensity(i,j,m_pVegClassLCPLookup->GetBulkDensity(vegClass, 

variant)); 

After the LCP layers are updated in memory, the header and the layers are written to file. 

class VegClassLCPLookup 

VegClassLCPLookup is the class used for converting vegetation classes from Envision 

polygon space into LCP attributes in FlamMap grid space. This involves a lookup table to 

translate a vegetation state and variant into LCP attributes. The lookup is implemented as 

a map. 

The constructor reads the input file, checks the first row to insure field names are correct, 

then reads subsequent rows. The AddValues() method builds a single key from the 

VegClass and Variant values. The key is generated by the code: 

key = (unsigned long)VegClass * 10000 + (unsigned long)Variant 

Note that this assumes there will never be more than 10000 variants and that an unsigned 

long is large enough to hold a key created in this manner. 

The AddValues method loads the field values into a LookupValues struct (see 

VegClassLCPLookup.h) and assigns that to the datum associated with the key. 

Field values associated with keys are accessed through the Get… methods, which build a 

key and access the associated datum. 
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PolyGridLookups 

This section provides a more detailed explanation of PolyGridLookups through an 

example that goes from conceptualization through data structures and coding issues. 

Computing Polygon/Grid Overlap. 

Envision divides the landscape using arbitrary polygons. A representation of this for a 

simple landscape is shown in Figure 5. In this landscape there are 8 polygons.  

 

Figure 5. Landscape divided into 8 irregular polygons. 

The same landscape could be covered by a grid as in Figure 6, which shows a 3-by-3 

regular grid. 

The question arises of how to transfer attributes from the polygon representation to the 

grid representation, and vise versa. For continuous variables, for example elevation, a 

weighted mean would work well. For categorical values, such as vegetation type, a 

plurality might be better suited. Either way, one needs to know the proportion of 

intersection between grid cells and polygons. 
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Figure 6. Landscape divided into a 3-by-3 regular grid. Grid cell centers are marked by 

an “x”. 

One computational approach is to use the centers of the grid cells to define the level of 

intersection. We can envision this by overlaying the polygon representation with the 

gridcell representation as in Figure 7. 
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Figure 7. Grid cells overlaid onto the polygon representation of the landscape. 

Using this method with the example, each grid cell would get the attributes of a single 

polygon, for instance grid cell (1,1) would get its attributes from polygon P5. Since 

polygons can span parts of various grid cells, they might lie under 0, 1, or more grid cell 

centers. In this example P1 would get attributes from grid cell (0,0), P5 from grid cells 

(1,1) and (1,2). Note that in this example, P0 is not counted as intersecting with any grid 

cells. This condition would need to be checked for and dealt with in the code. 

A way to add more precision to the intersections of polygons and grid cells is to 

subdivide the grid cells and compute the intersection based on the centers of the subcells. 

Figure 8 shows the same grid overlay as Figure 7, but the grid cells have been divided by 

three on each edge to produce 9 subcells per grid cell. 
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Figure 8. Subdivided grid cells overlaid onto the polygon representation of the 

landscape. 

Using the centers of the subcells to compute overlap yields the following for grid cell 

(1,1): 

P2: 1/9 

P4: 2/9 

P5: 6/9 

For polygon P5 the computed overlap based on the 19 subcells that P5 intersects the 

subcell center is: 

Grid cell (1,1): 6/19 

Grid cell (1,2): 8/19 

Grid cell (2,1): 2/19 

Grid cell (2,2): 3/19 
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Three concepts should be clear at this point. First, the more subdivisions, the greater the 

precision of computed overlap. Second, no matter how many subcells there are, the 

number of polygons (grid cells) a grid cell (polygon) actually overlaps never changes. 

Finally, the number of overlaps between polygons and grid cells is generally dependent 

on the relative size of polygons and grid cells. If grid cells are substantially smaller than 

polygons, then most grid cells will overlap with one polygon and most polygons will 

overlap with multiple grid cells. Conversely if grid cells are substantially larger than 

polygons, most grid cells will overlap multiple polygons and most polygons will overlap 

with one grid cell. If grid cells and polygons are of approximately the same size, then 

most grid cells will overlap several polygons and most polygons will overlap several grid 

cells. 

Overlap Representation 

In the course of converting a whole landscape between polygon and grid representations, 

all polygons and grid cells must be analyzed for overlap with their counterparts. A two-

dimensional array provides a simple and straightforward method of doing this. In order to 

use a two-dimensional array, however, the row-column indices of the grid must be 

converted into one dimension. This is easily done by the formula: 

LookupGridIndex = RowIndex * NumColumns + ColumnIndex 

Tables 1 and 2 show lookup tables for the overlaps depicted in Figures 7 and 8, 

respectively. 

Using a lookup table like Table 1 or Table 2 makes it easy to get the proportion of 

overlap between a grid cell and a polygon. For the proportion of a polygon in a given grid 

cell the algorithm is: 

RowColIndex = ComputeRowIndex(Row,Col) 
OverlapCellCount = TableCellValue(RowColIndex, Polygon) 
ProportionOverlap = OverlapCellCount / TotalOfRow (RowColIndex) 

For the proportion of a grid cell in a given polygon, the formula is similar, but instead of 

the row sum, a column sum is used: 

RowColIndex = ComputeRowIndex(Row,Col) 
OverlapCellCount = TableCellValue(RowColIndex, Polygon) 
ProportionOverlap = OverlapCellCount / TotalOfCol (Polygon) 

For Table 2, using grid cell (1,1) and polygon 5, polygon 5 comprises 6/9 of grid cell 

(1,1) and grid cell (1,1) comprises 6/19 of polygon 5. 
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Table 1. Table of overlaps between grid cells and polygons represented in Figure 7. 

 Polygon Index 

Row Col 

Row/ 
Col 
index 0 1 2 3 4 5 6 7 

0 0 0 0 1 0 0 0 0 0 0 

0 1 1 0 0 1 0 0 0 0 0 

0 2 2 0 0 0 1 0 0 0 0 

1 0 3 0 0 0 0 1 0 0 0 

1 1 4 0 0 0 0 0 1 0 0 

1 2 5 0 0 0 0 0 1 0 0 

2 0 6 0 0 0 0 0 0 1 0 

2 1 7 0 0 0 0 0 0 0 1 

2 2 8 0 0 0 0 0 0 0 1 

Table 2. Table of overlaps between grid cells and polygons represented in Figure 8. 

 Polygon Index 

Row 

Col 

Row/ 
Col 
index 0 1 2 3 4 5 6 7 

0 0 0 1 7 0 0 1 0 0 0 

0 1 1 0 0 9 0 0 0 0 0 

0 2 2 0 0 0 9 0 0 0 0 

1 0 3 0 0 0 0 7 0 2 0 

1 1 4 0 0 1 0 2 6 0 0 

1 2 5 0 0 0 1 0 8 0 0 

2 0 6 0 0 0 0 0 0 9 0 

2 1 7 0 0 0 0 0 2 3 4 

2 2 8 0 0 0 0 0 3 0 6 

 

Memory Efficiency 

A lookup table contains an entry for each grid cell/polygon pair. Even in the small 

example depicted in Table 2, only 17 of 72 cells have non-zero values. For a landscape 

with 100,000 polygons and 100,000 grid cells, and in which the mean overlap is 3, the 

resulting table would have 300,000 non-zero entries and 9,000,700,000 zero entries. At 4 

bytes per entry, that represents almost 40 GB of memory. Obviously, some form of array 

compression is called for. For the FlamMap interpreter, a compressed-row two-

dimensional array was implemented. The algorithm implemented stores only non-zero 

values and utilizes four vectors to present an array abstraction of the stored values. Figure 

9 illustrates how these vectors are used for the array depicted in Table 2. 
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Figure 9. Compressed 2-dimensional array corresponding to the array depicted in Table 

2. Red arrows correspond to entries for grid cell (1,1). 

In Figure 9, the vector labeled Uncompressed Array Cell Values holds the non-zero 

values from the uncompressed array in row-column order. The vector labeled 

Uncompressed Array Column Indices holds the uncompressed array’s column index for 

each of the values in Uncompressed Array Cell Values. Note that the index values for 

these two vectors do not correspond to anything in the uncompressed array. 

For the vectors labeled Starting Index of Array Column and Cell Value for Row, and 

Ending Index of Array Column and Cell Value for Row, the vector index corresponds to 

the row in the uncompressed array. The value in each cell indexes into the Uncompressed 

Array Column Indices and Uncompressed Array Cell Values vectors, to get the starting 

and ending locations of uncompressed array column indices and uncompressed array cell 

values. 

A walk-through of several data is accesses in the compressed array should make things 

clearer. First, an access of the overlap data for grid cell (1,1) and polygon 2: 

The Row/Col Index for grid cell (1,1)  is 4. So we go to element 4 in Starting Index of 

Array Column and Cell Value for Row and obtain the value 6. We then go to element 6 in 

Uncompressed Array Column Indices and see that the value is 2. The value 2 corresponds 
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to the column for polygon 2 in the uncompressed array, so we know we have found the 

correct entry for our grid cell column pair. We read the value from element 6 of 

Uncompressed Array Cell Values, which is 1. If we check this against the original 

uncompressed array, we see we obtained the correct value. 

Now let’s get the value for grid cell (1,1) and polygon 0. Again we start with element 6 of 

Uncompressed Array Column Indices and see that the column is 2. This tells us that the 

entry for column 0 was not stored in the compressed array. So we know the value of that 

column was 0. If we check this against the uncompressed array, we can verify that we are 

correct. 

If we look for the value of grid cell (1,1) and polygon 3, we will have to traverse forward 

from our starting point in Uncompressed Array Column Indices, and as we do this, we 

need to ensure that we don’t go beyond the entries associated with row 4 of the 

uncompressed array. We start again with element 6 of Uncompressed Array Column 

Indices and note that the uncompressed column index, 2,  is less than our search column 

index, 3. We then check element 6 of Ending Index of Array Column and Cell Value for 

Row to make sure the next element of Uncompressed Array Column Indices is not 

beyond the end of the entries for uncompressed row 4. It turns out that elements 6, 7, and 

8 of Uncompressed Array Column Indices are all for uncompressed row 4, so we look at 

the next element, element 7 which contains the value 4, telling us that column 4 is the 

next column in the uncompressed array that has a non-zero value. We were concerned 

with row 4 column 3, which is missing from the compressed array, so it has a value of 0. 

This is confirmed by looking at the uncompressed array. 

If we look for the value of grid cell (1,1), polygon 7, we will step through the elements of 

Uncompressed Array Column Indices and find that the last non-zero element for 

uncompressed row 4 has an uncompressed column index of 5, and so we return the value 

0. 

PolyGridLookups Implementation 

The basic algorithmic logic for the conversion between polygons and grid cells has been 

made clear, but a few further details bear discussion before describing code details. The 

first is how grid cell/polygon overlaps are used. In most cases, for instance with a 

plurality or weighted mean, information about the proportion of overlap for all 

overlapping cells or polygons is needed. Looping through all possible grid cell/polygon 

combinations for a given grid cell or given polygon to find the non-zero combinations is 

tedious and inefficient. 

In the above example, the indexes of overlapping polygons are stored in adjacent 

elements of Uncompressed Array Column Indices, and the associated values are stored in 

the corresponding adjacent elements of Uncompressed Array Cell Values. With the 

precomputed starting and ending indices for the in Starting Index of Array Column and 

Cell Value for Row, and Ending Index of Array Column and Cell Value for Row, the 

indexes and proportions of all polygons overlapping a given grid cell can be easily and 

efficiently implemented as methods. 
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Unfortunately, doing the same for polygons is not as straightforward or efficient. The 

entire Uncompressed Array Column Indices would have to be searched linearly. So in 

order to have an efficient lookup for grid cells intersecting a given polygon, a second 

compressed-row 2-dimensional array is created. It represents the transpose of the other 

array. 

With all this out of the way, here is a more detailed supplementary walk-through of the 

PolyGridLookups and CompressedRow2DArray classes. 

class PolyGridLookups 

It is important to first understand some of the class variables declared in 

PolyGridLookups.h: 

gridToPolyLkUp and polyToGridLkUp. These are the CompressedRow2DArray objects used 

by the class. gridToPolyLkUp is the compressed array used to get data concerning 

polygons that overlap a given grid point. In other words each row in the compressed array 

represents a grid cell. This is analogous to the compressed array used in the examples 

above. polyToGridLkUp is a compressed array used to get data concerning grid cells that 

overlap a give polygon. Polygons are represented by the rows in the compressed array. 

gridToPolyLkUp and polyToGridLkUp represent transposes of each other. 

maxElements is the number of elements to be stored in the compressed array. If 

maxElements is initially set too low, one or more reallocations of the storage used for the 

compressed array will have to be performed, with the associated penalty in computational 

performance. maxElements has no effect on performance when a PolyGridLookups object 

is read from file. 

defaultVal is the default value used in the compressed array. In most, if not all, cases, 

this will be 0. This is the value the compressed array will not store and the value the 

compressed array will return for any query for data points it has not stored. 

nullVal is passed through to the compressed array. nullVal is used to initialize allocated 

memory before it is filled with valid values. In most, if not all cases, -9999 is an 

appropriate value to use for nullVal. 

numPolys, numGridRows, and numGridCols are the numbers of polygons, grid rows, and 

grid columns, respectively, for the landscape. 

bldFrom is used when the user is building a PolyGridLookups from scratch as opposed to 

from layers or from file. bldFrom tells PolyGridLookups whether the user will be building 

the gridToPolyLkUp compressed array or the polyToGrid compressed array. 

Also in the .h file the methods for converting grid point coordinates to and from the 

single dimension used by CompressedRow2DArray are defined. These are 

xyToCArrayCoord() and CArrayCoordToxy(). 

One constructor allows for the creation of an empty PolyGridLookups: 
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PolyGridLookups::PolyGridLookups( 
   int numGridRows, 
   int numGridCols, 

int numPolys, 
BLD_FROM bldFrom, 
int maxElements,  
int defaultVal, 
int nullVal) 

If map layers for the grid and polygon landscape representations are not available, then 

this is the constructor that will be needed. Note that the user must specify whether the 

initial lookup grid will be built from polygons or from grid points. This lets the code 

know whether to build the gridToPolyLkUp or polyToGridGridLkUp 

CompressedRow2DArray. Once the user has finished building the initial grid, the transpose 

grid must be build by calling one of  

PolyGridLookups::CreateGridPtLookupFromPolyLookup() 

PolyGridLookups::CreatePolyLookupFromGridPtLookup(). 

The constructor 

PolyGridLookups::PolyGridLookups ( 
MapLayer *m_pGridMapLayer, 
MapLayer *m_pPolyMapLayer, 
int cellSubDivisions, 
int maxElements, 
int defaultVal, 
int nullVal) 

frees the user from having to worry about creating the gridToPolyLkUp and 

polyToGridLkUp CompressedRow2DArray objects and also serves as an illustration of how 

these objects are created. Note the int cellSubDivisions argument to the constructor. 

This is used to direct the subdivision of each grid cell when determining the overlap 

between grid cells and polygons. cellSubdivisions is the number of division used in 

each of the two dimensions of the grid cell. In other words, the number of subdivisions 

for a grid cell will be cellSubdivisions * cellSubdivisions. So if cellSubdivisions is 

10, each cell will be divided into 100 subcells to determine the polygon grid cell overlap. 

Continuing with this constructor, values are assigned, and gridToPolyLkUp is instantiated. 

Some temporary variables used in subcell computation are assigned and the size of the 

subcell is computed. The overlap calculation is run on each cell (the nested for(int 

row=0… and for(int col=0… loops) 

Within the row/col nested loops are a pair of  do loops which iterate over the subcells. For 

each subcell, a the polygon under the subcell center is found and a tally is taken. After the 

tally is complete for all subcells of a single grid cell, the tally values for each polygon are 

entered into gridToPolyLkUp in order. (Remember that entries into a 

CompressedRow2DArray must be done in row-column order). No normalization of tallies is 

done. 
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After all grid cells have been processed, gridToPolyLkUp is complete and polyToGridLkUp 

is created by the method call CreatePolyLookupFromGridPtLookup(). 

The remaining constructor reads a PolyGridLookups object from file and is fairly 

straightforward. Worth noting is that the reading of the gridToPolyLkUp and 

polyToGridLkUp objects are accomplished through calls to a CompressedRow2DArray 

constructor that takes the pointer of an open file as its argument. 

The Get… methods are fairly self-explanatory. Val or Vals in a method name refers to the 

value that is stored in the lookup array, in other words, the tally of subcells for the 

intersection of a single grid point and a single polygon. Those returning vectors are 

returning all values associated with non-zero values in a lookup row. An example may 

serve to clarify here. Using the example from Figure 8, Table 2, and Figure 9 the 

following calls would yield the results shown: 

GetPolyCntForGridPt(1,1) 

returns: 9 

GetPolyNdxsForGridPt(1,1, *ndxs) 

ndxs: 2, 4, 5 

GetPolyValsForGridPt(1,1, *vals) 

vals: 1, 2, 6 

GetPolyProportionsForGridPt(1,1, *proportions) 

proportions: 0.111, 0.222, 0.666 

GetPolyValTtlForGridPt(1,1) 

returns: 9 

GetPolyPluralityForGridPt(1,1) 

returns: 5 

The Set… methods are used if building a PolyGridLookups from scratch and are self-

explanatory. These should not be used unless one fully understands PolyGridLookups and 

CompressdRow2DArray. 

class CompressedRow2DArray 

CompressedRow2DArray implements the structure illustrated in Figure 9. The vectors in 

Figure 9 are implemented as vector objects as follows: 

rowStartNdx: Starting Index of Array Column and Cell Value for Row 

rowEndNdx: Ending Index of Array Column and Cell Value for Row 

colNdx: Uncompressed Array Column Indices 

values: Uncompressed Array Cell Values 

CompressedRow2DArray has two constructors. One reads a stored object from an open file 

and is self explanatory. The other, 
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CompressedRow2DArray( 
int numRows, 
int numCols, 
int allocSz, 
T defaultVal, 
T nullValue) 

Initializes variables and allocates space. 

The SetElement() method sets the value of an element. The variables crntAddCol and 

crntAddRow are used to check that the row and column being added conform to the row-

column order requirement for adding data. A capacity check is also performed and 

storage increased to if necessary. 

The SetElement and Get.. methods are self-explanatory if one understands the algorithm 

and the vector container class. 

Two WriteToFile() methods and two ReadFromFile() methods are available. Those that 

take a filename as an argument allow for the writing or reading of a 

CompressedRow2DArray object to a named file. The other two allow for the writing or 

reading of a Compressed2DArray object to an already open file. These latter two were 

designed to be used in conjunction with PolyGridLookups. 

The Transpose() method takes its own object and produces a new CompressedRow2DArray 

object for the transpose of itself. The idea behind this method is to first construct the 

rowStartNdx and rowEndNdx arrays using one pass through the untransposed array’s 

colNdx vector. Once that is done, the transpose array’s colNdx and values vectors can be 

filled by random access during a single pass through the untransposed array. The steps in 

this process are: 

1. Instantiate newArray, a new CompressedRow2DArray object to hold the transposed 

matrix. 

2. Count the number of column values for each row in the untransposed matrix using 

vector tmpColCounter. 

3. Translate those counts into the starting and ending indexes of each row in the 

transpose array. 

4. Create storage for and fill the vectors for column numbers and values in the 

transpose array 

5. Set the values for crntAddRow and crntAddCol in the transposed compressed array. 

Conclusion 

In all likelihood, changes will be made to the FlamMap Interpreter code and this guide 

will either be updated or, regrettably, dated in the near future. Such is the relationship 

between code and its documentation. 
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The FlamMap Interpreter will likely be changed to use a version of PolyGridLookups 

recently added to the Envision Libs project. All, or nearly all, of the PolyGridLookups 

documentation should apply to the library version. 
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