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THESIS ABSTRACT 
 
Niccole Kiyomi Shipley 
 
Master of Science 
 
Department of Geological Sciences 
 
December 2011 
 
Title: Isotopic and Petrologic Investigation and Model of Genesis of Large-Volume 
High-Silica Rhyolites in Arc Environments: Karymshina Caldera, Kamchatka, Russia 
 
 

Large-volume calderas are responsible for producing large deposits of rhyolite 

and high-silica rhyolite, but the mechanisms by which these deposits are produced are 

still poorly understood.  The Kamchatka Peninsula of Russia contains several large 

calderas and is one of the most volcanically active areas on Earth.  Karymshina Caldera, 

the largest (25 km x 15 km) caldera in Kamchatka, produced an estimated 800 km3 of 

high-silica rhyolitic ignimbrites and post-caldera extrusions, which erupted 1.78 and 0.5 – 

0.8 Ma, respectively. 

SiO2 content ranges from 66.27-71.89 wt% in the ignimbrites and 70.16-77.70 

wt% in the post-caldera extrusions studied.  Crystal content is primarily quartz and 

plagioclase, 0.5-2 mm in size, with other minerals.  Values of δ18O, δD, 87Sr/86Sr, and 

144Nd/143Nd indicate little assimilation of crustal material, in contrast to modeling results.  

XRF analysis indicates a homogeneous magma.  The rhyolite-MELTS program was used 

to model crystallization of a basaltic source with addition of amphibolite partial melt and 

hydrothermally-altered silicic rock to reproduce the observed compositions. 

This thesis includes both previously published and co-authored material. 
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CHAPTER I 

INTRODUCTION 

 The formation of magmas with rhyolitic (70 – 74 wt% SiO2) and high-silica 

rhyolitic (greater than 74 wt% SiO2) compositions is currently a topic of debate in the 

geologic community (Bachmann & Bergantz, 2004, 2008; Annen et al., 2006; Watts et 

al., 2011).  Several processes by which these magmas can form have been presented and 

all of these processes may be at work in different environments.  The four main 

hypotheses for production of rhyolitic magmas are 1) fractional crystallization of a 

basaltic parent, 2) extraction of evolved melt from a crystalline mush, 3) underplating and 

crustal melting, and 4) recycling and remelting of crustal and previously erupted material 

due to intrusion of basaltic sills.  These processes are of particular concern in the case of 

large-volume calderas.  This is because these calderas tend to produce rhyolitic magmas 

which are more viscous and therefore erupt more explosively than their basaltic 

counterparts. 

 This study focuses on a series of rhyolites and high-silica rhyolites (referred to 

below as HSR) erupted from what has long been recognized as a volcano-tectonic 

depression and which was recently reinterpreted by Leonov and Rogozin (2007) as a 

large-volume caldera which they named Karymshina Caldera.  As the rhyolites (all 

caldera-forming ignimbrites) and the HSR (post-caldera extrusions) appear to be a 

chemically continuous sequence of crystallization from one magma source and the 

surrounding volcanoes are basaltic in composition and therefore provide a reasonable 

estimate of the starting composition for the magma, Karymshina Caldera provides an 

ideal suite for testing of various methods of magma generation. 
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 In this study, I provide mineralogical and chemical descriptions of the caldera-

forming ignimbrites and post-caldera extrusions along with analysis of oxygen and 

hydrogen isotopes.  I then compare this information with the results of rhyolite-MELTS 

modeling of the formation of the HSR magma at Karymshina Caldera. 

 This study further supports the interpretation of Leonov and Rogozin (2007) that 

the volcano-tectonic depression at Karymshina is actually a large volume caldera.  

Because there is no topographical expression of Karymshina Caldera, but the area still 

shows signs of volcanic activity, the area shows that identifying large-volume calderas 

based solely on topographical expression is a flawed method.  Numerous large-volume 

calderas may be overlooked by this method and other techniques should also be 

developed and employed to identify these calderas throughout the world. 

 A portion of this work has been published in volume 189 of the Journal of 

Volcanology and Geothermal Research in January of 2010.  I.N. Bindeman and V. L. 

Leonov performed preliminary XRF and oxygen isotope analyses of the rocks and dated 

several samples as noted in the appropriate chapters.  I performed additional XRF and 

oxygen isotope analyses and 87Sr/86Sr and 144Nd/143Nd analyses. 

 

Large-Volume Calderas and the Environments Where They Occur 

 The processes by which large volumes of rhyolitic magma are generated world-

wide is a topic of great debate (Jellinek and DePaolo, 2003; Geyer and Marti, 2008).  

Large-volume calderas often produce volumes of igneous rock that are greater than 500 

km3, but there have been no such eruptions in human history so all the information we 

have related to what happens in large caldera eruptions is based on geologic study.  In a 



global survey of published studies, Hughes and Mahood (2008) found 91 calderas with 

diameters greater than 5 km and SiO2 contents of at least 63 wt% (Fig. 1).  Due to the 

number of large-volume calderas and because most calderas are formed by higher-silica, 

rhyolitic magmas it is important to understand the processes by which these calderas 

areformed.  This includes examination of how such large volumes of magma with such 

high silica contents are created and stored prior to eruption. 

 

 
 
Figure 1:  World map showing the location and size of several large calderas identified 
by Hughes and Mahood, (2008) with greater than 63 wt% SiO2.  Figure is from their 
study. 
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In their compilation, Hughes and Mahood (2008) did not include calderas in 

complex arc environments, non-arc environments, and calderas not expressed visibly in 

the topography.  Thus the actual number of large-volume calderas world-wide is higher 

than their estimate (represented in Fig. 1) and includes some particularly famous large-
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volume eruptions, such as Long Valley and Yellowstone Calderas in the United States 

(Mahood et al., 2010; Bindeman & Valley, 2002; Shervais & Vetter, 2009; Cathey & 

Nash, 2009; Watts et al., 2010).  While many large-volume calderas do occur in hotspots, 

especially continental hotspots, and transtensional environments, several studies have 

shown that they are commonly generated in subduction zones (Hughes and Mahood, 

2008; Annen and Sparks, 2002; Annen et al., 2006; Ellis et al., 2007; Bindeman et al., 

2010). 

The subduction zones of the Pacific Ring of Fire are home to extensive volcanic 

activity.  Many large and small-volume calderas are concentrated in these areas, 

particularly in areas of near-perpendicular collisions in continental margin arcs, as in the 

Andes Mountains of South America, Central America, and the Kamchatka Peninsula of 

Russia (Fig. 1). 

 

Composition of Erupted Products and High-Silica Rhyolites (HSR) 

 Compositionally, there is a great range of magma compositions for large-volume 

eruptions worldwide (Fig. 2).  Basaltic magmas with low-silica contents were erupted at 

Colli Albani in Italy (Giordano et al., 2006; Marra et al., 2009).  On the high-silica end of 

the spectrum are calderas like Yellowstone Caldera and Long Valley Caldera, both in the 

United States (Mahood et al., 2010; Bindeman et al., 2006).  31 of the calderas identified 

in the Hughes and Mahood (2008) study produced rhyolites with at least 72 wt% SiO2, 

which is approximately 34 % of the calderas studied. 

 As with volcanism in general, the majority of high-silica rhyolitic (HSR) magmas 

(defined as having greater than 74 wt% SiO2) occur in hot spot environments and, to a 



 

Figure 2:  Karymshina Caldera as compared to a selection of subduction zone calderas throughout the world.  Karymshina and 
the two calderas in New Zealand have high SiO2 contents, indicating that Karymshina is not completely unique in terms of the 
SiO2 content present in a subduction zone environment.  Data for the additional selected calderas was taken from the sources 
indicated in the figure. 
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lesser degree, subduction zones, but have a higher tendency to form in areas of tension 

rather than compression within subduction zones (Hughes and Mahood, 2008).  HSR 

magmas are also found at continental hot spots, such as at Yellowstone Caldera, and 

other volcanic areas of continental interiors rather than at oceanic hotspots (Fig. 1) 

(Mahood et al., 2010; Bindeman et al., 2006; Shervais & Vetter, 2009). 

 Although there is great variation in the overall composition of HSR magmas, in 

general they contain relatively low amounts of magnesium and iron and higher amounts 

of aluminum and potassium (Gunnarson et al., 1998; Brown et al., 1998; Shane et al., 

2005), which is expected based on the common presence of plagioclase and alkali 

feldspars.  HSR magmas in subduction zones also tend to have higher H2O contents (up 

to 6 wt%), a common feature of subduction zone magmas in general (Brown et al., 1998; 

Shane et al., 2005). 

 

Petrogenetic Models of HSR Genesis 

 The most common interpretation of HSR magma genesis is that it is formed 

within large batholiths beneath the surface (Bachmann and Bergantz, 2004, 2008).  The 

majority of HSR magmas contain few or no crystals and were the result of volcanic 

activity.  HSR magmas are also in rare cases found as phaneritic intrusions (Bachmann 

and Bergantz, 2008; Hildreth, 2004). 

 Most HSR magmas are produced in areas of thicker crust and incorporate large 

amounts of continental crust, based on elevated 87Sr/86Sr isotope ratios (Bindeman, 2008).  

Previous studies indicate that crust of at least 30 km in thickness is required to produce  



 

Figure 3:  A comparison of crustal thickness with SiO2 content for the selection of subduction zone calderas of figure 2.  
While low SiO2 contents appear to correspond to thinner crust, there does not appear to be a correlation between crustal 
thickness and SiO2 contents in HSR magmas.  It is possible that in areas where the crust is thinner, delamination or some other 
process has thinned the crust after the HSR magmas were produced.  Data for other calderas was taken from the sources 
indicated in the figure. 
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HSR magmas (Fig. 3) and 40 km is ideal (Hughes & Mahood, 2008).  This requirement 

limits production of HSR magmas to areas of continental crust. 

There are four currently accepted hypotheses regarding the production of HSR 

magmas (Fig. 4), 1) fractional crystallization of a basaltic parent in a deep crustal hot 

zone (Annen et al., 2006), 2) extraction of evolved melt from a crystalline mush 

(Bachmann and Bergantz, 2004), 3) underplating of basaltic sills from the mantle and 

crustal melting (Watts et al., 2011), and 4) recycling and remelting of crustal and 

previously erupted material (Watts et al., 2011).  It is likely that the magma was formed 

by some combination of these four methods in most cases. 

 Fractional crystallization (Fig. 4a) of a basaltic parent magma is commonly 

accepted as a way to form HSR magmas as the first minerals to crystallize are olivines 

and pyroxenes, which causes the remaining melt to increase in SiO2 content (Bowen, 

1928; Annen et al., 2006).  Basaltic magmas are also the primary magmas formed from 

melting of the mantle, thus early-formed magma in a subduction zone that results from 

flux of fluids through a hot mantle wedge will be basaltic in composition (Bachmann & 

Bergantz, 2008). 

As basaltic magmas intrude at the base of the overlying crust and cool and 

crystallize, they form a deep crustal hot zone.  Melts produced by fractional 

crystallization in this hot zone are enriched in SiO2 and volatiles.  Due to this increase in 

volatiles and SiO2 the melt is more buoyant than the surrounding rock and rises through 

the crust (Annen et al., 2006; Annen & Sparks, 2002).  A known issue with this method 

of forming HSR magmas is that the dense crystal cumulates that separated during 

fractional crystallization are not found in seismic and gravity studies.  One explanation  



Figure 4:  Schematic diagrams of the three main hypotheses for formation of HSR 
magmas.  A) Formation of a deep crustal hot zone by the intrusion of mantle-derived 
basaltic sills into the lower crust.  Sills partially melt surrounding crust while undergoing 
fractional crystallization and the resulting melt moves upward through bouyancy to the 
shallow crust.  Adapted from Annen et al., (2006).  B) Crystal mush at various depths 
within the crust.  Magma undergoes fractional crystallization and bouyancy causes the 
residual melt to rise.  Adapted from Bachmann and Bergantz, (2005).  C) Crustal 
underplating as basaltic sills from the mantle and lower crust heat overlying shallow crust 
beneath the caldera forming a magma chamber containing partial melts of crustal material 
only.  Adapted from Watts et al., (2011).  D) Crustal recycling and remelting with 
addition of hydrothermally-altered material.  Adapted from Watts et al., (2011). 

9 
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for the absence of these dense cumulates is delamination of the lower crust (Annen et al., 

2006).  Approximately 60 % crystallization of a basaltic magma is required to obtain at 

least 60 wt% SiO2 which means that the initial basaltic magma volume would need to be 

at least twice the volume of HSR magma produced (Annen et al., 2006; Bachmann & 

Bergantz, 2008).  Modeling by Annen et al. (2006) has shown that it is possible to 

produce the required basaltic and HSR magma volumes seen in large-volume calderas by 

fractional crystallization of basaltic magmas in a deep crustal hot zone. 

In the case of extraction of an evolved melt from a crystalline mush (Fig. 4b), the 

extraction may happen in lower, middle, or upper crustal levels (Bachmann and Bergantz, 

2004).  The crystalline mush is produced by rising magma that stalls when it reaches 

depths of equivalent rock density (Bachmann and Bergantz, 2004, 2008; Annen et al., 

2006).  The initial magma is produced in the mantle and intrudes the lower crust.  As it 

cools and crystallizes, the melt is separated by crystal settling and compaction.  The melt 

then rises until it stalls at a new depth and the process is repeated (Bachmann and 

Bergantz, 2004, 2008).  Each new melt is enriched in SiO2 and volatiles compared to the 

previous melt.  In some cases the extraction of an evolved melt from a crystalline mush 

may be a completion of events that began with the fractional crystallization of basaltic 

magma in a deep crustal hot zone. 

The extraction of evolved melt from a crystalline mush can occur by two methods 

1) settling of crystals and 2) compaction of crystals (Bachmann & Bergantz, 2004).  Both 

of these processes have been shown to require a long time (> 103-106 years), which would 

indicate that crystalline mushes could have a residence time on the order of millions of 

years in the shallow crust.  Bachmann and Bergantz (2004) advocated that at 45-50 vol% 



11 
 

crystals, convection in the crystalline mush will cease and crystals will settle and compact 

at the bottom of the magma chamber, leaving the residual extracted melt close to the 

surface where it may continue crystallizing or erupt.  These crystalline mushes can be 

remobilized by the intrusion of a small amount of magma rising from lower depths, 

which could provide enough mobilization and volatiles to cause an eruption (Bachmann 

& Bergantz, 2004).  As with the fractional crystallization hypothesis, the original volume 

of magma must be approximately twice the erupted volume for HSR magmas, as 

evidenced by the required volume of crystals in the mush. 

Crustal melting with underplating (Fig. 4c) again involves the intrusion of basaltic 

magma into the lower crust creating a deep crustal hot zone.  However, in this case the 

basaltic magma remains separated from the crust, which forms the HSR magma.  The 

heat from the intrusion of basaltic magmas (underplating) causes the melting of crustal 

material at a shallower level in the upper crust. 

 However, Annen & Sparks (2002) found that the heat generated in a deep crustal 

hot zone would cause the intruded basalts to come in direct contact with the crustal melt, 

likely causing mixing of the melts.  At the same time, it is unlikely that an intruding 

basalt would not melt some of the crustal material into which it intruded (Annen et al., 

2006), meaning that fractional crystallization alone is also not a likely method for 

producing HSR magmas.  It is therefore most likely that a combination of fractional 

crystallization and crustal melting is needed to produce HSR magmas. 

Generation of HSR magma by recycling and remelting of crustal material has 

been proposed in multi-caldera complexes (Fig. 4c, d) (Watts et al., 2010, 2011) where a 

relatively constant heat source below the caldera complex causes previously erupted 
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material within the caldera to remelt.  The heat source in the crust comes from basaltic 

sills intruded from the mantle or lower crust.  The erupted material of the caldera 

complex is reburied within the caldera and is exposed to hydrothermal alteration by 

meteoric water, which would lower δ18O values over time.  This process would also tend 

to incorporate some of the basaltic sill complex at various stages in the magma evolution, 

though it would not be necessary for any particular magma batch.  The incorporation to 

varying degrees of the basaltic sill complex would also allow for increases in δ18O values 

at varying points within an eruption sequence (Watts et al., 2011). 

 

The Kamchatka Peninsula 

 Due to high subduction convergence rates of 8 cm/yr (Gorbatov et al., 1999), the 

Kamchatka Peninsula of Russia is home to some of the most active volcanoes and largest 

calderas on Earth and therefore provides an excellent opportunity to study volcanoes and 

their formation.  However, the remote location and, until recently, restrictions of the 

Soviet government have prevented extensive study in the area by international 

researchers.  Recent studies have focused on the identification and characterization of 

large-volume calderas throughout this region (Braitseva et al., 1997; Bindeman et al., 

2010 and references therein) as well as the study of other volcanoes, with the goal of 

understanding processes for formation of magma in the region (Duggen et al., 2007; 

Portnyagin & Bindeman, unpublished; Portnyagin et al., 2007; Portnyagin et al., 2009).  

Currently, there are at least 13 topographically expressed calderas in Kamchatka that 

have been identified and were active within the last 5.5 million years (Fig. 5) (Bindeman  
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Figure 5:  Map of the Kamchatka Peninsula showing the locations of known volcanoes 
and caldera complexes dating from the Pleistocene through the Holocene.  Figure adapted 
from Bindeman et al., (2010). 
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et al., 2010).  Most of these calderas are located in the southern half of the peninsula, 

where a subduction zone has existed since approximately 50 Ma (Scholl et al., 2007). 

 The current subduction zone along the eastern coast of the peninsula has been 

active since approximately 50 Ma (Scholl, 2007), but has migrated slowly as more crust 

has been accreted onto the peninsula’s east coast.  It runs parallel to the coastline from 

the southern tip of the peninsula to the Cape Kamchatka Peninsula (Scholl, 2007).  Along 

this section of the subduction zone, which continues south into the Kurile Islands and 

Japan, the Pacific Plate is subducting nearly perpendicular to the peninsula.  The depth to 

the subducting plate increases fairly rapidly moving away from the trench.  Along the 

Eastern Volcanic Front (EVF), the depth ranges from 80-200 km (Fig. 6) (Nizkous et al., 

2007; Auer et al., 2009).  Under Karymshina Caldera (the focus of this study), the depth 

to the slab is approximately 130 km (Nizkous et al., 2007; Auer et al., 2009).  The 

thickness of the continental crust across Kamchatka varies somewhat, but generally 

remains around 30-40 km thick in the central and southern segments (Fig. 6) 

(Kepezhinskas et al., 1997).  The composition of the crust throughout the peninsula is 

composed of low to high-grade metamorphic rocks, including greenschist, blueschist, 

amphibolite, eclogite, and granulite.  The southern half of the peninsula also contains a 

granulite-facies lower crust (Kepezhinskas et al., 1997).  However, the surface of the 

peninsula contains large amounts of basalt and basaltic-andesite due to volcanic activity 

during the Holocene. 

 During the late Pleistocene and early Holocene, glaciers covered much of the 

Kamchatka Peninsula, varying somewhat in extent and location over time.   These 

glaciers were alpine glaciers, unlike the continental glaciers present across North  



 
Figure 6:  Map showing the isodepths to the subducting plate under the Kamchatka 
Peninsula in km (dotted lines).  Grey areas are the main volcanic fields and black dots 
and open circles are currently active volcanoes.  Karymshina Caldera is the red dot.  
Figure adapted from Auer et al., (2009). 
 

America at the same time (Ponomareva et al., 2007).  These glaciers caused extensive 

erosion of the landscape.  Many of the calderas and volcanoes that existed prior to 

glaciation were eroded almost entirely, depending upon extent of glacial coverage in the 
15 
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area.  Volcanoes and calderas that became active during the glaciation have various 

degrees of erosion due to glacial activity (Ponomareva et al., 2007). 

  In the north and east of the peninsula is the Sredinny Range, which has few 

currently active volcanoes and several volcanoes that were active in the Late Pliocene to 

Mid-Pleistocene and are representative of the early volcanism in Kamchatka (Volynets, 

1994; Ponomareva et al., 2007).  Parallel to the southern half of the Sredinny Range and 

slightly west of it is the Central Kamchatka Depression (CKD), which is where some of 

the most active volcanoes are located (Bindeman et al., 2010; Ponomareva et al., 2007).  

The CKD is the most productive volcanic belt on the peninsula, despite having fewer 

volcanoes than both the Sredinny Range and the EVF (Ponomareva et al., 2007).  As 

mentioned above, the majority of currently active volcanoes are located on the southern 

half of the peninsula, primarily in the EVF, which is located along the eastern edge of the 

peninsula and runs parallel to the CKD to the west of it (Fig. 5) (Bindeman et al., 2010; 

Ponomareva et al., 2007). 

 The majority of magmas produced on the Kamchatka peninsula are basaltic 

ranging from approximately 45-60 wt% SiO2 as is true for most subduction zones 

worldwide (Fig. 7).  HSR magmas constitute a minor portion of the magmas, consisting 

of roughly 2% of the total magma production on the peninsula, which is similar to other 

subduction zones (Bindeman et al., 2010; Hughes & Mahood, 2008; Ponomareva et al., 

2007).  Of the HSR magmas, the majority are found in large-volume calderas as opposed 

to other types of volcanoes (Fig. 2, 7).  This is also true of HSR and rhyolitic magmas on 

the Kamchatka Peninsula and to Karymshina Caldera studied here (Fig. 7) (Bindeman et 

al., 2010). 



 
Figure 7:  Graph showing a comparison of Karymshina Caldera samples to samples from a selection of arc settings, including 
the Kamchatka Arc.  Data not from Karymshina Caldera is from the Georoc database at http://georoc.mpch-
mainz.gwdg.dc/georoc. 
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CHAPTER II 

KARYMSHINA CALDERA 

History 

 Karymshina Silicic Center is located on the Kamchatka Peninsula approximately 

50 km southwest of the city of Petrapavlovsk-Kamchatsky (Fig. 5, 8).  The caldera is 

roughly 25x15 km in size and the proposed caldera ring fractures are identified based 

upon outcrops of HSR and ignimbrite sheets in the area (Leonov & Rogozin, 2007).  A 

great abundance of silicic rocks was noted during geologic mapping of the area in the 

1960s and 1970s.  The silicic rocks were initially considered to be extrusive in origin and 

the area was identified as a volcano-tectonic depression (Sheimovich & Khatskin, 1996; 

Sheimovich & Golovin, 2003).  Leonov and Rogozin (2007) reinterpreted the silicic 

rocks as intracaldera deposits of ignimbrite and post-caldera extrusions.  The 

identification of the Karymshina area as a caldera only occurred in 2007 owing to a lack 

of topographical expression of the caldera, a lack of extracaldera tuff deposits, and 

limited and difficult access to the remote location.  It is still unclear whether the 

intracaldera ignimbrites represent a single eruption.  However, Bindeman et al. (2010) 

used Ar-Ar dating of biotites in the top and bottom of the 1000 m thick intracaldera 

ignimbrite sheet and obtained identical ages of 1.78 ± 0.02 Ma (Table 1). 

 

Origin of Karymshina Caldera 

 The area surrounding Karymshina Caldera includes several hotsprings and has 

long been identified as a volcano-tectonic depression (Leonov & Rogozin, 2007).  It was 

initially believed that all the volcanic rocks in the area were related to extrusions and the  



 

Figure 8:  Map and cross-section of Karymshina Caldera, adapted from Leonov & 
Rogozin, (2007).  The location of samples are shown as colored dots as indicated.  The 
location of samples dated by Sheimovich and Golovin, (2003) are shown by the red 
letters and correspond to their dates in Table 1.  1: inferred boundary of caldera, with 
associated deposits, 2: resurgent uplift, 3: post-caldera extrusions, 4: lacustrine deposits, 
5: small volcanic structures of basaltic lavas (a) and ore veins (b), 6: thermal springs; 
Bol’she-Bannaya (1), Karymshina (2), and Verkhne-Paratunka (3). 
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Table 1: Mineral and whole rock ages for samples from Karymshina Caldera.  Data taken from sources as indicated below. 
  Plagioclase (Ar-Ar) or Whole 

Rock 
Biotite (Ar-Ar) Zircon (U-Pb)  

Sample 
Number 

Additional 
Description 

Age ± My MSWD (for 
Plagioclase) 

Age ± My MSW
D 

Age ± My MSW
D 

Source 

Post-Caldera Extrusions        
58L-
2006 

 0.53 ± 0.05      Leonov & Rogozin, 2007 

32L-
2007 

     0.919 ± 
0.084 

0.26 Bindeman et al., 2010 

2L-2008  0.50 ± 0.20      Leonov & Rogozin, 2007 
a Ar-Ar age 0.53 ± 0.05      Sheimovich & Golovin, 

2003 
b Ar-Ar age 0.63 ± 0.03      Sheimovich & Golovin, 

2003 
c Ar-Ar age 0.81 ± 0.02      Sheimovich & Golovin, 

2003 
d Ar-Ar age 0.69 ± 0.02      Sheimovich & Golovin, 

2003 
e Ar-Ar age 0.5 ± 0.2      Sheimovich & Golovin, 

2003 
Caldera-Forming Ignimbrites        
321L-
1972 

 1.78      Leonov & Rogozin, 2007 

5G-2005 Bannaya River 1.39 ± 0.10 1.12      
24L-
2006 

 1.68 ± 0.30 0.38 1.78 ± 0.02 0.44 1.763 ± 
0.090 

 Bindeman et al., 2010 

36L-
2007 

Upper Portion of 
Ignimbrite Sheet 

1.78    1.87 ± 0.11  Bindeman et al., 2010 

40L-
2007 

Mid-Lower 
Portion of 
Ignimbrite Sheet 

1.54 ± 0.09 0.34 1.78 ± 0.02 0.51     Bindeman et al., 2010 
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ignimbrite sheets in the depression came from eruptions of surrounding volcanoes 

(Sheimovich & Khatskin, 1996; Sheimovich & Golovin, 2003). 

 Leonov & Rogozin (2007) proposed that within the volcano-tectonic depression 

there is a large-volume caldera which they named Karymshina Caldera.  The area of the 

caldera contains at least one ignimbrite sheet, which reaches exposed thicknesses of 

1,000 m on the eastern edge and contains no observable stratigraphic differences (Fig. 9).  

Other outcrops of ignimbrite exist across the caldera and these may be the same 

ignimbrite deposit or other sheets, though compositionally they are identical.  The 

ignimbrite outcrops wedge out as they approach the edges of the depression near the 

volcanoes Goryachaya, Yagodnaya, and Sunduk.  The volcanic products of those 

volcanoes and additional large extrusions overlay the ignimbrite sheets along the 

supposed ring fracture, suggesting that the ignimbrites were produced by a different 

volcano (Fig. 8) (Leonov & Rogozin, 2007).  The mineralogy of the ignimbrites from 

several locations across the proposed caldera is quite similar, containing phenocrysts of 

16-21 vol% quartz, 19-25 vol% plagioclase, 0-4 vol% amphibole, 5-11 vol% biotite, and 

1-3 vol% oxides with 42-48 vol% glass matrix (Table 2).  The surrounding volcanoes, 

like Gorely and Mutnovsky, have produced only basalts and basaltic-andesites, while the 

ignimbrites and extrusions of the caldera are rhyolites (Bindeman et al., 2010; Leonov & 

Rogozin, 2007). 

 While there are extensive rhyolites within the proposed caldera, ignimbrites have 

not been found outside the caldera yet (Bindeman et al., 2010).  The ignimbrite sheets 

within the caldera are weathered and, although they have some flow patterns, it still needs 

to be proven that the deposit is a single eruption.  The lack of topographic expression for  



 

Figure 9:  Image of a glacially eroded outcropping of the 1,000 m thick intra-caldera 
ignimbrite sheet.  The approximate location of three dated ignimbrite samples from the 
sheet are shown in yellow. 
 

the caldera further complicates interpretations of the deposits.  However, it is also 

possible, considering the age of the caldera, that glaciers and subsequent weathering and 

erosion have erased the extracaldera tuffs and topographical traces of the caldera rims.  

Examination of ash layers in ocean floor sediments has not identified any thick ash layers 

with an identical age to Karymshina Caldera at 1.78 Ma (Cao et al., 1995; Bindeman et 

al., 2010).  While these studies have not found ash layers related to the caldera, the 

movement of the Pacific Plate subducting and the extent of ash fallout have not been 

estimated and taken into account.  Evidence on the ocean floor may have already been 

subducted or, more likely, may be in a different area than expected.
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Table 2: Summary of thin-section analyses, including electron-microprobe analysis of 
individual plagioclase, amphibole, and oxide phenocrysts and spot analyses of the glass 
matrix. 
Sample 
Number 

Additional 
Description 

Glass 
(vol%) 

Plagioclase Phenocryst Analysis 
Location 

Plag. (vol% for 
rock or wt% 
for phenocryst) 

Quartz 
(vol%) 

       

Post-Caldera Extrusions      
58L-2006  54   23 14 
   1; Unzoned Phenocryst Core Ab73.15, An21.81  

   Rim Ab71.12, An24.46  
   2; Concentric Zoning with Rim 

to Core Extinction 
Core Ab67.81, An28.48  

   Intermediate Ab64.07, An32.69  
   Rim Ab70.95, An24.66  
   3; Complex Core, Concentric 

Zoning Outside Core with Core 
to Rim Extinction 

Core Ab65.35, An31.39  
   Intermediate Ab51.66, An46.63  
   Rim Ab71.44, An24.09  
   4; Complex Core, Concentric 

Zoning Outside Core with Rim 
to Core Extinction 

Core Ab69.09, An27.02  
   Intermediate Ab69.81, An26.15  
   Rim Ab73.02, An22.16  
2L-2008   53     22 17 
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Table 2: continued    

Sample 
Number 

Amphibole 
Phenocryst 

Analysis 
Location 

Amphibole (vol%) Other (vol%) 

     
Post-Caldera Extrusions    
58L-2006    Biotite-6, Oxides-3 
    
     
     
     
     
     
     
     
     
     
     
2L-2008       Biotite-4, Oxides-2 
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Table 2: continued 

Sample 
Number 

Additional 
Description 

Glass 
(vol%) 

Plagioclase Phenocryst Analysis 
Location 

Plag. (vol% 
for rock or 
wt% for 
phenocryst) 

Quartz 
(vol%) 

Caldera-Forming Ignimbrites      
5G-2005 Bannaya River 43   46 2 
24L-2006  42   25 21 
36L-2007 Upper Portion 

of Ignimbrite 
Sheet 

46   19 20 
  1; Semi-Concentric Zoning 

with Core to Rim 
Extinction 

Core Ab70.07, An25.89  

   Intermediate Ab69.80, An26.49  
   Rim Ab67.80, An28.73  
   2; Semi-Concentric Zoning 

with Rim to Core 
Extinction 

Core Ab66.36, An30.39  
   Rim Ab68.20, An28.43  

   3; Semi-Concentric Zoning 
with Core to Rim 
Extinction 

Core Ab67.83, An28.91  
   Intermediate Ab67.19, An29.66  
   Rim Ab68.67, An27.98  
   Xenocryst Plagioclase 

Phenocrysts 
 Ab38.19, An60.50  

40L-2007 Mid-Lower 
Portion of 
Ignimbrite 
Sheet 

48   23 16 
  1; Unzoned Phenocryst Core Ab69.50, An26.90  
  Rim Ab66.73, An30.17  
   2; Complex Core, Unzoned 

Phenocryst 
Core Ab68.60, An28.00  

   Rim Ab68.80, An27.80  
   3; Semi-Concentric Zoning 

with Rim to Core 
Extinction 

Core Ab71.50, An24.60  
   Intermediate Ab72.23, An23.78  
   Rim Ab72.03, An23.78  
   4; Semi-Concentric Zoning 

with Core to Rim 
Extinction 

Core Ab60.50, An37.20  

   Intermediate Ab68.17, An28.43  

      Rim Ab69.60, An27.10   
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Table 2: continued    

Sample 
Number 

Amphibole 
Phenocryst 

Analysis 
Location 

Amphibole (vol%)   

Caldera-Forming Ignimbrites    
5G-2005   5 Biotite-2, Oxides-2 
24L-2006   4 Biotite-5, Oxides-3 
36L-2007   2 Biotite-12, Oxides-

1, Xenocrysts  1; Amphibole 
with Amphicitic 
Rim 

Core K0.06Ca1.73Na0.13Al0.07Mg3.28Mn0.14Fe2+
1.01Fe3+

0.53Ti0.11Si7.04Al0.9597O22OH1.91F0.08Cl0.01 
 Rim Formula could not be calculated  

   
     
     
     
     
     
     

40L-2007    Biotite-11, Oxides-
2, Xenocrysts     
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Table 2: 
continued 

        

Sample 
Number 

Glass 
Analysis 
(wt%) 

SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O 

Caldera-Forming Ignimbrites        
5G-2005          
24L-2006          
36L-2007          
 1 75.645667 0.1190973 11.16109 0.816189 0.0187443 0.3735017 0.569472 2.7641267 
 2 67.243367 0.119613 14.813467 1.5602747 0.012799 0.380218 0.8027013 3.41636 
          
          
          
          
          
          
          

40L-2007          
 1 78.569467 0.0617513 11.024123 0.3688273 0.009595 0.0783313 0.6965777 3.59087 
 2 53.2855 0.0433383 16.347667 0.3972237 0.0062117 0.0183603 0.656125 5.5103067 
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Table 2: 
continued 

       

Sample 
Number 

Glass 
Analysis 
(continued) 

K2O P2O5 S Cl F O Total 

Caldera-Forming Ignimbrites       
5G-2005         
24L-2006         
36L-2007         
 1 4.68199 -

0.0047747 
0.0045877 0.0127037 0.052693 -0.02506 96.19 

 2 5.9867833 -
0.0007147 

0.005262 0.0329783 -
0.0391867 

0.00906 94.343 

         
         
         
         
         
         
         

40L-2007         
 1 3.5107333 -0.00566 0.0030883 0.0132013 0.0394793 -0.0196 97.9408 
 2 5.3679133 -

0.0070733 
0.001318 0.021411 0.1593353 -0.07193 81.7357 
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CHAPTER III 

METHODS 

 A portion of this work has been published in volume 189 of the Journal of 

Volcanology and Geothermal Research in January of 2010.  I.N. Bindeman and V. L. 

Leonov performed preliminary XRF and oxygen isotope analyses of the rocks and dated 

several samples as noted.  I performed additional XRF and oxygen isotope analyses and 

87Sr/86Sr and 144Nd/143Nd analyses. 

 

Volcanic Rocks of Karymshina Caldera 

 The volcanic rocks at Karymshina Caldera consist of ignimbrite sheets and post-

caldera extrusions (Fig. 8, 9).  Using the dimensions of the caldera and the volume of 

intracaldera ignimbrites (275 km3) Leonov & Rogozin (2007) estimated that the eruptive 

volume was 825 km3 based on calculations presented by Mason et al. (2004).  Most of 

this erupted material has been eroded away by glaciers, rivers, and general weathering in 

the wet climate of Kamchatka (Leonov & Rogozin, 2007). 

 Several samples of each rock type were taken in different areas of the caldera 

(Fig. 8) for analysis.  In addition, samples were taken at the bottom, middle, and top of 

the outcropping portion of the 1,000 m thick ignimbrite sheet (Fig. 9).  The samples 

analyzed in this study were collected in the field by Leonov and Rogozin in 2006, I.N. 

Bindeman in 2007, and N. Shipley in 2009. 
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Whole Rock Chemistry 

 Table 3 presents whole rock chemical analyses of samples conducted in the 

studies of Leonov and Rogozin (2007) and Bindeman et al. (2010), as well as additional 

analyses previously not published.  An initial set of x-ray fluorescence analyses (XRF) 

were performed on rock samples by Leonov and Rogozin.  Additional samples were 

selected for analysis at Washington State University.  The additional samples to be 

analyzed were selected based on location, with the intent of creating a picture of 

composition variation across the caldera.  A subset of samples was analyzed to examine 

chemical variation within the 1,000 m ignimbrite sheet exposure.  Samples of both 

ignimbrites and post-caldera extrusions were selected to determine the chemical variation 

between the two rock types.  The results of these analyses were also used as a comparison 

to determine the accuracy of the earlier analyses of Leonov and Rogozin (2007), all of 

which are in agreement. 

 

Mineralogy and Petrography 

 Thin sections were made of five samples (2L-2008, 24L-2006, 36L-2007, 40L-

2007, and 58L-2006) for electron microprobe analysis (Table 2, Fig. 8).  An additional 

three covered thin sections were obtained from Vladimir Leonov (5G-2005, zh356, and 

zh423) and were examined with a petrographic microscope (Table 2).  Three of the five 

microprobe thin sections and one of the covered thin sections are samples of ignimbrites.  

The remainder of the thin sections are samples of post-caldera extrusions.  Samples were 

selected for thin section based on location within the caldera to provide sampling 

coverage across the caldera (Fig. 8).  In addition, ignimbrite samples were chosen from  



31 
 

Table 3: XRF and ICP-MS analyses of samples from Karymshina Caldera.  Data 
collected by 1-I. Bindeman, 2-S. Duggen, 3-V. Leonov.  Some of the data were 
reported in Bindeman et al., (2010). 

Post-Caldera Extrusions 
Sample 
Number 

80L-2002 62L-2005 63L-2005 124L-
2005 

143L-
2005 

112L-
2006 

138L-
2006 

Additional 
Description 

              

XRF        
SiO2 75.49 76.13 75.82 74.23 76.81 76.98 72.32 

TiO2 0.204 0.120 0.190 0.217 0.149 0.145 0.282 
Al2O3 12.90 12.35 13.09 13.63 12.46 12.40 13.97 
FeO*        
Fe2O3 0.316 <0.1 <0.1 <0.1 <0.1 <0.1 0.402 
FeO 1.510 0.985 1.440 1.860 1.290 1.150 1.680 
MnO 0.0609 0.057 0.059 0.066 0.046 0.080 0.095 
MgO 0.252 0.215 1.180 0.329 0.236 0.340 1.090 
CaO 1.198 0.560 1.320 1.660 0.809 0.872 2.670 
Na2O 3.845 3.750 3.940 4.021 3.727 3.700 3.730 
K2O 3.197 3.680 3.080 2.980 3.450 3.700 2.530 

P2O5 0.0375 0.020 0.049 0.065 0.031 0.033 0.090 
Sum 99.01 97.87 100.17 99.06 99.01 99.40 98.86 
SiO2 Norm        

ICP-MS        
Ni        
Cr        
Sc        
V        
Ba        
Rb        
Sr        
Zr        
Y        
Nb        
Ga        
Cu        
Zn        
Pb        
La        
Ce        
Th        
Nd        
U        
Collected By 3 3 3 3 3 3 3 
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Table 3: Continued 
Post-Caldera Extrusions 

Sample 
Number 

32L-2007 35L-2007 56L-2007 80L-2007 81L-2007 82L-2007 105L-
2008 

Additional 
Description 

              

XRF        
SiO2 77.40, 

62.91 
73.22 74.80 75.60 74.10 75.80 77.70 

TiO2 0.180 0.184 0.502 0.239 0.371 0.154 0.102 
Al2O3 12.10 12.99 13.30 12.70 13.60 12.30 12.20 
FeO* 1.62 1.23      
Fe2O3   1.550 0.872 1.550 0.878 <.01 
FeO   0.360 1.080 0.430 0.360 0.930 
MnO 0.064 0.079 0.094 0.051 0.052 0.085 0.068 
MgO 0.340 0.340 0.490 0.499 0.544 0.369 0.017 
CaO 1.280 1.330 1.730 1.550 1.260 1.020 0.700 
Na2O 3.240 3.960 3.640 3.260 4.120 3.520 3.810 
K2O 3.200, 

2.090 
3.390 3.190 3.020 3.240 3.530 2.540 

P2O5 0.043 0.047 0.049 0.054 0.064 0.031 0.053 
Sum 99.46 96.77 99.71 98.93 99.33 98.05 98.12 
SiO2 Norm 77.82 75.66      

ICP-MS        
Ni  0      
Cr  2      
Sc  4      
V  14      
Ba  909      
Rb  67      
Sr  143      
Zr  86      
Y  14      
Nb  3.9      
Ga  13      
Cu  1      
Zn  25      
Pb  11      
La  17      
Ce  31      
Th  5      
Nd  13      
U  3      
Collected By 2, 3 2 3 3 3 3 3 
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Table 3: Continued 
Caldera-Forming Ignimbrites 

Sample 
Number 

5G-2005 24L-2006 36L-2007 37L-2007 38L-2007 39L-2007 40L-2007 

Additional 
Description 

Bannaya 
River 

  Upper 
Portion of 
Ignimbrite 
Sheet 

      Mid-
lower 
Portion of 
Ignimbrite 
Sheet 

XRF        
SiO2 62.91, 

62.90, 
73.00 

70.29, 
72.80 

70.55, 
73.40 

69.78 71.64 71.86 70.78, 
73.00 

TiO2 0.625 0.287 0.283 0.299 0.295 0.296 0.290 
Al2O3 16.22 14.62 14.68 14.62 14.61 14.71 14.69 
FeO* 4.57 2.25 1.63 1.94 1.32 1.38 2.70 
Fe2O3        
FeO        
MnO 0.116 0.090 0.039 0.041 0.042 0.064 0.096 
MgO 1.650 0.760 0.680 0.650 0.560 0.510 0.600 
CaO 4.650 2.790 2.300 2.570 2.490 2.380 2.330 
Na2O 3.770 3.930 3.800 3.920 4.040 3.990 4.140 
K2O 2.090 2.580 2.550 2.560 2.610 2.560 2.560 

P2O5 0.179 0.083 0.051 0.088 0.065 0.074 0.070 
Sum 96.77 97.68 96.56 96.46 97.67 97.83 98.26 
SiO2 Norm 65.01 71.96 73.06 72.33 73.35 73.46 72.03 

ICP-MS        
Ni 0 0 0 0 0 0 0 
Cr 6 4 3 3 4 4 3 
Sc 14 5 5 6 6 4 5 
V 108 36 28 40 32 29 40 
Ba 651 791 783 807 793 801 783 
Rb 40 53 51 51 51 51 52 
Sr 449 280 261 274 274 274 277 
Zr 151 98 94 100 97 98 95 
Y 21 15 12 13 12 13 13 
Nb 2.9 2.5 1.7 2.3 3.3 2.9 1.8 
Ga 17 12 14 14 13 13 13 
Cu 24 5 5 5 4 3 5 
Zn 62 35 27 37 23 25 30 
Pb 8 7 8 8 9 8 8 
La 12 12 12 13 10 15 13 
Ce 23 26 24 24 22 28 23 
Th 3 4 4 4 4 3 3 
Nd 14 13 9 11 9 12 11 
U 2 2 2 2 2 0 1 
Collected By 2 1, 2 2, 3 2 2 2 2, 3 
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Table 3: Continued 
Caldera-Forming Ignimbrites 

Sample 
Number 

41L-2007 43L-2007 44L-2007 45L-2007 46L-2007 47L-2007 

Additional 
Description 

            

XRF       
SiO2 70.00 70.20 70.19 70.71 70.10 69.95 

TiO2 0.292 0.282 0.287 0.279 0.286 0.288 
Al2O3 14.82 14.51 14.82 14.76 14.76 15.11 
FeO* 2.75 2.05 2.30 2.09 2.24 2.31 
Fe2O3       
FeO       
MnO 0.098 0.092 0.100 0.056 0.061 0.095 
MgO 0.770 0.760 0.740 0.670 0.740 0.690 
CaO 2.300 2.690 2.700 2.460 2.640 2.790 
Na2O 4.110 3.800 4.170 4.150 4.160 4.250 
K2O 2.530 2.590 2.440 2.700 2.490 2.270 

P2O5 0.081 0.082 0.082 0.077 0.082 0.080 
Sum 97.75 97.05 97.83 97.93 97.55 97.83 
SiO2 Norm 71.61 72.33 71.75 72.20 71.85 71.50 

ICP-MS       
Ni 0 0 0 0 0 0 
Cr 4 3 4 3 3 3 
Sc 5 5 5 5 6 7 
V 45 37 36 36 38 41 
Ba 790 782 779 822 786 748 
Rb 50 55 49 55 49 45 
Sr 272 268 288 263 285 300 
Zr 98 97 97 98 98 100 
Y 12 12 13 14 12 13 
Nb 2.4 2.7 2.2 2.4 2.4 1.9 
Ga 14 14 13 14 13 14 
Cu 5 5 5 4 5 4 
Zn 41 33 41 35 33 37 
Pb 7 9 14 8 6 7 
La 9 11 15 15 12 12 
Ce 22 29 23 26 22 24 
Th 3 3 3 3 4 2 
Nd 10 12 10 14 12 12 
U 1 2 3 2 1 2 
Collected By 2 2 2 2 2 2 
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both the top and bottom of the 1,000 m ignimbrite sheet to allow examination of changes 

within the ignimbrite sheet. 

 Electron microprobe analyses of thin sections (Table 2) were performed at the 

Lokey Laboratories, University of Oregon on the Cameca SX-100 using an accelerating 

voltage of 15 kV, a 30 nA beam current, and a 10 μm spot beam size.  Several 

plagioclase crystals were analyzed from each sample, as well as some amphiboles, 

plagioclase crystals within xenocrysts, and the glass matrix.  Probed plagioclase crystals 

were chosen to represent a variety of zoning types; unzoned, complex, and concentric.  In 

addition, plagioclase with core - rim and rim - core extinction patterns were selected.  

The amphiboles analyzed were chosen because they have exsolution rims.  Plagioclase 

crystals were chosen at random within xenoliths to provide a sampling of xenolith crystal 

compositions and to examine differences in composition between the xenoliths and the 

extrusive rock matrix.  Random selection of plagioclase crystals within the xenoliths was 

due to the small size of the crystals, which made features such as zoning impossible to 

see.  The glass matrix was analyzed in several locations to check for potential variation 

within the matrix. 

 Spot analyses of the plagioclase crystals in the matrix were performed at least on 

the rim and in the core of the crystal.  Some crystals also had spot analyses performed at 

other points within the crystal.  Wherever possible, at least three spot analyses were taken 

at each location analyzed to increase accuracy of the results.  Spot analyses of the 

amphiboles were performed at the core and within the exsolution rim.  Plagioclase 

crystals within the xenocrysts were analyzed at the cores. 
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Isotope Analysis 

 Oxygen isotopes were analyzed in plagioclase and quartz using samples weighing 

approximately 1.5 mg on the MAT 253 Stable Isotope Ratio Mass Spectrometer, a CO2 

laser flourination vacuum line, at the University of Oregon.  All analyzed crystals were 

checked under the microscope to ensure they were free of inclusions and lacked alteration 

due to weathering.  The largest phenocrysts available were analyzed individually (Table 

4) to check for isotopic variation among the phenocrysts.  However, none were found and 

thus bulk analyses are robust. 

 Two samples from the Karymshina ignimbrites were analyzed by Cs primary 

beam using polished zircon mounts (also previously used for U-Pb dating, Table 1) at the 

UCLA ion microprobe facility on the Cameca 1270 ion microprobe and returned values 

of 5.2 ± 0.3 permil. 

 Hydrogen isotopes were analyzed in biotite and amphibole using samples 

weighing approximately 1.5 mg on the High Temperature Conversion/Elemental 

Analyzer (TC/EA) coupled with the MAT 253 mass spectrometer at the University of 

Oregon.  Only biotite and amphibole samples taken from the ignimbrites were analyzed 

as insufficient quantities of these minerals in an unaltered state were present in the post-

caldera extrusions.  All samples used were checked as described above to ensure that 

these phases were fresh and not chloritized or oxidized and were free of inclusions. 

 86Sr/87Sr and 144Nd/143Nd ratios were analyzed at Central Washington University 

by Dr. Frank Ramos using TIMS.  These data were obtained from whole rock powders.  

Samples were checked for alteration due to weathering prior to being powdered for 

analysis. 
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Table 4: Results of various isotope studies by sample for Karymshina Caldera rocks.  The calculated magma value of d18O 
was calculated according to formulas in Bindeman & Valley, (2002) and Bindeman, (2004) and whenever possible, the 
calculated magma values from quartz and from plagioclase were averaged. 

  dD in ‰ with H2O in wt%   d18O in ‰ d18O in ‰ d18O in ‰ 

Sample 
Number 

Additional Description Biotite H2O in 
Biotite 

Amph. H2O in 
Amph. 

Quartz Plag. Cpx 

Post-Caldera Extrusions        

107L-05      7.22   

124L-05      7.37 ± 0.21 6.38 ± 0.05  

143L-05      7.31 6.29  

49L-06       6.22  

58L-06      7.08 ± 0.05 6.36 ± 0.03  

75L-06      7.55 ± 0.15 6.39 ± 0.03  

88L-06      7.14 6.34  

112L-06      7.3 6.49  

138L-06      7.56 6.51 ± 0.07  

80L-07      7.23 ± 0.04 6.33 ± 0.11  

82L-2007      7.43 6.56 ± 0.01  

2L-08      7.16 ± 0.27 6.36  

Caldera-Forming Ignimbrites        

321L-1972         

2005G-5 Bannaya River      5.83, 5.76, 5.90 3.79, 4.09 

23L-2006  -109.85 2.38     

24L-2006     7.50, 7.26 5.71  

36L-2007 Upper Portion of Ignimbrite 
Sheet 

-124.87 2.58   6.53  

37L-2007  -119.00 (Altered) 2.68     

38L-2007  -120.82 (Altered) 2.56     

40L-2007 Mid-lower Portion of 
Ignimbrite Sheet 

-141.22 (Altered) 2.67  7.91 6.33  

44L-2007 -113.67 2.10 -120.96 1.97    

45L-2007 -141.74 2.30      

47L-2007 -142.76 2.87 -148.89 1.83    

48L-2007           8.12, 7.75     
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Table 4: Continued  
  d18O in ‰ d18O in ‰       

Sample 
Number 

Additional Description Zircon Calculated 
Magma Value 

87Sr/86Sr 10^-6 143Nd/144Nd 10^-6 eNd Source 

Post-Caldera Extrusions        

107L-05  6.77       

124L-05  6.93       

143L-05  6.89       

49L-06         

58L-06  6.63       

75L-06  7.10       

88L-06  6.69       

112L-06  6.98       

138L-06  7.06       

80L-07  6.85       

82L-2007  7.07       

2L-08  6.71       

Caldera-Forming Ignimbrites        

321L-1972   0.703320 8 0.513015 12   

2005G-5 Bannaya River 6.17 0.703324 10 0.513065 12 8.29 Bindeman et al., 2010 

23L-2006         

24L-2006  
4.71, 5.87 

6.55      Bindeman et al., 2010 

36L-2007 Upper Portion of Ignimbrite 
Sheet 

4.12, 4.75, 5.64, 
6.12 

7.02 0.703328 10 0.513048 12 7.96 Bindeman et al., 2010 

37L-2007         

38L-2007         

40L-2007 Mid-lower Portion of 
Ignimbrite Sheet 

7.14 0.703317 8    Bindeman et al., 2010 

44L-2007         

45L-2007         

47L-2007         

48L-2007     7.49             
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CHAPTER IV 

RESULTS 

 A portion of this work has been published in volume 189 of the Journal of 

Volcanology and Geothermal Research in January of 2010.  I.N. Bindeman and V. L. 

Leonov performed preliminary XRF and oxygen isotope analyses of the rocks and dated 

several samples as noted.  I performed additional XRF and oxygen isotope analyses and 

87Sr/86Sr and 144Nd/143Nd analyses. 

 

Whole Rock Chemistry 

 The results of the XRF analyses show that both the caldera-forming ignimbrites 

and the post-caldera extrusions have high SiO2 and moderate K2O (based on expected 

values compared to SiO2) content.  The post-caldera extrusions are more differentiated 

and have higher SiO2 and K2O than the ignimbrites, although none of the rocks contain 

phenocrysts of potassium feldspar.  Comparison to values for other continental arc 

environments (data obtained from www.georoc.com) (Fig. 7) shows that the HSRs from 

Karymshina Caldera are consistent with the high end of compositional values present in 

both other arcs and other samples from the Kamchatka Peninsula.  However, the HSR 

from Karymshina Caldera does appear to fit along a general trend of magma evolution 

within the arcs from primitive basalts to more evolved rhyolitic magmas.  When 

compared with other large-volume calderas worldwide (Fig. 2), Karymshina Caldera 

appears to be relatively close in SiO2 and K2O content.  This, expectedly, indicates that 

large-volume calderas are more often produced from the most evolved silicic magmas.  A 

comparison of the composition of volcanic rocks from Karymshina Caldera with volcanic 

http://www.georoc.com/
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rocks from other volcanic centers in a cross-section of the subduction zone from fore-arc 

to back-arc (Fig. 10a, b) shows that Karymshina rhyolites have the highest values of 

SiO2, although there are a few samples which have similarly high SiO2 and K2O values in 

the areas further from the trench, but none of the samples from volcanoes closer to the 

trench have values anywhere close. 

 

Geochronology 

 The eruption age of Karymshina Caldera is between 1.39 Ma (Ar-Ar dating of 

plagioclase) and 1.87 Ma (U-Pb dating of zircon) (Bindeman et al., 2010).  Since zircon 

ages commonly record the time of zircon crystallization and can preceed the eruption by 

0.05 – 0.2 million years (Bindeman et al., 2006), the Ar-Ar ages are considered more 

reliable for the eruption age.  Since the biotite Ar-Ar ages from two samples are identical 

at 1.78 ± 0.02 Ma (Table 1) and unaltered biotite provides more accurate ages than 

plagioclase, the caldera-forming eruption age is assigned as 1.78 ± 0.02 Ma.  The dated 

samples were taken from across the caldera as well as the top and bottom of the 1,000 m 

outcropped ignimbrite sheet.  Dates from the top and bottom of the ignimbrite sheet are in 

agreement within the resolution available, indicating that the sheet is likely from one 

eruption, or eruptions which occurred very close together.  Our observation of the 

ignimbrite sheet has not shown any stratigraphic evidence of multiple eruptions such as 

layering of tephra and ignimbrite deposits with soil deposits, making it more likely that 

the sheet was produced in a single eruption.  Dating of the post-caldera extrusions has 

yielded ages ranging from 0.5 – 0.8 Ma (Table 1) (Sheimovich and Khatskin, 1996;  



 

A 

B 

Figure 10:  A) Map of the Kamchatka Peninsula showing the location of volcanic centers 
compared in a cross-section from fore-arc to back-arc.  B) Graph comparing Karymshina 
Caldera to other calderas located in a cross-section of the Kamchatka Peninsula, moving 
away from the subduction zone trench.  Data not related to Karymshina Caldera was 
taken from Portnyagin & Bindeman, unpublished.  Karymshina Caldera has much higher 
SiO2 content than the majority of the surrounding volcanic rocks, but has K2O content 
that would indicate magmas at Karymshina Caldera were evolved through fractional 
crystallization or partial melting of the same source material that formed the other rocks. 
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Sheimovich and Golovin, 2003; Leonov and Rogozin, 2007; Bindeman et al., 2010).  

Thus there appear to be two major eruptive periods, approximately 1 million years apart. 

 The large time period between eruptions and the duration of the second eruptive 

period may indicate the presence of a crystalline mush from which the magma for both 

eruptions may have been supplied.  This would also account for the apparent evolution of 

the magma from the ignimbrites to the extrusions (Fig. 7, 10).  Such a mush could remain 

semi-molten within the earth’s crust for long time periods while crystallizing and 

extracting melt (Bachmann & Bergantz, 2004).  Based on the hot springs and other 

volcanic activity near Karymshina Caldera it is quite probable that there is still an active 

magma chamber beneath Karymshina Caldera, another support for the existence of a 

crystalline mush in the area. 

 In addition to Ar-Ar dating, U-Pb dating of zircon crystals from the ignimbrites 

has been used to determine the crystallization age of the magma.  The crystallization age 

is 1.87 ± 0.11 Ma (Bindeman et al., 2010).  This age is identical within error to the 

eruption age, indicating that crystallization occurred either simultaneously with, or 

immediately prior to the eruption.  This indicates that there was a short zircon residence 

time prior to the initial, caldera-forming eruption.  Zircons in selected post-caldera 

extrusions, near Babii Kamen, also show no evidence of inheritance (Bindeman et al., 

2010), indicating that the age of these zircons is also the crystallization age of the 

magma. 
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Mineralogy from Thin Sections 

 Ignimbrites 

 The ignimbrites examined in thin section and analyzed with the electron-

microprobe have 42-48% glass matrix by volume.  Flow textures are visible within the 

glass matrix and there appears to be no alteration, except in the case of 2005G-5, which 

contains extensive radial textures indicating post-eruptive alteration of the sample. 

The samples contain 16-21% quartz by volume, except in the case of 2005G-5 where 

only 2% quartz by volume is present.  In the majority of samples, the quartz consists of 

both larger and smaller phenocryst sizes with the larger phenocrysts containing several 

melt inclusions.  In a few quartz phenocrysts the inclusions were so abundant that the 

quartz appeared skeletal.  The larger phenocrysts also exhibit extensive microfracturing, 

evidence of an explosive eruption (Best and Christiansen, 1997; Bindeman, 2005).  In 

sample 2005G-5, quartz phenocrysts are small and contain no visible melt inclusions. 

The other major phase present is plagioclase, which ranges from 19-23% by 

volume in most of the samples and is 46% by volume of 2005G-5.  Many of the larger 

phenocrysts are made of multiple intergrown crystals (Fig. 11e).  The larger phenocrysts 

also commonly contain melt inclusions and inclusions of other minerals which are too 

small to identify under the petrographic microscope.  While not visible in the smaller 

phenocrysts, zoning patterns in the larger phenocrysts exhibit a wide range from 

concentric to extremely complex (Fig. 11).  In a few phenocrysts, zoning is not visible at 

all.  Phenocrysts with both core – rim and rim – core extinction are present.  

Microfracturing in plagioclase phenocrysts is also present, though not as pronounced as 

in the quartz phenocrysts. 



 

Figure 11:  Images of various phenocrysts and xenocrysts from thin section samples of 
Karymshina Caldera.  Plagioclase phenocrysts exhibit a) concentric zoning, b) complex 
zoning, and c) no zoning.  Other features present in the Karymshina samples are d) 
amphibole phenocrysts with reaction rims, e) conglomerations of plagioclase crystals, 
some with sieve texture, and f) xenoliths which include small phenocrysts of plagioclase. 
 

44 
 



45 
 

Biotite in the ignimbrites ranges from 2-12 vol%, with 2005G-5 having the lowest 

concentration.  Many of the biotite crystals have reaction rims, either due to reactions 

within the magma during crystallization or as a result of alteration after eruption.  The 

results of δD isotope analysis, discussed in more detail below, indicate that the reactions 

most likely occurred during crystallization.  The composition of the reaction rims is not 

identifiable under the microscope. 

The ignimbrites also contain up to 5 vol% amphibole.  All amphibole phenocrysts 

contain reaction rims (Fig. 11d).  Compositional analysis of these rims using the electron-

microprobe is inconclusive as a mineral formula could not be calculated (Table 2).  These 

rims could be the result of reactions within the magma during crystallization and 

eruption, or a result of post-eruption alteration.  Again, results of δD isotope analysis 

indicate that the reactions most likely occurred during crystallization.  Microfracturing is 

present in all amphibole phenocrysts, as expected in an explosive eruption. 

The remaining material consists of 1-3 vol% opaque minerals and fractures in the 

rocks filled with microcrystalline quartz in two cases.  The opaque minerals are primarily 

magnetite or hematite, although microprobe analysis shows the presence of trace amounts 

of ilmenite as well.  The hematite is likely a product of post-eruption alteration. 

Two of the ignimbrite thin sections (40L-2007 and 36L-2007) contain small 

xenoliths (Fig. 11f).  The xenoliths contain 47-57 vol% glassy matrix and 43-49 vol% 

plagioclase crystals.  The small size of the plagioclase crystals indicates that the magma 

from which the xenoliths were created cooled quickly.  The plagioclase crystals do not 

have visible zoning, but this is most likely due to the small crystal size which makes all 

features of the crystals difficult to see.  Analysis of the plagioclase crystals in the 
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xenoliths shows them to be 38.19 wt% albite and 60.50 wt% anorthite, which may 

indicate that the xenoliths are from early crystallization of the magma.  This may have 

occurred along the walls of the magma chamber where the magma came in contact with 

cooler crustal material, thus initiating fast cooling of the magma.  The rest of the 

xenoliths are made of 0-4 vol% quartz, 0-3 vol% biotite, and 0-3 vol% opaque minerals 

(which are most likely magnetite). 

 

Post-Caldera Extrusions 

The post-caldera extrusions examined in thin section and analyzed using the 

electron-microprobe are slightly more evolved in composition, but contain fewer 

phenocrysts than the ignimbrites.  Glassy matrix in these samples ranged from 53-54 

vol%.  In one of these thin sections perlitic textures are present in the glass matrix, 

indicating weathering occurred post-eruption. 

Quartz ranges from 14-17 vol% in these samples.  Larger phenocrysts contain 

several melt inclusions, in many cases to the point where they border on a sieve texture.  

The phenocrysts also contain extensive microfracturing, indicating a more explosive 

eruption despite being from eruptions that built the edifice rather than a caldera-forming 

eruption. 

Plagioclase composes 22-24 vol% of the post-caldera extrusions.  As with the 

ignimbrites, phenocrysts are commonly found as intergrown groups rather than individual 

crystals.  Melt inclusions are common in the larger phenocrysts, creating a sieve texture 

in many of the phenocrysts.  The larger phenocrysts exhibit a range of zoning from 
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concentric to extremely complex.  Both core – rim and rim – core extinction patterns are 

present.  The larger phenocrysts also contain microfractures. 

The post-caldera extrusions also contain 4-6 vol% biotite, which appears to be 

unaltered and would indicate that where perlitic texture is present it is indicative of only 

early stages of weathering.  There are also opaque minerals present (2-3 vol%) which are 

primarily magnetite with some ilmenite.  No xenoliths are present in the post-caldera 

extrusions. 

 

Isotope Analysis 

Oxygen Isotopes (δ18O) 

 Values of δ18O in plagioclase phenocrysts range from 5.71-6.53 ‰ in the caldera-

forming ignimbrites and slightly higher at 6.22-6.56 ‰ for the post-caldera extrusions 

(Table 4).  As is typical, the quartz phenocryst values are roughly 1-2.5 ‰ higher, 

ranging from 7.26-8.12 ‰ and 7.08-7.56 ‰ for the ignimbrites and post-caldera 

extrusions respectively (Table 4).  These values were used to calculate the δ18O values 

for the magma using the equations  

 δ18Oqz - 0.45 = δ18Omagma (1) 

 0.027(wt% SiO2) – 1.45 + δ18Oplag = δ18Omagma (2) 

for calculation from quartz and plagioclase values, respectively, with equation 1 being 

based on measurements in the Bishop Tuff (Bindeman & Valley, 2002) and equation 2 

based on calculations by Bindeman etal., (2004) and the wt% SiO2 in equation 2 being 

that for the whole rock (Bindeman et al., 2004).  Where both phases were available, the 

calculated δ18Omagma values were averaged to obtain a best estimate of the δ18Omagma 
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value.  The resulting δ18Omagma values range from 6.17-7.49 ‰ in the ignimbrites and 

6.63-7.10 ‰ for post-caldera extrusions. 

These values are higher than for magmas derived by pure fractional crystallization 

of a MORB source (Fig. 12) (Bindeman, 2008), although the lowest δ18Omagma values for 

the ignimbrites overlap with pure fractionation trends from MORB source magmas (Fig. 

12).  It is therefore necessary to incorporate some amount of crustal rock into the magma 

to obtain the observed range of δ18Omagma values, which supports the results of the 

rhyolite-MELTS experiments discussed below in this paper.  Thus the data from δ18O in 

this study indicates that the HSR of Karymshina Caldera were likely formed by a similar 

method to other rhyolitic rocks. 

Analyses of zircon phenocrysts show δ18O values ranging on the low side of normal 

(Table 4).  These lower values indicate that a small amount of hydrothermally altered 

source rock may have been incorporated into the magma, which is likely given the 

current hydrothermal activity in the area.  A hydrothermally-altered assimilant, which 

would have lower than normal δ18O values, would have been particularly likely if the 

basaltic parent magma had higher than normal δ18O values, thus creating a magma with 

normal δ18O values.  Recent analysis by Bindeman (unpublished) of a potential pre-

caldera basaltic parent rock show higher than normal δ18O values ranging from 5.35-7.48 

‰ in plagioclase phenocrysts from the pre-caldera basalt, indicating that a high-δ18O 

parent magma is possible. 

 



 

Figure 12:  The results of crystallization experiments for the three most common island 
arc series (Normal-δ18O) with a comparison to the Karymshina Caldera samples.  The 
Karymshina samples are located primarily in the area of higher δ18O than would be 
achieved by fractional crystallization and therefore requires the addition of crustal 
material containing a higher δ18O.  Figure adapted from Bindeman, 2008. 
 

Hydrogen Isotopes (δD) 

 Hydrogen isotope values were only obtained for amphibole and biotite-bearing 

samples of caldera-forming ignimbrite because samples from the extrusions are either too 

altered or lack amphibole and biotite.  Values of δD range from -109.85 - -142.76 ‰ in 

biotites and -120.96 ‰ and -148.89 ‰ in the two amphibole samples (44L-2007 and 

47L-2007 respectively) (Table 4), which is lower than normal for volcanic rocks in arc 

environments (Sheppard et al., 1986). 
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 The δD values obtained for both the biotites and the amphiboles are more 

depleted in D than samples of other volcanic rocks from the EVF of Kamchatka (Fig. 13) 

studied by Taran et al., 1997, and are some of the lowest measured δD values in 

Kamchatka.  However, the H2O contents in both the Karymshina samples and those from 

other volcanoes are similar and appropriate for fresh amphiboles and biotites. 

 When compared with the normal rhyolitic δ18O values obtained from quartz and 

plagioclase phenocrysts, the low δD values could be due to post-eruption alteration of the 

rocks, despite the care taken to avoid altered samples in the selection process, or the low 

δD values are attributable to hydrothermal alteration of the magma source rock.  Such 

hydrothermal alteration of the source rock would require that a shallow crustal source 

was assimilated into the magma and therefore would indicate the presence of a shallow 

magma chamber. 

 

87Sr/86Sr Isotope Ratios 

 Ratios of 87Sr/86Sr were determined for whole rock samples of caldera-forming 

ignimbrites.  Values range from 0.703317 – 0.703328 (Table 4), which is indicative of a 

predominance of mantle-derived material within the magma (Fig. 14) (Faure & Mensing, 

2005).  It is possible that assimilated crustal rocks in Kamchatka, even with hydrothermal 

alteration, could have a relatively low 87Sr/86Sr ratio (e.g. Bindeman et al., 2004) since 

the area is a subduction zone and the majority of rocks in the peninsula originated 

through subduction processes.  However, by using values from Bindeman et al. (2004) 

for crustal and mantle sources in Kamchatka, it is apparent that the primary magma 

source at Karymshina Caldera must have originated in the mantle (Fig. 14).  Some crustal  



 

Figure 13:  A graph comparing δD values vs. wt% H2O for biotites and amphiboles from caldera-forming ignimbrites at 
Karymshina Caldera to other samples from the Eastern Volcanic Front.  The data for the additional samples was taken from 
Taran et al., (1997). 
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values within the EVF are even closer to mantle values than the values used here 

(Bindeman et al., 2004) and thus it may be impossible to determine whether the 

Karymshina Caldera magma came from primarily a crustal or mantle source. 

 

144Nd/143Nd Isotope Ratios 

 Caldera-forming ignimbrites were also analyzed for 144Nd/143Nd ratios.  The 

resulting values range from 0.513015 – 0.513065 (Table 4).  These values indicate a 

primarily mantle source for the magma (Fig. 14) (Faure & Mensing, 2005), in agreement 

with the 87Sr/86Sr values.  Therefore, either the crustal source rocks have lower 87Sr/86Sr 

and higher 144Nd/143Nd than normal for crustal rocks or the majority of the magma (at 

least 90% by weight) is from a mantle source (Bindeman et al., 2004; Faure & Mensing, 

2005). 
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Figure 14:  An approximate mixing trend for 87Sr/86Sr and 144Nd/143Nd with an average 
crustal and mantle magma from the Kamchatka Peninsula as compared to caldera-
forming ignimbrites from Karymshina Caldera.  The crustal and mantle values were 
taken from Bindeman et al., 2004. 
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CHAPTER V 

MELTS MODELING 

Methods 

 To illucidate the origin of the Karymshina ignimbrites, I conducted crystallization 

and assimilation modeling experiments using the rhyolite-MELTS program developed by 

Gualda et al. (2011).  The initial composition of basaltic magma was selected from data 

for volcanoes surrounding Karymshina Caldera.  Several samples were compared (Fig. 

15) and the composition most closely resembling a primitive magma from which the 

Karymshina magmas may have been derived was selected (the Gorely composition from 

Portnyagin and Bindeman (unpublished) (Table 5)).  The assimilant composition used 

was an amphibolite partial melt taken from the experiments of Rapp and Watson (1995), 

which is referred to below as APM.  This composition was chosen because there are no 

actual partial melting experiments that have been done on rocks found near Karymshina 

Caldera, but amphibolite is a common metamorphic rock on the Kamchatka Peninsula 

(Kepezhinskas et al., 1997) and is a common composition for the lower crust of 

continents (Rapp and Watson, 1995; Annen and Sparks, 2002).  It is therefore likely that 

partial melts of an amphibolite source would be assimilated into the magma chamber at 

Karymshina Caldera.  A hydrothermally-altered rock, IC50, with SiO2 contents of 81.34 

wt% obtained from Bindeman (unpublished) (referred to below as HAR) was also used as 

an assimilant as this type of rock may also have been added to the magma if remelting 

and recycling occurred in the magma generation process. 

 Fractional crystallization was modeled with 0 and 2.5 wt% H2O in the initial 

basalt and 0, 25, and 50 wt% APM and 0 and 10 wt% HAR.  These models were 



 
Figure 15:  Graphs for selected compositional variables comparing the three possible 
starting compositions for use in rhyolite-MELTS modeling.  The three starting 
compositions were taken from Portnyagin and Bindeman, unpublished. 
 

conducted at 2 kbar, 8 kbar, and also a polybaric model starting at 8 kbar and moving to 2 

kbar at 50 wt% crystallization.  One set of models using only the initial basalt 

compositions were conducted with equilibrium crystallization (Fig. 16) to verify that the 

compositions seen at Karymshina Caldera could not have been the result of equilibrium 

crystallization.  All other models were conducted using fractional crystallization.  In the 

case of the polybaric models, change in pressure was assumed to be instantaneous based 

on probable speed of magma ascent from Annen et al. (2006). 
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Table 5: Compositions of the starting magma and assimilants 
used in the rhyolite-MELTS models.  The starting magma 
(Gorely Volcano N69) was taken from Portnyagin & Bindeman, 
(unpublished), the amphibolite partial melt was taken from Rapp 
& Watson, (1995), and the hydrothermally-altered rock was 
taken from Bindeman, (unpublished). 

Sample 
Number 

Gorely Volcano 
N69 

Partial Melt of JOD-
74 at 8 kbar and 
1000°C 

Hydrothermally 
Altered Rock 
IC50 

SiO2 50.3 71.14 81.34 
TiO2 1.05 0.18 0.188 
Al2O3 15.9 17.67 12.45 
FeO*  2.05 0.95 
Fe2O3 10.2   
MnO 0.17 0.08 0.043 
MgO 9.22 0.48 0.27 
CaO 9.07 1.24 1.06 
Na2O 2.9 5.04 2.29 
K2O 0.93 2.12 1.39 
P2O5 0.29  0.016 
H2O 0.18   
CO2 0.02   
Sum 100.2 100 100 

 

Results 

The results for equilibrium crystallization of the basaltic parent magma chosen 

show that it is impossible to obtain the composition of Karymshina Caldera magma by 

simple crystallization (Fig. 16).  The results of the fractional crystallization models 

obtained compositions closer to those observed at Karymshina Caldera, and these results 

are represented in figures 17-22 for selected major elements. 

Most of the fractional crystallization models resulted in strong enrichments of 

K2O, the exception being 2.5 wt% H2O with 25 wt% APM and 10 wt% HAR.  This is 

most likely due to the initial basalt composition containing more K2O than was present in 



 

 
Figure 16:  Results of equilibrium crystallization modeling at various pressures using the rhyolite-MELTS program.  Results 
are shown for 0 wt% H2O and 2.5 wt% H2O in the initial melt composition. 
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the true parent magma of the Karymshina rocks.  Fractional crystallization at shallow 

depths (2 kbar) resulted in the least enrichment of K2O as well as a greater increase in the 

SiO2 content of the remaining magma (Fig. 17, 18).  The models containing 50 wt% 

APM and 10 wt% HAR were closest to the actual K2O and SiO2 contents of the 

Karymshina rocks in all cases.  In the 2 kbar models, the magma with 2.5 wt% H2O, 25 

wt% APM, and 10 wt% HAR also matched well with the actual values measured in the 

Karymshina rocks.  In the models with 50 wt% APM, SiO2 contents equal to those of 

Karymshina were obtained at all pressure options and approximately when 50 wt% of the 

magma was crystallized.  The models giving the best approximations of fractional 

crystallization leading to Karymshina rock compositions also match well with a straight 

line mixing trend between the initial basaltic magma and the Karymshina rocks, 

indicating that the Karymshina rocks could also be the result of pure magma mixing 

between some higher SiO2 magma and a basaltic magma.  If this is the case, the 

Karymshina magmas would likely be primarily composed of amphibolite partial melts 

and hydrothermally-altered rocks with a small portion (less than 25 wt%) of basaltic 

magma included.  However, this would contradict the data obtained from the isotope 

analysis. 

 The results of the fractional crystallization models for the Al2O3, MgO, and CaO 

were similar to those for K2O and SiO2 contents.  The best fits for Al2O3 and MgO 

occurred with 0 and 2.5 wt% H2O, 50 wt% APM, and 10 wt% HAR in the model with 

pressures starting at 8 kbar and ending at 2 kbar.  However, the model at 2 kbar with 

2.5wt% H2O, 50 wt% APM, and 10 wt% HAR is also a fairly reasonable fit.  In terms of  



 

Figure 17:  Results of fractional crystallization modeling at 2 kbar using the rhyolite-MELTS program.  Results are shown for 
0 wt% H2O in the initial melt composition.  The percentages of added amphibolite partial melt and hydrothermally altered melt 
are as indicated.  Amphibolite partial melt and hydrothermally altered melt were added incrementally during crystallization. 
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Figure 18:  Results of fractional crystallization modeling at 2 kbar using the rhyolite-MELTS program.  Results are shown for 
2.5 wt% H2O in the initial melt composition.  The percentages of added amphibolite partial melt and hydrothermally altered 
melt are as indicated.  Amphibolite partial melt and hydrothermally altered melt were added incrementally during 
crystallization. 



 

Figure 19:  Results of fractional crystallization modeling at 8 kbar using the rhyolite-MELTS program.  Results are shown for 
0 wt% H2O in the initial melt composition.  The percentages of added amphibolite partial melt and hydrothermally altered melt 
are as indicated.  Amphibolite partial melt and hydrothermally altered melt were added incrementally during crystallization. 
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Figure 20:  Results of fractional crystallization modeling at 8 kbar using the rhyolite-MELTS program.  Results are shown for 
2.5 wt% H2O in the initial melt composition.  The percentages of added amphibolite partial melt and hydrothermally altered 
melt are as indicated.  Amphibolite partial melt and hydrothermally altered melt were added incrementally during 
crystallization. 



 

Figure 21:  Results of fractional crystallization modeling starting at 8 kbar and changing to 2 kbar at 50 wt% crystallization 
using the rhyolite-MELTS program.  Results are shown for 0 wt% H2O in the initial melt composition.  The percentages of 
added amphibolite partial melt and hydrothermally altered melt are as indicated.  Amphibolite partial melt and hydrothermally 
altered melt were added incrementally during crystallization. 
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Figure 22:  Results of fractional crystallization modeling starting at 8 kbar and changing to 2 kbar at 50 wt% crystallization 
using the rhyolite-MELTS program.  Results are shown for 2.5 wt% H2O in the initial melt composition.  The percentages of 
added amphibolite partial melt and hydrothermally altered melt are as indicated.  Amphibolite partial melt and hydrothermally 
altered melt were added incrementally during crystallization. 
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CaO, the models at 2 kbar and 2.5 wt% H2O with 50 wt% APM and both 0 and 10 wt% 

HAR as well as the model with 2.5 wt% H2O, 25 wt% APM, and 10 wt% HAR are good 

fits to the Karymshina rocks.  Thus the fractional crystallization model which matched 

most closely the composition of the Karymshina rocks occurred at 2 kbar with 2.5 wt% 

H2O, 50 wt% APM, and 10 wt% HAR.  It should be noted that I was unable to reproduce 

the most silicic compositions present at Karymshina, represented as post-caldera 

extrusions.  An additional amount of high-silica assimilant like the hydrothermally-

altered rock may be required to produce these compositions. 
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CHAPTER VI 

DISCUSSION 

 The Karymshina silicic center is a large-volume caldera that has produced high-

silica rhyolitic (HSR) magma.  Analyses of the caldera-forming ignimbrites and post-

caldera extrusions indicate that δ18O and δD values of minerals are typical of HSR 

magmas (Fig. 23) (Bindeman, 2008).  However, the δ18O values of the zircons are on the 

low side of what is normal for rhyolites, allowing the presence of a small amount of 

hydrothermally altered material incorporated into the magma.  High δ18O values (6.1 ‰) 

recently obtained for pre-caldera basalts and dacites at Karymshina indicate that the δ18O 

values we should see for the Karymshina Caldera rhyolites would be 0.5 – 1 ‰ higher 

than what is observed.  This further supports the hypothesis of a hydrothermally altered 

rock with low δ18O values being assimilated into the magma to bring δ18O values into the 

normal range.  The normal δ18O values for quartz and plagioclase and low δD values 

combined with a lack of visible alteration in thin section indicate that the low δ18O values 

in the zircons and low δD values in amphibole and biotite are more likely due to 

incorporation of the material into the magma than to post-eruption alteration.  The 

87Sr/86Sr and 144Nd/143Nd values obtained initially indicated that a small amount of crustal 

material was incorporated into the magma.  Closer examination shows that these values 

may be a result of near-mantle values in the crustal rock of the EVF, making the 87Sr/86Sr 

and 144Nd/143Nd values irrelevant as indicators of crustal assimilation into the magma 

(Fig. 14) (Bindeman et al., 2004; Faure & Mensing, 2005). 

 Modeling using rhyolite-MELTS (Gualda et al., 2011) also indicates that it is 

necessary to incorporate crustal material into the magma to obtain the proper magma  



 

Figure 23:  A diagram showing the normal values of δ18O in various rock types.  
Karymshina Caldera falls within the normal range for HSR magmas.  The diagram was 
taken from Bindeman, (2008). 
 

composition, assuming that the starting magma is a good approximation of the initial 

magma at Karymshina Caldera.  However, the amount of crustal component needed in 

the rhyolite-MELTS models is greater than the initially estimated amount from 87Sr/86Sr 

and 144Nd/143Nd values.  Based on the isotope values, approximately 10 wt% crustal 
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material is needed, but based on the rhyolite-MELTS models, the crustal component 

needs to make up more than 50 wt% of the magma even with more than 75% 

crystallization of the magma by fractional crystallization processes.  This may be a fault 

of the model used, the initial magma composition chosen, the crustal component chosen, 

the hydrothermally-altered rock chosen, or any combination of these factors.  

Alternatively, the Sr and Nd values in the actual crustal component and hydrothermally-

altered component may be closer to mantle values, even compared to crustal values in 

Kamchatka.  As isotopic variations in Kamchatka are somewhat limited, especially 

within the Eastern Volcanic Front (Turner et al., 1998; Bindeman et al., 2004), this 

hypothesis is justified. 

 Data for elemental Rb and Sr values put the Karymshina Caldera rocks (Fig. 24) 

within the I-type granitoids, indicating less differentiation of Rb and Sr (Halliday et al., 

1991; Bachmann & Bergantz, 2004).  I-type granitoids are common in subduction zones 

and have Rb and Sr values that are closer to mantle values, indicating the magma is less 

evolved and has undergone less fractional crystallization than typical granitic magmas.  

The values for the Karymshina Caldera rocks appear to be typical of subduction zones 

under continental crust, similar to the Peru Coastal Batholith and the Kosciousko 

Batholith of the Halliday et al. study.  Less differentiation of Rb and Sr requires that there 

be a larger degree of partial melting or fractional crystallization of the parent magma.  

When dealing with large amounts of either partial melting or fractional crystallization, 

the ratio of Rb/Sr tends to vary less and give less indication of which process produced 

the resultant rock.  In either case, it is likely that at least 50 wt% of the parent material 

must be partially melted or fractionally crystallized to produce the rocks of Karymshina 



Caldera.  If we assume a greater portion of the magma came from the mantle, then the 

magma was produced primarily through fractional crystallization.  If the greater portion  

 

Basalts 

I-type Granitoids 

Figure 24:  Graph of Rb vs. Sr for Karymshina Caldera and a cross-section of the 
Kamchatka Peninsula.  The Karymshina Caldera samples fall within the range of I-type 
granitoids present in the Halliday et al., (1991) study.  Except for a few samples that are 
higher in Rb and lower in Sr, the other samples fall within the range of basalts and some 
I-type granitoids.  In all the Karymshina Caldera samples, large amounts of fractional 
crystallization or partial melting would be needed to obtain the observed values.  Data for 
other volcanoes was taken from Portnyagin & Bindeman, (unpublished). 
 

of the magma came from crustal material, then partial melting is the primary method of 

production. 

 Of the four main hypotheses for generation of HSR magmas (deep crustal hot 

zone, crystalline mush, crustal underplating, and upper crustal recycling), it is clear that 

crustal underplating is definitely not the method by which the HSR magma at 
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Karymshina Caldera was formed as this would require that the magma be formed from 

crustal material only.  This would contradict the various isotope evidence, which 

indicates that the crustal component is only a portion of the magma.  In addition, it would 

be difficult to generate such large volumes of magma without incorporating any magma 

from deeper in the crust due to the amount of heat needed. 

It is likely that the Karymshina magma was formed by a combination of the other 

three methods since the deep crustal hot zone method allows for partial melting of the 

crust, which would incorporate a crustal component (Annen et al., 2006).  This deep 

crustal hot zone would also provide a constant source of magma recharge and heat to the 

developing magma chamber located at the shallower depth.  The partial melting of the 

crust would also produce a high-SiO2 content (Rapp & Watson, 1995) component, which 

would raise the overall SiO2 content of the magma.  The higher SiO2 content is needed 

because fractional crystallization alone will not sufficiently raise the SiO2 content to the 

levels observed in the Karymshina Caldera rocks.  However, there must also be large 

amounts of fractional crystallization to obtain the high SiO2 levels observed, which 

would occur in a long-lived magma chamber with a crystalline mush (Bachmann & 

Bergantz, 2008).  Finally, in the shallow crust where the crystalline mush would most 

likely reside, incorporation of recycled and remelted material would occur, including a 

small amount of hydrothermally-altered crust with high SiO2 contents.  This 

hydrothermally-altered crust must have been incorporated into the magma to allow for 

the final increase in SiO2 content to bring the magma to the composition observed.  It 

would also account for the normal to low δ18O values of the zircons and normal δ18O 

values as compared to the high δ18O values of pre-caldera basalts and dacites. 
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Conclusions 

 The generation of HSR magma at Karymshina Caldera is most likely due to a 

combination of magma intrusion into a deep crustal hot zone and fractional crystallization 

of a large, shallow magma body.  In addition, at shallow depths, a small amount of 

hydrothermally-altered crustal rock with high SiO2 content must also have been 

incorporated into the magma.  The two eruptive periods, one forming the caldera at 1.78 

Ma and one consisting of the post-caldera extrusions from 0.5-0.8 Ma would indicate the 

presence of a long-lived magma chamber, which is consistent with the idea of a large 

magma body undergoing fractional crystallization (Bachmann & Bergantz, 2008).  The 

post-caldera extrusions appear to be directly evolved from the caldera-forming 

ignimbrites or along a mixing trend with the ignimbrites and an unknown higher-SiO2 

magma, although rhyolite-MELTS modeling could not produce the extrusion 

compositions.  The presence of hot springs in the area, along with nearby volcanism, 

indicate that a magma body may still be present and crystallizing beneath the caldera.  

The hot springs may also be simply due to higher heat flux in the caldera from previous 

volcanism and nearby magma bodies.  The compositions of the caldera-forming 

ignimbrites and the post-caldera extrusions show a high degree of homogeneity, which 

would also be consistent with extraction of a melt from a crystalline mush.  A lack of 

topographical expression of the caldera still presents a problem, but may be due to a 

combination of erosion by glaciers during the last glacial maximum and high rates of 

erosion during modern times. 
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