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THESIS ABSTRACT 
 
Michael Harrison Darin 
 
Master of Science 
 
Department of Geological Sciences 
 
December 2011 
 
Title: Late Miocene Extensional Deformation in the Sierra Bacha, Coastal Sonora, 
Mexico: Implications for the Kinematic Evolution of the Proto-Gulf of California 
 
 

The Gulf of California is an active rift basin formed by late Cenozoic dextral-

oblique extension along the Pacific-North America plate boundary.  Well exposed volcanic 

and sedimentary rocks in the Sierra Bacha, coastal Sonora, Mexico, preserve a history of 

proto-Gulf (late Miocene) deformation and offer insight into the structures and kinematics 

responsible for localization of the plate boundary and inception of the Gulf at about 6 Ma.  

Geologic mapping, fault kinematic analysis, and paleomagnetic data suggest that proto-

Gulf deformation in the Sierra Bacha occurred primarily by ENE-WSW extension and that 

vertical-axis rotation related to dextral strain was minor.  Lack of significant dextral shear 

supports an emerging model for proto-Gulf deformation in which dextral strain was not 

ubiquitous across Sonora but instead became localized during latest Miocene time in a 

narrow coastal shear zone that mechanically weakened the lithosphere and helped facilitate 

continental rupture. 

This thesis includes the “Geologic Map of the Sierra Bacha, Coastal Sonora, 

Mexico” as supplemental material. 
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CHAPTER I 

INTRODUCTION 

 

The transition from diffuse oblique continental extension to localized rifting and 

the onset of seafloor spreading is one of the least understood aspects of continental 

breakup.  Modern oblique rifts that preserve a detailed continental record of rift-related 

deformation offer valuable insights into the structural evolution of obliquely rifted 

margins and the mechanisms that lead to continental rupture.  The Gulf of California is a 

young proto-oceanic basin that formed during late Cenozoic dextral-oblique extension 

along the Pacific-North America plate boundary (Fig. 1).  Although the tectonic evolution 

of the region is relatively well known (e.g. Hausback, 1984; Stock & Hodges, 1989; 

Lonsdale, 1989; Gans, 1997; Atwater & Stock, 1998; Oskin & Stock, 2003c; Fletcher et 

al., 2007; Lizarralde et al., 2007), the conditions and processes that led to localization of 

the plate boundary within the North American continent remain poorly understood.  This 

rare example of a youthful oceanic basin offers a unique opportunity to explore the 

kinematics of lithospheric rupture and the structural evolution of a well-exposed 

obliquely rifted continental margin. 

The Gulf Extensional Province (GEP) is a region of extended continental crust 

that includes a large area from eastern Baja California to interior Mexico (Fig. 1).  

Significant extension in this region began after subduction west of Baja California ended 

at ca. 12.5 Ma (Spencer & Normark, 1979; Mammerickx & Klitgord, 1982; Stock & 

Hodges, 1989).  Latest Miocene localization of plate boundary strain resulted in marine 
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Figure 1.  Regional map of southwestern North America and the Gulf of California rift. 

Subduction of the Farallon plate and related microplates beneath North America ended ca. ~12.5 

Ma (green), leading to a transitional phase of plate boundary reorganization from ~12-6 Ma 

referred to as the “Proto-Gulf of California” (e.g. Karig and Jensky, 1972).  The timing, 

magnitude, and distribution of proto-Gulf strain remain poorly understood and debated.  Incipient 

coupling between the Pacific and North America plates during proto-Gulf time caused 

deformation on offshore transform faults and on the North American continent in the Gulf 

Extensional Province (GEP; yellow).  Pacific-North America plate boundary localization within 

the continent ca. 6 Ma initiated the modern phase of oblique rifting and the formation of the Gulf 

of California (active modern plate boundary in red).  Abbreviations: SF - San Felipe, P - 

Puertecitos, PL - Puerto Libertad, IT - Isla Tiburón, BK - Bahía Kino, H - Hermosillo, G - 

Guaymas, SR - Santa Rosalía, LP - La Paz, SBF - San Benito Fault, TAF - Tosco-Abreojos Fault. 
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incursion in the northern Gulf at ca. 6 Ma and established the modern phase of oblique 

spreading (Oskin & Stock, 2003a, b).  The time period between 12.5 and 6 Ma, and the 

region known as the GEP, are collectively referred to as the “proto-Gulf of California” 

(e.g. Karig & Jensky, 1972; Stock & Hodges, 1989).  Contrasting kinematic models 

(discussed in the following section) have been proposed for the style and distribution of 

proto-Gulf (late Miocene) deformation in western Mexico, yet neither model directly 

addresses the structural mechanisms responsible for the localization of  plate boundary 

strain, which is required for successful rupture of continental lithosphere. 

In addition to continental extension, oblique intracontinental rift zones are 

commonly affected by strike-slip deformation.  Previous studies of fault mechanics and 

strain evolution suggest that strike-slip faults may be more effective at localizing strain in 

the upper crust than normal faults (e.g. Buck, 1991; Zoback, 1991; Buck et al. 1999).  In 

regions undergoing extension, lateral variations in crustal thickness produce differential 

vertical stresses, leading to horizontal stress gradients that transmit strain to unthinned 

crust and promote widening of the rift zone (Buck, 1991).  In contrast, extension-related 

buoyancy forces are not generated by lateral displacement on strike-slip faults.  Thus the 

strike-slip component of transtension is mechanically favored to localize strain in oblique 

rift settings such as the Gulf of California, but this hypothesis has not been widely tested 

in previous studies.  It is necessary to document the timing, style and distribution of 

crustal deformation in order to assess the role of strike-slip faulting in real examples of 

strain localization and lithospheric rupture. 

This thesis presents the results of an integrated field, kinematic, and 

paleomagnetic study of late Miocene deformation in the Sierra Bacha, at the eastern rifted 
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margin of the Gulf of California in coastal Sonora, Mexico.  The study area is located 

immediately northeast (inboard) of a coastal shear zone that experienced localized 

dextral-oblique transtensional faulting and block rotation between about 7 and 6 Ma 

(Bennett, 2009).  Analysis of well-exposed volcanic rocks in the Sierra Bacha allow me 

to document the timing, distribution, and kinematics of late Miocene faulting, and 

compare its structural evolution to that of the coastal shear zone.  The results of this 

study, integrated with previous studies, are used to test an emerging hypothesis for post-

extensional progressive localization of dextral strain in coastal Sonora during latest 

Miocene time (~7-6 Ma), shortly prior to lithospheric rupture and opening of the northern 

Gulf.  Alternatively, evidence of significant dextral shear in the Sierra Bacha between 12 

and 6 Ma would discount this hypothesis and instead support the distributed transtension 

model of Fletcher et al. (2007). 
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CHAPTER II 

TECTONIC SETTING & PREVIOUS WORK 

 

Prior to the onset of extension in the GEP at ca.12.5 Ma, western Mexico was the 

site of a Miocene volcanic arc related to subduction of the Farallon plate beneath North 

America (Fig. 1; Atwater, 1970, 1989).  Calc-alkaline arc volcanism migrated west 

during Oligocene-Miocene time, eventually localizing along the trend of the present-day 

Gulf of California ca. 16-12 Ma (Gastil et al., 1979; Hausback, 1984; Sawlan, 1991; 

Oskin and Stock, 2003b).  Most of the GEP did not undergo extension during arc 

volcanism (Hausback, 1984; Lee et al., 1996; Martín et al., 2000; Nagy, 2000), though 

extension and metamorphic core-complex formation synchronous with and immediately 

following arc magmatism has been documented east of the GEP in the Sierra Madre 

Occidental and in southern California, largely prior to the onset of large-magnitude 

extension in the GEP (Nourse et al., 1994; Gans, 1997; Wong and Gans, 2003).   

The transition from subduction to dextral transtension between the Pacific and 

North America plates occurred via ridge-trench interactions and step-wise abandonment 

of microplates (Atwater 1970; Stock and Molnar, 1988; Atwater and Stock, 1998).  By 

ca. 12.5 Ma, subduction had ceased and the full length of the Pacific plate was in contact 

with northwestern Mexico (Mammerickx and Klitgord, 1982).  The coeval termination of 

arc volcanism and the onset of diffuse continental extension in the GEP marked the 

beginning of the “proto-Gulf” phase of plate boundary evolution (Karig and Jensky, 

1972; Stock and Hodges, 1989).   
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Deformation during proto-Gulf time (12.5-6 Ma) was the result of a major 

tectonic reorganization of the North American margin starting ca. 12.5 Ma.  A large 

southward jump of the Rivera triple junction led to incipient coupling between the Pacific 

and North American plates, resulting in shear and extensional deformation in the 

continental borderland that isolated Baja California as a microplate in the evolving plate 

boundary system (Karig and Jensky, 1972; Spencer and Normark, 1979; Hausback, 1984; 

Stock and Hodges 1989; Lonsdale, 1991).  Exactly how extension and dextral strain were 

distributed throughout proto-Gulf time is a matter of current debate and is discussed in 

detail in the following section.  Near the end of late Miocene time (ca. 6 Ma) localization 

of strain along the axis of the Gulf of California initiated a nascent ocean basin along the 

axis of the GEP (Oskin et al., 2001; and Stock, 2003b).  This nascent, obliquely rifted 

ocean basin formed along the axis of the former Miocene volcanic arc where hot, thick 

crust created a zone of weakness that controlled the location of the modern plate 

boundary (Gastil, 1968; Hausback, 1984; Henry, 1989).  While arc-related thermal 

weakening likely exerted an important control on the location of the modern plate 

boundary, it does not explain the prolonged time delay between subduction and localized 

rifting between 12.5 and 6 Ma.  A central goal of this study is to investigate the role that 

other structural mechanisms (e.g. strike-slip faults, fault reactivation, stress reorientation) 

might have played in the temporal evolution of the plate boundary during proto-Gulf 

time. 

In contrast with debates surrounding the proto-Gulf period, there is general 

agreement regarding the evolution of the modern Gulf of California since ca. 6 Ma.  

Localization of Pacific-North America plate motion in the Gulf created a narrow zone of 



7 

crustal thinning and subsidence that likely caused marine incursion into the northern Gulf 

region by ca. 6.3 Ma (Oskin et al., 2001; Oskin and Stock, 2003a).  The initial rift axis 

was established in the eastern basins of the Gulf near the modern Sonoran shoreline, 

migrated westward ca. 3.3-2.0 Ma, and is now focused along the western margin of the 

Gulf of California (Stock et al., 1991; Oskin and Stock, 2003a; González-Fernández et 

al., 2005; Aragón-Arreola and Martín-Barajas, 2007).  The modern plate boundary is an 

oblique transtensional rift with small spreading centers linked by an en-echelon array of 

right-stepping, NW-striking dextral transforms that feed into the San Andreas fault 

system to the north (Fig. 1; Fenby and Gastil, 1991; DeMets and Dixon, 1999). 

Kinematic Models   

As previously mentioned, the distribution of transtensional strain between 

structures west of Baja and in the GEP and the reason for the prolonged delay between 

the cessation of subduction ca. 12.5 Ma and the onset of localized dextral transtension in 

the Gulf of California at ca. 6 Ma are poorly understood (Fig. 1; Spencer and Normark, 

1979; Stock and Hodges, 1989; Oskin et al., 2001).  Two end-member models have been 

proposed to describe the structural evolution of the Gulf of California.  The two-stage 

“strain-partitioning” model proposes that late Miocene transtensional strain was 

partitioned into (i) strike-slip offset on offshore transform faults west of Baja California 

and (ii) orthogonal NE-SW extension in the GEP (Fig. 2A).  According to this model, the 

strain partitioned deformation pattern was followed by a discrete change to localized 

dextral shear and oblique rifting in the modern Gulf starting ca. 6 Ma (Fig. 2A; Karig and 

Jensky, 1972; Spencer & Normark, 1979; Hausback, 1984; Lonsdale, 1989; Stock & 

Hodges, 1989).  In contrast, the “distributed transtension” model proposes that 
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Figure 2.  Competing kinematic models for the timing and distribution of extensional and dextral 

strain related to evolution of the Gulf of California since ~12 Ma.  The pre-12.5 Ma subduction 

boundary is dashed in green; RTJ - Rivera Triple Junction.  A) “Strain partitioning” model of 

Stock and Hodges (1989) in which proto-Gulf (12-6 Ma) strain was partitioned between offshore 

dextral shear and extension in the Gulf Extensional Province (GEP).  Transtensional strain since 

ca. 6 Ma (right) has occurred almost entirely within the oblique modern Gulf of California rift.  

B) “Distributed transtension” model of Fletcher et al. (2007) which proposes a single stage of 

diffuse and integrated extension and dextral strain offshore west of Baja and on the North 

American continent within the GEP.  C) “Progressive localization” model (Bennett, 2009; this 

study) in which early proto-Gulf strain (~12-8 Ma) was partitioned according to the strain 

partitioning model (A), but progressively localized into either narrow dextral shear zones (top) or 

a diffuse zone of transtensional strain during latest Miocene time (~8-6 Ma). 
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oblique-divergent plate motion has been accommodated by a single phase of diffuse, 

integrated transtension offshore west of Baja and onshore in the GEP from 12.5 Ma to the 

present (Fig. 2B; Gans, 1997; Fletcher et al., 2003; Fletcher et al., 2007; Seiler et al., 

2010).   

A third alternative, “hybrid” model involves the progressive localization of the 

plate boundary through time (Bennett, 2009).  According to this model, proto-Gulf 

deformation started out partitioned between dextral shear on transform faults west of Baja 

and orthogonal extension onshore in the GEP (strain partitioning).  With time, dextral 

strain became progressively focused into the GEP (Fig. 2C).  While it is generally agreed 

that the GEP underwent extension during proto-Gulf time, the kinematics of extension 

and dextral strain are not well understood and are particularly controversial in tectonic 

models for proto-Gulf evolution.    

Proto-Gulf Dextral Shear in the GEP 

Dextral shear along the plate boundary or within the GEP during late Miocene 

time is required by observations from both sides of the Gulf of California.  Global plate 

circuit models estimate a total of ~650 kilometers of dextral displacement between the 

Pacific and North American plates since 12.5 Ma (Atwater and Stock, 1998).  An 

estimated 270-300 km of Pacific-North American relative plate motion has been 

accommodated by dextral shear in the modern Gulf since 6 Ma (DeMets, 1995; DeMets 

and Dixon, 1999; Oskin et al., 2001; Oskin and Stock, 2003a).  Thus, the remaining ~350 

km must be accounted for by some combination of offshore transform faults west of Baja 

and onshore dextral shear in the GEP during late Miocene (proto-Gulf) rifting (i.e. 12.5-6 

Ma).  Distributed dextral strain in the Sonoran Basin-and-Range and the GEP was 
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documented by Gans (1997), but the magnitude of strain was not determined.  In 

northwestern Sonora, up to 40 km of dextral offset of a Tertiary conglomerate with 

distinctive basement clasts was inferred by Nourse et al. (2005), but the timing of offset 

is poorly constrained.  Herman and Gans (2006) found evidence for significant clockwise 

vertical-axis rotations of up to 100˚ related to dextral shear in the Sierra el Aguaje near 

Guaymas (Fig. 1), all of which is thought to have occurred between 12 and 9 Ma.  

The presence of distinctive limestone clasts with Permian fusulinid fossils in an 

Eocene-Oligocene fluvial conglomerate allowed previous workers to estimate ~300 km 

of northwestward lateral offset between the Sierra Seri (~7 km southeast of the Sierra 

Bacha; Fig. 3) and similar outcrops near San Felipe on the Baja peninsula (Fig. 1; Gastil 

et al., 1973; Bryant, 1986).  The source area for the conglomerate is ~50-75 km northeast 

of Sierra Seri outcrops in coastal Sonora, but could be significantly less after restoring 

late Miocene extension in the GEP (Gastil et al., 1973).  In addition to onshore evidence 

for proto-Gulf dextral shear, recent provenance studies of the offshore Magdalena fan 

west of Baja only attribute up to 150 km of dextral slip to the offshore Tosco-Abreojos 

and San Benito faults (Grove et al., 2005; Fletcher et al., 2007).  This is significantly less 

than earlier predictions of ~300 km of offshore dextral displacement and requires a larger 

component of dextral strain onshore within the GEP to satisfy plate circuit models. 

Altogether, observations of proto-Gulf dextral shear argue against the strain 

partitioning end-member model of Stock and Hodges (1989) (Fig. 2A).  However, 

evidence of predominantly orthogonal extension on both conjugate rift margins during 

most of proto-Gulf time (e.g. Lewis and Stock, 1998; Mora-Alvarez and McDowell, 

2000; Umhoefer et al., 2002; Bennett, 2009) indicates that distributed transtension was
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Figure 3.  Regional tectonic map of the northern Gulf of California and coastal Sonora showing 

onshore and offshore rift-related structures. Bennett (2009) documented a minimum of 15 km of 

localized dextral shear ca. 7-6 Ma in the Kino-Chueca Shear Zone (orange) based on detailed 

structural mapping and paleomagnetic analysis in the Cerro Kino area (dashed box).  The spatial 

and temporal distribution of similar dextral shear in adjacent areas like the Sierra Bacha (solid 

box, this study) is unknown.  BF - Bacha fault, NF – Noriega fault, PCF - Pozo Coyote fault. 
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not ubiquitous throughout the GEP as suggested by the alternative end member model 

(Fig. 2B; Fletcher et al., 2007).  These observations suggest that an intermediate model 

for proto-Gulf evolution might better reconcile existing geologic data.  Evidence of late 

Miocene dextral shear in the GEP (e.g. Herman and Gans, 2006; Bennett, 2009) 

highlights the need for additional geologic constraints from preserved early-rift structures 

to assess the role that strike-slip faults played in continental breakup and the formation of 

the Gulf of California. 

Previous Work in Coastal Sonora 

 Geologic studies of late Miocene volcanic and sedimentary rocks in Sonora 

provide a record of proto-Gulf extension and dextral shear in the GEP.  Gastil and 

Krummenacher (1976) produced the first reconnaissance geologic map (1:150,000 scale) 

and substantial geochronology for rocks in coastal Sonora from Bahia de Kino north to 

Puerto Lobos.  Gastil and Krummenacher (1977) first recognized striking similarities in 

the geology and deformation style between rocks in northeastern Baja California and 

those in coastal Sonora, and more recent geochemical and stratigraphic studies in Baja, 

Isla Tiburón, and Sonora confirm these observations (Mora-Alvarez and McDowell, 

2000; Oskin and Stock, 2003b,c).  Oskin and Stock (2003b, c) estimated ~300 km of 

Pacific–North America relative plate displacement between coastal Sonora and the Baja 

peninsula since ca. 6 Ma based on correlations of four ignimbrite markers (dated at 12.6 

to 6.1 Ma) from northeastern Baja California to Isla Tiburón and coastal Sonora,.  

Bennett (2009) used detailed geologic mapping (1:10,000 scale), structural 

analysis and paleomagnetic data in the Cerro Kino area of coastal Sonora to document a 

transition from extension-dominated transtension to shear-dominated transtension at ca. 7 
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Ma, after which the coastal “Kino-Chueca Shear Zone” (Fig. 3) hosted a minimum of 15 

km of proto-Gulf dextral shear immediately prior to plate boundary localization in the 

Gulf at ca. 6 Ma.  The Kino-Chueca shear zone, bounded on the northeast by the 

Sacrificio fault and on the southwest by the offshore Infernillo fault (Fig. 3), is thought to 

represent a narrow zone of localized dextral shear where elevated strain rates and focused 

transtension may have served as a catalyst for lithospheric rupture and inception of the 

Gulf California (Bennett, 2009).  

Progressive Localization Hypothesis 

 Evidence from both conjugate rifted margins of the Gulf of California suggests 

that neither the strain partitioning (Stock and Hodges, 1989) nor the distributed 

transtension (Fletcher et al., 2007) end-member models sufficiently describe proto-Gulf 

kinematics without some modification.  Bennett (2009) proposed a new hybrid model for 

late Miocene progressive localization of proto-Gulf strain in the northern Gulf of 

California.  According to this model, initiation of dextral strike-slip faults in a narrow 

zone of focused transtension in coastal Sonora near the end of late Miocene (proto-Gulf) 

time resulted in acceleration of strain rate that led to lithospheric rupture and the 

transition from continental extension to seafloor spreading.  Evidence for dextral 

displacement and significant clockwise vertical-axis rotation along strike to the southeast 

near Guaymas (Herman and Gans, 2006) lends support to this model.  These results 

suggest a causal link between rift obliquity and the potential for lithospheric rupture, 

since highly oblique rifts like the Gulf of California commonly host significant shear 

strain on steep strike-slip and oblique-slip faults (Withjack and Jamison, 1986; Agostini 

et al., 2009).  However, the possible presence of major strike-slip faults inboard and 
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northeast of the Kino-Chueca shear zone, which would support the distributed 

transtension model, has not been tested in previous studies.  In this study, geologic 

mapping and structural data from well-exposed late Miocene rocks in the Sierra Bacha, 

adjacent to a well-documented coastal shear zone, are used to test existing kinematic 

models of proto-Gulf evolution and to investigate the processes that led to initial opening 

of the northern Gulf of California.  
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CHAPTER III 

METHODS 

 

Geologic and Structural Mapping 

Detailed geologic and structural mapping (Plate 1) was conducted in 2010 and 

2011 on SPOTImage multispectral 2.5 meter resolution imagery from Google Earth 

draped with a worldwide UTM grid.  Topographic base maps used for reference include 

the ‘Desemboque’ and ‘Arivaipa’ 1:50,000-scale Carta Topografica base maps produced 

by the Comision de Estudios del Territorio Nacional, Mexico.  Field mapping was 

conducted at scales of 1:10,000 and 1:30,000 and integrated with analysis of high-

resolution satellite imagery to identify and correlate major structures and stratigraphic 

units across the study area.  Since most major structures are not well exposed, their 

locations and geometries are commonly inferred from stratigraphic constraints such as 

missing or repeated intervals, fault-to-bedding cutoff angles, and structural separation 

observed in map view.  Lithologic, petrographic, and geochemical analyses helped test 

and corroborate stratigraphic correlations between isolated localities.  

Fault Kinematic Analysis 

Fault surfaces and kinematic indicators (e.g. slickenside lineations, striations, and 

mullions) were measured in the field for structural analysis and reconstruction of 

paleostress axes that produced proto-Gulf deformation in the Sierra Bacha.  A total of 65 

exposed fault surfaces and 41 kinematic indicators were measured in late Miocene units 

deposited between ~14.5 Ma and 10.4 Ma.  Each fault slip measurement included the 
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orientation (strike and dip) of the fault surface, rake of the fault slip indicator, and sense 

of shear.  Together, these kinematic features represent the direction of relative motion 

between adjacent fault blocks. In most cases, sense of shear could not be determined in 

the field due to the limited preservation of fault surfaces and absence of the adjacent 

block.  Where a reliable shear sense indicator was not observed, a shear sense direction 

was assigned to each measurement using two main assumptions: (1) fault striations 

formed under a dominantly extensional (as opposed to contractional) stress field, and (2) 

the overall structural style of regional-scale faults reflects the same stress conditions as 

microstructures, given a large enough dataset.  Following these assumptions, slickenline 

data with a significant component of dip-slip (i.e. rake = 20 - 90º from horizontal) were 

assigned a normal shear sense with the appropriate strike-slip component (e.g. dextral-

normal or sinistral-normal) based on the rake direction.  For kinematic indicators with a 

low dip-slip component (rake 0-20º from horizontal), a shear sense was assigned that 

reflected dextral motion on W- and NW-striking faults, and sinistral motion for N- and 

NE-striking faults, consistent with regional-scale strain patterns.  Principal paleostress 

orientations were determined using FaultKinWin v. 1.2.2 and FaultKin v.4.3.5 for Mac 

OS (Allmendinger et al., 1994), which utilizes the right dihedra geometrical method of 

calculating P and T stress tensors (Angelier and Mechler, 1977; Pfiffner and Burkhard, 

1987).  All fault kinematic data analyzed in this study are listed in Appendix A. 

Kinematic analysis of fault slip data in this study is based on the general 

assumption that slip occurs along a fault plane in the direction of maximum resolved 

shear stress (Wallace, 1951; Bott, 1959).  Thus, the orientations of kinematic indicators 

on fault surfaces provide valuable information about paleostress conditions and, given a 
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large population of faults, are assumed to be representative of the paleostress orientation 

that caused slip to occur.  Inversion of fault slip datasets can then be used to reconstruct a 

reduced stress tensor and paleostress axes for a given fault array (Carey and Brunier, 

1974; Angelier et al., 1982).  

Paleomagnetic Analysis 

A total of 61 randomly oriented core samples were collected from 5 drill sites in 

the Sierra Bacha.  Between 6 and 19 cores were extracted from each site using a portable 

gasoline-powered drill with a 1-inch diameter water-cooled diamond bit.  Each core was 

oriented in the field with both a magnetic compass and a sun compass to an accuracy of ± 

1º.  Samples typically were collected from an area spread over 5 to 200 meters at each 

site to allow within-site homogeneity of remnant magnetization to be evaluated.  In the 

lab, specimens were cut to a length of 1 cm and subjected to demagnetization 

experiments.  All experiments were performed by the author at the California Institute of 

Technology Paleomagnetics Laboratory in a Model 581 2-G SQUID (Superconducting 

Quantum Interference Device) rock magnetometer, housed in a magnetically shielded μ-

metal room.  Natural remnant magnetization (NRM) was measured for each of the 

specimens, followed by two identical low-temperature (LT) steps in which each specimen 

was cooled to 77 K in liquid nitrogen (N2) and allowed to warm to room temperature.  

Magnetization was measured after each cooling-warming cycle.  No other thermal 

demagnetization steps were performed.  All 61 specimens were then subjected to 13 total 

AF demagnetization steps from 25 to 100 mT in increments of 25 mT, high-AF 

demagnetization from 100 to 300 mT in increments of 50 mT, and 300 to 800 mT in steps 

of 100 mT.   
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Raw paleomagnetic data were obtained using Paleomagnetic Magnetometer 

Control System, 2010, v 2.4.0 (Kirschvink et al., 2008).  All data were analyzed in 

PaleoMag v 3.1b2 (Jones, 2002) using the principal component analysis of Kirschvink 

(1980) for calculating the best fit for a linear vector of magnetic remanence using 

selected demagnetization steps for each specimen. The NRM of a rock is generally 

composed of at least two components: a primary NRM component inherited during rock 

formation and a secondary NRM component acquired during exposure to subsequent 

geomagnetic fields.  Partial demagnetization experiments allow the identification and 

removal of low-stability NRM components which are inferred to be secondary NRM 

components (Butler, 1992).  Progressive alternating-field (AF) demagnetization steps 

isolate the high-stability components which, in most cases, are inferred to be a primary 

NRM that represents the geomagnetic field at the time of rock formation.  The high-

stability component, however, is not necessarily the primary NRM as multiple 

overprinting magnetization components may have been inherited by the rock.  For this 

reason, the high-stability component of NRM is generally referred to as the characteristic 

remnant magnetization (ChRM).  Vertical-axis rotations were calculated using the 

methods of Beck (1980) and Demarest (1983). 

XRF Geochemical Analysis 

Ten samples from the Sierra Bacha were sent to the XRF (x-ray fluorescence) Lab 

at Michigan State University to obtain geochemical data for igneous rock classification 

and correlation of regionally extensive ignimbrites.  All geochemical analyses were 

performed using a Bruker S4 PIONEER 4 kW wavelength dispersive x-ray fluorescence 

spectrometer.  Bulk rock analysis involved high-temperature fusion of powdered samples 



19 

into homogenous glass disks by dilution with a lithium-tetraborate flux.  Each sample 

was analyzed for major elements, and the trace elements Rb, Sr, and Zr.  Data reduction 

was performed with SPECTRAplus software using fundamental parameters. 

Geochronology 

 The ages of volcanic rocks reported in Table 1 from this study were determined 

by our colleague Alex Iriondo at UNAM-Juriquilla using U-Pb and Ar/Ar methods.  All 

geochronologic data and descriptions of the analytical methods will be included in a 

future publication summarizing the results of this work. 
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CHAPTER IV 

GEOLOGY AND STRATIGRAPHY OF THE SIERRA BACHA 

 

Study Area and Access 

The Sierra Bacha (Figs. 3, 4) is a coastal mountain range in northwestern Sonora, 

Mexico, located 160 kilometers WNW of Hermosillo and 100 kilometers NNW of Bahía 

de Kino.  On most topographic maps of this region, the name “Sierra Bacha” refers only 

to the range adjacent to the coast in the northwesternmost study area, and in some cases 

the name “Sierra Tordilla” is used interchangeably.  For the purpose of this study, all 

references to the “Sierra Bacha” hereafter refer to the coastal range as well as adjacent 

areas to the east and southeast.  The 500 square kilometer study area is bounded to the 

west by the eastern margin of the Gulf of California, and to the east by the extensive 

alluvial floodplain of the Rio San Ignacio ~25 km inboard of the coast.  The study area 

lies almost entirely within territory claimed by the indigenous Comcáac nation (Seri 

tribe) of western Sonora; permission and access were personally granted by tribal elders.  

Sonora Highway 003, located in the northeastern map area, is the only paved road in the 

region and provides the most reliable access to the area.  High clearance vehicles and 

caution are recommended when navigating the dirt roads and dry arroyos. 

Stratigraphic Overview 

Geologic mapping, lithologic and petrographic analysis, Ar/Ar and U-Pb 

geochronology, XRF bulk rock analysis, and clast counts reveal 44 distinctive Neogene 

units in the Sierra Bacha study area (Plate 1, see supplemental file).  For simplicity and 
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Figure 4.  Summary geologic map of the Sierra Bacha in coastal Sonora, Mexico.  See Fig. 3 for location.  Detailed, 1:30,000 scale 

“Geologic Map of the Sierra Bacha, Coastal Sonora, Mexico” (Plate 1) is included with this thesis as supplemental material. 
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consistency with previous and ongoing studies, this study uses the established regional 

stratigraphic framework for coastal Sonora of Oskin & Stock (2003c) and Bennett 

(2009).  Within this framework, stratigraphic units overlying basement rocks are divided 

into five tectono-volcanic groups as depicted on the summary geologic map of the Sierra 

Bacha (Fig. 4) and in the local stratigraphic sections (Fig. 5). Basement rocks in the study 

area include granitic rocks of the late Cretaceous coastal Sonora batholith as well as their 

associated Mesozoic-Paleozoic(?) metamorphic protoliths (Gastil and Krummenacher, 

1976, 1977; Ramos-Velázquez et al., 2008).   

The mostly volcanic section above the basement nonconformity has a composite 

thickness of up to 2,500 meters and consists predominantly of intermediate lava flows 

with interbedded basalts, rhyolites, welded tuffs, and nonmarine sedimentary rocks.  

Stratigraphic groups 1 and 2 comprise units that were deposited prior to rifting in the 

GEP.  The only group 1 unit present in the Sierra Bacha is an Oligocene to middle 

Miocene fluvial conglomerate with distinctive Permian fusulinid-bearing clasts first 

described by Gastil et al. (1973).  Rocks of group 2 consist of peraluminous basalt, 

andesite, and rhyolite lava flows, ash flow tuffs, and minor volcaniclastics deposited 

during subduction-related arc-volcanism in coastal Sonora (Hausback, 1984; Oskin & 

Stock, 2003b).  The youngest units in group 2 are a pair of 12.5 Ma ignimbrites: the tuff 

of San Felipe (‘Mtsf’; Stock et al., 1999; Oskin et al., 2001; Oskin and Stock, 2003b) and 

the tuff of San Ignacio (‘Mtsi’; this study).  These units are laterally extensive markers 

that permit correlation of discontinuous lava flows and domes across the map area and 

mark the boundary between groups 2 and 3.  Group 3 units were deposited after the 

cessation of subduction and during early rifting in the Gulf of California (Oskin & Stock,
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Figure 5.  Stratigraphic columns for the Sierra Bacha area (see Fig. 4 for locations and 

explanation), illustrating typical unit thicknesses and existing age constraints.  BF - Bacha fault, 

NF - Noriega fault, PCF - Pozo Coyote fault. 
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2003b).  In this study, group 3 is subdivided into early syn-rift (groups 3a) and late syn-

rift (group 3b) deposits.  Group 3a units were deposited between 12.5 and ~10 Ma and 

range from basaltic to rhyolitic lava flows, with interfingering pyroclastic and 

volcaniclastic deposits.  Importantly, all group 3a strata have similar moderate dips to the 

northeast with no discernible up-section change.  In contrast, group 3b contains 

nonmarine conglomerates, basalt flows, and rare thin ash beds deposited between ~10 

and 6 Ma that reveal an up-section decrease in bedding dip (fanning-dips) that record 

syn-depositional tilting during rifting in the GEP.  Group 4 contains widespread, 

undeformed nonmarine, post-6 Ma sedimentary rocks. 

Pre-Tertiary Basement 

 Pre-Tertiary basement in the Sierra Bacha consists of Mesozoic-Paleozoic-age 

metamorphic rocks and intrusive late Cretaceous granitoids of the coastal Sonora 

batholith (Anderson and Silver, 1969; Gastil et al., 1974; Gastil and Krummenacher, 

1977; Gastil, 1993; Ramos-Velázquez et al., 2008).  Metamorphic rocks include mostly 

low-grade, hornfels-facies metasediments with abundant primary quartz and secondary 

muscovite (ms), along with minor meta-volcanics (mv), meta-carbonate (mcb), and 

quartzite (Pzq) (Plate 1).  Very fine-grained quartzite, which is only exposed in one 

locality just southwest of Pozo Coyote, is not observed elsewhere in Mesozoic strata of 

Sonora, leading some to interpret it as an unusual facies of Paleozoic strata west of the 

miogeoclinal margin (Gastil and Krummenacher, 1977; Stewart, 1988).  Meta-carbonates 

are also inferred to be late Precambrian to Mesozoic in age and include mostly meta-

limestone with 5-25 cm–thick planar lamellae and calcite-cemented sandstone.  

Unidentified fragmentary silicified fossils(?) 1-3 cm in length show both cylindrical and 
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4-6-sided prismatic/angular forms, and are abundant in very rare but densely-packed ~10 

cm-thick horizons (29.52353° N, 112.31983° W). 

 Granitic basement rocks are exposed throughout the map area except in the 

northeastern region, and consist primarily of medium to coarse-grained tonalite (Kt) with 

plagioclase > quartz > biotite >> alkali feldspar, and granodiorite (Kgd) with plagioclase 

> quartz > alkali feldspar ≈ biotite.  In some places, Kt contains locally abundant 

metasedimentary enclaves that are typical of S-type granites formed from 

metasedimentary protoliths.  Granite (Kg) containing microcline megacrysts up to 3 cm 

in length and quartz > alkali feldspar >> biotite ≈ plagioclase is present in the central 

study area as 10-30 meter-thick dikes and a single concentric pluton that forms a 

prominent peak in the Cerro Pelón.  Cross-cutting relationships and the presence of 

tonalite xenoliths within the granite indicate that virtually all Kg intrusions postdate 

emplacement of Kt.  A single fine to medium-grained quartz diorite (Kd) intrusion is 

located in the northwestern map area which contains plagioclase > amphibole ≈ biotite > 

quartz ± orthopyroxene. 

Although no isotopic ages were determined for crystalline basement rocks in the 

study area, reliable relative age constraints exist from coastal intrusions immediately 

adjacent to the Sierra Bacha, collectively referred to as the coastal Sonoran batholith 

(Ramos-Velázquez et al., 2008).  U-Pb and Ar
40

/Ar
39

 ages of granitic intrusions from 

coastal Sonora reportedly range from ca. 100-69 Ma (Anderson and Silver, 1969; Gastil 

and Krummenacher, 1977; Ramos-Velázquez et al., 2008; Bennett, 2009).  Ramos-

Velázquez et al. (2008) report a cooling age of 69.4 ± 1.2 Ma [U-Pb] for the Tepopa 

tonalite located 15 kilometers south of the southern edge of the map area.  A similar age 
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of 71.7 ± 1.4 Ma [K-Ar] was reported by Gastil and Krummenacher (1977) for a 

granodiorite located 4 kilometers west of the northwestern edge of the map area near Las 

Cuevitas (Fig. 3; Table 1). 

Paleotopography 

 Mapping for this study revealed significant onlap of Group 2 and 3 volcanic and 

sedimentary strata onto basement rocks in the Cerro Colorado and near Pozo Coyote.  

The buttress unconformity generally has shallow (< 10˚) onlap angles, except one locality 

in the western Cerro Colorado where the onlap angle approaches ~40˚.  These 

relationships provide evidence for significant paleotopography that was produced by 

exhumation and erosion after late Cretaceous intrusion of granitic basement rocks.  The 

presence of low to moderate paleo-topographic relief (up to ~500 m) in the Sierra Bacha 

introduces some uncertainty to structural interpretations in the following sections. 

Group 1: Basal Sedimentary Rocks (pre-15 Ma) 

 Group 1 strata consist of basal sedimentary units that nonconformably overlie the 

granitic and metamorphic basement complex, representing the oldest Neogene deposits in 

the GEP (Oskin & Stock, 2003b).  The only unit in the Sierra Bacha area that undeniably 

belongs to stratigraphic group 1 is a distinctive fluvial conglomerate with an exotic clast 

assemblage (Tce) (Gastil et al., 1973; Bryant, 1986).  In the study area, Tce is a mostly 

clast-supported pebble-cobble conglomerate with sparse boulders up to 60 cm in diameter 

and a white to red granular, grussy matrix.  Clasts are well to very well rounded and 

include quartzite, tonalite, meta-basement, chert, limestone, and less abundant volcanics.  

Tce in the Sierra Bacha is herein correlated with the exotic clast conglomerate of Gastil et 

al. (1973) based on the following criteria: 1) limestone clasts containing fusulinid(?) and 
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Table 1. Summary of Available Geochronologic Data for Lithologic Units in the Sierra Bacha Area, Coastal Sonora, Mexico 

                      

Lithologic 
Group 

Sample 
number 

Lithologic 
Unit 

Map 
symbol 

(this 
study) Rock type 

Long. (˚W) 
or Easting* 

(m) 

Lat. (˚N) or 
Northing* 

(m)  Age (Ma) 
Isotopic 

technique Mineral Reference 

           
Group 3b S2G-114 

Basalt of 
Arivaipa 

Mba basalt 112.376733° 29.663879° 6.4 ± 1.9 K-Ar whole rock 
Gastil & Krummenacher 

(1977) 

                      

           

 
S2G-114A 

Tuff of 
Desemboque 

Mtd 
ash-flow 

tuff 
112.311228˚ 29.513669˚ 10.4 ± 0.2 K-Ar feldspar 

Gastil & Krummenacher 
(1977) 

Group 3a 
          

 
SE-03-06 volcanic Ma3 

basaltic-
andesite 

368797 3274621 11.76 ± 0.08 Ar/Ar glass matrix A. Iriondo (unpubl. data) 

                      

           

 
PC-98-18** 

Tuff of San 
Felipe 

Mtsf 
ash-flow 

tuff 
394475 3208720 12.50 ± 0.08 Ar/Ar anorthoclase Bennett et al. (2007) 

           

Group 2 
SON10-

346G 
Tuff of San 

Ignacio 
Mtsi 

ash-flow 
tuff 

372427 3273392 12.56 ± 0.09 U-Pb zircon A. Iriondo (unpubl. data) 

           

 
SON10-

356G 
Tuff of Cerro 

Colorado 
Mtcc 

ash-flow 
tuff 

374730 3271014 14.5 ± 0.3 U-Pb zircon A. Iriondo (unpubl. data) 

                      

           

 
KI-12-46** 

Tepopa 
Tonalite 

Kt tonalite 365796 3247634 69.4 ± 1.2 U-Pb zircon 
Ramos-Velázquez et al. 

(2008)  

Basement 
          

 
S0H-281** 

batholithic 
basement 

Kgd granodiorite 112.558826˚ 29.69698˚ 71.7 ± 1.4 K-Ar biotite 
Gastil & Krummenacher 

(1977) 

                      

           *   UTM coordinates from zone 12R, WGS 84 Datum 
     

**  Sample collected from outside of the study area; location not shown in Fig. 4 
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gastropod(?) fossils, 2) similar extra-regional clast assemblage, and 3) proximity to 

previously mapped outcrops along strike to the southeast in the Sierra Seri (Fig. 3).   

The age of Tce is weakly constrained by geologic and stratigraphic data from Baja 

California and coastal Sonora.  The oldest conformable unit overlying group 1 strata in 

Baja California is the 12.5 Ma Tuff of San Felipe (Stock et al., 1999).  Upper group 1 

strata in Baja are intercalated with volcanic flows as old as ca. 20-21 Ma (Lewis, 1994; 

Stock, 1989).  In the Sierra Bacha, group 1 strata are overlain by the 14.5 Ma Tuff of 

Cerro Colorado (Mtcc), middle to late Miocene conglomerates (Mc2), and the 10.4 ± 0.2 

Ma Tuff of Desemboque (Mtd).  These data, along with additional stratigraphic 

constraints on Baja (e.g. Dorsey & Burns, 1994; Oskin & Stock, 2003c) suggest an 

Oligocene to middle Miocene age for group 1 strata, possibly as young as ~15 Ma. 

Group 2: Pre-Rift Rocks (~15-12 Ma) 

 Rocks of stratigraphic group 2 consist of basaltic-rhyolitic lava flows and 

interbedded pyroclastics that, according to previous workers (Gastil et al., 1979; Sawlan, 

1991), were deposited during active subduction and Miocene arc volcanism (Figs. 4, 5).  

Calc-alkaline to alkaline volcanic units predominantly consist of peraluminous basaltic-

trachyandesite, trachyandesite, and dacite flows (Fig. 6) and are best exposed in the Cerro 

Colorado and in the coastal Sierra Tordilla.  Group 2 units have an average composite 

thickness of ~500-700 meters and attain a maximum thickness of ~1100 meters in the 

Cerro Las Burras (Fig. 5).  Basal units nonconformably overlie crystalline and 

metamorphic basement and in some areas conformably overlie thin deposits of group 1 

strata.  All geochemical data are listed in Table 2. 
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Figure 6.  Total alkali versus silica (TAS) diagram (Le Maitre et al., 1989) showing the 

classification of volcanic units from the Sierra Bacha.  Bulk rock XRF major- and trace-element 

data are listed in Table 2.  All samples (except Mdf) lie within the basaltic-trachyandesite to 

rhyolite fields and show high total alkali concentrations > 6 wt%.  Abbreviations: PB = picro-

basalt, B = basalt, BA = basaltic-andesite, A = andesite, D = dacite, R = rhyolite, TB = trachy-

basalt, BTA = basaltic trachy-andesite, TA = trachy-andesite, TD = trachyte/trachy-dacite, TE/BS 

= tephrite/basanite, PT = phono-tephrite, TP = tephri-phonolite, P = phonolite. 

 

 

 Lava flows range in composition from trachybasalt to rhyolite, although the most 

voluminous units are basaltic-andesite and andesite.  Ma1 is a suite of 2-4 gray-purple, 

plagioclase-phyric, basaltic-trachyandesite lava flows with locally abundant vesicles 

filled with secondary zeolite minerals.  Exposures are typically weathered and rubbly, 

and total thickness is ~200-400 meters.  The age of Ma1 is constrained by the interbedded 

Tuff of Cerro Colorado (Mtcc), which has a U-Pb zircon age of 14.5 ± 0.3 Ma (Table 1).
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 Table 2. XRF Bulk Rock Analysis of Major and Trace Element Compositions 

                      

Lithologic 
Unit 

Ma1 Ma2 Mdf Mtsi* Mtsi Mtsf Md1 Md3 Mr2 Mtcp 

Group 2 2 2 2 2 2 3a 3a 3a 3a 
Sample 
ID 

SON10-
358 

SON10-46 
SON11-

46M 
SON11-

83a 
SON10-

346G 
SON11-

73B 
SON10-

127 
SON10-

273 
SON11-

99 
SON11-

124 

Age (Ma) ~14.5 14.5-12.5 > 12.5 12.5 12.5 12.5 12.5-11.8 < 11.8 < 11.8 < 12.5 

wt % 
          SiO2 51.78 55.94 65.01 69.93 70.56 69.8 60.75 66.88 71.14 66.36 

TiO2 2.29 1.43 0.54 0.2 0.21 0.14 0.98 0.28 0.24 0.35 

Al2O3 16.16 17.18 15.63 13.6 13.58 11.86 16.11 14.75 12.97 15.32 

Fe2O3 10.98 7.67 3.91 2.24 2.53 1.86 6.49 3.93 3.78 2.89 

MnO 0.17 0.11 0.06 0.03 0.06 0.05 0.11 0.12 0.07 0.06 

MgO 3.95 3.02 1.39 0.17 0.37 0.32 1.71 0.26 0.01 0.93 

CaO 6.63 5.91 3.71 0.88 0.94 3.97 2.86 1.7 0.37 2.73 

Na2O 4.68 4.75 4.33 1.41 4.06 3.53 5.85 5.95 5.27 4.79 

K2O 1.54 1.83 2.54 8.65 5.71 4.61 3.19 4 4.89 3.65 

P2O5 0.43 0.34 0.3 0.06 0.08 0.05 0.41 0.08 0.04 0.11 

Totals 98.61 98.18 97.42 97.17 98.1 96.19 98.46 97.95 98.78 97.19 

LOI (%) 1.22 1.61 2.32 2.66 1.78 3.7 1.35 1.75 1.06 2.58 

           ppm 
          

Rb 23 40 61 326 220 180 68 93 135 97 

Sr 501 673 599 96 44 44 328 144 16 471 

Zr 285 249 309 242 447 410 468 513 980 333 

                      

           *  Rheomorphic Mtsi labeled "Mtsi-R" in Figure 6 
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Mss consists of epiclastic sandstone and grus typically 1- to 3-meters-thick (up to 15 m), 

with massive to well-laminated beds of immature, fine to medium-grained sandstone 

(quartz >> alkali ≈ biotite).  Its composition resembles that of the underlying granitic 

basement complex and deposits are commonly found resting directly on weathered 

tonalitic basement rocks and also intercalated with undifferentiated yellow lithic tuffs 

(Mtu) and andesite flows (Ma1) in the Cerro Colorado (Plate 1). 

Ma2 is a 400 meter thick stack of purple, aphyric trachyandesite in the 

southwestern Cerro Colorado that is cut by multiple feeder dikes and agglomeritic breccia 

zones characteristic of an andesite dome proximal facies.  More distal facies have 1- to 2-

meter-thick red (oxidized) breccias at their bases and show an average combined 

thickness of ~200-300 meters that thins considerably to the north and northeast.  A 

similar aphyric andesite flow is also observed just west of the Cerro Pelón in footwall 

strata of the Bacha fault.  Petrographic analysis reveals ~1-2% microlitic plagioclase and 

pyroxene(?) in an aphanitic groundmass.  Mr1 is a densely foliated rhyolite lava flow 

found only in the Cerro Colorado.  This unit contains up to 5% phenocrysts (quartz ≈ 

sanidine > feldspar) in a pink-purple groundmass and reaches a maximum thickness of 

~50 meters.  A thick sequence of gray-purple, quartz-feldspar-phyric rhyodacite flows 

(Mr) and compositionally similar rhyolitic breccias (Mrb) are found only in the Cerro Las 

Burras.  Because the ages of these units are unknown and constrained only by their 

stratigraphic positions below the 12.5 Ma tuff of San Ignacio (Mtsi), they might instead 

belong in stratigraphic group 1 (pre-15 Ma). 

 A distinctly different local stratigraphy, observed in the western study area, is 

dominated by a proximal to medial stratovolcano facies consisting of dacite lava flows 
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and mono-lithologic tuffs and breccias.  Dacite lava flows (Mdf) are porphyritic with 

~15% phenocrysts of plagioclase >> biotite > quartz.  Mdt predominantly consists of 

lithic-rich tuffs with subordinate tuff breccias and lava flows.  Tuffs and breccias have a 

nearly homogeneous composition of porphyritic Mdf clasts that makes Mdt a key 

stratigraphic marker.  The ages of these units in the northwestern map area are not 

constrained by dated stratigraphy, but are inferred to be coeval with other group 2 strata 

to the east and southeast.  Northeast of Desemboque, the 12.5 Ma tuff of San Felipe 

(Mtsf) is in concordant contact with Mdt below (Plate 1).  In addition, similar group 2 

units on Baja California, described as plagioclase- and biotite-rich porphyritic dacites 

with related tuffs and breccias, have ages ranging from 15.5 to 16.7 Ma (e.g. the 

Tombstone Dacite of Nagy et al., 1999).  The basaltic facies of group 2 (Mb1) consists of 

thin discontinuous exposures of indurated, glassy basalt flows that rarely reach 

thicknesses greater than 20 meters.  Some flows are aphanitic while others show up to 

10% altered olivine and pyroxene(?) phenocrysts. 

 The Tuff of Arivaipa (Mta) is deep maroon-red, partially welded, crystal- and 

lithic-rich rhyolite tuff ~50-80 meters-thick and only exposed in the Cerro Las Burras in 

the northeastern map area (Plate 1).  A 1- to 4-meter-thick white-red brecciated base 

grades into the partially welded lithic-rich section containing 15% brown, red, purple, 

black, subangular volcanic lithics with rare tonalite xenoliths.  Phenocrystic quartz and 

plagioclase (up to 5%) and undeformed yellow, ashy pumice are diagnostic of this tuff.  

The upper 2-3 meters of Mta are nonwelded and contain abundant yellow and white 

pumice clasts with no phenocrysts.  A discontinuous white, ashy, quartz-rich tuff layer is 

observed ~30 meters down from the top of the unit, which is up to 10 meters-thick and 



33 

difficult to follow along strike.  The age of Mta is unknown and constrained only by the 

overlying 12.5 Ma tuff of San Ignacio (Mtsi).   

Tuff of Cerro Colorado (Mtcc) 

 The Tuff of Cerro Colorado (Mtcc) is a 10-40 m thick yellow-red crystal-lithic 

rhyolite tuff.  U-Pb zircon data reveals a maximum eruption age of 14.5 ± 0.3 Ma for 

Mtcc (Table 1).  This tuff overlies the basement nonconformity or Ma1 throughout most 

of the Cerro Colorado, marking the base of the volcanic section in the Cerro Colorado 

and most of the study area.  The base of Mtcc is a 2-8 m thick, yellow-orange, nonwelded 

member with yellow-red-purple tephra and subangular volcanic lithics, grading upward 

into a brick red, partially-welded crystal-lithic tuff with yellow and grey pumice (up to 

5%) and ~10% phenocrysts (quartz > feldspar).  In some places Mtcc contains multiple 

cooling units several meters thick and occasionally displays a purple, densely welded 

upper unit with significantly less pumice and smaller lithic fragments.  The uppermost 

welded members form resistant ridges flanked by colorful talus slopes on both sides. 

Tuff of San Ignacio (Mtsi) 

 The Tuff of San Ignacio (Mtsi) is a widespread, pink-white-orange, densely 

welded, spherulitic rhyolite ash-flow tuff with an average thickness of 20-40 meters (up 

to 350 m) that was not recognized prior to this study (Plate 1; Figs. 4, 5).  A high 

precision U-Pb age of 12.56 ± 0.09 Ma was calculated for Mtsi (Table1), nearly identical 

to the age of the well studied tuff of San Felipe (e.g. Stock et al., 1999; Oskin and Stock, 

2003b).   

 Mtsi is an ashy, bubble-gum pink to white, crystal-poor tuff with unique 

subrounded to angular, plagioclase-phyric, vesicular andesite lithics up to 5 cm in 
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diameter (average ~1 cm) and rare centimeter-scale white to pink fiame (Fig. 7).  

Abundant 0.5-3 cm-diameter quartz-filled spherules and lithophysae in a pink-white, ashy 

groundmass are especially diagnostic of this tuff and pervasive throughout the vapor-

phase alteration zone.  Petrographic examination reveals very rare small pumice 

fragments, partially dissolved potassium feldspar, quartz, and biotite in an ash-rich 

groundmass.  Very rare quartz and biotite phenocrysts are also observed in hand sample.  

The base of Mtsi is commonly a ~1-5 m-thick, dense black-brown vitrophyre with rare 

feldspar micro-phenocrysts.  A 0.5-1.5 m-thick, orange-brown, laminated basal surge 

deposit in the central and southern Cerro Colorado locally contains abundant tonalite 

pebbles and cobbles.  The basal unit is overlain by a 5-8 meter-thick salmon-orange, 

crystal and lithic-rich welded zone with minor phenocrysts including quartz >> feldspar > 

biotite.  The welded zone grades upward into a partially welded, spherulitic vapor-phase 

alteration zone which ranges from 10 to 30 m-thick in most exposures.   

Internal rheomorphic flow deformation in the form of severely folded and 

recrystallized pumice fiame is characteristic of Mtsi in the Cerro Las Burras where it 

reaches a maximum thickness of ~350 meters.  Flow-banding is densely-spaced (< 1 cm) 

and rheomorphism is irregularly distributed with pumice lineations showing varying 

degrees of deformation, some stretched out up to 30 cm-long (1:50 aspect ratio). 

Tuff of San Felipe (Mtsf) 

 The Tuff of San Felipe (Mtsf) is a well-documented regionally extensive rhyolite 

ignimbrite that serves as an important marker horizon for reconstructions of the Gulf 

Extensional Province (Stock et al., 1999; Oskin et al., 2001; Oskin and Stock, 2003b).  

Bennett et al. (2007) report a high-precision Ar
40

/Ar
39

 age of 12.50 ± 0.08 Ma for Mtsf
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Figure 7.  Field photographs of the 12.5 Ma tuff of San Ignacio (Mtsi).  (Top-left) Lower densely welded zone showing 1 to 3 cm-long, 

white-pink flattened pumice fiame.  (Top-right) Spherule-rich zone of vapor phase alteration; notebook is 19 x 12 cm.  (Bottom) 

Rheomorphism in Mtsi from the Cerro Las Burras where it reaches a maximum thickness of ~350 m.  Pumice are completely replaced by 

secondary quartz and irregularly folded and stretched up to 40 cm in length.  Dark vesicular trachyandesite inclusions (3 total in photo) are 

up to 4 cm in diameter. 
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 (Table 1).  Vent-proximal facies are found east of the Sierra San Felipe in northeastern 

Baja and west of the Cerro Kino in coastal Sonora (Fig.3), and the entire tuff sheet is 

estimated to cover an area > 4000 km
2
 on both margins of the Gulf (Oskin and Stock, 

2003b).  Mtsf is a maroon-orange densely welded tuff with multiple cooling units that 

contain abundant yellow-white pumice and 10-15% anorthoclase phenocrysts, rare zoned 

pyroxene, and absolutely no phenocrystic quartz.  Abundant flattened pumice fiame reach 

lengths of up to 25 cm that form a well-defined eutaxitic foliation in Mtsf.  Trachyte-

rhyolite inclusions are a common diagnostic feature of this ignimbrite, most of which 

contain abundant alkali feldspar in a dark glassy groundmass. 

 Mtsf is only exposed at two localities in the study area (Plate 1; Fig. 4). These 

locations represent the northernmost identified outcrops of Mtsf on the eastern rifted 

margin of the Gulf of California.  Northeast of El Desemboque, Mtsf is ~25-70 m-thick 

with a thin (< 1 meter) discontinuous black vitrophyre.  The lower densely welded, 

fiame-rich member (20-40 m-thick) grades upward into a non-welded zone with intact, 

undeformed pumice (5-30 m-thick).   

Distinctions between Mtsi and Mtsf 

 Mtsi and Mtsf share the same age within standard error, a similar unique 

paleomagnetic remanence direction, and both contain similarly distinct dark volcanic 

inclusions.  However, geochemical and mineralogical differences indicate that Mtsi and 

Mtsf are different tuffs.  Mtsf completely lacks quartz and biotite phenocrysts, which are 

rare but present in Mtsi.  Comparison of Rb, Sr, and Zr trace element data for Mtsi and 

Mtsf from this and previous studies (Stock et al., 1999; Oskin and Stock, 2003b) shows 

subtle chemical difference between the two tuffs (Fig. 8).  Additionally, Mtsi deposits
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Figure 8.  Comparison of bulk rock trace element data for the 12.5 Ma tuffs of San Ignacio (Mtsi) 

and San Felipe (Mtsf).  Mtsf in the Sierra Bacha (green) correlates strongly with other 

geochemical data for Mtsf from Baja California and coastal Sonora (black - Stock et al., 1999; 

purple - Oskin and Stock, 2003b).  Mtsi (red) samples do not correlate well with Mtsf, suggesting 

that they represent different tuff units.  Alteration associated with rheomorphic flow deformation 

in the Mtsi sample marked “R” may explain its decorrelation with the other Mtsi sample. 
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 thicken dramatically to the northeast in the Sierra Bacha, representing a proposed vent 

located northeast of the study area.  In contrast, the vent for Mtsf is located ~70 km south 

of the study area in the Cerro Kino area (Fig. 3).  The fact that the tuffs erupted nearly 

simultaneously yet are not found in stratigraphic contact with one another in the Sierra 

Bacha is rather conspicuous (Fig. 5).  This could be due to (i) very limited exposure of 

Mtsf in the study area, or (ii) coincidental confluence of the most distal facies of both 

tuffs in the Sierra Bacha region.  In summary, the available geologic evidence indicates 

that Mtsi and Mtsf are different lithologic units erupted nearly synchronously ca. 12.5 Ma.  

The distribution and vent location of Mtsi and its genetic relationship with Mtsf remain 

incompletely understood and would require additional work in coastal Sonora and 

possibly Baja California to understand the nature of the relationship between these unique 

and widespread pyroclastic flows. 

Group 3a: Early Syn-Rift Rocks (12.5~10 Ma) 

 Group 3 rocks were deposited after subduction and during early rifting in the 

proto-Gulf of California ca 12.5-10 Ma (Oskin & Stock, 2003b).  The sequence has an 

average composite thickness of ~600-1000 meters, reaching a maximum exposed 

thickness of 1550 meters in the Cerro Prieta area (Plate 1; Figs. 4, 5).  Rock types include 

peraluminous basaltic to rhyolitic lava flows, nonmarine volcaniclastic conglomerate and 

sandstone, and minor pyroclastic flows. 

 In the Cerro Colorado, Md1 and Md2 are stony, purple-grey, aphanitic 

trachydacite flows with < 2% altered sanidine phenocrysts in a microlitic plagioclase 

groundmass with minor pyroxene.  Both units contain multiple ~20-60 m-thick flows 

with 1-4 m-thick reddish (oxidized) basal flow breccias.  2-3 m-thick yellow-green 
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pyroclastics are present between individual flows in the northern Cerro Colorado.  The 

only difference between Md1 and Md2 is that Md2 commonly displays a well-defined 1-4 

cm-spaced flow foliation, and up to 5% blocky sanidine and plagioclase phenocrysts.  

Exposures of Md3 are rare and discontinuous in the central and eastern study area and 

consist of 20-40 m-thick grey, alkali-enriched trachydacite flows containing 10-15% 

altered phenocrysts (plagioclase > alkali feldspar ≈ amphibole >> apatite).   

Ma3 is a black basaltic-andesite flow with a plagioclase- and altered pyroxene-

rich microlitic groundmass and no olivine.  It is best exposed ~3 kilometers south of Pozo 

Coyote where it is ~100 m-thick and intercalated with 2-3 m-thick red tuffaceous 

sandstones and pyroclastic breccias (Plate 1).  Rare lath-shaped plagioclase phenocrysts 

are up to 2 mm-long and vesicles are commonly filled with secondary white-yellow 

zeolite minerals.  An 
40

Ar/
39

Ar isochron age of 11.76 ± 0.08 Ma was determined for this 

unit (A. Iriondo, unpubl. data).  Mst is up to 25 m-thick and consists of well-laminated 

lithic tuffs and tuffaceous sandstone with yellow-white-light green pumice and dark 

volcanic lithics in an ashy yellow matrix.  Individual beds are 30-100 cm-thick and show 

normal grading of pumice and lithics.  Mr2 is an aphanitic grey-light purple, resistant 

rhyolite flow with a well-defined flow foliation defined by glassy lens and frothy grey 

lineations with pervasive secondary quartz precipitation in some localities. This unit 

consists of one or two 60-90 m-thick flows with a unique pink-red-white airfall ash at the 

base and a discontinuous green-black 1-3 m-thick vitrophyre.  Mb2 is a sequence of 10-

20 m-thick glassy, black, plagioclase-phyric basalt flows with up to 10% phenocrysts 

(plagioclase > orthopyroxene >> amphibole) and cindery pyroclastic breccias up to 5 m-

thick.  A thicker sequence of basalt flows (Mb3) represents the youngest stratigraphic unit 
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in group 3a.  These deposits are mostly dark purple-black, aphanitic vesicular basalt with 

~1% plagioclase phenocrysts in a glassy groundmass and reach up to ~400 m-thick where 

there is good structural control.  Ma4 is a local vesicular basaltic-andesite flow in the 

Cerro Prieta with abundant (10-20%) altered red pyroxene.  The tuff of Cerro Prieta 

(Mtcp) is a pink, densely welded rhyodacite tuff with a 1-2 m-thick basal vitrophyre, 

eutaxitic foliation defined by flat recrystallized pumice fiame, and 10-15% phenocrysts 

(sanidine > biotite > quartz).  Mtcp bears a slight resemblance to Mtsi in both mineralogy 

and the abundance of spherules in the vapor phase alteration zones.  However, Mtcp is 

not correlated with Mtsi based on (1) its stratigraphic position above Md1 and Mtsi, (2) 

higher abundance of phenocrystic quartz and biotite, and (3) dissimilar geochemical 

signature (Fig. 6).  A thick sequence of similar pink, porphyritic rhyodacite flows (Mrcp) 

containing ~15% phenocrysts (feldspar > quartz ≈ biotite) and an irregular flow foliation 

overlies nonmarine conglomerates and Mtcp in the Cerro Prieta.  A 1-10 m-thick yellow 

airfall ash is present at base of each lava flow, usually below a 1-3 m-thick basal 

vitrophyre. 

Mc1 consists of monolithologic volcaniclastic conglomerate and breccia in the 

northwestern map area that overlies similar composition dacite flows and tuffs (Mdf, Mdt, 

and Mdtf).  The 750 m-thick unit is a massive, poorly-sorted, pebble-cobble conglomerate 

with a grey ashy matrix.  Compositional homogeneity consisting of porphyritic Mdf clasts 

is diagnostic of Mc1.  In contrast, Mc2 consists of polymictic pebbly sandstone to sandy 

pebble conglomerate with interbedded pebble-cobble conglomerate.  In the western Cerro 

Colorado, this unit shows locally well-developed planar stratification, mixed matrix and 

clast support in 5-15 cm-thick beds defined by grain segregation, and mostly subangular 
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to subrounded intermediate volcanic clasts with less common basement clasts and 

outsized boulders up to 35 cm in diameter.  In the Lomas Ona-Jeco (southern area), Mc2 

is mostly massive with local planar lamination of ~20-50 cm-thick bedsets defined by 

grain-size variations. 

Tuff of Desemboque (Mtd) 

 A K-Ar age of 10.4 ± 0.2 Ma was reported by Gastil and Krummenacher (1977) 

for an unnamed rhyolite tuff in the southern map area that is named the tuff of 

Desemboque (Mtd) by this study (Plate 1; Table 1).  Mtd is a 40-50 m-thick rhyolite ash 

flow tuff with a thin (0.5-1 m), discontinuous, porphyritic black vitrophyre with euhedral 

plagioclase > quartz > biotite > alkali feldspar. Immediately above the base is a 5 m-thick 

pink, ashy, crystal-rich layer that grades into a 10-15 m-thick moderately-densely welded 

zone with abundant 4-12 cm-long yellow pumice fiame and 10-15% phenocrysts 

(feldspar > biotite ≈ quartz).  The upper 30 meters show extensive vapor phase alteration 

and abundant quartz-filled spherules in a pink groundmass (similar to Mtsi); spherules 

decrease in abundance up section to the grey-white, nonwelded top of the unit.  Mtd is an 

interbed within Mc2 conglomerate and continues along strike to the SE outside of the 

study area. 

Group 3b: Late Syn-Rift Rocks (~10-6 Ma) 

 Rocks of stratigraphic group 3b unconformably overlie group 3a strata and consist 

of shallowly-dipping, nonmarine, syn-tectonic conglomerate (Mc3) and basalt flows 

(Mba) that accumulated during proto-Gulf extension in the Sierra Bacha.  Mc3 consists of 

massive to moderately sorted volcaniclastic matrix-rich pebble-cobble conglomerate that 

displays mixed matrix and clast support and rare boulders up to 50 cm in diameter, and 
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interbedded pebbly sandstone beds.  The clast assemblage is polymictic with angular to 

subrounded volcanic and basement clasts in a grussy, red sand matrix.  Mc3 is very 

similar in composition to Mc2 of group 3a, with two important features that distinguish it 

from Mc2: (1) Mc3 contains a significantly higher percentage of tonalite, 

metasedimentary, and meta-volcanic basement clasts (Fig. 9), and (2) Mc3 displays 

bedding dips that decrease systematically up-section from about 39º to horizontal in the 

hanging wall of the concealed Noriega fault in the southern map area (Fig. 11C).  The age 

of this unit is constrained by it stratigraphic position above the 10.4 Ma tuff of 

Desemboque (Mtd) and below the Basalt of Arivaipa (Mba). 

The Basalt of Arivaipa (Mba) is an unnamed sequence of horizontal to sub-

horizontal, 10-15 m-thick basalt flows dated by Gastil and Krummenacher (1977) at 6.4 ± 

1.9 Ma [K-Ar].  Mba unconformably overlies pre- and syn-rift strata (groups 2, 3a, 3b) in 

the northern, central, and eastern study area (Plate 1; Fig. 4).  The best exposures of Mba 

cap high topography in the Cerro Prieta and Cerro Las Burras, where individual flows 

show 1-3 m-thick red-black basal flow breccias, vesicular upper and lower contacts, and 

well-defined ~0.5 m-spaced vertical joints.  Mba is aphanitic with micro-phenocrysts of 

plagioclase.  The fine-grained groundmass contains plagioclase >> olivine ≈ pyroxene ≈ 

magnetite.  Small exposures of nearly flat-lying basalt in the Cerro Las Burras and NW of 

the Cerro Prieta contain abundant olivine phenocrysts and are correlated with Mba, 

although their position structurally below capping Mba are difficult to explain. 

Group 4: Post-Rift Rocks (post-6 Ma) 

Group 4 rocks include untilted, post-rift nonmarine sedimentary units deposited 

after ~6 Ma (Oskin and Stock, 2003b).  These units unconformably overlie all older units
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Figure 9.  Clast count data for conglomerate units in the study area.  Note substantial increase in 

basement clast percentage with time from ~16% in group 3a (12.5-10 Ma) conglomerates to 44% 

in group 4 (post-6 Ma) conglomerates, which might be related to post-10 Ma tectonic unroofing 

and basement exhumation during proto-Gulf rifting and/or variable proximity of depocenters to 

pre-rift basement exposures. 



44 

in the study area and include sandy alluvium (Qal), fluvial cross-bedded sandstone of the 

Rio San Ignacio (Qrs), volcaniclastic colluvium (Qco), and Plio-Quaternary 

volcaniclastic gravels (QPg) (Plate 1). 

QPg consists of flat-lying pebbly sandstone and clast-supported sandy pebble 

conglomerate with horizontal stratification and a local primary dip up to 4º in the eastern 

Sierra Tordilla.  Clasts are subangular to rounded and consist primarily of pebbles with 

sparse cobbles and rare boulders up to 90 cm-diameter.  7-35 cm-thick bedsets are well-

defined by clast-supported pebble-rich beds and mostly massive with no sedimentary 

structures, except for rare channel scour and upper plane-bed stratification.  QPg has a 

polymictic clast assemblage consisting of ~56% volcanic clasts (basalt-rhyolite) and 44% 

basement granitoids and metamorphic clasts (Fig. 9).  These gravels are interpreted as 

widespread, locally-derived debris flows and alluvium that cover and obscure older pre- 

and syn-rift strata. 
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CHAPTER V 

STRUCTURAL GEOLOGY 

 

Dominant Structural Trends 

The Sierra Bacha is cut by normal, sinistral, normal-oblique, and dextral faults 

that formed during proto-Gulf (late Miocene) deformation (Plate 1; Figs. 3, 4).  The 

major structures are the Amado-Libertad and Bacha faults in the north, and the Pozo 

Coyote and Noriega faults in the central and southern parts of the study area.  Most 

deformation took place by slip on normal faults and northeast tilting on these NW- 

trending, SW-dipping normal faults.  A subsidiary set of NNE-SSW-trending sinistral 

and oblique faults display minor sinistral-normal separation (up to 250 m) and link larger 

normal faults.  The structural framework can be broadly classified as a series of domino-

style fault blocks that tilt all group 1, 2, and 3a rocks uniformly to the NE ~30-60º and 

form asymmetric half-grabens that are locally filled with syn-tectonic (group 3b) strata 

(southern study area).  Bedding and eutaxitic foliations in pre- and syn-rift rocks strike 

NW-SE and have an average dip of 43º down to the NE (Fig. 10A).  The average strike of 

measured fault surfaces (n=65) is NW-SE, sub-parallel to strike ridges of tilted strata 

throughout the entire field area (Fig. 10B).  

Uniformly NE-tilted fault blocks, exposures of shallow to moderately dipping 

faults, and high fault-to-bedding cutoff angles in hanging wall strata all suggest that most 

normal faults did not slip at low angles, but instead were rotated to shallower (~30-40º) 

southwest dips.  Possible mechanisms for fault rotation include a SW-dipping low-angle
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Figure 10.  Equal area projections of structural data from bedding (A) and faults (B) in the Sierra Bacha study area, including from left to 

right: planes, poles to planes with average planes, and rose diagram of structural strike.  A) Average bedding orientation for ~15-10.4 Ma 

units (blue) is 323, 42º NE (n=194), whereas post-10 Ma units (red) display an average orientation of 313, 11º NE (n=25).  B) Poles to 

fault surfaces (n=65) display a bimodal distribution defining conjugate NW-SE-striking normal faults that dip moderately to the SW (filled 

triangle) and NE (unfilled triangle).  The strikes of all measured bedding and fault surfaces are subparallel and nearly uniform.
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detachment surface at depth or higher-angle second-generation faults that cross-cut and 

tilt earlier first-generation structures.  No inferences were made in structural cross 

sections (Fig. 11) regarding the locations or geometries of these causative structures 

responsible for fault rotation, which are most likely exposed outside the study area to the 

northeast or concealed beneath alluvium within the Sierra Bacha.   

Most fault surfaces are poorly exposed and traces of larger structures are 

consistently obscured by vegetation and/or Quaternary alluvium.  Thus, significant 

uncertainties remain regarding the attitude of most major structures in the study area.  

The location, occurrence, and geometry of most faults are inferred from stratigraphic 

constraints, fault-to-bedding cutoff angles, and structural separation in map view.  In 

structural cross sections, the orientations of unexposed faults lacking geometric 

constraints are assumed to be parallel to nearby faults.  With the exception of the 

previously identified Amado-Libertad and Seri faults, this study assigns new names to 

rift-related structures that accommodate significant strain in the Sierra Bacha area. 

Major Structures 

 Gastil and Krummenacher (1976, 1977) first identified the Libertad fault based on 

a NW-SE alluvium-covered lineament observed in air photos, and proposed that it may 

link northwest to the offshore Amado transform fault in the Gulf of California (Fig. 3). 

Total displacement and geometry of this fault are difficult to assess because the fault is 

everywhere covered by alluvium.  Most hanging wall rocks are concealed beneath the 

alluvial floodplain of the Rio San Ignacio, raising the possibility of additional concealed 

normal faults.  In order to avoid obtuse cutoff angles in the hanging wall, a dip of ~35º 

SW is inferred for the Amado-Libertad fault, consistent with similarly oriented large-
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Figure 11.  Structural cross sections of the Sierra Bacha (see Fig. 4 for locations).  The structural dips of unexposed faults could not be 

measured directly, and thus, were assumed to be parallel to those nearby.  High fault-to-bedding cutoff angles and shallowly dipping faults 

(consistent with field measurements of exposed structures) are inferred for unexposed and concealed structures.  Group 2 (purple) and 

group 3a (orange) strata deposited between 15 and 10 Ma dip moderately and uniformly to the NE.  In contrast, group 3b units (brown and 

gray) dip shallowly to the NE and display a fanning dip interval from 28-0º NE in section C-C’, suggesting that significant extension 

began after ~10 Ma.
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displacement normal faults elsewhere in the study area (e.g. Bacha fault) and similar to 

the geometry of the offshore Amado fault (Aragón-Arreola and Martín-Barajas, 2007).  

Based on these inferences and location of Mtsi, total normal offset on the Amado-

Libertad fault is estimated to be ~4.1 km (Fig. 11). 

The Bacha fault is a 24-km-long, NW- striking normal fault that dips gently to the 

SW ~33º (Plate 1; Fig. 4).  Hanging-wall strata dip 45-50º to the NE, creating a high 

cutoff angle (~80º) that suggests the fault was initiated at a high angle and subsequently 

rotated to its present low dip (Fig. 11A).  This fault is best exposed in the northwest part 

of the study area (Fig. 4) where it displays a 4-8 meter-thick tonalite breccia in the 

immediate footwall.  The homogeneous fault breccia is pervasively fractured and 

contains a matrix of deep red, clay-sized gouge.  Reconstructions of offset and 

correlatable units across the Bacha fault in the NW (Mc2) and along strike to the SE 

(Mtsf) show that normal offset ranges from 2.6 to 3.4 km (Fig. 11A). The presence of two 

small outcrop belts of Mtsf directly NE and SW from each other, in the hanging wall and 

footwall of the Bacha fault (Fig. 4), shows that there is no significant strike-slip offset on 

this fault. Near the south end of the Bacha fault, the strike of the fault and hanging-wall 

strata deviates from the typical NW-SE orientation to a more N-S trend (Fig. 4).   

 The Pozo Coyote fault is an 18- to 22-km-long, NW-striking normal fault in the 

central map area with a measured dip of 32º SW (Plate 1; Fig. 4, 11B, 11C).  This fault 

was first identified by Gastil and Krummenacher (1976) as an unnamed fault that repeats 

an interval of undifferentiated volcanic strata.  Where unexposed, its trace is inferred 

from a repeated stratigraphic interval of Ma2 and the Tuff of San Ignacio (Mtsi), a key 

marker horizon. The Pozo Coyote fault is a relatively minor structure with ~0.5 km of 
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normal displacement along most of its trace (Fig. 11B).  Normal offset on the fault 

increases southeast of where it is cut by an E-W-trending dextral transfer fault, with 

displacement increasing to about1.2 km (Fig. 11C). The best exposures of this fault are 

located south of the dextral transfer fault in the southeastern Cerro Colorado (29.551707° 

N, 112.302443° W), where a 10-20 meter-thick tonalitic fault breccia is observed in the 

footwall.  In the northwest, the Pozo Coyote fault is inferred to continue beneath alluvium 

southwest of Cerro Prieta (Fig. 4), but its presence is uncertain in that area. Alternatively, 

the Pozo Coyote fault may die out to the northwest, possibly losing displacement where it 

is cut by the NE-striking San Ignacio fault near Pozo Coyote (Fig. 4). 

The Noriega fault is a completely covered fault in the southern map area (Plate 1; 

Fig. 4) that is inferred from map relationships and named for Arroyo de Noriega just 

south of the study area. Normal offset of up to ~2.5 km on this fault juxtaposes Miocene 

volcanic rocks against crystalline basement (Fig. 11C). This fault is inferred from: (1) a 

fanning-dip sequence in alluvial conglomerates of Mc3 (group 3b) in which bedding dip 

decreases up section from ~28º NE to horizontal (Fig. 11C); and (2) presence of a 

regional-scale normal fault east of the Sierra Seri, directly along strike southeast of the 

Noriega fault (Fig. 3; Gastil and Krummenacher, 1976). The Noriega fault likely merges 

with this regional fault to the southeast, and it terminates to the northwest in the Sierra 

Bacha beneath syn- and post-tectonic (group 3b and group 4) strata. 

 The Seri fault is located near the coast in the southwestern map area and is 

completely covered by Quaternary alluvium (Plate 1; Fig. 4).  Gastil and Krummenacher 

(1976, 1977) first identified this fault as a major range-bounding normal fault with 

possible dextral shear.  Along strike to the southeast, the Seri fault links to a domain of 
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NW-striking normal faults in the Sierra Seri that record SW-NE extension and suggest 

little or no dextral shear (Fig. 3; Oskin and Stock, 2003c).  To the northwest, it continues 

offshore into a basin-bounding transform fault and forms the western boundary of the 

coastal Sierra Tordilla (Fig. 4).  Because the Seri fault is not exposed in the Sierra Bacha, 

no inferences have been made regarding the orientation, total displacement, and sense of 

slip on the Seri fault. 

 The San Ignacio fault is a NE-striking sinistral fault in the central map area (Plate 

1; Fig. 4) first inferred (but not named) by Gastil and Krummenacher (1976).  Sinistral 

displacement of ~1 km on this fault is constrained by offset markers in the southern 

Sierra Tordilla and near Pozo Coyote.  The fault is poorly exposed and mostly concealed 

beneath younger alluvium, except in the southern Sierra Tordilla where group 2 strata are 

juxtaposed against crystalline basement (Fig. 4).  Significant uncertainties exist regarding 

the timing and cross-cutting relationships between the SW-striking San Ignacio fault and 

the SE-striking Bacha and Pozo Coyote faults.  The San Ignacio fault is shown as a 

continuous NE-SW-trending sinistral fault that cross-cuts the Bacha and Pozo Coyote 

faults (Fig. 4), but it may have been contemporaneous with the Bacha and Pozo Coyote 

faults and thus may link into, rather than cross-cut, the main extensional structures in the 

Sierra Bacha.   

Fault Kinematic Analysis 

 Fault kinematic indicators in 15-10 Ma rocks record dominant ENE-WSW 

extension with a weak dextral component (Fig. 12).  The stress tensor shows a horizontal 

maximum tensional strain axis (T-axis) oriented at azimuth 067º, and a sub-vertical axis 

of maximum compressional strain (P-axis).  This result is consistent with the map pattern 
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Figure 12.  Fault kinematic analysis results.  Plot of fault dip vs. slip vector rake (top-left) and 

measured fault surfaces (great circles) and kinematic indicators (top-right) colored red, blue, and 

green representing normal-, oblique-, and strike-slip, respectively.  (bottom-left) P-axes (red) and 

T-axes (blue) for individual fault measurements and Kamb contour of axes (2σ confidence level); 

compared to the tight clustering of the poles to fault planes (Fig. 10B), the heterogeneous 

distribution of P and T axes indicates exposure to multiple stress states as opposed to a single 

uniform stress field since late Miocene time.  The fault plane solution (bottom-right) displays a 

sub-vertical compressional axis (P-axis) and maximum tensional strain axis (T-axis) for the entire 

dataset oriented at azimuth 067º, indicating ENE-WSW-directed extension since ~15 Ma in the 

Sierra Bacha (blue arrows). 

 

 

 

indicating NE-SW extension on NW-striking normal faults and, although the dataset is 

relatively small (n=41), provides a first approximation of the paleostress orientations 

responsible for late Miocene (and possibly later) deformation in the Sierra Bacha.   
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The average orientation of faults in the study area shows two clusters that define a 

conjugate set of moderately dipping NW-striking faults (Fig. 13A).  In contrast, the 

scattered distribution of individual P and T axes for each fault slip datum (Fig. 12) 

indicates that deformation in the Sierra Bacha was almost certainly influenced by 

multiple stress states, as opposed to a single uniform stress field, since late Miocene time.   

The orientations of the average conjugate normal faults correspond to a vertical σ1 and 

horizontal σ3 trending NE-SW, which predicts slip vectors (striae) to have steep rakes  

( > 70º) on the average fault pair (Fig. 13B).  However, only a subset of measured slip 

vectors fall in this predicted field, while the remaining vectors define two loose clusters 

indicating oblique slip kinematics that could not have formed under the same paleostress 

conditions responsible for initiating the NW-striking normal faults (Fig. 13B, top).  A 

practical explanation is that the oblique-slip kinematic indicators were caused by oblique 

fault reactivation in response to a reorientation of the paleostress field.  Excluding striae 

with steep rakes that fall within the expected slip vector field (based on average fault 

orientation and its predicted paleostress orientations), two clusters are observed in the 

NW and SE quadrants representing the anomalous slip vector fields that indicate oblique-

slip kinematics (Fig. 13B, bottom).  This same result has been observed in analog block 

models of fault reactivation in strike-slip mode, in which oblique-slip kinematics 

overprint pre-existing dip-slip structures after a reorientation of the regional stress field 

(e.g. Withjack & Jamison, 1986; Richard & Krantz, 1991).  It should be noted, however, 

that mean slip vectors for the anomalous populations have low concentration factors (ĸ) 

of 9.8 and 21.2 due to the small size of the data set and lack of coherent clustering.
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Figure 13.  Interpretation of anomalous slip vectors based on paleostress orientations responsible for average conjugate fault pair. A) 

Poles to fault planes (n=65) show two distinct populations which define the average fault orientation as a conjugate set of moderately 

dipping, NW-SE-striking normal faults; B) Fault striae (n=41) in expected and anomalous slip vector fields predicted by principal stresses 

(green) responsible for the average conjugate fault pair. Mean vectors for the NW and SE anomalous groups lie within the average 

principal (red) and conjugate (pink) average faults, respectively.  The stress fields that correspond to the anomalous slip vectors (below) 

are dramatically different than the stress state responsible for the average fault orientations (left).  A plausible explanation for this is that 

anomalous slip vectors are related to reactivation of NW-SE-striking normal faults in oblique slip mode. 
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A robust test of this hypothesis would require more field measurements and 

kinematic data that would ideally define more convincing populations of slip vectors.  

These shortfalls aside, the notable difference between the high confidence in the average 

fault orientations and the scattered distribution of individual P and T axes conclusively 

demonstrates that the rocks in the Sierra Bacha were exposed to multiple stress states as 

opposed to a single resolvable stress field (Figs. 12, 13A).  Thus, the inconsistency 

between predicted slip vector fields and the orientations of measured striae are interpreted 

to represent reactivation of pre-existing NW-SE normal faults in oblique-slip mode which 

was not intense or prolonged enough to initiate new structures representing the secondary 

transtensional stress field. 

 

 

 

 

 

 

 

 

 

 

 

 

 



56 

 

CHAPTER VI 

PALEOMAGNETISM 

 

Five volcanic units, including three pyroclastic units (Mtcc, Mtsf, and Mtsi) and 

two lava flows (Mr2, Mba) were sampled in the Sierra Bacha for paleomagnetic analysis 

(Fig. 4).  All paleomagnetic data are reported in Table 3.  Based on the geomagnetic 

polarity timescale of Ogg and Smith (2004), the isotopic ages for Mtsf (12.5 ± 0.08 Ma) 

and Mtsi (12.56 ± 0.09 Ma) indicate that these tuffs likely were erupted during reversed 

polarity subchron C5Ar.1r (12.415 - 12.730 Ma).  Mtcc (14.5 ± 0.3 Ma) was deposited 

during normal subchron C5ADn (14.194 – 14.581 Ma).  Both Mba (6.4 ± 1.9 Ma) and 

Mr2 (relative age: 11.8 – 6.4 Ma) show normal polarity remnant magnetization, but 

insufficient age constraints prohibit placement into a specific geomagnetic polarity 

interval.  Characteristic remnant magnetization (ChRM) directions for the five sites 

drilled in the Sierra Bacha cluster well (α-95 < 10º) indicating that they are almost 

certainly primary NRM components. 

 In general, NRM, LT, and low-AF steps showed anomalous low-stability 

directions that were excluded from ChRM vector analysis since they most likely 

represent secondary NRM components acquired after deposition. Directions were 

typically resolved at higher AF steps (e.g. 200–800 mT) which showed higher stability 

and tended to isolate a distinct (likely primary) ChRM vector.  These vectors were 

combined for each locality to obtain Fisher and Bingham statistics for the site-mean 

ChRM (Fig. 14, A-E).
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Table 3.  Paleomagnetic Data and Rotation Calculations for Sites in the Sierra Bacha, Coastal Sonora, Mexico 

                                    

    
Bedding

†
  

 
  

Tilt-Corrected Fisher Statistics
‡
 

 
Rotation and Flattening 

Drill 
Site/Unit* 

Age 
(Ma) Lat (˚N) Long (˚W) Strike Dip N/N0 

Corr. 
Factor

#
    Dec Inc α95 ĸ   R

φ
 ∆R

ψ
 Fᵟ ∆F

ψ
 

                  
DS-17,  Mtsi 12.5 29.58266 112.31615 308 40 12/12 0.79 

 
228.3 -1.3 1.48 907.82 

 
ND ND ND ND 

DS-21,  Mtsf 12.5 29.548521 112.37158 359 55 19/19 0.79 
 

235.5 4.7 2.6 181.34 
 

25.4 2.4 -7.7 2.4 

DS-22,  Mtcc 14.5 29.581697 112.34819 312 48 11/12 0.79 
 

358.9 22.4 9.25 29.88 
 

-3.1 11.1 26.6 10.7 

DS-23,  Mr2 12-10 29.580733 112.30192 295 52 5/6 0.77 
 

355 20.7 4.5 229.46 
 

-7 8.5 28.3 8.3 

DS-24,  Mba 6.4 29.635678 112.27431 221 1 12/12 0.79 
 

3.5 39.4 4.3 125.42 
 

1.5 9.0 9.6 8.5 

                                    

                  *  See text or Plate 1 for unit names 

               †
  Bedding orientation used for structural correction; dip direction is 90° clockwise from strike according to the right-hand rule  

      N/N0 - number of samples used to determine site-mean direction/number of samples collected 

          #   
Correction factor based on value of N used in calculation of ∆R, ∆F (Demarest, 1983) 

           ‡
  Geographic (uncorrected) Fisher statistics and all Bingham statistics are listed in Appendix B 

          Dec - Declination in degrees; Inc - Inclination in degrees 

              α95 - cone of 95% confidence about site-mean direction;  ĸ - precision parameter (Fisher, 1953) 

          φ  
 R - Rotation in degrees (clockwise = positive).  DS-21 (Mtsf) calculated relative to Tuff of San Felipe reference site in Baja California (Bennett and Oskin, 2008); 2.3˚ is added to R for 

   this site to account for finite rotation of reference site due to Pacific-North America plate motion.  All other sites (DS-22, DS-23, DS-24) calculated relative to average Miocene  

   reference pole estimated in this study (see text for details). 

              ᵟ  F - Flattening in degrees (down from horizontal = positive).  DS-21 (Mtsf) calculated relative to Tuff of San Felipe reference site in Baja California (Bennett and Oskin, 2008).  All  

   other sites (DS-22, DS-23, and DS-24) calculated relative to average Miocene reference pole estimated in this study (see text for details). 

     ψ
  ∆R - 95% confidence limits on rotation; ∆F - 95% confidence limits on flattening.  Both calculated according to Beck (1980) and Demarest (1983) 

    ND - No data; Finite rotation cannot be determined since no stable reference site exists for this unit. 
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Figure 14.  A) Typical paleomagnetic results for the Tuff of San Ignacio (Mtsi).  Example core 

#9 of 12 shown, including clockwise from top-left: Equal Area, Zijderveld, J/J0 Intensity, and 

site-mean ChRM plots.  Lower plot shows site-mean direction (star) and α-95 confidence (red) 

for DS-17. Rotation cannot be estimated since there is no appropriate reference pole for Mtsi. 
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Figure 14 (continued).  B) Typical paleomagnetic results for the Tuff of San Felipe (Mtsf).  

Example core #5 of 21 shown, including clockwise from top-left: Equal Area, Zijderveld, J/J0 

Intensity, and site-mean ChRM plots.  Lower plot shows site-mean direction (star) and α-95 

confidence (red) for DS-21.  Deviation of the site-mean direction from the expected direction 

(green) based on the high-precision stable Mtsf reference site (Bennett and Oskin, 2008) indicates 

25.4º ± 2.4º of clockwise vertical-axis rotation at this site (see Figs. 4, 15 for location). 
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Figure 14 (continued).  C) Typical paleomagnetic results for the tuff of Cerro Colorado (Mtcc).  

Example core #10 of 12 shown, including clockwise from top-left: Equal Area, J/J0 Intensity,  

Zijderveld, and site-mean ChRM plots.  Lower plot shows site-mean direction (star) and α-95 

confidence (red) for DS-22.  The site-mean direction does not appear to be rotated significantly 

from the expected direction (green), however the large difference in inclination suggests some 

flattening of the magnetization vector (see Figs. 4, 15 for location). 
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Figure 14 (continued).  D) Typical paleomagnetic results for Rhyolite #2 (Mr2).  Example core 

#6 of 6 shown, including clockwise from top-left: Equal Area, J/J0 Intensity, and Zijderveld, and 

site-mean ChRM plots.  Lower plot shows site-mean direction (star) and α-95 confidence (red) 

for DS-23.  The site-mean direction does not appear to be rotated significantly from the expected 

direction (green), however the large difference in inclination suggests some flattening of the 

magnetization vector (see Figs. 4, 15 for location). 
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Figure 14 (continued).  (E) Typical paleomagnetic results for the Basalt of Arivaipa (Mba).  

Example core #3 of 12 shown, including clockwise from top-left: Equal Area, J/J0 Intensity, 

Zijderveld, and site-mean ChRM plots.  Lower plot shows site-mean direction (star) and α-95 

confidence (red) for DS-24.  The site-mean direction does not appear to be significantly rotated 

from the expected direction (green). See Figs. 4, 15 for location. 
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Reference Sites 

 Two different paleomagnetic reference poles are compared with site-mean ChRM 

vectors from 4 of the 5 sites in the Sierra Bacha, to quantify vertical-axis rotations (Fig. 

15).  Bennett and Oskin (2008) calculated a high-precision paleomagnetic reference 

vector for the Tuff of San Felipe (Mtsf) from a tectonically stable location in Baja 

California.  The unique magnetic direction of Mtsf in Baja California (D = 212.4°, I = -

3.0°, α-95 = 1.33°) is well off the expected Miocene paleopole direction and appears to 

record a transitional field or geomagnetic excursion (Stock et al., 1999).  This pole 

direction is used for calculating rotation of the Mtsf site (DS-21).   

Mtcc (DS-22), Mr2 (DS-23) and Mba (DS-24) do not have stable reference sites 

with which to compare site-mean ChRM directions.  To estimate rotation at thesis sites, a 

Miocene geomagnetic pole was calculated from two stable North American paleopoles 

(Besse and Courtillot, 1991) and an average paleomagnetic pole for Miocene volcanic 

rocks on Baja California (Hagstrum et al., 1987).  A 2.3º clockwise correction was added 

to this direction to account for post-6 Ma divergence between Baja California and Sonora 

(e.g. Oskin and Stock, 2003b).  These three paleopoles were then averaged to account for 

secular variation of the Earth’s magnetic field during Miocene time, resulting in an 

estimated mean Miocene paleomagnetic pole position (87.2º N, 182.6º E, α-95 = 8.6º).  

Using this reference paleopole location and spherical trigonometry of Butler (1992, p. 

122), I calculate an expected magnetization direction of D = 2º, I = 49º at the geographic 

location of the study area during Miocene time.  The 2σ confidence limits for 

paleosecular variation around this geomagnetic pole direction were estimated from the 

volcanic database of Quidelleur and Courtillot (1996), a study of apparent and true polar
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Figure 15.  Paleomagnetic site locations and estimates of vertical-axis rotation for the Sierra 

Bacha (see Fig. 4 for explanation of map units).  The location of drill site DS-17(Mtsi) is shown 

but rotation cannot be estimated due to lack of a stable reference site.  The remaining sites show 

unresolvable rotation within standard error limits, except for DS-21 which shows up to 28˚of 

clockwise vertical-axis rotation in the SW near El Desemboque.  These results indicate that the 

Sierra Bacha area did not experience significant dextral strain during proto-Gulf time (12.5-6 Ma) 

except in the southwest where a relatively minor component of dextral strain is documented. 
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 wander.  Their work suggests that the approximate standard deviations of declination 

(σD) and inclination (σI) at latitude 30º N are 15º and 13º, respectively, which results in 

2σ confidence limits (α-95[decl], α-95[incl]) of (19.7º, 26º) via: α-95(decl) = 2(σD)cos(I), 

and α-95(decl) = 2(σI) (dashed circles in Fig. 14C-E).  The inherently large error in the 

expected Miocene direction due to secular variation introduces substantial uncertainties 

for rotation estimates reported below.  Thus, vertical-axis rotation for sites without a 

stable reference locality (DS-22, DS-23, and DS-24) should be considered as minimum 

estimates that could potentially vary by up to ~40º. 

No stable reference site exists for Mtsi (DS-17).  The site-mean ChRM for this 

site (D = 228.2º, I = -1.3º, α-95 = 1.48) is similar to the unique low-inclination, 

southwesterly magnetization direction of the Tuff of San Felipe (Fig. 14A, B).  This is 

consistent with the fact that the Tuff of San Felipe (12.50 ± 0.08 Ma) and the Tuff of San 

Ignacio (12.56 ± 0.09 Ma) have the same isotopic age within standard error.  Although 

nearly identical in age and magnetization, geochemical and mineralogical disparities 

show that Mtsi and Mtsf are distinctly different tuffs that likely were erupted during the 

same transitional field or geomagnetic excursion during reversed polarity subchron 

C5Ar.1r.  Transitional fields and excursions of the geocentric dipole are characterized by 

large-scale secular variation and their stability is not well understood (Verosub, 1982).  

Thus, there is no appropriate reference pole with which to estimate rotation for DS-17.   

Vertical-Axis Rotation 

In this study, positive rotation values (R) imply clockwise (CW) rotation related 

to slip on dextral faults, whereas negative values imply counter-clockwise (CCW) 

rotation due to slip on sinistral faults.  Independent analysis of each site reveals rotation 
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values, including errors, ranging from -15.5º to 27.8º (Figure 15).  Results for sites DS-

22, DS-23, and DS-24 show no discernible vertical-axis rotation within standard error 

limits (Fig. 15).  Site DS-22 (Mtcc) shows -3.1˚ ± 11.1º of rotation (Fig. 14C).  Six of the 

twelve cores collected at this site were extracted from a slightly less welded horizon in 

the tuff, explaining the bimodal distribution of ChRM and the higher than average site-

mean α-95 confidence limit of 9.25º.  Less welded samples have inclinations ~25º higher 

than the welded samples, but declinations vary by only ~3º between the two ChRM 

populations.  Site DS-23 (Mr2) displays -7º ± 8.5º of CCW rotation based on 5 cores 

(Fig. 14D).  DS-24 (Mba) displays 1.5º ± 9º of CW rotation (Fig. 14E).  Because ChRM 

directions for these sites are within or near expected limits of paleosecular variation, they 

do not contain significant evidence of block rotation, although up to ~20º of vertical-axis 

rotation is permissible given paleosecular variation and the large uncertainties regarding 

the position of the Miocene paleopole.  Site DS-21 (Mtsf) displays clockwise vertical-axis 

rotation of 25.4º ± 2.4º in the southwestern part of the study area (Fig. 14B).  

The motivation for this paleomagnetic investigation was to see if this limited 

dataset could reveal a discernible history of rotation in the study area.  Although the 

resolution is rather low for a pilot study, the results provide no evidence of significant 

vertical-axis rotation northeast of the Bacha fault since ca. 14.5 Ma (Fig. 15).  In contrast, 

~25º of clockwise vertical-axis rotation is recorded with a high level of confidence at site 

DS-21, southwest and in the hanging wall of the Bacha fault.  CW rotation at this site 

corresponds with local deviation of bedding strike from NW to NNW, suggesting that 

CW rotation is restricted to the area where bedding strike deviates from the normal NW 

trend in the southwestern study area (Figs. 4, 15).   
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CHAPTER VII 

DISCUSSION 

 

 The data presented above suggest that proto-Gulf deformation in the Sierra Bacha 

was dominated by large-magnitude ENE-WSW extension between about 10 and 6 Ma. 

Extensional structures appear to have been overprinted by minor dextral shear related to 

transtensional strain within the modern (post-6 Ma) Pacific-North America plate 

boundary.  A comparison of these results with previous studies in the Gulf Extensional 

Province reveals significant similarities as well as spatial and temporal variations in the 

strain history of the northern Gulf of California.  The implications of these results for 

regional tectonic models and continental rupture mechanics are discussed below.  

Extensional Strain in the Sierra Bacha 

 Evidence from geologic mapping and fault kinematic analysis provide useful 

constraints on the timing and magnitude of extensional strain in the Sierra Bacha since 

ca.15 Ma.  Due to limited exposures of most faults in the study area, a number of 

assumptions regarding the geometry and mechanics of faulting are required before a 

quantitative estimate of extension can be made.  These assumptions, uncertainties, and 

existing geologic constraints are considered below and used to calculate post-15 Ma 

extension in the Sierra Bacha. 

Fault Orientations 

Large-magnitude extension commonly involves rotation of initially high- to 

moderately-dipping normal faults to shallower dips (Buck, 1988; Buck and Choi 2010).  
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Since both the faults and the strata they cut are involved in tilting, inferences about fault 

orientation at depth can be made from the geometrical properties of fault-to-bedding 

cutoff angles (the acute angle between hanging wall rocks and the fault plane).  Since the 

steepest plausible normal fault orientation is 90º, cutoff angles must be ≤ 90º if hanging 

wall strata were horizontal prior to extension.  Thus, cutoff angles > 90º are impossible to 

restore in cross sections with only a single generation of normal faults, and may imply a 

more complex history of faulting related to multiple generations of normal faults (e.g., 

Proffett, 1977; Buck and Choi, 2010).  A multi-phase model of extension implies that 

faults are initiated at moderate to high angles and are subsequently rotated to shallower 

angles during extension.  As tilting of early faults to shallower dips makes them less 

mechanically favorable for slip, steeper second-generation faults are initiated and 

accommodate additional extensional strain (Anderson, 1951; Proffett, 1977; Buck, 1993; 

Buck and Choi, 2010).  This model is supported by studies of mechanical failure in rocks 

with normal static friction coefficients (~0.75), which show that normal slip failure 

typically does not occur on faults that dip less than ~37º (Sibson, 1985).   

In the Sierra Bacha, pre-extension hanging wall units (groups 2 and 3b) dip ~40-

60º to the NE (Fig. 10A).  In order to avoid cutoff angles > 90º, their bounding faults 

must dip less than 30-50º to the SW.  The Bacha and Pozo Coyote faults have measured 

dips of 33º and 32º SW, corresponding to typical cutoff angles of 78º and 70º, 

respectively.  The dips of other large normal faults are inferred by applying these cutoff 

angles to structural blocks where bedding dips are well constrained but the bounding 

faults are covered (Fig. 11).  Small-offset faults between and parallel to major faults are 
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interpreted to be higher-angle second-generation faults that accommodated extension 

after tilting of the early faults to shallower dips (e.g. Fig. 11C).   

Timing of Extension 

The difference in dip between pre-10 Ma (groups 2 and 3a) and post-10 Ma 

(groups 3b and 4) rocks provides stratigraphic constraints on the timing of extension and 

tilting.  Groups 2 and 3a units (~15-10 Ma) dip moderately to the northeast an average of 

42º (n=194) and show no obvious change from the oldest to youngest units within these 

groups (Fig. 10A).  In contrast, groups 3b and 4 (post-10 Ma) unconformably overlie 

older units and display an average bedding dip of 11º to the northeast (n=25).  This 

disparity suggests that significant extensional strain in the Sierra Bacha began during or 

prior to deposition of group 3b at ~10 Ma.  This is also supported by evidence from clast 

counts in conglomerate units in the Sierra Bacha that reveal an up-section increase of 

basement clast input from 16% in pre-10 Ma (group 2) conglomerates to 34% and 44% in 

10-6 Ma and post-6 Ma conglomerates, respectively (Fig. 9).  This considerable up-

section change might be related to extensional unroofing and basement exhumation 

beginning after ~10 Ma.  East of the Cerro Pelón, a 20-30 cm-thick green-gray, laminated 

airfall tuff with abundant quartz and small biotite phenocrysts in lower Mc3 was not 

dated but may provide a critical age constraint for the oldest syn-tectonic (group 3b) 

strata, and thus, the onset of significant extension within the study area. 

The end of major extension and tilting in the Sierra Bacha is constrained by the 

6.4 ± 1.9 Ma Basalt of Arivaipa (Mba),which is nearly flat-lying in the footwall of the 

Amado-Libertad fault and dips up to 9º NE in the hanging wall (Fig. 11B).  This 

structural discontinuity may record the waning stages of tilting during deposition of Mba, 
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in which tilting NE of the Amado-Libertad fault was finished by ca. 6.4 Ma and 

continued for a short while later to the SW in the Sierra Bacha.   

The above fault kinematic analysis, which characterized proto-Gulf deformation 

as largely ENE-WSW-directed extension, is based on kinematic indicators measured in 

15- to 10.4-Ma units (Fig. 12).  Data collected from group 2 (15-12.5 Ma) may reflect 

multiple episodes of deformation related to the former subduction zone (e.g. back-arc 

extension or contraction), thus introducing uncertainty to conclusions about the proto-

Gulf paleostress direction.  No fault data were collected from group 3b strata (~10 - 6 

Ma) due to insufficient exposure.  Because no fault slip data were collected in rocks 

younger than 10.4 Ma, it is impossible to directly test for a temporal change between 

proto-Gulf (12.5 - 6 Ma) and modern-Gulf (6 – 0 Ma) kinematics.  Existing geologic 

constraints imply that the majority of extensional strain in the study area took place 

between ~10.4 and 6.4 Ma, although a small amount of post-6.4 Ma deformation is 

required to produce up to 9º of tilting of Mba in the hanging wall of the Amado-Libertad 

fault (Fig. 11B).  This is similar to other studies that documented major ENE-WSW 

extension in the GEP between 12 and 6 Ma (Gastil et al., 1975; Dokka and Merriam, 

1982; Henry, 1989; Stock and Hodges, 1989; Lee et al., 1996) and post-10-Ma onset of 

extension elsewhere in Sonora (Mora-Alvarez and McDowell, 2000).  

Magnitude of Extension 

 The magnitude of extension in the study area was calculated from restorations of 

cross sections A-A’ and B-B’ (Fig. 11).  The major faults (and dip-slip offsets) are the 

Bacha fault (3.0 km), Pozo Coyote fault (0.4 km), Amado-Libertad fault (4.1 km), and 

two unnamed normal faults in the central Cerro Colorado (1.3 km combined).  The 
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percent extension is calculated from a palinspastic reconstruction of individual fault 

blocks using paleohorizontal markers (e.g. regionally extensive ignimbrites, 

nonconformable basement paleosurface).  The structural cross sections (Fig. 11) 

cumulatively record 6.4 to 6.8 km of horizontal extension.  For a present map width of 18 

km, the total fault offsets thus represent ~55-60% extension in the study area during late 

Miocene time.  The restorations of cross sections A-A’ and B-B’ do not include extension 

related to slip on the concealed Seri fault in the southwest or on structures beyond the 

study area, and thus, may only represent a minimum estimate of extension within the 

Sierra Bacha.  The fact that units in the footwall of the Amado-Libertad fault are tilted up 

to 53º to the NE suggests another concealed rift structure at depth northeast of the study 

area.  Likewise, the Seri fault may represent the next regional rift structure southwest of 

the Bacha fault (Fig. 4).    

Dextral Strain in the Sierra Bacha 

Stratigraphic and structural data from geologic mapping, with support from the 

fault kinematic analysis and paleomagnetic data presented above, provide evidence for 

little to no dextral shear in the Sierra Bacha since ~12.5 Ma.  In contrast, strong dextral 

shear between 7 and 6 Ma was recently documented in the Cerro Kino area just southeast 

and adjacent to the Sierra Bacha (Fig. 3; Bennett, 2009), suggesting a complex history of 

late Miocene deformation.  This section summarizes existing constraints on the timing, 

magnitude, and distribution of dextral strain in the Sierra Bacha. 

Seismic reflection profiles and maps in the northern Gulf support the possibility 

that the offshore Amado transform fault may project onshore to the Libertad fault (Fig. 

3).  The Amado transform dips moderately to the southwest (~35-50º) and forms the 
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northeastern boundary of the inactive Adair-Tepoca basin offshore in coastal Sonora 

(Aragón-Arreola and Martín-Barajas, 2007).  While it has been suggested that the Amado 

fault accommodated significant dextral shear during late Miocene-Pliocene time, there is 

no geologic evidence to support significant dextral slip on the continental Amado-

Libertad fault in the study area (this study).  Outcrops of both Mtsi (12.5 Ma) and Mba 

(6.4 Ma) on both sides of the Amado-Libertad fault are located directly across strike from 

each other and show no evidence for lateral offset.  Furthermore, restoring any significant 

dextral offset on the Amado-Libertad fault would translate the thickest Mtsi deposits in 

the Cerro Las Burras (up to 350 m-thick) NW across strike from the Cerro Prieta where 

Mtsi is absent.  These volcanic units are, however, laterally extensive and do not serve as 

discrete piercing points.  Thus, minor (< 5 km) dextral displacement of Mtsi is 

permissible but unlikely. 

 Fault-kinematic analysis shows that proto-Gulf deformation in the Sierra Bacha 

was dominated by large magnitude ENE-WSW extension with a minor oblique strain 

component (Fig. 12).  Kinematic indicators that record, normal-, oblique-, and strike-slip 

displacement on moderately-dipping faults are inferred to represent minor reactivation of 

normal faults in oblique slip mode (Fig. 13).  Analog models of oblique rift kinematics 

(e.g. Withjack and Jamison, 1986; Richard and Krantz, 1991; Agostini et al., 2009) 

consistently document normal fault reactivation, leading some to propose that 

reactivation of NW-striking normal faults in oblique slip mode played a significant role 

in the structural evolution of the Gulf of California (Merriam, 1965; Angelier, et al., 

1981; Colletta et al., 1981; Withjack and Jamison, 1986).  Small offset N- to NNE-

striking sinistral-normal faults in the Sierra Bacha link into larger NW-trending normal 
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faults and possibly support minor dextral or oblique strain on predominantly NW-SE 

striking normal faults (Plate 1; Fig. 4).  The San Ignacio fault in the west-central area 

shows ~1 km of sinistral displacement and may be related to reorientation of the stress 

field from orthogonal NE-SW extension to oblique transtension. 

 The paleomagnetic analysis also supports a weak component of dextral shear in 

the Sierra Bacha during or after late Miocene time.  Structural blocks show no 

discernible vertical-axis rotation since ca. 14.5 Ma, except in the southwest near El 

Desemboque where paleomagnetic evidence and structural strikes indicate ~25º of 

clockwise rotation in the hanging wall of the southern Bacha fault (Fig. 15, ‘DS-21’).  

Clockwise vertical-axis rotation recorded at DS-21 could be related to dextral shear on 

the nearby, unexposed Seri fault.  This interpretation would imply the presence of faults 

concealed beneath Quaternary alluvium that caused this small part of the study area to 

undergo local rotation.  Dextral slip on the Seri fault is unknown but plausible due to its 

proximity to the offshore De Mar-Sacrificio transform, which forms the NE boundary of 

the Kino-Chueca shear zone (Fig. 3), a narrow zone of significant localized dextral strain 

ca. 7-6 Ma (Bennett, 2009). 

The timing of dextral shear is constrained by Mtcc (14.5 ± 0.3 Ma; DS-22) and 

Mba (6.4 ± 1.9 Ma; DS-24) which record the same negligible rotation (Fig. 15).  This 

indicates that dextral shear within the area, however minor, likely occurred after 

deposition of Mba.  Unfortunately, the low degree of confidence regarding the age of 

Mba suggests that dextral strain in the Sierra Bacha post-dates ca. 8 Ma.   
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Summary of Strain History 

 The timing, magnitude and style of deformation recorded by 14.5- to 6-Ma rocks 

in the Sierra Bacha suggests a two-stage tectonic model for the structural evolution of the 

northern Gulf of California: (1) 10-6.4 Ma orthogonal ENE-directed extension, and (2) 

post-6.4 Ma weak fault reactivation and minor dextral transtension.  Large-magnitude 

extension (55-60%) on NW-striking normal faults produced domino-style faulting and 

tilting of pre-10 Ma strata up to 60º to the NE, and was waning by deposition of the 6.4 

Ma Basalt of Arivaipa (Mba).  Other than the small area north of Desemboque, there is 

no evidence for CW block rotation or strike-slip fault offsets related to dextral shear on 

NW-SE-striking faults in the Sierra Bacha.  Structural data suggest that the normal faults 

were overprinted by younger and relatively minor dextral-oblique strain.   

Implications for Regional Tectonic Models 

 Lack of significant dextral shear in the Sierra Bacha has considerable implications 

for proposed kinematic models of proto-Gulf evolution.  The results of this study 

combined with other recent studies in the region (e.g. Bennett, 2009) show that dextral 

shear was not distributed throughout a broad zone of distributed transtension during late 

Miocene time, but instead became localized in a narrow zone southwest of the Sierra 

Bacha in coastal Sonora during latest proto-Gulf time. The well-documented occurrence 

of dextral strain within the GEP rules out the end-member “strain partitioning” model of 

Stock and Hodges (1989), which proposes that late Miocene (12-6 Ma) strain within the 

GEP was purely extensional (Fig. 2A).  Likewise, the delayed inception of a dextral 

component of plate boundary transtensional strain rules out the end-member “distributed 

transtension” model for proto-Gulf evolution (Fig. 2B).   
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Instead, the transfer of plate-boundary strain from offshore transform faults west 

of Baja California into the continental interior and the GEP seems to have occurred 

gradually (Fig. 2C).  Evidence from coastal Sonora suggests that strain was extension-

dominated, as predicted by the strain-partitioning model, but that strain evolved into a 

more shear-dominated transtensional style at ca. 7 Ma (Bennett, 2009).  Progressive 

localization of strain into discrete dextral shear zones caused an increase in strain rates 

that mechanically weakened the crust and served as a catalyst for lithospheric rupture.  

The Kino-Chueca Shear Zone south of the Sierra Bacha accommodated a minimum of 

~15 km of dextral shear between ca. 7 and 6 Ma, yet a significant portion of proto-Gulf 

dextral shear is still unaccounted for (Oskin and Stock, 2003b; Bennett, 2009).  This 

suggests that the Kino-Chueca Shear Zone probably was not unique and that coeval 

localized shear was probably occurring elsewhere in the northern Gulf immediately prior 

to plate boundary localization ca. 6 Ma.   

The above result raises a fundamental question regarding linkages between 

offshore transforms that were active in the early Gulf of California (ca. 6-3 Ma) and their 

onshore projections along strike as largely extensional structures (Fig. 16).  For example, 

the offshore Amado fault was a significant early rift structure in coastal Sonora that 

hosted considerable normal and strike-slip strain after inception of the Gulf ca. 6 Ma 

(Aragón-Arreola and Martín-Barajas, 2007), and has been proposed to merge with the 

continental Libertad fault in the Sierra Bacha (Gastil and Krummenacher, 1977).  

However, the results of this study show little or no dextral displacement along the 

Libertad fault.  These regional fault relationships present an interesting and poorly 
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Figure 16.  Speculative tectonic model for coastal Sonora during late Miocene time.  According 

to this model, older normal faults (black) accommodated large-magnitude NE-SW extension from 

~10-6 Ma.  Significant dextral shear introduced at ca. 7 Ma on newly initiated and/or reactivated 

structures (red) transferred and progressively localized dextral strain to the southwest along a 

series of en-echelon, right-stepping transforms.  This transition from extension-dominated 

transtension to shear-dominated transtension between 7 and 6 Ma likely played an important role 

in plate boundary localization and inception of the Gulf of California at ~6 Ma.
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understood aspect of fault mechanics theory regarding along-strike strain gradients in the 

transition from oceanic to continental transform faults.   

The dynamic interplay and linkage between these fault systems are difficult to 

evaluate given the current state of knowledge on early rift structures in the northern Gulf.  

However, a prospective kinematic model for late Miocene strain in coastal Sonora 

proposed here suggests that incipient NW-striking transform faults in the nascent Gulf of 

California (ca. 7-6 Ma) were linked by N- to NE-striking normal faults that transferred 

dextral strain to the southwest across a series of en-echelon, right-stepping dextral shear 

zones including the Amado and Seri faults, the Kino-Chueca Shear Zone, and potentially 

the La Cruz and Tiburón transforms (Fig. 16).  An offshore normal-fault linkage between 

the Amado fault and the Seri fault could explain (1) the lack of significant dextral offset 

on the onshore Amado-Libertad fault in the Sierra Bacha, and (2) significant dextral shear 

on the Seri fault, which might have been responsible for ~25º of clockwise vertical-axis 

rotation in the southwestern Sierra Bacha (Fig. 15).  The transfer and progressive 

localization of dextral strain along incipient proto-Gulf transforms and into the Kino-

Chueca Shear Zone ca. 7-6 Ma (Bennett, 2009) may also explain the decrease of dextral 

strain inboard in the Sierra Bacha area where vertical-axis rotation is negligible (Fig. 15).  

According to this model, NE-SW extension in coastal Sonora from 10-6 Ma evolved into 

more localized, shear-dominated transtension that dramatically reduced extensional strain 

rates in the Sierra Bacha starting ca. 7 Ma and continuing into early modern Gulf time 

(~6-5 Ma).  Insufficient age constraints on the timing of extension and dextral strain 

make it difficult to evaluate the uncertainties regarding this speculative tectonic model. 
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Existing constraints on the distribution, magnitude, and timing of strain in the 

northern Gulf offer an opportunity to consider possible mechanisms responsible for the 

~2-5 million year delay between the end of subduction west of Baja California and the 

onset of strong dextral shear and seafloor spreading in the GEP.  Global plate circuit 

reconstructions reveal a significant change in relative Pacific-North America plate motion 

across the northern Gulf of California at ca. 8 Ma from N60W to N37W (Atwater and 

Stock, 1998).  With the rift axis oriented ~N27W, the change in plate motion corresponds 

to a change in α (the acute angle between the orientation of the rift axis and the direction 

of relative plate motion) from 33º to 10º.  Analog models of oblique rifting consistently 

show reactivation and reconfiguration of fault networks and a dramatic change in 

kinematics when rift obliquity is reduced from ~30-15º (Withjack and Jamison, 1986; 

Clifton et al., 2000; Agostini et al., 2009). 

The well-documented change in relative plate motion and rift obliquity at 8 Ma 

might explain the multi-phase kinematic history proposed by the progressive localization 

model (Fig. 2C).  Evidence throughout the GEP corroborates the possibility of a causal 

link between rift obliquity and strain localization.  The onset of strong extension and 

subsidence in fault-bounded basins in the western Salton Trough at ~ 8 Ma (Dorsey et al., 

2011), and contemporaneous marine incursion into the southern Gulf of California 

(Helenes and Carreño, 1999) might indicate the localization and acceleration of regional 

dextral shear into the North American continent.  Additional evidence from conjugate 

rifted margins of the Gulf suggests that major transtensional strain in the northern GEP 

initiated sometime between 9 and 7 Ma (Bennett, 2009; Seiler et al., 2011).   
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Alternatively, the prolonged time lag between the end of subduction and onset of 

rift-related deformation could be related to thermal processes in the upper mantle and 

crust.  Thermal weakening and/or erosion of a tear in the subducted slab may have 

delayed the arrival of hot asthenosphere beneath the GEP that ultimately weakened the 

lower crust and initiated localized deformation (Fletcher et al., 2007; Seiler et al., 2011).  

Developing an appropriate mechanical model for proto-Gulf evolution will require 

improved constraints on the timing and distribution of transtensional strain in the GEP 

from both continental and offshore marine basins.  
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CHAPTER VIII 

CONCLUSIONS 

 

 Integrated geologic mapping, fault kinematic analysis, and paleomagnetic analysis 

show that the Sierra Bacha experienced ENE-WSW-directed, orthogonal extension (55-

60%) between ~10 and 6 Ma.  Structural data strongly support a multi-phase stress 

history involving dextral-oblique reactivation of primary normal faults.  Available 

paleomagnetic data, however, provide no evidence of significant vertical-axis rotation 

related to dextral shear in the study area, except for ~25º of clockwise rotation in the 

southwest near the concealed Seri fault.  The timing, magnitude and style of deformation 

recorded in the Sierra Bacha and in the nearby Cerro Kino indicate that dextral shear was 

not distributed throughout the entire Gulf Extensional Province during proto-Gulf time 

(12-6 Ma).  Instead, dextral shear became localized into narrow zones like the Kino-

Chueca Shear Zone during latest Miocene time (Bennett, 2009). 

These results support a two-stage tectonic model for proto-Gulf strain in coastal 

Sonora, in which deformation evolved from NE-SW extension between 10 and 7 Ma to 

shear-dominated transtension ca. 7-6 Ma.  A previously documented change in Pacific-

North America relative plate motion at ~8 Ma, and inferred consequential reduction of 

the rift angle from ~30-15º, may have played a role in localizing a significant dextral 

component of transtensional strain on older NW-striking normal faults in the GEP.  

Localization of dextral shear during latest Miocene time elevated strain rates and 
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sufficiently weakened the crust, facilitating continental rupture and opening of the 

northern Gulf of California ca. 6 Ma.
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APPENDIX A 

FAULT KINEMATIC DATA 

 

TABLE A1. FAULT DATA USED IN KINEMATIC ANALYSIS 

            
    

Fault Surface 
 

Slip Vector 
  

Fault 
datum 

Easting* 
(m) 

Northing* 
(m) 

  Strike Dip
†
   Rake

‡
 Trend Plunge   

Assigned 
Sense of 

Slip
φ
  

            1 373854 3271563 
 

140 81 
 

50 151 49 
 

NL 

2 374137 3271795 
 

160 77 
 

177 339 3 
 

NR 

3 374137 3271795 
 

147 43 
 

130 286 31 
 

NR 

4 374727 3270858 
 

315 54 
 

18 326 15 
 

NL 

5 374801 3270916 
 

143 84 
 

75 164 74 
 

NL 

6 374860 3270855 
 

126 56 
 

174 303 5 
 

NR 

7 374984 3270784 
 

140 42 
 

-- -- -- 
 

-- 

8 374984 3270784 
 

136 35 
 

-- -- -- 
 

-- 

9 374984 3270784 
 

175 39 
 

-- -- -- 
 

-- 

10 374984 3270784 
 

144 24 
 

-- -- -- 
 

-- 

11 374984 3270784 
 

350 73 
 

-- -- -- 
 

-- 

12 375000 3270760 
 

124 54 
 

177 302 2 
 

NR 

13 375009 3270719 
 

182 52 
 

-- -- -- 
 

-- 

14 375271 3270669 
 

333 66 
 

-- -- -- 
 

-- 

15 375160 3270352 
 

302 71 
 

67 339 60 
 

NL 

16 375103 3270320 
 

197 50 
 

-- -- -- 
 

-- 

17 375574 3271170 
 

128 77 
 

10 130 10 
 

TR 

18 375585 3271172 
 

24 89 
 

24 24 1 
 

NL 

19 375293 3271417 
 

311 45 
 

-- -- -- 
 

-- 

20 374381 3271466 
 

134 61 
 

50 164 42 
 

NL 

21 374381 3271466 
 

180 41 
 

-- -- -- 
 

-- 

22 372992 3270108 
 

196 36 
 

-- -- -- 
 

-- 

23 372992 3270108 
 

204 35 
 

-- -- -- 
 

-- 

24 372865 3273134 
 

146 38 
 

0 326 0 
 

R 

25 372881 3272781 
 

150 76 
 

30 158 29 
 

NL 

26 372881 3272781 
 

151 90 
 

29 151 29 
 

NL 

27 372881 3272790 
 

157 70 
 

-- -- -- 
 

-- 

28 373220 3272826 
 

142 82 
 

-- -- -- 
 

-- 

29 373552 3273143 
 

108 56 
 

170 282 8 
 

NR 

30 372427 3273392 
 

194 76 
 

157 8 22 
 

TL 

31 372909 3265638 
 

155 52 
 

133 302 35 
 

NR 

32 374694 3271066 
 

347 83 
 

24 350 24 
 

NL 

33 371515 3273989 
 

231 53 
 

73 294 50 
 

NL 

34 373648 3269786 
 

104 79 
 

100 237 75 
 

NR 

35 373816 3269820 
 

105 32 
 

108 216 30 
 

NR 
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TABLE A1. FAULT DATA USED IN KINEMATIC ANALYSIS (continued) 

            
    

Fault Surface 
 

Slip Vector 
  

Fault 
datum 

Easting* 
(m) 

Northing* 
(m) 

  Strike Dip
†
   Rake

‡
 Trend Plunge   

Assigned 
Sense of 

Slip
φ
  

            
36 373816 3269825 

 
095 40 

 

-- -- -- 
 

-- 

37 357676 3281914 
 

340 72 
 

-- -- -- 
 

-- 

38 356854 3283601 
 

338 26 
 

-- -- -- 
 

-- 

39 356846 3283599 
 

326 68 
 

-- -- -- 
 

-- 

40 356846 3283599 
 

330 64 
 

-- -- -- 
 

-- 

41 356846 3283599 
 

319 62 
 

100 70 60 
 

NR 

42 356846 3283599 
 

146 71 
 

-- -- -- 
 

-- 

43 356846 3283599 
 

152 75 
 

-- -- -- 
 

-- 

44 356846 3283599 
 

140 69 
 

105 267 64 
 

NR 

45 356846 3283599 
 

311 80 
 

80 356 76 
 

NL 

46 356846 3283599 
 

331 56 
 

100 79 55 
 

NR 

47 356846 3283599 
 

342 43 
 

82 61 42 
 

NL 

48 356846 3283599 
 

11 45 
 

28 32 19 
 

NL 

49 356846 3283599 
 

337 46 
 

78 50 45 
 

NL 

50 356846 3283599 
 

3 30 
 

46 45 21 
 

NL 

51 356772 3283628 
 

305 33 
 

-- -- -- 
 

-- 

52 369585 3268022 
 

303 41 
 

142 92 24 
 

NR 

53 376500 3281370 
 

332 76 
 

90 62 76 
 

NR 

54 376775 3279279 
 

330 63 
 

123 115 48 
 

NR 

55 369407 3273209 
 

214 18 
 

100 315 18 
 

NR 

56 369769 3273405 
 

151 52 
 

107 267 49 
 

NR 

57 369769 3273405 
 

151 52 
 

76 219 50 
 

NL 

58 369769 3273405 
 

144 45 
 

-- -- -- 
 

-- 

59 369769 3273405 
 

153 46 
 

-- -- -- 
 

-- 

60 373367 3264413 
 

197 58 
 

93 293 58 
 

NR 

61 371338 3269917 
 

156 80 
 

170 334 10 
 

NR 

62 371400 3269930 
 

145 86 
 

30 147 30 
 

TR 

63 370724 3270834 
 

170 84 
 

108 332 71 
 

NR 

64 373948 3271057 
 

29 70 
 

85 105 69 
 

NL 

65 373923 3272769 
 

314 46 
 

43 347 29 
 

NL 

                        

            
*  UTM coordinates from zone 12R, WGS 84 Datum 

  
  

   †
  dip direction is 90° clockwise from strike according to the right-hand rule  

   ‡
  measured in degrees from horizontal (0-180) starting in the strike direction of the fault surface 

 φ
  Abbreviations: N - normal, T - thrust, R- right-lateral, L- left-lateral 
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APPENDIX B 

PALEOMAGNETIC DATA 
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TABLE B1. FISHER AND BINGHAM STATISTICS FOR SITE-MEAN ChRM 

                      

 
Bedding*  

 

Geographic Fisher 
Statistics  

Geographic Bingham Statistics 

 
Tilt-Corrected Bingham Statistics 

Drill 
Site/ 
Unit 

Strike Dip   Dec Inc α95 ĸ   Dec Inc ĸ1 α95 ĸ2 α95   Dec Inc ĸ1 α95 ĸ2 α95 

               
       DS-17  

Mtsi 
308 40 

 
231.6 -40.5 1.48 910.35 

 
231.5 -40.5 -844.21 1.03 -6.68 12.16 

 
228.2 -1.3 -851.03 1.03 -6.68 12.16 

                      
DS-21  
Mtsf 

359 55 
 

223.7 -39.4 2.61 182.29 
 

223.6 -39.3 -96.36 2.39 -0.15 2.48 
 

235.6 5.4 -16.82 5.89 -0.27 6.37 

                      
DS-22  
Mtcc 

312 48 
 

326.9 49.2 9.25 29.96 
 

324.5 49.5 -27.43 7 -1.74 36.57 
 

358.1 23.7 -29.37 6.76 -1.72 36.78 

                      
DS-23  
Mr2 

295 52 
 

320.1 58.8 4.54 228.38 
 

320.1 58.8 -18953 0.32 -89.95 4.7 
 

355 20.7 -21312 0.3 -90.33 4.69 

                      
DS-24  
Mba 

221 1 
 

4.2 39.9 4.32 125.76 
 

3.2 40.7 -54.22 4.15 -0.33 4.53 
 

2.6 40.1 -54.07 4.15 -0.33 4.53 

                                            

                      NOTE:  Table 3 contains all other paleomagnetic data, including site locations 

           *  Bedding orientation used for structural correction; dip direction is 90° clockwise from strike according to the right-hand rule  

       Dec - Declination in degrees; Inc - Inclination in degrees 

               α95 - cone of 95% confidence about site-mean direction;  ĸ - precision parameter (Fisher, 1953) 

           

 

 



86 

 

REFERENCES CITED 

 

 

Agostini, A., Corti, G., Zeoli, A., and Mulugeta, G., 2009, Evolution, pattern, and  

partitioning of deformation during oblique continental rifting: inferences from  

lithospheric-scale centrifuge models: Geochemistry Geophysics Geosystems, v. 

10, Q11015. 

 

Allmendinger, R.W., Marrett, R.A., and Cladouhos, T., 1994, FaultKin v. 4.3.5. A  

program for analyzing fault-slip data on a Macintosh computer. 

 

Anderson, E.M., 1951, The dynamics of faulting and dyke formation with applications  

to Britain, 2nd edition: Edinburgh, Oliver and Boyd, 206 p. 

 

Anderson, T.H., and Silver, L.T., 1969, Mesozoic magmatic events of the northern  

Sonora coastal region, Mexico: Geological Society of America Abstracts with 

Programs, v. 1, p. 3. 

 

Angelier, J., and Mechler, P., 1977, Sur une méthode graphique de recherche des  

contraintes principales également utilisable en tectonique et en séismologie: La  

méthode des diedres droits: Bulletin of the Geological Society of France, v. 7, p. 

1309-1318. 

 

Angelier, J., Colletta, B., Chorowicz, J., Ortlieb, L., and Rangin, C., 1981, Fault tectonics 

of the Baja-California peninsula and the opening of the Sea of Cortez, Mexico: 

Journal of Structural Geology, v. 3, p. 347-357. 

 

Angelier, J., Tarantola, A., Valette, B., and Manoussis, S., 1982, Inversion of field data in 

fault tectonics to obtain the regional stress, 1. Single-phase fault populations - a 

new method of computing the stress tensor: Geophysical Journal of the Royal 

Astronomical Society, v. 69, p. 607-621. 

 

Aragón-Arreola, M., and Martín-Barajas, A., 2007, Westward migration of extension in 

the northern Gulf of California, Mexico: Geology, v. 35, no. 6, p. 571-574. 

 

Atwater, T., 1970, Implications of plate tectonics for the Cenozoic evolution of western  

North America: Geological Society of America Bulletin, v. 81, p. 3513-3536. 

 

 

 



87 

Atwater, T., 1989, Plate tectonic history of the northeast Pacific and western North  

America, in Winterer, E.L., Hussong, D.M., and Decker, R.W., editors., The 

Eastern Pacific Ocean and Hawaii, Volume N: Boulder, Colorado, The 

Geological Society of America, p. 21-72. 

 

Atwater, T., and Stock, J., 1998, Pacific North America plate tectonics of the Neogene 

southwestern United States: An update: International Geology Review, v. 40, no. 

5, p. 375-402. 

 

Beck, M.E., 1980, Paleomagnetic record of plate-margin tectonic processes along the  

western edge of North America: Journal of Geophysical Research, v. 85, p. 7115-

7131. 

 

Bennett, S.E.K., 2009, Transtensional Rifting in the Late Proto-Gulf of California near  

Bahía Kino, Sonora, México [M.S. thesis]: Chapel Hill, University of North 

Carolina, 122 p. 

 

Bennett, S.E.K., and Oskin, M.E., 2008, A New high-precision paleomagnetic reference  

vector from Mesa El Burro, Mesa Cartabón, and Mesa El Pinole, Baja California 

for the Tuff of San Felipe, a Miocene ignimbrite marker bed exposed in Baja 

California and Sonora, México: American Geophysical Union Fall Meeting, San 

Francisco, California, abstract #T11A-1852. 

 

Bennett, S.E., Oskin, M., and Iriondo, A., 2007: Transition from Proto-Gulf Extension to  

Transtension, Coastal Sonora, Mexico, Eos, Transactions, American Geophysical 

Union, v. 88, Joint Assembly Supplement, abstract #S31A-10. 

 

Besse, J., and Courtillot, V., 1991, Revised and synthetic apparent polar wander paths of 

the African, Eurasian, North-American and Indian plates, and true polar wander 

since 200 Ma: Journal of Geophysical Research, v. 96, p. 4029-4050. 

 

Bott, M.H.P., 1959, The mechanics of oblique slip faulting: Geological magazine, v. 96,  

p. 109-117. 

 

Bryant, B.A., 1986, Geology of the Sierra Santa Rosa Basin, Baja California, Mexico  

[M.S. thesis]: San Diego, California, San Diego State University, 75 p. 

 

Buck, W.R., 1988, Flexural rotation of normal faults: Tectonics, v. 7, no. 5, p. 959-973. 

 

Buck, W.R., 1991, Modes of Continental Lithospheric Extension: Journal of Geophysical 

Research, v. 96, p. 20161-20178. 

 

Buck, W.R., 1993, Effect of lithospheric thickness on the formation of high-angle and 

low-angle normal faults: Geology, v. 21, no. 10, p. 933-936. 

 

 



88 

Buck, W.R., and Choi, E., 2010, Constraints on the strength of faults from rider blocks on  

oceanic and continental core complexes: American Geophysical Union Fall 

Meeting, San Francisco, California, abstract #T32C-04. 

 

Buck, W.R., Lavier, L.L., and Poliakov, A.N.B., 1999, How to make a rift wide: 

Philosophical Transactions of the Royal Society of London Series a - 

Mathematical Physical and Engineering Sciences, v. 357, p. 671-690. 

 

Butler, R.L., 1992, Paleomagnetism: Cambridge, Massachusetts, Blackwell Scientific  

Publications, 319 p. 

 

Carey, E., and Brunier, B., 1974, Numerical-analysis of an elementary mechanical model 

applied to study of a population of faults: Comptes Rendus Hebdomadaires Des 

Seances De L Academie Des Sciences Serie D, v. 279, no. 11, p. 891-894. 

 

Clifton, A.E., Schlische, R.W., Withjack, M.O., and Ackermann, R.V., 2000, Influence of 

rift obliquity on fault-population systematics: results of experimental clay models: 

Journal of Structural Geology, v. 22, no. 10, p. 1491-1509. 

 

Colletta, B., Angelier, J., Chorowicz, J., Ortlieb, L., and Rangin, C., 1981, Fault patterns 

and neotectonic evolution of the Baja California peninsula, Mexico: Comptes 

Rendus De L Academie Des Sciences Serie Ii, v. 292, no. 14, p. 1043-1048. 

 

Demarest, H.H., 1983, Error analysis for the determination of tectonic rotation from 

paleomagnetic data: Journal of Geophysical Research, v. 88, no. B5, p. 4321-

4328. 

 

DeMets, C., 1995, A reappraisal of seafloor spreading lineations in the Gulf of 

California: Implications for the transfer of Baja California to the Pacific plate and 

estimates of Pacific-North America motion: Geophysical Research Letters, v. 22, 

no. 24, p. 3545-3548. 

 

DeMets, C., and Dixon, T.H., 1999, New kinematic models for Pacific-North America 

motion from 3 Ma to present, I: Evidence for steady motion and biases in the 

NUVEL-1A model: Geophysical Research Letters, v. 26, no. 13, p. 1921-1924. 

 

Dokka, R.K., and Merriam, R.H., 1982, Late Cenozoic extension of northeastern Baja 

California, Mexico: Geological Society of America Bulletin, v. 93, p. 371-378. 

 

Dorsey, R.J., and Burns, B., 1994, Regional stratigraphy, sedimentology, and tectonic 

significance of Oligocene-Miocene sedimentary and volcanic rocks, northern Baja 

California, Mexico: Sedimentary Geology, v. 88, no. 3-4, p. 231-251. 

 

 

 

 



89 

Dorsey, R.J., Housen, B.A., Janecke, S.U., Fanning, C.M., and Spears, A.L.F., 2011, 

Stratigraphic record of basin development within the San Andreas fault system: 

Late Cenozoic Fish Creek-Vallecito basin, southern California: Geological 

Society of America Bulletin, v. 123, no. 5-6, p. 771-793. 

 

Fenby, S.S., and Gastil, R.G., 1991, A seismo-tectonic map of the Gulf of California and  

surrounding areas, in Dauphin, J.P., and Simoneit, B.R., eds., The Gulf and 

Peninsular Provinces of the Californias: Tulsa, Oklahoma, The American 

Association of Petroleum Geologists Memoir 47, p. 79–83. 

 

Fletcher, J.M., Martin-Atienza, B., Axen, G.J., Gonzalez-Fernandez, A., Hollbrook,  

W.S., Kent, G., Lizarralde, D., Harding, A., and Umhoefer, P., 2003, Palinspastic 

reconstructions of the Gulf of California based on Airy isostatic profiles: evidence 

for one kinematic phase of Neogene shearing: American Geophysical Union Fall 

Meeting, San Francisco, California, abstract #T32D-06. 

 

Fletcher, J.M., Grove, M., Kimbrough, D., Lovera, O., and Gehrels, G.E., 2007, Ridge-

trench interactions and the Neogene tectonic evolution of the Magdalena shelf and 

southern Gulf of California: Insights from detrital zircon U-Pb ages from the 

Magdalena fan and adjacent areas: Geological Society of America Bulletin, v. 

119, no. 11-12, p. 1313-1336. 

 

Gans, P.B., 1997, Large-magnitude Oligo-Miocene extension in southern Sonora: 

Implications for the tectonic evolution of northwest Mexico: Tectonics, v. 16, no. 

3, p. 388-408. 

 

Gastil, R.G., 1968, Fault systems in northern Baja California and their relation to the  

origin of the Gulf of California, in Dickinson, W.R. and Grantz, A., eds., 

Proceedings of conference on geological problems of the San Andreas Fault 

system: Stanford, Stanford University Publications in Geological Sciences, v. 11, 

p. 283-286 

 

Gastil, R.G., 1993, Prebatholithic history of peninsular California, in Gastil, R.G., and  

Miller, R.H., eds., The prebatholithic stratigraphy of peninsular California: 

Geological Society of America Special Paper 279, p. 145–156. 

 

Gastil, R.G., and Krummenacher, D., 1976, Reconnaissance geologic map of coastal  

Sonora between Puerto Lobos and Bahía Kino: Geological Society of America  

Map and Chart Series MC-16, scale 1:150,000, 1 sheet. 

 
Gastil, R.G., and Krummenacher, D., 1977, Reconnaissance geology of coastal Sonora  

between Puerto Lobos and Bahía Kino: Geological Society of America Bulletin, 

v. 88, p. 189-198. 

 

 

 



90 

Gastil, R.G., Lemone, D.V., and Stewart, W.J., 1973, Permian fusulinids from near San  

Felipe, Baja California: American Association of Petroleum Geologists Bulletin, 

v. 57, no. 4, p. 746-747. 

 

Gastil, R.G., Krummenacher, D., Doupont, J., and Bushee, J., 1974, The batholith belt of  

southern California and western Mexico: Pacific Geology, v. 8, p. 73-78. 

 

Gastil, R.G., Phillips, R.P., Allison, E.C., 1975, Reconnaissance geology of the state of 

Baja California: Geological Society of America Memoir 140, 170 p. 

 

Gastil, R.G., Krummenacher, D., and Minch, J., 1979, Record of Cenozoic volcanism 

around the Gulf of California: Geological Society of America Bulletin, v. 90, no. 

9, p. 839-857. 

 

González-Fernández, A., Dañobeitia, J.J., Delgado-Argote, L.A., Michaud, F., Córdoba,  

D., and Bartolomé, R., 2005, Mode of extension and rifting history of upper 

Tiburón and upper Delfin basins, northern Gulf of California: Journal of 

Geophysical Research, v. 110, no. B1, p. 1-17. 

 

Grove, M., Fletcher, J., Kimbrough, D., Lovera, O., Kohn, B., 2005, Neogene tectonic  

evolution of the Magdalena shelf: Geological Society of America Abstracts with 

Programs, v. 37, no. 7, p. 274. 

 

Hagstrum, J.T., Sawlan, M.G., Hausback, B.P., Smith, J.G., and Gromme, C.S., 1987, 

Miocene Paleomagnetism and tectonic setting of the Baja California peninsula, 

Mexico: Journal of Geophysical Research, v. 92, no. B3, p. 2627-2639. 
 

Hausback, B.P., 1984, Cenozoic volcanic and tectonic evolution of Baja California Sur,  

Mexico, in Frizzell, V.A., Jr., ed., Geology of the Baja California peninsula, v. 39: 

Los Angeles, California, Society of Economic Paleontologists and Mineralogists, 

Pacific Section, p. 219–236. 

 

Helenes, J., and Carreño, A.L., 1999, Neogene sedimentary evolution of Baja California 

in relation to regional tectonics: Journal of South American Earth Sciences, v. 12, 

no. 6, p. 589-605. 

 

Henry, C.D., 1989, Late Cenozoic basin and range structure in western Mexico adjacent 

to the Gulf of California: Geological Society of America Bulletin, v. 101, no. 9, p. 

1147-1156. 

 

Herman, S.W., and Gans, P.B., 2006, A paleomagnetic investigation of large scale  

vertical axis rotations in coastal Sonora: Evidence for transtensional proto-Gulf 

deformation: Geological Society of America Abstracts with Programs, v. 38, no. 

7, p. 311. 

 

 

 



91 

Jones, C.H., 2002, User-driven integrated software lives: “PaleoMag” Paleomagnetics  

Analysis on the Macintosh: Computers and Geosciences, v. 28, no. 10, p. 1145-

1151. 

 

Karig, D.E., and Jensky, W., 1972, Proto-Gulf of California: Earth and Planetary Science 

Letters, v. 17, no. 1, p. 169-174. 

 

Kirschvink, J.L., 1980, The least-squares line and plane and the analysis of 

paleomagnetic data: Geophysical Journal of the Royal Astronomical Society, v. 

62, no. 3, p. 699-718. 

 

Kirschvink, J.L., Kopp, R.E., Raub, T.D., Baumgartner, C.T., and Holt, J.W., 2008, 

Rapid, precise, and high-sensitivity acquisition of paleomagnetic and rock-

magnetic data: Development of a low-noise automatic sample changing system 

for superconducting rock magnetometers: Geochemistry Geophysics Geosystems, 

v. 9, no. 5, 18 p. 

 

Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M.J., Sabine,  

P.A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A.R., and Zanettin, B., 

1989, A classification of igneous rocks and glossary of terms: Recommendations 

of the International Union of Geological Sciences Subcommission on the 

Systematics of Igneous Rocks: Oxford, United Kingdom, Blackwell Scientific 

Publications, 193 p. 

 

Lee, J., Miller, M.M., Crippen, R., Hacker, B., and Vazquez, J.L., 1996, Middle Miocene  

extension in the Gulf extensional province, Baja California: Evidence from the 

southern Sierra Juarez: Geological Society of America Bulletin, v. 108, no. 5, p. 

505-525. 

 

Lewis, C.J., 1994, Constraints on extension in the Gulf extensional province from the  

Sierra San Fermín, northeastern Baja California, Mexico [Ph.D. thesis]: 

Cambridge, Massachusetts, Harvard University, 361 p. 

 

Lewis, C.J., and Stock, J.M., 1998, Late Miocene to recent transtensional tectonics in the 

Sierra San Fermin, northeastern Baja California, Mexico: Journal of Structural 

Geology, v. 20, no. 8, p. 1043-1063. 

 

Lizarralde, D., Axen, G.J., Brown, H.E., Fletcher, J. M., Gonzalez-Fernandez, A., 

Harding, A. J., Holbrook, W. S., Kent, G. M., Paramo, P., Sutherland, F., and 

Umhoefer, P. J., 2007, Variation in styles of rifting in the Gulf of California: 

Nature, v. 448, no. 7152, p. 466-469. 

 

Lonsdale, P., 1989, Geology and tectonic history of the Gulf of California, in Winterer,  

E.L., Hussong, D.M., and Decker, R.W., eds., The eastern Pacific Ocean and 

Hawaii: Boulder, Colorado, Geological Society of America, Geology of North 

America, v. N, p. 499–521. 



92 

Lonsdale, P., 1991, Structural pattern of the Pacific floor offshore peninsular California,  

in Dauphin, J.P., and Simoneit, B.R.T., eds., The Gulf and the Peninsular 

Provinces of the Californias: Tulsa, Oklahoma, The American Association of 

Petroleum Geologists Memoir 47, p. 87–125. 

 

Mammerickx, J., and Klitgord, K.D., 1982, Northern East Pacific Rise – Evolution from 

25 m.y. B.P. to the present: Journal of Geophysical Research, v. 87, p. 6751-6759. 

 

Martín, A., Fletcher, J.M., López-Martínez, M., and Mendoza-Borunda, R., 2000,  

Waning Miocene subduction and arc volcanism in Baja California: the San Luis 

Gonzaga volcanic field: Tectonophysics, v. 318, p. 27-51. 

 

Merriam, R., 1965, San Jacinto fault in northwestern Sonora, Mexico: Geological Society  

of America Bulletin, v. 76, p. 1051-1054. 

 

Mora-Alvarez, G., and McDowell, F.W., 2000, Miocene volcanism during late  

subduction and early rifting in the Sierra Santa Ursula of western Sonora, Mexico, 

in Delgado-Granados, H., Aguirre-Díaz, G., and Stock, J.M., eds., Cenozoic 

tectonics and volcanism of Mexico: Boulder, Colorado, Geological Society of 

America Special Paper 334, p. 123–141. 

 

Nagy, E.A., 2000, Extensional deformation and paleomagnetism at the western margin of  

the Gulf Extensional Province, Puertecitos Volcanic Province, northeastern Baja 

California, Mexico: Geological Society of America Bulletin, v. 112, p. 857-870. 

 

Nagy, E.A., Grove, M., and Stock, J.M., 1999, Age and stratigraphic relationships of pre-  

and syn-rift volcanic deposits in the northern Puertecitos Volcanic Province, Baja 

California, Mexico: Journal of Volcanology and Geothermal Research, v. 93, p. 1-

30. 

 

Nourse, J.A., Anderson, T.H., and Silver, L.T., 1994, Tertiary metamorphic core  

complexes in Sonora, northwestern Mexico: Tectonics, v. 13, p. 1161-1182. 

 

Nourse, J.A., Premo, W.R., Iriondo, A., and Stahl, E.R., 2005, Contrasting Proterozoic 

basement complexes near the truncated margin of Laurentia, northwestern 

Sonora-Arizona international border region: in Anderson, T., Nourse, J., McKee, 

J., and Steiner, M., eds., The Mojave-Sonora megashear hypothesis: development, 

assessment, and alternatives: Geological Society of America Special Paper 393, p. 

123-182. 

 

Oskin, M., Stock, J., and Martín-Barajas, A., 2001, Rapid localization of Pacific-North 

America plate motion in the Gulf of California: Geology, v. 29, no. 5, p. 459-462. 

 

Oskin, M., and Stock, J., 2003a, Marine incursion synchronous with plate-boundary 

localization in the Gulf of California: Geology, v. 31, no. 1, p. 23-26. 

 



93 

Oskin, M., and Stock, J., 2003b, Pacific-North America plate motion and opening of the 

Upper Delfin Basin, northern Gulf of California, Mexico: Geological Society of 

America Bulletin, v. 115, p. 1173-1190. 

 

Oskin, M., and Stock, J., 2003c, Cenozoic volcanism and tectonics of the continental 

margins of the Upper Delfín basin, northeastern Baja California and western 

Sonora, in Kimbrough, D.L., Johnson, S.E., Paterson, S., Martín-Barajas, A., 

Fletcher, J.M., and Girty, G., eds., Tectonic evolution of northwestern Mexico and 

the southwestern USA: Geological Society of America Special Paper 374:, p. 

421-428 

 

Ogg, J.G., and Smith, A.G., 2004, The geomagnetic polarity time scale, in Gradstein,  

F.M., Ogg, J.G., and Smith, A.G., eds., A geologic time scale 2004: Cambridge, 

United Kingdom, Cambridge University Press, p. 63-86. 

 

Pfiffner, O.A., and Burkhard, M., 1987, Determination of paleo-stress axes orientations  

from fault, twin and earthquake data: Annales Tectonicae, v. 1, p. 48-57. 

 

Proffett, J.M., 1977, Cenozoic geology of Yerington District, Nevada, and implications 

for nature and origin of basin and range faulting: Geological Society of America 

Bulletin, v. 88, no. 2, p. 247-266. 

 

Quidelleur, X., and Courtillot, V., 1996, On low-degree spherical harmonic models of 

paleosecular variation: Physics of the Earth and Planetary Interiors, v. 95, no. 1-2, 

p. 55-77. 

 

Ramos-Velázquez, E., Calmus, T., Valencia, V., Iriondo, A., Valencia-Moreno, M., and 

Bellon, H., 2008, U-Pb and (40)Ar/(39)Ar geochronology of the coastal Sonora 

batholith: New insights on Laramide continental arc magmatism: Revista 

Mexicana De Ciencias Geológicas, v. 25, no. 2, p. 314-333. 

 

Richard, P., and Krantz, R.W., 1991, Experiments on fault reactivation in strike-slip 

mode: Tectonophysics, v. 188, no. 1-2, p. 117-131. 

 

Sawlan, M.G., 1991, Magmatic evolution of the Gulf of California rift, in Dauphin, J.P.,  

and Simoneit, B.R.T., eds., The Gulf and the Peninsular Provinces of the 

Californias: Tulsa, Oklahoma, The American Association of Petroleum 

Geologists Memoir 47, p. 301-370. 

 

Seiler, C., Fletcher, J.M., Quigley, M.C., Gleadow, A.J.W., Kohn, B.P., 2010, Neogene  

structural evolution of the Sierra San Felipe, Baja California: Evidence for proto-

gulf transtension in the Gulf extensional province?: Tectonophysics, v. 488, p. 87-

109. 

 

 

 



94 

Seiler, C., Fletcher, J.M., Kohn, B.P., Gleadow, A.J.W., and Raza, A., 2011, Low- 

temperature thermochronology of northern Baja California, Mexico: Decoupled 

slip-exhumation gradients and delayed onset of oblique rifting across the Gulf of 

California: Tectonics, v. 30, no. 3, TC3004. 

 

Sibson, R.H., 1985, A note on fault reactivation: Journal of Structural Geology, v. 7, no.  

6, p. 751-754. 

 

Spencer, J.E., and Normark, W.R., 1979, Tosco-Abreojos fault zone: A Neogene 

transform plate boundary within the Pacific margin of southern Baja California: 

Geology, v. 7, p. 554-557. 

 

Stewart, J.H., and Poole, F.G., 1997, Inventory of Neoproterozoic and Paleozoic strata in  

Sonora, Mexico: U.S. Geological Survey Open-File Report 02-97, 50 p. 

 

Stock, J.M., 1989, Sequence and geochronology of Miocene rocks adjacent to the Main  

Gulf Escarpment: Southern Valle Chico, Baja California Norte, Mexico: 

Geofísica Internacional, v. 28, p. 851-896. 

 

Stock, J.M., and Hodges, K.V., 1989, Pre-Pliocene extension around the Gulf of 

California and the transfer of Baja California to the Pacific plate: Tectonics, v. 8, 

no. 1, p. 99-115. 

 

Stock, J., and Molnar, P., 1988, Uncertainties and implications of the late Cretaceous and 

Tertiary position of North America relative to the Farallon, Kula, and Pacific 

plates: Tectonics, v. 7, no. 6, p. 1339-1384. 

 

Stock, J.M., Martín-Barajas, A., Suárez-Vidal, F., and Miller, M.M., 1991, Miocene to  

Holocene extensional tectonics and volcanic stratigraphy of northeastern Baja 

California, Mexico, in Walawender, M.J., and Hanan, B.B., eds., Geological 

Excursions in Southern California and Mexico, Guidebook for the 1991 Annual 

Meeting of the Geological Society of America: San Diego, California, San Diego 

State University, p. 44–67. 

 

Stock, J.M., Lewis, C.J., and Nagy, E.A., 1999, The Tuff of San Felipe: an extensive 

middle Miocene pyroclastic flow deposit in Baja California, Mexico: Journal of 

Volcanology and Geothermal Research, v. 93, no. 1-2, p. 53-74. 

 

Umhoefer, P.J., Mayer, L., and Dorsey, R.J., 2002, Evolution of the margin of the Gulf of 

California near Loreto, Baja California Peninsula, Mexico: Geological Society of 

America Bulletin, v. 114, no. 7, p. 849-868. 

 

Verosub, K.L., 1982, Geomagnetic excursions – A critical assessment of the evidence as 

recorded in sediments of the Brunhes epoch: Philosophical Transactions of the 

Royal Society of London, Series A, v. 306, no. 1492, p. 161-168. 

 



95 

Wallace, R.E., 1951, Geometry of shearing stress and relation to faulting: Journal of  

Geology, v. 59, p. 118-130. 

 

Withjack, M.O., and Jamison, W.R., 1986, Deformation produced by oblique rifting: 

Tectonophysics, v. 126, no. 2-4, p. 99-124. 

 

Wong, M., and Gans, P., 2003, Tectonic implications of early Miocene extensional 

unroofing of the Sierra Mazatán metamorphic core complex, Sonora, Mexico: 

Geology, v. 31, no. 11, p. 953-956. 

 

Zoback, M.D., 1991, State of stress and crustal deformation along weak transform faults: 

Philosophical Transactions of the Royal Society of London, Series A, v. 337, no. 

1645, p. 141-150. 

 


	Darin - Prefatory pages
	Darin - Thesis Body2.pdf

