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DISSERTATION ABSTRACT

Shachar Shamay

Doctor of Philosophy

Department of Chemistry

March 2012

Title: Computational Studies of Environmentally Important Processes at Aqueous
Interfaces

Undoubtedly, water is the most abundant and important molecular liquid and

is likely the most necessary for life on Earth. The pursuit of understanding water’s

properties and behaviors has placed it in a unique scientific and even mythical position

throughout human history. It is no surprise that much scientific research today centers

around this molecule and its interactions with others. The interfacial region between

liquid water solutions and other phases is still poorly understood, and only recently

have experiments developed to where we can probe this unique environment. Water

surfaces exist throughout the Earth’s atmosphere and oceans but also make up many

of the microscopic interfaces necessary for metabolic processes within living cells.

Yet, the influence of water surfaces on the chemistry that drives life and terrestrial

processes is still largely unknown, and many research efforts today are attempting to

gain insight to this critically important frontier.

This dissertation documents several unique computational studies aimed to

further our understanding of the complex interactions within a water system and

between water and simple, common solutes. Reported herein are the results of

molecular dynamics (MD) simulations and computational analysis of interfacial

aqueous systems of small hydrated acids, ionic aqueous salt solutions interfaced with
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a liquid oil, and gas molecules adsorbing onto water surfaces. The composition of the

systems chosen for the studies reported in this dissertation reflect environmentally

relevant interfaces and also complement recent experimental efforts by the Richmond

laboratory. Classical and quantum ab initio MD techniques were used for simulation

of the molecular systems, and the subsequent analyses provided new information

regarding molecular interactions, geometries, orientations, and surface behaviors of

water and hydrated interfacial solute molecules.

This dissertation includes both previously published and unpublished co-

authored material.
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CHAPTER I

INTRODUCTION

To the lay person’s eye peering in on modern scientific research there would be a

surprising amount of activity in the study of water. To many, this most abundant and

simple molecular liquid is part of the mundane. For chemists, water is still poorly

understood, and many questions remain regarding properties of aqueous systems,

and water’s interesting bonding behaviors. This simple, triatomic molecule still holds

secrets that drive the state-of-the-art in scientific research. The full nature of even

the most simple neat-water system has not yet been captured, and certainly less

is known about more interesting systems with many added constituents and phase

boundaries. This dissertation is a compilation of several research projects executed to

gain knowledge about water’s interactions with other simple, environmentally relevant

molecules at the region of the water surface.

Unlike the bulk of aqueous solutions, the water surface is a dynamic frontier

between two phases where orientational isotropy is broken, and the formation of

unique electric field conditions dominate molecular interactions. The interfacial

liquid region functions as a “black-box” doorway where solute adsorption, hydration,

chemical reactions, and absorption take place. These mysterious liquid surfaces

are the foundations of numerous processes underlying chemistry ranging from

metabolic pathways to atmospheric reactions. Each of the computational studies

documented herein were formed to further our understanding of environmentally and

anthropogenically important interfacial systems. The research presented was carried

out computationally, making use of molecular dynamics (MD) simulations of liquid

surface regions.
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From their humble beginnings only half a century ago, computational simulations

have developed rapidly in scale and complexity. Scientific experiments, once reserved

for laboratories and apparatus, are now being conducted more often in silico (i.e.

via computational methods). Molecular dynamics and computational modeling have

become invaluable tools for the chemist and physicist; they have even begun replacing

complex and expensive physical experiments, and are now probing phenomena that

are otherwise impossible to capture in a physical laboratory. This dissertation

documents a series of computational studies of solute and solvent behavior in aqueous

systems using molecular dynamics simulations. A complete introduction to molecular

dynamics and molecular modeling techniques is beyond the scope of this dissertation,

but several recent publications are available for one’s own edification.[2–9]

MD simulation is a well established technique with a multitude of packaged

software options for carrying out the complex calculations involved. Two methods

of simulation were used in the research of this dissertation to model aqueous

systems with added constituents: 1) classical MD simulations using empirical

or semi-empirical interaction potentials, and 2) ab initio MD using DFT (DFT-

MD) calculations and quantum interaction potentials. All of the simulations were

performed using either the Amber 11 MD package (classical interaction potential),[10,

11] or the CP2K ab initio MD package (DFT potential).[12, 13] These simulation

software suites facilitate most of the process involved in defining and running MD

simulations, freeing researchers to pursue the physical analysis of the simulated

systems without requiring further software development for MD.

The first system reported in Chapter II is that of a nitric acid molecule bound

to a neat-water surface.[14] This was the first ab initio MD project undertaken by

the Richmond laboratory, and was co-authored with Drs. Victoria Buch and Michele
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Parrinello. The textbook definition of nitric acid as a strong acid was challenged

by looking at its behavior in the interfacial water region that classroom chemistry

experiments do not access. This work introduces the concepts involved in analyzing

the protonation state of an acid from MD data, and takes a first look at the hydration

of solute molecules adsorbed to a water surface.

Soon after the first computational study of surface HNO3 was completed, a

second project making use of classical MD simulations was undertaken on the more

complex liquid-liquid H2O-CCl4 interfacial region, documented in Chapter III.[15]

This work is published and co-authored with Dr. Geraldine Richmond. Various

sodium halide salts were introduced into the aqueous phase of a water system adjacent

to a CCl4 phase. The simulated conditions were set to complement those used in the

experimental work that was performed previously by Catherine McFearin in the same

laboratory.[1] The unique double-layering behavior of the salts is reported through

the use of density profiling. Additionally, the molecular orientation of interfacial

water interacting with the CCl4 in the presence of different salts is analyzed. Lastly,

the vibrational sum frequency (VSF) spectra of the interfacial water molecules is

computed and presented as a link to, and further verification of the experimental

results and conclusions.

Two computational studies were initiated to complement a series of experiments

in the Richmond laboratory to study the adsorption behavior of SO2 on a water

surface.[16–18] The first simulation study, documented in Chapter IV, made use

of a classical interaction potential and a unique steered MD (SMD) technique to

describe the adsorption process of a gaseous SO2 as it first makes contact with a

water surface.[19] The orientations of both the adsorbing SO2 and the surface waters

were described throughout the gaseous adsorption MD trajectory to understand how

3



each molecule reacts to the movements of incoming gas molecules. The work was

produced in collaboration with Dr. Kevin E. Johnson of Pacific University during his

sabbatical time with the Richmond laboratory. A follow-up study of SO2 made use

of DFT-MD simulations to further characterize a surface-bound SO2 molecule, and is

reported in Chapter V.[20] This work was co-authored with Dr. Geraldine Richmond.

The DFT-MD calculates molecular geometries and energies more accurately, but is

more computationally intensive. A series of simulations and analyses probed the

orientations and interactions of SO2 with water. Additionally, a unique cyclic hydrate

structure was discovered and first reported in the study, as well as a novel graph-

theoretical technique for analyzing the interconnectedness of the hydrate structures

formed throughout the simulations.

The final studies documented in this dissertation examine the nature of small

dicarboxylic acid molecules at an aqueous surface. In the first study, documented

in Chapter VI, classical MD simulations were performed in tandem with VSF

spectroscopic experiments of malonic acid solutions.[21] That work took a first look

at the surface behavior of malonic acid, a small dicarboxylic acid of environmental

importance. Patrick Blower and Stephanie Ota are co-authors that contributed

experimental results that paralleled the simulations of the same systems. The second

project detailed in Chapter VII was solely a computational one, using ab initio MD

simulations of small water clusters with a surface-bound malonic acid.[22] This follow-

up study, co-authored with Dr. Geraldine Richmond, verifies the classical force field

parameters and resulting geometries of the first malonic acid study, and further

examines the microscopic hydration structures, geometries, and unique internal

bonding conformations of malonic acid bound to water.
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Water surfaces are as important as they are abundant. Our understanding of

the interactions between water and other environmental molecules remains mostly

undeveloped, and the nature of interfacial chemistry is still poorly understood. The

projects and results presented herein advance our understanding of some simple, yet

fundamental and environmentally relevant aqueous systems. Using MD simulations

and computational analysis, many properties of surface-bound solutes are elucidated.

The results of these studies help build the scientific foundations of the surface science

necessary to make analysis of more complex systems possible in future work.
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CHAPTER II

NITRIC ACID BEHAVIOR ON A WATER SURFACE

This work was published in volume 129(43) of the Journal of the American

Chemical Society in October 2007. Dr. Victoria Buch initially defined the simulated

system, aided greatly with the computational setup of the CP2K simulation package,

and provided guidance in programming and editing of the final manuscript.[12, 13]

Dr. Michele Parrinello contributed computational resources and laboratory facilities

at the Universit della Svizzera Italiana, in Lugano, Switzerland. Eric Shamay was

the principle investigator for this work.

2.1. Introduction

Nitric acid plays a key role in many important heterogeneous chemical reactions

in our upper and lower atmosphere.[23] At the surface of aerosols and cloud droplets

it has the opportunity to inflict its highly reactive nature on a host of organic and

inorganic species.[24] But how applicable is our knowledge of nitric acid in solution

to predicting its behavior at an aqueous surface? This chapter reports the distinctly

different behavior of nitric acid on a water surface relative to its bonding and acidic

behavior in bulk water. It was found through molecular dynamics calculations that

nitric acid orients and bonds to a water surface in a way that reduces its ability to

be a strong dissociating acid. Altered hydrogen bonding to surface water molecules

plays a key role in this molecular behavior. The results throw into question how

we should think about the reactivity of nitric acid on aqueous surfaces if we rely on

models solely derived from its behavior in bulk.
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Recent computational,[25, 26] and experimental[27–32] studies have suggested

that molecular nitric acid and nitrate anion can be found at or below an aqueous

surface, but there were uncertainties from these as to the bonding and orientation

of the molecular form. Reported here is confirmation by simulation of the altered

bonding of surface nitric acid. In these simulations nitric acid molecules were

introduced to the surface in the two different orientations shown in Figure 2.1.:

with the molecular plane perpendicular and the other parallel to the surface.

Many characteristics of nitric acid were investigated, including molecular orientation

(defined by the tilt angle between the vector normal to the molecular plane of the nitric

acid containing the three NO bonds, and the interface normal), HNO3 coordination

to solvating water molecules, OH-bond and NO-bond lengths, and the acid distances

to solvating water molecules. Comparison was carried out of the behavior of the nitric

acid at the surface and in the bulk solution.

FIGURE 2.1. Snapshot of initial bonding configurations of HNO3 molecules.
HNO3 molecular plane containing the three NO bonds was initially placed (left)
perpendicular to the surface, and (right) with its molecular plane initially parallel to
the water surface plane.
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2.2. Computational Methods

Ab initio molecular dynamics simulations were performed using density

functional theory (DFT)[13] with the help of the QUICKSTEP package.[12] Energies

and forces corresponding to the system Born-Oppenheimer surface were calculated

for each MD step using the atom pseudo-potentials of the Goedecker, Teter, and

Hutter type,[33] the exchange-correlation functional of Becke, Lee, Yang and Parr

(BLYP),[34] and a Gaussian valence basis set of double-ζ quality augmented by one

set of polarization functions (DZVP). This technique follows the classical motion of

the atomic nuclei in time, solving for quantum mechanical motion of electrons ab

initio. A simulation time step of 1.0 fs was used. A starting point was a periodic

box with 64 water molecules. To simulate the bulk solution, two water molecules

were replaced by an acid molecule. To generate the surface model, two dimensional

periodic boundaries were set for the x and y axes of the water box. The resulting

infinite slab model includes two open surfaces interfacing with the vacuum. An acid

molecule was placed above one of them. Two “extreme” initial configurations were

tested for the acid, with the molecular plane either parallel or perpendicular to the

liquid surface, as shown in Figure 2.1. (trajectory I and II). The initial configurations

were energy minimized and the systems were equilibrated for 0.5 ps. The two slab

systems were then subjected to NVE simulations for a further 20 ps. The bulk system

was simulated for 25 ps. The atomic position data were collected at every step.

2.3. Nitric Acid Surface Dissociation Behavior

The simulations show that dissociation of the nitric acid in the bulk solution

happens very readily just after the equilibration period, consistent with its known

high degree of acidity. As shown in Figure 2.2., HNO3 initially placed in the interior

8



of the slab dissociates within 800 fs of simulation time as evidenced by the abrupt

lengthening and dissociation of the OH bond. Coincident with the dissociation is

the lengthening of the two unprotonated NO bonds. Prior to dissociation, the acid

molecule forms two strong H-bonds through the oxygens (primarily the NO2 moiety),

and one to water via the proton, with a total of three strong H-bonds. In contrast,

a single nitric acid molecule placed on the surface of a neat water slab did not

dissociate over the full simulation time and typically formed one strong H-bond to

the water phase through the proton, and occasionally a second strong bond via NO

(see Supplement).

FIGURE 2.2. (red) HNO3 OH bond length trajectories and (blue, black) the
unprotonated NO bondlengths during a dissociation event in a bulk water system.

In trajectory I, one NO bond is pointing into the vacuum, and the NOH moiety

and second NO bond are both directed into the aqueous phase. The molecular tilt
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angle oscillates about 90° with amplitude of 62° to either side. The three NO bonds

have distinctly different characteristics. The NO pointing towards the vacuum phase

shows no interaction with surface water molecules and consequently is the shortest

of the three NO bonds at 1.21 Å. The submerged NO (1.24 Å) interacts weakly

with water, with O..H distance distribution peaking at 2.24 Å. The H-bond of acid

hydrogen to water oxygen appears relatively strong, with H..O distance peaking at

1.87 Å (as compared to 1.74 Å for water-water bonds). The protonated NO bond

is longer than the unprotonated ones at 1.51 Å, and the oxygen is only weakly

Hbonded ¡ 25% of the trajectory. The OH bondlength remained at 1.01 Å. Although

the surface acid forms H-bonds to the water phase, the solvation is insufficient

to induce ionization. Past computational studies indicate that only fully solvated

HNO3 molecules in the bulk dissociate to ions.[35–37]

In trajectory II, the acid molecule oscillates close to the tilt angle of 0° with

the surface normal, but occasionally flips on the surface. The NO2 moiety is weakly

H-bonded to water for 60% of the trajectory. The NO lengths were similar (1.22-

1.23 Å) to the perpendicular configuration, but the protonated NO was slightly shorter

at 1.43 Å. One observes several ultrafast incipient ionization events. The typical OH

bond length was 1.01 Å, but during these approximately 50 fs excursions, the proton

moves away to a distance of over 1.3 Å from the acid oxygen. It oscillates near

an equidistant position with respect to a neighboring water oxygen without fully

dissociating. Figure 2.3. shows a section of the surface molecule trajectory during

one of these proton excursions. This behavior is indicative of a very strong H-bond

through the proton.

These calculated results are consistent with a previous VSF study by the

Richmond laboratory,[32] in that the surface molecule was found to bind strongly
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FIGURE 2.3. Nitric acid proton excursions and a near-dissociation event. (red
dashed) Distances from the proton to the nearest water-oxygen and (black solid)
the nitric acid OH bond length.

to a single water through the acid proton to form the monohydrate species. However,

these calculations show varying degrees of weak bonding to the NO2 that may not be

observed experimentally through frequency shifts.

2.4. Summary

The implications of these results are wide ranging. The molecular nature of

nitric acid at a water surface makes it more readily available for reactions with its

ambient surroundings. However, this exposure also brings with it a dramatic change

in its chemical propensity to dissociate. As the appreciation for the importance of
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heterogeneous surface reactions in the atmosphere and our environment continues to

grow, so does our need to evaluate predictive models of such surface reactions that

might be based on either gas phase or condensed phase reaction conditions.

A more complex aqueous system at an oil-water interface is examined in Chapter

III. Sodium halide salts were introduced into an aqueous phase, and subsequent

computational analysis was performed to determine the disrupting effect of ions on

the surface water molecules and their intermolecular bonding.
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CHAPTER III

IONIC DISTURBANCE OF THE OIL-WATER INTERFACE

This work was published in volume 114(29) of the Journal of Physical Chemistry

C in July 2010. Dr. Geraldine Richmond supplied computational resources and

project support. Eric Shamay was the principle investigator for this work.

3.1. Introduction

The most important biological and environmental processes depend on the

nature of interfacial water molecules and dissolved ions in boundary layers. Only in

recent years, and through the development of surface-specific experimental[38–40] and

computational[41–43] analytical techniques, have we been able to begin understanding

this complex environment comprised of interfacial water and ions. Over this time

the field has advanced from studying simple water systems in vacuum and in air,

to studying more complex interfaces such as aqueous solutions near a hydrophobic

surface that are responsible for such important processes as ion transport, liquid-liquid

extraction, drug delivery, and environmental remediation.

The computational studies presented herein have been conducted to gain a

more precise molecular-level picture of how ions affect waters within a liquid-

liquid interface. Molecular dynamics (MD) simulations allow us to look at the

specific ion and water locations, geometries, and bonding environments within the

interface region, unlike experimental techniques currently used for similar surface

studies. Consequently, the work presented here is compared to conclusions from a

recent experimental study that showed how ions affect the interfacial region between

an aqueous ionic solution and a hydrophobic organic liquid.[1] Classical molecular
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dynamics simulations have been performed to analyze the interface formed between

various aqueous salt solutions and the organic liquid carbon tetrachloride (CCl4).

Analyses were conducted to contrast the behavior of different aqueous salt solutions as

well as for comparison with previous computational efforts.[44–49] Three salt solutions

were simulated containing NaCl, NaNO3, Na2SO4. These were chosen to show the

effects of both atomic and molecular, as well as monovalent and divalent anions on the

interfacial environment. The simulation data has been used here to extract ionic and

molecular density data across organic interfaces, information about water orientation

near the interfaces, and simulated SFG spectra.

3.1.1. Density Profiles

Density histograms of simulated interfaces have been used in previous

publications to show ionic and molecular distribution behavior in various systems.[45,

47, 49–54] In this chapter the density profile of water throughout the interface is fit

to a hyperbolic tangent function[53, 55] as shown below in Equation 3.1.:

ρ(z) =
1

2
(ρ1 + ρ2)− 1

2
(ρ1 − ρ2) tanh

(
z − z0

d

)
(Equation 3.1.)

Equation 3.1. relates the interfacial density, ρ, as a function of position, z, along

a given system reference axis, to the densities of the phases, ρ1 and ρ2, on either side

of the Gibb’s dividing surface (GDS), z0. The interfacial width, d, is related to the

“90-10” thickness that is often reported by t90−10 = 2.197d.

These measures of interfacial thickness provide a means of comparing the

depths to which the water phase is affected by ions located at the interface. The

density distributions of the salts depict concentration and depletion phenomena

throughout the interfacial region, and also serve to illustrate ionic surface affinity
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within this region. Previous work has been performed on the air-H2O interface

with ions of different levels of interfacial affinity, with the more polar ions being

the most interfacially active.[40, 54, 56–61] Presented in this chapter are the density

distribution results for the neat CCl4-H2O and salt solutions adjacent to an organic

CCl4 phase.

3.1.2. Molecular Orientation

Several methods have been used previously to show molecular orientation profiles

of water molecules throughout simulated interfacial regions.[25, 43–45, 53, 62–65]

Studies have utilized various internal coordinate definitions and a number of angle

definitions, orientational order parameters, and probability distributions to relate

molecular, or averaged, orientations. This chapter introduces the computations of

the orientation of water using two vectors that intuitively describe the orientation in

space, given the locations of the three atoms comprising the molecule. The molecular

bisector, a vector that points along the axis of symmetry of the water molecule from

the hydrogen-end to the oxygen, provides directional orientation similar to the water

molecule’s dipole. A second vector, that is referred to here as the molecular normal

vector, is established as the vector pointing normal to the plane formed by the three

atoms of the water molecule and establishes its planar “tilt”. Analyzing the angle

made between these two vectors and a given space-fixed reference axis (herein defined

as the long-axis of the simulation cells, oriented perpendicular to the interfacial plane

and pointing out of the aqueous phase) is a means of finding the orientation of waters

within these simulated systems as illustrated in Figure 3.1. The angle formed between

the molecular bisector and the reference axis will hereafter be referred to as θ, and the

angle between the reference axis and the molecular normal vector as φ. The analysis
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in this chapter reports the cosines of these two angles, and because of the symmetry

of the water molecule where the hydrogens are not uniquely identified, the cosines of

the two angles are limited as follows: −1 ≤ cos θ ≤ 1 and 0 ≤ cosφ ≤ 1. Reported

here are the orientation profiles of θ and φ as functions of the distance from the GDS

of the interface, as found from the fitting in the density profile analyses.

FIGURE 3.1. Angles used to define molecular orientation of H2O.

3.1.3. Computational SFG

A difficult challenge for experimental surface studies is in understanding the

vibrational spectroscopy of liquid water. Hydrogen bonding between water molecules

causes inter- and intramolecular couplings that lead to broad spectral envelopes,

each containing a distribution of water-bonded species. Simulations provide the

analytical capacity to relate the broad lineshapes, and the often difficult-to-assess

impact of hydrogen bonding as a function of OH vibrational frequency, to microscopic

geometries, forces, and environments. In this chapter SFG spectra are computed

of the interface between the salt solutions and an organic phase to compare with
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the experimental results of similar systems.[1] More recent developments in SFG

experiments have led to heterodyne-detected methods (HD-VSFG) that capture phase

and sign of the χ(2) response. Water models developed specifically for the computation

of SFG signals from MD data have also improved and now provide a near-quantitative

match with the experimental results. These developments are being explored in many

surface systems. The HD-VSFG technique, its computational counterpart, and recent

developments to water models are discussed further in the appendix.

The computational method used here is based on that of Morita and Hynes[66]

as outlined in a previous study by the Richmond laboratory utilizing the same

technique.[67] The computational SFG technique has been improved in more recent

studies by Morita et al.[68, 69] by their use of an improved water model and use

of time-dependent calculations. The technique used here matches qualitatively the

experimental spectra to a sufficient degree, and qualified conclusions about lineshape

and intensity are made. The fundamental computations are described briefly below:

Water’s OH vibrational frequencies in the gas-phase are 3657 cm−1 and

3756 cm−1. The uncoupled frequency of the gas-phase OH vibrations is ωgas =

3706.5 cm−1, with an intramolecular coupling constant of V12 = 49.5 cm−1. By

expanding the simple spring oscillator force model to include the first anharmonicity,

the vibrational frequency as a function of solvation can be by Equation 3.2.

(ωgas − ω) = ∆ω ≈
(
k0

m

)1/2(
l0F

2k2
0

)
(Equation 3.2.)

in Equation 3.2. k0 and l0 are the harmonic and anharmonic force constants,

respectively, and m is the reduced mass of the OH. F represents the force acting

on the center of mass of the OH, output from the MD simulation data. The two-

state eigenvalue equation is solved with the two uncoupled frequency shift values to
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determine lower and upper energies of water. The eigenvectors, C1 and C2, are defined

in Equation 3.3.

 ∆ω1 V12

V12 ∆ω2


 C1

C2

 = 0 (Equation 3.3.)

In similar environments, each OH of a water molecule will contribute equally

towards both eigenstates resulting in symmetric and antisymmetric OH vibrational

stretch modes. Application of perturbation theory and the electric dipole

approximation to the lorentzian distribution for a given OH vibrational energy state

results in an equation for the molecular hyperpolarizability, as in Equation 3.4.

β(2)
pqr,ν =

〈g|αpq|ν〉〈ν|µr|g〉
ων − ωIR − iΓν

(Equation 3.4.)

〈ν|µr|g〉 represents the infrared transition from ground state to an OH vibrational

state, and 〈g|αpq|ν〉 is the Raman polarizability transition from a vibrational state

back to ground for an OH vibrational mode of water with a frequency of ων , a natural

line-width of Γν , in a frame defined by the coordinates pqr.

By applying the harmonic oscillator approximation to Equation 3.4., the equation

for the hyperpolarizability is transformed as in Equation 3.5.

βpqr ≈
1

2mω

(
∂αpq
∂Q

)(
∂µr
∂Q

)[
ω − ωIR

(ω − ωIR)2 + γ2
+

iγ

(ω − ωIR)2 + γ2

]
(Equation 3.5.)

The derivatives ∂µr
∂Q

and ∂αpq
∂Q

represent infrared transition dipole moments and

Raman transition polarizability derivatives, respectively, for an OH normal mode (Q).
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The spectrum has a homogenous line-width of γ. The derivatives are related to the

elements of the uncoupled OH mode tensors through Equation 3.6.

∂A

∂Q
= C1

∂A

∂r1

+ C2
∂A

∂r2

A = αpq, µr (Equation 3.6.)

The derivatives ∂A
∂ri

are respective to individual OH bonds. The static elements of

the derivatives in Equation 3.6. are provided in the original Morita-Hynes treatment

in the molecular frame.[66] Additionally, the original Morita-Hynes work treats ∂µr
∂ri

to include the perturbation effects of hydrogen bonding to the vibrational OH modes.

The actual sum frequency response is obtained from the macroscopic susceptibility,

χ(2), without including the constribution from the non-resonant susceptibility, as

shown in Equation 3.7.

ISFG =
∣∣χ(2)

∣∣2 ≈ |N〈βpqr〉|2 (Equation 3.7.)

where ISFG is the sum frequency intensity, N is the number of molecules, and

the angles surrounding the hyperpolarizability imply an orientational averaging.

3.2. Computational Method

The molecular dynamics methods used in this chapter are similar to those from

previous computational efforts with some modifications described below.[44, 45, 47]

Simulations were carried out using the Amber 9 software package. The polarizable

ion model parameters are taken from previous works on similar systems.[25, 50, 70–

72] The polarizable POL3 model was used for water molecules.[73] Fully polarizable

models have been used in previous interface simulation studies because they are known

to more accurately reproduce interfacial structure and free energy profiles.[62, 74–77]
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A total of 4 systems were simulated consisting of aqueous salt and CCl4 phases.

A slab geometry was used to produce two interface regions within each simulation

cell.[44] The results of the analyses performed herein on each simulated system made

use of the natural symmetry of the two interfaces by averaging the results from

the two surfaces. The organic region was formed in a box 30 Å on a side with 169

CCl4 molecules to reproduce a standard temperature density of 1.59 g
mL

. The aqueous

region was formed in a box 30x30x60 Å3, with the long axis perpendicular to the

interfaces. The number of water molecules and ions varied for each system in order

to reproduce a concentration of 1.2 M. The specific populations of each molecule are

listed in Table 3.1. The organic and aqueous boxes were then joined to form a system

90 Å long with interface areas of 30x30 Å2.

System H2O Cation Anion
Neat Water 1800 0 0

NaCl 1759 40 40
NaNO3 1732 40 40
Na2SO4 1740 86 43

TABLE 3.1. Aqueous molecule and ion numbers. Listed are the populations of each
component for the 4 simulated aqueous phases. All systems were simulated at near
1.2 M salt concentrations.

The water, salts, and CCl4 were each randomly packed into their respective boxes

with a minimum packing distance of 2.4 Å. After joining the aqueous and organic

phases and forming the two interfaces, the total system was energy minimized using a

conjugate gradient method. Following minimization, the system was equilibrated at

a constant temperature of 298 K with weak coupling to a heat bath for a period of 10

ns, using a simulation timestep of 1.0 fs. A non-bonded potential cutoff of 9.0 Å was

used. Following equilibration the system was simulated with the same parameters for
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a further 10 ns with atomic position data recorded every 50 fs. This resulted in a

total of 200,000 snapshots which were used in the data analysis.

3.3. Component Densities

The component density profiles of each system were calculated to study the

effects of added salts on water’s density profile, and to find any deviations in the

behavior of water from the neat-CCl4-H2O system. The water density profile of each

system was fitted to a hyperbolic tangent function (Equation 3.1.). The resulting

profiles are plotted in Figure 3.2. The profiles were centered about the GDS locations,

z0, at 0.0 Å, and all lineshapes are plotted as distances to the GDS. Each interfacial

width, d, is designated as a highlighted blue region of width d centered about z0.

The widths of the interfacial regions for the neat-CCl4-H2O (A), NaCl (B), NaNO3

(C), and Na2SO4 (D) systems are 2.16, 2.62, 2.20, 3.69 Å, respectively. In each of

the salt solutions, the anion density profile shows higher density near the interface,

appearing as a peak in the density profile. These anion enhancements all occur closer

to the interface than the corresponding counter-cation density enhancement. Various

parameters of interest such as the interfacial thicknesses, ionic enhancement locations

(taken to be the location of the maxima in the ion profiles), and relative distances

between the peaks of the ion profiles are collected in Table 3.2. Unlike experimental

surface studies, the simulation results provide a full microscopic view of ion location

and stratification within the interfacial region.

The oscillations in the surface density profiles of water and the adjoining organic

CCl4liquid phase have been noted previously and attributed to thermal capillary

waves on a larger length-scale than the simulated system size.[78] The same work also

made note that the interfacial thickness is size-dependent on the interfacial surface

21



FIGURE 3.2. Aqueous salt solution (1.2 M) and CCl4 surface density profiles. (A)
Neat-CCl4-H2O, (B) NaCl, (C) NaNO3, and (D) Na2SO4 aqueous solution densities
and the (solid black) fitted lineshape. (dashed blue) The CCl4, (dashed green, 10x)
Na+ cation, and (scaled 5x) respective anion densities.

area. Increasing the surface area dimensions should therefor cause a proportional

increase in the interfacial width. As a consequence, care must be taken when making

quantitative comparisons between widths and locations found in differing simulation

studies. However, relative width ordering between similarly-sized systems should

remain, as shown in two separate works on the CCl4-H2O surface.[45, 78]

System d Anion ( Å) Cation ( Å) Anion-Cation Distance ( Å)
Neat-H2O 2.16 - - -

NaCl 2.62 1.33 5.53 4.20
NaNO3 2.20 -0.99 6.71 7.70
Na2SO4 3.69 3.04 5.64 2.60

TABLE 3.2. Aqueous salt system density parameters.
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In comparing the three salt solutions studied here, any differences in these

systems are the result of the anion because the same cation was used in each system.

NaCl is the simplest of the three salts with a monatomic and monovalent anion. The

peak of the anion density profile is within the aqueous phase (i.e. it is found on the

aqueous-side of the interfacial width). The location of the cation density peak is, as

mentioned above, deeper into the aqueous phase than the anion by over 4 Å. This

layering of ions within the aqueous phase is attributed to the break in the isotropy of

the field of the bulk region upon introduction of the organic phase. From the studies it

is clear that polarizable monovalent anions move towards the interface and effectively

screen the induced field from the organic phase. The counter-ions then are drawn

towards the negative charge built up by the anions to create the second ion density

peak deeper in the aqueous phase. The overall shape of the water profile in the

NaCl system is relatively unaffected (compared to the reference CCl4-H2O system

Figure 3.2.a) by the presence of the ions. The width of the interface is slightly

increased above that of the reference system. The behavior at a CCl4-H2O surface

is markedly similar to that of NaCl at the air-H2O interface, as determined by a

previous MD study.[43]

It is important to note from density calculations that ions that increase the

interfacial width at the CCl4-H2O interface correspond to ions that result in an

enhancement of the SFG signal from interfacial water. As discussed later, the SFG

calculations show excellent agreement with experimental results that also show this

enhancement for such ions. Also, it is found that those ions that are best known to

enhance the strength of hydrogen-bonding (i.e. SO4
2−) produce wider interfaces with

greater water penetration into the CCl4 phase.
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The NaNO3 system introduces the monovalent, polyatomic nitrate anion. In

the simulation a strong surface density enhancement of the nitrate anion is found as

shown in Figure 3.2.(c). The nitrate density peak is located the furthest out from the

aqueous phase of the three salt systems. The location of the sodium cation peak in

this system is a significant distance further into the bulk water relative to the anion

than in either of the NaCl or Na2SO4 systems. The increase in ion-pair distance is

likely the result of strong screening of the interfacial field by the surface-active anion,

and the solvating waters around it. The interfacial width of the NaNO3 system is the

narrowest relative to the other salts in this study. It is likely that slight reorientation

of the surface waters near CCl4 enhance the solvation of the NO3
− in the plane of the

interface and establish a much more hydrated region for the anion to adsorb. Water

reorientation is more fully described later in this chapter. The subsurface waters then

continue to screen the charge of the surface-active NO3
−, and decrease the coulombic

force pulling the cation closer to the surface.

The widest interface is that of the Na2SO4 solution, indicating that the

SO4
2− anions act to increase the number of interfacial water molecules on both sides

of the GDS, consistent with the highly solvated nature of SO4
2− and its larger size.

SO4
2− density enhancement (the peak of the anion density profile) is furthest into

the aqueous bulk of the three anions simulated. The calculations suggest that the

divalent and highly polarizable nature of the SO4
2− anion attracts its counter-ion

closest, leading to the narrowest sub-surface ionic double-layer. This attraction is

likely coulombic. Although the greatest anionic concentration enhancement is further

into the bulk water region, seemingly outside the region designated by the interfacial

width, the water interfacial width is still greatly enhanced. This is in agreement with

the experimental Na2SO4 SFG studies where sulfate ion leads to an enhanced SFG
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signal throughout the bonded OH stretch region, consistent with a larger interfacial

width.[1]

The results of these and related simulations of ions at liquid-liquid interfaces,

and the recent experimental results of similar systems, demonstrate that some ions

behave at the CCl4-H2O interface very differently than what has been calculated

and observed at air-water interfaces.[79–81] The most striking example is that of

the polyatomic nitrate ion which has been investigated at the air-H2O interface by

computer simulation,[25, 82] SHG and SFG spectroscopies,[83–85] and depth resolved

X-ray photoemission spectroscopy.[86] In contrast to what is observed here and in the

related experimental SFG studies of the CCl4-H2O interface where nitrate ion shows

an enhanced presence in the interfacial region, at the air-H2O interface the nitrate

ion shows no greater affinity for the surface than the bulk water. The large planar

geometry of the NO3
− anion and its low charge appear to repel it from the air-

H2O surface where it encounters a reduced solvent cage and seeks a more hydrated

solvation state. For SO4
2− ion, experiments at both the air-H2O,[87] and CCl4-

H2O interface indicate sulfate does alter the interfacial region, consistent with what

is observed in these computations. Unlike the monovalent ions, the divalent sulfate

anion has a very large first solvation shell. These calculations indicate that at the

CCl4-H2O interface it prefers a location deeper into the aqueous phase region and

affects the interface from a greater distance than the other ions. The comparison of

these computations with SFG experimental results will be discussed in more detail

later in the chapter.

The experimental SFG study concluded that the accumulation of the ions into

the interfacial region resulted in a narrower interfacial width.[1] Results here based

on density profile analysis are not in agreement with the experimental conclusions.
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The simulations results show that the presence of ions increases the interfacial width

above that of the neat CCl4-H2O system. However, the relative ordering of interfacial

widths respective of the anions in solution is preserved. Both studies are in agreement

with NO3
− giving rise to the smallest, and SO4

2− the largest interfacial width, but

that of the neat CCl4-H2O system is different. The fitting function used here does not

necessarily correspond to the interfacial cross-section detected in SFG experiments,

but instead represents the molecular sharpness of the liquid-liquid transition region.

SFG signals are proportional to both the number density and the orientation of

molecules in an interface. Thus, the experimentally determined thicknesses will not

correspond quantitatively to simulated density profile fitting parameters, but remain

an informative metric for comparison.

3.4. Water Orientation

Previous studies have provided a detailed overview of water orientation at the

interface with both air and organic phases.[1, 43, 45, 53, 63] The topmost water layers

are highly disrupted because of their contact with the organic phase, and it has been

suggested that ordering of both the organic and water molecules would lead to a

field across the boundary of the interface.[1, 45] This can influence charged species,

and the ordering and orientation of the H-bond network. Recent experimental SFG

results suggest that the accumulation of charged ions leads to a field-screening that

affects the orientation of waters in the topmost layers. This is complemented by the

results of the current study.

The orientation of water within the aqueous/organic interface of the system was

defined using the angles formed by molecular axes and the fixed reference axis of

the system (perpendicular to the interfacial plane), as described previously, and as
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FIGURE 3.3. Orientation profiles of interfacial water molecules at different depths
from the GDS. (left) Molecular bisector and (right) molecular planar normal profiles.
Neat-CCl4-H2O, NaCl, NaNO3, and Na2SO4 system water orientation profiles top to
bottom row, respectively.

depicted in Figure 3.1. Figure 3.3. shows the angle profiles of both the molecular

bisector and the molecular plane normal of water molecules relative to the system

reference axis at various depths into the aqueous phase. Darker red regions of the

plots indicate higher orientational populations, while homogeneous coloring across

the angle range indicates orientational isotropy.

In the left column of Figure 3.3. are the bisector orientation profiles for each

of the systems. Coloration of the plots correspond to the normalized populations at

each point in the distributions. Highest populations are colored dark red (1.0), and

lower populations (0.0) are colored in dark blue. The far-left dark-blue regions of

the plots show the CCl4 bulk near the interface where few or no waters are found.

The GDS is located at a depth of 0.0 Å. To the far right in the water bulk, the flat,

uniformly-colored profile represents the expected isotropic orientation of the bulk
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waters. The regions of interest lie around the GDS within the interface. The top

bisector profile is that of the neat-CCl4-H2O system, and it shows a transition in the

profile beginning approx. 2 Å into the CCl4 phase, and extending up to 5 Å into the

aqueous side, at which point the profile becomes orientationally isotropic. At the

GDS most of the waters are oriented between 0.0 < cos θ < 1.0, indicating a range of

orientations as depicted in Figure 3.4.a In this range one of the OH-bonds points into

the aqueous side, and the other straddles the interfacial plane with a slight affinity

towards the organic CCl4 phase. Just under the water surface, between 2-4 Å into the

neat-H2O phase, a dark-red region spanning approx. 0.7 < cos θ < 1.0 appears. This

narrow orientational range is depicted in Figure 3.4.b, and is similar to the waters

in the topmost aqueous layer nearer to the GDS, but further limited such that one

OH bond points into the H2O side, and one straddles the interfacial plane with a

tendency to point into the H2O phase.

The reference CCl4-H2O bisector orientational profile is comparable to previous

simulations of the same system. Using slightly different simulation parameters for

the same reference CCl4-H2O system, Wick and Dang found the free-OH to point

slightly into the CCl4 phase at the GDS with an angle of cos θ free−OH ≈ 0.4.[53] This

corresponds to cos θ bisector ≈ 0.5 in the this chapters’s angle definition. Similarly,

deeper into the surface the angle profile diminishes such that cos(θfree−OH) ≈

0.0 within 5 Å of the GDS, corresponding to cos(θbisector) ≈ 0.8 in the current

scheme. Those results agree with this chapters’s reference CCl4-H2O profile, further

complementing the experimental conclusions performed on the same systems.[1, 88]

Bisector angle profiles for the salt systems show different behavior than that of

the reference neat CCl4-H2O system. The profiles of the salt systems at the GDS all

center about the cos θ = 0 region, with a range of approx. -0.5 < cos θ < 0.5. This
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FIGURE 3.4. Depictions of water orientation ranges spanning values of θ and φ.
Ranges of θ are (A) 0 < cos θ < 1, (B) 0.7 < cos θ < 1, (C) -0.5 < cos θ < 0.5. (D)
The φ range of 0.7 < cosφ < 1.

indicates a straddling water molecule with the orientational range depicted in Figure

3.4.c. The water in that range is clearly oriented such that one OH-bond always

points out of the aqueous phase into the CCl4, and the other always points in to the

water bulk. The OH-bond that would straddle the interface in the reference system

points out of the interface with a greater angle. This orientation, centered about
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cos θ ≈ 0, extends into the water phase up to 3 Å, at which point the profile shifts

to the darker region near -1.0 < cos θ < 0.7. The sub-surface region of the profile

between 4-7 Å in each system corresponds to a flip of the water orientation, as referred

to in a recent SFG study as a “flip-flop” model where water orients to counteract the

field of charged species at interfaces.[89] The cation density enhancement in each

salt system is within the region approx. 5-7 Å below the GDS. The waters may be

orienting with the negatively charged oxygen end towards those cations, and with

the field established by the ion double-layer within the interface. In each of the

salt bisector profiles there is a clear depletion of waters oriented towards cos θ = 1

suggesting that alignment of the bisector with the reference axis is not preferred. The

effect is most pronounced in the Na2SO4 system where the distance between counter-

ion density enhancements is smallest, and the transition in the bisector profile is the

most abrupt, changing from a profile mostly in the range of -1.0 < cos θ < 0.5 to

isotropic orientation quickly near 8 Å into the aqueous phase. The NaNO3 system

bisector profile shows the effect furthest into the water bulk, extending almost to 13 Å.

Counter-ion density enhancement is most separated in NaNO3, however, and most

of the orientational affinity for -1.0 < cos θ < 0.5 occurs within the first 10 Å of the

surface. The bisector profile of the NaCl system is broadest with -1.0 < cos θ < 0.7

starting near the GDS. Also, orientational isotropy is shallowest in the NaCl system

starting near 7 Å into the aqueous phase.

It appears that the field established by the anion-cation pairing within the

interface affects the depth to which waters are oriented before the bulk isotropic

profile begins. Also, the range of orientations beneath the surface is dependent on

the properties of the anion. The weakly polarizable Cl− anion does not restrict

the orientational range as much as the more polarizable NO3
− and SO4

2−. Anions
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also appear to control the depth to which the water orientation is felt, with the

most surface-active NO3
− anion causing the deepest effect. SO4

2− anion shows the

strongest restriction on the range of bisector angles, and the sharpest orientational

transition to the bulk, which may be attributed to the higher charge of the anion,

and thus the stronger field established between the counter-ions in the system.

Orientational profiles for the molecular plane normal of the water molecules

(φ-profiles) are found in the right-column of Figure 3.3. The range of a φ-profile is

limited to 0.0 < cosφ < 1.0 because of the inherent symmetry of the plane of the

water molecule. More similarity is shared between the φ-profiles than the bisector

profiles for the different systems. The neat CCl4-H2O φ-profile is typical of the other

systems in appearance, with a large clustering of water population in the range of

0.7 < cosφ < 1.0 between the GDS and up to 7 Å into the aqueous phase. This

particular φ range is depicted in Figure 3.4.d, showing the mostly flat (i.e. parallel to

the interface) orientation of the molecular plane. It is notable that the φ-orientation

is affected to the same depth as the first peak (dark-red region) of the bisector profile.

However, in the salt systems the second peak near to cos θ = −1.0 begins at a depth

where the φ-profile has already become isotropic. Thus, in the salt systems, the

first water layer (between the GDS and almost 4 Å into the surface) has a defined

φ-orientation that is rather flat on the interfacial plane, but the deeper waters (4-

7 Å into the interface) are isotropic in φ, and oriented with cos θ closer to -1.0 (an

orientation with oxygen pointing into the water bulk, and hydrogens more towards

the interface).

By virtue of the interdependence of θ and φ (the bisector is perpendicular to the

molecular plane normal at all times) a value of cosφ = 1.0 implies cos θ = 0, and

vice-versa. However, a broad θ-range allows for a full range of φ values. Although the
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second peak of the salt-system bisector profiles is concentrated near to cos θ = −1.0,

the corresponding φ-profile is isotropic. This deeper region (the second water layer)

orients with the bisector counteracting the field of the anion-cation double-layer,

and the only apparent affinity is that of placing oxygen closer to the cation density

enhancement (and hydrogen closer to the anion layer), while the φ-profile spans the

entire orientational range.

3.5. Calculated Sum-Frequency Spectra

The effect of the varied set of anions on the CCl4-H2O interface is linked

from simulation to empirical data through the computed SFG spectra. The

computed spectra for the SSP polarization (polarization schemes are fully described

in literature[90]) are presented in Figure 3.5. along with the experimental spectra

(inserts) from the previous experimental SFG work with these same salt solutions

interfaced with CCl4.[1] Each of the spectra show a salt system response (colored

traces) overlayed on the reference CCl4-H2O spectrum (black or dashed-black traces).

On first look, the overall computed intensities and lineshapes follow remarkably

similar trends as in the experimental systems. All the spectra have a strong feature

near 3660 cm−1coinciding with the “free-OH” vibrations as defined previously,[1] and

corresponding to one of the uncoupled OH stretch modes from water molecules that

“straddle” the interface (Figure 3.1. a, b, and c).[1] The broad spectral region from

3200-3500 cm−1is attributed to the more highly-coordinated OH-oscillators that are

solvated at the surface, or just beneath the surface with stronger hydrogen-bonding.

Each of the spectra computed for the salt-solutions differ markedly from each other

and from the neat CCl4-H2O spectrum. The monovalent ions (Cl− and NO3
−)

in solution produce a measurable decrease in intensity of the lower-frequencies of
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the spectra with very little change to the free-OH mode. Like the experimental

counterparts, the decrease is greatest around the 3200-3400 cm−1region but shows

little change from the neat CCl4-H2O system above 3500 cm−1. As in the SFG

experiment, the presence of the SO4
2− anion causes an opposite effect by significantly

enhancing the intensity below 3600 cm−1.

FIGURE 3.5. Vibrational SFG spectra of the water-OH stretching region for
each interfacial aqueous-salt-CCl4 system. (black-dashed) The reference CCl4-

H2O interface spectrum. Insets are reproductions of the experimental spectra (χ
(2)
eff )

from McFearin et al.[1]

The reference CCl4-H2O spectrum reproduces well the lineshape from

experiment, but lacks the definition of the two peaks found near 3250 and 3450 cm−1.

These lower-frequency features have been attributed to the different H-bonding

species of water that make up the more highly-coordinated, tetrahedral environments

found deeper into the interfacial region. The reference CCl4-H2O lineshape is quite

similar to that of the experiment. The salt-solution spectra show an overall drop in

signal when Cl− and NO3
− are added and an increase in intensity due to SO4

2−. This
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suggests that the methods are sound and justified for experimental comparison in this

study.

The conclusions drawn from the experiments are that the presence of anions at

the interface causes a “field-screening” that decreases the innate interfacial field at

the H2O-organic interface, and consequently the number of bonded water molecules

contributing to the SFG spectrum. Both of the monovalent anions, Cl− and NO3
−,

show this effect in their SFG spectra. For both the experiment and these calculations,

comparison to the reference CCl4-H2O spectrum shows that the added presence

of the surface-active anions decreases the lower-frequency intensities. Calculations

show that Cl− affects a notably smaller decrease in the spectral intensities than the

NO3
− system, similar to experiment. This result is most likely due to the higher

preference for the surface of the larger, and more polarizable nitrate in the presence

of CCl4. The NO3
− ion is extremely surface active, as seen in the density profile, and

should thus cause the greatest “field-screening” to waters found deeper in the bulk.

The larger divalent SO4
2− anion accumulates deeper into the aqueous bulk and

exhibits the lowest surface affinity of the ions studied. This is most likely due to

the higher charge of the anion that leads to greater solvation. The sulfate provides

little or no screening of the interfacial field from the top-most water layer, and more

greatly affects the deeper, highly-coordinated waters. The bonding region spanning

the lower-frequency features is notably enhanced above the reference spectrum in both

experiment and computation. This indicates stronger ordering of deeper interfacial

waters, consistent with the anion location.

As concluded in the experimental SFG work, the monovalent anions appear to

screen the deeper water molecules from the field produced by the phase change at

the aqueous-organic interface. This is supported by the MD simulations showing that

34



monovalent ions show a strong surface affinity and interact with surface waters. The

large but more highly charged divalent SO4
2− anion experiences stronger solvation

and is thus found deeper in the aqueous phase. Deeper anions do not participate as

interfacial field screening agents to the same extent as their monovalent counterparts,

but act to strongly orient water near the interface, perhaps through the strong field

established by the ion double-layering. The distance between the counter-ion density

peaks (Table 3.2.) follows the inverse of the trend of SFG signal enhancement. As

the ionic double-layer size increases, the SFG signal decreases. Similarly, the smallest

double-layer size, that of the SO4
2− system, produces the greatest signal enhancement

across the lower frequencies of the water OH-stretching SFG spectrum. Although the

water density profiles do not change markedly between the different systems, the

orientational profiles do show large variation from the neat CCl4-H2O system, and

some slight variation between the salt-solutions. The two factors that alter the SFG

intensity are changes in the number of contributing water bonded species, and a

change in orientation of various water bonded species. From the water orientation

profiles (Figure 3.3.) it is clear that the presence of anions at the CCl4-H2O interface

causes a strong orientation change from the reference CCl4-H2O system. There

appears to be a strong coupling between the presence and size of an ionic double-

layer, the subsequent reorientation of surface water molecules, and the resulting SFG

signal change.

3.6. Summary

The unique environment created by interactions between water and hydrophobic

molecules makes ionic adsorption and transport across interfaces possible. Aqueous-

hydrophobic surfaces are of prime importance in applications ranging from ion
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transport, chemical remediation, and catalysis, to chemical synthesis. Complex

interfaces between aqueous media and organic phases enhance chemical reactions,

and thus motivate research to understand such environments. The study reported in

this chapter provides an important step in understanding aqueous-organic surfaces by

computationally examining simple aqueous salt solutions interfaced with hydrophobic

liquid CCl4. Through a combination of simulations and computational analysis, the

nature of ionic adsorption and its effect on water hydrogen-bonding, geometry, and

orientation at the liquid-liquid boundary is determined.

Analysis of the component density profiles provides a thorough microscopic

picture of ionic surface affinity, double-layering, and effect on interfacial size. The

smaller and less polarizable Cl− anion behaves at the CCl4-H2O surface much like

at the air-H2O interface, but the larger surface-active anions do not. Density profile

analysis shows that the NO3
− anion exhibits a much greater surface affinity near the

organic phase than at an air interface, consistent with experimental conclusions. The

orientational analysis of the solutions shows the very different effect of the various salts

on the water orientation at the CCl4-H2O boundary. The orientation profiles show

a stratification of water geometries consistent with the emerging picture of a multi-

layered surface region with varied geometries and interactions. This reorientation

subsequently affects the ionic double-layer and subsurface waters. Such effects are

manifested in spectroscopic changes to water’s vibrational OH modes as seen in both

the experimental and computational results. Consequently, SFG spectra computed

in this study build the necessary bridge to the previous SFG work by offering direct

comparison of the computational and experimental results. The surface spectroscopic

signals, measured and calculated, are altered relative to the ion-free signal, indicating

a change to the water bonding at the interface due primarily to the presence of
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the anion. The divalent SO4
2− anion acts to enhance the number and orientation

of interfacial waters, while the monovalent ions have the opposite effect. Both the

organic phase and the salt anion species in solution contribute to altering the geometry

of water’s surface.

Progress has been made toward the goal of further understanding the behavior

and impact of ions and a hydrophobic phase on water at liquid-liquid interfaces.

The complementary results of both simulation and experiment have strengthened the

certainty of some of the underlying surface science of these systems, but challenges

still remain. A more complete picture would include knowledge of different cation

effects, as well as the changes to the surface by different hydrophobic phases. The

ability to analyze these important interfacial environments both theoretically and

experimentally provides the tools to better develop an understanding of them.

The next two chapters of this dissertation focus on the behaviors of adsorbing gas

molecules as they approach and bind to a water surface. Sulfur dioxide was used as

a model gas for the studies, and the computational analysis parallels SO2 binding

experiments that took place in the Richmond laboratory. In chapter IV SO2 is

modelled using fully atomistic classical MD simulations at equilibrium on a water

surface, and during an adsorption event as the gas transits into the water phase.

Chapter V chronicles a DFT-MD simulation study of SO2 on a water surface and

the various hydration structures and interactions it forms with neighboring water

molecules.
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CHAPTER IV

SULFUR DIOXIDE ADSORPTION TO AQUEOUS SURFACES

This work was published in volume 115 of the Journal of Physical Chemistry

C in November 2011. Dr. Kevin E. Johnson proposed the use of steered molecular

dynamics for simulating a transiting SO2 molecule, and provided great support in

developing the simulations and computational analytical techniques used throughout

the work. Eric Shamay was the principle investigator for this work.

4.1. Introduction

The doorway to the uptake of a gas by an aqueous solution is the water surface.

Although we know much about the behavior of a gas on either side of that entrance,

far less is known about how that surface acts to attract, facilitate, or thwart the

transit of a molecule between the two bulk phases. What is the interplay between the

gas and surface water molecules, and when does one begin to influence the behavior

of the other? What species form during gas adsorption onto liquid surfaces, and

what are the intermediary steps? Is molecular orientation of either the gas or surface

molecules a factor in the adsorption process? Are specific gas or liquid molecular

orientations necessary for gaseous adsorption? Experimental studies to address such

questions are valuable but do not provide the full resolution necessary to determine

the geometries of adsorbing gases, or to determine the orientations of the molecules at

the liquid surface near the adsorption site. This type of information can be determined

computationally, and when coupled to the experimental studies can provide a more

comprehensive picture of the gas-liquid surface adsorption process.
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An important gas for developing a picture of gaseous adsorption and entry into

a water surface is sulfur dioxide.[91–101] SO2 enters the environment as an important

industrial product, and also naturally through terrestrial processes. Atmospheric

dust particles and gases have been implicated in the oxidation of SO2, and act as

reaction surfaces for chemical mechanisms that are still poorly understood.[102–106]

SO2 acts as a major component of atmospheric pollution, and is a precursor to acid

rain formation, and cloud nucleation. Its high solubility in water makes SO2 an

integral compound in many aqueous atmospheric reactions, as well. Obtaining a more

complete picture of the SO2 adsorption process is important for understanding gaseous

adsorption of this environmentally important gas on water and aerosol surfaces as

well as being a model system for understanding the more general nature of gases at

aqueous interfaces.

This chapter provides a molecular picture of SO2 adsorption on a water surface;

it also demonstrates the strong orientational effect of surface water molecules on

the adsorbing gas during the approach and entry into the surface region at both

high and low SO2 surface concentrations. These computational studies complement

and significantly expand the picture developed in recent experimental vibrational

sum frequency spectroscopy (VSFS) studies of SO2 adsorption of aqueous solutions

of various compositions and temperatures,[16, 17] and the subsequent studies using

both classical and ab initio simulations. The experimental studies showed that an

SO2 surface hydrate complex forms when an aqueous surface is exposed to SO2 gas.

The computational study by Baer et al.[107] then made a series of predictions of the

specific nature of the hydrated complex through classical and ab initio simulations.

That work developed a detailed picture of the nature of the SO2 surface complex

with water, and related it to the surface water OH vibrational IR spectra. The
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most recent experimental studies have shown that whereas the binding of gaseous

SO2 to a water surface is greatly enhanced at cold temperatures, the reversibility of

the adsorption process remains.[18] Complementary experiments showed that low pH

aqueous environments inhibit the bulk reactions of SO2, but do not affect the surface

binding or its reversibility. What is apparent in the VSF spectra obtained in all of

these experiments is the tendency of water to reorient upon surface bonding, with

the effect becoming more pronounced at high SO2 surface concentrations. Since the

SO2 molecule was not specifically probed, conclusions on how SO2 bonding contributes

to reorienting surface water molecules and the orientation of SO2 itself upon approach

and surface bonding could only be inferred.

To fill this void, the computational studies described herein provide a detailed

picture of the orientation of both SO2 and surface water molecules during the

adsorption process. The depth profiling studies which examine the orientation of

both species during the approach and entry of the gas into the interfacial region

are obtained using equilibrium and steered (SMD) classical molecular dynamics

simulations. The latter approach involves steering a gas molecule into the aqueous

phase, and characterizing its molecular orientation as it transits through the

interfacial region. This unique approach enables new insights into the behaviors of gas

molecules as they move near to liquid water. We also simulate how SO2 adsorption

occurs on a water surface saturated with adsorbed SO2, analogous to the conditions

of the SO2 experimental studies recently performed.[18] The results of the study

documented here provide an intimate perspective on the adsorption of SO2 at

an aqueous surface, and a more complete picture of gaseous adsorption to liquid

interfaces.
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4.2. Computational Approach

Molecular dynamics simulations were performed using the Amber 11 software

suite.[11] Polarizable models for the H2O and SO2 molecules were used in the

simulations, and have been used previously in studies on interfacial systems because

they are known to more accurately reproduce interfacial structure and free energy

profiles.[62, 74, 77] The H2O model used is the POL3 water model (also discussed in

the supplemental information),[73] and for SO2 we used the model of Baer et al. that

places a single polarizable center on the sulfur atom.[107] An intermolecular cutoff

of 12 Å was used for long-range electrostatic forces. The simulations were performed

in the NVT ensemble using Langevin dynamics for temperature control. Induced

dipoles were treated by the polarizable potential functions of the Amber molecular

dynamics software.

All simulations began with an equilibrated cube of 900 H2O molecules, with sides

of length 30 Å. The long axis of each simulation cell (the axis normal to the water

surface) was then lengthened to 120 Å, and the systems were further equilibrated for

10 ns. The simulations all employed periodic boundaries to create an “infinite-slab”

geometry. After equilibrating the neat-H2O slabs two types of systems were created

by introducing SO2: a single-SO2 system, herein referred to as the “neat-water”

system, and a “saturated” SO2 system with many gaseous surface and bulk-water

SO2 molecules.

The low and high concentration simulated systems, “neat-water” and

“saturated”, respectively, were created as follows: the neat-water simulation involved

the addition of a single SO2 molecule either within the bulk of the water slab (for

equilibrium MD), or above the slab surface (in the SMD simulations). The single-

SO2 neat-water system was then evolved for 2 ns to produce an equilibrated starting
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configuration. Because of the extremely low concentration of SO2 in the neat-water

system the surface waters behave similarly to a true neat-water air-liquid interface.

The neat-water system orientational results shown later in this chapter reproduce

well the results of previous orientational studies of surface water behavior.[45, 47]

The saturated system had 22 SO2 molecules introduced to the water slab bulk in

order to saturate it to a level coinciding with the Henry’s law constant for SO2 in

water (k°H = 1.4 mol/kg*bar).[108] Additionally, 50 SO2 molecules were introduced

into the gas phase outside of the saturated water slab to simulate an added SO2 gas

pressure. The additional gas in the vapor phase was added over the course of several

ns to keep a constant 1 atm of SO2 pressure above the water surface as SO2 gas

molecules adsorbed to the surface. The saturated system with both bulk and gaseous

SO2 was then evolved for 2 ns to produce a starting configuration for further saturated

simulations.

4.2.1. Equilibrium SO2 Surface Simulation

Equilibrium simulations involved adding SO2 to a water slab and equilibrating

as outlined above. The neat-water system had a single SO2 added to the center

of the water box, representing a concentration of 0.06 M. The more concentrated

“saturated” system consisted of 22 SO2 molecules in the bulk corresponding to a

concentration 1.35 M. This saturated system was exposed to an additional 50 SO2 in

the gas phase above the water surface. After equilibration for 2 ns, both the low and

high concentration systems were then evolved for a further 10 ns data collection using

a time step of 0.5 fs, with atomic coordinates recorded every 100 fs.
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4.2.2. Steered Molecular Dynamics Simulations

A second set of simulations began with an equilibrated water slab as in the

surface equilibrated method above. However, in both the neat-water and saturated

starting systems, a single SO2 was introduced 20 Å above the water slab surface,

with the sulfur atom tethered to its initial position. The systems were then evolved

for 1 ns, taking coordinate snapshots every 20 ps to create 50 starting points for

further simulations. Steered molecular dynamics (SMD) were then performed on the

50 system configurations (in both the neat-water and saturated configurations) to

guide the SO2 down towards a tethered water near the water slab’s center of mass

by applying a small steering force to the SO2-sulfur atom. This steering technique

has been previously developed and used to successfully model chemical events.[109–

114] The SO2 thus passed through the continuum of environments from gas phase to

(neat- and saturated) water surface adsorption, and finally absorption into the bulk

of the H2O slab. Each of the SMD simulations were performed for a total of 200

ps, using a time step of 1 fs, and taking snapshots of the system every 25 fs. Figure

4.1. illustrates two sample starting configurations for the SMD simulations, showing

both the neat-water slab and the saturated slab configurations before steering the

SO2 towards the water bulk.

A separate set of SMD simulations were performed with tethering of one of the

SO2-oxygens to the water slab center of mass. This was done to ensure that the

orientation of the SO2 during the adsorption transit was not an artifact of the choice

of atom used for tethering. The simulations produced the same results (not shown)

for the orientational analyses, so the data from the original tethering scheme was

used.
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FIGURE 4.1. Sample starting configurations for the (left) neat-water and (right)
saturated SMD simulations.

4.2.3. Aqueous Surface Location

The first portion of the studies involved creating orientational depth-profiles in

the interfacial region comprised of SO2 and H2O upon exposure and adsorption of

the gas. Recognizing that a liquid surface is a dynamic boundary that is neither

flat nor stationary, we must define a reference point in the interfacial region which

we refer to here as the water surface location. Several previous studies have used

the technique of fitting a line shape to the averaged density profile of the water,

and extracting interfacial shape and location parameters to define the water surface

location.[15, 53, 115] Hyperbolic tangent functions have been used often, and values

for the “Gibb’s dividing surface” location, and interfacial width have thus been

determined.[55] However, in long simulations the location and shape of the interface

changes, and the motion of surface waters alters the interfacial width at any given time
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step. Thus, the density profile fitting will capture averaged widths and locations, not

instantaneous values. Similarly, the averaged values of location and width will obscure

information about any drift or deformations the surface undergoes. The analysis

presented here attempts to retain these subtleties through the use of a “corrected”

coordinate system.

Figure 4.2. demonstrates the problem of surface location drift during a simulation

(even with utilizing the Amber NSCM parameter). Figure 4.2.A shows the density

profile of water and SO2 over the course of one of the 10 ns trajectories used in

this project using the original uncorrected coordinates of the system taken from the

raw atomic positions of the molecular dynamics data output. The water density

profile and location (thin gray line in Figure 4.2.A) is produced by averaging the

instantaneous density profile at each time step in the simulation over all the time

steps. The water profile was then fit to a tanh function (black line) to extract the

position and width parameters of the water surface. The fitted surface water density

profile has a width of 3.77 Å, which is comparable to values reported for similar neat-

water systems.[45, 116] A bulge in the gas-phase (≤ 52 Å) side of the water density

profile is indicative of the drift of the water slab over the course of the trajectory.

Thus the calculated location and width from the tanh line fit are not accurate over

long trajectories for defining a stationary reference point.

To overcome this problem we define the water surface location by calculating a

reference location at each time step by averaging the positions of the waters contained

in the topmost monolayer. This provides a consistent and intuitive reference point in

the simulations to which analyses are related, but does not increase the computational

burden. The number of waters included in the averaging is determined by taking

a few issues into account. First, counting the waters found in the topmost cross-

45



FIGURE 4.2. (A) Density profiles of H2O (Gray) and SO2 (red) from a 10 ns
simulation of the neat-water system with a single SO2. (B) The instantaneous location
of the outer H2O monolayer for each simulation time step (blue), and the surface
location extracted from the density fitting (horizontal dashed line).

section of the water slab over several time steps indicated between 65-75 waters that

established a full monolayer. This was done by a visual inspection of the slab using

the VMD MD visualization package.[117] Alternatively, assuming a spherical model

of water with a radius of 2.2 Å, two layers of hexagonally tight-packed spheres yielded

a similar number of surface water molecules. Increasing the number of waters used in

calculating the surface location diminishes the effects of the few waters that briefly

rise above the surface into the gas phase, stabilizing both the surface position and

thickness values. Taking the close-packed model as a maximum number of waters

fit into a flat surface, the topmost 70 water molecules were used for calculating

instantaneous water surface locations for each simulation step.

This method for finding the outer monolayer location was implemented, and

the surface location is plotted as a function of simulation time in Figure 4.2.B. It

is apparent from the surface location plot that the water slab location, and thus

the surface location, drifts over the 10 ns, spanning approximately 12 Å. However,

the maximum standard deviation of the positions of the waters comprising the

surface layer at each time step is only 1.85 Å. Consequently, all depth locations
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in the analyses are calculated relative to the instantaneous surface location at the

corresponding time step of the trajectories.

4.2.4. Molecular Orientation

Knowing the molecular orientation of both the H2O and SO2 is a prerequisite for

understanding the chemistry occurring during the SO2 adsorption process. With the

surface location as defined above, the simulated systems were analyzed to characterize

the orientation of H2O and SO2 in various environments above, within, and below

the aqueous surface region. The two molecules studied are similarly shaped with

a C2v axis along their bisectors, and a molecular plane defined by three atoms. A

body-fixed frame is defined for both H2O and SO2 as shown in Figure 4.3. In each

analysis a space-fixed reference axis is used that corresponds to the long axis of the

system’s periodic cell normal to the plane of the water surface. The orientational

analyses presented herein focus on two angles used to define molecular orientation.

The molecular orientation angles θ and φ are determined from a set reference axis as

shown in Figure 4.4.A.

The “tilt” angle, θ, defines the angle formed between the molecular bisector

vector (the molecular z-axis, pointing from the central atom in the direction of

the other two atoms) and the positive system reference axis. Thus the value of

θ falls within a range of [0°,180°]. An angle of θ = 0° indicates a molecule with

its bisector aligned with the reference axis, while θ = 180° results from an anti-

aligned configuration. Sample representations of molecular orientations resulting from

different values of θ are shown in Figure 4.4.B.

A second angle, φ, defines the molecular “twist” of the molecule. φ is the angle

of rotation around the molecular bisector axis that quantifies the rotation of the
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FIGURE 4.3. Definition of molecular body-fixed axes for the two C2v molecules:
SO2 and H2O.

molecular plane with respect to a plane perpendicular to the water surface. The values

of φ fall in the interval [0°,90°] because of the symmetry of H2O and SO2 molecules

with respect to twist about their bisector axes. For values of θ ≈ 90°, φ provides

additional information about whether the molecular orientation is “flat” to the surface

(e.g. the plane of the molecule is aligned with the plane of the surface), or if it is

perpendicular. The values of φ for different molecular orientations are depicted in

Figure 4.4.C. Values of θ close to 0° or 180° result in an isotropic distribution in φ

because of the symmetry of the plane of the surface in directions perpendicular to

the surface normal reference axis.

4.3. Surface Density Distributions

One measure of surface activity is the spatial distribution of molecules in the

interfacial region. The density distributions of both H2O and SO2 were calculated for
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FIGURE 4.4. (A) The definition of the molecular orientation angles θ and φ. (B) θ,
the bisector “tilt” angle, (C) φ, the bisector “twist” angle.

the equilibrium MD simulations. The results presented in Figure 4.5. show both the

water (black) and SO2 (red) density distributions, averaged over the two simulated

interfaces of each slab. As shown, the single SO2 in the neat-water system remained

at the water slab surface. The SO2 in the saturated system accumulated mostly at

the surface, but some residual SO2 remained well into the bulk water.

FIGURE 4.5. Density distributions of (black) H2O and (red) SO2 (neat-water system
on left scaled 10x, saturated on right) near a water surface.

In the simulated neat-water slab, the SO2 molecular density distribution

concentrates near the water surface location, indicating an affinity for the interfacial
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region. During the course of the simulation, the SO2 does not venture into the

bulk water nor does it escape the water surface into the gas phase, but remains

located within 5- Å of the surface region. This is consistent with what was found

experimentally in the Richmond laboratory using VSFS,[16, 17] and also supported

by the computational simulations and spectral calculations of Baer et al.[107] The

experimental studies indicated that upon exposure of SO2 to a H2O surface, a layer

of solvated SO2 forms, modifying the structure of water in the upper surface region. In

the experimental system, the SO2 bonding interaction with the free OH oscillators is

manifested in a red-shift of the free OH frequency indicative of a bonding interaction.

The saturated solution simulation results indicate that under the high

concentration of SO2, the SO2 accumulation at the surface is increased. However,

unlike the neat-water slab, the saturated slab has a non-zero bulk concentration of

SO2. The added concentration of SO2 creates a layer of molecules bound to the top

of the water surface. The center of the SO2 density distribution is further into the gas

phase than for the neat-water surface with a single-SO2 molecule. Additionally, the

water profile is broader in the saturated system. This indicates that water penetrates

into the SO2 layer, and moves further into the gas phase than under the neat-water

conditions. Because of the limitations of the classical model in accurately reproducing

the first hydration shell around the SO2, we do not draw specific conclusions about the

hydrated surface complex’s geometry. However, the surface affinity of the hydrated

SO2 is well reproduced by both the classical and ab initio methods.[107]

4.4. Equilibrium Simulations of Adsorbed SO2

Geometric analyses were performed to characterize the net molecular orientation

of H2O and SO2 molecules at different depths from the water surface location. At
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each distance from the surface location, an orientation profile was created for both

the H2O and SO2 molecules. The bivariate orientation distributions for the angles

θ and φ at various depths were combined to form the intensity plots that show how

the molecular orientation distributions change with distance to the surface location.

These plots (Figures 4.6., 4.7., and 4.8.) allow for a visual interpretation of how the

net orientations are affected when moving from the gas phase through the interfacial

region and to the surface location, and then further into the aqueous interfacial region

and bulk. Both the neat-water, with only a single SO2 introduced, and the high-

concentration saturated system were analyzed. In the case of the neat-water system,

the introduction of a single SO2 does not greatly affect molecular orientation of water

molecules in the interfacial region. These results of the water orientation are very

similar to a neat-water system without any adsorbed solutes (not shown).

The depth profile plots are arranged as a grid of 2D histograms. Each histogram

is calculated for all molecules falling within a particular depth in the water interfacial

region. The depth of each plot is marked (in Å) in the upper-right, with the water

surface location set at 0 Å, positive depths lie on the gas-phase side of the surface, and

negative depths are on the bulk water side. The horizontal axes of each histogram

represent θ values, and the vertical axes represent φ values. The populations of the

distributions are normalized such that areas of low intensity appear in dark blue

(0.0), and highest intensity in dark red (1.0). Regions of the plots where the intensity

(coloration) is equally distributed along either the vertical or horizontal axes are

considered isotropic in φ or θ, respectively. Likewise, areas of the plot with high

intensity over a small orientational range are considered to exhibit an orientational

preference at the given depth. The angle distributions from both simulated slab

surfaces were averaged for all the orientation analyses.
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FIGURE 4.6. Molecular orientation histograms of H2O throughout the surface
equilibrated systems at various depths.

4.4.1. H2O Orientation

The orientation depth-profiles for H2O are shown in Figure 4.6. for both the neat-

water (top) and saturated (bottom) systems during the equilibrium MD simulations.

The interfacial region for both these calculations and the VSF experiments is defined
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FIGURE 4.7. Molecular orientation distributions for SO2 molecules adsorbed to the
water slab surface.

as the region where molecular orientational anisotropy exists around the surface water

location. Fitting the water density profiles we have calculated an interfacial width

of approximately 10 Å for the neat-water system, and approximately 16 Å for the

saturated system. In both systems the strongest orientational preference is found

at the slab surfaces (positions near 0 Å). Previous work on orientational preference
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of water at air surfaces shows the same trend as the neat-water results here.[45, 47]

The swaths of coloration indicating high intensity appearing in the neat-water plots

from -4 to +4 Å, (and the corresponding regions in most of the saturated system

plots) show the overall preference of water to orient at the surface. The plots of

the neat-water and saturated systems are similar to each other with a narrow region

of reorientation, but the effect in the interfacial region is greater in the neat-water

system as evidenced by the sharper transition in intensity from blue to red, compared

to the saturated system that has a less pronounced intensity change over larger areas

of the histograms.

The bisector tilt of the water molecules, θ, concentrates around θ = 90°within

the first few Å above and below the water surface location, becoming progressively

isotropic further through the interfacial region and into the water bulk of both

systems. Above the surface location at positive distances, θ ≤ 90° indicates that

the water hydrogens tend to point towards the gas-phase side of the surface. As the

tilt nears θ = 90° the H2O bisector lies within the plane of the surface indicating a

water orientation either flat on the surface, or with some amount of “twist” sending

the OH bonds in towards, or out of the bulk. The value of φ determines the “twist”

in this case. Both systems show a similar trend where waters at or just below the

surface have values of φ near 90°, and waters above the surface take on values of φ

near 0°. This jump in the angular distribution of φ indicates that waters at or below

the surface lie mostly flat in the plane of the interface, and as they move above the

surface towards the gas phase, they reorient with one OH bond pointing towards the

water bulk, and one pointing out of the surface into the gas. This behavior is more

strongly pronounced in the neat-water system where most of the surface waters are

not interacting with an adsorbed layer of SO2 molecules.
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Although the plots show overall similarities for both the neat-water and saturated

systems, the presence of a layer of adsorbed SO2 molecules alters the orientation of

those waters furthest into the gas phase. For the saturated solution, the resulting

orientation of waters above 0 Å, shown in the bottom set of plots of Figure 4.6., is

nearly isotropic in φ, and with θ ≤ 90°. This results from waters with bisectors

pointing further into the adsorbed SO2 gas layer, and both hydrogens pointing

outward from the aqueous bulk. The effect is more pronounced as the waters move

further from the water surface, and above 4 Å the θ distribution is mostly concentrated

around θ = 0°(see Figure 4.4.).

The angle distributions above 6 Å in the neat-water plots of Figure 4.6. are mostly

isotropic (manifested as uniform coloration throughout the range of orientations).

Furthermore, there are few data points that make up the histograms, a result of

fewer waters venturing beyond those extents. Conversely, waters near a layer of

adsorbed SO2 venture further above the water surface location relative to the low

SO2 concentration, where they can have interactions with the adsorbed SO2 gas

molecules. The waters above the water surface location orient perpendicularly to

the interface. This is consistent with the experimental VSFS studies which showed

evidence for the reorienting behavior of water due to the SO2 interactions with the

topmost surface waters.[18]

The distribution of φ is more sharply defined (i.e. less isotropic) for the neat-

water system than for the saturated one. Waters on the neat surface lie flat or

perpendicular to the surface if they are below or above the water surface location,

respectively. The presence of the SO2 allows a greater range of “twist” for those

waters in the plane of the interface. The φ distributions quickly become isotropic
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above the saturated water surface location, shown as a uniform coloration across φ

for most values of θ.

4.4.2. SO2 Orientation

Orientation distributions of the adsorbed SO2 molecules were created during the

equilibrium simulations for both the neat-water and saturated systems. Figure 4.7.

shows the 2D distributions of θ and φ (arranged similarly to the water orientation

distributions plots in Figure 4.6.) The SO2 orientation data set for the neat-water

system is much smaller as only a single SO2 molecule was simulated in the bulk.

The resulting distribution plots are thus representative of the single surface active

SO2 molecule. The neat-water SO2 molecule remains within a narrower region of the

interface than the saturated system SO2, but effective comparisons can still be drawn.

Note that the depth range of the plots in Figure 4.7. is different for the neat-water

and saturated systems reflecting the surface mobility of the SO2 molecules in the two

systems.

In the interfacial region the angular distribution of the single SO2 (in the neat-

water system) is concentrated primarily in θ < 90°. The peak of the distribution

occurs at θ = 0°. This indicates that the SO2 bisector points out of the water surface,

with the sulfur atom pointing towards the aqueous bulk, and the two oxygens pointing

into the gas phase. This same distribution occurs in the saturated system for depths

below the surface location, < 0 Å. Beyond 4 Å above the surface, both distributions

become mostly isotropic, either because the SO2 does not venture into the gas in

the neat-water system, or because of the nature of the adsorbed SO2 layer in the

saturated system. Promixity to the water surface highly orients the SO2 bisector.
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The distributions of φ are isotropic in both systems at all depths. Because

the SO2 bisector near the surface is oriented perpendicularly to the interface, the

isotropy in φ is expected. Further from the water surface where the bisector

orientation becomes isotropic, the φ distribution remains isotropic. For the surface

SO2 orientation, the φ angle does not provide further information regarding the

surface behavior or orientational preference.

4.5. Steered MD Transit Simulations of Adsorbing SO2

The orientation of SO2 molecules throughout the aqueous adsorption process

was monitored during the transit SMD simulations. The angles θ and φ of the

transiting SO2 (Figure 4.4.) were calculated for each timestep of the SMD simulations

as the SO2 was pulled into the water slab from the gas phase, both in the neat-water

and saturated slab systems. The orientation depth-profiles were collected for the 50

simulations of both systems for various distances from the water surface location,

resulting in the 2-dimensional angle and depth-profile histograms shown in Figure

4.8.

From its starting position above the water surface, until the SO2 moves to within

6 Å of the water surface location of both systems, the orientation is isotropic in θ and

φ. Isotropic orientation is manifested in the plots as mostly uniform coloration at a

given distance from the surface independent of θ or φ. Near and into the interfacial

region the bisector angle θ becomes more perpendicular to the water surface (θ ≈ 0°)

with the SO2 sulfur pointing into the water phase, consistent with the equilibrium

MD simulation results above. At the point when the SO2 reaches the water surface

location (0 Å), the bisector is perpendicular to the interface in both the neat-water

and saturated systems. In the absence of simulated ionic species that form through
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FIGURE 4.8. Molecular orientation distributions of an SO2 at different interfacial
depths of an aqueous slab during SMD transit simulations.

SO2-H2O chemistry at the surface, it is clear that the adsorbing SO2 in the gas phase

takes on a preferred orientation to adsorb on a water surface. The main difference

between the neat and saturated water systems is where the point of the transition

from isotropic to preferred orientations is found.
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Comparing in more detail the difference in these two systems upon SO2 approach,

for the neat-water surface, a transition occurs at approximately 4 Å above the surface

water location. Below 4 Å above the surface, SO2 has a preferred net orientation

and is close enough to the water surface that it begins to interact with the topmost

surface waters. In the saturated system, the same trend occurs, however the onset

of the perpendicular orientation begins at approximately 8 Å above the surface. The

layer of adsorbed SO2 already present in the saturated system most likely interacts

with the transiting SO2 molecule. Also, topmost water molecules from the surface

move up to a few Å inside the adsorbed SO2 layer and interact with the transiting

SO2 further from the surface than those in the neat-water system. It is remarkable

that the orientational trend appears so strongly in the θ plots even with so little

data as was collected from the single SO2 molecule of each simulation. From onset of

orientation above the surface until 10 Å below (not shown), the SO2 holds a preferred

orientation.

With a mostly perpendicular bisector angle, it is expected that the values of φ for

SO2 would be isotropic relative to the reference axis. This is the case in both systems,

with only a few exceptions. In both systems the φ profiles exhibit mostly isotropic

distributions above 0 Å, with several regions of lighter coloration interspersed, but

without a clearly formed orientational trend. At the neat-water surface and just

above (from 0-2 Å above the water phase), the θ profile broadens to θ = 90°, near

φ = 90° appearing as a shoulder of light coloration in the bottom-left of the 0-

2 Å axes. This indicates that SO2 inclined up to 90° from the surface normal will

have a preferred φ orientation lying more flat to the water surface. This is in contrast

to SO2 molecules above the water surface location, oriented more perpendicularly and

without a preference for a particular range of values in φ. The behavior is likely due
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to the interaction between the waters and the S-O bonds leading to a higher solvation

than above the water surface location. As the SO2 is solvated by more highly-

coordinated bulk water, the S-O bonds experience less equal interaction environments.

Baer et al. noted that their force field model for the SO2 does not reproduce well the

first hydration shell geometries,[107] so conclusions regarding the specific interactions

and hydrate geometries between the SO2 and H2O cannot be made here. It is notable

that the same reorientation does not occur as strongly in the saturated system. The

presence of the adsorbed SO2 layer apparently decreases the reorienting behavior

likely because of the disrupting effect the higher SO2 concentration has on the water

interactions in the interfacial region.

4.6. Summary

Gaseous adsorption on solid surfaces has been extensively studied over the

past few decades with much learned about how molecular geometry and orientation

of the adsorbate are influenced by the proximity of the solid slab. For a liquid

surface where the surface slab is no longer rigid but has molecules with considerable

freedom of movement, the surface and approaching gas molecules can be active

partners in attaining the optimal geometry and orientation necessary for adsorption

and subsequent uptake. And unlike the solid surface defined by a sharp plane,

the interfacial region for the liquid-gas system is much broader, extends on either

side of a defined center plane, and is host to a broad distribution of gas-liquid

molecular geometries and orientations that change as the gas molecules transit

through the interfacial region into the bulk liquid. Although the current molecular

level understanding of the complex dances that these molecules play in this fluid

interfacial region is in its infancy, emerging studies such as these are beginning to
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provide unique new insights that are key to understanding many environmentally

important processes at aqueous surfaces.

Presented herein are the results of several classical molecular dynamic simulations

that focus on understanding how surface water molecules and adsorbing SO2 gas

molecules twist and turn as the gas adsorbs and transits the interfacial region.

The computational studies emulate and expand on the experimental spectroscopic

studies from the Richmond laboratory which have found SO2 surface complexation

at a water surface.[16–18] These spectroscopic studies show clear evidence of SO2-

water surface complexation but details about this surface complex could only be

inferred from spectral changes in the surface water spectrum since SO2 could not

be monitored directly. These simulations do not have that limitation and hence can

provide information about the behavior of both surface partners and in particular, how

their proximity influences the orientation behavior of each other. The orientational

information obtained in these simulations are provided via calculated depth profiles

which show the molecular distribution of orientations of the two different interfacial

molecules throughout the dimensions of the interfacial region.

The simulations show that gaseous SO2 quickly adsorbs to the water surface

and continues to bind until a complete surface coverage is reached. Surface waters

reorient in the presence of adsorbed SO2. The waters at and just below the interface

of a neat-water surface tend to lay flatter to the surface than when a saturating layer

of SO2 is present. The waters above the surface location or interacting with the layer

of adsorbed SO2 orient more perpendicularly to the interface, and further expose

their “free-OH” uncoupled bonds for interactions with SO2, and hydrate complex

formation. Furthermore, we have found that surface waters underneath a blanket
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layer of adsorbed SO2 will penetrate further into the gas phase, allowing for greater

mobility of waters away from the aqueous bulk in the presence of SO2.

Through these simulations it is also possible to characterize the orientational

behavior of SO2 during and after adsorption. The equilibrium neat-water simulations

show that a single SO2 molecule, representing a low concentration, has a high surface

affinity. At a high SO2 concentration in the saturated systems, SO2 molecules are

also surface active, and are found further out of the water phase than at the lower

concentration. These SO2 molecules form a bound layer that crowds the surface

and interacts with the surface waters. The orientation of SO2 on the water surface

was found to be similar for both low and high concentrations. Those SO2 molecules

at or below the surface water location strongly orient with the sulfur atom pointed

in towards the water bulk, and the oxygen atoms out towards the gas phase. The

SO2 molecules slightly above the water surface lose this net orientation within 6-8

Å. Those molecules further from the water are more isotropically oriented. Figure

4.9. depicts what the neat-water and saturated surface molecules look like for both

SO2 and H2O orientations and locations based on the calculations.

Steered molecular dynamics simulations were used to model the behavior of an

adsorbing SO2 as it moves from the gas phase above the water down through the

surface and into the bulk. The SO2 reorients as it makes its first contact with the

water interface. Within 4 Å of the surface the SO2 is mostly oriented with its sulfur

towards the water phase. The results for the transit through the interface show that in

both systems of low and high SO2 concentration an adsorbing SO2 near the interface

has very similar orientation to those molecules already bound to the water surface.

The SO2 pulled further into the water bulk retains its orientation until it is past the

interfacial region and then isotropically orients with the bulk water.
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FIGURE 4.9. Proposed orientations of H2O and SO2 in the regions near the (A)
neat-water and (B) saturated liquid-gas interface.

These studies provide a starting point for future studies in this area that seek to

understand how gases of different concentrations and chemical composition adsorb

and transit across an aqueous/air interface. Obtaining such knowledge will be

invaluable for understanding many environmental aerosol and land water systems

where gaseous uptake at a water surface does not conform to expectations.[99, 101,

106, 118]

Chapter V documents the follow-up DFT-MD study that further examines

surface-bound SO2. The SO2 molecule behavior and its hydration interactions with

neighboring waters are probed in depth, and a unique bonding behavior is presented.

Two parallel groups of simulations were created at two temperatures to model both

laboratory and atmospheric conditions.
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CHAPTER V

SULFUR DIOXIDE SURFACE HYDRATION BEHAVIOR

This work was submitted for publication and is under review for the Journal of

Physical Chemistry C. Dr. Geraldine Richmond supplied computational resources

and project support. Eric Shamay was the principle investigator for this work.

5.1. Introduction

The molecular nature of the adsorption of gas molecules onto a water surface

is one of the remaining largely uncharted territories of surface chemistry. Although

gas uptake into aqueous systems occurs often environmentally and industrially, we

still know very little about the process and the details of the adsorption reactions,

and certainly less than what we know about gaseous adsorption on a solid surface.

How does a gas initially bind to a water surface, and what steps are involved in the

subsequent adsorption? How does an unbound gas molecule near a water surface

affect the water to which it will bind? What is the structure of hydrating waters

in the surface region, and how does a hydrated solute molecule behave differently

than as a gas? Experiments to address these questions provide valuable information,

but have to date never fully characterize microscopic events and behaviors. However,

these systems can be fully characterized computationally, and when coupled to the

previous experimental work can provide a much more complete picture of gaseous

adsorption to aqueous surfaces.

SO2 is a particularly important gas to use as a starting point and model system

because of its importance in commercial and environmental systems. [95, 96, 99,

106, 119, 120] Its simple molecular structure, high solubility in water, and relative
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abundance make it a pivotal compound in numerous aqueous atmospheric reactions.

A complete picture of the SO2/H2O adsorption process will aide in understanding

gaseous adsorption on the many aqueous surfaces in the environment, as well as in

understanding the fundamental nature of gases in water’s surface region.

The work documented in this chapter makes use of ab initio quantum molecular

dynamics (MD) techniques to model and simulate the hydrating structures that

form around a surface-bound SO2 on water. A dynamic water surface is simulated,

complete with all the extended hydrogen-bonding interactions that capture the

variability of the SO2 hydrate structures, and the behavior of the water surface

molecules. The quantum MD technique described herein allows more accurate and

realistic simulation than the classical MD of SO2described in chapter IV.[19] It is also

superior to small cluster DFT studies because it does not assume geometry optimized

configurations, and the extended interactions of a water slab are incorporated. The

previous classical MD study determined the net orientational behavior of SO2 binding

to a water surface, and the orientation of the waters as they respond to the

presence of an adsorbing gas. Understanding the orientational behavior of molecules

in the aqueous interfacial region during adsorption was a necessary first step to

understanding the specific details of gas-binding and surface behavior.

Quantum MD techniques are the logical follow-up as they accurately reproduce

the hydration geometry around the bound SO2 molecules, and allow us to examine in

detail the specific bonding interactions that occur within the surface hydrates, and in

the extended bonding further into the water.[107] Two parallel studies are performed

in this project; one is done at 300K, and one at the more atmospherically relevant cold

273K. This set of temperatures complements the most recent experimental studies

that showed the binding of gaseous SO2 to a water surface is greatly enhanced at
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cold temperatures.[18] Other experiments by the Richmond laboratory developed the

picture of SO2 adsorption, and showed that SO2 surface hydrate complexes form

when a water surface is exposed to SO2 gas.[16, 17] Although conclusions regarding

the specific nature of those complexes could only be inferred from the experiments,

the current computational studies now provide insights about the specific microscopic

geometries and behaviors of the hydrating complexes.

This is likely the first temperature study using quantum MD to study the binding

of small gas molecules on a water surface. It is shown how temperature affects

the bonding behavior of the surface-adsorbed SO2 to neighboring waters, and a

sequential binding mechanism for SO2 adsorbing to a water surface is proposed. Also,

SO2 binding behavior is examined when bound to surface waters. Lastly, analysis

of a specific bonding arrangement demonstrates an extended bonding structure of

SO2 hydrates, as they are seen to preferentially form an extended cyclic ring structure

through intermolecular bonds.

5.1.1. Bonding Coordination

A hydrated SO2 in an aqueous environment forms hydrogen bonds through the

oxygens to nearby water-hydrogens, or interacts via the sulfur atom with water-

oxygens.[107, 121, 122] To further analysis of the way in which SO2 coordinates

its bonding to surface waters (those that lie in the topmost region of a gas/water

interface), a naming scheme is adopted to denote the way in which the SO2 is

hydrated by the surrounding waters. This naming scheme mimics a notational system

developed during a previous study on water coordination by Buch et al.[123] and was

subsequently used in more recent computational work.[47] In this naming system, a

letter is used to designate the atom on a water molecule through which a hydrogen
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bond is formed to neighboring waters. Thus a bonding coordination of “OOH”

designates two proton-acceptor bonding interactions through the water-oxygen, and

a single proton-donor bonding interaction through a hydrogen. More recently, Baer

et al. devised a nomenclature that explicitly enumerates the bonding to SO2 via the

sulfur or oxygen atoms.[107]

This work adopts a similar nomenclature scheme for SO2 in order to quantify

hydrogen bonding through the acceptor SO2-oxygens, and the weaker bonding

interactions from the SO2-sulfur to water-oxygens. Thus, an “SOO” coordinated

SO2 molecule forms a single interaction through the sulfur atom to a neighboring

water-oxygen, and two hydrogen bonds through either a single SO2-oxygen, or

distributed with one hydrogen bond on each of the SO2-oxygens. Analysis of the

distribution of these various SO2 coordinations will give insight to how SO2 binds to

the water surface.

To determine SO2 bonding coordinations, intermolecular bonds are defined using

the distance criteria of Baer et al.[107] The bond-length definition is based on a set of

distance criteria where a bonding interaction between a H2O-oxygen and SO2-sulfur

is formed at a distance less than 3.5 Å, and an SO2-oxygen hydrogen bond to a

H2O-hydrogen is formed at a distance less than 2.2 Å.

5.1.2. Cyclic Bonding Structures

Hydrated SO2 clusters have been studied extensively with several recent

experiments and computations forming a clearer picture of SO2 bulk and surface

behaviors.[16–18, 91, 99–101, 107, 121, 122, 124–127] At a water surface, it is now

known that SO2 forms a complex with water during adsorption, and then subsequently

absorbs into the interfacial region by reaction to form ionic sulfur species.[16–18] The
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computational study to elucidate the structure of surface hydrated SO2 by Baer et al.

showed that the bonding coordination distributions of SO2 at the surface are altered

relative to the bulk region, and that two coordinations dominate the distribution

of bonding types: the “SO” and the “SOO”. In the same work they then focused

on the dominant coordination to determine the most likely cluster geometry of di-

and tri-hydrate species of SO2. However, that study, and others probing specific

hydrate structures, were performed in gas phase, under idealized conditions following

geometry optimizations. None of the studies have yet focused directly on the presence

of an extended hydrating structure involving SO2 molecules at a water surface,

forming closed rings of molecular interactions. Here, ab initio molecular dynamics

are utilized to recreate a microscopic water surface environment. By focusing on the

occurrence of a specific subset of SO2 bonding coordination types, it is possible to

probe directly a certain hydrated SO2 in an aqueous interfacial environment.

The gas phase cluster geometries predicted in the study by Baer et al. imply a

cyclic bonding structure through the two or three hydrating waters. “Cyclic” here

is used to denote a closed loop formed by the intermolecular hydrogen bonds, S-O

interactions, and covalent bonds of the molecules involved. Figure 5.1. depicts one

such cyclic structure showing the bonds beginning on the sulfur and returning through

a SO2-oxygen.

5.1.3. Graph Theoretical Details

As noted above, the optimized geometry of the gas phase SO2 hydrates suggests

cyclic bonding structures. Geometry optimization shows the formation of these cyclic

hydrate structures with two or three waters. A different story entirely has the

potential to emerge when SO2 is placed in a dynamic environment such as in the
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FIGURE 5.1. Example cyclic SO2 hydrate structure, formed by the covalent, S-O,
and hydrogen bonds of the two molecule types.

course of MD simulations of an aqueous surface. Do the cyclic structures also form in

the course of a dynamic bonding process on a simulated water surface, where extended

hydrating structures influence SO2 and water behavior? To study the formation and

behavior of cyclic hydrate structures graph theoretical techniques are employed on

MD trajectory data. Previous use of graphs in molecular computations were applied

to finding stable arrangements of water clusters, ice, hydrogen bonding, extracting

topological molecular properties, and cyclic structure studies.[128–133]

Here graph theoretical concepts are briefly introduced. They have been described

well by others with varied application to cyclic structures.[129, 132, 134–137] A graph

consists of nodes, and edges that connect the nodes. A molecule can be represented
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with atoms as nodes, and edges for each intramolecular covalent bond connecting

the atoms. The set of edges is then further expanded to include intermolecular

interactions such as hydrogen bonds and other bonding interactions. Edges may

be assigned weights (i.e. bond lengths), types, and can be directional, i.e. pointing

from a source node towards a target node. A molecular system including all atoms,

bonds, and interactions is thus fully described by a graph.

To detect cyclic structures in a graph a depth-first or breadth-first search (DFS

and BFS, respectively) may be used.[138, 139] A graph search is a recursive algorithm

of queuing nodes and all neighboring nodes while performing a specified procedure

on each visited node. This is easily performed on adjacency list or connectivity

matrix data structures, iterating through nodes (i.e. atoms) of interest in the graph

as starting points of the search. In graph search terminology, all nodes are colored

during graph traversal to distinguish unvisited nodes (white), queued nodes (gray),

and visited nodes (black). Performing a BFS on a graph, cyclic structures are detected

any time a “gray target” is encountered when queuing adjacent neighbors of a node.

A benefit of BFS is the ability to determine the smallest cyclic structure containing

a given node. In the case of SO2 hydrate structures, beginning the BFS with the

SO2-sulfur as the starting, or root node for the search, will discover cyclic bonding

structures in order of size. This scope of analysis here is limited to with the smallest

cyclic structure involving those waters in the first and second hydration shells around

the SO2. Furthermore, it is possible to reconstruct a cycle’s structure by finding its

size (number of contributing atoms), and the number of unique waters in the cycle.

This allows for distinguishing between various types of cyclic structures encountered.

Several arrangements of cyclic bonding structures are shown in Figure 5.2. for

a SO2 molecule with three waters. Cycles with fewer or greater numbers of waters
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are also possible and encountered during MD. Cycle types I, II, III in Figure 5.2. are

cyclic structures in which the SO2 is a member of the cycle. Types IV and V do not

involve the SO2 in the bonding cycle, but are commonly encountered as the smallest

cycle types formed near the SO2. Type III is of particular interest because the SO2 in

this cycle has the most frequently occurring bonding coordination (“SO”, as shown

later).

FIGURE 5.2. SO2 in various cyclic hydrate structures encountered during MD
simulations with water.

Baer et al. presented a detailed geometric and spectroscopic breakdown of type

III cycles with two and three waters from their DFT calculations.[107] Given the

information of the number of waters, atoms, and bonds involved in the bonding

cycles, of the three-water type III cycles there exist two structural varieties, shown

in Figure 5.3., that differ in the set of water atoms involved in the cyclic structure.

Type III-A (shown in Figure 5.3.A) is arranged with each water contributing an OH
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bond to the structure of the cycle. Type III-B involves a single water contributing

an OH, whereas the other two waters contribute only the oxygen atom or the entire

water molecule to the structure, respectively. This nuance of the type III structures

involving three waters, and the overall distribution of structures are presented in more

detail later. Also shown is the distribution of cyclic structures encountered during

MD simulations to aide in further understanding the behaviors of SO2-hydrates at

the water surface.

FIGURE 5.3. Two conformations of Type III SO2 cyclic hydrate structures.

5.2. Computational Methods

On-the-fly ab initio molecular dynamics simulations were performed with the

QUICKSTEP package, which is an implementation of the Gaussian plane wave

method using the Kohn-Sham formulation of density functional theory (DFT).[13]

The Kohn-Sham orbitals are expanded using a linear combination of atom-centered

Gaussian-type orbital functions. The electronic charge density was described using
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an auxiliary basis set of plane waves. Energies and forces from on-the-fly simulation

sampling of the Born-Oppenheimer surface were calculated for each MD step using the

Gaussian DZVP basis set, the exchange-correlation functional of Becke, Lee, Yang,

and Parr (BLYP),[34] and the atomic pseudo-potentials of the Goedecker, Teter,

and Hutter type.[33] A simulation timestep of 1 fs was used, with a Nose-Hoover

thermostat set at 273K and 300K for the “cold” and “hot” simulations, respectively.

These computational parameters were verified to yield a reasonable description of

bulk room temperature water when simulating a neat-water system.

Initially, 10 equilibrated boxes of side-lengths 10.0 Å, with 36 randomly packed

water molecules were used. Five of the boxes were used for each of the cold and hot

simulations. A sulfur dioxide molecule was randomly placed onto the surface within

2.5 Å of a water molecule centrally located above the waters in the z-axis. A copy

of the initial system cubes were then expanded along one axis (z-axis) to 25 Å. The

system energy was minimized through a geometry optimization. Subsequently, the

system was equilibrated for 1 ns in canonical ensemble (NVT) conditions. Periodic

boundaries were set on the two short axes to form an infinite slab. The equilibrated

systems were then simulated for a further 20 ps in the microcanonical ensemble

(NVE), with trajectory snapshots recorded every 1 fs. The initial 1 ns equilibration

trajectory was not included in the final analysis. This simulation process resulted in

20,000 time steps of system trajectory for analysis in each of the hot and cold replicas

of the system, for a total of 100,000 timesteps at each temperature.

5.3. Sulfur Dioxide Bonding Coordinations

The bonding coordination of each SO2 was determined at each timestep of the

simulations. Figure 5.4. shows the distribution of bonding coordinations of the surface
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SO2, as a percentage of all bonding coordinations encountered for both the cold

(blue) and hot (red) trajectories. A first visual inspection reveals several trends.

Clearly the “SO” coordination is the most populous at both temperatures. The

second and third most populated coordinations are the “S” and “SOO”, however

their distributions differ between temperatures. In cold simulations the “S” and

“SOO” coordinations occur nearly equally. The hotter temperature simulation shifts

the distribution such that the “S” occurs 5% less frequently than in the cold, and the

“SOO” occurs nearly 10% more often. The distribution of bonding coordinations in

the hot temperature has a clear first and second most frequent coordination: “SO” and

“SOO”, respectively. These results for the hot (room temperature) system coincide

with those of the previous single-temperature simulation study by Baer et al. at a

similar temperature.[107]

FIGURE 5.4. The distribution of bonding coordinations of the (blue) cold and (red)
hot SO2.
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Several conclusions about the bonding behavior of SO2 to surface waters stem

from this distribution of coordinations. Clearly the cold SO2 spends more time than

the hot SO2, 13% versus 3%, respectively, completely unbound from the surface

waters. This does not necessarily imply a complete desorption into the gas phase,

but only a brief sojourn away from the waters, with all interactions and bond

lengths longer than the cutoff criteria used for the analysis. Furthermore, the most

frequently occurring bonding coordinations are “S”,“SO”, and “SOO”, with “SO”

being the most populated at both temperatures. Baer et al. also concluded that

these three coordinations were the most frequent for a room temperature simulation,

and specifically identified the “SO” and “SOO” as most common in their study.[107]

Looking closer at the coordination types it is notable that coordinations lacking

any sulfur interactions (e.g. “O”, “OO”, etc.) represent the least frequently formed.

A bonding coordination with at least a single sulfur interaction is clearly favored over

SO2 “oxygen-only” bonding to waters. In previous classical simulations of SO2 on

water it was concluded that during adsorption and throughout the interface, the

SO2 orients so that its sulfur tends to the H2O bulk side of the interface.[19] The

coordination distributions here support the idea that binding through the sulfur is

preferable, to the extent that a non-sulfur coordination is rarely formed during the

course of all the simulations.

Baer et al. performed this coordination analysis for their single-temperature

study, but discriminated between SO2 binding through the two different oxygens.

They concluded that there is asymmetric hydrogen bonding through the SO2-oxygens,

with one oxygen binding more often than the other. This is supported by the findings

here where all the double oxygen coordinations (e.g. “OO”, “SOO”, etc.) represent

a much lower percentage of the coordinations than the single oxygen counterparts
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(e.g. “O”, “SO”, etc.). Furthermore, a triple-oxygen coordination (e.g. “OOO”,

“SOOO”, etc.) is very rarely encountered. Three SO2-oxygen bonds only form if

both SO2-oxygens are interacting with water hydrogens. These findings, that triple-

oxygen coordinations rarely form, complement the conclusion of Baer et al. about

the asymmetry in the oxygen interactions.

Having established the preference for an interaction through the SO2-sulfur atom,

the right side of Figure 5.4. is examined at the double-sulfur coordinations (e.g. “SS”,

“SSO”, “SSOO”, etc.). From the data it is clear that single-sulfur coordinations are

overwhelmingly preferred over double-sulfur ones. Adding a third oxygen atom is

also unfavorable as the “OOO” and “SSOOO” together represent less than 1% of

the trajectories, and the comparison between “SOO” to “SOOO” shows a very large

decrease in occurrences.

A picture can now be formed of a typical SO2 molecule adsorbed to a water

surface across both temperatures in this study. The SO2 will have at least

one interaction to neighboring waters through the sulfur, and will then bond

asymmetrically through one of the oxygens either once or twice to water hydrogens.

The SO2-oxygen bonds will form and break repeatedly throughout a trajectory, and

overall the most dominant coordination will be the “SO” bonding arrangement.

5.3.1. Temperature Effects on Bonding Coordinations

The binding behavior of the SO2 is altered by changing the temperature of the

system, as evidenced in the shift in bonding coordination populations of Figure 5.4.

from cold to hot. In the cold temperature, the unbound, “S”, and “SO” coordinations

are more populated than in the hot systems. The increased temperature decreases

the time spent in the unbound coordination, and causes all the coordinations to
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the right of “SO” in Figure 5.4. to increase over the equivalent cold temperature

populations. As shown, the cold SO2 spends nearly four times as much time unbound

as the hot SO2, with most of the unbound population in the hot simulations shifting

to coordinations with double-oxygen and double-sulfur bonds.

On the cold water surface, the “S” and “SO” are more populated than for the hot

system. The relative decrease of these coordinations are matched in the hot surface by

an increase of the “SOO” configuration. This speaks to a dramatic difference in the

surface behavior of SO2 at the two temperatures. The cold SO2 spends nearly equal

time in the “S” and “SOO” coordinations, but nearly 20% more time in the “SO”.

Thus, the addition or removal of a bond through the SO2-oxygen to a neighboring

coordination (e.g. addition of an oxygen bond from “SO” to “SOO”, or removal of

the bond from “SO” to “S”) is equally probable, as long as the sulfur interaction with

the water oxygen does not break.

Figure 5.5. shows the radial distribution functions (RDF) of SO2 to water atoms

for both cold (blue) and hot (red) temperatures. The S-OH2O RDFs are nearly equal

except for a slightly taller first peak in the cold system. Along with the slightly

larger population of the cold “S” and “SO” coordinations in the cold surface, the

RDF indicates that since bonding occurs frequently through the sulfur, the cold

SO2-sulfur interacts more closely with the surface waters. In the hot systems,

the bonding coordinations with two oxygen bonds (e.g. “SOO”, etc.) occur more

frequently than in the cold system. This additional bonding through a second oxygen

interaction may slightly shift neighboring hydrating waters away from the SO2-sulfur

towards the oxygen end of the molecule. This suggests that the cold SO2 bonds

closer to the surface waters through its sulfur atom (as shown in the S-OH2O RDF)

and favors the more “sulfur-centric” bonding coordinations (e.g. “S”, “SO”). The
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increased temperature of the hot system allows the SO2 to bond more extensively

through its oxygens to the “SOO” coordination. The greater interactions through the

oxygens, and higher bonding coordination, may pull the SO2 further into the water

interface and then allow for increased bonding through the sulfur, up to double-sulfur

coordinations (e.g. “SS”, “SSO”, etc.).

FIGURE 5.5. RDFs of (blue) cold and (green) hot simulations. (left) SSO2–OH2O,
and (right) OSO2–HH2O.

5.3.2. Bonding Transitions

During the course of each simulation, the SO2 bonding coordination was

determined and recorded for each timestep. From the coordination data, not only

are the populations of the various bonding coordinations extracted, but also the

frequencies of transitions between the different coordinations (i.e. the number of

times each SO2 switched from one coordination type to another). This data allows

for generation of the directed graphs of Figure 5.6. depicting the cold and hot (Figure

5.6. A and B, respectively) bonding coordinations as circular colored nodes.[140, 141]

The transitions between the coordinations are depicted as directed edges pointing

in the direction of the transition from one bonding coordination to another. The

populations of the coordinations are depicted by both the node size and coloration

(larger and darker red coordinations occur more frequently). Populations of the
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transitions between coordinations are depicted by arrow thickness, with thicker lines

corresponding to more frequent transitions. Additionally, the transition lines are

numbered to the right of each line with the number of times each transition occurred.

As expected for the more populated coordinations, there are more transitions

between larger nodes in Figure 5.6. than transitions to less populated coordinations.

Insights to the bonding process are made clearer from these graphs. In the cold

system graph of Figure 5.6.A the majority of transitions are between the “S-SO”

and “SO-SOO” nodes. The number of transitions within this “S-SO-SOO” group of

bonding coordinations is an order of magnitude larger than any other transition. This

indicates that while the SO2 is bound in any of the three most populated bonding

coordinations, it is actively binding and unbinding the oxygens to form the other two

coordinations in this group. Clearly, the SO2 is rather active and constantly forming

and breaking bonds through its oxygens.

In the graph of the hot system in Figure 5.6.B, the transition frequencies follow

the same trend as in the cold system, increasing with adjacent node size. One very

surprising result is in the transition from “SOO-SOOO”. This transition frequency

does not follow from the adjacent node sizes, as the “SOOO” node represents less

than 5% of the bonding coordinations. This is indicative of a very rapid cycle of

forming and breaking of bonds to the second SO2-oxygen. As noted earlier, it is

likely that “SOO” coordinated SO2, asymmetrically binding twice through a single

oxygen, is being pulled further into the water interface. It is likely more surrounded

by waters, and in the hot system it can more easily form a brief third hydrogen bond

to a water through the second SO2-oxygen. Because the triple-oxygen coordination

is not as favorable, it quickly breaks the bond and the SO2 returns to the “SOO”

coordination.
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FIGURE 5.6. A graph of the SO2 bonding coordinations showing (directed edges)
the number of times the coordination transition occurred.
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Given the information about the frequencies of bonding coordination transitions,

it is possible to draw a likely route of adsorption beginning with an unbound SO2.

From the unbound coordination, the SO2 can bind to waters either through the

sulfur or an oxygen to enter the “S” or “O” coordinations, respectively. At both

temperatures the coordination transition in Figure 5.6. from unbound to “O” occurs

almost three times more than the transition from unbound to “S”. Two possibilities

may explain this difference. The single H-bonding of the “O” coordination may

form more easily, but also break quickly after formation, accounting for the higher

transition frequency. Otherwise, the “O” coordination may be the first step in

adsorption of an unbound SO2, where a subsequent addition of an SO2-sulfur

interaction to a water oxygen would lead to a transition to the most frequent

coordination, “SO”. In the latter case, any adsorption of SO2 proceeds through an

oxygen binding, accounting for the increased unbound-“O” transition frequency.

To verify if the “O” coordination forms from, and breaks quickly to the unbound

coordination as is suggested by the transition frequency plots in Figure 5.6., the

lifespans of the various coordinations are plotted in Figure 5.7. Each point in the

plot represents a time during the simulation in which the SO2 formed the respective

coordination. The vertical “lifespan” position is calculated directly from the amount

of time spent in the given coordination before changing to another. Both cold (blue)

and hot (red) data are plotted. The data of Figure 5.7. show that most coordination

configurations last a very brief time, with the majority forming for under 0.5 ps. The

three most populous coordinations, “S”, “SO”, “SOO” (as determined from Figure

5.4. by percentage) in both temperatures have coordination lifetimes of up to 1 ps,

in some instances lasting up to 1.5 ps. The brevity of lifespans overall speaks to the

dynamic nature of the SO2 surface binding. The length of time in each coordination
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parallels the populations of the coordinations, and suggests an ordering of steady

states among various bonding coordinations. The “unbound” configuration stands

out as an anomaly amongst the lifespans of the other bonding coordinations. The

few lifespans above 1.5 ps, up to 3.25 ps long, suggest a SO2 that not only unbinds

from the water surface, but that it also recedes far enough to avoid a quick rebinding

and coordination change to “S” or “O”. Those data points of a few long lived unbound

species indicate times when the SO2 is far from the water, residing in the gas phase

until the necessary water rearrangement occurs and it is drawn back to the surface

to rebind.

FIGURE 5.7. Time SO2 spent in each bonding coordination. The total amount of
consecutive timesteps in a coordination corresponds to the vertical position along the
lifespan axis, in ps.

Returning to the transition plots of Figure 5.6., the behavior of the unbound

transition to both “S” and “O” coordination can now be better characterized. Figure

5.7. shows that the “O” coordinated lifetimes are shorter than the “S” coordinated
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ones. Figure 5.6. shows that the unbound-“O” transition occurs almost three times

more than the transition to the “S” bonding coordination. The unbound SO2 forms

a bond to a neighboring water through its oxygen, but that bond is short-lived

and either quickly breaks (resulting in unbound SO2), or it transitions to the

“SO” coordination by forming another bond through the sulfur. The unbound-“S”

transition does not occur as often. This may be because the “S” coordination is

more stable than the “O”. Once in the “S” coordination the SO2 does not quickly

break the interaction from its sulfur to water, but rather remains for up to 1 ps in

the “S” coordination before (most likely) forming an oxygen bond to make the “SO”

coordination. The likely behavior of SO2 is described as it transitions from the gas

phase in an unbound coordination to binding with waters on an aqueous interface.

Once the SO2 begins interacting with the water surface, the pathway leading

back to the unbound coordination is not often traversed. As shown in Figure

5.6. the dominant coordination transitions occur between the “S-SO-SOO” group

of coordinations. This suggests that the SO2-sulfur interaction to a water oxygen

has a much longer lifespan than the SO2-oxygen bonding to water hydrogens. The

difference between the “S-SO-SOO” coordinations is an addition or removal of oxygen

bonds. The frequent transitions between them show that the bonds to SO2-oxygens

are quickly forming and breaking. For the SO2-sulfur interaction to break, the

SO2 must enter a non-sulfur coordination (e.g. “O”, “OO”, unbound, etc.) or a

coordination with more than a single sulfur interaction (e.g. “SS”, “SSO”, etc.). The

transitions to coordinations that allow for breaking of the SO2-sulfur interactions, or

switching the interaction to another water, are infrequent compared to those leading

to an oxygen bond transition. Thus, the SO2 spends most of its time while bound

to the surface waters breaking and forming hydrogen-bonds through its oxygens, and
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interacting with neighboring waters through a more persistent interaction via the

SO2-sulfur atom.

5.4. Cyclic SO2 Hydrate Structures

Having examined the bonding coordinations and bonding behavior of SO2 with

surface waters, attention is now turned to a secondary behavior of the hydrate

structures that form around the surface-bound SO2 molecule. The simulation

trajectory data was analyzed to determine the presence and characteristics of

SO2 cyclic hydrate structures that form, as posited earlier in the text and depicted

in Figure 5.2. Only the most commonly occurring subset of the cyclic structures were

analyzed based on two selection criteria: (1) The distances between atoms must match

the same bonding/distance criteria as used for determining bonding coordinations.

(2) The SO2 must be minimally in a bonding coordination of type “SO”, meaning

that the sulfur has at least one bonding interaction, and at least one hydrogen-bond

must have formed with an oxygen to a neighboring water-hydrogen. As noted earlier

in the discussion of the graph BFS algorithm, the cyclic structures found represent

the smallest cycles in which the SO2 is a member, based on the search’s order of cycle

discovery. The SO2 will be involved in other larger and more extended cyclic bonding

structures beyond the first one discovered via the BFS. The larger and more extended

cyclic structures involving more waters affect the behavior of the hydrogen-bonding

network of the water surface. The focus here is only on the smallest cycles involving

the SO2 as they most affect the SO2 bonding and hydration.

The plot in Figure 5.8. shows the distribution of how often the various types

of cyclic hydrates were encountered at both cold (blue) and hot (red) temperatures.

Each data point shows a percentage of the MD trajectories in which the SO2 was a
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member of a cyclic structure, for different numbers of cyclic waters (up to 4). The

two tallest data points, left-most in the plot, show the overall time spent in all types

of cyclic structures. Clearly the hot SO2 spends more time in a cyclic structure than

at the cold temperature. It is remarkable that the time spent in a cyclic structure

shows a 15% difference (42% cold, 57% hot). The hot SO2 spends well over half

of the simulated time bound as one of the hydrate cycles, and the cold SO2 spends

just under half of the time as such. Thus, in addition to having earlier found the

most likely bonding coordination during the simulated life of SO2, the hydrates of the

SO2 form cyclic structures for much of the time while bound to the water surface.

FIGURE 5.8. Different SO2 cyclic hydrate structures (up to 4 waters), and occurrence
rates as a percentage of total simulation time.

Now begins a look at the different types of cyclic hydrates, distinguished by

the number of waters involved in the bonding structure. In Figure 5.8. the single

and double water cycles are the least frequently encountered structures, accounting

for less than 10% of both cold and hot temperature simulation times. Formation
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of the single-water type is likely energetically unfavorable because of the proximity

of the water to the SO2 required to form the bonding cycle. The double-water

structure was one of two types of clusters proposed in a previous computational work

as a candidate structure contributing to the overall IR spectrum of surface-bound

SO2.[107] In those static and geometry-optimized cluster calculations, lacking the

extended water structure or bonding from waters external to the hydrate, both the

double and triple types appear equally likely to form. However, the MD simulations

here have introduced many waters into a dynamic environment allowing for extended

bonding networks, and the results show clearly that the double-water cyclic hydrate

is formed much less often (less than 5% at both temperatures) than the triple-water

form.

The results for triple and quadruple-water structures show that larger hydrate

cycles are favored at higher temperatures. Although the higher number of hydrating

waters (> 4) are not shown, those contribute minimally to the overall distribution.

The majority of the cyclic hydrates are formed with three waters in the triple-

water type. This hydrate type matches the bonding structure inferred from previous

experiments, and also one of the cluster types modeled by others.[16, 17, 107] It was

further found that, of the triple-type hydrate cycles, the waters contributing to the

cycles can be arranged in two ways that preserve the hydrogen-bonding between the

molecules (described earlier and shown in Figure 5.3.). The triple-water type cycle

results were broken-down into contributions from the type-A and type-B triple-water

structures. The two triple cycle structures are depicted on the right side of Figure 5.8.,

along with the plots of their contributions to the overall distribution. It is notable

that each temperature has a different dominant type of triple-water cyclic structure.
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The cold system forms more of the type-B, and the hotter system forms primarily

type-A.

5.4.1. Cyclic Hydrate Structure Lifetimes

We know that the SO2 bound to a water surface is most likely in the “SO”

bonding coordination, and is also often taking part in some type of cyclic structure.

With this in mind, it becomes interesting to ask: how long does a cyclic hydrate

form before breaking to an acyclic hydrate structure? To answer the question of

cyclic lifespan, a method was devised to define the lifetime of a cycle. For each MD

trajectory, coordinate data was analyzed to determine if a cyclic hydrate structure

was formed as described earlier in this manuscript. A timeline was then produced

where each timestep was given a value of 1 or 0 depending on whether a SO2 hydrate

bonding cycle was present or not, respectively. This resulted in a time-function, C(t),

similar in nature to a time-varying digital signal.

In an electro-mechanical system, a mechanical switch often outputs a noisy signal,

full of transients or “signal bounce” before settling to a final value. This will appear

as a rapid on-off cycling of the signal, and the problem is one of great concern in

signal processing. Many mechanical, electrical, and software solutions have been

devised to suppress the transients, or “debounce” the signal. Analogously, the hydrate

bonding cycles formed in the simulated system often undergo a period of time during

formation, or before dissolution, where the C(t) function bounces before settling into

a final value. The bounce in the function manifests itself in the statistics as a series

of rapid switches between cycle presence and cycle absence. Physically, the bond

lengths within the cycle (or the cycle-to-be) are fluctuating back and forth across

the bond-length criteria. It is thus an artifact of algorithmic determination of the
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presence or absence of a bond. Removing this artifact will allow us to examine the

longer-time bonding behavior and this is accomplished as follows.

We wish to find a function based on C(t) that eliminates the brief oscillations

during transitions. The resulting function, f(t), will only contain information of

whether a hydrate bonding cycle is present or absent, and none of the noisy oscillations

of the transitions between the two states. f(t) may then be used to calculate statistics

about the cycle lifespans. A representative portion of a cycle time-function, C(t), is

plotted for one of the simulated trajectories shown as the dashed black line in Figure

5.9. At the far left of the plot the function is in the “no cycle” state indicating that a

bonding cycle has not been detected, and then switches “on” as a cycle is found later

in time. The cyclic structure is very dynamic, constantly moving and distorting, so

any of the bonds forming the cyclic bonding structure are liable to break and reform

quickly. This bouncing between states is manifested in Figure 5.9. as a series of

sharp spikes in the C(t) function lasting less than 10 fs each. C(t) was smoothed

using a moving Gaussian window function with a 10 fs width, having the effect of

disregarding cycle breaks or formations of less than 20 fs duration. The resulting

smoothed function, Cs(t), was then cutoff with the following criteria:

f(t) =

 0 Cs(t) < 0.2

1 Cs(t) ≥ 0.2

where f(t) is the debounced time-function that represents the lifespans of cycles.

Figure 5.9. shows the original time-function of cycle formation and breaking, C(t)

(dashed black), the smoothed function, Cs(t) (red), and the final debounced function,

f(t) (green).
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FIGURE 5.9. (dashed black) A cyclic SO2 hydrate formation time function, C(t),
(red) a smoothed Cs(t), (green) the debounced cycle formation function, f(t).

The distribution of cycle lifetimes (i.e. contiguous spans of time spent with

f(t) = 1) was determined. The distribution of cyclic lifespans is shown in Figure

5.10. for the cold (blue) and hot (red) simulations. The most frequent lifespan for

both temperature data sets lasts between 0-1 ps. This accounts for the vast majority

of cyclic hydrates found (approximately 95%) indicating that these structures are

very transient, and are continuously forming and breaking for very short periods

of time. Even with the debouncing procedure that would artificially increase the

timespan spent either formed or broken, the nature of the water surface, and the very

dynamic extended hydrogen bonding network, keeps many of the structures from

lasting much longer than 1 ps. The difference between hot and cold systems in the

< 1 ps population is less than 2%, with this trend extending to the longer lifespans as

well. The inset of Figure 5.10. shows an expanded view of the region above 1 ps. All of

the distribution shows only a < 1.5% difference between cold and hot cyclic lifetimes.
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Overall, the distribution shows that when cycles form, at both temperatures, they

last a similar amount of time. Up to 3 ps, the cold temperature cycles show a very

slight population increase above the hot temperature cycles. Above 4 ps, most of the

cycles that form are found in the hot system. The 8 ps cycles are notable in that they

form for just under half the length of one of the simulated trajectories.

We know from the transition frequency plots of Figure 5.6. that the bonding

coordinations are switching frequently. The SO2 is likely forming and breaking bonds

with waters external to the cyclic hydrate structures (i.e. not directly involved in the

bonds of the cycle). For the longer-lived cycles, the external bonding to the SO2 may

have little effect on the cyclic hydrate waters. However, any time the SO2 switches

into an unbound, sulfur-only, or oxygen-only coordination (i.e. “S”, “SS”, “O”, etc),

the cyclic structure is necessarily broken. Because the majority of cyclic structures

last only briefly (< 1 ps), the active switching of SO2 bonding coordinations appears

to break the cyclic structure. Figure 5.4. shows that the sum of coordinations that

necessarily break cyclic structures account for approximately 39% and 24% of the

bonding coordinations in the cold and hot system, respectively. Consequently, the

distribution of Figure 5.8. also indicates that there are more cycles formed in the

hot system (approximately 16% above the cold). Of the three most encountered

bonding coordinations, the hot system shifts population from the “S” (a cycle-

breaking coordination) to “SO” and “SOO” (coordinations that allow for bonding

cycle formation through the SO2). This is relative to the cold system coordination

distribution that has equal “S” and “SOO” populations. The increased temperature

appears to cause the SO2 to bond in a way that is more conducive to the formation

of cyclic structures. This may account for the slightly increased populations of the
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longer cycle lifespans in the hot system (greater than 4 ps in some cases) compared

to the cold system in the cycle lifespan distribution of Figure 5.10.

FIGURE 5.10. Cyclic SO2 hydrate structure lifetimes of (blue) cold and (red) hot
simulations.

5.5. Summary

The adsorption of small gas molecules to water surfaces has been extensively

studied over the past few decades. Much has been learned about the energies of

hydrate configurations, and the kinetics of gaseous uptake into aqueous systems.

Yet, the specific molecular nature of the adsorption process, including the various

geometries, hydrate species, and bonding pathways remains largely unknown. As a

gas transitions into the liquid water phase, it passes through a fluid interfacial region

that remains poorly understood. Our understanding of the processes and chemistry

of the interface is still in its infancy, but we are beginning to gain unique new insights
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that are key to understanding many environmentally important processes at aqueous

surfaces.

Presented herein are the results of ab initio molecular dynamics simulations

that focus on how a wandering gaseous SO2 molecule first makes contact with a

water surface, and subsequently forms extended hydrate structures with interfacial

water molecules. The computational studies complement and expand on experimental

studies from this laboratory that found surface complexation of SO2 at a

water surface.[16–18] Furthermore, these computations build upon and enrich our

understanding of adsorbing SO2 behavior from our recently published computational

study on interfacial geometries of aqueous surface SO2 molecules.[19]

The simulations show that SO2 has a preferred means of bonding and interacting

with surface water molecules by taking on various bonding coordinations. In this

study it is shown that the “SO” bonding configuration is the most preferred, with

“S” and “SOO” also contributing greatly to the coordination distribution. Once a

SO2 has bound to form a surface hydrate it rarely forms multiple bonding interactions

through the sulfur atom, and even less frequently takes on a configuration with no

sulfur interactions to nearby waters.

This study is one of very few temperature studies looking at the microscopic

nature of interfacial gas molecules on water. By changing the temperature, it was

found that a hotter water system leads to longer SO2 binding to the water surface.

The distribution of bonding coordinations was greatly affected by a temperature

change, shifting populations of bonding configurations because of the altered SO2 and

H2O behavior. At the higher temperature, SO2 forms more frequent bonds to

interfacial waters through the sulfur and oxygen atoms. Overall, it was determined
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that the SO2 hydrate interactions are transient, binding and unbinding to water

molecules rapidly in very dynamic bonding coordinations.

Introduce here is the use of a graph structure to represent atoms and

interconnectedness between molecules, and also to represent transitions between

the various bonding coordinations of an adsorbed SO2. It was shown that the

intermolecular bonds formed through the SO2-oxygens are quickly broken and

formed, lasting briefly compared to sulfur interactions. From the graph of bonding

coordination transitions, a likely pathway for SO2adsorption was found starting with

an unbound gas-phase SO2, ending with a hydrated SO2 species bound to surface

waters.

The formation of cyclic hydrate structures was probed and it was found that

these hydrated bonding ring species form during much of a simulated trajectory.

Temperature increases the occurrence of cyclic structures, and also shifts the

distribution of the specific types of cycles being formed. Two types of cyclic tri-

hydrates were discovered during the course of simulations. The cycle lifetimes were

found to be mostly short-lived, with a majority lasting less than 1 ps before breaking

and reforming due to the dynamic bonding and motion of the surface waters and

SO2 molecules. Temperature did not have a very dramatic effect on the cyclic

lifespans, but higher temperatures did lead to SO2 bonding coordinations that are

more likely to form into cyclic hydrates.

These studies build upon computational and experimental research in this area,

seeking to understand how gases adsorb and transit across an aqueous/air interface.

Such knowledge is invaluable for understanding land water and environmental aerosol

systems where gaseous uptake behavior at a water surface surprises us and often defies

physical intuitions.[99, 101, 106, 118]
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The following two chapters of this dissertation document two projects involving

interfacial aqueous malonic acid. The first of the two projects in Chapter VI was

a collaborative effort involving both SFG experiments and classical computational

simulations of malonic acid solution surfaces. Chapter VII documents a follow-up

DFT-MD computational project that further probes the surface nature of malonic

acid, and compares the more accurate quantum interaction potential with the classical

one.
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CHAPTER VI

DICARBOXYLIC ACID ON A WATER SURFACE

This work was co-authored, and the manuscript is in preparation to be submitted

for review. Eric S. Shamay provided all the computational simulation results and

analyses. Patrick Blower conducted the VSFS experiments of malonic acid probing

the carbonyl C=O vibrational modes. Stephanie Ota performed the VSF experiments

and analysis of the methylene CH vibrational modes. Patrick Blower was the principle

investigator for this work.

6.1. Introduction

Organic materials are ubiquitous in the atmosphere of our earth[142] and

their presence in aerosols affect important changes in climate conditions.[143, 144]

Climate forcing is caused by aerosols directly through scatter and absorption of

radiation, and indirectly through cloud formation. It has been shown that up to

90% of the total mass of tropospheric aerosols (dependent upon location) can be

comprised of contributions from organic matter[142] and this has spurred a revival

in the study of how organic materials affect aerosol properties. Organic acids are

a particularly important class of organic material involved in aerosols, varying in

size and complexity from low molecular weight formic acid[145] to large humic-like

substances (HULIS).[146] Dicarboxylic acids represent a sizable fraction of organic

material; they are of low molecular weight and soluble in water, and also contain

multiple acidic sites. Dicarboxylic acids are a prevalent hygroscopic[147] and water

soluble component of our atmosphere that occur in urban, rural, remote, and marine
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environments.[145, 148–155] In fact they are often the dominant class of water-soluble

organics in our environment, with the shorter C2-C4 found to be the most abundant.

Since organic aerosols can be hygroscopic and are capable of acting as cloud

condensation nuclei[156] (CCN), much effort has been put into understanding the

properties of these aerosols as well as secondary organic aerosols (SOA). Prediction of

CCN activation is well understood for inorganic fractions (e.g. NaCl, (NH4)2SO4)[143]

and can be determined based on chemical composition, solubility, surface tension,

and dry particle size (i.e. Kohler curves). Atmospheric aerosols contain a mixed

chemical composition including a significant fraction of organic components; it is often

necessary to determine these properties for organic components. Deliquescence,[157]

phase transitions,[158] water activities,[159] and surface tension[160–162] have

been investigated for binary systems containing malonic acid as well as other

atmospherically relevant dicarboxylic acids in order to aid in the predictability and

modeling of these binary systems as CCN.[163] While these studies have provided a

better understanding of the bulk thermodynamic properties of dicarboxylic containing

aerosols as a stable/unstable particle for CCN, they do not address the heterogeneous

reactions[164] that can take place at the surfaces of these aerosols. For example, a

recent study on halogen activation on water surfaces (i.e. a heterogeneous reaction)

shows how weak acids at a water surface, such as malonic acid, can actually enhance

I2(g) production in the marine boundary layer when compared to a neat water

surface.[165]

It is known from surface tension measurements[160–162] that short-chain

dicarboxylic acids are surface active. However, unlike traditional ionic alkyl surfactant

molecules that have well defined hydrophobic and hydrophilic parts, low molecular

weight dicarboxylic acids have two hydrophilic ends (carboxylic acid moieties)
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connected by a hydrophobic spacer (CH2)n. As a consequence, unlike simple alkyl

carboxylic acid surfactants, one cannot a priori predict the orientation and surface-

bonding characteristics of the dicarboxylic acids. Given the prevalence of dicarboxylic

acids in aerosols, surprisingly few molecular-level investigations of the behavior of

dicarboxylic acids at aqueous surfaces have been conducted.

One of the more important dicarboxylic acids in the atmosphere is malonic

acid, the focus of this chapter. Malonic acid, with its two carboxylic acid

groups separated by a CH2 spacer is found in significant concentrations in aqueous

environments (aerosols, cloud water, freshwater, seawater and various forms of wet

deposition). A combination of experimental and computational methods are employed

to develop a robust molecular picture of the behavior of malonic acid at a water

surface. The experimental approach involves surface tension measurements to provide

quantitative thermodynamic data on the adsorption process and vibrational sum

frequency spectroscopy (VSFS) as a means for obtaining a more microscopic picture.

VSFS is a surface specific spectroscopy that is excellently suited for exploring the

surface properties of these aqueous organic systems. As a second order non-linear

vibrational spectroscopy method, VSFS is highly surface specific and can impart

valuable information about the structure and orientation of an adsorbate as well

as the alteration of surface water molecules due to the presence of the adsorbate.

Molecular dynamics are used to create a more complete picture of adsorbate

behavior, and complement well the experimental methods. MD probes directly the

specific orientations and geometries of malonic acid on a water surface, and also

the intermolecular interactions taking place with neighboring waters. Orientational

analyses of MD trajectories show the geometry of malonic acid throughout a water

interface, and the response of the acid orientation to location within the surface.
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In addition, the use of computer modeling greatly assists in the interpretation of

VSFS spectra and provides detailed molecular data that is otherwise inaccessible by

experiment.

This chapter explores surface speciation, orientation, and surface pH dependence

of malonic acid by using this combination of experimental and theoretical approaches.

Results presented here provide the platform necessary to interpret the more

complicated ternary systems that more closely resemble the aerosol compositions of

the atmosphere. This is a work of fundamental importance for establishing malonic

acid behavior for further study of this system, and also of more complex acids and

solutions.

6.2. Experimental Methods

6.2.1. Surface Spectroscopy

VSFS is an excellent tool for exploring aqueous interfaces because of its surface

specificity; it is forbidden in centrosymmetric media such as bulk water. VSFS

has grown in the past decade as a highly versatile method for studying a variety

of processes at water surfaces. A brief description is given below as it pertains to the

experiments conducted in this study. Two different laser systems were used. The VSF

experiments conducted in these studies involve an 800 nm beam of light overlapped

in time and space with a variable frequency beam (in the IR) at the surface of the

aqueous solution. The intensity of the resulting sum frequency signal is proportional

to the square of the second-order susceptibility, χ(2), which has both a resonant and

non-resonant component, as shown in Equation 6.1.
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χ(2) = χ
(2)
NR +

∑
ν

χ
(2)
R,ν (Equation 6.1.)

The resonant susceptibility, χ
(2)
R , is proportional to the number of molecules

contributing to the sum frequency response, N, and the orientationally averaged

molecular susceptibility, 〈β〉, as in Equation 6.2.

χ
(2)
R =

N

ε0
〈β〉 (Equation 6.2.)

Because of the overlap of some modes with other resonant modes, as well as

the non-resonant background, spectral fitting is necessary to deconvolve individual

peaks. A fitting procedure[166] is employed that accounts for homogeneous and

inhomogeneous line-widths of VSFS active modes (Equation 6.3.).

χ(2) = χ
(2)
NR expiφ +

∑
ν

∞∫
−∞

Aν expiφν exp−[ωL−ων/Γν ]2

ωL − ωIR + iΓL
(Equation 6.3.)

The first term in Equation 6.3. is the non-resonant susceptibility (containing an

amplitude and phase). The second term is the sum over all VSFS active resonant

modes. The resonant susceptibility is a convolution of the homogeneous (lorentzian)

line widths of the individual molecular transitions (ΓL) with inhomogeneous

broadening (Γν). For a VSFS mode to be active, both a Raman transition

and IR dipole change must occur. This is modeled as the transition strength

Aν and is proportional to the orientationally averaged IR and Raman transition

probabilities. The frequencies of the lorentzian, resonant modes, and IR are ωL,

ων , ωIR, respectively. Each resonant mode also has a phase value, φν .
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The choice of incoming and outgoing polarizations allows for deriving information

about molecular orientation. This arises from the fact that of the 27 elements of χ(2)

there are four polarizations that are nonzero and unique (χzzz, χxxz, χxzx, and χzxx).

These unique elements can be probed using incoming polarized visible and IR light,

and outgoing polarized sum frequency light. The polarization naming schemes are

denoted as “S” (perpendicular to the plane of incidence) or “P” (parallel to the plane

of incidence) and are given in the order of sum frequency, visible, IR. By selecting

the incoming polarizations to be both S polarized, and the monitored output set to P

polarized output, the VSF response allows one to probe dipole components that are

perpendicular to the plane of the interface. The SPS polarization combination will

probe dipole components that are parallel to the plane of the interface.

Two different laser systems were used in these VSF studies. The first was focused

on the mid IR, carboxylic C=O region. This system is an upgraded version that has

been described previously.[32, 167] Briefly, a CW Nd:YVO4 laser (Millennia 5sJ,

Spectra Physics) is used to pump a Ti:sapphire oscillator (Tsunami, Spectra Physics)

which is tuned to produce ˜100 fs pulses centered at 800 nm. These pulses are then

amplified using a regenerative amplifier (Spitfire Pro XP, Spectra Physics) to produce

nominally 3 W of 800 nm light with a bandwidth of ˜12 nm. These pulses are split

with ˜1 W going to a home-built slicer that spectrally narrows the pulse to ˜2 ps

and ˜1 W going to an optical parametric amplifier (OPA-800C, Spectra Physics) for

DFG mixing and subsequent IR generation. Both the IR and visible pulses are then

propagated to the interface, where they are overlapped in time and space to produce

sum frequency pulses. The resulting sum frequency pulses are filtered by an edge

filter (RazorEdge, SEMROCK), collected by a lens, and focused into a spectrograph

(SpectraPro 150, Acton Research) which disperses the signal onto a liquid nitrogen
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cooled CCD (Princeton Instruments). All spectra are normalized to the non-resonant

response off of a bare gold surface (three 30 s scans and one 30 s background scan)

and are calibrated using a polystyrene standard and absorption lines from ambient

water vapor. All measurements were performed at 20 °C.

The second system used was calibrated for the water/CH region, and has been

documented in previous publications from this laboratory.[18] This picosecond system

generates sum frequency light by overlapping 800 nm (˜2.6 ps, 1 kHz repetition rate)

and tunable (2700-4000 cm−1) infrared light in a copropagating geometry at 56° and

67° from the surface normal, respectively. After filtering any reflected 800 nm light,

the resultant sum frequency light is collected with a thermoelectrically cooled CCD

camera (Princeton Instruments) in 3 cm−1 increments over the tunable range.

6.2.2. Surface Tension

The Wilhelmy plate method was used for collecting Surface tension

measurements of the aqueous solutions via a force balance (KSV Instruments).[168]

The solutions were placed in a clean glass dish and careful manipulation ensured that

the plate was oriented correctly to the interface. Samples were allowed to equilibrate

before the measurements were taken. The Pt plate was flamed until glowing orange

and rinsed repeatedly in >18 MΩ water between measurements.

6.2.3. Chemicals

Malonic acid was purchased from Sigma-Aldrich (ReagentPlus 99%). NaOH was

purchased from Mallinckrodt Chemicals (AR). All solutions were prepared fresh with

>18 MΩ water and used within 72 hours. All glassware was cleaned with concentrated

H2SO4 and NOCHROMIX and was thoroughly rinsed with >18 MΩ water.
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6.3. Computational Methods

Classical molecular dynamics (MD) simulations were performed using the Amber

11 suite of simulation programs.[11, 169] A single system of water and malonic acid

was initialized for simulation by creating a cubic unit cell with side lengths of 30 Å.

The unit cell was then randomly packed with 900 water molecules, and 40 malonic

acid molecules using the PACKMOL program created to simplify construction of MD

starting configurations.[170] This resulted in a malonic acid concentration of 2.5 M,

purposefully set to be similar to that of the VSFS experimental conditions.

The initial system was energy minimized by a combination of steepest descent

and conjugate gradient methods to reach a geometry optimization. The z-axis of

the system was then expanded to 100 Å creating a large vacuum region adjacent to

the aqueous cube. Periodic boundary conditions were then employed resulting in an

infinite slab configuration with two aqueous-vacuum interfaces. This configuration

was then evolved through MD simulation for 500 ps to equilibrate the system. The

system was then evolved for 50 ns of data-collection, recording atomic coordinates

every 100 fs for a total of 500,000 data points.

The simulations were performed using a timestep of 1 fs. Fully polarizable models

were used for both the water and malonic acid molecules. Water was simulated using

the POL3 model,[73] and the malonic acids were constructed using a fully atomistic

model based on the Amber FF02EP force field.[10] The system temperature was set

at 298K, and Langevin dynamics were used to propagate dynamics via a leapfrog

integrator. The particle mesh ewald technique was used for calculating long-range

electrostatic interactions, with a force cutoff set to 10 Å. Waters were held rigid by

means of the SHAKE algorithm to increase computational throughput and speed of

data collection.

102



In all following analyses, the results obtained for molecular orientation are

averaged between both of the water slab surfaces. The distance to each aqueous

surface was determined for every malonic acid at each timestep using the method

developed in our recent computational study to determine water surface locations.[19]

The closer surface was always used to analyze acid orientation, and the reference axis

was always set to point from the aqueous bulk outwards towards the vacuum phase,

normal to the plane of the water surface.

6.4. Spectroscopic Response of Carboxylic Acid

Spectroscopically probing the adsorption of malonic acid at the water surface

involved two different spectral regions: the first corresponds to the carboxylic C=O

modes in the 1600-1800 cm−1 region, and the second captures the C-H stretch modes

of the malonic acid and the OH stretch modes of surface water molecules in the 3000

cm−1 region. Both SSP and SPS polarization combinations were used in both spectral

regions to measure the modes that have dipole moments perpendicular and parallel

to the interface respectively.

Figure 6.1. shows the SSP spectra of aqueous MA at four concentrations. The

intensity of the signal from the carboxylic C=O modes in the SSP polarization

scheme increases as the bulk concentration of MA increases. The intensity increases

progressively from the lowest concentration at 100 mM to the highest concentration

at 3 M. In VSFS studies, intensity derives from both number density at the surface

and net surface orientation of the molecules probed; the direction is dependent on the

polarization combinations used. Malonic acid clearly is present at the water surface

with increasing population as the bulk solution concentration increases. The strong

signal observed under SSP polarization further indicates that the dipole moment of
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one or both MA carboxylic acid groups has a net orientation perpendicular to the

surface plane. According to the global fits of the spectra, one peak is centrally located

at 1740 cm−1 with a Gaussian width of 23 cm−1. No shift in the VSF signal frequency

is observed as bulk solution concentration increases.

Infrared studies of MA in bulk aqueous solution have shown that the carboxylic

C=O modes appear at 1719 cm−1 for the fully protonated (H2A) form, and 1713

cm−1 for the singly protonated (HA−) form.[171] In addition, this mode is also

sensitive to the degree of water solvation, with monomers in the vapor phase having

been measured as high as 1760 cm−1.[172] The intermediate frequency of 1740

cm−1 observed for MA at the water surface is a reflection of carboxylic C=O modes

that are weakly solvated by water molecules at the interface; they are more weakly

solvated than previous studies of the carboxylic acid group of hexanoic acid at the

vapor/water interface.[32] It should be noted that these are relatively weak signals.

Consequently, the normally negligible non-resonant background interferes with the

signal on the high-frequency side of the spectra resulting in a non-zero VSFS signal.

This interference has been seen before in VSFS studies of carboxylic C=O modes at

aqueous interfaces[173] as well as nitrate modes.[167] In addition to the frequency

assignments, the phase values obtained in the spectral fitting routines indicate that

the carboxylic C=O dipoles have an overall orientation pointing away from the bulk

water toward the gas phase.

The carboxylic C=O modes were also probed in the SPS polarization resulting

in less intense signals than SSP. Figure 6.2. shows the results. Since the SPS scheme

excites modes that are in the plane of the interface, the signal intensity can be

decreased due to canceling of the VSFS signal from the rotational degeneracy that

occurs in the polarization. Similar to the SSP experiments, the SPS signal intensity
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FIGURE 6.1. VSFS-SSP spectra of the carboxylic C=O of aqueous malonic acid at
concentrations of 0.1 M, 0.5 M, 1 M, and 3 M.

increases as the bulk concentration of MA increases. However, the fitted spectra reveal

a peak centrally located at 1730 cm−1 (versus 1740 cm−1 SSP) with a slightly larger
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Gaussian width of 30 cm−1 (versus 23 cm−1 SSP). Although this C=O frequency

is higher than bulk values, it is not shifted as much as that arising from the SSP

spectra, and is closer to bulk aqueous values. The larger Gaussian width is consistent

with a more heterogeneous environment, further supporting the assertion that the

SPS-active carboxylic C=O modes are in a slightly different environment than their

SSP-active counterparts.

6.4.1. CH and OH Spectral Response

In addition to probing the carboxylic C=O modes of MA, the spectral region

associated with the methylene CH modes of MA (˜2900 cm−1) was investigated

to develop a more comprehensive picture of the adsorbate structure. The OH

stretch modes of water were also investigated as a means of determining how the

adsorbate presence alters the surface water structure and bonding in three spectral

regions. A simple picture that has evolved from many VSF studies of OH oscillator

behavior: the free OH region (˜3700 cm−1) corresponds to the response of water

OH oscillators that have minimal interaction with nearby water molecules and in

fact are vibrationally decoupled from the hydrogen-bonding network of bulk water;

these modes are most affected by adsorbates at the top most layer of the interface.

OH oscillators corresponding to the most highly coordinated surface water molecules

reside at much lower frequencies (˜3200 cm−1); these are also water molecules deeper

in the interfacial region and more sensitive to the presence of interfacial ions. The

region corresponding to intermediate degrees of hydrogen bonding and interfacial

depth is seen near 3400 cm−1.

Figure 6.3. shows six spectra of the water/CH region for three different

concentrations of MA. Looking first at the CH stretch region, as the MA solution

106



FIGURE 6.2. VSFS-SPS spectra of carboxylic C=O of aqueous malonic acid at 1 M,
3.5 M, and 4.5 M.

concentration increases, there is a corresponding increase in intensity from 2800-

3000 cm−1. Unfortunately, the overlap between the OH modes and the CH modes
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makes distinct spectral characterization difficult. Nevertheless, this broad region

between 2800 and 3000 cm−1 is attributed to the carboxylic OH stretching of malonic

acid based on isotopic VSFS studies done on selectively deuterated succinic acid,

(COOH)2(CD2)2, in D2O and H2O.[18] The overall trend observed is that with

increasing MA concentration, there is a corresponding increase in signal in the CH

region. However, there is no evidence of a high degree of orientation of any CH modes

at the surface, even at the high concentration as can be seen from previous surfactant

studies. The absence of any observation of CH2 modes is likely due to an orientational

averaging effect. This will be addressed further in the computational section.

Looking next at the water response, upon adsorption, there is a corresponding

decrease in the free OH signal with increased MA in bulk solution and consequently

at the surface. This decrease is also observed in the 3400 cm−1 region corresponding

to somewhat stronger but still relatively weakly bonded surface water molecules.

Interestingly, the free OH signal does not fully disappear even at concentrations of

3.5 M indicating that the water surface is not completely covered by the MA. This

is unlike other similar acid surfactants, where the free OH signal is negligible once

complete surface coverage is reached.[174] Estimates from the surface tension data

indicate that at this high concentration, the area per MA molecules is on the order of

150-200 Å2 which is more than double that of a surfactant such as sodium dodecyl

sulfate (SDS). These results then suggest that MA adsorption is not completely

disrupting water at the top most layer and therefore must not pack tightly enough

to fully cover the surface. The spectral characteristics of water at longer wavelengths

are consistent with increased presence of MA at the surface. What appears to be an

increase in OH response around 3200 cm−1 is consistent with progressively stronger
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FIGURE 6.3. VSFS of water/CH region for 0.1 M, 1 M, and 3.5 M aqueous malonic
acid. The gray spectra are neat water.

surface OH bonding with the presence of MA. However, as noted above, the signal

from C-H modes complicate the interpretation in this region.

6.4.2. Surface Tension Results

Previous studies investigated thoroughly the surface tension of MA on H2O.[160–

162] The results reported here are in excellent agreement with the earlier

work. Surface tension measurement, a macroscopic technique, coincides with the
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overall surface concentration, whereas VSFS simultaneously measures both surface

concentration (number density at the surface) as well as molecular orientation.[90] By

combining the results of these two complementary techniques, a more complete picture

of the adsorption of MA at the surface is created. Figure 6.4. shows the comparison

between surface tension data, and the changes in the amplitude of the SSP and SPS

data with changing MA concentration. As the bulk concentration of MA increases

from 100 mM to 3 M, the surface tension decreases from values near that of pure water

(73 mN/m)[175] to approximately 65 mN/m; further increases in concentration do

not affect the surface tension substantially, and eventually become impossible due to

the solubility limit of MA in water.[161] The intensity of the VSFS C=O (SSP and

SPS) signal over the same concentration range rises analogously. The increases in

intensity are most dramatic between 0.5 M and 3 M, which is also the concentration

range where surface tension measurements show the greatest change. Considering

the unchanging frequency response in the VSFS signals and surface tension trends,

the adsorption that occurs at the surface as a function of concentration does not

significantly change the orientation of the carboxylic C=O modes, but does increase

the total number of modes at the surface.

6.4.3. pH Effects on Adsorption

The two different VSFS polarization schemes show differing frequency responses

for the C=O signal (1740 cm−1 versus 1730 cm−1). C=O bonds oriented

perpendicular to the interface (sensitive to SSP) have a different bonding environment

than those parallel to the interface (sensitive to SPS). To test this, studies were

performed by adjusting the pH, causing the protonated carboxylic acid to turn into

a resonance-stabilized carboxylate ion that completely removes the carboxylic C=O
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FIGURE 6.4. Plot of malonic acid concentration vs fitted VSFS amplitudes (left
axis) and surface tension (right axis).

spectral response. At a constant concentration of acid (1 M), the bulk pH was adjusted

and spectra of the C=O region were recorded in both SSP and SPS schemes. The

pKa values for MA are 2.85 and 5.70.[175] At a pH of 3, the bulk percentage of the

fully protonated MA approaches 40% with the singly protonated form near 60%. At

a pH of 4, the fully protonated form should account for approximately 7%, the singly

protonated form 91%, and the completely dissociated form near 2%. At a pH of 6,

111



the fully protonated form should not exist, a third of the acid molecules are singly

protonated, and the remaining two thirds are completely dissociated. Figures 6.5.

and 6.6. show the spectral response of the MA C=O as a function of bulk adjusted

pH as well as corresponding spectral fits. The VSFS signal intensity of the carboxylic

C=O region decreases as the bulk-adjusted pH is increased, but does not track the

bulk pKa closely. At a bulk pH value of 3, the SSP scheme (Figure 6.5.) clearly shows

signal with fitted amplitude near that of the native pH solution. In the SPS scheme

(Figure 6.6.), the signal at pH 3 is very low in intensity, making it difficult to obtain.

At a bulk value of pH 6, the SSP scheme has a dramatic decrease in signal (especially

noticeable from pH 4 to pH 5). The resulting signal, while small, is still detectable

at pH 7 and does not completely disappear until values of pH above 8. In the SPS

scheme, signal is not detected above pH 3.

The SPS data of Figure 6.6. are all fit to the same peak parameters as that of

the native 1 M solutions. The SSP data of Figure 6.5. are similarly fit, however the

fit quality deteriorates above pH 4. The deterioration is remedied by increasing the

Gaussian widths. This is indicative of a change in environment and is most likely

due to signal originating from the singly protonated form as opposed to the fully

protonated form of MA. By combining the results from the SSP and SPS schemes, it

is clear that these schemes probe carboxylic C=O modes that are non-equivalent and

that the pH behavior (protonation state) at the surface is not the same as the bulk

pH.

6.4.4. pH Effects on Surface Tension

To the best of the authors’ knowledge, the following constitutes the first published

study of surface tension of bulk pH adjusted MA solutions. Surface tension values are
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FIGURE 6.5. VSFS-SSP spectra of carboxylic C=O of aqueous malonic acid at 1
M with bulk adjusted pH values from native (top) to >8 (bottom). The spectra are
offset for clarity.
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FIGURE 6.6. VSFS-SPS spectra of carboxylic C=O of aqueous malonic acid at 1 M
with bulk adjusted pH values from native (top) to 6 (bottom). The spectra are offset
for clarity.
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plotted in Figure 6.7.. Also plotted is an integrated intensity for VSFS measurements

performed in SSP and SPS. As the pH is adjusted to 2, there is a slight increase

in surface pressure as well as SSP polarized VSFS signal. As the bulk adjusted pH

increases, the surface pressure and the VSFS intensity decrease. The surface pressure

drops to zero after pH 7 while the SSP VSFS intensity drops very slowly in the range of

pH 5 to 7 until finally decreasing to zero above pH 8. The surface tension experiments

exhibit an almost linear decrease as the pH is increased from pH 2 to pH 7. Classically,

this behavior indicates desorption, whereby malonic acid is no longer adsorbing to

the surface at higher pH values. However, the results combined with VSFS give us

a much more interesting picture. It is obvious that MA is still adsorbed at high pH

values as seen by the SSP VSFS results. In addition, the malonic acid molecules

present at the interface at these high pH values are at least singly protonated due to

the presence of a detectable carboxylic C=O signal.

6.5. Malonic Acid Orientation

Discussion of the molecular orientation of malonic acid begins with a description

of the angles used in the following analyses. Because the carbon atoms form the

backbone of the malonic acid molecular structure, determining the orientation of the

three atoms is the first step in understanding the overall orientation of the molecule

in space with respect to a water surface. Two angles describe the orientation of the

carbon chain backbone, and two dihedral angles orient the molecule internally. All

the angle definitions described below are depicted in Figure 6.8.

The group of three carbon atoms forms a moiety with a C2v symmetry. The two

C-C bond vectors have a bisector between them. This chapter refers to the bisector as

a vector pointing out from the central carbon in the direction of the other two carbon
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FIGURE 6.7. Plot of fitted VSFS amplitude vs surface pressure for bulk adjusted pH
1M malonic acid.

atoms. The first angle defined, θ, describes the “tilt” of the triatomic carbon chain

that forms the acid’s backbone. The angle θ is calculated as the angle formed between

the carbon group bisector vector and a reference axis oriented perpendicularly to the

water surface, pointing out of the water bulk towards the gas phase side of the water

interface. When θ = 0°, the bisector vector aligns with the reference axis. A value of

θ = 90° places the bisector vector in the plane of the water surface, perpendicular to
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the reference axis. Rotating the bisector to θ = 180° makes the bisector anti-aligned

with the reference axis, pointing in towards the water side of the interface.

The second angle used to orient the malonic acid carbon backbone, φ, describes

a molecular “twist” of the malonic acid. This twist angle is defined as a rotation of

the plane formed by the three carbon atoms around the bisector axis. For different

orientations of the angle θ, the distribution of φ will necessarily become isotropic

because of the symmetries of the plane of the aqueous slab surface. However, the

value of φ is necessary to describe the overall molecular orientation for θ values near

90°. When θ = 90°, the bisector of the carbon atom group lies parallel to the water

surface. In such a configuration, φ = 0° means the plane of the carbon atoms orients

perpendicularly to the plane of the water surface. Likewise, φ = 90° lays the plane of

the carbon atom group flat on the surface, parallel to the plane of the water interface.

The planes formed by the atoms of the carboxylic acid groups orient by rotation

of two dihedral angles, collectively referred to as ψ because they are not uniquely

identified, referenced to the plane of the three backbone carbon atoms. The dihedral

angle ψ is the angle of rotation of the C-C bond between the central methylene carbon,

and a carbonyl carbon of a carboxylic acid moiety. The reference orientation that

sets ψ = 0° is defined by two conditions: 1) the plane of the atoms of the carboxylic

acid orients parallel to the plane of the three carbon atoms, and 2) the carbonyl C=O

bond vector (pointing from the C to the O) points to the same side as the C-C-C

bisector vector (i.e. the inner product of the bisector vector and the carbonyl bond

vector has a positive value: C = O ·bisector > 0). A dihedral angle of ψ = 90° rotates

the O=C-O plane perpendicular to the C-C-C plane. Lastly, ψ = 180° rotates the

carboxylic acid such that the carbonyl is anti-aligned with the C-C-C bisector. The

various orientations of the dihedral angles are depicted in Figure 6.8., and characterize
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FIGURE 6.8. Definitions of the angles used to orient malonic acid molecules in space,
(left) θ and φ, and (right) internally, ψ.

the internal orientation of malonic acid. By combining all four of the described angles

with information about the acid position within the simulation box, we are able to

develop a nearly complete picture of the orientational behavior of malonic acid relative

to a nearby water surface.

6.5.1. Carbon Backbone Orientation

Bivariate angle distributions of θ and φ were calculated for the three carbon

backbone atoms, and are shown in Figure 6.9. The set of plots represents slices

through the interface parallel to the water surface. Each slice is located at the
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distance labeled in the top-right of the respective plot. Positive positions are further

into the vacuum phase, and negative positions are further into the water side of the

interface. A distance of 0 Å is located at the water surface location. The location

of the surface, and all calculations performed to relate interfacial position are done

using a method of averaging top-most water molecule positions, fully described in

our previous publication.[19] The molecular center of mass determined the position

of each malonic acid.

In each set of axes of Figure 6.9., the values of θ and φ are plotted along

the horizontal and vertical, respectively. The plots are two-dimensional histograms

colored by the intensity (i.e. population) of the location in the angle space. Intensities

for all plots were normalized such that the highest intensity (1.0) is colored in dark

red, and lowest intensity (0.0) is dark blue. Areas in the plots characterized by

uniform coloration indicate an isotropic distribution of angles. A concentrated region

of uniform coloration indicates an orientational preference in one or both of the

angular degrees of freedom.

The plot at a position of 2 Å in Figure 6.9. shows the orientation of the acid

carbon backbones just above the water surface. These acid molecules are most likely

less solvated than those further in to the water bulk. The most distinguishing feature

is the vertically-running band of intensity to the right of the plot centered between

135° and 180°. This results from a population of acid molecules with their three carbon

atoms oriented with the bisector vector pointed more than 45° into the water bulk.

φ is spread nearly isotropically in this distribution. However, due to the symmetry

of the θ angle as a spherical coordinate (i.e. a single θ value describes a cone in

space) φ will necessarily become more isotropic relative to the interface, or spread
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FIGURE 6.9. Bivariate distributions of the “tilt” and “twist” of the malonic acid
carbon chain at different interfacial depths.

out across the two-dimensional plots, as θ takes values near its extrema. θ values

closer to 90° require φ to fully describe the orientation.

At 0 Å and below, acid carbon backbone orientations are more complex. A second

population of orientations forms at 0 Å, manifested in the plots as a region of intensity

centered at θ = 90°, with φ also concentrated towards 90°. This indicates a carbon

atom group lying flat in the plane of the water surface. Additionally, as the depth

of the molecules increases from 0 Å to -4 Å, the population above θ = 135° decreases,

shifting intensity to the peak at θ = 90°. The distribution spreads out both in θ

and in φ. For acid molecules deeper into the water bulk, likely more solvated by

waters, the orientational freedom expands in θ and φ, until at -6 Å there is a loss of

orientational preference, resulting in a flat (evenly colored) distribution, and isotropy

of the carbon backbone group orientation.
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At -4 Å the θ distribution expands below θ = 45°. This is due to a population

of submerged malonic acid molecules with their bisectors aimed slightly up towards

the water surface. Thus, we establish that the influence of the interface on molecular

orientation extends both above and below the water surface, and lasts to a depth of

at least 4 Å into the water bulk.

6.5.2. CH2 Orientation

For each acid molecule, the orientation (θ) of the carbon backbone affects the

position and orientation of the molecule’s methylene hydrogens. An orientation of θ =

90°, and for all φ values, there are two hydrogens (one from each methylene) in a rather

symmetrical configuration with one above and one below the backbone’s plane, which

is itself parallel to the plane of the water interface. With θ = 90°, variation in φ results

in the plane formed by each H-C-H rotating from perpendicular (φ = 0°) to parallel

(φ = 90°) to that of the water surface. Consider acid orientations near θ = 90° and

further consider the vector defined by each methylene’s C-H bond. The geometry of

the acid is such that each of these C-H bond vectors has a component perpendicular

to the plane of the interface and whose magnitudes are identical. Effectively, these

’perpendicular to the water interface’ components are mirrors or each other.

Furthermore, if the θ distribution is symmetric around θ = 90° (as in the -

2 Å plot of Figure 6.9.), then the perpendicular components of the two methylene

C-H bonds negate each other. The carbon group θ − φ distributions at or below the

water surface (≤ 0 Å) exhibit this quality. VSFS experiments failed to produce any

spectral features related to the methylene CH2 modes of malonic acid. We propose

that the aforementioned orientational symmetry of the methylene C-H bonds about

the water surface, and the low population of malonic acids above the surface location,
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manifests spectrally in polarized VSFS experiments as a lack of intensity where the

C-H bond features are expected.

6.5.3. Carbon Backbone Dihedral Angles

Having established the orientation of the carbon backbone atom group from the

θ−φ distributions of Figure 6.9., we now turn to analysis of the internal geometry of

carboxylic acid moieties near the water surface. The two carboxylic acid groups rotate

around the two C-C bonds, quantified by their dihedral angles. The magnitudes of the

dihedral angles fall in the range 0°≤ ψ ≤180°. The O=C-O atomic plane is parallel

to the C-C-C plane at ψ = 0° and ψ = 180°, and the two planes are perpendicular

at ψ = 90°, as discussed above and depicted in Figure 6.8. The two dihedral angles

are plotted in a set of bivariate distributions in Figure 6.10. The arrangement of the

axes in the figure is identical to that of Figure 6.9., but with each axis representing

one of the two ψ angles.

Figure 6.10. shows that the dihedral orientations are strongly related with a

preferred rotation of 90° apart from each other. The two very concentrated peaks

in the plots are located at ψ = 0° and ψ = 90°. This results from the carboxylic

O=C-O atomic planes of the two carboxylic acids aligning perpendicularly to each

other. The topmost plot at 2 Å is not symmetric between the two dihedral angles with

only a single peak in the distribution (located at the left-center of the axis). This is

an artifact of how the carboxylic acid groups were enumerated computationally, and

indicates that the top-most malonic acids above the water surface take on a fixed

dihedral orientation, rarely switching values (i.e. rotating the molecule to flip the

alignment of both carboxylic acid groups).
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FIGURE 6.10. Bivariate orientation distributions of the two internal dihedral angles
of malonic acid.

One of the carbonyl C=O bonds is preferentially aligned in the same direction as

the carbon group bisector (ψ = 0°), and in the plane of the three carbons. The other

carbonyl C=O bond points perpendicular to the plane of the carbon group atoms.

The strong orientational preference is observed both in the bulk of the water and at

the water surface location.

There remains one final set of orientational data necessary to fully characterize

the interfacial malonic acid. The θ − φ distributions of the carbon atoms show that

the acid carbon chain lies flat when at the water surface (0 Å), and tilts with the

bisector pointing further into the water bulk when the malonic acid is slightly above

the water surface. The ψ − ψ dihedral distributions show one C=O carbonyl bond

mostly aligned with the carbon group bisector and the other carbonyl aligned normal

to the plane of the carbon atoms. The question remains as to which direction does
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the latter carbonyl C=O bond vector point? Is it pointed into the water side of the

interface, or does it point out towards the gas phase away from the water bulk?

The tilt angle of the C=O bond, θC=O, determines this carbonyl orientation.

Like the carbon group bisector tilt angle, θC=O is referenced to the axis normal to the

plane of the water surface, pointing out towards the gas phase side of the interface.

Figure 6.11. shows the angle distribution of θC=O plotted as a function of the

malonic acid molecular center of mass position. Most of the distribution is isotropic

in the tilt angle up to positions several Å beneath the water surface location.

Starting above the surface (positions > 0 Å), the distribution bifurcates into

two distinct angle regions. There is a protrusion in the distribution (region ’A’ in

Figure 6.11.) beginning just below 0 Å and extending above the surface, centered at

θC=O = 90°. A second peak in the distribution (region ’B’) is concentrated towards

the bottom of the plot near θC=O = 180°. At this position slightly above the water

surface, it is more clear that one of the carbonyl C=O bonds points into the water (the

bond oriented near θC=O = 180°), and the other points more out into the plane of the

surface and often slightly angled out from the water phase. When an acid molecule

located at, or just above, the water interface exhibits this internal orientation, it

means that one carbonyl bond is oriented pointing more towards bulk water while

the other is oriented towards the gas phase. It is reasonable to presuppose then, that

the bond oriented towards the bulk water will have more interaction with the water

environment than its partner carbonyl on the other end of the acid.

Further down into the water surface, the angle distribution spreads over a much

larger range until becoming isotropic near -2 Å. However, a feature appears at -

3 Å and extends down slightly past -8 Å into the water phase (region ’C’ in Figure

6.11.). In this region there is a decreased intensity in the histogram for θC=O > 120°.
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FIGURE 6.11. Orientational depth profile of malonic acid carbonyl C=O tilt angle,
θC=O, plotted against the molecular center of mass position.

This shows a population of malonic acid carbonyl C=O bonds pointing less into

the water bulk. At this depth, the carbon backbone orientation distribution becomes

relatively more isotropic, but there remains a population of acids with θCCC < 90° (i.e.

the carbon group bisector aims further towards the water surface), in agreement with

the carbonyl bond behavior, and the carboxylic dihedral orientations.

These orientational distributions paint the following picture of malonic acid

orientation broken into interfacial depth regions: 1) Above the water surface

the carbon group bisector tilts down towards the water, and the carbonyl bonds

orient with one bond pointing towards the water phase (potentially increasing the

interactions with surface waters), and the other carbonyl bond pointed out of the

water either parallel to the plane of the surface, or slightly out towards the gas phase.

2) At the water surface location (0 Å) the carbon group lies mostly flat in the plane

of the surface. The methylene C-H bonds align symmetrically above and below the
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surface. Also, the carbonyl C=O bonds have a similar orientation to those further

out of the water, but the carbonyl bond tilt distribution quickly becomes isotropic

just a few Å under the surface location. 3) At -4 Å and down to approximately

-6 Å, the carbon group θ − φ distributions broaden and quickly become isotropic.

The distribution of the carbonyl bond tilt, θC=O, shifts intensity at this lower depth

leaving a low-intensity region at approximately 120° ≤ θC=O. Both carbonyls orient

to point more towards the water surface at this depth than slightly above or below.

4) Further down in the water bulk, below -8 Å, the distributions become isotropic and

malonic acid assumes bulk-like behavior.

6.6. Summary

Malonic acid has interesting surface behavior that is not fully revealed solely by

macroscopic experimental measurements. VSFS results demonstrate that carboxylic

C=O oscillators can have two distinct frequencies, implying distinct hydration and

bonding environments. If the carbonyl dipole is parallel to the plane of the interface

a lower energy frequency is recorded, while if the oscillator is perpendicular to

the plane, a higher energy frequency is recorded. pH studies of malonic acid

adsorption corroborate the distinct environments of carboxylic C=O moieties, and

also provide evidence that surface malonic acid likely has different pKa values from

bulk. Computational results confirm the conclusions from the VSFS results and

provide quantifiable distributions of malonic acid orientation as a function of depth

into the water surface.

The results reported herein indicate a malonic acid molecule that lies mostly flat

on the surface of an aqueous solution. There is a competition at the interface between

the hydrophobic alkane spacer removing itself from the water, and the hydrophilic
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carboxylic ends further solvating in water. This results in the frequency shift of the

carboxylic C=O modes that has not been seen previously for bulk aqueous malonic

acid. In addition, malonic acid adsorbs to an aqueous interface, as evidenced by

experimental and computational techniques.

There have been spectroscopic studies showing shifts of the carboxylic C=O

mode up to 1740 cm−1, but these samples were either crystalline malonic acid[176,

177] or deliquesced samples.[178] For these samples, the splitting of the carboxylic

C=O is due to intermolecular hydrogen bonding (cyclic dimerization) and subsequent

splitting of the C=O spectral features into an out of phase mode (IR active) located

at higher wavelengths, and an in phase (Raman active) mode that is located at

lower wavelengths.[176] The VSFS results here present a feature that matches the

high frequency value but there was no signal arising from the lower frequency region.

Finally, at high concentrations of malonic acid, there was a drop in intensity in the

VSFS signal. Since there is an inversion center with a cyclic dimer, any dimerized

malonic acid molecules would no longer be sum frequency active.[90] It may be that

as the concentration is increased to near the solubility limit, dimers begin to form.

The drop in intensity of the VSFS signal from desorption can be ruled out due to

surface tension measurements.

It is possible that malonic acid can form a six-membered ring involving a

hydrogen bond between the alcoholic hydrogen on one carboxylic moiety and the

carbonyl oxygen on the other carboxylic moiety. Computational studies have

shown that while this may occur in the gas phase, there is no evidence for ring

formation in solution unlike the mono-anion which has been shown to adopt a ring

structure.[179, 180] While the VSFS studies herein do not show evidence of a ring
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structure at the interface, there is computational evidence for ring formation at the

interface. This will be discussed in more detail in a later publication.[20]

While much work has been done on the thermodynamic aspects of aqueous

malonic acid in order to predict and describe the properties of a binary aqueous

malonic acid aerosol, these results provide a complete picture of how this acid adsorbs

and orients at a vapor/water interface, and also fascinating insights into how the

chemistry at an interface can greatly differ from that of the bulk.

Chapter VII presents the follow-up DFT-MD computational study of malonic

acid on a water surface. The DFT-MD simulation analyses are compared to the

classical interaction potential results. Additionally, a noteworthy intramolecularly

bound form of malonic acid is documented, and its behavior at the water interface is

compared to the unbonded form.
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CHAPTER VII

MALONIC ACID CONFORMERS AND HYDRATION

This work was co-authored, and the manuscript is in preparation to be submitted

for review for publication. Dr. Geraldine Richmond supplied computational resources

and project support. Eric Shamay was the principle investigator for this work.

7.1. Introduction

Despite our recent experimental and theoretical achievements with simple organic

acids in environmentally relevant systems, it is clear that our scientific understanding

has far to go. The interfacial region of an aqueous solution is a turbulent and dynamic

environment where the behaviors of even small organic molecules evade definition.

How does the interfacial region alter behavior and strength of organic acid solutes?

Do acid molecules interact with water at a surface as they do in bulk? What hydrate

species and behavioral differences occur at an interface that are not found deeper in a

liquid phase? Experiments addressing these types of questions give us valuable insight

and information, but have not to date fully captured actual microscopic behaviors

and events. Computationally, however, these systems can be more fully characterized.

Coupling computational results with previous experimental work provides a much

more complete picture of acid behavior throughout aqueous interfacial regions.

Organic acids are a particularly interesting candidates for studying aqueous acid

behavior. Dicarboxylic acids are a pertinent class of hygroscopic, water-soluble,

and atmospherically relevant bolaamphiphilic molecules, receiving much attention in

recent years both experimentally,[147–155, 181–194] and in theoretical computational

studies.[183, 186, 194–201] They vary in size from the smaller oxalic acid to larger
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humic-like substances.[145, 146] Dicarboxylic acids make up an appreciable amount

of the atmospheric organic particulate matter, and are implicated in the nucleating

condensation of clouds.[156, 192, 195, 196, 202, 203] Because of their presence in the

atmosphere from biogenic and industrial processes, in various types of particulates and

aerosols, they are known to affect climate conditions and atmospheric chemistry.[142–

144, 181, 187–193, 195, 196, 202–204]

Malonic acid, the second-smallest of the dicarboxylic acids, has been studied

in binary and heterogeneous reactions, and in aerosols to develop cloud nucleation

models.[163, 164] It has previously been studied experimentally with several recent

publications attesting to its importance.[157–159, 161, 162] Many computational

theoretical works have also probed the nature of malonic acid in small cluster systems,

at aqueous surfaces, and in gas phase.[179, 180, 201]

Ab initio molecular dynamics (MD) techniques are used to model and simulate

the hydrating water structures that form around an interfacial malonic acid in

water. The quantum MD technique described herein allows more realistic and

accurate simulation than the previous classical MD study reported in chapter VI.[21]

That work determined net orientational behavior of malonic acid, coupled with

experimental spectroscopic results to build a refined model of the acid’s behavior

at the air/H2O interface. However, the classical interaction potential used needs to

be tested against accurate quantum potentials to further verify the validity of the

results obtained.

Quantum DFT MD simulation is the natural follow-up to the classical MD study

as the interaction potential accurately reproduces hydration geometry around surface

acid molecules. From the simulation data we examine in detail the specific bonding

interactions that occur between surface waters and the carboxylic acid moieties of the
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malonic acid molecule, and look at the geometries and orientations of the hydrated

acid molecule. Five concurrent simulations have been performed in this work, each of

a malonic acid molecule bound to a water system surface. Each system was simulated

at a temperature, solution concentration, and pH set to match the conditions of the

complementary experimental studies.[21] The experiments showed that an aqueous

malonic acid has a surface propensity in low-pH conditions. Although conclusions

regarding the specific nature of those surface-bound hydrate complexes could only be

inferred from experimental results, previous and current computational simulations

provide insights about the hydrated geometries of the acid molecules, and their

orientational behavior.

This computational study is a necessary step in the development of models of

malonic acid, and to continue building the picture of aqueous acid behavior. This

chapter presents a comparison between the classical and DFT interaction potentials

to verify the validity of fully atomistic classical potential. Documented here is the

internal geometry of surface malonic acid molecules, and behavioral implications of an

interesting intramolecularly hydrogen-bonded species of malonic acid. These results

complement several experimental and computational studies of the intramolecular

interaction in several organic diacid conformers.[179, 180, 183, 194, 196, 198, 200, 205–

208] Also shown is the orientational behavior of the aqueous surface acid molecule

interacting with neighboring waters, specifying how the acid orients both with respect

to the water surface, and internally by twisting about the carbon backbone bonds.

The final analysis is of the vibrational behavior of the carbonyl modes of the acid

to compare with and complement the previous experimental results, and to further

strengthen the link between computational and experimental efforts.
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7.2. Computational Methods

On-the-fly ab initio molecular dynamics simulations were performed with the

QUICKSTEP package, which is an implementation of the Gaussian plane wave

method using the Kohn-Sham formulation of density functional theory (KS-DFT).[13]

The Kohn-Sham orbitals are expanded using a linear combination of atom-centered

Gaussian-type orbital functions. The electronic charge density was described using

an auxiliary basis set of plane waves. Energies and forces from on-the-fly simulation

sampling of the Born-Oppenheimer surface were calculated for each MD step using

the Gaussian DZVP basis set, the exchange-correlation functional of Becke, Lee,

Yang, and Parr (BLYP),[34] and the atomic pseudo-potentials of the Goedecker,

Teter, and Hutter type.[33] A simulation timestep of 1 fs was used, with a Nose-

Hoover thermostat set at 300K. These computational parameters were verified to

yield a reasonable description of bulk room temperature water both when simulating

a neat-water system, and in our previous computational studies with additional

constituents.[14]

Five acid-water systems of unit cells sized 10x10x15 Å3 were created as starting

points for concurrent simulation. Each unit cell was initially randomly packed with

34 water molecules, and 2 HCl molecules. The system size was then expanded by an

additional 10 Å in the long cell dimension to final dimensions of 10x10x25 Å3. Periodic

boundaries were then set on all axes to form an infinite aqueous slab configuration.

A single malonic acid molecule was then added onto the top of each water cell

within 2 Å of the topmost water molecule to simulate a malonic acid at the top-

most point of contact with a water surface. Each of the five system energies were

then minimized through a geometry optimization procedure. Subsequently, each

system was equilibrated for 1 ps in canonical ensemble (NVT) conditions. Using
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the equilibrated systems as starting points, each was simulated for a further 40 ps in

the microcanonical ensemble (NVE), with coordinate snapshots recorded every 1 fs.

This simulation process resulted in 40,000 time steps of system trajectory for analysis

in each of the five system replicas.

7.3. Hydration Structure

To compare the KS-DFT and classical interaction potentials, the Omal-Hwat

radial distribution functions (RDF) are given in Figure 7.1. (where the subscripts

“mal” refers to one of the malonic acid oxygens, either alcohol or carbonyl, and “wat”

refers to water hydrogens). Both the KS-DFT (black) and classical (green) interaction

potential RDFs are plotted in Figure 7.1. The two RDFs shown are of the Oalcohol-Hwat

(left) and the Ocarb-Hwat (right). There is reasonable agreement between the hydration

structures calculated using the different interaction potentials. This similarly is an

indication that some features of the water packing around the carboxylic acid groups

are reproduced by the less exact classical potential, in comparison with the more

accurate KS-DFT interaction potential. Differences in the RDFs suggest the two

interaction potentials disagree mostly in the first solvation shell. In the alcohol oxygen

plot, the classical potential results in significantly more structure in the first peak,

while the trend is reversed in the plot of the double-bonded carbonyl oxygen RDF.

This is likely due to the inability of the classical potential to fully reproduce resonance

structures of the carboxylic acids, which would lead to a more symmetric solvation

structure than the KS-DFT. The inability of the classical interaction potential to

capture the asymmetry of the solvation structure will becomes more apparent on

examining restricted regions near the interface. Thus, although the classical potential
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produces a similar average structure, it does not fully capture the resonance structure

that is likely very important in the hydrogen bonded states of the malonic acid.

FIGURE 7.1. RDFs of malonic acid oxygens and water hydrogens.

7.4. Bond Lengths

Our first analysis is of atomic distances within the malonic acid molecules in an

effort to study the internal geometry of the acid. Looking at the acid alcohol moiety’s

O-H distance also verifies the protonation state to ensure that the imposed low-pH

conditions effectively keep the surface malonic acid fully protonated throughout the

simulations. The bondlength trajectory (i.e. the inter-atomic distance as a function

of time) of each of the acids O-H bonds is plotted in Figure 7.2. (dark blue and green

traces) for both of the carboxylic acid moieties of two representative simulations.

Color-coded markers around each bond of the molecular graphic to the right of the

plots designates the atom pair used to calculate each trace. Both O-H distance traces
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remain very close to the expected equilibrium O-H covalent bondlength of 1 Å for the

entire trajectory, indicative of a protonated acid. All five simulated malonic acids

were verified by this method to be fully protonated throughout the trajectories.

FIGURE 7.2. Bond trajectories of malonic acid intramolecular distances between
the acid (green and dark blue) O-H distances, and (light blue and red) protons and
carbonyl oxygens on the opposite ends of the molecule. (top) an example of an IHB
bond trajectory, and (bottom) an IUB trajectory.

The distances between atoms of malonic acid were inspected for the simulated

trajectories, and a noteworthy atomic bonding pattern occurred in two of the five

simulations. Figure 7.2. also shows the plots of distances between each acid proton

and the carbonyl oxygen on the opposite end of the molecule (in red and light

blue). The top plot of Figure 7.2. shows the case where one of the two Ocarb-

Hacid distances is significantly shorter than the other, spending nearly the entire

trajectory at a distance close to that of a strong hydrogen bond (e.g. < 2.4 Å).

The bottom plot shows a simulation where both Ocarb-Hacid distances remain longer

than an H-bond. The former case (top plot) is hereafter referred to as the

“internally bonded” or “intramolecularly H-bonding” (IHB) molecule, and the latter
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case (bottom plot of Figure 7.2.) is referred to as the “internally unbonded” (IUB).

These two stable conformers were predicted in early computational studies, where the

IHB conformation was found to have the lowest energy.[179, 208, 209] However, only

the IUB conformer was predicted to be stable when in aqueous solution. A graphic

depiction of the proposed structure of these two conformers is shown in Figure 7.3.,

with the IHB form exhibiting an interaction between one acid hydrogen and a carbonyl

oxygen at the opposite end of the molecule.

FIGURE 7.3. Two conformations of malonic acid encountered during simulation.
(left) IUB and (right) IHB conformations.

Referring to Figure 7.3., the presence of a hydrogen bond internal to the acid

causes the molecule to fold into a ring-like structure of six atoms. The intramolecular

H-bond initially formed during the equilibration phase in two of the five simulations.

Clearly, it is strong as once formed it remained for the entirety of the simulations.

Conversely, in the simulations exhibiting IUB molecules, the intramolecular H-bond

forms only briefly, or not at all in the simulated trajectories. Additionally, all

simulation cells were initialized with malonic acids with identical internal geometries,

albeit randomly placed and oriented on the water surface. This suggests that the

formation of the IHB configuration is a result of the initial placement of the acid with
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respect to the simulated water molecules in the system, i.e. the initial solvation of

the acid.

The unique internal bonding behavior of malonic acid is thus demonstrated

with two of the five simulations exhibiting the IHB configuration. The other

three simulated acids remained IUB. To highlight differences and similarities in the

remainder of this report, and to show trends in behavior of malonic acid on a water

surface, the analysis proceeds to present results that differentiate between both sets

(IHB and IUB conformations) of simulations, as well as the sum-total of data from

all the simulations.

Figure 7.4. shows the distribution of bondlengths for the covalent O-H bonds,

the Ocarb-Hacid distances, and also the C=O carbonyl bonds, using the same color

scheme as in Figure 7.2. The top plot shows the bondlength distribution for the IUB

malonic acid simulations, and the bottom plot shows the distributions for the IHB

acid molecules. The insets of Figure 7.4. expand on the region containing the O-

H alcohol, and C=O carbonyl moieties. The bondlength distribution plots further

emphasize trends noted earlier, and show other configurational changes in the malonic

acid molecules.

In the top plot of Figure 7.4., each pair of distributions corresponding to each

bond type, are of similar width and mostly overlap because they each have very

similar peak locations. This is indicative of a malonic acid where both ends of the

molecule behave similarly, most likely due to similar hydration environments. This

also suggests that the IUB malonic acid orients symmetrically with respect to the

water surface in order to achieve equal solvation for both carboxylic acid groups (i.e.

the acid likely lies flat in the plane of the surface keeping both carboxylic acid ends

at equal depths).
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FIGURE 7.4. Distributions of inter-atomic distances for the O-H and Ocarb-
Hacid bonds, and also for the two carbonyl C=O bonds of each malonic acid. (top)
IUB, (bottom) IHB. (insets) expanded regions of the two alcohol O-H, and carbonyl
C=O bondlengths.

The case of the internally bonded acid molecule (bottom plot of Figure 7.4.) is

different in many respects. The distribution of the lengths of bonds at both ends

of the molecule are not overlapped as in the IUB case. The distribution of one of
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the bonds of a given type (e.g. the carbonyl C=O bond) is shifted to longer lengths

than the same bond at the other end of the molecule (e.g. one of the C=O carbonyl

bondlength distributions is shifted to longer distances relative to the distribution

of the other carbonyl in the opposite carboxylic acid group). With regards to the

internal hydrogen bond, the light blue peak is entirely shorter than a typical H-

bond length in water (approximately 2.4 Å), whereas the other Ocarb-Hacid distance is

greater than 4 Å. Interestingly, there are two distinct peaks in the non-bonding Ocarb-

Hacid distribution (red trace) indicating two distinct conformations of the internally

bonded malonic acid. These conformations shorten or lengthen the unbound Ocarb-

Hacid distance at different times during the simulations.

The presence of the intramolecular H-bond affects covalent bonding geometry

throughout the malonic acid. Looking at the two O-H peaks in the bottom plot

of Figure 7.4., centered near 1 Å, one is shifted to longer bondlengths (green) than

the other (dark blue). The green colored trace corresponds to the alcohol moiety

that is participating in the IHB. The delocalization of the bonding electrons in a

hydrogen bond allows the hydrogen proton to move further from its covalently bound

oxygen, shifting the bondlength distribution to the right relative to the unbonded

O-H (colored dark blue). Interestingly, the C=O carbonyl bonds behave similarly.

The maroon colored bondlength distribution corresponds to the internally H-bonded

carbonyl oxygen. The entire bondlength distribution is shifted to longer distances

compared to that of the carbonyl not participating in the internal H-bond (yellow

trace). The bondlength averages and standard deviations of the distributions are

listed in Table 7.5., quantifying the changes to the bondlengths. These geometric

changes result in other behavioral differences, both orientationally and spectrally, as

described later in this work.
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FIGURE 7.5. Average inter-atomic distances (i.e. bondlengths) between various pairs
of atoms in malonic acid, and their standard deviations.

7.5. Molecular Orientation

Hydration of malonic acid by neighboring surface waters strongly affects its

surface behavior. A change in the water environment around the acid can strongly

alter the overall orientation of the molecule with respect to a water interface. The

following analysis examines molecular orientation of malonic acid using a set of angles
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to define the molecule’s orientation in space at an aqueous interface, and the acid

molecule’s internal orientation.

Here is briefly introduced the angles used in the analysis, and a graphical

depiction of their definitions in Figure 6.8. for reference. For a complete discussion of

the angles used in the analysis, the reader is referred to the previous publication that

fully defines them.[21] First, consider the molecular orientation of the three carbon

atoms that form the acid’s backbone. Two angles, θ and φ, describe the carbon

backbone “tilt” and “twist”, respectively. The tilt angle, θ, is measured from a

reference axis (herein defined as the vector normal to the plane of the water interface,

pointing away from the water phase) to the carbon-group bisector axis (bisecting the

two C-C bonds, and pointing from the central carbon towards the direction of the

other two carbon atoms). The backbone twist, φ, is rotation of the carbon group

about the bisector axis. If the bisector lies in the plane of the water interface such

that θ=90°, the twist will have a value of φ=0° when the plane of the three carbons

is perpendicular to the plane of the water surface. A combination of θ=90° and

φ=90° indicates an orientation with the plane of the carbon group lying flat to the

plane of the water surface.

Furthermore, it is possible to orient the carboxylic acid moieties in the molecule

by quantifying the dihedral angle, ψ, for each of the two acid groups. The angle ψ is

a rotation of the plane of the O=C-O atoms of a carboxylic acid group relative to the

plane of the three carbon atoms. An orientation aligning the carbonyl bond vector

(pointing from C to O) of a carboxylic acid group parallel to the carbon group bisector

results in a dihedral of ψ=0°. Depictions of the angle definitions, and various values

of ψ for one of the carboxylic acid groups, are shown in Figure 6.8. for reference.
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Plots of the θ-φ distributions are provided in Figure 7.6. Three bivariate

histograms are shown, depicting the orientational trends of the carbon backbone

group. In these normalized intensity plots, highest intensity regions are colored

darker red (1.0), and low intensity regions are colored dark blue (0.0). Regions of the

plots exhibiting uniform coloration indicate isotropic behavior, whereas concentrated

regions of high intensity show a preference for a particular orientation given by the

specific angle combinations.

FIGURE 7.6. Intensity plots of the bivariate distributions of the two carbon group
angles, θ and φ. (right) plots of the contributions from the (top) IUB and (bottom)
IHB malonic acids.

The larger plot on the left of Figure 7.6. shows the distribution collected from the

data of all five simulations. The highest intensity region is centered at θ=135°, and

φ=90°. This indicates an orientation of the plane of the carbon backbone group tilted

45° from the plane of the water surface with the central carbon further out towards

the gas-phase side of the interface than the two carbonyl carbons. Additionally, the φ

values show that the two carbonyl carbons are both at similar depths into the water

side of the interface.
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Although the entire range of θ and φ values are found in the distribution, the

bulk of the intensity is concentrated around θ=135°, and very little appears in the

region below θ=90°. Thus, there is a clear orientational preference established for the

carbon group atoms, and this has a direct effect on the orientation of the other atoms

in the molecule.

These orientational results complement those found in our previous classical force

field simulation study of malonic acid.[21] In that study the behavior of the top-most

malonic acid molecules on a water surface exhibited a very similar θ-φ distribution as

in the results shown in Figure 7.6. However, in the classical simulations, acids located

deeper into the water bulk reoriented, resulting in interfacial layering of orientational

preferences that changed with depth. In the present work, none of the simulated

molecules moved into the water side of the interface (i.e. penetrated the water bulk).

Likely, this is because of the length of the simulations. Hence, only the top-most

acids on a water surface are represented in the simulations, and comparison with the

results from the previous classical simulations are limited, accordingly.

The results of the θ-φ analysis were further broken down to differentiate between

IUB and IHB systems. These are plotted on the top-right and bottom-right of Figure

7.6., respectively. IUB systems exhibit a very strong orientational preference in θ.

The IUB set of acids are entirely oriented with θ > 90°, and the distribution is tightly

concentrated around θ=135°. The twist, φ, is concentrated around a value of φ=75°,

with a smaller high-intensity region at φ > 80°. As the twist angle decreases from

90° the two ends of the carbon atom chain move to different depths in the interface.

Upper values of φ in the most intense region of the distribution reach near φ=60°,

resulting from a twist that sends one end of the molecule 30° further out of the

aqueous surface than the other. Thus, each carboxylic group (as they occupy the end
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positions) will experience a unique solvation environment. One being more bulk-like,

the other less so.

Turning now to the IHB malonic acid θ-φ plot of Figure 7.6., slightly different

orientational preferences occur. The region of highest intensity is concentrated at

φ=90°, but spread over a wide range of θ, approximately between 90°< θ <150°.

Furthermore, θ values in the plot span the entire range down to θ=0°. Clearly the

intramolecular bonding leads to greater orientational freedom of the carbon backbone

as evidenced by the broader distribution and greater range of orientations. This is

intuitively expected for a molecule that has less bonding to neighboring waters due to

an internal hydrogen bond partially occupying both carboxylic acid functional groups.

Water is less likely to interact with a malonic acid that has fewer binding sites, and

will not stabilize the acid’s position or orientation as strongly as it would an IUB

molecule. Thus, the internal H-bond gives the acid molecule access to many more

orientations on the water surface than its counterpart: the IUB acid.

The internal geometry of malonic acid is defined here by the two dihedral angles

that quantify rotations of the carboxylic acid groups about the molecule’s two C-C

bonds. As mentioned earlier, the angle ψ is referenced by the co-planar alignment of

the C=O carbonyl bond with the C-C-C group bisector. Figure 6.8. depicts various

orientations of a carboxylic acid group and the accompanying values of ψ. The

overall ψ-ψ distribution is plotted on the left of Figure 7.7. with the plots of the IUB

and IHB systems to the right in the figure on top and bottom, respectively. It is

not distinguished here between the two carboxylic acid groups of the acid molecules.

Consequently, the horizontal and vertical axes of the ψ-ψ plots are arbitrarily assigned

to one of the two acid dihedral angles. The larger plot of all simulation data is

overwhelmed by the high intensity concentration at the ψ-ψ region of 0°-180° at
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the bottom left of the plot. Much lower intensity regions appear throughout the

ψ-ψ range.

FIGURE 7.7. Intensity plots of the bivariate ψ-ψ distribution of the two malonic acid
O=C-C-C dihedral angles.

Looking to the IHB plot at the bottom right of Figure 7.7. it is clear why the

larger plot of all the data sets is similarly concentrated at the bottom left of the plot.

All of the intensity of the IHB acids indicates that the two carbonyl C=O bonds are

aligned anti-parallel to each other. The strong H-bond holds the internal geometry

nearly fixed with very little distortion through bending of the acid’s six-atom ring

structure, or twisting of the carboxylic acids around the C-C bonds. An intense and

highly concentrated region of the dihedral angle distribution is indicative of a stable,

virtually rigid form of the IHB malonic acid.

The IUB malonic acids exhibit a very different behavior in their carboxylic

acid orientations. The top-right plot of Figure 7.7. shows the much broader,

less concentrated distribution resulting from acids without the internal H-bonding

constraints. The broad regions of low intensity throughout the distribution

demonstrates the molecule’s much greater flexibility, a consequence of having the

two carboxylic acid ends of the molecule much more decoupled. However, a trend
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is apparent in the distribution of the two dihedral angles. Note the two regions

of intensity in the plot located at the center-left and top-center. In our previously

published results of the complementary classical interaction potential simulations,[21]

the ψ-ψ distributions throughout the interfacial region had two similarly located

regions. In that study the regions of the plot were more concentrated over small

areas at ψ-ψ values of 0° and 90°. That combination is indicative of the dihedrals

aligning 90° from each other, i.e. perpendicularly. One of the C=O bonds is aligned

parallel to the C-C-C bisector (ψ=0°), and the other is perpendicular to the plane

formed by the C-C-C atoms (ψ=90°). The correspondence of the two regions in the

distribution of the present work to those of the classical simulations is noteworthy.

The classical force field reproduces the dihedral trend of two peaks in the distribution,

but the much smaller range of ψ angles suggests that the corresponding dihedral

term in the classical potential needs to be adjusted to better recreate the KS-

DFT results for higher accuracy. The present results, however, demonstrate that

without further modifications, there is reasonable agreement between the KS-DFT

and classical interaction potentials with regards to the overall orientation of surface

malonic acid molecules. The shortcoming of the classical interaction potential is its

inability to properly capture the IHB conformation.

Having now established the θ-φ orientational trend of the carbon backbone

atoms, and the ψ-ψ dihedral relationships, this establishes a nearly complete

orientational picture of malonic acid on a water surface. What remains is to determine

the absolute orientation of both carboxylic acid groups with respect to the plane

of the water surface. In order to compare the computed orientational results with

recent experimental results,[21] determined by the SFG spectra of the carbonyl modes

of malonic acid, the configuration of the carboxylic acid groups is now discussed.
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Specifically, the analysis presented shows how the carbonyl C=O bond vectors orient

relative to the reference axis normal to the plane of the interface, forming a carbonyl

tilt angle, θC=O.

The distribution of θC=O is presented in Figure 7.8. The black plot shows the

distribution of angles from all simulation datasets. The red and blue plots correspond

to the θC=O data collected only from the IHB, and IUB simulations, respectively.

In all the distributions two angle regions dominate in intensity, appearing as peaks

from approximately 50°-120°, and 150°-180°. The former angle range corresponds to

carbonyl C=O bonds pointing in the plane of the water surface (θC=O = 90° indicates

a carbonyl parallel to the plane), slightly above, or slightly below the plane. The

latter range indicates carbonyl bonds pointing directly in towards the water side

of the interface (θC=O = 180°) or within a cone of approximately 30° tilt from the

reference axis into the water bulk.

FIGURE 7.8. The tilt angle, θC=O, of the two carbonyl C=O bonds of malonic acid
(black) for all simulations, (blue) for IUB simulations, (red) IHB simulations.
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Looking at the individual red and blue plots, there are some differences between

how the internal bonding conformations behave. The lower peak of the blue plot is

centered at approximately θC=O = 90°, extending up to 30° to either side. The peak

near 180° extends down to 130°. Between the two peaks there is a small intensity,

whereas for θC=O < 50°, there is no intensity as the distribution drops to zero.

The red plot, representing the IHB acids, is lower in overall magnitude than

the blue plot because only two of the five simulations are represented. Additionally,

there is intensity throughout the entire θC=O range, as compared to the blue plot

which shows little intensity at the lower angles. The location of the lower red peak

is centered near θC=O = 70°, which is almost 20° lower than the equivalent blue

distribution peak. The width of the red peak is smaller, narrower by approximately

20°. The peak at 180° similarly narrows by nearly 20°.

In both sets of simulations there is a clear trend for malonic acid to point one of

its carbonyl bonds into the water side of the interface (θC=O = 180°), while the other

bond points in the plane of the interface, or slightly above of below it (θC=O ≈ 90°).

The formation of the internal H-bond slightly shifts the angle of the in-plane carbonyl

to point further out away from the water side of the interface (θC=O ≈ 70°). Also,

the IHB acids enjoy a greater orientational freedom in their carbonyls overall (i.e.

the distribution has intensity throughout all angle regions), but the peaks in the

distribution are narrower than for the IUB molecules. It is likely that the orientation

of the carbonyl bonds on the water surface is affected by their solvation environments,

and hydration by surface waters. The IHB malonic acid has a peak in the distribution

of θC=O that lies slightly further to the left (i.e. lower angle values) than its unbonded

counterpart. Lower angle values indicate a carbonyl bond tilt further out from the

surface, away from the water bulk. This slight orientational difference likely leads
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to a difference in the strength, or amount of hydration on this particular carbonyl

bond. The effect of this will become apparent spectrally, and may lead to interesting

chemical differences between the two conformations.

7.6. Bond Spectra

Knowing the orientational behavior of malonic acid helps to establish a model

for how the molecule behaves on an aqueous surface. To link this computationally

derived model to the experimental work, the computed spectra of one of the functional

moieties of the acid molecules is examined. The bondlengths of the carbonyl C=O

bonds were calculated for each simulation at each timestep (similar to the results

presented earlier in Figure 7.2.) to generate a time-dependent function, f(t). A

calculation was then performed on the time function to generate the power spectrum

of the bond lengths, I(t), hereafter referred to as a “bond spectrum”. While not fully

encapsulating the response of dipole transition moments or recreating IR or SFG

spectra, the frequencies captured in a bond spectrum are representational of the local

mode frequencies expected from experimental spectroscopic studies, and are directly

comparable.

Figure 7.9. shows the C=O carbonyl bond spectrum averaged from all the

simulations (top, black spectrum). The two colored spectra in Figure 7.9. show the

contributions of the IHB and IUB malonic acids, in the bottom and middle spectra,

respectively. The coloration of the bottom two plots matches that of Figure 7.4.,

where the spectral contribution of the carbonyl taking part in the internal H-bond is

colored maroon, and the other carbonyl bond response is colored yellow. The color-

coded graphic of the molecule for both internal bonding conformations has been

reproduced next to the corresponding spectra for reference. For the IUB malonic
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acids, the coloring is more arbitrarily assigned because of the interchangeability of

the two carbonyl C=O bonds.

FIGURE 7.9. Vibrational power spectra of the carbonyl C=O bond trajectories with
(inset) experimental results.

The top spectrum of Figure 7.9. spans approximately 130 cm−1, with a maximum

located towards the upper frequencies near 1800 cm−1. The width of the spectrum

suggests a large distribution of solvation environments in which the carbonyl bonds

are interacting with surface waters. In our previous SFG spectroscopic experiments,

the response of surface malonic acid molecules was determined to lie within the same

spectral range, with a peak centered at 1745 cm−1. The experimental results are

very well reproduced in these bond spectra calculations, increasing confidence in the

computational method employed for the simulations, and also the consequent model

developed for the orientation and other behaviors of the acid molecules.

To further emphasize the differences between the IHB and IUB configurations of

malonic acid, the bottom two spectra of Figure 7.9. show the contributions from each
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of the two sets of simulations. The IUB acids have the two ends of the molecule acting

more independently than would be the case if there had been an internal bond. The

two carbonyls can thus both experience a full range of solvation environments. The

spectral response of these two carbonyls are expected to be similar, or overlapped in

frequencies. As shown in the middle spectrum of Figure 7.9., the two carbonyl spectra

are mostly overlapped, and form the central contributions to the overall spectrum from

the collection of all simulation datasets (top of Figure 7.9.). Looking to the bottom

spectrum in Figure 7.9., there is a dramatic splitting of the two carbonyl peaks. The

C=O bond involved in the IHB is red-shifted, and the other carbonyl is blue-shifted

compared to the IUB spectra. This shift in frequencies shows the strong effect of

an internal H-bond on both the bonded carbonyl, and the outer uninvolved carbonyl

bond.

In this study, the statistical distribution of the two internal bonding

conformations could not be established because of the limited data collected and

computational resources used. Thus, the intensities of the spectra can not be directly

compared to experimental results, but the frequencies themselves are representational

of those for carbonyl bonds. Future studies employing larger data sets will further

establish the spectral response of these surface-hydrated malonic acids. Furthermore,

it will be possible to establish whether the IHB conformation is a statistically relevant

species at aqueous surfaces. However, it is possible to conclude that the higher and

lower frequency carbonyl responses arise from malonic acids with specific geometric

conformations (e.g. internal bonding), or some other form of solvation that constrains

the motions and interactions of the acid.
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7.7. Summary

The adsorption of small organic and chemically active molecules has gained

great interest in recent years. Understanding their reactivities, orientations,

adsorption pathways, and surface behaviors is of primary concern in building accurate

atmospheric climate models, and in defining the many aqueous environments found

on earth. Yet, the specific microscopic nature of such organics, their surface

geometries, orientations, and water interactions remain poorly understood. Although

our comprehension of surface processes and interfacial chemistry is still in its infancy,

we are beginning to gain new insights that are key to understanding environmentally

important processes at aqueous surfaces.

Presented herein are results of KS-DFT MD simulations that focus on how

malonic acid behaves on a water surface, and the resulting orientations, geometries,

and structures formed because of its interactions with interfacial water molecules.

This computational study complements and expands on experimental studies

from this laboratory that elucidated the molecular behavior of malonic acid.[21]

Furthermore, these computations build upon and enhance our understanding of

malonic acid from the computational study on interfacial orientation and geometry

of aqueous surface malonic acid molecules.

Our simulations show that the previously used classical interaction potential

captures the orientation and hydration structure of the KS-DFT model. The

complementary simulations studies using both interaction potentials show strong

agreement for the surface-bound malonic acid behaviors. However, the classical model

does not fully capture the resonance structures of the carboxylic acids, leading to

minor discrepancies between the water structures that form to hydrate the acids.
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Our analysis of intramolecular atomic distances resulted in the discovery of

two dominant conformations of surface malonic acid: an intramolecularly hydrogen-

bonded species, and an acid in which neither carboxylic acid end-group takes part in

internal bonding. The hydrogen bonded structure forms a ring-like internal geometry

due to the folding of one carboxylic acid end towards the other, and subsequent

hydrogen-bonding. The internal H-bond is strong and persistent throughout 40 ps

of simulation, and warrants further experimental study to verify the existence of

the species. The distribution of bondlengths in the surface malonic acid indicate

that the two conformations of the acid have non-equivalent carboxylic acid moieties.

In the hydrogen-bonded form, the bondlengths in one carboxylic acid end of the

molecule differ from those at the other end. Delocalization of the atoms involved in

the hydrogen bond causes elongation of the interacting bonds. The bondlengths and

molecular geometry are accompanied with orientational and spectral changes brought

on by the internal bonding of the molecule.

This chapter shows the results of an orientational analysis defining the overall

molecular orientation of malonic acid on a water surface, and the configuration of

the two carboxylic acids. The carbon backbone was found to lie slightly tilted

from the plane of the interface. The hydrogen-bonded conformation has much more

orientational freedom than its unbonded counterpart. Analysis of the dihedral angles

of the carboxylic acids showed two distinct trends dependent on the specific molecular

bonding conformation. The internally unbonded molecule’s carboxylic acids orient

very similarly to those found in our previous computational study, with one aligning

perpendicular to the other. However, the internally H-bonded acid has a very defined

internal orientation, with one carbonyl aligned anti-parallel to the other due to a rigid

backbone structure reinforced by the intramolecular bonding.
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The orientation of the carbonyl bonds was analyzed to complete the picture of the

molecular orientation of surface malonic acid. Two distinct carbonyl C=O behaviors

were found to be preferred, with one C=O bond pointing more in the plane of the

water surface, and the other pointing more perpendicularly, in towards the water

bulk. This result agrees well with our previous classical simulation results, and also

complements the conclusions from our VSFS experiments showing two preferred net

orientations of the carbonyl C=O modes. As with the other computational results,

the H-bonded form has greater orientational freedom overall for the carbonyl C=O

bonds.

Lastly, to compare the KS-DFT vibrational modes with experiment, the local

mode bond spectra were calculated for the carbonyl C=O bonds. The frequencies

and spectral shape agree with what we found experimentally via VSFS of the surface-

bound C=O modes. The frequency response of the carbonyl calculated here is not a

spectroscopic signal computation; it is not directly comparable to the experimental

SFG spectral modes. However, the computed local-mode frequencies reinforce the

predictions of our simulations. Additionally, the C=O spectra of the internally

H-bonded conformation show a splitting of the two C=O modes because of the

drastically different environments surrounding each bond.

These studies build upon our computational and experimental research in this

area, seeking to understand how small organic molecules behave while bound to, and

reacting with an aqueous/air interface. Such knowledge is our key to understanding

atmospheric aerosol and land water systems where small and reactive organic acid

molecules bind to aqueous surfaces, and form platforms for further chemical reactions.

Further studies of these systems will aid us in better understanding water surfaces

where molecular behavior can surprise us, and often defies our physical intuitions.
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CHAPTER VIII

CONCLUSIONS

This dissertation is a collection of scientific explorations that help to better

understand, and reaffirm the importance of interfacial aqueous environments. Unlike

bulk water solutions, the surface and phase boundaries with other systems are

environments characterized by a break in isotropy leading to unique electric fields,

molecular layering, orientations, and resultant chemical reactions. The water surface

is vital to life processes within living cells, and an endless number of reactions

that define our Earth’s environmnets and atmosphere. The aqueous interface is the

gateway to chemical adsorption into water, and a platform for the chemistry that

defines out world.

Experiments to probe air-water and liquid-liquid interfaces have revealed many

of the macroscopic properties of those systems; they have also made some important

advances towards understanding the microscopic nature of the chemicals leading to

those results. However, many properties of water systems remain inaccessible to

experiment, but are studied in a straightforward manner via computational MD

simulations. MD allows the researcher to examine the specific geometries and

energies of molecular systems as they evolve over time. This technique complements

experimental work, and also expands the possibilities of properties to be studied.

This dissertation applies many computational analysis techniques in pursuit of

understanding the behaviors of water and various solutes throughout an aqueous

interface. Many of the studies made use of orientational analysis to describe the

change to molecular orientation as a function of depth in the interface. Similarly,
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density profiling was used to establish the surface affinity of constituent molecules,

and their location preferences within a water surface.

Bondlength trajectories and distributions provide a direction examination of how

molecular, or specific functional moiety geometries change over time. These structural

changes can be stimulated by solvation from neighboring waters, or by the interactions

with other solutes. Furthermore, bondlength trajectories are used to define acid

protonation states, hydrogen bond strength and lifetimes, and other properties that

can be examined by looking at inter-atomic distances, such as the coordination state

of a hydrated molecule.

A technique used in some of the projects reported herein is the calculation of

spectral response from MD simulation data. The vibrational frequency response of

a local mode (e.g. a covalent bond) provides data that can be directly compared

to experimental results from spectroscopic studies. Furthermore, the calculation

of VSFS response from MD data forms a link to the surface-specific spectroscopic

experiments taking place in the Richmond laboratory. This computational technique

complements and validates the experimental conclusions, and expands on them with

new insights that are impossible or difficult to obtain using traditional spectroscopic

experiments.

Molecular dynamics studies have increased in number, scope, and complexity

since the early days of simple ideal gas calculations. It is rare to find a research

effort in chemistry that is not making use of computational simulations. The

importance of MD comes from its ability to confirm what we find in the laboratory

and also the potential to save time and physical resources from expensive and

complicated experiments, and in the predictive power of calculations. The MD

simulations described in this dissertation expanded upon and validated a number of
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experiments on small environmentally relevant, interfacially active molecules. These

few simulation studies help us to better understand the nature of water surfaces, and

the interesting behaviors that take place within them.
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APPENDIX

HETERODYNE DETECTED SFG

Recent developments in vibrational sum frequency generation (VSFG)

spectroscopy have enabled researchers to experimentally determine both real

and imaginary contributions to the second-order nonlinear susceptibility, χ(2).

Heterodyne-detected VSFG (HD-VSFG) experiments provide both the phase and

sign of χ(2), which are subsequently used to unambiguously determine the

direction of a dipole transition with respect to an experimental geometry. This

experimental method was first presented by Shen and coworkers.[210–214] Many

recent experimental and computational studies employed HD-VSFG to probe the

structure of the air/water interface, confirming or helping to rethink many conclusions

from conventional SFG studies, while also allowing for a direct comparison with MD

predictions based on calculating the components of χ(2).[89, 215–221]

Conventional VSFG is a coherent optical process where the signal intensity

decreases quadratically with dilution or number density of the modes being probed.

The spectra are thus often overwhelmed by a contribution from the non-resonant

background. HD-VSFG overcomes the issues of SFG by making use of an interference

of the SFG signal with an experimental reference beam. This interference process

amplifies the SFG intensity, and provides higher overall sensitivity with a much

improved signal-to-noise ratio. This has been shown to work well on sub-monolayer

surface coverage, and without the use of surface enhancement phenomena, using

only the electronic resonances probed.[216] Additionally, the response of HD-VSFG

is linear with the number density of the probed modes. The direct benefit of

employing HD-VSFG is that the resonant signal and non-resonant background are
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separated, and both amplitude and phase responses are captured for direct assignment

of directionality of the various modes in a system.

Molecular dynamics studies have been performed to recreate χ(2) for a number

of water interfaces, as was done in Chapter III of this dissertation.[215, 217, 219–

221] In one case many of the same ions in Chapter III were introduced to a water-

air interfacial system and the imaginary part of χ(2), Im[χ(2)], was presented along

with the conventional SFG response.[218] Interestingly, the study confirmed the

conclusions regarding the locations of the anions throughout the interface as relates

to their size, charge, and polarizability, but went further to examine the flipping of

the electric field as a result of cation surface propensity. Another HD-VSFG study

confirmed that the surface of a water region does not show ice-like behavior in the

water bonding interactions.[215]

In regards to the current dissertation, the work of Chapter III represents a modest

attempt to link the MD simulations performed using a rigid and polarizable water

model, POL3, to the conventional SFG experiments of similar systems. Before the

adoption of HD-VSFG, calculation of Im[χ(2)] would have predicted the phase of

various modes in the water vibrational spectra, but would not have a direct means for

comparison to experiment. Because the Richmond lab has not yet employed phase

sensitive techniques the original spectra presented for the water-oil region did not

explicitly show the phase response or imaginary components. Current MD studies,

however, now have a more powerful and directly comparable experimental mechanism,

and the several studies cited above have made use of this ability.

An additional factor regarding the computed SFG response in this dissertation

is the water model used for simulations. The POL3 model used is a rigid point charge

model that makes use of fluctuating charges dependent on computed local fields
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to simulate molecular polarizabilities. Newer water models developed specifically

for calculating SFG response are better suited for the computations, and show

quantitative agreement with the spectra obtained experimentally. These models

include the Morita-Ishiyama water model,[68, 69, 219, 220] and a new model that

includes a three-body interaction potential that accounts for a nearly 20% difference

in the potential term as compared to the analogous pair-wise potential.[215, 222]

The water model developed by Marti et al. was used in a successful study of the

SFG response from waters hydrating a lipid, and also subsequent analysis using

a truncated response function to decouple the auto- and cross-correlation parts of

the χ(2) spectrum.[221, 223, 224] These new models accurately reproduce the sign

and phase, as well and the overall frequency response of the SFG spectra, while

maintaining the accurate intermolecular interaction geometries with other water

molecules, and the various solutes introduced to the water surface.

Due to time and computational restraints the real and imaginary components

of χ(2) were not presented in this dissertation for the water systems documented in

Chapter III. Future studies by the Richmond group may calculate the components

of χ(2) (i.e. modeling heterodyne-detected SFG response) to better relate the

orientational and electric field phenomena that take place at water’s surface, and

couple with future HD-VSFG experiments for further confirmation. Application of

this new and exciting computational method, and comparison with experiment, will

doubtlessly change the way surface studies are performed, and will lead to more direct

confirmation of molecular behaviors at aqueous surfaces.
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