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DISSERTATION ABSTRACT 

 

Teresa D. Hawkes 

 

Doctor of Philosophy 

 

Department of Human Physiology   

 

March 2012 

 

 

Title:  Effect of the Long-term Health Practices of Tai Chi, Meditation and Aerobics on 

Adult Human Executive Attention: A Cross-sectional Study  

 

Meditation, Tai Chi, and moderate aerobic exercise have been shown to positively 

affect executive attention. We compared the executive attention efficiency and aerobic 

capacity of long-term Tai Chi, meditation plus exercise, aerobic fitness, and sedentary 

participants. We hypothesized that because meditation and Tai Chi include moderate 

aerobic exertion and executive attention training, these groups would show significantly 

greater executive attention efficiency compared to aerobic exercisers or sedentary control 

groups. Our results support this.  Tai Chi and meditation but not aerobic fitness 

practitioners significantly outperformed sedentary controls on key executive measures: 

percent switch costs and P3b ERP switch amplitude (Tai Chi, p = .001; p = .031, 

respectively; meditation, p = .006; p = .003, respectively). This suggests participation in 

chronic health practices requiring moderate aerobic exertion and attentional focus may 

offset declines in aerobic, neuromotor, and executive attention capacity often seen in 

normal aging.  
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 CHAPTER I 

 

GENERAL INTRODUCTION 

 

Maintaining cognitive function across the human lifecycle is a public health 

concern (Verghese et al, 2003). Cognitive health contributes to quality of life as well as 

economic stability. Public health entities (i.e. NIH, Centers for Diseases Control, local 

hospitals, members of the various health-care professions) are tasked with developing and 

implementing programs that positively impact cognitive health in the United States. This 

presents a number of research challenges for providers of evidence of cognitive training 

regimens that can be applied in clinical settings (Murdaugh, 1997).  

Many variables affect human health outcomes. Those include age (Salthouse 

2003; Hillman et al, 2006), genetic influences (Rueda et al, 2005; Posner, 2005; 

Agjewski et al, 2011), nutrition, education, environmental safety, socio-economic status, 

personal experience, and adherence to health regimens (Patrick, 1996; Kramer, 2007; 

Metzler et al, 2008; Freeman, 2009).  A further challenge is that new health-care 

protocols must integrate well with the extant health-care system. This is important due to 

complex efficacy, logistical, and resource allocation goals (Hogan, 1996; Patrick, 1997). 

Additionally, many health-care clients find it difficult to select and adhere to a health 

regimen, be it therapeutic or preventative. Thus, practitioner self-efficacy is a major 

concern for health-care providers (Bogg, 2008; Nigg et al, 2011).  

Research taking these issues into account is crucial for development of effective 

treatment and prevention protocols (Patrick, 1996). Additionally, different physiological 
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systems interact during output of human behavior (i.e., cardiovascular, neuromotor, and 

cognitive) (Guyton & Hall, 2000; Kandel, et al 2004; Gazzaniga, 2004). This suggests 

that in human subjects research these systems should be tested simultaneously in order to 

understand their contribution to the outcomes we measure. Indeed, after decades of 

research, large normative databases have been assembled on cardiovascular, neuromotor, 

and cognitive measures (NIH eRA Commons) as well as methods for evaluating 

performance (psychophysical and physiological). These can be used when comparing 

similarly collected data (Powers & Howley, 2004; Shadish et al, 2002; NIH Toolbox). 

In the laboratory, this enables us to use a multivariate approach to compare the 

effect sizes explained by each IV or covariate during cognitive and motor behavior 

observed under carefully designed experimental conditions (Shadish, et al, 2002). 

Cardiovascular system capacity can be easily assessed with simple, field-tested measures 

like the Rockport 1-mile walk (Kline, 1987). Neuropsychological tests reliably assess 

cognitive capacity (Reisberg, 2005; Banich, 1997), including executive attention function 

(Fan et al, 2002; Salthouse, 2003; Etnier & Chang, 2007). Skill assessment instruments 

can be custom-designed to laboratory, clinical, or training setting needs (Butler et al, 

2010, Berg et al, 1989; Blasing et al, 2010; Chatfield, 2009). These readily available tests 

allow us to effectively compare system contributions to human cognitive health across 

subjects and carefully defined groups (Shadish et al, 2002). 

The overall purpose of this study was to investigate the cognitive and 

cardiovascular benefits of three readily available health regimens (Tai Chi, meditation 

plus exercise, aerobic exercise) in normally aging adults with a focus on executive 

attention, a key component of cognitive capacity (Salthouse, 2003; Gilbert, 2008). The 

https://public.era.nih.gov/elf/jsp/commons/login.jsp?TYPE=33554433&REALMOID=06-652bb4a5-19c4-44bd-ae54-aee892d5c0a3&GUID=&SMAUTHREASON=0&METHOD=GET&SMAGENTNAME=-SM-si5mGrpSwsiXWxliSkfaHjR8hxkrsEnMU5uqxtlg%2bJj4r1fF%2bqfqM9Krfz20l%2fUJ&TARGET=-SM-https%3a%252
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following sections review the literature on executive attention, neuropsychological tests 

of executive attention function, and the effects of Tai Chi, meditation, and aerobic fitness 

practice on attention function.   

 

Attention Function 

Attention assists the implementation of system-wide goals in the awake, behaving 

mammal. Attention effects include increases in firing rate of single units when a monkey 

attends to a location in space (Leopold & Logothetis, 1996), enhancement of information 

processing (Corbetta & Shulman, 2002; Oken, Salinsky, & Elsas, 2006), including 

holding items in working memory (Awh, 2001, Corbetta, 2002; Courtney, 2004; Luck, 

Vogel, & Shapiro, 1996), doing mathematical calculations (Ishii, Shinosaki, Ukai, 

Inouye, Ishihara, Yoshimine, Hirabuki, 1991; Mizuhara, Wang, Lobayashi, & 

Yamaguchi, 2004), planning motor operations (Rushworth, Ellison, & Walsh, 2001; 

Rushworth, Johansen-Berg, Gobel,  Devlin, 2003; Serrien, Ivry, & Swinnen, 2007), 

maintaining postural control (Huxhold O, Li S-C, Schmiedek F & Lindenberger U, 2006; 

Silsupadol P, Lugade V, Shumway-Cook A, van Donkelaar P, Chou LS, Mayr 

U, Woollacott MH, 2009), and resolving response conflicts (Chan & Woollacott, 2007; 

Milham, 2002; Rushworth, Walton, Kennerley, & Bannerman, 2004a).   

 The executive control microcircuit arrays in the forebrain have been shown to be 

activated during conflict resolution, processing of novel stimuli, and error detection 

(Desimone, 1995; Raz, 2004; Milham et al, 2003; Fan, 2002) This key attention 

component has many outputs, including selection of relevant stimuli or processes and 

inhibition of irrelevant ones (Knight; 1995; Milham, 2003).   

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Lugade%20V%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Shumway-Cook%20A%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22van%20Donkelaar%20P%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Chou%20LS%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Mayr%20U%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Mayr%20U%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Woollacott%20MH%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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Executive control has been localized to the anterior areas of the frontal cortex, 

including the anterior cingulate and dorsolateral and mediolateral prefrontal cortices 

(Chan, 2001; Fretwald, 2004; He, 2007; Herd, 2006; Humphries, 2004; Rushworth, 2007; 

Rushworth, 2004b; Taylor, 2007). The anterior cingulate is thought to mediate response-

related processes, while bilateral dorsolateral prefrontal cortex is thought to mediate 

coordination of information relevant to choice of response (Milham, 2003).  The left 

dorsolateral pre-frontal cortex has been found to be activated during tasks requiring 

regulation of shifts of attention (Callejas, 2005). 

Three main executive attention components have been identified for 

neuropsychological tests: 1) Inhibition, 2) Shifting, and 3) Updating (Miyake, et al, 

2000). Working memory is often included as a component of executive function (Gilbert, 

2008). Coordinated whole system output includes moving percepts, plans, and goals into 

and out of working memory (Rowe et al, 2002; Rounis et al, 2007; Rafal et al, 2002; 

Gevins & Smith, 2000; Miller et al, 1996), appropriate gating of relevant sensory-

association and motor re-entrant processing, goal-setting and up-dating, and action 

implementation (Rushworth, 2001a; 2001b; 1998; 1997).  

 

Neuropsychological Tests of Executive Attention Function 

Neuropsychological tests are used to probe attention function. These tests can be 

combined with neuroimaging (fMRI, PET, EEG) to correlate cognitive output with 

circuit activation patterns (Poulson et al, 2005; Luck, 1996).  

Neuropsychological tests of executive function combine working memory 

requirements with percept identification, rule memorization and task-specific rule 
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deployment followed by a motor response. Response time and accuracy are the 

behavioral measures of interest (Carillo-Reid, Tecuapetla, Tapia, Hernandez-Cruz, 

Galarraga, Drucker-Colin, & Bargas, 2008; Grillner & Graybiel, 2006; Reisberg, 2006; 

Banich, 1997). These include:  Pure perceptual report combined with working memory-

aided single (Deco, 2005); dual (Siu, Chou, Mayr, van Donkelaar, & Woollacott,2008), 

variable (Silsupadol, 2009), or switch tasks (Altmann, 2008); and variants of the Erikson 

flanker tasks such as the Attentional Network Task (ANT) (Fan, 2002; 2009).  

Task switch paradigms evaluate the ability to memorize sets of response rules and 

switch between them during stimulus presentation (Mayr, 2001; Monsell, 2003a. 

Altmann, 2008). Stimuli can be auditory, semantic, or visual (Banich, 1997). Switch of 

response rule can be exogenously or endogenously cued (Kiesel et al, 2003). Rule 

switches can be predictable or random (Tornay, 2001). In a randomized runs procedure, 

stimuli are randomly presented one after the other in runs (AABB) for blocks of varying 

trial lengths (36 trials/block, 24 trials/block, etc). For the switch condition, subjects must 

switch the response-rule every other trial. Working memory and strategizing are both 

necessary. On these kinds of tests reaction times on switch trials are consistently longer 

for all age groups (Mayr, 2001). Percent cost for switching between rules in 

heterogeneous blocks of stimulus-response mappings has been shown to index executive 

efficiency (Monsell et al, 2000; Wylie & Allport, 2000; Milan et al, 2006; Pesce, 2011).  

EEG recordings in combination with task switch tests have provided evidence for 

consistent event-related potential (ERP) magnitudes and latencies by electrode during 

specific attention tasks. This suggests common source generator circuits across subjects 

output the behavior we measure during the execution of specific tasks. The P300 complex 
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has been under active investigation for decades (Polich, 2007). This is a positive-going 

waveform appearing at central electrode sites during tasks requiring stimulus 

identification and working memory updates during the time window 300 to 800 msec 

post-stimulus presentation. This complex has been dissociated into two main 

components: P3a (centered around electrode Fz) and P3b (centered around electrode Pz) 

(Pontifex et al, 2009; Polich, 2007).  The whole complex is thought to index inhibitory 

processes occurring in the fronto-parietal attention circuit during task performance. The 

frontal pole of this circuit is thought to engage in stimulus discrimination for gating into 

working memory (P3a) (Light et al, 2007). The parietal pole of this circuit is thought to 

update working memory for the purpose of successful goal-directed responses during 

cognitive operations (P3b) (Wylie et al, 2003; Polich, 2007).  The amplitude and latency 

of these two ERPs are sensitive to stimulus and presentation type (Gonsalvez & Polich, 

2002), and aging (Adrover-Roig & Barcelo, 2010). A growing body of evidence suggests 

these amplitude and latency patterns are predictive of executive attention capacity and 

prefrontal circuit functionality.  

 

Exercise Effects on Attention 

 Decades of research has shown exercise positively benefits cardiovascular capacity 

(Powers & Howley, 2004). Cardiovascular capacity is easily measured in the field, 

clinical, and research settings with estimated VO2max tests (Kline, 1987; American 

College of Sports Medicine, 2009). These tests reliably report aerobic capacity in ml
-1

/kg
-

1
/min

-1
 O2 (uptake and utilization of oxygen by working tissues). Moderate exercise has 

also been shown to have beneficial effects on cognition (Davranche, 2004; Hillman, 
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2003; Kawai, 2007), including 1) speed of information processing as indexed by visual 

and auditory P300 latency and reaction time decreases, and correlated accuracy increases 

in oddball tasks (Kamijo, 2004; Zhou, 1984); 2) enhancement of executive attention 

processes as indexed by reaction time and accuracy on Erikson flanker tasks in older 

adults who take up aerobic exercise (Hatta, 2005); 3) enhanced memory and neurogenesis 

in animal models (Ding, 2006; Trejo, 2007); and 4) upregulation of brain-derived 

neurotrophic factor (BDNF) and insulin-like growth factor which stimulate 

synaptogenesis, neurogenesis and memory performance in human and animal models. 

(Cotman, 2002; 2007; Tang, 2008).  Additionally, aerobic exercise regimens have been 

documented to increase the thickness of frontal, parietal and temporal cortices in human 

subjects (Kramer, 2005). Importantly, a recent meta-analysis showed superior aerobic 

fitness as quantified by standard cardiovascular measures is not required in order to 

accrue cognitive benefits from exercise. Light to moderate exercise and dose frequency 

seem to be the keys (Etnier, 2006; Kamjito, 2004).  

 Importantly, exercise has been shown to preferentially affect executive attention 

processing throughout the adult human life cycle (Ratey & Loehr, 2011; Scisco et al, 

2008; Hillman et al, 2006; Colcombe & Kramer, 2003). Many of these studies divide 

exercise types into those requiring cardiovascular training alone or cardiovascular 

training in combination with strength or resistance training. There are few studies which 

divide exercise types into those requiring cardiovascular exertion alone and 

cardiovascular exertion plus consistent mental exertion. Those that do find that exercise 

requiring constant mental challenge produces greater executive attention benefits than 

cardiovascular exertion with low mental challenge (Voss, 2009; Pesce, 2011). A high 
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degree of variability is seen in studies of exercise effect on executive function. This could 

be due to differences in methodology (types of executive tasks used in testing) and 

confounds from different intensities, types, and durations of exercise practice. 

 

Meditation Effects on Attention 

Concentrative meditation involves sustained, exclusive focus on a specific sensation, 

image, or syllable(s) for extended periods of time (i.e. 30 minutes – 18 hours) (Lutz, 

2007; Joshi, 2007; Kubota, 2001). The goal of this practice is sustained, nonjudgmental 

awareness of all thoughts and sensations, as well as the ability to resist engagement with 

such (Bishop, 2007). Meditation came under scrutiny by neuroscientists because 

meditators claim the ability to reliably sustain attention. If this can be shown to be true, 

this may work in the laboratory setting to shed light on human cognitive processes (Lutz, 

2007).  

A recent fMRI study of novices, and medium- and long-term concentrative meditators 

revealed that long-term meditators showed the greatest ability to regulate circuit and 

behavioral responses to auditory distractor stimuli while resting or meditating. 

(Brefczynski-Lewis, 2007).  Specifically, individuals with > 37,000 lifetime hours of 

practice showed less activation in sensory processing areas during distractor presentation 

in both rest and meditation conditions, and less activation in frontal, parietal, and 

occipital regions dedicated to executive and visuo-spatial processing than either novices 

or medium-term concentrative meditators. This suggests meditation practice may result in 

a reliable ability to suppress irrelevant stimuli. If so, we would expect to see plastic 

changes to specific microcircuits in the brain that are active during this kind of cognitive 
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output.   A cross-sectional study of matched meditators vs. non-meditator controls 

revealed significantly larger grey matter volume in brain circuits known to subserve 

response control and affect regulation. Regions with greater grey-matter volume were 

right orbito-frontal cortex, right thalamus, left inferior temporal gyrus, and right 

hippocampus (Luders, 2008; Lazar, 2005). Importantly, this study recruited meditators 

from a number of meditation schools (i.e., Vipassana, Samatha,  with between 5-49 years 

of practice)  to test for any significant differences between meditation practices  on grey-

matter volume. None were found, suggesting that the attentional control required to 

perform various meditation practices recruits similar sets of specialized circuits across 

meditation styles.  

Cognitive state and trait training effects are reported for executive function (Chan, 

2007), orienting (Jha, 2007), and management of attentional resources (Kubota, 2001) in 

long-term meditators. Meditators showed greater theta phase locking to stimulus onset 

than non-meditators in a demanding attentional blink paradigm, suggesting sharper, more 

efficient stimulus encodement. Theta frequency in frontal circuits has been shown to be 

positively correlated with performance on attentionally demanding tasks (Kubota, 2001; 

Tsujimoto, 2006). Meditators also showed reduced P3bs in an attentional blink paradigm. 

This was correlated with a high accuracy rate for target identification, suggesting more 

efficient percept encodement. These studies suggest concentrative meditation training 

enhances coordination of attention resources at the circuit level (Slagter, 2007; 2008).  

A study by Srinivasan, 2007 showed meditators but not controls demonstrated 

enhanced mismatch negativities (MMN), an ERP reliably correlated with pre-attentive 

sensory processing. This suggests meditation enhances very early processing of percept 
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formation.  The reader may note that in one study a reduced ERP indicated more efficient 

processing and in another study an enhanced ERP indicated the same thing. Why is less 

activation in one task and more activation in another considered efficient? The key to this 

apparent discrepancy may be where the task is in the serial or parallel distributed 

sequence of steps necessary to output the behavior being tested (Sigman, 2006; Milham, 

2002; Floyer-Lea, 2004). Automated tasks require less activation in subserving circuits 

than novel tasks, or tasks in the process of encodement.  Thus, at the circuit level, 

meditation training seems to affect early sensory and visuo-spatial association processes 

in the direction of a greater signal to noise ratio. Output from both of these processes are 

key inputs to attention circuits engaged in encodement (frontal lobes), engagement 

(parietal), disengagement (frontal and parietal), and choice (dorso- and medio-lateral 

prefrontal cortices, anterior cingulate). 

 

Physiology of Tai Chi 

 Tai Chi is equivalent in physiological exertion to aerobic walking (Li, 2001; Powers, 

2004; Zhou, 1984). Importantly Tai Chi requires coordination of 1) movements of arms, 

legs, head, and trunk positions in single and double-leg stance, 2) shifts of visual focus, 

3) control of breath relative to movement, and 4) memorization of complex specific 

movement sequences (Gatts, 2008; Kerr, 2008; Wolf, 1997).   

 Tai Chi has been shown to affect the neuromotor system. Tai Chi practice changes 

muscle recruitment patterns pre-post training (Gatts, 2006; Fong, 2006; Wu, 2004). This 

suggests motor learning.  Motor learning requires encodement of serial and distributed 

parallel motor unit recruitment commands. Automated activation patterns in serial and 



11 
 

parallel distributed motor circuits are defined as motor programs (Rushworth et al, 1998; 

Kandel, 2000; Shumway-Cook, 2007).    

 Motor programs are calculated by the basal ganglia, cerebellum, pre-supplementary 

motor area, premotor area, and dorso-lateral prefrontal cortex bilaterally (Grillner & 

Greybiel, 2006; Kandel, 2000; Shumway-Cook, 2007). Dorsolateral prefrontal cortex is 

especially implicated in the recruitment and organization of 1) salient memories, 2) motor 

programs, and 3) somatosensory information for output to online motor and cognitive 

interactions in humans (Milham, 2003; Rushworth, 2007; 2004a; 2004b). The anterior 

cingulate cortex seems to participate in calculating goal-driven system responses (Altmann, 

2008; Milham, 2003; Corbetta 1998; 2002) that are based on cost-benefit assessments 

(Grillner, 2006).  Practitioners of Tai Chi are required to set and achieve complex 

cognitive and motor performance goals that must be endogenously cued throughout long 

movement sequences (10 minutes – 1 hour) (Gatts, 2008).   

 With respect to circuit activations during motor learning, Floyer-Lea (2004) showed 

that during the early motor learning stage, activity in the prefrontal cortex, sensori-motor 

association areas, parietal cortex, caudate, and ispilateral cerebellum increases. As the 

behavior approaches automaticity, however, those circuits quiet. A different set of circuits 

is then activated during movement performance. That includes the thalamus, putamen, and 

cerebellar dentate (Floyer-Lea, 2004). This suggests feedback processes necessary to 

correct online movement or sensory integration errors decrease as encodement of the motor 

program is completed. As a complex motor skill, Tai Chi, requires constant application of 

executive attentional control, and thus could be expected to result in plastic changes to 

executive circuits in the prefrontal cortex.  
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 A study by Audette 2006 investigated Tai chi versus brisk walking in elderly women 

in a randomized controlled trial. They found a significant increase in aerobic power, as 

measured by VO2 max in elderly women who did Tai Chi vs. brisk walking. VO2 max 

indexes efficiency of oxygen transport and utilization during exertion. Changes in 

VO2max are positively correlated with changes in cardiac stroke volume (Powers, & 

Howley, 2004), and thus the amount of blood per minute circulating through the vascular 

system.  Stroke volume is mediated by parasympathetic and sympathetic signals to 

specialized receptors on cardiac atrial node cells. (Silverthorn, 2004). Changes in stoke 

volume are correlated with changes in autonomic signals to the heart. These kinds of 

changes suggest autonomic adaptation to the practice of Tai Chi.  

 Gatts and Woollacott, (2006, 2007) investigated the neural and biomechanical 

mechanisms underlying Tai Chi’s effect on control of center of mass during gait 

perturbations. Gait perturbations probe dynamic balance control (Shumway-Cook, 2007). 

In randomized, controlled trials they found Tai Chi enhanced reactive postural responses. 

Especially affected was motor recruitment at the ankle. Improvement of ankle 

management is a consistent pattern in kinematic and EMG studies of Tai Chi. Their 

results confirmed that Tai Chi training enhanced subjects' abilities to make quick, 

accurate adjustments in posture and swing leg response during a gait perturbation. This 

suggests plasticity in neural circuits integrating multi-modal sensory information, motor 

plans, and mechanisms correcting for error signal. These include motor-related prefrontal 

cortical modules, the basal ganglia, cerebellum, and spinal locomotor targets (Kandel, 

2000; Shumway-Cook, 2007). 
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Comparison of Tai Chi and Meditation Training Effects 

Evidence suggests both Tai Chi and sitting forms of meditation require executive 

attention circuit activation to learn and to perform (Halsband, 2006; Lutz et al, 2007; 

Gatts, 2008; Luders, 2008). As such, we might expect to see similar training effects in 

executive networks of long-term Tai Chi practitioners and sitting meditators.  

Practice of Tai Chi has been shown to produce long-term changes in the muscle 

recruitment patterns required for dynamic balance control during its performance in as 

little as 3 weeks (Gatts and Woollacott, 2007). This suggests learning-related changes 

have occurred in motor and attention networks (Halder, 2005).  

Sedentary meditation training has been shown to produce changes in executive 

and autonomic function in five days if trainees are highly motivated or self-selected 

(Tang, 2007; Zeidan, 2010).  

What are the differences between Tai Chi and sitting meditation training 

regimens? Tai Chi is a form of moderate exercise requiring between 4-8 METs (Li et al, 

2001; Powers & Howley, 2004). Sitting meditation requires only 1 MET (Powers & 

Howley, 2004). However, the meditators we tested uniformly self-reported chronic 

aerobic fitness activities and demonstrated an aerobic capacity similar to long-term 

aerobic fitness practitioners. The key difference between our Tai Chi and sitting 

meditation groups is in relation to the attentional focus instructions specific to each of 

these regimens. Tai Chi requires that attention be focused simultaneously on the 

achievement of multiple, inter-related goals and the ability to memorize and 

independently perform complex motor sequences (Gatts, 2008).  



14 
 

In sitting meditation, whether one practices a single focus (the breath, a mantra, or an 

image) or mindfulness (non-engagement with sensory, cognitive, or affective 

stimuli)(Lutz, et al 2007), there is a single goal which is implemented, monitored, and 

achieved by the executive attention network . Thus, it is hypothesized Tai Chi trains 

motor attention (Rushworth, 2001a; 1997), and sitting meditation trains the inhibition and 

self-monitoring components of executive attention (Lutz et al, 2007; Lutz et al, 2008; 

Smallwood, 2008; Luders, 2009). 

Would these two types of chronic executive attention exertion produce different 

outcomes on a demanding neuropsychological executive attention test? Evidence 

suggests the motor and executive networks interact but are dissociable (Rushworth, 2003; 

2004b). If so, would Tai Chi practitioners outperform meditators and aerobic fitness 

practitioners with no Tai Chi training on motor responses because they have trained the 

greater motor attention network? By this logic, would meditators outperform all other 

groups on inhibition and self-monitoring because that is an important part of meditation 

training (Lutz et al, 2007)? Would these two training regimens requiring specialized 

attentional exertion produce greater benefits to executive function than moderate aerobic 

exertion with its more relaxed attentional focus? Recent work by Chan & Woollacott 

(2007), Voss (2009), and Pesce (2011) suggest they might. 
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Purpose of This Study 

  Successful cognitive aging is a public health concern (Verghese et al, 2003). 

Executive attention may mediate cognitive function (Salthouse, 2003). Moderate aerobic 

exertion has been shown to positively benefit human executive attention function. Mental 

exertion has been shown to affect executive function (Chan & Woollacott, 2007; Slagter et 

al, 2007, Tang, 2007).We tested the hypothesis that long-term practice of Tai Chi, and 

meditation would produce greater executive attention training benefits than aerobic fitness 

alone. Generally sedentary participants who had never trained in Tai Chi or meditation 

served as baseline controls for the effects of long-term moderate exercise on cardiovascular 

and executive attention function.  Because these controls had never undertaken Tai Chi or 

meditation training, cognitive effects of long-term motor or concentrative attention training 

could be compared across all groups.  

 

Bridge 

 To assess long-term health regimen training effects on executive attention function, we 

measured estimated VO2max (described in Chapters II and VI) (Kline et al, 1987; 

Colcombe et al 2004), Tai Chi skill (experiment described in Chapter III), simple inhibition 

and self-monitoring function (described in Chapters IV and V) (Smallwood, 2008), visuo-

spatial task switch reaction time and percent local switch costs (experiment described in 

Chapter V (Mayr, 2001), and P3b amplitude and latency correlated with switch trial events 

(experiment described in Chapter VI (Polich, 2007).  General methodology is described in 

Chapter II. 
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CHAPTER II 

GENERAL METHODOLOGY 

 

Participants 

Participants were recruited by word of mouth, local Craigslist and newspaper ads, and 

flyers posted throughout the communities of Eugene and Springfield, Oregon. Inclusion 

criteria were 1) no neurological or physical disorders, and 2) aged 20-75. Sedentary 

participants were required to have 1) a generally inactive lifestyle for five or more years, 

and 2) no prior experience with meditation or Tai Chi. Health regimen practitioners were 

required to 1) have practiced at least five years or more, three times per week, 30 minutes 

per session. All participants had self-selected into their preferred level and type of 

exercise activity.  Fifty-nine participants responding to a health regimen recruitment 

campaign agreed to four hours of testing scheduled at their convenience. Because acute 

exercise has been shown to positively affect cognitive performance (Pesce, 2011; 

Davranche, 2004) we scheduled the cognitive and exercise testing separately. If the 

participants preferred to do the testing in one day, the cognitive testing was done first 

followed by the exercise testing. Two Tai Chi participants who could not use a computer 

effectively were excluded since our key executive attention tests were administered via 

PC computer. Two subjects did not complete the testing.  One subject who presented with 

bipolar disorder and presently off medication was excluded. Thus, 54 subjects completed 

all tests and were included in this analysis (female = 27).  Final group composition was 1) 

10 Tai Chi (female = 3), 2) 16 meditation plus exercise (female = 6), 3) 16 aerobic fitness 

(female = 8), and 4) 12 generally sedentary (female = 10) participants. Final group 
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composition for the Tai Chi Skill Assessment was 13 (female = 6). Body mass index 

(BMI) was calculated for each participant (http://www.nhlbisupport.com/bmi/) 

Participant characteristics are presented in Table II.1.  

Table II.1  

Participant Characteristics 

_________________________________________________________ 

 

Group    n  Female   Age    BMI   

_________________________________________________________ 

Tai Chi   10  3    55.4 + 12.99 29.3 + 3.77  

Meditation   16  6    48.63 + 15  23.3 + 3.53  

Aerobic Fitness 16  8    44.09 + 16.2 23.78 + 2.62  

Sedentary   12  2    46.92 + 12.81 27.93 + 6.37  

_________________________________________________________ 

 

Subject recruitment and experimental protocol were approved by the University of 

Oregon Institutional Review Board. Subjects signed Informed Consent and were 

compensated for their participation. Informed Consent Forms are presented in Appendix 

A. 

  

http://www.nhlbisupport.com/bmi/


18 
 

Multivariate Cross-sectional Design 

In multivariate designs multiple dependent variables are measured on subjects who 

are assigned membership in carefully defined groups (Stevens
, 
2002) (see Figure II.1). 

We asked if we could isolate executive attention training effects by comparing scores on 

aerobic capacity (VO2max) and key executive attention variables on three training 

groups: 1) Tai Chi, 2) meditation, and 3) aerobic fitness. Our fourth group was composed 

of generally sedentary participants who had not engaged in Tai Chi or meditation 

training. Our original design specified that Tai Chi and meditation practitioners would 

differ on lifetime hours of aerobic exertion, thus we could compare the training effects of 

moderate exercise plus motor attention exertion to no moderate exercise plus 

concentrative attention exertion. However, in this study we found no sedentary 

meditators. All of our long-term health regimen volunteers reported a similar number of 

lifetime hours of aerobic activity as our aerobic fitness group Thus, the difference 

between our training  groups was the type of attention required to perform each health 

regimen (Pesce & Audiffren, 2011; Voss et al, 2009). The control group allowed us to 

assess training effects on cardiovascular and attention measures relative to a no-training 

population. Because normal aging is associated with degradation of cognitive and 

physiological function, age was included as a covariate. 
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Figure II.1. Study Design. *Cardiovascular/respiratory requirements (Powers & Howley, 

2004); **In CNS requirements (Halsband & Lange, 2006; Rushworth); 

***Neuromotor/skeleto-motor requirements (Powers & Howley, 2004; Shumway-Cook & 

Woollacott, 2007; Castaner et al, 2009; Blasing et al, 2010). 

 

Testing 

Aerobic Capacity --Rockport 1-mile Walk (Kline et al, 1987; American College 

of Sports Medicine, 2009). Subjects were fitted with an Athletic Connection Polar E600 

heart rate monitor (Polar Electro-USA). A chest strap with heart sensor sent information 

on heart rate and walk time to a wrist recorder. Subjects walked 1 mile as fast as they 

were able. Estimated VO2Max and METs were calculated by entering subject’s age, 

weight, gender, walk time, and ending heart rate in a java applet located at 

http://www.exrx.net/Calculators/Rockport.html (see Figure II.2). 

 

 

http://www.exrx.net/Calculators/Rockport.html
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Figure  II.2. VO2max and MET java applet. 

Tai Chi Skill. A Tai Chi leg kick sequence was selected from a 10-form Tai Chi 

sequence developed for the laboratory by Wolf (1997).  An international Tai Chi 

champion was selected as a professional exemplar. Video of this exemplar was 

downloaded and the 11 seconds which depicted the Tai Chi leg kick sequence was 

extracted. The 11 second clip was not used in any commercial ventures nor reproduced in 

any other form. This video was used to train participants to independently and safely 

perform the Tai Chi Leg Kick (see Figure II.3).   

 

Figure  II.3. Key positions in the Tai Chi leg kick. 



21 
 

Motion Analysis Data Collection. Subject height and weight were recorded. 

Subjects wore a tight-fitting dance unitard and swim cap. 31 Markers were placed on 

bony landmarks per a modified-Helen Hayes marker set (Motion Analysis Corporation, 

2009). An eight-camera system captured whole body motion at 60 Hz (Motion Analysis 

Corporation, Santa Rosa, CA).   

Subjects were warmed up with the following sequence: 1) one minute of stationary 

horse stance, 2) one minute of moving horse stance (Powers & Howley, 2004). Subjects 

then viewed the exemplar video as many times as they wished. They were then instructed 

in the movement sequence, and given feedback on performance until they felt they could 

perform the movement safely and independently.  Subjects performed 12 separate trials 

of the Leg kick form.  

Motion data analysis. Marker trajectories were filtered with a low-pass, fourth order 

Butterworth filter at a cutoff frequency of 8 Hz.  Thirteen-segment anatomical models 

were derived. Mp4 recordings of Trial 12 of each subject performing the Tai Chi Leg 

Kick from the same angle as the grand master were recorded.  

Tai Chi skill rating. Six blinded expert raters scored subject Mp4 recordings using 

the Tai Chi Skill Assessment. Instrument development and testing are described in 

Chapter III. Rater scores were averaged by participant. Rater average was recorded as 

subject Tai Chi skill score. 

Concentrative Meditation Skill -- Sustained Attention Go No-go (Smallwood, 

2008).  Subjects were seated ~ 24 inches in front of a computer monitor. A fixation cross 
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appeared in the center of the screen. Subjects were directed to focus on this point. An X 

or 0 appeared there. Zeros were non-targets and required a button press response. X’s 

were targets and required the subject to withhold the button press response (see Figure 

II.4).   

 

 

Figure  II.4. Sustained attention go no-go paradigm .(Smallwood et al, 2008). 

 

Subjects were allowed to practice until they felt comfortable with the test. They then 

completed 24 blocks of trials. There were two block types: 1) An 11-trial block with one 

X, and 2) A 31-trial block with two X’s. Twelve blocks were 11-trial blocks and twelve 

blocks were 31-trial blocks. Block type presentation was randomized. Appearance of the 

X was randomized within blocks. At the end of each block, subjects were asked to rate 

their own performance.  Their options were: 1) On Task. Fully attentive to performing the 

task with two performance sub-categories): a) Sure you made no mistakes; b) Sure you 

made a mistake.  2) Off Task with two performance sub-categories: a) Tuned out. Off-

task and suspect you may have made a mistake; b) Zoned out. Off-task and unsure if you 

made a mistake.  The dependent variables were accuracy withholding target responses 
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(inhibition), and self-reported performance (self-monitoring). This test was programmed 

in E-Prime (Psychology Software Tools, Inc.), and delivered from a PC-laptop to a 

monitor with a two-button mouse input (Logitech, Apples, Switzerland). 

Complex Executive Attention Test.  Visuo-spatial task switch (VSTS) with dense 

array EEG (Mayr Laboratory, University of Oregon).  This task required working 

memory, inhibition, updating, and shifting (Miyake, 2000; Gilbert, 2008). Participants 

were trained in two different response rules (Rule 1 and 2) to indicate the spatial location 

of a randomly appearing dot within a fixation rectangle. For Rule 1, the button press 

response was compatible with the dot’s location in space. For Rule 2 the button press was 

incompatible with the dot’s location in space. For the Switch test (Rule 3) participants 

switched between Rule 1 and 2 on every other trial. Trials in which a switch of response 

rule was required were designated switch trials (see Figure II.5).  

 
 

Figure II.5. Mayr Visuo-spatial task switch paradigm. 
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Trials when the response rule remained the same as the previous trial were designated 

no-switch trials. The test was coded in E-Prime for use with dense array EEG (Electrical 

Geodesics, Eugene, Oregon).  Coded events in the EEG data stream and the VSTS raw 

data output were: 1) stimulus type (Congruent Right, Congruent Left; Incongruent Right, 

Incongruent Left); 2) Trial type (Congruent switch, congruent no-switch, Incongruent 

switch, incongruent no-switch); and response (correct or incorrect). Trial and stimulus 

type coding allowed us to precisely identify reaction time associated with each type of 

trial and stimulus. For this analysis, switch and no-switch trials were collapsed onto 

means. Switch costs were calculated thus: Switch RT – No-switch RT/No-switch RT. 

This controlled for any possible speed accuracy trade-off. Dependent variables were 

switch reaction time and switch costs. 

Stimuli were displayed on a computer monitor located ~ 24 inches in front of the 

participant. Participants were trained to respond as quickly and accurately as possible to 

stimulus appearance using a two button mouse. For Rule 3 participants were provided 

with visual feedback in the case of erroneous responses. They corrected their error and 

continued the trial block. Participants practiced each Rule until they achieve 85% 

accuracy. Rules 1 and 2 consisted of 48 trials in two blocks. Rule 3 (the actual task 

switch) consisted of twelve blocks of 48 trials. All tests were administered from the same 

instruction script on the same PC computer.   

 Participant instructions are presented in Appendix D. Data Collection workflow is 

presented in Appendix C. 
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Expertise Questionnaire. This questionnaire is modified from one used by Joshi, 

2007. This quantifies in minutes and hours by year the amount of time each subject self-

reported practice of aerobic activities, sitting meditation, and/or Tai Chi. 

The  Adult Temperament Questionnaire, Short Form – Version 1.3 

(ATQ)(Derryberry & Rothbart, 1988). This 77-question assay was developed by 

Derryberry and Rothbart.  It evaluates effortful control (test-retest reliability= .78), 

negative affect (test-retest reliability=.78), extraversion/surgency (test-retest reliability = 

.75), and orienting sensitivity (test-retest reliability = .85). Text of questionnaires is 

presented in Appendix D. 

 

Data Analysis 

To protect against alpha slippage, one multivariate analysis of variance (MANOVA) 

was performed on the data set from the overall study. Levene’s test for homogeneity of 

variance was performed. Sidak correction (a variation of Bonferroni) was used for post 

hoc analyses. All results reported here are from that one procedure (Stevens, 2002). Our 

independent variable was health training modality. Overall study dependent variables 

were lifetime hours of aerobic, meditation, or Tai Chi practice, simple inhibition, simple 

self-monitoring, body mass index (BMI), VO2max, metabolic equivalents (METs) of 

effort expended during the Rockport 1-mile walk, Tai Chi Skill,  no-switch RT, switch 

RT, switch costs, VSTS post-error RT, VSTS accuracy, fractal dimension of VSTS RT 

time series, P3b switch amplitude, P3a switch amplitude, P3b no-switch amplitude, P3a 

no-switch amplitude, P3b switch latency, P3a switch latency, P3b no-switch latency, P3a 

no-switch latency, and the thirteen temperaments from the Adult Temperament 
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Questionnaire (ATQ): fear, sadness, discomfort, frustration, sociability, positive affect, 

high intensity pleasure, attention control, inhibitory control, activation control, neutral 

perceptual sensitivity, affective perceptual sensitivity, and associative sensitivity. Key 

outcome measures were 1) estimated VO2max, 2) self-monitoring capacity, 3) Tai Chi 

skill, 4) VSTS switch reaction time, 5) VSTS percent local switch costs, 6) P3b switch 

amplitude, and 7) P3b switch latency.  VSTS switch trials were collapsed onto means.  

Because we were evaluating whole system functionality, error trials were included in 

these means. Alpha was set at .05 for the main MANOVA. A bivariate correlation was 

run on all variables. To control for alpha slippage for multiple analyses (PCA and cluster 

analyses not reported here), a Bonferroni correction was applied and  alpha set at 0.0125. 

Groups were numerically coded thus: Tai Chi, 1; Meditation plus exercise, 2; Aerobic 

fitness, 3; and sedentary control, 4. We matched this numbering system with our 

hypothesis that Tai Chi and meditation practitioners, would outperform aerobic fitness 

practitioners, and all training groups would outperform sedentary controls on our 

executive function variables. This made correlations between group members and our 

numerical variables interpretable. All analyses were run with PSAW Statistics 19 (IBM, 

Chicago, Illinois).  

 

Bridge 

The purpose of this study was to investigate the effects of three readily available, 

long-term health regimens on executive attention function in normal adults across the 

lifespan: Tai Chi, meditation, and aerobic fitness. Executive attention function in our 

training groups was compared to generally sedentary controls who had never engaged in 
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Tai Chi or meditation training. To confirm aerobic capacity, all participants underwent 

the Rockport 1-mile walk (Kline, 1987) which yields an estimated VO2max score. This 

indexes aerobic capacity. We expected Tai Chi and aerobic fitness practitioners to 

outperform meditators and sedentary controls on this measure. To document meditation 

training effects, a sustained attention go no-go with self-monitoring (Smallwood et al, 

2008) was administered to all subjects (results reported in Chapter VI). We expected 

meditators to outperform all other groups on the self-monitoring measure. To document 

Tai Chi training effects, a Tai Chi Skill Assessment was developed and administered to 

all participants. This is described in detail in Chapter VI. We expected Tai Chi 

practitioners to outperform all other groups on this measure.  
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CHAPTER III 

PRELIMINARY DEVELOPMENT OF A TAI CHI SKILL ASSESSMENT 

INSTRUMENT 

Introduction 

Movement instructors routinely design and implement movement training programs 

for the average person, as well as dancers, athletes, and martial artists. Each movement 

program requires specific motor and cognitive skills (Castaner, 2009; Blasing et al, 

2010). Examples of movement training programs include folk dance, discus throwing, 

rowing, weight-lifting, ballet, gymnastics, yoga, bowling, shooting, and martial arts. 

Training-related adaptations occur in the cardiovascular-respiratory, neuro-motor, 

skeleto-motor, and cognitive systems as a result of movement training (Powers & 

Howley, 2007; Voss, 2009; Blasing et al, 2010).  

Training benefits to system function typically occur within normative timeframes.  It 

has been hypothesized that cognitive adaptation occurs quickly, often within minutes, 

while neuromotor programs form within days. Muscle adaptation occurs over weeks 

(Powers & Howley, 2004).  Total time required to become moderately skilled in any 

movement program depends on the complexity of the required neuromotor tasks and the 

ability and commitment of the participant (Blasing et al, 2010).  Assessing skill 

acquisition is an integral part of movement instruction. While it is true casual observers 

can distinguish between excellent and novice movement skills, can they say why? Can 

they put a reliable number on these differences? In research, clinical, training, and 

competitive settings we need to identify skills required of performers and put numbers on 
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these differences. Indeed, not just anyone can be a judge at a sporting competition. Just 

so, in the clinical and research settings, not just anyone can deliver an assessment of 

performer skill which can be used across subjects and groups.  

Typically, experts develop criteria for evaluating expertise in a skill based on the 

motor and cognitive skills required to perform the particular sport or movement style 

(Berg et al, 1989; Gatts, 2008; Chatfield, 2009; Krasnow, 2009; Blasing et al, 2010; 

Butler et al, 2010). These criteria are selected to differentiate novice from skilled 

practitioners. Since movement programs require specific contributions from the 

cardiovascular, respiratory, cognitive, neuromotor, and skeleto-motor systems (Castaner 

et al, 2009), assessments of training effects must include measures of expected gains in 

strength, balance, flexibility, endurance, aerobic  capacity, and cognitive skill (Blasing et 

al, 2010). Skill assessments in Olympic sports (i.e., figure skating, gymnastics) are 

carefully codified, and experienced judges work from established guidelines when rating 

performances. US Figure Skating guidelines list skating skills, transitions, performance 

and execution, choreographic excellence, and performer interpretation as key criteria. 

(US Figure Skating, 2011).  

Skill assessments that can be tested for reliability, sensitivity and specificity are being 

developed for use in the movement research setting. Ability to report accurate 

representations in long-term memory of the basic action sequence required to perform a 

pirouette was used to differentiate novice through advanced ballet dancers (Blasing, et al, 

2010, p. 75-98). Chatfield et al, 2009 developed a modern dance proficiency test which 

rated 1) overall dance skill, 2) use of space, time, energy, and phrasing, and 3) presence. 

This instrument successfully differentiated between non-dancing controls and, beginner, 
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intermediate, advanced, or professional modern dancers (Chatfield, 2009). The goal of 

these specialized instruments was to accurately differentiate between individuals with no 

training and practitioners, rate practitioner performance level, detect performance 

deficiencies, and enhance training methods in specific training and laboratory settings. 

Thus, development of specialized movement program assessment instruments has a place 

in the clinical, training, and research settings (Riddle & Stratford, 1999; Castaner, 2009). 

This study was part of a larger project evaluating the effects of long-term training in 

Tai Chi, meditation plus exercise, aerobic fitness, and general sedentary lifestyle on 

executive attention function. In order to evaluate these effects, Tai Chi skill needed to be 

assessed by subject and group. Tai Chi is a martial art that is equivalent in physiological 

exertion to aerobic walking (Li, 2001; Powers, 2004; Zhou, 1984). Tai Chi requires 

coordination of 1) movements of arms, legs, head, and trunk positions in single and 

double-leg stance, 2) shifts of visual focus, 3) control of breath relative to movement, and 

4) memorization of complex movement sequences (Gatts, 2008; Wolf, 1997). The goal of 

this study was to develop a Tai Chi skill assessment capable of detecting Tai Chi training 

effects in long-term practitioners of Tai Chi compared to meditation plus exercise, 

aerobic fitness, and generally sedentary individuals.  

 

Methods 

 

Participants.  Participants were recruited by word of mouth, local Craigslist and 

newspaper ads, and flyers posted throughout the communities of Eugene and Springfield, 

Oregon. In order to participate, subjects were required to have no neurological or 
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physical disorders and be aged 20-75. Sedentary participants were required to have a 

generally inactive lifestyle for five or more years and no prior experience with meditation 

or Tai Chi. Health-regimen practitioners were required to 1) have practiced at least five 

years or more, three times per week, 30 minutes per session. All participants had self-

selected into their preferred level and type of exercise activity. Fifty-nine participants 

responded to word of mouth, Craigslist, and newspaper advertisements. All participants 

were tested at their convenience.  Final group composition was 1) 13 Tai Chi (female = 

6), 2) 16 meditation plus exercise (female = 6), 3) 17 aerobic fitness (female = 9), and 4) 

12 generally sedentary (female = 10) participants. Body mass index (BMI) was calculated 

for each participant (U.S. Department of Health & Human Services, 2012). Subject 

recruitment and experimental protocol were approved by the University of Oregon 

Institutional Review Board. Subjects gave Informed Consent and were compensated for 

their participation.  

 

Lifetime Tai Chi Practice Self-report. Participants self-reported average daily and 

weekly Tai Chi practice, and total number of years of that intensity of practice. Lifetime 

hours of practice were calculated. 

 

Tai Chi Skill Assessment Development. A Tai Chi leg kick sequence was extracted 

from the 10-form Yang-style Tai Chi sequence developed by Wolf, 1997 for use the 

clinical and community settings. This leg kick sequence required smooth weight shift 

between single and double limb support, one leg balance with leg extension, coordination 

of upper and lower body movements, and ability to memorize and independently perform 
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the sequence. An international Tai Chi tournament champion was downloaded from 

Youtube. Eleven seconds of that video edited to highlight the Tai Chi leg kick sequence 

we had chosen (see Figure II.3). 

  This video was used to train participants to independently and safely perform the Tai 

Chi Leg Kick.  The Tai Chi skill assessment instrument was based on the structure used 

by Chatfield (2009). Guided by this instrument, judges evaluated general skill and 

specific skill items according to relevant modern dance criteria. For the Tai Chi Skill 

Assessment instrument, skills outlined in a proposed Tai Chi training model by Gatts, 

2008 were used as the judging criteria (see Table III.1). Three professional Tai Chi 

instructors reviewed and approved this assessment instrument.  These instructors also 

later served as professional raters. Rating categories included general Tai Chi skill level 

(no experience through professional) and nine specific skill items:  1) head and trunk 

verticality, 2) accurate foot positions, 3) accurate postures and transitions, 4) rotation of 

movement about spine and waist, 5) smooth, even limb velocity, 6) relaxed muscle 

activity, 7) control of whole body center of mass, 8) movement flow, and 9) slowness of 

movement. Ratings included 1) below average for level, 2) average for level, and 3) 

above average for level.  

 

Table III.1 

Tai Chi Skill Scoring Form 

________________________________________________________________________ 

General Skill Level  Score  Criteria 

No Experience    0   Displays little or no familiarity and skill with 

sequence 
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Table III.1 (continued) 

General Skill Level  Score  Criteria  

Beginner     9   Displays limited familiarity and skill 

Intermediate    18   Displays familiarity and skill with sequence 

Advanced     27   Displays familiarity, skill, and confidence with 

 sequence 

Professional    36   Displays complete command of skills 

Individual Tai Chi Skills 

Rank       Score     

Below average for level   1 

Average for level     2    

Above average for level   3   

Skill        Judging Criteria 

Head and trunk verticality Subject’s trunk and head remain in a line perpendicular 

to the floor throughout the movement sequence, 

Accurate foot positions   Subject places feet in same floor pattern as exemplar. 

Accurate postures and    Subject accurately reproduces exemplar key postures 

Transitions      and transitions. 

Movements rotate around spine  Subject twists around spinal column rather than  

and waist       abducting the torso. 

Limb velocity smooth and even Subject’s arm and leg movements seem smooth, not 

jerky. 
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Table III.1 (continued) 

Skill        Judging Criteria 

Relaxed muscle activity   Subject’s movements are not rigid.  

Control of whole body center of  Subject never loses balance, nor has to keep balance by 

mass (COM)      rapid arm or leg compensatory movements. 

Sequential flowing pattern  Subject performs the movement sequence accurately. 

Slow movement     Subject moves at a consistently slow pace. 

_____________________________________________________________________ 

 

Experimental Protocol 

Motion Analysis Data Collection. Subject height and weight were recorded. 

Subjects wore a tight-fitting dance unitard and swim cap. Thirty-one reflective markers 

were placed on bony landmarks per a modified-Helen Hayes marker set (Motion Analysis 

Corporation, 2009).  An eight-camera system captured whole body motion at 60 Hz 

(Motion Analysis Corporation, Santa Rosa, CA).  Subjects were warmed up with the 

following sequence: 1) one minute of stationary horse stance, 2) one minute of moving 

horse stance (Powers & Howley, 2004). Subjects viewed the exemplar video as many 

times as they wished. Subjects were instructed in the movement sequence by the 

experimenter and research assistant. The Research assistant had two years of training in 

Tai Chi. The experimenter had studied dance, yoga, Kung-fu, and Tai Chi for 35 years 

and trained the assistant to demonstrate the form. Subjects were given feedback on 

performance until they felt they could perform the movement safely and independently.  

Subjects performed 12 separate trials of the Leg kick form.  The 12
th

 trial was used to 
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generate Mp4 recordings for rating. This served two purposes: 1) to test the subject’s 

mastery of the movement, and 2) to 

test the subject’s endurance.  

 

Motion data analysis. Marker 

trajectories were filtered with a low-

pass, fourth order Butterworth filter 

at a cutoff frequency of 8 Hz.  

Thirteen-segment anatomical 

models were derived with KinTools 

Software  (Santa Rosa, CA)(see 

Figure III.1). Mp4 recordings of 

Trial 12 of each subject performing the Tai Chi Leg Kick from the same angle as the 

grand master were created. 

  

Rater Blinding.  Subjects were assigned a number when they joined the overall 

study. For the Tai Chi skill assessment, a different, random number was assigned to each 

subject’s Mp4 recording. A list of original and blinding numbers was kept separately for 

use in matching each subject with their score subsequent to rating. Subject group 

information, original subject number, and subject identity were not available to raters. 

 

Raters. Six raters evaluated each subject on Tai Chi skill. Rater 1 was a Ph.D. 

candidate in the Department of Human Physiology, University of Oregon, professional 

Figure III.I. Motion analysis skeleton model. 
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yoga and dance instructor with 35 years of training in ballet, modern dance, yoga and 

martial arts and two years of intensive training in Yang and Chen style Tai Chi.  Rater 2 

was a Research Assistant with three years of training in Yang style Tai Chi.  Rater 3 was 

a Research Associate who had trained in Aikido, Karate, Tae Kwon Do, Systema and 

fencing for eight years, but had no experience with Tai Chi. Rater 4 is a professional Tai 

Chi instructor and Ph.D. neuroscientist. Rater 5 is Co-Director of the United States 

branch of the World Chinese Internal Martial Arts Association, and honorary president of 

the Tsang Cheuk Yi Chen Style Tai Chi Association of Hong Kong. Rater 5 has taught 

Tai Chi for 35 years. Rater 6 is a Tai Chi instructor and researcher with the Oregon 

Research Institute, and a Tai Chi instructor with the University of Oregon. 

 

Tai Chi Skill Assessment Rating.  The six raters were trained to use the Tai Chi 

Skill Assessment. Professional raters were compensated for their time.  Raters were 

familiarized with the criteria described in Table III.1, and then proceeded with subject 

rating when comfortable with the rating criteria. Raters scored the Mp4 recording of each 

subject performing the Tai Chi Leg Kick. Mp4s were displayed on a 27 inch iMAC. 

Raters were able to compare the Mp4 of the professional exemplar to the recording of 

each subject. Rater scores were averaged by subject. This average was recorded as Tai 

Chi skill raw score. Our six raters agreed that the professional exemplar’s score was 63, 

the maximum possible score. Participant Tai Chi skill was recorded as a percent of the 

professional's score.   
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Data Analysis 

Validity indices. A two-way intra-class correlation was performed which evaluated 

consistency across raters on single and averaged measures of subject general Tai Chi skill 

level and specific Tai Chi skill items. Cronbach’s Alpha was calculated (McGraw & 

Wong, 1996). A multivariate analysis of variance (MANOVA) was performed for the 

overall study. Levene’s test for homogeneity of variance was performed. Sidak correction 

(a form of Bonferroni correction) was used for post hoc analyses. Our independent 

variable was health training modality. Because normal aging is associated with 

degradation of cognitive and physiological function, age was included as a covariate. 

Only Tai Chi skill results are reported here. Other results are reported in Chapters IV, V, 

and VI. All analyses were run with PSAW Statistics 19 (IBM, Chicago, Illinois).  

 

Results 

Reliability of the Tai Chi Skill Assessment. Agreement of raters on Tai Chi skill 

was high. Cronbach’s Alpha  was 0.915 indicating the internal consistency among raters 

was high. The two-way ICC single measures outcome was 0.641, p < 0.001, indicating 

some degree of disagreement among raters on individual measures. However, the 

averaged measures outcome was 0.915, p < 0.001, indicating a high degree of agreement 

among raters when scores were averaged.  Rater scores, means, standard deviations, and 

group are presented in Table III.2.  
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Table III.2  

Tai Chi Skill Assessment Rater scores by Subject. 

Subj. 
Rater 
1 

Rater 
2 

Rater 
3 

Rater 
4 

Rater 
5 

Rater 
6 Mean SD Group 

            
1 36.51 41.27 34.92 23.81 43.75 46.03 37.72 8.01 SED 

2 65.08 61.9 41.27 46.03 69.84 85.71 61.64 16.23 TC 

3 66.67 61.9 26.98 17.46 15.87 15.87 34.13 23.77 AF 

4 41.27 38.1 41.27 53.97 60.32 66.67 50.27 11.78 TC 

5 80.95 55.56 46.03 28.57 82.54 42.86 56.09 21.69 TC 

6 28.57 23.81 17.46 25.4 14.29 14.29 20.64 6.10 MED 

7 28.57 23.81 33.33 36.51 52.38 17.46 32.01 12.06 AF 

8 23.81 26.98 26.98 39.68 28.57 17.46 27.25 7.27 AF 

9 41.27 57.14 41.27 61.9 41.27 68.25 51.85 12.11 TC 

10 28.57 23.81 38.1 23.81 38.1 14.29 27.78 9.24 AF 

11 55.56 66.67 57.14 55.56 69.84 100 67.46 17.06 TC 

12 20.63 22.22 19.05 38.1 14.29 14.29 21.43 8.80 MED 

13 28.57 39.68 38.1 23.81 28.57 31.75 31.75 6.11 SED 

14 22.22 15.87 19.05 20.63 17.46 14.29 18.25 2.97 SED 

15 30.16 28.57 22.22 39.68 22.22 23.81 27.78 6.72 AF 

16 39.68 26.98 42.83 22.22 39.68 61.9 38.88 13.90 SED 

17 22.22 17.46 17.46 31.75 14.29 14.29 19.58 6.63 AF 

18 17.46 17.46 23.81 23.81 14.29 14.29 18.52 4.34 SED 

19 26.98 22.22 26.98 42.86 52.38 44.44 35.98 12.16 MED 

20 26.98 26.98 39.68 39.68 50.79 22.22 34.39 10.80 MED 

21 20.63 14.29 31.75 25.4 14.29 14.29 20.11 7.29 MED 

22 55.56 57.14 42.86 58.73 85.71 85.71 64.29 17.52 TC 

23 14.29 14.29 15.87 19.05 1.59 14.29 13.23 6.00 SED 

24 25.4 20.63 39.68 41.27 49.21 58.73 39.15 14.29 MED 

25 52.38 36.51 39.68 53.97 53.97 66.67 50.53 10.97 MED 

26 52.38 61.9 39.68 76.19 82.54 85.71 66.40 18.22 TC 

27 19.05 17.46 22.22 23.81 36.51 14.29 22.22 7.78 AF 

28 33.33 17.46 20.63 25.4 14.29 14.29 20.90 7.40 SED 

29 41.27 26.98 41.27 39.68 47.62 39.68 39.42 6.77 MED 

30 28.57 19.05 38.1 30.16 41.27 36.51 32.28 8.07 AF 

31 28.57 17.46 41.27 25.4 57.14 20.63 31.75 14.92 TC 

32 20.63 15.87 20.63 34.92 30.16 14.29 22.75 8.14 AF 

33 17.46 20.63 46.03 36.51 68.25 36.51 37.57 18.47 AF 
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Subj. 
Rater 
1 

Rater 
2 

Rater 
3 

Rater 
4 

Rater 
5 

Rater 
6 Mean SD Group 

35 66.67 26.98 58.73 57.14 39.68 80.95 55.03 19.22 MED 

36 25.4 19.05 38.1 39.68 39.68 46.03 34.66 10.21 AF 

37 14.29 14.29 14.29 23.81 14.29 14.29 15.88 3.89 SED 

38 26.98 20.63 39.68 49.21 82.54 19.05 39.68 23.99 MED 

39 19.05 15.87 17.46 28.57 28.57 14.29 20.64 6.35 SED 

40 20.63 15.87 36.51 55.56 33.33 14.29 29.37 15.74 MED 

41 60.32 60.32 42.86 76.19 84.13 85.71 68.26 16.68 AF 

42 17.46 14.29 19.05 25.4 33.33 14.29 20.64 7.44 MED 

43 57.14 55.56 41.27 61.9 85.71 85.71 64.55 17.78 AF 

44 19.05 20.63 20.63 22.22 19.05 14.29 19.31 2.73 AF 

45 23.81 31.75 20.63 41.27 36.51 47.62 33.60 10.31 AF 

46 55.56 39.68 53.97 53.97 58.73 80.95 57.14 13.39 TC 

47 25.4 20.63 36.51 42.86 41.27 20.63 31.22 10.22 AF 

48 14.29 14.29 17.46 34.92 17.46 14.29 18.79 8.06 MED 

49 39.68 36.51 39.68 58.73 65.08 41.27 46.83 11.95 TC 

50 58.73 58.73 71.43 63.49 61.9 85.71 66.67 10.43 MED 

51 20.63 28.57 36.51 25.4 46.03 14.29 28.57 11.36 SED 

52 19.05 15.87 17.46 39.68 23.81 14.29 21.69 9.40 AF 

53 15.87 14.29 17.46 22.22 15.87 14.29 16.67 2.97 MED 

54 15.87 17.46 19.05 34.92 15.87 14.29 19.58 7.69 SED 

55 60.32 33.33 38.1 39.68 14.29 63.49 41.54 18.22 TC 

56 57.14 41.27 39.68 26.98 68.25 71.43 50.79 17.62 TC 

57 80.95 55.56 46.03 58.73 66.67 100 67.99 19.58 TC 

58 85.71 61.9 71.43 33.33 50.79 100 67.19 24.00 None 

 

Data met MANOVA requirements. MANOVA results showed that membership in 

group significantly affected Tai Chi skill (p < .001, partial eta-squared = .401).  Tai Chi 

practitioners reported significantly more lifetime hours of Tai Chi practice than mediation 

(p = 0.002), aerobic fitness ((p = 0.003) practitioners, and sedentary controls (p = 0.004) 

(see Figure III.2). A scatterplot shows  Tai Chi practitioners all reported a similar number 

Table III.2 (continued) 
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of hours of lifetime practice (see Figure III.3); thus we expected them to perform at 

similar levels of skill. This is what was observed.  

 

Figure III.2. Post-hoc comparison of self-reported Tai Chi practice in lifetime hours. 

 

 

 
 

Figure III.3. Self-reported Tai Chi practice plotted against Tai Chi skill. 
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A post-hoc comparison showed Tai chi practitioners outperformed meditators (p < 

0.001), aerobic fitness practitioners (p < 0.001), and sedentary controls (p < 0.001) on Tai 

Chi skill (see Figure III.4 and Table III.3), indicating the Tai Chi skill assessment 

successfully identified participants who self-reported long-term practice of Tai Chi.  

 

Table III.3 

Tai Chi Skill Post Hoc Comparison 

_______________________________________________________ 

                95% CI             

Groups  Mean  Std.   _______________  

   Difference  Error   Lower  Upper 

___________________________________________________________ 

TC Skill 

TC vs Med 22.558*  5.255  8.152  36.965 

TC vs AF  23.671*  5.375  8.935  38.406  

TC vs Sed  31.691*  5.610  16.311  47.070 

____________________________________________________________ 

TC = Tai Chi, Med = meditation, AF = aerobic fitness, Sed = Sedentary 

*p < .001 
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Figure III.4. Post-hoc comparison of Mean Tai Chi skill. 

 

 

Ten of 13 Tai Chi practitioners scored > 50% similarity to the professional exemplar.  

Only 3 of 16 meditation and 3 of 17 aerobic fitness practitioners scored > 50% similarity 

to the professional exemplar  (see Table III.4).  There is a clear progression of means by 

group, with Tai Chi outperforming meditation and aerobic practitioners by 20 points, and 

meditation and aerobic fitness practitioners outperforming sedentary controls by ~10 

points.  
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Table III.4  

Tai Chi skill means, standard deviations, range, ratio of scores over 50% by Group 

  n Mean SD Low High > 50% 
Tai 
Chi 13 54.92 10.91 31.75 67.99 10 

Med 16 33.68 14.49 16.67 66.67 3 

AF 17 35.36 15.89 19.31 68.26 3 

Sed 12 24 8.4 13.23 38.88 0 
 

Discussion 

This study sought to adapt a dance-proficiency instrument (Chatfield, 2009) for the 

purpose of assessing Tai Chi skill acquisition subsequent to long-term Tai Chi training.  

Skill assessment instruments measure specific system configurations required for 

movement program output (Chatfield, 2009). Some programs like cycling or running 

require more effort than others (croquet, fencing)  (Powers & Howley, 2007). Some 

require more complex motor patterns, flexibility, and finely controlled balance than 

others (i.e., classical ballet vs. aerobic walking). Tai Chi requires developing the ability to 

1) shift weight from double to single leg stance smoothly, 2) extend the legs to the side or 

front at a 90
o
 or larger angle, 3) sustain moderate aerobic exertion, and 4) learn and 

perform a long and complex movement sequence requiring coordination of the upper and 

lower bodies (Wolf, 1997; Gatts, 2008).   

To test long-term effects of this training, we selected a Tai Chi movement requiring 

weight shift from double to single leg stance, rotation of torso as weight is shifted from 

double to right single leg stance, extension of the left leg to the side while simultaneously 

executing coordinated arm movements (Wolf, 1997).  The skill assessment we developed 
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was based on the rating protocol used in a recent dance proficiency instrument. This 

included a rating of overall skill level, and proficiency with selected specific skills 

(Chatfield, 2009).  

Our criteria were guided by skills listed in a Tai Chi training proposal by Gatts, 2008:  

head and trunk verticality, accurate foot positions, accurate postures and transitions, 

rotation of movement about spine and waist, smooth even limb velocity, relaxed muscle 

activity, control of whole body center of mass , movement flow, and slowness of 

movement during performance of the Tai Chi Leg Kick. Three Tai Chi students and three 

professional Tai Chi Instructors served as raters.  Though rater agreement on single 

measures showed more variability than averaged measures, the instrument successfully 

differentiated between long-term Tai Chi practitioners and participants who had never 

practiced Tai Chi (p =< .001). This evidence suggests this instrument has successfully 

identified key skills trained in Tai Chi.  

A limitation of this present study is that motion analysis reconstruction of subject 

movement was utilized. This method of recording subject movement, though useful for 

providing kinematic data for comparison across subjects, and providing protection for 

subject identity during data analysis, is expensive to use in the research or clinical 

settings. More economical video recordings could be substituted in future studies.  

Additionally, during the training and testing sessions, the professional raters felt that the 

metric (1-3) for rating individual skill items was not sufficient to truly capture differences 

in skill levels. If this instrument is developed further, this issue must be addressed. A 

third limitation to the study is that it only differentiates between experts and those who 

have never practiced Tai Chi. This is something that could probably be successfully 
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performed by an observer without any assessment tool or skill in observation, as skill 

differences between non-practitioners and experts are generally very large.  However, 

now we have a number to quantify these impressions, and this can be useful given careful 

validation for use in future studies. 

It should be noted that our Tai Chi practitioners all reported a similar mean number of 

lifetime hours of practice; thus if practice effects are correlated with acquired skill, we 

would expect to see similar skill levels in these participants. This is what we saw. To 

determine if this instrument is sensitive enough to detect skill level differences between 

practitioners of Tai Chi, a cross-sectional study would need to be conducted in a large 

metropolitan area with a more diverse socio-economic and racial demographic. In such a 

research setting the subject pool of volunteers is potentially much larger. It might be 

possible to find volunteers with a wider range of lifetime hours of practice.  

However, the raters did successfully differentiate those participants with long-term 

Tai Chi training from those with no such training, a key aim of this study, suggesting this 

instrument may be sufficiently sensitive for distinguishing between Tai Chi practitioners 

and those who have never studied Tai Chi. It is interesting to note that the aerobic and 

meditation groups performed similarly and superiorly to sedentary controls.  A careful 

examination of rater scores for individuals in these groups showed a small number of 

scores in the Tai Chi practitioner range (> 50% similarity to professional exemplar).  

Field notes were taken during data collection.  Several aerobic fitness and meditation 

practitioners self-reported chronic practice of competitive sports, dance, or yoga.  These 

are complex movement skills which may be similar to Tai Chi. This suggests that this 

particular skill assessment instrument can identify individuals with complex gross motor 
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training and differentiate them from individuals with long-term Tai Chi training. Because 

this instrument assesses ability to coordinate upper and lower body movements, shifts 

from double to single leg stance, leg extension, balance, and return to double leg stance, a 

future study could adapt this Tai Chi Skill Assessment for use in assessing general gross 

motor skill in normal adults.   

    

 Bridge 

The purpose of this study was to develop a skill assessment instrument capable of 

detecting Tai Chi training effects during performance of a typical Tai Chi movement 

sequence. A recent dance proficiency instrument was used as the template (Chatfield, 

2009). Tai Chi training effects were defined as percent similarity to a professional 

exemplar performing the same movement sequence. Tai Chi practitioners did 

significantly outperform each of our other groups.  Ten of 13 Tai Chi practitioners scored > 

50% similarity to the professional exemplar.  Only 3 of 16 meditation and 3 of 16 aerobic fitness 

practitioners scored > 50% similarity to the professional exemplar. This allowed us to include Tai 

Chi skill score in our overall analysis. Additionally, because Tai Chi training effects were 

detected, we expected the benefits derived from such practice to be evidenced in 

practitioner executive attention measures. These benefits include faster reaction times, 

lower percent local switch costs, larger P3b switch amplitudes, and shorter P3b switch 

latencies. Experiments gathering that evidence are described in Chapters IV and V. 
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CHAPTER IV 

EFFECT OF LONG-TERM TAI CHI, MEDITATION AND AEROBIC PRACTICE VS. 

AN INACTIVE LIFESTYLE ON A NEUROPSYCHOLOGICAL MEASURE OF 

ADULT HUMAN EXECUTIVE ATTENTION FUNCTION 

 

Introduction 

As human life expectancy has lengthened in the developed world, successful aging 

has become a public health concern. Health-related quality of life, cognitive capacity, and 

physiological status are all dependent on healthy aging (Murdaugh, 1997).  Aging effects 

include decreasing cardiovascular, neuro-motor, and cognitive capacities. VO2max, a 

proxy for cardiovascular-respiratory health, declines at a rate of 1% per year after the age 

of 20 (Powers & Howley, 2004, p. 335). Reaction time on neuropsychological tests 

declines by a factor of 1.5 during the 25-65
th

 years of life (Verhaegen & Carella, 2002). 

By the age of 65, walking and other locomotor skills required for daily living require 

increasing amounts of cognitive capacity to perform adequately (Shumway-Cook & 

Woollacott, 2007). A key component of cognitive capacity is executive attention function 

(EF) (Miyake, 2000; Gilbert, 2008). Executive function may mediate aging effects on 

other cognitive resources (i.e. orienting, planning, and goal-setting) (Salthouse, 2003). 

Investigation of health training regimens which may counteract the effects of aging on 

executive function are currently underway (Ratey & Loehr, 2011; Etnier & Chang, 2009). 

Of particular interest are regimens that may extend mid-life (30-65 years) cognitive 

capacity into the seventh and eighth decades of life.  Meditation and aerobic fitness are 

two readily available health regimens (Lutz et al, 2007; Powers & Howley, 2004) that 
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have been shown to positively affect executive function in young and older adults (Ratey 

& Loehr, 2011; Tang et al, 2008; Chan & Woollacott, 2007; Brefczynski-Lewis et al, 

2007). 

Executive function (EF) benefits resulting from chronic aerobic fitness training 

include faster reaction time and greater accuracy on flanker and go no-go tasks in older 

adults (Hatta et al, 2005: Latey, 2011).  Reaction time (RT) is thought to represent the 

time course of central (cognitive) and peripheral (motor) operations required to perform a 

neuropsychological response (Verhaeghen & Cerella, 2002). This body of evidence 

suggests that moderate exercise benefits executive function processing speed and 

accuracy during tasks requiring inhibition and working memory. This may be due to 

upregulation of neurotrophic factors and neural metabolism efficiency (Vaynman and 

Gomez-Pinilla, 2006).  Further, new evidence suggests that the type of moderate exercise 

may be important for EF training benefits. Exercise can require relaxed or focused 

attention.   Moderate exercise requiring constant application of attentional focus, such as 

orienteering or soccer, has been correlated with greater benefits to EF processing speed 

and accuracy (Voss et al, 2009; Pesce, 2011). 

Meditation has been shown to train executive function.  Meditation is defined as 

concentrated mental focus on a sound, image, sentence (chant or mantra), or activity 

(walking, sitting). All conflicting stimuli are pushed out of awareness (Lutz et al, 2007). 

Many meditation practitioners also engage in yoga and other moderate exercise activities. 

Indeed, one of the most utilized and studied meditation practices, Mindfulness-based 

Stress Reduction, explicitly incorporates yoga into its training regimen (Smith et al, 

2008). Not surprisingly, during subject recruitment for this study, we found no sedentary 
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meditators. All meditation practitioners reported chronic participation in moderate 

exercise of some kind. Thus, a contributing factor in meditation’s benefit to EF function 

might be cardiovascular and metabolic modifications resulting from chronic moderate 

exertion. Additionally, the mental effort of inhibiting distracting thoughts or sensations 

suggests meditation may train the EF inhibition component. Chan & Woollacott, 2007 

found that long-term practitioners of meditation showed less interference on the Stroop 

incongruent condition than non-practicing controls. This suggests executive function tests 

of inhibitory capacity may isolate a key executive function affected by chronic meditation 

training. 

Another health training regimen that shows promise for benefiting EF is Tai Chi. Tai 

Chi is a form of moderate exercise (Li et al, 2001) that has been shown to be superior to 

aerobic walking for cardiovascular function (Audette, et al, 2006). Tai Chi is also a form 

of moving meditation (Luskin, 2004) that requires memorization of complex movement 

sequences, and thus motor learning. Motor learning requires EF (Halsband & Lange, 

2006). Tai Chi also requires constant application of attention for optimal performance 

(Gatts, 2008; Voss, 2009; Pesce, 2010). Because Tai Chi requires moderate exercise, 

motor learning, and application of attention, would chronic practice yield similar or 

greater benefits to executive function compared to aerobic exercise and meditation? A 

recent uncontrolled study showed that 10 weeks of Tai Chi training benefited task switch 

performance in community dwelling, normally aging elders (Matthews & Williams, 

2008).  
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Executive function processes which have been routinely identified include the ability 

to respond appropriately to novel situations, make choices, set goals, coordinate task 

sequences, inhibit inappropriate responses, update ongoing task sequences, and switch 

between tasks appropriately (Salthouse et al, 2003; Gilbert & Burgess, 2008).  Three key 

executive function components that may underlie these operations are 1) inhibition, 2) 

updating, and 3) shifting (Miyake, 2000). Working memory is often included as a major 

component of executive function (Gilbert, 2008). Importantly, Salthouse, 2003 found that 

degradation of the inhibition and updating components of executive function may 

mediate age-related cognitive decline. Indeed, both simple and complex executive tests 

have been shown to reliably differentiate between older and younger adult executive 

capacity (Salthouse et al, 2003; Colcombe & Kramer, 2003).  Longer reaction times are 

thought to index less efficient processing (Banich, 1997; Mayr, 2001; Chan & 

Woollacott, 2007; Altmann, 2008). Tests which isolate the inhibition component of 

executive function include the flanker, Stroop, and go no-go. The n-back task evaluates 

updating capacity (Miyake, 2000). Tests of complex executive function include the many 

variants of task switching (Altmann, 2008; Verhaegen & Carella, 2002). Task switch 

tests require four main executive function components: inhibition, updating, shifting and 

working memory.  These components are subserved by the dorsolateral and mediolateral 

prefrontal, and anterior cingulate cortices (Rushworth et al, 2007; Rushworth et al, 2005, 

Rushworth et al, 2002). If integrated microcircuits in the prefrontal cortex mediate 

inhibition, updating, shifting, and working memory operations, then a complex test 

requiring these circuits may be a reliable measure of executive function coordination of 

these components.  
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This study utilized a complex visuo-spatial task switch (VSTS) (Mayr Laboratory, 

University of Oregon, 2009) to assess executive function of long-term Tai Chi, 

meditation plus exercise, or aerobic fitness practitioners compared to generally sedentary 

individuals.  This test required working memory, inhibition, shifting, and updating 

(Miyake, 2000), was noncued and included alternating runs of two rules (Altmann, 2008). 

Our measures were switch reaction time and switch capacity (% local switch costs). We 

expected our training groups would outperform sedentary controls on aerobic capacity. 

We predicted that long-term Tai Chi and meditation plus exercise training would produce 

the greatest benefits to our executive function measures (switch reaction time and 

capacity) followed by aerobic fitness training. We predicted all three training groups 

would significantly out-perform sedentary controls on our executive function measures. 

Further, we hypothesized that age effects on health regimen practitioners would be less 

than those for sedentary controls. 

 

Methods 

Participants.  Participants were recruited by word of mouth, local Craigslist and 

newspaper ads, and flyers posted throughout the communities of Eugene and Springfield, 

Oregon. Inclusion criteria were 1) no neurological or physical disorders, and 2) aged 20-

75. The large age range was chosen so we could document the effects of normal aging on 

our key measures across the lifecycle. We expected to see less than normal aging effects 

in our health regimen groups compared to sedentary controls (Mayr, 2000; Bryan & 

Luszcz, 2000; Hillman et al, 2002; Verhaegen, 2002; Colcombe, 2004; Etnier & Chang, 

2009). Sedentary participants were required to have 1) a generally inactive lifestyle for 
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five or more years, and 2) no prior experience with meditation or Tai Chi. Health regimen 

practitioners were required to 1) have practiced at least five years or more, three times per 

week, 30 minutes per session. All participants had self-selected into their preferred level 

and type of exercise activity. Fifty-nine participants responding to a health regimen 

recruitment campaign agreed to four hours of testing scheduled at their convenience. This 

test was administered as part of a four-hour battery of tests, two of which required 

moderate aerobic exertion. Because acute exercise has been shown to improve cognitive 

performance (Pesce, 2011; Davranche, 2004) we scheduled the cognitive and exercise 

testing separately. If the participants preferred to do the testing in one day, the cognitive 

testing was done first followed by the exercise testing. Two Tai Chi participants who 

could not use a computer effectively were excluded since our key executive attention 

tests were administered via PC computer. Two subjects did not complete the testing.  One 

additional subject who presented with bipolar disorder and presently off medication was 

excluded due to that psychological abnormality. Thus, 54 subjects completed all tests and 

were included in this analysis (female = 27).  Final group composition was 1) 10 Tai Chi 

(female = 3), 2) 16 meditation plus exercise (female = 6), 3) 16 aerobic fitness (female = 

8), and 4) 12 generally sedentary (female = 10) participants. Body mass index (BMI) was 

calculated for each participant (U.S. Department of Health & Human Services, 2012). 

BMI is mass (kg)/(height (m))
2
 (see Table II.1). Subject recruitment and experimental 

protocol were approved by the University of Oregon Institutional Review Board. Subjects 

gave Informed Consent and were compensated for their participation.  
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Testing 

Aerobic Capacity --Rockport 1-mile Walk (Kline et al, 1987; American College of 

Sports Medicine, 2009). Subjects were fitted with an Athletic Connection Polar E600 

heart rate monitor (Polar Electro-USA). A chest strap with heart sensor sent information 

on heart rate and walk time to a wrist recorder. Subjects walked 1 mile as fast as they 

were able. Estimated VO2Max was calculated by entering subject’s age, weight, gender, 

walk time, and ending heart rate in a java applet located at 

http://www.exrx.net/Calculators/Rockport.html. VO2max indexes aerobic capacity – the 

body’s ability to transport and utilize oxygen during exercise in ml/kg/min O2 (Powers & 

Howley, 2004).  

 

Executive Attention Test. Executive attention test structure has been shown to affect 

reaction time. More complex tests produce longer reaction times (Bryan, 2000).  Non-

cued paradigms have been shown to be more difficult than cued paradigms (Monsell et 

al, 2003; Koch, 2003). Response-stimulus interval (RSI) is important as well. Short RSIs 

have been shown to produce greater switch costs than longer ISIs (Karayanidis et al, 

2003). To optimize separation between our groups on our executive measures, a 

randomized runs, no-cue, short (10 msec) response to stimulus interval, visuo-spatial task 

switch (VSTS) with dense array EEG (Mayr Laboratory, University of Oregon) was 

selected. This VSTS maximized interaction of working memory load, past response 

updating, and present response selection. Finally, we selected local switch costs after 

controlling for the speed accuracy trade-off as our measure of executive capacity. Local 

switch costs index the capacity to switch tasks quickly and accurately (Monsell et al, 

http://www.exrx.net/Calculators/Rockport.html
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2000; Wylie & Allport, 2000; Milan et al, 2006). Lower switch costs index greater switch 

capacity (Pesce & Audiffren, 2011).   

 

Paradigm. Participants were trained in two different response rules (Rule 1 and 2) to 

indicate the spatial location of a randomly appearing dot within a fixation rectangle 

(Figure II.5) For Rule 1, the button press response was compatible with the dot’s location 

in space. For Rule 2 the button press was incompatible with the dot’s location in space. 

For the Switch test (Rule 3) participants switched between Rule 1 and 2 on every other 

trial. Trials in which a switch of response rule was required were designated switch trials. 

Trials when the response rule remained the same as the previous trial were designated no-

switch trials. The test was coded in E-Prime (Psychology Software Tools) for use with 

dense array EEG (Electrical Geodesics, Eugene, Oregon).  Methods and results for the 

EEG component of this test are reported in Chapter V. Switch costs were calculated thus: 

Mean Switch RT – Mean No-switch RT/Mean No-switch RT. This controlled for any 

possible speed accuracy trade-off. Dependent variables were switch reaction time and 

local switch costs. 

Stimuli were displayed on a computer monitor located ~ 24 inches in front of the 

participant. Participants were trained to respond as quickly and accurately as possible to 

stimulus appearance using a two button mouse. The stimulus appeared immediately 

subsequent to each response (screen refresh rate was 10 msec). For Rule 3 participants 

were provided with visual feedback in the case of erroneous responses. They corrected 

their error and continued the trial block. Participants practiced each Rule until they 

achieve 85% accuracy. Rules 1 and 2 consisted of 48 trials in two blocks. Rule 3 (the 
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actual task switch) consisted of twelve blocks of 48 trials/block. All tests were 

administered from the same instruction script on the same PC computer.   

 

Multivariate Cross-sectional Design. In multivariate designs multiple dependent 

variables are measured on subjects who are assigned membership in carefully defined 

groups (Stevens
, 
2002). The overall study, of which this analysis is a part, included three 

health training groups: 1) Tai Chi, 2) meditation plus exercise, and 3) aerobic fitness. We 

contrasted those with generally sedentary controls who had never engaged in any of our 

training modalities. Each training group reported similar lifetime hours of moderate 

aerobic exertion (Li, 2001; Powers & Howley, 2007) (see Figure II.1).  This allowed us 

to control for physical exercise effects.  Covarying age allowed us to assess its effects on 

our dependent measures. Our effect size measure was partial eta-squared. 

We expected to see all chronic moderate aerobic exercisers outperform sedentary 

controls on estimated VO2max (Powers & Howley, 2004,p. 335). As a result, we also 

expected they would outperform sedentary controls on our executive function measures 

(Ratey & Loehr, 2011; Dishman et al, 2006; Vaynman & Comez-Pinilla, 2006).  It is key 

to note that the difference between our training groups was the attentional focus required 

to perform their respective health regimens (Pesce & Audiffren, 2011; Voss et al, 2009) 

(See Figure 2).  Both Tai Chi (Gatts, 2008; Voss, 2009; Pesce, 2011) and meditation 

(Lutz et al, 2007) require constant attentional focus. This is in contrast to aerobic 

exercise, which permits more generally relaxed attention (Voss, 2009; Pesce, 2011). This 

allowed us to examine the effect of chronic executive function training in combination 
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with  moderate aerobic exertion on our key executive function outcome measures: switch 

reaction time and % local switch costs. 

 

Data Analysis 

A multivariate analysis of variance (MANOVA) and Levene’s test for homogeneity 

of variance was performed. Sidak correction was used for post hoc analyses. Sidak is a 

variation on Bonferroni adjustment.  Alpha was set at 0.05 for the main MANOVA. A 

bivariate correlation was run. To control for a slippage for multiple analyses (PCA and 

cluster analyses reported elsewhere), a Bonferroni correction was applied and  alpha was 

set at 0.0125. Our independent variable was group. Because normal aging is associated 

with degradation of cognitive and physiological function, age was included as a 

covariate. Our Discriminant Variable was Group (Tai Chi, Meditation, Aerobic Fitness, 

and Sedentary Control). Dependent variables were estimated VO2max, switch reaction 

time, and percent switch costs. Because we were evaluating whole system functionality, 

error trials were included in our reaction time means. Groups were numerically coded 

thus: Tai Chi, 1; Meditation plus exercise, 2; Aerobic fitness, 3; and sedentary control, 4. 

We coded this numbering system in line with our hypothesis that Tai Chi, then 

meditation practitioners, would outperform aerobic fitness practitioners on our executive 

function variables. We predicted all training groups would outperform sedentary controls 

on executive function and aerobic capacity. This made correlations between group 

members and our numerical variables interpretable. All analyses were run with PSAW 

Statistics 19 (IBM, Chicago, Illinois).  

 



57 
 

Results 

Overall results. As expected, training group and age both significantly affected our 

key outcome measures. Levene’s statistic revealed eight variables with unequal error 

variances  (Appendix G). These variables were either compound numbers (i.e. % switch 

costs) or discriminant variables in the data set (lifetime hours of health regimen practice). 

MANOVA can be forgiving of such deviations from normalcy (Stevens, 2002). The main 

MANOVA omnibus was significant (Wilk’s lambda (Λ) (F(24, 26) = 1417.561, p < 

.001.) Our overall partial eta square was .999, indicating we have explained 99.9% of the 

variance in our outcome measures. Since we included two key variables shown to affect 

executive function: aerobic capacity and age, this is not surprising. Group membership 

explained ~68% of this variance (Wilk’s lambda (Λ) (F(72, 78.562) = 2.321, p < .001,  

partial eta square = .679), indicating the presence of possible training effects. Though 

our groups do not differ on age (p = .295), age explained 76% of total variance (Wilk’s 

lambda (Λ) F(24, 26) = 3.488, p = .001, partial eta square = .763), suggesting normal 

aging was a key factor affecting our outcome. Clearly these two have overlapping 

variance, as would be expected, since the cell populations that produce the output are 

affected by both age and fitness training effects (Hillman et al, 2002; Vaynman, 2006; 

Ratey & Loehr, 2011). Age and group membership have similar effect sizes  on switch 

reaction time (group, 34.3%; age, 31.2%) and VO2max (group, 49.6%; age, 39.3%), but 

not on percent switch costs (group, 28%; age, 9%).  Means, standard deviations, and 

variance explained for key factors and variables are presented in Figure IV.1.   
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Figure IV.1. Variance explained, means and standard deviations. 

Figure IV.1 
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This suggests that while both age 

and lifestyle choices significantly 

impact executive function over the 

lifecycle, lifestyle choices that 

combine moderate aerobic exercise 

and executive function training may 

mitigate aging effects on complex 

executive attention capacity (see 

Figure IV.2). 

Post-hoc results. As expected 

Tai chi (p = .025), meditation (p < 

.001), and aerobic fitness (p < .001) 

practitioners outperformed sedentary 

controls on estimated VO2max. This 

difference suggests that exercise 

training effects may be mitigating the 

effect of normal aging on this 

important health variable for health 

regimen practitioners. This is 

consistent with current normative 

databases (Powers & Howley, 2004). Interestingly, aerobic fitness practitioners 

outperformed Tai chi practitioners (p = .043) on VO2max (see Figure IV.3c).  This is may 

be due to the wide range of METs required by different Tai Chi styles (i.e. Chen vs. Yang 

Figure IV.1 

Figure IV.2. Relative weights of age and group 

on key outcome measures. 
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style, long- versus short-form) (Wolf, 1997, Li et al, 2001). However, our Tai Chi 

practitioners were a decade older on average than our aerobic practitioners (see Figure 

IV.3d). Thus, can we expect aging to explain some of this difference in their absolute 

estimated VO2max scores (Powers & Howley, 2004; p. 335)? Additionally, we found 

estimated VO2 max was significantly and negatively correlated with age (r = -.539, p < 

.001) in this data set, suggesting that younger individuals have greater aerobic capacity, 

consistent with normative evidence. This convergent evidence suggests aging effects are 

at work in the difference between Tai Chi and aerobic fitness practitioners on VO2max. 

Because each of our training groups outperformed sedentary controls on 

cardiovascular fitness, we can expect to see executive function training benefits as well 

(Colcombe et al, 2004). We saw some, but not all of the hypothesized effects.  

Self-reported lifetime hours of aerobic fitness practice. As noted, all chronic 

training groups reported a statistically similar number of lifetime hours of aerobic fitness 

practice. 

Self-reported lifetime hours of meditation practice. As expected, meditation 

practitioners reported significantly more hours of meditation practice than Tai Chi (p = 

.002), aerobic fitness (p = .002),  or sedentary participants (p = .004). 

Importantly, we saw no significant differences between groups on self-monitoring 

function.  Indeed, the groups performed almost identically. Recall, we had expected our 

meditators to outperform other groups on this measure. This shows we did not 
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Figure IV.3. Key observations by group. 

successfully identify an executive measure uniquely trained by meditation practice. 

Another possibility is this test may have been too easy. A more difficult version might 

isolate training effects between our groups (Bryan, 2000; Milham, 2003).   

The training groups outperformed the sedentary controls on switch reaction time (Tai 

Chi (p < .001), meditation (p = .001), and aerobic fitness practioners (p = .014) (see 
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Figure IV.3b). This is in line with evidence showing aerobic fitness practice is associated 

with faster reaction times on executive function tests (Etnier & Chang, 2009; Ratey & 

Loehr, 2011). There were no significant differences between training groups on switch 

reaction time.  However, only our Tai Chi and meditation practitioners outperformed 

sedentary controls on percent switch costs (Tai Chi: p = .001; meditation practitioners: p 

= .006). Aerobic fitness practitioners and sedentary controls did not differ significantly on 

this measure (see Figure IV.3a). Percent switch costs is a more stringent measure of 

switch capacity than raw reaction time. It is possible that there is an extra benefit 

accruing to these groups due to long-term practice of moderate exercise combined with 

executive function training. However, it is important to note there are no significant 

differences between training groups on percent switch costs.  Is there a differential 

training effect?  Group was significantly and positively correlated with both switch 

reaction time (p = .003, r = .400) and percent switch costs (p < .001; r = .468). This 

suggest that those in groups 3 and 4 (aerobic fitness, sedentary control) show longer 

reaction times and higher switch costs than those in group 1 and 2 (Tai Chi and 

meditation). Switch reaction time was negatively correlated with Tai Chi skill (p = .004, r 

= -.395), thus individuals with higher Tai Chi skill demonstrated shorter switch reaction 

times. Percent switch costs were negatively correlated with Tai Chi skill (p = .003, r = -

.401). Thus, individuals with greater Tai Chi skill showed lower percent local switch 

costs (see Table IV.1). 

This convergent evidence shows that although Tai Chi participants were older and 

demonstrated lower absolute estimated VO2max, they outperformed younger aerobic 
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practitioners on percent switch costs (see Figure IV.4), suggesting that age effects may be 

mitigated by this commonly available health regimen. 

Table IV.1 

Significant Correlations Between Key Measures 

________________________________________________________________________ 

  Grp Age VO2  TCS Self SwRT  SCosts  SAmp  SLat  

________________________________________________________________________ 

Grp   -.206 -.142  -.570**-.130 .400*  .468*  -.409*  -.194  

Age     -.539** .099 -.344* .433*  .181  -.156  .143 

VO2        .129 .181 -.508** -.289  .324  .077  

TCS          .038 -.395*  -.401*  .254  .134  

Self            -.136  -.131  .183  -.336 

SwRT               .660**  -.517** -.289 

SCosts                  -.370*  -.354* 

SAmp                     .214 

Slat 

________________________________________________________________________ 

*p < .0125, **p <.001 

Notes: Disc = Discipline, VO2 = VO2max, TCS = Tai Chi Skill (% similarity), Self = 

Self-monitoring (% correct), SwRT = switch reaction time (msec), SCosts = switch costs 

(%), SAmp = P3b switch amplitude (mV), SLat = P3b switch latency (msec). 
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Figure IV.4. Possible training effects on % local switch costs. 

 

Discussion 

This study utilized a complex visuo-spatial task switch test (VSTS) (Mayr, 2001) to 

assess executive function of long-term Tai Chi, meditation plus exercise, or aerobic 

fitness practitioners compared to generally sedentary individuals. We first asked if our 

groups differed on aerobic capacity. We then asked if our groups differed on key 
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executive attention measures. Our executive function measures were switch RT and 

switch capacity (% local switch costs). We predicted that long-term Tai Chi and 

meditation plus exercise training would produce the greatest benefits to our executive 

function measures, switch reaction time and capacity, followed by aerobic fitness 

training. We predicted all three training groups would significantly out-perform sedentary 

controls on our executive function measures. Further, we hypothesized that age effects on 

health regimen practitioners would be less than those for sedentary controls. 

Our results show that each of our health training groups outperformed sedentary 

controls on our key cardiovascular fitness measure, estimated VO2max. This was 

expected if they had indeed trained at least three days per week, 30 minutes per session 

for five or more years (Powers & Howley, 2004; Dishman et al, 2006). Any reaction time 

or switch cost benefits conferred by long-term moderate exercise should accrue to our 

training groups, but not our sedentary controls.  That is what we saw. Even though our 

groups are equated on age, and age significantly affects all our outcome measures, these 

effects fell most detrimentally on our sedentary controls. Each group should be equally 

affected by aging effects on executive function measures (Hillman et al, 2002; Ratey & 

Loehr, 2011), yet our training groups outperformed sedentary controls. This suggests any 

executive attention performance differences we saw between our groups may be due to 

the effects of training.  On the switch reaction time all our health training groups 

outperformed the sedentary controls.  This is in line with the general body of literature 

that shows moderate exercise positively benefits reaction time on executive attention 

tasks (Ratey & Loehr, 2011). However on the crucial switch costs measure, only the Tai 

Chi and meditation training groups significantly outperformed the sedentary controls. 
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This was an interesting finding.  Even though our groups did not differ significantly on 

age (p=.295), an inspection of the distribution of age scores by group  shows the Tai Chi 

and meditation groups were older than the aerobic fitness or sedentary groups.  Indeed, 

group rather than age had the strongest effect on percent switch costs. Six younger 

aerobic fitness practitioners demonstrated higher switch costs than older Tai Chi and 

meditation practitioners two or more decades older.  Finally, group is positively 

correlated with switch costs (p < .001, r = .468). Remember that Tai Chi is coded 1, 

meditation 2, aerobic fitness 3, and sedentary controls , 4. We expected our groups to 

perform in that order. Our results show that higher group number is correlated with 

higher switch costs.  This convergent evidence suggests that moderate aerobic exercise in 

combination with explicit mental training may produce greater benefits to complex 

executive operations requiring coordination of four of the main executive attention 

components: inhibition, updating, shifting, and working memory than aerobic fitness 

alone.   

However, limitations in our data set may equally explain this outcome.  Self-selection 

into these groups related to socio-economic status or upbringing, genetics (Gajewski et al, 

2011), and different intensities of practice across participants are variables that could 

affect outcome measures.  Additionally, we utilized an absolute VO2max algorithm 

utilizing age, gender, and weight. However, evidence shows that a predicted VO2max 

normalized to age and gender and height may yield more accurate estimates of VO2max 

than absolute measures (Hansen & Wasserman, 1984). In addition, the literature suggests 

that VO2max is differentially affected by exercise intensity (i.e. low to high exertion 

requirements) (Tanaka et al, 1997). Future analyses of these data should include age-
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normalized VO2max. Future studies should be designed to examine the effects of age by 

decade and exercise type on aerobic capacity in normally aging adults. 

In spite of these limitations, this evidence suggests these three commonly available 

health regimens may be equally effective in promoting executive attention health 

throughout the adult human lifecycle. This is good news for clinicians and individuals 

alike. Healthcare professionals need different types of evidence-based health practices to 

offer clients. If clients are able to select from these regimens based on personal 

inclinations and preferences, it is possible that participation in such regimens would 

become more habitual, insuring cognitive and physical benefits, lower healthcare costs, 

and a greater quality of life throughout their lifetimes. 

 

Bridge 

All health regimen training groups significantly outperformed sedentary, non-

practicing controls on switch reaction time. This is consistent with established norms 

(Ratey & Loehr, 2011) and suggests long-term practice of Tai Chi, meditation plus 

exercise, and aerobic fitness compared to a generally inactive lifestyle benefits executive 

attention capacity. However, only the Tai Chi and meditation plus exercise groups 

outperformed sedentary controls on the more stringent percent local switch costs 

measure. Elecrtroencephalography (EEG) was used during the executive attention task to 

obtain average ERPs by switch trial during the VSTS. The P3a ERP is an index of 

attentional orienting network activation. The P3b is an index of working memory 

network activation (Polich, 2007). These two are seen in a ~250-800 msec window post-

stimulus at midline electrode sites (Fz, Pz). Evidence suggests we should see larger P3 
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amplitudes and shorter latencies in our training compared to our sedentary groups. The 

behavioral measures showed mixed evidence for effects of training modality. Since the 

P3 is a bipolar neural component of attention circuitry (Knight, 1997; Polich, 2007), 

would it correlate with either raw switch score or percent local switch costs? 

Chapter V describes the dense-array EEG component of the VSTS experiment that 

allowed us to address this question. 
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CHAPTER V 

 

EFFECT OF LONG-TERM TAI CHI, MEDITATION AND AEROBIC PRACTICE VS 

SEDENTARY LIFESTYLE ON ADULT HUMAN P3B EVENT-RELATED 

POTENTIAL AMPLITUDE AND LATENCY. CORRELATION WITH 

NEUROPSYCHOLOGICAL MEASURES OF EXECUTIVE ATTENTION 

PERFORMANCE AND CARDIOVASCULAR FITNESS 

 

 

Introduction 

 

 

In our complex culture, cognitive capacity is a key concern throughout the adult 

lifecycle. Normal aging produces decrements in human cognitive capacity, including 

reaction time and accuracy on neuropsychological tests (Hillman, 2006; Pontifex et al, 

2009; Gunning-Dixon & Raz, 2003). Health regimens that may contribute to successful 

cognitive aging are under active investigation. Such regimens include Tai Chi (Wolf, 

1997; Li et al, 2001; Gatts, 2008), meditation (Chan & Woollacott, 2007), and moderate 

exercise (Ratey & Loehr, 2011). Moderate exercise leads to improvements in aerobic 

capacity as measured by estimated VO2max. Aerobic capacity is correlated with 

improvements in cognitive capacity (Hillman, 2006). A core component of cognitive 

capacity is executive attention. Executive attention capacity may mediate successful 

cognitive aging (Salthouse, 2003). Four key executive components have been identified 

across many studies: inhibition, updating, shifting, and working memory) (Miyake, 2000;  

Gilbert, 2008). Post-lesion (i.e. concussion)(Halterman et al, 2006), transcranial magnetic 

stimulation (TMS)(Rushworth et al, 2002), functional magnetic resonance imaging 
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(fMRI) Milham et al, 2003), and electroencephalography (EEG) (Polich, 2007) studies 

during neuropsychological tasks requiring inhibition, updating, and attentional shifting 

suggest the activity of prefrontal structures, particularly the dorsolateral, mediolateral, 

and anterior cingulate cortices contribute to executive attention output (Rushworth et al, 

2007; 2005; 2004a; 2004b; 2002; Milham et al, 2003). There are a number of 

neuropsychological tests that have been used in combination with 

electroencephalography (EEG) to successfully evaluate human executive performance, 

including task-switching (Altmann, 2008; Poulsen et al, 2005). Event-related potential 

(ERP) amplitude and latency relative to events of interest during such tests have proven 

particularly useful for investigation of executive attention capacity (Colcombe, 2003; 

Hillman, 2006; Polich, 2007). 

ERPs are derived from digitized EEG signals at the scalp during performance of 

specific cognitive tasks (Luck, 2005).  These deflections are thought to index the total 

activity of specialized microcircuit activity within dedicated networks of cells during task 

execution (Grillner & Greybiel, 2007; Polich, 2007). Deflections within specified time 

windows at specified electrodes relative to events of interest (i.e. stimulus onset, trial 

type, button press response, etc.) are averaged across all trials of carefully defined 

cognitive tasks (i.e., go no-go, oddball, n-back, flanker, Stroop, and task switch). This 

averaging removes any part of the signal not correlated in time with the event of interest 

and leaves a waveform interpreted as representing brain activation required to output the 

specific task (Luck, 2005). While many signal processing and analysis issues remain, 

latency and amplitude of ERP waveforms have been reliably observed for many 

processes required for human executive attention operations. These ERPs can be used to 
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compare cognitive performance across subjects and between groups. Indeed, tasks 

requiring stimulus identification, working memory, inhibition of inappropriate responses, 

shifting between response rules, and updating of response sequence routinely evoke the 

P300, a characteristic positive waveform complex in the time window  ~ 250-800 msec 

post stimulus presentation (Duncan et al, 2006; Polich, 2007). Inhibition, updating, 

shifting, and working memory are all components of executive attention function  

(Miyake, 2000; Gilbert, 2008). This suggests the P300 may be one neural correlate of 

these components’ co-activation. The P300 is seen at midline electrode sites (Fz, Cz, 

Pz)(Polich, 2007; Duncan et al, 2009; Pontifex et al, 2009). This waveform complex has 

been dissociated into two main components, the P3a and P3b. The P3a is seen at Fz . The 

P3b is seen at Pz. These comprise the two poles of the fronto-parietal attention network 

(Knight, 1990).  

The P3a is thought to index orienting of attention to a relevant stimulus (Knight, 

1996; Polich, 2007). Larger amplitudes are thought to index more robust allocation of 

attentional resources to the stimulus (Pontifex et al, 2009). Large P3a amplitudes are 

elicited by novel stimuli (Polich, 2007).  The P3a shrinks with habituation (Segalowitz et 

al, 2001).  

The P3b is thought to index working memory allocation to stimulus processing. 

Paradigm structure strongly affects the amplitude of the P3b. More complex tests result in 

smaller amplitudes and longer latencies. Shorter latencies are thought to index more 

efficient processing (Hillman et al, 2006). A growing literature is beginning to document 

exercise training effects on the P3b waveform (Ratey & Loehr, 2011). Larger P3b 

amplitudes are seen in elderly adults who regularly engage in moderate aerobic exercise 
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as compared to sedentary elderly adults (Hatta et al, 2005). Younger and older subjects 

participating in regular physical activity showed larger P3b amplitudes and shorter 

latencies on a task switching paradigm than inactive subjects (Hillman et al, 2006). 

Importantly, Tai Chi has been shown to require moderate aerobic exertion (Li et al, 2001; 

Powers & Howley, 2004).  

Only one study utilizing the attentional blink paradigm has examined meditation 

training effects on the P3b.  The attentional blink test requires subjects to identify a target 

stimulus during rapid serial visual presentation of distracters (Banich, 1997). If target 

stimuli occur within a 250 msec time window of each other, error rates for target 2 

detection are high. Meditators showed reduced P3b amplitudes to target 1 in this 

paradigm. This was correlated with a high accuracy rate for target 2 identification, 

suggesting more efficient allocation of attention resources, an executive attention process 

(Slagter, 2007). There are no studies examining the training effects of Tai Chi on P3b 

amplitude or latency. P3b characteristics are a potentially reliable normative database for 

comparing executive attention efficiency across subjects and groups (Etnier & Chang, 

2009).  

This cross-sectional study compared the effects of long-term training in Tai Chi, 

meditation plus moderate aerobic exercise, or aerobic exercise alone to sedentary lifestyle 

on complex executive attention function. We asked if our groups differed on aerobic 

capacity. Those groups demonstrating greater aerobic capacity were expected to show 

enhanced executive test scores. Aerobic capacity was assessed with the Rockport 1-mile 

walk (Kline et al, 1987; Colcombe, 2004). We utilized a demanding alternating runs, 

endogenously cued, short response to target interval, visuo-spatial task switch (VSTS) 



73 
 

(Mayr, 2000). This test required bilateral button press responses, inhibition, updating, 

shifting, and working memory (Monsell et al, 2000; Wylie & Allport, 2000; Milan et al, 

2006). To optimize test difficulty, we used a novel, ecologically valid test structure. We 

did not control response to stimulus interval mathematically or temporally. Each response 

was followed immediately by the next stimulus. We asked if we would see a P300 at 

midline electrode sites (Woldorff, 1993). If so, we could examine any P3b differences 

between our groups. We expected to see larger amplitudes and shorter latencies in our 

training groups compared to our sedentary controls as a result of moderate exercise 

training effects (Hillman et al 2006; Latey & Loehr, 2011). Because Tai Chi and 

meditation health regimens also require mental concentration to perform (Lutz et al, 

2007; Gatts, 2008; Voss et al, 2009; Pesce, 2011), we asked it this would interact with 

aerobic exercise training to produce greater benefits to P3b measures than aerobic fitness 

practice alone. We asked if P3b amplitude and latency would correlate with switch trial 

reaction time (Mayr, 2000), and percent local switch costs. Finally, we hypothesized that 

age effects on P3b measures would be less for health regimen practitioners than for 

sedentary controls. 

 

Methods 

 

Participants.  Participants were recruited by word of mouth, local Craigslist and 

newspaper ads, and flyers posted throughout the communities of Eugene and Springfield, 

Oregon. Inclusion criteria were 1) no neurological or physical disorders, and 2) aged 20-

75. Sedentary participants were required to have 1) a generally inactive lifestyle for five 

or more years, and 2) no prior experience with meditation or Tai Chi. Health regimen 
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practitioners were required to 1) have practiced at least five years or more, three times per 

week, 30 minutes per session. All participants had self-selected into their preferred level 

and type of exercise activity. Fifty-nine participants responding to a health regimen 

recruitment campaign agreed to four hours of testing scheduled at their convenience. 

Because acute exercise has been shown to positively affect cognitive performance (Pesce, 

2011; Davranche, 2004) we scheduled the cognitive and exercise testing separately. If the 

participants preferred to do the testing in one day, the cognitive testing was done first 

followed by the exercise testing. Two Tai Chi participants who could not use a computer 

effectively were excluded since our key executive attention tests were administered via 

PC computer. Two subjects did not complete the testing.  One subject who presented with 

bipolar disorder and presently off medication was excluded due to that psychological 

abnormality. Thus, 54 subjects completed all tests and were included in this analysis 

(female = 27).  Final group composition was 1) 10 Tai Chi (female = 3), 2) 16 meditation 

plus exercise (female = 6), 3) 16 aerobic fitness (female = 8), and 4) 12 generally 

sedentary (female = 10) participants. Body mass index (BMI) was calculated for each 

participant (U.S. Department of Health & Human Services, 2012) (see Table II.1). 

Subject recruitment and experimental protocol were approved by the University of 

Oregon Institutional Review Board. Subjects gave Informed Consent and were 

compensated for their participation.  

 

Multivariate Cross-sectional Design. In multivariate designs multiple dependent 

variables are measured on subjects who are assigned membership in carefully defined 

groups (Stevens
, 
2002). For our overall study, we had three training groups: 1) Tai Chi, 2) 
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meditation, and 3) aerobic fitness. Our fourth group was composed of generally sedentary 

participants who had never engaged in Tai Chi or meditation training. During data 

collection our meditation participants all self-reported sufficient aerobic activity to 

qualify for the aerobic fitness group as well. Thus, each training group was equated on 

moderate aerobic exertion.  The difference between these groups was the attentional 

focus required to perform their respective health regimens (Pesce & Audiffren, 2011; 

Voss et al, 2009) (see Figure II.1).   

 

Testing 

Lifetime Aerobic Activities Self-report. Participants self-reported average daily and 

weekly aerobic fitness practice, and total number of years of that intensity of practice. 

 

Aerobic Capacity --Rockport 1-mile Walk. (Kline et al, 1987; American College of 

Sports Medicine, 2009). Subjects were fitted with an Athletic Connection Polar E600 

heart rate monitor (Polar Electro-USA). A chest strap with heart sensor sent information 

on heart rate and walk time to a wrist recorder. Per American College of Sports Medicine 

guidelines, subjects walked 1 mile as fast as they were able. Estimated VO2Max (aerobic 

capacity in ml/kg/min O2 utilized during exercise) (Powers & Howley, 2004) was 

calculated by entering subject’s age, weight, gender, walk time, and ending heart rate in a 

java applet located at http://www.exrx.net/Calculators/Rockport.html.   

 

http://www.exrx.net/Calculators/Rockport.html
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Executive Attention Test. Visuo-spatial task switch (VSTS) (Mayr Laboratory, 

University of Oregon, 2009) with dense array EEG 256-hydrocel, NetAmps 300 system, 

Electrical Geodesics, Inc., Eugene, Oregon(Electrical Geodesics, Inc. 2006a). 

 

Visuo-spatial Task Switch Test Overview. We utilized a randomized alternating 

runs, non-cued visuo-spatial task switch test developed at the Mayr Laboratories, 

University of Oregon (Altmann, 2008). A red dot stimulus was displayed in a 

horizontally-oriented fixation rectangle on a computer monitor located ~ 24 inches in 

front of the participant. Participants were trained to respond as quickly and accurately as 

possible to stimulus appearance using a two-button mouse. In this ecologically valid 

paradigm, the next stimulus appeared immediately subsequent to each response.  Button 

press response rules are detailed below. All tests were administered from the same 

instruction script on the same PC computer.   

 

Button Press Response Rules. Participants were trained in two primary response 

rules (Rule 1 and 2) to indicate the spatial location of a randomly appearing dot within 

the fixation rectangle (see Figure II.5). For Rule 1, the button press response was 

compatible with the dot’s location in space. For Rule 2 the button press was incompatible 

with the dot’s location in space. For the Switch test (Rule 3) participants switched 

between Rule 1 and 2 on every other trial. For Rule 3 participants were provided with 

visual feedback in the case of erroneous responses. They corrected their error and 

continued the trial block. Trials in which a switch of response rule was required were 

designated switch trials. Trials when the response rule remained the same as the previous 
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trial were designated no-switch trials. Participants practiced each Rule until they achieved 

at least 85% accuracy. Rules 1 and 2 consisted of 48 trials in two blocks. Rule 3 (the 

actual task switch) consisted of twelve blocks of 48 trials each. The test was coded in E-

Prime (Psychology Software Tools) for use with dense array EEG (see below)(Electrical 

Geodesics, Eugene, Oregon).  Coded events in the EEG datastream and the VSTS raw 

data output were: 1) stimulus type (Congruent Right, Congruent Left; Incongruent Right, 

Incongruent Left); 2) Trial type (Congruent switch, congruent no-switch, Incongruent 

switch, incongruent no-switch); and response (correct or incorrect). Trial and stimulus 

type coding allowed us to precisely identify reaction time associated with each type of 

trial and stimulus. For this analysis, switch and no-switch trials were analyzed. Switch 

costs were calculated in the following way, to control for any possible speed-accuracy 

trade-off effects: Switch RT – No-switch RT/No-switch RT. P300 ERPs were extracted 

(see below). 

 

EEG Data Collection.  Dense-array EEG data was collected with an Electrical 

Geodesics EEG System 300 and digitized with a 24 bit A/D converter (EGI, Eugene, 

OR). Subjects were fitted with a 256-electrode hydrocel net by an investigator trained in 

EGI net application (Electrical Geodesics, Inc., 2006a). Data were collected at 250 Hz.  

Channels were referenced to VREF.  Scalp electrode impedances were at or below 5 KΩ. 

Data were collected in a sound attenuated, EM-shielded booth (cell phone signals, CB, 

TV, AM, FM signals, radiofrequency radiation and microwaves, and other signals up to 

18 GHz). Subjects were provided with a Table Clamp chin rest (Richmond Products, Inc., 

Albuquerque, NM). 
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Data Analysis.  

EEG Data Analysis. Netstation EEG data processing workflow for ERP extraction 

was performed.  Data were processed with  1) 2hz first-order high-pass, and 2) 30 Hz 

low-pass filters. Data were segmented to create a time window in which the P300 would 

be observed: (300 msec before event to 500 msec after event). Artifact detection (bad 

channels, eye blinks, and eye movements) was performed. All segments contaminated by 

bad channels, eye blinks or movements were eliminated. All data were then hand 

inspected to identify any remaining bad segments. Bad channel replacement through 

interpolation from surrounding channels was performed. Segments were averaged by 

channel, this average was re-referenced to a computed average reference, then baseline 

corrected from 300 msec pre-stimulus to 500 msec post stimulus (Electrical Geodesics, 

2006b).  P3b waveforms were plotted at Pz. Magnitude of amplitude and latency to peak 

were extracted and plotted from baseline corrected files in the time window 300 msec 

pre- to 500 msec post-stimulus.  

 

Overall Data Analysis. A multivariate analysis of variance (MANOVA) and Levene’s 

test for homogeneity of variance was performed. Sidak correction (a variant of the 

Bonferroni correction) was used for post hoc analyses. Alpha was set at .05 for the main 

MANOVA. A bivariate correlation was run on all variables. To control for a slippage for 

multiple analyses (PCA and cluster analyses reported elsewhere), a Bonferroni correction 

was applied and a  was set at .0125. Our independent variable was group. Because 

normal aging is associated with degradation of cognitive and physiological function, age 

was included as a covariate. Dependent variables were estimated VO2max, switch RT, 
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switch costs, P3b switch amplitude, P3b switch latency.  Participant VSTS switch and no-

switch reaction times were collapsed onto means. P3b ERP graphs and statistics were 

extracted using Netstation Waveform Tools (Electrical Geodesics, Inc., 2006). Because 

we were evaluating whole system efficiency, error trials were included in all means. 

Accuracy and post-error reaction times were not significantly different between our 

groups. Groups were numerically coded thus: Tai Chi, 1; Meditation plus exercise, 2; 

Aerobic fitness, 3; and sedentary control, 4. All analyses were run with PSAW Statistics 

19 (IBM, Chicago, Illinois).  EEG Data analysis is described in detail below. 

 

Results 

P300. We saw a P300 complex at midline electrode sites in the time window 300 

msec pre- to 500 msec post-stimulus. We 

saw the P3b robustly across subjects and 

groups at Pz (see Figure V.1). P3b 

amplitude and latency were included as 

executive attention measures along with 

switch reaction time and percent local 

switch costs.  

Manova. Levene’s statistic indicates 

our data is suitable for the MANOVA 

procedure (see Appendix G). Our 

MANOVA was significant (Wilk’s 

Figure V.1. P3b switch amplitude grand 

averages. 800 msec time window. 
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lambda (Λ) (F(24, 26) = 1417.561, p < .001, partial eta square = .999). This indicates we 

have explained 99% of the variance in our outcome measures. This may be due to the fact 

that we included aerobic capacity (estimated VO2max) and age as a covariate in our 

design. Both age and cardiovascular fitness have been shown to impact cognitive 

function (Hillman, 2006; Pontifex, 2009). Indeed, age (Wilk’s lambda (Λ) (F(24, 26) = 

3.488, p = .001, partial eta square = .763) and group membership (Wilk’s lambda (Λ) 

(F(72, 78.562) = 2.321, p < .001, partial eta square =  .679) significantly affected our 

outcome measures. Age explained ~76% and group membership explained ~68% of our 

explained variance. This confirms these key factors explained unique and shared 

variance.  

Effect of Age and Group on Key Dependent Measures. Means, standard 

deviations, and variance explained by group and age for our key variables are presented 

in Figure IV.1.  

 Age.  As expected, age had a significant effect on 1) VO2max (F(1, 49) = 31.789, p < 

.001, partial eta square = .393.) This suggests age accounts for almost 40% of the 

variance we have explained in VO2max  scores (Stevens, 2000). 2)  Age also significantly 

impacted switch reaction time (F(1, 49) = 22.249, p < .001, partial eta square = .312). 

Thus, 31% of the variance we explained in switch reaction time is accounted for by 

normal aging. 3) Interestingly, though age significantly impacted percent switch costs 

(F(1, 49) = 5.025, p = .030, partial eta square = .093), the effects of aging on percent 

switch costs was small (9%). 4) Age did not significantly impact P3b switch amplitude 

Table VI.1 

 



81 
 

(F(3, 49) = 5.459, p = .075, partial eta square = .063), and contributed only 6% of the 

variance explained.  

Group. Not surprisingly, group had a significant effect on 1) VO2max (F(3, 49) = 

16.103, p < .001, partial eta square = .496).  This suggests almost 50% of the variance in 

VO2max score was due to the effects of group membership.  Thus, group membership 

and aging contribute similarly to this executive function measure, suggesting health 

regimen compliance may counterbalance the effects of normal aging. 2) Switch reaction 

time was also significantly affected by group (F(3, 49) = 8.528, p < .001, partial eta 

square = .343), with 34% of the variance in switch reaction time being due to group 

membership. Again, this is similar to the variance explained by normal aging, suggesting 

health regimen compliance can hold aging effects in check. 3) Percent switch costs was 

significantly affected by group (F(3, 49) = 6.399, p = .001, partial eta square = .282), 

with 28% of the variance in percent switch costs being due to group membership. Recall 

the age covariate explains only 9% of the variance on this measure while group explains 

28%. This suggests compliance with health regimens can overcome the effects of normal 

aging on complex executive function. 4) Importantly, P3b switch amplitude (F(3, 49) = 

5.459, p = .003, partial eta square =.250) was impacted by group. Group membership 

explained 25% of the variance in P3b switch amplitude while the age covariate did not 

significantly affect this executive function outcome. This suggests that at the neural level, 

health regimen compliance counteracts the effects of normal aging on complex executive 

function. 

Neither age nor group significantly affected P3b switch latency. 
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Post-hoc Comparisons.  

Self-reported lifetime hours of aerobic practice. Aerobic fitness practitioners reported 

significantly more hours of aerobic practice than sedentary controls (p = .021). 

Meditators reported a similar number of lifetime hours of aerobic practice. Thus, we 

expected all our training groups to show the effects of chronic moderate exercise. That is 

what we found. 

VO2max. Not surprisingly 

aerobic fitness practitioners 

outperformed Tai chi 

practitioners (p = .043) and 

sedentary controls  (p < .001) on 

aerobic capacity. Meditators (p < 

.001) and Tai chi practitioners (p 

= .025) also outperformed 

sedentary controls (see Figure 

V.2). This is to be expected, 

since Tai Chi requires moderate 

aerobic exertion and our 

meditators self-reported aerobic activity, which qualified them for our aerobic group. 

Because Tai Chi practitioners were on average a decade older than our aerobic fitness 

group, this may contribute to the differences in aerobic capacity we observed between 

these two groups. 

Figure V.2. Comparison of estimated VO2max 

by group. 
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Switch Reaction Time. Tai Chi (p < .001), meditation (p = .001), and aerobic fitness 

practitioners (p = .014) showed significantly shorter switch reaction times than sedentary 

controls.  There were no significant differences between training groups on switch 

reaction time.  

Percent local switch costs.  As expected, Tai Chi (p = .001) and meditation 

practitioners (p = .006) showed significantly lower local percent switch costs than 

sedentary controls. Importantly, aerobic fitness practitioners and sedentary controls did 

not differ significantly on percent local switch costs, yet there were no significant 

differences between training groups on this measure (see Figure V.3a).  

P3b Switch Amplitude.  Here we see a similar pattern to local switch costs. Tai Chi (p 

= .031) and meditation practitioners (p = .003) had significantly larger P3b switch 

amplitudes than sedentary controls. Again, aerobic fitness practitioners and sedentary 

controls did not differ significantly on this key executive function measure (see figure 

V.3b). Again, though there were no significant differences between training groups on 

P3b switch amplitude, examination of the distribution of scores suggest training regimens 

combining mental and aerobic exertion may confer superior benefits to cognitive capacity 

(see Figure V.4). Additionally, this suggests percent local switch costs may be a reliable 

neuropsychological index of executive attention network capacity. Further study is 

warranted (Etnier & Chang, 2009). 

P3b switch latency. There were no significant differences between our groups, though 

P3b switch latency was significantly and negatively correlated with percent local switch 
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costs (p = .009, r = -.354), showing that lower switch costs are associated with longer 

P3b switch latencies.  

P3a amplitudes and latencies were similar across our groups. This suggests attentional 

orienting function is similar across all groups.  

Correlations.  Correlations supply evidence that significant patterns of association are 

present in a data set. Only correlations significant at the p < .0125 level are reported in 

Table IV.1.  

Group membership was significantly and positively correlated with switch reaction 

time (p = .003, r = .400); 2) positively correlated with switch costs ( p < .001, r = .468); 

and 3) negatively correlated with P3b switch amplitude  (p = .002, r = -.409). Tai Chi was 

coded 1, meditation 2; aerobic fitness 3, and sedentary 4, in line with our hypothesis that 

participants combining concentration and aerobic fitness would outperform participants 

practicing aerobic fitness alone or those engaged in a primarily sedentary lifestyle. Thus, 

we see that participants in groups 3 and 4 demonstrate longer switch reaction times, 

larger switch costs, and smaller P3b switch amplitudes than those in Groups 1 or 2. 

Age was significantly correlated with 1) switch reaction time (p = .001, r = .433). 

This convergent evidence suggests age significantly impacts complex executive attention 

capacity. Older individuals can be expected to react more slowly than younger 

individuals. Yet, we see that Tai Chi and meditation practitioners were similar to or 

outperformed younger aerobic fitness and sedentary controls. 
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Figure V. 3. Comparison of group performance on key 

executive measures. 
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Figure V.4. Possible training effects on P3b switch amplitude. 

Switch reaction time was significantly and positively correlated with 1) age (p = .001, 

r = .433) (greater age is correlated with longer switch reaction times); and 2) switch costs 

(p < .001, r = .660) (lower switch costs are correlated with shorter switch reaction times). 

Switch reaction time was significantly and negatively correlated with 1) VO2max (p < 
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.001, r = -.508) (greater aerobic capacity was correlated with shorter switch reaction 

times; and 2  P3b switch amplitude (p < .001, r = -.517) (shorter reaction times were 

correlated with larger P3b switch amplitudes). 

Percent local switch costs were significantly and positively correlated with 1) group 

(p < .001, r = .468) (Tai Chi and meditation practice was associated with lower percent 

local switch costs); and 2) switch reaction time (p < .001, r = .660) (higher switch costs 

were correlated with longer switch reaction times). Percent local switch costs were 

significantly and negatively correlated with P3b switch amplitude (p = .006, r = -.370) 

(lower switch costs were correlated with larger P3b switch amplitudes). 

 

Discussion 

 

This cross-sectional study compared the effects of long-term training in Tai Chi, 

meditation plus moderate aerobic exercise, or aerobic exercise alone to sedentary lifestyle 

on executive attention function. We first asked if our groups differed on aerobic capacity. 

Long-term practitioners of Tai Chi, meditation plus exercise, and aerobic fitness 

practitioners outperformed sedentary controls on estimated VO2max . Since each of the 

training groups self-reported chronic moderate aerobic exertion, this is what we expected 

and this is what we found. Interestingly, aerobic fitness practitioners outperformed Tai 

Chi practitioners. This may be due to the fact that there is a mean age difference of a 

decade between these two groups. It is estimated that VO2max declines by 1% per year 

after the age of twenty (Powers & Howley, 2004, p. 335). Our Manova results showed 

that age effects contributed almost 40% of the variance explained for estimated VO2max. 
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Group explained almost 50% of the variance on estimated VO2max, suggesting moderate 

aerobic exercise is positively benefitting our training groups’ aerobic capacity. Indeed, 

age was correlated significantly and negatively with VO2max (p < .001, r = -.539). That 

means younger participants demonstrated higher VO2max, as expected, suggesting age 

may be the main reason for the significant difference in VO2max performance by aerobic 

and Tai Chi practitioners. However, it is also possible that the intensity of exercise in Tai 

Chi is less than that in aerobic fitness activities, and that interaction with age produces the 

difference we observed.  

We then asked if our groups differed on key executive attention measures. We 

expected to see larger amplitudes and shorter latencies in our training groups compared to 

our sedentary controls as a result of moderate exercise training effects (Hillman et al 

2006; Latey & Loehr, 2011). Because Tai Chi and meditation health regimens also 

require mental concentration to perform (Lutz et al, 2007; Gatts, 2008; Voss et al, 2009; 

Pesce, 2011), we asked it this would interact with aerobic exercise training to produce 

greater benefits to P3b measures than aerobic fitness practice alone. Further, we 

hypothesized that age effects on health regimen practitioners would be less than those for 

sedentary controls. 

Our whole model was significant (p < .001, partial eta squared = .999). Age and 

group did significantly affect our outcome, with each demonstrating a large effect size (p 

= .001, partial eta squared = .763, and p < .001, partial eta squared = .679, respectively). 

Clearly these two categories must explain unique variance, but also interact, because their 

effect sizes add up to over the 99.9% we have explained. We did see the P300 complex in 
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the time window ~250 - 800 msec post-stimulus at midline electrode sites. This allowed 

us to include P3b amplitude and latency in our analysis. 

Our visuo-spatial task switch behavioral measures were reported in Chapter IV. 

Briefly, as expected, our three training groups significantly outperformed sedentary 

controls on switch reaction time. However, they did not on percent local switch costs. 

Only our Tai Chi and meditation groups outperformed sedentary controls on this key 

variable. Yet our training groups did not differ significantly from each other.  This is an 

interesting result that calls for an examination of convergent evidence to tease apart any 

possible differences between our groups on this measure (Niewenhuis et al, 2011). An 

examination of the age covariate shows that even though our groups do not differ 

significantly on age (p = .295), Tai chi practitioners are on average a decade older than 

aerobic practitioners, yet they outperformed sedentary controls while the aerobic fitness 

group did not. This suggests Tai Chi practice may confer superior benefits to executive 

function than moderate exercise alone. Meditators also outperformed sedentary controls 

while aerobic fitness practitioners did not.  However, the mean age difference between 

these groups was only ~5 years.  This suggests the mental concentration required to 

perform meditation in combination with chronic moderate aerobic activities may confer 

superior benefits to executive function than moderate exercise alone. Taken together this 

convergent evidence suggests the benefits of Tai Chi and meditation practice may 

overcome normal aging effects more efficiently than aerobic exercise alone.  Finally, 

group but not age was significantly and positively correlated with percent switch costs (p 

< .001, r = .468). Since Tai Chi is coded 1, meditation 2, aerobic fitness 3, and sedentary 
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controls 4, this indicates individuals in the Tai Chi or meditation groups demonstrated 

lower switch costs than aerobic fitness practitioners or sedentary controls. 

Did our P3b measures follow this pattern? Only our Tai Chi and meditation training 

groups differed significantly from sedentary controls on the P3b ERP measure of 

executive function. Again our aerobic fitness group is not significantly different from the 

sedentary group. This may be interpreted in a way similar to that for percent local switch 

costs. The aerobic fitness and sedentary controls are younger by almost a decade than the 

Tai Chi group, yet age did not significantly affect P3b switch amplitude, but group did (p 

= .003, partial eta square = .250). Additionally, group membership was significantly and 

negatively correlated with P3b switch amplitude (p = .002, r = -.409). This indicates 

members of the Tai Chi and meditation groups demonstrated larger P3b switch 

amplitudes, suggesting more efficient executive function. Indeed, our percent switch 

costs and P3b switch amplitude measures are significantly and negatively correlated (p = 

.006, r = -.370). This indicates lower switch costs are correlated with larger P3b switch 

amplitudes. Recall the P3b is thought to index working memory allocation during 

neuropsychological tasks (Polich, 2007). This convergent evidence suggests that mental 

training in combination with moderate aerobic exercise may confer superior updating and 

working memory network benefits across the normal adult lifespan.  

P3b switch latency did not differ significantly between our groups, though it was 

significantly and negatively correlated with switch costs (p = .009, r = -354). Thus as P3b 

switch latency increased, switch costs were lower. In general, shorter P3b latencies have 

been identified as indexing more efficient executive function (Hillman, 2006; Etnier & 

Chang, 2009; Ratey & Loehr, 2011). However, this was observed in paradigms in which 



91 
 

stimuli and responses were isolated in time or jittered such that mathematical techniques 

could be used to extract the ERP of interest (Woldorff, 1993). In this physiologically-

relevant paradigm we see the opposite. Lower, more efficient switch costs were 

associated with longer P3b switch latencies.  Perhaps in physiologically-relevant 

paradigms where source generators are always on, this finding reflects the effects of 

executive function resource allocation to meet the demands of speed-accuracy trade-off. 

Further investigation of this finding is warranted. P3a amplitudes and latencies were 

similar across our groups. This suggests attentional orienting network capacity is similar 

across all groups.  

Limitations of this study include its cross-sectional design. Individuals self-selected 

into their health regimen. This self-selection may be due to genetic or environmental 

factors which we did not assess in this study. Since health regimen compliance is a key 

concern in the clinical setting (Nigg et al, 2011), is it possible self-selection may be an 

ally in the struggle to insure long-term engagement with health regimens? All three of our 

regimens provided benefits to raw executive function (switch reaction time), suggesting 

that each may provide clients with different health regimen options. Since these three 

training programs are routinely available in educational, Parks & Recreation, and 

wellness center settings, they may be an economical addition to health care protocols 

designed to maximize cognitive and cardiovascular capacity in normally aging adults. 

Our training groups all outperformed sedentary controls on estimated VO2max, 

suggesting they exhibited expected exercise-related benefits.  We used an absolute 

measure of VO2max which accounted for age, gender and weight. Evidence suggests a 

predictive measure of VO2max may provide more accurate estimates of aerobic capacity 
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(Hansen & Wasserman, 1984).  Such a measure should be added to future studies. Even 

so, our results suggest that individuals who engaged in chronic aerobic exercise in 

combination with mental concentration (Tai Chi and meditation) may have received 

greater complex executive function benefits than individuals engaging in aerobic fitness 

practice alone. This finding should be investigated further. 

Finally, evidence suggests that amount of sleep per night can affect P3b amplitude. 

Individuals who sleep < 6 hours per night showed reduced P3b amplitudes during an 

oddball stimulus identification task than individuals getting 7-8 hours (Gumenyuk et al, 

2011). Normally aging individuals over the age of 65 have been indeed been documented 

to get less sleep than individuals < 36 years of age: 7.5 vs 9 hours per night (Klerman & 

Dijk, 2008). We did not take field notes on average hours of sleep per night for this study. 

However, our subjects fall within an age range that could be expected to get at least 7.5 

hours per night, which suggests they may fall within the normal sleep range (Gumenyuk 

et al, 2011). Future studies should include sleep questionnaires to address this possible 

confound. 

 

Bridge 

As predicted, all training groups outperformed sedentary controls on switch reaction 

time. However, contrary to our hypothesis, only Tai Chi and meditation plus exercise 

demonstrated lower percent local switch costs and larger P3b ERP switch amplitudes 

than sedentary controls. Aerobic fitness practitioners did not significantly differ from any 

of our other groups on these two measures. An examination of the distribution of percent 

local switch costs and P3b switch amplitude plotted against age suggests training 
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regimens combining mental and aerobic exertion may provide superior protection against 

normal executive function aging. Chapter VI discusses this in light of clinical 

considerations and future studies. 
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CHAPTER VI 

 

GENERAL DISCUSSION 

 

In our cognition-based society, cognitive control is a capacity that is of considerable 

social importance. Public health interventions that benefit cognitive capacity throughout 

the lifespan are under investigation. Two widely available health regimens, moderate 

exercise (Kramer, 2007) and meditation (Chan & Woollacott, 2007; Tang et al, 2007), 

have been shown to benefit executive function across the lifecycle. Tai Chi is another 

promising, widely available health regimen that may benefit cognitive capacity.  

This multivariate cross-sectional study asked if Tai Chi would be as effective as 

meditation or aerobic fitness for protecting executive attention capacity after controlling 

for normal aging effects. As expected we saw aging effects on the cardiovascular system 

(estimated VO2max). However, cardiovascular function was as strongly impacted by 

group as by age, adding to the evidence that long-term aerobic exertion helps offset aging 

effects. Interestingly, the effect of group on complex executive capacity (% local switch 

costs), the working memory network (P3b switch amplitude and latency) was far greater 

than the effect of age. This suggests chronic practice of these three training regimens has 

counteracted the effects of normal aging on adult human executive capacity. 

However, practitioners of Tai Chi and meditation plus moderate aerobic exercise, but 

not aerobic fitness, demonstrated significantly more efficient percent local switch costs 

than sedentary controls (p = .001 and p = .006 respectively). This pattern held for the P3b 

switch amplitude. Tai Chi and meditation plus moderate aerobic exercise, but not aerobic 
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exercisers demonstrated significantly larger P3b switch amplitudes than sedentary 

controls (p = .031 and p = .003 respectively). It is important to note Tai Chi and 

meditation practitioners were not significantly different than aerobic practitioners (p = 

.691 and p = .589 respectively) on these executive attention measures. These complex 

results suggest there may be differential training effects of training regimens combining 

mental plus aerobic exertion versus aerobic exertion alone, but further study is needed to 

confirm this interpretation. 

Regardless of ranking these three health training regimens in terms of benefits to 

successful executive attention capacity over the lifespan, they do suggest that Tai Chi and 

meditation can take a place in the clinical setting as exercise-based health regimens 

useful for maintaining executive attention capacity in normally aging adults.  

 

Limitations of the Study 

 Limitations of this study include the small sample size, the lack of a sensitive 

measure of meditation skill, the need to further field test the Tai Chi Skill Assessment, 

lack of genetic testing, and the lack of range in self-reported lifetime hours of practice 

within health regimen groups. This makes correlating skill level with executive capacity 

impossible. However, though we cannot estimate a dose-response curve, the data support 

the hypothesis that long-term practice of Tai Chi and meditation plus exercise benefitted 

executive attention function in our study sample. We also did not collect data on 

individual sleep patterns. Healthy sleep is correlated with a more robust P3b response. 

Any participants chronically sleeping < 6 hours a night could be expected to show 
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smaller P3bs, which constitutes a confound in these data. Finally, this study used an 

absolute estimated VO2max measure. Predicted estimated VO2max, may be a more 

accurate assessment of participant aerobic capacity, and should be added to future 

studies. 

 

Clinical Implications 

Client health regimen compliance is a key concern of health and wellness 

professionals. Our subjects all self-selected into their particular health regimens. Field 

observations show that most participants spoke with great enthusiasm about their 

particular regimen, and were eager to share details about its finer points. This suggests 

self-selection based on personal interests may be an ally in health-regimen compliance. 

Tai Chi, meditation plus exercise, and general aerobic fitness offer three very different 

styles of exercise and mental exertion. This increases the size of the list of health training 

modalities that may optimize cognitive performance across the lifespan. Field tests are 

needed to examine applications in the clinical, wellness, and rehabilitation settings. 

 

Future Studies 

1. To isolate the effects of self-selection on executive attention, a two-armed 

longitudinal training study should be undertaken. In arm 1, subjects would self-

select into six weeks of training in Tai Chi, meditation plus exercise, or aerobic 

fitness. In arm 2, subjects would be randomly assigned to one of these training 

modalities. Pre- post-training scores on  VO2max and executive scores pre- post-
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training would be collected. If self-selected participants outperformed randomly 

assigned participants, this would suggest self-selection into health regimens may 

benefit long-term compliance. 

2. Aging effects on VO2max, Tai Chi Skill, simple self-monitoring, switch capacity 

(% local switch costs), and P3b switch trial amplitude (V) and latency (msec). 

This study’s data serve as pilot data. Binning of all scores by decade can show the 

progression of decline with age by system. This sample size is too small to draw 

any firm conclusions about the decline in function over the decades 30-50. 

Further study using these measures on a larger sample size of practitioners and 

non-practicing sedentary controls is proposed. 

3. Source localization (GeoSource, Electrical Geodesics, Inc., Eugene, Oregion) 

analysis of this data set should be performed. Correlations of source localizations 

with VSTS and P3b ERP measures should be undertaken. 

4. Path Length Analysis of Tai Chi Skill Assessment kinematicdata (KinTools, 

Motion Analysis Corporation, Santa Barbara, CA). Derive 1)  head, 2) torso, 3) 

CoM, and 4) hip, 5) knee, and 6) ankle joint center path lengths from our Tai Chi 

leg kick participants (n=57). Compare across groups on total path length. 

Hypothesis: participants with no consistent physical training will show longer 

path lengths than either Tai chi, meditation plus exercise, or aerobic fitness 

practitioners due to effects of motor learning. Hypothesis: short path length will 

correlate high Tai Chi Skill Assessment scores. 
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APPENDIX A 

INFORMED CONSENT 

 

A Study of Executive Function in Tai Chi, Aerobic Walking 

And Sitting Meditation Experts and Sedentary Controls 

 

University of Oregon 

You are invited to participate in a research study being conducted by Teresa Hawkes 

under the direction of Dr. Marjorie Woollacott in the Department of Human Physiology 

of the University of Oregon. As a result of the study we hope to learn more about how 

aerobic exercise and attention training affects executive attention function. The results 

from this study will contribute to a better understanding of Tai Chi, moderate aerobic 

exercise, and concentrative attention training on executive attention function. This 

knowledge can provide insight into the development of appropriate training protocols to 

maximize student benefit from attention training regimens. 

 

If you decide to participate, you will be scheduled to visit the Motor Control Laboratory 

for 2-4 visits to participate in the following tests: 

 

1. Motion Analysis: An analysis of balance control ability will be done. You will be 

asked to wear a tank top and shorts. Thirty-one reflective markers will be placed 

on your body. You will be asked to stand on two force plates and execute a simple 

movement from Tai Chi.  

 

2. Go, No-Go Test. You will be seated at a computer. You will respond to stimuli 

displayed on a computer monitor by means of keystrokes on a special keypad. 

This will evaluate your ability to relax while concentrating on a simple task. 

 

3. Visuo-spatial Task Switch Test. You will be seated at a computer. You will 

respond to stimuli displayed on a computer monitor by means of keystrokes on a 

special keypad. The Mayr Task Switch test will evaluate your ability to remain 

relaxed while swiftly and accurately switching between rule sets. During this test 

your brainwave activity will be monitored through surface EEG 

(electroencephalography).  You will be fitted with a sensor net that rests 
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comfortably on top of your head. This device does not emit anything; it passively 

records the electrical activity of your brain like a tape recorder (see Risks and 

Benefits below).  

 

4. 1 Mile Timed Walk. Your heart rate will be recorded. You will walk briskly for 1 

mile. Your heart rate will be recorded again, as well as your walk time. 

 

5. You will be asked to report which hand you use for different tasks, your age, 

gender, education level, lifestyle activities, and comfort with the sensor net during 

the EEG test. 

 

If you are an expert, these tests allow us to assess the effect of your training on executive 

attention function.  If you are sedentary, we will be able to assess the possible effects of 

expert training in sitting meditation, aerobic walking, or Tai Chi on executive function. 

 

Confidentiality 

All data collected during the test session will be coded with letters and numerals. The 

names of participant’s names will be kept on a separate sheet matched to their respective 

codes. This sheet will be kept in the investigator’s file. Any information obtained in 

connection with this study that can be identified with you will remain confidential and 

will be disclosed only with your permission. 

 

Voluntary Participation 

Since your participation is voluntary, your decision as to whether or not to participate 

will not affect your relationship with the Motor Control Lab. If you decide to participate, 

you are free to withdraw your consent and discontinue participation at any time without 

penalty. 

 

Risks and Benefits 

During the EEG-Task Switch testing session you will be fitted with a Geodesics Sensor 

Net that monitors brain activity. You may see this net before deciding whether to 

participate or not. People’s brains send out tiny amounts of electricity at all times, and the 

sensor net picks up changes in these electrical signals. These changes can reflect 
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differences in thinking and feeling. The sensor net consists of a series of plastic tubes 

held in place with elastic strings, placed comfortably over the head. The tubes contain 

sponges which hold saline solution, and these sponges make light contact with your scalp 

and hair. The sponges pick up weak electrical signals and are referred to as electrodes. 

There is no rubbing or abrasion of skin and no hair removal involved. The saline solution 

contains a small amount of baby shampoo, and this breaks up oil on the scalp. You will 

be asked if you have allergies to shampoo. It takes about 10-15 minutes to fit the net so 

that all the sponge-electrodes are operational. You should note that the sensor net is 

100% safe, and there is no possibility of electricity or any other substance (except mild 

dampness) passing from the net to you. Occasionally, individuals report a slight itching 

sensation from the saline solution as it dries on their skin during the recording process. 

This condition resolves immediately upon removal of the Geodesics Sensor Net. Some 

participants may also experience localized redness of the scalp due to the hypoallergenic 

adhesive collars used on the electrodes. This response, similar to the redness experienced 

after removal of a Band-aid, subsides within an hour. Your participation in this 

experiment is entirely voluntary. You are free to leave the experiment at any time if you 

do not want to continue for any reason. The experimenter can quickly remove the sensor 

net at any point. 

 

Benefits 

Benefits from participation in this project are free results of your balance, locomotion, 

and cognitive tests. 

 

Appointments 

All appointments are arranged with the person who recruited you to this study. Please call 

the researcher at the number provided 24 hours in advance of your scheduled research 

session if it is necessary for you to reschedule or cancel. Please expect a reminder phone 

call the day before your scheduled sessions. 

 

If you have any questions, please feel free to contact Dr. Marjorie Woollacott at (541) 

346-414, or by mail at the Department of Human Physiology, 122 Esslinger Hall, 

University of Oregon, Eugene, Oregon, 97403. If you have a complaint about the 

research procedure or about the personnel administering the procedure, contact Dr. 

Marjorie Woollacott. If you are not satisfied with Dr. Woollacott’s response, you may 

bring your grievance to the attention of the department head, Dr. Christopher Minson. If 
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you have questions regarding your rights as a research subject, contact the Human 

Subjects Compliance Office, University of Oregon, Eugene, OR 97403, (541) 346-2510. 

You will be offered a copy of this form to keep. 

 

Your signature below indicates that you have read and understand the information 

provided above, that you willingly agree to participate, that you may withdraw your 

consent at any time and discontinue participation without penalty, that  you will receive a 

copy of this form, and that you are not waiving any legal claim, rights or remedies. 

 

 

Signature _________________________________ Date __________________________ 

 

Print Name _____________________________________ 
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APPENDIX B 

QUESTIONNAIRES 

 

 

Expertise Questionnaire 

 

There are 3 sections in this questionnaire: Aerobic Training, Sitting Meditation, and Tai 

Chi. 

 

 

Frequency of Aerobic Exercise  

In the last week how many DAYS did you participate in Aerobic activities? (please 

estimate) 

0-----1-----2----3----4----5----6----7 

 

In the last week how many minutes did you participate in Aerobic activities during 

a typical workout? 

0------10-----20-----30-----40-----50-----60-----70-----80-----90----100----110----120+ 

 

How many YEARS have you participated in Aerobic activities? (please estimate) 

0---1----2----5-----10----15----20----25----30----35----40----45----50+  

 

 

MEDITATION PRACTICE  

 

Frequency of Meditation 

 

In the last week how many DAYS did you Meditate? (please estimate) 

0-----1-----2----3----4----5----6----7 

 

In the last week how many minutes did you Meditate in a typical session? 
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0------10-----20-----30-----40-----50-----60-----70-----80-----90----100----110----120+ 

How many YEARS have you Meditated? (please estimate) 

0---1----2----5-----10----15----20----25----30----35----40----45----50+  

What type of meditation do you practice?  ___________________________________ 

 

TAI CHI PRACTICE 

 

 

Frequency of Tai Chi practice 

 

In the last week how many DAYS did you practice Tai Chi? (please estimate) 

0-----1-----2----3----4----5----6----7 

 

In the last week how many minutes did you practice Tai Chi during a typical 

workout? 

0------10-----20-----30-----40-----50-----60-----70-----80-----90----100----110----120+ 

 

How many YEARS have you practiced Tai Chi? (please estimate) 

0---1----2----5-----10----15----20----25----30----35----40----45----50+  

 

What type of tai chi do you practice?  ___________________________________ 
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Adult Temperament Questionnaire (Derryberry & Rothbart, 1987) 

 

Please provide the following information by checking the appropriate response or 

filling in the blank. 

Sex:  Male   Female 

Is English your first language? Yes   No 

Age:  

Country of Origin:  

 

 ADULT TEMPERAMENT QUESTIONNAIRE (VERSION 1.3) 

 Directions 

On the following pages you will find a series of statements that individuals can use to 

describe themselves.  There are no correct or incorrect responses.  All people are unique 

and different, and it is these differences which we are trying to learn about.  Please read 

each statement carefully and give your best estimate of how well it describes you.  Circle 

the appropriate number below to indicate how well a given statement describes you. 

circle #: if the statement is: 

1  extremely untrue of you 

2  quite untrue of you 

3  slightly untrue of you 

4  neither true nor false of you 

5  slightly true of you 

6  quite true of you 

7  extremely true of you 
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If one of the statements does not apply to you (for example, if it involves driving a car 

and you don't drive), then circle "X" (not applicable).  Check to make sure that you have 

answered every item.  

1. I become easily frightened. 

        1 2 3 4 5 6 7 X 

2.  I am often late for appointments. 

        1 2 3 4 5 6 7 X 

3. Sometimes minor events cause me to feel intense happiness. 

        1 2 3 4 5 6 7 X 

4. I find loud noises to be very irritating. 

        1 2 3 4 5 6 7 X 

5. It’s often hard for me to alternate between two different tasks. 

        1 2 3 4 5 6 7 X 

6. I rarely become annoyed when I have to wait in a slow moving line.   

        1 2 3 4 5 6 7 X 

7. I would not enjoy the sensation of listening to loud music with a laser light show. 

        1 2 3 4 5 6 7 X 

8. I often make plans that I do not follow through with. 

        1 2 3 4 5 6 7 X 

9. I rarely feel sad after saying goodbye to friends or relatives. 

        1 2 3 4 5 6 7 X 

10. Barely noticeable visual details rarely catch my attention. 

        1 2 3 4 5 6 7 X 

11. Even when I feel energized, I can usually sit still without much trouble if it’s 

necessary. 

        1 2 3 4 5 6 7 X 

12. Looking down at the ground from an extremely high place would make me feel uneasy. 
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        1 2 3 4 5 6 7 X 

13. When I am listening to music, I am usually aware of subtle emotional tones. 

        1 2 3 4 5 6 7 X 

14. I would not enjoy a job that involves socializing with the public. 

        1 2 3 4 5 6 7 X 

15. I can keep performing a task even when I would rather not do it. 

        1 2 3 4 5 6 7 X 

16. I sometimes seem to be unable to feel pleasure from events and activities that I 

should enjoy. 

        1 2 3 4 5 6 7 X 

17. I find it very annoying when a store does not stock an item that I wish to buy.  

        1 2 3 4 5 6 7 X 

18. I tend to notice emotional aspects of paintings and pictures. 

        1 2 3 4 5 6 7 X 

19. I usually like to talk a lot. 

        1 2 3 4 5 6 7 X 

20. I seldom become sad when I watch a sad movie.  

        1 2 3 4 5 6 7 X 

21. I’m often aware of the sounds of birds in my vicinity. 

        1 2 3 4 5 6 7 X 

22. When I am enclosed in small places such as an elevator, I feel uneasy. 

        1 2 3 4 5 6 7 X 

23. When listening to music, I usually like turn up the volume more than other people. 

        1 2 3 4 5 6 7 X 

24. I sometimes seem to understand things intuitively. 

        1 2 3 4 5 6 7 X 

25. Sometimes minor events cause me to feel intense sadness. 
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        1 2 3 4 5 6 7 X 

26. It is easy for me to hold back my laughter in a situation when laughter wouldn't be 

 appropriate. 

        1 2 3 4 5 6 7 X 

27. I can make myself work on a difficult task even when I don’t feel like trying. 

        1 2 3 4 5 6 7 X 

28. I rarely ever have days where I don’t at least experience brief moments of intense 

happiness. 

        1 2 3 4 5 6 7 X 

29. When I am trying to focus my attention, I am easily distracted. 

        1 2 3 4 5 6 7 X 

30. I would probably enjoy playing a challenging and fast paced video-game that 

makes lots of noise and has lots of flashing, bright lights. 

        1 2 3 4 5 6 7 X 

31. Whenever I have to sit and wait for something (e.g., a waiting room), I become agitated. 

        1 2 3 4 5 6 7 X 

32. I'm often bothered by light that is too bright. 

        1 2 3 4 5 6 7 X 

33. I rarely notice the color of people’s eyes.  

        1 2 3 4 5 6 7 X 

34. I seldom become sad when I hear of an unhappy event.  

        1 2 3 4 5 6 7 X 

35. When interrupted or distracted, I usually can easily shift my attention back to whatever I 

was doing before. 

        1 2 3 4 5 6 7 X 

36. I find certain scratchy sounds very irritating. 

        1 2 3 4 5 6 7 X 

37. I like conversations that include several people. 

        1 2 3 4 5 6 7 X 

 



108 
 

38. I am usually a patient person. 

        1 2 3 4 5 6 7 X 

39. When I am resting with my eyes closed, I sometimes see visual images. 

        1 2 3 4 5 6 7 X 

40. It is very hard for me to focus my attention when I am distressed. 

        1 2 3 4 5 6 7 X 

41. Sometimes my mind is full of a diverse array of loosely connected thoughts and 

images. 

        1 2 3 4 5 6 7 X 

42. Very bright colors sometimes bother me. 

          1 2 3 4 5 6 7 X 

43. I can easily resist talking out of turn, even when I’m excited and want to express an idea. 

        1 2 3 4 5 6 7 X 

44. I would probably not enjoy a fast, wild carnival ride. 

        1 2 3 4 5 6 7 X  

45. I sometimes feel sad for longer than an hour. 

        1 2 3 4 5 6 7 X 

46. I rarely enjoy socializing with large groups of people. 

        1 2 3 4 5 6 7 X  

47. If I think of something that needs to be done, I usually get right to work on it. 

        1 2 3 4 5 6 7 X  

48. It doesn't take very much to make feel frustrated or irritated. 

        1 2 3 4 5 6 7 X 

49. It doesn’t take much to evoke a happy response in me. 

        1 2 3 4 5 6 7 X  
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50. When I am happy and excited about an upcoming event, I have a hard time 

focusing my attention on tasks that require concentration. 

        1 2 3 4 5 6 7 X  

51. Sometimes, I feel a sense of panic or terror for no apparent reason.  

        1 2 3 4 5 6 7 X  

52. I often notice mild odors and fragrances. 

        1 2 3 4 5 6 7 X 

53. I often have trouble resisting my cravings for food drink, etc.  

        1 2 3 4 5 6 7 X 

54. Colorful flashing lights bother me. 

        1 2 3 4 5 6 7 X 

55. I usually finish doing things before they are actually due (for example, paying 

bills, finishing homework, etc.). 

        1 2 3 4 5 6 7 X 

56. I often feel sad. 

        1 2 3 4 5 6 7 X 

57. I am often aware how the color and lighting of a room affects my mood. 

        1 2 3 4 5 6 7 X 

58. I usually remain calm without getting frustrated when things are not going smoothly for 

me. 

        1 2 3 4 5 6 7 X 

59. Loud music is unpleasant to me.   

        1 2 3 4 5 6 7 X  

60. When I'm excited about something, it's usually hard for me to resist jumping right 

into it before I've considered the possible consequences. 

        1 2 3 4 5 6 7 X 
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61. Loud noises sometimes scare me. 

        1 2 3 4 5 6 7 X 

62. I sometimes dream of vivid, detailed settings that are unlike anything that I have experienced 

when awake. 

        1 2 3 4 5 6 7 X 

63. When I see an attractive item in a store, it’s usually very hard for me to resist 

buying it. 

        1 2 3 4 5 6 7 X  

64. I would enjoy watching a laser show with lots of bright, colorful flashing lights.  

        1 2 3 4 5 6 7 X 

65. When I hear of an unhappy event, I immediately feel sad. 

        1 2 3 4 5 6 7 X 

66. When I watch a movie, I usually don’t notice how the setting is used to convey 

 the mood of the characters.   

        1 2 3 4 5 6 7 X 

67. I usually like to spend my free time with people. 

        1 2 3 4 5 6 7 X 

68. It does not frighten me if I think that I am alone and suddenly discover someone 

close by. 

        1 2 3 4 5 6 7 X 

69. I am often consciously aware of how the weather seems to affect my mood. 

        1 2 3 4 5 6 7 X 

70. It takes a lot to make me feel truly happy. 

        1 2 3 4 5 6 7 X 

71. I am rarely aware of the texture of things that I hold. 

        1 2 3 4 5 6 7 X 

72. When I am afraid of how a situation might turn out, I usually avoid dealing with 

it. 
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        1 2 3 4 5 6 7 X 

73. I especially enjoy conversations where I am able to say things without thinking 

first.  

        1 2 3 4 5 6 7 X 

74. Without applying effort, creative ideas sometimes present themselves to me. 

        1 2 3 4 5 6 7 X  

75. When I try something new, I am rarely concerned about the possibility of failing. 

        1 2 3 4 5 6 7 X  

76. It is easy for me to inhibit fun behavior that would be inappropriate. 

               1 2 3 4 5 6 7 X 

77. I would not enjoy the feeling that comes from yelling as loud as I can. 

        1 2 3 4 5 6 7 X 
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APPENDIX C 

DATA COLLECTION WORKFLOW 

 

Questionnaires & IRB Form Checklist 

 

______  Consent Form 

______ Expertise Questionnaire 

______ Adult Temperament Questionnaire 

______ IRB Forms (2) 

______  Demographics 

   ______ Gender 

______ Age 

______ Race 

______ Job/Profession 

______ Handedness (L/R/A: L=left; R=right; A=ambidextrous) 

______ Educational Level  

  1 = Some high school 

  2= High School diploma 

  3=Some college/associate degree 

  4= Baccalaureate degree 

  5=Some graduate work 

6=Master degree or other post-baccalaureate degree such as Nurse or 

Physical Therapist 

  7=Ph.D. degree 

__________________Head Circumference (cm) 
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Moving the EEG 

 

Disassembly 

_____ Switch all power sources off 

_____ Disconnect amp cables 

_____ Pull amp cables free 

_____ Amp power Booster 

_____ Amp to clock box 

_____  Remove single clock response cable from single clock control box 

_____ Remove single clock timing box from E-Prime computer 

_____ Remove network cable from PC and Mac 

_____  Remove firewire cable from the Mac and T junction 

_____ Remove Mac power cable 

_____ Remove PC power cable 

_____ Remove T junction cord from Cyberpower 

_____ Disconnect Cyberpower strip from Medical grade Transformer 

_____ Disconnect Medical Grade Adapter cord 

_____ Disconnect Medical Grad Power Cord 

_____ Disocnnect Software dongles (E-Prime & NetStation) 

_____ Remove arm from black 2x4 

_____ Place arm hardware in a box 
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Assembly 

_____ Ensure all power sources are off (UPS, Cyberpower, etc) 

_____ Place PC on the left and the Mac on the right 

_____ Plug subject monitor into PC 

_____ Plug subject mouse into PC 

_____ Replace dongles 

_____ Connect single clock response box to amp 

_____ Connect amp to T junction 

_____ Attach single clock to PC 

_____ Attach amp timing bus to single clock response box 

_____ Network the two computers 

_____ Attach T junction (green) to Mac firewire cable 

_____ Connect amp to T junction 

_____ Attach Medical Grade Power cord to UPS (surge protection & battery backup) 

_____ Attach Cyberpower to Medical Grade Transformer 

_____ Plug power cords to both computers into the Cyberpower 

_____ Turn on UPS 

_____ Turn on Medical Grade Transformer 

_____ Switch on Cyberpower 

_____ Attach arm 

_____ Turn on subject monitor 
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Subject Prep -- EEG 

 

_____ Place experiment in progress sign on door 

_____ Prepare electrolyte solution, transport to EEG room 

_____ Check disinfectant solution. Make more if necessary 

_____ Have measuring tape, timer, and china marker in EEG room 

_____ Place towel and washcloth beside solution 

_____ Measure subject’s head________________________size 

_____ Place appropriate size net beside electrolyte solution_____________________size 
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EEG Protocol 

 

MAC OS X 

Password: geodesic 

 

Net application: 

______ Start Netstation 

______ Acquisition Setup: Open Mayr SwitchSession Acquisition setup 

______ Turn on workbench 

______ Calibrate amplifier 

______  Turn on High pass filter 

______ After subject is trained, apply net. Follow instructions on net application card. 

______  After net application, connect subject net to arm, connect arm to amplifier. 

______ Run gains 

______ Check impedances 

______ Save and close impedance check 

______ Instruct subject to begin 
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Neurocognitive Testing Operator Instructions 

 

_____ Input session information into NetStation 

_____ Rename the session with the subject’s number 

_____ Record subject session number: __________________________________ 

_____ Record name of subject smallwood .dat file: 

_______________________________ 

_____After administration of Smallwood, check for .dat file 

_____ Record any unusual occurrences: 
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Smallwood Experiment Information Sheet 

 

Subject State: ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

Any unusual events during the experiment that may have affected subject performance: 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 
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EEG Experiment Information Sheet 

 

Subject State: ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

Impedance Issues (electrode #s): 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

Any unusual events during the experiment that may affect the subject: 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 
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Subject Prep – Motion Analysis 

 

_____ Place experiment in progress sign on door 

_____ Place unitard ready. 

_____ Place markers ready. 
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Motion Analysis Checklist 

Equipment Preparation & Data Collection 

 

_____Anything reflective must be covered 

 

_____Camera set-up 

_____Ladder, friction cloth for ladder legs. 

_____Camera aiming if required. 

_____Blue-taped cameras aimed at central volume   

_____Turn on camera activation switch on main camera box  

_____Make sure there are four dots around the number 1 camera. (master camera) 

Sends clock signal to sync analog data.  

 

_____System Calibration 

_____Turn on cameras. 

_____Start  Cortex computer.  

_____Log into Motor Control 

_____Start Cortex 

_____Connect to cameras – radio button, bottom left 

_____All on. Radio button bottom left of screen. 

_____Place markers around force plates  

_____Click Run in Cortex, middle lower right 

_____Observe what the cameras are seeing in the 2D view 

_____Load project file. 

_____Calibrating Volume 

_____Remove all markers from volume 

_____Click “Run” 

_____Mask extraneous markers from Camera interference 

_____Right click inside of 2D marker view. 

_____Select Auto Mask 

_____Make sure all the 2D views see 0 markers. 

_____Bring out the L-frame 

_____Make sure cameras see 4 dots in 3-D 

_____Click the camera aiming button  

_____Unclick the camera aiming button  

_____Click Collect and Calibrate with L-Frame.  

_____Put away L-Frame (conceal under black cloth) 

_____Bring out the wand 

_____Have operator count -> Ready, Set Go 

_____Click Collect and Calibrate, duration of 180 seconds, length of 500 
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_____Calibrator uses wand in collection volume 

_____Have the calibrator give equal time to each camera 

_____Once collected, allow to go through the wand processing status 

_____Ideal statistics are an Average 3 Residual of < 0.5, Wand length ~ 500.00 

mm +/- .03 mm 

_____Click Accept Calibration, or Run again. 

_____Select the Calibration Tab from the bar on the upper portion of the screen 

_____Select tools from the menu bar, select settings 

_____Select the Lenses/Orientation tab from the lower tab list 

_____Make sure the Positioning for all cameras is correct 

_____Record the Focal Lengths of the Cameras 

_____Go back to the camera settings as above, and make sure the focal lengths 

are correct. 

 

_____Forceplates  

_____Verify project file includes forceplates – Analog tab 

_____Turn on forceplates 

_____Zero Forceplates  

 

_____Before subject arrives make sure markers are ready for placement.  

 

_____Final Check Before Data Collection 

_____Make sure all 31 markers are visible (lower left below main motion analysis 

window) 

 

_____Data Collection 

_____ Be SURE to click on trc and trb boxes!!!! 

 

_______Create a folder for each subject for each recording session.  

_______Subject Number is name of main folder.  

_______Name files as they are created during motion capture thus: 

_______Subject number_static (5 seconds) 

_______Subject number_horsestance_static (60 seconds) 

_______Subject number_horsestance_moving (60 seconds) 

_______Subject number_Wolf Form 9_1 (2, 3, 4, 5….12)  

 

_______Record trials (static, static horse, moving horse, 12 trials of Wolf form 9) 

 

_____After Collection 

_____Shut Down Cortex 

_____Make sure all your files are saved 
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_____Stop the cameras…click disconnect 

_____Close Cortex 

_____Turn off Cameras 

_____Turn off forceplates  
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Motion Analysis Experiment Information Sheet 

 

Subject State: ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

Any unusual events during the experiment that may have affected subject performance: 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 
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Rockport 1-Mile Walk Experiment Information Sheet 

 

Subject State: ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

Any unusual events during the experiment that may have affected subject performance: 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 

  ______________________________________________________ 
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APPENDIX D 

SUBJECT INSTRUCTIONS 

 

I. IRB forms and Questionnaires.  

 

Good (morning, afternoon, evening). Thank you for your participation in this experiment. 

 

First, we’d like you to carefully read and sign the Informed Consent and Information 

Confidentiality Agreement forms. 

 

**Subject does so or if subject declines to do so, thank them for their time and allow 

them to depart.** 

 

II. EEG net measurement. 

 

We’d like to measure your head to ascertain proper EEG net size. May we do so at this 

time? 

 

**If yes, measure head and record size.** 

If no, thank the subject for their time and allow them to depart.** 

 

**Confirm that the subject has no product in their hair or on their face or neck.** 

Do you have any hair product such as mousse or hairspray in your hair or make-up or 

lotion on your face or neck?  

**If yes, skip to the questionnaires and motion analysis and Rockport sections of the 

testing. ** 
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We will need to reschedule your EEG testing. Please remember that for the EEG part of 

this experiment your hair and face must be clean and free of any kind of chemical. 

Chemicals can interfere with the data collection. 

**If no, proceed with the measurement and the testing.** 

 

III. Demographic Information 

 

We’d like to record demographic information at this time. 

What is your:  

1.  Gender 

2.  Age 

3. Race 

4.  Job/Profession 

5. Handedness (L/R/A: L=left; R=right; A=ambidextrous). Do you have any left-

handers in your family? 

6. What is your educational Level:  

  1 = Some high school 

  2= High School diploma 

  3=Some college/associate degree 

  4= Baccalaureate degree 

  5=Some graduate work 

 6=Master degree or other post-baccalaureate degree such as Nurse or 

Physical Therapist 

  7=Ph.D. degree 

 

**Subject may decline to provide any or all of this information.** 

 

**After the subject has been questioned, proceed to the Questionnaires.** 

 

IV. Questionnaires 

 

Thank you for your demographic information. Now we’d like you to fill out two 

questionnaires. The first asks for information on your experience with aerobic fitness, 

sitting meditation, and Tai Chi. The second is a basic temperament questionnaire. 
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Please read the instructions on each test. You may ask questions about the 

instructions before filling out the form if necessary. 

 

**When the subject is done, thank them and proceed with the testing.** 

 

 

V. Testing 

 

SART Go No-go Test 

 

It is time to begin the cognitive testing.  

 

**Take the subject into the EEG booth and seat them comfortably at the computer table. 

Adjust the chair height until the subject feels comfortable.** 

 

**Show the subject the mouse and how it functions. Let them practice with the mouse.** 

 

Instructions: This first test has two sections.  

 

In section one, you will see a fixation cross appear in the center of the computer screen. 

This is the location where all stimuli will appear. Keep your eyes focused here. 

 

When the test begins, you will see the number (0) or the letter X appear in the center of 

the screen. 

 

If you see the number (0), press either mouse button. Respond as quickly as possible. 0’s 

are non-targets.  

 

If you see the letter X, do not press either mouse button. X’s are targets.  

 

The reason Xs are targets is because we want to see if you can withhold a response to 

these stimuli. 

 

In section two, you will be asked to evaluate your performance relative to the targets. 

Were you able to withhold a button press response for the X’s during the preceding trial 

block? You will have these choices: 

 

1. On Task. Fully attentive to performing the task. 

a. Sure you made no mistakes. 

b. Sure you made a mistake. 
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2. Off Task. 

a. Tuned out. Off-task and suspect you may have made a mistake. 

b. Zoned out. Off-task and unsure if you made a mistake.  

 

These two sections go together. You do section one first, then section two follows. We 

repeat this sequence 24 times. You will be able to practice before the actual experiment 

begins. You will be able to rest between trial blocks. 

 

**Direct the subjects to look at the computer screen and begin the practice.**  

 

Visuo-spatial task switch (VSTS). 

 

**Place the chin rest in front of the subject. Adjust it to a comfortable height.** 

 

This chin rest will be used during the experiment, so we’d like you to become accustomed 

to it before the actual experiment begins. Please place your chin in the chin rest 

throughout your training. Also, during the EEG test, you will need to keep your head, 

eyes, tongue, facial muscles, and upper body as still as possible. You may practice this 

during your training as well. 

 

**Show subject VSTS Instruction Card as you describe the test.** 

 

There are three response rules for this test. You will be trained on all three rules before 

the actual experiment begins. The actual experiment with the EEG net will test you on all 

3 Rules in random order. For example, you might be instructed to use response rule 3. 

The instructions for that Rule will be displayed. You will be able to do a short practice to 

refresh your memory, then you will perform the Rule 3 test. Then you might be instructed 

to perform Rule 1. Again, you will do a short practice, then proceed to the actual test. 

Rule 2 will then follow.  You practice Rule 2, and then the actual test commences. 

 

Here are the Rules: 

 

For Rule 1, please press the mouse button that is on the same side as the stimulus. 

For Rule 2, please press the mouse button opposite to the stimulus location. 

For Rule 3, please alternate between Rules 1 & 2 in the following manner: 

 

Do two repetitions of Rule 1. Switch. Do two repetitions of Rule 2. Switch. 
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Do two repetitions of Rule 1. Switch. Do two repetitions of Rule 2. Switch. 

Etc. 

 

Please respond as fast and accurately as possible throughout this test: that is, respond as 

fast as you can while minimizing your errors as much as possible. There are practice 

blocks in which you will learn each Rule thoroughly before being trained in 4 blocks of 

48 trials each.  

 

After you complete training, the EEG net will be applied. You will then perform Rules 1 

through 3 in random order. Please read the instructions on your computer screen 

carefully before beginning each section of the test. 

 

**Direct the subject to look at the screen.** 

 

Test instructions will be displayed on the screen. Please follow these instructions 

carefully. 

 

It is time to begin training. 

 

**Ascertain that the subject is comfortable, then close the door. The training will 

begin.** 

**The subject is trained.** 

**When the training is complete, open the door and escort the subject to the chair where 

the EEG net will be applied. Apply the net. Direct the subject back to the EEG booth. 

Make sure they are seated comfortably. Run impedances.** 

 

It is time for the experiment to begin.  

The experiment will be subdivided into 2 parts:  



131 
 

 

1) A base-line rest period of 2 minutes with your eyes open. Just gaze softly at this 

screen. 

2) When the first stimulus appears at the end of the 2 minute baseline period, you will be 

instructed to begin the test. 

 

Read all instructions on the screen carefully before beginning each portion of this test. 

Please respond as fast and accurately as possible throughout this test 

3) You may choose to rest between each block, and press either mouse key when 

you are ready to continue. 

 

During the test we will need you to remain as still as possible and to minimize all 

movements. This includes tensing your jaw or neck and moving your lips or tongue. We 

will also ask you to not move your eyes around while you are taking the test. Please let 

your eyes remain focused on the screen before you. The reason why it is important that 

you keep your body and eyes still is that body movements or eye movements can interfere 

with the currents we record from your scalp.  

 

Motor Control Skill Assessment 

**Ask the subject to change into clothing they have brought or the unitard we supply. 

Measure subject’s height and weight. Place 31 markers (modified Helen Hayes marker 

set).** 

**Position subject correctly across force plates for static marker trial.** 

Please stand facing this wall (clock wall) with your feet shoulder width apart and arms 

lifted to the side parallel to the floor. 

In order to insure that the Motor Control test is safe, we are going to give you two 

exercises to warm up your legs, back, and arms.  
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**Show the subject horsestance ** 

This is horsestance. You will need to work from this position throughout this test. We’d 

like you to become accustomed to this position. 

 

**Position subjects for static horsestance. (on cross-hairs across plates).** 

 

Please assume horsestance. Gaze softly at the floor ten feet in front of you. Please hold 

this position for 1 minute, or until you feel any uncomfortable strain in your thighs, 

knees, ankles, or low back. This will accustom you to this position, and it will warm up 

your muscles. 

 

**Subject holds horsestance for 1 minute or stops whenever they begin to feel strain.** 

 

You may stretch your legs or move about until you feel you are ready to continue. 

 

Now we’d like you to become accustomed to moving in horsestance. We’d like you to be 

in horsestance again. This time we’d like you to shift your weight all the way from your 

right foot to your left foot and back again continuously for one minute. Do not move 

either foot. Simply shift your weight smoothly and continuously. You may stop at any time 

if you feel discomfort. You may practice this movement. 

 

The operater asks the subject to do 1 minute of weight shifts or stop whenever they feel 

uncomfortable strain.  

 

Thanks. Now please shake out your legs or walk around if you need to. 

 

**Show the subject the Tai Chi Leg Kick video.  

 

Ask subject to practice the Tai Chi Leg Kick until they feel ready to be tested.  

 

Subject is positioned on the forceplates in horse stance.** 

 

We would like you to do twelve repetitions of this movement. Each repetition will be a 

single trial. You will not need to perform all twelve trials consecutively. We only ask you 

to do this form to the left side, that is, you will lift the left leg only. 

 

**Subject performs 12 repetitions of the Tai Chi Leg Kick.  During the collection remind 

the subject they may shake out their legs and stretch whenever they feel the need. 
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Thank subject and remove markers. ** 

 

 

Estimated VO2Max 

 

**Place heart rate monitor on subject. Take subject to indoor track if raining or outdoor 

track if weather permits.** 

 

Please walk as fast as you can for 1 mile. Walk fast enough that you feel about to break 

into a run.  

(indoor track: 10 laps; outdoor track: 4 laps). 

 

Subject walks for one mile as fast as they can. Record final heart rate and walk time in 

minutes and seconds. 

 

**Remove heart rate monitor. Thank subject. Have subject sign reimbursement form. 

Give subject the reimbursement envelope.**  
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APPENDIX E 

POST-HOC RESULTS, OTHER MEASURES 

 

Education Years. Aerobic fitness (p = .030) and meditation practitioners (p = .004) 

showed significantly more years of education than sedentary controls. Tai Chi 

practitioners and sedentary controls did not differ significantly on years of education. 

Body Mass Index (BMI). Meditation practitioners showed significantly lower BMI than 

Tai Chi practitioners (p = .004) or sedentary controls (p = .036). Aerobic fitness 

practitioners showed significantly lower BMI than Tai Chi practitioners (p = .009).  

No-switch Reaction time.  Tai Chi (p = .008) and meditation practioners (p = .021) 

showed significantly shorter no-switch reaction times than sedentary controls. Aerobic 

fitness practitioners and sedentary controls did not differ significantly on no-switch 

reaction time. There were no significant differences between training groups on no-

switch reaction time.  

P3a switch amplitude. There were no significant differences between our groups. 

P3a no-switch amplitude. There were no significant differences between our groups. 

P3a switch latency. There were no significant differences between our groups. 

P3a no-switch latency. There were no significant differences between our groups. 

Adult Temperament Questionnaire (ATQ). There were no significant differences between 

our groups on any ATQ measure. 
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Other Correlations 

Correlations.  Correlations significant at the p < .0125 level are reported.  

Group was significantly correlated with P3b No-switch amplitude (p = .003, r = -.391).  

VO2max was significantly correlated with 1) BMI (p = .004, r = -.386), and 2) no-switch 

reaction time (p < .001, r = -.500). 

SART self-monitoring was significantly correlated with SART Inhibition (p < .001, r = -

.509). 

Switch reaction time was significantly correlated with 1) no-switch reaction time (p < 

.001, r =.938), and 2) P3b no-switch amplitude (p < .001, r = -.490). 

Switch costs were significantly correlated with 1) education years (p = .004, r = -.385), 

and 2) no-switch reaction time (p = .005, r = .375). 

P3b switch amplitude was significantly correlated with 1) no-switch reaction time (p < 

.001, r = -.495) and 2) P3b No-switch amplitude (p < .001, r = .963). 

P3b no-switch amplitude was significantly correlated with 1) group (p = .003, r = -.391), 

2) switch reaction time (p < .001, r = -.490), 2) no-switch reaction time (p < .001, r = -

.505), and 3) P3b switch amplitude (p < .001, r = .963). 

P3a no-switch amplitude was significantly correlated with 1) P3a switch amplitude (p < 

.001, r = .915) and 2) P3a switch latency (p < .001, r = .591). 
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P3b no-switch latency was significantly correlated with P3b switch latency (p = .003, r = 

.401). 

P3a no-switch latency was significantly correlated with 1) P3a switch latency (p < .001, r 

= .570), and 2) P3a no-switch amplitude (p < .001, r = .481). 
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APPENDIX F 

LEVENE’S STATISTIC RESULTS 

 

Levene's Test of Equality of Error Variance 

______________________________________________________ 

 

  F df1 df2 Sig. 

 

EducationYears 

 

.594 

 

3 

 

50 

 

.622 

BMI 6.452 3 50 .001 

AerobicHours 4.003 3 50 .012 

MeditationHours 9.602 3 50 .000 

TaiChiHours 6.668 3 50 .001 

METs .718 3 50 .546 

VO2Max 1.140 3 50 .342 

TCSkill .563 3 50 .642 

SARTMonitoring .254 3 50 .858 

SARTInhibition 1.414 3 50 .250 

SwitchRT .135 3 50 .939 

NoSwitchRT .415 3 50 .743 

SwitchCosts 3.350 3 50 .026 

PostError 2.691 3 50 .056 

Accuracy 2.695 3 50 .056 
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  F df1 df2 Sig. 

 

VSTSFractalD 

 

.745 

 

3 

 

50 

 

.530 

P3bSwitchAmp 3.271 3 50 .029 

P3aSwAmp 1.017 3 50 .393 

P3bSwLat 2.853 3 50 .046 

P3aSwLat 3.843 3 50 .015 

P3bNSAmp 1.898 3 50 .142 

P3aNSAmp .844 3 50 .476 

P3bNSLat .924 3 50 .436 

P3aNSLat .945 3 50 .426 

BMI: Composite number composed of height and weight. Number of hours 

of lifetime practice is a discriminant variable and should show a different  

variance between groups. Switch costs is a composite number. 
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