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THESIS ABSTRACT 
 
Mark Stephen Oates 
 
Master of Science 
 
Department of Biology 
 
June 2013 
 
Title:  Observations of Gonad Structure and Gametogenic Timing in a Recovering 
Population of Ostrea lurida (Carpenter 1864) 
 
 From January 2012 to December 2012 I collected adult oysters from two intertidal 

populations on a monthly basis in the Coos Bay estuary, Oregon for histological analysis 

of their gonads. Gametogenesis and spawning occur seasonally from May through 

September, when water temperatures exceed 14.5o C, with brooding oysters found from 

July through September. Oocyte diameters increased significantly from May to June, and 

from June to July within oyster populations at Haynes Inlet and Coalbank Slough, 

respectively. Male gametogenesis initiated in May at Haynes Inlet and in June at 

Coalbank Slough. Dry meat condition values increased significantly during periods of 

reproduction and decreased following the reproductive season’s end. Condition index 

values for Coalbank Slough were consistently lower than those at Haynes Inlet, 

suggesting poor nutrition or physiological stress. Salinities below recorded physiological 

thresholds are believed to be the primary environmental factor influencing the 

discrepancy in reproductive activity at Coalbank Slough.  
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CHAPTER I 
 

GENERAL INTRODUCTION 
 

 
 The Olympia oyster, Ostrea lurida (Carpenter 1864), is the only native oyster on 

the west coast of the United States (Baker, 1995; McGraw, 2009). Commercial 

exploitation of the species began in 1851 and led to near extirpation in many estuaries 

(Kirby, 2004). Today, populations persist in estuaries and bays ranging from central 

British Columbia to Baja California (Dall, 1914; Gillespie, 2009; Polson et al., 2009a). 

Olympia oysters provide ecological services in the form of habitat for estuarine biota, 

biofiltration, protective shoreline buffers, and denitrification (Baker, 1995; Kimbro and 

Grosholtz, 2006; Dinnel et al., 2009; Groth and Rumrill, 2009; McGraw, 2009; 

Brumbaugh et al., 2010; Beck et al., 2011). 

 Ostrea lurida belongs to the smaller of the two commercially harvested ostreid 

genera (the other being Crassostrea) (Ahmed, 1975), with average shell lengths of 3.5-

4.5 cm, occasionally reaching sizes of 9 cm (Peter-Contesse and Peabody, 2005; Gilespie, 

2009). Olympia oysters are typically associated with estuaries or bays with salinities 

above 24, but are capable of thriving in full strength seawater (Baker, 1995; Peter-

Contesse and Peabody, 2005) and tolerating exposure to salinities of 0-5 for up to 4 

weeks (Gibson, 1974). 

 Olympia oysters are protandrous sequential hermaphrodites, maturing first as 

males then alternating sexes after every spawning event (Coe, 1931a, 1931b, 1932, 

1934). Females brood their young from fertilization through to the D-veliger stage of 

development before releasing them as free swimming larvae (Hori, 1933; Hopkins, 

1937). The first published observations of spawning in Olympia oysters were conducted 
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by Stafford (1913) off the coast of British Columbia. Later studies published by Coe 

(1931a, 1932b, 1932, 1934) investigated the seasonal gametogenic timing in La Jolla, 

California. Numerous reproductive studies have been devoted to sister species within the 

genus Ostrea. The most popular, due to its value as a commercial stock, is the European 

flat oyster Ostrea edulis (Orton, 1927, 1931, 1933; Loosanoff and Davis, 1963; Wilson 

and Simons, 1985; Abellan et al., 1989; Shpigel, 1989; da Silva et al, 2009), however 

other species have also been investigated, including O. nomades (Siddiqui and Ahmed, 

2002), O. stentina (El Gharsalli and Aloui-Bejaoui, 2011), and O. chilensis (Jeffs and 

Hickman, 2000). 

 Olympia oyster populations have struggled to recover since the majority of 

harvesting pressures were removed over 80 years ago (Trimble et al., 2009; White et al. 

2009b). Remnant populations, however, still persist throughout its historical range 

(Dinnel et al. 2009; Blake 2010). Recent studies have identified reproductive limits, 

inadequate availability of substratum, poor post-recruitment survival, predation, and 

competition as potential inhibitors to full population recovery (Groth and Rumrill, 2009; 

White et al., 2009a). 

 As Olympia oyster populations began their precipitous decline in the late 1800s 

and early 1900s, efforts to restore natural populations were largely abandoned (Trimble et 

al., 2009), replaced instead by large-scale commercial mariculture of Crassostrea gigas 

(Thunberg, 1793), a faster growing and more pollution tolerant species (White et al. 

2009a). In the last ten years, interest in native oyster restoration has resurfaced. Projects 

aimed at restoring native oyster populations are currently underway in estuaries within 

every state along the west coast of the United States (White et al. 2009b; Groth and 
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Rumrill, 2009; Dinnel et al. 2009; Buhle and Ruesink, 2009; Polson and Zacherl, 2009b) 

and British Columbia. 

  The history of Ostrea lurida in Coos Bay, Oregon is unique to populations found 

elsewhere along the west coast of North America. While European settlers found no 

evidence of extant oyster populations in the bay upon their arrival in the 1850s, fossilized 

shell deposits discovered along the shoreline of the bay reveal a distinct historical 

presence. These deposits are thought to be death assemblages and the remains of Native 

American shell middens, suggesting Olympia oysters were once abundant in Coos Bay as 

well as an exploited food source for indigenous populations (Baker, 1995). Shells from 

these locations have been aged at approximately 400 years through the use of radiocarbon 

dating (Groth and Rumrill, 2009). Groth and Rumrill (2009) have suggested that a 

tsunami and/or large fire initiated a massive sedimentation event, suffocating oyster beds 

and contributing to localized extinction within the bay. Olympia oysters are believed to 

have been inadvertently reintroduced to the bay during the late 20th century. Crassostrea 

gigas, imported to Coos Bay from Willapa Bay, Washington for aquaculture are believed 

to have carried Olympia oysters as epibionts on their shells as “hitch-hikers” (Baker and 

Terwilliger, 2000). Olympia oysters soon became re-established across the eastern arm of 

Coos Bay. 

 The early life history of Olympia oysters is a topic of great concern to restoration 

efforts. Reproductive seasons, larval abundances, and settlement success may vary 

widely in different habitats, highlighting the importance of regional observations and site-

specific data (Stafford, 1913; Coe, 1931a; Hopkins, 1937). In Coos Bay, investigations 

have been conducted investigating seasonal larval abundance (Laura Peteiro, unpublished 
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data) and seasonal settlement patterns (Sawyer and Young, 2011), however, little 

information exists on the regional reproductive behaviors and underlying gametogenic 

mechanisms for this species. In this study I will examine seasonal gametogenesis, dry 

meat condition indices, and the presence of brooding oysters as indicators of reproductive 

activity in Ostrea lurida and compare reproductive periods at two sites within the bay.  I 

will also investigate possible physical and biological parameters that may influence the 

timing of regional reproductive events. 
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CHAPTER II 
 

GAMETOGENIC ANALYSIS OF OLYMPIA OYSTER POPULATIONS IN COOS 

BAY, OREGON 

 
INTRODUCTION 

 The Olympia oyster, Ostrea lurida (Carpenter, 1864), is the only native oyster 

species along the west coast of Canada and the United States with a range extending from 

Sitka, Alaska to Baja, California (Dall, 1914; Baker, 1995). Found predominately in 

intertidal and subtidal estuarine environments (Cook et al. 2000), O. lurida are 

considered ecosystem engineers for their ability to filter seawater for particulate matter as 

well as provide food and shelter for a multitude of organisms (Baker, 1995; Beck et al., 

2011; Gray and Langdon, 2012). In addition to their ecological value, Olympia oysters 

are commercially exploited and support highly profitable fisheries (Korringa, 1976). 

Usually preferring to settle on hard substratum, O. lurida is commonly found attached to 

other oysters, large boulders, rip-rap, gravel/cobble, and wood (Baker, 1995; Groth and 

Rumrill, 2009). 

 Ostrea lurida, once native and abundant in Coos Bay, suffered a relatively recent 

extinction event, followed by a subsequent reintroduction (Baker, 1995; Baker and 

Terwilliger, 2000; Groth and Rumrill, 2009). In recent years, great attention and 

resources have been expended to understand the dynamics of re-establishing this 

ecologically and commercially valuable species within the estuary.  

 One area of particular concern is seasonal reproductive activity. Olympia oysters 

are protandrous, sequential hermaphrodites (Coe, 1931a, 1931b, 1932, 1934). 

Gametogenesis of both sexes takes place within a network of fluid-filled pockets, 
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otherwise known as gonad follicles, located in the connective tissue between the mantle 

epithelium and the digestive diverticula (Andrews, 1979). Gonad follicles are often 

observed with the simultaneous presence of male and female gametes. Juveniles begin 

developing their gonads in as little as 8 weeks after settlement. Proliferation of male 

gametes occurs quickly, in some cases producing ripe gonads within as little as 5 months 

after settlement (Coe, 1931a; Coe, 1932). Through spasmodic contractions of the 

adductor muscle, tightly packed balls of 250-2000 spermatozoa are released into the 

water column via the excurrent siphon (Coe, 1931b; Hopkins, 1937). Before male 

spawning is complete, female gametogenesis proceeds within the same individual oyster 

alongside the remnants of the previous male phase. Ovulation in female phase oysters is 

stimulated by the presence of male gametes taken into the incurrent siphon (Coe, 1931a). 

Ripe oocytes are released into the excurrent chamber where spasmodic contractions and 

relaxations of the adductor muscle help force them through the gill ostia and into the 

incurrent chamber of the mother where fertilization occurs (Hopkins, 1937). Depending 

on environmental conditions, oysters may switch functional sexes 2-3 times in a given 

breeding season (Coe, 1932).  

 Female Olympia oysters provide a measure of brood protection to their offspring. 

Once fertilized, embryos develop within the incurrent chamber for a period of 12 (Coe, 

1931a) to 17 days (Stafford, 1913), then are released into the water column as 

planktotrophic veligers. Hopkins (1937) observed a brood period of approximately 9-14 

days with larvae growing at a rate of 12 microns per day. Individuals ranging from 23.5-

36.8mm shell length were observed to carry broods from between 70,000 to 350,000 

embryos/larvae with an average brood of 215,000 (Hopkins, 1937). Based on 
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observations of functional guts in brooding Ostrea circumpicta larvae (Kang et al., 2004), 

Ostrea lurida larvae are presumed to feed on phytoplankton brought in via the mother’s 

incurrent water flow. Regional differences in brood capacity and average sizes for 

brooding oysters have yet to be investigated. 

 Periods of spawning in Olympia oysters have been strongly correlated to seasonal 

increases in water temperature. Coe (1931a, 1932, 1934) conducted experiments in La 

Jolla, California in which he followed the gametogenic progress of newly settled O. 

lurida juveniles. By setting out blocks of oysters of known ages and sampling at regular 

intervals, he characterized the gonad of O. lurida and determined that this species 

alternates its sexuality throughout its lifetime. Additionally, he found that spawning was 

induced when water temperatures of ~16o C were maintained. Hopkins (1937) collected 

daily samples of adult oysters from dikes constructed in Puget Sound Washington and 

observed brooding individuals immediately following a spike in minimum water 

temperature to ~13o C, indicating this temperature as a spawning trigger. In both of these 

cases breeding periods varied strongly based on seasonal trends in water parameters.  

Oysters in La Jolla, California had a spawning season of ~7 months, while reproduction 

in the seasonally colder waters of Puget Sound, Washington was restricted to a period of 

3-4 months. Even further north, Stafford (1913) found that populations of O. lurida in 

British Columbia were limited to a spawning period of only 3 months. The reproductive 

season of this species appears to be reduced at higher latitudes where water temperatures 

exceed the spawning threshold for increasingly short periods of time. Laboratory analyses 

have corroborated field data with spawning temperatures recorded at 14o C (Hori, 1933 

Imai et al., 1954). Santos (1992) revealed that oysters may spawn at temperatures from 
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12-21oC, although oysters spawning at lower temperatures took as many as 8 weeks to 

produce larvae after the detection of gametogenesis while oysters at 21o C took 2-3.5 

weeks and produced significantly more larvae. Seale and Zacherl (2009) suggested that 

temperature is unlikely to be the sole determinant in spawning periodicity after reporting 

settlement patterns that did not conform to those expected with the observed temperature 

regime. This suggests that other environmental parameters must be taken into account for 

their potential influence on reproduction. Of particular interest to this study are salinity 

and chlorophyll-a concentrations.  Salinity varies widely within estuaries and 

environments subjected to salinities of 15 or lower demonstrate deleterious effects on 

their resident oyster populations (Gibson, 1974). The repercussions of salinity for 

gametogenesis have not yet been explored for O. lurida, although Butler (1949) explored 

this topic with Crassostrea virginica. Little is known of the effects of phytoplankton 

production on the reproduction of O. lurida although strong relationships between 

increases in food availability and reproduction have been demonstrated in Ostrea edulis 

(Cano et al., 1997).  

 Information on the reproductive cycle of Olympia oyster populations within Coos 

Bay is limited.  Regional data on gametogenesis and spawning is essential for 

conservation of Olympia oysters and for the design of effective restoration efforts within 

the estuary. In particular, information pertaining to the timing of spawning, 

environmental influences and other life-history traits are critical to develop management 

strategies to foster self-sustaining populations. This project seeks to resolve many gaps in 

the knowledge about reproduction for this species. First and foremost, I will characterize 

the reproductive cycle of O. lurida within the Coos Bay estuary. In this study, I 
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determined the timing of initiation, peak production, and cessation of gametogenesis. I 

then worked to discern which environmental variables influence the regional patterns of 

reproductive activity observed. I then compared two populations of oysters within Coos 

Bay to determine how variation in habitat conditions may influence reproduction. 

Additionally, I observed individuals in the process of brooding larvae to estimate brood 

size and to determine developmental stages. 

METHODS 

 A total of 960 oysters were studied during 2012. Approximately 240 oysters were 

used to calculate condition indices and the remaining 720 oysters were used for 

histological analysis.  

Study Sites and Ambient Environmental Conditions 

 Monthly field collections of O. lurida took place from January 2012 until 

December of that year. Two Coos Bay intertidal habitats were sampled at an elevation of 

~.3 m above the mean low tide line. The rocky intertidal habitat of Haynes Inlet (Figure 

1) (43°26'32.20"N, 124°13'17.53"W) and the mudflat habitat of Coalbank Slough (Figure 

1) (43°21'35.71"N, 124°12'25.60"W) were chosen due to their large populations of 

Olympia oysters and accessibility. During each monthly sampling, forty large specimens 

( >30mm Shell length) were collected along a 100 m transect line on the shoreline of 

Haynes inlet, while habitat constraints limited the transect at the Coalbank Slough 

mudflat to 50 m. Each sampling event took place along randomly assigned points on a 

permanent transect line within each habitat. Each month, 40 sampling points were 

assigned to each transect by randomly choosing a number out of 100 forty times and 

assigning those numbers to meter marks on the transect line. For each assigned meter 



10 
 

mark and it’s corresponding 1 meter interval, a large oyster in the closest proximity to the 

line was haphazardly sampled. Organisms were transported to the laboratory on ice and 

left in flowing seawater tables for no more than 24 hours before processing.  

 

Fig. 1. Map of Coos Bay estuary with study sites marked with stars. The black star 
corresponds to the Haynes Inlet study site and the white star corresponds to the Coalbank 
Slough study site. 

 
 Monthly measurements of ambient hydrological parameters were recorded on 

every sampling date and on dates halfway between sampling events from May to 

September. Temperature and salinity were measured using a YSI 650 MDS probe, and 
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triplicate water samples were collected in dark nalgene bottles for chlorophyll-a analysis 

in the lab.  

 All oysters were measured for shell length (base of umbo to ventral shell margin) 

using calipers. Each monthly site sample was subdivided from the original 40 into a 

group of 30 for histological analysis and a group of 10 for a condition index (Grant and 

Tyler, 1983a). Oysters were randomly assigned groups based on the result of a coin flip.  

Histological Analysis 

 The visceral mass was excised from shucked oysters and placed in Davidson’s 

fixative (2 parts formalin, 3 parts 95% ethanol, 1 part glacial acetic acid, 3 parts RO 

water) for a period of 24-48 hours. Tissues were transferred to 70% ethanol for storage. 

After at least 24 hours of storage, tissues were removed from solution and a razor blade 

was used to excise a ~7mm cross-section of the visceral mass, which included gonad, 

digestive gland and gill tissue. These sections were transferred to 95% ethanol for ~12 

hours. Tissues in 95% ethanol were put through 3 100% ethanol changes for ~2 hours per 

change to ensure complete dehydration. Tissues were then left to clear in toluene for ~24 

hours followed by a transfer into molten paraffin wax for at least 24 hours to complete 

infiltration. Infiltrated specimens were embedded in paraffin blocks with three specimens 

to a block. Using a rotary microtome, 7 micrometer ribbons of gonad tissue were 

sectioned and placed in a warm water bath for stretching. Sections were mounted on 

slides and left to adhere on a slide warmer for several hours. Two slides per three 

specimen block were prepared, with at least three sections per mounted ribbon. Using the 

acidophilic nuclear stain, hematoxylin, and the basophilic cytoplasmic stain, eosin, 

tissues were dyed to enable visualization of gonad tissues (Coe, 1931a; Galigher and 
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Kozloff, 1971; da Silva et al., 2009). Slides were mounted using Permount mounting 

medium and glass cover slips.  

 Sections were observed under an Olympus BX50 compound light microscope at 

40x magnification. Male and female gametes are sometime unevenly distributed 

throughout the gonad in this species (Coe, 1932; Jim Moore, personal communication), 

so all tissue sections on both slides were considered during the analysis to minimize the 

potential for confounded results.  

Sex Category 

 To accommodate hermaphroditism in this species, a sex category scheme was 

adopted from gametogenic studies of Ostrea edulis by da Silva et al. (2009) (Figure 2). 

The following scale of six sex categories was used:  

• Indeterminate (I): Follicles are either collapsed or empty. No residual gamete 

material can be found in follicles  

• Male solely (M): Follicles contain only male gonad material.  

• Female solely (F): Follicles contain only female gonad material. 

• Hermaphrodite with both sexes equally represented (HBS): Follicles contain 

approximately half male and half female gonad material.  

• Hermaphrodite predominantly male (HPM): Follicles contain predominantly male 

but also some female gonad material.  

• Hermaphrodite predominantly female (HPF): Follicles contain predominantly 

female but also some male gonad material. 



13 
 

 

 

Fig. 2. Micrographs of histological sections of Ostrea lurida, showing all six sex 
categories and various maturity stages. A. Male, ripe gonad. B. Hermaphrodite 
predominately male, ripe male gonad, partially spawned female gonad. C. 
Hermaphrodite with both sexes represented equally, ripe male gonad, advanced 
gametogenesis in female gonad. D. Hermaphrodite predominately female, partially 
spawned male gonad, advanced gametogenesis in female gonad. E. Female, ripe 
gonad. F. Indeterminate, no gonad activity. 
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Maturity Stage 

 Each individual was assigned a maturity stage number corresponding to its level 

of gonad development (Figures 3 and 4). This scheme resembles similar constructs used 

for O. edulis (Mann, 1979; da Silva et al, 2009) and O. stentina (El Gharsalli and Aloui-

Bejaoui, 2011). Hermaphroditic individuals were given two scores, one to delineate male 

stage and one for female stage: 

• Inactive Gonad (Stage 0): No evidence of gamete development. Specimen is 

either immature, experiencing a resting stage between spawning cycles, or 

undergoing reproductive failure. This maturity stage is exclusively reserved for 

the Indeterminate (I) sex category. 

• Early Gametogenesis (Stage 1): Notable expansion of gonad follicles. In males, 

male gamete proliferation is observed. Spermatogonia and spermatocytes 

observed in abundance, with some spermatids present. In females, the gonad is 

composed of primarily oogonia with some small oocytes (diameter ~15-30µm). 

• Advanced Gametogenesis (Stage 2): Further expansion of gonad follicles. In 

males, all cell stages in the spermatic series are present. The majority of the 

follicle is filled with the developing germ line. In females, developing oocytes 

line the follicle wall with some occupying the follicle lumen (diameter ~30-

80µm). 

• Ripe Gonad (Stage 3): Follicles have expanded to fill most of the space between 

the digestive gland and mantle epithelium. In males, the majority of the follicle is 

devoted to mature sperm balls. In females, ripe oocytes (diameter ~90-110µm 

(Loosanoff, 1963)) line the follicle walls and fill the follicle lumen. 
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• Partially Spawned (Stage 4): Follicles are partially empty and have been reduced 

in size with large amounts of residual mature gametes still present. In males, large 

amounts of spermatozoa remain while the rest of the spermatic series is absent. In 

females, large quantities of post-vitellogenic oocytes remain, sometimes alongside 

residual pre-vitellogenic oocytes and the developing male line of the subsequent 

sexual phase. Phagocytes may be present at this stage. 

• Resorbing (Stage 5): Follicles are greatly reduced in size from the previous stage, 

with only small amounts of mature gametes remaining. Individuals expressing 

this stage for one sexual phase may also contain gametes of the subsequent sex 

phase. Spermatogonia or oogonia may be present in the acinus. Presence of 

phagocytes is ubiquitous.  

Oocyte Diameter 

 Sections containing female gonad material were photographed under an Olympus 

BX50 compound microscope at 40x magnification using a Canon PC1192 digital camera.  

Photographs of two complete gonad sections (one from each slide, randomly selected) 

were taken for each individual. For each oyster, a total of 100 oocytes, each with apparent 

nuclei and nucleoli, were measured for diameter (Grant and Tyler, 1983b) using ImageJ 

image processing software. Average egg sizes within individuals contributed to the 

determination of the female maturity stages outlined in the previous section. 
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Fig. 3. Micrographs of histological sections of Ostrea lurida, showing all five male 
maturity stages. A. Early gametogenesis. B. Advanced gametogenesis. C. Advance 
gametogenesis from lower magnification. D. Ripe gonad. E. Partially spawned. F. 
Resorbing. 
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Fig. 4. Micrographs of histological sections of Ostrea lurida, showing all five 
female maturity stages. A. Early gametogenesis. B. Advanced gametogenesis. C. 
ripe gonad. D. Ripe gonad from lower magnification. E. Partially spawned. F. 
Resorbing. 
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Condition Index 

 A condition index was employed to provide a rough estimate of monthly 

gametogenesis and spawning activities of O. lurida populations (Gibson, 1974). Oysters 

assigned to condition index analysis were left for 24 hours in running seawater tables to 

provide an opportunity for feces and pseudofeces to be eliminated (Hawkins and Rowell, 

1987). Individuals were thoroughly scrubbed of epibionts, and then kept in seawater until 

processing to ensure that the shell cavity remained full of fluid before measurement. 

Whole weights (g) of each oyster were taken after each individual was patted dry with a 

Kim-wipe. Following storage in a -20oC freezer, the visceral mass of each oyster was 

excised and dried for 24 hours in a 100oC oven. Dried tissues were then weighed to the 

nearest milligram. Shells from freshly shucked oysters were patted dry with a Kim-Wipe 

and weighed (g).  

 This study employed the use of the condition index proposed by Lawrence and 

Scott (1982) and later modified by Hawkins and Rowell (1987), wherein dry soft tissue 

weight (g) is held as a function of internal shell cavity capacity (g) (Equation 1). This 

method has been popular within studies of many Ostreid genera (Crosby and Gale, 1990; 

Cano, 1997; Abbe and Albright, 2003).  

 

Eq. 1. Condition index formula proposed by Lawrence and Scott (1982) 
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Statistical Analysis 

 An ANOVA test was used to determine if the mean monthly condition index 

values for the 12 month period are significantly different. ANCOVA was run with the dry 

flesh weight as the dependent variable, shell length as the dependent variable, and sample 

month as the factor. This analysis allowed for the tracking of increases in flesh weight, 

while simultaneously compensating for the effect shell length and allometric growth. 

Tukey HSD pairwise comparisons were run to discern significant differences in condition 

between months. Pearson correlation coefficients were calculated between each 

environmental parameter and the monthly condition index measurements. Multiple 

regression analysis was also used to determine the combined predictive capability of 

temperature, salinity, and chlorophyll-a on condition index.  A Kruskal Wallis test was 

used to determine if mean oocyte sizes were significantly different across the 12 month 

period. Steel-Dwass pairwise comparisons were employed to determine significant 

increases or decreases in diameters between months. Wilcoxon tests with bonferroni 

adjusted p-values compared sample sites for each given sample date. Contingency table 

analysis was conducted to determine significant differences between maturity stage 

between sample sites as well as sex category between sample sites over the course of the 

2012 sampling period.  

RESULTS 
 
Ambient Environmental Parameters 
 
 Temperature fluctuated seasonally in Haynes Inlet and Coalbank Slough (Figure 

5). The highest temperatures in Haynes Inlet were recorded in June (18.66o C) and the 

lowest in March (8.38o C). Coalbank Slough’s highest temperature was recorded in July 
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(19.67o C) while its lowest temperature was detected in January (7.15o C). During 2012, 

temperature differences between sites were typically <1o C for any given sampling date. 

However, between July and September, water temperatures at Coalbank Slough were 

consistently 1.5-2o C above those of Haynes Inlet. This result is not surprising, as the 

upper estuary is less subject to cold oceanic water influxes than mid estuary sites 

(Gibson, 1974; Kimbro et al., 2009).  

 Salinity demonstrated a seasonal sinusoidal pattern, with low spring values slowly 

transitioning to high autumn values (Figure 5) at both sites. In Haynes Inlet, salinity 

ranged from 30.79 in September, to as low as 12.5 in December. For Coalbank Slough, 

salinities failed to reach the highs of Haynes Inlet, but demonstrated a September peak of 

28.45, while its lowest salinity value of 4.5 occurred during May and December.  Haynes 

Inlet recorded consistently higher salinity values than Coalbank Slough. Differences in 

monthly salinity values ranged from 2.3 to 12.3 between sites. 

 Due to equipment malfunction, Chlorophyll-a values were not collected for 

January through March of 2012. Chlorophyll-a values rose steadily during the summer 

months at both sites (Haynes: 8.615 µg/L in August; Coalbank: 9.59 in June) and showed 

marked decline during the winter season (Haynes: 2.283 µg/L in December; Coalbank: 

0.966 µg/L in December) (Figure 5). Chlorophyll exhibited large fluctuations during 

summer.   



 

Fig. 5. Recorded Temperature, Salinity and Chlorophyll
Haynes Inlet and Coalbank Slough.

21 

Recorded Temperature, Salinity and Chlorophyll-a values (with SE bars) for 
Haynes Inlet and Coalbank Slough. 

 

a values (with SE bars) for 
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Seasonal Shifts in Sex Categories  
 
 Table 1 and Figure 6 show the percentages and distributions of sex category 

observations in 2012, combining results from both Coalbank Slough and Haynes Inlet. 

During the period between January and May, female (F) and predominately female 

hermaphrodites (HPF) far outweighed all other categories detected, ranging from 43-58% 

and 18-30% respectively. Combined, males (M) and predominately male hermaphrodites 

(HPM) comprised an average of 10% of each month’s sample for this period. The male to 

female ratio began to reverse in June, with increasing proportions of male- dominated 

gonads. Males and predominately male gonads peaked in abundance in August, 

constituting a combined 73% of the sample. During the months of July and August, F 

individuals disappeared entirely. Male (M) and HPM proportions fell steadily into the 

winter months, restoring the male to female ratios observed during January through May. 

Hermaphrodites with both sexes represented equally (HBS) accounted for no more than 

ten percent of each months sample with the exception of June at 16%. Shell size was not 

a significant predictor of sex category was not significant (Kruskal Wallis; χ2 = 2.7370; 

df = 5; p = 0.7405), indicating that sex was not determined by oyster size. 

Contingency table analysis revealed significant differences in sex category ratios between 

the two sites (χ2 = 23.996; df = 5; p = 0.0002), most notably in the number of 

indeterminate (I) individuals. During the 2012 sampling period, there was a marked 

difference in the number of indeterminate individuals. With the exception of April, 

Coalbank Slough samples contained at least one individual with empty follicles with no 

gonad material (Figure 8). Indeterminate individuals peaked in abundance between May 

and September with as many as 5 individuals (20% of monthly sample) detected in June 
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and August, coinciding with water temperatures above 15o C. In contrast, Haynes Inlet 

contained only sporadic and isolated indeterminate individuals and no occurrences during 

the peak observed in Coalbank Slough (Figure 8).  

 

Table 1. Distribution (%) of sex categories across samples sites during the 2012 sampling 
period. 

 Sex Category Haynes Inlet Coalbank Slough 

Indeterminate 1.1 7.2 

Male 12.8 14.7 

Hermaphrodite Predominately Male 24.4 15.6 

Hermaphrodite Both Sexes Equally Represented 7.2 8.1 

Hermaphrodite Predominately Female 25.3 24.4 

Female 29.2 30 
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Fig. 6. Monthly abundances of all six sex categories from both Haynes Inlet and 
Coalbank Slough during the 2012 sampling period. N = 60.  
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Fig. 7. Monthly abundances of all six sex categories from Haynes Inlet during the 2012 
sampling period. N = 30. 
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Fig. 8. Monthly abundances of all six sex categories from Coalbank Slough during the 
2012 sampling period. N = 30. 
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Maturity Stage 
 
 Male and Female oysters both demonstrated a unimodal summer peak in 

advanced gametogenesis (Stage 2) and ripeness (Stage 3) during the summer (Figures 9 

and 12), when water temperatures exceeded 15o C. Below this temperature, 

gametogenesis ceased with partially spawned (Stage 4) and resorbing (Stage 5) gonads 

dominating. During the winter, it was common to find follicles containing large quantities 

of unspawned, residual gametes from the previous reproductive season. 

Male Phase 
 
 Cumulatively, male oysters analyzed during 2012 showed predominately Stage 4 

or Stage 5 gonads from January to April, with intermittent, isolated detections of early 

gametogenesis (Stage 1) (Figure 9). During the winter months, in the absence of 

gametogenic activity, residual spermatozoa persisted in the follicle lumen and gonoducts 

of many oysters. Stage 1 males began to appear in larger numbers when water 

temperatures exceeded 15o C in May, peaking in abundance in June (25% of males 

sampled). Stage 2 males also reached their greatest abundance in June (37% males 

sampled), followed by a peak in ripe Stage 3 individuals in July (38% of males sampled). 

Stage 1 through Stage 3 individuals gradually declined until October, when they 

cumulatively constituted less than 8% of males sampled, disappearing entirely in 

December. Shell length showed no significant relationship with male phase (Kruskal 

Wallis; χ2 = 5.8269; df = 4; p = 0.2125). 

 Contingency table analysis revealed significant differences in male phase 

presence between the two sites (χ
2 = 16.495; df = 4; p = 0.0024). Stage 5 oysters made up 

nearly 50% of the sample in Coalbank Slough (Figure 11), far outweighing the totals 
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from Haynes Inlet. A greater proportion of Stage 3 and Stage 2 individuals were observed 

in Haynes Inlet, although fewer Stage 1 individuals were also observed at this site (Figure 

10). It is also interesting that the timing of stage appearances was noticeably different 

between sites. While Stage 1 males appeared in Haynes Inlet in high numbers in May, 

Coalbank Slough exhibited a one month delay, as it did not exhibit Stage 1 males until 

the month of June.   

Fig. 9. Monthly abundances of five male maturity stages (excluding Stage 0) from 
Haynes Inlet and Coalbank Slough during the 2012 sampling period. N = 60 
 
 

Fig. 10. Monthly abundances of five male maturity stages (excluding Stage 0) from 
Haynes Inlet during the 2012 sampling period. N= 30 
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Fig. 11. Monthly abundances of five male maturity stages (excluding Stage 0) from 
Coalbank Slough during the 2012 sampling period. 

Female Phase 
 
 Cumulatively, in Coos Bay, low levels of Stage 1 or Stage 2 individuals persisted 

throughout the year, although egg size and follicle volume were not large enough to 

signal substantial gametogenic activity (Figure 12). May had the highest number of Stage 

1 females (40% of May sample and 44% of females sampled), with developing oogonia 

and uniformly small oocytes scattered throughout the follicles. This spike was followed 

by a peak in Stage 2 individuals during the month of June (45% of females and 38% of 

sample). In July, the highest number of ripe individuals was detected, constituting 13% of 

the females sampled. As with the male gametes, substantial residual gamete carryover 

was observed outside of the breeding season. Scattered oocytes of varying sizes remained 

attached to the shrinking follicle walls of spawned individuals (Figure 4E). Shell length 

did not have a significant relationship with female maturity stage (Kruskal Wallis; χ
2 = 

1.7626; df = 4; p = 0.7793). 
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Maturity Stages, female gametogenesis appeared to experience a delay in Coalbank 

Slough. Ripe females could be found from June to September in Haynes Inlet (Figure 

13), while ripe individuals in Coalbank Slough were limited to the months of July and 

August (Figure 14).  

 

Fig. 12. Monthly abundances of five female maturity stages (excluding Stage 0) from 
Haynes Inlet and Coalbank Slough during the 2012 sampling period. N = 60 
 

 
Fig. 13. Monthly abundances of five female maturity stages (excluding Stage 0) from 
Haynes Inlet during the 2012 sampling period. N =30 
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Fig. 14. Monthly abundances of five female maturity stages (excluding Stage 0) from 
Coalbank Slough during the 2012 sampling period. N = 30 
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 Figure 15 illustrates the monthly variation in oocyte diameter for both Haynes 
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followed by a significant drop from July to September (z = 

a significant increase from September to October (z = 3.53428; p = 0.0210).

Month by month comparisons of egg diameter between sites showed that Coalbank 

slough had significantly lower egg diameters than Haynes Inlet during the month of June 

(Wilcoxon; χ2 = 14.3759; df = 1; 

Fig. 15. Mean monthly changes in oocyte diameters with SE bars (N = 100 oocytes per 
month) 

Condition Index 
 
 In Haynes Inlet, condition index varied significantly over the 12 month period 

(ANCOVA; F = 2.5791; p = 0.0058; 

significant negative relationship with shell length and was included as a covariate in the 

analysis. Shell length did not significantly differ between months at Haynes Inlet 

(ANOVA; F = 1.4054; p = 0.1809

averaged 7.62 (SD = 1.38), demonstrating an upward trend. A decline in
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followed by a significant drop from July to September (z = -4.1864; p = 0.0017) and then 

ase from September to October (z = 3.53428; p = 0.0210). 

Month by month comparisons of egg diameter between sites showed that Coalbank 

slough had significantly lower egg diameters than Haynes Inlet during the month of June 

= 14.3759; df = 1; p < 0.0001). 

changes in oocyte diameters with SE bars (N = 100 oocytes per 

In Haynes Inlet, condition index varied significantly over the 12 month period 

NCOVA; F = 2.5791; p = 0.0058; Figure 16). Condition index demonstrated a 

significant negative relationship with shell length and was included as a covariate in the 

Shell length did not significantly differ between months at Haynes Inlet 

0.1809). From January through March, monthly index vales 

averaged 7.62 (SD = 1.38), demonstrating an upward trend. A decline in oyster

4.1864; p = 0.0017) and then 

 

Month by month comparisons of egg diameter between sites showed that Coalbank 

slough had significantly lower egg diameters than Haynes Inlet during the month of June 

 

changes in oocyte diameters with SE bars (N = 100 oocytes per 

In Haynes Inlet, condition index varied significantly over the 12 month period 

). Condition index demonstrated a 

significant negative relationship with shell length and was included as a covariate in the 

Shell length did not significantly differ between months at Haynes Inlet 

index vales 

oyster condition 
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indices occurred between the months of March and May followed by a steady rise in the 

index values leading to a significant increase between the months of May and July 

(Tukey HSD; p = .0365). Average index values were highest during the months of July 

and August. A steady and significant decline in values followed the August peak into 

November (Tukey HSD; p = 0.0324). 

 In Coalbank Slough, oyster condition also varied significantly over the 2012 

sampling period (ANCOVA; F = 2.5791; p = 0.0048). Shell length again demonstrated a 

significant negative correlation to condition index values and was factored into the 

analysis. Shell length did not significantly differ between months at Coalbank Slough 

(ANOVA; F = 1.7265 p = 0.077). From March to June, a significant decrease in values 

was detected (Tukey HSD; p = .0310). A significant increase in values was detected 

between June and September (Tukey HSD; p = .0366), followed by a gradual decrease in 

values through December. Coalbank Slough demonstrated consistently lower average 

condition index values when compared to Haynes Inlet, and the values in Haynes Inlet 

were 9% to 57% higher for any given month sampled. There appears to be striking 

similarity in the patterns of mean index variation for these two sites. While these patterns 

were in close alignment for the months from January through May, Coalbank Slough falls 

behind Haynes Inlet in June, experiencing a prolonged phase of low condition. Despite 

the one month delay, patterns in index variation for Coalbank Slough continue to follow 

those set by Haynes Inlet.  

 Monthly temperature values showed a significant positive linear correlation with 

Haynes Inlet condition values (R = 0.037087; n= 119; p = 0.0359), however 

demonstrated a significant negative linear relationship with Coalbank Slough condition 



 

values (R = .034832; n = 120; p = 0.0412). Salinity values demonstrated a significant 

positive relationship with condition index in Haynes Inlet (R = 0.120361; n = 119; p < 

0.0001), but not in Coalbank Slough. Chlorophyll

inverse relationship with condition index in Coalbank slough (R = .048168; n = 90 p = 

0.0377), but this relationship 

through December, multiple regression analysis identified temperature, salinity and 

chlorophyll-a as significant predictors of condition index at Haynes Inlet (R = 24.1175; n 

= 90; p<0.0001), Temperature and 

condition at Coalbank Slough (R = 0.116999; n = 90; p = 0.0045).

Fig. 16. Mean condition index values with SE bars for Haynes Inlet and Coalbank 
Slough. 
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values (R = .034832; n = 120; p = 0.0412). Salinity values demonstrated a significant 

relationship with condition index in Haynes Inlet (R = 0.120361; n = 119; p < 

0.0001), but not in Coalbank Slough. Chlorophyll-a measurements showed a significant 

inverse relationship with condition index in Coalbank slough (R = .048168; n = 90 p = 

relationship was not present in Haynes Inlet. Using data from April 

through December, multiple regression analysis identified temperature, salinity and 

a as significant predictors of condition index at Haynes Inlet (R = 24.1175; n 

90; p<0.0001), Temperature and chlorophyll-a identified as significant predictors of 

condition at Coalbank Slough (R = 0.116999; n = 90; p = 0.0045). 

Mean condition index values with SE bars for Haynes Inlet and Coalbank 

values (R = .034832; n = 120; p = 0.0412). Salinity values demonstrated a significant 

relationship with condition index in Haynes Inlet (R = 0.120361; n = 119; p < 

a measurements showed a significant 

inverse relationship with condition index in Coalbank slough (R = .048168; n = 90 p = 

Using data from April 

through December, multiple regression analysis identified temperature, salinity and 

a as significant predictors of condition index at Haynes Inlet (R = 24.1175; n 

a identified as significant predictors of 
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Brooding of Embryos and Larvae 
 
 Brooding oysters were found in Haynes Inlet in July, August and September. 

Larvae observed in July had reached the 4-cell stage of development indicating that 

fertilization had occurred within the previous 24 hours (Hori, 1933; Strathmann, 1987). 

Brooders in subsequent months contained shelled veliger stage larvae with rounded shell 

hinges and no pigmentation, otherwise known as “white sick” (Hopkins, 1937). This 

stage of development is typically reached after 4-5 days of development (Hori, 1933; 

Strathmann, 1987) 

 In Coalbank Slough, brooding oysters were detected in July and September. 

Embryos found in July had reached the blastula/gastrula stage of development indicating 

fertilization within the prior 24-48 hours (Hori, 1933; Strathmann, 1987). Brooders in 

subsequent months held shelled veligers also in “white sick” stage. 

 Estimated brood counts measured between 79,500 and 316,500 embryos and 

larvae, falling within the values reported previously in the literature for this species 

(Hopkins, 1937).  

DISCUSSION 
 
 The summer peak in oyster reproduction is congruent with that reported in 

previous literature for reproductive patterns of other Ostrea lurida populations (Stafford, 

1913; Coe, 1931a; Hopkins, 1937; Seale and Zacherl, 2009). The spawning season 

commenced in late June to early July and continued through mid to late September with a 

peak in July/August. This 3-4 month spawning period is similar to the observed interval 

that Hopkins (1937) described in Puget Sound, Washington.  
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 Male maturity stages showed a distinct onset of gametogenesis. Large-scale 

gametogenesis initiated when seawater temperatures in Coos Bay reached ~14.5o C. 

Seawater temperatures in the estuary jumped from ~14.5o to ~18o C from May to June, 

which corresponded to a marked increase in gametogenic activity.  Critical spawning 

temperatures for O. lurida have been recorded between 12.5o and 16o C (Coe, 1931b; 

Hori, 1933 Hopkins, 1937; Imai et al. 1954; Santos et al., 1992) so it is conceivable, 

considering when ripe males were present, that oysters had begun to spawn shortly after 

the June sampling period. The diminished presence of developing and ripe males during 

the month of September suggests an end of the reproductive period. Female maturity 

stages were somewhat ambiguous when used to detect the onset of female gametogenesis 

because Stage 1 and Stage 2 individuals persisted through the winter months. It is 

unlikely that females were gametogenically active during the period since temperatures 

(7-12o C) were below those previously cited for reproductive activity in this species (Coe, 

1931b; Hori, 1933; Hopkins, 1937; Imai et al., 1954; Santos et al., 1992). In January 

through May, it was rare to find oocytes greater than 70 µm in diameter and no oocyte 

was found with a diameter greater than 80 µm, indicating an absence of ripe (Stage 3) 

females. Oysters identified as Stage 1 or Stage 2 were most likely female oysters that 

began gametogenesis shortly before temperatures dropped below the critical threshold, 

leaving their gametogenic progress in stasis through the winter season (Coe, 1932).  

 The appearance of ripe (Stage 3) female maturity stages is clarified when 

considered alongside the significant rises in observed oocyte diameters, in June for 

Haynes Inlet and in July for Coalbank Slough. These diameter increases coincided with 

the peak in advanced and ripe female maturity stages observed during those months. In 
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Coalbank Slough, the decrease from July to September is most likely attributable to the 

spawning of mature eggs during the reproductive season (Ren et al., 2003; Castanos et 

al., 2009; Kim et al., 2010; El Gharsalli and Aloui-Bejaoui, 2011); however, the 

significant rise into October suggests that female gametogenesis was beginning anew 

during that period.  

 The presence of brooding oysters suggests that reproduction begins in early to 

mid July and ceases toward early to mid September with temperatures ranging from 15 to 

19o C at both sites. High chlorophyll-a concentrations during the summer indicate that 

food was relatively plentiful during the reproductive period as well, which is consistent 

with studies linking food availability to reproductive output in oysters (Cano et al., 1997). 

 Hopkins (1937) observed a lunar periodicity in Ostrea lurida spawning cycles in 

populations occupying oyster dykes in Puget Sound, Washington. Oysters preferentially 

spawned shortly after neap tides during his study. Although I did not test for this 

periodicity, my observations of embryonic and larval development in brooding oysters 

lend support to his hypothesis. Embryos and larvae within and between sites were found 

at similar stages of development, an indication that they had been produced from one 

event or multiple events in a short period of time. Brooders observed in July were found 

at 4-cell and blastula stages of development, which Hori (1933) observed after 1 day of 

development. Larvae found in August and September were found at shelled veliger stages 

known as “white sick”, a larval stage occurring after 4-5 days of development (Hori, 

1933). An examination of tide charts in 2012 (NOAA Tides and Currents) and the 

developmental stages of the larvae, suggests a spawning event 0-5 days after the neap 

tide prior to the collection date. While my sampling size for this inference is too low to be 
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statistically viable, the preliminary data indicate that this subject warrants further 

investigation. 

 In Olympia oysters, the rates and timing of gametogenesis are thought to be 

dependent on temperature, stored reserves, and food availability (Mann, 1979; Wilson 

and Simons, 1985; Shpigel, 1989; Santos et al., 1992). Indeed, observed spawning 

temperatures for this study were consistent with those previously established for Ostrea 

lurida with a threshold temperature of ~14.5o C observed for spawning. Phytoplankton 

was also in its highest abundance during the summer, indicating that nutritional 

conditions were conducive to spawning activity.   

 Temperature and food abundance failed to explain the differences in gametogenic 

activity observed between sites. In May, while temperature and chlorophyll-a 

measurements were relatively equivalent (~14.5o C), oysters in Haynes Inlet experienced 

high rates of early and advanced male/female gametogenesis (Stage 1 and Stage 2), 

Coalbank Slough oysters demonstrated repressed levels of gametogenesis, with few 

instances of Stage 1 individuals and no sign of Stage 2 males or females. June saw 

marked increases in the number of Stage 2 and Stage 3 oysters for this upper estuary 

location, however, the site failed to produce the same proportions of ripe females until 

July. Egg diameters did not increase significantly until July in contrast to oysters in 

Haynes Inlet, where they increased in June.  

 A likely contributing factor to these observations is the low salinity regime 

experienced by oysters in Coalbank Slough. Salinities below 15 have been found to be 

extremely stressful for this species, inducing 90% mortality in populations kept for six 

weeks at a salinity of 10 (Gibson, 1974). While no evidence of freshwater exposure was 
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observed during my study, sub-15 salinity measurements persisted throughout the winter 

and early spring (Figure 5). Ninety percent of Crassostrea virginica, in environments 

experiencing chronically low salinities and frequent freshwater exposure, underwent a 

two- month delay in gametogenesis when compared to oysters from more consistently 

saline estuarine environments (Butler, 1949). Advanced gametogenesis was not observed 

in oysters from Coalbank Slough until salinity was higher than 13, suggesting a threshold 

for gametogenic activity.  Salinity is thought to impact gametogenesis indirectly. Hopkins 

(1936) found that oysters exposed to periods of low salinity close their valves or cease 

pumping water over their gills to prevent physiological damage. As a result, the ability to 

feed is greatly reduced, forcing individuals to rely on stored reserves to survive. This 

depressed feeding rate would also explain why oysters in Coalbank Slough consistently 

had lower condition index values than those in  Haynes Inlet despite being exposed to 

equivalent, if not greater chlorophyll-a concentrations.  

 Salinity can also be offered as an explanation for other findings. Butler (1949) 

found that 33% of his oyster populations in low salinities were of indeterminate sexes, 

while he noted a distinct absence of indeterminate sex categories in high salinity 

environments. While only 7% of Coalbank Slough oysters were found to be 

indeterminate in my study, <1% of oysters from Haynes Inlet were observed in the same 

condition, suggesting that these sites confer differing levels of fitness to their oyster 

populations. Oysters may exhibit a reduced tolerance for low salinities at higher 

temperatures (Gibson, 1974), which may explain the peaks in indeterminate individuals 

for Coalbank Slough during the summer months.  
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 Rises and declines in the condition index from May to December coincided with 

the presence and absence of ripe maturity stages and increasing and decreasing oocyte 

diameters, providing a providing a rough illustration of seasonal reproductive activity 

(Ren et al., 2003; Castanos et al., 2009; Kim et al., 2010; El Gharsalli and Aloui-Bejaoui, 

2011). Relatively higher temperature and food availability may have contributed to the 

upward trend in oyster condition throughout the summer; however, the pronounced drop 

in condition experienced by oysters at both sites in May is harder to explain. Santos et al. 

(1992) showed that condition indexes decrease steadily in oysters transplanted to higher 

temperature environments from lower temperature ones. However, this decrease in 

condition was attributed to spawning activity, which was not detected until July in the 

present study. Phytoplankton concentrations appeared to be increasing at the time of the 

condition drop, which suggests that food limitation did not spur the loss of body mass. 

Because this event coincided with a 2-3o C increase in water temperature and lower 

seasonal salinity at each site, it is possible that elevated metabolic activity from 

heightened body temperatures and increased physiological stress from lower salt 

concentrations spurred a rapid consumption of nutritional reserves.  It should also be 

noted that the lowest average egg diameters were recorded during the period of very low 

condition index at each site and the beginning of the summer rise in condition index 

values coincided with the steep increase of egg diameter. 

 This study focused exclusively on intertidal oyster populations. While subtidal 

populations have been observed by SCUBA divers in the shipping channel of Isthmus 

Slough in Coos Bay (Baker 1995), they were not investigated in this study. There is some 

evidence to suggest that characteristics of reproduction in subtidal populations may differ 
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from those of intertidal populations. For example, intertidal and subtidal populations of 

Crassostrea virginica were compared to assess discrepancies in gametogenic activity 

(Brousseau, 1995). In that study, intertidal oysters exhibited only one reproductive 

period, whereas subtidal populations exhibited two periods, with the second being 

arrested and held over the winter. However, the timing of the onset of gametogenesis in 

both the subtidal and intertidal populations was similar. Spawning was delayed by one 

month for some intertidal populations and an extended spawning period was also 

observed. 

 Sawyer and Young (2011) observed Ostrea lurida settlement from September to 

December in Coos Bay. They noted a distinct peak in settler abundance in the two week 

period before October 5th. Accounting for an approximately 10 day brood period and 30 

day planktonic larval duration (Hopkins, 1937), a peak in gametogenesis and spawning 

should be observed during mid to late August. Observations in 2012 of brooding 

individuals and large quantities of ripe males and females during August suggest a 

similar settlement pattern likely occurred in 2012 as it did in the 2010 season. The 

detection of ripe individuals and brooders in mid-July through mid-September 2012 also 

is also consistent with the two month window of increased settlement observed during the 

2010 season from mid-September through mid-November. 

 Stafford (1913) cautioned that his studies of reproductive timing in Ostrea lurida 

should not be used to draw sweeping conclusions about the exact dates of spawning. 

Nearly one hundred years later, the same limitations can be applied to my observations in 

Coos Bay. With a limited dataset spanning only two and one reproductive season 

respectively, neither his study, nor my study could be used to reliably estimate the exact 
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timing of reproductive events. Periodic reproductive failure has been observed and 

documented in this species (Laura Peteiro, unpublished data) and the underlying causes 

are still unclear. However, what these studies do provide is a framework for estimating 

reproductive timing based on the environmental parameters needed for spawning. 

Measurements of temperature, salinity, and food availability can be used to better inform 

management strategies and restoration efforts. 

 Beck et al. (2011) noted that oyster reefs in the Pacific Northwest are either in 

poor condition (90-99% lost) or functionally extinct (>99% lost).  Restoration efforts 

continue for this species in many west-coast estuaries (Peter-Contesse and Peabody, 

2006; McGraw, 2009), including a major effort to restore Olympia oysters in Coos Bay 

(Groth and Rumrill, 2009). Optimal sites for depositing shell hash and other settlement 

substrata, to promote oyster colonization, are frequently sought by management 

professionals (Cohen and Zabin, 2009; Brumbaugh and Cohen, 2009; McGraw, 2009). 

This research suggests that not all estuarine locations are well suited for restoration 

efforts, even when large populations of oysters are present in those locations. To 

maximize output of young oysters, restoration efforts should target environments with 

seasonally high temperature and food regimes as well as consistently elevated salinities.  

Avoiding habitats that consistently fall below the physiologically tolerable thresholds for 

this species will maximize reproductive output and overall oyster health. 
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CHAPTER III 
 

GENERAL DISCUSSION 

 The goal of my thesis was to elucidate temporal variation in patterns of Olympia 

oyster reproduction within the Coos Bay estuary. Annual sampling at two intertidal sites 

revealed that ripe males and females were present in June through September of 2012. 

Additionally, brooding oysters were also observed from July through September. The 

absence of brooding oysters in June does not provide definitive proof that spawning did 

not take place during that month, as detection rates of brooders during periods in which 

ripe gonads were observed was 0-10% per sample. These data suggest that intertidal 

oysters in Coos Bay have a spawning period of 3-4 months. Coe (1931a, 1932) observed 

a 7 month long spawning period off the coast of La Jolla, California with spawning 

commencing as early as April and continuing through November. My results are more 

similar to the observations of Hopkins (1937) who observed spawning periods of 

approximately 3-4 months in Puget Sound, Washington.  

 Coe (1931a) suggested that an average temperature of 16o C serves as a critical 

threshold for Ostrea lurida spawning. Subsequent field and laboratory studies have 

suggested critical temperatures of 12-14o C (Hori, 1933; Hopkins, 1937; Imai et al., 1954; 

Santos et al., 1992). Gametogenesis was detected in May when water temperatures rose 

to 14.5o C and continued through September until water temperatures fell below this 

threshold. Oysters sampled from Coos Bay in 2012 did not demonstrate evidence of 

spawning until July, when water temperatures were greater than 17oC. Curiously, water 

temperatures in June were just as high, if not higher than temperatures in July. In spite of 

the increased temperatures, oysters collected in June, while exhibiting ripe gonads, did 
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not demonstrate brooding. Temperatures in Coos Bay appear to have exceeded all 

reported spawning temperatures for at least one month before any spawning activity was 

recorded. While it is possible that spawning events in June were not detected in this 

study, my observations suggest that additional factors may play a role in reproductive 

timing. Seale and Zacherl (2009) did not observe the critical temperature of 16o C put 

forth by Coe (1931a) in their investigations in estuaries in close proximity to Coe’s study 

site. They suggested that other environmental variables, like salinity, in conjunction with 

temperature may contribute to reproductive timing. While my study measured 

temperature, salinity, and chlorophyll-a, these variables failed to explain much of the 

variability in reproductive activity. Many ambient environmental parameters, such as 

dissolved oxygen or pH, were not measured in my study and should be investigated in 

future reproductive investigations for this species.  

 Significant differences in the dry-meat condition index were observed between 

months within both sites. Oysters at both Haynes Inlet and Coalbank Slough experienced 

significant increases in meat condition from May to August and June to September, 

respectively. Values peaked during these times and significantly decreased during the 

winter months, signaling the end of the reproductive season. A significant drop in 

condition values occurred between March and May. It is unclear what caused such a 

dramatic decline at both sites outside of the spawning season.  

 Site comparisons in Coos Bay revealed considerable differences in reproductive 

activity. Oysters at the upper estuary site, Coalbank Slough, demonstrated a marked 

retardation in gametogenic timing when compared to oysters at the mid-estuarine site, 

Haynes Inlet. While a discernible rise in male gametogenesis took place in May at 
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Haynes Inlet, a similar rise was not recorded in Coalbank Slough until June. In addition, 

egg diameters increased significantly from May to June at Haynes Inlet, yet a comparable 

rise at Coalbank Slough was observed one month later. Examinations of condition indices 

taken from oysters reveal that dry meat increases associated with gametogenic activity 

occur in Coalbank Slough one month after increases in Haynes Inlet. While no previous 

observation of gametogenic delays have been reported for this species, Butler (1949) 

found that Crassostrea virginica exposed to prolonged periods of salinity below their 

physiological tolerances delayed gametogenesis by up to two months. Gibson (1974) 

demonstrated that salinities lower than 15 were physiologically stressful for Olympia 

oysters and extended exposure to these salinities caused massive die-offs. At the 

Coalbank Slough study site, salinities below 15 were observed for 8 months of the year, 

suggesting that the resident oyster population was under considerable stress. 

Interestingly, gametogenesis was detected in this population only when salinities above 

13 were observed.  

 Preliminary data collected from brooding oysters suggest that spawning events are 

tied to lunar periodicity. Hopkins (1937) observed spawning events shortly after spring 

and neap tidal phases by assessing the developmental stage of brooding embryos/larvae 

and using that data to infer fertilization time. For each month’s sample, within and 

between collection sites, brooding embryos were all of similar developmental stages, 

suggesting a synchronized spawning event shortly before observation. By assessing the 

developmental timing of embryos and larvae (Hori, 1933; Hopkins, 1937; Strathmann, 

1987) and consulting tide charts (NOAA Tides and Currents), I found that spawning 

commenced 0-5 days after minimum neap tides. 
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 Lack of hard substrata has been identified as the limiting factor for recruitment in 

several Oregon and Washington estuaries (Trimble et al., 2009, Groth and Rumrill, 2009; 

White et al. 2009b). Outplanting of Crassostrea gigas shells into areas previously devoid 

of hard substrata is a common practice for restoration projects (Cohen and Zabin, 2009; 

Brumbaugh and Cohen, 2009; McGraw, 2009) and serves to create new settlement 

habitat for native oysters. When choosing sites for restoration projects within Coos Bay, 

managers employing these strategies must take into account the environmental 

constraints that could limit reproduction. Temperature, salinity, and food availability are 

all factors that exert considerable control over gametogenesis, spawning, and how 

effectively a population will contribute new generations of oysters.  

 Based on my findings, I would recommend selecting sites for restoration that 

experience seasonally high temperature and chlorophyll-a levels. While adult oysters may 

tolerate wide ranges of salinity, reproduction is inhibited in upper estuarine sites that 

consistently experience salinities of 15 or lower. For this reason, habitats beset by 

periodic freshwater inundation and/or salinities below the physiological threshold for O. 

lurida, should be avoided for outplanting projects. Sites in the mid-estuary, such as 

Haynes Inlet, and perhaps westward toward the more saline regions of Coos Bay, would 

provide maximum seasonal reproductive activity and output.  
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