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DISSERTATION ABSTRACT 

Lucas R. Ettinger 

Doctor of Philosophy  

Department of Human Physiology 

September 2013 

Title: The Influence of Subacromial Pain on Scapular Kinematics, Muscle Recruitment 
and Joint Proprioception 

 

 Subacromial impingement accounts for significant burdens on the economy and 

individual quality of life.  The development and progression of this disorder is thought to 

be related to overuse; however, little is known regarding biomechanical factors such as 

scapular kinematics, shoulder muscle recruitment and joint proprioception with respect to 

this disorder.  The high degree of variability between individuals on these biomechanical 

measures limits our ability to make inferences behind the development of shoulder 

impingement.  Here, biomechanical factors associated with impingement are investigated 

using within-subjects designs in order to reduce this inherent variability.  Using modern 

clinical techniques, this dissertation is applicable towards treatment of shoulder 

impingement as well as scientific understanding of motor control and function in the 

presence of pain.   

 This dissertation includes un-published co-authored material.   
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CHAPTER I 

INTRODUCTION 

Subacromial impingement syndrome describes the mechanical entrapment of the 

rotator cuff, specifically the supraspinatus tendon, within the subacromial space  [Neer, 

C. S., 1983].  The subacromial space is defined as the region between the superior aspect 

of the humerus and the inferior acromion process.  The development of subacromial 

impingement syndrome may be related to repetitive and elevated motion of the arm 

[Soslowsky et al., 2002; Svendsen, S. et al., 2004].  For example, dental hygienists suffer 

a high incidence of shoulder disorders, including impingement syndrome [Akesson et al., 

1999; Liss et al., 1995; Oberg T, 1993].   The high incidence of injury in this population 

may be due to repetitive job exposure [Marklin et al., 2005]. Previous work in our 

laboratory demonstrates that a single day of exposure to dental work results in significant 

changes in scapular mechanics in dental hygienists, which could potentially increase the 

risk for shoulder injury [Ettinger et al., 2011].  However, the mechanisms associated with 

these changes remain unknown.  One of the most common differences between patients 

with impingement syndrome and healthy individuals is subacromial pain [Ben-Yishay et 

al., 1994; Blaine et al., 2005; Voloshin et al., 2005].  It is possible that pain influences 

scapular mechanics and could be related to the development of this disorder. Therefore, 

the goal of this dissertation is to examine the relationship between pain and shoulder 

biomechanics in various populations with and without shoulder pain.   
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Pain adaptation models 

 In patients with impingement syndrome, neuromotor and biomechanical 

adaptations are thought to be related to bursal pain [Hebert et al., 2002; Kendall et al., 

1993].  Understanding the relationship between pain and neuromuscular control is vital to 

the treatment and rehabilitation of patients with painful shoulder disorders.  However, 

mechanisms for adaptations to pain are not well understood for the shoulder.  Currently, 

the two dominant mechanisms for pain adaptation stem from similar biological models of 

neurophysiologic adaptation [Kofler, 2003; Lund et al., 1991].  The first model describes 

neuromotor adaptations to pain that protect muscle when painful stimuli occur [Lund et 

al., 1991].  These protective mechanisms appear to decrease the activity of the painful 

muscle while simultaneously increasing antagonistic muscle activity, thus reducing range 

of motion and/or velocity of movement in the painful muscle [Lund et al., 1991].  The 

implications of this model suggest that peripheral pain is an evolutionary mechanism that 

overrides motor movements, thus protecting injured muscle.  In the case of impingement, 

this model would suggest that rotator cuff muscle activity would be reduced in the 

presence of pain.  A decrease in rotator cuff activity may initially protect the muscle from 

injury; however, several studies suggest that rotator cuff activity is essential for 

maintaining overall shoulder health [Alpert et al., 2000; Myers, J. et al., 2009; Oh et al., 

2011].  An alternative mechanism for shoulder function in the presence of pain may be 

related to neuromotor adaptations, where muscle recruitment is based on the biological 

importance of the muscle relative to the task [Kofler, 2003; Kofler et al., 2001].  These 

competing mechanisms differ in that the biological importance of the motor movement 

may outweigh the individual importance of specific muscle’s wellbeing.  The 
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implications of the second model suggest that maintaining mobility may be more 

important than the individual health of an injured muscle.  This behavior can be thought 

of as a form of altruism, where the needs of the many outweigh the needs of one 

individual muscle.  If the second model were true for the shoulder, rotator cuff activity 

would not be reduced in order to preserve scapular and humeral mechanics.  However, 

over time the rotator cuff tendon may degenerate due to chronic usage coupled with 

mechanical compression within the subacromial space.  In rats, mechanical compression 

coupled with repetitive usage results in severe supraspinatus tendon breakdown 

[Soslowsky et al., 2002].   At present, it is unknown which mechanism is responsible for 

the neuromotor behavior of shoulder muscle control in patients with subacromial pain.  

 Several studies support the notion that during acute joint and muscle pain, muscle 

activity in the agonist group is attenuated and muscle activity in the antagonist muscle 

group is augmented during voluntary movement [Graven-Nielsen et al., 1997; Lund et al., 

1991].  The muscular adaptations to pain observed in these studies may serve to reduce 

movement velocity, range of motion and muscle forces.  In a study conducted by Kofler 

et al., [2003] Electromyography (EMG) from muscles of the hand, all under the same 

myotome, were measured during painful stimulation of the fingertips.  Results from their 

study indicate that the muscles respond synergistically, where muscles that are more 

involved in grip were found to be more affected than non-synergist muscles as measured 

by the timing and magnitude of their EMG silent periods. The fact that the muscles 

shared the same myotome yet responded differently suggests that pain inhibition may be 

under selective control, where inhibition depends on biological importance of the muscle 

to the task.   



4 

 

Muscular adaptations to pain 

 In a study conducted by Diederichsen et al., [2009] hypertonic saline was injected 

subacromially into the bursa in healthy individuals.  The injections resulted in diffuse 

anterior shoulder pain, which is similar to symptoms of impingement.   The injection 

resulted in increased activation of the antagonist (latissamus dorsi) muscle during arm 

elevation.  However, agonist muscle activation had a more complex change where some 

agonists increased and others decreased in activity.  Of particular importance, the serratus 

anterior and the lower trapezius increased in activity following experimental bursal pain, 

but agonists such as the deltoid decreased in activity.  Interestingly, the overall range of 

motion of the joint was preserved; however, the individual muscle contributions were 

altered by the presence of pain.  From this particular study, it is unclear which model of 

pain adaptation best fits for the shoulder. In addition, this study represents the immediate 

changes in motor mechanics in response to experimental painful stimuli [Diederichsen, L. 

et al., 2009].  It is possible that chronic pain may result in different neuromotor 

adaptations than experimental muscle and/or joint pain.  

 There is much debate in the literature pertaining to the consequences of 

subacromial pain on rotator cuff muscle activity.  In a study conducted by Ben-Yishay et 

al., [1994] improvements were found to external rotator muscle activation as a result of a 

local anesthetic injection to the subacromial bursa in patients with Stage 2 and 3 shoulder 

impingement.  This finding provides evidence that the rotator cuff may experience 

neurologic inhibition as a result of pain, which is dis-inhibited by a local anesthetic.  
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However, that study included patients with partial and full thickness rotator cuff tears, 

which could have biased the results.  In a study conducted by Park et al., [2008] a local 

anesthetic injection to the subacromial bursa resulted in no significant changes in strength 

of the shoulder for patients with Stage 2 impingement; however, patients with Stage 3, 

full thickness cuff tears, did have significant improvements in external rotator strength 

after injection.  It should be noted that this study only measured strength, but did not 

measure muscle activity (EMG) or kinematics [Park et al., 2008].  Without studying the 

individual contributions of muscle activity to strength during a given task, it is impossible 

to rule out synergistic muscle activity or compensatory neuromotor adaptations.  One 

other study has demonstrated that subacromial injections improved deltoid firing 

recorded using EMG in patients with subacromial impingement [Scibek et al., 2008].  

However, this study was inconsistent in the criteria of patient inclusion, where patients 

with full thickness rotator cuff tears and partial tears were all included.  Additionally, this 

study failed to incorporate a three dimensional kinematic analysis of scapular mechanics 

in concert with muscle activation (EMG).  

Several studies have compared the muscle activation of patients with 

impingement versus healthy controls [Bandholm et al., 2006; Clisby et al., 2008; Cools et 

al., 2003; Diederichsen, L. P. et al., 2009; Ludewig P, 2000; Michaud et al., 1987; Myers, 

J. et al., 2009; Reddy et al., 2000; Scovazzo et al., 1991].  In each of these studies, 

electromyographic muscle activity was normalized by a Maximal Voluntary Isometric 

Contraction (MVIC).  However, there is concern that the patient population may have 

difficulty performing or are unwilling to perform MVIC tests due to increased pain and 

symptoms during MVIC testing [Marras et al., 2001].  Therefore, as part of this proposed 
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dissertation study, the influence of pain on EMG normalization techniques will be 

investigated.   

Measuring deltoid muscle activity may serve as a proxy for rotator cuff muscle 

activity in patients with subacromial impingement.  In a study conducted by McCully et 

al., [2007] a suprascapular nerve block resulted in compensatory increase in deltoid 

activity once rotator cuff function was compromised.  Similarly, cadaveric studies have 

demonstrated that removal of the rotator cuff places a greater reliance on the deltoid [Oh 

et al., 2011].  Patients with impingement may similarly experience increased deltoid 

muscle activity in compensation of a painful rotator cuff.  However, changing the balance 

between rotator cuff and deltoid activity may have implications on shoulder health.  A 

recent study conducted in our laboratory found that in the absence of a functional rotator 

cuff (suprascapular nerve block), the humeral head superiorly translates with respect to 

the glenoid cavity as measured by fluoroscopy [San Juan J, 2012].   Similar 

measurements have been made by Deutsch et al., [1996] who described patients with 

Stage 2 and 3 impingement syndrome as having increased superior humeral center of 

rotation translation.  Superior humeral head migration has been implicated as decreasing 

the acromiohumeral distance and increasing the compressive forces under the acromion 

and may be related to rotator cuff degeneration [Neer, 1972; Soslowsky et al., 2002].   

Kinematic adaptations to pain 

 Ultimately, the goal of muscle activation in the agonist group is to produce 

movement, therefore studies examining the influence of pain on muscle activity are 

incomplete without an analysis of resultant movement.  Additionally, studies examining 
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motor movement without an analysis of muscle activity cannot explain the cause of the 

kinematic findings.  To date, many studies have measured scapular kinematics between 

patients with impingement and healthy controls, but the results are quite variable [Endo et 

al., 2001; Hebert et al., 2002; Ludewig, P. M. et al., 2000; Lukasiewicz et al., 1999; 

McClure et al., 2006; Poppen NK, 1976; Su et al., 2004].  Several studies have identified 

that patients with shoulder impingement syndrome have more anterior tilting of the 

scapula than healthy controls during arm abduction and flexion [Endo et al., 2001; 

Ludewig, P. M. et al., 2000; Lukasiewicz et al., 1999].   These results indicate that 

impingement syndrome may be the result of  negative scapular mechanics where tilting 

of the scapula would increase subacromial compression, thus resulting in increased 

symptoms [Ludewig, P. M. et al., 2000].  In a radiographic study conducted by Endo et 

al., [Endo et al., 2001] scapular upward rotation was found to increase the subacromial 

outlet, thus potentially creating more space for the rotator cuff tendon to glide un-

impinged.  McClure et al., [2006] found that patients with shoulder impingement had 

more scapular upward rotation and clavicular elevation during arm elevation than healthy 

controls.  This finding suggests that kinematics of the scapula are compensating 

positively and are utilizing movement strategies to reduce the symptoms of subacromial 

impingement.  The literature regarding kinematic differences between the patient 

population and healthy controls is therefore somewhat conflicting.  In sum, kinematic 

studies examining the differences between the patient population and healthy controls are 

limited because they compare different individuals.  The high level of variability between 

individuals could explain the corresponding variability in results between studies.  To 
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reduce this kinematic variability between subjects, a repeated measures design is 

proposed for this dissertation. 

 

Proprioceptive adaptations to pain 

  Proprioception is a known sensory mechanism that provides information about 

extremity position and movement direction.   Proprioceptive stimulation has been shown 

to elicit changes in the primary motor cortex [Weiller et al., 1996].  Therefore, deficits in 

proprioception may influence muscle behavior and kinematic movement patterns 

[Schouten et al., 2008; Weiller et al., 1996].  It is possible that pain associated with 

impingement influences shoulder proprioception.  Previous studies have shown that 

healthy individuals have increased joint proprioceptive acuity at arm elevations closer to 

90 degrees [Suprak et al., 2006a].  However, in patients with subacromial impingement 

syndrome, joint proprioceptive acuity has been found to decrease at higher shoulder joint 

angles closer to 100 degrees  [Anderson et al., 2011]. This finding may be related to pain, 

which is often experienced at greater arm angles [Neer, C. S., 1983].  

 Despite the numerous studies pertaining to impingement syndrome, few studies 

have investigated the influence of pain on shoulder biomechanics.  The relationship 

between pain and scapular kinematics, shoulder muscle activation and proprioception 

remains unclear.  Accordingly, the focus of this dissertation is to investigate the influence 

of pain on shoulder biomechanics and neurophysiologic control of the shoulder.    
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  This dissertation includes previously published and un-published co-authored 

material.  Co-authors and corresponding chapters of involvement are listed below.  Laurel 

Kincl Ph.D., Chapter II.  Matthew Shapiro M.D., Chapters III-VI.  Jason Weiss, Chapter 

III.  Andrew Karduna Ph.D., Chapters II-VI.     
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CHAPTER II 

PROPRIOCEPTION IN DENTAL HYGIENISTS WITH AND WITHOUT PAIN  

Co-authors include Dr. Laurel Kincl and Dr. Andrew Karduna for project conception.  

INTRODUCTION 

 Joint proprioception is a specialized sensory modality encompassing both joint 

position sense (the ability to identify and reproduce the position of a limb in space) and 

kinesthesia (the ability to detect limb movement) [Lephart et al., 1997; Proske et al., 

2009; Riemann et al., 2002a].  Deficits in proprioception may influence muscle behavior 

and kinematic movement patterns; however the contribution of proprioception to motor 

behavior is unknown and is likely joint specific [Lephart et al., 1997; Schouten et al., 

2008].  In patients with shoulder instability, proprioceptive deficits are reported when 

compared to healthy controls [Lephart et al., 1994; Zuckerman et al., 2003] and have 

been found in patients with shoulder injuries [Machner et al., 2003; Zuckerman et al., 

2003].  Proprioceptive training as a preventative treatment has been found to be effective 

at reducing the likelihood of ACL tears in some soccer players [Caraffa et al., 1996] and 

is often used in rehabilitation from injury [Lephart et al., 1997].  However, to date no 

study has identified if proprioceptive deficits are the cause or the result of injuries.   

 In a study conducted by Bjorkland et al., [2000]  simulated repetitive work 

resulted in decreased shoulder proprioceptive acuity in male and female workers.  

Interestingly, female workers had greater proprioceptive deficits compared to their male 

counterparts [Bjorklund et al., 2000].  The authors attributed the reduction in 
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proprioceptive acuity as being related to occupational fatigue.  Muscle fatigue, which is 

common for many manual laborers, [Christensen, 1986; Oberg et al., 1995; Westgaard et 

al., 2001] has consistently been shown to result in a degradation in proprioception for 

human joints, including the ankle, [Forestier et al., 2002] elbow, [Sharpe et al., 1993] 

knee, [Hiemstra et al., 2001] lumbar spine, [Taimela et al., 1999] and most importantly 

for this study, the shoulder. [Bjorklund et al., 2000; Carpenter et al., 1998; Lee et al., 

2003; Myers et al., 1999; Pedersen et al., 1999; Voight et al., 1996]  These fatigue-

induced proprioceptive deficits of the shoulder may result in altered muscle coordination 

[Carpenter et al., 1998] with subsequent alterations in joint performance, such as changes 

in scapular kinematics, [Ettinger et al., 2012; McQuade et al., 1998; Tsai et al., 2003] 

glenohumeral translations, [Chen et al., 1999; Royer et al., 2004] as well as the 

coordinated movement of the entire upper extremity [Cote et al., 2005; Murray et al., 

2001; Rodgers et al., 2003].  Although there is no direct evidence for a link between 

proprioceptive deficits and injuries, alterations in shoulder proprioception have been 

measured during simulated work, where the authors claim “in real work environments, 

proprioceptive deficits brought on by fatigue may be an important initiating factor 

associated with the occurrence of work-related musculoskeletal disorders” [Bjorklund et 

al., 2000].  Others concur, where a relationship between proprioceptive deficits and 

shoulder injuries are likely [Carpenter et al., 1998; Lephart et al., 1996; Pedersen et al., 

1999; Tripp et al., 2004]. The current gap in our knowledge is that there are no reports of 

treatments that can be used to mitigate these deficits, although many authors have 

suggested that increasing resistance to fatigue would be a sound approach [Carpenter et 

al., 1998; Lee et al., 2003; Miura et al., 2004]. 
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 In jobs such as dental hygiene, dental hygienists have high exposure to elevated 

and repetitive arm positions during work [Ettinger et al., 2013].  In addition, dental 

hygienists with greater duration of work exposure have been reported to have changes 

associated with their scapular kinematics following a single workday, which may be 

associated with workday muscle fatigue [Ettinger et al., 2012].  Work with large 

exposures to elevated humeral positions have a strong association with shoulder pain and 

rotator cuff pathology [Svendsen, S. et al., 2004; Svendsen, S. W. et al., 2004].  In the 

profession of dental hygiene, workers have a high estimated prevalence (64%-85% of 

active hygienists) of work related shoulder pain [Akesson et al., 1999; Ylipaa et al., 

2002].  It is unknown if dental hygienists have changes in their proprioceptive acuity 

during the workday.  Furthermore, it is unknown if dental hygienists with shoulder pain 

have greater deficits in shoulder proprioceptive acuity than hygienists without shoulder 

pain.    

 It is the goal of this study to measure shoulder joint proprioception in dental 

hygienists before and after work, additionally both dental hygienists with and without 

shoulder pain were recruited for this study.  It is hypothesized that shoulder joint 

proprioceptive errors will be greater in dental hygienists following the workday and 

deficits will be greater in dental hygienists  with work related pain than in dental 

hygienists without work related pain. 

METHODS 

Forty-three female dental hygienists with a mean age of 43.5 ± 10.2 years 

participated in this study.  Prior to testing, all dental hygienists signed an informed 
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consent form approved by the Institutional Review board.  All data were collected within 

the place of employment of the dental hygienist before and after the workday.   The 

average number of work hours was 9.25 (±2.2) hours.   

Instrumentation  

A UPenn pain score was assessed on the day of data collection.  The UPenn pain 

scale consists of three question each on a ten point Likert scale with 0 being no pain and 

10 being worst pain possible [Leggin BG, 1993].  The first question assesses pain at rest 

with the arm at by the side.  The second question assesses pain during normal activities 

such as eating, dressing and bathing.  The final question assesses pain during strenuous 

activities such as reaching, lifting, pushing, pulling and throwing.  For the UPenn pain 

scale, 22 out of 43 dental hygienists reported some pain on the day of data collection.  Of 

the dental hygienists with pain, the average UPenn pain score was 7.8 out of 30 (± 5.2).  

Groups based on pain were determined when a UPenn pain score equal to, or greater than 

one was reported (n=22).   

 On the day before the proprioceptive evaluation, the time to fatigue during an 

external rotator fatiguing protocol was performed.  The dental hygienist sat in a side 

laying position on a treatment table with their dominant arm supported at the elbow on 

their hip, and with their elbow flexed to 90 degrees.  From this position, the dental 

hygienist held a 2.3kg weight for as long as they could.  The dental hygienist was 

instructed to hold this position as steady as possible; and when the arm deviated by more 

than a couple of degrees the task was terminated.  The average elapsed endurance test 
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was 78 seconds (± 24 seconds) until fatigue.  No hygienists complained of pain during 

the endurance test.   

 Kinematic data were collected with the Polhemus Fastrak magnetic tracking 

system (Colchester, VT).   The unit consists of a transmitter, two receivers and a 

digitizer.  The first receiver was placed on the sternum at the level of the manubrium, 

using double sided tape.  The second sensor was placed on the humerus with an 

orthoplast device and elastic straps.  A third sensor was placed on the scapula and was 

used for estimating the center of the humeral head.  This sensor was removed prior to 

proprioceptive testing.  Bony landmarks were digitized in order to establish anatomical 

coordinate systems for the thorax and humerus.  Each coordinate system and rotational 

matrix corresponded to the standards proposed by the International Society of 

Biomechanics Committee [Wu et al., 2005].  The thoracic anatomical coordinate system 

was established from C7, T8, the sternal notch and the xiphoid process.   The center of 

the humeral head and the medial and lateral humeral epicondyles were used to establish 

the humeral coordinate system.   The center of the humeral head was determined within 

5mm of the true center and was defined as the position that moves the least with respect 

using a least squares algorithm.   

 Subjects were fitted with a head mounted display (Z800, eMagine, Bellevue, WA) 

which allowed for presentation of target angles and kinematic output from the subject on 

a two-dimensional display during testing.  The head mounted display inhibited 

extraneous visual cues (Figure 2.1).   
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Protocol 

All testing was performed during two session (before and after work).  

Participants completed a standardized warm-up on the limb of interest prior to testing.  

The warm-up consisted of Codman’s pendulum exercises (rotations and sagittal plane 

motion) using a 2.7 kg weight.   

 

Figure 2.1. Active arm positioning-active repositioning paradigm where subjects are 
visually guided (2D goggle apparatus) to target locations for both plane and elevation.   

 

Testing involved a five target testing paradigm, where each target was tested one 

time and the target order was randomized.  The target positions were 70° of humeral 

elevation , and 40° of scapular plane, 75° of humeral elevation and 45° of scapular plane, 

70° of humeral elevation and 35° of scapular plane, 75° of humeral elevation and 40° of 
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scapular plane, 65° of humeral elevation and 45° of scapular plane.  Targets were chosen 

to represent the middle range of motion, where slight differences (± 5º) between targets 

were chosen to reduce learning effects.  Additionally, based on previous work, we chose 

targets with no greater than (± 5º) in order to prevent the effects of angle on 

proprioceptive acuity [Suprak et al., 2006a].  To reduce fatigue due to testing, a five 

second rest interval occurred between each trial.   The subject was presented with a 

countdown timer notifying them when the next trial would begin.   

Subjects were directed to the target angles via custom made Labview software 

(National Instruments, Austin, TX).   A grey screen contained black square box 

representing an area of ± 2° from the predetermined target position for scapular plane and 

humeral elevation and a single dynamic red ball provided feedback about the subject’s 

arm position in real-time (Figure 2.2).   At the beginning of each trial the subject’s arm 

was relaxed at their side in neutral position.  The subject was instructed to elevate their 

arm with an extended elbow with the thumb pointing upwards until the red ball fell inside 

the box.  After the target position had been attained for one second, the display turned 

completely black and remained so for the rest of the trial.  This removed any feedback 

about the subjects arm position.   Subjects held the target position for three seconds and 

were instructed to use this time to memorize the location of their hand in space.  A verbal 

cue prompted subjects to relax and return to the rest position.  After another period of 

three seconds, subjects were prompted to return to the target position.  The subject 

indicated when they had perceived to reach the target by pushing a wireless presenter 

remote (Libra P5, Ione, Fremont, CA) with their contralateral hand.   
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Figure 2.2.  Visual guidance during joint position sense task.  A) Directing subject’s arm 

to target field.  B) Subject has acquired target.  C) Visual feedback when repositioning 

arm.   

Data Analysis 

  Three-dimensional vectors were calculated for the positioned and repositioned 

arm positions using lines from the center of the humeral head through the midpoint of the 

elbow (midpoint between medial and lateral epicondyles) using techniques prevoiusly 

validated [Suprak et al., 2006a].   The magnitude of the angle between the positioned and 

repositioned arm vectors represents the joint position sense error (absolute vector error) 

and has been used in similar experiements [Suprak et al., 2006a, 2007]. Repositioning 

vector errors from the five trials were averaged and the mean repositioning error was 

used for subsequent analysis for pre and post-workday.  

Statistical Analysis 

Significance testing for repositioning error was performed using a two-way mixed 

effects ANOVA where workday condition (pre and post-workday) was the within-subject 

factor.  Group based on pain was the between-subject factor and time to fatigue was run 

as a covariate.   To determine differences in proprioceptive acuity between dental 

hygienists with and without shoulder disability, the mean repositioning errors pre and 
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post-workday were averaged.  Repositioning errors for dental hygienists with reported 

pain from the UPenn pain scale (n = 22) with an average age of 42.3 ± 10 years and 

dental hygienists without pain (n = 21) with an average age of 46.2 ± 10  years were 

separated for group difference testing.  For all statistical analysis, our significance level 

was set to α = 0.05.   

 

RESULTS 

 Pre workday proprioceptive errors (absolute errors) were 3.8º ± 3.0º and post 

workday errors were 3.7º  ± 2.6º.  Results of our ANOVA test indicate no significant 

interactions between time to fatigue (endurance) and group (pain) or proprioceptive 

errors by workday (p = 0.73, p = 0.053 respectively).  There were no significant main 

effects of workday on proprioceptive acuity (p=0.06) (Figure 2.3); however, there was a 

significant between-subjects effect of pain on proprioceptive acuity (p = 0.023), where 

dental hygienists who reported pain had on average 1.3º more error than hygienists 

without pain (Figure 2.4).   
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Figure 2.3.  Absolue vector errors pre (blue) and post (red)-workday.  Error bars 
represent standard errors.   

 

 

Figure 2.4. Absolute vector errors between dental hygienists with (red) and without 
(blue) shoulder pain.  Proprioceptive errors were averaged by workday.  Error bars 
represent standard errors.  Significance where p < 0.05 is represented by     .  
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DISCUSSION 

 Previous studies indicate that exposure to repetitive work may lead to decreased 

proprioceptive acuity, especially in female workers [Bjorklund et al., 2000].  We have 

previously shown that dental hygienists are exposed to a high degree of repetitive motion 

during various work related tasks [Ettinger et al., 2013].  Results from the current study 

indicate that exposure to a single workday did not significantly influence joint position 

sense in dental hygienists (Figure 2.3).  We hypothesized that dental hygienists would 

have a reduction in proprioceptive acuity as measured by greater errors in joint position 

sense post workday.  Thus, we conclude that in general, exposure to a single day of 

dental work, does not impair joint position sense for dental hygienists.   In an attempt to 

quantify the resistance to shoulder fatigue, we measured the time to fatigue during an 

external rotator fatiguing protocol.  Despite the range in time to fatigue measured (34 - 

142 seconds), we found no differences in terms of proprioceptive acuity by workday with 

respect to time to fatigue.  This indicates that even in hygienists who are quick to fatigue, 

workday exposure had no influence on joint position sense.    It is possible that our joint 

position sense task was not sensitive enough to measure changes in proprioceptive errors 

from a single day of work exposure.  It is also possible that dental hygienists recovered 

from workday fatigue before data were collected post-workday.    

 On average differences of 1.3º (Figure 2.4) were found in shoulder proprioceptive 

acuity in dental hygienists with and without shoulder pain as reported on the UPenn pain 

scale questionnaire.  Our results indicate that in the presence of shoulder pain, dental 

hygienists have greater proprioceptive errors than dental hygienists with no shoulder pain 

(Figure 2.4).  It is possible that proprioceptive deficits are related to pain and shoulder 
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pathology within this population.  However, it is unknown how the proprioceptive 

deficits are related to shoulder pain.  In patients with subacromial impingement 

syndrome, greater proprioceptive deficits were found when compared to healthy controls 

[Anderson et al., 2011; Lephart et al., 1994; Machner et al., 2003].  Interestingly, 

proprioceptive errors increased in the patient population with increased arm elevation 

angle [Anderson et al., 2011].  The authors attributed this increase in proprioceptive 

errors with arm angle as being related to the greater sensations of shoulder pain 

experienced at higher arm elevation angles [Anderson et al., 2011].  Furthermore, 

proprioceptive errors have been found to be reduced following surgical intervention 

[Lephart et al., 1994; Machner, 2003].   In a study conducted by Haavik et al., [2011] 

patients with chronic neck pain were shown to have significantly greater absolute errors 

in their elbow when compared to the joint position sense of control subjects.  Following 

cervical manipulation, patients with chronic neck pain showed significant reductions in 

elbow proprioceptive errors [Haavik et al., 2011].  Together these findings suggest that 

pain may influence proprioceptive acuity; furthermore, pain in general may negatively 

influence the interpretation of proprioceptive sensation. 

 Dental hygienists have a high incidence of shoulder pain (64%-85% of hygienists) 

[Akesson et al., 1999; Ylipaa et al., 2002].  Our results indicate that proprioceptive 

deficits are more likely to occur in dental hygienists who experience shoulder pain.  It is 

unclear if the pathogenesis of proprioceptive deficits in the shoulder are related to pain.  

Future studies should investigate the influence of pain on proprioceptive acuity in order 

to disseminate the progression of shoulder disorders.  Recent studies suggest that 

shoulder proprioceptive acuity increases with elevation angle [Suprak et al., 2006a].  
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Current work conducted in our laboratory suggests that the influence of elevation angle 

on increased proprioceptive acuity is true for the elbow as well as the shoulder [Hyler, 

2013].  Individuals with shoulder pain often report worse pain at greater arm elevation 

angles [Lalumandier JA, 2001; Lentz et al., 2009; Scovazzo et al., 1991], which may be 

related to the increased external torque production [Descarreaux et al., 2005].  Dental 

hygienists with pain also report greater pain during arm elevation [Lalumandier JA, 

2001]; however, our study did not address the influence of arm elevation (target) on 

proprioceptive acuity for the shoulder.  In order to study the influence of pain on 

proprioception, future studies should incorporate increased elevation angles (targets) in 

order to address the influence of increased pain on proprioception.   It is possible that 

pain disrupts the angular influence on proprioception in patients with shoulder 

dysfunction [Anderson et al., 2011].   

Conclusions 

 Our study is the first to investigate proprioceptive differences within a real work 

environment before and after the workday.  Furthermore, we are the first to investigate 

proprioceptive deficits in dental hygienists with and without pain.  The lack of 

differences by exposure to a full workday could be due to the large variability in 

proprioceptive acuity between dental hygienists.  We did detect small, but significant 

differences (1.3º) between groups of dental hygienists with shoulder pain.  This finding 

may be related to the surfeit number of complaints of shoulder disorders and pain 

reported by dental hygienists.    
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PAIN AND BIOMECHANICAL CONSIDERATIONS 

 Our findings from Chapter II, indicate that pain may have an influence on 

proprioceptive acuity.  Proprioceptive stimulation has been shown to be related to 

activation of the primary motor cortex in humans [Weiller et al., 1996].  Furthermore, 

experimental pain has been shown to inhibit the primary motor areas [Suppa et al., 2012].  

In addition to the higher brain centers, pain has been shown to stimulate inhibitory 

interneurons at the spinal cord level in humans [Lund et al., 1991].  Therefore, it is 

possible that pain may influence motor output at the shoulder in individuals with painful 

shoulders.  Previous work from our laboratory has indicated that dental hygienists have 

changes in scapular kinematics that could potentially increase their risk for shoulder 

injuries such as subacromial impingement syndrome [Ettinger et al., 2012].  The cause of 

these kinematic shifts in dental hygienists is unknown; however, it is possible that 

hygienists experienced greater fatigue and pain in the shoulder at the end of the workday 

when compared to the beginning of the workday.  Due to the subjective nature of pain, 

wide variability is reported for shoulder pain scores between-patients [Ludewig P, 2000].  

Experimentally induced pain studies use within-subject designs to reduce this inherent 

variability; however, results of these studies may not represent clinical pain 

[Diederichsen, L. et al., 2009].  Therefore, in chapter III we investigate the influence of 

removal of chronic pain on scapular kinematics in patients with subacromial 

impingement syndrome, using a within-subjects design.    
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CHAPTER III 

SUBACROMIAL INJECTION LEADS TO FURTHER SCAPULAR DYSKINESIS  

Co-authors include Dr. Matthew Shapiro for assistance in subject recruitment and 

Dr. Andrew Karduna for help with project conception. 

 

INTRODUCTION 

Shoulder pain is the third most common musculoskeletal disorder reported in the 

general population [Urwin et al., 1998].  In the United States the direct annual costs for 

treating shoulder pain totals approximately 7 billion dollars [Meislin et al., 2005].  Of 

these musculoskeletal complaints, the most common diagnosis of shoulder pain is 

subacromial impingement syndrome [Dorrestijn et al., 2011; van der Windt et al., 1995].  

Subacromial impingement is characterized by a reduction of the acromiohumeral 

distance, resulting in mechanical compression of the supraspinatus tendon beneath the 

acromion process of the scapula and the superior aspect of the humeral head [Allmann et 

al., 1997; Neer, 1972; Neer, 1987; Saupe et al., 2006].  For shoulder complaints resulting 

in medical intervention, 22% of treatments involves anesthetic injections with 

corticosteroids [van der Windt et al., 1995].   

A reduction in the acromiohumeral distance is thought to be a contributing factor 

towards rotator cuff degeneration, subacromial bursitis and pain [Flatow et al., 1994; 

Ludewig P, 2000; Saupe et al., 2006; Watson-Jones, 1976].  Kinematic factors such as 

superior humeral translations and scapular orientation may influence the acromiohumeral 

distance during elevation of the arm [Atalar et al., 2009; Bey et al., 2007; Deutsch et al., 
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1996; Endo et al., 2001; Giphart et al., 2012].  Both an increase in scapular anterior tilting 

and a decrease in upward rotation may reduce the acromiohumeral distance during 

elevation of the arm, where anteior tilting of the scapula lowers the anterior acromion 

towards the head of the humerus and upward rotation elevates the lateral acromion away 

from the humerus [Endo et al., 2001; Flatow et al., 1994; Neer, C. S., 1983].  The 

acromiohumeral distance has been reported to be lowest when the arm is elevated 

between 60º [Bey et al., 2007] and 90º [Giphart et al., 2012], thus highlighting the 

importance of scapular orientation at mid to high range of humeral motion [Ludewig P, 

2000].   

Numerous studies have examined differences in scapular kinematics between 

patients with impingement versus healthy controls [Hebert et al., 2002; Lin et al., 2011; 

Ludewig, P. M. et al., 2000; Lukasiewicz et al., 1999; McClure et al., 2006; Timmons et 

al., 2012].  Although the kinematic findings from these studies are quite variable, the 

majority of these studies suggest that patients with impingement have more anterior 

scapular tilting than healthy controls during arm abduction and flexion and no differences 

in scapular external rotation when compared to healthy controls [Endo et al., 2001; 

Ludewig, P. M. et al., 2000; Lukasiewicz et al., 1999].  However, a recent meta-analysis 

indicates that from the literature (9 studies) no constant patterns in kinematics can be 

established between patients with impingement and controls [Timmons et al., 2012].  Due 

to the high between-subject variability for scapular kinematics, little is known regarding 

abnormal scapular motion and the impingement phenomenon.  However, for populations 

other than impingement; such as wheelchair users, individuals with clinical shoulder pain 

have been reported to have greater upward rotation and anterior tilt of the scapula 
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[Nawoczenski et al., 2012].  This finding suggests that pain may be associated with 

abnormal scapular motion.  Additionally, one case study found that patients with painful 

scapulothoracic tumors later developed subacromial impingement [Han et al., 2012].  

This finding suggests that subacromial impingement may be secondary to scapular 

dyskenisia when pain is present [Han et al., 2012].     

  Local anesthetic injections in conjunction with corticosteroids are commonly 

administered to patients with shoulder impingement syndrome by orthopedic surgeons 

and general practitioners [Alvarez et al., 2005; Celik et al., 2009; Gruson et al., 2008].  

Local anesthetics are used as a diagnostic tool, as well as a modality to temporarily 

decrease shoulder pain [Celik et al., 2009; Gruson et al., 2008].  Following subacromial 

anesthetic injections, patients have been reported to have increased humeral elevation 

[Alvarez et al., 2005; Celik et al., 2009; Gruson et al., 2008] and increased strength in 

arm abduction and external rotation [Ben-Yishay et al., 1994; Park et al., 2008].  

However, in patients with rotator cuff tears, a reduction in pain following a subacromial 

injection resulted in decreased scapulothroacic motion and greater reliance on 

glenohumeral motion during arm elevation [Scibek et al., 2008].  A multitude of 

biomechanical differences have been reported for patients with cuff tears which include 

changes in supraspinatus tendon length [Farshad-Amacker et al., 2013], fatty infiltration 

of cuff muscles [Berhouet et al., 2009], changes to glenohumeral center of rotation 

[Deutsch et al., 1996] and altered glenohumeral kinematics [Yamaguchi et al., 2000].  

Therefore, we suspect that patients with Stage 2 subacromial impingement, without 

rotator cuff tears, will respond favorably to an anesthetic subacromial injection.  We 

hypothesize that the reduction of pain in patients with Stage 2 impingement will result in 
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decreased anterior tilt and increased upward rotation of the scapula during arm elevation.  

Further, we hypothesize that post treatment scapular kinematics will be similar to healthy 

controls.   

METHODS 

 Twenty-one patients (13 males and 8 females) with stage 2 impingement 

syndrome and twenty-one healthy control subjects were recruited for this study.  Mean ± 

SD demographic data for patients were age, 55.6 years ± 8.3 years; height, 174.1 cm ± 

7.9 cm; and weight, 78.6 kg ± 13.4 kg.  Mean and ± SD demographic data for control 

participants which were matched within 5 years of age to a patient of the same gender 

and arm dominance (19 right handed individuals) were age, 54.4 years ± 8.9 years; 

height, 172.9 cm ± 9.4 cm; weight, 77.8 kg ± 15.1 kg.  For the patient population, our 

inclusion criterion required a positive sign for at least 3 of the following 5 tests:  

Hawkins-Kennedy, Neer, painful arc, empty can (Jobe) and/or painful external rotation 

resistance. Patients having had shoulder surgery on the symptomatic side, a positive 

Spurling test, traumatic shoulder dislocation or instability in the past 3 months, 

reproduction of shoulder pain with active or passive cervical range of motion, or signs of 

a rotator cuff tear (drop-arm test, lag signs, gross external rotation weakness assessed by 

a manual muscle test, or positive image findings) were excluded from this study.  The 

experimental protocol was approved by the Institutional Review Board at the University 

of Oregon. Written and verbal instructions of testing procedures were provided, and 

written consent was obtained from each subject prior to testing. 
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Instrumentation 

 The Fastrak magnetic tracking device (Polhemus, Colchester, VT) was used for 

collecting 3-D in-vivo kinematics of the shoulder complex.  The Polhemus unit consists 

of a transmitter, three receivers and a digitizer, all wired to a system electronics unit, 

which determines the relative orientation and position of the sensors in space.  The 

transmitter serves as a global reference frame and was fixed to a rigid plastic base and 

oriented such that its coordinate axes aligned with the cardinal planes of the human body.  

The digitizer sensor was used to identify anatomical landmarks with respect to the global 

reference frame.  After digitization, the arbitrary coordinate systems defined by the 

Polhemus were converted to anatomically appropriate coordinate systems based on the 

recommendations of the International Society of Biomechanics Committee for 

Standardization and Terminology (Wu et al., 2005). 

Setup and Digitization 

 For digitization, participants were asked to stand in a neutral position with their 

arms relaxed by their sides.  Three custom made “break-away” receivers were placed on 

different body segments of the symptomatic arm using double sided adhesive tape.  The 

break-away sensors allowed the subject to be de-coupled from the polhemus unit without 

removing the sensors (Figure 3.1). The first receiver was placed on the thorax on the 

manubrium of the sternum at approximately the level of T3.  The second receiver was 

positioned on the humerus by mounting it to an orthoplast device positioned on the 

proximal humerus with elastic straps.  The final receiver was positioned over the scapula 
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after mounting it on a custom scapular tracking device machined from plastic (Karduna et 

al., 2001).  This tracker was attached to the scapular spine and posterior-lateral acromion 

with Velcro.  The transmitter was then positioned approximately 30 cm behind the 

participant and was elevated to the height of their scapula.  Anatomical landmarks were 

then digitized using the Polhemus stylus. The thoracic landmarks were T8, xiphoid 

process, C7 and jugular notch.  The scapula landmarks were the root of the scapular spine, 

inferior angle and posterior lateral boarder (acromial angle) of the scapula were digitized.  

The humeral landmarks were the medial and lateral epicondyles and the center of the 

humeral head.  To calculate the center of the humeral head, the humerus is manipulated 

in small circular arcs within the mid-range of motion of the humerus.  The center of the 

humeral head was defined by the point that moves the least with respect to the scapula 

through a least squares algorithm during humeral calibration (Karduna et al., 2001).  

Using the custom “break-away” sensors (Figure 3.1), no materials were removed during 

the protocol or for the treatment phase and only one calibration file was generated for the 

pre and post-injection measurements for the patient group.   

 

Figure 3.1.  Experimental setup and “break-away” sensors de-coupled from Polhemus 
unit. A. Thoracic sensor, B. Scapular sensor, C. Humeral sensor, D. forearm sensor 
(Chapter VI only).   

 

A B C D 
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Experimental Procedure      

 Once the digitization and calibration were completed, participants completed 

three arm elevation trials.  Each elevation trial consists of the patient raising their affected 

arm in the scapular plane (30 degrees from the frontal plane) and returning along the 

same path to a count of four in each direction.  Trials were repeated when the 

participant’s arm elevation deviated from the scapular plane (based on real time feedback 

provided to the investigator).  Data were collected continuously at a rate of 40 Hz for the 

three trials, and then averaged for data analysis.  Patients were asked to give their current 

shoulder pain level on an analog pain scale immediately after completing the shoulder 

elevation task.  

Following the scapular kinematic evaluation, patients received two subacromial 

injections of (A) anesthetic (3 cc lidocaine with epinephrine) and (B) corticosteroid (6 cc 

0.5% bupivacaine and 1 cc 40mg methylprednisolone acetate) as part of their normal 

treatment (Figure 3.2).  Patients were then given a 15 minute adjustment period and were 

asked to move their arm in order to disperse the drug within the subacromial bursa.  

Following the adjustment period patients were asked to repeat their arm elevation task 

following the same procedure as before.  Immediately following the post injection arm 

elevation task, patients were again asked to give their current shoulder pain level on an 

analog pain scale.  Patients were blinded from their previous analog pain scale 

submission.  For testing healthy subjects, the same kinematic evaluation was performed; 

however, no subacromial injections were given to the control group.   
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Figure 3.2.  Anesthetic subacromial injection with epinephrine (A) and anesthetic 
injection with corticosteroid (B).   

 

Statistical Analysis 

 To determine if there were differences in pain following treatment, a paired t-test 

was used between pre and post-injection VAS pain scores.  To determine the influence of 

treatment on scapular kinematics, three 2-way repeated measures ANOVA were used.  

Each rotation of the scapula, upward and internal rotation and scapular tilt were treated as 

unique dependent variables.  Humeral elevation angle at four increments, 30, 60, 90 and 

120 degrees were treated as the first independent variable and condition (pre-injection, 

post-injection) was treated as the second independent variable.  For significant 

interactions, pairwise comparisons were performed using Fisher’s least significant 

difference test (LSD). To compare the effect of treatment with respect to healthy controls, 

three 2-way mixed effects ANOVAs were used.  Humeral elevation angle at four 

increments was treated as the repeated measures independent variable and group (post- 

injection versus controls) was treated as the between-subjects factor.  For significant 

interactions, pairwise comparisons were performed using the LSD.  Due to the natural 
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influence of humeral elevation on scapular kinematics, we did not perform post-hoc 

testing for significant main effects of humeral elevation angle.   

 

RESULTS 

 Following the anesthetic subacromial injection, patients reported a significant 

reduction in pain (p < 0.001), where patients on average had a 65% reduction in pain 

(Figure 3.3).   

 

Figure 3.3. Visual analog scores pain pre and post-injection in patients with subacromial 
impingement.  Significance where p < 0.05 is represented with      .   

 

 For scapular tilt, there was a significant interaction between treatment and 

humeral elevation angle (p = 0.032).  Post-hoc pairwise comparisons indicated that 

treatment had no significant influence on scapular tilt at 30º and 60º of humeral elevation 

(p > 0.05). However, significant differences were detected for 90º (p = 0.04)  and 120º (p 
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= 0.007), with differences in anterior tiling of 2º and 3.5º, respectively. Comparing post- 

injection kinematics for patients with impingement versus healthy controls, a significant 

interaction between humeral elevation angle and group (controls versus impingement 

population) was detected (p = 0.006).  Post-hoc pairwise comparisons indicate that no 

significant differences were pronounced between groups at 90º of humeral elevation (p > 

0.05); however, significant differences were detected at 120º of humeral elevation, where 

the impingement group had on average 7.1º (±2.9º) greater anterior tilting than controls 

(p = 0.02) (Figure 3.4). 

 

Figure 3.4.  Anterior tilting angle (degrees) during arm elevation pre (blue, solid line) 
and post- (red, dashed line) injection versus healthy controls (greed, square dotted line).  
Significant differences for within subject comparisons are denoted with     and significant 
differences for between subject comparisons are denoted with     .   

  

 For the influence of treatment and humeral elevation on scapular upward rotation, 

no significant interactions were detected (p = 0.93).  No significant main effect was 

detected for treatment (p = 0.17).  When comparing post-injection upward rotation to 



34 

control subjects, a significant interaction between humeral angle and group (controls 

versus impingement population) was detected (p < 0.001).  Post-hoc pairwise 

comparisons indicate that no significant differences were pronounced between groups at 

30º or at 120º (p > 0.05).  However, at 60º of humeral elevation the impingement group 

had on average 5.1º (±1.9º) greater upward rotation than controls (p = 0.013).  At 90º of 

humeral elevation the impingement group had on average 7.1º (1.8º) greater upward 

rotation than controls (p = 0.001) (Figure 3.5).   

 

Figure 3.5.  Upward rotation angle (degrees) during arm elevation pre (blue, solid line) 
and post-(red, dashed line) injection versus healthy controls (green, square dotted line).  
Significant differences for between subject comparisons are denoted with    .  

  

 For scapular internal rotation, no significant interactions between treatment and 

humeral elevation were detected  (p = 0.629).  No significant main effects of treatment (p 

= 0.167) or humeral elevation (p = 0.977) were detected.  When compared to healthy 

controls, no significant interactions were detected (p = 0.974) (Figure 3.6).   
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Figure 3.6.  Internal rotation angle (degrees) during arm elevation pre (blue, solid line) 
and post-(red, dashed line) injection versus healthy controls (green, square dotted line).   

 

DISCUSSION 

 We hypothesized that the reduction of pain in patients with Stage 2 impingement 

would result in decreased scapular anterior tilt and increased upward rotation and would 

result in no changes in scapular internal rotation during elevation of the arm.  

Additionally, we hypothesized that kinematics following the injection would be more 

representative of the kinematics of healthy control subjects.  For anterior tilting, our 

results did not support the hypothesis.  Following the injections, patients demonstrated a 

2º increase in anterior tilting at 90º of humeral elevation and a 3.5º increase in anterior tilt 

at 120º degrees of elevation (Figure 3.4).  When compared to healthy controls, patients 

post-injection had 7.1º greater anterior tilting at 120º degrees of arm elevation (Figure 

3.4).  For upward rotation, our results partially supported our hypothesis.  No kinematic 

changes were detected following the injections; however, when compared to healthy 
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controls, patients post-injection, had 5.1º greater upward rotation at 60º and 7.1º greater 

upward rotation at 90º degrees of arm elevation (Figure 3.5).  For scapular internal 

rotation, our hypothesis was supported, since no significant changes were noted 

following the subacromial injection, or when compared to healthy controls (Figure 3.6).   

 In studies examining differences in scapular kinematics versus healthy controls, 

most studies agree that patients with subacromial impingement have greater scapular 

anterior tilt than healthy control subjects [Endo et al., 2001; Hebert et al., 2002; Lin et al., 

2011; Ludewig P, 2000; Lukasiewicz et al., 1999].  Our findings agree with the literature, 

especially at arm elevation angles of 90 and 120 degrees.  Previous reports indicate that 

the acromiohumeral distance is minimized as the arm approaches greater arm elevation 

angles [Bey et al., 2007; Giphart et al., 2012]. In healthy individuals, scapular kinematics 

tend toward less anteriorly tilted scapular positions at greater elevation angles, 

presumably to provide a greater acromiohumeral clearance [Ludewig P, 2000].  Healthy 

control subjects in our study tended toward a less anteriorly tilted scapula at greater 

elevation angles, which agrees with the literature  [Ludewig et al., 2009; van der Helm et 

al., 1995].    The anteior acromion is the predominant site of impingement, where 

acromial shape and orientation can greatly influence degeneration of subacromial tissues 

[Balke et al., 2013; Neer, 1972].  It has been postulated that the contact pressure beneath 

the acromion is associated with diffuse anterior shoulder pain [Balke et al., 2013; Neer, 

1972; Saupe et al., 2006; Watson-Jones, 1976].  Following the reduction in pain using an 

anesthetic subacromial injection, our results indicate an increase in anterior scapular 

displacement, which may further reduce the acromiohumeral distance [Ludewig P, 2000].  

Furthermore, the differences in scapular tilt following treatment were most prevalent at 
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greater arm elevation angles, thus potentially exacerbating the effects of a reduced 

acromiohumeral distance [Bey et al., 2007; Giphart et al., 2012; Soslowsky et al., 2002].  

Our results indicate that subacromial pain may be related to scapular tilt, especially at 

greater humeral angles (Figure 3.3).  However, it is possible that increased fluid in the 

subacromial bursa post injection had an influence on scapular tilt, perhaps due to 

increased subacromial pressure.  Changes in scapular kinematics following the 

subacromial injection are likely to be due to changes in scapular muscle activation 

(Chapters IV and V).   

 For scapular upward rotation and patients with impingement syndrome, there is 

less agreement pertaining to trends in kinematics when compared to healthy controls.  

Several studies suggest that patients have decreased scapular upward rotation [Endo et 

al., 2001; Ludewig P, 2000], one demonstrated increased upward rotation [McClure et al., 

2006], and several others found no differences [Hebert et al., 2002; Lukasiewicz et al., 

1999].  Our findings suggest that when compared to healthy controls, patients 

demonstrate greater upward rotation, agreeing with one other study [McClure et al., 

2006].  Our control participants demonstrated a linear increase in scapular upward 

rotation with arm elevation which is consistent with the literature [Inman et al., 1996; 

Ludewig et al., 2009; McClure et al., 2001; van der Helm et al., 1995].  Following the 

subacromial injection, we found no significant changes in upward rotation (Figure 3.4).  

This finding suggests that pain reduction via an anesthetic injection may not have an 

influence on scapular upward rotation in patients with subacromial impingement.  In 

patients with rotator cuff tears, subacromial injections have been shown to decrease 

scapulothoracic motion and increase glenohumeral contribution towards arm elevation 
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[Scibek et al., 2008].  This may be related to an increase in humeral abduction strength 

following subacromial injections [Ben-Yishay et al., 1994; Park et al., 2008].  Our 

patients did not show evidence of rotator cuff tears, therefore differences in our results 

and Scibek et al., [2008] could be related to other factors such as; fatty infiltration of the 

cuff muscles [Berhouet et al., 2009], differences in cuff tendon lengths [Farshad-

Amacker et al., 2013] and changes to the center of rotation of the glenohumeral joint due 

to superior translation of the humerus associated with rotator cuff tears [Deutsch et al., 

1996].   

Limitations 

 Our experimental design included a pre and post-treatment measurement for 

patients with subacromial impingement; however, due to practical reasons no treatment 

condition was given to healthy control subjects.  Therefore, from our study, it is 

impossible to determine if the changes observed in scapular kinematics were due to 

changes in pain or some other influence of the subacromial anesthetic injection, such as 

increased fluid in the subacromial bursa.  The subacromial injection added approximately 

10cc of fluid into the subacromial bursa.  The additional fluid within the subacromial 

bursa could potentially influence scapular kinematics by changing subacromial contact 

pressure.  Future studies could use a placebo injection to investigate the influence of 

adding fluid to the subacromial bursa.  Additionally, the size of the subacromial bursa 

could be taken into account with respect to scapular kinematics in patients with 

impingement.  
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Conclusions 

 An anesthetic subacromial injection successfully reduces pain in patients with 

impingement.  However, the subacromial injection may temporarily further scapular 

abnormalities by increasing anterior tilt, specifically at arm elevations angles of 90º and 

120º.  Our findings suggest that pain may be important towards reducing scapular tilt, 

especially at higher arm elevation angles in patients with impingement.   

 

SCAPULAR KINEMATICS AND MUSCULAR CONTROL 

 The kinematic shifts pre and post-injection investigated in chapter III represent 

changes in neuromuscular control of the shoulder joint.  Previous studies have 

investigated neuromuscular control of the shoulder in patients with and without pain.  

Neuromuscular control for the shoulder is often measured using electromyography of 

shoulder and scapular muscles [Inman et al., 1996].   However, in order to make 

between-subject comparisons in terms of muscular output, electromyographic data are 

often normalized by Maximal Voluntary Isometric Contractions (MVIC).   However, 

several studies have cautioned that the ability to produce MVIC may be reduced in the 

presence of pain.  Therefore, in chapter IV we investigate the influence of pain on MVIC 

production in patients with impingement syndrome.   
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CHAPTER IV 

EMG NORMALIZATION IS INFLUENCED BY SUBACROMIAL PAIN 

Co-authors include Jason Weiss for assistance in data collection, Dr. Matthew Shapiro for 

subject recruitment and Dr. Andrew Karduna for help with project conception.  

INTRODUCTION 

 Shoulder muscle activation has been measured using electromyography (EMG) 

since the early 1940’s when Inman and Saunders first examined raw EMG signals from 

shoulder musculature [Inman et al., 1944].  Since that time, collection and analysis of 

EMG data have been standardized in order to make comparisons between individuals and 

between studies [Merletti, 1999].  Recently, normalized EMG was used to examine 

shoulder muscle activity in healthy subjects, as well as patients with subacromial 

impingement syndrome [Bandholm et al., 2006; Cools et al., 2003; Lin et al., 2011; 

Ludewig, P. M. et al., 2000; Moraes et al., 2008; Reddy et al., 2000]. Phadke et al., 

[2009] composed a comprehensive review of scapular muscular activation during arm 

elevation in patients with subacromial impingement syndrome versus healthy controls.  

From that review article, seven studies used similar methodological protocols which 

normalized EMG activity of scapular muscles to Maximal Voluntary Isometric 

Contractions (MVIC) for patients with subacromial impingement and healthy controls 

[Phadke et al., 2009].  From this review, discrepancies are reported between studies in 

terms of which scapular muscles have greater activation or lesser activation in the patient 

population versus healthy individuals.      
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 Most studies agree that the upper trapezius activity is greater in patients with 

subacromial impingement than in healthy controls [Lin et al., 2011; Ludewig, P. M. et al., 

2000; Peat et al., 1977].  However, for the lower trapezius Ludewig and Cook [2000] 

describe activity to be greater in patients with impingement than in controls; however, 

Cools et al., [2003] described patient activity of the lower trapezius to be lesser than 

controls.  Three studies found no difference in activity of the lower trapezius in patients 

with impingement when compared to healthy controls [Bandholm et al., 2006; de Morais 

Faria et al., 2008; Finley et al., 2005]. For the serratus anterior muscle several authors 

suggest that patients have less activation with impingement versus healthy controls [Lin 

et al., 2011; Ludewig, P. M. et al., 2000; Peat et al., 1977], others suggest that there is no 

difference in activity for this population versus controls [Bandholm et al., 2006; de 

Morais Faria et al., 2008; Finley et al., 2005].  Several authors have described the deltoid 

muscles to have less activation in patients with impingement than in healthy controls 

[Clisby et al.; Michaud et al., 1987; Reddy et al., 2000]; however, Myers et al., [2009] 

found the deltoid to have greater activity in the patient population than in healthy 

controls.  Differences between studies may be due to the severity of the impingement 

disorder, where some patients have greater disability due to their pain whereas others do 

not [Lentz et al., 2009].  Furthermore, patients may be avoiding activation of certain 

muscle such as the deltoids due pain inhibition [Ben-Yishay et al., 1994; Lentz et al., 

2009], or compensatory strategies to avoid further damage of the supraspinatus tendon 

within the subacromial space during MVIC testing [Michaud et al., 1987].   

 In order to make meaningful EMG comparisons between individuals, 

standardization of electrode placement and normalization to a Maximal Voluntary 
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Isometric Contraction (MVIC) is recommended [Lehman et al., 1999]. Due to the 

standardization of the EMG normalization, muscle activity is often reported as a 

percentage of maximal activation and not in raw electrical activity as reported by Inman 

and Saunders [1996].  However, it has been cautioned that normalization to a MVIC in 

injured populations may be influenced by pain [Celik et al., 2011; Myers, J. B. et al., 

2009].  If pain inhibits one’s ability to maximally contract a muscle, the resultant MVIC 

might bias traditional normalization protocols.   

 Subacromial injections of local anesthetics have been shown to decrease shoulder 

pain in patients with subacromial impingement [Alvarez et al., 2005; Buchbinder et al., 

2003; Celik et al., 2009].  Further, subacromial injections have been found to increase 

force production for the rotator cuff [Park et al., 2008], and increase arm abduction and 

flexion forces in patients with rotator cuff tears [Ben-Yishay et al., 1994; Cordasco et al., 

2009].  In a study conducted by Brox et al., [1997] MVICs of several shoulder muscles 

were shown to be enhanced following a subacromial injection; however, the influence of 

this change on EMG normalization was not tested.  It is the goal of this study to examine 

the influence of pain on shoulder muscle contractibility as measured by standardized 

MVIC procedures in patients with subacromial impingement syndrome. We hypothesize 

that through the use of an anesthetic subacromial injection, muscles involved in arm 

elevation (agonists) will have increased contractibility during MVIC.    Further, we 

hypothesize that normalization to a MVIC in the presence of pain will result in an 

overestimation of the percent muscle activation during an arm elevation task.   
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METHODS 

 Fourteen patients with subacromial impingement participated in this study (55 ± 9 

years).  Inclusion criterion required a clinical diagnosis of impingement syndrome by one 

of our co-authors (MS), the clinical tests required a positive test of: Hawkins-Kennedy, 

Neer, painful arc, empty can (Jobe) and/or external rotation resistance.  Exclusion criteria 

were: having had shoulder surgery on the symptomatic side, a positive Spurling test, 

traumatic shoulder dislocation or instability in the past 3 months, reproduction of 

shoulder pain with active or passive cervical range of motion, or signs of a rotator cuff 

tear (drop-arm test, lag signs, gross external rotation weakness assessed by a manual 

muscle test, or positive radiographic findings).  The experimental protocol was approved 

by the Institutional Review Board at the University of Oregon. Written and verbal 

instructions of testing procedures were provided, and written consent was obtained from 

each patient prior to testing. 

Instrumentation  

 A Myopac Jr.  (Run Technologies, Mission Viejo CA) system was used to collect 

differential EMG activity from seven shoulder muscles (anterior, middle and posterior 

deltoids, upper and lower trapezius, latissamus dorsi and serratus anterior) on the affected 

side.  A ground electrode was used on the contralateral clavicle to reduce signal noise.  

The system had a common mode rejection ratio of at least 90 dB, an amplifier input 

impedance of 10 MΩ and a band-pass filter (10-1000 Hz). After the data were sampled at 

1200 Hz, it was run through a Root Mean Square (RMS) algorithm with a 50 ms window 

which served to rectify and low pass filter the data (rEMG).  To calculate the MVIC, each 
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muscle was subjected to a 5 second isometric contraction (described in detail below).  

The amplitude of the contraction was determined by the RMS data over the middle 2 

seconds of the muscle contraction.   

Two surface electrodes were used for each muscle tested. Oval, pediatric (32 x 38 

mm) ECG electrodes (Ag/AgCl) were selected for study due to their small appearance 

and low inter-muscular cross talk.  Electrodes were placed with an inter-electrode 

distance of approximately 40 mm on the bellies of each muscle.  Skin was cleaned prior 

to electrode placement using isopropyl alcohol preparation pads.  Electrode placement for 

the deltoid muscles [Cram et al., 1998], upper trapezius [Cools et al., 2003], lower 

trapezius [Nieminen et al., 1993], serratus anterior [Ekstrom et al., 2004] and latissamus 

dorsi [Lehman et al., 2006] followed protocols described from the literature.   

For collection of 3-D in-vivo kinematics of the shoulder complex during the arm 

elevation task, the Polhemus Fastrack (Colchester, VT) was used.  The Polhemus unit 

consists of a transmitter, three receivers and a digitizer, all wired to a system electronics 

unit, which determines the relative orientation and position of the sensors in space.  The 

transmitter served as a global reference frame and was fixed to a rigid plastic base and 

oriented such that its coordinate axes aligned with the cardinal planes of the human body.  

The digitizer sensor was used to identify anatomical landmarks with respect to the global 

reference frame.  For digitization, participants stood with their arm in a neutral relaxed 

position.  Custom “break-away” sensors (Figure 3.1) were attached to anatomical 

segments using double sided adhesive tape.  The first receiver was placed on the thorax 

on the manubrium of the sternum at approximately the level of T3.  The second receiver 

was positioned on the humerus by mounting it to an orthoplast device positioned on the 
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proximal humerus with elastic straps.  The final receiver was positioned over the scapula 

after mounting it on a custom scapular tracking device machined from plastic [Karduna et 

al., 2001]. This tracker was attached to the scapular spine and posterior-lateral acromion 

with Velcro.  The transmitter was then positioned approximately 30 cm behind the 

subject and was elevated to the height of their scapula using a non-metallic tripod.  

Anatomical landmarks were then digitized using the Polhemus stylus, for the thorax T8, 

xiphoid process, C7 and jugular notch.  For the humeral matrix, the medial and lateral 

epicondyles were digitized and the center of the humeral head was calculated.  To 

calculate the center of the humeral head, the humerus was manipulated in small circular 

arcs within the mid-range of motion of the humerus.  The center of the humeral head was 

defined by the point that moves the least with respect to the scapula through a least 

squares algorithm during humeral calibration [Karduna et al., 2001].  After digitization, 

the arbitrary coordinate systems defined by the Polhemus were converted to anatomically 

appropriate coordinate systems based on the recommendations of the International 

Society of Biomechanics Committee for Standardization and Terminology [Wu et al., 

2005].   

Protocol 

For the MVIC collection, each muscle was tested in a unique position using 

methods previously described. For the anterior deltoid, the patient performing resisted 

arm flexion with their affected arm placed in 90 degrees of humeral flexion, the elbow 

flexed 90 degrees and the forearm vertical [Maffet et al., 1997]. For the middle deltoid, 

the patient performed resisted abduction with the affected arm in 90 degrees of shoulder 

abduction, the elbow flexed 90 degrees and the forearm parallel to the floor [Alpert et al., 
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2000].  Testing for the posterior deltoid involved resisted horizontal extension of the 

affected arm in 90 degrees of humeral abduction, elbow flexion of 90 degrees and the 

forearm parallel to the floor [Alpert et al., 2000]. For the upper trapezius the patient 

resisted abduction with the arm placed in 90 degrees of shoulder abduction, the elbow 

flexed 90 degrees and the forearm parallel to the floor, [Alpert et al., 2000]. For the lower 

trapezius the patient’s arm was placed in 90 degrees of humeral elevation in the scapular 

plane and the elbow fixed at 90 degrees. From this position, the subject depressed and 

downwardly rotated the scapula against resistance applied manually by the investigator 

[Kendall et al., 1993].  During testing of the serratus anterior, many patients had trouble 

abducting their arm to 125° in the scapular plane.  Therefore, when testing the serratus 

anterior the protocol was slightly modified from what was described in the literature 

[Ekstrom et al., 2004].  For serratus anterior, the patient’s arm was abducted 90 degrees 

in the plane of the scapula, the patient performed resisted elevation with force applied to 

the humerus in the direction of adduction towards the lateral boarder of the scapula 

[Ekstrom et al., 2004].  The latissamus dorsi was tested with the subject performing 

maximal shoulder adduction against resistance with the humerus abducted 30 degrees (in 

the frontal plane) and internally rotated [Lehman et al., 2006].  All MVIC testing was 

performed before and after subacromial injection.   

Before receiving the anesthetic injection, patients performed three arm elevations 

with their affected arm moving in the scapular plane (30 degrees anterior to the frontal 

plane) and returning along the same path to a count of four in both directions.  Real-time 

feedback of the scapular plane of motion was observed digitally by the investigator.  

Trials were repeated when the patient’s arm elevation deviated by more than 10 degrees 
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from the scapular plane.  EMG and kinematic data were synchronized and collected 

continuously for the three elevation trials.  Data from the three trials were averaged for 

subsequent data analysis.  Patients were additionally asked to give their current shoulder 

pain level on a 0-100 visual analog pain scale (VAS) immediately following the shoulder 

elevation MVIC. Pre-treatment VAS was on average 56.1 (± 26.1).  Post-treatment VAS 

was on average 21.3 (± 14.7).     

Treatment Procedure      

Following kinematic and MVIC evaluations, patients received a subacromial 

injection of anesthetic (6 cc 0.5% bupivacaine with epinephrine and 3 cc lidocaine with 

epinephrine ) and corticosteroid (1 cc 40mg methylprednisolone acetate) as part of their 

recommended treatment.  The procedure was completed by one of our co-authors (M.S) 

who is an orthopaedic surgeon.  The injection was performed using an anterior approach 

where the needle was inserted into the subacromial space and the drugs were 

administered locally to the subacromial bursa.  Patients were then given a 15 minute 

adjustment period after the injection and were asked to move their arm in order to 

disperse the drug within the subacromial bursa.  Following the adjustment period, 

patients were asked to perform a new MVIC for each of the seven muscles tested using 

the same protocol as described above.  No electrodes or sensors were moved during the 

injection.  

To compare the MVIC normalization method, EMG activity during the arm 

elevation trial (pre injection) were normalized twice.  The first method normalized EMG 

activity by the MVIC before the anesthetic injection, the second method normalized the 
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same EMG activity to a post-injection MVIC.  A resting trial was subtracted from all 

EMG data.   

Method 1 = rEMG muscle - rEMG rest (pre)
                rEMG MVIC (pre) - rEMG rest (pre) 

      x100 

 
 

Method 2 = rEMG muscle - rEMG rest (post)
                   rEMG MVIC (post) - rEMG rest (post) 

    x100 

 
 The  rEMG muscle (pre) depicts the rectified EMG signal from each muscle 

during the arm elevation task pre-injection.  The rEMG rest (pre) illustrates the resting 

rectified EMG data pre-injection.  The rEMG rest (post) demonstrates the resting 

rectified EMG data post-injection.  The rEMG MVIC (pre) is the MVIC for each muscle 

pre-injection.  Finally, the rEMG MVIC (post) is the MVIC for each muscle post-

injection.  

 To determine the influence of pain on MVIC, dependent samples t-tests were run.  

The MVIC (mV) was the quantitative dependent variable.  The independent variable was 

treatment condition, pre and post-injection.   

To determine the influence of MVIC on normalization technique during an arm 

elevation task,  seven two-way repeated measure ANOVAs were used.  The percent 

MVIC during an arm elevation task were the quantitative dependent variables. Injection 

(pre vs. post) was the categorical independent variable and humeral elevation angle with 

3 levels (30, 60, 90 degrees of elevation) was the second independent variable.  The 

significance level used was α = 0.05 for all analyses.  Post hoc t-tests using a Bonferroni 

correction were used whenever significant interactions or main effects were detected.    
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RESULTS 

Results from the dependent samples t-tests indicated that following the 

subacromial injection, EMG (mV) for the MVIC tests were larger for the anterior, middle 

and posterior deltoid and the lower trapezius, p < 0.05.  No significant differences were 

found for the latissamus dorsi, upper trapezius, or serratus anterior, p > 0.05 (Figure 4.1).   

 

 

Figure 4.1.  EMG (mV) before (red) and after (blue) injection in patients with 
impingement.  Significance where p < 0.05 is represented by     . 

All results from the ANOVA tests are reported in Table 4.1.  For all muscles 

tested, only the anterior deltoid had a significant interaction between humeral elevation 

and normalization condition (Figure 4.2).  Follow up t-tests indicated that pre and post- 

injection MVIC normalization differences occurred at 60° of humeral elevation.   For all 

other muscles no significant interactions were found (p > 0.05).  For the effects of 

normalization condition, the anterior deltoid and the lower trapezius were the only 

muscles influenced, which resulted in overestimation of muscle activity (p < 0.05).  With 

the exception of the upper trapezius, there was a significant effect of humeral elevation 
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for all muscles tested (p < 0.05).  For comparisons between pre and post-treatment pain 

levels, the results of the dependent samples (paired samples) t-test revealed that pre-

treatment pain level was significantly greater than post-treatment VAS (p < 0.001). 

Table 4.1.  2-Way Repeated Measures ANOVA Tests by Muscle.   

Muscle  ANOVA factor df F-ratio P-value 

Anterior 
Deltoid 

 

Condition (Pre – Post Injection) 

Humeral Elevation Angle 

Condition x Elevation  

1 

2 

2 

6.865 

30.660 

3.868 

0.019* 

0.001* 

0.044* 

Middle 
Deltoid 

 

Condition (Pre – Post Injection) 

Humeral Elevation Angle 

Condition x Elevation 

1 

2 

2 

0.104 

14.239 

0.192 

0.751 

0.001* 

0.827 

Posterior 
Deltoid 

Condition (Pre – Post Injection) 

Humeral Elevation Angle 

Condition x Elevation  

1 

2 

2 

3.799 

7.453 

1.631 

0.069 

0.006 * 

0.229 

Latissamus 
Dorsi 

 

Condition (Pre – Post Injection) 

Humeral Elevation Angle 

Condition x Elevation  

1 

2 

2 

3.094 

7.295 

1.051 

0.102 

0.008 * 

0.380 

Upper 
Trapezius 

 

Condition (Pre – Post Injection) 

Humeral Elevation Angle 

Condition x Elevation  

1 

2 

2 

2.475 

1.663 

1.441 

0.140  

0.230  

0.175 

Lower 
Trapezius 

 

Condition (Pre – Post Injection) 

Humeral Elevation Angle 

Condition x Elevation  

1 

2 

2 

6.486 

9.380 

0.565 

0.024 * 

0.004 * 

0.583 

Serratus 
Anterior 

 

Condition (Pre – Post Injection) 

Humeral Elevation Angle 

Condition x Elevation  

1 

2 

2 

0.557 

14.273 

2.120 

0.469  

0.001 * 

0.163 

Note.  * indicates statistical significance where p < .05. 
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Figure 4.2.  EMG (percent MVIC) normalized to before (red) and after (blue) injection in 
patients with impingement syndrome.  Significance where p < 0.05 is represented by    . 
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DISCUSSION 

From the present study, all patients experienced a reduction in subacromial pain 

due to an anesthetic subacromial injection. On average, patients experienced a 64% 

decrease in pain.  For the anterior, middle and posterior deltoid and the lower trapezius 

muscles, we found that a reduction in subacromial pain significantly increased MVIC 

levels (Figure 4.1).  However, pain reduction had no significant effect on MVIC for the 

latissamus dorsi, upper trapezius or the serratus anterior. Our results indicate that 

following a reduction in pain, the anterior deltoid MVIC was approximately 23% higher 

than before pain reduction, 25% higher for the middle deltoid, 50% higher for the 

posterior deltoid and 19% higher for the lower trapezius (Figure 4.1).  Results from our 

normalization methods indicate that for both the anterior deltoid and the lower trapezius 

were significantly influenced by normalization to an MVIC after pain reduction.  

However, for the middle and the posterior deltoid, despite having significantly lower 

muscle activation pre-injection during the MVIC testing, there was no significant impact 

on the normalization of EMG data during an arm elevation task.  The unpredictability of 

the influence of pain on normalization highlights the importance of MVIC testing during 

a pain free condition.   

 Submaximal contractions have been attributed to increased pain in patients with 

subacromial impingement [Bandholm et al., 2006].  Painful stimulation through group 3 

and 4 afferents is associated with decreased muscle activation from agonist muscle 

groups [Lund et al., 1991].  This inhibition is believed to be regulated via inhibitory 

interneurons [Lund et al., 1991].   We hypothesized that following a subacromial 

injection, muscles involved in arm elevation (agonists) would have increased activation  
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during MVIC.  Our results indicated that all three deltoid muscles (agonists) had greater 

MVICs post-injection thus supporting our hypothesis.  Furthermore, we hypothesized that 

normalization to a MVIC in the presence of pain would result in an overestimation of the 

percent muscle activation during an arm elevation task.  Our results indicated that only 

the anterior deltoid and the lower trapezius were significantly influenced by the 

normalization method (pre versus post-injection MVIC).  Therefore, our second 

hypothesis is only partially supported.     

It is possible that prior to the subacromial injection, muscle activation from the 

deltoids and the lower trapezius were inhibited resulting in decreased activation during 

the MVIC testing.  During MVIC testing, all three deltoid muscles were significantly 

influenced by pain.  Several studies have also suggested that the deltoid muscles have 

reduced activity in patients with subacromial impingement [Park et al., 2008; Reddy et 

al., 2000].  Ludewig et al., [2000] found that the upper and lower trapezius had more 

activation in patients with subacromial impingement versus healthy controls.  However, 

our data indicate that the lower trapezius MVIC production is greater following a 

subacromial injection, suggesting that MVIC for the lower trapezius is influenced by 

pain.  Further, this finding supports the necessity to normalize EMG data without pain.  

We found no change in upper trapezius activity following a subacromial injection. This 

finding supports evidence from the literature that upper trapezius may be compensating in 

patients with subacromial impingement and may not be inhibited by subacromial pain 

[Ludewig, P. M. et al., 2000].  Bandholm et al., [2006] found that patients with shoulder 

impingement had significantly greater latissimus dorsi activity than controls, supporting 

the pain adaptation model described by Lund et al., [1991].  We found that maximal 
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activation of the latissamus dorsi is unaffected by a subacromial injection, which did not 

support our hypothesis, nor did it support findings from the literature [Bandholm et al., 

2006; Lund et al., 1991].  It is possible that patients did not alter their activity of the 

latissamus dorsi due to a lack of time to adapt a new movement strategy.  Further, it is 

possible that activation of the latissamus dorsi was unaffected because patients still had 

mild pain following the injection.   

 With respect to normalization practices, our results indicate that percent activation 

(% MVIC) for the anterior deltoid and the lower trapezius were significantly 

overestimated when normalized to the painful MVIC condition (Table 4.1, Figure 4.2).  

This result suggests that previous reports may have over-estimated the contribution from 

these muscles [Bandholm et al., 2006; Lin et al., 2011; Ludewig, P. M. et al., 2000; 

Reddy et al., 2000].  In a study conducted by Myers et al., [2009] EMG were normalized 

by the mean activation of 10 arm elevation trial in patients with subacromial 

impingement.  The author cautioned that normalization to a MVIC might be influenced 

by the impingement diagnosis.  In a study conducted by Roy et al., [2009] EMG data 

from patients with subacromial impingement were normalized to a reference position 

which consisted of the mean EMG activity while holding the affected arm at a target 

location while holding a 1 kg weight.  Other methods for EMG normalization for patients 

with subacromial impingement have been described [Lin et al., 2011].  Although these 

studies have taken measures to avoid the influence of pain on the normalization of EMG, 

the ability to compare and contrast between studies is obstructed by the differences in 

methodology.  From several review articles on muscle activity in patients with 

impingement syndrome, the most commonly used normalization technique described in 
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the literature is with respect to a MVIC [Chester et al., 2010; Phadke et al., 2009].  Using 

similar methodologies for EMG normalization between studies aids researchers and 

clinicians to reach conclusions.   

Limitations 

 This study does not address rotator cuff activity in patients with subacromial 

impingement. It is highly likely that pain has an influence on rotator cuff activity, 

specifically the supraspinatus as this muscle is most often affected by subacromial 

impingement [Michaud et al., 1987; Myers, J. et al., 2009; Neer, 1972; Reddy et al., 

2000].  Indwelling electrodes are the most common method for accessing the rotator cuff 

muscular activity; however, due to patient and clinician time constraints our 

instrumentation was limited to surface electromyography.   

Conclusions 

 Our study indicates that there is a problem with the current standard in EMG 

normalization with respect to a MVIC in patients with subacromial impingement.  Due to 

this limitation, future researchers should be cautious when comparing muscle activation 

(EMG) between injured populations and healthy controls.  Additionally, researchers 

should take advantage of reducing pain in the affected arm before making MVIC 

measurements.   

MUSCLE RECRUITMENT AND PAIN 

 In the previous chapters we investigated the influence of subacromial pain on 

scapular kinematics and the ability to maximally contract shoulder muscles.  The 
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kinematic shifts following removal of pain in chapter III, might represent a shift in 

neuromuscular control of shoulder and scapular stabilizing muscles.  Previous studies 

comparing neuromuscular control between patients with shoulder pain and those without 

often normalized EMG data in the presence of pain.  In chapter IV we explored the 

influence of normalization of EMG in the presence of pain.  From this study we 

concluded that normalization to an MVIC in the presence of pain results in 

overestimation of the activation of a given muscle during an arm elevation task.  We 

concluded that in order to make an accurate comparison between-individuals, 

normalization to an MVIC must be conducted without shoulder pain.  In Chapter V we 

investigate the neuromuscular control of the shoulder joint in patients with subacromial 

impingement before and after removal of pain.  Additionally, we use novel 

methodological approaches introduced in chapter IV, to normalize our EMG data 
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CHAPTER V 

SHOULDER MUSCLE ACTIVITY IN PATIENTS WITH IMPINGEMENT BEFORE 

AND AFTER INJECTION 

Co-authors include Dr. Matthew Shapiro for assistance in subject recruitment and 

Dr. Andrew Karduna for help with project conception. 

 

INTRODUCTION 

Activation of painful nociceptive receptors evokes neuromotor adaptations via 

inhibitory interneurons at the spinal cord level [Lund et al., 1991].  These mechanisms 

appear to decrease the activity of agonist muscles while simultaneously increasing 

antagonistic muscle activity, thus reducing the movement and/or velocity in the painful 

muscle.  The implications of this model suggest that peripheral pain is an evolutionary 

mechanism that overrides motor movements, thus protecting the painful muscles from 

further injury.  For the shoulder, experimentally induced subacromial pain results in a 

reduction of rotator cuff activation and strength [Diederichsen, L. et al., 2009; Stackhouse 

et al., 2012].  However, these findings may not be representative of clinical pain 

associated with shoulder injuries.  In the case of subacromial impingement syndrome, 

peripheral pain may decrease agonist muscle activity, such as the rotator cuff during 

elevation of the arm.  Several studies have documented that patients with subacromial 

impingement have reduced rotator cuff strength and isokinetic performance [Leroux et 

al., 1994; Reddy et al., 2000; Warner et al., 1990].  However, others report that patients 
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with impingement have greater rotator cuff activation when compared to healthy controls 

[Diederichsen, L. P. et al., 2009; Michaud et al., 1987].   

For the rotator cuff, activation between 30º and 60º has been postulated to be 

rudimentary in maintaining the head of the humerus in an inferior position, where 

reductions in rotator cuff activity could result in superior humeral loading and increased 

subacromial contact pressure [Poppen et al., 1978].   Due to the importance of specific 

agonist muscle activity for maintaining shoulder health, neuromotor adaptations to pain 

may not be as simple as agonists being reduced and antagonists being increased.   It is 

possible that muscles adapt to pain based on the their biological importance of the muscle 

relative to the task required [Kofler, 2003; Kofler et al., 2001].  This implies that in 

certain situations, the biological importance of the motor movement may outweigh the 

individual importance of specific muscle’s wellbeing [Kofler, 2003; Kofler et al., 2001].  

The implications of this second pain adaptation model suggest that maintaining mobility 

may be more important than the individual health of an injured muscle.  Maintaining 

rotator cuff and scapular stabilizing musculature may be essential for maintaining overall 

shoulder health, but at the cost of further degeneration of the rotator cuff [Michaud et al., 

1987; Soslowsky et al., 2002].  This model would oppose earlier pain adaptation models, 

which suggests an increase in antagonist and decrease in agonist activation in the 

presence of pain [Lund et al., 1991].   

Suprascapular nerve block and cadaveric studies have shown that the deltoid 

muscles compensate during arm elevation when the supraspinatus is inhibited or torn 

[McCully et al., 2007; Oh et al., 2011].  This finding provides evidence that the deltoid 

can be used as a proxy for difficult to measure rotator cuff activation [Chester et al., 
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2010], where greater deltoid activity may indicate reductions in rotator cuff activation 

[McCully et al., 2007; Oh et al., 2011].  However, there is disagreement in the literature 

pertaining to deltoid muscle activity in patients with impingement,  where several studies 

suggest that patients have less deltoid activity during arm elevation than controls [Clisby 

et al., 2008; Michaud et al., 1987; Reddy et al., 2000], as opposed to data that suggest an 

increase in deltoid activity for these comparisons [Myers, J. et al., 2009].  In chapter IV 

we demonstrated that differences between studies could be methodological, where EMG 

activity is influenced by normalization in the presence of pain [Ettinger, 2013].     

In addition to arm abductors, scapular stabilizers such as the serratus anterior and 

the trapezius muscle may have altered activity in patients with subacromial impingement.  

The serratus anterior and the lower trapezius, have been reported to have less activity in 

painful shoulders [Cools et al., 2003; Diederichsen, L. P. et al., 2009; Ludewig, P. M. et 

al., 2000; Peat et al., 1977; Scovazzo et al., 1991], although some studies have reported 

no significant differences in activity when compared to healthy controls [de Morais Faria 

et al., 2008; Finley et al., 2005].  Interestingly, experimentally induced pain resulted in 

heightened lower trapezius and activation of the serratus anterior [Diederichsen, L. et al., 

2009].  While larger muscles such as the upper trapezius [Ludewig, P. M. et al., 2000; 

Peat et al., 1977] and the latissamus dorsi [Bandholm et al., 2006; Diederichsen, L. P. et 

al., 2009] appear to be compensating with more activity in painful shoulders versus 

healthy controls.   

Local anesthetic injections to the subacromial space are commonly used to treat 

shoulder impingement syndrome and have been shown to significantly reduce shoulder 

pain [Alvarez et al., 2005; Ben-Yishay et al., 1994; Brox et al., 1997; Celik et al., 2009; 
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Yu et al., 2006].  Further, these injections have been shown to increase maximal internal 

and external rotation strength and arm abduction immediately following the injection 

[Ben-Yishay et al., 1994; Park et al., 2008].  This finding suggests that pain may be 

inhibiting muscles associated with arm abduction and rotation.  Understanding the 

influence of clinical pain on shoulder muscle behavior in shoulder impingement may be 

important for rehabilitative strategies.   To date, we are unaware of studies which have 

examined shoulder muscle activity during arm elevation in patients with subacromial 

impingement before and after injection of a local anesthetics.  We hypothesize that a 

local anesthetic injection will result in increased activity of the deltoid, decreased activity 

of the upper trapezius and the latissamus dorsi and increased activity of the serratus 

anterior and the lower trapezius during elevation of the arm in patients with subacromial 

impingement syndrome.   

METHODS 

 Twenty-one patients (13 males and 8 females) with impingement syndrome and 

twenty-one healthy control subjects were recruited for this study.  Mean ± SD 

demographic data for patients were age, 55.6 years ± 8.3 years; height, 174.1 cm ± 7.9 

cm; and weight, 78.6 kg ± 13.4 kg.   Mean and ± SD demographic data for control 

participants which were matched within 5 years of age to a patient of the same gender 

and arm dominance (19 right handed individuals) were age, 54.4 years ± 8.9 years; 

height, 172.9 cm ± 9.4 cm; weight, 77.8 kg ± 15.1 kg. For the patient population, our 

inclusion criterion required a positive sign for at least 3 of the following 5 tests:  

Hawkins-Kennedy, Neer, painful arc, empty can (Jobe) and/or painful external rotation 

resistance.  Patients having had shoulder surgery on the symptomatic side, a positive 
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Spurling test, traumatic shoulder dislocation or instability in the past 3 months, 

reproduction of shoulder pain with active or passive cervical range of motion, or signs of 

a rotator cuff tear (drop-arm test, lag signs, gross external rotation weakness assessed by 

a manual muscle test, or positive image findings) were excluded from this study.  The 

experimental protocol was approved by the Institutional Review Board at the University 

of Oregon. Written and verbal instructions of testing procedures were provided, and 

written consent was obtained from each subject. 

 All EMG activity were normalized to a post-injection MVIC [Ettinger, 2013] .  

The MVIC for each muscle was performed post-injection during a 5 second contraction, 

where the amplitude of the contraction was determined by the RMS data over the peak 

activation during the middle 2 seconds of the muscle contraction.  Each muscle’s MVIC 

was determined in a unique testing position, with approximately 20 seconds of rest 

between testing of different muscles.  More information on the specific MVIC testing 

procedures are reported in chapter IV. 

 In addition to MVIC testing, EMG activity was measured during an arm elevation 

task where patients were asked to complete three arm elevation trials.  Each elevation 

trial consisted of the patient raising their affected arm in the scapular plane (30 degrees 

from the frontal plane) and returning along the same path to a count of four in each 

direction.  Real-time feedback of the scapular plane was observed for each arm elevation 

trial.  Trials were repeated when patient’s arm elevation deviated from the scapular plane.  

All EMG data will was filtered between 10 – 1000 Hz before being passed through the 

analog to digital board.    
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Protocol 

 Each muscle, the anterior, middle and posterior deltoids, the upper and lower 

trapezius, the latissamus dorsi and the serratus anterior,  were tested in a unique position 

as described from the literature and in greater detail in chapter IV.   

 The Fastrak magnetic tracking device (Polhemus, Colchester, VT) was used for 

collecting 3-D humeral and thoracic motion within the treatment room of patients 

receiving an anesthetic injection.  The Polhemus unit consists of a transmitter, three 

receivers and a digitizer, all wired to a system electronics unit, which determines the 

relative orientation and position of the sensors in space (Figure 3.1).  The transmitter 

serves as a global reference frame and was fixed to a rigid plastic base and oriented such 

that its coordinate axes aligned with the cardinal planes of the human body.  The digitizer 

sensor was used to identify anatomical landmarks with respect to the global reference 

frame.  After digitization, the arbitrary coordinate systems defined by the Polhemus was 

converted to anatomically appropriate coordinate systems based on the recommendations 

of the International Society of Biomechanics Committee for Standardization and 

Terminology [Wu et al., 2005].   

Experimental Procedure      

 Once the digitization and calibration were completed, participants completed 

three arm elevation trials.  Kinematic and EMG data were synchronized and collected 

continuously at a rate of 40 Hz and 1200 Hz respectively for the three trials, and then 

averaged for data analysis.  Patients were asked to give their current shoulder pain level 

on an analog pain scale immediately after completing the shoulder elevation task.  
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 Following the kinematic and EMG collection, patients received a subacromial 

injection of anesthetic (6 cc 0.5% bupivacaine with epinephrine and 3 cc lidocaine with 

epinephrine ) and corticosteroid (1 cc 40mg methylprednisolone acetate) as part of their 

normal treatment.  The procedure was completed by one of our co-authors (M.S) who is 

an orthopedic surgeon. Patients were then given a 15 minute adjustment period and were 

asked to move their arm in order to disperse the drug within the subacromial bursa.  

Following the adjustment period patients were asked to repeat their arm elevation task 

following the same procedure as before.  No sensors were removed during the injection 

and the same calibration data was used when measuring kinematics post injection.  

Immediately following the post injection arm elevation task, patients were again asked to 

give their current shoulder pain level on an analog pain scale.  Patients were blinded from 

their previous analog pain scale rating.   

Statistical Analysis 

 To determine the differences in pain following treatment, paired t-tests were used 

between pre and post-injection VAS pain scores.  To determine the influence of treatment 

on muscular activity, seven 2-way repeated measures ANOVA were used.  Each muscle 

activation (percent MVIC) for the anterior, middle, posterior deltoid, latissamus dorsi, 

upper and lower trapezius and the serratus anteior were treated as unique dependent 

variables.  Humeral elevation angle at four increments, 30, 60, 90 and 120 degrees were 

treated as the first independent variable and condition (pre-injection, post-injection) were 

treated as the second independent variable.  For significant interactions, pairwise 

comparisons were performed using the least significant difference test (LSD).  To 

compare the effect of treatment with respect to healthy controls, seven 2-way mixed 
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effects ANOVA’s were used.  Humeral elevation angle at four increments was treated as 

the repeated measures independent variable and group (post-injection impingement 

versus controls) was treated as the between-subjects factor.  For significant interactions, 

pairwise comparisons were performed using the LSD.   

 

RESULTS 

 All patients complained of pain during the clinical examination and during 

elevation of the arm.  Following the subacromial injection, all patients reported a modest 

decrease in pain.  A dependent samples t-test indicate a significant reduction in VAS pain 

scores before and after treatment (p < 0.001) where patients had an average reduction in 

pain of 65% (Figure 3.3).   

Anterior Deltoid 

 No significant interaction was found between treatment and humeral elevation 

angle for anterior deltoid (p = 0.209).  Significant main effects of treatment were found at 

all levels of elevation and a significant main effect of humeral elevation was detected 

where on average the pre-injection state of the deltoid required 31.5% of maximal 

activation during elevation and the post-injection state of the deltoid required 34.5% of 

maximal activation (p = 0.017 and p = 0.001, respectively).  Comparing post-injection 

anterior deltoid activation for patients with impingement syndrome versus healthy 

controls, a significant interaction between humeral elevation angle and group (controls 

versus impingement population) was detected (p=0.008).  Post-hoc pairwise comparisons 

indicate that significant differences were pronounced between groups at 90º of humeral 
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elevation (p = 0.019); where the impingement syndrome group had on average 11% 

greater anterior deltoid activation than controls (Figure 5.1). 

 

Figure 5.1.  Activation of the anterior deltoid during arm elevation pre (blue, solid line) 
and post- (red, dashed line) anesthetic injection versus healthy controls (green, square 
dotted line).  Significant differences for within-subject comparisons are denoted with      
and significant differences for between-subject comparisons are denoted with     . 

 

Middle Deltoid 

 A significant interaction was found between treatment and humeral elevation 

angle for middle deltoid (p=0.023).  Post-hoc pairwise comparisons indicate that no 

significant differences occurred at 30º of elevation (p = 0.488); however following 

treatment, patients had on average 3.5% greater activation of the middle deltoid at 60º (p 

= 0.043), 4.9% greater activation at 90º (p = 0.05) and 7.3% greater activation at 120º (p 

= 0.014) of arm elevation.  Comparing post-injection activation of the middle deltoid for 

patients with impingement syndrome versus healthy controls, a significant interaction 

between humeral elevation angle and group (controls versus impingement syndrome 
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population) was detected (p = 0.031).  Post-hoc pairwise comparisons indicate that 

significant differences were pronounced between groups at 60º and 90º of humeral 

elevation (p = 0.05, p = 0.006 respectively); where the impingement syndrome group had 

on average 7.6% greater activation of the middle deltoid at 60º and 14.4% greater 

activation at 90º of arm elevation (Figure 5.2). 

 

Figure 5.2.  Activation of the middle deltoid during arm elevation pre (blue, solid line) 
and post- (red, dashed line) anesthetic injection versus healthy controls (green, square 
dotted line).  Significant differences for within-subject comparisons are denoted with      
and significant differences for between-subject comparisons are denoted with     . 

 

Posterior Deltoid 

 No significant interactions were found between treatment and humeral elevation 

angle for the posterior deltoid (p = 0.107).  No significant main effect of treatment was 

found (p =0 .052); however, a significant main effect of angle was found (p = 0.001).  No 
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significant interactions (p = 0.246) or significant effects of group (p = 0.214) were 

detected between patients with impingement syndrome and healthy controls (Figure 5.3).   

 

Figure 5.3.  Activation of the posterior deltoid during arm elevation pre (blue, solid line) 
and post- (red, dashed line) anesthetic injection versus healthy controls (green, square 
dotted line). 

Latissamus Dorsi 

 No significant interactions were found between treatment and humeral elevation 

angle for the latissamus dorsi (p = 0.980).  No significant main effect of treatment were 

found (p = 0.091); however, a significant main effect of angle was found, where a linear 

increase in activation of the latissamus dorsi resulted with increased humeral elevation 

angle (p = 0.001).  Comparing post-injection activation of the latissamus dorsi for 

patients with impingement syndrome versus healthy controls, a significant interaction 

between humeral elevation angle and group (controls versus impingement population) 

was detected (p = 0.028).  Post-hoc pairwise comparisons indicate that significant 

differences were only pronounced between groups at 120º of humeral elevation (p = 
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0.041), where the control group had on average 13.0% greater activation of the latissamus 

dorsi at 120º than the impingement group post-injection (Figure 5.4). 

 

Figure 5.4.  Activation of the latissamus dorsi during arm elevation pre (blue, solid line) 
and post-(red, dashed line) anesthetic injection versus healthy controls (green, square 
dotted line).  Significant differences for between-subject comparisons are denoted with   . 

Upper Trapezius 

 A significant interaction was found between treatment and humeral elevation 

angle for the upper trapezius (p = 0.005).  Post-hoc pairwise comparisons indicate that no 

significant differences occurred below 120º of elevation; however following treatment, 

patients had on average 14.5% greater activation of the upper trapezius at 120º of arm 

elevation.  Comparing post-injection activation of the upper trapezius for patients with 

impingement syndrome versus healthy controls, a significant interaction between humeral 

elevation angle and group (controls versus impingement population) was detected (p = 

0.041).  Post-hoc pairwise comparisons indicate that significant differences were 

pronounced between groups at 30º, 60º, 90º but not 120º of humeral elevation (p = 0.019, 
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p = 0.001, p = 0.001, p = 0.280 respectively); where the impingement group had on 

average 8.9% greater activation of the upper trapezius at 30º, 15.9% greater activation at 

60º, 19.5% greater activation at 90º of arm elevation (Figure 5.5). 

 

Figure 5.5  Activation of the upper trapezius during arm elevation pre (blue, solid line) 
and post- (red, dashed line) anesthetic injection versus healthy controls (green, square 
dotted line).  Significant differences for within-subject comparisons are denoted with      
and significant differences for between-subject comparisons are denoted with     . 

 

Lower Trapezius 

 No significant interactions were found between treatment and humeral elevation 

angle for the lower trapezius (p = 0.651).  No significant main effect of treatment was 

found (p = 0.100); however, a significant main effect of angle was found (p = 0.001).  

When comparing post-injection activation of the lower trapezius with respect to healthy 

controls, we detected a violation of sphericity, therefore for subsequent analysis 

Greenhouse-Geisser corrections were used.  No significant interactions (p = 0.063) or 

significant effects of group (p = 0.831) were detected between patients with impingement 
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and healthy controls; however, a significant effect of angle was detected (p = 0.001) 

(Figure 5.6).   

 

Figure 5.6.  Activation of the lower trapezius during arm elevation pre (blue, solid line) 
and post-(red, dashed line) anesthetic injection versus healthy controls (green, square 
dotted line).   

 

Serratus Anterior 

 No significant interactions were found between treatment and humeral elevation 

angle for the serratus anterior (p = 0.715).  No significant main effect of treatment was 

found (p = 0.143); however, a significant main effect of angle was found (p = 0.001).  

When comparing post-injection activation of the serratus anterior to healthy controls no 

significant interactions (p = 0.278) or significant effects of group (p = 0.713) were 

detected between patients with impingement syndrome and healthy controls; however, a 

significant effect of angle was detected (p = 0.001) (Figure 5.7).   
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Figure 5.7.  Activation of the serratus anterior during arm elevation pre (blue, solid line) 
and post-(red, dashed line) anesthetic injection versus healthy controls (green, square 
dotted line).   

 

DISCUSSION 

 Our study is the first to examine scapular and humeral muscle activations during 

arm elevation in patients with subacromial impingement before and after reduction in 

pain via an anesthetic injection.  We hypothesized that an anesthetic injection in patients 

with Stage 2 impingement syndrome would result in increased activity of the deltoid.  

Additionally, we hypothesized that the muscle activations for each muscle post-injection 

would be indistinguishable from muscle activations of healthy control subjects.  For the 

deltoid muscles our hypothesis was partially supported.  Following the anesthetic 

injection and during elevation of the arm, the anteior and middle heads of the deltoid 

increased.  For the anterior deltoid, the magnitude of the increase in activation went from 

an average of 31.5% activation pre-injection to 34.5% activation post-injection for all 

humeral angles.  For the middle deltoid, the increase in activity was observed only at 60º, 
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90º and 120º of elevation where the magnitude of the increased deltoid activity post-

injection was greater at higher elevation angles (Figure 5.1 and 5.2).  In general, our 

results indicate that the deltoid may be inhibited by pain as suggested by others [Clisby et 

al., 2008; Michaud et al., 1987].  Using the deltoid as a proxy for rotator cuff activation 

[McCully et al., 2007; Oh et al., 2011], our results suggests that in the presence of pain 

(pre-injection) the rotator cuff activation may be attenuated with respect to controls, 

which agrees with findings in the literature [Clisby et al., 2008; Michaud et al., 1987; 

Reddy et al., 2000].  However, contrary to our hypothesis, activation of the anterior and 

middle deltoid was greater post-injection when compared to healthy controls.  This 

finding suggests that following treatment, rotator cuff activity may be further attenuated 

when compared to healthy controls [McCully et al., 2007; Oh et al., 2011].   Mismatches 

in deltoid and rotator cuff activation may be related to reductions in acromiohumeral 

distance [Alpert et al., 2000; Bandholm et al., 2006; Deutsch et al., 1996; Myers, J. et al., 

2009; Poppen et al., 1978].  The trends for the posterior deltoid, although not significant, 

were similar to the anterior and middle heads of the deltoid (Figure 5.3), it is possible that 

we were underpowered to detect differences for this muscle. 

 In the presence of pain, antagonist muscles generally have heightened activation 

[Lund et al., 1991].  Activation of the latissamus dorsi during arm elevation reduces 

movement velocity and could potentially depress the head of the humerus in patients with 

impingement [Bandholm et al., 2006].  We hypothesized that activation of the latissamus 

dorsi would be greater in patients versus healthy controls and would be reduced 

following a subacromial anesthetic injection.  However, our results do not support our 

hypothesis, as we found no influence of an anesthetic injection on percent activation of 
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the latissamus dorsi during elevation of the arm.  Additionally, we found that at120º of 

humeral elevation, healthy control subjects had on average 13% (of maximum) greater 

activation of the latissamus dorsi than patients with impingement (Figure 5.4). Our 

findings are somewhat at odds with the literature,  where others have demonstrated 

greater activation of the latissamus dorsi than controls between 40-55º of humeral 

elevation during an isokinetic force matching tasks [Bandholm et al., 2006].  It is possible 

that the latissamus dorsi is recruited differently during force matching tasks than in the 

unconstrained arm elevation paradigm implemented in our study.  In a study conducted 

by Diederichsen et al., [2009] experimentally induced subacromial pain resulted in 

increased activation of the latissamus dorsi, which fits the pain adaptation model 

described by Lund et al., [1991] where antagonist muscles are augmented in the presence 

of pain.  In the current study, patients had less antagonist muscle activation during arm 

elevation, which does not agree with the findings of others [Diederichsen, L. et al., 2009; 

Lund et al., 1991].  However, adaptations to clinical subacromial pain could be different 

than experimental pain based on the intensity of the nociceptive stimulus [Leis et al., 

2000], the rate of adaptation to the stimulus [Kofler, 2003; Leis et al., 2000], the 

expectation of pain during arm elevation [Dube et al., 2011] and the degree of structural 

damage and substance P within the subacromial bursa [Gotoh et al., 1998].   

 Our results for the upper trapezius agree with previous reports that patients with 

impingement have greater activation of the upper trapezius when compared to healthy 

controls [de Morais Faria et al., 2008; Lin et al., 2005; Ludewig P, 2000; Peat et al., 

1977].  We predicted a decrease in muscle activity following the anesthetic injection; 

however, our results indicate a 14.5% (of maximum) increase in activation as the arm 



74 

was elevated to 120º (Figure 5.5).  Our results suggest that with a reduction in pain, 

activation of the upper trapezius increases.  Our results support the findings from 

Diederichsen  et al., [2009] where painful hypertonic saline injections resulted in 

decreased activation of the upper trapezius. Together, these findings suggest that the 

upper trapezius responds to changes in pain; however, the direction of these changes is 

not consistent with the adaptations observed between patients with subacromial 

impingement and healthy controls.  Therefore an alternative mechanism other than pain 

might explain the heightened activation of the upper trapezius.  Several ergonomic 

studies suggest that an overactive recruitment of the upper trapezius may be associated 

with shoulder injuries [Hanvold et al., 2013; Szeto et al., 2005].  Therefore, it is possible 

that overactive recruitment of the upper trapezius precedes the development of 

impingement syndrome.   

 We predicted that patients with impingement would have less activation of the 

lower trapezius and the serratus anterior when compared to healthy controls and would 

have increased activation following a local anesthetic injection.   Contrary to our 

hypothesis, patients with impingement did not demonstrate reductions in activation when 

compared to controls.  Additionally, we did not observe changes in muscle activation 

following the subacromial injection (Figure 5.6 and 5.7). The lower trapezius and the 

serratus anterior may have an influence on maintaining the acromiohumeral distance by 

posteriorly tilting the scapula and aiding the scapula in upward rotation [Ludewig P, 

2000].  However, variable findings have been reported for activation of the lower 

trapezius and the serratus anterior, where some studies have found that patients with 

painful shoulders have less activation of the lower trapezius [Cools et al., 2003] and the 
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serratus anterior [Lin et al., 2011; Ludewig P, 2000; Peat et al., 1977] than in healthy 

shoulders, whereas others report no differences in activation of the lower trapezius and/or 

the serratus anterior [Bandholm et al., 2006; de Morais Faria et al., 2008; Finley et al., 

2005].  We previously reported that the methodology in previous studies often relies on 

normalization to an MVIC which can be influenced by subacromial pain (chapter IV).  

Further, we have previously found that the lower trapezius was especially sensitive to the 

normalization method.  Therefore, differences between our results and others, may be due 

to the methodological limitations of previous studies.   

 Limitations 

 We used deltoid function as a proxy for rotator cuff activation; however, 

indwelling electrodes are the most common method for accessing the rotator cuff 

muscular activity directly [Michaud et al., 1987; Reddy et al., 2000].  We opted away 

from using indwelling electrodes due to the time requirement in instrumentation, where 

all of our measurements were made in the clinic and needed to be performed in a timely 

manner.    Another limitation in our experiment was that  there was no randomization of 

the treatment protocol and the control group received no treatment.   

 

Conclusions 

 We demonstrate altered shoulder muscle recruitment before and after pain 

reduction via an anesthetic injection.  Our results suggest that pain influences shoulder 

muscle recruitment; however, simply reducing pain does not restore muscle recruitment 

patterns to healthy control levels.  In most cases, our results show the opposite, where the 
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anesthetic injection resulted in further deviation from healthy control data in patients with 

impingement.  These findings may represent an acute adaptation to a “pain free” 

shoulder.  Future studies should examine the longitudinal influences of pain reduction on 

shoulder muscle function.   

PAIN AND MOTOR CONTROL 

 In chapter II we investigated proprioceptive acuity in dental hygienists before and 

after the workday.  We concluded that dental hygienists have similar acuity at the 

beginning and end of the workday; however, dental hygienists who complained of 

shoulder pain had greater proprioceptive deficits than dental hygienists without pain.  

These deficits noted in the pain group could be due to competitive integration of multiple 

sensory signals i.e. pain and proprioception.  For afferent signals traveling to the brain, 

slower traveling pain signals can be competitively inhibited by faster traveling 

mechanoreceptive signals such as touch and vibration [Moayedi et al., 2013].  However, 

it is unknown if pain disrupts proprioceptive processing or signaling.  The sixth chapter 

of this dissertation will investigate proprioceptive acuity during pain and after the 

removal of pain in patients with impingement.  In addition, proprioception from adjacent 

joints will be investigated and compared with healthy controls.   
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CHAPTER VI 

PROPRIOCEPTIVE ACUITY IN PATIENTS WITH IMPINGEMENT BEFORE AND 

AFTER INJECTION 

Co-authors include Dr. Matthew Shapiro for assistance in subject recruitment and 

Dr. Andrew Karduna for help with project conception.   

 

INTRODUCTION 

 Shoulder impingement syndrome is one of the most commonly reported 

musculoskeletal complaints, typically affecting adults between the ages of 45 - 65 years 

of age [van der Windt et al., 1995].  Patients with impingement typically present with loss 

of arm function and pain, which is intensified with elevation of the arm [Neer, C. S., 

1983].  Other symptoms of impingement include altered scapular kinematics and scapular 

muscle recruitment during arm elevation [Lin et al., 2011; Ludewig, P. M. et al., 2000; 

Lukasiewicz et al., 1999; McClure et al., 2006; Michaud et al., 1987; Reddy et al., 2000].   

Neuromuscular control of the shoulder joint is vital for maintaining shoulder stability and 

overall shoulder health [Lephart et al., 1994; Niessen et al., 2008; Riemann et al., 2002a, 

2002b]. In monkeys, damage to the dorsal root reduces proprioceptive input to the 

somatosensory system, which results in movement disorders [Vierck, 1982].  It is 

possible that patients with shoulder impingement have proprioceptive deficits which  

influence muscle behavior and kinematic movement patterns for the shoulder [Anderson 

et al., 2011; Bandholm et al., 2006; Camargo et al., 2009; Haik et al., 2013; Machner, 

2003; Maenhout et al., 2001].   
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 Non-noxious mechanical stimuli and noxious stimuli activate mechanoreceptors 

and nociceptors respectively.  Both afferent pathways are ultimately integrated by higher 

brain centers and can influence motor output where painful stimuli have been shown to 

inhibit the primary motor cortex  [Valeriani et al., 1999] and proprioceptive stimuli 

influences motor cortical activity as well [Weiller et al., 1996].  Histological studies have 

indicated that a large concentration of noxious and non-noxious nerve endings terminate 

within the subacromial bursa, especially on the anterior side next to the coracoacromial 

ligament [Ide et al., 1996].  However, in patients with subacromial impingement, fewer 

sensory nerve endings were found in the coracoacromial ligament than in other healthy 

populations [Morisawa, 1998].  It is unknown what the contribution of these nerve 

endings in the subacromial bursa are with respect to shoulder proprioception.   In a study 

conducted by Zuckerman et al., [1999] subacromial anesthetic injections had no influence 

on joint position sense or kinesthetic sense in healthy individuals, suggesting that sensory 

receptors in the subacromial bursa have minimal influence on proprioception 

 Six studies have investigated proprioception in patients with impingement 

syndrome.  The modalities of proprioception accessed in patients with impingement 

syndrome vary from kinesthesia [Machner, 2003], to force steadiness [Bandholm et al., 

2006; Camargo et al., 2009; Maenhout et al., 2001] and recently to joint position sense 

tasks [Anderson et al., 2011; Haik et al., 2013]. Differences between patients with 

impingement syndrome and controls have been reported for kinesthetic sense, where the 

detection of movement threshold was higher in the impingement syndrome group than 

controls and improved following acromion decompression surgery [Machner, 2003].   No 

differences were found between those with impingement syndrome and controls for joint 
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angle matching tasks in medial and lateral rotation [Haik et al., 2013], but were found in 

elevation tasks where higher elevation angles resulted in worse proprioceptive acuity in 

the impingement syndrome group [Anderson et al., 2011].  Patients have greater 

difficulty performing isokinetic and concentric abduction force steadiness tasks than 

controls [Bandholm et al., 2006; Maenhout et al., 2001] and consistently overshoot their 

target  in external rotation [Maenhout et al., 2001]; but have no difficulty performing 

isometric abduction force steadiness tasks [Bandholm et al., 2006; Camargo et al., 2009]. 

Therefore, it is possible that not all modalities of proprioception are influenced the same 

for patients with impingement syndrome and may depend on humeral angle.  Previous 

studies have found that joint position accuracy improves linearly from low to high arm 

angles, peaking at 90º of elevation in healthy individuals for the shoulder [Anderson et 

al., 2011; Hyler, 2013; Suprak et al., 2006b; Zuckerman et al., 1999] and similarly for the 

elbow [Hyler, 2013].  However for patients with impingement, the influence of joint 

angle on accuracy may be disrupted [Anderson et al., 2011].  It is possible that this 

disruption in accuracy is associated with pain, which is intensified by elevation of the 

arm.   

 Several studies compared proprioception of the symptomatic shoulder versus the 

contralateral asymptomatic shoulder [Anderson et al., 2011; Machner, 2003; Maenhout et 

al., 2001].  Maenhout et al., [2001] investigated precision and consistency between the 

symptomatic and asymptomatic sides and found greater errors in the symptomatic side 

versus healthy controls, suggesting a systemic proprioceptive deficit.  Although not 

significant, asymptomatic arms tended to have greater errors than healthy controls and 

were less sensitive to the influence of angle during position sense tasks [Anderson et al., 
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2011].  No comparisons were made to controls in the study by Machner et al., [2003] but 

Warner et al. [1996] reported similar proprioceptive errors after surgery compared to 

healthy controls.  Anatomic factors, such as acromial morphology are associated with 

impingement and tend to be found bilaterally  [Nicholson et al., 1996], while 

supraspinatus tendon girth tends to be greater in both symptomatic and asymptomatic 

shoulders versus healthy controls [Barisic et al., 2006].  Therefore, the asymptomatic arm 

may suffer from similar proprioceptive deficits as the control arm based on the anatomy 

and physiology of the joint.  Hyler et al., [2013] recently demonstrated that adjacent 

joints demonstrate similar proprioceptive acuity and are both sensitive to angles with 

maximal sensitivity around 90º for both the shoulder and elbow.  To assess if 

proprioceptive deficits are systemic, multiple joints should be investigated in patients 

with joint pathology.   

 To date, no study has investigated the influence of subacromial pain reduction on 

shoulder proprioception.  Furthermore, no study has investigated proprioceptive acuity of 

peripheral pain reduction on adjacent joints. We hypothesize that joint position errors will 

be greater in magnitude for the patient population versus controls and accuracy will be 

less sensitive to changes in arm angle.  However, following a reduction in pain, we 

hypothesize that the magnitude of errors will decrease and patients will have a linear 

response with decreasing errors with respect to arm angle.  Further, we hypothesize that 

no differences in errors of magnitude or arm angle will be detected by group or condition 

(injection) for the elbow.   
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METHODS 

Seventeen patients with stage 2 subacromial impingement and seventeen healthy 

control subjects were recruited for this study.  Patients had an average age of 50.1 (± 10.6 

) years. Healthy controls participants had an average age of 52.2 (± 10.0) years.  Control 

subjects were matched within 5 years of age to a patient of the same gender and arm 

dominance. For the patient population, inclusion criteria were a positive sign for at least 3 

of the following 5 tests:  Hawkins-Kennedy, Neer, painful arc, empty can (Jobe) and/or 

painful external rotation resistance [Michener et al., 2009]. Patients having had shoulder 

surgery on the symptomatic side, a positive Spurling test, traumatic shoulder dislocation 

or instability in the past 3 months, reproduction of shoulder pain with active or passive 

cervical range of motion, or signs of a rotator cuff tear (drop-arm test, lag signs, gross 

external rotation weakness assessed by a manual muscle test, or positive image findings) 

were excluded from this study.  The experimental protocol was approved by the 

Institutional Review Board at the University of Oregon. Written and verbal instructions 

of testing procedures were provided, and written consent was obtained from each subject 

prior to testing.  Following the orthopedic evaluation,  patients were asked to indicate 

their worse shoulder pain level on a visual analog pain scale (VAS).  

After the study protocol, patients received a subacromial injection of anesthetic (6 

cc 0.5% bupivacaine with epinephrine and 3 cc lidocaine with epinephrine ) and 

corticosteroid (1 cc 40mg methylprednisolone acetate) as part of their normal treatment.  

The procedure was completed by one of the co-authors (M.S) who is an orthopedic 

surgeon. Patients were then given a 15 minute adjustment period and were asked to move 

their arm in order to disperse the drug within the subacromial bursa.  The diagnostic 
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special tests were repeated and patients were again asked to report their shoulder pain 

level during the clinical tests on a VAS.  Patients were blinded from their previous VAS 

submission.  Following the adjustment period, patients were asked to repeat the study 

protocol.  No sensors were removed for the injection and the same calibration data was 

used from the previous study protocol.   

Instrumentation 

 The Fastrak magnetic tracking device (Polhemus, Colchester, VT) was used for 

collecting 3-D in-vivo kinematics of the shoulder and forearm.  The Polhemus unit 

consists of a transmitter, three custom “break-away” receivers and a digitizer, all wired to 

a system electronics unit, which determines the relative orientation and position of the 

sensors in space.  The break-away receivers allowed for disconnection between the 

polhemus unit and the sensor without removing the sensor from the subject (Figure 3.1).  

The transmitter served as a global reference frame and was fixed to a rigid plastic base 

and oriented such that its coordinate axes aligned with the cardinal planes of the human 

body.  The digitizer sensor was used to identify anatomical landmarks with respect to the 

global reference frame.  After digitization, the arbitrary coordinate systems defined by the 

Polhemus was converted to anatomically appropriate coordinate systems.  The 

anatomical coordinate system for the thorax was based on the recommendations of the 

International Society of Biomechanics Committee for Standardization and Terminology 

[Wu et al., 2005].  Using the scapular and forearm sensors, motion of the humerus and 

forearm were tracked following the protocols established by Lin et al., [2012].  
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 Three “break-away” receivers were placed on anatomical segments for the 

duration of the study, and each receiver was detached from its cable during the treatment 

phase (Figure 3.1).  The first receiver was placed on the sternum at the level of the 

manubrium, just inferior to the jugular notch.  The receiver was taped into place using 

double sided adhesive tape, with an additional layer of tape on top of the receiver which 

helped secure the device to the skin.  The second receiver was placed on the dorsum of 

the wrist using double sided tape and elastic sports tape.  The third receiver was placed 

over the scapula after mounting it on a custom scapular tracking device machined from 

plastic (Karduna et al. 2001).  This tracker was attached to the scapular spine and 

posterior-lateral acromion with Velcro (Figure 3.1).  All kinematic data were represented 

using standard Euler angle sequences for plane, elevation and external rotation of the 

humerus, and flexion, supination and carrying angle for the elbow [Wu et al., 2005].  For 

the current study, only shoulder elevation and elbow flexion angles were used.    

 For digitization and testing, subjects sat on a stool to help stabilize their thoracic 

posture.   After digitization, subjects were outfitted with a head mounted display (Z800, 

eMagine, Bellevue, WA) which allowed the subjects to see a virtual representation of 

their arm position, while preventing visual feedback from their hand or the outside 

environment (Figure 6.1).  The predetermined target angles were 50°, 70°, and 90° for 

either elbow flexion or shoulder elevation in the sagittal plane.  All targets were repeated 

four times and were presented in random order.  The order of joint testing (shoulder and 

elbow) was randomized.  To avoid fatigue, subjects were given a five second rest break 

between each trial.  Practice trials were completed prior to testing until subjects indicated 

competency with the protocol.  Subjects were guided to each target angle using a custom 



84 

LabView program (National Instruments, Austin, TX).  The center of the head mounted 

display contained two fixed, parallel white lines that represented a ± 1° boundary with 

respect to the target.  Subjects elevated their arm or flexed their elbow with their thumb 

pointed upwards and their arm in the sagittal plane, until a red line, which represented 

real-time feedback of their limb, appeared on the screen.  Subjects placed the red line 

between the two fixed white lines, indicating target acquisition (Figure 6.1).   Once in this 

position, subjects were instructed to “memorize the location of your hand in space” for 

three seconds.   The virtual representation then disappeared and the subject was then 

instructed to “relax your arm by your side”.  After five seconds with their arm by their 

side, the computer program instructed the subject to “return your arm to the target 

position”.   After the subject returned to where they thought their arm had previously 

been, they indicated to the researcher by saying “here”, the researcher then marked this 

position for later analysis.   

 

 

Figure 6.1.  Virtual representation of the arm (red line) with respect to the target position 
(space between the white lines).  Left figure (A), demonstrates the arm moving towards 
the target, and the right figure (B), represents the arm within the target field.   

 

 To evaluate accuracy and precision of the joint position sense task, the angular 

difference between the positioned and repositioned position (± 1º of target angle) was 

A
 

B
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calculated for each target.  The constant error was calculated from the average of the 

angular deviations for each group of targets 50°, 70°, and 90° and represents the angular 

accuracy and directional bias [Schmidt, 1999].  The variable error (precision) was 

calculated from the standard deviation for the same group of targets and represents the 

individuals consistency during the angle matching task [Schmidt, 1999].   Constant and 

variable errors are used in concert to give a representation of overall joint position sense 

[Hyler, 2013].    

Statistical Analysis 

 SPSS version 21.0 (IBM, Chicago IL) was used for statistical analysis.  For 

differences in VAS pain scores, a dependent samples t-test was run on pre and post-

injection pain scores. 

Constant error (accuracy) 

 To test for linear influences of angle on constant errors, three separate one-way 

ANOVAs (pre, post-injection and controls) were run using a priori linear contrasts for 

both the shoulder and elbow.  To test for the differences in magnitude of constant errors, 

we averaged data by target angle and performed dependent samples t-tests for the 

impingement group before and after injection and independent samples t-tests for 

differences between impingement groups with respect to controls for the shoulder and 

elbow.   

Variable error (precision) 



86 

 To test for consistency in target matching, we performed two-way repeated 

measures ANOVAs with variable error as the dependent variables for the shoulder and 

elbow. Target angle (50, 70 and 90 degrees) and condition (pre and post-injection) were 

the independent variables.  Additionally, we performed two-way mixed effects ANOVAs 

to compare post-injection versus controls group for variable errors as the dependent 

variables for the shoulder and elbow.  Target angle (50, 70 and 90 degrees) and group 

(post-injection versus controls) were the independent variables.  For all statistical tests, 

alpha was set to 0.05.  Pairwise comparisons were performed where significant 

interactions and main effects were found using the least significant difference (LSD) test.   

RESULTS 

VAS pain scores marked a significant (p < 0.001) 72% reduction in pain post-injection 

(Figure 6.2).   

 

Figure 6.2.  Visual analog pain scores (mm) pre and post-injection with standard errors. 
Significant differences are represented with      .  
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 We ran three (pre and post-injection and healthy controls) a priori one-way 

ANOVA tests with linear contrast for constant errors for the shoulder and elbow.  For the 

shoulder, pre-injection linear contrasts were not significant (p = 0.07); however, the 

contrasts were significant for the elbow pre-injection (p = 0.02).  Post-injection, no 

significance was found for the shoulder (p = 0.128); however, significance was detected 

for the elbow (p < 0.001).  For controls, linear contrasts were significant for the shoulder 

(p < 0.001) and elbow (p < 0.001) (Figure 6.3 and 6.4).   

Figure 6.3.  Linear contrasts for constant error for the shoulder (degrees) pre (blue, solid 
line) and post - (red, dashed line) injection and healthy controls (greed, square dotted 
line).  Significance for linear contrasts tests is represented by     . 
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Figure 6.4.  Linear contrasts for constant error for the elbow (degrees) pre (blue, solid 
line) and post- (red, dashed line) injection and healthy controls (greed, square dotted 
line).  Significance for linear contrasts tests is represented by      . 

 

 Results of our dependent samples t-test indicate that shoulder constant errors were 

on average 34% greater post-injection than pre-injection (p = 0.042); however, no 

changes were observed for the elbow (p = 0.991).  Our independent samples t-tests 

indicate that pre-injection errors at the shoulder did not differ significantly from controls 

(p = 0.510); however, mean errors at the elbow were 46% greater for the patient 

population (p = 0.018).  Independent samples t-tests for post-injection errors versus 

controls indicate that errors were 34% greater post-injection for the shoulder (p = 0.038) 

and were 46% greater post-injection for the elbow (p = 0.031) (Figure 6.5).    
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Figure 6.5.  Magnitude of constant error (degrees) for the shoulder (left) and elbow 
(right), pre (blue) and post- (red) injection and healthy controls (green).  Significance for 
paired samples is represented by     .  Significance for independent samples is represented 
by    . 

 

 For variable errors at the shoulder there was no significant interaction (p = 0.211) 

or main effects of injection (p = 0.859), nor was there any significant influence of target 

angle (p = 0.724).   When compared to controls, post-injection variable errors were on 

average 62% greater for all angles (p < 0.001) (Figure 6.6).  For variable errors at the 

elbow there were no significant interactions (p = 0.276) or main effects of injection (p = 

0.069), nor were there any significant influences of target angle (p = 0.106).   When 

compared to controls, post-injection variable errors were on average 80% greater for all 

angles (p < 0.001) (Figure 6.7). 
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Figure 6.6.  Variable error for the shoulder (degrees) pre (blue, solid line) and post- (red, 
dashed line) injection versus healthy controls (greed, square dotted line).  Significant 
differences for between subject-comparisons are denoted with     . 

 

Figure 6.7.  Variable error for the elbow (degrees) pre (blue, solid line) and post- (red, 
dashed line) injection versus healthy controls (greed, square dotted line).  Significant 
differences for between-subject comparisons are denoted with     .  
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DISCUSSION 

 Our findings agree with the literature that for both the shoulder and elbow, 

healthy individuals demonstrate a decrease in constant errors with increased target 

elevation [Anderson et al., 2011; Hyler, 2013; Suprak et al., 2006b; Zuckerman et al., 

1999].  We hypothesized that the linear relationship between target angle and accuracy 

would be disrupted in patients with subacromial impingement and would be restored 

following an anesthetic subacromial injection.  Our results partially support our 

hypothesis, where pre-injection, patients did not display a linear decrease in constant 

errors with increased target elevation for the shoulder (Figure 6.3).  However, following 

the subacromial injection the influence of angle on accuracy was not restored.   This 

finding suggests that factors other than pain may influence the relationship between 

elevation angle and proprioceptive acuity for the shoulder in patients with impingement.  

Furthermore, patients with impingement may not be sensitive to the influence of angle on 

proprioception.  

 We additionally hypothesized that the magnitudes of the constant errors would be 

greater in the impingement group compared to controls and would be reduced following 

the anesthetic injection.  Our results did not support our hypothesis, where patients were 

not different from controls pre-injection, and had greater overshooting errors post-

injection (Figure 6.5).  It is possible that patients were using pain to help guide their arm 

to the target positions and were unable to use this sensory modality once the subacromial 

bursa was anesthetized, thus resulting in poorer accuracy.  Previous studies have shown 

that anesthetic injections to the subacromial bursa have no effect on proprioceptive acuity 

in non-pained individuals [Zuckerman et al., 1999].  We therefore find it unlikely that the 
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anesthetic injection had an influence on proprioception outside of pain reduction.  In a 

study conducted by Hassen et al., [2002] joint position sense was measured before and 

after pain-reducing injections (anesthetic and placebo) in patients with chronic knee pain 

(osteoarthritis).  Results from their study demonstrate that joint proprioceptive acuity is 

further diminished following anesthetic injection and is unchanged by placebo.   This 

finding suggests that for the knee, when pain is reduced centrally, proprioceptive acuity is 

preserved and when pain is reduced peripherally, proprioceptive acuity is diminished. 

Patients with chronic pain may use afferent stimulation of intra-articular nociceptors to 

aid proprioceptive acuity during target matching tasks [Hassan et al., 2002].  Further, 

because neither injection condition (anesthetic or placebo) resulted in improved 

proprioceptive acuity, it is likely that factors other than pain are responsible for 

proprioceptive deficits at the knee.  It remains unknown if pain helps or hinders 

proprioceptive acuity for the shoulder.    

 For accuracy at the elbow joint, we hypothesized that there would be no 

differences between patients with shoulder impingement versus healthy controls, nor 

would there be differences following the subacromial injection.  Our results indicate that 

unlike the shoulder joint, patients demonstrated a linear increase in accuracy for the 

elbow as predicted (Figure 6.4).  However,  the magnitude of their differences were 

greater pre and post-injection and the magnitude of the differences were not influenced 

by the injection, where in either condition patients tended to overshoot the target when 

compared to controls (Figure 6.5).  This finding suggests that adjacent joints have a 

disruption in proprioceptive acuity that is unrelated to the natural tendencies associated 

with angle.  However, it is unknown whether or not these proprioceptive differences are 
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the result of the impingement or pre-date the impingement syndrome phenomenon.  A 

possible explanation for the decrements in proprioceptive acuity at the elbow in patients 

with shoulder impingement could be related to disruptions in the processing of 

proprioceptive information centrally.   

 For constant and absolute errors, the linear influence of angle in healthy subjects 

has been repeated in multiple studies [Anderson et al., 2011; Hyler, 2013; Suprak et al., 

2006b; Zuckerman et al., 1999].  However, this trend does not extend to variable errors 

(precision) [Anderson et al., 2011; Hyler, 2013; Zuckerman et al., 1999].  We 

hypothesized that variable errors in patients with impingement syndrome would be 

greater than controls but would improve following a subacromial injection.  Results from 

our study partially support our hypothesis, where patients with impingement groups had 

greater variable error when repositioning their arm to targets than controls for both 

shoulder and elbow; however, following treatment, there were no significant changes in 

precision (Figures 6.6 and 6.7).  This findings suggests that impingement syndrome is 

associated with a decrement in the ability to consistently determine where one’s arm is 

located in space and may be independent from pain.  It is possible that other symptoms 

associated with impingement such as rotator cuff deterioration, tendon thickening and 

changes to the subacromial bursa [Neer, C. S., 2nd, 1983] may influence the ability to 

consistently identify targets in space.    

 We manipulated the sensation of pain via a subacromial anesthetic injection, 

which resulted in increased proprioceptive errors.   Hassan et al., [2002] demonstrated 

similar results after anesthetic injection to the knee in patients with osteoarthritis.  
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However, patients who underwent shoulder surgery have been reported to resolve 

proprioceptive deficits [Machner, 2003].  It is possible that patients have adapted to 

painful stimuli and have learned to use the nociceptive afferents towards performance and 

is acutely disrupted by the anesthetic injection.  The manipulation of sensory information 

may result in periods of adjustment where changes in the processing of sensory 

information are exposure dependent [Fernandez-Ruiz et al., 1999].  In similar sensory 

systems, prism goggle studies are commonly used to examine the influence of visual 

manipulation on motor system adaptations and proprioception [Fernandez-Ruiz et al., 

1999; Luaute et al., 2009; Redding et al., 2005].  Results from these studies indicate that 

manipulation of the visual field results in motor adaptations of the arm in space, which 

occur even after the prism goggles are removed (after-effect) [Fernandez-Ruiz et al., 

1999; Luaute et al., 2009; Redding et al., 2005].  In this analogy, pain is similar to the 

prism goggles, and the removal of pain is analogous to the after-effects associated with 

the removal of the prism goggles.  Therefore, it is possible that patients regain 

proprioceptive acuity once the after-effects of the injection subside.  To determine the 

influence of an after-effect, studies should examine proprioceptive acuity in patients with 

impingement longitudinally after receiving subacromial injections.   

Limitations 

 Only one modality of proprioception was included in this study and it is possible 

that other modalities such as force steadiness and kinesthetic sense would respond 

differently to an anesthetic subacromial injection.  Further, we did not include a treatment 

condition for our control individuals.  However, others have demonstrated that 
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subacromial injections resulted in no change in proprioceptive acuity for the shoulder 

[Zuckerman et al., 1999].  Due to the lack of randomization, which was constrained by 

our clinical design, it is possible that learning effects and familiarization to the protocols 

could impact the results post-injection.  Further, it is possible that the magnitude of the 

differences were minimized post-injection due to a learning bias.  

Conclusion 

 Proprioceptive errors in the shoulder increased following a subacromial injection.  

This finding may represent a change in the processing of proprioceptive signals in the 

absence of pain.   The proprioceptive errors in the elbow were independent of pain and 

were higher than in control subjects.  This finding may suggest that patients with 

subacromial impingement have systemically worse proprioceptive acuity, or may have 

disruptions in the processing of proprioceptive afferent stimuli.    
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CHAPTER VII 

CONCLUSIONS 

 For dental hygienists there was no influence of workday exposure on shoulder 

proprioceptive errors.  Additionally, no differences were detected by endurance on 

proprioception.  Dental hygienists who reported pain, typically had greater proprioceptive 

errors than dental hygienists without pain; however, this effect was unrelated to workday 

exposure.  These findings indicate that pain may influence the magnitude of 

proprioceptive errors in dental hygienists; however, workday exposure has little to no 

effect on proprioceptive errors in dental hygienists.  When we investigated proprioception 

in injured populations our results indicate that patients with impingement have less 

sensitivity to angular position and tended to overshoot their targets with greater 

variability during angle matching tasks for the shoulder and elbow than controls.  The 

disparities in proprioceptive acuity found in patients with impingement were not resolved 

following pain reduction, in-fact the magnitude of the errors increased post-treatment.  

These findings suggest that patients with impingement have decrements in either the 

signaling or processing of proprioceptive information and may use pain to reduce these 

inequalities.  It is possible that dental hygienists who reported pain have underlying 

neuromechanical dysfunction that is related to proprioceptive deficits and deficits in 

motor control.   

 To investigate the influence of subacromial pain on motor control, we 

investigated scapular kinematics and muscle recruitment before and after pain reduction 

and compared these results to healthy controls.  For scapular kinematics, we found that a 
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reduction in pain resulted in increased anterior tilting, but no changes in upward or 

internal rotation.  However, when compared to healthy controls, patients had greater 

anterior tilting and upward rotation of the scapula.  Our findings indicate that the removal 

of pain in patients with impingement results in further dyskinesis of the scapula.  Patients 

could be using pain to limit scapular tilt and upward rotation and are unable to do so after 

an anesthetic injection.  Further, we investigated the muscular activation in patients with 

impingement during the kinematic evaluation.  However, due to limitations in EMG 

normalization, we first had to investigate the influence of pain on MVIC in the patient 

population.  Our results indicated that 4 of the 7 shoulder muscles tested: were 

significantly impaired in the presence of pain.  Additionally, normalizing EMG data to an 

MVIC in the presence of pain caused significant overestimation of anterior deltoid and 

lower trapezius muscles.   These results indicated that subacromial pain can influence 

shoulder muscle activity, especially for the deltoid muscles and lower trapezius.  

Additionally, normalization to MVIC in the presence of pain can have unpredictable 

results.  Using a novel MVIC normalization procedure we investigated EMG from 7 

shoulder muscles during the kinematic evaluation.  Our results indicated that following 

the reduction in pain, patients had increased anterior deltoid,  middle deltoid and upper 

trapezius activity; further this trend extended to controls.  Control subjects had greater 

activation of latissamus dorsi than the patient group post-injection.   These findings may 

indicate that  a reduction in subacromial pain could be associated with changes in 

shoulder muscle recruitment, primarily of the deltoid.  This change in deltoid activity  

may lend evidence to rotator cuff function in patients without rotator cuff tears.   
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 These studies lend evidence that pain may have an influence on motor control of 

the shoulder; however, many of the results from these studies indicate that pain may be 

beneficial in terms of reducing negatively-associated behaviors.  In an analogy, pain may 

be similar to an alarm system, letting the body know that an insult to homeostasis may be 

present.  Further, this alarm system appears to be integrated with other systems to 

compensate for the disruptions associated with the insult.  However, when the ability for 

the alarm to be integrated with these other systems is removed (anesthetic injection), 

further disruption occurs.  It is possible that pain alerts other systems into countering the 

negative behaviors associated with the insult, but when pain is removed, these alternative 

systems no longer compensate and the motor behavior goes in the direction of the insult.   

Final Thoughts 

 Pain is an evolutionary adaptation and is probably important for the integration of 

multiple physiologic systems.  Clinically, it is important to reduce pain in order to 

improve quality of life.  However, it may be imperative to resolve the underlying insults 

that cause pain instead of targeting pain itself.   
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APPENDIX A 

CONSENT FORM CHAPTER II 

University of Oregon 
Consent to Take Part In a Research Study 

Project: Occupational Biomechanics in Dental Hygienists 
 
You are invited to participate in a research study conducted by Andrew Karduna, PhD, from 
the department of Human Physiology at the University of Oregon.  The purpose of this 
study is to investigate the effects of a typical workday on dental hygienists.  We will be 
looking at shoulder motion and your ability to actively reposition your shoulder in a 
previously presented position.  You were selected because you are a practicing dental 
hygienist.  Non-invasive measurements will be made throughout the experiment.  This study 
is funded by a grant from the Centers for Disease Control and Prevention. 
 

If you decide to participate, you understand that the following things will be done to you 
once on the day prior to the experiment (lasting approximately one half hour): 

- You will be asked to fill out several brief forms to provide basic information such as 
age, height and weight as well as your health and working conditions.  Our funding 
agency also requires that we ask for information about your ethnicity and race.  This 
information is optional. 

- We will measure your shoulder endurance by positioned you on your side and 
asking you to hold up a five-pound weight in your hand for as long as you can.  

- We will measure your shoulder tightness by positioning you on your back and 
measuring how far your arm can be passively moved. 

One the day of the experiment, you will have the following things done to you twice – 
one session prior to your workday and one session immediately after your workday 
(lasting approximately one hour per session): 

- Small sensors will be attached by straps or tape to your arm, upper back and 
shoulder and you will be asked to raise your arm overhead several times.   

- You will be asked to wear a head-mounted display and actively position your 
shoulder in a specified target position, as viewed through these goggles.  You will 
then be asked to attempt to replicate the presented position without the benefit of 
visual feedback.  Several different target positions will be attempted.  

- You will be asked to rate your level of shoulder fatigue on a scale of 6-20. 
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- Your shoulder strength will be measured by having you exert a maximal force. 

One the day of the experiment, you will have the following things done to you during 
your entire workday: 

- A small pager sized sensor will be attached to your arm with neoprene arm band.  
The sensor will be activated at the beginning of your workday and removed at the end 
of your workday.  This sensor is approximately the same size and weight as an iPod 
nano and is not expected to interfere with your ability to perform your work. 

There is no direct benefit to you by participating in this study.  However, you understand 
that information gained in this study may help health care professionals better understand 
how to treat patients with occupational shoulder disorders.  You will be paid $100 for 
your participation in this study.  If you cannot complete the study, you will still be paid 
$30 for your time. 

Any information that is obtained in connection with this study and that can be identified 
with you will remain confidential and will be disclosed only with your permission. Subject 
identities will be kept confidential by coding the data with subject numbers, rather than 
names. 

Your participation is voluntary. Your decision whether or not to participate will not affect 
your relationship with the University of Oregon.  If you decide to participate, you are free to 
withdraw your consent and discontinue participation at any time without penalty.  

If you have any questions, please feel free to contact Dr Andrew Karduna, (541) 346-
0438, Department of Human Physiology, University of Oregon, Eugene OR, 97403.  If 
you have questions regarding your rights as a research subject, contact the Office for 
Protection of Human Subjects, University of Oregon, Eugene, OR 97403, (541) 346-
2510. This Office oversees the review of the research to protect your rights and is not 
involved with this study.  You have been offered a copy of this form to keep. 

Your signature indicates that you have read and understand the information provided 
above, that you willingly agree to participate, that you may withdraw your consent at any 
time and discontinue participation without penalty, that you have received a copy of this 
form, and that you are not waiving any legal claims, rights or remedies.  

 

Print Name________________________________________________________  

 

Signature________________________________________________________  

Date_________________________  
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APPENDIX B 

 

UPENN PAIN SCALE FORM CHAPTER II 

 

Please circle the number closest to your current level of shoulder pain or satisfaction 

 

1. Pain at rest with your arm by your side: 

 

0      1      2      3      4      5      6      7      8      9      10 

No Worst 

Pain Pain Possible 

 

 

2. Pain with normal  activities (eating, dressing, bathing): 

 

0      1      2      3      4      5      6      7      8      9      10 

No Worst 

Pain Pain Possible 

  

 

3. Pain with strenuous activities (reaching, lifting, pushing, pulling, throwing): 

 

0      1      2      3      4      5      6      7      8      9      10 

No Worst 

Pain Pain Possible 
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APPENDIX C 

 

CONSENT FORM CHAPTERS III - VI 

University of Oregon 
Consent to Take Part in a Research Study 

Project: Shoulder Impingement  
 
You are invited to participate in a research study conducted by Andrew Karduna, PhD, from 
the department of Human Physiology at the University of Oregon.  The purpose of this 
study is to investigate the differences in arm movements between left and rights sides of the 
body. Additionally, this study evaluates the direct effects of the treatment you received 
today by your doctor. You have been asked to participate either because you were diagnosed 
with a shoulder pathology and will receive an injection as part of the treatment determined 
by your doctor or you have no medical problems associated with your shoulder.  This study 
is partially funding by the Centers for Disease Control and Prevention.  
 

If you decide to participate, you understand that the following things will be done to you: 

- You will be asked for some personal information such as your age and weight.  Our 
funding agency also requires that we ask for information about your ethnicity and 
race.  This information is optional. 

- Small sensors will be attached by straps or tape to your arm, upper back and 
shoulder and you will be asked to raise your arm overhead several times, you will be 
asked to raise your arms overhead several times.   

There is no direct benefit to you by participating in this study.  However, you understand 
that information gained in this study may help health care professionals better understand 
how people use their arm during a typical day, as well the direct effects of the treatment 
you received on your shoulder. You will be paid $20 for your participation in this study.   

Any information that is obtained in connection with this study and that can be identified 
with you will remain confidential and will be disclosed only with your permission. Subject 
identities will be kept confidential by coding the data with subject numbers, rather than 
names. 

Your participation is voluntary. Your decision whether or not to participate will not affect 
your relationship with the University of Oregon.  If you decide to participate, you are free to 
withdraw your consent and discontinue participation at any time without penalty.  

If you have any questions, please feel free to contact Dr Andrew Karduna, (541) 346-0438, 
Department of Human Physiology, University of Oregon, Eugene OR, 97403.  If you 
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have questions regarding your rights as a research subject, contact the Office for Protection 
of Human Subjects, University of Oregon, Eugene, OR 97403, (541) 346-2510. You have 
been offered a copy of this form to keep.  

 

Your signature indicates that you have read and understand the information provided 
above, that you willingly agree to participate, that you may withdraw your consent at any 
time and discontinue participation without penalty, that you have received a copy of this 
form, and that you are not waiving any legal claims, rights or remedies.  

Print Name________________________________________________________  

 

Signature_________________________________________  

Date_________________________  

 

 

 

 

 

 

 

 

 

 

 

 

 



104 

APPENDIX D 

 

HIPPA RELEASE FORMS CHAPTERS III - VI 

Shoulder Research Study 

Your Slocum Center physician has identified you as a potential candidate for 
participation in a study being conducted by the Department of Human Physiology at the 
University of Oregon.  This study examines arm motion for patients with shoulder pain.  
In order to participate in this study, you need to authorize Slocum Center to release 
elements of your Personal Health Information (PHI) so that researchers can determine if 
you fit the inclusion criteria for the study and to contact you regarding participation in the 
study.  If you would like to be contacted for participation in this study, please complete 
this Authorization and return it to:  Slocum Center for Orthopedic & Sports Medicine 

     Attention: Records Release 

55 Coburg Road 

    Eugene, OR 97401 

AUTHORIZATION FOR RELEASE OF PERSONAL HEALTH INFORMATION: 

 
I hereby authorize the use or disclosure of my individually identifiable health 
information as described below.  I understand that this authorization is voluntary, 
and that refusal to sign this authorization will not affect my ability to receive 
medical care.  I understand that I may revoke this authorization at any time by 
presenting my written revocation to Slocum Center for Orthopedic and Sports 
Medicine, P.C. and that said revocation will not apply to information that has 
already been released in response to this authorization.  By my signature below, I 
authorize Slocum Center for Orthopedic and Sports Medicine, to release to 
Researcher Andrew Karduna, PhD, Department of Human Physiology, University 
of Oregon, the following medical records: 
 My name, date of birth, and telephone number (see bottom of form) 
 Shoulder diagnosis   
 Results of imaging studies and chart notes for my shoulder injury 
 
Dr. Karduna will use this information to contact me for the purpose of evaluating my 
participation in a research study of shoulder motion.    Unless otherwise revoked, this 
authorization will expire one year from the date of its execution.  I understand that 
Andrew Karduna, PhD (Principal Investigator) and the University of Oregon may not be 
bound by the Notice of Privacy Practices of Slocum Center for Orthopedic and Sports 



105 

Medicine, P.C., or federal privacy regulations.  I understand that the researchers will only 
use or disclose my Personal Health Information for purposes approved by the 
Institutional Review Board at the University of Oregon or as required by law or 
regulations.  The University of Oregon shall be solely responsible for protecting the 
privacy and security of my Personal Health Information as described in an Informed 
Consent Form I shall execute prior to enrollment in the study.  The contact person at the 
University of Oregon is Dr. Andrew Karduna, Department of Human Physiology, 
University of Oregon, Eugene  OR, 97403.  By signing below, I understand and 
acknowledge the following: 
 

• That I have read and understand this Authorization; and 
• If I have any question about disclosure of my protected health information, 

I may contact Slocum Center’s Privacy Officer, Kathy J. McBride. 
 

 

Signature of patient: ____________________________ Date:___________________ 

 

 

Print Name: ___________________________________ Date of Birth: ____________ 

 

 

Telephone Number: ____________________________ 
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APPENDIX E 

 

VISUAL ANALOG PAIN SCALE CHAPTERS III - VI 
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