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The Orlik-Solomon algebra of a hyperplane arrangement first appeared from

the Brieskorn and Orlik-Solomon theorems as the cohomology of the complement

of this arrangement (if the ground field is complex). Later, it was discovered that

this algebra plays an important role in many other problems. In particular, define

the cohomology of an Orlik-Solomon algebra as that of the complex formed by

its homogeneous components with the differential defined via multiplication by

an element of degree one. Cohomology of the Orlik-Solomon algebra is mostly

studied in dimension one, and very little is known about the higher dimensions.

We study this cohomology in higher dimensions.
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CHAPTER

INTRODUCTION

The theory of hyperplane arrangements is an area of mathematics with ap-

plications in algebra, combinatorics, topology, analysis (hypergeometric functions),

and physics (KZ-equations). The allure of hyperplane arrangements lies both in

the straightforward definitions needed to begin studying the topic but, more impor-

tantly, in the ability to pose interesting, yet understandable, problems and examples.

We therefore begin our discussion with two motivating examples.

EXAMPLE 1.1. It is not a difficult task to determine that removing n distinct

points from the real line leaves n+ 1 regions. However, by raising the dimension just

one, determining the number of regions which remain in the plane after removing n

lines is dependent on the lines themselves and not merely n. For instance, removing

the collection of lines in R 2 given by {x = 0, y = 0, x y 0} leaves 6 regions. But

the collection {x = 0, y = 0, x y = 1} leaves 7 regions when removed from the

plane. This question, of course, can be raised to any dimension: given a collection of

codimension one affine spaces in Re , how many regions are left when this collection

is removed from Re?

In Example 1.1, we considered a finite collection of affine subspaces of codimen-

sion one in Rt . More generally, we can take F to be be any field and define the

same notion.

DEFINITION 1.2. Let F be a field. A hyperplane is an affine subspace of

codimension one in Ft . A hyperplane arrangement in Ft is a finite collection of

hyperplanes in Ft , written A = {H1,
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EXAMPLE 1.3. We now switch our attention to an arrangement of hyper-

planes in Ce . In Example 1.1, we considered the space obtained by removing the

hyperplanes from Similarly, we define the complement space M U71_1H.

Momentarily, let = 1 and we see the hyperplanes of C are points in the complex

plane (the hyperplanes have complex codimension one); hence, M is path connected.

In general, for any hyperplane arrangement in C t with £ > 1, we have M is a path

connected space. So, the question of the number of connected components of M is a

trivial question. However, one can consider the cohomology algebra with coefficients

in a commutative ring 1C, denoted H* (M. IC) and ask the question: can H* (M,

be represented by generators and relations related to the collection of hyperplanes?

Allowing Example 1.1 to guide and motivate us, it is apparent the intersections

of the hyperplanes play an important role as to the number of components of the

complement space; in fact, the pattern of intersections of the hyperplanes is the

determining factor. It is also apparent in Example 1.3 that the pattern of inter-

sections of the hyperplanes is pivotal to understanding H* (M, IC). Encoding the

pattern of intersections of the hyperplanes in a combinatorial object is the purpose

of the following definition, given first by Zasla ysky in [141.

DEFINITION 1.4. Let A be an arrangement of hyperplanes in V = F. We

define the partially ordered set L(A) with objects given by nHEBH for 8 c A and

nHEBH 1/; order the objects of L(A) opposite to inclusion. Notice q1 C A gives

V E L(A) with V < X for all X E L(A). For X E L (A) , we define rank(X) :=--

codim X. We define rank(A) := maxxEL(A) rank(X).

In Example 1.3, we considered the complement of the hyperplanes in CCe and

denoted this space M. The problem of expressing H*(M,K) in terms of generators

and relations was first studied by Arnold [21 in the case A was the braid arrangement

and IC = C; that is, A was the collection of hyperplanes 	 — x3 : 1 < i < j <
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This problem was later studied by Brieskorn [4] for an arbitrary arrangement. Orlik

and Solomon [11] have found a purely algebraic characterization of H* (M, K).

These results can be briefly summarized as follows. An algebra A(A) (referred

to as the Orlik-Solomon algebra) over IC is constructed in terms of generators and

relations using only L(A). This is a graded algebra with A(A) H* (M, 1C) Hence,

in Example 1.3, H* (M, k) can be determined by L(A).

The Orilik-Solomon algebra A(A) can also be used to answer the question posed

in Example 1.1. Zaslaysky has proven in [15] for a hyperplane arrangement in Fe,

the number of regions of the complement space is the sum of the dimensions of the

homogeneous components of A(A); that is, Ef, i dim A, (A).

The answers to the questions posed in Example 1.3 and Example 1.1 are impor-

tant results in that topological invariants of the complement space were expressed

in term of combinatorics. Indeed, a central question in the theory of hyperplane

arrangements is the problem of expressing topological invariants of the complement

space in terms of combinatorics. In this manner, it is a natural question then to

consider a generalization of H* (MX) to cohomology with local coefficients.

For a E A l (A), one can define a local coefficient system L(a). It turns out that

H* (M, (a)) relates closely to the cohomology of the Orlik-Solomon algebra. The

connection between H* (M, gan and the cohomology of the Orlik-Solomon algebra

has been studied in many papers, for instance [8].

The cohomology of the Orlik-Solomon algebra is defined below. For a hyper-

plane arrangement A . 11,2 1, we let {ai : Ha E A} denote a basis for

A 1 (A) . This basis is discussed in Chapter III.

DEFINITION 1.5. We construct a cochain complex on the graded linear space
71

A(A) as follows. Let a E A 1 (.4) with a =	 Aiai for Ai E /C. Multiplication by
i=1
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a giving the differential dk : Ak (A)2:-,A.k+i(A) forms a complex (A(A), a). The

cohomology of this complex is said to be the cohomology of the Orlik-Solomon

algebra and is denoted H* (A(A), a).

Recently, there have been many results concerning dim .1/ 1 (A(A), a). In the

case char K 0, it has been shown in [8] that dim H' (A(A), a) can be determined

by a particular set of elements from L(A).

However, little is known about the higher dimensions HP (A(A), a) for p > 1

[13], and this is what our work is devoted to.

Here is an outline of the thesis.

We begin Chapter II by discussing basic constructions and notions of arrange-

ments. We define some of them here as these definitions are needed for the state-

ments of the main theorems.

DEFINITION 1.6. A hyperplane arrangement A is central if n ii€AH � 0.

DEFINITION 1.7. Let A 1 be an arrangement in VI === , and let A2 be an

arrangement in V2 r=j Fk . Let V = Vi V2. Define the product arrangement by

Al X A2 =	 a3` V2 :	 e Ai } U { e H2 : H2 E V2}-

DEFINITION 1.8. Let A be an arrangement in V. We say A is reducible if it

is linearly isomorphic to a product of two nontrivial arrangements.

In Chapter III, the Orlik-Solomon algebra is defined. The definition of A(A) is

presented here as can be found in [12].

DEFINITION 1.9. Let A {H1 , ..., HO be a hyperplane arrangement in V

FE for some field F. We fix an order on A; that is, for hyperplanes Hi and HI in

A, we have Hi, < I/3 if and only if i < j.
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Let IC be a commutative ring. Let El be the linear space over IC on n generators.

Let E(A) := A(E1 ) be the exterior algebra on El . We have E(A) =	 Ep is a
P>0

graded algebra over K. The standard 1C-basis for Ep is given by

• e ip : 1 < i1 <	 < ip < p}.

Any ordered subset S =	 , Hip / of A corresponds to an element es	 eii ei,

in E(A).

DEFINITION 1.1,0. We define the map 0 : E (A)	 E(A) via the usual

differential. That is,

8(1) :=0,

O(ei ) :=1,

and for p> 2, 0(ei 1 •	 eip) :=
	 (_ i \k-1,	

" "	 ezp.
k=1

DEFINITION 1.11. Let S{H21 , HO be a subset of A. We say S is

dependent if nS 0 and rank(nS) < IS!.

DEFINITION 1.12. We define 1(A) to be the ideal of E(A) which is generated

by

{8(es) : S is dependent } U {es : nS = 0}.

DEFINITION 1.13. The Orlik-Solomon algebra, A(A), is defined as

A(A) := E(A) I I (A).

Let 7 : E(A)	 A(A) be the canonical projection. We write as to represent the

image of es under 7F.

In Chapter III, a linear basis for A(A) is defined. We show this basis can be

obtained as normal forms to a GrObner basis for I (A). We give conditions for when
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.1(A) has a quadratic GrObner basis; this is dependent not only on A but on the

order of the hyperplanes in A. In this case, we say A is quadratic with respect to

the order.

In the last section of Chapter III, we define the cohomology of the Orlik-Solomon

algebra (see Definition 1.5) and recall some results. For a central hyperplane ar-

rangement A and E:Li Ajai with E,n_ i a2 � 0, we have H* (A(A), a) = 0, see [131.

Therefore, we may assume for A central that E7_, A, = 0.

For char k = 0, it has been shown in [8] that dim Hi (A(A), is determined

by the set

:=-- {X E L(A) rank(X) = 2, 1X1 > 2, E A, = 0,	 Aiai 0}.
Hz <X

It would be interesting to know whether dim li v (A(A), a) is determined combi-

natorially and, if so, whether X(a) determines dim H" (A(A), a) for any p. Towards

this end, we proceed by determining when H* (A(A), a) = 0.

This problem is a particular case of a more general problem of skew commutative

algebras, i.e. studying modules over an exterior algebra E, see [1]. If M is such a

module, then a E E1 is said to be regular on M if and only if

H* (M, a) = {x E M; ax = 0}/aM = 0;

otherwise, a is said to be singular. The set of all singular elements is called a singular

variety of M, denoted Sing(M). So we will compute Sing(A(A)) as E(A)-modules.

In Chapter IV, we let 1C = R or C and establish a necessary and sufficient condi-

tion for H* (A(A), a) = 0. We show H* (AGA.), a) = 0 if and only if .1-P (A(A), a) = 0,

where rank(A) t. The following theorem, which is one of the main results of this

paper, gives a necessary and sufficient condition for Hi (A(A), a) = 0.
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THEOREM 4.3.11. Let A be an affine .e-arrangement. We may write

A= A1 x A2 X • • - X Ak X B,

where .A.3 are each central and B not central and they contain no proper central

factors. Let a E Ai (A). We have dim Ife (A(A), a) 0 if and only if E fiteA, Ai 0

for all j.

In Chapter V, we need more definitions (see the chapter for more details).

In particular, we deal with a famous class of arrangements called supersolvable

arrangements. We define supersolvable arrangements here, see §2.2 and §3.2 for

examples and some equaivalent definitions.

Assume A is central. A pair (X, Y) E L(A) x L(A) is called a modular pair if

for all Z E L(A) with Z < Y

z v pc	 = (Z v X) A Y.

An element X E L(A) is called modular if (X, Y) is a modular pair for all Y E L(A).

We call A supersolvable if L(A) has a maximal chain of modular elements

V = X0 <	 < • • • < xe nHEAll.

If A is supersolvable, we say the order on the hyperplanes respects the super-

solvable structure if for a maximal modular chain

V = X0 < < --- < Xe = nHEAH

in L(A) we have

1. X1 is the smallest hyperplane, i.e. X1 = HI.

2. For i > 1, we have X, = njrt i Hj and if a hyperplane H < Xi then H G

{H1,...
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For A supersolvable, if the order respects the supersolvable structure then the

respective GrObner basis is quadratic. We use this characterization throughout

Chapter V. The following is an assumption maintained thoughout Chapter V.

CONDITION A. Let A be a hyperplane arrangement with r-rL i ll-, L 0, and

assume A is supersolvable. Fix X E L(A) with rank(X) = 2 and X a member of a

maximal modular chain in L (A) . Fix an order on the hyperplanes so that the order

respects the supersolvable structure.

We consider a E A1 (A) so a = Ey ,<x Aini . Again, we assume a 0 and

E ,n A, 0. We call such an a concentrated under X.

We show dim H k (A(A), a) is determined combinatorially by another main result

of this paper.

THEOREM 5.1.11. Let A and X E L(A) be as in Condition A. Let 0

a E Al (A) be concentrated under X. Then we can compute the Hilbert series for

H* (A(A), a) in terms of the Hilbert series for A(A) as follows:

t( n,
H(H*(A(A), a), t) = 	 t(nx 

2) 
1) H (A(A), t).

In §5.2, we study the kernel, Z(a) = EDZ,(a), of the chain complex (A(A), a) as

an ideal of A(A). We do this with the idea in mind that if Zk(a) = Ak (A) • Z (a),

then X(a) together with dim Ak (A) will determine dim Zk (a). We show in the case

A and X E L(A) satisfy Condition A with a concentrated under X, this result

holds, except for the top dimension. This is given in the following result.

THEOREM 5.2.9. Suppose A and X E L(2, A) satisfy Condition A. Suppose

> 3. Let a E A 1 (A) be a nonzero element concentrated under X . We have Zk(a)

is generated by Zi (a) for k < E.

In Chapter VI, we study dim H2 (A(A), a). We let char K = 0 and use the

description of dim H 1 (A(A), a) in terms of X(a) as given in [8]. We begin by
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studying 1/2 (A(A), a) for rank(A) = 3. To do this, we demonstrate a relationship

between Z1 (a) and Z2 (a). In particular, we prove

THEOREM 6.115. Let A be a central rank three hyperplane arrangement. We

have

dim Z2 (a) = dim Z1 (a) +	 :1 < j <k < n, rank( Tic, n Hi fl Hk) = 3 for a <

We then use this description to study H 2 (A(A), a) for rank A > 3. For X E

L(A) and a E Al (A), we define a(X) =xti<x Ajai. Similar to the definition of

X(a), we define the set

S(a) := {X E L(A); rank(X) = 3,	 > 3,	 = 0, a(X) � 0}.
1-1c <X

In determining dim Z1 (a), it is said that X(a) is affine to describe a particular

situation. In particular, X(a) affine means dim Z 1 (a) may be greater than one;

whereas, X(a) is not affine means dim Z1 (a) = I.

THEOREM 6.2.9. Let A be a central hyperplane arrangement. Let a, b E A1(A)

with
Th

a=	 jai, b =
i=1

Suppose = cri 0. In addition, suppose the following criteria are satisfied:
i-1	 i=1

1. We have 8(a) = 8(b).

2. We have X(a) = X (b).

3. For X E L(A) \ 8(a) with rank(X) = 3, we have a(X) = b(X) = 0.

4. For X E 8(a) = S(b), we have X (a(X)) is affine (hence, X(b(X)) is affine).

Then dim H2 (a) = dim H2 (b).

We give plenty of examples in Chapter VI which demonstrate the various results

of the chapter.



CHAPTER II

AN ARRANGEMENT OF HYPERPLANES AND ITS LATTICE

In this chapter, we define an arrangement of hyperplanes and a partially ordered

set associated to an arrangement. In §2.1, we define an arrangement of hyperplanes

and discuss some basic constructions. We show t h at coning nut" deconing Are mutu-

ally inverse. In §2.2, we discuss the combinatorics of a hyperplane arrangement by

defining the partially ordered set L(A). We discuss properties of L(A) and consider

L(A) for product arrangements.

We establish the following conventional notations to be used throughout this

paper. Let F be a field. Let V = Ft be a finite dimensional linear space over F.

Let V* be the dual space of V.

§2.1 Arrangements of Hyperplanes

In this section, basic constructions such as products of arrangements, deletion

and restriction, and coning and deconing are discussed, see [12].

DEFINITION 2.1.1. A hyperplane is an affine subspace in V of codimension

one. A hyperplane arrangement is a finite collection of hyperplanes in V. For a

hyperplane arrangement, we write A = HO, with hyperplanes Hi c V.

We write IA = n.

DEFINITION 2.1.2. An arrangement A =	 H, is central if f Hi 0.

We call an arrangement A= {H1 ,... , Hn} affine if either nxi � 0 or nHz = 0.

Fix a basis {x 1 , . ,xe) for V* over F. Let S be the symmetric algebra of V.

Choose a basis le i ,	 , ed- in V and let Ix 1 ,... , xg} be the dual basis in V* so that

10
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x.„(e3 ) = 8,j . We may identify S with the polynomial algebra in indeterminants

over F; that is, S = F[x i ,... ,xd. Each hyperplane H E A is the kernel of a

polynomial oH of degree one defined up to a constant.

DEFINITION 2.1.3. A defining polynomial of A is Q(A) = RHEA cerr•

EXAMPLE 2.1.4. Let A be the arrangement given by Q(A) = x i • • - xe. We

call A the Boolean arrangement. Note that A is central.

EXAMPLE 2.1.5. Let Q(A)	 11 1 <i<j <t (x, – xi ). We call A the Braid ar-

rangement. Note that A is central with the intersection of the hyperplanes given

by f1H, = {x i 	- -

EXAMPLE 2.1.6. Let F be a finite field of q elements. We can consider the

arrangement given by A {all hyperplanes of Fe which pass through the origin}.

EXAMPLE 2.1.7. Let Q(A) = xy(x + y + 1). We have that A is an affine

arrangement which is not central.

DEFINITION 2.1.8. Let A1 be an arrangement in	 and let A2 be an ar-

rangement in V2. Let V V1 ®V2 . Define the product arrangement by

Al X A2 = {Hi ® V2 : H1 E	 u	 : H2 E V2}.

DEFINITION 2.1.9. Let A be an arrangement in V. We say A is reducible if,

after a change of coordinates, (A, V) = (A1 x A2, V1 ED V2 ). Equivalently, after a

linear change of variables if necessary, Q(A1 ) and Q(A2 ) have no common variables.

In this case, we write A --= A1 x A2.

EXAMPLE 2.1.10. The Boolean arrangement Q(A) = xi • • xi is a product of

arrangements Q(A,) = x,.

We now define deletion and restriction. This construction takes an arrangement

A, fixes a hyperplane Ho E A, and then forms two arrangements A' and A" with
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the result 1A1, 1A"1 < 1,41. Because A'1, 1A"1 < 1.41, deletion and restriction is an

important construction which allows one to induct on

DEFINITION 2.1.11. Let A be an arrangement in V =	 Let Ho E A. We

define the arrangements

A' -= {H : H e A\ Ho} in V, and

All ={Honii: H EAandHnHo 0} in. Ho L-2

EXAMPLE 2.1.12. Let Q(A) = xy(x + y ±z)(2:r y ±z)z. Fix Ho to be given

by x = 0. We have A' is given by Q(A') y(x + y + z)(2x + y + z)z, and A" is

given by Q(A") = y(y + z)z in {x0 = 0}. Notice Ho n H may equal H0 n K for

hyperplanes H � K.

We now discuss two operations; one operation (coning) will take an affine ar-

rangement to a central arrangement. The other operation (deconing) will take a

central arrangement to an affine arrangement. These operations are inverse to each

other. We begin by discussing deconing; this will take a central arrangement in Fe

to an affine arrangement in F1-1.

DEFINITION 2.1.13. Let A be a central arrangement in Fe . We define the

deconed arrangement dA in FP-1 . Fix Ho E A. Choose coordinates so that Ho =

Ker(x0 ). Let Q(A) E F[x0,x1,... ,xi] be a defining polynomial for A. The defining

polynomial Q(dA) is obtained by substituting 1 for xo in Q(A).

LEMMA 2.1.14. Let A be an arrangement given by Q(A) = rj a,. Fix H0 G A.

Let a0 = 0 be an equation for H0 . The deconed arrangement, dA, is equivalent up

to linear isomorphism to the arrangement in H0 := {ao = 1} given by {Hz fl

E A\ {Ho}}.

PROOF. By Definition 2.1.13, dA is found by a linear change of coordinates via

ao	 xo then substituting xo 1 into Q(A). This is equivalent (up to the change
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of coordinates) as intersecting the hyperplanes H 2 E A “Hol with the space given

by {ao = 1}. 0

EXAMPLE 2.1.15. Let A be given by Q(A) xy(x + y)z. By deconing about

the hyperplane given by y = 0, we obtain Q(dA) = x(x + 1)z, an arrangement

which is not central. However, if we decone about the hyperplane given by z = 0,

we obtain Q(dA) xy(x + y), a central arrangement.

REMARK 2.1.16. Example 2.1.15 demonstrates the deconed arrangement de-

pends upon the choice of hyperplane about which one decones.

DEFINITION 2.1.17. Let f,g E K[x 1 ,... ,xd. We define f homogenized about

the factor g to be I := gdeg ( f ) f(x i lg,... ,x.e/g).

EXAMPLE 2.1.18. Let f x(y + 1). We have f homogenized about z given

by x(y + z). Moreover, f homogenized about z – 1 is given by x(y + z 1).

DEFINITION 2.1.19. Let A be an affine arrangement in F- e We define the

central arrangement, cA, in Fel-1 as follows. Let Q' G F[xo,x1,... xd be the

polynomial Q(A) homogenized about the factor xo, and define Q(cA) = xoQ'.

Note that lcAl = lAl + 1.

LEMMA 2.1.20. Let A be an arrangement given by Q(A). As in Definition

2.1.19, consider the arrangement cA. Let fei ,	 , eel be a basis for V over F.

Consider with the basis leo, , eel. Let Ho be a hyperplane in Fe+1 with

defining equation ao = 0 for ao E F[xo, x 1 , ... , xd F[x], • . ,x2}. Up to linear

isomorphism, cA is equivalent to the arrangement obtained by homogenizing the

polynomial Q(A) with the parameter ao and adding the factor ao.

PROOF. Since ao E F[xo,	 .	 , xd, the linear change of coor-

dinates given by ao 1–* xo is a linear isomorphism. 0

REMARK 2.1.21. In Definition 2.1.19, we can describe the hyperplanes of cA

geometrically. For H E A, let the coned hyperplane cH in Fe± ' be given by the

linear span of H, and the origin. Then cA = {Ho, cH : H E A and Ho = Ker(xo)}.
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We construct a similar geometric interpretation as in Lemma 2.1.20 when coning

about Ho = Ker(ao) with ozo E Fixo, xi, - • • , x .ej	 , xd. We consider

V C P+1 as the hyperplane {('yo,	
,'Ye) 	ao ("(o	 -

In this fashion, Hi can be considered as a subset of F' 41 . Since Ho V, we have

Hi nHo = 712 0. For Hz E A, we define the coned hyperplane in Fe+1 , written cHi,

to be given by the linear span of Hi and T, in Fe+1 . Then the coned arrangement

in Pe+1 is given by cA = {H0 ,cH, : Hi E A}.

REMARK 2. 1 .22. Unlike the deconing construction, Lemma 2.1.20 shows the

coned arrangement does not depend upon the choice of hyperplane about which one

cones.

EXAMPLE 2.1.23. Let A be given by Q(A) x(x + 1)y. By coning about the

hyperplane given by z = 0, we obtain Q(cA) x(x + z)yz. By coning about the

hyperplane given by x+ z+ 1 0, we obtain Q(cA) x(x + x + z + 1)y(x + z + 1).

Notice by the linear change of coordinates x + y + 1 z, these arrangements are

equivalent.

PROPOSITION 2.1.24. The coning and deconing are inverse operations in the

following sense:

1. Let A be an arrangement. Fix Ho E A. Let dA represent the arrangement

deconed about Ho. Then by coning about xo, we have c(dA) is A.

2. Let A be an arrangement. Let cA denote the coned arrangement about xo as

given in Definition 2.1.19. If cA is deconed about xo, then d(cA) is A.

PROOF. The proposition follows from Lemma 2.1.14 and LEMMA 2.1.20. a
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§2.2 Combinatorics of Hyperplane Arrangements

In this section, we associate to each arrangement a combinatorial object, L(A).

Properties of L(A) are discussed which make L(A) a matroid in the case A is central.

We also prove L(A 1 x A2 ) is a product of L(A 1 ) and L(A2).

DEFINITION 2.2.1. Let A ------ {H1 ,	 Hn } be an arrangement of hyperplanes.

Let L(A) be the partially ordered set with objects given by

fn lycz3 H B C A and nr-rEs H 01;

the objects of L(A) are ordered opposite to inclusion.

DEFINITION 2.2.2. Let (P, <) be a partially ordered set; let X, Y E P. The

join of X and Y is given by X V Y := inf{Z EP: Z>X and Z > Y}. The meet

of X and Y is given by X A Y sup{Z EP: Z<X and Z < Y}. If X V Y and

X A Y exists in P for all X, Y E P, then P is a lattice.

DEFINITION 2.2.3. Let (P, <) be a partially ordered set with V G P so that

V < X for all X E P. We say P is a ranked and write rank(X) = p if for

any X E P and any two maximal chains V = X 0 < X1 < • - • < X, = X and

V = yo <	 •- < Y, = X we have r = s = p.

DEFINITION 2.2.4. For X E L(A), define rank(X)	 codim X. For X E

L(A) with rank(X) p, we write X E	 A). For the rank of an arrangement,

we define rank(A) := maxx EL(A) rank(X).

DEFINITION 2.2.5. Let A be an arrangement of hyperplanes. We call H E A

at atom. Notice rank(H) = 1 for all H E A.

PROPOSITION 2.2.6. Let A be an arrangement. We have

1. L(A) is atomic; that is, each X E L(A) \ V is a join of hyperplanes.
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2. L(A) is ranked via codimension; that is, for each X E L(A), the length of any

maximal chain V = X0 < X1 < • • < XT, = X is equal to codim X.

3. If A is central, then L(A) is semi-modular; that is, for any X, Y e L(A) we

have rank(X) + rank(Y) > rank(X A Y) rank(X V Y).

PROOF. This is adapted from Lemma 2.3 in [12].

Property (1) follows from the definition of L(A).

To verify property (2), fix X E L(A). Consider a maximal chain in L(A) given

by V = X0 < X1 < • • < Xp = X. Since the inequalities are strict, we have

codim X > p. For a hyperplane H3 < X, notice X, n = Xi if Xti C H3 , and

Xi 11 H3 = X1 ± 1 if X, H3 . Therefore, the codim X,+ / in X1 is one.

To verify property (3), first notice dim(X + Y) + n Y) = dim X + dim Y

for X,Y E L(A). Since X+Y C X A Y, we have dim(X + Y) < dim(X A Y).

Hence, rank(X) + rank(Y) > rank(X A Y) + rank(X V Y).

DEFINITION 2.2.7. A lattice which is atomic, ranked, and semi-modular is a

matroid.

EXAMPLE 2.2.8. If A is a central hyperplane arrangement, then L(A) is a

matroid.

DEFINITION 2.2.9. Let P and P' be two partially ordered sets. Then P x P'

is a partially ordered set defined by (a, b) < (a, 0) if and only if a < a (in P) and

b < (in P').

DEFINITION 2.2.10. Let P and Q be two partially ordered sets. We say P is

isomorphic to Q if there exists an order preserving bijection ir : P Q.

PROPOSITION 2.2.11. Let A i and A2 be two arrangements with A1 an ar-

rangement in V1 and A2 an arrangement in V2. The partially ordered set L(A j. ) x

L(A2) is isomorphic to the partially ordered set L(A1 x A2).
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PROOF. The statement of this proposition can be found in Proposition 2.14 in

[12).

Define 0 : L(A1 ) x L(A2 ) —> L(A 1 x A2 ) via 0(X, Y) := X ED Y.

First, notice XGYE L(A1 x A2). Since X E L(A 1 ), there exists /3 1 C A1
so that X n{H, : H2 E 13 1 }. Similarly, Y n{ K; : K, E 132 } for some

132 C A2. Hence X E Y = (nTLE13 , {H, e V2 }) n (nK, ,B,{Vi KJ) as required to

verify XGYE L(Ai x A2).

Now, 0 is surjective. An element in L(A1 x A2 ) is the intersection of hyperplanes

in Vi e V2; hence, it has the form (nr_r	 {II, ev2,})n(nK, ,,32 {1/1 Ki }) for some

Bi C A1 and 132 C A2. Thus

—(nH,EBilli) (nKieB,Ki)

—(nH, E s, {Ili v2 }) n (nKE132 {V1 'ED Ki}).

Also, 0 is infective since X CD Y = X' Y' implies X X' and Y = Y'.

Finally, 0 preserves the order of the lattices. Suppose (X, Y) < (X', Y')

L(.41 ) x L(A2). Then X < X' and Y < Y' which implies X' C X and Y' C Y.

Hence, X' ED Y' cXeY in L(Ai x A2).

We now define a particular central subarrangement which will be used in later

chapters.

DEFINITION 2.2.12. Let A = {H1 , , HO be a hyperplane arrangement.

Fix X E L(A). Define

Ax .—{HZ . Hi E A and fii < X}.

Notice Ax is a central subarrangement of A with rank(Ax) = rank(X). We write

IXI to denote tAx I.

EXAMPLE 2.2.13. Let Q(A) x(x + 1)y; order the hyperplanes as they are

written. Fix X E L(A) to be given by Hr n H3. Then Q(Ax) xy.
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The following definitions are standard definitions for lattices in general and will

be used in later chapters.

DEFINITION 2.2.14. Let A be a central hyperplane arrangement. A pair

(X, Y) E L(A) x L(A) is called a modular pair if for all Z E L(A) with Z < Y

Z V (X A Y) (Z v X) A Y

DEFINITION 2.2.15. Let A be a central hyperplane arrangement. An element

X E L(A) is called modular if (X, Y) is a modular pair for all Y E L(A).

DEFINITION 2.2.16. Let A be a central hyperplane arrangement in V. Let

rank(A) = £., We call A supersolvable if L(A) has a maximal chain of modular

elements

V = X0 < < • < X.e nHEAH.

EXAMPLE 2.2.17. The Boolean arrangement Q(A) me=, x, is supersolvable

as all the elements in L(A) are modular.

EXAMPLE 2.2.18. The arrangement given by

Q(A) = x(x — y)(x + y)y(x — z)(x + z)(y z)(y — z)z

is supersolvable as a maximal chain of modular elements is given by

V <{x = 0} <{x= y 0} < {0}-



CHAPTER III

ORLIK-SOLOMON ALGEBRAS AND THEIR COHOMOLOGY

In this chapter, we define the Orlik-Solomon algebras and their cohomology.

In §3.1, we define the Orlik-Solomon algebras and discuss a linear basis for such

an algebra. In §3.2, we demonstrate the relationship between the basis found in

§3.1 with a GrObner basis. In §3.3, we define the cohomology of an Orlik-Solomon

algebra and discuss some results on the dimension of the first cohomology group.

§3.1 The Orlik-Solomon Algebra and the Broken Circuit Baths

In this section, we define the Orlik-Solomon algebra and a linear basis for this

algebra, referred to as the broken circuit basis; see Chapter 3 in [12]. The Orlik--

Solomon algebra is a factor algebra of the exterior algebra by an ideal 1- (A). In §3.2,

we show the relationship between the broken circuit basis and a GrObner basis for

1(A).

Let A. = } be a hyperplane arrangement in V = F P for some field F.

We fix an order on A; that is, for hyperplanes Hi and H.7 in A, we have H H3 if

and only if i < j.

We begin by defining the Orlik-Solomon algebra.

Let K be a commutative ring. Let E1 be the linear space over k on n generators,

e1 ,...,en . Let E(A) :-= A(E1 ) be the exterior algebra on E1 . We have E(A)

Ep is a graded algebra over K. The standard r-basis for Ep is given by
p>()
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fez, • ei : 1 < Z1 <	 ip < pj.
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Any ordered subset S =	 , Hip } of A corresponds to an element es := ei,•• p

in E(A).

We define the map 0 : E(A) —+ E(A) via the usual differential. That is,

0(1) :=0,

0(e„) :=1,

and for p > 2, 0(c„ • • e,p ) :=
k -=1

EXAMPLE 3.1.1. As an example of the differential on the exterior algebra, we

have 0(e i • e2 • e3)	 e2 - e3 — ei e3 + ei e2.

DEFINITION 3.1.2. Let S {Hii be a subset of A. We say S is de-

pendent if nS � 0 and rank(nS) < 51. Equivalently, S is dependent if polynomials

a i , E F[x i ,... , x i] defining the hyperplanes Hi , are linearly dependent.

DEFINITION 3.1.3. We define I (A) to be the ideal of E(A) which is generated

by the elements

{0(es) : S is dependent }U {es : ni/ E sH = 01.

DEFINITION 3.1.4. The Orlik-Solomon algebra, A(A), is defined as

A(A) := E(A)/I(A).

Let TT : E(A)	 A(A) be the canonical projection. We write as to represent the

image of es under 7T.

We demonstrate that A(A) is a free graded 1C-module by defining the broken

circuit basis for A(A). By Theorem 3.1.6 to follow, this is indeed a basis for A(A).

DEFINITION 3.1.5. Let S = ffi„,..., HO be an ordered subset of A with

i i < • < in . We say as is basic in An (A) if
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1. S is independent, and

2. For any 1 < k p, there does not exist a hyperplane H E A so that H < Ilik

with {H,Hik ,HikH „ Hi, } dependent.

The set of {as} with S as above form the broken circuit basis for A(A), whose name

is justified by the following theorem.

THEOREM 3.1.6. As a K-module, A(A) is a free, graded module. The broken

circuit basis forms a basis for A(A).

PROOF. This is proven in Theorem 3.55 in [12].

The following two examples demonstrate the use of the broken circuit basis for

computing dim Ap(A).

EXAMPLE 3.1.7. Let A be a central generic arrangement; this means for any

collection ,Hip} c A with p < t, we have {Hi„ , Hip } is independent.

Hence, for p < f, there are no dependencies, so dim A p (A) = dim Ep = (np) for

p < £. For p = £, any S C {1,2, ...n} with 'SI	 + 1 is dependent, so A..e(:4)

has a broken circuit basis of {cgs : S C {2, 3, ..., n} with	 = Q – 1}. Hence,

dim A1 (A) = (71D .

EXAMPLE 3.1.8. Let dim V = E, and let A be the braid arrangement in V

given by Q(A) = [J (x i – xj ). Let Hu correspond to the hyperplane given by
1<i<3<e

– xj = 0. Order the hyperplanes lexicographically; that is, H u < H,,„ if either

i < m or i = m and j <n. We will write aHij = aij in A i (À).

In order to compute dim Ap (A), we need to describe the elements of the broken

circuit basis in Ap (A). Let a :=ai111 —aiop be an element of the broken circuit

basis in Ap (A). By definition of the hyperplanes, we have i k < jk.

Suppose j i = j 2 . Without loss of generality, we may assume i 1 < i2 . Then

{Hith , Hi2j, Hi1i ,} is dependent with H^ 1 ^2 being minimal in the set; this contra-

dicts the assumption a is in the broken circuit basis. In a similar fashion, we have
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j 1 < j2 < • • • < jp . Moreover, if	 i2, then TH,;- .1 j1 7 Hi2j2 11-1,i2 is dependent;

but the minimal element of this set is Hid,. Therefore, a is still an element of the

broken circuit basis. Hence, there are no restrictions on i k other than jk > ik.

It is now just a matter of counting the possibilities we have for 	 ..., ipjp}

with the restrictions j i < j2 < - < jp and i k < jk for k = 1, ...,p.

Fix	 jp. There are - jk choices for i k for each k = 1, ...,p. Thus,

e—P+ 1 R—P P

dim Ap (A) =--
	 E >2(H cc-3k»

i2 =1+i i 	k=-.1

/112

1<ii<32<••<jp<t-1

As usual, if p 0, then this sum is taken to be 1.

The dimensions of Al (A) and A2 (A) can be easily simplified. Obviously, we

have dim Ai (A) = (D. For the dimension of A2 (A), consider circuits with three

hyperplanes. Any such circuit must be of the form {11,3 , Hik, Hjk : i < j < k}.

There are (e3) of these circuits. Hence, dim A2 (A) = dim E2 — . Using the fact

n = (D, we arrive at dim A 2 (A) = t(t-1)(t2-42)(3t— 1) 

DEFINITION 3.1.9. For the algebra A(A), we define

Poin(A(A), t) :=	 dim Ap(A)tP
p>0

x(A(A)) := Poin(A(A), -1)	 (-1)P dim Ap(A).
P

From Theorem 3.68 in [12], we have Poin(A(A), t) depends only on L(A). Let

H0 E A, and consider the deconed arrangement, dA, obtained by deconing about

H0 . From Corollary 2.58 in [12] , we have Poin(A(A), t) = (1 t)Poin(A(dA), t).

Hence, as in Proposition 2.7 of [13], x(A(dA)) depends only on A and not on the

choice of hyperplane about which one decones.
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§3.2 A GrObner Basis for _T(,A) 

In this section, we establish the relationship between the broken circuit basis

and a Graner basis for the ideal 1(A).

We now establish some definitions and notations regarding Groner bases.

These are standard notations and results which can be found in [1.

Let V be a module over a commutative ring K. Let B C V be a 1C-basis.

Suppose B is ordered with <; this means the order is linear and that (B, <) is well

ordered.

DEFINITION 3.2.1. Let v E V. Since B is a /C-basis, we can write v
beeB

for a, E IC and b, E B. Since B is ordered and there are only finitely many nonzero

terms in the summation, there is a maximal element bi E B with a, 0; say this

element is bi . We define Tip(v)	 b1.

DEFINITION 3.2.2. Let W C V. We define Tip W := {Tip(w) : w E WI.

Define the non-tips of W to be NT(W) B\ Tip W.

THEOREM 3.2.3. Let V be a module over JC with an ordered basis (B, <). Let

W C V be a submodule of V with the condition:

(*) for any w E W, there exists 0 E W such that

1. Tip(w) = Tip(w') and

2. w' = Tip(w') + yi b ti ,for E k and bi E B \ {Tip(w')}.

Then V = W (NT(W)).

PROOF. We begin by showing W n 0. Let v E Wn NT(W)). We

have Tip(v) E Tip W since v E W. But v E (NT(W)) implies Tip(v) E NT(W).

Hence, v = 0 as required.

Suppose W + (NT(W)) � V. Choose v E V \ (W + (NT(W))) with Tip(v)

minimal; that is, Tip(v) < Tip(w) for any w E V\ (W (NT(W))). Let 0 a E

so that v = a Tip(v) + ai bi for a, E K and bi E B \ {Tip(v)}.
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Suppose Tip(v) E NT(W). We construct an element with a smaller tip by

considering v - Tip(v). Then Tip(v - a Tip(v)) < Tip(v); hence, v - a Tip(v) E

W+ (NT(W)). This implies v- a Tip(v) = w+ n for w E W and n E (NT(W)).

We solve the equation for v to see that

v = w + (n + a Tip (v)) E W + (NT(W)).

This is a contradiction to the choice of v.

Suppose Tip(v) e Tip W. Then there exists w E W so that Tip(v) = Tip(w).

By the condition (*) on W, we may assume w = Tip(w) + E-y,b, for 7i E

and b, E B {Tip(w)}. Then Tip(v - aw) < Tip(v); hence, by the choice of

v, v - aw E W (NT(W)). This implies v - aw = w' + n for w' E W and

n E (NT(W)). By solving for v, we have v (w' + aw) + n E W + (NT(W)),

contradiction.

COROLLARY 3.2.4. Let V be a vector space over a field IC with an ordered

basis (B, <). If W C V is a subspace of V, then V = W (NT(W)).

PROOF. It will suffice to show W satisfies condition (*) as given in Theorem

3.2.3. Let w E W. Then we have that w = yTip(w) + -y,bi for 0	 -yi E

and that bi E B\ {Tip(w)}. Since W is a subspace of V and IC is a field, we have

7 -1 w E W, and we take w' := 7- 1 w. o

DEFINITION 3.2.5. Given a module V over IC with an ordered basis (B, <)

and a submodule W C V, we define g C W to be a GrObner basis of W if Tip Q

= Tip W.

EXAMPLE 3.2.6. Let V be a 4-dimensional vector space over a field IC with an

ordered basis defined by (B, <) := {b 1 > b2 > b3 > b4 }. Let W be the 3-dimensional

linear subspace of V generated by the set 7-t := {b 1 - b2 , b 1 - b3 , b 1 - b4 }. Consider

g := {b1 b2 , b2 - b3 b4 }. Then Tip g = {b i , b2 , b3 } = Tip W; hence, g is a

GrObner basis of W. However, if we consider N, then Tip 7-e = {b1} Tip W; hence,

7-t is not a GrObner basis for W.



25

We now define GrObner bases in algebras. Again, these are standard and can

be found in [7] for the case R is commutative.

Let R be a K-algebra and let B be a ,"C-basis of R. Suppose (B, <) is well

ordered; that is, the order is linear and any subset C C B has a minimal element

C E C.

EXAMPLE 3.2.7. Consider the exterior algebra on n generators, E(sA), with

the standard basis B = {e,, • • • e,, : 1 < i t < • • < ip < p}. We can give B the

degree lexicographic (DegLex) order. That is,

• if p < q, then e" • • •	 < e,71 • - • e3,,

• if k0	 min{k : ik 0..20 with 2k0 < jko , then e 2 , • • • ej, < ell • • elp.

Then B is a IC-basis of E(A) and with respect to DegLex, (B, <) is well ordered.

DEFINITION 3.2.8. Let R be a IC-algebra, and let B be a IC-basis of R.

Let (B, <) be well ordered. We say B is monomial if for any b, b' E B we have

Tip(b'b), Tip(b'b) E B unless they are zero.

DEFINITION 3.2.9. Consider E(A) with the well ordered basis (B, <) given

in Example 3.2.7. Then B is monomial.

DEFINITION 3.2.10. Let R be a IC-algebra and let B be a IC-basis of R. Let

(B, <) be well ordered, and let B be monomial. We say the order (B, <) is monomial

if the following are satisfied:

1. Let b l , b2 , c E B with bi > b2 . If cb, � 0 for i	 1,2, then Tip(cb i ) > Tip(cb2)

and Tip(bi c) > Tip(b2c).

2. If 1 E B, then 1 < b for all 1 b E B. If 1. B, then for all b,b' E B we have

Tip(bb') > b, b' and Tip(b'b) > b, b' unless zero appears.

EXAMPLE 3.2.11. Consider the exterior algebra E(,A) with the standard basis

B ordered with the DegLex order as in Example 3.2.7. Then (B, <) is monomial.
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DEFINITION 3.2.12. Let R be a K-algebra, and let B be a 1C-basis of R. Let

(B, <) be well ordered and monomial. Let g C R. Let (Tip C B be defined by

the smallest set containing Tip c so that the following holds:

for any g E (Tip g) and any b E B, we have either Tip(bg), Tip(gb) E (Tip g)

or bg = 0.

DEFINITION 3.2.13. Let R be a K-algebra, and let B be a K-basis for R. Let

(B, <) be well ordered and monomial. Let I a R. Let c C I. We say g is a GrObner

basis for I if (Tip g) =

DEFINITION 3.2.14. Let R be a K-algebra, and let B be a 1C-basis for R. Let

(B, <) be well ordered and monomial. Let I a R. Define NT(I) := B \ (Tip I).

THEOREM 3.2.15, Let R be a 1C-algebra, and let B be a K-basis of R. Let

(B, <) be well ordered and monomial. Let IaR. If K is a field, then R = I@(ATT(I))

as K-modules. Moreover, NT(I) is a 1C-basis for RII.

PROOF. The statement R	 ED (NT(I)) as K-modules follows from Corollary

3.2.4. Let 7T : R	 (NT(I)) be the canonical projection. It follows that NT(I) is

a K-basis for Rill. 0

DEFINITION 3.2.16. Let R be a K-algebra, and let B be a 1C-basis of R. Let

(B, <) be well ordered and monomial. Let G C R. We say lc(g) = I if the following

holds:

for any g E c with g = -y Tip(g)+E-yib, for 0 -y, -y, E IC and bi E B \{Tip(g)},

we have 7 = 1.

THEOREM 3.2.17. Let R be a K-algebra, and let B be a K-basis for R. Let

(B, <) be well ordered and monomial. Let I < R with I =(c) as an ideal in R.

Suppose lc(c) = 1. Then g is a GrObner basis of I if and only if R = I iED (NT(g))

as K-modules.
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PROOF. Suppose g is a Grauer basis of I. Then Tip I (Tip g) by Definition

3.2.13. Hence, NT(g) = NT(I). Since lc(g) = 1, R (NT (G) y follows from

Theorem 3.2.3.

Suppose R = I ED NT(g)). We need to show Tip./ (Tip g).

Let g E Tip G and b E B so that Tip(bg) 0. Since g E Tip g, there exists h E g

so that Tip(h) = g. Since h E c and I is generated by g, we have h E I. Hence,

bh E I and Tip(bh) G Tip I. Since the order is monomial, Tip(bh) = Tip(bg) or

bg = 0. Therefore, Tip(bg) E Tip I.

Let g E Tip I. Then there exists h E I so that Tip(h) = g. Since B is a linear

basis for R over IC, we have h = a, b, Tip(gt) + An, for at , A e bi E B,

9, E g , and rtt E NT(c). Since R = I ® (NT(g)) and h E I, we must have A = 0

for all A. Hence g Tip(h) E (Tip g) as required. a

We now apply this theory to the Orlik-Solomon algebra A(A). Recall that for

any set of ordered hyperplanes S = {Hi„ , Hip }, we have es = ei 1 • • e,, E E(A).

THEOREM 3.2.18. Let A(A) be the Orlik-Solomon algebra. Let B be the

standard basis for E(A) with the DegLex order. Let

g = {a(es) : S is dependent} U {es : nifesH 01.

NT(g) is a linear basis for A(A).

PROOF. By definition, g generates I(A) as an ideal in E(A). Also, lc(g) = 1.

We show g is a GrObner basis of I(A).

Let Tip(bg) E (Tip g) for b E B and g = Tip(h) for h E g. Since g generates

I(A), h G I(A). Since I(A) is an ideal, bh E I(A), so Tip(bh) e Tip 1(A). But

Tip(bh) = Tip(bg).

Let g E Tip I(A). Then g es for S ={H^ 1 , H„} c A. We consider

different cases for S.
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If (--vi sl-1 = 0, then es E Tip g.

Suppose nHEsH 0 for the remainder of the proof.

If S is dependent, then let H := minS. Then es\{H} E Tip g. We then have

g = Tip(eHes\{H} ) E (Tip g).

Suppose S is independent. If there exists Ho with Ho < min S and {H0 } U S

is dependent, then by definition of g we have g = es E Tip c.

Suppose S is independent, and suppose there does not exist Ho < min S so

that {HO} U S is dependent. Then es E NT(g).

We may apply Theorem 3.2.17 to conclude g is a GrOblier basis for I and

(NT(g)) is a IC-basis for A(A).

We now consider the case that A is central and give a characterization of when

Tip c is generated by elements of degree two; that is, any element g E Tip g may be

written as Tip(eseT) for 171 = 2

DEFINITION 3.2.19. A GrObner basis c is quadratic if for any g E Tip g, there

exists h E g so that deg(h) 2 and g Tip(bh) or g = Tip(hb) for some b E B.

DEFINITION 3.2.20. A subset S := {H„,... ; Hoc } C A is minimally de-

pendent means S is dependent but {H21 ,	 ,	 , Hi , } is independent for all

1 < p < k.

DEFINITION 3.2.21. Let A be a central hyperplane arrangement. Order the

hyperplanes via <. Let

BC := {S C A: there is H < min S so that {H} U S is minimally dependent}.

We say A is quadratic with respect to < to mean for S E BC, there. exists T E BC

with T C S and ITI 2.

PROPOSITION 3.2.22. Let A be a central hyperplane arrangement. If A

is quadratic under an order < of the hyperplanes, then Tip I(A) is generated by

elements of degree two, i.e. g is a quadratic GrObner basis.
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PROOF. Let S C A be dependent. Let R C S be minimally dependent. Fix

Ho :=-- niinR; let R\ {H0 }. Then 7? G BC. Since A is quadratic, there exists

T E BC with T C R and 17'1 2. Then CT E Tip g with degree two. Moreover,

S = TiP(es\(TuiiiinS) • eT) as required.

Recall a central hyperplane arrangement A is called supersolvable if L (A) has

a maximal chain of modular elements

V = Xo <	 <••	 X.e nffEAH.

DEFINITION 3.2.23, Let A be a central hyperplane arrangement with order

< on the hyperplanes. If A is supersolvable, we say the order on the hyperplanes

respects the supersolvable structure if for a maximal modular chain

V =	 <	 < • • • < Xt nricAH

in L(A) we have

1. Xi is the smallest hyperplane, i.e. X1 = H1

2. For i > I, we have xt = njn-L,H3 and if a hyperplane H < X, then H E

,Hnj.
THEOREM 3.2.24. (BjOrner and Ziegler [31) Let A be a central hyperplane

arrangement. A is supersolvable if and, only if A is quadratic under an order that

respects the supersolvable structure.

PROOF. This is Theorem 2.8 in t3). q

EXAMPLE 3.2.25. This example illustrates the importance of the choice of or-

der on the hyperplanes. Let Q(A) = x(x y)(x -1-y)y(r—z)(x + z)(y + z) (y—z)z; order

the hyperplanes as they are written. Then A is supersolvable; see Example 2.2.18.

Under the current order, we see the indices for the broken circuit basis for A2 (A) are
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{12,13, 14,15,16,17,18,19, 25, 26, 27,28,29,35,36,37,38,39,45,46,47,48,49}. We

can check to see that A is quadratic with this order. Notice the element H, n H2 fl

.H-3 n H-4 E L(A) is modular and part of a maximal modular chain in L(A). However,

if Q(A) = ( sx — y)(x — z)(y z)gx y)y(x + z)(y z)z with the hyperplanes or-

dered as they are written, then the indices for the broken circuit basis for A2 (A) are

{12,13,14,15,16,17,18,19,24,25,26,27,28,29,34,35,36,37,38,39,48,59, 67}. We

also have A is not quadratic under this order because S =	 H2, H4, HO is min-

imally dependent so {H2 , 111, H8} E BC. However, {H2 , H4}, {H2, H8 }, {H4, H8}

BC. Notice the element HI_ fl H2 n H3 G L(A) is not modular.

§3.3 Cohornology of the Orlik-Solomon Algebras and dim 11-1-(A(A), a)

In this section, we define the cohomology of the Orlik-Solomon algebra and

discuss recent results from the literature on dim Hr (A(A), a). We refer to [8] for

expository accounts on this subject and for a more detailed bibliography than will

be presented here.

Let A be an arrangement, and let A(A) be the Orlik-Solomon algebra. By §3.1,

we have that A(A) E6Ap(A).

DEFINITION 3.3.1. We construct a cochain complex on the homogeneous
n

components of A(A) as follows. Let a E A, (A) with a =	 )+ Z a, for Ai E K.
z=1

Multiplication by a giving the differential dk : Ak(A)Ak+i (A) forms a complex

(A(A), a). The cohomology of this complex is said to be the cohomology of the

Orlik-Solomon algebra and is denoted H*(A(A), a).

THEOREM 3.3.2. Let A be a central hyperplane arrangement. Let a 	 ia,
i=1n

for Ai E K. If
	

0, then H*(A(A), a) = 0.
i=1

PROOF. This is given in Proposition 2.1 in [13]. o
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EXAMPLE 3.3.3. Let Q( A) = xy(x + y); let a = al – a 2 . Considering

H 1 (A(.A.), a), we see that b := a 1 – a3 is in the kernel of d1 but not in the im-

age of do. Hence, CI � P)] G 1/ 1 (A(A), a).

DEFINITION 3.3.4. Let X E L (A). Let a E A i (A) with a =	 Cli - We

define

a(X) :=	 Ajai.
H; <X

The following results regarding dim H2 (A(A), a) are from (8!. The results are

presented here in a simplified version for our purposes.

DEFINITION 3.3.5. Let

	

X (a) := {X E L(2, A) : 1X1 > 2, a(X)	 = .
H<X

DEFINITION 3.3.6. Let 1- (a) C {1, n} be defined as follows. We have

i E (a) if

(1) H, < X for some X E X(a), and

(ii) if A z = 0, then there does not exist A i	0 for which	 Hi are not in any

X E X(a).

DEFINITION 3.3.7. Let F be the graph with vertices i E (a) and edges defined

as follows. Define an edge from i to j if Ha V H3 0 X(a). We then have a partition

of 1(a) via the path components of F; let II be the partition of F into its connected

components.

DEFINITION 3.3.8. The incidence matrix J is the 1X(a)1 x I(a) matrix with

JX,a 1 if H, < X and zero otherwise.

Let E be the WO I x (a) I matrix with ones in every entry. Let Q = Jt J – E.

Decompose Q into the direct sum of its principle indecomposable submatrices so

that (2	 QK.
KEH
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DEFINITION 3.3.9. A matrix M over R is affine if it is positive semidefinite and

its null space is spanned by a positive vector, meaning all coordinates are positive.

A matrix M is indefinite if there exists a vector u > 0 so that Mu < 0.

THEOREM 3.3.10. Let char IC = 0. For an arrangement	 there are only two

possibilities:

1. For each K, we have QK is either affine or has only the zero vector for its kernel.

In this case, we say X (a) is affine.

2. There exists an unique K0 so that Q KG is indefinite and for all other K we have

that QK has only the zero vector for its kernel. In this case, we say X(a) is

indefinite.

PROOF. This is given in Proposition 2.2 in [8].

THEOREM 3.3.11. Let char 1C = 0. We have the following:

I. If X(a) is affine, then Zi (a) Ker Jn {E,„(a) xi = n {x i = 0 : if i i(a)}.

2. If X(a) is indefinite or X(a) = 0, then dim Zi (a) = 1.

PROOF. This is given in Theorem 3.4 in [8]. q

EXAMPLE 3.3.12. Let char IC = 0. Let A be the arrangement given by Q(A) =-

xy(x + y); order the hyperplanes as they are written. Let a := a1 a2 E A1 (A). We

compute X(a) = tH1 rui2 n H3 }, 1(a) = {1, 2, 3}, and II = {{i, 2, 3}}. Moreover,

the matrix J = (1 1 1) gives Q to be the 3 x 3 matrix of zeros. Since Q is affine,

Theorem 3.3.11 gives us that Zi (a) = Ker „In {E,e/(a) xi = 0} = {>iEI(a) x, = 01.

Hence, Z1 (a) = {ELI. xia, : x i + x2 + x3 = 0}. Therefore, dim Zi (a) = 2.

EXAMPLE 3.3.13. Let char IC = 0. Let A be the arrangement given by

Q(A) = xy(x + y)(x + y z)z; order the hyperplanes as they are written. Let

a := al a2	 a5. We compute

X(a) = {H1 n H2 n 113, H3 n H4 n115},



I(a) = { 1, 2, 3, 4, 5}, and

fl= {{3}, {1, 2, 4, 5}1.
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The matrix

gives us

Q =

J 	 1. 1 1
0 0 1 1

0	 0 0 -1 - 1\
0	 0 0 –1 –1
0	 0 1 0	 0
–1 –1 0 0 0
–1 –1 0 0	 0/

Since Q is indefinite, Theorem 3.3.11 gives us dim Z i (a) 1.

EXAMPLE 3.3.14. Let char K = 0. Let A be the arrangement given by

Q(Ä) = xyz(x - y)(x - z)(y z)(x + y); order the hyperplanes as they are written.

Let a :-= a l – a2 – a5 + a6 . We compute

1(a)	 {1, 2, 3, 4, 5, 6}, and

{{1, 6}, {2, 5}, {3, 4}1.

The matrix

J =
(

1	 1	 0	 1	 0	 0

0	 1	 1	 0	 D	 1
1	 0	 1	 0	 1	 0

gives us

0	 0	 0	 1	 1	 1

( 1	 0	 0	 0	 0	 –1\
0	 1	 0	 0	 - 1	 0

Q=	 0	 0	 1	 - 1	 0	 0
0	 0	 -1	 1	 0	 0

\-1	 0	 0	 0	 0	 1)

X n n n117, n n n n n n(a) = H2 114 nH7,H1 113 H5 , I/2 H3 H6 , H4 H5

Since Q is affine, Theorem 3.3.11 and some linear algebra gives us dim Z i (a) 2.
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EXAMPLE 3.3.15. Let char IC 0. Let A be the arrangement given by

Q(A) xyzw(x + y); order the hyperplanes as they are written. Let a := a l — az,

and let b := al — a 2 + a3 a4 . By computing, we have

X(a) X(b) --= {H 1 n R2 n H

I (a) = 11 2, 5}, and

I (b) = {1, 2}.

Therefore, dim Z 1 (a) = 2 and dim Zi = 1.



CHAPTER IV

THE VANISHING OF H* (A(A), a)

In this chapter, our main goal is to establish a necessary and sufficient condition

for the vanishing of H* (A(A), a). In §4.1, we employ tools from operator theory

to prove the upper semicontinuity of the map t 1-4 dim HP (A(A), t) for any p > 0

and for any t E Al (A). In §4.2, we analyze tensor products in the category of

graded commutative algebras in order to express the cohomology of a reducible

arrangement in terms of the cohomology of each factor of the arrangement. In §4.3,

we apply results discussed in §4.1 and §4.2 to achieve the goal.

§4.1 The Upper Semicontinuity of t i dim HP (AO), t) 

Let A =	 ,	 be an arrangement. Let IC = C or R. Let A(A) be the

Orlik-Solomon algebra over K.

In this section, we show the function il 1 (.4) Z given by t 1–÷ dim HP (A(A), t)

is upper semicontinuous in t for any p. We show this in the more general setting

of finite dimensional vector spaces and hence begin by establishing some standard

definitions and notational conventions, which can be found in [5].

Let V be an n-dimensional vector space over 1C. Relative to a basis {b 1 ,... bn}n
for V over k , for v E V we express v (v 1 ,	 , v7,) as v =	 vibi.

i=1
Since 1( C or R, we define the standard Euclidean norm, I Dv, on V as

Il v Ilv =	 ,v,)11v := 0.1 1 174 " ' Vnljn

35
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relative to the standard orthonormal basis {e l ,	 , en } for V.

With respect to the norm 11 	 we define the unit sphere in V by

8(V)	 tv E V :	 = 11.

We also have the corresponding standard inner product, (., •), defined on V as

(x, y) := x191 + - • + xn 9r, for x,y E V.

We define the orthogonal complement relative to the inner product. Let X C V

be a linear subspace. Then

X-L := {v E V : (v,x) 0 for all x E X}.

Let X C V be a linear subspace and v E V. We define the distance from v to

X to be

dist (v, X) := inffilv —	 : x E X}.

Note there exists an unique xo E X for which dist (v, X) dist (v, x0).

For the remainder of this section, we fix two finite dimensional vector spaces V

and W over /C Fix 0 A c Homes (V, W).

DEFINITION 4.1.1. Define

-y(A) := inf. { ION! w : h E S(V) n (Ker A)1}.

LEMMA 4.1.2. If 0 / A C Hom(V, W), then l(A) > 0.

PROOF. Clearly, -y(A) > 0. Suppose that -y(A) 	 th By definition of the

infimum, there exists a sequence {h3 } C S(V) n (Ker A)-L so that ilAhAw -4 0.

This implies lim h2 E Ker A fl (Ker A)-1-	 {0}. But 11'11 is continuous in the metric;

hence, lim	 v = 1. This contradiction proves the lemma. a
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LEMMA 4.1.3. If A E Homes (V, W) and if h E V, then we have

-y(A) • dist (h, Ker	 5 IjAhljw.

PROOF. Let p : V	 (Ker A) 1 be orthogonal projection of V onto (Ker A)±.

We relate the norm to the distance by noticing it ph ll v = dist (h, Ker A). Hence,

ilAN1w

� 'Y(A) • liPhiiv

(A) • dist (h, Ker A).

The lemma now follows. q

LEMMA 4.1.4. If V1 , V2 C V are linear subspaces with dim Vi > dim V2, then

there exists 0 v 1 E V1 so that ll v l l4v = dist (vi, V2).

PROOF. Let pi be the orthogonal projection of V onto V1 . We have the in-

equality dim p i (V2 ) < dim V2 < dim VI , so p1 (V2 ) is a proper linear subspace of V1.

Take 0 v1 E V1 n (p 1 (V2 )) 1 . Then for any v2 E V2, we have

0 = ( 01( )2), V1)

=(v2, Pl(V1))

=(v2,v1)-

Thus, v1 E V21 . Consequently, PA v dist (v1, V2).

DEFINITION 4.1.5. Let B G Hoinic(V, W). The operator norm of B is defined

to be

ii B ilop := suP{Ohilw h E S(V).}

We note that for any h E V, the inequality holds:

li BhIlw	 11-131101,114v.
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PROPOSITION 4.1.6, If B E Hom ic(V, W) with 11/311,,p < 7(A) then

dim Ker(A + B) < dim Ker A.

PROOF. If 0 h E Ker(A + B), then Ah = –Bh. By Lemma 4.1.3, we have

7(A) - dist (h, Ker A) 511Ahliw

=Philw

CII B IIop - itiqv

<7(A)

Thus, dist (h, Ker A) <	 for all 0 h E Ker(A + B). By Lemma 4.1.4, we

have dim Ker(A + B) < dim Ker A. q

DEFINITION 4.1.7. Let A E Homk (V, W). We define the adjoint of A, denoted

by A* E Hoxmc(VV, V), by (x, A*y) := (Ax, y) for all x E V and for all y E W.

LEMMA 4.1.8. If A E HomK (V, W), then Ker A* 7 (range A)1.

PROOF. Let y E Ker A* . Then y E (Ax) 1 for any x E V. Thus y E

(range A)i.

Let y E (range A)'. Then for any x E V, we have 0 = (Ax, y) = (x,A*y). This

implies A*y = 0; hence, y E Ker A*. q

PROPOSITION 4.1.9. Let A, B E Hom ic(V, W). If 1B*11,,p < 7(A*), then we

have rank(A + B) > rank A.

PROOF. From Proposition 4.1.6, we have

dim Ker (A +	 = dim Ker (A* + B*) < dim Ker A*.

Since dim Ker A* = dim(range A)-L = dim W rank A, it follows that

dim W rank(A + B) < dim W – rank(A). q
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DEFINITION 4.1.10. Let X be a topological space. Let f : X be a

real-valued function; f is said to be upper semicontinuous if for any real number a

the set {x E X : f(x) < cx} is open. Alternatively, for X a metric space we may

define f to be upper semicontinuous at xo E X if

lirn sup f(x) < f (x0).

Recall from Chapter III that for an arrangement A, we have the Orlik-Solomon

algebra A(.A) over K. Moreover, this is a graded algebra A(A) eAp (A). Since

IC R or C, we have Ap (A) is a finite dimensional vector space. For any t E A1 (A),

let the map t• : Ap (A)	 Ap+i (A) be given by multiplication by t. Let Zp(A(A),t)

denote the kernel of the map t• : Ap (A)	 Ap+ i (A); let Bp (A(A), t) denote the

image of the map t• : Ap(A) Ap+ i (A).

LEMMA 4.1.11. If ilt - ta lc. -> 0, then (It • -to • 	 0.

PROOF. We have Ap (A) and Ep (A) are finite dimensional vector spaces over

IC. We use the standard basis for Ep (A) given by {ei,i • e,, : 1 < i 1 <	 < ip < p}.

We use the broken circuit basis for Ap (A).Then	 E p (A) and NA,(A) are defined

as previously.

It will suffice to show 11(t - to)(011 A,(A)	0 for any v E Ap_ i (A). But the

maps given by (t - to) . : Ep- i (A)	 Ep (A) commute with the projection map

: Ep (A)	 Ap (A); that is,

Ep--1(A)

Ap_1(A)

(t—t0)•

0
(t—t0)
-->

Ep(A)

Ap(A).

Hence, it will suffice to show 11(t - to) - vil Ep(A)	 0 for any v E Ep_ (A).
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We need only show that (t - to) bil EvA) 0 for any standard basis element

b E Er_ i (A). We write b e,, - • - ez p _ 1 , where 1 < ii <	 < ip 1 < n. Then

lll t — t0) • b11 2E, (A ) =I1(t - t0) e7.1 ... eip liEp (A)

t 'd ei)	 •	 eip_i

=	 (ti - 4)2
i� i„,...,ip_,

As jit - tok.	 0, we have 11(t - to) • blI 2E,(A) -4 0 as required. o

THEOREM 4.1.12. Let A be a hyperplane arrangement with n hyperplanes.

Let A(A) be the Orlik-Solomon algebra on A over the field IC, where lc is either C

or R. The function t dim HP (A(A), t) from Al (A) to Z is upper semicontinuous.

PROOF. We first identify A i (A) with IC' .

The result clearly holds for to = 0 G A 1 (A). That is,

lim sup dim HP (A(A), t) < dim HP (A(A), 0) = dim Ap(A).
t-o

Fix 0 � to E kn . Let E = minNto . ), y(to•*)}. By Lemma 4.1.2, E > 0. As

t -4 to in IC'', by Lemma 4.1.11, we have lit • -to -110p -* 0. Hence, there exists (5 > 0

so that	 -to • ((op < E whenever Irt - 	 < (5.

Consequently, we use Proposition 4.1.6, Proposition 4.1.9, and Lemma 4.1.11 to

see dim Ker(A(À), t) < dim Ker(A(A), to) and rank(A(A), t) > rank(A, to). Thus,

dim HP (A(A), t) --= dim Zp (A(A), t) — dim Bp_i (A(A), t)

< dim Zp(A(A) , tO) - dim Bp_i (A(A), to)

--= dim .H P (A(A), to).

The assertion now follows.
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§4.2 Tensor Products in the Category of Graded Commutative Algebras

Let IC be a commutative ring. We introduce the following definitions and nota-

tional conventions, as can be found in [9].

DEFINITION 4.2.1. (Tensor Product of Modules) Let M and N be IC-modules.

The tensor product M N is the abelian group with generators being all symbols

m 0 n for m E M and n E N subject to the relations (k E IC)

(i) (m + m`, n) — (m, n) — ( in', n)

(ii) (m, n n') — (m, n) — (m, n')

(iii) (km n) - (m, kn).

There exists a bilinear map : MxN—> MONso that 0(m, n) = m n.

We have the following universal property. Let A be a IC-module. For any bilinear

homomorphism f : M x N —i A, there exists an unique f: MON A so that

f (m, n) = f (m n)

DEFINITION 4.2.2. (Graded Module) We say M is a graded IC-module if there

is a family of IC-modules {M„,}n>0 so that M = en>0 M.. For mCMn , we write

deg(m) = n.

DEFINITION 4.2.3. (Tensor Product of Graded Modules) Let M and N be

graded IC-modules. The tensor product M N is the graded module given by

(4.2.3.a)
	

(M	 =	 Mp Ng.
p+q=n,

Let A be a graded IC-module. Let f : M x N A be any bilinear graded

homomorphism, there exists an unique graded homomorphism f : M N A so

that f (m, n) = f (m n)

DEFINITION 4.2.4. (Graded Commutative Algebra) M is said to be a graded

commutative IC-algebra if the following are satisfied:
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I. M is a graded 1C-module.

2. There is an associative multiplication in M so that MpMq C Mp+q.

3. (Commutative) For homogeneous elements a, 17 E M we have

ab = (_i)deg(a).deg(b) ba.

DEFINITION 4.2.5. (Tensor Product of Graded Commutative Algebras) Let

M and N be graded commutative 1C-algebras. The tensor product M N is the

graded commutative 1C-algebra given by

I. M N is a graded 1C-module defined in (4.2.3.a).

2. Multiplication is defined by (m n)(m' 0 n')	 (-1)(16g(m)deg(mi) 771,7711 nn'.

Note: One can check that this multiplication is commutative.

We have the following universality description of M 0 N. Let A be graded

commutative 1C-algebra. Let f: M x N A be a bilinear graded homornorphisrn

with

f((m,n)(rni, n'))	 (- 1 ) d"(n) deg(mi) f (1711n)f(rn',n').

There exists an unique f: MON A so that f (m, n) =	 0 n).

EXAMPLE 4.2.6. Let AI be arrangements. Let A(Ai) denote the Orlik-

Solomon algebra on the arrangement ..At, over the commutative ring IC. Then A(AI)

is a graded commutative algebra over 1C. Hence, we have defined 0 2 A(A,).

We recall the product arrangement as defined in Chapter II. Let A1 be an

arrangement in 1.71 , and let A2 be an arrangement in V2. If V = Vr e V2, then we

put

A =Ar x A2 = {H e 172 :	 E	 U {Vi A) I : .11 E A2}.

We recall the broken circuit basis for the Orlik-Solomon algebra A(A). Let

S ={HI17 be an ordered subset of A with i 1 < - < i p . We say as is basic

in Ap (A) if
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1. S is independent, and

2. For any 1 < k < p, there does not exist a hyperplane H E A so that H <

with {H, Hi,, Hu+i , ..., Hip } dependent.

LEMMA 4.2.7. If 	 E A.7,(.A1 ) and a, E Aq(A2) are basic, then a.-y a, is basic

in A(A1 x A2).

PROOF. Order the hyperplanes in A 1 x A2 via

1. He V2 <KEDV2 if H<IC in Ai

2. VI. H <	 K if H < K in A2

3. H ED V2 <	 K if H E Ai and K E A2

Let a-y E Ap (Ai ) and a, E Aq (A2) be basic (i.e. in the broken circuit basis).

Suppose A 1 is an arrangement in V1 and A2 is an arrangement in V2. Suppose a-ya,

is not basic in A(A 1 x A2 ). By definition of the broken circuit basis, there are only

two possibilities. Suppose (nHE -y (H 172 )) n (nHE,(Vi H)) = 0. This happens

only if nHE .yH 0 or n HE a	 0. This is not possible since a, and a o, are basic.

Suppose there exists a hyperplane H E A 1 x A2 and a subset p of 7 U a with

H < p so that {H, p} is dependent. But this implies the linear functionals defining

the hyperplanes are linearly dependent. Since Q(A 1 ) and Q(A2 ) have no common

variables, this implies H is dependent upon pily or p n a. This contradicts the fact

a7 and a, are basic. Our assertion now follows. 13

LEMMA 4.2.8. For the product arrangement, we have 11(A 1 x A2) A(A1)

A(A2).

PROOF. We define the map ok : 	 x A(A2) A(Ai x A2 ) on the generators

by (1)(a.- y , aa )	 a-y a,, and we extend the map cb bilinearly.
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Moreover, we have

q5((a7 , a,) -	 a,,)) = 0(a7 a-y , ,

Hi)deg(a)•deg(-y')a

(_1)deg(a)•deg(71) 0(a7, a,) • 0(a,y , a„,).

By the universal mapping property, there exists

: A(A1 ) A(A2 ) —> A(A1 x A2)

so that 0 = (157 r, where 7z- : A(A 1 ) x A(A2 )	 A(A1) A(A2 ) is the canonical

projection. Now, 0 is clearly surjective. All that remains is to verify injectivity.

Let a-y E Ap (..,44 ) and a, E Aq (A2 ) be basic. Suppose 93 (E ai a-ri au t ) = 0.

Then by the linearity of c-5, we have > aza yti a = 0. Since a-y,, and aa2 are basic

in A(A 1 ) and A(A2 ), we have a y, a, is basic in A(A1 x A2 ). Hence, we must have

ai = 0 for each i.

Suppose A = A1 x A2. By Lemma 4.2.7, A 1 (A) can be identified with the linear

space A i (Al) ED A l (,A.2 ). Let a E A I (A). We may express a = a 1 + a2 uniquely for

al E A1 (A) and a 2 E A 1 (.42 ). For the chain complexes (4/4 1 ), a i ) and (A(A2 ) , a2),

we recall tensor products of chain complexes; see M.

Let the differential (multiplication by a i ) for the complex (A(A1 ), a1 ) be denoted

di for i 1, 2. The differential for the chain complex (A(A1 ), a l ) 0 (A(A2 ), a2),

written d1 0 d2 , is defined on generators as

(d 1 ® d2 )(a7 a,) := a i a-y 0 a, + (-1)deg(a-i)a. 	 a

LEMMA 4.2.9. Let A = A1 x A2. Let a E A 1 (A) with a = a1 + a2 for

a1 e A 1 (A 1 ) and for a2 E A i (A2). As chain complexes, (A(A1 x A2 ), a) = (A(A1 )®
 di 0 d2)
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PROOF. From Lemma 4.2.8, we have A(A1 x A2 ) = A(A 1 ) A(A2 ). For a

basic element a p E Ap (A i x A2 ), we may write a p = ay - a, with a-y E Am(Ai)

and a, E Am(A2) and m n = p. Hence, multiplying by a in the chain complex

A(A 1 x A2 ) gives the differential defined on generators as

a ap =(a i + a2 )(a-y - ao-)

=a 1 a.), a, + (-1)deg(a-,)ay a2aa.

The result follows immediately.

THEOREM 4.2.10. Let A = A1 x A2 be a product arrangement. Let a E

A 1 (.4 1 x A2 ). Write a = a 1 + a2 for a1 E A 1 (A 1 ) and a2 E A 1 (A 2 ). Let K be a

field. We have:

Hm (A(A1 x A2 ), a) = ED HP (A( ,A1), a l ) 0 .1-P(A(A2), a2).
p±q=m

PROOF. By Lemma 4.2.9, this is a direct application of the Kiinneth Formula

(see [9]) to the cochain complex (A(A 1) A(A2 ), d 1 0 d2).

§4.3 H* (A(A), a) 

In this section, we use the results of §4.1 and §4.2 to establish necessary and

sufficient conditions for H* (A(A), a) = 0.

Let A be an affine arrangement. We may write

A = A1 X A2 x... X Ak x 13,

where Ai are each central and B is not central. Moreover, we may assume each A,

contains no proper central factors and B contains no central factors; otherwise, we

would decompose the arrangement further. For a E A l (A), write a = a l +--- +ak +as

for a3 E Al (43 ) and as E A1(13).

EXAMPLE 4.3.1. Let Q(A) = x(x – 1)y(y – 1). Atlhough A is a product of

affine arrangements, A contains no central factors. Hence, A = B in this case.
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We recall the deconed arrangement from Chapter II. Suppose A is central. We

form the deconed arrangement dA as follows. Let a i be the functional corresponding

to H. Without loss of generality, we may assume a 1 x1 . Decone at a i = x 1 by

setting x 1 = 1.

LEMMA 4.3.2. If A is a central hyperplane arrangement and A contains no

proper central factor, then dA contains no central factor.

PROOF. Suppose dA contains a central factor. There exist subarrangements

C1 and C2 of dA so that dA C1 x C2. Moreover, we may assume C1 is central. Since

C1 is central, by taking a linear change of coordinates if necessary, we may assume

the hyperplanes of C1 pass through the origin; i.e. we are assuming the defining

equation Q(C1 ) consists of linear functionals. Then by coning, we obtain A. Since

the defining equation of C 1 is unaffected by coning the arrangement dA, we have

constructed a central factor of A. This contradicts the assumption that A contains

no central factors. a

EXAMPLE 4.3.3. To demonstrate the proof of Lemma 4.3.2, we consider an

arrangement A where both A and dA contain a central factor. Let Q(A) z(x —

z)(y—z)(w — z)w. When deconing at z = 1, we have Q(dA) (x — 1)(y-1)(w-1)w.

Take Q(Ci ) = (x — 1)(y — 1) and Q(C2) (w — 1)w. Let X x — 1 and Y y — 1.

We have Q(dA) = XY(w — 1)w. When coning, we have Q((dA)') z±"Vw — z)w.

By taking the linear change of coordinate X = x — z and Y y z, we see that A

and (dAY are linearly isomorphic.

We recall the Euler characteristic of an arrangement A. Let rank(A) Q. The

Euler characteristic is given by

X(A) =
	 ( 1) i dim Ai (A).

We also note that x(dA) depends only on L(A).
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Let A be an arrangement. Let Ho E A. We recall the arrangements given by

deletion and restriction

= {H : H G A\ Ho}, and

A"—{HonH: HeAandHnHoOl.

Recall r(A) = maxx EL(A) rank(X).

We need the following lemmas and proposition, established in [6].

LEMMA 4.3.4. Let A be an affine arrangement with r(A) > If A does not

contain a central factor, then for any distinguished hyperplane 1/ 0 E A either A' or

A" does not contain a central factor.

PROOF. We refer to the proof given in Lemma to Theorem II in [6]. q

We define

O(A) := (-1)T(A) x(A).

LEMMA 4.3.5. Let A be an arrangement with 1.41 > 1. If A is not central,

then there exists Ho E A so that rank(..4 1 ) = rank(A). With respect to Ho, we have

the equality /3(A) = 0(A') + /3(A"). If A is central, then this inequality holds for

any H E A.

PROOF. Suppose A is not central. Then there exists a maximal element T E

L(A) and a hyperplane Ho T. Hence, T is a maximal element in L(A'). Since

x(A) = x(A') — x(A") by Theorem 2.56 in [12], we have

(-1)") X(A) = (-1)r(A)X(Af) — (-1)r(A)X(A"),

We have r(A") = r(A) — 1 and rank(A') = rank(A), so

)3(A) = )3(A1 ) + 0(A").
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If A is central, then A' and A" are both central, so x(A) x(A') = x(A") = 0. 0

LEMMA 4.3.6. If A is an arrangement, then /3(A) � 0.

PROOF. We induct on IAI.

If A = 0, then 0(.4) = 1. If jAl = 1, then 0(A) = 0.

Assume /3(B) > 0 for all arrangements B with IB1 < k. Suppose A = k > 1.

By Lemma 4.3.5, we have 0(A) = /3(A') + /3(A") for some hyperplane Hp E A. By

the induction hypothesis, we have )3(M), ,13(A") > 0. We therefore have a(A) > 0

as required.

PROPOSITION 4.3.7. Let A be an affine arrangement. We have x(A) 0 if

and only if A contains no central factors.

PROOF. Suppose A contains a central factor; that is, A = B x C, where B is

central. Then x (A) = x(B)x(C); see Lemma 2.50 in [12]. Since B is central, we

have x(B) = 0; see Proposition 2.51 in [12]. Hence, x(A) = 0.

Suppose A contains no central factors. We want to show x(A) 0. It will

suffice to show /3(A) � 0. We proceed by induction. Suppose IA = 2, then A

consists of two hyperplanes which don't intersect; hence, x(A) = —1.

Suppose for any B with 181 < k (k > 1) for which 13 contains no central factors,

we have O(B) � 0 (hence, x(I3) 0). Fix H0 E A so that /3(A) = 0(A') + 0(A").

We apply Lemma 4.3.6 to see that A' or A" contains no central factors. By the

induction hypothesis, 0(A') > 0 or O(A") > 0. Since (3(A) = 0(A') + [3(A") and

IAA% j3(A") > 0 with at least one positive, we have /3(A) > 0. Hence, x(A) 0 as

required. In

THEOREM 4.3.8. Let A be an affine arrangement. We may write

A = A1 x A2 x • - x Ak x B,
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where A3 are each central and B not central and they contain no proper central

factors. For a E Ai (A), write a a l ± - • ± ak+ a/3 for a3 E Ai (A.3 ) and as E Ai (8)

We have H* (A(A), a) � 0 if and only if ER,EA2 A, = 0 for all 1 < 3 < k.

PROOF. We use the Kiinneth Formula from Theorem 4.2.10; that is,

(A(A), a) =

	

e	 HP' (A(Ai ) , ai ) ®• - • 0 "Pk (A(Ak), ak) 0 HP k -1- 1 (A(B), as).
Pi -1--Pk+Pk+1=m

Suppose

we refer to [13]. By the Kiinneth Formula, it follows that H* (A. a) 0.

Suppose E A1(A.7) ai = 0 for all j. By the Kanneth Formula, it will suffice to

show H* (A(A,), at ) 0 and II* (A(B), as) 0. Since B contains no central factors,

we have x(13) � 0. Hence, H* CA(B), (43 ) � 0.
n

Take a = Ai m,. We consider the chain complex formed by multiplication by

Et, (dA, a); here, dA is A deconed at Hi . Since we have the short exact sequences,

see [131

0	 HP-1 (A(dAi ), EL) ---+ IIP (A.(A,), a)	 HP (A(dA,), a)	 0,

it will suffice to show H* (A(dAi), 0. But by Lemma 4.3,2, dA, contains no

central factors, so by Proposition 4.3.7 x(dA i ) � 0; hence, II* (A(dAi ), a) � 0 as

required. q

We recall the following theorem from [13].

THEOREM 4.3.9. (Yuzvinsky [131) Let A = {H1 ,... , HO be an arbitrary

arrangement with rank(A) = E. Let a = E Aia, E Ai (A) and satisfy the condition

E A, � 0 for all X G L(A) such that x(dA(Ax)) 0. Then HP (A(A), a) = 0
X c
for every p < t.

EA, (Ai) Ai 0 for some j. We have H* (Ai , ai ) = 0 since Ai is central;
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We use Theorem 4.3.9 in conjunction with the upper semicontinuity of the

map t dimI/P (A(,4), t) discussed in §4.1 to establish conditions under which

dim H' (A(A), a) 0 for an affine f-arrangement A.

THEOREM 4.3.10. Let A be an arbitrary .£-arrangement with lAj n. Suppose
n

A contains no central factors. Let a = 	 Ajai E A 1 (.4). We have:
i=1

e (A(A), a) � 0.

PROOF. If a 0, then IL e (A(A), a) = MA(A), a) = MA) � 0. Hence, we

may assume a � 0 for the remainder of the proof.

Let

S = {X c MA) :	 � 0}.
jEx

Since a � 0, we have S 0. We define

-= min ft	 X E S}.
jEX

Since S 0, tc, > 0.

We now construct a sequence a, E Fl so that (ai).2	 Ai as i oo. For i E N,

define

tc,
(adi := Aj n 2i

It is clear that (a i )j 	 A3 as i ---> DO. Moreover, we now show
	

)j � 0 for any
jEX

X E L(A) and any i G N.

Fix X E L(A). If	 aj = 0, then	 (cci )i 0 since k > 0.
jEX	 jEX

Suppose	 0. If	 aj > 0, then	 ( i )i > 0 since	 > 0.
jEX	 jEX	 jEX
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Suppose

	

	 Aj < 0. Then
jex

(A 
+ n • 22-)

	

jEX
	

jEX

x'. 
=:(E Ai)	 rt 22

jEX

<(	 A3) + 
li

jEX

<0,

where the last inequality is true because of the definition of N.

Therefore, for any i E N, we have oti satisfies the condition of Theorem 4.3.9

ensuring that dim H' (A(A) , ai ) = 0 for p < Q. Since A contains no central fac-

tors, we have II* (A(A), cx,) � 0; hence, dim if(A(A), a.,) � 0. By Theorem

4.1.12, the function t i dim He (A(A), t) is upper semicontinuous in t; therefore,

dim IV (A(A), a) > 0.

THEOREM 4.3.11. Let A be an affine £-arrangement. We may write

A= A1 x A2 x • • x Ak X B ,

where A.3 are each central and B not central and they contain no proper central

factors. Let a E Ai (A). We have dim He (A(A), a) L 0 if and only if EF/EA Ai = 0

for all j.

PROOF. Let Ai be an2j -arrangement, and let B be an es-arrangement. Then

A is an (f +	 £j )-arrangement. Since we have the short exact sequences

	

0 HP-1 (A(dAi),	 HP (A(Ai ), a) —> HP (A(dAi ),	 0

and the Kiinneth Formula
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Tim (A.(A), a) =

ED	 HP' (*Ai) ai)	 • 0 1-1Pk (A(Ak ), ak) IIP 'H. (A(13) , as),

it will suffice to show HI, (A(dA3 ), 5,3 ) A 0 and HeI3 (A(B), as) � 0. This result

was established in Theorem 4.3.10. q

THEOREM 4.3.12. Let A be an arrangement with £ = rank(A). Fix a E Ai (A).

Then H* (44 a) 0 if and only if He (A(A), a) 0.

PROOF. This follows immediately from Theorem 4.3.11 and Theorem 4.3.8. q



CHAPTER V

THE DIMENSION OF li k (A(A), a) FOR A SPECIAL CASE

In this chapter, we determine the dimension of Hk (A(A), a) while imposing

special conditions on a and A. In particular, we require A to be supersolvable.

In §5.1, we determine the dimension of Zk (a) for this special case and compute

the Hilbert series for H*(A(A), a) in terms of the Hilbert series for A(A). In §5.2,

we study the ideal Z(a) TZk (a) under the same conditions and show Zk (a) =

Ak _ t (A) Zi (a) for k < §5.3, we consider examples illustrating the results

from the first two sections.

Throughout this chapter, we maintain the following assumption.

CONDITION A. Let A be a central hyperplane arrangement, and assume A is

supersolvable. Fix X E L(A) with rank(X) = 2 and X a member of a Maximal

modular chain in L(A). Fix an order on the hyperplanes so that the order respects

the supersolvable structure. Then we have Ax = {H1,	 Hnx} •

Recall from §3,2 that A satisfying Condition A implies A is quadratic under

this order.

§5.1 The Dimension of Zk (a) for a Special Case

Let A = } be a central hyperplane arrangement in V. The lattice,

L(A), of subspace intersections formed by the hyperplanes is ranked (via codimen-

sion) and atomic; see chapter II. This allows us to discuss the rank of each element

from the lattice and to associate to it the hyperplanes which contain it. The follow-

ing notational conventions are maintained throughout the chapter.

53
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NOTATIONAL CONVENTIONS:

1. For X E L(A), we write i E X to mean X is contained in the hyperplane

2. For X L(A), we write X = fi t , ip l to mean

(i) X is the intersection of the hyperplanes{Hz 1, Hip},

(ii) if X C H then H E {H„,

3. If rank(X) = p, then we write X E L(p, A).

We recall the Orlik-Solomon algebra for the central case. Let 1C be a field. Let

E1 be the linear space over k on n generators. Let E(A) := A(E1 ) be the exterior

algebra on El . We have that any ordered subset S ={Hi1 ,..., Hip } of A corresponds

to an element es = ei l - • - eip iE(A). We say S is dependent if rank(nS) <

We define the map 0 :	 E(A) via the usual differential. That is,

8(1) :,o,

a(e ll ) := 1,

and for p > 2, 0(e ff1 • - eNp):=
k=1

We define .1. (A) to be the ideal of E(A) which is generated by 8(es) for all

dependent S. The Orlik-Solomon algebra is defined as A(A) := E(A)/I(A).

We have A(A) is a free graded 1C-module. We recall the broken circuit basis

for Ap (A). Fix an order on A. Consider an ordered subset S {Hi 1 , of A

with 1 < i 1 < • • • < ip < n. Then as is basic in Ap if

1. S is independent, and

2. For any 1 < k < p, there does not exist a hyperplane H E A so that H < Hik

and {H, H,,, Hik„,..., Hip } is dependent.

Let Bp := {(i 1 ,... ,ip ) : a,, • • ai, is in the broken circuit basis for Ap(A.)}.

We recall the cohomology of the Orlik-Solomon algebra from Chapter III. We

construct a cochain complex on the homogeneous components of A(A) as follows.
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Let a E /1 1 (A). Multiplication by a giving the differential dk : Ak --Ak _Fi forms a

complex (A(A), a).

DEFINITION 5.1.1. Let Mk be the matrix of the map dk : Ak Ak±i in the

broken circuit basis.

DEFINITION 5.1.2. Let X E L(2, A). Let a be a nonzero element of A1(A);

write a =	 A„a„. Assume A i = 0 for i 0 X and Ein_i = 0. In this case, we say

a is concentrated under X

In the setting of Definition 5.1.1 and Definition 5.1.2, Mk is a Bk .4- 1 t x 1Bk

matrix. We compute the rank of Mk by considering the span of the column space of

Mk. Let X = {1, ..., nx} E L(2, A). We need to consider the types of basic elements

of ilk. Let j = {i ,  jp } be a subset of ft.. For A satisfying Condition A, we have

the following types of elements from Bk.

1. S = (a,3.) for ; E Bk _ i and 3C In, +1, n1 and a E {1, .••,nx}.

2. S	 (1,;) for ji E {2, ..., nx} and f Bk -1.

3. S = for C In, + 1, ..., n1 and ; E Bk.

LEMMA 5.1.3. Let A and X E L(2, A) be as in Condition A. Let 1 < k < e.

Let 0 � a E A 1 (A) be concentrated under X. Fix j C {7/, + 1, , n} and 3 E Bk_i.

Then the set of columns of Mk labeled by 13, 23, n x3 are the same. If k --= 1,

then the columns of Mk labeled by 1, 2, ... n, are the same.

PROOF. Fix 3. C {7/, + 1, ..., n} and 3 E Bk_i. Notice (a,;) E Bk for any

E {1, ..., nx }. For a E {1, ..., nx}, we have

a - aag
i<a

nxE
i=a+1

x
If a= 1, then we have a -

a - a = A la -a.,	 laj

i=2

1<i< a

ialij If a > 1, then we have

nx
iajoj	 iaaip

i=a+1
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However,
aicd =a lcz; – alq,

=aii – alai , and

Ai =0
i=1

implies a aoj	 Aj ai,3, . Therefore, the ad columns are the same for any
2<a <rtx

1 < a < nx as required. Since A is quadratic under this order, a117 0. That is, if

{H1, HI} is dependent, then {Hi,-, 1/} is minimally dependent since j E Bk_i.

Hence, {Hi ,113 ,1 is minimally dependent for some jk . But this implies Hi, E X, a

contradiction.

Notice that in the case k 1, the same proof works. q

In light of the above theorem, we define

E Bo : C nx +	 := 1

for ease in computations.

LEMMA 5.1.4. Let A be a central hyperplane arrangement with rank(A)

Let 0 < k < Q. Let X = {1, nx} be in L(2, A). Let 0 � a E A1 be concentrated

under X. Fix .2 E Bk-1 with j 1 E {2, ... , nx }. The column of Mk labeled by 1.; is

the zero column.

PROOF. This is immediate since any three elements under X are dependent;

in particular, we have

a - a -=13 Aiaz a	 0. q

LEMMA 5.1.5, Let A and X E L(2, A) be as in Condition A. Let 0 � a E A1(A)

be concentrated under X. Let 0 < k <	 The set of columns given by 3. for

C{^nx + 1, ..., n} and j E Bk are linearly independent.
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PROOF. This follows because a., is basic in Ak+i (A) for i E {1, -..,nx} since

A is quadratic under this order. Indeed, if a ij- is not basic, then we have two cases.

Let S ={H^ 1 ,, HO. If {Hi } UT is dependent for any T C S, then aj is not

basic, a contradiction. If there exists H < Hi so that {ILI/i } U S is dependent,

then this set is minimally dependent since as is basic. Since A is quadratic, this

implies Hj, < X for some k, a contradiction. 0

THEOREM 5.1.6. Let A and X E L(2, A) be as in Condition A. Let 0 < k <

Let 0 � a E A i (A) be concentrated under X. We have

rank dk
	 {.7 E Bk_i : 7 C {nx + 1,...,n}}

	
{j 

Bk	
{nx	

--'n}}PROOF. Lemmas 5.1.3, 5.1.4, and 5.1.5 imply the rank dk is the number of lj

for 3. C n x + 1, ...,n} and j- E Bk_i and the number of 3 for j C {n, + 1, ...,n}

and j E Bk.

Notice in the case that k = 0, we have rank do 1 since a � 0. o

THEOREM 5.1.7. Let A and X E L(2, A) be as in Condition A. Let 0 < k < f.

Let 0 L a E A 1 be concentrated under X. We have dim Zk(a) (rix -1) rank dk -1.

PROOF. We use Theorem 5.1.6 and calculate:

dim Zk(a) =--dimAk – rankdk

E BO)
	

{YE Bk_i ;C {nx +1,...,n}

{i E Bk	 g {nx + 1, , n}

3 Bk	 {3 E Bk-i +1,...,n)-}E	 :	 E

Consider the first term above. Since A is quadratic, for any a E X and j E Bk-21

we have laj E Bk. Hence,

{3 E Bk : ji E {1, --,nx}} =Raj E Bk : a e X3E

/11a:j E Bk : a E	 G Bk-2):71>
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Returning to our calculations, we now have

dim Zk (a) =---1{a .7E Bk : a E X,YE	 > n.,}1

+	 Bk : E X3E Bk-2,./1 > nxil	 Bk-1: il>

Consider the first and third terms. Since A is quadratic, for any j E Bk-1 with

ji > nx, we have aj E Bk for any a e X. Hence, the sum of the first and third

terms can be expressed as (n, 1)1{3 E Bk-i : j 1 > nx}1. The middle term as
-

written above is 1{lajE Bk a E X e Bk-2, ui > nx} k and gives nx -1 choices

for a. Hence, the middle term can be simplified to (nx -1)1{3' E Bk-2	 > n } •

Continuing with our calculations, we have

dim Zk (a) = (nx 1) '	 E Bk-1 : >	 (nX - 1 )	 Bk-2 :71 > na

- 1) rank dk_ i . q

THEOREM 5.1.8. Let A and X E L(2, A) be as in Condition A. Let k < t.

Let 0 a E A 1 (A) be concentrated under X. Then

dim H k (A(A), a) = (ny - 2) rank dk-i -

PROOF. We use Theorems 5.1.6 and 5.1.7 to compute:

dim Hk (A(.A), a) = dimZk (a) - rank dk-

=(n, - I) rank dk - rank dk-i

=(n, - 2) rank dk-i- q

THEOREM 5.1.9. Let A and X E L(2, A) be as in Condition A. Let 0 � a E

Al (A) be concentrated under XX. Then for 0 < k < f, we have

dim Hk (A(A) , a) = (n, - )	 ,- 	 dim Ak-i,
i= 1
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and for k	 we have

dim He (A(A), a) ----- dim Ae – 1) Z 1 dim Ae,.
1=1

PROOF. We consider the first statement. For k 1, the statement clearly hold

true as dim (A(A), a) = n, – 2. Fix 1 < k < – 1 and suppose the statement is

true for k – 1. By Theorem 5.1.8, Theorem 5.1.7, and the induction hypothesis, we

have

dim Hk (A(A), a) -----(nx – 2) rank dk-i

– 2) [dim Ak- – dim Z k _ (a)]

- – 2) dim Ak-i (nx – 2) dim. Zk-i (a)

=(n, – 2) dim Ak-i (nx - 1) dim Zk-i (a) + dim Zk_i (a)

- – 2) dim Ak_i – (71.x - 1) dim Zk_ I (a)

(nx – 1) rank dk-2

– 2) dim ilk-1 (nx - 1) dim Hk-1 (A(A), a)

=-_(n x - 2) dill' A k -1
k-1

((nx – 1)(n x	 l-1 (nx 1) j-1 dim Ak-I-i

1=-1

k

=--(71x —

	

	 1	 dim A k-i
i=1

We now consider the second statement. We first prove for 1 < k < t,

dim Zk(a) =	 (nx - 1) i dim Ak-i.	 (*)
i=1

For k = 1, (*) holds since dim Z 1 (a) = n,, –1. Fix 1 < k < t and suppose (*) holds



for k - 1. Then  
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dim Zk (a) = (nx - 1) rank dk-i

=(nx --- 1) (dim Ak_ — dim Zk _ I (a))
k1

- 1) dim Ak-i (Ttx — )

k

(-1)' / (rt, 1) a dimAk-i-

i-1 - 1) i dim Ak-l-i 

i=1

Hence, (*) is true for all 1 < k < t - 1 and we use it to prove the second statement

of the theorem.

Indeed, we have the following which proves the theorem:

dim. H i (A(A), a) = dim 2=1 . - rank de_i

= dim ite - dim A e _ i + dim Ze_ i (a)
f-1

= dim Af -	 Ae_ i +	 ( 1) i-1 (rix — 1) i dirn At — 1-i
i=1

= dim Ae	 ( ) i (nx -1) i- 1 fte_ i . a
i=1

DEFINITION 5.1.10. We define the Hilbert series of a graded algebra A over

.1C to be
00

H (A, t) :=	 (dimic Ai)e.
i=1

THEOREM 5.1.11. Let A and X E L(2, A) be as in Condition A. Let 0 �

a E Al (A) be concentrated under X . Then we can compute the Hilbert series for

H* (A(A), a) in terms of the Hilbert series for A(A) as follows:

t (n
H (11* (A(A), a), t) = 1 ± t( —nx 2) H (A(A), t).

PROOF. In the proof of Theorem 5.1.9, we have for 1 < k <

dim f (A(A), a) = (n - 2) dim Ak _	 (nx - 1) dim Hk-1 (A(A), a).
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So, the series holds for k <

We now check for k = t. For k < e, we have

dim Zk (a) = (nx - 1) rank dk-i

=(n, — 1) (dim Ak _ i - dim Zk_i (a)).

Hence, we may use the series Er 0  f_' (ten nxx i)i l) H(A(A), a) to compute	 )e dim Zk (a

for k < f. Since dim He (A(A), a) = dim Ae - dim	 + dim Ze_i, we find

dim He (A(A), a) by taking the coefficient of t o in the series (1 + t) H (A(A), t) +
to-x-1) H(A(A), a). By obtaining a common denominator and adding, we havei+t(rix-i)

dim He (A(A), a) is given by the coefficient of to in the series 1 t 2)l) H (A(A),t)

as required. C3

§5.2 The Ideal Z(a) = FDZk (a) for a Special Case

We now consider Z(a) eZk (a) as an ideal of A(A). We endeavor to show that

if A and X E L(2, A) are as in Condition A with a concentrated under X, then we

have Zk (a) is generated by Zi (a) (that is, Z k (a) A k — 1 (A) • Z (a)) except in the

top dimension f.

We recall the following description of Z 1 (a) from Libgober and Yuzvinsky [8].

Let A be a central hyperplane arrangement. Let x	 xia, E A 1 (A.). Then x E
t=

Z1 (a) if and only if the following conditions hold:

1. For every Y E L(2) with YJ > 2 and a(Y) 	 0 but	 0, we have
iEY

x i = 0.
iCY

2. For every other Y E L(2) and every pair i < j from Y, we have A ix - A3 xi 0.

We use this description to prove the following lemma.

LEMMA 5.2.1. Let Abe a central hyperplane arrangement. Let X = {1, .• nx }

be in L(2, A). Let 0 � a E A1 (A) be concentrated under X. If z,w E Zi (a) and

both nonzero, then z E Z1 (w) and dim(z • A 1 (A)) = dim(w • A1(A)).
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PROOF. Let z, w E Zi (a). It will suffice to show z E Z1 (w). We show condi-

tions (1) and (2) above hold for any Y E L(2, A). Let Y e L(2) with Y •,•, 1:k}-

We consider the following three cases.

Case 1. Suppose Y = X. If IXI > 2, then since z, w E Zi (a), a(X) 0 0, and

	

A, = 0, condition (1) gives	 zi =	 wi = 0 as required. If	 = 2, then
iEX	 iEX	 iEX
condition (2) together with a(X) � 0 gives z l = –z2 and wi = –w2 ; hence,

ziw2 – z2wi = 0 as required.

Case 2. Suppose i 1 > nx. In this case, we have a(Y) = 0. It will suffice to

show z(Y) and w(Y) are both zero. Since a 0, we may assume without loss

of generality that A 1 0 0. Consider the element 14/3 E L(2) which contains

flij }. Then a(W3 ) 0 and
	

A, = A1 0 0. By condition (2), we have
iEWj

zi„ =wij = 0 for all 1 < j < k.

Case 3. Suppose i1 E X. Then	 = ai l . If Az, � 0, then by condition (2),
iE Y

Zi 2 ,wij = 0 for all j > 1. Hence, Zi 3 w,_ –zip wi = 0 for any Him , Hi, E Y.

If Ail = 0, then we follow the same approach as Case 2 to obtain z(Y) and

w(Y) are linearly dependent. In particular, assume A i 0 0. Then consider W3

as defined previously, noting W1 = X. We have zi, = tui3 = 0 for all 2 < j < k.

Hence, z(Y) and w(Y) are linearly dependent. The lemma now follows. q

LEMMA 5.2.2. Let A be a central hyperplane arrangement. Let X E L(2, A)

with X = {1, ...,nx}. Let 0 0 a E A 1 be concentrated under X. Assume A 1 0 0.

Then Zi (a) has a basis given by {al – ak } for 2 < k < nx.
nx

PROOF. By straightforward computation and the assumption 	 ai = 0, we

have that al – ak E Zi (a) for 2 < k < rix . Indeed, we compute
nx

a - (al – ak)	 ,a,)(ai – ak)
i=1

nx
–5')– E Aiaik
	

kaki.

	

i=2	 i<k
	

k<i<nx
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Since aik alk	 and aki =	 alk, we substitute and have

nx

a (a l a k ) =	 Aiaik

=0.

Obviously, {al – a k : 2 < k < nx} is a set of linearly independent elements from

A 1 (A). Let z E Zi (a). By the proof of Lemma 5.2.1, we have z, 0 for any i > nx.
nx

Moreover,	 zi = 0 implies z is a linear combination of {a l ak : 2 < k <

THEOREM 5.2.3. Let A be a central hyperplane arrangement. Let X =

{1, nx} E L(2, A). Let 0 � a e A 1 (A) be concentrated in X e L(2. A). We have

the following description of Za (a):

Zi (a)	
n

:	 = 0 for j X,

PROOF. This follows immediately from Lemma 5.2.2. q

LEMMA 5.2.4. Let A be a central hyperplane arrangement. Let X E L(2, A)

with X = { 1, , nx }. Let 0 � a E Al (A) be concentrated under X . Let z1 , zk be

basic elements of Zi (a) as given in Lemma 5.2.2. We have A i (A) z, n A i (A) zk = 0.

PROOF. Suppose z = a l ai and zk = a 1 – ak . Let -y E A 1 (A). Then by

computation

0}

= (tn	 E -Yjaij –
/=1	 j>nx nx

7.7a7,3 •

So, for Zi7 = ZkCr with 7, cr E A 1 (A), we have

( nxE
3>lsx

ryj aij –
nx

7jaij = (E0-j)aik
i>nX	 .1=1 f>nx

aij —
j>nx

Since i k, E?!' x	 = Enx • = 0. Since i k and nx < j < n, akj and aij3	 31 0.

are distinct basic elements of A 2 (A); this forces of = -yi = 0 for nx < j < n. By

Theorem 5.2.3, this implies 7, r E Zi (a) as required. 0
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THEOREM 5.2.5. Suppose A and X E L(2, A) satisfy Condition A. Let a E

A1 (A) be a nonzero element concentrated under X. We have Z2 (a) is generated by

Zi (a), i.e. Z2 (a) = A i (A) • Z (a).

PROOF. We follow the argument given in Theorem 5.1.7 and compute

dim Z2 (a) (a ) = (m — 1 )(n — nx) + nx — 1.

By using Lemma 5.2.1 and Lemma 5.2.4, we compute dim Al (A) Zi (a) to be

(71, — 1)(n —	 ± 1).

Since these two quantities are equal and we have the containment A 1 (A) Zi (a) C

Z2 (a), the result now follows. 0

LEMMA 5.2.6. Suppose A and X E L(2, A) satisfy Condition A. Let .e > 3.

Let a E A 1 (A) be a nonzero element concentrated under X . Let I E Bk for k <

Suppose ya.i. E Zk(a) for some y E K. If j i > nx , then 'y = 0.

PROOF. Suppose j i > nx. Since A is quadratic, acj E Bk+i for any a E X.

Since -yay E Zk(a), we must have y = 0. o

LEMMA 5.2.7. Suppose A and X E L(2, A) satisfy Condition A. Let a E Ai (A)

be a nonzero element concentrated under X. Let 3 E Bk for 2 < k < Suppose

a; E Zk (a). If j 1 = 1 and j2 e X, then a; E Ai (A) • Zi(a).

PROOF. Without loss of generality, we may assume A i 0. Suppose j1 = 1

and j2 E X. Then (a l — ac,)aij, = 0 for all 2 < a < nx. Hence, a l.', E Z2 (a), and

by Theorem 5.2.5, Z2 (a) is generated by Zi (a). Thus, a E Ai (A) • Z1 (a). q

LEMMA 5.2.8. Suppose A and X E L(2, A) satisfy Condition A. Let 0

a E A l (A) be concentrated under X. Let :it E Bk_ i with fl X = 0. If
nx

E 7aa,5, E Zk (a) for k < E and rya E 1C, then	 yapE Ak_ i (A) • Zi(a).
a=1	 a =1
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PROOF. Suppose j n X � 0 with j i c X and j2 X. Then :If := {j2 ,..., jk } is

in Bk-i. Since A is quadratic, we have aoj, E Bk for any a E X. Assume A 1 0.
nx

By Lemma 5.2.2, we may express a as a
	 (a l — aa ). By computing,

a-=2

caaal

But cr:7 begins with aji for 2 < a < 'a, For j i 1, we have

nx
=	 Caaiaj

a=2

If ji 1, then aay is not basic and we have a uj = a13. — alai,; but we still obtain

nx

a=2

Fix .7' E Bk-i with n X = 0. For any a E X, we have a:P E Bk. Let 'yo, c IC so
nx

7aa, E Zk (a) as in the assumption of the lemma. We have

a(
nx	 nx

a	 „),„, Cialif) = E E	 cialij(

nx nx

aa—._ Caalce;f.

that
a=1

a=1 a=1 i=2 a=1

nx

Since z_ 'Taa --,cE3 E Zk (a), we have
ct=i

nx

a=1
= 0. Hence,

Ce= i
-yo- as E Zi (a) by Theo-

nx

rem 5.2.3, so 7	 is generated by Zi(a).ctaa3,
a=1

THEOREM 5.2.9. Suppose A and X E L(2, A) satisfy Condition A. Suppose

> 3. Let a E Al (A) be a nonzero element concentrated under X. We have Zk(a)

is generated by Zi (a) for k < t.

PROOF. Theorem 5.1.8 shows Z 2 (a) is generated by Zi (a). Let 'y E Zk (a) for

k > 3. Then y = E 7.7a3. for j E Bk. We now decompose y by considering different

types of There are three possibilities for



66

1. Suppose j 1 > nx. Then by Lemma 5.2.6, we have 7 .j. = 0.

2. Suppose j 1 = 1 and j2 E X. Then by Lemma 5.2.7, we have a^ is generated by

Zi(a).

3. Suppose j i E X and j2 X. Then ri` = {j2, jk } is in Bk-i- We have

nx

E E Zk(a).

nx
By Lemma 5.2.8, this implies 	 14,aa -i, is generated by Zi (a). Since each

a=1
summand of -y is generated by Z1 (a), this implies 7 is generated by Zi(a).

§5.3 Examples

In this section, we provide examples demonstrating the results of the previous

two sections and examples where dropping hypotheses cause the results to fail.

EXAMPLE 5.3.1. Let Q (A) ------ x(x—y)(x+y)y(x—z)(x+z)(y+z)(y—z)z; order

the hyperplanes as they are written. Then A is supersolvable and the order respects

the supersolvable structure. Let a be concentrated under X {1, 2, 3, 4} E L(2, A).

The indices for the broken circuit basis for A2 (A) are

{12,13,14,15, 16,17,18,19,25, 26,27,28, 29, 35, 36, 37,38,39, 45,46, 47, 48, 49}.

Checking Theorem 5.1.11, we see

2)	 2t 
1 + t(rt, — 1) 

H (A(A), t) =
1 + 3t 

(1 + 9t + 23t2 + 15t3)

=(2t)(t + 1)(5t + 1)

=10t3 + 12t2 + 2t

We now check the dimensions of Hk (A(A), a) by computing

dim Zi (a) = 3 and rank d i = 6,
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dim Z2 (a) = 18 and rank d2 = 23 - 18 = 5.

Therefore, the dimensions of H' (A(A), a) match the Hilbert series above.

Moreover, dim Z2 (a) = 18 and dim A 1 • Z1 (a) = 18, so Z2 (a) = Ai - Zi(a).

EXAMPLE 5.3.2. However, if Q(A) = (x-y)(x-z)(y-z)x(x+y)y(x+z)(y+z)z

with the hyperplanes ordered as they are written, then the indices for the broken

circuit basis for A 2 (A) are

{12, 13, 14, 15, 16, 17, 18, 19, 24, 25, 26, 27, 28, 29, 34, 35, 36, 37, 38, 39, 48, 59, 67}.

We also have A is not quadratic under this order because S = {H1, 112, H4, H8} is

minimally dependent but 1{H2 ,114 , H8 }1 � 2. Notice the element Hi n H2 n H3 E

L(A) is not modular. Even though A is supersolvable arrangement, we show the

formulas derived earlier do not hold in this case because the order does not respect

the supersolvable structure. Let a be concentrated under {1, 2, 3} E L(2, A). Then

dim 2.2(a) = 17 and rank d i = 7, so dim Z2{a) 2 . rank dl.

Moreover, dim Z2 (a) 17 and dim A 1 • Z1 (a) = 14, so Z2 (a) � A1 Zi(a).

EXAMPLE 5.3.3. Let Q(A) = xy(x + y)z(x + z)(y + z)(x + y z). Then A

is not supersolvable since no rank two element in L(A) is modular. If we take a

concentrated in X {1, 2, 3} E L(2, A), then the previous formulas do not hold.

The indices for the broken circuit basis for A2 (A) are

112,13,14,15,16,17,24,25,26,26,34,35,36,37,56,571.

We have

dim Z1 (a) = 2 and rank d i = 5

dim Z2 (a) = 12 and rank d2 = 4.
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Hence, dim H1 (A(A), a) = 1, dim H2 (AO), a) = 7, dim H3 = 6. We therefore have

H	 (A(A), a), t) = t + 7t2 + 6t3.

However, the series given in Theorem 5.1.11gives

2t 
(1 7t + 16t2 + 10t3)

1+2

and 1 + It + 16t2 10t3 is not divisible by 1 + 2t.



CHAPTER VI

THE DIMENSION OF H2 (A(A), a)

In this chapter, we study the dimension of H2 (A(A), a) with char IC = 0. In

§6.1, we construct a matrix description for Z2 (A(A), a) for the case rank(A) = 3.

In §6.2, we construct a matrix description of Z2(A(A), a) for rank(A) > 3.

§6.1 Dimension of H2 (A(A), a) For Rank Three Central Arrangements

Let A = {H1 , • •,	 be a hyperplane arrangement.

We recall the coned arrangement cA is formed as follows. Let {x 1 , x .e} be a

basis for V. Let cV* have basis Ixo, . Then cA will be an arrangement

in cV. Each H E A can be identified to a linear functional a E V*, Let ah be the

homogenization of a. We define cA to be the arrangement given by the functionals

{x0 } U ahla E A} .

Let A = A(A), and let cA A(cA). We define maps

t : A --> cA via t(as):= (-1)islaoacs

s : cA	 A via s(aoacs) = 0, saes)	 as.

We want t and s to also be cochain maps. For this, we introduce a E A i (cA). Put
n

Ao := —) Ai . Let a :	 Aiai. Then (cA, a) is a cochain complex and we have
i=1

the short exact sequence for any p > 0

(6.1.0.a)	 0	 HP-1(A, a) --> HP (cA,	 HP (A, a)	 0.

LEMMA 6.1.1. Let 0 a E (A). We have dim Hi (A, a) = dim H 1 (cA, a).

69
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PROOF. Take p = 1 in the short exact sequence (6.1.0.a). Since 0 a, we have

H°(A) = 0. The result is immediate. q

Suppose A is central. Recall we can reverse the coning process to form the

deconed arrangement dA as follows. Let a, be the functional corresponding to H.

Without loss of generality, we may assume a l =	 Decone at a l = x 1 by setting
n

x i = 1. Take a ,	 A,a,, and consider the chain complex formed by multiplication

of (dA, a). Let dA := A(dA). As in (6.1.0.a), we have the short exact sequence:

(6.1.1.a)	 0	 HP-1 (dA,	 HP(A, a)	 HP (dA, el) -> 0.

LEMMA 6.1.2. Let A be a central rank three arrangement. Let a E Al(A).

Let a E Ai (dA) be as defined in the paragraph following Lemma 6.1.1. We have

dim H2 (dA, = dire H3 (A, a).

PROOF. From the short exact sequence (6.1.1.a), we have

0	 H 2 (dA,ii)	 H3 (A, a)	 H3 (dA, a)	 0

Since rank(dA) = 2, we have dA3 = 0, so H3 (dA, a) = 0 . q

Recall for the algebra A(A), we define

Poin(A, t) :=	 dim Ap(A)tP
p>0

x(A)	 Poin(A, -1) -=	 (-1)P dim AP.
p>0

From [12], we have Poin(A(A), t) depends only on L(A). Also from [12], we

have Poin(A(A), t) = (1 + t)Poin(A(dA), t). Hence, x(dA) depend only on A, see

[13]. This implies x(A(d,4)) does not depend on the choice of hyperplane about

which one decones.
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LEMMA 6.1.3. Let A be a rank three central hyperplane arrangement. Fix a

nonzero a E A l (A), where a =	 A i a, and
	

Ai 0. We have
i=1	 1=1

dim H3 (A, a) = x (dA) + dim H I (A, a).

PROOF. From Lemma 6.1.2, we have dim H3 (A) = dim H2 (dA). Let d 1 repre-

sent the linear map dAi -4 dA2 given by multiplication of a; let Z 1 be the kernel of
n

d 1 . Since a 0 and
	

as = 0, we have a � 0; hence, dim Z1 = dimH1 (dA, a) + 1.

We compute:

dim H2 (dA, ii) = dim dA2 rank

= dim dA2 + dim 21 - dim dill

=dial dA2 - dim dA i + 1 + dim H l ( d A, a)

=x(dA) + dim H 1 (A, a). o

LEMMA 6.1.4. Let A be a rank three central hyperplane arrangement. Fix a
n

nonzero a E A1 (A), where a =	 Ai a, and
	

A, = 0. We have
i= 1

dim H2 (A) = dim H1 (A) + dim H3 (A).

PROOF. From the short exact sequence (6.1.1.a), we have

0 -4 H1 (dA, a) -4 H2 (A, a)	 112 (dA, a) -> 0.

By Lemma 6.1.1, we have H 1 (dA, EL) --̀ 1 11 1 (A, a). Thus, H2 (d A ,	 H3(A, a)

follows from Lemma 6.1.2. a

The following assertion is a consequence of Lemma 6.1.3 and Lemma 6.1.4.

THEOREM 6.1.5. If A is a rank three central hyperplane arrangement, then

we have dim HP (A, a) depends only on x(dA) and dim H1 (A) for any p.
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In order to study precisely how dim HP (A) depends on x(dA) and dim H' (A) ,

we use the broken circuit basis.

We have A(A) is a free graded r-module. We recall the broken circuit basis

for Ap (A). Fix an order on A. Consider an ordered subset S = {H11 , ..., Hip } of A

with i i < - • • < in . Then as is basic in Ap if

1. S is independent, and

2. For any l < k < p, there does not exist a hyperplane H E A so that H < Hik

and {H,	 Hip} is dependent.

DEFINITION 6.1.6. Let Bp denote the broken circuit basis for the linear space

Ap (A).

The following two lemmas are obvious by the definition of the broken circuit

basis.

LEMMA 6.1.7. If A is a rank three central hyperplane arrangement, then A3

has broken circuit basis B3 = la h3 : aii E B2, i > 2}.

PROOF. Let a.,1 E B2 with i > 2. By definition of the broken circuit basis, we

have {H,, Hi , Hi } is independent. Indeed, if there exists a < i so that {Ha , Hi , Hi}

is dependent, then this contradicts a ij E B2. Hence, ahj E B3.

Suppose aijk E B3 . If i > I, then since A is rank three, we have the set

{HI , Hi , H Hk } is dependent. So, i	 1. Since aijk E B3, there does not exist

< j so that {Tic, H3, H j} is dependent. Hence, aik E B2. °

LEMMA 6.1.8. Let A be a central arrangement. We define

C2	 {a il : 2 < i < n1 U fa(a iik ) : ajk E B2, j � 2}.

Then C2 is a basis for A2.

PROOF. Let aik E B2 with j > 2. Since

B2 =	 : 2 < i < n1 U{ajk : aik E B2,j � 2}
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is a basis for A2 and 0(a i3k) = aik aik alj , the proof is immediate. q

Let x G A2. Using the basis C2, there exist constants x1i and xjk so that

n

(6.1.8.a)	 x ==
	

X •09(aljk)•
i=2	 jkEB2,P2

LEMMA 6.1.9. Let A be a rank three central hyperplane arrangement. Let
n	 n

a=	 A,a, be an element of A 1 (A). Suppose
	 Ai 0. Then a Na ijk ) 0.

1	 =1
PROOF. Since a E A1 (A), we have

0(a • a lik) = O(a)a ljk aa(a i k)•

But 0(a) =	 i = 0. Moreover, a ialik	 0 for all 1 < i < n. Since 0 is linear,
i=1

this implies 0(a • a 1 k ) = 0 and the result follows. q

DEFINITION 6.1.10. Let Hi, Hk E A. Let X jk := : Hj n Ilk
THEOREM 6.1.11. Let A be a rank three central hyperplane arrangement. Let

n

	

iai E A 1 (A) with
	

0.

Let x E A2 be decomposed as in (6.1.8.a) using the basis C2. In the product a • x,

the coefficient of aiik is given by

E Ai) Xik Alc( i Xli)
i€Xjk \fki	 iEX3k\{}

PROOF. Using Lemma 6.1.9, we need only to compute a •

i=2

a •	 xi ia ii --(En A i a.i) n

i=2	 i=1

,Xixijalij
j <i
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Suppose aij 1% B2. Let a be minimal in X. Then a hi = alai — alai• Using this,

we compute the coefficient of aljk for ajk E B2, j > 2 to be

	

— AiXik Akil	 AiXlk
i<kicxjk	 k<OEXjk

	A ksi	AiX1k-
i<k,iEXi1/4	 k<i,iEXik

By combining like terms, the result follows. 0

Suppose A is central. Then we can form the deconed arrangement dA as follows.

Let ai be the functional corresponding to Hi . Without loss of generality, we may

assume a l = x i . Decone at a 1 = x i by setting x i 1.

We write dA= {dH2 , „.,dHn l, where dB-, denotes the hyperplane correspond-

ing to the functional a i where x i = 1. Denote the Orlik-Solomon algebra of dA by

dA. We write dBi to mean the broken circuit basis for dA.

LEMMA 6_1_12. Let A be a central arrangement. We have:

dB2 = fajk : j > 2, jk E B21.

PROOF. Suppose ajk E B2, j > 2. To show ajk E dB2 , we need only check the

intersection dH3 n dHk � 0. Since ajk E B2 with j > 2, we have {1/1 ,1-13 , Ilk } are

independent; hence, dH3 n dHk 0.

Suppose ajk E dB2 . Then by definition ajk E B2 . 0

DEFINITION 6.1.13. Let A be a central arrangement. For 2 < j < k < n, we

set

Yjk := fi : 2 < < n,1-1j n	 c Hil.

THEOREM 6.1.14. Let A be a rank three central hyperplane arrangement. In

Ai (dA) , let
n

a :=	 i ai and x :=
i=2	 i=2
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Then in the product a • x E A2 (dA), the coefficient of a3k is

E Ai) – Ak E
i.EYjk\{k}	 ieyikvkl

PROOF. By computing the product, we have:

a - x = Ydsn 

Alai)
 
(
	 Xiai)

i=2	 i=2

(Ai xj – A •xi,)aij.
2<i <3 <n

Suppose aid dB2 . If dH2 n dHj = 0, then ail = 0. Otherwise, let a be minimal

in Yip. Then ai3 aa a . Using this, we compute the coefficient of a3k to be as

required. q

THEOREM 6.1.15. Let A be a rank three central hyperplane arrangement. We

have

dim Z2 (a) = dim (a) + Raik G B2(A) j > 111.

PROOF. We apply Theorems 6.1.11 and 6.1.14 to see that

dim Z2 (a) = dim Zi (a) + ajk E B2(A) j > 1} j.

Furthermore by Lemma 6.1.1, we have dim Z1 (a) dim Z1 (a). q

As a brief summary of the results thus far obtained, we decomposed
Ti

x=	 Xik(ajk	 + ati)
i=2	 ajkEB2(A),j>1

so we could show dim Z2 (A) = dim + itajk E B2 (A) : j > for Ai = 0.

But now we change the basis of A2 (A) back to the broken circuit basis. We do this

by noting

a3 k — a ik + aid).E



i)	 	 Xik —Ai)Xjk —
iEXik \{k}	 1<i<k

Ak	 >	 Xpi
jEXjk\{k}

= 0.

Xki)
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Moreover, we let a be arbitrary, dropping the condition 	 Ai = 0. We do this
t=-1

so that we may obtain equations describing x E Z2(a) in an arbitrary setting.

Let a3k E B2 (A) with j > 1. For each fixed ask E B2 (A) with j > 1, we obtain

the equation:

This equation can be simplified to

L	 -	 Ai)(	 (xik xki))

(6.1.15.a)
iEXik \{k}	 4Xjk

Ak	 E ( E (xpi — x ip )) = 0.
ieXik\{k}

In [8], dim Z1 (a) was found by encoding the structure of A and a into an in-

cidence matrix. We will recall their construction and then proceed to use this

construction to obtain a matrix description for dim Z2 (a). However, it will not be

an incidence matrix; it will be a matrix with entries from {0, 1, –1}.

Recall from Chapter III the following notations and results established in [8].

Let

x (a) := {X L(2) :	 > 2, a(X) 0, E =0}
tEX

Let 1(a) C n be defined as follows. We have i E 1(a) if

(i) Hi < X for some X E X(a), and

(ii) if Az = 0, then there does not exist A3	 0 for which 1-12 , H3 are not in any

X E X(a).

In this setting, the incidence matrix J is the lx(a)1 x 11(a)1 matrix with Jx ,i = 1

if Hi < X and zero otherwise. The matrix J describes dim Z1 (a) for a � 0; see [8].



)
(Aj xi — Aixi ) aii(aiXi Aix i ) +

i>j

x i )ai + Exiai)
i=2

(Aixi 	Ajzi)(aij 	 aii)

n

i=1
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We say a matrix M is affine if it is positive semidefinite and its null space is

spanned by a positive vector, meaning all coordinates are positive. We say a matrix

M is indefinite if there exists a vector u > 0 so that Mu < 0.

Let Q Jt J. Decompose Q into the direct sum of its principle submatrices so

that Q	 QK. Then by [8], we have only two possibilities

1. For each K, we have QK is either affine or has only the zero vector for its kernel.

In this case, we say X(a) is affine. Since for x E Zi (a) and i I(a), we have

xi = 0, we may assume .1(a) = 21- Then Zi (a) = Ker J n {En i x, 0}; we

refer to [8].

2. There exists an unique K0 so that QK, is indefinite and for all other K QK has

only the zero vector for its kernel. In this case, we say X(a) is indefinite. If

X(a) is indefinite, then dim Z1 (a) = 1 by [8].

In order to use the matrix J to describe the dimension of Z2 (a), we first establish

some technical lemmas.

LEMMA 6.1.16. Let A be a rank three central hyperplane arrangement. Let
n	 n	 n

x E Zi (a.) with x	 xiai. We have = (—	 xi )ai +	 x i ai e Z1 (a).
i=2	 i=2	 i=2

PROOF. We compute
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LEMMA 6.1.17. Let A be a rank three central hyperplane arrangement. Using

the basis C2, we decompose x E A2 (..A) as in (6.1.8.a); that is,

n

x lia li + >2, x k aaljk .3

j>1

If x E Z2 (a), then
n

Xi)al	 x li ai E Zi(a).
i=2	 i=2

TL 

PROOF. We apply Theorems 6.1.11 and 6.1.14 to see Y x iiaii E Z1 (6,). Our
z=_2

conclusion now follows from Lemma 6.1.16. q

We will use the broken circuit basis instead of the basis C2 of Lemma 6.1.8, and

we will construct the matrix K similarly to the matrix J. We distinguish between

the cases where X (a) is affine and X (a) is indefinite. We begin by establishing an

analogue to 1-(a).

DEFINITION 6.1.18. Let

7,b(a) := {jk : ajk E B2(.4)}

Let K be the ((X(a)( + n – 1/(a)l) x 10(a)! matrix constructed by using the

matrix J. To do this, we notice the following for X E X(a) via the change of base

from C2 to B2.

1. For 1 < i < n and Hi < X, x i for x e Zl (a) corresponds to Xli E Xji E xii

for x c Z2(a).

2. For H1 < X, x1 for x e Zi (a) corresponds to – Exi for x E Z2(a).
z=2

For X(a) affine, the matrix K is given by the following for jk E 1,1(a), X G X(a) U

{H, : a /(a)}:

X

i=2
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K x ,jk -7,-- 1, if Hk < X but Hi X

--= –1, if H3 < X but Hk X

= 0, otherwise.

THEOREM 6.1.19. Let A be a rank three central arrangement. If X(a) is

affine, then Z2 (a) = Ker K. Hence,

dim H2 (A, a) = dim(Ker K) – rank di..

PROOF. Let x E Z2 (a) written as 

x=
1=2
n

j> 1.
jkaik 

j k Oalj k •

By Lemma 6.1.17,  

j >1 j > 1

+ ri ,o)a, e Zi(a)•
1=2	 j <i
	

j>i

We have that Z1 (a) C Ker J. Hence, E Ker J. Fix X E X(a). Since .t E Ker J,

we have EiEx x i = 0; but this gives

0=
iex	 iE X,j0X 

Xli – 
i EX,j0X 

xij

as required to verify x E Ker K.

Let x e Ker K, written as in the previous paragraph. Let be defined as in

the previous paragraph. Since x E Ker K, we have

xj.	 xii = 0 for all X E X(a).
ieX,i0x	 i:EX,j0X
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This gives

E (y:x3i — x,i) 0.
x E X

Hence, E Ker J. Moreover, since x E Ker K, we have ii = 0 for i I(a). Since

X(a) is affine and the sum of the coefficients of X is zero, we have X. E Z1 (a). By

Theorems 6.1.11 and 6.1.14, it now follows x E Z2 (a).

Therefore, Z2 (a) Ker K 0

EXAMPLE 6.1.20. Let Q(A) = xyz(x + y), ordered as they are written; let

a = a 1 — a2 . Then X(a) = {124}.. I(a) ={1,2,4}, 0(a) ------ {12, 13, 14, 23, 34}. The

matrix K is given by

K = o —1 0 —1 1
0 1 0 1	 —1 •

And rank d1 = 2. So, dim H2 = 4 — 2 = 2, and this coincides with the results of

Theorem 6.1.15. By direct computation, it is easily verified that Ker K = Z2(a).

EXAMPLE 6.1.21. Let Q(A) = xy (x + y) (x + y+ z) z; order the hyperplanes as

they are written. Let a = a l a2 . We have /(a) = {1,2,3} � ft and X(a) is affine.

With (a) = {12,13,14,15,24,25,34, 35}, we have

(0 0	 1	 1	 1	 1	 1 	 1

	

K= 0 0 1	 0	 1	 0	 1	 0.

	

0 o o	 1	 0	 1	 0	 1

Hence, dim Ker K = dim Z2 (a) = 6.

EXAMPLE 6.1.22. In the previous examples, it was enough to consider only

the equations generated by i 0 I(a). In this example, we must consider X E X(a).

Let Q(A) = xyz(x — y)(x — z)(y — z)(x + y); order the hyperplanes as they are

written. Let a := a 1 a2 — a5 + a6 . In Example 3.3.14, it was shown that X(a)

is affine and I(a) = {1, 2, 3, 4, 5, 6}. Now, X(a) {1247, 135, 236, 456} and ' (a) =
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{12,13,14,15, 16, 17, 23, 25, 26, 34, 37, 45, 46, 57, 67}. Hence, the matrix K is given

by

0 -1 0 -1 -1 0 -1 -1 -1 1	 1 -1 -1 1	 1 \
-1 0 -1 0 -1 -1 1	 1	 0 -1 -1 1	 0 -1 0

1	 1	 0	 0	 1	 0	 0 -1 0 -1 -1 0	 1	 0 -1
0	 0	 1	 1	 1	 0	 0	 1	 1	 1	 0	 0	 0 -1 - 1

\O	 0	 0	 0	 0	 1	 0	 0	 0	 0	 1	 0	 0	 1	 1/

We can now see that dim Ker K = 11 = dim Z2 (a).

EXAMPLE 6.1.23. Let Q(A.), (x-y)(x- z)(y z)x(x+y)y(x+ z)(y + z)z and

let a a l - a2 . In Example 5.3.2, we computed dim Z 2 (a) , 17 but were unable

to use the formulas of Chapter V as the order on the hyperplanes did not respect

the supersolvable structure of A. However, we can compute dim Z2 (a) by using the

matrix K. We have X(a) {123} and is affine, and 1-(a) --, {1, 2, 3}. We compute

'0(a) to be

{12,13,14,15,16,17,18,19,24,25,26,27,28,29,34,35,36,37,38,39,48,59,67}.

We label the rows of K by {123, 4, 5, 6, 7, 8, 9}. After computing, we have rank K =

6. Hence, dim Z2 (a) = 23 - 6 = 17 and the answer agrees with what we computed

earlier.

We now consider the case where X(a) is indefinite or X(a) = 0; in this case,

dim Z1 (a) 1. Hence, for any x E Z1 (a) we have that x for some E K. In

Z2 (a), this corresponds to

Xo, i —	 xict	 for 2 < i < n.
ai E B2 (A)	 icxE B2 (A)

By treating as a variable, we have a homogeneous system of equations describing

Z2 (a). Notice there are n ---1 linearly independent equations in this system. Notice



82

this is the same as the matrix K as done for the affine case for I(a) = {1} except

for the introduction of

DEFINITION 6.1.24. Let K be the (n 1) x (j132 ! + 1) with rows indexed by

{2,	 , n} and columns indexed by {ik a j k E B2 (A)} U	 be the matrix given

by
Kaok = 1, if k =

= —1, if j= o

0, otherwise.

—At

THEOREM 6.1.25. Let A be a rank three central hyperplane arrangement. If

X (a) is indefinite, then Z2 (a) = Ker K.

PROOF. This is immediate by the discussion prior to Definition 6.1.24. 9

EXAMPLE 6.1.26. Let Q(A) = xy(x + y)(x y + z)z; order the hyperplanes

as they are written. Let a = a — a 2 + a4 — a5 . In Example 3.3.13, it was shown

that X(a) is indefinite. Now K will be a matrix whose columns are indexed by

{12, 13, 14, 15, 24, 25, 34, 35, 	 and whose rows are indexed by {2, 3, 4, 5}, giving

	

(1 0 0 0 —1 —1 0	 0	 1
k= 0 1 0 0 0 0 —1 —1 0

0 0 1 0 1	 0	 1	 0 —1
0 0 0 I	 0	 1	 0	 1	 1

By elementary linear algebra, we see dim Ker K = 5; hence, dim Z2 (a) = 5.

DEFINITION 6.1.27. Let

X(a) := X(a) U fi I (a), if X(a) is affine,

:= n \ {1}, if X(a) is indefinite.

Let
1.7-2 (a)	 {jk E B2(A)}, if X(a) is affine,

:= {jk G B2(A)} U {}, if X(a) is indefinite.
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Let
K, if X(a) is affine,

k, if X(a) is indefinite..

THEOREM 6.1.28. Let A be a rank three central hyperplane arrangement. If

0 � a E A 1 (A), then Kerk Z2(a).

PROOF. By considering the two cases where X(a) is affine or X(a) is indefinite,

the theorem follows immediately. q

§6.2 Dimension of H 2 (A, a) For Central Arrangements

Let A =	 , Hn } be a central arrangement. Let a	 jai in A i (A).

n
Since	 A, � 0 implies H* (A, a) = 0, refer to [131, we assume

i=1

DEFINITION 6.2.1. Fix X E L(A). Then a(X) =	 A,a . Similarly, for

Ap (A), we have x	 ,a,. We define x(X)	 x-a, Ai (Ax).3
ai-EBp(Ax)

THEOREM 6.2.2. Let A be a central arrangement. Let a = jai in A1 (A)

n

with
	

A, = 0. We have x E Zk (a) if and only if x(X) E Zk(a(X)) for all X E

L(k + 1).

PROOF. Let E Bk÷i- Let X 6 L(k + 1) with j C X. It will suffice to show

the coefficient of a, in the product ax is the same coefficient of a, in the product3

a(X)x(X).

Leta •=	 , jk+i ). Let 3‘i •=	 • - • ,3i,... ik+i) for i	 , k ± 1.

3-Since  E Bk+1, we have j i E Bk for all 1 < i < k +1. We have three cases where a3

may have a nonzero coefficient as a product of an element from B1 and an element

from Bp.

0-
i-=1

a,E13
9



A i )xik —	 Ai)(

	

iExikvkl	 iEX\Xjk

	

+ Ak( E	 (xpi — xip))) = 0.

(

(6.2.2.a)
	 iEX \Xik

(xik — xki))
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1. We have a .2% a;, +a5 by the definition of E(A).

2. We have a c,a)., for a C X \ 3 by the dependencies in the definition of A.

3. We have aa ae for fa,	 -11 and £ E Bk by the dependencies in the definition

of A.

Since any of the three cases give the same result in A or Ax, the result follows.

Let a =	 A i ai be in A l (A) so that
	

Ai = 0. Let x =	 X .7"calk be in
i=1	 i=1	 a jk EB2

Z2 (a). Then x(X) G Z2 (a(X)) for all X E L(3).

Let X E L(3) so that a(X) � 0. Let lx denote the minimal element of X. We

decomposed

x(X) =	 x lxialxi +
	 X ik(ajk alx k alxj)

iEX\{lx}	 a k 032 (Ax),j>1 x

so that we could show

dim Z2 (Ax) = dins Z1 (Ax) + Ifajk E B2 (AX) j >1x 11.

But now we change from the basis C2 (Ax) back to the broken circuit basis. We

let aik E B2(Ax) with j > lx. Let Xjk := : Hi fl Hk C Hi }. We obtain the

equation:

At )x3k —	 > 	 Ai)(
	

Xtik
ic X	 jexik\to	 i>k

+ Ak
ie X ik\fkl

Xpi — E Xip)) = 0.
lx<p<i	 p>i

We can simplify this equation:

iEXjk \{k} p€X\Xik
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The system of equations given by equation (6.2.2.a) for X E L(3) with a(X) 0

describes Z2(a).

The image of d 1 should also be considered. Suppose x = ay for some y e Al (A).

Then by computation, we have for each jk E B2 (A),

(6.2.2.b) Xik	 E Ai )yk Ak( E yi).
iExi k,{k}	 iEX30{k}

DEFINITION 6.2.3. Let

S(a) := {X E L(3) : a(X) 0, y
i 

Ai = 0, IXI > 3}.
icJ<

THEOREM 6.2.4. Let x E Z2(a).

(1) If ajk B2 (Ax) for any X E S(a) and a(X3k) 0, then x(X3k) 0.

(2) If asp, B2 (Ax) for any X E S(a) and X.pc X(a) and a(Xj k) � 0, then the

cohomology class [x] G H2 (a) is equivalent to a class [w] where w E Z2 (a) and

w(Ho V Hi) 0 for any Ho < X3 k and any i

(3) Consider the set {X 1 , , X, : Xi E X(a), X, Y for any Y E S(a)1. Then

the cohomology class [T] E H2 (a) is equivalent to a class [w] where w E Z2 (a)

and w(Xi ) = 0 for any Xi in this set.

PROOF. We begin by showing (1). Suppose ajk 0 B2 (AX ) for any X E S(a).

If a(Xik) 0, then we use equation (6.2.2.a) to see x(Xfk ) = O.

To show (2), let a 0 Xik. Let X, E L(3) contain {a, j, k}. Notice a(X3k ) � 0,

so we have a(X,,) � 0 and Xa cz" S(a). Thus, H*(A(Ax,.), a(X,)) = 0; in particular,

H2 (a(X(,)) = 0. Hence, there exists za G A l (Ax„) so that x(Xa ) = a(Xa)za.

Since dim Zi (a(Xik )) = 1, we may assume z„(Xik) z,, , ( X1k ) for any a, a' 0

Xik . That is, for a, a' 0 Xjk , we have za (Xjk ) — z,,(X3 k) = cra(Xjk ) for c' a

constant. Hence, we may define	 — c'a(Xa' ). Then 2 1 (Xjk ) = z(Xjk ) and

a(X,,)za , = x(X„,).
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Therefore, we define z C A l (A) via

zz (za)% H, < X,.

Let W = — az E Z2(a). For Ho < X3k and i /3, we have w(Ho V HO 0 as

required.

To prove (3), we will proceed similarly as in (2) by constructing z C (A) so

that x — az satisfies x az(Xi ) = 0. We will construct z recursively. Begin by

noticing that if PC, A X3 I = 0 for all i j, then the problem is solved easily. That

is, for each Xi fix a hyperplane H X,. There exists z, (X, V H) which satisfies

a(Xi V .H)z(X, V H) x(Xi V H). Define z E A i (A) to be

zi =(z3 )i if	 < Xi

=0 otherwise.

Then by Equation 6.2.2.b, we have a(X,)z(X,) = x(Xi ) for each i.

We now assume there exists i, j so that IX, AX3 1 = 1. Without loss of generality,

assume	 A X2 ! = 1. We now construct z recursively.

1. Begin with X1 and X2. Since rank(Xi V X2 ) = 3, then there exists z(Xj V X2)

so that a(Xi V X2 )z(X1 V X2 ) = x(X]. V X2).

2. Suppose z is defined so that az(Xi ) = x(Xi ) for all i < k.

If 1Xk A Xd = 1 for all 1 < i < k, then notice Xk < X1 V X2. By our

construction, a(Xk)z(Xk) = x(Xk).

If IXk A Xd � 1 for some 1 < i < k, then by equation 6.2.2.b, we have )Xk — 1

degrees of freedom in choosing z(Xk ) so that a(Xk )z(Xk) = x(Xk ). We define z on

Xk accordingly. Then az(Xi ) = x(Xi) for all i < k as required. o

When studying dim Zi (a), it was shown that x i = 0 for any i 1(a); thus, we

assumed 'a = I(a). By Theorem 6.2.4, we may assume for any ail, E B2 (A) there

exists X E S(a) so that ajk E B2(Ax)•
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We use the matrix descriptions given earlier for Z2 (a) for AX with X E 3(a).

Notice that in the case X (a(X)) is not affine, we introduce fix.

DEFINITION 6.2.5. Let

T(a)	 {(Y,X)i X E S,Y E j((a(X))}.

Let

W (a) := U 17(a(X))•
XES

The matrix K we obtain is a "r(a)1 x 1 (a)1 matrix whose entries are

IC(x , y) ,ik = 1, if Ilk < X but	 � X and ajk e B2(Ay)

= —I, if fill < X but Hk � X and ajk E B2 (Ay)

= 0, otherwise.

THEOREM 6.2.6. Let A be central hyperplane arrangement. Let a G A i (A)
n

with a	 Aia, and	 A, = 0. If a(X) = 0 for all X E L(3) \ S(a), then
i=1

Z2(a) = Ker K n {x 3k =0 if jk W(a)}.

PROOF. Let x E Z2(a). If X E S(a), then x(X) E Z2(a(X)) by Theorem 6.2.2.

Hence, xE Ker K. By Theorem 6.2.4, we have	 0 if jk T(a).

Let x E Ker K fl {Xik = 0 if jk CO}- Then x(X) E Z2 (a(X)) for all X E

S(a). If X E L(3) \ S(a), then a(X) 0 by assumption; hence, x(X) E Z2(a(X)).

By Theorem 6.2.2, it follows that x E Z2 (a). o

EXAMPLE 6.2.7. Notice in the proof of Theorem 6.2.6, it suffices to show for

X e L(3) \ S(a), we have x(X) E Z2 (a(X)). Suppose for any X E L(3) \ S(a) with

a(X) 0 0 there exists Y E L(2, Ax) with the following properties:

I. Y 0 L(2, Az) for all Z E S(a),

2. a(Y) = 0, and
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3. I Ax	 = 1.

Then a(X) (X) = 0. Hence, the result of Theorem 6.2.6 holds.

Let Q(A) = xy zw(x + y); order the hyperplanes as they are written. Let

a = al - a2 . Then T(a) {(125, 1235), (3,1235), (125,1245), (4,1245)1 and =

{12, 13, 14, 15, 23, 24, 35, 45}. The matrix K we obtain is
(0 -1 0 0 -1 0	 1	 0\
0 1	 0 0 1	 0 -1 0
0 0 -1 0 0 -1 0	 1

■0 0	 1 0 0	 1	 0 -1J
Therefore, dim Z2 (a) = 6.

EXAMPLE 6.2.8. Theorem 6.2.6 fails if the condition a(X) ---- 0 for X E

L(3) \ S (a) is dropped. Let Q(A) = xy(x y) zw(v) x y), and let a = al - a2 +

a5 - a6 . We compute dim H2 (A, a) by first deconing the arrangement about the

hyperplane given by z = 0. We obtain Q (dA) xy(x y)w(w y). Order the

hyperplanes as they are written. Then a = a l a2 + a4 - a5 and we consider the

chain complex (A(dA), a). In Example 3.3.13, we computed dim Z i (a) = 1. Hence,

dim H i (A(A), a) = dim 11 1 (A(dA), a) = 0. Since we have the short exact sequence

0	 H1 (A(dA), a,) =4 H2 (A(A), a)	 .H2 (A(dA), a) ---> 0,

it will suffice to compute I/ 2 (A(dA), a). Since dA is central, we have dim Z2 (a) = 1+

4 = 5 by Theorem 6.1.15. Hence, dim H2 (A (A), a) = dim H2 (A(dA), a) = 5-4 = 1.

However, if we now compute the matrix K, we will have IT(a)1 - rank(K) -

rank& � 1.

We have the following:
X (a) =1123,3561, 1(a)	 11,2,3,5,61

8(a) ={1234,12356, 3456}

T(a) ={(123,1234), (4, 1234), (2, 12356), (3, 12356),

(5, 12356), (6, 12356), (356, 3456), (4, 3456)}

41 (a) =112,13, 14, 24, 34, 15, 16, 25, 26, 35,36, 45, 46, el

K
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where is introduced because for X	 {12356} we have X(a(X)) is indefinite.

Notice {245} E L(3, A) \ S(a) and a({245}) 0. The matrix K is

	

i0 0 –1 –1 –1 0 0 0	 0	 0	 0	 0 0

	

0 0 1	 1	 1 0 0 0	 0	 0	 0	 0	 0
	

0
	1 0 0	 0	 0 0 0 –1 –1 0	 0	 0	 0

	
1

	

0 1 0	 0	 0 0 0 0	 0 –1 –1 0	 0

	

0 0 0	 0	 0 1 0 1	 0	 1	 0	 0	 0 --1

	

0 0 0	 0	 0 0 1 0	 1	 0	 1	 0	 0	 1

	

0 0 0	 0 –1 0 0 0	 0	 0	 0	 1	 1	 0

	

\O 0 0	 0	 1 0 0 0	 0	 0	 0 –1 –1

Hence. rank K = 6. But	 – rank K 13 – 6 = 8 dim Z2 (a).

THEOREM 6.2.9. Let A be a central hyperplane arrangement. Let a, b E Al(A)

with

a=
n

jai , b =	 CJi ai
i .=-1 i= 1

Suppose	 ai 	 ai = 0. In addition, suppose the following criteria are satisfied:

1. We have S(a) S(b).

2. We have X(a) = X(b).

3. For X E L(3) S(a), we have a(X) = 0. For X E L(3) S(b), we have b(X) 0.

4. For X E S(a) = S(b), we have X(a(X)) is affine (hence, X (b(X)) is affine).

Then dim H 2 (a) = dim H2 (b).

PROOF. In the matrix description given in Definition 6.2.5, both a and b will

give the same matrix. Hence, Z 2 (a) = Z2 (b). Moreover, since X(a) = X (b)

and is affine, we have rank d1 (a) is equal to the image of rank d 1 (b). Therefore,

dim H2 ( a) =- dim H2 (b).

Relaxing the conditions slightly, we obtain the equality of Z 2 (a) and Z2 (b) in

the following theorem.
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THEOREM 6.2.10. Let A be a central hyperplane arrangement. Let a, b E

Ai (A) with
n

a=	 jai, b	 ajai.
i= i

Suppose	 cr, 0. In addition, suppose the following criteria are satisfied:

1. We have 8(a) = 5(b).

2. We have X(a(X)) = X(b(X)) for all X E 5(a),

3. For X E L(3) \S(a), we have a(X) 0. For X E L(3) \S(b), we have b(X) = 0.

4. For X E S (a) S(0, we have X(a(X)) is affine (hence, X(b(X)) is affine).

Then Z2 (a) 22(b).

PROOF. In the matrix description given in Definition 6.2.5, both a and b will

give the same matrix. Hence, Z2 (a) = Z2 (b). q
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