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Relative to a non-degenerate metric of signature (p, q), an algebraic curva-

ture tensor is said to be IP if the associated skew-symmetric curvature operator

ROO has constant eigenvalues and if the kernel of R(7r) has constant dimension

on the Grassmanian of non-degenerate oriented 2-planes. A pseudo-Riemannian

manifold with a non-degenerate indefinite metric of signature (p, q) is said to

be IP if the curvature tensor of the Levi-Civita connection is IP at every point;

the eigenvalues are permitted to vary with the point. In the Riemannian setting

(p, q) = (0, m) , the work of Gilkey, Leahy, and Sadofsky and the work of Ivanov

and Petrova have classified the IP metrics and IP algebraic curvature tensors if

the dimension is at least 4 and if the dimension is not 7. We use techniques from

algebraic topology and from differential geometry to extend some of their results

to the Lorentzian setting (p, q) = (1, m – 1) and to the setting of metrics of sig-

nature , q) = (2, m 2).
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CHAPTER I

INTRODUCTION

In differential geometry, the Riemann curvature tensor carries crucial geometric

information about the manifold. Because the full curvature tensor is quite com-

plicated, one often uses the curvature tensor to define natural endomorphisms of

the tangent bundle. The Jacobi, the Ricci, the Stanilov, the Szabo, and the skew-

symmetric curvature operators are such examples; we refer to §1.5 for further details.

Assume that one of these operators has constant eigenvalues on the appropriate do-

main; one wants to determine the possible underlying geometries. We shall focus

on the skew-symmetric curvature operator in the pseudo-Riemannian setting in this

thesis.

§1.1 Algebraic Curvature Tensors

Let M be a smooth connected manifold of dimension m. We assume there is

an indefinite nondegenerate metric gm on the tangent bundle TM. Fix a point P

on the manifold M and let V := TpM. The metric gm induces a nondegenerate

symmetric bilinear form on V. We can choose an orthonormal basis -NJ for V

so that gm (v i , vi ) = 0 for i j, so that gm(vi ,vi ) = –1 for i < p, and so that

gm (vi , vi ) = 1 for i > p. Let q m p be the complementary index; the metric gm

is said to have signature (p, q); this is independent of the choices made. We shall

suppose henceforth that p < q since we can always replace gm by –gm and reverse

the roles of p and of q. M is called a pseudo-Riemannian manifold.

1
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Let 0 (p, q) be the group of all linear maps from V to V which preserve g m and

let so(p, q) be the associated Lie algebra. We have:

0(p, q) = {A E End(V) : g m (Au, Av) = g m(u,v) Vu, v c V}, and

.5o(p,g) = {A E End(V) : gM (Au,v) +gm(u, Av) = 0 Vu, v E V}.

1.1.1 The Riemann curvature tensor. Let V be the Levi-Civita connection on

TM and let the associated curvature operator R be defined by the identity:

R(x,y)	 Vx Vy Vy V, – V[x,y1.

Then R:TpM ®R TpM – End(TpM) has the curvature symmetries:

R(x , y) = – R(y , x),

(1.1.1.a)	 gm(R(x,y)z,w) = gm(R(z,w)x,y), and

R(x, y)z + R(y, z)x + R(z, x)y = 0.

The equations displayed in (1.1.1.a) imply g m (R(x , y) z , w) = – g m (R(x , y)w, , z).

Thus in particular, we have that R(x, y) E .e 0(p , q).

1.1.2 Algebraic curvature tensors. We now go to a more general framework by

studying a purely algebraic problem and working with algebraic curvature tensors

- once the algebraic structure of these tensors has been investigated, we will then

study the corresponding geometric questions. We shall say that R E ®4 (TpM) is

an algebraic curvature tensor if the equations displayed in (1.1.1.a) are satisfied.

We note that the Riemann curvature tensor R of a manifold (M, g m) defines an

algebraic curvature tensor on TpM for every P in M; conversely, given a metric gp

on TpM and an algebraic curvature tensor Rp, there exists the germ of a metric "gm

on M extending gp so that Rp is the curvature tensor of gM at P. Consequently

we conclude that every algebraic curvature tensor is geometrically realizable at P.
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Thus the study of algebraic curvature tensors is important in differential geometry.

We refer to Gilkey [44] and Osserman [72] for expository accounts of this field and

for a more detailed bibliography than can be presented here.

1.1.3 Definition. Let RThq be the vector space of real (p + q)-tuples of the form

x = (x i , ..., xp , xp+i , xp+q ) with the nondegenerate symmetric bilinear form g

g(x, y) :=	 xiyi	 xiyi and laci 2 := g(x, x).

By choosing a suitable orthonormal basis we may identify (V, gm) with (Rm , g).

Let Tr be a 2-plane in JRP'q . We say Tr is nondegenerate if the restriction of g to

it is nondegenerate. Let {x, y} be a basis for 71; Tr is nondegenerate if and only

if g(x, x)g(y,y) – g(x,y) 2 O. We say that 71 is a 2-plane of type (0, 2), (1, 1),

or (2,0) if the restriction of g to Tr has this signature. Let Grtr, ․ ) (RP,q ) be the

manifold of nondegenerate oriented 2-planes of type (r, s) in RP,q where r s 2.

Let G4 (Rm) be the manifold of nondegenerate oriented 2-planes in Rm . Let U

denote the disjoint union. We shall need the following decomposition later

Grj- (Rm) Gr 02) (Rm) U Gr -(1-1,1.) (11tm) 111 Grt20)(Rm).

§1.2 IP Algebraic Curvature Tensors and IP Metrics

1.2.1 The skew-symmetric curvature operator. Let {x, y} be an oriented basis

for 'Tr E Grt (RP> q). We define the skew-symmetric curvature operator R(r) by

R(7r ) := 19(x , x)9(Y, y) g(x , Y)21-1R(x,y);

R(7r) is independent of the particular basis chosen. This operator was introduced

in the Riemannian context by Ivanova and Stanilov [61].
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1.2.2 Definition. An algebraic curvature tensor R is said to be IP if (a) R(ir)

has constant eigenvalues on all 7F C Cr2(W og ) and (b) dim Ker R(7) is constant on

all 7r E Gr r (RP,q ). A metric gm on a manifold M is said to be IP if R(ir) is IP at

every point P E M; the eigenvalues are permitted to depend on P C M.

1.2.3 Remark: In Definition 1.2.2, for p > 0, we do not have an orthogonal

direct sum decomposition of IFkm into Ker R(7r) and Range R(ir). This phenome-

non is caused by the Jordan normal form associated with the zero eigenvalues of

R(7). So R(7r) having constant eigenvalues on all 7r E Gr2 (1[1m ) does not imply

rank R(7) is constant on all i E Gr2 (RPfrq ). This is a crucial distinction between

the Riemannian setting and the pseudo-Riemannian setting. But by condition (b),

we have dim Range R(7r) = p + q – dim Ker R(7) is constant on all 7 E Gr2 (RP,q).

Thus rank R rank R(7r) is a well defined constant on all 7F E Grif- (Rm). A precise

replacement of condition (a) in Definition 1.2.2 is given in Theorem 2.1.1, this uses

unpublished work of Gilkey.

IP algebraic curvature tensors and IP metrics were first studied by Ivanov and

Petrova [59] in the context of four dimensional Riemannian geometry. Subsequently

Gilkey [451, and Gilkey, Leahy and Sadofsky [481 classified the IP algebraic curvature

tensors and IP metrics in the Riemannian setting except in dimension 7; some partial

results regarding dimension 7 can be found in Gilkey and Semmelman [49].

1.2.4 Definition. Let C be a nonzero constant and let 0 be a linear map of RP.q.

(C, 6/)) is said to be an admissible pair if = e id and if g(cb(u), 0(v)) = - g(u, v)

where = ±1. If e = 1, then 0 is said to be an unipotent (of order 2) isometry; if

e = —1, then 0 is said to be a unipotent (of order 4) para-isometry. If (C, 0) is an

admissible pair, we define

Re, o(x, y)z := C {g(q5(y), z )4(x) — g(q5(x), z)cb(y)}.
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We remark that e = -1 is only possible when p = q. Later in §1.4, Theorem D

asserts that R0,0 is an IP algebraic curvature tensor.

1.2.5 Note: If 0 is the identity map, then Rc := Rc,0 has constant sectional

curvature C since the sectional curvature 1C(7 r , Rc) is given by

Re (x, y , y , x) 
Rc) :=	 = C.

g(x,x)g(y,y) g(x,y)2

1.2.6 Constant sectional curvature manifolds. Let r > 0. Let

ST (Rmq ) := {v E RP' q :17.)12 and

H.,-(RP+14-1) := {v e RP+1,q-1 :	 = -r2}

be the pseudo-Riemannian spheres and the hyperbolic spaces. These are complete

pseudo-Riemannian manifolds of signature (p, q) which have constant sectional cur-

vatures r -2 and -r -2 respectively; we refer to Wolf [901 and O'Neill [711 for further

details. The following theorem characterizes constant sectional curvature manifolds

in the pseudo-Riemannian setting up to local isometry; we refer to [901 for the proof

of the theorem.

1.2.7 Theorem. Let M be a pseudo-Riemannian manifold of signature (p, q)

with p + q > 2. Let IC be a real number. The following conditions are equivalent.

(1) M has constant sectional curvature K.

(2) If x E M, then there exist local coordinates {x i} on a neighborhood of x in which

the metric is given by

=
E i ei •

ds , where Ei ±i.2  
	 Ei Ei • X n2

(3) If x E M, then x has a neighborhood which is isometric to an open set on some

Sr (RP' q ) if K > 0, RP 'q if 1C = 0, ilr (LIP,q ) if 1C < 0.

We shall need another well known result about the pseudo-Riemannian spheres

later in Chapter Five. We omit the proof of the theorem; again we refer to [90, 71]

for details.

1.2.8 Theorem. Let p > 0 and q > 1. We have that S(JRP ' 9 ) := SVERP,g ) is

diffeomorphic to RP x Sq-1.
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§1.3 The Classification of IP Manifolds in the Riemannian Setting

In this section, we review previous work of [45], [48], and [59] on the classification

of IP algebraic curvature tensors and IP metrics in the Riemannian setting. The

following result classifies IP algebraic curvature tensors in the Riemannian setting

if m = 5, 6 or if m > 8:

1.3.1 Theorem (Gilkey [45], Gilkey, Leahy and Sadofsky [48]) Let R be an IP

algebraic curvature tensor. Assume that (p, q) = (0, m). Let m > 5.

(1) If m 7, then rank R < 2.

(2) If rank R = 2, then there exists an admissible pair (C, 0) with 0 an unipotent

(of order 2) isometry of R° ,1n so that R = Re,o.

The four dimensional case is exceptional. We have the following classification

in the Riemannian setting if m = 4:

1.3.2 Theorem (Ivanov and Petrova [59]) Let R be an IP algebraic curvature

tensor. Assume that (p, q) = (0, 4).

(1) If rank R = 2, then there exists an admissible pair (C, 0) with 0 an unipotent

(of order 2) isometry of Ill" so that R = lic,o.

(2) If rank R = 4, then R is equivalent to a nonzero multiple of the "exotic" rank 4

tensor:

R1212 = 2, R1313 = 2, R1414 = -1 , R2424 = 2, R2323 = -1,

R3434 --= 2, 81234 = —1, 81324 = 1 , R1423 = 2.

Theorems 1.3.1 and 1.3.2 classify the IP algebraic curvature tensors if m > 4

and if m � 7. The corresponding classification of IP metrics is provided by the

following result:

1.3.3 Theorem (Gilkey [45], Gilkey, Leahy and Sadofsky [48]; Ivanov and Petrova

[59]) Let M be an IP Riemannian manifold of dimension m. Assume m > 4. If
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m = 7, we further assume rank R = 2. Exactly one and only one of the following

assertions is valid for M:

(1) M has constant sectional curvature.

(2) M is locally a warped product:

ds2m = dt2 + f (t)cls2N

of an interval I with a Riemannian manifold N of dimension m - 1 which has

constant sectional curvature IC 0. Furthermore, the warping function f is

given by

f (t) 1Ct2 + At + B,

where A and B are auxiliary constants so that 41CB - A2 � 0 and that f (t) > 0

is a smooth function defined on I.

We sketch the proofs of Theorem 1.3.1 and Theorem 1.3.3 in the following

three steps for m � 4; the case m = 4 does not follow this pattern and is handled

separately.

Step 1: (Algebraic topology) Let R be an IP algebraic curvature tensor. Let

Wo(R(7r)) and Wi (R(7r)) be the kernel and the range of R(7r) for 7r E Grt

Since R(7r) has constant rank on Gr2(R° ,"9, 1471,(R(7)) define vector bundles over

Gr2(R°i Tn ). Since R(-7) = -R(7r), Wz (R(-7r)) Wi (R(7)). Thus these bundles

descend to define vector bundles Vi over the unoriented Grassmannian Gr2(IV,m)

and over the real projective space IRP' 2 C Cr2 (R° ,m ). The cohomology algebras

of Gr2 (R°' rn ) and RIP)m-2 and the K-theory of RIPm-2 play an important role in the

analysis; this uses work of Adams [1] and Borel [18]. One studies the Stiefel-Whitney

classes of the bundles Vi to show that dim V1 = dim Wi (R(7)) < 2 if m = 5, m = 6,

or m > 9; this restricts the eigenspace structure and shows that R(7) has rank 2 if

R 0. The cases m = ,8 are exceptional, but some information on the eigenspace

structure can be obtained.
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Step 2: (Linear algebra) The map R(7r) takes values in so(m). By Step 1, if R is

nontrivial, we may assume that R(7r) has constant rank 2; Theorem 1_3_1 can then

be established using fairly standard techniques; the fact that R has rank 2 is crucial

to these arguments. We shall give a different proof from that given in [48] in chapter

V, as the proof given in [48] does not extend to the pseudo-Riemannian setting.

Step 3: (Differential geometry) Let R be an IP metric. One uses Theorem 1.3.1 to

construct an isometry of the tangent bundle with 0 2 the identity. Let ..F be the

distributions defined by the ±1 eigenspaces of 0; these are orthogonal. One uses

the second Bianchi identity to show these distributions are integrable and to show

that one of them has dimension 1. Theorem 1.3.3 then follows.

L3.4 Remark: Theorem 1.3.1 and Theorem 1.3.3 show that not every IP alge-

braic curvature tensor is geometrically realizable by an IP metric; Rc, cb is geomet-

rically realizable by an IP metric which does not have constant sectional curvature

if and only if one of the eigenspaces of 0 has dimension 1.

§1.4 Main Results of the Thesis

The results discussed in §1.3 are in the Riemannian setting where (p, q) (0, m);

the fact that the metric in question is positive definite is used at several crucial

points in the argument. We shall extend these results to the Lorentzian setting

(p, q) = (1, m 1) if m > 10. We shall also obtain some partial results in the higher

signature setting.

1.4.1 Definition. Let Wo(R(ir)) := Ker R(7r) and let Wi (R(ir)) := Range R(7r).

An algebraic curvature tensor R is said to be spacelike (or timelike) if W1 (R(7)) is

spacelike (or timelike) for every spacelike 2-plane 7r. If R is a rank 2 IP algebraic

curvature tensor, then R is said to be mixed if WI. (R(7r)) is of type (1, 1) for every
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spacelike 2-plane 7r; R is said to be null if W1 (R(7r)) is a degenerate 2-plane for

every spacelike 2-plane 7r and R(7r) has only the zero eigenvalue. We note that in

the Lorentzian setting a degenerate 2-plane is spanned by a spacelike vector and a

null vector. We shall use this fact later in chapter IV.

We can now state the seven main results of the thesis.

Theorem A. Let R be an IP algebraic curvature tensor on RP,q

(1) If p 1 and if q > 9, then rank R < 2.

(2) If p = 2 and if q > 11, then rank R < 4. Furthermore, if q and 2 + q are not

powers of 2, then rank R < 2.

(3) There exists a rank 4 IP algebraic curvature tensor if (p, q) = (2, 2).

Theorem A bounds the rank of an IP algebraic curvature tensor. In the rank 2

Lorentzian setting, we have a trichotomy:

Theorem B. Let R be a rank 2 Lorentzian IP algebraic curvature tensor and let

m > 4. Exactly one and only one of the following assertions is valid for R:

(1) For all 7r E Gr 	 (R i im-l ), we have that Wi (R(7r)) is spacelike and that R(7r)02)

has two nontrivial purely imaginary eigenvalues. Thus R is spacelike.

(2) For all iv E Gr 	 (R1,m-1) , we have that Wi (R(7r)) is of type (1,1) and that02)

R(7r) has two nontrivial real eigenvalues. Thus R is mixed.

(3) For all7r E Gr + (1111,"1 - 1 ), we have that W1 (R(7r)) is degenerate with a positive(02)

semi-definite metric and that R(7r) has only the zero eigenvalue. Thus R is

null.

Theorem B shows the trichotomy of rank 2 Lorentzian IP algebraic curvature

tensors. The following theorem asserts that most rank 2 Lorentzian IP algebraic

curvature tensors are spacelike.

Theorem C. Assume that m > 4. Let R be a rank 2 Lorentzian IP algebraic

curvature tensor.
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(1) If R is mixed, then m = 4, 5, 8, or 9.

(2) If R is null, then m = 5 or 9.

We have the following classification of rank 2 IP algebraic curvature tensors

which are spacelike or timelike with certain dimensional restraint.

Theorem D.

(1) If (C, 0) is an admissible pair, then Rc n o is a rank 2 IP algebraic curvature

tensor which is spacelike if e = 1 and timelike if e = —1.

(2) Let R be an IP algebraic curvature tensor on Rm . Suppose that q = 6 or that

q > 9. Suppose that R is spacelike or timelike and that R has rank 2. Then

there exists an admissible pair (C, 0) so that R = Rc,(1).

Let q be an unipotent (of order 2) isometry of Rm . Let r± (0) be the associated

dimensions of the +1 eigenspaces of q. The following theorem shows that not every

IP algebraic curvature tensor is geometrically realizable by an IP metric:

Theorem E. Assume m > 4. If (M, gm) is an IP pseudo-Riemannian manifold

and if the curvature tensor R at a point P E M is given by fic,95 for some admissible

(C, 0), then r+(0) < 1 or r _(0) < 1.

We now generalize the construction of IP metrics given in Theorem 1.3.3.

Theorem F. Let E = +1. Let I C R be a connected open interval. Let N be the

germ	 t of a pseudo-Riemannian manifold of constant sectional curvature IC � 0. Let

A and B be auxiliary constants so that 41CB—EA' � 0 and that Mt) e1Ct2-FAt+B

is a smooth nonzero function on I. Let M := I x N and let gm := edt2 + Mt)gN.
Then gm is a rank 2 IP metric on M.

As a consequence of Theorems D, E, and F, we have the following classification

of IP algebraic curvature tensors and rank 2 IP metrics in the Lorentzian setting

for m > 10.

Theorem G. Assume that rn > 10.
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(1) Let R be an IP algebraic curvature tensor on R is nontrivial if and

only if there exists an admissible pair (C, O) with cb an unipotent (of order 2)

isometry of IR1,m-1 so that R Rc4).

(2) If gm is a rank 2 Lorentzian IF metric, then exactly one and only one of the

following assertions is valid for gm:

(2a) gm is a metric of constant sectional curvature C 0.

(2b) gm is locally isometric to a warped product metric of the form given in

Theorem F.

1.4.2 Outline of the thesis. In chapter II, we prepare the necessary background

material from analysis and algebraic topology for our later studies. In §2.1, we use

unpublished work of Gilkey to prove Theorem 2.1.1. We also establish a technical

lemma relating the two Lie algebras so(p, q) and .so(p q). In §2.2, we study the

topology of the Grassmannians Grtrs) (111P,q ) and Gr(,., ․)(RP,q). In §2.3, we define

the Stiefel-Whitney classes of a real vector bundle and introduce some results from

of K-theory. We recall the calculation of K 0 (RP' ) due to Adams [I]. This will

play a crucial role in bounding the rank of IP algebraic curvature tensors. In §2.4,

we recall the calculation of H* (Gr2 (111n ); Z2 ) due to Borel [18]. We also introduce

the Steenrod squares. In §2.5, we introduce the splitting principle and apply this

principle to prove some technical lemmas which are used to determine the possible

forms of the Stiefel-Whitney classes of certain vector bundles. In §2.6, we establish

two important lemmas. The first lemma determines for what values of q, there

exists a nonsingular bilinear map from W' x R q to Rq+1 . The second lemma is a

continuity result which is needed later in chapter V.

In chapter III, we prove Theorem A by bounding the rank of IP algebraic

curvature tensors in some cases. In §3.1-3.2, to study the rank, we introduce certain

vector bundles over the Grassrnannians and the real projective spaces so that they
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encode much of the information about R(ir). Our approach is analogous to Step 1 in

§1.3. The works of Adams [1], Borel [18], Gilkey, Leahy and Sadofsky [48], and Stang

[84] play important roles in our discussion. This will prove Theorem A (1) and the

first part of Theorem A (2). In §3.3-3.4, we complete the proof of Theorem A (2).

In §3.5, we investigate some lower dimensional cases in the Lorentzian setting. In

§3.6, we prove Theorem A (3).

In chapter IV, we prove Theorems B and C. In §4.1, we establish the trichotomy

of rank 2 Lorentzian IP algebraic curvature tensors; this proves Theorem B. In §4.2,

we assume R is mixed or null and use the first lemma established in §2.6 to show

that q = 3, q = 4, q = 7, or q = 8. Once again algebraic topology plays a crucial

role in our analysis. This proves Theorem C (1). In §4.3, we complete the proof

of Theorem C by ruling out the exceptional cases q = = 3 and q = 7 (i.e. m = 4 or

m= 8) if R is null.

In chapter V, we prove Theorems D and G (1). This chapter serves an analogous

role in Step 2 of §1.3. In §5.1, we begin with some algebraic preliminaries. In §5.2,

we prove the "common axis" lemma and then construct the admissible pair (C, O)

so R = Ren o. In §5.3, we prove Theorems D and G (1).

In chapter VI, we prove Theorems E and F and we complete the proof of

Theorem G. Our approach is analogous to Step 3 in §1.3. In §6.1, we prove Theorem

E. We follow the argument given by Gilkey, Leahy and Sadofsky [48]; the second

Bianchi identity enters at a crucial stage of the argument. In §6.2, we generalize

the warped product construction of Gilkey, Leahy and Sadofsky, and of Ivanov and

Petrova to higher signatures to prove Theorem F. In §6.3, we first show any C-0

type metric is a warped product of an interval with a metric of constant sectional

curvature. We subsequently complete the proof of Theorem G in the seven steps:
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Step 1: Theorem A (1) implies the associated Lorentzian algebraic curvature tensor

R has rank at most 2.

Step 2: Theorem B implies either R is spacelike or R is mixed or R is null.

Step 3: Theorem C shows R is not mixed or null. Thus R is spacelike.

Step 4: Theorem D shows R is of C-0 type.

Step 5: By replacing q5 by —0 if necessary, we may suppose r+ < r_. By Theorem

E, either r+ = 0 or r+ =-- 1. if r+ = 0, then MT' has constant sectional curvature

C. We therefore assume that r + = 1. Thus g m is a metric of C-0 type.

Step 6: By the technical lemma at the beginning of §6.3, any C-0 type metric is a

warped product of an interval with a metric of constant sectional curvature.

Step 7: Theorem F shows if (M, gm) is a warped product metric of an interval with

a metric of constant sectional curvature, then (M, gm) has the desired form. This

completes the classification. In §6.4, we discuss the orthogonal equivalence of the

curvature tensors Rc,cb•

1.4.3 Future research. We have classified the IP algebraic curvature tensors and

IP metrics in the Lorentzian setting if m > 10. We plan to use the second Bianchi

identity to study the appropriate integrability results and prove every rank 2 IP

metric is locally isometric to one of the metrics constructed in Theorem F in the

higher signature setting. The possible existence of rank 2 mixed or null Lorentzian

IP algebraic curvature tensors still needs to be explored in certain exceptional di-

mensions. We also will pursue the classification of IP algebraic curvature tensors

in higher signatures. We will study whether or not there exist "exotic" IP alge-

braic curvature tensor of rank 4 when (p, q) = (1,3). We will also study whether

or not there exist "exotic" IP algebraic curvature tensor of rank 4 arising from the

unipotent (of order 4) para-isometry when (p, q) = (2, 2).



14

§1.5 Other Operators

We conclude chapter I by giving a brief summary of some related results. We

follow the discussion given in [44] on these topics.

1.5.1 The Jacobi operator. Let R be the curvature of a connected Riemannian

manifold M of dimension m. If x is a unit tangent vector, let JR (x) : y , x)x

be the Jacobi operator. The Jacobi operator is an essential ingredient in the study

of Jacobi vector fields, geodesic sprays and conjugate points. If M is a local 2-point

homogeneous space, then the local isometrics of M act transitively on the bundle

of unit tangent vectors so the Jacobi operator has constant eigenvalues. Osserman

conjectured [72] that the converse might hold. Chi [25] showed this to be the case if

m is odd, if m 2 mod 4, or if m = 4; the case m 4k + 4 for k > 1 remains open

in this conjecture. Recently Rakie [76] has established a duality result showing:

1.5.2 Theorem (Rakie) Let R be an Osserntan algebraic curvature tensor and

let x and y be unit vectors. If JR (x)y = Ay, then JR (y)x = Ax.

There is an analogous duality for the skew-symmetric curvature operator as we

shall see in Remark 5.3.3 in chapter V.

It is also known that a Lorentzian Osserman algebraic curvature tensor has

constant sectional curvature, we refer to Bia'Zió, Bokan, Gilkey and Rakió [9], and

Garcia-Rio, Vazquez-Abal and Vazquez-Lorenzo [38]. The situation in the higher

signature setting is much more complicated. For example, there exist Osserman

pseudo-Riemannian metrics which are not homogeneous; see the survey article [10]

for further details.

1.5.3 The Stanilov operator. Ivanova and Stanilov [61] defined a higher order

generalization of the Jacobi operator. Let Gr p (Rm ) be the Grassmannian of unori-

ented p-planes in	 We define:

	

JR;p(7r )	 fx€71-#1--1 
jR (x) dx.
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Let {xi }p I be an orthonormal basis for 7r. Then, modulo a suitable normalizing

constant which plays no role, we have that

JR;p( 7r) :=
	 JR(xj).

This sum is independent of the orthonormal basis chosen. An algebraic curvature

tensor R is said to be p-Osserm,an if the eigenvalues of JR;p are constant on Grp (Rm);

similarly, a Riemannian manifold (Mm , g) is said to be p- Osserm,an if the eigenvalues

of JR ;p are constant on Grp (7" Afrn. ). If R is p-Osserman, then R is Einstein and

(m — p)-Osserman; see [47] for details. One has a complete classification result [43].

1.5.4 Theorem (Gilkey [43]) Let 2 < p < m — 2.

(1) Let R be a p-asserman algebraic curvature tensor. If m is odd, then R has

constant sectional curvature. If m is even, then either R has constant sectional

curvature or there exists an almost complex structure con IV' so that R .X,R,

with Rc (x , y)z := g(y, , cz)cx — g(x , cz)cy — 2g (x , cy)cz

(2) Let (M. m ,g) be a p-Osserrnan Riemannian manifold. Then (M m , g) has

constant sectional curvature.

1.5.5 The Szabo operator. If x is a unit tangent vector, then the Szabo Operator

is defined by SR (x) : y (V x R)(y, x)x. This operator is self-adjoint. Szabo [85]

proved the following result:

1.5.6 Theorem (Szabo [85])

(1) If SR has constant eigenvalues on Sm-1 , then VR = 0.

(2) Let (W g) be a Riemannian metric so that SR has constant eigenvalues on

S(T14'). Then (Al m , g) is a local symmetric space.



CHAPTER II

SOME ANALYTICAL AND TOPOLOGICAL

BACKGROUND MATERIAL

In. chapter II, we present some basic background material and prove some basic

lemmas we shall need later. Here is a brief outline of chapter In §2.1, we follow

the argument due to Gilkey to show that for R IP, the eigenvalues of R(7r) are

independent of the plane type of rr. This permits us to change the domain of R. In

Lemma 2.1.2, we show there exists a rank preserving linear isomorphism between

the two Lie algebras s 0(p, q) and so (p + q). So from the rank point of view, this

permits us to change the range of R. We shall need these facts in chapter III when

we rephrase the problem in the language of vector bundles. In §2.2, we study the

topology of the Grassmannians G r trn (RP ) and Gr(r, ․)(Rm). In §2.3, we define

the Stiefel-Whitney classes of a real vector bundle. We recall the calculation of

the real K-theory groups of lftr due to Adams [1]. In §2.4, we recall the work of

Borel [18] on H* (Gr2 (Rn ); Z2 ). We also introduce the Steenrod squares. In §2.5, we

introduce a very important computational tool for characteristic classes in Theorem

2.5.5 (The splitting principle). Lemmas 2.5.7, 2.5.8, and 2.5.9 are applications of

the splitting principle. In §2.6, we establish two important technical lemmas which

are needed in chapter IV and chapter V.

16



17

§2.1 The Eigenvalues of IP Algebraic Curvature Tensors

2.1.1 Theorem. Let R be an algebraic curvature tensor. The following conditions

are equivalent:

(1) R has constant eigenvalues on all 7r E Gr	 (RP'q). (Assume q> 2).02)

(2) R has constant eigenvalues on all it E Gr + (RP, (1 ). (Assume p > 1 and q > 1).11)
(3) R has constant eigenvalues on all 71 E GV( 0)(RP'q). (Assume p > 2).

Furthermore R has constant eigenvalues on the set of nondegenerate 2-planes.

Proof. The following argument is due to Gilkey. Let

F2( 11) := {(u, v) E RP g x RP : g(u, u)g(v, v) — g (u , v) 2 0}

be the set of frames for the nondegenerate 2-planes in RThq . We can decompose:

(IRP'q) Grt0,2) (Rm ) U Grti,i) (1R") u Grt2,0) (RP' q ), and

	

F2 (1ftm )	 F(0,2)(R7) ) LI F(1,1) (R/1") 	 U F(2,0 ) (RP'q).

The frames in F(, , , ) (Rm ) span oriented 2-planes of type (r, s) in Gr tr, ․)(RP,q). If

(u, v) E F2 ORP 'GO, let ir(u, v) be the oriented 2-plane spanned by u and v. The map

: F2 (1173,q ) —> Gr2 (IIIP,q) is a principal bundle with structure group GI4(11%). Let

R2 ,
a(u, v) := R2 (7(u,v)) = g (u , u)g(v , 

(u
v) 

v—) 
g (u , v)2

The eigenvalues of R(7r) are constant on G4 (RP,q ) if and only if the eigenvalues

of a(u, v) are constant on F2(RP,q ). Let C,(u, v) := Tr{a(u, v) i}; the eigenvalues of

a(u, v) are constant on F2 (RP1q ) if and only if the functions C,(u, v) are constant

on F2 (RP,q).

We complexity and extend the tensors R and g to the tensors R, and g, which are

complex and multilinear. The role of (p, q) of course disappears once we complexity.

We use R, to define an associated curvature operator

	

Rc (zi , z2 ) : 02 (CP±q )	 Mp+q(C)
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which satisfies the defining identity:

gc(Rc(Zi, Z2)Z3, Z4) -= Re (Z 1.1 Z2 5 Z3 ) Z4)-

We complexify to define

F2 := {(zi, z2) E CP+q x CP-Fq : gc (z1 ,z0g,(z2 , z2 ) — gc (zi , z2 ) 2 � 01, and

R2,(zi , Z2)
ac(Zi Z2) :=	 \ 2 on Fc

Zi)ge (Z2, z2) — gc(zi, z2)	
2

We note that F2 is a nonempty connected open dense subset of the complex vector

space CP+q x CP-Fq	 C2(P+q) ; we refer to Gunning and Rossi [55] for details. If

iv C CP-Fq is closed under addition and under scalar multiplication by R and if

has R dimension 2, then 7r is said to be a real 2-plane in CP+q

Let {u,, v,} for i = 1,2 be two R bases for a real 2-plane 7T. We must show

that if (u1 , vi ) E FF, then (u2 , v2 ) E _q and ac (u i , v1 ) = ac(u2 , v2 ). We argue as

follows. Choose constants a, b, c, d E K with ad — be 0 so u2 --= aui + bvi and so

v2 = cui + dvi . Since (u i ,v i ) E Tf, we have gc(ui,ui )gc(vi ,vi) — Mt/4 , v i ) 2 0.

We compute:

gc(u2, 112)gc(V21 V2) — gc(u2, v2)2

= gc (aui + bv i , au i + bv i )gc (eu i + dvi ,cu i + dvi ) — gc (au i + bvi , cui + dv1)2

= (ad— bc) 2 {ge(ui,U1)gc(V1/vi) — gc(u i ,v1 ) 2 1 � 0.

Thus we have (u2 , v2 ) E	 Similarly, we compute ct,(u i , vi) = ac(u2, V2).

We say that a real 2-plane it in CP+q is nondegenerate if there exists a R basis

(u, v) E Pf for 7r; this is independent of the basis chosen as noted above. Note that

not every real 2-plane is nondegenerate. We let ac(7r) := ac(u, v) be this common

value. We extend Cz to the complexification by defining C z (u, v) := Tr{ce,(u, v)z};

Ci are holomorphic functions on F. Note that

Fz n IRP 'q = F2 (IRP ' q ) = F(0 , 2) (RP 'q ) LI F(14)(RP'(1) LI F(2 ,0) (RP'q).
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If F(,.,5)(RP'(/) is nonempty and if Ci are constant on 1(,,8)ORP,q), then the holomor-

phic functions Ci are constant on the nonempty open subset F(7.,5)(RP,q) of Since

the nonempty subset FZ of C 2(P±v) is open and connected, the identity Theorem

asserts that Ci are constant on the whole domain F2 and hence on F2 (RP,q ). q

For simplicity, we shall henceforth use so(m) for 5o(0, m) and use km for R°,7n.

We shall need the following technical result.

2.1.2 Lemma. There exists a rank preserving linear isomorphism T from .so(p,g)

to so(p + q).

Proof. As noted in §1.1.3, we can choose coordinates x = xi , ...,xp, xp+ i ,	 xx,+q)

on	 so that

g(x,x) = —x? —	 xp2 xp2+1	 sp±q

Let ge be the standard Euclidean metric. Let

T(xi ,	 xp , xp+ i ,	 xp+q ) := (—si ,..., —xp ,xp+ i ,	 xp+g)•

T is self-adjoint with respect to the inner product g e , T2 is the identity. Furthermore

we have g(u, v) = ge (u,Tv) = ge (Tu, v).

The following assertions are equivalent:

(1) We have A E zo(p, q).

(2) We have g(Au,v) + g(u, Av) = 0 for all u, v.

(3) We have ge (Au, Tv) + ge(u, TAv) = 0 for all u, v.

(4) We have ge (T Au, v) + ge(u,TAv) 0 for all u, v.

(5) We have TA E so(p + q).

This chain of equivalences shows that the map E : A i TA is a linear isomor-

phism between .6 o(p, q) and so (p + q); since T is invertible, rank A = rank TA. q
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2.1.3 Definition. We say that a continuous map R : Gr2 (RP ,q ) —› 50(.1, v) is

admissible if R(-7) = —R(7) and if rank R(7r) is constant on G4 (RP ' q ). Similarly a

continuous map R : Sn so(p., v) is admissible if R(—v) —R(v) and if rank R(v)

is constant on Sn . We let rank R(7) r be this constant in this setting. Note that

if R is an IP algebraic curvature tensor, then the map 7 R(7r) is an admissible

map R from G4 (111P,q) to .50(p, q).

The following lemma is an immediate consequence of Lemma 2.1.2; it permits

us to pass from the Lie algebra so (p , q) to the Lie algebra so(p q).

2.1.4 Lemma.

(1) The following assertions are equivalent:

(la) There is an admissible map from G4 (RP,q ) to .so(p, q) of rank r.

(lb) There is an admissible map from G4 ORP,q ) to so(p + q) of rank r.

(2) The following assertions are equivalent

(2a) There is an admissible map from Sn to so(p, q) of rank r.

(2b) There is an admissible map from Sn to so(p q) of rank r.

§2.2 The Topology of the Grassmannia,ns

The oriented Grassmannian GT2 (R") and the corresponding unoriented Grass-

mannian Gr2 (11") will play important roles in our study. We decompose

(1[1") = Grt0 2) (11 m) a Grt(R") LJ Grt2,0) 011"), and

Gr2 (RP 'q ) = Gr(0,2) (Rm ) a Gr(1,1) (RP,q ) I:J Gr(2,o)( ,q)

These spaces are noncompact if p 0. We show in this section that Gr(0,2)(RP,q)

and Gr(1,1) (11IP,q) strongly deformation retract to compact submanifolds.

If 0 x E RP and if 0 y E , we let

Ir (1 , y) := Span{(x, 0), (0, y)} E Gr(i,i)(RP'q).
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The map (x, y) 74X, y) extends to define an inclusion

(2.2.0.a)	 i : RPP-1 x RP"	 Gr(11)(RP,q).

For 7r E Gr(1,1)(RP)q), let S ± (7r) := {v E 7r : g(v,v) = ±1} denote the set of

spacelike and timelike unit vectors. If v is a nonzero vector, we shall let (v) denote

the associated point in projective space. Our first goal is to construct a retract

r : Gr(1,1) (RP 'q )	 RPP-1 x 81114-1.

2.2.1 Lemma. Let it E Gr(1,1)(Rm).

(1) The function ge (u, u) on S± (7r) is minimized by exactly two vectors ±P±.

(2) The function ge (u, u) on S .- (7r) is minimized by exactly two vectors	 .

(3) Let PI = (x± , y± ). The maps 71)- : 7r	 (x-) and 0+ : Ir	 (y+ ) are smooth

maps from Gr(1,1) (118P,q ) to RIPP-1 and RIPq-1.

(4) The map r	 x IP + is a retract to the inclusion i defined in equation

(2.2.0.a).

Proof. Let gir and gel' denote the restrictions of the indefinite metric g and the

Euclidean metric ge to 7r; these are nondegenerate quadratic forms and ge''' is positive

definite. We can diagonalize glr with respect to ge . We define an endomorphism

AIT by g lr (u, v) = gel r (A"u,v). Then A' is symmetric with respect to gel r ; since glc

is indefinite, A' has eigenvalues Al which have opposite signs. We can therefore

diagonalize Ax ; this permits us to choose orthogonal unit vectors vl with respect

to the metric ge" so that if v = a+v7_ a_v 7r , we have

ge (v, v) = a2+ a2 and g(v, v) = ATa2+ — a2

Thus v E SI (7r) if (07rE a+) 2 — (J)" a_) 2 = +1; this identifies S± (7r) with two

hyperbolas in R2 and the points closest to the origin with respect to the Euclidean

metric are +P±	 ±v1/01; assertions (1) and (2) now follow.
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If 7r E Gr(1i) (RP ' q ), let p, be orthogonal projection with respect to the metric

ge on 7r and let 0(7r) be a sufficiently small neighborhood of 7 in Gr (11) (RP ' q ) so

that p„ is an isomorphism from T to 7r for T E 0(7). We use the isomorphism p,

to pull back the metrics gT and ge to IT and to regard them as a smoothly varying

family of metrics on 7r parameterized by 7- E 0(7r). Since the eigenvalues A; have

opposite signs, we can choose the diagonalizations and corresponding eigenvectors

to be smooth functions of T; pulling back these eigenvectors to 7 using p77 1- then

shows that the vectors P± (7) can be chosen to vary smoothly with T at least locally.

The maps 7 -› P- -> x- and 71 P+ y+ are smooth. This construction is well

defined locally; globally, of course, there is no way to distinguish P from -P, i.e.

x- and y+ can not be defined globally. However, this indeterminacy vanishes once

we pass to the associated projective space, assertion (3) follows. The final assertion

is an immediate consequence of the definitions we have given in (2.2.O.a). q

2.2.2 Remark.- We can also think of this process geometrically. Let (9 be a small

open set in G7(1,1) (R) ). Choose a frame {v 1 , v2 } for 7r E 0 which is orthonormal

to the reference metric ge . This choice of frame permits us to view the metric g

as a varying family of indefinite quadratic forms on 111 2 which varies smoothly and

which is parameterized by 0. The equations gir (v, v) ±1 define smoothly varying

families of hyperbolas and the unique points closed to the origin are the points ±P±

in question.

Let GrI(W) := Gr2 (R° ,v ) and let Gr2 (111') := GY-2 (RO'); these are smooth

closed manifolds. We use the canonical inclusions R q	RP'q = RP ED ii and

RP RP'q = ED Rq to define canonical embeddings

G4 (W)	 Grt0,2) (RP4) and GYP RP) c-* Crt2,0) (111P)q).
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Let Z2 e z2 act on SP- 1 x Sq-1 C ]WP x Rq R. Let

S (p, q) := (SP-1 x Sq-1)/Z2

be the quotient by the diagonal action of Z2 ; note that

luP- 1 X R.Pq-1 = (SP-1 X Sq-1)/(Z2 el) Z2).

Let (u, v) be an element in SP- 1 x Sq- 1 . Let (u, v) denote the associated point in

S (p, q). We can also embed S(p, q)	 Grtii) (IRP,q ) by (u, v) (-4 Span{u, v}.

2.2.3 Theorem.

(1) We have Gr2(Rq ) is a strong deformation retract of Gr(+02)(RP,c1).

(2) We have Gr2 (1R q ) is a strong deformation retract of Gr(0,2)(Rm).

(3) We have S(p, q) is a strong deformation retract of Grtii)(IRP,q).

(4) We have RI P -" 1 x RIPq-1 is a strong deformation retract of Gr(11)(RP'q).

(5) We have 01(RP) is a strong deformation retract of Gr(0)(.118P,q).

(6) We have Gr2 (RP) is a strong deformation retract of Gr(2,0)(RP'q).

Proof. Decompose RP+q = ® Rq and z = x e y. Let W s (z) := sx ® y define a

linear deformation retract from R P+q to Rq . If g(z, z) > 0 and if s E [0,1], then

g(Ts(z),Ts(z))	 s2g((x, 0), (x, 0)) + g((0, y), (0, y)) > 0.

Thus if it is a spacelike 2-plane, then I s (it) is a spacelike 2-plane for s E [0,1];

the map Ws provides the required strong deformation retract from Grto 2) (RP ' q ) to

(E8q ); assertion (1) follows. Reversing the orientation defines a Z 2 structure on

Gr2(RP,q ) so that

Gr2(RP'q) = Gr2(RP'q)/Z2.
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Since the construction is equivariant with respect to this action, assertion (2) follows

from assertion (1). Assertions (5) and (6) follow similarly.

Let the vectors PI = (x ± ,y+ ) be as in Lemma 2.2.1 for 7r E Gr 	 (RP ,q ). Let11)

if s (7r) := Span{(x- ,sy), (sx+ ,y+)}.

The same argument as that given above shows that if s E [0, 11, then

g((x , sy), (x`, sy — )) < 0 and g((sx+ ,y+ ), (sx+ ,y+ )) > 0.

Thus g((x , sy — ), (x — , sy ))9((sx+ ,y+ ), (sx+ , y+ ))—g((x, sy — ), (sx+ y+ ))2 < O.

Consequently W s (7r) is a 2-plane of type ( 1 , 1). Our construction is Z2 El) Z2 equivari-

ant so the indeterminacy in the choice of P+ plays no role and Alf , defines smooth

maps on Gr( i) (RP,q ) and Gr (11) (RP,q ) providing the required strong deformation

retract to S (p, q) and RIPP-1 x RPq-1 . q

2.2.4 Remark: Let F(ri) (RP,q ) be the set of pairs (u, v) E RP,q x RP,q 1 so

that g(u,u) = -1, that g(v, v) = 1, and that g(u,v) = 0. If (u, v) E F(si°)(RP,q),

let 7r(u, v) := Span{u, v}. Then the map 7r : F (ri) (RP' q ) -4 Grtii) (RP,q ) is a fiber

bundle with structure group F = SO(1,1) R x Z2. Since .F11°I) (RP,q ) has a 7L2 TZ2

equivariant deformation retract to S P- 1 x Sq- 1 ; this provides another way to see

that Cr+ (111P,q ) is homotopy equivalent to (SP-1 x 8")/Z2 = S(7), q).(1,1)

§2.3 The Stiefel-Whitney Classes and KO(IRPn) 

2.3.1 The Stiefel- Whitney classes. Let E be a real vector bundle over a topologi-

cal space B. Let w(E) be the total Stiefel-Whitney class of E; w(E) is characterized

by the following properties:

(1) We may decompose w(E) = 1 + wi (E) + w2 (E) + ... for wi E Hi (B; Z2).
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(2) We have w,(E) = 0 for i > dim(E).

(3) We have w(E F) w(E)w(F) i.e. w k (E (I) F) = E i+3,k Wi(E)wj(F).

(4) If E is a trivial bundle, then w(E) = 1.

(5) If IL is the classifying real line bundle over R1r, then u := w1 (L) generates

H 1 (1111r; Z2 ) = Z2.

(6) We have w is natural with respect to pullback, i.e. w(f*E) = f*w(E).

If E is a real vector bundle over a topological space B, let [E] denote the

corresponding element in the reduced real K-theory group KO(B). The following

lemma calculating KO(R11) n ) follows from work of Adams [1].

2.3.2 Lemma. Let L be the classifying real line bundle over TRIP', see equation

(2.4.1.a) below.

(1) Let u	 (L). We then have If*(RIP"; Z2 ) = Z2[u]/(04-1 = 0).

(2) The elements [1] and [IL] generate KO(RIF').

(3) The element [L] – [1] has order p(n)	 2Cb(n) in KO(R1r) where 0(0) = 0,

0(1) = 1, 0(2) = 2, 0(3) = 2, 0(4) = 3, 0(5) = 3, 0(6) = 3, 0(7) = 3, and

where (;t,(8k + = 4k + OM for Q > 0.

For n E N, let j(n) := [log2 n], then 23(n) < n < 2.7(n)+1 . We tabulate some

values of 0(n), j(n) and p(n).

TABLE 1. Some Useful Data

© 2 © 0
ME 4 13
n+3 111 6

6 7 8 9

MIMI
111
32

rilligin
10

6

64

10111111111

ITI
13
14
6

64

8 9 10

4

16

9
II

10
30 nill

p(n)

2 0
1 II 2 2

4 4 8 8 8 8
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§2.4 H* (Gr2 (RTh ); Z2 ) and the Steenrod Squares

2.4.1 Classifying bundles. We define

IL :=7{(e, E min X Rn+1 : z E

(2.4.1.a)
	

z) E Gr2 (Rn ) x Rn : z E 7r1 and

L	 (Rn) x IR/(7r, A)	 (-7r, -A).

to be the classifying real line bundle over Rr, the classifying real 2-plane bundle

over Gr2 (Rn ) and the canonical real line bundle over Gr 2 (ItIn ). Let Vectr (B) denote

the isomorphism classes of rank r real vector bundles over B. The following lemma

is well known:

2.4.2 Lemma.

(1) We have 711RPn = Z2 for n > 1 and Vecti (RIEDn ) = Z2 is generated by IL.

(2) We have ir i GrAr) = Z2 for n > 2 and Vecti (Gr2 (11r)) = Z2 is generated by

L.

2.4.3 Remark: We note that the restriction of L to 11ll n 2 C Gr2(Rn ) is the

classifying line bundle IL over RPM' -2 thus L is nontrivial.

We define the natural inclusion i : 1111Pn-2
	

Gr2 (ll n ) as follows. Let v E Sn-2

and let (v) be the associated point in Rr -2	 Sn-2 /Z2 . Choose the standard

orthonormal basis {e l ,	 , en _ i , en} for 111 Th so that Rn-1	 Spanfe 1 ,... ,

We define

i((v)) := Span{v, en } E Gr2(Rn).

We define
x := tui (72) E H1 (Gr2 (kV); Z2),

y	 w2(-Y2) E H2 (Gr2 (11 1 ); Z2 ), and

u	 wi (L) e H1(IRPn-2;Z2)•
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Let	 be the orthogonal complement of -y2 and let miL :=	 ). Since -y2 ®y2

is a trivial bundle of dimension n, we use w(72 ) = 1 +	 y to express

	

w ('y ) = Eu, 	 (1+x+ y)
-
' E Z2E[x7

Since dire(-y) = n - 2, we see that w iL = 0 in 1-P(Gr2 (Rn ); Z2 ) for i > n - 1.

These relations generate all relations in H* (Gr2 (Rn ); Z2 ); we refer to Borel [181 for

the proof of the following Theorem:

2.4.4 Theorem. We have

H* (Gr2 (Rn ); Z2 ) L-J Z2 [x,	 = 0 for i > n - 1.

We shall need the following technical lemma later in §3.3.

2.4.5 Lemma. Let i : RIPT" --> Gr2 (1r) be the natural inclusion. We have:

(1) i*(72) ===-' LED 1 and i* (L)	 L.

(2) ex = u and ey = O.

Proof. We use equation (2.4.1.a) and the definition of a pullback bundle to see that

i* ('Y2) =-{((v), (7, z)) E	 x Gr2 (Rn ) x	 : it = MO) = Span{v, en}

and z E 7r}.

So the fiber over each point (v) E RPn-2 is precisely the 2-plane Span{v, en}.

On the other hand, since L {((v), z) E RIP)n-2 x Rn-1 : z E (v)1 and since

1 = Rr -2 x R, the fiber of the bundle L ED 1 over each point (v) E Rr -2 is the

2-plane Span{v} e R c=2 Span{v, eri l. Thus i* ('y2 ) -r=2 e 1. We use Remark 2.4.3

and Lemma 2.4.2 (2) to see that i* (L) is a nontrivial line bundle over 118r -2 , so it

has to be L. We use assertion (1) and naturality to see that

=	 (z* ('Y2) ) =	 (L EJ9 1) =	 (L) = u, and

i*Y = w2(i * (72)) = w2 (L ED 1) = 0. q
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2.4.6 Steenrod Squares and the top Stiefel-Whitney class. In this section, we

use the total Steenrod square to establish a well known technical lemma (Lemma

2.5.8) about the top Stiefel-Whitney class of a real vector bundle, we refer to Glover,

Homer, and Stong [52]. We first recall the properties of the Steenrod squares Sqi

from Steenrod and Epstein [83].

2.4.7 Theorem. Let B be a topological space.

(1) For all integers i > 0 and n > 0, there exists a natural transformation of

functors which is a homomorphism Sq
	 z2) Hn+i(B; Z2).

(2) Sq°	 1.

(3) If dim x = then Sex = x 2 .

(4) If i > dimx, then Sq tx O.

(5) (Cartan formula) Sqk (x • y)
k

• Sqk-‘9 Y •

3=0

(6) Se is the Bockstein homomorphism 13 of the coefficient sequence

0 -4 Z2 —> Z4 Z2 —> O.

(7) (Adem, relations) Let (7) denote the number m choose n. If 0 < a < 2b, then

[a/21
sesqb = E f (b— 1 —

a - 2j
3=0

§2.5 The Splitting Principle

A very useful tool in determining polynomial relations between characteristic

classes is the splitting principle. This section is devoted to the discussion of the

splitting principle and its various applications useful to our studies. We first intro-

duce the following notational conventions. We follow the setup given in Bott and

Tu [19].

mod 2} Sqa+6-3
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2.5.1 Notational conventions. Let K := IR or C. Let V be a vector space over

K. Let P(V) be the set of all 1 dimensional K subspaces of V. Let P := P(V) x V

be the product bundle. Let Sp := {V, v) C P : v E fl be the canonical subbundle.

Let Q2 be the canonical quotient bundle defined by the short exact sequence

2.5.2 Projective bundles and flag manifolds. Let it E B be a K vector bundle

with transition functions go : Ua n GL(n, K). We define the projectivization

of E by the fiber bundle p : P(E) -4 B, whose fiber over each x E B is P(Ex ) and

whose transition functions go : (fa nuo PGL(n, K) are induced by go. So a

point in P(E) is a line ix in the fiber Ex . By definition, we have p* E C P(E) x E

whose fiber over the point fz E P(E) is Es , i.e. (p* E) .ex = Ex . The restriction of

p* E to each fiber p- 1 x = P(E)x is the trivial bundle P(E) x x Ex . The subbundle

SE := {(G, v) E p* E : v E ix } is a line bundle; its fiber over each point G E P(E)

contains all the vectors in ix.

2.5.3 Example: Let 7r :	 B be a line bundle, we then have P(L) = B and

p* L = S = L.

We now construct a space F(E) called the flag manifold together with a map

o- F(E) B called the splitting map so that a*E is a sum of line bundles. We

proceed inductively on dim E.

(1) If dim E = 1, then E is a line bundle. Our construction is completed by Example

2.5.3.

(2) If dim E = 2, we use the projectivization of E discussed in §2.5.2 to see that

p* E = SE e QE over NE). We set a := p and F(E) := P(E) to complete the

construction.
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(3) In general, at every next step, we projectivize the previously obtained quotient

bundle QE to split off a new line bundle, so eventually all that remains is a sum of

line bundles. We now set a to be the composition of all these p's and set F(E) to

be the projectivization of the last quotient bundle.

The fact that the map a* : H* (B; Z2 ) —> H* (F(E); Z2 ) is a ring monomorphism

follows from the Theorem below. The detailed proof is omitted, we refer to [19] for

the argument.

2.5.4 Theorem (Leray-Hirsch) Let K be a principal ideal domain. Let 7t : E —> B

be a fiber bundle with fiber F of finite type. If there are globally defined cohomology

classes {ai,...,a,-} on E whose restriction to each fiber freely generate the cohomol-

ogy of the fiber as a K -module, then H* (E; K) is a free H* (B; K)-module with basis

{al ,	 ar}.

2.5.5 Theorem (The splitting principle) Let E be a real vector bundle over B.

There exists a splitting map a : F(E) —> B so that o-* E is a sum of line bundles

and o-* : H* (B; Z2 ) —> H* (F(E); Z 2 ) is a ring monomorphism.

2.5.6 Remark: A more general version of the Leray-Hirsch Theorem can be

found in Husemoller [571.

The following three lemmas are needed in §3.1 and §3.3.

2.5.7 Lemma. Let L be defined in equation (2.4.1.a). Let U be a real 4-plane

bundle over Gr2 (RTh ) so that U L is isomorphic to U. Then

x + x 3 • TV i(U) ± 1 2 • (Wi(U) W2(U)) x • (wi (U) w3(U)) =O•

Proof. We use Theorem 2.5.5 (the splitting principle) to see that a* (U) vi= , Li

and that a* : H*(Gr2 (Rn ); Z2 ) —> H* (F(U); Z2 ) is a ring monomorphism. Let

s := o-* (x). Let si := wi (L i ). Let Cui := o-*(wi (U)) = wi(o-*(U)). Since U U® L

and since the Stiefel-Whitney classes are natural, we have:

w(U) = w(U L) and o-*(7v(U)) = W(a * (U)) =	 (1 + Si).
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Consequently we have that:

FIL i (1 + s i) o-* (w(U)) a* (w(U 0 L)) = w(u*(U(U ® L))	 (1 + s s).

We expand this identity to see:

11
4
=1(1 + si + s) -=11-=-1(1- + s i ) + S • (Ez St + Et<j<k StS3 k)

+ S2 • (Eti St ± E i <i S t S 3) 4- 83	 St) + S4

,n4 (1 ± Si) ± S4 ± S3 •	 S2 • ( WI + 1-1:12) S • (thi ± 11)3).i=1

Thus s4	. wt + 82	+ Cot) + s - (fin + 2b3 ) = 0. Since a* is infective, the

assertion now follows. q

2.5.8 Lemma. Let B be a topological space. Let E be a real vector bundle over

B of dimension m. Let w m, (E) be the top Stiefel-Whitney class of E. Let w(E) be

the total Stiefel-Whitney class of E. We have Sq(w m (E)) w(E) • tc,,(E).

Proof. By Theorem 2.5.5, it suffices to verify the assertion for sums of line bundles.

Furthermore, by Theorem 2.4.7, Sq is a ring hornomorphism, we may reduce to the

case of a single line bundle A. We compute:

Sq(wi (A)) =w 1 (A) + Sq 1 (i.v i (A)) = w 1 (\) + (wi (A)) 2

=(1 w1 (A)) • '11 1 (A) w(A)	 (A)- q

2.5.9 Lemma. Let L be the nontrivial line bundle over Gr2 (117En ) and let 72 be

the classifying 2-plane bundle over Gr2 (1[8n) defined in equation (2.4.1.a). We have

Sq(x) = (1 + x)x and Sq(y) = (1 + x + y)y.

Proof. We apply Lemma 2.5.8 to L and 72 respectively; the result now follows. q
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§2.6 Two Important Lemmas

We say a bilinear map el) : R a x Rb -> RC is nonsingular if (1, (x, y) = 0 implies

either x 0 or y ------- 0 or x = y = 0.

2.6.1 Lemma. Assume that q > 3. If there exists a nonsingular bilinear map

:R9 xliR g	 R4+1 , then q = 3, 4, 7, or 8.

Proof. Let q- L be q copies of the classifying line bundle and let (q + 1) - 1 be q + 1

copies of the trivial line bundle over Ii IF" In other words,

q • L Sq-1 x Rq /(x,y) (—x,—y) and

	

(q + 1) .1 Sq-1 x Rq+1 1(x , y)	 (— x , y).

We observe (-x, (-x, -y)) = (-x, 411(x, y)) so the following gluing relations are

preserved under I:	
(x, y)	 (x,Cx,Y))

(-x, -y) 2-) (-x,Cx,Y)).

Hence, 4. extends to a linear injective map from q - L to (q + 1) • 1. Consequently,

we have a short exact sequence

(2.6.1.a)	 0 -> q	 + 1) • 1—; -((q+ 1) . 11/4)0 • LI -* 0.

The quotient in (2.6.1.a) is a 1 dimensional line bundle L over RP". Since any

short exact sequence of line bundles splits, we have a decomposition:

(2.6.1.b)	 (q + 1) • 1 =	 L,

where L = {(q + 1) • 1}/ ■Pfq - P. Since by Lemma 2.4.2 (1), there are exactly two

distinct line bundles over Rr-I , either L = 1 or L = L. We distinguish these two

cases in Equation (2.6.1.b).
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Case 1. If L = 1, then we have q([1,] - [1]). = 0 in KO(RPg-1 ). This implies that

p(q - 1) divides q. We use Table (2.3.2.a) to see that q = 4 or q = 8; once q > 10,

the powers of 2 grow too rapidly to permit this divisibility to occur.

Case 2. If L = L, then we have (q + 1)([lL] [1]) = 0 in KO(R1Pq-1 ). This implies

that p(q - 1) divides q + 1. We use Table (2.3.2.a) to see that q 3 or q = 7;

again once q > 10, the powers of 2 grow too rapidly to permit this divisibility to

occur. q

2.6.2 Lemma. Let X be a topological space.

(1) Let A : X itin (R) (the set of all n x n real matrices) be a continuous map.

Assume dim Ker A = k is constant. Then x --> Ker A(x) is a continuous map

from X to Grk(Rn).

(2) Let 7ri : X	 Gr2 (111n ) be continuous maps. Assume dim(7r i (x) n 72 (x)) = 1 for

all x. Then the map x 74(x) Fl7r2 (x) is a continuous map from X to

Gri (Rn) =	 1.

Proof. The first assertion is well known; we refer to Atiyah [2]. Let pi (x) be orthog-

onal projection on 7ri(x). Let I be the n x n identity matrix. We define

A(x) := 2 • I — pi (x) — P2 (X)-

If A E (x) n 72 (x), then A(x)A = 2A - A - A = 0. Conversely, suppose that A 0

satisfies the equation A(x)A = 0. We then have 2A = pi (x)A + p2 (x)A. Since pi (x)

is an orthogonal projection, 1 pi (x ) A I < 1A1. Consequently, we have

2 1 A1_1Pi(x ) A 1+1P2(x ) A 1 5_ 1A1+1A1 = 21A1.

This shows that ipi (x)A1 = Since pi (x) is an orthogonal projection, this shows

pi (x)A = A and thus A E ri (x). Thus Ker A = 71- 1 (x)n72 (x) and the second assertion

follows from the first. q



CHAPTER III

BOUNDING THE RANK OF IP ALGEBRAIC

CURVATURE TENSORS

In chapter III, we prove Theorem A by bounding the rank of IP algebraic

curvature tensors. Here is a brief outline to chapter III. In §3.1, we list the main

results of this chapter and use these results to prove the first two assertions of

Theorem A. In §3.2, we prove Theorem 3.1.1. In §3.2-3.4, we prove Theorem 3.1.2.

In §3.5, we prove Theorem 3.1.3. We postpone the proof of Theorem A (3) until

§3.6 as the techniques of proof are quite different from the topological ones that

will be used to prove the results cited above. We also establish some additional low

dimensional results using similar techniques.

§3.1 Proof of Theorem A (1) and (2) 

We shall use techniques from algebraic topology to prove the following results:

3.1.1 Theorem.

(1) Let R : Sn	 (n +2) be admissible. Assume n > 9. We have that rank R < 2.

(2) Let R : Sn —> so(n + 3) be admissible. Assume n > 10.

(2a) If n is even, then rank R < 2.

(2b) If n is odd, then rank R < 4.

3.1.2 Theorem. Let R : Grt (Rq ) —> .5o(q + 2) be an admissible map of rank 4.

Let q > 12 and let q be even. Then either q is a power of 2 or 2 + q is a power of 2.

3.1.3 Theorem. Let R be an IP algebraic curvature tensor on TRP,q .

34
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3.1.3 Theorem. Let R be an IP algebraic curvature tensor on RP,q

(1) If p = 1 and if q = 5, then rank R < 2.

(2) If p 1 and if q = 9, then rank R < 2.

We now use these results to prove Theorem A (1) and (2) as follows.

Proof of Theorem A (1). Let p 1 and let q > 9. Let R be an IP algebraic curvature

tensor on R 1,q . Then R defines an admissible map from Gr + (11 1,q) so (1, q) of

rank r. We wish to show r < 2. If q = 9, we use Theorem 3.1.3 (2) to see

r < 2. We may therefore assume q > 10. We use Lemma 2.1.4 to construct an

admissible map R : Gr+ 010-9 5o(1 + q) of rank r. We use the Z2 equivariant

embedding Sq- 1 Gr(11) (11P,q) discussed in chapter II to construct an admissible

map ft : Sq ' -› so(q + 1) of rank r. Theorem 3.1.1 (1) then implies r < 2 as

desired since q> 10 implies that q - 1 > 9. q

Proof of Theorem A (2). Let p = 2 and let q > 11. Let R be an IP algebraic

curvature tensor on 111 2,q . By Lemma 2.1.4, R defines an admissible map from

Gr+ (R2 ' q ) so(2, q) of rank r. Again, we use Lemma 2.1.4 to construct an admis-

sible map .i=1, : Gr+ (R2 ' q) so(2 + q) of rank r. Again, we use the Z2 equivariant

embedding Sq- 1 Gr+ (IR24) to construct an admissible map ft : Sq- 1 so(q+2)

of rank r. Since q - 1 > 10, Theorem 3.1.1 (2) shows that r < 4. Furthermore in

the exceptional case that r = 4, we may conclude that q - 1 is odd and hence q is

even. We now suppose r = 4 and q even. We use the Z2 equivariant embedding of

GrOlq) in Gr OM) to construct an admissible map : 	 (W) 51)(2 + q)0,2)

of rank 4. We use Theorem 3.1.2 to see that q or q + 2 is a power of 2. q

3.1.4 Remark: We construct rank 2 and rank 4 admissible maps to show Theo-

rem 3.1.1 is sharp as follows. Let fed- be the standard orthonormal basis for Eln+3

relative to the standard Euclidean inner product g. Let {e l , eu } be the standard
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orthonormal basis for le. If {v i , v2 } is an orthonormal set, let	 be the rotation

which sends v 1 to v2 and which is zero on the orthogonal complement, i.e.

W g(w, Vl)v2 g(w, V2 )V1-

(1) Let R2 (v) :=	 Then we have R2 : Sn+1	 io(n + 3) is an admissible

map with rank 2 and assertions (1) and (2a) are sharp.

(2) Let J be a complex structure on 118n+3 for n + 3 even. Let

R4 (V)	 R2 (V) + Rgv,e,±2.

Then we have R4 :	 (n + 3) is an admissible map with rank 4 and

assertion (2b) is sharp.

3.1.5 Remark: We do not know if Theorem 3.1.1 is sharp; we do not know if

there exist rank 4 admissible maps in this setting.

§3.2 Bounding the Rank of IP Algebraic Curvature Tensors

3.2.1 Notational conventions. Let R be an admissible map from En to so(m).

Let Vo(R(v)) and Vi(R(v)) be the kernel and range of R(v) for v E STh . Since R(v)

has constant rank on , 14(R(v)) define vector bundles over Sr'. Let m 1 be m

copies of the trivial line bundle over Sn . We then have an orthogonal direct sum

decomposition:

(3.2.1.a)	 Vo EB, Vl = m 1.

Since R takes values in so(m), Vo (R(v)) n ( R ( v ) ) = {0} for all v E Sn . This would

not be the case if we were dealing with maps to so(p, q) for pq � 0 which is why

Lemma 2.1.4 will be useful in our future development. Since R(----v) —R(v), the
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vector bundles 17, descend to define vector bundles U., over projective space Re.
Let v 1 E STh , let v2 E Vi (R(v i )), and let A E R. Since R(—v i ) —R(vi ), we have

R(—vi)v2 ® A = —R(vi)v2 0 A = R(v i )v2 0 (—A).

Thus the following gluing relations are preserved:

	

(v1 7 7.12 0 A)
	 R(v1)	

R(Vi)D2

0

	(—vi, v2 ® A)
	

(—vi, R (v i)v2 0 (—A)).

We note that the left column of the diagram gives rise to the bundle U1 ® 1

over RP', whereas the right column gives rise to the bundle U1 ® L over RPn . Thus

R descends to define an isomorphism between U1 and U1 ® L We decompose [U,]

in KO(Rir) in the form:

[U1] = ai aLl — [1]) dim(Ui)[1];

in this expression, the integer a i is well defined modulo p(n). Let j(n) be defined in

§2.4, then 21(") < n < 23(4)+1 . We shall need the following technical lemma. 3.2.2

Lemma. Let R : Sr' -4 50(m) be admissible. Let U1 be the associated bundle defined

over RP'.

(1) We have 2a1 dim(U1 ) mod p(n).

(2) We have ao + a l 0 mod 21(n)4!.

(3) If n 9, then, An) + 2 < cb(n) and al	dim(Ui) mod 23(m)+1.

Proof. By definition we have

[U1] =al ai — [1]) + dim(U1 )[1] and

[U1 0 IL] =--(dim(U1) — ai )([L] — [1]) + dim(U1)[1].

Since U1 is isomorphic to U1 0 IL, we may equate the coefficients of ([IL) — [1])

mod p(n) in these expressions to prove assertion (1).
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The orthogonal direct sum decomposition (3.2.1.a) descends to show Uo E1)(1 1 = m• 1.

Consequently

(3.2.2.a)	 1 = w(N)W(U1)	 Ur(1 tt) a1 	(1 + U)Q°±al.

Let ao + + 2/(n) mod 21(n)+1 for 0 < a < 2/ (n) and Q = 0, or 1. Since

2/(n) < n, all the coefficients of ue in equation (3.2.2.a) vanish for .e < 23(n) , so

a = Q = 0; assertion (2) follows. We use Table (2.3.2.a) to see that j(n) + 2 < q5(n)

for 9 < n < 11. The function 5 is growing roughly linearly and the function j is

growing logarithmically; hence assertion (3) follows. q

3.2.3 Proof of Theorem 3.1.1. The first assertion of Theorem 3.1.1 follows from

work of Gilkey, Leahy and Sadofsky [481. We adopt the argument given by Gilkey,

Leahy and Sadofsky to prove the remaining assertions.

We set m := n + 3. Let j := j(n). Let ui := dirn(Ui ). Assume u i > 2. We use

Lemma 3.2.2 to choose integers 0 < ao < 2-1+1 , and al = 2/41 — ao so 0 < a 1 < 2/+1

such that w(Ui) = (1 + u)(2' • . We have the basic properties:

(1) a,0 + al = 23+1.

(2) uo + ui n + 3.

(3) u i =

Now if do < n, then xa° survives in w(U0 ) and hence uo > do. Consequently

2i+1 + 2 > n + 3 = uo + > +	 = 2'1+1 +

Thus al < 2 and u i = 2d1 < 4. If u 1 = 4, i.e. a l = 2, then all the inequalities must

have been equalities, thus 23+1 +2 = n +3 and n is odd. We may therefore assume

ao > n > 2/ . Let ay,	 and	 be the coefficients of 2 v in the 2-adic expansions
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of do, a 1 --1 and n. Then a,,	 and /3, are 0 or 1. Since ao + a 1 = 23+1 , we must

have Et, + a, = 1. Thus

ao = 1 - 2 ±a3 _ 1 23-1	+ ao

al = 0 • 2 ± Cij_ 2 + + + 1

= 1 - 23 + 0j -1.23- + •-• + Oo•

If all the a, = 1, then d i = 1 so u i = 2 and we are done. Thus a, = 0 for some

0 < v < j - 1. Choose k maximal so that ak = 0. Expand

do = 1 • 23 +... + 1 • 2k+1 ± 0 • 2k + ak_12k-1 + •••• + ao

al = 0 . 23 + +0 • 2k+1 ± 1 • 2k +	 + + ao + 1

n = 1 • 2-3 .. Ok+12k+1 1-0k2k +0k-1 2k-1 +

Let

nk-F 1 := 27 +13j-12i-i +... ±/3k+12k+i < n.

We use Lemma A.1 in Appendix A to see that e k+ 1 survives in w(Uo), this implies

uo > nk÷ i . We estimate:

uo > nk+i

= 2x 1 > 2 . 2k + 2 = 2k ± 2k-1 + + 2° + 3

n+3=u0 +ui > nk+ 1 +2k +-2k-1 ±...+2°±3 >92+3.

Thus all of these inequalities must have been equalities; we now have:

(3.2.3.a) -uo = Thk+11	 = 2k + 1, and n = nk+ 1 + 2k 2k 1 4_ + 20 .

If k = 0, then a2 = 2 so ui = 4. Furthermore n is odd. Thus we assume k > 1 and

express:

	

ao = 1 - 2j +... + 1 2k-1-1 +0.2k + 1 2k-1	 + 1 .2o

	

= 0 - 23 + + 0 • 2k+1 ± 1 • 2k + 0 • 2k-1	 + 0 • 2° + 1

n = 1 • 23 + + i3k÷i2k+1 + 1 - 2k + 1 • 2k-1 ± + 1 • 2°.
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This shows that nk+ 1 + 1 < n so xnk + 1+1 survives in w(U0 ) and hence we have

u0 > n k-1- 1 + 1 > nk+1; this contradicts equation (3.2.3.a). Thus k = 0, and this

completes the proof. q

The following is an immediate consequence of the proof we have given of The-

orem 3.1.1 since a l =	 = 2.

3.2.4 Corollary. Assume n > 10. Let R : Sn —> zo(n + 3) be admissible. If

dim(U1 ) = 4, then we have w(U1 ) = 1 + u2.

Let R : G4(Rm-2 ) -> so(m) be a rank 4 admissible map. Let k(R(7r)) and

Wi (R(ir)) be the kernel and range of R(Tr) for 7 E G4(Rm-2 ). Since R(7) has

constant rank on Gr2 (1Etin- 2 ), W(R(7r)) define vector bundles over the oriented

Grassmannian Gr2 (Rm-2 ); we have that dim k = m - 4, that dim Wi = 4,

and that k ® Wi is a trivial bundle of dimension m. Since R(-7) = -R(ir),

Wi (R(-7)) = Wi (R(7)). Thus these bundles descend to define vector bundles Wi

over the unoriented Grassmannian Gr 2 (lir' 2) and Wo m - 1. Let L be the

nontrivial real line bundle over Gr 2 (Rrn-2 ) defined in equation (2.4.1.a). We have

that R induces an isomorphism from W1 0 L to W1 . We use Theorem 2.4.4 and

Lemma 2.4.5 to study the Stiefel-Whitney classes of the bundle W1.

3.2.5 Lemma. Assume m > 11. Let R : Gr E (Rm-2 ) —+ so(m) be a rank 4

admissible map. There exist integers S, T, and U taking values in {0,1} so that

w(Wi ) 1 + x2 + S(y + xy) + Tx2 y + U y2

Proof. Let i : Rirn-4 Gr2 (R7z-2 ) be the natural inclusion discussed in §2.5.

Let Ui be the restriction of Wi to RIF'4 . We use Corollary 3.2.4 to see that

i*(w(11171 )) w(U1) 1 + u2 . Lemma 2.4.5 shows that the coefficients of x, x3 , and

x4 in w(Wi ) are zero while the coefficient of x 2 is 1, so tul(Wi) = 0. By Theorem
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2.4.4, x and y generate H* (Gr2 (Rm-2 ); Z2 ). Consequently, there exist constants S,

Q, T, and U so that

w(Wi ) = 1 + P(x,y) for P(x, y) := x 2 + Sy + Qxy +Tx 2 y +Uy2.

We use Lemma 2.5.7 with U = W1 to see that x4 + x2 - w2 (Wi ) + x • w3 (Wi ) = 0,

i.e. we have that x4 + x(Qxy) + x 2 (x2 + Sy) = 0 so S Q. q

§3.3 A Technical Lemma

3.3.1 Lemma. Assume m > 11. Let R : G2 (R'2) sa(m) be a rank 4

admissible map. We have w(Wi ) = 1 + P, for i = 2, 3, or 4; where P2 = x2,

P3 = x2 + y2 , and P4 = x2 + y + xy.

Proof. In Lemma 3.2.5, we showed w(Wi ) = 1 + x2 S(y+xy)+Tx 2 y+ Uy2 . The

top Stiefel-Whitney class of W1 is w4 (Wi ) = Tx2y+Uy2 . We consider the following

cases:

Case 1. Suppose (T, U)	 (0,0). Since Sq is a ring homomorphism, we apply

Lemma 2.5.9 to see that
Sq(w4 (W1 )) =T(1 + x) 2 x2 (1 x+ y)y + U(1 + x + y)2y2

(3.3.1.a)	 =Tx2y+Tx4y+Tx3y+Tx5y+ Tx2y2

Tx4y2 Uy2 Ux2 y2 Uy4.

We apply Lemma 2.5.8 to see that:

Sq (w4(Wi)) =(1 + x2 + S(y + xy) +Tx2 y + Uy2 )(Tx2y + Uy2)

(3.3.1.b)	 =Tx2y Tz 4 y +TSx 2y2 +TSx3 y 2 +USxy3

USy3 Uy2 Ux 2 y2 Uy4 Tx4y2.

Since m > 11, there are no relations in Hk (Gr2 (Iim-2 ); Z2) for k <7. We compare

the coefficients of x3y in equations (3.3.1.a) and (3.3.1.b) to see T = 0. Since

(T, U) � (0,0), we have U = 1. We compare the coefficients of xy 3 in equations

(3.3.1.a) and (3.3.1.b) to see S = 0.
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Case 2. Suppose (T, U) = (0,0). Then S = 0 or S = 1 is automatic in Z2. Our

assertion now follows. q

3.3.2 Additional notation. Let V' (1 + P2 )- 1 be the corresponding formal

power series in the formal power series ring Zd[x, y]] defined by P, which were listed

in Lemma 3.3.1. Let Vk be the kth degree homogeneous terms in the corresponding

expansions. For clarity, we now tabulate these expressions as follows:

TABLE 2. Possible Choises for V

w(-Y2) =--- (1 + x ± y) -1- V2 = (1 + x2)-1
V3 = (1 + X2 ± y 2 ) -1 V4 = (1 ± X2 ± y + x0-1

§3.4 Rank 4 Admissible Maps in the (2, m - 2) Setting

In this section, we work in the setting (p, q) = (2, m -2) with p 2 and q > 10.

We have the natural embedding S q-' in Grtii) (R2 'q ). If R : Gr(R2 ' q) av (2+ q)

is an admissible map, then the restriction of R to Sq-1 defines an admissible map

from Sq-1 to so(2 + q). By Theorem 3.1.1 (2), we have rank R < 4 and rank R = 4

only if q is even, so m is also even. Suppose there exists a rank 4 admissible map R

from G4 (R2,q ) to 5o(2 +q). We use the Z2 equivariant embedding of G4 (Rq ) into

Gr2(R2,9 discussed in §2.2 to extend R to a rank 4 admissible map from Gr;rF (Rq)

to 50(2 + q).

We adopt the notational conventions established in §2.4.1 and §3.3.2. Since

dim Wo = q - 2, Viz, = 0 in H*(Gr2 (Rq ); 762) for k > q- 1 and i = 2,3 or 4. We now

study the relationship between q and Vz.

3.4.1 Lemma. Assume p = 2 and q > 10 even. Let R : Gr2 (Rq ) -> so(q + 2) be

a rank 4 admissible map. If w(W0 ) = V 2 , then q is a power of 2.
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Proof. Since R has rank 4, dim W1 = 4 and dim Wo q - 2. Thus Vq2 vanishes in

Hq (Gr2 (likq ); Z2 ); we may express V: = awq1- +	 • Wq1_ 1 in Z2 [X, y] for a,13= 0 or

oi>= E1. We have V2 	 x2'. Since q is even, V: = x q . We consider the following

cases:

Case 1. Suppose (a, /) = (0, 0). This implies V: = 0 which is false.

Case 2. Suppose (a, 0) = (1,0). This implies V: = w q-L . Since there is no y q/2 term

in V:, and since w q-L contains the term yq/2 , this is not possible.

Case 3. Suppose (a051) = (1,1). This implies V = wqL +x wq 1 . Since there is no

xq term in wq-L- x • wq 1 , and since V: contains the term 1q , this is not possible.

Case 4. Suppose (a, 0) = (0,1). This implies V: = x • wq+. Since V: has only even

powers of x, this can happen only if wq-L = x`/- 1 . We use Lemma A.2 in Appendix

A to see that wq-L 1 = xq-1 in H*(Gr2 (Rq ); Z 2 ) if and only if q is a power of 2. 1_1

3.4.2 Lemma. Assume p = 2 and q > 10 even. Let R : GrZ (Rq) so(q + 2) be

a rank 4 admissible map. Then w(W0 ) � V3.

Proof. If Qk is a homogeneous polynomial in x, y of degree k, then we can expand

Qk	 (Qk )xk + C2 (c2oxk-2y + C3 poxk-4y2

c4 (Qoxk-6y3 c5(Qoxic-8y4

We set Ci (Qk) := 0 if i < 0 or k < 0. Let

C(Qk) (CI (Q0C2(Q0 C3(Q0C4(C2k)C5( CA)) E 4

be the first five coefficients in this expansion. In the expansion of we-, we have

xk-2vyv	 x xk-2v-l yv y xk-2v yv-i where the term Xk-2v-1 yu comes from

wiLc-1 and the term x yv-1 comes from wkl _ 2 . In the expansion of Vk37 we have

xk-2v yv	 x2 , xk-2v-2 v y 2 k-2v v-2y + -x	 y	 where the term Xk-2v-2yv comes from



k C(wk) C(V) k + 16 0( 11.-+16) 0(4446)
9 10101 00000
10 11011 10001
11 10001 00000
12 11100 10100
13 10100 00000
14 11010 10000
15 10000 00000
16 11101 10101
17 10101 00000
18 11011 10001
19 10001 00000
20 11100 10100
21 10100 00000
22 11010 10000
23 10000 00000
24 11101 10101
25 10101 00000

25	 10101	 00000
26	 11011	 10001
27	 10001	 00000
28	 11100	 10100
29	 10100	 00000
30	 11010	 10000
31	 10000	 00000
32	 11101.	 10101
33	 10101	 00000
34	 11011	 10001
35	 10001	 00000
36	 11100	 10100
37	 10100	 00000
38	 11010	 10000
39	 10000	 00000
40	 11101	 10101
41	 10101	 00000

44

V,_ 2 and the term xk-2uy11-2 comes from 14_4 . Thus we have the following recur-

sion relations:

Ci(wkL) = 1 )+ _1(tvii,-_2) and
(3.4.2.a)

CC(4) = Ci (4_ 2 ) +

We tabulate C(wk) and 0(4) for the following values of k

TABLE 3. The Periodicities of C(wk) and (1)

The recursion relations given in equation (3.4.2.a) imply d(w kL ) and O(Vk) are

periodic with period 16 for all values of k > 9.

Since R has rank 4, dim W1 4 and dim Wo = q — 2. Thus Vq vanishes in

Hq (Gr2 01V); Z2); we may express VQ = Ox • w-,i7_ 1 for a, /3 = 0 or 1. We use

Table (3) to tabulate these values:
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TABLE 4. The Elimination of V3

q 0 211-1- X • wq_ 1	 _L
wq ± X • Wei_ 1 vg

10 00000 11011 10101 01110 10001
12 00000 11100 10001 01101 10100
14 00000 11010 10100 01110 10000
16 00000 11101 10000 01101 10101
18 00000 11011 10101 01110 10001
20 00000 11100 10001 01101 10100
22 00000 11010 10100 01110 10000
24 00000 11101 10000 01101 10101
26 00000 11011 10101 01110 10001
28 00000 11100 10001 01101 10100
30 00000 11010 10100 01110 10000
32 00000 11101 10000 01101 00101

By comparing the data from each column, we can rule out w(Wo) = V3 as

required. q

Lemma A.3 in Appendix A due to Stong (84] is needed for the case w(Wo) = V4.

3.4.3 Lemma. Assume p = 2 and q > 10. Let R : Grt (IV)	 so(q + 2) be a

rank 4 admissible map. If w(Wo) = V4 , then 2 + q is a power of 2.

Proof We note that w(W1 ) = 1 + x2 + y xy = (1 + z)(1 x + y). We apply

Theorem 2.5.5 to 72 to see that

(1) a* (72 ) = L i ED L2-

(2) a* : H* (Gr201[1 60; Z2)	 H* (F (72); Z2 ) is a ring monomorphism.

(3) o-* (x) = u 1 + u2 , where u, = w 1 (Li ) for i = 1,2.

(4) o-*(y) = u i u2 , where u, = w 1 (L1 ) for i = 1, 2.

Consequently, we have:

ci * (tue72)) = (1 + ui) • ( 1 + u2 ), and

o-*(w(Wi )) =o-*((1 x)(1	 + Y)) = (1 + ui) • (1 +u2) ( 1 + tt i_ + u2).
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We now compute:

(o-* w	 =	 j=7., ui • ui2 , and

	

(0-* V4 )n = Ea±b±c=n(ui + u2) a	 ttc2'

Since V4 = in Hq'(Gr2 (Rq ); Z2 ), we haveq1

0 = (a*v),4_ 1 =	 (u1 + u2 ) a TLi 4L2 E Z2 [ui, 'Ltd.

Lemma A.3 in Appendix A now shows (q — 1) + 3 = 2 + q is a power of 2 as

required. q

3.4.4 Proof of Theorem 3.1.2. Theorem 3.1.2 now follows from Lemmas 3.3.1,

3.4.1, 3.4.2, and 3.4.3. q

§3.5 Some Low Dimensional Results

We now investigate some lower dimensional cases in the Lorentzian setting.

3.5.1 Proof of Theorem 3.1.3. Let R be an IP algebraic curvature tensor. First we

assume (p, q) = (1, 5). Then R defines an admissible map from Gr 2 (R 1 ' 5 ) to 50(1, 5).

We use Lemma 2.1.4 to construct an admissible map ft : Gr 2 (R1 ' 5 ) —> 50(6) of the

same rank. Since Gr 2 (R1 ' 5 ) = GT(0 , 2) (R 1 ' 5 ) 1_11 Gr (1,1) (R1 i 5 ) and since Gr(02) (R1,5)

strongly deformation retracts to Gr 2 (R5 ), we have the following commutative dia-

gram:
Gr2 (115 )	 50(6)

%	 0
RP3	RP3

We adopt the notational conventions established in §2.4.1. We have W i ED We = 6.1

and W1 L W1 . We must rule out the possibilities of having dim W1 = 6 or of

having dim W1 = 4.
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Case 1. Suppose dim W1 = 6 and dim Wo = 0. Then we have 6 ([11.,] — 1) = 0 in

KO(RIP3 ). This implies 6 divides 20(3) = 4, which is false.

Case 2. Suppose dim W1 = 4 and dim Wo = 2. We apply Corollary 3.2.4 to see

that wi (Wi ) = 0. Since dim Wo = 2, w(Wo) = 1 + bx2 cy. We use the relation

w(Wi ) = w(Wo) -1 to see that

	

711 1 (1471 ) --, 0, w2 (1471 ) = bx2 +	 w3 (W1 ) = 0, and 1114 (WI ) = bx4 + cy2.

We apply Lemma 2.5.7 to see that

x4 ± x2 (bx2 cy ) = ( 1 ± b)s4 cx2 y = 0.

We apply Theorem 2.4.4 to see that 0 = waL = x4 + x2y + y2, so we must have

(1 + b)x4 cx2y e(x4 x2y + y2) for E = 0 or 1. Thus E = 0, b = 1, and c = O.

Consequently, we have:

(3.5.1.a)	 w(Wo) = 1 +x2 and w(Wi ) = 1 + x2 + X4.

Since w(W0 )•w(M) = 1, equation (3.5.1.a) implies x6 belongs to the ideal generated

= x4 x 2y y2 tu L = x 5 + xy2 wk = x6 + x4y ± y3 ,by the elements f{w4,	 So we

must be able to express x6 as a nontrivial linear combination of tut , tvgL and wk,
but this is not possible and hence proves assertion (1).

Next we assume (p, q) = (1,9). Then R defines an admissible map from

Gr2 (R1 '9) to 50(1, 9). We use Lemma 2.1.4 to construct an admissible map I?'

from Gr2 (R 1,9 ) to .so(10) of the same rank. Since i : RP8 Gr(1,1) (r 1,9 ) and

since Gr2 (R1-9 ) = Gr (0,2) 01/. 1,9 ) Li Gr(im (R1,9 ), we have the following commutative

diagram:
Gr(i,i)(1181,9)	 so(10)

	

Ta	 a
RP8
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As before, we let W, be the associated vector bundles over Gr 2 (111 1 ' 9 ) and hence

restrict to define vector bundles U, over RP 8 . Furthermore, we have U1 ® U0 = 10.1

and U1 ® L -̀� U1 . We must rule out the possibilities of having dim U1 = 10, having

dim U1 = 8, having dim U1 6, and having dim U1 = 4. We use Lemma 3.2.2 to

see that 2a1 dim Ui mod p(8) = 16, so a i	dim U1 mod 8.

Case 1. Suppose dim Ul = 10 and dim Uo = 0. Then we have 10 [L] — 1) = 0 in

KO(RIP8 ). This implies 10 divides 2 0(8) = 16, which is false.

Case 2. Suppose dim U1 = 8 and dim Uo = 2. Either a l = 4 and a0 = 12, or a1 = 12

and a0 = 4.

(2.1) If a l = 4 and ao = 12, then w(Uo) = (1 + u) 12 = (1 + u4 )3 = 1 +7/4 + us in

H* (RP8 ; Z2 ). But this contains u4 , which is false.

(2.2) If a l = 12 and a0 = 4, then w(Uo) = (1 + u)4 = 1 + u4 in H*(IRIE°8 ; Z2 ). But

this contains u4 , which is false.

Case 3. Suppose dim U1 = 6 and dim U0 = 4. Either a l = 3 and ao = 13, or a l = 11

and a0 = 5.

(3.1) If a i = 3 and a0 = 13, then w(Uo) = (1 + u) 13 in H*(111P8 ; Z2 ). But this

contains u5 , which is false.

(3.2) If a l = 11 and a0 = 5, then w(Uo) = (1 + u) 5 1 + u + u4 + u5 in .ff*(1181P8 ; Z2)•

But this contains u5 , which is false.

Case 4. Suppose dim Ul = 4 and dim U0 = 6. Either a l = 2 and at) = 14, or a l = 10

and ao = 6.

(4.1) If a l = 2 and a0 = 14, then w(U0 ) = (1 + u) 14 = (1 + u2 )7 in _FP (IRP8 ; Z2)•

But this contains u8 , which is false.

(4.2) If a1 = 10 and au = 6, then w(Ui ) = (1 + u)'° = (1 + u 2 )5 in H*011P8 ; Z2 )-

But this contains u8 , which is false. Our assertion now follows. q
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§3.6 Rank 4 IP Algebraic Curvature Tensors in the (2,2) Setting

In Theorem L3.2, Ivanov-Petrova exhibited a family of "exotic" rank 4 IP alge-

braic curvature tensor in the 4 dimensional Riemannian setting. By Theorem 1.3.3,

this algebraic curvature tensor is not geometrically realizable by an IP metric. In

this section, we give similar constructions of some rank 4 IP algebraic curvature

tensor in the signature (2, 2) case.

3.6.1 Proof of Theorem A (3). Let R E 04 (R4) be the "exotic" rank 4 tensor

given in Theorem 1.3.2. We have that R satisfies the curvature identities relative to

the standard real-valued positive definite metric g on R4 . We complexify and extend

the tensors R and g to the tensors R, and which are complex and multilinear.

Let { ei } be the usual R basis for R 4 and let

fl :=	 f2 :=	 f3 := e3, f4 := e4

be a R basis for

H spanR{fi f2 f3, f4} C C4.

Let R and g be the restrictions of R, and 9, to H. We note that g is a real metric

of signature (–, +, +) and that R is a real 4 tensor. We use Theorem 2.1.1 to see

that it2 (7r) has constant eigenvalues on Gr 2 (R2 ' 2 ) and hence R is IP. This constructs

an IP algebraic curvature tensor of rank 4 for a metric of type (2, 2). We compute

the nonvanishing components of R to be:

81212 = 2 ) ft1313 = –2, 81414 = /42323 = 1 , -82424 = –2,

R3434 = 2 , R1234 = 1 ) 16.324 = -1,14423 = –2.

Consequently, R is a rank 4 IP algebraic curvature tensor of signature (2, 2). q

3.6.2 Remark: We can now give a more explicit construction of this tensor. Let

{el, 6, e3,	 be the standard orthonormal basis for IV relative to the metric g
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of signature (2,2), l-e- 9(61,W = 9(62,62) = —1 , 9(6, 3) = 9(e4, C4) = +1, and

g(62 , 63 ) = 0 for i 4 j. Let J : R2,2 —> R2,2 be the map

	

31 =	= —63, j63 =- —62, and	 = ei.

Then 32 ----- 1, so J is a unitary paracomplex structure on R 2 ' 2 . We define the

algebraic curvature tensors R0 and Rj of 04 (R2,2 ) by

	

Ro(x, y)z	 g(y, z)x — g(x, z)y, and

y)z := g(y, Jz)Jz — g(x, z)Jy — 2g(x, Jy)3z.

Let a 1 , a2 be nonzero constants so a 2 +2ai = 0. Then the algebraic curvature tensor

R := —a2 R0 — aiRj is the rank 4 IP algebraic curvature tensor of signature (2, 2)

given in Theorem 3.6.1.



CHAPTER IV

LORENTZIAN IP ALGEBRAIC CURVATURE TENSORS

In chapter IV, we prove Theorems B and C. We let R be a nontrivial Lorentzian

IP algebraic curvature tensor. By Theorem A, R has rank 2 if q > 9. Here is a brief

outline to chapter IV. In §4.1, we establish the trichotomy of rank 2 Lorentzian IP

algebraic curvature tensors; this proves Theorem B. Lemma 4.1.2 is the primary

technical tool we will use in the proof of Theorem B; the proof is a fairly straight-

forward computation. In §4.2, we assume R is mixed or null and use Lemma 2.6.1

to show that q = 3, q = -- 4, q 7, or q = 8. Thus once again algebraic topology plays

a crucial role in our analysis. This completes the proof of assertion (1) of Theorem

C. In §4.3, we complete the proof of assertion (2) of Theorem C by ruling out the

exceptional cases q = 3 and q = 7 (i.e. m = 4 or m 8) if R is null. In the proof of

Lemma 2.6.1, we constructed a line bundle L; if L was trivial, then q 4 or q = 8

while if L was nontrivial, then q = 3 or q = 7. Thus to show q = 4 or q = 8, it

suffices to prove that the line bundle L constructed in the proof of Lemma 2.6.1 is

the trivial line bundle. This is done by constructing a "universal axis".

§4.1 The Trichotomy of Lorentzian IP Algebraic Curvature Tensors

We now begin our preparations for the proof of Theorem B. We first establish

some notational conventions.

4.1.1 Notational conventions. Let T E so(1, q), then (Ker T) 1 = Range T. We
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set:
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W1 (T) := (Ker T) 1 = Range T.

502 (n) :=	 E .50(n) : rank(T) = 2}.

502 (1, q)	 {T E 5a(1, q) : rank(T) = 2}.

54(1,0	 {T E 50 2 (1, q) : Spec(T) {0}}.

.5o2 (1,	 :=	 E .502(1, q) : Spec(T) = {0}}.

It is clear that 5o 2 (1,q) = .605	 g) U sonl,q).

4.1.2 Lemma. Let T E 502(1, q) and let be a unit timelike vector in R1,q . Then

(1) There exists an orthonorraal basis {ei } for R i ' q so that = e l and there exists

real numbers A 1 and t 1 with + t3 0, so that T has the forma

t 1 0 0 01
0 A 0 0

—A 1 0 0 0
0 0 0 0

0 0 0 0/

Further	 more, the characteristic polynomial of T is given by

det(A T) = Aq-i [A2 + Ai— q].

(2) If t? = A?, then we have:

(2a) T E 502(1, q).

(2b) T2 0 but T3 = 0.

(2c) Range T W1 (T) = Span{T, T2}.

(2d) T is spacelike,	 is null, and W1 (T) is a degenerate 2-plane.

(3) Let T	 (( t cr ) E so-'2v(1,q). We have C E 50 2 (q) and the eigenvalues of

C are {0, ±-17-11i1}.

(4) If ti AI, then we have:
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(4a) T E 54(1,0.

(4b) Range T = W1 (T) is a nondegenerate 2-plane.

(4c) If A > tl, then W1 (T) is spacelike.

(4d) If AT < ti, then W1 (T) is of type (1, 1) .

(4e) T1RangeT is invertible.

Proof. Let be a unit timelike vector in R i,q and let T E ,6 o 2 (1, q). We choose an

orthonormal basis for R l iq so that --- (1,0, ..., 0). Relative to this basis, T has the

form

=-- 	 (2T
(x) t S.

In this expression, g E kV, (E) t represents the transposed column vector, and S is

aqxq skew-symmetric matrix. We further normalize the choice of basis for IR.1>q

so that S has the form

S =
i ( 

_al 
A1

_al 0

( 0 A k_k 

0

1
0

0

Since rank T --= 2, at most one of the blocks of ( –Ai
0 ) can be nontrivial. Thus,

we may assume T has the form

70	 t 1 _ 2t2 t_ 3 tg \
'	 ti.	 0 A i 0 0

t2 	—A 1 0 0 0
T= t3	 0 0 0 0

\ t,	 0 0 0 01

Let i := (t i , ..., tq ). Since T � 0, we have Ig1 2 + Ai � O.
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Suppose that A i = 0. We then have

	

T =- 0 i ) and T2 = 142	 °(i) t 0	 0	 443)

Since 14 2 + Ai 0 0, x 6, so 1 -±1 2 is an eigenvalue of T2 . Thus, T is not nilpotent.

Moreover, since	 we may further normalize the basis chosen for Rq so that

= (t1 , 0, ..., 0). Relative to this basis, T has the desired form given in (1).

Suppose that A i 0 0. If ti 0 0, for i > 3, then rank T > 3, which is false. Let

= (ti , t2, 0, ...,

(4.1.2.a)

0). We then

T

have:

0
tl
t2
0

\0

ti
0

-Ai
0

0

t2
A 1
0
0

0

0	 ...
0	 ...
0
0

0	 ...

0\
0
0
0

0)

(4.1.2.b)
Aq-2 r det A	 AA1 + ti det -t;t1	 )]Ai

X2-1 [A2 + A? - t?].

We now prove assertion (2). Suppose that A? = t?. We use equation (4.1.2.b) to see

that T E son, q). This proves assertion (2a). We use assertion (1) and the fact

that t1 � 0 to see that

We further normalize the basis chosen for R q so that i = (tl , 0, ..., 0) and put T in

the form given in (1).

We complete the proof of (1) by calculating the characteristic polynomial of T

	/ A -t1	0 \
(det(A - T) = Ag-2 det -t1 A -A1

0	 A1	 A    

Range T = Wi (T) = Span{

0
ti
0
0

o

tl	 I0

0

0 J

= Span-n/72a  
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This proves assertion (2c). Since T 3 = 0, g(T2 , T2) =	 T3) = O. Also,

g(71 , T)	 > 0; assertions (2b) and (2d) now follow.

We now prove assertion (3). By assertion (1), we can normalize the form of T

by choosing a suitable orthonormal basis for W1 . This means we can find h E 0(q)

o\
0
0
0

...	 0

Since T E .641 (1, q), by assertion (2) we have A? = 1t1 2 . Thus

( 0 A 1 0	 ... 0\
—A 1 0 0	 ... 0

hCh-1 = 0 0 0	 .. 0

\ 0 0 0	 ... 0/

Thus Spec(hCh -1 ) = {0, +\F—Ilili; the same holds for C as required.

We now complete the proof of the lemma. Suppose that A t?. We use

equation (4.1.2.b) to see that T E 505(1,0; this proves assertion (4a). Suppose

t1 = 0; since not both A 1 and t 1 can vanish, Ai 0. We use assertion (1) to see:
0 \ f0 \

	

Ai	0

	

Ra,ngeT = W1 (T) Span{ 
0	 —A1 

}

These are orthogonal spacelike vectors and hence W1 (T) is a spacelike 2-plane.

Suppose ti	0, by assertion (1) we have

0 \ t t1 \
t ' 0
0 —Ai

Range T = W1 (T) = Span{ 0 0

\0 /

so that
/o tj 0 0

!El 0 A 1 0
(1 0) 7, (1 0 0 —A i 0 0
\ 0 h)	 \O h- 1

)
0 0 0

\0 0 0 0



and T0

0 
2 \ti – A

0
0

0

(0\	 ti
1	 0
0	 –Ai

T
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These are orthogonal, linearly independent vectors. If A > then both vectors

are spacelike, and W1 (T) is a spacelike 2-plane. If Ai < t?, then the first vector is

spacelike and the second vector is timelike, and W 1 (T) is a 2-plane of type (1,1);

this proves assertions (4b), (4c) and (4d).

Since

assertion (4e) follows. q

4.1.3 Proof of Theorem B. Let S, ivt, and Ar be the set of oriented spacelike,

mixed, and null 2-planes in R 1,q . We can decompose

Gr(1111 ' q ) S LJ M LI! N.

Note that S and M are open subsets of G71(Et") while Nis a closed subset of

G71(R1,q).

Suppose that R is a rank 2 Lorentzian IP algebraic curvature tensor. If R(r)

is nilpotent for any r in Gr(2)(Ri'q), then we may use Lemma 4.1.2 to see that

Wl (R(ir)) is spanned by a spacelike vector and a null vector, hence is degener-

ate; conversely if Wi (R(ir)) is degenerate, since we work in the Lorentzian setting,

W1 (R(7)) is spanned by a spacelike vector and a null vector, then necessarily R(7r)

is nilpotent. Since the eigenvalues of R(ir) are constant on Gr + (R14), alternative(0,2)

(3) holds. Thus if alternative (3) fails, R(r) is not nilpotent and the eigenvalues of

R(7r) are nontrivial for any r E Gr(+02) (1R 1,q). Since Grt02) (IR I,q ) is connected and

since Gr2(R 1 ' 4) N ---= S Li M, this implies either that W1 (R(7r)) E S for every
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7r E Gr+ (R"), in which alternative (1) holds, or that Wi (R(7r)) E M for every(0,2)

7i e Gr + (R"), in which case alternative (2) holds. q(02)

4.1.4 Remark: In the proof of Theorem B, we could also use the fact that

the eigenvalues of R(if) are 10, +fti — Ail on G4 (iil") to obtain the desired

trichotomy. We further remark that cases (2) and (3) in Theorem B can only arise

for special values of m; we can eliminate most values of m on an a-priori basis. This

will be made clear in the next section.

§4.2 Most Lorentzian IP Algebraic Curvature Tensors are Spacelike

4.2.1 Theorem. Let R be a rank 2 Lorentzian IP algebraic curvature tensor and

let q> 3. If R is not spacelike, then q = 3, 4, 7, or 8_

Proof. Suppose that R is not spacelike, by Theorem B, R is either mixed or null. Fix

a unit timelike vector e and decompose R" = Span{e} e Let {x, y} C 1 be a

spacelike orthogonal set with x 0 and y 0. Since R(x,y) is skew, R(x, y) E .

if R(x,	 = 0, then

0 = g (Mx y)e, a) =	 R(x, y)a) for all a

and hence Wi (R(x, y)) C el ----- IR is spacelike which is false. We define a bilinear

map 41 from Ifiq x ITV to 110+1 R ® Rq by

41(z, y) := g(x,	 (13, R(x, y)e.

Suppose x	 0 and y	 0. If 44(x, y) = 0, then g(x, y) = 0 so x	 y. Further-

more R(x, y) = 0. Thus R( il-f , fk)e = 0 which is false as { , is a spacelike

orthonormal subset of Rq . Thus we may apply Lemma 2.6.1 to 1 and complete the

proof. q
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4.2.2 Remark: Theorem 4.2.1 completes the proof of Theorem C (1). Further-

more, if R is null, to prove Theorem (2), we need only to eliminate the cases m = 4

or m = 8. This however requires a surprisingly detailed investigation, so we shall

begin our discussion in the next section.

§4.3 Rank 2 Null Lorentzian IP Algebraic Curvature Tensors

In §4.2, we showed that if R was a rank 2 null Lorentzian IP algebraic curvature

tensor, then q = 3, 4, 7, or 8. This used Lemma 2.6.1. In the proof of Lemma 2.6.1,

we constructed a line bundle L and showed that if L was trivial, then q = 4 or

q = 8. We will complete the proof of Theorem C (2) by showing that L is in fact

trivial. This will be done by constructing an "universal axis".

We begin our observation with the following somewhat paradoxical observation

that poses a significant epistemological difficulty.

4.3.1 Lemma. If N1 , N2 E 118 1,4 are null vectors, then N1 and N2 are linearly

dependent if and only if they are orthogonal.

Proof. Let N1, N2 E R11q be two nonzero null vectors. Let e be a unit timelike

vector. We express Ni = aie + si where s i I e are spacelike vectors. Since Ni are

null, -4 + 1 2 = 0, By replacing Ni by -N-La , we may assume a i = 1, and thus

+ si for si I e a unit spacelike vector. Then g(Ni , N2) = g (gi, §2) — 1. So

g(Ni , N2 ) = 0 if and only if g(§ 1 , §2) = 1. Since si are unit spacelike vectors and

since the metric g is positive definite on el , by the Cauchy-Schwarz inequality, we

have g( g i , .§2) = 1 if and only if .41 =	 q

4.3.2 Remark: This is a crucial point at which we use the Lorentzian assumption,

this fails for higher signatures if p > 2 and q > 2. It is also worth noticing that for

any unit timelike vector

Wi (R(7r)) = Span{R(ir)e, R2 (Oa
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This observation played a crucial role in proving Lemma B.1 in Appendix B. Fur-

thermore, we will show shortly in Lemma 4.3.4 that the null vectors lr(rr) are

universal.

We now recall several results proved by Gilkey, Leahy and Sadofsky [48] in the

Riemannian setting. Let g be the Euclidean metric on Rn . If T E (n), then

g(T, ri) – g T77). So we may define w(T) E 112 (11$') by

w(T)(, 77) := g(Te,q).

If e lei , ..., en } is an orthonormal basis for RV', we define

Tiej (z) := g(ei ,z)ei – g(ej , z)ei.

Geometrically, this means 7T3 is a rotation through an angle of 2 in the oriented

plane spanned by {e i , ei }. Note ITzej li<j is an orthonormal basis for 50(n) with

respect to the Killing metric (T1 , T2) := Tr(T1T2 ). The following lemma gives

an alternative characterization of the conical subset 502 (n) of so(n).

4.3.3 Lemma.

(1) 50 2 (n) {T E so(n) : w(T) A co(T) = 01.

(2) Let T : R2	 so (n) be a 1-1 linear map. Assume T(f) E so t (n) for all f O.

Then there exist a basis	 f2} for R2 and an orthonormal basis e =

for Rn so that T(fi ) = T12 and that T(f2) T3.

Proof. We use the proofs of Lemma 2.1 and Lemma 2.2 given in Gilkey, Leahy and

Sadofsky [48]. Let {e„,7),, } be an orthonormal basis for Wi (T) := Range T so that

Tea = Aa Tia and T97,, = –.A647 for A c, > O. We use the metric to identify Rn with

the dual vector space (Rn ) *. We then may express

w(T) = Ei<a<rank(T) Aga A ria•
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Consequently, T has rank 2 if and only if ci.)(T) A w(T) = 0; this proves assertion (1).

To prove assertion (2), we pull back the Killing form on 50(n) to define a positive

definite inner product on. R 2 by

(f, f) :=	 Tr(T(f)T(f))-

This allows us to assume T is an isometry. Let {fi ,f2 } be an orthonormal basis

for R2 with respect to this inner product, then IT (f1 ), T (f2)} is an orthonormal

set in .50(n). Choose a unit vector e l E Range(T(h)). Let e2 = T(f1 )e1 . Then

{el , e2 } is an orthonormal set which we may complete to a basis e for Rn . We will

further normalize the choice of e 3 presently. We expand T(f2 ) = Ek</ claTL. Let

e = i f 1 + e2f2 . Since T is an isometry, we see that

(4.3.3.a)	 Si +a	 1 71 (01 2 = (el + 4g2) 2 + S2 Ek</,(k,i) � (1,2)(402.

eWe use equation (4.3.3.a) to see that ale = 0 and that 7
k<t	

(,(k,1) � (1,2) (ak a )2
	 1.

Thus

(4.3.3.b)
	

T() =	 E(k,/) � (1,2) aLIZt-

By assertion (1), w(M)) A w(T())(ei, e27 ei, ei) = 0. Let 2 < i < j, we compute:

0 =(,./(T()) A w(T())(ei,e2,ei,ei)

=g(TWei , e2 )g(T()et , ei ) — g(T()ei ,ei )g(T()e2, ei)

+ g(TWei, ei)g (T(e)e2, e1)

=6e2<i +	 +

This shows that

e ect • = 0 and a lia2 = 	 e(4.3.3.c)
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By equations (4.3.3.b) and (4.3.3.c), T(f2 ) = E2<i (al iTT, + 4,11). By assumption

T(f2) 0, so either al, 0 or 4, 0 for some i > 2. By interchanging c i and e2

if necessary, we may suppose a7, A 0 for some i > 2. We replace e 3 by a suitable

multiple of E2<t c4,e, to choose the basis so 4 3 4 0 and 4_, = 0 for i > 3. Then

we have

T(f2) a137T3 I2<i

We use equation (4.3.3.c) to see that al3a& = a7A3 for i > 3. Thus, ay,i	0

implies 4i = 0 for i > 3 and

T(f2 ) = 43773 + 437'13.

Set e l := al3 e 1 + 43 e 2 = T(f2 )e3 . Since T is an isometry, (4 13 ) 2 + (43 ) 2 = 1. Set

e2 := T(fl )e i , e3 := T(f2 ) -6 1 , and complete the remaining basis vectors arbitrarily.

It follows that
T(fi)ei =	 T(f1)e2 =

T(Mei = ea , T(f2) ea = —ei.

Relative to the basis "e, we have T(f1 ) =71 and T(f2 ) = 713 as desired.

We now return to the Lorentzian setting and continue with our preparations

for the proof of Theorem C (2). Let R be a rank 2 null IP Lorentzian algebraic

curvature tensor. Let x E RI ' q be a nonnull vector. Let H be a maximal spacelike

hyperplane orthogonal to x. If 0 y, z E H, by Lemma 4.1.2, R(x, y)6 and R(x, z)

are nontrivial spacelike vectors. We introduce a new positive definite inner product

h=	 on 7-1 by

h(y, z) := g(R(x,	 R(x, z)6).

4.3.4 Lemma. Let q > 3. Let R be a rank 2 null IP Lorentzian algebraic

curvature tensor. Let x E 1" be a nonnull vector. Let H be a spacelike hyperplane
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perpendicular to x and let h = 1 .1„ , be the positive definite inner product on H. There

is a nonzero null vector NR determined by x and so that R2 (x, = h(Y ,Y)NR,

for all 0 � y E 7-L

Proof. We proceed as follows.

(1) Fix y E 1-1 with h(y,y) = 1. Let NR R2(X, 06. Let 0 w E 7-t. If y and

w are linearly dependent, then R2 (x , w) = h(w , w)N R . We therefore assume y

and w are linearly independent. Choose z so {y, z} forms an orthonormal set with

respect to the inner product h and so w E Span{y, z}. We then have I R(x, y)1 2 = 1,

1R(x, z)f;1 2 = 1, and R(x, y) 1 R(x,

(2) Let R(x, y)e = 01) and R(x,	 =	 . Then

o	 r	 oR(x , y)	 ci) and R(x, =
(( t C2 )

(3) For 0 < 0 < 7, let

R(7(0)) :=R(x, cos(0)y + sin(0)z)

cos(0)F+ sin(0)g
cos(0)r+ sin(0),§' cos(0)Ci + sin(0)C2

Since h(y, y) = h(z, z) = 1 and h(y, z) = 0, fr, ,q is an orthonormal spacelike

set. Thus we have I cos(0)C+ sin(0)§1 = 1. We apply Lemma 4.1.2 (3) to see

that (cos(0)Ci + sin(0)C2) E 50 2 (q) for 0 < 0 < 7 and that the eigenvalues of

(cos(0)Ci sin(0)C2 ) are {0, +-v—f}. Thus, by Lemma 4.3.3, we can choose a

basis e for IRm- 1 so that

= T12 =

0
-1
0
0

\ 0

1
0
0
0

0

0
0
0
0

0

0	 ...
0	 ...
0	 ...
0	 ...

0	 ...

0\
0
0
0

0/

J\I(1	 )•E 502



and 
0 1 0 ... 0\

0	 0 0 0 ...	 0
-1 0 0 0 ... 0

0 0 0 ...	 0
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C2 = Tie3 

0 0 0 ... 0)

(4) We use equation (4.1.2.a) to choose vector F = (t 1 , t 2 , 0, 0,	 0) and vector

W= (.5 1 ,0, 33, 0, ..., 0) so that q + ti = si + 4 = 1, that

/ 0 t1 t2 0 0 0
t1 0 1 0 0	 ... 0
t2 -1 0 0 0	 ... 0

R(x, y) = 0 0 0 0 0	 ... 0
0 0 0 0 0	 ... 0

\o 0 0 0 0

and that
/0 Si 0 S3 0 0

Si 0 0 1 0
0 0 0 0 0

01
0

R(x, z) = S3 -1 0 0 0 0

0 0 0 0 0 0

\o 0 0 0 0 0)

(5) Since Mx, Y) = ( 0,	 t2, 0, ..., 0) t 1 (0, s i , 0, s 3 , 0, ..., 0) t = R(x, z), we see

that t i si = 0.

(6) By Lemma B.1 in Appendix B, we have dim[W i (R(x, y)) + Wi (R(x, z))] = 3.

Thus,
Wi(R(x,y)) + Wi (R(s, z))

= Span{(s 1 , 0, 0, -1, (5) t , (t 1 , 0, -1, 0, 6)t , (s3, 1 , 0 , 0 , 0 ) t } -

Since the vector (t2 , 1, 0, ..., 0) t E Wi(R(x,y)) +	 (R(x, z)), we must have 53 = t2.

From the relation t? + t2 = 81+ s	 1, it follows that ti	 Since t 1 s 1 = 0, we

have t i = s i = 0. Also, we have s 3 = t2 = ±1.
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(7) Without loss of generality, we may rescale w so that h(w, , w) = 1. Since w

belongs to Span{y, z}, we may write w cos(0)y + sin(0)z. Thus

R2 (x, w)	 cost (0)(1, t2 , 0, 0, 6) t + sine (0)(1, s3 , 0, 0, 15)t

+ cos(0) sin(0)R(x , z)(0, 0, t 2 , 0, d)t

+ cos(e) sin(9)R(x, y)(0, 0, 0, s3 , O)t

(c0s2 (6) + sin2 (0))(1, t2 , 0, 0, C)'

=R2 (x,

We use Lemma 4.3.4 to establish a crucial result.

4.3.5 Lemma. Let q > 3. Let R be a rank 2 null IP Lorentzian algebraic

curvature tensor. Let 11 be any spacelike hyperplane of dimension q. Then we have

that Rrearl(i) Wi (R(7)) is a nontrivial 1 dimensional null line.

Proof. Let E 7-ti be a unit timelike vector. Let 7 1 ,72 E R. Fix 7 1 and we

let NR := R2 (71 g. Suppose that 7 1 n 72 $ {0}. We can choose bases so that

7r i 	Spanfx, y} and that 72 = Spantx, zl. We use Lenima 4.3.4 to see R2(7C2)

is a nontrivial multiple of NR. If 71 n 7r2 = {0}, then we can choose bases so

=Span{x l ,	 and 72 = Span{x2, Y2} . Let 73 := Span{x i ,s2 }. Again we

use Lemma B.1 in Appendix B to see that dim(7 1 n 73 ) = dim(72 n 7r3) 1.

So the nonzero null vectors R2 (71 )4- and R2 (72 )e are both nontrivial multiples of

R2 (73)

4.3.6 Remark: We may call such NR a universal null vector for R. We now

return to complete the proof of Theorem C (2).

4.3.7 Proof of Theorem C (2). Let R be a rank 2 null Lorentzian algebraic

curvature tensor with q > 3. We have shown in Theorem 4.2.1 that q = 3, 4,7 or 8.

We now use Lemma 4.3.5 to eliminate the cases q = 3 or q = 7 as follows. Choose
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a nonzero null vector NR E	 so NR E nWi(R(7)). By Lemma 4.1.2

(2), NR is a nontrivial multiple of R2 (x,	 for all pairs of linearly independent

spacelike vectors {x, y} C	 IV_ So NR is perpendicular to R(x, it)e for all

pairs of linearly independent spacelike vectors {x, y} C = W'. This implies

0 ED NR E Rcf -H- is perpendicular to the range of 4)(x, y) for all x G Sq-1 . Thus

0 e NR projects to define a nonvanishing global section to the quotient line bundle

L over	 Hence L 1 and thus q = 4 or q = 8. q



CHAPTER V

CLASSIFICATION OF RANK TWO SPACELIKE

IP ALGEBRAIC CURVATURE TENSORS

In chapter V, we prove Theorem D by classifying rank 2 spacelike or timelike IP

algebraic curvature tensor for q = 6 or q > 9. We complete the proof of Theorem D

by showing that any rank 2 spacelike or timelike IP algebraic curvature tensor has

the form R = lic,0 for an admissible pair (C, 0). Our crucial task is to build the map

0. If x is a unit spacelike vector, we will show that nyix,iyi=i Wi(R(x, = ,C(x)

is a line. This defines a line bundle ,C over the set of unit spacelike vectors. We will

show that this line bundle is trivial and choose a global unit section 0 to L. We

will then show that 0 extends to a linear map of RP,q that is an isometry if R is

spacelike and a para-isometry if R is timelike. It will then follow that R Rc,c6 for

some C 0. We will use the Bianchi identities to show 0 2 = id if R is spacelike

and that 02 = — id if R is timelike. Here is a brief outline to chapter V. In §5.1, we

begin our study with some algebraic preliminaries. In §5.2, we first construct the

line bundle L, then show is trivial. We subsequently construct 0 and show it has

the required properties. In §5.3, we prove Theorem D and Theorem G (1).

66
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§5.1 Linear Algebra Technical Lemmas

The following technical lemma is needed to simplify some later calculations.

5.1.1 Lemma.

(1) Let xi be spacelike p-planes for i = 1, 2. There exist orthonormal bases -00

arid { vv } for rrl and 7r2 respectively so that g(u v , v4) = 0 for v A.

(2) Let T be a rank 2 spacelike IP algebraic curvature tensor with eigenvalues

fo, +J-1}. Then T induces a unitary almost complex structure on 1/171(T).

Proof. (1) Let pi be orthogonal projection on 7F/ for i = 1, 2. If {vv } is an orthonor-

mal basis for 72 , then for any v, we have p2 (v) = g(v, vv )v„. Define a symmetric

bilinear form on 7r1 by

	

h(6, r1}	 96020), P2(71))•

Since fr i is spacelike, the metric on 7r 1 is positive definite. We can diagonalize h with

respect to this metric to find an orthonormal basis {10 for 71- 1 so that h(u„ , u) = 0

for v p. Thus g(p2 (u,), p2 (u4,)) = 0 for v p, and g(p2 (u,), p2 (uv)) = A,. Let I

be the set of all v so that p2 (uv ) � 0. For v E Z, let v, :=-- i Pp:((ur,uv)) , . Note that if v I

then we have p2 (uv) = 0, i.e. A, = 0. We extend {vy}„ Ei to a full orthonormal

basis for 7r2 . We check that the bases { u } and {vA } satisfy the conclusions of (1)

by checking

	

vi,) g(p2 (u,),	 = g(-VA,v„, vu ) 0 for p v.

(2) Assume that T is a rank 2 spacelike IP algebraic curvature tensor. Since W1(T)

is spacelike, we may decompose IR mq (T)eWi(T)± . Since W1 (T) = Range(T),

W1 (T) is preserved by T. As T is skew-symmetric, T vanishes on W1 (T) ± . The

eigenvalues of T 2 are {0, —1}. Since the eigenvalue —1 has multiplicity 2, T 2 = —1

on W1 (T). Thus T defines a unitary almost complex structure on W 1 (T). q
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5.1.2 Lemma. Let R be a rank 2 spacelike IP algebraic curvature tensor. Let

{x, y, z} be an orthonorm,a1 set of spacelike vectors. Then there exists an orthonor-

mal set of spacelike vectors {a, fi, y} so that

Wi (R(x, y)) = Span{ a, Of and Wi (R(x z)) Span{ a, -y}.

Proof. We adopt the notation used to prove Lemma B.1 in Appendix B to see that

dim[Wi (Ti ) n W1 (T2 )1 = 1. Let a E W1 (T1 ) n W1 (T2 ) be a unit spacelike vector.

By resealing we may assume R has eigenvalues {0,±V-1}. Let /3 T1 o2 and let

7 := Tea. Then we have that {a, 0, 71 are linearly independent. Furthermore,

we see that W1 (T1 ) + W1 (T2 ) = Spanta, 0,1'1, that a 1 /3, and that a ± '7. We

compute:

T20 = 9(T2S, a)a + g (772,(3 , 7)-Y	 T2a)a — g(0,T2')')-Y

= — g (0 , 7)a + g (/3, a)7 = --g (,3 , 7)a.

T1y = g(Tyy, a)a + g(To , [3)0 = —g(7, Tia)a — g(7,71113)0

–9(7, /3)a + g('y, a),(3	 ,y)a.

For 0 E [0,ir], let 7(0) := Span{a, cos(0)/3 + sin(0)-y}. Then

R(7(0))a (cos(0)Ti + (S) 2)a = cos(0)fi + 5111(6)7,

R(7(0))13 (cos(0)Ti + sin(0)T2 )0 = –{cos(0) g(0,7)sin(0)}a,

R(7(0))-y = (cos(0)Ti + sin(0)T2)7 = –{g(0, cos(0) + sin(19)}a.

Thus relative to the basis {a, 0,7}, R(7(0)) has the form:

0	 –{cos(0) + g(0,7) sin(0)} –{g(0,7) cos(0) + sin(0)}
R(7(0)) = cos(0)

sin(0)

Let xo(A) be the characteristic polynomial of R(7(0)) acting on the space spanned

by {a, /3, 71; this space is R(7(0)) invariant and containing the range of R(7r (0)).
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Thus since R is IP, xa(A) is independent of 0 and x9 (A) must have roots {0, +-\

for all B E	 7r1. We compute:

A	 { cos (0) +	 7) sin(0)	 fg(d, -y) cos (0) + sin(0)}
xa(A) = det	 cos(0)	 A	 0

sin(0)	 0	 A

= A3 + A{1 + 2g(/3, y) sin(0) cos(0)}.

Since Spec(R(7(0))) is independent of 0 by assumption, 2g(/3, 7) sin(9) cos(0) _= 0

for all 0 E [0,7d. Thus we must have g(13,0, ) = 0. Our assertion now follows. q

5.1.3 Corollary. Let R be a rank 2 spacelike IP algebraic curvature tensor. Fix

a unit spacelike vector x. Then for any spacelike vector y, z 1 x, we have

Tr(R(x,y)R(x,z)) = —2g(y,z).

Proof. Let {x, y, z} be an orthonormal set. We adopt the notation used to prove

Lemma 5.1.2 to see that

T1 a = /3, T2a =	 = —a, T2 /3 = 0, Ti7 = 0, T21( = —a;

T1 T2 a	 ,--- 0, TITO = 0, and T1 T27 -=	 =—/3.

Hence Tr(TiT2 ) = 0. Thus Tr(R(x, y)R(x, z)) —2g(y, , z) in this special situation.

More generally, we use multilinearity to see that for any spacelike vectors y, z 1 x,

we have T...-(R(s, y)R(x, z))	 —2g(y,z).

§5.2 The "Common Axis" Lemma and Its Consequences

We assume q > 6 henceforth. In this section, we prove the "common axis"

lemma and then construct admissible pair (C, 0) so that R = Re We introduce

the following definition.

5.2.1 Definition. If H is a linear subspace of RP ' q , let S(H) := {v E H :	 =

and let P(H)	 S(H)/Z2 be the associated projective space. If x E S(Rm), we set

P(x) := {r E Grt0,2) (RP' q ) : x E 71-1 and £(x) := nirep(x)Wi(R(7)).
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We now show that L(x) is 1 dimensional; this line will be called the "common axis"

defined by T.

5.2.2 Lemma. Let R be a rank 2 spacelike (or tirnelike) IP algebraic curvature

tensor. Suppose that q > 6. If x E S(RP,q ), then dim G(x) = 1.

Proof Suppose R is spacelike. Fix x E S(iRP ' 1). Let H be any spacelike subspace

of Rm. which contains x with dim H > 3. Let

P(x, H) := {7r E Gr2 (H) : x E H} C P(x), and

L(x, H)	 nirer(„ ,H)W1 (R(7)) E(x).

We first establish that dim £(x, H) = 1. We use Lemma B.1 in Appendix B to

see that dim L(x, H) < 1. Suppose that dim r(x, H) 0; we shall argue for a

contradiction. We may suppose without loss of generality that H is maximal so

that dim H = q > 6. Let if := H n xl . If y E S(ii), let

7(y) := spanfx, yl and cr(y) := Wi(R(ir(y))).

Let E 5(#). By Lemma B.1 in Appendix B, if y may,then_	 , := o- (y) n o-

is a line. Since dim L(x, H) 0, there must exist unit vectors {N i } in	 so that

0- (Y1) n 0-(y2) n a (Y3) = {0}.

Let E := a(yi ) + o-(y2). We use Lemma B.1 in Appendix B to see that E is a

3-plane. Moreover, since L(yi, Y3) = cr (Yi) n c(y3) and gy2 , Y3) = (7(y2 ) n cr(y3),

L(yi , y3 ) n L(Y2, V3) = g (yi) n a (y2) n a(y3) 101, so L(yi , y3 ) and L(y2 , y3 ) are

different lines contained in o-(y 3 ). Thus

u(Y3) sPall f-E (Yi, Y3), L (Y2,Y3)} C E.
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Let y E S(H) and suppose y +yi for i = 1,2, 3. If L(y 1 , y) L(y2 , y) = L(y3 , y),

then these three lines coincide and

L(Y y) C u(Yi) n cr (y2 ) n u(y3 ) = {0} which is false.

Thus at least two of these lines are different so

a (Y) = span{L(yi , y), L (y2, y ), L(y3,	 C a (yi) + 6(y2) + a (y3) = E.

Now we have a well defined continuous map a : P(H) Gr2 (E) which is injective.

This is impossible for dimensional reasons; because q > 6 we have

dim P(ii) = q – 2 > dim Gr2 (E) = 2.

The argument given above shows that dim r(x, H) 1. To complete the proof,

we need only show that dim £(x) = 1. Suppose that dim L(x) = 0. We must then

have planes 7ri E P(x) so that

(5.2.2.a)	 (R(71-1)) n	 (R(7r2 )) n	 (R(73 )) = {0} .

Let {x, y} be an orthonormal basis for 	 Let H(x) be a maximal spacelike sub-

space containing x. Because q --= dim H > 6, we can find an orthonormal set

{z1 , z2 } C H(x) n x1 n yi n y2 n y3.

Let H, := span{x, Yi, zi,z2 1. This is a spacelike set for i = 1,2, 3. Consequently

the argument given above shows Wi (R(x, zi )) n (Mx, z2)) C Wl (R(x,yi )) for

i 1, 2, 3. This contradicts equation (5.2.2.a) and our assertion follows. We argue

similarly if R is timelike. 111
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Let R be a rank 2 spacelike IP algebraic curvature tensor. Since ,e(z) = G(—x),

we may use Lemma 5.2.2 to define a map

: Gr (0,1) (RP,q )	 Gro i) (IRP'q)

from the set of spacelike lines to the set of spacelike lines; we showed in Lemma

2.6.2 that this map is continuous.

5.2.3 Lemma. Let q	 6 or q > 9. Let R be a rank 2 spacelike IP algebraic

curvature tensor. Let Ti E Gro ,i) (RP ' q ) for i = 1, 2.

(1) If L(ri ) = E(r2 ), then r1 = T2-

(2) If r1 1 r2 , then Geri ) L E(T2 ). Furthermore, if x i are unit spacelike vectors

spanning the lines r,, then Wi (R(x , x2)) = f(ri )G3r(r2 ) is an orthogonal direct

sum decomposition.

Proof. Let Ti and 7-2 be distinct lines. To establish assertion (1), we suppose that

G(ri ) = L(r2 ) and argue for a contradiction. We first show in Step 1 that for any

r E Gr (a ri) (RP,q), = .G(7-1 ); let G be this "universal common axis". We then

use topological methods to derive the desired contradiction in Step 2.

Step 1. Let x i be unit spacelike vectors spanning the lines ri E Gr(0,1) (RP,q ) for

i = 1, 2,3. Suppose Geri ) = L(r2 ). We wish to show L(7-3 ) = G(r1 ) so is the

"universal common axis". Because q > 5, we may choose an orthonormal spacelike

subset {y 1 , y2 } of RP,q so that y i 1 x for i = 1, 2 and j = 1, 2,3. We use Lemma

B.1 in Appendix B to see that

Wi (R(xi, Th.)) n Wi (11(xi, Y2)) = £ (x1) = G(x2) = Wi (R(x2, Yi)) n WI (R(x2, Y2).

We use Lemma B.2 in Appendix B to see that

L(x 1 ) C wi(R(xi, yi)) n wi(R(x2, yi)) = L(N)
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so L(yi )	 L(x l ) for i = 1, 2. Thus L(x i) C W1 (R(x3 , yi )) for i	 1, 2. Since

{x3 , yi , y2 } is an orthonormal set, we see that L is a "common axis" by checking:

£(x1) C	 (R(x3, Yi)) n wi(R(x3, Y2)) = ,c(s3)•

Step 2. Let H be a maximal spacelike subspace of RP ,q ; we then have that HI

is a maximal timelike subspace and that RP i q = H . Let PH be orthogonal

projection of RThq onto H. Let {yi , y2 } be any orthonormal subset of H and suppose

that pHR(M., y2)1 = 0. Since L C Wi (R(yi , y2 )), R(y i , y2 ),C is a spacelike line. But

pif .R(y1 ,y2)1 = 0 implies R(yi , y2 ).0 C HI so R(yi , y2 ).C. is timelike. This is false.

Thus pH R(yi , y2 )C 0. Let A be a unit vector in L. We now define a bilinear map

: H x H R H by 41, (h 1 , h2 ) := g(hi , h2) pHR(hi , h2)A.

We show .13 is nonsingular as follows. Suppose h 1 0 and h2 0. If ∎ (h 1 , h2 ) = 0,

then g(hi , h2 ) = 0 so h1 1 h2 . Furthermore pfiR(h 1 ,h2 )A = 0. It follows that

( ii-2t)A = 0 which is false as { 1427 } is an orthonormal subset of H. We
hi 

apply Lemma 2.0.1 to H R q to complete the proof of assertion (1).

We clear the previous notation to prove assertion (2). Let {x 1 , x 2 } be an or-

thonorrnal set of spacelike vectors. Since q > 3, we may choose a third unit space-

like vector x3 which is perpendicular to x 1 and x2 . Let A i be unit vectors in

.(xi). We will show A1 I a2. Since {A1 , A2} CW1 (R(x i , x2 )), this will then imply

W1(R(x i , x2 )) = r(x i )S £(x2 ) is an orthogonal direct sum decomposition.

We choose {v 1 , A3 } and {v2 , A3 } to be orthonormal bases for the spacelike 2-

planes W1 (R(x i , x 3 )) and Wi (R(x2 , x 3 )) respectively. By Lemma 5.1.2, these two

planes meet at right angles, 7.) 1 _L v2 so {v1 , v2 , A3 } is an orthonormal set. Since

A i E W1 (R(xi, x3)) and A2 E W1 (R(x2 , x3 )), we may choose angles Oi so that

A 1 = cos(91 )A 3 + sin(0 1 )v i and A2 = cos(02 )A3 sin(02)v2.
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As xi ±x3 , sin(0i ) 0 for i = 1,2 by assertion (1). We define Ai E	 (R(si , x3))

with Ai I Ai by:

:= — sin(01 )A3 + cos(01 )vi and A2 := sin(02 )A3 + cos(02)v2-

We use the fact that A i E W1 (R(x 1 , x3 )) n W1 (1/(s 1 , x 2 )), the fact that these two

planes are perpendicular, and the fact that A i I Ai to see A i I Wi (R(x i , x 2 )), so

in particular A i I A2. Since {v 1 , v2 , A3 } is an orthonormal set,

0 = g (A1 , A2 ) = sin(01 ) cos(02).

Since sin(01 )	 0, we have cos(B2 ) = 0 and thus A 1	±v1 . A similar argument

shows that A2 = ±v2 . q

The map x	 E(x) is a continuous map from S(R P,q ) to Gr(i,i)(RP,q). 13y

Theorem 1.2.8 S(RP,q) is simply connected, so we can lift this map to a map 0 :

SORP,q )	 S(Rm ). We extend 0 radially to the set of all spacelike vectors in WA'

by defining

0(0) := 0 and 0(x) := Ix! - 0(1x1 -1 x) if 1x1 > 0.

We use Lemma 5.2.3 to show:

5.2.4 Lemma. Let q = 6 or q > 9. Let R be a rank 2 spacelike IP algebraic

curvature tensor.

(1) If Tr E Gr(0,2)(Rm), then 01„ is a linear isometric embedding.

(2) We may extend 0 to a linear isometry of IR P,q .

Proof. Let {x, y} be an orthonormal basis for a spacelike 2-plane r. Choose z so

{x, y, is an orthonormal set. Let T1 := R(x, z) and T2 := R(y, z). For 0 E [0, 27r),

let 7r(0) := Span{cos(0)x sin(0)y, z}. Then we have

R(7r(0)) = R(cos(0)x + sin(0)y, z) cos(0)Ti sin(8)T2.
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Since {cos(0)x + sin(0)y, z} is an orthonormal basis for 7(0), we may use Lemma

5.2.3 to see that

Wi (R(7(0))) = r(cos(0)x + sin(0)y) ED r(z)

is an orthogonal direct sum decomposition. On the other hand, by rescaling we may

assume R has eigenvalues {0, ±V-1}, so by Lemma 5.1.1, R(7 - (0)) is a 90° rotation

in WI CR(7(0))) = Range(R(7(0))). Thus

L(cos(0)x + sin(0)y)	 R(ir(0)),C(z)

= R(7(0))0(z) • R

= (cos(0)T1 sin(0)T2 )0(z) R.

Thus 0(cos(0)x +sin(0)y) =	 (cos(0)Ti sin(0)T2 )0(z) for any B with c(0) = +1.

By continuity, the choice of E is independent of 6. Therefore q(x)	 cTiO(z) and

95(y) = ET2 0(z), so we have the identity:

0(cos(0)x ± sin(0)y) = cos(0)0(x) sin(0)0(y)•

It now follows that 0(–x) = –0(x) so 0(Ax) = A0 (x) for all A E IR. Consequently

for any A and 0 we have:

0(A cos(0)x + A sin(0)y) = A cos(0)0(x) + A sin(0)0(y).

This shows that the map is linear on iv. Since 10 (z)	 Izi for any spacelike vectors,

0 is an isometric embedding of 7F; this proves assertion (1) .

We extend 0 to all vectors in 1R as follows. Let v E RP ' g . Choose z spacelike

with z l v so that 1z1 2 > Iv1 2 . Then z and z + v are spacelike so

0z (v) := cb(z + v) – 0(z) is well defined.
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If v is spacelike, then Span{z, v} is spacelike and hence 0,(v) = 0(v). We check this

is independent of the choice of z as follows. Suppose z, are spacelike vectors with

z, 1 v and lz,i 2 > iv1 2 . Since q > 6, we may choose w spacelike with w 1 {z1 , z2 , v}

and Iwl large. Since the planes {z1 + v, w}, {z„, w}, {v zi} are spacelike we may

use assertion (1) to see that cb.z (v) is independent of the choice of zi by computing:

(v) =0(z, + v) - 0(Zi)

-'0(1) zz) + 00-0 — Cb (Zi) 0(W)

=1;b(V ± Z7, + W) — 0(Zi W)

=0(V ± 1_1) ± Z I ) — 0(W ± Zj)

=0(v + w) 0(zi ) — 0(w) 0(zi)

=0(v + w) q5(v).

The proof that 0 is linear is similar. Let {vi , v2 } be given. Choose z spacelike with

z 1 {v 1 , v2 }. We may then argue if is sufficiently large that:

et5 ( 0 1 + v2) =cf/-(v 1 + v2 + ez) — 0(ez)

=0(vi + v2 + ez) — 0(v2 + z)

+ (u2 + Ez) — 0(EZ)

=45(v1) + 0(v2)•

Let a 1 � 0. We complete the proof that 4 is linear by checking that:

0(A1v1) =ck( ) iv t + A iez) 0(A1ez)

=A 1 0(vi + ez) A10(gz)

=A10(vi)-

Let Q0 (x)	 10(x) 2 — 1x1 2 . This is a quadratic function on RThq as 0 is linear.

Furthermore, Q 0(x) vanishes by construction if x is a spacelike vector. Thus Q0
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vanishes on the nonempty open set of nonzero spacelike vectors. Thus all the partial

derivatives of Q 0 vanish on this open set. Since Q0 is quadratic, Q0 vanishes

identically. Hence 0 is an isometry. q

The timelike case is similar. The domain and the range have been decoupled

to this point; thus the sign of the target metric is irrelevant. We say that a map

cb :111P,q 1" is an para-isometry if we have that g(q(v), 0(v)) = —g(v, v); this

necessarily implies that p q. The proof given of Lemma 5.2.4 extends immediately

to establish the following assertion:

5.2.5 Lemma. Let q = 6 or q > 9. Let R be a rank 2 timelike IP algebraic

curvature tensor.

(1) If 7F E GT(0 , 2) (RP ' q ), then 01, is a linear Para-isometric embedding.

(2) We may extend 4 to a linear para-isometry of RP,".

§5.3 Classification of Rank 2 Spacelike IP Algebraic Curvature Tensors 

We recall some notation from §1.2.4. Let (C, 0) be an admissible pair, we define:

Rc,0 (x, y) : z —> C{g(g5(y), z)0(x) g(0(x), z)4■(y)}.

Recall that 0 is unipotent (of order 2) if c/o 2 = id and that 0 is unipotent (of order

4) if 02 = id.

We now consider a special case. Let 7Z RIM. Then we have

(5.3.0.a)	 7Z(x,	 : z	 g(y, , z)x g(x, z)y.

5.3.1 Proof of Theorem D. We prove assertion (1) of Theorem D as follows. we

first assume that 0 is an unipotent (of order 2) isometry of R P''. Let 7 -= Span{x, y}

be an oriented spacelike 2-plane. From equation (5.3.0.a), we see that R. preserves
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the 2-plane 7F; R(x,y) : y H x and R.(x, y) : x i —y. It vanishes on 71 . Thus

R is IP of rank 2. More generally, for any C 	 0, since ol) is an isometry and

since 02	id, we have Re. ,0 (7r)	 CR(cbir) and hence Rc ,95 is IP of rank 2 for

C 0. We now verify that Rc ,0 satisfies the curvature identities. It is immediate

that Rc ,o(x, y) = —Rc,o(y, x). Since 0 is an isometry and since 02 = id, we have

g(0(u), v) = g(u, 0(v)). Thus we may check that Rc ,0 satisfies the second curvature

identity by computing that:

g(Rc , o(x, y)z, w ) -=C{g(0(y), z)g (0(x), w) g(0(x), z)g (0(y), w)}

=C{g(Y,0(z)).9(x,0(w)) —9(x,0(z)).9(Y,Cb(w))}

=g(Rc,o(z,w)x, y).

We may also verify that the Bianchi identities are satisfied by computing:

, y)z + Rc , o(y, z)x + Rc , o(z, x)y

=atg(0(y), z)cb(x) — g(q5(x), z)0(y) + g(0(z), x)0(y) 9(0(y), x)0(z)

+ 9(0(x), y)0(z) — g(0(z), y)g5(x)}

=0.

We now consider 0 is an unipotent (of order 4) para-isometry. For any C 0 0, we still

have Re,o(7) = CR(07r) and hence lic ,0 is IP of rank 2. We now verify that Rc,0

satisfies the curvature identities. It is immediate that 170,4 (x, y) —Rc ,o(y, x).

Since 0 is a para-isometry and since 0 2 = - id, we have

9( '(u), v) = —9(02 (u), 0(v)) = —g(—u, 0(v)) = g(u, 0(v)).

Thus we may check that Itc,cb satisfies the second curvature identity by computing

that:

g (Rc,o(x , y)z, w) ,C{g(0(y), z)g(q(x), w) — g(0(x), z)g(q5(y),w)}

=C{9(Y cb (z))9(x , 000) g (x , 0(z))9(Y OM)}

=g(Rc,o(z,w)x, y).
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We may also verify that the Bianchi identities are satisfied by computing:

11c , o(x , y)z + Re , o(y , z)x Rc,o(z x)y

=C{g(0(y), z)0(x) — gMs), z)0(y) + g(0(z),x)0(y) — g(cb(y), x)0(z)

+ g(0(x), y)0(z) — g(0(z), y)0(x)}

=0.

We now prove assertion (2) of Theorem D. We use Lemma 5.2.4 to define a

linear map 0 on RP q so that 0(x) E L(x) for any unit spacelike vector x. If R is

spacelike, then 0 is an isometry; if R is timelike, then 0 is a para-isometry. Assume

R has eigenvalues {0, ±C \/-1} for some constant C 0. By resealing, we may

assume that C = 1. Let {x, y} be an oriented orthonormal basis for a spacelike

2-plane 7r. Since {0(x), cb(y)} is an orthonormal basis for Wi (R(70) = 0(7r) and

since R(r) is an almost complex structure on W1(R(7)),

R(7r)0(y) = e(71-)0(x) and R(7)0(x) = —6(7)0(x)

where e(7r)	 +1. Since Grua (RP,q ) is connected and E is continuous, e is inde-(0, 2)

pendent of	 Again, by resealing R if necessary, we may suppose that e 	 +1.

Thus

(5.3.1.a)	 R(x ,	 : z	 g(q5(y), z) (1)(x) — g(0(x), z)0(y) for all z E

Since both sides of this identity are bilinear and skew-symmetric in (x, y), this

identity holds as long as {x, y} spans a spacelike 2-plane. Since the identity is

trilinear and holds on a nonempty open set of (R P,93 , it holds identically for all

(x, y, z); the argument is the same as that given using partial derivatives to show

that 0 was quadratic in the proof of Lemma 5.2.4 and is therefore omitted.
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We now study G52 . Let {x, y} be an orthonormal subset of IFi ng which spans

a spacelike 2-plane 7r. We apply the Gram-Schmidt process to {x, y} to extend

to a full orthonormal basis {x, y, e,} for R m. Since q5 is either an isometry or a

Para-isometry, 1 0(e i ) and 0(y) I 0(e,) for all i. We use the second curvature

symmetry and equation (5.3.1.a) to compute:

g(R(cb(x), ck. (y))x , e i ) ,g(R(x , e,)0(x), O(y))

=g (0(ei ), 0(x))g (0(x), 0(y))

— g (g&(x), 0(x))9(0(e.,), 4)(y))

=0.

Since g(R(0(x), 0(y))x , x) = 0, we have R(.0(x), q5(y))x = Ay for some A. We show

that A = –1 by computing:

A = g(R(cb(x), 0(y))x , y) = g(R(x , y)4(x), 0(y)) = –1.

This shows that x E Wi (R(0(x), g5(y)), so consequently x E L(q5(x)). Thus we have

0(5(x)) e(x)x where e(x) = ±1; again, continuity implies e is independent of x.

Let g(0(u), q(v)) = bg(u, v) and cb2 = e id. Let {x, y} be an orthonormal

spacelike set so that x 1 0(y). We show e = b by computing:

0 =R(x , y)cb(x) + R(ch(x), x)y R(y, b(x))x

--,Cf 1g (0(y) , 0(x))0(x) — g ( q (x), cb(x))0(y) + g (q5(x), y)(15.2 (x)

g(02 (x), y ) 0 (x) 9 (02 (s ) , x)cb(y) g(c(y), x) 02 (x)}

=C{- 6.0(Y) +0(01- 0

5.3.2 Proof of Theorem G (1). Let m > 10. Let R be a nontrivial Lorentzian

IP algebraic curvature tensor on R I '''. Theorem A (1) implies rank R = 2. We

use Theorem B to see that either R is spacelike or R is mixed or R is null. We
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use Theorem C to see that R is not mixed or null. Thus R is spacelike. We use

Theorem D to see that R = Rc ,0 for an admissible pair (C, 0) with 0 an unipotent

(of order 2) isometry of 11 1,1'. q

5.3.3 Remark: The classification of rank 2 spacelike IP algebraic curvature

tensors exhibits an analogue of the Rakie Duality in this setting: Let q = 6 or

q > 9. Let R be a rank 2 spacelike IP algebraic curvature tensor. Let 7r and a be

two spacelike 2-planes in III P ' q . We have R(7)o- C a if and only if R(a)ir C 7.



CHAPTER VI

SOME EXAMPLES OF PSEUDO-RIEMANNIAN IP MANIFOLDS

In chapter VI, we prove Theorems E and F and we complete the proof of The-

orem G. We shall henceforth assume m > 10. In §6.1, we generalize the argument

given by Gilkey, Leahy and Sadofsky [48] to prove Theorem E. In §6.2, we generalize

the warped product construction of Gilkey, Leahy and Sadofsky, and of Ivanov and

Petrova to higher signatures to prove Theorem F. In §6.3, we first show that any C-0

type metric is a warped product of an interval with a metric of constant sectional

curvature. We subsequently use the seven steps outlined in §1.4.2 to complete the

proof of Theorem G. In §6.4, we discuss the orthogonal equivalence of the curvature

tensors Rc05-

§6.1 The Geometric Realizability of IP Algebraic Curvature Tensors

6.1.1 Definition. A metric gm is said to be C-0 type if there exists a smooth

nonzero function C(x) on M and if there exists a smooth section 0 to the bundle

of unipotent (of order 2) isometries or unipotent (of order 4) para-isometries of the

tangent bundle so that ;NJ = Ftc,0 at each point of M. We shall focus on the case

where 0 is an unipotent (of order 2) isometry.

In Lemma 6.1.2, we show any unipotent (of order 2) isometry 0 induces an

orthogonal direct sum decomposition It P,q = E+ e into the ±1 eigenspaces of

0. In Lemma 6.1,6, we give a geometric realization of this tensor. In Theorem E,

82
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we show 80,4, is not geometrically realizable by a C-0 type IP metric if dim E+ > 1

and if dim	 > 1.

	

6.1.2 Lemma. Let 0 be an unipotent (of order 2) isometry	 . There exists

an orthonormal basis for RP,q which diagonalizes 0.

Proof. Let 0 E 0(p, q) with 02 = id; then necessarily 0 = 0*. Let E± be the ±1

eigenspaces of 0. For any x E IRP,q , we can write

x 1(x + 0x) + 1(x — 0x).

Since 1(x ± 0x) E E±, we have P 'q E+ + E_. If X± E E±, then we have:

g(x+ ,x_) = g(0x+,x+) g(x+,0x_)= —g(x+,x_).

Thus E+ 1 E_. So RThq = E+ ED E_ is an orthogonal direct sum decomposition.

Let g± := g1 E± . Since E+ 1 E_, we have g = g+ g_. Since the metric g is

nondegenerate, the metrics g± are nondegenerate on E±. Consequently, we can

find bases diagonalizing g± and 0. q

6.1.3 Definition. We say that feJ is a normalized orthonormal basis for RP'9,

if

g(ei , ei ) = e i ej and cb(e i) = biei where Ei = ±1, 6i = ±1.

We omit the proof of the following lemma as it is an immediate algebraic consequence

of the definitions given above.

6.1.4 Lemma. Let fed be a normalized orthonormal basis. Then we have :

ei , ei )	 CEiEj Oi c5j for i	 j,

Re , o(ei , ej , ek , ef ) = 0 for (i, j)	 (k,€) and (i, j) 	 (.e , k).

Rc,o(ei , ei )ej = CEj Oi c5j e i for i

Rc,o(ei, ei )e k = 0 for i k and j k.
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We use Lemma 6.1.2 to diagonalize 0 and define an orthogonal direct sum decom-

position RP 'q = E+ E_, where E+ are the ±1 eigenspaces of 0. The restrictions

of g to E+ determine nondegenerate metrics g+ of signatures (p+, q+) and permit

us to further decompose E+ according to g+. Thus we have the orthogonal direct

sum decomposition litmq E++ E++ e E_+ ,E1;1 E__. The notation is chosen so

that 0 = +1 on E+ + 4_, so that 0 = —1 on E++ E__, so that g is positive

definite on E++ E++, and so that g is negative definite on E++ E__.

6.1.5 Definition. Let

r± := dim E±, p+ :=- dimE++ , q+ := dim E+_,

p_ := dim E_+, and q_ := dim E__.

Then p+ +q+=r+, p_ +q_ =r+, p+ +p_ = q, and q+ + q_ =p.

The following lemma gives a geometric realization of Rc,o.

6.1.6 Lemma. Let 0 be an unipotent (of order 2) isometry of Rm . Choose a

non'nalized orthonorinal basis {e,} and introduce coordinates x = E i x i ei on RP>q

Let

d470	 Fi (1^j^ i eri 6i 6ixj dx?1.

This defines a nondegenerate metric of signature (p, q) near the origin so that the

coordinate frame ei := fkl is a normalized orthonorrnal basis at the origin. We

have that R(0) = RcAb•

Proof Let {ai
aa ti

 : 1 < i < p q} be the standard coordinate frame on Rm.

Let

gij/k := akg(ai, 0i ) and gig/ k/ :=

We compute:

(1) g(ai ,ai )(0) = ei , where ei = ±1.

(2) g(ai3 Oi )(0) = 0 for i j.

(3) gii/k(0) = 0 for 1 <	 < p + q.
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Relative to this coordinate frame, we have:

rijk	 1(gjkli gik/j gii/k)•

Thus rijk (0) = 0. We compute:

Ripa(0) =g((d 8,Vai — Va vai)ak,a.e)(0)

=g(airik, —ajrikE)(o)

(6.1.6.a)	 {gjElik (0) + gkelij(0) gjkla(°)

— gipiik (0) — gkoii (0)+ gilt/ ?e(0)]

-'-[gik/3.€(0) + gj.elik(C))	 gjklit(°)	 gitljk (0)1

We use the definition and (6.1.6.a) to compute

Riike(0) = 0 for (i, j)	 (k, E) and (i, j)	 (E, k);

Rijii (0) —	 +	 (0)1 =

6.1.7 Remark: This metric need not be IP away from the origin.

We now introduce contraction of tensors which is needed later in our discussion.

6.1.8 Definition. Let the natural map c: 04 (T*M) —> 02 (T*M) be defined on

pure tensors by

C(W1 ®w2 b-)3 ® w4) := g(W2 ) (-03) W1 ®W4.

Since this map is bilinear, it extends to a map on the whole tensor product.

6.1.9 Lemma. Contraction commutes with covariant differentiation.
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Proof. We compute

C (Vek(Wl w2 ® W3 0 W4))

=C(Ve k Wl ®W2 ®W3 0 W4 ± W 1 0 V e k W2 ®W3 ®W4

▪ W1 ®W2 ® Ve k W3 0 C4)4 + W I ® W2 ® W3 ® VekW4)

=g (W27 W3) Vek W 1 ®W4 + g(W2 7 W3) (.4) 1 VekW4

▪ g(Ve k w2,W3)W 1 ®W4 ± g(W21 V e k w3) (0 1 04-04

=g (w2, W3)V ek W1 (,)4 + g (W2, w3)w i 0 VekW4

+ ek{g (W2, w3) }cut ®W4

-=V„c(chii ® W2 ®W3 0 W4). q

6.1.10 Notational conventions. Let g be a rank 2 C-0 type IP metric. Let R be

the curvature tensor of g. Suppose there exist C 0 and 0 an unipotent (of order

2) isometry of RP = q so that R = Rc,ch . Let indices i, j etc. range from 1 through

m = p q. Let the roman indices a, b, etc. range from 1 through r+. Let the greek

indices a, range from r+ + 1 through m. We use Lemma 6.1.2 to choose a local

frame e diagonalizing 0 so that qea = ea and that cka = —ea . Letq'ij := g(q5ei , ei).

Let 0i3 ;k 7 Ripal and Rijk.em, be the components of V0, R, and VR. Let :F± be the

distributions defined by the ±1 eigenspaces of 0. Then {e a } span ..F+ and {ea } span

We adopt arguments of Gilkey, Leahy and Sadofsky [48] to establish the follow-

ing technical lemma which we shall need later.

6.1.11 Lemma. Let m> 4. Let g be a C-0 type IP metric of rank 2. Then

(1) Rijki;rt 	 C;n(49itOjk	 CbikOjt)+ C(OiE;n95jk	 CbiPOjk;n	 Oik;n0j.e CbikOje;n)•

(2) We have Cbii;k = Oji■1s for any i, j, and k.

(3) We have (Pab;i = 0 and 0,0;i = 0 for any a, b, a, 13, and i.
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(4) If j, and k are distinct, then Oii* Oikj

(5) If a b, then Oace;b 0; if a � /3, then q5a,0 = 0.

(6) The Christoffel symbols riaa = 10aa;i•

(7) The distributions ,F± are integrable.

(8) If there exists a /3, then

= —C{E00/3a ;i9 eacbaa;a} and C;i6 = —CEa0 ap;a.

(9) If there exists a b, then

C;a = Cf Ea0aa;a EbOab;b1 and C;b = CEa0Qb;a•

(10) If r > 3, then C;a --= 0. If r+ > 3, then C;,, = 0.

(11) Either r+ < 1 or r_ < 1.

Proof. We covariantly differentiate the identity ijkP = C(95 iVi)jk Oik0j.e) to see

Rijkt;n =V en (C(Cbi4jk Oik45.1P))

=C•n( ftliekjk OikOjt) + C (0i1;70jk Cb ifCb jk;n Iik;nIjt (kikCVe;n)•

Assertion (1) follows. Since 0 E 0(p, q) with 02 = id, 0 is necessarily self-adjoint so

assertion (2) holds. To prove assertion (3), we consider the 4 cotensor E R4(T*M)

defined by ill (x , y, z, w)	 g(cbx, y)g(Oz , w) and compute:

= Ei,j,k„! cbijOkeei ® e3 ek et

c4) = Ei,i Ej,k gik OijOkte	 ce

=	 Ej,k E j ei,5 jk Oi gii e 050 uei ce

=Ei eibij ei ei

gii ei 0 0.

Thus of) = g. Since Vg = 0, we have V en, c4. Veng = 0 and hence by Lemma

6.1.9 we see that cV en 4 = 0. We have

Vert — (Oij;n0kE OijOkt;n) el 0 ej ek e.e.
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Since chii = 0 for i j and Ch .e = 0 for k t, we use the relation cV e7, 4) = 0 to

see
-.=--€0i,1;nffife

EPE e6POU;Ti.	 Ei6i6iCbif;n•

=OP (5z)Oi;n •

Assertion (3) now follows. We use the second Bianchi identity:

Riike;n Rij.Crtik Rij-nke = 0

to prove assertion (4). Let 	 j, £, n} be distinct indices, this is possible as m > 4.

We use assertion (1) and the fact that Oa = cb ii (Pit 0 to compute:

RijArt —C;n(Od (15,73 Oijcje)

C(Oit;n0jj 0i0jj;n OthnOje 0i0j.e;n)

=°0-it;n0jj •

Rij-ej;n = RijAn = —00a;n0jj•

Rijkij =C;j(Oiat"jk — jkOie)

	

C(tbiE;j0jk	 OiVP.jk; ,j	 Ojk;j00	 OjkOi.e;j)

=0.

We relabel the indices at this point. Let {i, j, k} be distinct. Since m > 4, we may

choose f so {i, j, k, £} are distinct indices. We now use the second Bianchi identity

with (i, j, k, E, n)	 (i, f, e, j, k) to see

0 = Ritej;k RiPjk;E Riekej	 C(41ij* Oik;j)95te•

Thus Oij;k 4ik; .7 and assertion (4) holds. We use assertions (3) and (4) to see that

if a � b, then

Oacr,b = Oab;ct = 0.
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Similarly, if a � /3, we may use assertions (2), (3), and (4) to compute:

ffiacx;0	 Ocea;0 = Oc113;a = O.

Assertion (5) follows. We prove assertion (6) by computing:

	

irkij;k := (Vek 0)(ei, ei) = ek0(ei,ei) — 0(Ve k ei)	 — ck(ei,

Ef rki:e kee, ei) > rk/0(e i, ee)

E, r icijoigo —	 rkif6igei

= rkijSi rkji6i

It now follows that AcccE;k = rkaa(6a — 6a) = 2rkao, , thus Fkaa = Cbaa;k . Note

this also provides another check that rab;k = 0 and cbao; k =- 0 as 6, — 6? = 0 if

j) = (a, b) or (i, j) = (a, 0).

We now prove assertion (7), we set H± := 1(1 ± c6) to be orthogonal projection

on .F±. To show .1+ is integrable, we must show g([ea , ebb ea ) = 0- We compute:

g ([ea, ebb ea) = g(Ve.eb Veb ea, ea) = rake rbact = 2 (Oboc;a Oaa;b)•

This vanishes trivially if a = b; we use assertion (5) to see this still vanishes if

a � b. The argument is the same to show .1 is integrable where we also use the

symmetry given in assertion (2).

We now prove assertion (8). Let a � O. We use assertions (1) and (3) to

eek 3)
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compute

II,20/3e2;,2, =C;a(c5a. 0/3 — 000,3a)

C oeoc;a0 00 + ace0 (3;a — 0;0;6 afi Cba[30 cx;a)

=C;a00,a00,0 = EaeoC ia-

Rapotaio =C ;0(0 cla(10 — Cbaa0 Oa)

▪ C (Oaa;0013a . + Cbaa0,6a0 Cbcice;000a CbaaCkaa;r3)

— C 0(104 0 0a,13 EaC a;13

R„,(3,,,o; =C ;cie(0 ctO	 — cea0 0)

▪ C (0 a .0;a0 13a + Ocy)3(1) )5a;tx Cbaa;a0 (3 — OcEa0 00;a)

= C 000	 = E 0C Octa;,:x•

Raa0a;ct =C ;a(tbaa0a0 — Oar34 aa)

▪ C (Octa;o10 + Cbota0a0;a Octi3;a0aa Oct0(kaa,a)

=0.

We now use the second Bianchi identity with (i, j, k, £, n) = (a, /3, /3, a, a) to see

0 = Rair3 a;a Raficca;13 Ral3ai3;a = EctefiCi a 	 a;0	 ,OC acz;.c •

Thus C;,, = —CleoCboao E co5„,, ;a 1. We relabel the indices to see

E (7,E a C ;# and Raacir,5;i2 = Ea Ctbap;c7.

We now use the second Bianchi identity with (i, j, k, £, n) = (a, a, a, a, 0) to see

0 = Raaaa; i3 RaaaP;a Racq3a;che = EaeaC;15 EaC ai3;a

Assertion (8) now follows. We replace 0 by —0 and interchange the roles of the

greek and roman indices to derive assertion (9) from assertion (8).
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To prove assertion (10), we suppose r_ > 3. Choose a, /3, and -y distinct, we

compute:

1 '7007; e1 ---C; ce (0770,3,6t - 07,00,37)

	

C (4)--r7;Q0130 + 0^Y'YO00;a 013;000'1	 4Y1300'Y;a)

=C;acb77 4600 = E,),E0C;a.

-11707a;i3 —CO (07a0 frY 0-Y(15.13a)

	

+ C(O'yce;130 0-y + 47a ri vb 0'7;0 (1277;130,6a	0770130;0)

=0.

11.-03aOry —C;7 (0-049ot Cb-yceCbOce)

+ C (070;700 471 + 07000a;7 07a;70 pa (1)--ya950a;7)

=0.

We now use the second Bianchi identity with (i, j, k, n) = (7, /3, 0,- , a) to see

0 = R7/3/37;0, + R7p7a; ,6; + R7000;7 = E7E0C;a.

Thus C;a = 0. Similarly if r+ > 3, then we have C;0, = 0.

To prove assertion (11), we suppose r+ > 2 and r_ > 2. We show VC 0

and VO =- 0 as follows. For fixed a, since r_ > 2, we may choose a /3. We use

assertions (2), (4), and (8) to see that

C;a = — C-(6,600a;0 Ecy(kaa jod = —C {E-00,30, + Eackaa;a} = 0.

Likewise, for fixed a, since r+ > 2, we may choose a � b. We use assertions (2), (4),

and (9) to see that C;c:, = 0. Thus VC = 0. Moreover, we use assertions (3) and (5)

to see that q5jj;k = 0 for all i, j, k. Thus Vq5 = 0. Consequently, we use assertion (6)

	

to see that riaa = 10aa;i = 0. Thus the distribution 	 is	 parallel and

0 = g(R(ea, ea)ea, ea) = CEaEctS- ct O a —CFaEct.
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So C 0 which is false. This completes the proof. 111

6.1.12 Proof of Theorem E. Assume m > 10. Let (M, gm) be an IP pseudo-

Riemannian manifold. Suppose the curvature tensor R at P E M is of C-0 type,

we apply Lemma 6.1.11 to see that r + (q5) < 1 or r_ (0) < 1. q

Theorem 1.3.3 constructed warped product metrics ds2m = dt2 f (t)ds2N on

the product between an interval I C R and a Riemannian manifold N of constant

sectional curvature 1C which are IP. Furthermore, the warping function f (t) takes

the form f (t) = 1Ct2 + At + B, where A, B are auxilliary constants. Notice this

construction corresponds to the case r+ = m - 1 and r_ = 1 in Theorem E.

Let R be the associated algebraic curvature tensor; R(Tr) has constant eigenvalues

10, + N/C)- where C 4/c/,31f-, A2 . If 41CB - A2 = 0, then this metric is flat.

We therefore assume that 41CB - A 2 � 0. We now generalize the construction

of Gilkey, Leahy and Sadofsky, and of Ivanov and Petrova to higher signatures.

Topological suspension is a way of increasing the dimension. We introduce an

analogous construction in the next section.

§6.2 Constructing Rank 2 IP Metrics Via Suspension

In §6.1, we have shown that Tic ,0 is not geometrically realizable by a C-0 type

IP metric if dim E+ > 1 and if dim .E+ > 1. Conversely, in Theorem F we use a

warped product construction to give a C-g5 type geometric realization of .11c ,0 by

an IP metric if dim Ed_ < 1 or if dim E_ < 1. For clarity, we change our notation

slightly at this point:

6.2.1 Definition. Let x = (x 1 , ..., xi,, xp±i , xp+ g ) be the usual coordinate on

RP,4 so that the standard metric takes the form given in §1.1.3:

(")(x ' Y) =	 XiYi EP-1-(1 X
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Let

(6.2.1.a)
	

E,g(p,q)((t,x), CIA) :=	 g(p,q)(x,	 where E +1

be the suspension of the metric g(p,q) . We let E,RP,q be RP-Eq+1 with this metric.

Note that E±g(p,q) is a metric of signature (p, q + 1), and that E_g(p,q) is a met-

ric of signature (p 1, q). The first coordinate plays a distinguished role in our

investigations. Let q5 be an unipotent (of order 2) isometry of RP,q . We set

(6.2.1.b)
	

E E (0) := (E0 00)

For C 0, we have defined Rc ,4,(x, y)z	 g(cb(y), z)(1)(x) — g(0(x), z)0(y)}. We

now define

(6.2.1.c)	 ZETtc,4, := RC

By Theorem D, E,Rcw, are IP algebraic curvature tensors. Similarly, we suspend

a metric on a manifold N(p, q) using a warped product construction.

6,2,2 Definition. Let ds 	 be a metric of constant sectional curvature ICN(P,q)

on a manifold N(p, q) of signature (p, q). Let h(t) be nonzero smooth real-valued

functions defined on a connected interval I C R. Let

(6.2.2.a)	 E!Eds2N(p,q)	 edt2 + f6(t)ds2N(m)

define warped product metrics of signatures (p, q + 1) and (p +1, q) on I x N(p, q).

Let N(p, q) be a manifold of signature (p, q) which has constant sectional cur-

vature K. We now determine the necessary and sufficient condition of the warping

functions h(t) so that the resulting suspended metrics are nonconstant sectional



94

curvature IP metrics of rank 2. Before beginning the proof of Theorem F, we es-

tablish a technical lemma. Fix a point P of N(p, q). We choose local coordinates

x = (x l , xP+q ) on N(p, (p, q) so that

gii (P) = Ei ±1, gij (P) = 0 for i j, and giiik(P) = 0.

We let indices i, j, k, range over 1 through p + q and index the coordinate frames

:=	 and Idxi l for the tangent and cotangent bundles of N(p, q). Let

&. These are not orthonormal frames. Let g, v, r and R be defined by the

metric on N(p, q).

6.2.3 Lemma. Let f,(t)	 e2h, (t). Let 'Th'7','11 and E R be defined by the

suspended metrics	 ds2N(p,q) on I x N(p,q) given in equation (6.2.2.a). We have

(1) 'R(ai , 0j , ak , at ) (t, P)	 e2h, fic — EitE2 e2h,	 (ooik (5-4.0 je)

(2) R(ai , a0, a0, a;) (t, P) = —e 2h' { + /4}Ei6ii

(3) The curves t	 (t, x) are unit speed geodesics.

Proof. We have R(ei ,	 Ok, (9.e)(t, P) = ICEJ E; Oiedik — (5ik(5.y}. Recall that

ruvw = 2 (augvw avg. — awg.) and ruv x grY ' ruvy

where these indices range between 0 and p + q. We use these identities to see that

for i, j, k, t ranging over 1 through p + q

(1) We have 6 r iik = riik and Erik ri; k •

(2) We have e rijk (t, P) = rik(t, P) = 0 and 'F ij k (t, P) Fij k (t,P) = 0.

(3) We have erioi (t, P) = —erijo(t, P) =

(4) We have q-jko (t, P) = E gon E r jku(t,	 _ehee24,Ei6 ik.
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(5) We have 'F io-e (t, P)	 ett • eF,0„(t, P) =	 e. We use these relations to

prove assertion (1) by computing:

R(0i,

= {eg((EVaiEVaj Eva? E va, )ak, ai)}(t , P)

= feg(EVai (Eriku a.), at) — Eg(wa,(6rik u -3.),9t)}(t, P)

= ItioiErjkn ai Erikn Erik° Erio n — Er GE
r n

)
	 a a	 t P)

= {(airikn ajrikn 6rjk° Erie erik° ' ErjOn ) • eg(an,at)}(t,p)
fe2h,(Riike 	 Erioe — er ik0 	 joent, P)-

{e21 (Row + .e[(--eil,26 )Eif5jke246 	— (—EitE2 )6 i Sik e 2he ei,Ei jjd)}(t, P)

= fen, (K — Eize2 e2h )eie j( jitojk — Sio ,41(t, 
P).

Since E g('V a,a 0 , 00) = 2ai Eg (80, ao) = 0 and since

	

EriOi(t,	 = E n(EV ai a 	13) = fite e2hE i 5	P),

we have: V (9, a° (t, P) = he ai (t, P). We prove assertion (2) by computing:

R(0i ,	 00, 8j) (t, P)

= t'g((eVai V,90 a0 — 'Vao'Va,00),ai

= —{'g(E vao e Vai 80, aj )}(t, P)

= —{E g(EV ac,(itA),0j)}(t,

=—{eg(ii,ai+it,eva00i,ai)}(t,P)

=	 (he +	 01)1(t,

= —{e2hE (11, +	 P).

)} (t, P)
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We prove assertion (3) by computing:

g(" 00, ao) = iao'g(ao, ao) = 0;

g('N7 ao a 0 , 0i ) = --Eg(00,eVao0,)

= –C9( 94, CVa,ao)

= —iajg (ao, ao) =0. q

6.2.4 Proof of Theorem F. We begin with normalizing the coordinate frame

{5o 1, (9, ----- a } by setting e 0 :---- 00 and ei e- h-ai for i > I. Since f, is a

nonzero smooth function defined on a connected interval I, by replacing gN by –gN

e2h,(t).if necessary, we may assume fe > 0 on I; so we may set f e (t)	 Thus we

have
d ti	 fE and	 2.(JEhe = 4n 

116 2 dt j " = 2f,

We use assertions (I) and (2) of Lemma 6,2.3 and normalize the bases to see that

(6.2.4.a)

ER(ei,ej,ei,e,)(t, P)	 (1Ce -2hz 	efiDEjei

= 
r 

	 6 (k)2}E2Ej
2f,

4K f, – ER
E1,3;4fl

(6.2.4.b)

P) = –(he h)ei6

i 2.1E7E-211	 fE
4L2	 .f,

2.Kfe 
Eze;4f£

}EiE

(6.2.4.c)	 'Tt(ei,	 ek , et )(t, P) = 0 for	 j)	 (k, f) and (i, :7)	 (t, k).
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Assume fE (t) = EX t2 + At + B for 41CB — EA2 0. We use equation (6.2.4.a)

to see that

(6.2.4.d)

41C(E1Ct2 + At + B) — e(2e1Ct + A)2 
"R(e,, el , e1 , ei )(t, P) E.,e34,/z,

41CB — eA2	 EtEj.
4fl

We use equation (6.2.4.b) to see that

(6.2.4.e)

2(2EIC)(ekt2 + At ± B) (2ekt + A) 2 E
'R(e„ eo, eon ei )(t,	 =	 E EZ437

41CB — eA2
	 EsE.

4fl

Let G := 4/CB -6 A2 Let4n

EEsti(eu) f
—eg

eu

if u = 0,
if 1 < u < m.

We use equation (6.1.4) to see that ER RcE,E&I,) are rank 2 IP algebraic curvature

tensors and that the suspended metrics EP ds2NcpI) are rank 2 IP metrics. Moreover,

equations (6.2.4.d) and (6.2.4.e) imply the suspended metrics do not have constant

sectional curvature.

Conversely, we assume the suspended metrics E‘ e ds2N(p,q) are IP. We use equa-

tions (6.2.4.a) and (6.2.4.b) to see that

4K fe el? E,E3 0_({ 2fefe — ER }6,E) where	 +1.
4fl	 4 fi

Case 1. Suppose a = 1. Then

41C— Efi	 2.1eE. fE ei?  67,E.Eteg
4fl	 L42

We compute the sectional curvature of the 2-plane .71 	Spanfe i , ej j to be

e R(ei ,ei ,ej ,ei) 	 4/C f, efi 
g(e i , ei )g(ei , ei ) — g(e i , ei ) 2	 4f
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We compute the sectional curvature of the 2-plane 72 := Spanfe,, eo} to be

	 = 2M€-dE2 
g(eg , e,) g(e0 , eo) — g(ei , e0 ) 2	4fl

Thus the metrics give constant sectional curvature.

Case 2. Suppose o- =- —1. Then

41C f,	 i?	 , , — e f2
EtEj = 

2f f
	 E•iE.

4j7	 4J7

Since the nonzero eigenvalues of 'R(e i , ej ) and e /i(ei , eo) are identical, we must have

= 261C; this implies f,(t) = ekt2 + At+ B. Furthermore, we compute the nonzero

4/C/34f1A'	eigenvalues of 'R(7) are EV-1C, where G	 Thus if E‘c ds2N	 has s
rank 2, then 4/CB — EA 2 0; this proves Theorem F. q

§6.3 Proof of Theorem G

In this section, we complete the proof of Theorem G. We begin with some

notational conventions and a technical lemma. Let cb be an unipotent (of order

2) isometry of 111P,q . We adopt the notational conventions established in §6.1.10.

Let y	 (y', ..., ym-1 ) be local coordinates on a leaf of the foliation .F__.. We use

T(t, y)	 expt (te t (y)) to define local coordinates on M. We adopt arguments of

Gilkey, Leahy and Sadofsky [48] to prove

6.3.1 Lemma. Let m > 4. Let g be an IP metric of rank 2 which is C-0 type

with 15 an unipotent (of order 2) isometry. Let R Rc,o. Assume r+ = 1

(1) For any a, Ca = 0, C;i = —2CEa01c.;a, and Pali = --le«JapC-1C;i.

(2) For fixed yo, the curves t T(t, yo) are unit speed geodesics in Mrn which are

leaves of the foliation .F+.

(3) For fixed to, the hypersurfaces T(to, y) are leaves of the foliation .F_ and inherit

metrics of constant sectional curvature.
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(4) Locally the metric on M T' is given by ds2 = E ide + f(t)dqc where f(t) is a

nonzero smooth function defined on a connected open interval I C R. and ds2k

is a metric of constant sectional curvature 1C.

Proof. Since r+ = 1 and rn > 4, a = 1 and r_ > 3. We use Lemma 6.1.11 (10) to

see that C; ,, = 0. Since r_ > 4, we may choose a,13,-y distinct, and we use Lemma

6.1.11 (8) to see that

Co. = —C{EpOot i g +Ea0al ia} = —C{E/O'ylry ±Ea0alicy }, 50 E0001;f3 = Ery(1)11;7-

Thus C. 1 = —2Cect00,1;a• We use Lemma 6.1.11 (2), (5), and (6) to see that

ra1/3 = 1010; — 4 6a001cxia 40aI;cx = —leckgai3C-1C;1.

Assertion (1) follows. Clearly Fm = 0 and by Lemma 6.1.11 (6), (8), and (10) we

have

na 2O1ot;1 =- Ce4C 1 C ; a = U.

This shows the integral curves for e l are unit speed geodesics; assertion (2) now

follows. We now compute:

atg(at,	 = g(at, v tan +9(ag, Vat at) = g (at, V&A) = lagg(8t, at) = 0.

Thus at 18a. this shows ag, span the perpendicular distribution J and the

hypersurfaces T(to,y) are leaves of the foliation We need some additional

notation at this point. Let X, Y be vector fields on the leaves of the foliation

Let L(X, Y) := VxY	 VxY be the normal component of VxY, We have

eo)	 g(L(ea , e 0 ) , e i )ei = EiFapi ei . Let R_ be the associated curvature
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tensor of the induced metric on the leaves of . We use the Gauss-Codazzi equation

to see that

(e, es , e-y , , e,) =R(e,, es, e7 , e,) + g(L(e„, e.y ), L(es, e,))

- g(L(e, e,), Mes, e,y))

,R(ea , eo, e y ecr) —	 (110-y1Fa10-	 ra-y1 rOlcr) •

We use assertion (1) to see r6 ylrala– ra-yirm, = 0; assertion (3) now follows.

It remains to show that the metric g is locally a warped product. We express

as E,y acr-y e-y . We compute:

g(Vat ag„ 	 =g (Vag , avo)

=g( ,y ac„-yVe, at, (91,4)

Ey awyg (V e, at, Ea a00-ea)

=	 aa-ya00-g(Vel, at, ea-)

'7,(7 da-yaour-yier

= - 1C- 1 C;i (E1,, e7(5.-yaa„,yaoa.)

=	 C-1C; I (E7,0-

1C-1Cosco.

On the other hand, we have

Otg(Og, 41) =2g(Vag 8,g)

= -lec,(50C-1C1

=

Since C-I-Co, depends only on the parameter t, the metrics g is locally given by

ds2 --= e1 dt2 + f (t)dsk. q

6.3.2 Proof of Theorem G (2). We now use steps 1 through 7 outlined in §1.4.2

to complete the proof. q
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§6.4 The Orthogonal Equivalence of the Curvature Tensors Rc,0

We conclude this chapter by giving necessary and sufficient conditions in Theo-

rem 6.4.5 that Rc ,0 and /ic, are orthogonally equivalent. We first introduce some

additional notation.

6.4.1 Definition. If V; is an isometry of RP,q and if R E 04 (RP ' q ) , then we define

the pull-back 4-tensor 11)* R by

(1,b*	 (x , y, z, w)	 R(7,1) (x), (y), 1p(z),0(w)).

Note that R is an algebraic curvature tensor if and only if * R is an algebraic

curvature tensor; R is IP if and only if *R is IP. This gives the natural action of

the isometry group 0(p, q) on these tensors. We say that R and R are orthogonally

equivalent if and only if there exists E 0(p, q) so ,ip . R = P.

Both the Ricci operator and the Jacobi operator will play an important role in

this section. We recall their definitions briefly.

6.4.2 Definition. Let p be the Ricci tensor defined by an algebraic curvature

tensor R. We have:

p(x,y) := Tr(z	 R(z, x)y) = g"	 y, ej)•

This tensor is symmetric. In the Riemannian setting, p(x , x) is the average

sectional curvature of all the 2-planes containing x. Let p be the associated endo-

morphisrn:

	

P(x)	 gii p(x, ei)ej.

This is characterized by the identity:

g(j)(x), y) := p(x, y)•

The eigenvalues of p are orthogonal invariants.
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We recall from §1.5.1 the definition of the Jacobi operator J(x) : y	 R(y, , x)x

We also recall that g(ei , = E,ei and cb(e,) 6,ei where ±1, öi = ±1. We

omit the proof of the following lemma as it is an immediate algebraic consequence

of Lemma 6.1.4 and the above definitions.

6.4.3 Lemma. Let {ez } be a normalized orthonor	 al basis. Let R = Rc,0 define

p, P, and J.

(1) If i j, then p(ei ,ej ) = 0. We have p(ei ,ei ) = Cei Si Ej�i 63.

(2) If 8, = 1, then fi(ei ) = C(r+ — 1 — r_)ei.

(3) If bi = —1, then -P(ei ) = C(r_ — 1 — r4ei.

(4) If i j, then J(e i je3 = Ce,(5,;(53 e3 . We have J(ei )ei = 0.

Fix an idempotent isometry 0 of RP,q . Let

:=	 E IF	 : 1x1 2 ---- 1 and J(x) has eigenvalues f Con xi},

S(E±):= {x E E± : lx1 2 = 1} and ..111 * (E±) :=	 E E± :1x1 2 = 0}.

We show the space is homotopy equivalent to SP+ -1 L..1 SP - - 1 . Since the homo-

topy type of 0.5 is an orthogonal invariant, the unordered pair ( 73+ ,p_) is also an

orthogonal invariant of Re,o.

6.4.4 Lemma.

(1) The space is homeomorphic to S(E+) x Ai(E_)1j.N(E±) x S(E_).

(2) The space Ar(E±) is contractible.

(3) The space S(E F ) is homeomorphic to	 x	 .

(4) The space S(E_) is homeomorphic to SP - -1 x 111q-

(5) The space (15 is homotopy equivalent to SP+' Li SP'.

Proof. We decompose RP ' q = E+ E_, and we identify RP07 with the Cartesian

product E+ x E_ . We first show 05 C S(E+)x.Ar(E_) Li r(E+)xS(E_). Let x E (ti.

Decompose x x+ + x_ for x+ E E±. Since 1x1 2 = 1, we have lx+1 2 1X_ I 2 = 1.
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To show x E S(E+ ) x f (E_) U Ai(E+) x S(E_), it suffices to show either x + or.

x_ is a null vector. Suppose the contrary. We choose a normalized orthonormal

basis {e i } for RP ' q so that x + a l e l and that x_ a2 e2 , where a l 0 and a2 � 0.

Then we have:

(6.4.4.a) 21 = lx + 1 + x_	 al2 e ]. + a2e2.2	 1	 1 2 -

We compute: J(x)e 3 = C {g(cPx, )0e 3 -9(0e3 ,x)cbx} = C{63 (a1e i —a2e2 )e3 }. Since

e3 1 x and since x E 03, we have:

(6.4.4.b) axe
2s a2e2 	±1.

If ale 1 + a2e2 = 1 and ale i a2£ 2 	—1, then we add equations (6.4.4.a) and

(6.4.4.b) to see that 2ale i = 0, so a l = 0 which is false. If aki + 4E2 = 1 and

a2e2 = 1, then we subtract equations (6.4.4.a) and (6.4.4.b) to see that

2a2e2 = 0, so a2 0 which is false. Thus 0 C S(E+) X N.(E_) U N(E+ ) x S(E_).

Next, we show 0 D S(E+)x.A1(E_) L.] Ai(E+) x S(E_). Suppose x = x4_ +

where (x+ 1 2 = 1 and x_ is a null vector; the other case is similar as one can replace

0 by —0 to interchange the roles of r + and r_. We choose a normalized orthonormal

basis laj for IIIP, (/ with e i = 1, E.2 = 1, E 3 = —1;	 = 1, 82 = —1 and 63 = —1 so

that x = e i +a(e2 +63 ) for some constant a. We complete the proof of assertion (1)

by showing x E Q3. If i > 3, then we use Lemma 6.4.3 to see that J(x)e i CSiei.

Hence we must show the eigenvalues of J(x) on the three dimensional space spanned

by {e i , 62 , e3 } are {0, —C, —C}. We have from the definition that

J(x)y =R(y , x )x = Cg (qS(x), x)q(y) Cg(0(y),x)0(x)

=Cg(ei — a(e 2 + e 3 ), e l + a(e2 + e3))0(y) — Cg(0(y),x)0(x)

=C0(y) Cg(q5(y), e i + ae2 + ae3 )(e i — a(62 + e3)).
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We compute the action of J(x) to be:

J(x)x = 0,

J(x)(e 2 + e3) = C(Cb (e2) + 5(e3))

— Cg(q5(e 2 ) + q5(e3 ),e i + ae2 + ae 3 )(e 1 — ae2 — ae3)

—Cf(e 2 + e3 ) g(62 + e3 , e 1 + ae2 + ae3)(e i — ae2 — a63)}

=	 (e2 e3),

— e 3 ) = C(q5(e2 ) — 0(e3))

— Cg(q5(e2 ) — 0(63), e 1 + ae2 + ae3 )(e i — ae 2 — ae3)

= C{e3 e2 ) — g(e3 — e2 ,e 1 + ae2 + ae3 )(ei — ae2 — ae3)}

= C{e3 — e 2 ) + 2a(ei — a(e2 + e3)}

C{e3 — 62 ) + 2a(e i + a(e2 + 63) — 4a2 (62 + e3)}

C{2ax — 4a2 (62 + 63 ) — (62 — e3)}.

represented by an upper triangular matrix relative to this basis:

0	 0	 0
(6.4.4.c)
	

J(x)	 0	 —C	 0	 .
2aC —4a2C

We use matrix (6.4.4.c) to compute the characteristic polynomial:

A	 0	 0
(6.4.4.d)	 det — J(x)) = det	 0	 A + C	 0	 = A(A + C)2.

—2aC 4a2C A + C

We use equation (6.4.4.d) to see the eigenvalues of J(x) are {0, —C, —C}. This

completes the proof of assertion (1).

Let I := [0,13. We prove assertion (2) by constructing the deformation retract

1/0 : .Ai (E±) x I .N(EE ) by Ho (x, t) := (1 — Ox; geometrically speaking, we are

J(x)(e2

Thus J(x) is
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sliding each null vector along the null cone to the origin. We prove assertions (3)

and (4) by constructing a homeomorphism H± : SP} -1 x IIV+ -4 S(E+) by

H±(u, v): (V1+

The final assertion now follows. q

We can now characterize the curvature tensors Rc,0 up to orthogonal equiva-

lence in the following statement:

6.4.5 Theorem. The following assertions are equivalent:

(1) Rc,4) and Ro4; are orthogonally equivalent.

(2) C = C and 0 is orthogonally equivalent to ±-0.

Proof. Up to orthogonal equivalence, we see that c/), is determined by the 4-tuple

(p+,q+,p_,q_); –0 corresponds to (p_,q_,p+,q+) since we must interchange the

roles of E+ and E. We shall need to take this Z2 action into account. It is clear

that assertion (2) implies assertion (1). To show that assertion (1) implies assertion

(2), we must show that C is determined by orthogonal invariants of .17,c , ,/, and that

the tuple (p+, q+, p_, q_) is also determined by orthogonal invariants of ile ,b up to

the Z2 action described above.

By Lemma 6.4.3, f5c ,0 has eigenvalues A± 	 C{r* – 1 – rT } , where A± has

multiplicity r±. We distinguish two cases.

Case 1. Suppose the Ricci operator has two distinct eigenvalues A. This implies

that r+ r_. By replacing 0 by –0 if necessary, we may assume r+ > r_. Thus

A+ is the eigenvalue with the greater multiplicity and is an orthogonal invariant.

Since E± can be identified with the eigenspaces of the signature of the metric

g restricted to E± is an orthogonal invariant. Thus the 4-tuple (p+,q+,p_,q+) is
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an orthogonal invariant. Finally, note that A+ + A_ = –2C, so C is an orthogonal

invariant.

Case 2. Suppose the Ricci operator has only one nonzero eigenvalue. This implies

that r+ --= r_. So r± = i'. We can not eliminate the Z2 ambiguity at this point.

Note that A+ = A_ = –C, so C is an orthogonal invariant. We apply Lemma 6.4.4

to determine the unordered pair (p+, p_). And we use the relations q+ = r+ – p+,

p_ = q– p+, and q_ ,-- p – q+ to fill in the rest of the 4-tuple. q

i
1



APPENDIX A

SOME COMBINATORIAL LEMMAS

A.1 Lemma. Given 2-adic expansions a =	 ai2' and b =	 . Then
i=0	 i=0

Proof. We define

(a) TT (ai)
,) IIi=o

mod 2.

:=-- 1, () := 0, ( 1) := 1, and
0	 1	 0

:= 1.

Since in the ring Z2 fxj, (1 + x) 2	1 + x2 mod 2, using induction, we see that

(1+ x) 2j .=`' 1 + x2j mod 2. Thus,

.
(1 + xr ( 1 + x) 6y2 tEa= Ho. +x2. ) a, H {E (ai) t2i] mod 2

i=0	 i=0

Notice the the coefficient of the term x i' in this product is precisely given by n bi 
z

Our claim now follows. q

A.2 Lemma. In the cohomology ring

H* (Gr2 (Rq ); Z2) a Z2[w i, w2]iwiL = 0, for > q — 1,

we have wq-L 1 = wr 1 if and only if q is a power of 2.

Proof Suppose q = 28 for some s > 1. We apply Lemma (4.1) in Monk's paper [70]

to see that uri-	 wq 1q-1	 1	 •
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Suppose wq 1 = wr 1 . Since

implies:

0+1) \
WqI 1 =	 a+2b=q-1 Ilk a /—
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1
mod 2 14. 7.d, this

(q b - 1)
is even for all 1 < b < 2- 1.

Choose j E N so that 23 < q < 2.1+1 . We see that the 2-adic expansion of q is
3-

given by q = 23 +	 ai2t with the coefficients a 2 = 0 or 1. Let 0 < N < j so that
i=o

N := min {0 < i < j : ai = 1} be the first nonzero index. Suppose N j, then the
J-1

2-adic expansion of q reduces to q =2j + E ai2 i + 2N . Choose b = 2N < 2 - 1,

i=N+1
we may express

q - b - 1 =23 + aj _ 1 23-1 + + aN+ 1 2N+1 1
-1

(a i + 1)2' + 2N + 2N-I + +2+12± 1.
i=N+1

j-1
By Lemma A.1, we have b(q--1)	 = 1 mod 2, which is false. Hence, N = j,

b
s=-0

i.e. q is a power of 2. q

A.3 Lemma. Let 0,1 := Ea± b±,, a 01,1 +u2) a 2L1 b u2 c in Z2 [ui ,u2]. If (/) Q. = 0,

then q + 3 = 2 8 for some s.

Proof. For the convenience of the reader, we reproduce the argument from Stong

[84]. Suppose

(A.3.a)	 0 = (1)q. E (ui +'(12 ) a E u i bU2 c E Z2 [U1, U2].

a=0	 b+c=g—a

We multiply equation (A.3.a) by (u i + u2 ) to see that

0 = 	 _= E
	

(tt1q+1—a u2q+1—c) E z2[111, 712],

a=0b+c=q—a

Hence,

0 = coefficient of u1 in E(ui + 1) a (Ul q+1—a + 1).
a=0
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q	 9

E ( it i + 1)a(Uiq+1—a + 1),EU0+1(U1 + 1)a
Uia=0	 a=0

(u1 + 1)(1
a-=.0 

q+1 1 + (r) q)+1 } 1 + (U1 + 1)9+1
U—j.

±

1 

+	 .1,1 1	 1)+ (U1 ±
q +2{=ui +1 ) q+1 }1+ ( ul

1+ —{1+ (ui +1)q+1}
U1 U/

1	 2 q+1
— {ui [u i + (u 1 + 1) q+1 ] + 1 + (u 1 + 1)q±1}
ui
1= {ur' (1 + u?)+ u7+3 + 1}

7/1

—{(1 + u1 ) q±3 + 1 + u7+3}
1
q+2

( q 3) 
Ul

t-1
•

Thus (1+ u1 ) q+3 __: 1 + ut3 mod 2, and so q + 3 = 25 for some s. q

t=1
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APPENDIX B

THE INTERSECTION LEMMA

13.1 Lemma. Assume q > 4.

(1) Let R be a rank 2 spacelike (or timelike) IP algebraic curvature tensor on 1181',4.

Let {x 1 , x2 , x3 } be vectors in RP,q which span a spacelike 3-plane. Then

dimEW1 (R(x i , x 2 )) n W1 (R(x 1 , x 3 ))] 1 and

dira[Wi (R(x i , x2)) +	 (1/(x i , x 3 ))1	 3.

(2) Let R be a rank 2 mixed Lorentzian IP algebraic curvature tensor. Let

fx 1 , x2 , x3 } be vectors in R i,g which span a spacelike 3-plane. Then

dim[Wl (R(x 1i x2 )) n Wi (R(xi , z3))] = 1 and

dim[1471 (R(x i , x2 )) + Wi (R(x x3))] 3.

(3) Let R be a rank 2 null IP Lorentzian algebraic curvature tensor. Let {x, y, z}

be an orthonormal set where y and z are spacelike vectors. Then

dirnEWi (R(x, y)) n Wi (R(x, z))] = 1 and

(R(x, y))	 (R(x, z))] = 3.

Proof. Before dealing with the general case, we first establish a special case of the

Lemma. Let {x, y, z} be an orthonormal subset of spacelike vectors in RP,q . Let

T1 := R(x , y) and T2	 R(x, z).
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We use the 1-parameter family 7r(0) := Span{x, cos(0)y + sin(0)z} for 0 E [0, 21r1 to

prove our assertion in this special case. The fact that the characteristic polynomial

of

R(7r(0)) := cos(0)Ti + sin(0)T2

is independent of 6/ plays a crucial role in our discussion of this special case.

We have assumed that R does not change type. We first assume that R is

spacelike. By resealing R we may assume R has eigenvalues {0, ±-,,r2f.}. Suppose

that dim[Wi (Ti ) fl W1 (T2 )] = 0. We then have dim[Wi (T1 ) +	 (T2 )] = 4. By

Lemma 5.1.1, we can find linearly independent unit spacelike vectors {u 1 , u2 , v 1 , v2}

SO

(1) 1471 (Ti ) = Span{u i ,u2 } with u 1 1 u2 ; T1 u 1 = u2 , and T1 u2 = —u1-

(2) W1 (T2 ) = Span{v i , v2 } with v 1 I v2; Zvi = v2 , and T2 v2 —vi.

(3) g(u i , v2 ) = 0 and g(u2 , vi ) = 0.

Let a := g(ui ,vi ) and b := g(u2 , v2 ). We compute:

= g(T1v1,u1)u1 +g(Ti vi ,u2 )u2 =	 g(v1, Tiu2)u2

—g(vi ,U2 )U l g(vi , u i )u2	au2.

Ti v2 = g(Ti v2 , u1)u1 + (Tiv2, 7/2)u2 = –g(v2 ,	 – g (v2, Tiu2)u2

= –9(v2, U2)221 g(v2, u i )u2 =

T2 v, i = g(T2u 1 , v i )v + g(T2 u1 ,v2 )v2 –g(ui,T2vi)vi –041.,T2v2)v2

= –g(ai,V2)V1 g(u i , vi )v2 = ave.

T2U2 = g(T2 u2 ,V 1 )V 1 g(T2u2 , V2)V2 = –g(u2,22V1)V1 g(U2 7 T2V2)V2

= --.9(u2, v2)v1 + g(u2, vi)v2	 —bvi-



112

Thus

R(R-(6)))tti = (cos(0)Ti + sin(0)T2 )u i = cos(0)u2 + a sin(0)u2,

R(7-(0))u2 = (cos(0)Ti + sin(0)T2 )u2 = — cos(0)ui — bsin(0)v1,

Re (0))v = (cos 6Ti + sin 0T2 )v i = a cos(0)u 2 sin(0)v2,

R(n- (0))v2 = (cos OTI + sin OT2)v2 = —b cos(0)ui – sin(0)v1.

Thus relative to the basis {u i ,u2 ,	 v2 }, R(7(0)) has the form:

(B.1.a)	 R(	

— cos (0)	 0	 —b cos

(B.	

(0)

	

( cos(0)	 0	 a cos (0)	 0
0	 —b (0)	 0	 sin(0) ) •

	

a sin( $)	 0	 sin( 

Since r ank(R(Ir (0))) = 2 for all 0 E [0,	 the determinant of all 3 x 3 minors must

vanish identically. Thus for all 0 E [0, 7r] we have that

(B.1.b)
	

det ( cos0(
0) — cos (0)	 0 

/	 cog2 (0) sin(0)(a2 — 1).

	

a sin(0)	 0	 sin(0)

	(0
	 — cos(0) —b cos(0)

(B.1.c)	 0 __=_ det cos(0)	 0	 0	 ) = cos2 (0) sin(0)(b2 — 1).

	

0	 —bsin(0) — sin(0)

7 (9)) =

We use equations ($.1,b) and (B.1.c) to see a2 = b2 = 1. Note the metric on

Span-C/4,712 , v1, v2 } need not be positive definite, we can not apply the Cauchy-

Schwarz inequality. Let xe(A) be the characteristic polynomial of R(ir(0)) acting on

the space spanned by {u1 , u2 , v1 , v2 }; this space is R(ir(0)) invariant and contains

)	 0



the range of kr (0)). Thus xo(A) is independent of 8 as R is IP. We compute:
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( A 	 cos(0)

	

— cos(0)	 A
Xe(A ) --=det	 0	 b sin(0)

	

—a sin(0)	 0

	

A	 — cos(0)

	

det b sin(0)	 A
— sin(8)

— cos (0)
—cos(0) det (	 0

—a sin(0)

0	 b cos(0)
—a cos (0)	 0

A	 sin(0)
— sin(0)	 A	 /

sin0(0))
A

—a cos(0)
0A	 sin(0))

sin(0)	 A

- b cos(0) det (	 0
—a sin(0)

=A [A(A 2 + sin2 (0)) + a cos(0)Ab sin(0)]

— cos(0) I— cos(0) (A2 + sin2 (0)) + a cos(0)a sin2 (0)]

—b cos (0)[b cos(0) sin2 (8) — Ala sin(0) — alb sin2 (0) cos (0)]

=A4 + A2 (sin2 (0) + cos2 (8) + 2ab sin(0) cos(0)I

sin2 (0) cos2 (0)	 a2 b2 a2b2]

+ A2 [1 + 2ab sin(0) cos(8)] + sin2 (8) cos2 (0) 11 + a2 62 — a2 — b21.

Since a2 = b2 = 1, we have that xo(A) = A4 + A2 [1 + 2absin(8) cos(0)1. The

eigenvalues of the matrix (B.1.a) are {0, 0, + .\/7--1}. So xo (A) = A4 + A2 . This

implies 2absin(0)cos(0) 0 for all 8 E [0,	 This is not possible as ab � 0. This

shows that

dim[Wi (R((, y)) n Wl (R(x, z))) � 1-

Suppose dim[Wi (R(s, Onw, (R(x, z))) ---- 2. Then Wi (R(x, y)) = Wl (R(x, z)).

We use Lemma 5.1.1 to see that T1 = +T2 . It follows that R(7(6)) = 0 for 0 = ± i ,

which is false. Thus we have dim[Wi (R(x, y)) n (R(x z))1 = 1. This proves the

special case if R is spacelike; the proof is similar if R is timelike.

— cos(0)A —a cos(0)	 0
b sin(0)	 A

0	 sin (0)
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We can now derive the general case from the special case discussed above. Let

{x 1 , x2, x3 } span a spacelike 3-plane. We must further normalize this basis. We

apply the Gram-Schmidt process to define:

x2—-	 x_	 =:
lx2 – g(x2,	

, 3
x3 – g(x3,

l x3	 9(x3, jci)X11-

Then span {x i , x2 , x3 } =	 31. Furthermore, there are nonzero constants

c2 and c3 so that R(xi , x2 ) = c2R(1,i-2) and R(x i , x3 ) = c3 R(X- 1 ,i3 ). Thus by

replacing {x,} by {,} if necessary, we may assume without loss of generality that

i xd 7= 1, x1 ± x2 , and x i 1 x3.

Again, we apply the Gram-Schmidt process. We define

X3 — g(x3 , X2)X2 W :=
1X3	 g(x3, X2)X21.

Since x3 1 x i and x2 1 x i , we have that {x i , x 2 , w} is an orthonormal set. Further-

more, we may expand X3 = COS(0)X2 ±sin(0)w for some 0 E [0,27r]. Since fr 2 and x3

are linearly independent, sin(0) � 0. Let T1 := R(x i , x2 ) and T2 := R(x i , w). We

then have

T := R(x i , x3 ) = cos(0)Ti + sin(0)T2 and T2 = csc(0)(T – cos(0)T1).

We compute:

Wi(T) C (TO + (T2 ), Wi (T2) C W1 (T) + (Ti ), and

Wi(T) + (T2 ) =	 (TI ) ± W1(712).

We apply the special case to the orthonormal set {xi , x2 , w} to see that

3 = dini(Wi (Ti ) + Wi(T2)) dim(Wi (T) + Wi(712))•
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We next assume R is a rank 2 mixed Lorentzian algebraic curvature tensor.

For clarity, we use Ty to denote a unit timelike vector, and use o-, to denote a unit

spacelike vector which is orthogonal to r so that Wi (T,) = Span{7-,,u„}. Conse-

quently, there exist nonzero constants a i and I), so Ti = aa a, and Ti o-, = NT, where

g(Tir,, cli ) = a, and g	 = –bi . Since T„ is skew-symmetric, we have that

o-i ) = g(Ti Ti o-,). Thus ai = bi , and T, has eigenvalues {0, ±c}. By reseal-

ing R we may assume R has eigenvalues {0, ±1}. The skew-symmetric operator T,

defines a unitary paracomplex structure on Wi (T,)), i.e. T is unitary and T2 = 1.

Suppose that dim[W1 (T1 ) n (T2 )1 0. We then have dimiWi (TO + Wi (T2 )1 = 4.

This enables us to find linearly independent unit vectors {7-1, ail , T2, u2} so

(1) W1 (T1) = Spanfri, crib	 ai , and T1 cr1 = T1 •

(2) Wi (T2 ) = Span{72 ,(72 }, T2 7-2 = (72 , and T2 62 = T2.

Since dim[7± n Wl (T2 )] > (m – 1) + 2 – m = 1, we can choose (72 1 r1. Necessarily

0-2 is then spacelike; we normalize a 2 to have unit length and set T2 := T20-2. Thus

without loss of generality we may assume 0-2 1	 Let A := (71, T2), B := ger2,

and C := g(ai 0.2 ). We compute:

T1r2 =	 ai)(71 g(Ti-r2 , yi )ri =	 g(T2, Tirl)T1

+ 9(72 ,	 = –Au1 + Br1.

T1 0-2 = 9(7'0'2, ai)cri g(T1 0-2, Ti)Ti = –g(a2 Ti a l) a1 g (0-2 T1T1)7-1

= —g(u2, 71) 0.2 + .9(0.2 al)T1 = C71.

T2 71 = g(71271, 0-2 )o-2 – g (712Ti , )1-2 = –*I. , T20-2)172 geri, T2 72)T2

72) 0-2 ± g(ri 0-2)3-2 = – Aff 2.

T2o-1 = g(T2 o- , o-2 )o-2 g(T2 cr1 , 72)T2 =	 T20-2)62 + 9(ai T272)72

= –g (u1, 7-2)0-2 + g(u1, 0-2 )7-2 = –Bo-2 + C1-2.
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Thus

ROT (0))Ti (cos(0)Ti + sin(0)T2 )Ti = cos(0)ai — A sin(0)0-2,

R(ir (0))o-1 = (cos(0)171 + sin (0772 )o-1 = cos(0)71 + C sin.(0)T2 — B sin(0)o-2,

R(Ir (9))-r2 = (cos(0)T1 + sin(0)T2 )T2 = B cos(9)ri — A cos(9) o- i + sin(0)02,

R(7 (0))(72 = (cos(0)Ti + sin(0)T2 )o-2 = C cos(0)Ti + sin(0)r2.

	

Thus relative to the basis {7-1 ,	 r2 , a2 }, R(7r (0)) has the form:

	

0	 cos (0) 	 B cos (0) C cos(0)
0	 — A cos (0)	 0

R(it (0)) =	 ccs_(e)

	

0	 C sin (0)	 0	 sin(0)
— A sin (0) — B sin(0)	 sin (0) 	0

Since rank(R(7r(0))) = 2 for all 0 E [0, 7r], all 3 x 3 minors must vanish identically.

Thus for all 0 E [0,7] we have that

(0
	 cos(0)	 B cos(0) )

(B.1.d)	 0 --- det cos (0)	 0	 —A cos(0) = — cos t (0) sin (0)B C .
0	 C sin(0)	 0

(0
	 cos (0) C cos(0)

(8.1.e)	 0 ..._..- det	 cos(0)	 0	 0
0	 Csin(0)	 sin(0)

COS2 (0) sin(0)(C2	1).

cos (0)
(003.1.0 0 _..= det	 0	 C sin(0)

— A sin(0) —B sin(0)

—A cos (0))

sin (0)
= sin2 (0) cos(0) (CA2 — C).

We use equations (B.1.d), (B.1.e), and (B.1.0 to see A 2 = C2 = 1, and B = 0.

Thus we have

cos(0) 0 C cos(0)
coo (0)

C si
0 —A cos(0) 0
n(0) 0 sin(0)

—A sin(0) 0 sin(0) 0

(B.1.g)
	

R(7r (0)) =--
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Let xe (A) be the characteristic polynomial of R(7r (0)) acting on the space spanned by

{7-1 , a l , 72, o2}; this space is R(rr (0)) invariant and containing the range of R(Tr (0)) .

Thus xe(A) is independent of 0 as R is IP. We compute:

A — cos(0) 0 —C cos(0)
— cos(0) A A cos(0) 0

Xe ( A) = det	 o( —C sin(9) A — sin(0)
A sin(0) 0 — sin(0) A

=A det —Csin(0)	 A	 — sin(0)(	
A	 A cos(0)	 0 

0	 — sin(0)	 A

+ cos(0) det (	 0	 (0)A	 — sin

	

A sin(0) — sin(0)	 A

	

— cos(0) A cos (0)	 0

+ C cos(0) det	 0	 —C sin(0)	 A
( — cos(0)	 A	 A cos(0)

	

A sin(0)	 0	 — sin(0)

=A[A(A 2 — sin2 (0)) — A cos(0)(— AC sin(0))1

+ cos(0)[— cos(0) (A 2 — sin2 (0)) — A cos(0) (A sin2(0))]

+ C cos(0)[— cos(0) (C sine (0))

— A(— AA sin(0)) + A eos(0) (A sin(0)C sin(0))]

= A4 + A 2 [— sine (0) — cost (0) ± 2AC sin(0) cos(0)]

+ sin2 (0) cos2 (0) (1 + A2C2 — A2 — C2)

=A4 + A2 PAC sin(0) cos(0) — 1] + sin2 (0) cos2 (0)(1 + A2C2 — A2 — C2).

Since A2 = C2 =-- 1, we have that xo (A) =

eigenvalues of the matrix (B.1.g) are {0, 0, +1}. So we must have x$ (A) = A4 — A2.

This implies 2ACsin(0) cos(0) 0 for all 0 E [0, r]. This is not possible as AC $ 0.

This shows that

dim[1471 (R(x , y)) n	 (R(x , z))1	 1.

+ A2 [2AC sin(0) cos(0) — 11. The
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We show similarly that dim[Wi (R(x, y)) fl W1 (R(x, z))1 � 2. This completes the

proof of analysis of the situation when we are dealing with a spacelike orthonormal

set.

We can now derive the general case from the special case discussed above. Let

{x 1 , x2 , x3 } span a spacelike 3-plane. We must further normalize this basis. We

apply the Gram-Schmidt process to define:

x 1 x2 — g(z2,
X2 := 	

1X2 - g(x2,	
x3 :=

x3 — g(x3,
x3 g(x3,

Then span{x i , x 2 , x3 1 = span{	 x3}. Furthermore, there are nonzero constants

C2 and e3 so that R(x i , X2)	 c2r(x2,X2) and R(x i ,x3) = c3 R( 1 , 3). Thus by

replacing {x,} by	 if necessary, we may assume without loss of generality that

= 1, x i 1 x2 , and x 1 1 x3.

Again, we apply the Gram-Schmidt process. We define

W := 	
X3 g (x3 X2)X2

Since x3 1x1 and x2 1 x 1 , we have that {xi, x2 , w} is an orthonormal set. Further-

more, we may expand x3 cos(9)x2 +sin(9)?il for some 0 E [0,27d. Since x2 and x3

are linearly independent, sin(0) � 0. Let T1 := R(x i , x2 ) and T2 := w). We

then have

T := R(x , 13) = cos(0)Ti + sin(0)T2 and T2 = csc(0)(T — cos(0)271).

We compute:

Wi (T) C Wi (Ti ) + Wi (T2 ) ,	 (T2 ) C Wi (T) + Wi (Ti ), and

Wi (71 ) +	 (T2)	 (TO + W 1(112)

re(	 "r- \--07
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The lemma now follows by applying the special case to the spacelike orthonormal

set {xi, X2 ) w}.

Let R be a rank 2 null IP Lorentzian algebraic curvature tensor. Let {x, y, z}

be an orthonormal set where y and z are spacelike vectors. Note that

71- (0) := Span{ x , cos Oy + sin &z}

is nondegenerate for all 0 E	 71-) and the type of the plane 740) does not change.

Since R has only the zero eigenvalue, for any 0 E [O,	 R(it (6)) E .502(i, q). Let

E lik l-q be a unit timelike vector. We apply Lemma 4.1.2 (2c) to see that

	

Wi (R(x, y)) = Span{ R(s ,	 R2 (x,

Wl (R(z, z)) = Span{ R(x , z)e, R2 (x, z)0

We assume the lemma fails and argue for a contradiction.

	

Suppose that Wi (R(x, y)) n	 (R(x, z)) 101 . We use the identity

dim[Wi (R(x, y))1 + dint[Wi (R(x, z))] =	 (R(x, y)) n Wi (R(x, z))]

+ dim[Wi (R(x, y)) + W1 (R(x, z))]

to see that dirnITILi (R(x, y)) W1 (,R(,x, z))] = 4. Consequently, the vectors

	

{R(x , y), R(x , z), R2 (x ,	 R2(x, z)}

are linearly independent. By Lemma 4.1.2 (2c1), R2 (x, y) and R2 (x , z) are nonzero

null vectors. We use Lemma 4.3.1 to see that the null vectors {R2 (x, y), R2 (x, z)}

are linearly independent if and only if g(R2 (x, y)e, R2(x, � 0. There exist

constants ai and /32 , for i = 1,2 so that:

R(x, z)(R(x, OC) =	 z)e + a2R2 (x, z) ,

	

R(x, z)(R2 (x, y)) = 01 R(x ,	 + ,(32 R2 (x, z)e,

	

g(R(x,	 R2 (x,	
, andal := 1R(x, Z)I2

g (R2(x, y) , R2 (X, z)) 

� O.1.17(x,z)e12
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The coefficient 01 is crucial. Consider the following system of equations:

R(x, y + z)(0 = R(x, y)e + R(x, z),

R(x , y + z)(R(x, Y)) = ceiR(x, z) . + R2 (x, y)e + a2 R2 (x , z) , and

R(x , y + z)(R2 (x, WO = OiR(z,z)e + 02R2(x,z).

Relative to the basis {R(x, y)C, R(x, z), R2 (x, y), R2 (x , z)}, we write the coeffi-

cient matrix associated with the above equations as:

(

1 1 0 0
0 a1 1 a2 .
0 131 0 )32

Notice this matrix contains the 3 x 3 submatrix whose determinant is

(1 1 0
det 0 al 1 = —th 0.

0 01 0

Thus, rank R(x, y + z) > 3, which is false.

Next we suppose that dim[Wi (R(x, y)) n W1 (R(x, z))1 = 2. This implies

Range R(x, y) = Range R(x,z).

We can express

R(x, z) = aR(x, y)e + 13R2 (x, y)e.

Since R(x, y)Iy is spacelike, a � 0. So Mx, z — ay)C = )3R2 (x, y) is a null vector.

This contradicts Lemma 4.1.2 (2d). Hence dim[1471 (R(x, y)) n Wi (R(x, z))] = 1.

The remaining assertion now follows. q

We can now improve Lemma B.1 slightly by removing the restriction that

span{xi , x2 , x3 } is spacelike.

B.2 Lemma. Let R be a rank 2 spacelike (or timelike) algebraic curvature tensor

or let R be a rank 2 mixed Lorentzian algebraic curvature tensor. Let {x 1 , x 2 , x3}
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be linearly independent vectors in R P 'q so that spantx , x 2 1 and spanix , x 3 } are

spacelike 2-planes. Then

dim[Wi (R(x 1 , x2 )) n Wi (R(xi , x3 ))1 = 1 and

dimR4/1. (R(z. 1 , x2 )) + WI (R(xi, x3 ))j = 3.

Proof Let lri	 Spanfxl , x 2 1 and 7r2 := Span{ x , x 3 }. By Lemma 5.2.2, we have

L(x i ) C	 (R(71)) n Wi (R(1r2 )). Thus dim[Wl(R(zi, x2)) n Wi (R(x l , x3))J > 1.

Suppose the Lemma fails. Then Wi (R(7ri )) n (R(72 )) is 2 dimensional so

(B.2.a)	 Wi (kir' )) = Wi(R(7r2)).

Let {x i , y2 } be an orthonormal basis for the spacelike 2-planes 7ri . Let E be the

span of { yi , y2 }. If E is spacelike, then {x 1 , y i , y2 } spans a spacelike 3-plane and

(B.2.a) contradicts Lemma B.1. We distinguish two cases:

Case 1: Suppose that E is mixed. Choose a unit timelike vector z E E so that

z I yi . Then fyi , z} is an orthonormal basis for E. We express

y2 = cosh(0)y i + sinh(0)z for some 0 where sinh(0) � 0.

Let T1 := yi) and T2 := R(xi , z). By resealing we may assume R has

eigenvalues {0, ±\/—f.}. The operators T1 and cosh(B)Ti + sinh(0)T2 are rotations

through 90° in the same subspace and they vanish on the same orthogonal com-

plements. Thus T1 = +(cosh(0)21 + sinh(0)T2 ) and thus T2 is some nonzero mul-

tiple c of T1 . Let cp be any angle and let y((,o) := cosh(yo)yi + sinh((p)z. Then

R(xl , y(co)) = (cosh((p) + c sinh((p))Ti . The eigenvalues of R(x i , y(co)) are then

dependent on (p which is false as y(0) x is a unit spacelike vector.
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Case 2: Suppose that E is degenerate. Choose 0	 z E E n yiL . Since E is

degenerate, z is null. We may express y2 = E(yi dz) where E = ±1 and d is

a nonzero constant. Let T1 R(x1, yi ) and T2 := R(x i , z). By rescaling we

may assume R has eigenvalues {0, ±-V-1}. The operators T1 and E(T1 + dT2 ) are

rotations through 90° in the same subspace and they vanish on the same orthogonal

complements. Thus ±T1 €(T1 + dT2 ) and thus again T2 is some nonzero multiple

d of T1 . Let (p E R and let Op) := yi + (pz. It is then clear that the eigenvalues

of R(x i , y(y))) = (1 + 9ci)T1 are independent of y, only if ci = 0. Thus we conclude

R(x 1 , z) = 0. We express z e(w i + w2 ) where w1 and w2 are unit spacelike

and timelike vectors respectively. We then have R(xl , w1 ) + R(x i , w2 ) ----- 0. Let

w(t) := cosh(t)w i + sin h(t)w2 be a 1-parameter family of unit spacelike vectors.

The eigenvalues of R(x i , w(t)) = (cosh(t) — sinh(t))R(x i , w i ) are then dependent

on t which is false. This completes the proof of the lemma. q
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