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THESIS ABSTRACT 
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Title: Analysis of Spatiotemporal Variations in Human- and Lightning-caused Wildfires 

from the Western United States (1992-2011) 

 

 

The annual cycles of human- and lightning-caused fires create distinct patterns in 

time and space. Evaluating these patterns reveals intimate relationships between climate, 

culture, and ecoregions. I used unique graphical visualization techniques to examine a 

dataset of 516,691 records of human- and lightning-caused fire-start data from the 

western United States for the 20-year period 1992-2011. Human-caused fires were 

ignited throughout the year and near human populations, while lightning-caused fires 

were confined almost exclusively to the summer and were concentrated in less-populated 

areas. I utilize graphs and maps to demonstrate the benefit of a longer time frame in 

strengthening the findings and describing the underlying interactions among climate, 

society, and biogeography. 
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CHAPTER I 

INTRODUCTION 

Consistent yearly cycles underlie erratic annual features of fire-starts in the 

western United States. Unique methods of data visualization described by Bartlein et al. 

reveal the structure of these events, and also illustrate complex relationships between 

climate, human activity, and biogeography. Spatial and temporal patterns in lightning- 

and human-caused fire-starts are immediately apparent, but further exploration of causes 

and timing of fires uncover another facet: as over two-thirds of the wildfires each year are 

ignited by humans, and not only are climate and environmental factors vital to 

understanding these patterns, but the nature of the human activity that resulted in the 

conflagration becomes pertinent.   

Humans were responsible for 326,453 fires during the twenty-year study period, 

while lightning accounted for only 190,238 fires.  Human-ignited fires occur more 

regularly throughout the year with increasing frequency in notable areas and surrounding 

culturally significant events.  Culture is further evident in regional habits and preferences 

as evidenced by peaks in fires on the first day of hunting season, or accidents related to 

patriotic displays of fireworks. 
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CHAPTER II 

 

METHODS 

I used the Fire Program Analysis Fire-occurrence Database (FPA FOD) 

painstakingly compiled by Short (2013). In an effort to create a comprehensive system of 

reporting that may unify the various wildfire reporting agencies, Short and her team 

combed through millions of records, ultimately presenting 1,594,673 records of wildfires 

in the United States for the period 1992 through 2011. These records were culled from 

federal, state, and local agencies, each of which, despite years of discussion about 

standardization, had its own individual style of reporting, with sporadic interagency 

collaboration. These agencies include the Bureau of Land Management (BLM), Bureau 

of Indian Affairs (BIA), National Park Service (NPS), United States Forest Service 

(USFS), the USFS Monitoring Trends in Burn Severity project (MTBS), the Oregon 

Department of Forestry, and the California Department of Forestry and Fire Protection, 

among many others. Each record contains a unique identifier for each fire, and the 

agency, discovery and containment dates, cause, the size of the fire in acres, latitude and 

longitude. Short describes in detail the process of selecting and cleaning the data in the 

FPA POD database; further processing of the dataset may find inconsistencies, but the 

effort likely would not significantly change the analysis.  

From this large dataset I subset 516,691 records of fire-starts west of the 102nd 

meridian, which includes all or part of the following 15 Western states: Arizona, 

California, Colorado, Idaho, Montana, Nebraska, Nevada, New Mexico, North Dakota, 

Oregon, South Dakota, Texas, Washington, Utah, and Wyoming. In the 20-year period, 

1992-2011, 190,238 fires (about 37% of the total subset) were caused by lightning and 

326,453 fires were started by humans. Short divided the causes of fire starts into 13 
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categories: 1) Lightning, 2) Equipment Use, 3) Smoking, 4) Campfire, 5) Debris Burning, 

6) Railroad, 7) Arson, 8) Children, 9) Miscellaneous, 10) Fireworks, 11) Powerlines, 12) 

Structure, and 13) Missing/Undefined. For initial, broad analysis, I grouped these into 5 

categories: “Non-lightning” includes everything that is not labeled “lightning.” “All 

human” includes the twelve non-lightning categories except “missing/undefined,” which 

could have been caused by lightning. “Deliberate” groups arson and debris burns, and 

“Accidental” describes fires most likely started accidentally – equipment use, smoking, 

campfire, railroad, children, miscellaneous, fireworks, powerlines, and structure fires. 

Finally, I plotted “All” of the fires together. 

Analysis was performed using the statistical programming language R, with 

integrated development environment RStudio. These powerful tools allowed me to plot 

the hundreds of thousands of fire starts by category on graphs and separate maps against 

day and month of the year, to reveal the general spatial and temporal distribution of the 

fire starts. This informed the next step of drilling down into the individual classifications 

to determine which categories of fire are responsible for the patterns seen in the broader 

view.  

With over 500,000 points of fire-starts of two types (human- or lightning-caused), 

decisions had to be made about presentation. Human- and lightning-caused fires were 

plotted in different colors in all but Figure 4. Figure Figure 5 and Figure Figure 6 

involved the most overlap. Since human-caused were more widespread in their 

distribution plotted them first (in blue), with lightning-caused fires (red) on top. All 

points are slightly transparent, allowing high concentration areas to be bold and stand out 

against the areas with less fire intensity. 
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CHAPTER III 

 

RESULTS 

Overview 

 Human-caused fires occurred throughout the year, while lightning-caused fires 

were uncommon between October and May. All fires were greater in number during the 

summer. Humans started fires near population centers and recreation areas; lightning 

typically started fires in higher-elevation areas with lighter population density. All fires 

followed a general seasonal pattern, with more fires in the warm season and fewer fires in 

the cool season, but the numbers and locations varied greatly. These findings all point to 

a strong climatic effect, on lightning especially and the flammability of fuels, as well as 

the influence of human preferences, and available fuels. The graphs, maps, and diagrams 

below clearly outline these circumstances. 

Intra- and interannual variations 

 Each year, fire-starts from all causes followed a seasonal trend, dipping to a low 

frequency in the winter, then spiking up in the summer (see Figure 1). Human-caused 

fires, on average, grew from a low at the beginning of each year, to a sudden peak at the 

4th of July, then a gradual decline toward the end of the year. Memorial and Labor days 

often stood out, and New Year’s Eve was the only anomaly in the annual winter slump in 

human-caused fires. Lightning-caused fires were rare mid-October to mid-May, with 

erratic spikes in frequency throughout the days in the middle of the year. Though no 

years are the same, the plot of the chaotic lightning record can be easily distinguished 

from the somewhat more predictable human-caused fire starts in the below graphs, even 

on a daily or weekly basis. Bumps near the end of each year, and around holidays, were 
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usually driven by humans; spikes in the middle of the year – except 4th of July – could be 

confidently attributed to lightning. 

 While there were more total human-caused fires each year of this 20-year record, 

the most fires caused by lightning on any day of a given year was on average 164 more 

than the most fires on any day of that year caused by humans. When the peak daily 

frequency of human-caused fires in a particular year surpassed that of lightning, it was on 

average by only 67 fire-starts. The highest number of fires that lightning caused on any 

day of this record was 630, on 24 July 1994 – 258 more fires than the most caused by 

humans in that year. The highest number of fires that humans caused in this record was 

434, on 4 July 2003. This happened to be one of the years when the daily maximum of 

human-caused fire-starts outnumbered those of lightning-caused – by a mere 41 fires. 

In the eleven-year National Fire Occurrence Database record, Bartlein et al. 

(2008) found 1993 was the only year during which the peak daily occurrence of human-

caused fires surpassed that of lightning-caused fires. This agreed with the FPA FOD 

dataset, and was the first year in which the peak daily frequency of human-caused fires 

exceeded that of lightning-caused fires. This was the case in only four other years of the 

twenty-year record: 1997, 2003, 2005 and 2007. 

Figure 1. Total lightning- and human-caused fire-starts for each year, 1992-2011, plotted 

by day of the year. 
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Figure 1. (continued).   

   

   

   

   

Figure 1. (continued) 
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Holidays 

Dramatic dips or spikes in the plots of fire-starts throughout any given year were 

often seen in both human- and lightning-caused fires, pointing again to the influence of 

transient weather systems. Certain peaks and valleys in the plots, however, are 

completely cultural. Humans have created their own dispersed-throughout-the year fire 

season: federal holidays.  

The “Independence Day singularity” (Bartlein et al. 2003, 2008) was prominent 

in this dataset (see Figures 2 and 3). In the five years (1993, 1997, 2003, 2005, and 2007) 

that the daily peak frequency of human-caused fires surpassed that of lightning-caused 

fires, that peak was on the 4th of July. In fact, Independence Day had the most human-

caused fires in every year except 1995 and 1996. The increase in the number of human-

caused fires on 1 October of these years is due in large part to a rash of fires across 
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eastern Wyoming.  1 October 1994 also had an abnormally high number of human-

caused fires. These fires were started mainly in and near national forests, and Casper – 

the second largest city in Wyoming. The majority of these fires were unfortunately listed 

as “Missing/Undefined” in the FPA FOD dataset.  

Climate and culture join in the most disastrous way on Independence Day. It is 

not surprising that the combination of fireworks and warm, dry days lead to the most 

human-caused fires in all but two years of the twenty-year record. Lightning-caused fires 

were particularly low in 1993, 1997, 2005, and 2010, but patriotic celebration was not 

dampened by the weather in these years. The total number of fires skyrocketed in 2001, 

because lightning-caused fires happened to occur on Independence Day, boosting the 

otherwise average number of fire starts.  

Other holidays that stood out are Memorial Day and Labor Day, and to a lesser 

extent New Year’s Eve, the first few days of January, Columbus Day, and Veteran’s Day. 

Memorial and Labor days are traditional times for Americans to go camping. The passing 

of a year and beginning of a new one are often celebrated with fireworks and sparklers. 

Fires may peak slightly around the three-day weekends of Columbus and Veteran’s days 

as people sneak in one last camping weekend before winter.  

The beginning of October also marks the beginning of hunting season in 

Wyoming, which may explain the sudden burst in fires around Casper and in national 

forests of eastern Wyoming. These anomalies particularly stand out because they 

occurred at a time of year that fire-starts were otherwise on the decline. Even in 1994-96, 

the days preceding and following 1 October had very few fires. Because the spike in fires  
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Figure 3. All fire-starts on all days of 

each year in the western US, 1992-

2011, by day of year. 

 

 

 
 

Figure 2. All fire-starts in the western 

US, 1992-2011, by month and year. 
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were on the same date each of these three years, and there was nothing unusual around 

this time of year in the lightning-caused fire record, this may be the date  on which 

culture most strongly superseded the effect of climate. 

Specific causes 

Drilling down into the more specific causes revealed campfires, fireworks, and 

children as the driving forces behind the 4th of July fires. Fires listed as “children-caused” 

are more numerous on Independence Day than any other day of the year by far. The 

three-day weekends of Memorial and Labor Day also show peaks in child-caused fire 

starts.  

Specific fireworks-caused fire starts were almost nonexistent until 1997, and were 

therefore likely underreported throughout the twenty years. Fireworks peaked on 4th of 

July, and random other days. New Year’s Eve 1999/2000 – the turn of the millennium – 

showed a small increase in fireworks-caused fires compared to surrounding days and the 

ends/beginnings of other years.  

Fires stemming from campfires spiked at Memorial and Labor days; often the 

number of campfire-caused fires was very close or more on these holidays than 

Independence Day. Columbus Day and Easter also were perceptible amongst the 

campfire-caused fires.  

Though the spikes in fires on the 4th of July did not appear to correlate to the 

particular day of the week 4th of July is observed in any year, it may be fruitful to see if 

falling on a weekend increases the number of fires for other holidays.  

Fires caused by debris burns generally followed an opposite pattern to the 

aforementioned fire cycles. Debris burn fires tended to happen during weekdays, and dip 
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at the holidays. This may point to the “debris burn” classification covering professionally 

administered fires, as opposed to those of private landowners. 

Spatial patterns 

Spatially representing the fire-starts gave a more robust view of the FPA FOD 

dataset, revisiting familiar patterns and uncovering others. Every ignition that occurred 

during the study period is plotted in Figure 4. Though the number of fire-starts varies 

quite a bit, the patterns of human- and lightning-caused fires hold across each year. 

Human-caused fires are focused around popular recreational areas, and those with 

relatively high human population density. Lightning-caused fires were concentrated in 

lower population, higher elevations areas. These patterns are explored in Figure 5 and 

Figure 6.  

 

  

Figure 4. All lightning- and human-caused fire-starts for the study period (1992-2011) 



 

  12 

   

   

   

   

Figure 5. Each point represents one fire sparked during that month in any of the twenty 

years (1992-2011) of the study. Darker areas represent more fire-starts. 

● Lightning-caused ● Human-caused 
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In May, the number of human-caused fires was on a steady increase in urban and 

recreational sections of the West, and lightning-caused fires were gathered along the 

eastern Rockies in Colorado, and along the southeastern edges of the Colorado Plateau. 

The map of June fires shows lightning- and human-caused fires starting to highlight the 

topography of the West; the peaks of mountain ranges stand out in red, shaded below by 

human-caused fires. High population and recreational areas and highways become a dark 

blue. At this point most years, fires became highly concentrated around the perimeter of 

the Colorado Plateau, with the Carrizo, Lukachukai, and Chuska mountains, straddling 

the Arizona-New Mexico border, forming an inverted question mark in the middle. These 

high-elevation areas, as well as the Rocky Mountains, San Juan Range and Mogollon 

Rim bordering the Colorado Plateau are clearly attractive to lightning, while the lower-

elevation rivers and scenic canyons appeal to vacationers. In July, lightning-caused fires 

typically engulfed the eastern sides of the Sierra Nevada and Cascade ranges, the Blue 

Mountains of northeastern Oregon, and up into the Rocky Mountains of Idaho, creating a 

ring around the Columbia Plateau. 

Human-caused fires then spread north and inland across the country, supported by 

the dry conditions and increased onshore flow provided by the poleward retreat of the jet 

stream  and amplification of the southwestern monsoon (Bartlein et al. 2008). The blue 

symbolization on the map gives a false impression of human-caused fires as a river 

sloshing from Oregon, across Idaho, into Utah, then spreading across Arizona. August 

monsoons often brought relief to the outskirts of the Colorado Plateau, as well as 

southeastern Arizona and southern California (Westerling et al. 2003; Bartlein et al. 
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2008). The Basin and Range fire areas became more patchy, while most of California and 

the outskirts of the Columbia Plateau, especially the Idaho Rockies, were still in the thick 

of fire season.  

    

    

    

    

Figure 6. The total number of fire-starts that occurred in each year of the dataset. Each 

point represents one fire sparked during that year. Darker areas represent more fire-starts. 

Notice the seasonal progression across the map. 

 

● Lightning-caused ● Human-caused 
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By October, the lightning-caused fires had practically disappeared, but humans 

were still igniting the areas of the west that are, in many years, still suffering from 

drought  (Bartlein et al. 2008). These regions include the western Sierras, Southern 

California, along the plateaus, and a variety of other recreation areas and outskirts of 

towns. The mountains of the western states are still visible in November, as are the Blue 

Mountains, and Mogollon Rim, but the Black Hills National Forest and Pine Ridge 

Indian Reservation in South Dakota stand out for the first time.  By December, Southern 

California, northern stretches of the western Sierras, southwestern South Dakota and faint 

patches of Arizona and New Mexico comprise most of the areas still suffering from 

human-caused fires. The reprieve is short, as fires already start increasing again in 

January, have spatterings across the Southeast in February, and start filling in the valleys 

again by March. 
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CHAPTER IV 

DISCUSSION 

Overview 

 Although the plots of human- and lightning-caused fire-starts are distinct, (Figure 

1) they accentuate the commonalities between the two phenomena. Plotting these 

phenomena across the geography of the West revealed the more discordant, complex side 

of this dataset.  

 High population density, as mentioned before, had a strong relationship to the 

number of nearby human-caused fires. Humans not only started fires where we live and 

play, but also an ample amount of fires along the routes that take us between the two. 

Especially in the summer months, the fires tracing popular highways are unmistakable. 

The “waterfall” from Oregon to Arizona very closely follows the path of interstates. 

Northeast Oregon, across southern Idaho and into Salt Lake City, Utah, is Interstate 84. 

From there, Interstate 15 cuts across Utah, the northwestern tip of Arizona, and into 

Nevada. Also very clear are the desert interstates leading between southern California 

and Las Vegas, Nevada and cities of central Arizona. Humans also started fires along the 

western edge of the Sierra Nevadas, and along Interstate 5 from California through 

Washington. 

Lightning-caused fires created patterns that were almost completely the opposite 

to those of human-caused fire-starts. Though lightning is most likely to start fires in areas 

with relatively low population density, such as forests and higher elevations along the 

mountains, there are blank areas on the maps where fires are seldom started by either 

humans or lightning. Areas uninhabitable by humans are often deemed as such because 
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they are also uninhabitable by other species, and therefore likely to lack fuel for fires of 

any type (Parisien et al. 2012) . Roads are visible, in some of the maps, but in negative 

space, and always along mountain passes or other canyons, except in southern California. 

Lightning-caused fires were far more common at high elevations; adding an axis for 

altitude in these maps might be useful for analysis, but the record does not contain 

altitudinal data. 

 The interannual variation of fire-starts in this record stand out starkly in the yearly 

maps (Figure 5 and Figure 6), but the overarching story is the same. The number of fires, 

and exact locations varied, but the Colorado and Columbia plateaus still stand out against 

the ponderosa and Doulas fir forests growing around them. Southern California is 

perpetually on fire, and human- and lightning-caused fires take up opposite sides of the 

Sierra Nevada and Cascade mountain ranges (west and east, respectively). The roads 

across deserts and major interstates are highlighted by human-caused fires, and stretches 

of canyon, often sandwiching highways, are negative-space lines through the patches of 

lightning-caused fire locations (particularly in 1997, 1999, and 2006). 

Climate 

 Littell et al. (2009) found that up to 64% of wildfire area burned is directly 

attributable to climate, and when Parisien et al. (2012) removed “percentage fuel” from 

their models – which had been the strongest predictor of wildfire likelihood – it only 

slightly altered their predictions, suggesting the percentage of available fuel was acting as 

a proxy for other variables, such as climate and human settlement.  Ireland et al. (2012) 

found that, while climate is definitely a very strong control on wildfire on a broad scale, 

at finer scales, vegetation seems to be more important.  
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Winter precipitation a year previous to fire season is a strong predictor of area 

burned by wildfire in arid areas. Similarly, the Sierras, southern Rockies, and Great 

Plains best correlated with precipitation for all seasons along with significant year-of-fire 

relationships, suggesting build-up of fuel in these areas can lead to larger fires. 

Precipitation in spring and summer in the California woodland, chaparral, and dry steppe 

dampens the likelihood of extensive fires in the following season  (Littell et al. 2009). El 

Niño can affect the timing of snowmelt in the Pacific Northwest  (Hessl et al. 2004), and 

rainfall effects after an El Niño event last up to eight months in chaparral and evergreen 

forests  (Garcia 2010) , which may explain California’s mild 1998 wildfire season, 

following a very strong El Niño, as well as the moderate fire season in the Pacific 

Northwest in accordance with the subsequent La Niña.  

There are multiple ways that precipitation and high temperatures effect the 

amount and extent of wildfire. Fuels, whether growing in a wet winter or drying out in a 

hot spring, depending on the controlling factor in the area, directly affect the possibility 

of wildfire. Weather provides the moist or stifling conditions, and possibly lighting to 

ignite them. By controlling humans, climate indirectly has an effect on the fire season: 

people are far less likely to partake in outdoor recreation if it is too cold or wet outside  

(Wall et al. 1986) , which means fewer people lighting fires that may get out of control.  

The Mogollon Rim, where the Colorado Plateau drops into central Arizona, 

illustrates well the convergence of climate, topography, biogeography, and human 

behavior. This area is vulnerable to lightning because of its high elevation – up to 600 

meters above Verde Valley – and location in the pathway of storms  (Barbaris and 

Betterton 1996). This mountainous tropical/subtropical desert (Bailey 1996) receives 
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forty to fifty-percent of its precipitation in winter, when storms pass over the state on 

southwesterly winds. These storms help maintain ponderosa pine forests along the Rim’s 

drainage area (Barbaris and Betterton 1996), which may encourage return fires with its 

productive understory and needle litter (Ireland et al. 2012). Finally, human-caused fires 

are a product of the plethora of recreational options along the Rim, such as camping, 

fishing, star-gazing, cycling, kayaking and many others. The combination of storms, fuel, 

and fun kept the number of fires in this area high. 
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CHAPTER V 

 

CONCLUSION 

An examination of maps of wildfires in the western United States reveals 

consistent yearly cycles underlying variable features of each year. Visualizations of the 

data describe the structure of these events, and also illustrate complex relationships 

between climate, human culture, and biogeography. Climate is a strong influence in 

lightning-caused fire, but, since humans are adept at starting fire, population density is 

also a very strong influence on the number and extent of fires annually. For every 

question answered with each visualization method, the project was enriched with further 

challenges. This dynamic view of the spatial and temporal landscape provides an 

excellent base from which to explore the many variables of the wildfire structure in the 

western US. The FPA FOD dataset provided over fifty-percent more records than the 

NFOD utilized by Bartlein et al. (2008), with six (1992-1996) overlapping years. 

Findings regarding the timing and location of fires in the western US were very similar 

across the two datasets. The standardization of reporting procedures to the FPA FOD, if it 

is maintained, will lead to even more and better insights about wildfire. The inclusion of 

many human-caused subcategories allows for analysis of human behavior on a finer scale 

than previously possible. Further interrogation of the spatial and temporal features of 

wildfires may eventually inform wildfire protection techniques, as vacationer and 

resident choices.  
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