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coding and cis-regulatory regions of four genes (CASP1, CD38, EEF1D, and SOCS1) 

differentially expressed in progressors and nonprogressors during the chronic phase of 

infection (Bosinger et. al. 2009). Results indicate these genes are largely conserved in 

these primates and have experienced negative selection. Furthermore, nonprogressors 

do not share derived variants in the promoter regions. Future research should look to 

test the functional significance of distinguishing polymorphisms in regulatory and 

protein-coding regions of genes differentially expressed in nonprogressors and 

progressors. 
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INTRODUCTION 

The AIDS Epidemic 

The acquired immune deficiency syndrome (AIDS) epidemic has undoubtedly 

been one of the most impactful medical tragedies of our time, and is far from over. The 

virus responsible, human immunodeficiency virus (HIV), has taken approximately 39 

million lives worldwide since the disease was identified in 1982 (UNAIDS, 2015a). 

While the total deaths per year have decreased 35% since 2005, there were still 1.5 

million lost in 2013 (UNAIDs, 2015a). In addition, 2.1 million were newly infected in 

2013, totaling 35 million adults and children living with HIV in 2013 (UNAIDS, 

2015b). Unfortunately only 23% of infected children and 37% of infected adults receive 

the treatment they need (WHO, 2015). This profound loss of human life has led to a 

succession of research into treatments and possible cures. Some are effective, and have 

lead to higher quality of life for HIV+ individuals, while many others have failed. Thus 

far the primary objective of most biomedical and public health research has been to 

understand the mechanisms responsible for the chronic innate immune responses 

associated with progression to AIDS in order to find possible points of medical 

intervention, but the search for quality treatments and preventative vaccines is still 

ongoing.  

HIV Infection 

When humans are infected with the retrovirus HIV, the virus preferentially 

bonds to the CD4 molecule on the outside of white blood cells called T cells, which are 

crucial to defending against infections and cancers (Fauci, 1988; Nielsen et al., 2005). 
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In addition to the CD4 receptor, HIV also requires the presence of a chemokine (cell-

signaling) co-receptor such as CXCR4 or CCR5 to properly bind with a T cell (König et 

al. 2008). After binding, the virion fuses with the T cell, releasing its contents (RNA, 

and the enzymes reverse transcriptase, integrase, and protease) into the cell (König et al. 

2008). Once inside, reverse transcriptase begins to transcribe viral RNA into DNA and 

integrase integrates this viral DNA into the host DNA (Fauci, 1988). Through this 

process, HIV takes over the host cell’s transcriptional machinery and uses it to produce 

copies of its RNA and messenger RNA (mRNA). The mRNA is translated into amino 

acids and protease snips the amino acid chain into functional proteins that, when 

combined with the produced viral RNA, will make up the newly produced virions 

(Fauci, 1988). These new copies of HIV then bud from the surface of the host cell and 

circulate in order to infect other cells, thus continuing the viral life cycle (Fauci, 1988).  

This replication occurs throughout the two stages of HIV infection, the acute 

stage and the chronic stage. During the acute stage of HIV infection, the individual is 

often unaware of the quickly replicating virus, though they may experience some flu-

like symptoms. If individuals receive antiretroviral therapy during the acute stage or the 

beginning of the chronic stage, and if they are active in taking care of their health, they 

can often live a normal lifespan without AIDS-related disease (Stages of HIV Infection, 

2013). Regardless if a person receives treatment, the arrival of HIV in the body causes 

an extensive innate immune response during the acute stage of the infection that leads to 

depletion of T cells. 

The innate immune response is the body’s first line of defense against 

infiltration by foreign organisms, and is thought to be evolutionarily older than the 
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adaptive immune system (Levy, 2001). The innate immune response is initiated rapidly-

-in minutes to hours after initial infection. Though it does not provide long-lasting 

protective immunity, the innate immune system offers some low-level defense against 

many pathogens by recruiting immune cells to infection sites, stimulating the 

production of immune-signaling cytokines, activating molecular pathways to identify 

bacteria, activating cells, promoting clearance of dead cells, and triggering the adaptive 

immune response (Levy, 2001). The adaptive immune response involves the 

development of specific immune cells to remember and quickly respond to certain 

pathogens. Humans appear to be unable to develop an HIV-specific immune response, 

resulting in an unchecked innate immune response and high viral replication, eventually 

leading to complete immune dysregulation (Hazenberg et al. 2003). Immune 

dysregulation is an unrestrained, unregulated immune response that is either 

inappropriately intense or ineffectively weak, and involves the depletion of the body’s T 

cells and causes susceptibility to various illnesses. This final stage of immune 

dysfunction is what is known as AIDS (Stages of HIV Infection, 2013).  In the United 

States, a person is classified as having AIDS when their CD4+T cell count is less than 

200 T cells per microliter (Buehler and Berkelman, 1990).  

Current Treatments and Approaches  

Past and current treatments for HIV have targeted several steps during infection 

in order to disrupt viral replication. The first effective treatment for HIV was tested by 

Fischl and colleagues (1987) in a double-blind, placebo-controlled trial. The drug, an 

antiretroviral called azidothymidine (AZT), was found to increase circulating immune T 

cells in HIV+ individuals, slowing down viral replication and disease progression. This 
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new treatment was quickly patented, approved, and dispersed. AZT was initially 

prescribed at extremely high doses, creating heavy pill burdens and side effects such as 

severe anemia, muscle weakness, and liver problems (NIH: AIDSinfo, 2014a). 

Today, combination antiretroviral therapy is the most common treatment for 

HIV infection, and can involve many medications from over 20 drugs that fall into 6 

distinct categories based on how they disrupt HIV replication (De Clercq, 2004; NIH: 

National Institute of Allergy and Infectious Diseases, 2013; Table 1). Each category 

targets the virus at a different step in the infection process. While these medications 

when taken together consistently improve quality of life and slow progression to AIDS, 

they do not cure HIV infection, can have severe side effects, and leave patients 

vulnerable to antiviral resistant strains because they interact directly with the quickly 

mutating virus. 

Table 1: Current antiretroviral treatments. 

Treatment Function 

CCR5 antagonists Target HIV before it enters the cell by interfering with the CCR5 
receptors to which the virus adheres.  

Fusion inhibitors Prevent fusion between the virus and host cell membrane. 

Integrase strand transfer 
inhibitors 

 

Inhibit integrase production. 

Protease inhibitors Prevent protease from creating functional HIV proteins from amino acid 
chains. 

Nucleotide reverse 
transcriptase inhibitors 

Appear to the cell and viral enzymes to be free building blocks of DNA 
but actually stunt a HIV DNA chain when attached. AZT was the first 

NRTI. 

Non-nucleotide reverse 
transcriptase inhibitors  

 

Directly attach to reverse transcriptase and prevent it from converting 
HIV RNA to HIV DNA. 
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Despite the development of many effective antiretrovirals, the drugs can often 

cause serious medical side effects and if not taken properly can become ineffective 

because of the development of viral resistance. Side effects include occasional 

dizziness, swelling of the mouth, tongue or liver damage, bone loss, and abnormal fat 

distribution (NIH: National Institute of Allergy and Infectious Diseases, 2009). When a 

combination of different HIV medicines or HIV medicine and another drug interfere 

with each other’s potency, or a person does not take medication consistently and exactly 

as prescribed, the drugs can be only partially effective and wipe out most but not all of 

the virus (Clavel and Hance, 2004; NIH: National Institute of Allergy and Infectious 

Diseases, 2010). Some strains of HIV mutate very quickly, and all strains have severely 

short generations compared to humans, which allows the virus to become resistant to 

the medicine before humans can adapt to the virus. If a virus strain has a genetic 

mutation that confers resistance to the antiretroviral drug combination, that strain will 

not be wiped out and will continue to replicate, surpassing the other strains and making 

that drug combination powerless against the growing infection (Clavel and Hance, 

2004; NIH: AIDSinfo, 2014b). The treatments medical researchers have developed are 

effective at slowing the progression of the disease, but are vulnerable to drug resistance 

at a high rate (50% of infected individuals carry a strain that is resistant to at least one 

drug) and mainly target viral replication post-infection (Clavel and Hance, 2004). 

As an alternative or complement to tackling the virus, many researchers have 

investigated possible immunotherapies that stimulate the host’s immune system to 

respond to HIV either before or after infection. Shiver and colleagues (2002) found that 

they could generate HIV-specific immune cells with their vaccine, which prevented 
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illness in nonhuman primate models up to a year after initial infection. However, in later 

human trials the vaccine was not found to be effective in preventing or controlling viral 

replication (Buchbinder et al., 2008). There are several other types of immunotherapies 

which attempt to regulate the functioning of the host immune system that have been 

adapted from cancer treatments such as cytokine therapy, adoptive T cell therapy, and 

dendritic cell vaccines. While these three have not had great success in clinical trials 

(Lieberman et al., 1997), one type of immunotherapy appears more promising. Some 

researchers are attempting to block two genes that inhibit immune cell activation in 

order to activate more immune cells for antiviral responses (Velu et al., 2009). While 

this approach may help the immune system respond, the development of AIDS is 

closely tied to chronic immune activation and could also be triggered by this type of 

treatment (Smith and Housseau, 2015). 

Through the long and arduous process of medical intervention research there 

have been and continue to be many setbacks, but those setbacks have brought advances 

in technology and have expanded knowledge of mechanisms of disease pathogenesis 

(Robb, 2011). Much of this research has sought to develop medical interventions by 

examining some nonhuman primates (NHPs) as models of human immune response 

(McChesney and Miller, 2013). NHPs such as rhesus macaques (Macaca mulatta), 

known as progressors, develop immunodeficiency and AIDS-like symptoms when 

infected with simian immunodeficiency virus (SIV), making them useful models for 

testing HIV therapies and vaccines (Letvin et al., 1985). In contrast to progressors, there 

are four types of species that can evade progression to AIDS: nonprogressor species 

that don’t experience chronic phase T cell loss or progression to AIDS (Silvestri et al. 
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2007), tolerator species that are susceptible to experimental infection with HIV-2 and 

experience T cell loss without progression to AIDS (Locher et al. 2002), species with 

SIV but no known progression to AIDS (Etienne et al. 2012), and species with no 

known SIV infection (Appendix A). While research on the cellular mechanisms of HIV 

and SIV infection in progressor species has informed the development of antiretroviral 

interventions, this research only explores the proximate mechanisms of infection and 

progression to AIDS (i.e. how it occurs). To explore the ultimate evolutionary 

explanations of vulnerability to infection and progression to AIDS (i.e. why it exists in 

some species), we can examine nonprogressor species, which can tolerate SIV infection 

without chronic immune activation or triggering viral resistance. Certain nonprogressor 

species such as sooty mangabeys (Cercocebus atys) are closely related to progressors 

like rhesus macaques.  

Research into an adaptive explanation for the nonprogressor immune response 

could help identify mechanisms associated with nonprogressors’ natural immunity to 

SIV and possibly lead to future HIV treatments. An adaptive explanation suggests there 

was at one time heritable variation in nonprogressor ancestors’ ability to respond to 

lentiviruses, and that mutations arose that allowed some individuals to prevent 

progression to simian AIDS. These individuals would survive more and reproduce more 

than the individuals who succumbed to AIDS, eventually leading to the widespread 

nonprogressor immune type that has somehow evaded viral resistance. By comparing 

closely related species for variation in susceptibility to disease, we can identify 

physiological mechanisms that appear to be operating differently and may have allowed 

nonprogressor ancestors to differentially survive. We may be able to connect these 
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different proximate mechanisms to the specific gene mutations that control them by 

searching for signs of positive selection in genes that contribute to these immune 

mechanisms. Testing an adaptive explanation for the nonprogressor immune profile 

could help identify a genetic basis for their tolerance of SIV and further our 

understanding of how natural selection shapes immune responses in general.  

Progressor versus Nonprogressor Responses 

In order to investigate an adaptive explanation for nonprogressor tolerance to 

SIV, it is important to first understand the basic molecular mechanisms that distinguish 

progressor and nonprogressor immune responses. While all primates susceptible to 

HIV/SIV experience high amounts of viral replication, short lifespan of infected cells, 

loss of T immune cells, and extreme innate immune activation during the acute phase of 

infection, research has identified key differences in chronic disease progression 

(Chahroudi 2012). The most relevant difference is that even though nonprogressors 

present with high levels of virus replication, immune dysregulation is almost 

nonexistent during the chronic stage (Silvestri et al. 2007). In sooty mangabeys and 

African green monkeys (Chlorocebus sabaeus), innate and adaptive immune responses 

normalize after acute infection (Bosinger et al. 2009, Jacquelin et al. 2009). However, 

in humans, rhesus macaques, and chimpanzees, innate and adaptive immune reactions 

can remain elevated until death or intervention (Silvestri et al. 2007). By avoiding 

chronic immune activation, nonprogressors may maintain T cell levels, prevent 

bystander immunopathology, and preclude dysregulation of critical immune cell subsets 

and tissues. It is not yet clear which specific mechanisms prevent chronic immune 

activation in nonprogressors.  
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One possible mechanism may be through the regulation of interferon levels. 

Interferons (IFN) are a group of signaling proteins that are involved in antiviral immune 

responses. Though IFN appears to increase in both progressors and nonprogressors 

during the acute stage of infection, IFN sharply decreases in nonprogressors during the 

chronic stage of infection (Bosinger et al. 2009, Jacquelin et al. 2009). In contrast, 

progressor species seem to sustain this high level of IFN throughout the chronic phase, 

which may contribute to chronic immune activation and disease progression (Silvestri et 

al. 2007).  

A second possible mechanism for preventing chronic immune activation could 

be the limitation of the movement of the virus from the intestine to full-body 

circulation, called microbial translocation. Nonprogressors are able to maintain their 

mucosal immune environment, which protects the integrity of the gut mucosal barrier. 

In acute SIV infection of sooty mangabeys and African green monkeys, mucosal helper 

T cell populations decrease about 50 to 90%, but this depletion does not continue. 

Though the blood and tissues of natural hosts usually contain only low levels of 

microbial products, researchers have been able to mimic microbial translocation by 

injecting bacteria in SIV-infected AGMs and induce increased immune activation 

(Chahroudi 2012).  

Specific immune regulatory pathways might also be responsible for the rapid 

resolution of immune activation in nonprogressor species. These pathways could 

include those involved in programmed cell death, cell signaling, and microbial 

translocation. Mutations in the genes that control these pathways, which distinguish 

nonprogressors from progressors, could be the result of coevolution with ancestral 
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forms of SIV, and may help identify candidates for immunotherapy and other medical 

interventions. In order to investigate an adaptive explanation for the nonprogressor 

immune profile, we can search for signs of positive selection in genes that contribute to 

these pathways. 

To do this we must first characterize the evolutionary history underlying the 

mechanisms that leave species vulnerable to HIV and SIV, as well as the evolutionary 

history of the mechanisms that confer immunity to SIV in some monkey species. 

Research indicates that the primary strain of immunodeficiency virus that infects 

humans, HIV-1, resulted from multiple cross-species transmissions of SIV from 

chimpanzees to humans (Compton et al. 2013). The initial transmissions of SIV from 

nonhuman primates to humans most likely occurred from blood to blood contact during 

bushmeat preparation (Marx et al. 2001). SIV can be found in over 30 species of 

African NHPs, and is nonpathogenic and non-lethal in most species that can be infected 

(Klatt et al. 2012). Notable nonprogressor species are sooty mangabeys, African Green 

monkeys (AGM), mandrills (Mandrillus sphinx), and Greater Spot-nosed monkeys 

(Cercopithecus nictitans), among others, while progressors include macaques and some 

chimpanzees (Pan troglodytes) (Klatt et al. 2012). Apetrei and colleagues (2005) 

originally hypothesized that the specific viral strains that trigger AIDS-like immune 

dysregulation in progressors are intrinsically pathogenic compared to SIV strains that 

infect nonprogressors. However, experimental infection of progressor rhesus macaques 

with sooty mangabey and African green monkey SIV strains (SIVsmm and 

SIVagm.sab) still resulted in progression to simian AIDS (Klatt et al. 2012). A more 

promising direction of research is the coevolution hypothesis, which suggests some Old 



 

11 
 

World monkeys have coevolved with lentiviruses ancestral to SIV for millions of years 

and may have evolved adaptations to allow them to coexist with the virus. Genetic 

research has indicated that macaques, African Green monkeys, and colobus monkeys 

(Colobinae) are just a few of the species whose genomes display signs of selection by 

environments inhabited by ancient lentiviruses ancestral to SIV (Compton et al. 2013). 

This research has dated the emergence of some simian lentiviruses to 10 million years 

ago, allowing nonprogressor species ample time to evolve immune adaptations. If 

nonprogressors have adapted to SIV strains, we may be able to use this evolutionary 

pattern to identify molecular mechanisms that confer immunity to SIV, furthering our 

knowledge of how natural selection shapes tolerance to viral infection through 

coevolution. 

Research Objectives 

Researchers have identified several proximate mechanisms that differ between 

progressors and nonprogressors and may contribute to differential survival, but have 

less thoroughly investigated an adaptive explanation for the nonprogressor immune 

response. By testing immune genes for signs of selection and variation that 

differentiates nonprogressors from progressors, it may be possible to identify the 

specific pathways responsible for the prevention of chronic immune dysregulation and 

further understand the role coevolution with viruses plays in the evolution of immune 

tolerance.  

To begin this process, three key evolutionary methods were utilized to examine 

this variation in 4 immune genes: phylogenetic analyses, tests for positive selection in 
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the protein-coding regions by estimating the ratios of nonsynonymous to synonymous 

rates (dN/dS), and analysis of transcription factor binding sites in regulatory regions.  

Phylogenetic analyses were used to infer gene trees from protein-coding regions 

of four genes (CASP1, CD38, EEF1D, SOCS1) for the purpose of identifying aberrant 

patterns in the gene’s evolutionary history when compared with the species’ 

evolutionary history (Tamura et al. 2007). If the gene tree did not match the species 

phylogeny, this might suggest that selection had influenced the gene’s evolutionary 

history.  

In order to further analyze the four genes for signatures of selection, ratios of 

nonsynonymous to synonymous rates (dN/dS) were computed for the protein-coding 

regions. The building blocks of DNA (nucleotides) that make up the protein-coding 

region are read in sets of three called codons. These codons are translated into amino 

acids to build proteins, directly affecting cell function. A nucleotide substitution can be 

beneficial, deleterious, or neutral, depending on how it changes the amino acid it codes 

for. Because there is a redundancy in the code, i.e. different combinations of nucleotides 

in a codon can produce the same amino acid, some substitutions do not change the 

amino acid and thus have a neutral effect on the encoded protein and its function; this is 

called a synonymous substitution. In contrast, some substitutions can change the amino 

acid, protein, and sometimes the function of the protein produced. These substitutions 

are known as nonsynonymous substitutions, and can be beneficial, neutral, or 

deleterious. Beneficial substitutions increase the reproductive fitness of an individual in 

a specific environment, and may become more common in the population due to natural 

selection. Neutral substitutions do not affect the reproductive fitness of an individual in 
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a specific environment, and can be fixed or lost in a population through neutral 

evolution. Deleterious substitutions decrease the fitness of individuals in a specific 

environment, and thus are selected against. A protein-coding sequence that has not been 

shaped by natural selection will have about the same amount of nonsynonymous and 

synonymous substitutions and thus will have a dN/dS close to 1. Alternatively, a 

protein-coding region shaped by positive selection will have more nonsynonymous 

substitutions than synonymous substitutions and thus will have a dN/dS greater than 1. 

A protein-coding region shaped by negative selection will have more synonymous than 

nonsynonymous substitutions and thus dN/dS will be less than 1. In order to assess 

signatures of positive selection in the 4 target genes, the maximum likelihood of two 

ratio models were compared. The fixed ratio model, M0, assumed dN/dS (or ω) was the 

same across all branches of the species tree. M1 is known as a free ratio model, as it 

allows ω to vary across branches. To assess whether selective pressures have 

differentially affected nonprogressor species, estimated ω values were plotted on 

species phylogeny and compared for each branch. By comparing the dN/dS values of 

immune genes CASP1, CD38, EEF1D, and SOCS1 protein-coding regions in primate 

species, we may be able to detect sequences shaped by natural selection. 

Finally, promoters (a type of regulatory region) were analyzed for variation in 

the transcription factor binding sites (TFBS). A promoter is a part of the genome that 

usually sits upstream of a gene, controlling how much of a gene is produced, or how 

much is "expressed." The promoters of the target genes may be indirectly affecting the 

differential immune profiles observed in primates by influencing how many copies of a 

gene are produced (gene expression) rather than directly changing the function of the 



 

14 
 

produced protein. Transcription factors are proteins that bind to a TFBS to initiate the 

process of transcribing DNA into mRNA so it later can be translated into protein. If 

there is variation in these sites of attachment, it could affect how the gene is expressed 

and possibly lead to distinct immune response profiles. Variation in the TFBS that 

impacts immune function and differentiates nonprogressors from progressors could 

indicate possible sites of positive selection that possibly play a role in nonprogressor 

tolerance to viral infection. 

Though the physiological mechanisms that differentiate nonprogressors from 

progressors are well characterized, there has been less research exploring an adaptive 

explanation for the nonprogressor immune response. This approach stands to further 

elucidate the role lentiviruses have played in the development of primate immune 

systems. It may eventually be possible to identify candidate pathways for medical 

interventions, but the first step in the evolutionary approach is to search for signs of 

selection and mutations that distinguish nonprogressors from progressors in the genes 

that control important immune mechanisms. 

Objectives and Hypotheses  

Objective 1: In order to detect strong convergent evolution in nonprogressor 

genes, gene trees were inferred and compared to known species phylogenies. 

● H1: Nonprogressor species form a monophyletic clade excluding progressor 

species. 

● H2: Gene trees reflect known species relationships. 

● H0: Gene tree topology does not reflect known species relationships or 

progressor/nonprogressor status. 
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H1 would indicate very strong convergent or parallel evolution in nonprogressor species. 

H2 could suggest there were only a few sites that distinguished all nonprogressors from 

progressors, or that the protein-coding sequences are different due to species divergence 

and the genes are not appropriate targets. H0 would suggest untested factors are 

responsible for differences between these sequences. 

Objective 2: Fixed and free models of ratios of nonsynonymous to synonymous 

rates were compared in order to identify sequences with signs of positive selection. 

● H1: The free ratio model (M1) better fits the data than the fixed ratio model 

(M0), and all nonprogressor species have a dN/dS greater than 1 compared to 

progressor species.  

● H2: The free ratio model (M1) better fits the data than the fixed ratio model 

(M0), but variation in dN/dS does not reflect progressor/nonprogressor status.  

● H3: The fixed ratio model (M0) better fits the data than the free ratio model 

(M1). 

H1 would suggest the gene in question has evidence suggesting positive selection for in 

nonprogressor species as opposed to progressor species, supporting an adaptive 

explanation for nonprogressor immune type.  H2 would suggest the gene was not shaped 

by positive selection for nonprogressor immune response but instead was influenced by 

untested factors. H3 would suggest natural selection shaped the gene similarly in all 

tested species. A dN/dS greater than 1 would be a sign positive selection shaped the 

gene. If dN/dS was fixed near 1, this would suggest neutral evolution shaped the gene 

rather than positive or negative selection. If dN/dS was fixed near 0, this would suggest 

that negative selection shaped the gene. 
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Objective 3: Promoter sequences were compared to identify substitutions that 

distinguish nonprogressor transcription factor binding sites from progressor TFBS. 

● H1: Mutations in TFBS distinguish nonprogressors from all progressors.  

● H2: Mutations in TFBS reflect known species relationships. 

● H0: Mutations in TFBS do not reflect known species relationships or 

progressor/nonprogressor status.  

H1 would indicate mutations in TFBS could be responsible for the differential gene 

expression and thus contrasting immune responses in progressors and nonprogressors.  

H2 would indicate species divergence drove variations TFBS, not natural selection for 

nonprogressor immune response. Results consistent with H0 would suggest variation in 

TFBS is the result of untested factors, not evolutionary history or natural selection for 

nonprogressor immune response.  
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METHODS 

Gene Choice  

SOCS1, EEF1D, CASP1, and CD38 were chosen from Bosinger and colleagues 

(2009), which identified these genes as differentially expressed in nonprogressors and 

progressors during the chronic phase of SIV infection. Rotger et al. 2011 investigated 

the same genes in human progressors and viral nonprogressors (VNP), confirming the 

genes were also expressed differently in these two groups. Differential expression of 

protein-coding genes is usually controlled through regulatory regions like promoters 

and can alter the function of the protein and may affect fitness. The four genes of 

interest this study investigated are detailed in Table 2. 

Table 2. Function and expression profile of target genes used in the present study 

(Bosinger et al. 2009). 

Name Expression profile in 
progressor (M. mulatta) 

Expression profile in 
nonprogressor (C. atys) 

Function 

Caspase 1 (CASP1) Increased Reduced Induces cell apoptosis 

Cluster of 
differentiation 38 
(CD38) 

Increased Reduced Facilitates cell adhesion, 
signal transduction and 
calcium signaling 

Eukaryotic Translation 
Elongation Factor 1 
Delta (EEF1D) 

Reduced Increased 
   

Following HIV infection, 
stimulates repression of 
translation of host cell 
proteins and enhances 
translation of viral proteins. 

Suppressor of cytokine 
signaling 1 (SOCS1) 

Reduced Increased Regulates T cell function and 
limits inflammatory responses 
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Each of these genes encodes a protein that performs a function in regulating or 

modulating immune responses. Two of the genes display reduced expression in 

progressors and increased expression in nonprogressors: SOCS1 and EEF1D (Bosinger 

et al. 2009; Table 2). SOCS1 plays a role in regulatory T cell function and limits 

inflammatory responses. If progressors have lower SOCS1 expression they may have 

more trouble controlling the release and subsequent infection of immune cells 

(Takahashi et al. 2011). EEF1D was examined because of its role in HIV pathogenesis. 

The protein encoded by EEF1D represses host cell response and enhances HIV 

replication within individual cells (Warren et al. 2012). Thus it is counterintuitive that 

EEF1D expression was found to be increased in nonprogressors. If EEF1D functions 

similarly in progressors and nonprogressors when expressed, then increased expression 

would increase SIV replication, furthering disease progression. This would suggest 

there may be a mutation in nonprogressor EEF1D—as well as the gene’s promoter 

region—that alters the function of the gene. An alternative scenario is that for some 

unknown reason increased EEF1D expression is beneficial to nonprogressors. 

The other two genes, CASP1 and CD38, display reduced expression in 

nonprogressors and increased expression in progressors (Bosinger et al. 2009; Table 2). 

CASP1 was studied for variations between progressors and nonprogressors because of 

its role in immune exhaustion. CASP1 encodes a protein that is involved in inducing T 

cell apoptosis in infected cells (Stasakova et al. 2005). The increased expression of 

CASP1 thus may be partly responsible for the T cell exhaustion observed in SIV-

infected progressor species. The final gene studied, CD38, is also expressed at higher 

levels in progressors. CD38 produces a membrane protein that helps regulate 
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intracellular signaling, and the loss of this gene is associated with impaired immune 

responses and HIV pathogenesis (Malavasi et al. 2008). If reduced expression of CD38 

contributes to HIV pathogenesis in humans but nonhuman primate progressors display 

increased expression, then perhaps there are mutations in CD38 that account for 

difference in immune response between closely related species. 

Gene Alignments 

The protein-coding sequences for SOCS1, EEF1D, CASP1, and CD38 were 

obtained from a genome database, Ensembl release 79 (Cunningham et al. 2015); the 

longest transcripts were used. Only available primate and rodent taxa with complete or 

near-complete sequence data were included in the alignments. Based on these criteria 

for inclusion, ClustalW (Goujon et al. 2010; Kearse et al. 2012) version 2 (an alignment 

program) was used to create one alignment per gene for each publically available 

primate species. The protein-coding region of CASP1 (1203 bp) was aligned in 9 

species, the protein-coding region of CD38 (933 bp) in 12 species, the protein-coding 

region of EEF1D (1983 bp) in 7 species, and the protein-coding region of SOCS1 (648 

bp) in 9 species (Table 3). The alignments were manually edited to enforce codon 

boundaries and remove stop codons. 
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Table 3: Promoter, protein-coding, and amino-acid sequence alignments.  

(length in base pairs (bp) and amino acids (aa), *denotes nonprogressors, underline 

denotes progressors). 

Name Promoter Protein-coding Region Amino Acid 

Caspase 1 
(CASP1) 

Homo sapiens 
Pan troglodytes 
Pongo abelii 
Papio anubis 
*Mandrillus leucophaeus 
Macaca fascicularis 
*Chlorocebus sabaeus 
*Cercocebus atys 

Homo sapiens 
Pan troglodytes 
Gorilla gorilla 
Nomascus leucogenys 
Pongo abelii 
Papio anubis 
*Chlorocebus sabaeus 
Tarsius tarsier 
Mus musculus 

Homo sapiens 
Pan troglodytes 
Gorilla gorilla 
Nomascus leucogenys 
Pongo abelii 
Papio anubis 
*Chlorocebus sabaeus 
Tarsius tarsier 
Mus musculus 

438 bp 1203 bp 401 aa 

Cluster of 
differentiation 38 
(CD38) 

Homo sapiens 
Pan troglodytes 
Macaca mulatta 
Macaca fuscata 
*Chlorocebus sabaeus 
Saimiri boliviensis 
 

 Homo sapiens 
Pan troglodytes 
Gorilla gorilla 
Pongo abelii 
Nomascus leucogenys 
Papio anubis 
Macaca mulatta 
*Chlorocebus sabaeus 
Callithrix jacchus 
Otolemur garnettii 
Rattus norvegicus 
Mus musculus 

Homo sapiens 
Pan troglodytes 
Gorilla gorilla 
Pongo abelii 
Nomascus leucogenys 
Papio anubis 
Macaca mulatta 
*Chlorocebus sabaeus 
Callithrix jacchus 
Otolemur garnettii 
Rattus norvegicus 
Mus musculus 

487 bp 933 bp 311 aa 

Eukaryotic 
Translation 
Elongation Factor 
1 Delta (EEF1D) 

Homo sapiens 
Pan troglodytes 
Gorilla gorilla 
Nomascus leucogenys 
Papio anubis 
Macaca nemestrina 
*Cercocebus atys 
*Chlorocebus sabaeus 

Homo sapiens 
Pan troglodytes 
Gorilla gorilla 
*Chlorocebus sabaeus 
Otolemur garnettii 
Rattus norvegicus 
Mus musculus 

  Homo sapiens 
Pan troglodytes 
Gorilla gorilla 
*Chlorocebus sabaeus 
Otolemur garnettii 
Rattus norvegicus 
Mus musculus 

328 bp 1983 bp 663 aa 

Suppressor of 
cytokine signaling 
1 (SOCS1) 
                  

Homo sapiens 
Gorilla gorilla 
*Chlorocebus sabaeus 
Callithrix jacchus 
Rattus norvegicus 
Mus musculus 

 Homo sapiens 
Pan troglodytes 
Pongo abelii 
Papio anubis 
Macaca mulatta 
*Chlorocebus sabaeus 
Callithrix jacchus 
Otolemur garnettii 
Rattus norvegicus 

Homo sapiens 
Pan troglodytes 
Pongo abelii 
Papio anubis 
Macaca mulatta 
*Chlorocebus sabaeus 
Callithrix jacchus 
Otolemur garnettii 
Rattus norvegicus 

116 bp 648 bp 216 aa 
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Phylogenetic Analyses 

To test Objective 1, phylogenetic trees were inferred using Molecular 

Evolutionary Genetics Analysis (MEGA; Tamura et al. 2011) version 6.06 for CASP1, 

CD38, EEF1D, and SOCS1 protein-coding sequences. Based on Bayesian Information 

Criterion (BIC), the best DNA substitution model for all the protein-coding sequence 

alignments was identified as Tamura’s 3-parameter model (T92) (Lio and Goldman, 

1998). Mouse (Mus musculus) and rat (Rattus norvegicus) were used as outgroups when 

available. Maximum likelihood methods were used to infer gene trees for each gene 

alignment with 10,000 bootstrap replicates. The bootstrap method estimates the 

confidence of each grouping of species (clade) on a phylogenetic tree by generating 

many different possible trees (replicates) and calculating the proportion of trees in 

which each clade appears (Soltis and Soltis, 2003). Inferred tree topologies were 

compared to known species phylogenies to assess variation in gene evolutionary 

history. 

dN/dS Analyses 

In order to test Objective 2, PAMLX (Xu et al. 2013; Yang 2007) v4.8’s codeml 

program was used to estimate the ratios of nonsynonymous to synonymous rates 

(dN/dS) in the protein-coding regions of CASP1, CD38, EEF1D, and SOCS1. Known 

species phylogenies (Glazko and Nei, 2003) were converted to Newick format to be 

used as input trees (Figure 1A-D). In order to assess signatures of positive selection in 

the protein-coding regions of these genes, the maximum likelihood of the free ratio 

model (M1) was compared to that of the fixed ratio model (M0). To assess whether 

selective pressures have differentially affected nonprogressor species, estimated ω 
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values were plotted on species phylogeny and compared for each branch. An ω greater 

than 1 would indicate the gene was shaped by positive selection along that branch, less 

than 1 would indicate negative selection, and an ω equal to 1 would indicate neutral 

evolution shaped the gene in question. 

 
Figure 1: Known species phylogeny.  

Phylogenetic trees demonstrating known species phylogeny (Glazko and Nei, 2003) 

were trifurcated for dN/dS analyses and compared with gene trees for phylogenetic 

analyses (*denotes nonprogressors, underline denotes progressors). (A) Phylogeny for 

CASP1 species. (B) Phylogeny for CD38 species. (C) Phylogeny for EEF1D species. 

(D) Phylogeny for SOCS1 species. 

Promoter Alignments 

Human promoter sequences for CASP1, EEF1D, and SOCS1 were obtained 

from the genomics research supply company SwitchGear Genomics (accessed April 
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2015). In order to identify TFBS in CD38 promoters, I used the chimpanzee promoter 

sequence published by Ferrero et al. 2004. These promoters were used to identify 

promoters from other species using NCBI’s BLAST tool, which compares a query 

sequence to a genome database to identify similar sequences 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Only publically available primate and rodent 

species with near-complete orthologous sequences with high conservation were 

included in the alignments. Based on these criteria for inclusion, ClustalW version 2 

(Goujon et al. 2010; Kearse et al. 2012) was used to create one alignment per gene for 

available primate species. The CASP1 promoter (438 bp) was aligned in 8 species, the 

CD38 promoter region (487 bp), the EEF1D promoter (328 bp) in 8 species, and the 

SOCS1 promoter (116 bp) in 6 species (Table 3).  

Promoter Analyses 

To fulfill Objective 3, Consite was used to identify human transcription factor 

binding sites in promoters for CASP1, EEF1D, and SOCS1 (Sandelin et al. 2004). Only 

TFBS with a cut-off score of at least 95% were used. TFBS in the isolated CD38 

chimpanzee promoter were found in Ferrero et al. 2004. For each gene, identified TFBS 

were compared across progressor and nonprogressor promoter alignments at the same 

position in each sequence.  

Amino Acid Alignments 

The protein-coding regions of the genes were translated using Geneious and the 

translations were aligned using the ClustalW program (Goujon et al. 2010; Kearse et al. 

2012) to create one alignment per gene. The translated protein-coding region of CASP1 
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(401 aa) aligned in 9 species, CD38 (311 aa) aligned in 12 species, EEF1D (633 aa) 

aligned in 7 species, and SOCS1 (216 aa) aligned in 9 species (Table 3). 

Amino Acid Analyses 

Amino acid alignments were used to verify the validity of Ensembl’s human 

protein-coding sequences by comparing them to UniProtKB’s protein sequences for 

each gene (UniProt Consortium, 2014). UniprotKB’s sequence version 1 was used for 

CASP1, sequence version 2 for CD38, sequence version 2 for EEF1D, and sequence 

version 1 for SOCS1.  
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RESULTS 

Phylogenetic Analyses 

In order to examine the evolutionary relationships of each gene in publically 

available primate species (Objective 1), gene trees were inferred and compared to 

known species trees. 

CASP1 

The data demonstrate that the CASP1 gene tree (Figure 2A) reflects the species 

tree (Figure 1A). Catarrhines (H. sapiens, G. gorilla, P. troglodytes, P. abelii, N. 

leucogenys, P. anubis, and C. sabaeus) formed a monophyletic clade, and the bootstrap 

confidence intervals are all 85 or above. A bootstrap above 85 indicates high confidence 

in the inferred relationship between sequences (Soltis and Soltis, 2003). This supports 

H2 and rejects the other hypotheses, suggesting the C. sabaeus sequence does not have a 

significant number of substitutions that distinguish it from nonprogressor sequences.  

CD38 

Phylogenetic analyses show that the CD38 gene tree (Figure 2B) reflects the 

species tree (Figure 1B), with two caveats. First, while the position of P. anubis branch 

is consistent with known species relationships, the extant P. anubis branch is much 

longer than any of the other Catarrhine branches. Greater branch length indicates 

greater divergence from the last common ancestor of P. anubis and M. mulatta. This 

would suggest that the version of CD38 found in P. anubis is not closely related to the 

form found in M. mulatta, which is notable as P. anubis tolerate SIV but M. mulatta are 

progressors (Appendix A). Furthermore, tolerator P. Anubis and nonprogressor C. 
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sabaeus do not form an exclusive clade, rejecting H1. Second, the Otolemur garnettii 

sequence is more closely related to that of rodents than primates. Bootstrap confidence 

intervals were all above 70. Overall, the majority of this tree supports H2, but because 

these two aberrations support H0 it is likely that untested factors were responsible for 

variations from known species relationships.   

EEF1D 

Phylogenetic data demonstrate that the EEF1D gene tree (Figure 2C) reflects 

the species tree (Figure 1C). The Catarrhines form a monophyletic clade, as do the 

rodents. The bootstrap confidence intervals are all 100, aside from that of the Pan 

troglodytes and Homo sapiens clade, which was 46. This suggests that the chimpanzee 

and human clade may not be valid and one of the sequences may be more closely 

related to the gorilla sequence. This gene tree supports H2, suggesting the nonprogressor 

C. sabaeus sequence does not have a significant about of derived substitutions 

distinguishing it from progressor sequences. 

SOCS1  

While phylogenetic data demonstrate the SOCS1 gene tree (Figure 2D) reflects 

the species tree (Figure 1D) in the ape clade and the rodent clade, there are a number of 

differences among other species. First, according to the gene tree, C. jacchus sequence 

diverged from the common ancestor with the ape clade after the clade diverged from the 

common ancestor with the Old World monkey clade. However C. jacchus is a 

Callitrichid and in the known species phylogeny is sister to the Old World monkey 

clade. This suggests the C. jacchus sequence is more closely related to the ape 

sequences than either are related to the Old World monkey sequences. However, the 
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confidence interval for this node was only 44, suggesting this inferred relationship may 

not be accurate. Next, the Old World monkey sequences formed a monophyletic clade 

with a high confidence interval of 99, but the analysis was unable to resolve the 

relationships within this group. According to the known species phylogeny, P. anubis 

and M. mulatta are more closely related to each other than either are to C. sabaeus 

(Figure 1D). These data support H0, as the progressors and nonprogressor sequences 

appear to have a relationship that does not reflect the known species relationships nor 

progressor/nonprogressor status.  
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Figure 2: Gene trees inferred using maximum likelihood methods with 10,000 

bootstrap replicates.  

Bootstrap values are plotted on the branches and branch lengths are to scale (scale bar 

denotes nucleotide substitutions per site; *denotes nonprogressors; underline denotes 

progressors). (A) Inferred phylogeny for CASP1 protein-coding sequences. (B) Inferred 

phylogeny for CD38 protein-coding sequences. (C) Inferred phylogeny for EEF1D 

protein-coding sequences. (D) Inferred phylogeny for SOCS1 protein-coding 

sequences. 

dN/dS Analysis 

To test for signatures of positive selection in the protein-coding regions, the 

maximum likelihood of a fixed ratio (M0) and free ratio (M1) model of dN/dS variation 

were compared for each gene. The likelihood that the ω of CASP1, CD38, and EEF1D 

vary between species was significantly (p<0.05) greater than the likelihood of dN/dS 
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being the same across branches. In contrast, the likelihood that the ω of SOCS1 was 

same across branches was not significantly different from the likelihood that ω varied 

across species (Table 4). 

Table 4: Statistical analyses comparing maximum likelihood for each model in 

each gene. 

Gene Model lnL ω (dN/dS) LRT=2(l1-
l0) 

df=np1-
np2 

p value 

CASP1 M0 -4150.761196 0.43620 27.39 14 0.017119 

M1 -4137.065689 See Fig. 3A 

CD38 M0 -3826.573694 0.56079 1634.63 21 0.00001 
 

M1 -3009.260193 See Fig. 3B 

EEF1D M0 -5124.545955 0.13335 35.16 10 0.000117 
 

M1 -5106.967187 See Fig. 3C 

SOCS1 M0 -1295.005876 0.01711 13.58 14 0.481829 
 

M1 -1288.218271 See Fig. 3D 

CASP1 
The free ratio model (M1) is a significantly (p=0.01712) better fit to CASP1 than 

the fixed ratio model (M0) (Table 4). All extant branches had ω less than 1, indicating 

the extant sequences showed signs of negative selection and supporting H2 (Figure 3A). 

All of the common ancestors between ape species shared ω greater than 1, indicating 

positive selection occurred in the ancestral forms of these extant sequences. The 

common ancestor between P. anubis, which experiences T-cell loss but no progression 

to AIDS (Appendix A), and nonprogressor C. sabaeus also had a ω greater than 1, 

suggesting this ancestral sequence was shaped by positive selection.  
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CD38 

The free ratio model (M1) is a significantly (p=0.00001) better fit to CD38 than 

the fixed ratio model (M0) (Table 4). This indicates natural selection has shaped CD38 

differently in the study species. This sequence analysis had two extant branches with ω 

greater than 1: P. anubis (ω=1.1868) and N. leucogenys (ω=3.4707) (Figure 3B). This 

indicates positive selection may have shaped or still be acting upon P. anubis and N. 

leucogenys CD38 sequences. Several ancestral nodes also had ω greater than 1, 

including the common ancestor between the nonprogressor C. sabaeus and the 

progressor Papio/Macaca clade, the common ancestor between C. jacchus and the 

Catarrhine clade, and the common ancestor between the Old World monkey clade and 

the ape clade. The high ω in the last common ancestor between C. sabaeus and the 

Papio/Macaca clade could be an indicator that nonsynonymous substitutions in CD38 

were positively selected for in a nonprogressor (C. sabaeus) and tolerator (P. anubis) 

lineage. Overall these results support H2, indicating lineages were affected differently 

by natural selection, but not in a way that directly reflected progressor/nonprogressor 

status. 

EEF1D 
The free ratio model (M1) is a significantly (p=0.000117) better fit to EEF1D 

than the fixed ratio model (M0) (Table 4). All species and ancestral sequences had ω 

less than 0.6, indicating negative selection shaped this gene differently in all lineages 

and supporting H2 (Figure 3C). The nonprogressor C. sabaeus had a ω of 0.3946, while 

progressor species H. sapiens and P. troglodytes had ω of 0.5685 and 0.1121, 
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respectively, indicating this gene was likely not being differentially selected for in 

nonprogressors compared to progressors. 

SOCS1 
The fit of the fixed ratio model (M0) is not significantly different than that of the 

free ratio model (M1) in SOCS1 (Table 4). The ω of each extant species were all very 

close to 0, as were all the ancestral nodes except for the last common ancestor between 

P. anubis and M. mulatta (Figure 3D; Table 4). This suggests positive selection may 

have occurred during or before the divergence between P. anubis and M. mulatta. 

Overall these data support H3, indicating that negative selection has similarly shaped all 

lineages except the P. anubis and M. mulatta clade, and that sequences were most likely 

not influenced by positive selection for nonprogressor status. 
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Figure 3: ω (dN/dS) values were estimated and plotted on known 

species phylogeny.  

(*denotes nonprogressors, underline denotes progressors). (A) ω of CASP1 protein-

coding sequences. (B) ω of CD38 protein-coding sequences. (C) ω of EEF1D protein-

coding sequences. (D) ω of SOCS1 protein-coding sequences. 
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TFBS Analysis 

Table 5A: TFBS identified in CASP1 promoters with position (bp) in H. sapiens 

promoter (*denotes nonprogressors, underline denotes progressors, bold underline 

denotes difference from H. sapiens, - - - denotes unavailable sequence). 

 

 SP-1 FREAC-3 GATA-2 GATA-2 SPI-1 FREAC-3 SPI-1 FREAC-3 

Position  483-488 602-609 637-641 668-672 710-715 744-750 783-788 797-804 

Homo 
sapiens 

GGGAAC TACTCTCC 
 

TATCC GGATA GGGAAG AGTGAGTA AGGAAG TACTTTCA 

Pan 
troglodytes 

GGGAAC TACTCTCC TATCC GGATA GGGAAG AGTGAGTA AGGAAG TACTTTCA 

Pongo abelii GGGAAC TACTCTCC TATCC GGATA GGGAAG AGTGAGTA AGGAAG TACTTTCA 

Papio anubis GGGAAC TAATCTCT TATCC TGATA GGGAAG AGTGGGTG AGGAAG TACTTTCA 

*Mandrillus 
leucophaeus 

GGGAAC TATTCTCC TATCC GGATA GGAAAG AGTAACTG AGGAAG TACTTTCA 

Macaca 
fascicularis 

GGGAAC TATTCTCC TATCC GGATA GGAAAG AGTAAGTG AGGAAG TACTTTCA 

*Chlorocebu
s sabaeus 

GGGAAC - - - - - - - - - - - - - -  - - - - - -  - - - - - -  - - - - - - - - - - - - - -  - - - - - - - - 

*Cercocebus 
atys 

GGGAAC TATTCTCC TATCC GGATA GGAAAG AGTAAGTG AGGAAG TACTTTCA 
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Table 5B: TFBS identified in CD38 promoters with position (bp) in P. troglodytes 

promoter (*denotes nonprogressors, underline denotes progressors, bold underline 

denotes difference from H. sapiens, - - - denotes unavailable sequence).  
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Table 5C: TFBS identified in EEF1D promoters with position (bp) in H. sapiens 

promoter (*denotes nonprogressors, underline denotes progressors, bold underline 

denotes difference from H. sapiens, - - - denotes unavailable sequence). 

 SPI-1 MZF_1-4 MZF_1-4 AP2alpha SPI-1 

Position (bp) 652-657 283-288 789-794 801-809  880-885 

Homo sapiens GTTCCC CGGGGA TCCCCC GCCCCCGGC CTTCCC 

Pan troglodytes GTTCCC CGGGGA TCCCCC GCCCCCGGC CTTCCC 

Gorilla gorilla GTTCCC CAGGGA TCCCCC GCCCCCGGC CTTCCC 

Nomascus 
leucogenys 

GTTCCC CGGGGA TCCCCC GCCCCTGGC CTTCCC 

Macaca 
nemestrina 

GTTCCC CGCTGA TCCCCC GCCCCCGGC CATCCC 

Papio anubis GTGCCC CGCTGA TCCCCC GCCCCCGGC CATCCC 

*Cercocebus 
atys 

GTTCCC CGTTGA TCCCCC GCCCCCGGC CATCCC 

*Chlorocebus 
sabaeus 

GTTCCT CGCGGA TTCCCC GCCCCCGGC CATCCC 

Table 5D: TFBS identified in SOCS1 promoters with position (bp) in H. sapiens 

promoter (*denotes nonprogressors, underline denotes progressors, bold underline 

denotes difference from H. sapiens, - - - denotes unavailable sequence). 

 AP2alpha SPI-1 

Position (bp) 998-1006  1014-1023 

Homo sapiens GCCCGCGGC GCCCCGCCGC 

Gorilla 
gorilla 

GCCCGCGGC GCCCCGCCGC 

*Chlorocebus 
sabaeus 

GCCCGCGGC ACCCCGCCGC 

Callithrix 
jacchus 

GAGCGGGCG GGGTCGACGG 

Rattus 
norvegicus 

AGCCGCGGC GTCCCGCCGC 

Mus 
musculus 

AGCCGCGGC GTCCTGCC - - 
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CASP1 

Eight TFBS were identified in CASP1 promoters: three SP1-1, three FREAC-3, 

and two GATA-2 (Table 5A). Nonprogressor species, C. sabaeus and C. atys, either 

share complete TFBS sequence with all other species (Position 483-488, 637-641, 783-

788, 797-804), or share substitutions with progressor species (Position 602-609, 668-

672, 710-715, 744-750). Positions for CASP1, EEF1D, and SOCS1, refer to bp from 

beginning of SwitchGear Genomics H. sapiens promoter. This evidence supports H2, as 

substitutions are consistent with known species relationships. This suggests species 

divergence most likely shaped these sequences rather than convergent evolution on the 

nonprogressor immune type.  

 

 

CD38 

13 TFBS were identified in CD38 promoters: GMCSF, two TCF-1, two AP-2, 

PEA-3, two IRF-1, E2A, two PuF, a2(I)coll, and NREboxl (Table 5B). The 

nonprogressor species, C. sabaeus, share complete TFBS sequence with all other 

species for 10 TFBS (Position 29-42, 64-67, 131-136, 172-176, 267-272, 280-284, 313-

314, 354-359, 361-365, 462-467). Positions for CASP1 refer to bp from beginning of P. 

troglodytes promoter sequence published by Ferrero and colleagues (2004). All other 

mutations in TFBS are in other species and reflected species phylogeny, supporting H2. 

This might indicate species divergence shaped these sequences rather than convergent 

evolution on the nonprogressor immune type. 

EEF1D 
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Five TFBS were identified EEF1D promoters: two SPI-1, two MZF_1-4, and 

AP2alpha (Table 5C). The nonprogressor species, C. sabaeus and C. atys, share no 

mutations in TFBS that distinguished them from progressors and other species. The 

mutations are consistent with known species relationships, supporting H2 and 

suggesting species divergence may have shaped these sequences rather than convergent 

evolution on the nonprogressor immune type. 

SOCS1 

Two TFBS were identified in SOCS1 promoters: AP2alpha, and SPI-1 (Table 

5D). The nonprogressor species, C. sabaeus, share the complete sequence for AP2alpha 

with progressor H. sapiens. The C. sabaeus sequence has one unique mutation in SPI-1 

that distinguishes it from all other species investigated. This tentatively supports H1, but 

requires further investigation as only one nonprogressor species was sampled. 
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DISCUSSION 

In 1947 the modern evolutionary synthesis of Charles Darwin’s theory of 

evolution by natural selection with Gregor Mendel, Theodosius Dobzhansky, and other 

researchers’ theories of genetic variation and inheritance laid the groundwork for the 

contemporary evolutionary genetic perspective on human susceptibility to disease 

(Dobzhansky 1937; Huxley 1942; Smocovitis, 1992). While researchers are attempting 

to use this perspective to identify genes that leave humans vulnerable to pathogens, an 

alternative approach seeks to identify genes in our closest living relatives that may 

contribute to their ability to coexist with similar pathogens (Nesse et al. 2010; Sironi et 

al. 2015). We can begin to search for a connection between these genes, past 

environmental pressures, and an advantageous phenotype by asking how evolutionary 

history has shaped the genotypes of extant species that can coexist with certain 

pathogens. This provides an evolutionary context for the fixation of certain alleles in 

these extant species. One hypothesis is that certain substitutions increased the 

reproductive fitness of species in environments shared with a pathogen and rose in 

frequency due to positive selection. The use of evolutionary methods to test functional 

regions of the genome allows us to target these genes that may play a role in tolerance 

to pathogens. If we can identify genotypes that were or are under positive selection and 

that are associated with advantageous phenotypes, we can go on to experimentally test 

the function of these genotypes in vitro or in vivo and perhaps someday manipulate the 

identified mechanisms as a medical intervention. In order to identify molecular 

mechanisms that contribute to nonprogressor tolerance of SIV, the present study used 

evolutionary genetic methods to test for convergent evolution, positive selection, and 
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distinguishing variants in the promoter and protein-coding regions of CASP1, CD38, 

EEF1D, and SOCS1.  

Objective 1 

In order to test for evidence of strong convergent evolution, evolutionary 

histories of genes in different species were compared to the evolutionary histories of the 

species themselves. By using the molecular clock theory and estimated mutation rates 

we can infer what mutations might have occurred over the evolution of the extant 

sequences and estimate what ancestral sequences might have been at different points in 

the past. We can then extrapolate a possible gene tree for comparison with a species 

tree, letting us infer when mutations might have become fixed in ancestral sequence 

compared to overall species divergence. This helps us investigate co-occurrence of an 

environmental factor (such as a pathogen like SIV) with the emergence of mutations 

that distinguish species with advantageous phenotypes (like nonprogressors) from 

species with other phenotypes (like progressors). When gene trees and species trees 

appear the same it indicates that the interspecific polymorphisms were shaped by known 

species relationships. Species trees and gene trees may appear different for a variety of 

reasons. The gene may be vital to survival or reproduction and thus remained mostly 

conserved over time, only accumulating a few mutations, due to negative selection. The 

genes may have also accumulated interspecific polymorphisms after the species 

divergence due to positive selection. This positive selection could take the form of 

convergent or parallel evolution with other species subjected to similar environmental 

pressures. I intended to test this last hypothesis by examining gene trees for deviation 

from species trees with respect to progressors and nonprogressors. I expected to see all 
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nonprogressor species form monophyletic clades, which would provide evidence of 

strong convergent evolution of a shared genotype and a phenotype. However this was 

not found to be the case in any of my gene trees, as only one orthologous nonprogressor 

species (C. sabaeus) and one tolerator species that doesn’t progress to AIDS but still 

experiences chronic T cell depletion (P. anubis) were available for each gene. 

Furthermore, all gene trees demonstrated evidence that species relationships and 

untested factors were more likely responsible for the evolutionary histories of these 

genes than positive selection for the nonprogressor immune type. This suggests that 

there were few sites distinguishing the nonprogressor and tolerator species from the 

progressor species, and that these genes may not be ideal targets for functional 

investigation.  

There were limitations to the ability of phylogenetic analyses to detect 

convergent evolution in nonprogressor species. Orthologous sequences for 

nonprogressor species were limited and only C. sabaeus was represented 

nonprogressors in these analyses. Thus, there were no other nonprogressors with which 

this species could form a monophyletic clade, immediately eliminating H1. To further 

investigate positive selection as the driving force of nonprogressor sequence 

divergence, future research should look to sequence and genotype other progressor and 

nonprogressor species’ protein-coding regions, and perhaps examine other genes 

identified as differentially expressed in progressors and nonprogressors. Another 

possible avenue of research could include investigation of convergent evolution in these 

genes in human viral nonprogressors (VNP). While there is a large amount of data on 

nonprogressor nonhuman primates, there is comparatively very little information on the 
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small subset of humans who also can survive rates of viral replication without medical 

intervention (Rotger et al. 2011). Fewer studies have been conducted on these so-called 

viremic non-progressors (VNP) or long-term non-progressors (LTNP) because the 

proportion of individuals is so small (~0.1% of humans), and because many of these 

individuals are unaware of their HIV status (Rotger et al. 2011). By investigating 

signatures of convergent evolution in immune genes of human and nonhuman 

nonprogressors we may be able to conclude whether these species have undergone 

convergent evolution in their development of an adaptation (or exaptation) to 

environments with ancestral lentiviruses.  

Objective 2 

In order to test for positive selection in the protein-coding regions, ratios of 

nonsynonymous to synonymous substitution rates (ω) were estimated. By inferring 

ancestral sequences through the use of known species trees and comparing the rates of 

nonysnonymous and synonymous substitutions in each lineage, it is possible to estimate 

ω across the lineages represented in the given phylogeny, demonstrating whether 

selective pressures have differently influenced lineages. An ω less than 1 on all 

branches would indicate negative selection in all lineages. This suggests the sequences 

are highly conserved and may have a function that is closely tied with fitness, leading to 

the loss of most nonsynonymous substitutions. In contrast, an ω of 1 would indicate 

neutral evolution and suggest the gene does not have a close relationship with 

reproductive fitness, leading to the equal fixation of nonsynonymous and synonymous 

substitutions. However if at some point positive selection fixed nonsynonymous 

mutations in specific lineages and not others, one would expect to see higher rates of 
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nonsynonymous mutations in those lineages, leading to an ω greater than 1. Thus, by 

comparing ω in the lineages that lead to extant species with a particular phenotype 

(such as nonprogressors) to rates in lineages leading to extant species without that 

phenotype (nonprogressors) we can investigate a connection between certain 

interspecific polymorphisms, phenotypic differences, and differences in selective 

pressures over time. My project did this by comparing the fit of a fixed ratio model (M0) 

to that of a free ratio model (M1) and by examining the ω values on each branch of the 

tree for signs of selection in nonprogressor lineages. 

The results of the present study demonstrate that although ω varies across 

primates in CASP1, CD38, and EEF1D, there is little evidence of positive selection in 

nonprogressor lineages. The dN/dS analysis of the protein-coding regions of SOCS1 

indicate this region was shaped similarly by negative selection in all species, aside from 

possible positive selection in the last common ancestor of P. anubis and M. mulatta. 

There are a few limitations to the scope of these results. First, only one orthologous 

nonprogressor sequence (C. sabaeus) and one tolerator sequence (P. anubis) were 

available online and thus I was not able to draw a connection between shared 

nonprogressor phenotype and signatures of positive selection. This could be 

circumvented by, as discussed above, personally sequencing more orthologous samples 

in other progressor and nonprogressor species. Another limitation to this approach is 

that it assumes the nonprogressors have diverged from their common ancestors with 

progressors and coevolved with ancestral forms of SIV to develop these adaptations. 

While each nonprogressor lineage could have independently evolved mutations in these 

genes due to positive selection by an environment shared with SIV, it is also possible 
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that the last common ancestor of all Old World monkeys and apes could have evolved 

the adaptation within its own lineage, and then progressor species lost this adaptation 

due to drift or positive selection by novel environmental pressures. In order to fully 

characterize the evolutionary relationship between SIV, progressor/nonprogressor 

immune phenotypes, and genotypes, both these possibilities must be thoroughly 

explored. 

Objective 3 

Finally, cis-regulatory regions were examined for variation that distinguishes 

species with different levels of expression in the chronic phase of infection. Regulation 

of expression of immune genes is closely tied to the function of the encoded protein, 

and by searching the promoter regions for interspecific polymorphisms that distinguish 

species with different phenotypes we can identify possible connections between 

genotype and phenotype to be explored experimentally (Loisel et al. 2006). Although 

there is no analog for the codon system in non-coding regions to infer functionality of 

point mutations, we can examine TFBS loci in the promoter to identify variants 

associated with differential expression. If there is variation in these binding sites, it is 

possible that could affect the level of transcription and in turn affect the function of the 

produced protein. As Bosinger et al. 2009 identified CASP1, CD38, EEF1D, and 

SOCS1 as being differentially expressed in progressor and nonprogressor species, these 

genes were ideal candidates for exploring polymorphisms in cis-regulatory regions that 

may be connected to this differential expression and possibly to differential disease 

progression.  
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While no polymorphisms were found that distinguished nonprogressors from all 

progressors in CASP1, CD38, and EEF1D, the SOCS1 promoter region in C. sabaeus 

demonstrated a unique mutation in one TFBS, which distinguished it from all other 

species. Unfortunately there was only one orthologous nonprogressor promoter for that 

assay, and thus has ambiguous significance as a mutation distinguishing nonprogressors 

from progressors. This limitation could be circumvented by sequencing and identifying 

polymorphisms in other progressor and nonprogressor species’ regulatory regions to 

better characterize between species variation. Furthermore, to truly eliminate selection 

for nonprogressor polymorphisms in the regulatory regions of the genes as a contributor 

to the nonprogressor immune type we must not only examine cis-regulatory regions but 

also trans-regulatory regions.  

My project utilized putatively identified cis-regulatory regions, but ideally all 

functional regulatory regions would be identified and examined for variation that 

distinguished nonprogressors from progressors. Further research should also search for 

TFBS in different loci in alignments of orthologous regulatory regions, because though 

my alignments demonstrated relatively high conservation it is possible that TFBS do not 

occur at the same locus in each species. 

Functional Significance 

In order to identify possible adaptations, genotypes need to be tied to a 

functional phenotype and differential effects on fitness. For positive selection and thus 

adaptive evolution to take place, genomic variation must have an effect on the function 

of the produced protein and this function must provide a fitness benefit to the individual 

in a specific environment. While we can use phylogenetic analyses, dN/dS analyses, 
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and TFBS analyses to help us sort through an enormous amount of genetic data and 

identify target genes for further investigation, these genes must be tied to a functional 

difference in order to support an adaptive explanation. There are several ways 

functional effects of genetic polymorphisms can be investigated. First, we can examine 

possible functional changes caused by amino acid substitutions that distinguish 

nonprogressors from all progressors. Polyphen-2 version 2.2.2 can be used to predict 

the effects of transfecting nonprogressor single nucleotide polymorphisms into human 

sequences (Adzhubei, 2010). Further examination of how these substitutions change the 

polarity, charge, and size of a protein can help identify changes in the protein’s 

function. The functional effects of these amino acid substitutions can also be 

investigated through experimental studies involving the genetic engineering of T cell 

lines with nonprogressor and progressor polymorphisms (Hajeer and Hutchinson, 

2001). If a cell line with a genotype associated with nonprogressor immune response is 

found to produce a different protein than a cell line with a progressor genotype, it can 

be hypothesized that the nonprogressor polymorphisms may play a role in the 

mechanisms that contribute to tolerance to the virus. Functional effects of substitutions 

in regulatory regions can also be examined through experimental cell-line manipulation 

of pattern-matched TFBS, as well as knockout studies in lab mice (Loots, 2008).  

One possible but untested method for identifying functional changes would 

involve the application of the new CRISPR/cas9 system of gene editing by altering a 

progressor sequence to include nonprogressor variants and challenging the subjects with 

SIV to see how the variants affect progression to AIDS (Mali et al. 2013). However 

examining function in live primates is ethically controversial and thus very hard to 
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complete. Nevertheless, by combining these function analyses with long-term 

monitoring of the co-occurrence of SIV infection and opportunistic infections in wild 

progressor and nonprogressor populations, it may eventually be possible to connect 

changes in genotype and phenotype with changes in individual fitness. 
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CONCLUSIONS 

By searching for signs of positive selection in genes that contribute to the 

immune mechanisms that allow nonprogressors to coexist with SIV, this research 

attempted to connect the evolutionary history of these genes to an observable 

phenotypic difference, with the intent of identifying target pathways for future medical 

intervention. Furthermore, by testing an adaptive explanation for the nonprogressor 

immune profile I sought to further our understanding of how natural selection and 

coevolution with lentiviruses has shaped primate immune responses in general. While 

the results indicate that nonprogressor protein-coding and cis-regulatory regions of 

CASP1, CD38, EEF1D, and SOCS1 do not provide evidentiary support of positive 

selection compared to progressor species, future research may shed insight on the 

functional significance of distinguishing polymorphisms in these and other regulatory 

and protein-coding regions of genes differentially expressed in nonprogressors and 

progressors. 
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APPENDIX 

A. Categorization of nonhuman primate immune responses to HIV/SIV 

Species Progressor/nonprogressor Status Reference 

Callithrix jacchus No known infection  

Cercocebus atys Nonprogressor Peeters et al. 1994 

Cercopithecus mona Nonprogressor Peeters et al. 2002 

Cercopithecus nictitans Nonprogressor Peeters et al. 2002 

Chlorocebus aethiops Nonprogressor Peeters et al. 2002 

Chlorocebus pygerythrus Nonprogressor Peeters et al. 2002 

Chlorocebus sabaeus Nonprogressor Bosinger et al. 2009 

Chlorocebus tantalus Nonprogressor Peeters et al. 2002 

Colobus guereza Nonprogressor Peeters et al. 2002 

Macaca fascicularis Progressor (AIDS in lab) Habis et al.1999 

Macaca mulatta Progressor (AIDS in lab) Bosinger et al. 2009 

Macaca nemestrina Progressor (AIDS in lab) Ho et al. 2009 

Mandrillus leucophaeus Nonprogressor Peeters et al. 2002 

Mandrillus sphinx Nonprogressor Greenwood et al. 2014 

Miopithecus talapoin Nonprogressor Peeters et al. 2002 

Nomascus leucogenys No known SIV infection  

Otolemur garnettii No known SIV infection  

Pan troglodytes Progressor (high mortality, some AIDS) Etienne et al. 2011 

Papio anubis Tolerator (T cell depletion, no AIDS)  Locher et al. 2002 

Pongo abelii No known SIV infection  

Gorilla gorilla Naturally infected (Immune response 
unknown)  

D’arc et al. 2015 
Etienne et al. 2012 

Saimiri boliviensis No known SIV infection  

Tarsius tarsier No known SIV infection  
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