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DISSERTATION ABSTRACT

Andrew Reynolds

Doctor of Philosophy

Department of Mathematics

June 2015

Title: Representations of the Oriented Brauer Category

We study the representations of a certain specialization OB(δ) of the oriented Brauer cate-

gory in arbitrary characteristic p. We exhibit a triangular decomposition of OB(δ), which we use to

show its irreducible representations are labelled by the set of all p-regular bipartitions. We then ex-

plain how its locally finite dimensional representations can be used to categorify the tensor product

V (−$m′)⊗V ($m) of an integrable lowest weight and highest weight representation of the Lie alge-

bra slk. This is an example of a slight generalization of the notion of tensor product categorification

in the sense of Losev and Webster and is the main result of this paper. We combine this result with

the work of Davidson to describe the crystal structure on the set of irreducible representations. We

use the crystal to compute the decomposition numbers of standard modules as well as the charac-

ters of simple modules assuming p = 0. We give another proof of the classification of irreducible

modules over the walled Brauer algebra. We use this classification to prove that the irreducible

OB(δ)-modules are infinite dimensional unless δ = 0, in which case they are all infinite dimensional

except for the irreducible module labelled by the empty bipartition, which is one dimensional.
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CHAPTER I

INTRODUCTION

Let k be an algebraically closed field of characteristic p ≥ 0. The oriented Brauer category

OB is the free k-linear symmetric monoidal category generated by a single object ↑ and its dual ↓.

Its objects are finite sequences of the symbols ↑, ↓, including the empty sequence ∅, which is the

unit object. The set of such sequences is denoted 〈↓, ↑〉. If a, b ∈ 〈↓, ↑〉, then the space HomOB(a, b)

has a basis consisting of oriented Brauer diagrams with bubbles of type a → b. Such a diagram is

obtained by drawing the sequence a below b and pairing the vertices ↑, ↓ by drawing strings in the

space between a, b. The strings are allowed to cross, and may connect any two vertices as long as

they induce an orientation on the string. For example, a pair ↑, ↑ may be connected by a string if

and only if one belongs to a and the other to b; and a pair ↑, ↓ may be connected if and only if

they both belong to a or both belong to b. We shall refer to strings which pair two vertices from

the bottom row caps and those which pair two vertices from the top row cups. All other strings

will be called vertical strings. Additionally, there may be some number of closed (oriented) curves

(called bubbles) in the space between a, b. Two such diagrams D1, D2 are equivalent if they have

the same number of bubbles and the remaining strings partition the vertices in a and b in the same

way. That is, the apparent topological structure of oriented Brauer diagrams is irrelevant; they

are a convenient way of visually representing combinatorial information (see section III.1 for their

combinatorial definition). For example, the following two oriented Brauer diagrams with bubbles of

type ↑↓↓→↑↓↓ are equivalent:

=

Given two such diagrams D1, D2, their composition D1 ◦D2 is given by vertically stacking

D1 on top of D2 to get another such diagram with bubbles. The identity morphism of an object a
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is simply a row of parallel vertical strings, orientations determined by a.

The k-linear category OB is actually linear over the polynomial algebra over k by letting

the polynomial generator act by adding a bubble. By fixing δ ∈ k and specializing the polynomial

generator at δ we obtain a k-linear monoidal category OB(δ). This amounts to introducing a relation

to the presentation of OB identifying a bubble with δ ·∅, where ∅ denotes the empty diagram, which

is the identity morphism of the identity object. So HomOB(δ)(a, b) has basis consisting of oriented

Brauer diagrams of type a→ b without bubbles, and composition is performed by vertically stacking

diagrams and removing any bubbles formed, multiplying by δ for each bubble removed.

The algebra EndOB(δ)(↓r↑s) is isomorphic to the walled Brauer algebra Br,s(δ), which was

introduced independently by Turaev [T] and Koike [Ko] in the late 1980s, motivated in part by a

Schur-Weyl duality between Br,s(δ) and GLm(C) arising from mutually commuting actions on the

“mixed” tensor space V ⊗r ⊗W⊗s, where V is the natural representation of GLm(C) and W = V ∗.

The walled Brauer algebra is spanned by walled Brauer diagrams which are obtained by drawing

two rows of r + s vertices, one above the other, and drawing strings between pairs of vertices. We

imagine a wall separating the first r vertices and the last s vertices in both rows. We require that

the endpoints of each string are either on the same row of vertices and opposite sides of the wall,

or else they are on opposite rows and the same side of the wall. So forgetting orientations defines a

linear isomorphism EndOB(δ)(↓r↑s)→ Br,s(δ). The multiplication in Br,s(δ) is such that this map is

an algebra isomorphism. It is worth noting that the Karoubi envelope of OB(δ) is Deligne’s tensor

category Rep(GLδ) (see [CW]).

The main goal of this paper is to show how OB(δ) can be used to categorify a tensor product

of representations of the Lie algebra slk. The Lie algebra slk is defined as the Kac Moody Lie algebra

associated to the graph with vertices k and an edge between i and i + 1 for each i ∈ k. Writing

δ = m −m′ for m,m′ ∈ k we will ultimately be able to categorify V (−$m′) ⊗ V ($m), the tensor

product of an integrable lowest weight representation and an integrable highest weight representation

of lowest (resp. highest) weight −$m′ (resp. $m), where $i is the ith fundamental dominant weight

of slk (see section II.3).

For convenience, we often replace OB(δ) with a locally unital algebra OB(δ) whose represen-

tations are equivalent to those of OB(δ), and we suppress δ in the notation, writing OB for OB(δ).

Briefly, a locally unital algebra A is a nonunital algebra with a distinguished collection of mutually

orthogonal idempotents {1i : i ∈ I} satisfying A =
⊕

i,j∈I 1iA1j . It is locally finite dimensional

if each 1iA1j is finite dimensional. In our situation I = 〈↓, ↑〉, 1a is the identity morphism of the
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object a, and

1aOB1b = HomOB(δ)(b, a),

which is finite dimensional. The multiplication making OB =
⊕

a,b∈〈↓,↑〉 1aOB1b into a locally finite

dimensional locally unital algebra is induced by composition inOB(δ). By a locally finite dimensional

module over a locally unital algebra A, we mean an A-module V satisfying V =
⊕

i∈I 1iV and

dim 1iV <∞ for i ∈ I. The category of such modules is denoted A -mod.

Let K =
⊕

a∈〈↓,↑〉 k ·1a. The first important observation made in this thesis is that OB has a

triangular decomposition OB = OB−⊗KOB
0⊗KOB

+ (see section III.2), where OB+ (resp. OB−)

is the subalgebra spanned by all diagrams with no cups (resp. caps) and no crossings among vertical

strings. The role of the Cartan subalgebra is played by OB0, which is the subalgebra spanned by

diagrams with no cups or caps. We observe in section III.4 that OB0 is Morita equivalent to

⊕
r,s≥0

kSr ⊗ kSs. (I.0.0.1)

Thus the simple modules of OB0 are parametrized by the set Λ of p-regular bipartitions, that is,

pairs of partitions which have no p rows of the same length (or simply all pairs of partitions if

p = 0). We use this triangular decomposition to define the standard modules by analogy with the

Verma modules. Explicitly, we use a natural projection OB0 ⊗K OB
+ → OB0 to inflate the action

of OB0 on its projective indecomposable modules Y (λ), λ ∈ Λ, to an action of OB0 ⊗K OB
+, and

then induce to an action of OB to obtain the standard module ∆(λ). This construction (inflation

followed by induction) defines the standardization functor ∆ : OB0 -mod→ OB -mod.

Mimicking standard arguments from Lie theory, we show in section III.6 that the standard

modules have unique irreducible quotients, giving a complete set of inequivalent irreducible OB-

modules {L(λ) : λ ∈ Λ}. In section III.3 we define a preorder on the set Λ. This preorder is

essentially a version of the “inverse dominance order” of Losev and Webster (see Definition 3.2 of

[LW]). It should be viewed as the appropriate analog of the Bruhat order from Lie theory. We prove

the following theorems in sections IV.3 and V.2, respectively.

Theorem. If L(λ) arises as a subquotient of ∆(µ) then λ ≤ µ.

Theorem. The projective cover P (λ) of L(λ) surjects onto ∆(λ) with kernel having a finite filtration

with sections ∆(µ) with µ > λ.

This essentially means that the category OB -mod is locally standardly stratified, which is a

mild weakening of the notion of a standardly stratified category introduced by Losev and Webster in
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[LW] as part of the structure required for a tensor product categorification. The remaining data of

a tensor product categorification is a categorical action in the sense of Rouquier (see [R]). Roughly,

this means that for each i ∈ k there are biadjoint endofunctors Ei, Fi of OB -mod which induce

an action of slk on the split Grothendieck group of the category of finitely generated projective

OB-modules. Additionally, these functors need to be equipped with some endomorphisms (natural

transformations) satisfying certain relations as prescribed by Rouquier.

The notion of a categorical action of a Kac-Moody algebra g was first defined in a paper

of Chuang and Rouquier, [CR] in the case g = sl2. The general case was defined in [R] and also

in the work of Khovanov and Lauda, [KL1]-[KL3]. This new direction was first motivated by the

observation that many categories occurring in representation theory, such as the representations of

symmetric groups, of Hecke algebras, of the general linear groups or of Lie algebras of type A have

endofunctors that on the level of the Grothendieck group give actions of Kac-Moody Lie algebras of

type A. These ideas led Chuang and Rouquier first to the definition of categorical actions of type

A algebras, which they then generalized to Kac-Moody algebras of arbitrary type.

To construct the categorical slk-action on OB -mod we begin by defining endofunctors E,F

of OB -mod in section IV.1 as tensoring with certain bimodules. The functors E,F are analogous to

the induction and restriction functors for the symmetric group. In fact, using obvious notation for

induction and restriction between products of symmetric groups (see I.0.0.1), we define endofuctors

of OB0 -mod

E↑ =
⊕
r,s≥0

resr,s+1
r,s E↓ =

⊕
r,s≥0

indr+1,s
r,s

F ↑ =
⊕
r,s≥0

indr,s+1
r,s F ↓ =

⊕
r,s≥0

resr+1,s
r,s

and we show in Theorem IV.2.1 that we have short exact sequences of functors

0→ ∆ ◦ E↑ → E ◦∆→ ∆ ◦ E↓ → 0

0→ ∆ ◦ F ↓ → F ◦∆→ ∆ ◦ F ↑ → 0.

To split the functors E,F into direct sums of Ei, Fi, we next construct certain endomor-

phisms of the bimodules defining E,F , and define Ei, Fi to be the generalized i-eigenspace of E,F ,

respectively. These endomorphisms come naturally from the affine oriented Brauer category AOB,

which is obtained from OB by adjoining an additional monoidal generator, an endomorphism of ↑,
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along with an extra relation. If we depict this morphism diagrammatically as a dot on a string

oriented upward, then morphisms in AOB can be unambiguously be represented as dotted oriented

Brauer diagrams, i.e. oriented Brauer diagrams with some nonnegative number of dots on each

segment of each string (including bubbles). In particular, we view OB as a subcategory of AOB.

The extra relation imposed in AOB is depicted diagrammatically as

• =
•

+

This relation comes from the degenerate affine Hecke algebra Hn. If Sn is represented by

permutation diagrams and the polynomial generator xi is represented as a dot on string i, then it

is easy to see that EndAOB(↑n) is isomorphic to the degenerate affine Hecke algebra Hn. For any

choice of m ∈ k, there is a full functor AOB → OB which restricts to the identity functor on the

subcategory OB and sends a dot on an ↑-string on the leftmost boundary to m (Theorem III.1.4).

Note that with the identifications EndAOB(↑n) = Hn and EndOB(↑n) = kSn, a dot on the ith string

is sent to m + Li, where Li is the ith Jucys-Murphy element. We can use this functor to interpret

dotted diagrams as morphisms in OB.

The Jucys-Murphy elements split the induction and restriction functors F ↓, E↓, E↑, F ↑ into

generalized eigenspaces:

E↑ =
⊕
i∈k

E↑i E↓ =
⊕
i∈k

E↓i

F ↑ =
⊕
i∈k

F ↑i F ↓ =
⊕
i∈k

F ↓i .

It follows from [Groj] that the functors F ↓i , E
↓
i , E

↑
i , F

↑
i give a categorical sl↓k⊕sl

↑
k-action on OB0 -mod

under the assignments

e↓i 7→ E↓i f↓i 7→ F ↓i

e↑i 7→ E↑i f↑i 7→ F ↑i

(see Theorem V.3.1).

As a vector space, the bimodule defining the functor F is
⊕

a∈〈↓,↑〉OB1a↑. The endomor-

phism of this bimodule which we use to split F is given on OB1a↑ by multiplying by a dot on the

bottom right ↑. The endomorphism for E is defined similarly, using a dot on a ↓ string.

5



Theorem. The above short exact sequences split:

0→ ∆ ◦ E↑i → Ei ◦∆→ ∆ ◦ E↓i → 0

0→ ∆ ◦ F ↓i → Fi ◦∆→ ∆ ◦ F ↑i → 0.

We use these split sequences to compute the formal characters of the standardized Specht

modules ∆̃(λ), that is, the modules obtained by applying the standardization functor ∆ to the Specht

modules for OB0. The coefficients are the numbers of paths of various types in the branching graph.

The vertices of the branching graph are all bipartitions and there is an edge between bipartitions λ

and µ whenever µ = (µ↓, µ↑) is obtained by adding a box to λ = (λ↓, λ↑). If the box is added to row

i and column j of λ↑, then the edge is colored m+ j − i, read mod p. If the box is added to row i

and column j of λ↓, then the edge is colored m′ + i− j, mod p (see section IV.3).

We now state our main theorem (Theorem V.3.2).

Theorem. The endofunctors Ei, Fi of OB -mod together with certain natural transformations de-

fined in detail in section IV.2 define a categorical slk-action. This action is compatible with the

locally stratified structure on OB -mod and makes OB -mod into a (generalized) tensor product cat-

egorification of V (−$m′)⊗ V ($m) in the sense of [LW].

This theorem allows us to apply the main result of Davidson [D] which implies that EiL(λ)

is either zero or else its head and socle are both isomorphic to some simple module parameterized by

some bipartition ẽiλ. This result of Davidson is a generalization of a result of Chuang and Rouquier

[CR], which in turn extended ideas of Grojnowski, Vazirani and Kleshchev (see [K]). Letting L(ẽiλ)

denote the zero module in the event that EiL(λ) = 0, we then have head(EiL(λ)) = L(ẽiλ) for all

i ∈ k and λ ∈ Λ. A similar statement holds for FiL(λ): head(FiL(λ)) = L(f̃iλ). The main results

of this paper and [D] also enable us to compute the bipartitions ẽiλ, f̃iλ explicitly, which we do in

section V.4. The graph whose vertices are Λ with an edge colored i between λ and f̃iλ whenever

f̃iλ 6= 0 is called the crystal graph. It is the Kashiwara tensor product of the crystals associated to

the slk-modules V (−$m′), V ($m), which are known (see section 11.1 of [K]). In characteristic zero

we are able to use the crystal to describe the actions of Ei, Fi on the projective covers of the simple

modules, which we require for our proof of the following theorem (see section VI.1).

Theorem. If p = 0 the composition multiplicities of standard modules and the characters of the

simple modules can be computed by explicit combinatorics as described in chapter VI of the present

thesis.
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As a final application we recover the classification of irreducible Br,s(δ)-modules, which was

first proved by A. Cox, M. De Visscher, S. Doty and P. Martin, (see [CDDM]). We then use this

classification to show that L(λ) is (globally) finite dimensional if and only if δ = 0 and λ = (∅,∅),

in which case it is one dimensional.

Organization of thesis

In Chapter II we recall some classical theory and introduce some slight modifications of

standard notions. We recite some facts about the representation theory of the symmetric group,

which is central to our approach. Next we define locally unital algebras and develop some theory

including versions of Schur’s Lemma and the Krull-Schmidt theorem. We also define the Lie algebra

slk, which is the Kac-Moody algebra underlying the categorical action we present here. We then

recall some of the classical theory of quotient functors and then discuss a weakened version of

standard stratification (see [LW]).

Chapter III introduces our main object of study, the oriented Brauer category. We describe

its triangular decomposition, which enables us to use some techniques from Lie theory. We show in

section III.4 that its Cartan subalgebra is Morita equivalent to the direct sum of all group algebras

of products of two symmetric groups. After defining a duality functor on a certain category of

representations of the oriented Brauer category, we prove the classification of its simple modules.

The endofunctors E,F of OB -mod leading to the categorical slk-action are defined in chap-

ter IV. We also define the endofunctors E↑, E↓, F ↑, F ↓ of OB0 -mod and explain their relation to

E,F , namely the short exact sequences mentioned above. We use this relation to compute the formal

characters of the standardized Specht modules in terms of the branching graph, which is defined in

section IV.3.

In chapter V we prove our main theorem. First we show that OB -mod is standardly

stratified in sections V.1 and V.2. We then explain the compatibility of this stratified structure with

the categorical slk-action in section V.3. The description of the crystal graph is given in section V.4.

In the final chapter of this thesis we use the above crystal to determine the composition

multiplicities of the standard modules and the characters of the simple modules, assuming p = 0.

Finally, we deduce the known classification of simple Br,s(δ)-modules due to Cox et al. (see [CDDM])

and use it to prove L(λ) is (globally) finite dimensional if and only if δ = 0 and λ = (∅,∅), in which

case it is one dimensional.

7



CHAPTER II

PRELIMINARIES

In this chapter we gather some basic facts which we shall need throughout this paper. In

section II.1 we recall some classical results about the representation theory of the symmetric group.

In section II.2 we define the notion of a locally unital algebra and develop some basic theory, similar

to that of unital algebras. Next we introduce the Lie algebra slk and its weights in section II.3. We

recall some basic facts about quotient functors and idempotent truncations in section II.4. Finally,

we define locally stratified categories in section II.5.

II.1. The Symmetric Group

Let Sn denote the symmetric group on n letters and kSn -mod the category of finite dimen-

sional kSn-modules. A central character is an algebra homomorphism χ : Z(kSn)→ k. The central

characters split kSn -mod into blocks:

kSn -mod =
⊕
χ

kSn -mod[χ],

where kSn -mod[χ] consists of those Sn-modules V such that (z − χ(z))NV = 0 for N � 0 (see

section 1.1 in [K]).

We identify a partition with its Young diagram as usual. We use the English convention so

that the top row represents the first part of the partition. For p > 0, a partition λ is called p-regular

if for any k > 0 we have #{j : λj = k} < p. In terms of the Young diagram, this means that no

p rows have the same length. By definition, all partitions are 0-regular. Let Pp(n) be the set of

p-regular partitions of n.

Given a partition λ of n, we define the content of a box in row i and column j to be

j − i (mod p). The content of λ is the tuple cont(λ) = (γi)i∈Z·1k , where γi is the number of boxes of

content i.

For any partition λ of n there is an explicit construction (see [J]) of a finite dimensional
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kSn-module S(λ), the corresponding Specht module. Assuming λ is p-regular, it is known that S(λ)

has irreducible head, which we denote by D(λ).

Theorem II.1.1. The modules {D(λ) : λ ∈ Pp(n)} form a complete set of inequivalent irreducible

kSn-modules. Moreover, for λ, µ ∈ Pp(n) we have:

(i) D(λ) is self-dual;

(ii) modules D(λ) and D(µ) belong to the same block of kSn if and only if cont(λ) = cont(µ).

Proof. This is part of Theorem 11.2.1 in [K].

Since kSn is a symmetric algebra, the projective cover of D(λ) is isomorphic to its injective

envelope, the corresponding Young module Y (λ). Actually Young modules are defined for any

partition, but shall only need those associated to p-regular partitions which happen to be projective

covers and injective envelopes as previously mentioned.

Define the kth Jucys-Murphy element Lk ∈ kSn by

Lk :=
∑

1≤m<k

(m, k).

Embedding kSn−1 ⊂ kSn with respect to the first n− 1 letters, it is easy to see that Ln commutes

with kSn−1. In particular, the Jucys-Murphy elements commute with each other. Now let i =

(i1, . . . , in) ∈ kn and let V be a finite dimensional kSn-module. We let Vi denote its simultaneous

generalized eigenspace of L1, . . . , Ln corresponding to the tuple of eigenvalues i. That is,

Vi = {v ∈ V : (Lk − ik)Nv = 0 for k = 1, . . . , n, and N � 0}.

Now define the formal character of a kSn-module to be the following element of the free

Z-module on basis {ei : i ∈ k}.

chV :=
∑
i∈kn

(
dimVi

)
ei.

Lemma II.1.2. The characters of the irreducible kSn-modules are Z-linearly independent.

Proof. This is Lemma 11.2.5 in [K].

II.2. Locally Unital Algebras

By a locally unital k-algebra we mean a non-unital associative k-algebra A containing a

distinguished collection of mutually orthogonal idempotents {1i : i ∈ I}, for some index set I, such

9



that

A =
⊕
i,j∈I

1iA1j . (II.2.0.1)

We can build a locally unital k-algebra A out of a small k-linear category A as follows. Set

A =
⊕

a,b∈ob(A)

HomA(a, b) (II.2.0.2)

and define multiplication of two composable morphisms to be their composition, and let the product

of two non-composable morphisms be zero. It is easy to see that this makes A into a locally unital

k-algebra, with the identity morphisms in A serving as the system of idempotents. For example, we

have 1aA1b = HomA(b, a) so that (II.2.0.1) is satisfied.

A homomorphism of locally unital algebras is an algebra homomorphism which sends dis-

tinguished idempotents to distinguished idempotents. This corresponds to the notion of a k-linear

functor A → B if A,B are built from A,B as above.

By a module over a locally unital k-algebra A =
⊕

i,j∈I 1iA1j , we will always mean a locally

unital module, that is, a module V such that

V =
⊕
i∈I

1iV. (II.2.0.3)

We denote by A -Mod the category of all such modules. The nonzero spaces 1iV are called weight

spaces, and the nonzero elements of 1iV are called weight vectors. We note that if A is built out of a

small k-linear category A as above then A -Mod is equivalent to the category of representations of A,

ie. k-linear functors A → k -Vec to the category of k-vector spaces. A module V is said to be locally

finite dimensional if each 1iV is finite dimensional. The category of all locally finite dimensional

A-modules will be denoted A -mod. A locally unital algebra A is called locally finite dimensional if

each 1iA1j is finite dimensional.

Suppose A is a locally unital algebra, and V is a finitely generated A-module with generators

v1, . . . , vn. Since A is locally unital, 1ivj is nonzero for only finitely many choices of i, j, and vj is

the sum of the nonzero 1ivj . So we may assume v1, . . . , vn are weight vectors. Let V0 denote their

k-linear span in V . Then V0 is a homogeneous generating subspace, that is, a subspace V0 satisfying

V0 =
⊕

i∈I 1iV0 which generates V . We have shown that V has a finite dimensional homogeneous

generating subspace.

Proposition II.2.1. If A is locally finite dimensional, then every finitely generated A-module is
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locally finite dimensional.

Proof. Choose a finite dimensional homogeneous generating subspace V0 of V . Then V is a quotient

of the finitely generated projective module

P =
⊕
i∈I

A1⊕ dim 1iV0
i . (II.2.0.4)

In particular, 1jV is the image of 1jP =
⊕

i∈I 1jA1⊕ dim 1iV0
i . Now 1jA1⊕ dim 1iV0

i is nonzero for

only finitely many i, and these summands are all finite dimensional as A is locally finite dimensional

and V0 is finite dimensional. So 1jV is the image of the finite dimensional vector space 1jP , which

proves the proposition.

We have the following version of Schur’s lemma.

Lemma II.2.2. If A is locally finite dimensional, and L a simple A-module, then EndA(L) = k.

Proof. Let f ∈ EndA(L). For each i ∈ I, f restricts to a linear endomorphism fi of 1iL, which is

finite dimensional by Proposition II.2.1. Fix any i ∈ I. As k is algebraically closed, fi has some

eigenvalue λ. Then ker(f − λ · Id) 6= 0 implies that f = λ · Id.

Proposition II.2.3. Assume A is any locally unital algebra. Let V be a finitely generated A-

module and W a locally finite dimensional A-module. Then HomA(V,W ) is finite dimensional. In

particular, if A is locally finite dimensional, then EndA(V ) is finite dimensional.

Proof. Choose a finite dimensional homogeneous generating subspace V0 of V . There is a finite

subset J ⊂ I such that V0 =
⊕

i∈J 1iV0. Any f ∈ HomA(V,W ) is determined by its restriction to

V0. So we have

dim HomA(V,W ) ≤
∑
i∈J

dim Homk(1iV0, 1iW ) =
∑
i∈J

dim 1iV0 · dim 1iW <∞.

Corollary II.2.4. If A is locally finite dimensional, then every finitely generated A-module V has a

direct sum decomposition into finitely many indecomposable modules. This decomposition is essen-

tially unique in the sense of the Krull-Schmidt theorem.

Proof. If V is indecomposable, then EndA(V ) is a finite dimensional algebra in which 1 is a primitive

idempotent, hence a local ring. This observation proves uniqueness in the usual way (see Theorem

7.5 of [La]).

11



To prove existence, suppose there is some finitely generated module which is not a finite

direct sum of indecomposables. Choose such a module V , which has a finite dimensional homoge-

neous generating subspace V0 satisfying V0 =
⊕

i∈J 1iV for some finite subset J ⊂ I. Choose V

with the dimension of such V0 minimal. Then as V is not indecomposable, we have V = V1 ⊕ V2

for some nonzero submodules V1, V2. It is clear that each Vk is generated by
⊕

i∈J 1iVk, which has

smaller dimension than V0. By minimality, we must have that V1, V2 are each a finite direct sum of

indecomposables. Therefore so is V .

Proposition II.2.5. If A is locally finite dimensional, then every simple A-module L has a projective

cover.

Proof. We know L is a quotient of some finitely generated projective module (see (II.2.0.4)). Take an

indecomposable summand P mapping onto L. Call this map π. Then to see that P is a projective

cover of L, suppose Q ⊂ P is a submodule which maps onto L. Then projectivity gives a map

g : P → Q such that π ◦ f ◦ g = π, where f : Q → P is inclusion. Then 1 − f ◦ g is a non-unit

in EndA(P ), which is a local ring as P is indecomposable. Therefore f ◦ g is an isomorphism. In

particular f is surjective, so Q = P . So P is a projective cover of L.

Let L be a simple A-module. For V ∈ A -Mod we define the composition multiplicity of L

in V as usual by

[V : L] = sup #{i : Vi+1/Vi ∼= L} (II.2.0.5)

the supremum being taken over all filtrations by submodules 0 = V0 ⊂ · · · ⊂ Vn = V . If [V : L] 6= 0,

we call L a composition factor of V , even if V does not have a composition series.

Proposition II.2.6. If V is locally finite dimensional, then [V : L] is finite for any simple L.

Moreover, if P is a projective cover of L, then we have

[V : L] = dim HomA(P, V )

Proof. Choose i ∈ I so that 1iL 6= 0. Suppose n sections of a given filtration of V are isomorphic

to L. Then n ≤ dim 1iV . Hence [V : L] ≤ dim 1iV < ∞. In particular, the supremum sup #{i :

Vi+1/Vi ∼= L} is attained by some finite filtration of V . It remains to show that dim HomA(P, V )

is equal to the number of sections in this filtration which are isomorphic to L. This follows from

exactness of HomA(P, ?).
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Right modules and bimodules are defined for locally unital algebras in the obvious way. If

(A, I), (B, J) are locally unital algebras and V is a (B,A)-bimodule, then V⊗A? is a well-defined

functor A -Mod→ B -Mod. Moreover, if V is locally finite dimensional as a B-module, then V⊗A?

is a well-defined functor A -mod → B -mod. However, if I is infinite then HomB(V, ?) is not a

well-defined functor B -Mod → A -Mod. This is because HomB(V,W ) need not be a locally unital

module if I is infinite:

HomB(V,W ) = HomB

(⊕
i∈I

V 1i,W

)
=
∏
i∈I

HomB(V 1i,W ) (II.2.0.6)

Instead, the right adjoint of V⊗A? is
⊕

i∈I HomB(V 1i, ?). In particular, if B ⊂ A is a subalgebra

with I = J , then induction A⊗B? is left adjoint to restriction
⊕

j∈J HomA(A1j , ?) ∼= A⊗A?, which

is left adjoint to coinduction
⊕

i∈I HomB(A1i, ?).

II.3. The Lie Algebra slk

Make k into a graph by connecting i and i+ 1 for each i ∈ k. The result is a disjoint union

of graphs of type A∞ if p = 0 or Ãp−1 if p > 0. We let slk denote the Kac-Moody Lie algebra

associated to this graph (see chapter 1 of [Kac]). So

slk =
⊕

ŝlp

where ŝl0 = sl∞ and the sum is over the cosets of Z · 1k in k.

Alternatively, slk can be described as follows. First assume p > 0 and choose a set k̃ of

Z · 1k-coset representatives in k. Let h be the vector space with basis {α∨i : i ∈ k} ∪ {di : i ∈ k̃}.

Define the weight lattice

P = {λ ∈ h∗ : λ(α∨i ) ∈ Z, for all i ∈ k}. (II.3.0.7)

Inside P there are elements {$i : i ∈ k} ∪ {δi : i ∈ k̃} which are dual to the chosen basis of h. That

is,

$i(α
∨
j ) = δi,j $i(dj) = 0

δi(α
∨
j ) = 0 δi(dj) = δi,j ,

where δi,j is the Kronecker delta. We define the simple roots αi = 2$i − $i−1 − $i+1 and set

cij = αi(α
∨
j ).
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Then slk is generated by {ei, fi}i∈k and h subject only to the following relations:

[h, h′] = 0 [ei, fi] = δi,jα
∨
i

[h, ei] = αi(h)ei [h, fi] = −αi(h)fi

(ad ei)
1−cij (ej) = 0 (ad fi)

1−cij (fj) = 0

for all h, h′ ∈ h and i ∈ k.

In characteristic zero slk can be described as the set of finitely supported, traceless matrices

(aij)i,j∈k with aij = 0 unless i, j lie in the same coset of Z · 1k. Explicitly, aij 6= 0 for only finitely

many choices of i, j, each such pair necessarily lying in the same coset of Z · 1k, and
∑
i aii = 0.

The Lie bracket is given by the commutator of matrices. Let h be the Cartan subalgebra of diagonal

matrices in slk. Let ei denote that matrix with a 1 in row i and column i+ 1 and zeros elsewhere.

Let fi be the transpose of ei and set α∨i = [ei, fi]. Define the weight lattice P as in (II.3.0.7). Inside

P we have the diagonal coordinate function εi defined by εi(diag(aj)) = ai. Set αi = εi−εi+1. Note

that the infinite sum $i :=
∑

i−j∈Z≥0·1k

εj can be interpreted as an element of h∗. That is, $i is the

function h → k sending diag(ai) to
∑

i−j∈Z≥0·1k

aj , which is a finite sum as matrices in h have finite

support.

In any characteristic, the weight lattice P is partially ordered by dominance. Explicitly,

given x, y ∈ P , we define x ≤ y if y − x ∈
⊕

i∈k Z≥0 · αi.

II.4. Quotient Functors

Let A be an abelian category. A full subcategory C is called a Serre subcategory (sometimes

called a thick subcategory) if for every short exact sequence

0→M ′ →M →M ′′ → 0

in A, M is an object in C if and only if M ′,M ′′ are objects in C (see chapter 3 of [G]). Given an

abelian category A and a Serre subcategory C, we can form the quotient category A/C as follows.

• The objects of A/C are the same as those of A.

• HomA/C(M,N) = lim
−→

M ′,N ′

HomA(M ′, N/N ′),

where the limit runs through all subobjects M ′ ⊂M , N ′ ⊂ N such that M/M ′ and N ′ are objects

of C. We define a functor π : A → A/C by π(M) = M for any object M , and given a morphism
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f : M → N , π(f) is the image of f in the inductive limit lim
−→

M ′,N ′

HomA(M ′, N/N ′). We call π a

quotient functor, or the canonical functor A → A/C.

Proposition II.4.1. If C is a Serre subcategory of A, then the category A/C is abelian and the

canonical functor A → A/C is an exact additive functor.

Proof. This is Lemme 1 and Proposition 1 of [G] combined. See section 1 of chapter 3 of [G] for

their proofs.

The above quotient has the following universal property.

Corollary II.4.2. Let A,D be abelian categories. If C is a Serre subcategory of A and G : A → D is

an exact functor with G(M) = 0 for any object M of C, then there is a unique functor H : A/C → D

such that G = H ◦ π. Moreover, the functor H is exact.

Proof. The first statement is Corollaire 2 of [G]. Exactness of H follows from Corollaire 3 of [G].

See section 1 of chapter 3 of [G] for their proofs.

We conclude this section by giving an important example of a quotient functor, namely

idempotent truncation (see section V.1).

Let A be a locally finite dimensional locally unital algebra, and let e ∈ A be a nonzero

idempotent. Then e lies in the span of finitely many of the 1iA1j , which implies that the unital

algebra eAe lies in the same (finite dimensional) subspace. We recall the functor f : A -mod →

eAe -mod from section 6.2 of [Gr]. If V ∈ A -mod, then the subspace eV is an eAe-module, and we

define f(V ) = eV . If θ : V → V ′ is a morphism in A -mod, then f(θ) is the restriction of f to eV .

It is easy to see that f is exact.

Theorem II.4.3. The functor f is the quotient functor by the Serre subcategory consisting of

modules V with eV = 0.

Proof. First note that the functor h = Ae⊗eAe? is isomorphic to a right inverse to f . Let D be an

abelian category and G : A -mod → D an exact functor satisfying G(V ) = 0 whenever eV = 0. If

H : eAe -mod → D satisfies G = H ◦ f , then composing on the right with h gives H = G ◦ h. On

the other hand, if we define H = G ◦ h, then we have G = H ◦ f as follows. The product map

m : Ae⊗eAe eV → V fits into an exact sequence

0→ K → Ae⊗eAe eV
m→ V → C → 0
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where K = ker f and C = coker f . Since the restriction of m to eAe ⊗eAe eV is an isomorphism,

we have f(K) = f(C) = 0 and therefore G(K) = G(C) = 0. Applying the exact functor G to the

above exact sequence now shows that G is isomorphic to G ◦ h ◦ f = H ◦ f .

Theorem II.4.4. Suppose {Vλ : λ ∈ Λ} is a full set of irreducible modules in A -mod, indexed by a

set Λ, and let Λ′ = {λ ∈ Λ : eVλ 6= 0}. Then {eVλ : λ ∈ Λ′} is a full set of irreducible modules in

eAe -mod.

Proof. This is Theorem 6.2g of [Gr]. The proof given in section 6.2 of [Gr] is valid for any locally

unital algebra, providing we interpret (1− e)V as the kernel of the linear endomorphism of V given

by multiplication by e.

II.5. Standard Stratification

We need to relax the finiteness conditions slightly in the definition of a standardly stratified

category given in [LW]. Specifically, let C denote an abelian category which is equivalent to A -mod

for some locally finite dimensional locally unital k-algebra A. Let Λ be a preordered set with a fixed

bijection λ 7→ L(λ) to the isomorphism classes of simple objects in C. Fix a projective cover P (λ)

for L(λ) in C, which exists by Proposition II.2.5.

Let Ξ be the poset induced by Λ. That is, Ξ is the quotient of Λ by the equivalence relation

which identifies λ, µ whenever λ ≤ µ and λ ≥ µ. Given ξ ∈ Ξ, let C≤ξ (resp. C<ξ) be the full

subcategory of C consisting of all modules whose composition factors L(λ) satisfy [λ] ≤ ξ (resp.

[λ] < ξ). Note that C<ξ is a Serre subcategory of C≤ξ (see section II.4). Set Cξ := C≤ξ/C<ξ. For

λ ∈ ξ, let Lξ(λ) denote the image of L(λ) in Cξ. Let Pξ(λ) denote its projective cover in Cξ. Let πξ

denote the (exact) quotient functor C≤ξ → Cξ (see section II.4). By the general theory piξ has a left

adjoint. We fix one and denote it henceforth by ∆ξ.

We call the category C as above a locally stratified category if ∆ξ is exact and, setting

∆(λ) = ∆[λ](P[λ](λ)), there is an epimorphism P (λ)→ ∆(λ) whose kernel admits a finite filtration

by objects ∆(µ) with µ > λ. Said differently, we define a standard filtration or ∆-flag of a module

to be a finite filtration with with sections isomorphic to standard modules. Then P (λ) is required

to have a standard filtration with ∆(λ) at the top, and other sections isomorphic to ∆(µ) for µ > λ.

Given a locally stratified category C, we define the associated graded category to be gr C =⊕
ξ∈Ξ Cξ. We call ∆ =

⊕
∆ξ : gr C → C the standardization functor. The objects ∆(λ) are called

the standard objects and the objects ∆(λ) = ∆[λ](L[λ](λ)) are called the proper standard objects.

We remark that more classical notion of a highest weight category of [CPS] is a special case
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of this notion of local stratification. If each Cξ is equivalent to the category of finite dimensional

k-vector spaces, then C is called a locally highest weight category. This is the case if the preorder on

Λ is actually a partial order. If in addition, the set Λ is finite, then the subcategory of C consisting

of objects of finite length is a highest weight category in the sense of [CPS].
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CHAPTER III

THE ALGEBRA OB

In this chapter we meet the oriented Brauer categories and their locally unital algebra

counterparts. Their definitions are given in section III.1. We describe its triangular decomposition

in section III.2. The poset Λ parameterizing the simple OB-modules is defined in section III.3. We

then show in section III.4 that OB0 and
⊕

r,s≥0 kSr ⊗ kSs are Morita equivalent. In section III.5

we define a duality functor on OB -mod. We then give the classification of simple OB-modules in

section III.6.

III.1. Oriented Brauer Categories

Let 〈↓, ↑〉 denote the set of all words in the alphabet {↑, ↓}, including the empty word ∅.

Given two words a = a1 . . . an, b = b1 . . . bm ∈ 〈↓, ↑〉, an oriented Brauer diagram of type a→ b is a

diagrammatic representation of a bijection

{i : ai =↑} ∪ {i : bi =↓} → {i : ai =↓} ∪ {i : bi =↑}.

We draw such a diagram by aligning the sequences a, b in two rows, b above a, and drawing consis-

tently oriented strands between a and b connecting pairs of letters prescribed by the bijection. For

example,

is a diagram of type ↓↑↓↑↑↓↓↓↑↓↑→↓↑↑↓↓. Two diagrams are equivalent if they are of the same

type and represent the same bijection. The strands connecting a vertex in a to one in b are called

vertical strands and all other strands are called horizontal. The horizontal strands which connect

two vertices in a are called caps, while those which connect two vertices in b are called cups. Given
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a diagram D of type a → b we define the source of D to be s(D) = a and the target of D to be

t(D) = b. We also define D′ to be the diagram obtained from D by switching the orientation of

every strand.

Given a, b, c ∈ 〈↓, ↑〉, we may stack an oriented Brauer diagram of type b→ c on top of one

of type a→ b to obtain an oriented Brauer diagram of type a→ c along with some number of loops

made up of strands which were connected only to vertices in b, which we call bubbles. Two oriented

Brauer diagrams with bubbles are equivalent if they have the same number (possibly zero) of bubbles

(regardless of orientation), and the underlying oriented Brauer diagrams obtained by ignoring the

bubbles are equivalent in the earlier sense. For example, if we stack the above diagram on top of

we get

The oriented Brauer category OB

Now we can define the oriented Brauer category OB to be the k-linear category with objects

〈↓, ↑〉 and morphisms HomOB(a, b) consisting of all formal k-linear combinations of equivalence

classes of oriented Brauer diagrams with bubbles of type a → b. The composition D1 ◦ D2 of

diagrams with bubbles is given by stacking D1 on top of D2. This is clearly associative. There

is also a tensor product making OB into a strict monoidal category. If D1, D2 are diagrams, then

D1 ⊗D2 is obtained by horizontally stacking D1 to the left of D2. We will often omit ⊗ from the

notation.

As a k-linear monoidal category, OB is generated by objects ↑, ↓ and the morphisms c :

∅→↑↓, d :↓↑→ ∅ and s :↑↑→↑↑ given by

c = d = s =

which satisfy the following relations.

19



(↑ d) ◦ (c ↑) =↑ (III.1.0.1)

(d ↓) ◦ (↓ c) =↓ (III.1.0.2)

(↑ s) ◦ (s ↑) ◦ (↑ s) = (s ↑) ◦ (↑ s) ◦ (s ↑) (III.1.0.3)

s2 =↑↑ (III.1.0.4)

(d ↑↓) ◦ (↓ s ↓) ◦ (↓↑ c) is invertible. (III.1.0.5)

We denote the inverse of the diagram in III.1.0.5 by t.

Theorem III.1.1. As a k-linear monoidal category, OB is generated by the objects ↑, ↓ and mor-

phisms c, d, s, t subject only to the relations III.1.0.1-III.1.0.5, where t is the inverse referred to in

relation III.1.0.5.

Proof. See section 3.1 of [BCNR] for the proof of this theorem. Ultimately it is a consequence of a

more general result of Turaev for ribbon categories.

Let δ ∈ k. We shall be studying the representation theory of the category OB(δ) obtained

from OB by imposing the additional relation d ◦ t ◦ c = δ, which is represented diagrammatically as

= δ. (III.1.0.6)

Since diagrams in OB are viewed up to equivalence, this relation says that a bubble is equal to

δ · ∅ in OB(δ). So in OB(δ), composition D1 ◦ D2 of two diagrams is defined by stacking D1 on

top of D2, then removing all bubbles and multiplying by the scalar δn, where n is the number

of bubbles removed. Then HomOB(δ)(a, b) has a basis consisting of equivalence classes of oriented

Brauer diagrams of type a→ b with no bubbles.

The affine oriented Brauer category AOB

The affine oriented Brauer category AOB is the monoidal category generated by objects

↑, ↓ and morphisms c : ∅ →↑↓, d :↓↑→ ∅, s :↑↑→↑↑, and x :↑→↑ subject to (III.1.0.1)-(III.1.0.5)

plus one extra relation

(↑ x) ◦ s = s ◦ (x ↑)+ ↑↑ . (III.1.0.7)

Note that by Theorem III.1.1 there is a functor OB → AOB sending the generators of OB
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to those of AOB with the same name. Hence we can interpret any oriented Brauer diagram with

bubbles as a morphism in AOB. Let us now represent the new generator x by the diagram

x = •

We define a dotted oriented Brauer diagram with bubbles to be an oriented Brauer diagram with

bubbles, such that each segment is decorated in addition with some non-negative number of dots,

where a segment means a connected component of the diagram obtained when all crossings are

deleted. The following is a typical example of a dotted oriented Brauer diagram with bubbles.

•
••

•

•

Two dotted oriented Brauer diagrams with bubbles are equivalent if one can be obtained

from the other by continuously deforming strands through other strands and crossings, and also by

sliding dots along strands without pulling them past any crossings.

Any dotted oriented Brauer diagram with bubbles is equivalent to one that is a vertical

composition of diagrams of the form acb, adb, asb, axb and atb for various a, b ∈ 〈↓, ↑〉. Hence it can

be interpreted as a morphism in AOB. Moreover, the resulting morphism is well defined independent

of the choices made, and it depends only on the equivalence class of the original diagram. For

example, the following diagram x′ represents the morphism (d ↓) ◦ (↓ x ↓) ◦ (↓ c) ∈ EndAOB(↓):

x′ = •

Also, we can represent the relation (III.1.0.7) as the first of the following two diagrammatic relations;

the second follows from the first by composing with s on top and bottom:

• =
•

+ ,
•

= • +

These local relations explain how to move dots past crossings in any diagram, introducing an “error

term” with fewer dots.

A dotted oriented Brauer diagram with bubbles is normally ordered if it is equivalent to a

tensor (horizontal) product of diagrams b1 . . . bnD, where b1, . . . , bn are each a clockwise, crossing free
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bubble with some nonnegative number of dots and D is a dotted oriented Brauer diagram without

bubbles, with all dots on outward-pointing boundary segments, i.e. segments which intersect the

boundary at a point that is directed out of the picture. For example, of the two diagrams below,

the one on the left is not normally ordered, but the diagram on the right is.

•
••

•

•

••
•

•
•

(III.1.0.8)

Theorem III.1.2. For a, b ∈ 〈↓, ↑〉, the space HomAOB(a, b) has basis given by equivalence classes

of normally ordered dotted oriented Brauer diagrams with bubbles of type a→ b.

Proof. This is Theorem 1.2 of [BCNR] and is proved in section 5.4 of that paper.

The cyclotomic oriented Brauer category COB

SupposeM is a monoidal category. A right tensor ideal I ofM is the data of a submodule

I(a, b) ⊆ HomM(a, b) for each pair of objects a, b in M, such that for all objects a, b, c, d we have

h◦g◦f ∈ I(a, d) whenever f ∈ HomM(a, b), g ∈ I(b, c), h ∈ HomM(c, d), and g⊗1c ∈ I(a⊗c, b⊗c)

whenever g ∈ I(a, b). The quotient M/I ofM by right tensor ideal I is the category with the same

objects as M and morphisms given by HomM/I(a, b) := HomM(a, b)/I(a, b).

Let ` ≥ 1 be a fixed level and f(u) ∈ k[u] be a monic polynomial of degree ` in the auxiliary

variable u. The cyclotomic oriented Brauer category COB is the quotient of AOB by the right tensor

ideal generated by f(x) ∈ EndAOB(↑). Since COB has the same objects as AOB while its morphism

spaces are quotients of those in AOB, any morphism in AOB can be viewed as one in COB.

Theorem III.1.3. For a, b ∈ 〈↓, ↑〉, the space HomCOB(a, b) has basis given by equivalence classes

of normally ordered dotted oriented Brauer diagrams with bubbles of type a → b, subject to the

additional constraint that each segment is decorated by at most (`− 1) dots.

Proof. This is Theorem 1.5 of [BCNR]. It is proved is sections 5.1-3 of that paper.

Theorem III.1.4. Suppose that f(u) = u − m ∈ k[u] is monic of degree one. Then the functor

OB → COB defined as the composite first of the functor OB → AOB then the quotient functor

AOB → COB is an isomorphism.

Proof. This is Theorem 3.3 of [BCNR].
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The above theorem implies in particular that the functor OB → AOB is faithful. It also

shows that there is a functor AOB → OB which restricts to identity on OB and sends xa to m1↑a

for any a ∈ 〈↓, ↑〉. Using this functor we can interpret dotted diagrams as morphisms in OB, which

we shall do from now on. For example the relation

• = • − δ

shows that the functor AOB → OB sends x′a to m′1↓a, which is how we interpret a dot on a

downward-oriented string on the left edge of a diagram. Lemma III.1.5 below explains how to

interpret a dot found anywhere in a diagram. We stress that from now on all diagrams refer to

morphisms in OB; this will not be ambiguous as we shall not need the category AOB again.

Define ci1a, di1a, si, xi1a, ti1a, s
′
i1a, x

′
i1a (also written 1bci, 1bdi, 1bsi, 1bxi, 1bti, 1bs

′
i, 1bx

′
i, re-

spectively) to be the following morphisms in OB, for all i, a, b for which they make sense. Here, i

labels the ith string from the left. The object on the bottom of each diagram is a, and the one on

top is b (for different choices of a, b).

ci1a = 1bci = . . . . . .

i i+ 1

di1a = 1bdi = . . . . . .

i i+ 1

si1a = 1bsi = . . . . . .

i i+ 1

xi1a = 1bxi = . . . . . .

i

•

ti1a = 1bti = . . . . . .

i i+ 1

s′i1a = 1bs
′
i = . . . . . .

i i+ 1

x′i1a = 1bx
′
i = . . . . . .

i

•

If D is a diagram and D = 1aD1b, then we allow ourselves to write compositions of D with the

above morphisms without writing the 1a, 1b. For example, if ai =↓ and ai+1 =↑, then we can define

t−1
i 1a = disi+1ci+21a and if bi =↑ and b =↓, then 1bt

−1
i = 1bdisi+1ci+2. Note that the symbols

ci, di, si, xi, etc. are ambiguous until an object is specified by multiplying by some well-defined

morphism in OB.
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To express xi1a↑, x
′
i1a↓ in terms of undotted oriented Brauer diagrams we have some more

notation to introduce. For a ∈ 〈↓, ↑〉, 1 ≤ i < j ≤ `(a), define (i j)1a to be whichever one of the

following two morphisms a→ a matches the orientations of the vertices ai, aj .

. . . . . .

i j

if ai = aj − . . . . . .

i j

if ai 6= aj

Lemma III.1.5.

If ai =↑ then xi1a = m1a +
∑

1≤j<i

(j i)1a and

if ai =↓ then x′i1a = m′1a −
∑

1≤j<i

(j i)1a.

Proof. These two statements are proved by induction. The induction step follows from the relations

xi+11a = sixisi1a + (i i+ 1)1a if ai = ai+1 =↑

x′i+11a = s′ix
′
is
′
i1a + (i i+ 1)1a if ai = ai+1 =↓

xi+11a = tixit
−1
i 1a + (i i+ 1)1a if ai =↓, ai+1 =↑

x′i+11a = t−1
i x′iti1a + (i i+ 1)1a if ai =↑, ai+1 =↓

The base case is easy. We already know x11a = m1a. Now x′11a = m′1a follows from the

relation

• = • − δ

III.2. Triangular Decomposition

We apply the construction of a locally unital algebra starting from the small k-linear category

OB(δ) to obtain the algebra OB(δ) (see section II.2). Since we shall never consider the algebra built

out of OB, we can unambiguously abbreviate OB(δ) to OB. We note that then OB is locally finite

dimensional.

We now describe a triangular decomposition for OB analogous to that of the universal

enveloping algebra of a semisimple Lie algebra (see sections 0.5 and 1.1 of [H]). Let K denote the

span of the distinguished idempotents: K =
⊕

a∈〈↓,↑〉 k·1a. Let OB+ (resp. OB−) denote the span of
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all diagrams with no cups (resp. caps) and no crossings among vertical strands. Also let OB0 denote

the span of all diagrams with no cups or caps. Then OB+, OB−, OB0 are subalgebras containing K.

Observe that if V is a right K-module and W a left K-module, then V ⊗KW ∼=
⊕

a∈〈↓,↑〉 V 1a⊗k1aW .

Proposition III.2.1. The product map OB−⊗KOB
0⊗KOB

+ → OB is an isomorphism of vector

spaces.

Proof. Surjectivity is clear as OB− ⊗K OB
0 ⊗K OB

+ =
⊕

a,b∈〈↓,↑〉OB
−1a ⊗k 1aOB

01b ⊗k 1bOB
+.

Any element of the kernel of the product map can be written as
∑
D cDD, summing over all D =

D−⊗D0⊗D+ with D−, D0, D+ in the respective standard bases for OB−, OB0, OB+. We then have∑
D cDD

+D0D− = 0. Now the nonzero D+D0D− are all distinct diagrams, so linear independence

of diagrams shows cD = 0 whenever D 6= 0, so injectivity is proved.

Define OB] (resp. OB[) to be the subalgebra spanned by all diagrams with no cups (resp.

caps). So OB], OB[ are the images of OB0 ⊗K OB
+, OB− ⊗K OB

0 under the product map. The

algebras OB], OB[ are graded by the number of caps or cups appearing in a diagram, respectively.

So OB] =
⊕

d≥0OB
][d], where OB][d] is the span of all diagrams in OB] which have exactly

d caps. Similarly OB+ =
⊕

d≥0OB
+[d]. Also OB[ =

⊕
d≤0OB

[[d], where OB[[d] is the span

of all diagrams in OB[ which have exactly −d cups, and similarly define OB−[d]. Observe that

OB0 = OB][0] is a quotient of OB] by the two-sided ideal
⊕

d≥1OB
][d]. Pulling back through this

quotient gives an exact functor OB0 -mod → OB] -mod. To simplify the notation, we shall simply

view OB0-modules as OB]-modules in this way without further comment. Composing this with

OB⊗OB]? defines a functor ∆ : OB0 -mod → OB -mod. Later in this thesis, we will show that

OB -mod is locally standardly stratified in the sense of section II.5 with gr OB -mod = OB0 -mod

and standardization functor ∆; see Proposition V.1.2 below. We therefore call ∆ the standardization

functor. Since OB = OB− ⊗K OB
], it is easy to see that as a right OB]-module, OB is isomorphic

to a direct sum of copies of 1aOB
], for various a’s. Hence OB is a projective right OB] module, so

that ∆ is an exact functor.

If V is an OB0-module, then

∆V = OB− ⊗K OB
] ⊗OB] V = OB− ⊗K V =

⊕
a

OB−1a ⊗k 1aV.

Let Ba be a basis for 1aV . Then ∆V has a basis consisting of D⊗ v with D a diagram with no caps

and no crossings among vertical strands, and v ∈ Bs(d).
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III.3. Weights

A bipartition is a pair of partitions. Recall the definition of a p-regular partition from section

II.1. A bipartition is p-regular if both its constituent partitions are p-regular. Let Λ denote the set

of all bipartitions and Λ the set of all p-regular bipartitions. Let Λr,s be the set of all bipartitions

λ = (λ↓, λ↑) such that λ↓ ` r and λ↑ ` s, and let Λr,s = Λ ∩ Λr,s. For such a bipartition we let

|λ| = r+ s. We define a preorder on Λ (hence on Λ) as follows. Recall that m,m′ ∈ k are fixed and

δ = m−m′. Given a box in row i and column j, the ↑-content of this box is cont↑(�) = m+ j − i,

and its ↓-content is cont↓(�) = m′ + i − j. The content of a box in either constituent partition of

a bipartition λ = (λ↓, λ↑) refers to its ↓-content if it belongs to λ↓ and its ↑-content if it belongs to

λ↑.

Recall the weight lattice P , which is partially ordered by dominance (see section II.3). Now

define the ↑-content of a bipartition λ = (λ↓, λ↑) to be

cont↑(λ) =
∑
�∈λ↑

αcont↑(�) ∈ P.

We also define the ↓-content of a bipartition to be

cont↓(λ) =
∑
�∈λ↓

αcont↓(�).

Next we define the content of λ = (λ↓, λ↑) to be

cont(λ) = cont↑(λ)− cont↓(λ).

Now given two bipartitions, λ, µ, we define λ ≤ µ if cont(λ) = cont(µ) and cont↑(λ) ≥ cont↑(µ), or

equivalently, if cont(λ) = cont(µ) and cont↓(λ) ≥ cont↓(µ).

Note that this preorder depends on δ, but not on m,m′ individually. This preorder induces

a partial order on the set Ξ of equivalence classes of Λ under the equivalence relation given by λ ∼ µ

if λ ≤ µ and µ ≤ λ. So λ ∼ µ if and only if (cont↓(λ), cont↑(λ)) = (cont↓(µ), cont↑(µ)). Note that

in characteristic zero, the preorder on Λ = Λ is already a partial order, ie. Ξ = Λ. Also note that if

δ /∈ Z · 1k and λ ≤ µ, then cont↑(λ) = cont↑(µ) and cont↓(λ) = cont↓(µ). That is, the partial order

on Ξ is trivial if δ /∈ Z · 1k. In any case, we see that λ ≤ µ implies |λ| ≥ |µ|, and therefore Λ is upper

finite. We remark that the above partial order is a special case of the “inverse dominance order”

mentioned in Definition 3.2 of [LW].
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Example III.3.1. The bipartitions (∅,∅) and (∅, ) are not comparable because the first has con-

tent equal to 0 while the second has content equal to αm. However, we do have (∅,∅) > ( , )

assuming δ = 0.

Example III.3.2. If p = 2, then ( , ) ∼
(

,
)

because they both have ↓-content equal to

2αm′ + 2αm′+1 and ↑-content equal to αm. So these two 2-regular bipartitions are identified in Ξ.

In a similar fashion one can see that Λ 6= Ξ whenever p > 0.

III.4. OB0 and the Symmetric Groups

For a ∈ 〈↓, ↑〉, define `↓(a) = #{i : ai =↓}, `↑(a) = #{i : ai =↑}, and `(a) = `↑(a) + `↓(a).

Let 〈↓, ↑〉r,s = {a ∈ 〈↓, ↑〉 : `↓(a) = r and `↑(a) = s}. For a, b ∈ 〈↓, ↑〉r,s let aσb denote the unique

OB-diagram b → a in OB0 such that no strings of the same orientation (up or down) cross. For

convenience, we shall write aσr,s for aσ(↓r↑s) and r,sσa for (↓r↑s)σa. For example,

(↑↓↓↑↓↑↓)σ4,3 =

Note that we evidently have cσbbσa = cσa and aσa = 1a. Let r, s ≥ 0. We have an algebra

isomorphism

Mat(r+s
r )(kSr ⊗ kSs)→

⊕
a,b∈〈↓,↑〉r,s

1aOB
01b,

∑
a,b∈〈↓,↑〉r,s

τa,bea,b 7→
∑

a,b∈〈↓,↑〉r,s
aσr,s τa,b r,sσb,

where the rows and columns of matrices are indexed by 〈↓, ↑〉r,s, and ea,b is the corresponding matrix

unit. This implies that

OB0 =
⊕
r,s≥0

 ⊕
a,b∈〈↓,↑〉r,s

1aOB
01b

 is Morita equivalent to S :=
⊕
r,s≥0

kSr ⊗ kSs.

For λ = (λ↓, λ↑) ∈ Λ, the outer tensor product of Specht modules S(λ↓) � S(λ↑) is an

S-module with simple head whose projective cover coincides with its injective hull (see section

II.1). Transporting S(λ↓) � S(λ↑) through the Morita equivalence gives us the Specht module S(λ).

We denote its irreducible head by D(λ). The projective cover (and injective hull) of D(λ) shall

be denoted Y (λ). Define the standard modules ∆(λ) = ∆Y (λ), and the proper standard modules

∆(λ) = ∆D(λ). Write ∆̃(λ) for the standardized Specht modules ∆S(λ).

27



III.5. Duality

Given a diagram D ∈ 1aOB1b, let τ(D) be the diagram in 1bOB1a which represents the

inverse of the bijection represented by D (see section III.1). That is, τ(D) is obtained by flipping the

diagram D vertically, then reversing all orientations. For example, τ(d) = c′ (recall the definition

of the diagram D′ from section III.1). Then τ extends to an anti-involution of OB which fixes

K, preserves OB0, and swaps OB+ with OB−. Given an OB-module V , we give an OB-module

structure to the restricted dual

V ∗ =
⊕

a∈〈↓,↑〉

Homk(1aV,k) (III.5.0.9)

via the formula

(D · f)(v) = f(τ(D)v), D ∈ OB, f ∈ V ∗, v ∈ V. (III.5.0.10)

We have an exact contravariant involution V 7→ V ∗ of OB -mod. Since τ preserves OB0 we similarly

get a duality functor on OB0 -mod. Passing through the Morita equivalence described in section

III.4, we obtain the usual duality functor for the symmetric groups.

III.6. Classification of Simple Modules

Theorem III.6.1. Let λ = (λ↓, λ↑) ∈ Λ. Then ∆(λ) is an indecomposable module which has a

unique maximal submodule. Let L(λ) denote its unique irreducible quotient. Then {L(λ) : λ ∈ Λ} is

a complete set of inequivalent irreducible OB-modules.

Proof. Let r = |λ↓|, s = |λ↑|, and let a ∈ 〈↓, ↑〉r,s. Then

1a∆(λ) = 1aOB
− ⊗K D(λ) = 1a ⊗k D(λ),

which generates ∆(λ). This shows that any proper submodule of ∆(λ) must lie in the subspace

⊕
a∈〈↓,↑〉r+t,s+t

t≥1

1a∆(λ) ( ∆(λ),

and hence so does the sum of all proper submodules, proving the first statement.

Let L be an irreducible OB-module. Choose a ∈ 〈↓, ↑〉 of minimal length such that 1aL 6= 0.

Let V be the OB0-submodule generated by 1aL. Note that 1bV = 1bOB
01aL = 0 unless a, b ∈ 〈↓, ↑

〉r,s for some r, s ≥ 0. Let v, w ∈ V be nonzero. There is some f ∈ 1t(w)OB1t(v) with fv = w. Since

caps act as zero on V , f can be chosen in the span of diagrams having no caps. But then we must
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have f ∈ OB0 as 1t(w)fv = w 6= 0.

Hence we have V = OB01aL ∼= D(λ) for some λ ∈ Λr,s and therefore ∆(λ) ∼= OB ⊗OB] V ,

where V is viewed as an OB]-module as usual. Then

HomOB(∆(λ), L) = HomOB](V,L) = HomOB0(V,L) 6= 0, (III.6.0.11)

where the last equality follows from the fact that the image of any OB0-homomorphism V → L lies

in V , and caps act as zero on V . Then there is a surjective module homomorphism ∆(λ) → L, so

that L ∼= L(λ).

It is worth emphasizing a fact which was deduced in the proof of this theorem. If V is an

OB-module, let n be the minimal length of a ∈ 〈↓, ↑〉 such that 1aV 6= 0. Then we call
⊕
`(a)=n

1aV

the shortest word space of V . It is a submodule of the restriction of V to OB0. The fact we wish to

emphasize is that the shortest word space of L(λ) is isomorphic to D(λ), as an OB0-module.

We deduce that

L(λ)∗ ∼= L(λ) (III.6.0.12)

by comparing shortest word spaces as OB0-modules, using the fact that simple OB0-modules are

self dual.
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CHAPTER IV

BRANCHING RULES

In this chapter we construct the advertised categorical action. We begin by defining functors

E,F in section IV.1. Then in section IV.2 we construct certain short exact sequences of functors

which are central to many of our arguments. For example, in section IV.3 we use our short exact

sequences to compute the formal characters of the modules ∆̃(λ). These characters are described in

terms of the branching graph, which is defined in the same section.

IV.1. Functors E,F

Recall that our main theorem will be that locally finite dimenstional OB-modules categorify

a tensor product of representations of slk. In this section we begin gathering the data of this

categorification.

Define OB-bimodules OB↑, OB↓, ↑OB, ↓OB as follows.

1aOB↑1b = 1aOB1b↑ 1aOB↓1b = 1aOB1b↓

1a (↑OB) 1b = 1a↑OB1b 1a (↓OB) 1b = 1a↓OB1b

The left (resp. right) actions on OB↑, OB↓ (resp. ↑OB, ↓OB) are just the usual multipli-

cation. The remaining actions are defined as follows. For f ∈ OB and

x ∈ OB↑, x · f = x ◦ (f ↑)

x ∈ OB↓, x · f = x ◦ (f ↓)

x ∈ ↑OB, f · x = (f ↑) ◦ x
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x ∈ ↓OB, f · x = (f ↓) ◦ x

Proposition IV.1.1. OB↓ ∼= ↑OB and OB↑ ∼= ↓OB.

Proof. We have a linear isomorphism ϕ : OB↓ → ↑OB,

D 7→ D
. . .

which is a bimodule homomorphism as follows:

ϕ(D1 ◦D2) =

D2

D1

. . .

= D1 · ϕ(D2), and

ϕ(D1 ·D2) =

D1

D2

. . .

=

D1

D2

. . . = ϕ(D1) ◦D2.

The other isomorphism is obtained from ϕ by reversing the orientation of the added string.

We now have two functors OB -mod→ OB -mod:

E = OB↓⊗OB? ∼= ↑OB⊗OB?

F = OB↑⊗OB? ∼= ↓OB⊗OB?

The functors E,F are exact because they are biadjoint. For example, the counit of the

adjunction (E,F ) is induced by the bimodule homorphism OB↓⊗OBOB↑ → OB given on OB↓⊗OB

OB↑1a = OBa↑↓ by right multiplication by ac. The unit of this adjunction is induced by the bimodule

homomorphism OB → OB↑ ⊗OB OB↓ given on OB1a by right multiplication by ad, identifying

OB↑ ⊗OB OB↓1a = OB1a↓↑. The unit and counit of the adjunction (F,E) are defined similarly,

replacing c, d with c′, d′.

IV.2. Analogues for OB0

We similarly define some endofunctors of OB0 -mod. Define OB0-bimodules OB0
↑ , OB

0
↓ ,

↑OB
0, ↓OB

0 by replacing “OB” by “OB0” everywhere in the definitions of OB↑, OB↓, ↑OB, ↓OB,
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respectively. Now we define functors by tensoring with these bimodules:

E↑ = ↑OB
0⊗OB0? E↓ = OB0

↓⊗OB0?

F ↑ = OB0
↑⊗OB0? F ↓ = ↓OB

0⊗OB0?

These functors correspond, under the Morita equivalence OB0 ∼= S discussed in section III.4, to

induction and restriction in the two tensor factors. Specifically, recall that kSr is embedded in kSr+1

with respect to the first r letters. This induces embeddings kSr,s ⊂ kSr+1,s and kSr,s ⊂ kSr,s+1,

where kSr,s is shorthand for kSr ⊗ kSs. These last two embeddings give induction and restriction

functors indr+1,s
r,s , resr+1,s

r,s and indr,s+1
r,s , resr,s+1

r,s . Then the Morita equivalence identifies

E↑ =
⊕
r,s≥0

resr,s+1
r,s E↓ =

⊕
r,s≥0

indr+1,s
r,s

F ↑ =
⊕
r,s≥0

indr,s+1
r,s F ↓ =

⊕
r,s≥0

resr+1,s
r,s

Theorem IV.2.1. There exist short exact sequences of functors OB0 -mod→ OB -mod

0→ ∆ ◦ E↑ → E ◦∆→ ∆ ◦ E↓ → 0

0→ ∆ ◦ F ↓ → F ◦∆→ ∆ ◦ F ↑ → 0

Proof. The functors appearing in the short exact sequences are given by tensoring by certain bimod-

ules. So to get these short exact sequences, it suffices to find short exact sequences of (OB,OB0)-

bimodules of the form

E : 0→ OB ⊗OB] ↑OB
0 ϕE−→ ↑OB ⊗OB] OB0 ψE−→ OB ⊗OB] OB0

↓ → 0 (IV.2.0.1)

F : 0→ OB ⊗OB] ↓OB
0 ϕF−→ ↓OB ⊗OB] OB0 ψF−→ OB ⊗OB] OB0

↑ → 0. (IV.2.0.2)

To define the above homomorphisms, we write pure tensors D1⊗D2 in the above bimodules

by drawing D1 over D2, with the tensor sign separating them. Then the above maps can be depicted
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as follows:

ϕE


D1

D2

⊗

 =

D1

D2

⊗ ψE


D1

D2

⊗

 =
D1

D2

⊗

. . .

(IV.2.0.3)

ϕF


D1

D2

⊗

 =

D1

D2

⊗ ψF


D1

D2

⊗

 =
D1

D2

⊗

. . .

(IV.2.0.4)

It is easy to see that these maps are well defined and make IV.2.0.1 and IV.2.0.2 into chain

complexes of bimodules. We check that IV.2.0.1 is exact. Exactness of IV.2.0.2 is proved similarly.

To see that ψE is surjective, let D1 ∈ OB, D2 ∈ OB0
↓ be diagrams. Then

D1

⊗

D2

=

D1

⊗

D2

=

D1

⊗

D2

=
d1

⊗
d2

. . .

. . . = ψE


d1

⊗
d2

. . .


where the string shown in diagram D2 is the one connected to its bottom-right vertex, d2 is obtained

from D2 by deleting this string, and d1 is the diagram above the tensor sign in the third frame.

To see that kerψE ⊂ imφE we first define I to be the standard basis of OB− consisting

of diagrams with no caps and no crossings among vertical strings. Now let I1 to be the set of all

diagrams in I whose target object ends in ↑ and this vertex is on a cup. We define I2 to be the

set of all diagrams in I whose target object ends in ↑ and this vertex is on a vertical string. Now

observe that

↑OB ⊗OB] OB0 =
⊕

D∈I1∪I2

D ⊗k 1s(D)OB
0.

So any x ∈ kerψE can be written as x =
∑
D∈I1∪I2 D⊗fD, with fD ∈ OB0. Now if D ∈ I1,

and has a cup connected to its top-right vertex and some other vertex i, then let D̂ denote the

diagram in I obtained from D by replacing the cup with a new vertical string connected to i on

top (its vertex on bottom is determined by the fact that vertical strings are not allowed to cross).

Let τD = 1s(D̂)τD1s(D)↓ be the diagram in OB0 which, when placed beneath D̂, connects the “new”

vertex in s(D̂) to the bottom-right vertex, and none of the other vertical strings cross each other.
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For example, if

D =


 then D̂ =

and the corresponding τ is

Now

0 = ψE(x) =
∑
D∈I1

D

fD

⊗

. . .

=
∑
D∈I1

D̂

fD

τD

⊗ =
∑

D0∈I,D∈I1, D̂=D0

D0

fD

τD

⊗

Therefore
∑

D∈I1, D̂=D0

τD ◦(fD ↓) = 0 for all D0 ∈ I. Now since each diagram appearing in τD ◦(fD ↓)

has its bottom right vertex connected to some vertex on top, determined by D ∈ I1, we have by

linear independence of diagrams that τD ◦ (fD ↓) = 0 for all D0 ∈ I and all D ∈ I1 with D̂ = D0,

ie. for all D ∈ I1. Then fD = 0 for all D ∈ I1, whence x =
∑
D∈I2

D ⊗ fD ∈ imϕE .

It remains to show that ϕE is injective. Note that ϕE =
⊕
D∈I

ϕ
(D)
E , where ϕ

(D)
E is the

restriction of ϕE to D ⊗k ↑OB
0, which is a linear isomorphism onto (D ↑) ⊗k OB

0. Then since

D 7→ D ↑ is an injective map I → I1, we have that ϕE is injective.

Recall from theorem III.1.4 that we can interpret dotted diagrams as elements of OB.

It is immediate from the definition of the bimodule OB↑ that the linear endomorphism of OB↑

given on OB1a↑ by right multiplication by ax is a bimodule homomorphism, which we denote x.

This induces an endomorphism of the functor F , denoted X. Since k is algebraically closed and X

preserves the individual spaces 1aV which are finite dimensional, we see that we have a decomposition

F =
⊕

i∈k Fi, where Fi is the generalized i-eigenspace of X acting on F . By adjointness, the

endomorphism X induces an endomorphism X of E which is given on OB1a↓ by right multiplication

by ax′. The functor E splits into the direct sum of Ei, defined as the generalized i-eigenspace of

x′ acting on E. It should be noted that using the isomorphism from proposition IV.1.1 we can

alternatively describe X ∈ EndF as left multplication on ↓OB by a dot on a “down” strand, and
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X ∈ EndE as left multiplication on ↑OB by a dot on an “up” strand. Note that E2 = (E ↑OB)⊗OB?

and 1aE ↑OB = 1a↑↑OB. So we also have an endomorphism T of E2 induced by the bimodule

endomorphism given on 1a↑↑OB by left multiplication by the diagram as.

To similarly refine the functors E↑, F ↑, E↓, F↓, we introduce the Jucys-Murphy elements:

z↑1a↑ =
∑

1≤j<`(a)

aj=↑

(j i)1a↑ z↓1a↓ =
∑

1≤j<`(a)

aj=↓

(j i)1a↓

It is easy to show that (D ↑)z↑1a↑ = z↑1b↑(D ↑) and (D ↑)z↑1a↑ = z↑1b↑(D ↑) for D ∈

1bOB
01a. Therefore the linear endomorphism of ↑OB

0 (resp. OB0
↑) given on 1a↑OB

0 (resp. OB01a↑)

by left (resp. right) multiplication by m1a↑ + z↑1a↑ is an OB0-bimodule homomorphism. Call this

endomorphism x↑. Similarly, we have an OB0-bimodule endomorphism of ↓OB
0 (resp. OB0

↓)

given on 1a↓OB
0 (resp. OB01a↓) by left (resp. right) multiplication by m′1a↓ − z↓1a↓. Call this

endomorphism x↓.

Since x↓, x↑ preserve the spaces 1aV , we have decompositions

E↑ =
⊕
i∈k

E↑i E↓ =
⊕
i∈k

E↓i

F ↑ =
⊕
i∈k

F ↑i F ↓ =
⊕
i∈k

F ↓i

where the subscript i means to take the generalized i-eigenspace of x↑ or x↓ as appropriate. For

example, since E↑ = ↑OB
0⊗OB0?, x↑ induces an endomorphism of E↑, and E↑i is the corresponding

generalized i-eigenspace.

Corollary IV.2.2. There exist short exact sequences of functors OB0 -mod→ OB -mod

0→ ∆ ◦ E↑i → Ei ◦∆→ ∆ ◦ E↓i → 0

0→ ∆ ◦ F ↓i → Fi ◦∆→ ∆ ◦ F ↑i → 0

Proof. First note that each of the functors Ei, Fi, E
↑
i , F

↑
i , E

↓
i , F

↓
i can be alternately described as

tensoring with its value on the appropriate regular module. For example, if ↑OB
0
i denotes the

generalized i-eigenspace of x↑ acting on ↑OB
0 (that is, ↑OB

0
i = E↑i OB

0), then E↑i = ↑OB
0
i⊗OB0?.

Indeed, by the definition of x↑ it is clear that E↑i ⊃ ↑OB0
i⊗OB0?. Then taking the direct sum over
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i ∈ k produces an equality. Therefore none of the inclusions E↑i ⊃ ↑OB0
i⊗OB0? can be proper.

Now it suffices to verify that the short exact sequences of bimodules in the proof of theorem

IV.2.1 intertwine the homomorphism x with the analogues for OB0. The homomorphisms x, x′

obviously preserve the images of OB ⊗OB] ↓OB
0 and OB ⊗OB] ↑OB

0.

Let us show that the short exact sequence for E intertwines x′ with the analogues for OB0.

The proof for the short exact sequence for F is similar. Let D1 ∈ 1aOB,D2 ∈ ↑OB0 be diagrams

with (D1 ↑)D2 6= 0. Then

xϕE(D1⊗D2) = x`(a)+1(D1 ↑)⊗D2 = (D1 ↑)x`(a)+1⊗D2 = ϕE(D1⊗x`(a)+1D2) = ϕEx↑(D1⊗D2).

Now let D1 ∈ 1a↑OB1b, D2 ∈ 1bOB
01c be diagrams. Then

ψEx(D1 ⊗D2) =
D1

D2

⊗

. . . •

=
D1

D2

⊗

. . .

•

= x↓ψE(D1 ⊗D2) (IV.2.0.5)

Note that by Lemma III.1.5 the diagram beneath the tensor symbol in the third frame above repre-

sents

(m′1b↓ − z↓1b↓) ◦ (D2 ↓) = (D2 ↓) ◦ (m′1c↓ − z↓1c↓).

IV.3. Characters

Let V ∈ OB -mod and a ∈ 〈↓, ↑〉, n = `(a). For each i = 1, . . . , n let xi be the endomorphism

of 1aV given by left multiplication by xi1a if ai =↑ or x′i1a if ai =↓. Suppose n ≥ 1. Then in the finite

dimensional commutative subalgebra of 1aOB1a generated by x1, . . . , xn, there exist idempotents

{1a;i : i ∈ kn} such that 1a;i acts on any module as projection onto the simultaneous generalized

i-eigenspace of x1, . . . , xn. Let 1∅;∅ = 1∅. We define the formal character of an OB-module V to

be the formal sum

chV =
∑
a,i

(dim 1a;iV )eai (IV.3.0.6)

where ai is the sequence of subscripted symbols obtained from a by labelling aj with the subscript

ij . Note that since our interpretation of xi1a in OB depends on our choice of m,m′, so does chV .

Let Supp(V ) be the set of all (a, i) such that 1a;iV 6= 0.
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Proposition IV.3.1. The characters of irreducible OB-modules are linearly independent.

Proof. Suppose
∑
λ∈Λ aλch L(λ) = 0 is a nontrivial relation. Choose λ0, with |λ0| minimal, such

that aλ0
6= 0. If λ0 ` (r, s) define a linear map T by Teai = 0 for a 6=↓r↑s, and Te

↓ri ↑
s
j =

e(i1−m,...,ir−m,m′−j1,...,m′−js). Suppose aλT ch L(λ) 6= 0. Then
∑
i(dim 1↓r↑s;iL(λ))ei 6= 0 so λ `

(r − t, s − t) for some t ≥ 0. But aλ 6= 0 implies |λ| ≥ |λ0|, which yields t = 0, so that λ ` (r, s).

Then if D(λ) is the the irreducible kSr⊗kSs-module labeled by λ, then we have T ch L(λ) = ch D(λ),

where ch D(λ) denotes the usual character of modules for the symmetric group (see section II.1),

because 1↓r↑s;iL(λ) = 1↓r↑s;iD(λ). We then have
∑
λ`(r,s) aλch D(λ) = 0 which implies aλ = 0

whenever λ ` (r, s) (see Lemma II.1.2). In particular, aλ0 = 0.

We can describe the character of ∆̃(λ) combinatorially. We define the branching graph B

by taking Λ for the set of vertices. There is an edge between λ and µ whenever µ is obtained from

λ by adding a single box to either of the constituent partitions. We color the edge with the content

of the box added. For example, the part of the branching graph involving only bipartitions of size

3 or less is shown in Figure 1, in the case p = m = m′ = 0.

(∅,∅)

( ,∅) (∅, )

(
,∅
)

( ,∅) ( , )
(
∅,

)
(∅, )

(
,∅
) (

,∅
)

( ,∅)
(
,
)

( , )
(
,
)

( , )
(
∅,

) (
∅,

)
(∅, )

0 0

1 −1
0 0 −1

1

2 −1

0 1

−2

0 1

−1 −1

1 0

−2

1 0

−1 2

Figure 1: Branching graph when p = m = m′ = 0.

By a path in B we mean a finite sequence of vertices λ0λ1 . . . λn with each λi, λi+1 connected

by an edge. We require λ0 = (∅,∅). The type of a path is ai = (a1)i1 . . . (an)in where ij is the color

of the jth edge traversed in the path and aj ∈ {↓, ↑} is determined as follows. If λj+1 is obtained

from λj by adding a box to λ↑j or removing a box from λ↓j then aj =↑. Otherwise aj =↓.
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Proposition IV.3.2.

ch ∆̃(λ) =
∑
p

etype(p)

where the sum is over all paths to λ in B.

Proof. We show 1a;i∆̃(λ) has dimension equal to the number of paths in B to λ of type ai by induction

on `(a). We have dim 1∅;∅∆̃(λ) = dim 1∅∆̃(λ), which is 0 if λ 6= (∅,∅) and 1 if λ = (∅,∅). In

both cases this equals the number of paths to λ of type ∅.

The induction step follows from the identities 1a↑;iiV = 1a;iEiV and 1a↓,iiV = 1a,iFiV . For

example, since Ei∆̃(λ) has a filtration with sections isomorphic to ∆̃(µ), where µ is obtained from

λ either by adding a box of ↓-content i to λ↓ or removing a box of ↑-content i from λ↑, each possible

such µ appearing exactly once, it follows that dim 1a↑;ii∆̃(λ) =
∑
µ dim 1a;i∆̃(µ) summing over all

µ obtained from λ by removing a box of ↓-content i from λ↓ or adding a box of ↑-content i to λ↑.

The case involving Fi∆̃(λ) is similar.

Example IV.3.3. We compute the terms eai in ch ∆̃( ,∅) with `(a) ≤ 3. There is only one

path to ( ,∅) of length ≤ 2, which contributes a term e↓0 . There are six paths to ( ,∅) of length

3. Two of these begin by departing from (∅,∅), and then immediately returning to (∅,∅) before

proceeding to ( ,∅). These two paths contribute e↓0↑0↓0 + e↑0↓0↓0 . Another path to ( ,∅) of length

3 is (∅,∅) → (∅, ) → ( , ) → ( ,∅), which contributes the term e↑0↓0↓0 . The remaining three

paths to ( ,∅) of length 3 all begin by following the edge (∅,∅)→ (∅, ), then visiting a bipartition

of size 3 before returning to ( ,∅). These paths contribute e↓0↓1↑1 + e↓0↓−1↑−1 + e↓0↑0↓0 . So the

terms eai in ch ∆̃( ,∅) with `(a) ≤ 3 are: e↓0 + 2e↓0↑0↓0 + 2e↑0↓0↓0 + e↓0↓1↑1 + e↓0↓−1↑−1 .

Corollary IV.3.4. If [∆̃(λ) : L(µ)] 6= 0, then there is a path in B to µ of length |µ|, and a path to

λ of the same type.

Proof. Choose a ∈ 〈↓, ↑〉|µ↓|,|µ↑| so 1aL(µ) 6= 0. Then we can choose i so that (a, i) ∈ SuppL(µ) ⊂

∆̃(µ). Then proposition IV.3.2 guarantees a path to µ of type ai. But also (a, i) ∈ SuppL(µ) ⊂

Supp ∆̃(λ), so there is a path to λ of type ai.

Theorem IV.3.5. If [∆̃(λ) : L(µ)] 6= 0, then µ ≤ λ.

Proof. From the corollary we have a path to µ of length |µ| and a path to λ of the same type. We

will prove that the existence of such a pair of paths implies µ ≤ λ by induction on |µ|. If |µ| = 0,

then λ = µ = (∅,∅) so µ ≤ λ is trivial. Now assume |µ| ≥ 1. Delete the last edge in each path

to obtain paths to µ′ and λ′, each of length |µ′|. By induction, µ′ ≤ λ′, ie. cont(λ′) = cont(µ′)
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and cont↑(µ
′) ≥ cont↑(λ

′). Since the type of the deleted edge in each path is the same, we have

cont(µ) = cont(λ).

Suppose the type of deleted edge is ↑i. Then cont↑(µ) = cont↑(µ
′)+αi. Now if λ is obtained

from λ′ by adding a box to λ′↑ then cont↑(λ) = cont↑(λ
′) + αi so that cont↑(µ) − cont↑(λ) =

cont↑(µ
′)− cont↑(λ

′) ≥ 0. On the other hand, if λ is obtained from λ′ by removing a box from λ′↓,

then cont↑(λ) = cont↑(λ
′) so that cont↑(µ)− cont↑(λ) = cont↑(µ

′) + αi − cont↑(λ
′) ≥ αi > 0.

The case when the type of the last edge is ↓i is treated similarly.
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CHAPTER V

TENSOR PRODUCT CATEGORIFICATION

In this chapter we assemble the pieces of our main theorem (Theorem V.3.2). In section

V.1 we show that we have the data of a locally stratified structure on OB -mod, namely that our

standardization functor ∆ is the left adjoint of a quotient functor (see section II.5). We go on to

show in section V.2 that the axioms of a locally stratified structure are met. In section V.3 we show

that the functors Ei, Fi define a categorical slk-action on OB -mod and state our main theorem

(Theorem V.3.2). Then in section V.4 we describe the crystal of OB, which is a consequence of

Theorem V.3.2 and the main result of [D].

V.1. Standardization

The poset Ξ parameterizes the blocks of the category of finite dimensional OB0-modules.

For ξ ∈ Ξ, the block OB0 -mod[ξ] consists of finite dimensional OB0-modules whose composition

factors are D(λ), with λ ∈ ξ. Denote by ∆ξ the restriction of ∆ to OB0 -mod[ξ]. Then we have

seen that the image of ∆ξ lies in OB -mod≤ξ, which is the full subcategory of OB -mod consisting

of modules V with [V : L(λ)] = 0 unless λ ∈ ξ′ for some ξ′ ∈ Ξ satisfying ξ′ ≤ ξ.

We’ve defined ∆ξ as inclusion OB0 -mod[ξ] ↪→ OB0 -mod, followed by the inflation

OB0 -mod → OB] -mod, followed by induction to OB. Therefore, ∆ξ is left adjoint to the functor

πξ defined as the composite prξ ◦R ◦ resOBOB] , where prξ is projection to the block OB0 -mod[ξ], and

R is the right adjoint to the inflation functor. We have RV = {v ∈ V : OB][1]v = 0}.

For V ∈ OB -mod≤ξ, let 1ξ =
∑

a∈〈↓,↑〉r,s 1a, where the representatives of ξ are bipartitions

of (r, s). Then clearly πξV ⊂ 1ξV and 1ξV ⊂ R ◦ resOBOB] V . So πξV = 1ξV once we can see that

1ξV ∈ OB0 -mod[ξ]. This is so because the composition factors of V are L(λ) for [λ] ≤ ξ, and for

such λ we have 1ξL(λ) = 0 unless λ ∈ ξ, in which case 1ξL(λ) = D(λ) as we’ve noted before. In

fact, we now see that πξV is the shortest word space of V whenever V ∈ OB -mod≤ξ and πξV 6= 0.

Now it is clear that πξ is exact and commutes with the duality. Therefore it has a right

adjoint ∇ξ, which is obtained from ∆ξ by composing with duality on the left and right. The
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result is that ∇ξ is given by inclusion OB0 -mod[ξ] ↪→ OB0 -mod, followed by the inflation functor

OB0 -mod → OB[ -mod (defined by letting cups act as zero), followed by the coinduction to OB.

Explicitly, ∇ξ =
⊕

a∈〈↓,↑〉HomOB[(OB1a, ?). Here, and forever, we view any OB0-module as an

OB[-module via the inflation functor as we do with inflation to OB]. We set ∇ =
⊕

ξ∈Ξ∇ξ and

call this the costandardization functor. We define the costandard modules ∇(λ) = ∇Y (λ) and the

proper costandard modules ∇(λ) = ∇D(λ). Write ∇̃(λ) for ∇S(λ).

Proposition V.1.1. We have ∆(λ)∗ ∼= ∇(λ) and ∆(λ)∗ ∼= ∇(λ). In particular,

[
∇(µ) : L(λ)

]
=
[
∆(µ) : L(λ)

]
.

Proof. The stated isomorphisms follow from the fact that D(λ) and Y (λ) are self-dual. Now since

L(λ) is self-dual, the statement about composition multiplicities follows.

Proposition V.1.2. OB -modξ = OB0 -mod[ξ] and πξ is the quotient functor from section II.5.

Proof. This is a special case of Theorem II.4.3 in light of the above description of πξ.

V.2. Projective Modules

Given V ∈ OB -mod a standard filtration or ∆-flag of V is a finite filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V

with Vi/Vi−1
∼= ∆(λi) for λi ∈ Λ. Let (V : ∆(λ)) denote the multiplicity of ∆(λ) as a section of such

a filtration of V . Theorem V.2.2 below proves that this is independent of the standard filtration

chosen. We begin with a lemma.

Lemma V.2.1. For any λ, µ ∈ Λ, we have

dim ExtiOB(∆(µ),∇(λ)) = δi,0δλ,µ.
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Proof. Using the triangular decomposition of OB, we can see that resOB
OB[ ◦∆ = OB[⊗OB0?

ExtiOB(∆(µ),∇(λ)) = ExtiOB

(
∆(µ),

⊕
a

HomOB[(OB1a, D(λ))

)

= ExtiOB[(OB
[ ⊗OB0 Y (µ), D(λ))

= ExtiOB0(Y (µ), D(λ)).

Theorem V.2.2. Let V ∈ OB -mod have a standard filtration. Then for any λ ∈ Λ, we have

(V : ∆(λ)) = dim HomOB(V,∇(λ)). (V.2.0.1)

Proof. Induct on the length of the filtration. If V = ∆(µ), then both sides of V.2.0.1 are equal

to δλ,µ by the lemma. For the induction step, if ∆(µ) is at the top of a standard filtration of V ,

apply HomOB(?,∇(λ)) to 0→ W → V → ∆(µ)→ 0. By Lemma V.2.1 the first Ext1 term is zero.

Therefore by induction, we have

dim HomOB(V,∇(λ)) = dim HomOB(∆(µ),∇(λ)) + dim HomOB(W,∇(λ))

= δλ,µ + (W : ∆(λ))

= (V : ∆(λ)).

Proposition V.2.3. Let V ∈ OB -mod have a ∆-flag: 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V with

Vi/Vi−1
∼= ∆(λi) for some λi ∈ Λ, i = 1, . . . , n. Suppose V = V ′ ⊕ V ′′ with V ′, V ′′ ∈ OB -mod.

Then V ′, V ′′ both have ∆-flags.

Proof. If n = 1, then V ∼= ∆(λ1) is indecomposable, so there is nothing to prove. Suppose n > 1.

Choose λ ∈ Λ maximal such that L(λ) appears as a section of some filtration of V . If there are

multiple candidates for λ, choose |λ| minimal.

Now L(λ) is a quotient of some submodule Ṽ ⊂ V . Then since D(λ) is a summand of L(λ)

as an OB0-module, we have a nonzero OB0-module homomorphism Ṽ → D(λ). By projectivity

of Y (λ), we get a nonzero OB0-module homomorphism Y (λ) → Ṽ ↪→ V . In fact, this is an OB]-

module homomorphism, because its image lies in the direct sum of all 1aV with a ∈ 〈↓, ↑〉r,s, where
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λ ` (r, s). Caps act as zero on this space because 1aV =
∑n
i=1 dim 1a∆(λi) = 0 for any a with

`(a) < |λ|. We therefore have a nonzero induced homomorphism ∆(λ) → V . Then relabeling V ′

and V ′′ if necessary, we have a nonzero homomorphism ϕ ∈ HomOB(∆(λ), V ′).

Choose i minimal so that imϕ ⊂ Vi. Then the composite

∆(λ)
ϕ→ Vi → Vi/Vi−1

∼= ∆(λi)

is nonzero, which implies λ ≤ λi. By maximality of λ, we then have λ = λi, and this composite

must be an isomorphism. Therefore ϕ is injective and ∆(λ) ∩ Vi−1 = 0. We have V/∆(λ) =

(V ′/∆(λ))⊕ V ′′. If V/∆(λ) has a shorter ∆-flag than V , then induction gives ∆-flags for V ′/∆(λ)

and V ′′, hence for V ′ also.

To see that V/∆(λ) has a shorter ∆-flag than V , observe that the short exact sequence 0→

Vi−1 → Vi → ∆(λ) → 0 splits because ∆(λ) ∩ Vi−1 = 0. Thefore Vi/∆(λ) ∼= Vi−1 so that the short

exact sequence 0 → Vi/∆(λ) → V/∆(λ) → V/Vi → 0 becomes 0 → Vi−1 → V/∆(λ) → V/Vi → 0.

Since Vi−1 has a ∆-flag of length i − 1 and V/Vi has one of length n − i, we see that V/∆(λ) has

one of length n− 1, as needed.

Let λ ∈ Λr,s. We construct the projective cover P (λ) of L(λ) as follows. Recall that the

shortest word space of L(λ) is isomorphic as an OB0-module to D(λ), ie.

⊕
a∈〈↓,↑〉r,s

1aL(λ) ∼= D(λ).

Therefore dim HomOB0(Y (λ), L(λ)) = dim HomOB0(Y (λ), D(λ)) = 1. Consider the projective mod-

ule P̂ (λ) = OB ⊗OB0 Y (λ). We have dim HomOB(P̂ (λ), L(λ)) = 1, and so L(λ) is covered by some

unique indecomposable projective summand P (λ).

Proposition V.2.4. P (λ) has a ∆-flag, with ∆(λ) at the top, and all other sections isomorphic to

∆(µ) with λ < µ.

Proof. We shall show that P̂ (λ) has a ∆-flag, and conclude from Proposition V.2.3 that P (λ) does

also. In particular, the following version of BGG reciprocity follows from V.2.2, II.2.6, and V.1.1:

(P (λ) : ∆(µ)) =
[
∆(µ) : L(λ)

]
(V.2.0.2)

Now Theorem IV.3.5 proves the description of sections of the ∆-flag.
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To show P̂ (λ) = OB ⊗OB] OB] ⊗OB0 Y (λ) has a ∆-flag, we define an infinite descending

filtration onOB] by settingOB]i =
⊕

k≥iOB
][k]. It follows thatOB]⊗OB0Y (λ) has a finite filtration

with sections OB][k] ⊗OB0 Y (λ), 0 ≤ k ≤ min{|λ↓|, |λ↑|}, and so P̂ (λ) has a finite filtration with

sections ∆
(
OB][k]⊗OB0 Y (λ)

)
.

Note that OB][k]⊗OB0 Y (λ) is a summand of the OB0-module OB][k], which is isomorphic

to ⊕
r,s≥0

OB01r,s ⊗k 1r,sOB
+[k] ∼=

⊕
r,s≥0

(dim 1r,sOB
+[k])OB01r,s,

which is projective. Hence OB][k] ⊗OB0 Y (λ) is a finite dimensional projective OB0-module, and

therefore has a filtration with sections Y (µ) for various bipartitions µ of (|λ↓| − k, |λ↑| − k). This

finishes the proof.

We have now proved the following theorem.

Theorem V.2.5. The preorder on Λ defined in section III.3 makes OB -mod into a locally stratified

category with standard objects ∆(λ), λ ∈ Λ. If p = 0 then OB -mod is a locally highest weight

category.

V.3. Categorical Action

Let C = OB -mod. We have shown that C is a locally stratified category with gr C isomorphic

to the category of finite dimensional OB0-modules. We also have categorical actions on C and gr C.

The categorical action on gr C is well-known, and the categorical action on C was described in section

IV.1. We now review these categorical actions, and then discuss their compatibility with the local

stratification.

We denote by K0(C) (resp. K0(gr C)) the split Grothendieck group of the category of finitely

generated projective OB-modules (resp. OB0-modules). That is, K0(C) is the free abelian group

on the isomorphism classes of finitely generated projective OB-modules modulo [B] − [A] − [C]

whenever B ∼= A ⊕ C, and similarly with OB0. We let C∆ denote the subcategory of C consisting

of all modules with a ∆-flag. We denote by G0(C∆) its Grothendieck group. That is, G0(C∆) is

the free abelian group on the isomorphism classes of modules in C∆ modulo [B]− [A]− [C] for any

A,B,C ∈ C∆ exhibiting a short exact sequence 0→ A→ B → C → 0. We define [C] = C⊗ZK0(C),

[gr C] = C⊗Z K0(gr C), and [C∆] = C⊗Z G0(C∆).

Theorem V.3.1. The operators E↓i , F
↓
i , E

↑
i , F

↑
i , i ∈ k on [gr C] satisfy the relations of the Chevalley
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generators of sl↓k ⊕ sl↑k under the assignments

e↓i 7→ E↓i f↓i 7→ F ↓i

e↑i 7→ E↑i f↑i 7→ F ↑i .

Moreover, this module is isomorphic to the tensor product of basic modules V (−$m′)⊗V ($m), and

the weight space decomposition of this module coincides with the decomposition of finite dimensional

OB0-modules into blocks.

Proof. This follows from [Groj] in light of the identifications

E↑i =
⊕
r,s≥0

(i−m)− resr,s+1
r,s E↓i =

⊕
r,s≥0

(m′ − i)− indr+1,s
r,s

F ↑i =
⊕
r,s≥0

(i−m)− indr,s+1
r,s F ↓i =

⊕
r,s≥0

(m′ − i)− resr+1,s
r,s

The categorical slk-action on C is a slightly modified version of Rouquier’s definition in [R].

That is, we have an adjoint pair (E,F ) of exact functors C → C and endomorphisms X ∈ EndE,

T ∈ EndE2 (see IV.1). We have E =
⊕

i∈kEi and F =
⊕

i∈k Fi, where Ei (resp. Fi) is the

generalized i-eigenspace of X acting on E (resp. F ). The functor F is isomorphic to a left adjoint of

E. The action on En of Xi = En−iXEi−1 for 1 ≤ i ≤ n and of Ti = En−i−1TEi−1 for 1 ≤ i ≤ n−1

induce an action of the degenerate affine Hecke algebra.

Theorem V.3.1 says that [gr C] = V (−$m′) ⊗ V ($m) as sl↓k ⊕ sl↑k-modules. Pulling this

action back through the diagonal map slk → sl↓k ⊕ sl↑k gives an integrable slk-module. This module

is isomorphic to [C∆] via the standardization functor (see corollary IV.2.2). Then since [C] embeds

into [C∆], we see that [C] is an integrable slk-module. Moreover, this embedding is an isomorphism

[C] ∼= [C∆]. To see this, choose a total order of Λ refining its preorder. Then note that with respect

to the ordered bases {[P (λ)] : λ ∈ Λ} for [C] and {[∆(λ)] : λ ∈ Λ} for [C∆], the embedding is given by

an upper unitriangular matrix (see Proposition V.2.4). Therefore the embedding is an isomorphism.

Note that although we don’t have a decomposition of C into blocks, we do have [C] =
⊕

ξ∈Ξ[Cξ].

The local stratification and the categorical action on C are compatible in the following

sense. First, the poset Ξ can be identified with pairs of weights of V (−$m′), V ($m) via the map

[λ] 7→ (−$m′+cont↓ λ,$m−cont↑ λ). This map is clearly surjective, and the remarks in section III.3
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show that it is a well-defined injection. Transporting the partial order on Ξ through this bijection

induces the inverse dominance order (see Definition 3.2 of [LW]) on the set of pairs of weights of

V (−$m′), V ($m). That is, for two such pairs µ = (µ1, µ2), ν = (ν1, ν2), we have µ ≤ ν if and

only if µ1 ≥ µ2 and µ1 + µ2 = ν1 + ν2. Second, gr C carries a categorical sl↓k ⊕ sl↑k action with

[gr C] ∼= V (−$m′)⊗V ($m) and the weight ξ subcategory of gr C is the quotient Cξ. Lastly, for each

M ∈ Cξ the object Ei∆(M) admits a filtration with successive quotients being ∆(E↓iM),∆(E↑iM),

and similarly with Fi.

We have proved our main theorem, which we now state.

Theorem V.3.2. The endofunctors Ei, Fi of OB -mod define a categorical slk-action. This action

is compatible with the locally stratified structure on OB -mod and categorifies V (−$m′)⊗ V ($m).

V.4. Crystal Graph Structure

We modify the description of the crystal associated to V ($0) from ([K]) to get the crystals

associated to V (−$m′) and V ($m). Fix a partition λ. Label all addable nodes of ↑-content i by

+ and all removable nodes of ↑-content i by −. The ↑i-signature of λ is the sequence of pluses and

minuses obtained by going along the rim of the Young diagram of λ from bottom left to top right

and reading off all the signs. The reduced ↑i-signature of λ is obtained from its ↑i-signature by

successively deleting all neighboring pairs of the form −+. The reduced ↑i-signature is a sequence

of +’s followed by a sequence of −’s.

To define (reduced) ↓i-signature, label all addable nodes of ↓-content i by − and all removable

nodes of ↓-content i by +. The ↓i-signature of λ is the sequence of pluses and minuses obtained

by going along the rim of the Young diagram of λ from top right to bottom left and reading off all

the signs. The reduced ↓i-signature of λ is obtained from its ↓i-signature by successively deleting

all neighboring pairs of the form −+. The reduced ↓i-signature is a sequence of +’s followed by a

sequence of −’s.

We make the set of p-regular partitions into the crystal associated to V ($m) as follows. We

define

ε↑i (λ) = #{−’s in the reduced ↑i -signature of λ}

ϕ↑i (λ) = #{+’s in the reduced ↑i -signature of λ}.

If ε↑i (λ) = 0, set ẽ↑i λ = 0. Otherwise define ẽ↑i λ to be the partition obtained by removing the node in

λ corresponding to the leftmost − in its reduced ↑i-signature. If ϕ↑i (λ) = 0, set f̃↑i λ = 0. Otherwise
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define f̃↑i λ to be the partition obtained by adding the node in λ corresponding to the rightmost +

in its reduced ↑i-signature. Finally, set wt↑(λ) = $m − cont↑ λ.

We make the set of p-regular partitions into the crystal associated to V (−$m′) as follows.

We define

ε↓i (λ) = #{−’s in the reduced ↓i -signature of λ}

ϕ↓i (λ) = #{+’s in the reduced ↓i -signature of λ}.

If ε↓i (λ) = 0, set ẽ↓i λ = 0. Otherwise define ẽ↓i λ to be the partition obtained by adding the node in

λ corresponding to the leftmost − in its reduced ↓i-signature. If ϕ↓i (λ) = 0, set f̃↓i λ = 0. Otherwise

define f̃↓i λ to be the partition obtained by removing the node in λ corresponding to the rightmost

+ in its reduced ↓i-signature. Finally, set wt↓(λ) = −$m′ + cont↓ λ.

The crystal associated to V (−$m′)⊗ V ($m) is the Kashiwara tensor product of the above

crystals. Given a bipartition λ = (λ↓, λ↑), its i-signature is obtained by concatenating the ↓i-

signature of λ↓ followed by the ↑i-signature of λ↑. The reduced i-signature of λ is obtained from its

i-signature by successively deleting all neighboring pairs of the form −+. The reduced i-signature

is a sequence of +’s followed by a sequence of −’s.

We make Λ into the crystal associated to V (−$m′)⊗ V ($m) by defining

εi(λ) = #{−’s in the reduced i-signature of λ}

ϕi(λ) = #{+’s in the reduced i-signature of λ}.

If εi(λ) = 0, set ẽiλ = 0. Otherwise define ẽiλ to be the bipartition obtained by adding or removing

the node in λ corresponding to the leftmost − in its reduced ↓i-signature (add the node if it belongs

to λ↓ and remove it if it belongs to λ↑). If ϕi(λ) = 0, set f̃iλ = 0. Otherwise define f̃iλ to be the

partition obtained by adding or removing the node in λ corresponding to the rightmost + in its

reduced ↓i-signature (add the node if it belongs to λ↑ and remove it if it belongs to λ↓). Finally, set

wt(λ) = wt↓(λ↓) + wt↑(λ↑).

Example V.4.1. Let m = m′ = 0, p = 2. Then the 0-signature of
(

,∅
)

is − − −+ (the three

−’s correspond to the three addable nodes in of content 0, and the + corresponds to the addable

node in ∅), and its reduced 0-signature is −−. The node corresponding to the rightmost − in the

reduced signature is the addable node in the first row of . Thus ẽ0

(
,∅
)

=
(

,∅
)
.

Theorem V.4.2. Suppose EiL(λ) 6= 0. Then the head and socle of EiL(λ) are both isomorphic to

47



the simple module L(ẽiλ). Moreover, if εi(λ) = 1, then EiL(λ) = L(ẽiλ). The same result holds

with Ei replaced by Fi, ẽi replaced by f̃i, and εi replaced by ϕi.

Proof. This follows from the main result of [D], combined with our main theorem above, which

verifies that the hypotheses of [D] are all satisfied.

We now define the crystal graph, which is a subgraph of the branching graph from section

IV.3. The set of vertices is Λ, and whenever λ ∈ Λ and f̃iλ 6= 0 we connect λ and f̃iλ with an edge

colored i.

Example V.4.3. Let m = m′ = 0, p = 2. The the part of the crystal graph involving bipartitions

of size up to 4 is shown in Figure 2.

(∅,∅)

( ,∅) (∅, )

( ,∅) ( , ) (∅, )

(
,∅
)

( ,∅) ( , ) ( , ) (∅, )
(
∅,

)
(

,∅
)

( ,∅) ( , ) ( , ) ( , ) (∅, )
(
∅,

)

1 0 0 1

1 1

0 1
0

0
1 1

0
0

1 0

Figure 2: Crystal graph when m = m′ = 0, p = 2.

As the above example shows, the crystal graph is not connected in general. For instance,

(∅,∅) is isolated if m = m′ = 0. Also, it is easy to describe the connected component containing

( , ) in the case m = m′ = 0, p = 2. It is a graph of type A∞, with the colors of edges forming the

pattern . . . , 0, 0, 1, 1, 0, 0, 1, 1, . . . . Part of this component is visible in the above example. Starting at

( , ), there are two possible routes. One route passes through (∅, ) and the other through ( ,∅).

With each additional edge, a box is added to the nonempty constituent partition, alternating between

the first and second rows.

In fact the crystal graph has infinitely many connected components if p = 0 and m,m′ ∈

Z · 1k. Presumably this assertion is also true when p > 0, but we will not attempt to prove that
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here. For the p = 0 case, first define the k-value of a bipartition (λ↓, λ↑) to be the smallest integer

k ≥ −min(m,m′) such that the union of a horizontal strip of height k + m and a vertical strip of

width k + m′ can cover the diagram composed of the Young diagram of λ↓ rotated through 180◦

and adjoined to Young diagram of λ↑ with corner vertices touching. Equivalently it is the smallest

k ≥ −min(m,m′) such that λ↑i + λ↓m+k+2−i ≤ k +m′ for some 1 ≤ i ≤ k +m+ 1. In other words,

λ is a (k +m, k +m′)-cross bipartition in the sense of Comes and Wilson.

Example V.4.4. If m = 0 and m′ = 2, then the k-value of the bipartition
(

,
)

is 2 (See

Figure 3).

Figure 3: Illustration of k-value.

Proposition V.4.5. Let p = 0 and m,m′ ∈ Z · 1k. Any two bipartitions in the same connected

component of the crystal graph have the same k-value. In particular, the crystal graph has infinitely

many connected components.

Proof. Suppose λ↑i +λ↓m+k+2−i ≤ k+m′ for some 1 ≤ i ≤ k+m+1 and µ = f̃jλ. If µ↑i +µ↓m+k+2−i >

k +m′ then we must have λ↑i + λ↓m+k+2−i = k +m′ and that f̃j adds a box either to row i of λ↑ or

to row m + k + 2− i of λ↓. In this case, we find that both λ↓, λ↑ have an addable node of content

m − i + 1 + λ↑i . Hence the j-signature of λ is −+, which reduces to ∅. It follows that f̃jλ = 0,

which is a contradiction. This shows that the k-value of µ is less than or equal to that of λ. But

the above argument applies to the situation µ = ẽjλ, implying that the k-value of µ is greater than

or equal to that of λ. Hence they have the same k-value. The last statement follows from the fact

that a bipartition of any k-value exists.
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CHAPTER VI

APPLICATIONS

This final chapter contains some applications of our results in the case p = 0. We recall

that ∆(λ) = ∆(λ) under this assumption. In section VI.1 we compute the composition multiplicities

of the standard objects explicitly using the combinatorics of arc diagrams. Then in section VI.2

we explain how to compute the characters of the simple modules using the results of section VI.1

together with our computation of the characters of the standard modules in terms of the branching

graph (see section IV.3). Finally, in section VI.3 we give a proof of the known classification of

simple Br,s(δ)-modules due to Cox et al. (see [CDDM]) and use it to prove L(λ) is (globally) finite

dimensional if and only if δ = 0 and λ = (∅,∅), in which case it is one dimensional.

VI.1. Decomposition Numbers in Characteristic 0

We assume for the remainder of this paper that p = 0. In this case we are able to use

the crystal to compute [∆(λ) : L(µ)] = (P (µ) : ∆(λ)). For this it will be convenient to depict a

bipartition by its marker rather than its Young diagram. The notion of a marker is a variation on

the weight diagrams introduced by Brundan and Stroppel. The marker of a bipartition λ = (λ↓, λ↑)

is obtained by decorating the integer points on the y-axis with the symbols , , ,◦◦◦ as follows. First

define the sets

I↑(λ) = {λ↑1 +m,λ↑2 +m− 1, λ↑3 +m− 2, . . . }

I↓(λ) = {m′ + 1− λ↓1,m′ + 2− λ↓2,m′ + 3− λ↓3, . . . }

The ith vertex is labelled 

if i lies in I↑ but not I↓

if i lies in I↓ but not I↑

if i lies in both I↑ and I↓

◦◦◦ if i lies in neither of I↑ and I↓
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Observe that

wt↑(λ↑) =
∑

i∈I↑(λ)

εi and wt↓(λ↓) =
∑

i∈I↓(λ)

εi

so that

wt(λ) =
∑

i∈I↑(λ)∩I↓(λ)

εi −
∑

i∈I↑(λ)c∩I↓(λ)c

εi.

That is, wt(λ) specifies the vertices which are labelled ◦◦◦ and .

Suppose λ < µ. Then wt(λ) = wt(µ) and wt↑(λ↑) > wt↑(µ↑). That is, the markers for λ

and µ have ◦◦◦ and at all the same vertices and

∑
i∈I↑(λ)

εi −
∑

i∈I↑(µ)

εi > 0

is a finite sum of εi−εj , i < j. In terms of markers, this says that µ is obtained from λ by successively

switching ( ) to ( ) (not just adjacent vertices).

Conversely, if there is a at vertex i and a at vertex j (i < j) in the marker for λ, then

switching the labels of these vertices doesn’t affect the positions of vertices labelled ◦◦◦ and , so

wt(λ) is unchanged. But switching the labels adds εi − εj to wt↑(λ↑), which means that switching

the labels produced a bipartition µ > λ: ( ) < ( ). We conclude that λ is maximal if and only if in

its marker every appears above every .

The left arc diagram associated to λ (denoted by λ ) is obtained by drawing non-crossing

rays and arcs in the left half plane incident to some subset of the vertices in the marker in such a

way that

• vertices at the bottom ends of arcs are labelled ;

• vertices at the top ends of arcs are labelled ;

• vertices at the right ends of rays are labelled either by or by in such a way that all rays

labelled appear above all rays labelled ;

• all remaining vertices not at the ends of arcs or rays are labelled either by ◦◦◦ or by .

This diagram can be realized by successively drawing arcs connecting pairs of vertices i < j

with vertex i labelled and vertex j labelled and having no unpaired vertices labelled or in

between vertices i and j. Once no more such pairs can be found, draw a ray at all unpaired vertices.

We define the defect of λ to be the number of arcs in its left arc diagram. A bipartition is maximal

if and only if its defect is zero.
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Given any markers λ, µ with wt(λ) = wt(µ), it makes sense to glue the left arc diagram for

λ onto the marker µ to obtain a composite diagram λµ in which the endpoints of each arc and ray

of the left arc diagram of λ are labelled either or by the marker µ. We say λµ is well-oriented

if

• each arc has exactly one label and one label making it into either a counterclockwise or

clockwise arc;

• all rays labelled are above all rays labelled .

Now we can state the result promised at the beginning of the section.

Theorem VI.1.1. If p = 0 then

[∆(λ) : L(µ)] = (P (µ) : ∆(λ)) =


1 if µλ is well-oriented

0 otherwise

To prove this theorem we will need to know the action of Ei, Fi on ∆(λ) and P (λ) in terms

of markers. Note that I↑(λ) consists exactly of those numbers which appear as the ↑-content of

some node in row i and column λi + 1, i = 1, 2, . . . , and I↓(λ) consists of the ↓-contents of nodes in

row i and column λi, i = 1, 2, . . . . From this observation, we see that if λ↓ has an addable (resp.

removable) node of ↓-content i then I↓(λ) contains i+ 1 and not i (resp. contains i and not i+ 1).

Similarly, if λ↑ has an addable (resp. removable) node of ↑-content i then I↑(λ) contains i and not

i+ 1 (resp. contains i+ 1 and not i).

The following lemma is a consequence of Corollary IV.2.2.

Lemma VI.1.2. For λ ∈ Λ, i ∈ Z and symbols x, y ∈ {◦◦◦, , , }, let λ( yx ) be the marker obtained

from λ by relabelling its ith and (i+ 1)th vertices by x and y, respectively. Then if vλ = [∆(λ)] we

have:

(i) if λ = λ(◦ ), λ(◦ ), λ( ) or λ( ) then eivλ = vµ where µ is obtained from λ by switching the

labels on its ith and (i+ 1)th vertices;

(ii) if λ = λ( ) then eivλ = vµ where µ = λ(◦ );

(iii) if λ = λ( ) then eivλ = vµ where µ = λ(◦ );

(iv) if λ = λ(◦ ) then eivλ = vµ + vν where µ = λ( ) and ν = λ( );

(v) in all other situations eivλ = 0.
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There are also analogous formulae for fivλ, which may be obtained from the above by interchanging

the roles of ◦◦◦ and .

Observe that since p = 0, the i-signature of any λ consists of at most two symbols. So

εi(λ) ≤ 2 and ϕi(λ) ≤ 2 for all i. Interpreting L(ẽiλ) (resp. L(f̃iλ)) as zero whenever ẽiλ = 0 (resp.

f̃iλ = 0), Theorem V.4.2 implies

EiL(λ) = L(ẽiλ) whenever εi(λ) 6= 2

FiL(λ) = L(f̃iλ) whenever ϕi(λ) 6= 2.

Lemma VI.1.3. Let the notation be as in Lemma VI.1.2. Then if pλ = [P (λ)] we have:

(i) if λ = λ(◦ ), λ(◦ ), λ( ) or λ( ) then eipλ = pµ where µ is obtained from λ by switching the

labels on its ith and (i+ 1)th vertices;

(ii) if λ = λ( ) then eipλ = pµ where µ = λ(◦ );

(iii) if λ = λ( ) then eipλ = 2pµ where µ = λ(◦ );

(iv) if λ = λ(◦ ) then eipλ = pµ where µ = λ( );

(v) if λ = λ( ) and vertex i+ 1 is connected to vertex j > i+ 1 in λ then eipλ = pµ, where µ is

obtained from λ by relabelling vertices i, i+ 1 and j by the symbols ,◦◦◦ and , respectively;

(vi) if λ = λ( ) and vertex i is connected to vertex j < i in λ then eipλ = pµ, where µ is obtained

from λ by relabelling vertices j, i and i+ 1 by the symbols , and ◦◦◦, respectively;

(vii) in all other situations eipλ = 0.

There are also analogous formulae for fipλ, which may be obtained from the above by interchanging

the roles of ◦◦◦ and .

Proof. In fact we shall only need parts (i), (iv) to prove theorem VI.1.1, so we prove these needed

parts only. The remaining part may be proved in a similar fashion to Theorem 3.9 of [BS]. Since

EiP (λ) is a finitely generated projective module, it is a finite direct sum: EiP (λ) =
⊕

µmµP (µ)

where

mµ = dim Hom(EiP (λ), L(µ)) = dim Hom(P (λ), FiL(µ)).
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If ϕi(µ) ≤ 1, then FiL(µ) = L(f̃iµ) so mµ = 1 if λ = f̃iµ (i.e. if µ = ẽiλ) and mµ = 0 otherwise. If

ϕi(µ) = 2 then µ = µ(◦ ) so

mµ ≤ dim Hom(P (λ), Fi∆(µ))

= dim Hom(P (λ),∆(µ( ))) + dim Hom(P (λ),∆(µ( ))).

So if mµ 6= 0 then λ ≤ µ( ) and λ ≤ µ( ), which shows that λ does not have a ◦◦◦ or at vertices i

or i + 1. We have shown that eipλ = pẽiλ for any λ which does not have a ◦◦◦ or at vertices i or

i+ 1. This proves (i), (iv), and (vii).

Proof of Theorem VI.1.1. We prove by induction on the defect of µ that pµ = [P (µ)] is the sum of

all vλ = [∆(λ)] such that λ is obtained from µ by switching the orientations of some subset of the

arcs in µ , i.e. switching the labels of the endpoints of the arcs.

If the defect of µ is zero, then µ is maximal, and we have P (µ) = ∆(µ) so pµ = vµ as

needed. Suppose µ has positive defect. Find a pair of vertices i < j connected by an arc in µ with

no vertices labelled or in between i and j. If vertex j − 1 is labelled , then P (µ) = Ej−1P (ν),

where ν is obtained by switching the j − 1, j vertices of µ. Or if vertex j − 1 is labelled ◦◦◦, then

P (µ) = Fj−1P (ν), where ν is obtained by switching the j − 1, j vertices of µ. We can thus write

P (µ) as a composition of various Ek, Fk applied to P (ν), where ν is obtained from µ by moving the

at vertex j past any ◦◦◦’s and ’s onto vertex i + 1. Now P (ν) = FiP (ν(◦ )). Since P (ν(◦ )) has

smaller defect than P (µ), we have that pν( ◦ ) is the sum of all vλ such that λ is obtained from ν(◦ )

by switching the orientations of some subset of the arcs in its left arc diagram.

Now pµ is obtained by applying the above composition of the various ek, fk to pν . Each vλ

appearing in the expression for pν( ◦ ) satisfies λ = λ(◦ ). For such λ we have fivλ = vλ( ) + vλ( )

which means pν is the sum of all vλ such that λ is obtained from ν by switching the orientations of

some subset of the arcs in its left arc diagram. Now the effect of applying the composition of the

ek, fk to each of the vλ is to move the label at vertex i+ 1 back up to vertex j past the ◦◦◦’s and ’s

from before. This is so because the rules used in selecting the various Ek, Fk apply to the standard

modules as well. That is, if vertex j − 1 in the marker of µ is labelled , then ∆(µ) = Ej−1∆(ν),

where ν is obtained by switching the j − 1, j vertices of µ, and so on.

Example VI.1.4. Let δ = 0. We determine all µ such that L(µ) is a composition factor of ∆(λ),

where λ = ( , ). The marker for λ is (where all vertices above these are and all vertices below

these are ). The possible well-oriented composite diagrams µλ are shown in Figure 4.
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n

n

Figure 4: Well-oriented composite diagrams.

where n ≥ 0 and all vertices not shown are at the ends of rays. The corresponding µ’s are shown in

Figure 5.

...

...

n+ 1

n+ 1

...

...

n+ 1

n+ 1

Figure 5: Markers of the composition factors of a standard module.

The first two of these correspond to the partitions ( , ), ( , ), respectively. The fourth

corresponds to the bipartition with both constituent partitions being the partition of (n + 1)2 with

n+ 1 equal parts. The third corresponds to the bipartition obtained from the fourth by removing the

two removable nodes.

VI.2. Characters of Simple Modules in Characterstic 0

We have a method for computing the first several terms of the characters of simples modules

in characteristic zero. Suppose we want to know the terms eai in ch L(λ) with `(a) ≤ n (call this

chnL(λ)).

Theorem VI.1.1 tells us how to write chn ∆(λ) in terms of chn L(µ). Fix a total order
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refining the partial order on the set of bipartitions µ ≤ λ such that |µ| ≤ n. Then the matrix whose

entry in row µ and column ν is [∆(µ) : L(ν)] is upper unitriangular, hence invertible. Row λ (the

first row) of the the inverse matrix gives chn L(λ) in terms of chn ∆(µ), which we can compute using

the branching graph.

Example VI.2.1. Let m = m′ = 0. We compute ch5 L(∅,∅). Figure 6 shows the upper unitrian-

gular matrix described above.

(∅,∅) ( , )
(
,

) (
,
) (

,
) (

,
) (

,
)

. . .

(∅,∅) 1 1 0 0 0 0 0

( , ) 0 1 1 1 0 1 0(
,

)
0 0 1 0 1 1 0(

,
)

0 0 0 1 0 1 1(
,

)
0 0 0 0 1 0 0(

,
)

0 0 0 0 0 1 0(
,
)

0 0 0 0 0 0 1

...

Figure 6: Decomposition numbers of a standard module.

One can compute the entries in column ν by writing pν in terms of vµ. For example column(
,

)
is computed as follows. Vertices −1, 0, 1, 2 of the marker for

(
,

)
are shown below with

its left arc diagram (all vertices not shown are at the ends of rays).

So the markers for those µ such that ∆(µ) appears in the ∆-flag of P (ν) are obtained by replacing

the above four vertices with each of

These correspond to µ =
(

,
)
,
(

,
)
,
(
,

)
, ( , ), respectively.
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We invert the upper left 4× 4 submatrix and find the first row is 1,−1, 1, 1. So

ch5 L(∅,∅) = ch5 ∆(∅,∅)− ch5 ∆ ( , ) + ch5 ∆
(
,

)
+ ch5 ∆

(
,
)

= (e∅ + e↓0↑0 + e↑0↓0 + e↓0↑0↓0↑0 + e↓0↑0↑0↓0 + e↑0↓0↑0↓0 + e↑0↓0↓0↑0 + e↓0↓1↑1↑0 + e↓0↓−1↑−1↑0

+ e↓0↑0↓0↑0 + e↓0↑0↑0↓0 + e↑0↑1↓1↓0 + e↑0↑−1↓−1↓0 + e↑0↓0↑0↓0 + e↑0↓0↓0↑0)

− (e↓0↑0 + e↑0↓0 + e↓0↑0↓0↑0 + e↓0↑0↑0↓0 + e↑0↓0↓0↑0 + e↑0↓0↑0↓0 + e↓0↓1↑1↑0 + e↓0↓−1↑−1↑0

+ e↓0↑0↓0↑0 + e↓0↑0↑0↓0 + e↑0↑1↓1↓0 + e↑0↑−1↓−1↓0 + e↑0↓0↑0↓0 + e↑0↓0↓0↑0

+ e↓0↓1↑0↑1 + e↓0↓−1↑0↑−1 + e↓0↑0↓1↑1 + e↓0↑0↓−1↑−1 + e↓0↑0↑−1↓−1 + e↓0↑0↑1↓1

+ e↑0↑1↓0↓1 + e↑0↑−1↓0↓−1 + e↑0↓0↑1↓1 + e↑0↓0↑−1↓−1 + e↑0↓0↓−1↑−1 + e↑0↓0↓1↑1)

+ (e↓0↓1↑0↑1 + e↓0↑0↓1↑1 + e↓0↑0↑1↓1 + e↑0↑1↓0↓1 + e↑0↓0↑1↓1 + e↑0↓0↓1↑1)

+ (e↓0↓−1↑0↑−1 + e↓0↑0↓−1↑−1 + e↓0↑0↑−1↓−1 + e↑0↑−1↓0↓−1 + e↑0↓0↑−1↓−1 + e↑0↓0↓−1↑−1)

= e∅

The relevant edges of the branching graph are shown in Figure 7.
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(∅,∅)

( ,∅) (∅, )

(
,∅
)

( ,∅) ( , )
(
∅,

)
(∅, )

(
,
)

( , )
(
,
)

( , )

(
,
)

(
,

)

0 0

1 −1
0 0 −1

1

0 0
1 −1 −1 1

0 0

1

−1 −1
1

Figure 7: Branching graph (computation of character of standard module).

In this case we can actually see that chL(∅,∅) = e∅ because
⊕

a6=∅ 1a∆(∅,∅) is a submod-

ule of ∆(∅,∅) (δ = 0) and dim 1∅∆(∅,∅) = 1, so that L(∅,∅) = 1∅L(∅,∅) is one dimensional.

VI.3. Representations of the Walled Brauer Algebra

Recall the walled Brauer algebra Br,s(δ) = EndOB(δ)(↓r↑s) = 1↓r↑sOB1↓r↑s from the intro-

duction of this thesis. Since Br,s(δ) is an idempotent truncation of OB, Theorem II.4.4 describes

the simple Br,s(δ)-modules. First let Lr,s(λ) = 1↓r↑sL(λ) for λ ∈ Λ, and set Λr,s(δ) = {λ ∈ Λ :

Lr,s(λ) 6= 0}. Then the simple Br,s(δ)-modules are {Lr,s(λ) : λ ∈ Λr,s(δ)}. Using a result of Cox et

al. (see [CDDM]) we are able to describe the set Λr,s(δ).

Theorem VI.3.1. The set {Lr,s(λ) : λ ∈ Λr,s(δ)} is a complete set of inequivalent irreducible

58



Br,s(δ)-modules, where

Λr,s(δ) =



min(r,s)⋃
t=0

Λr−t,s−t δ 6= 0 or r = s = 0

min(r,s)⋃
t=0

Λr−t,s−t \ {(∅,∅)} δ = 0 and r + s > 0.

(VI.3.0.1)

Proof. It is clear that Lr,s(λ) = 0 unless λ ∈
⋃min(r,s)
t=0 Λr−t,s−t. We have also observed that

L(∅,∅) = 1∅L(∅,∅) is one dimensional if δ, so Lr,s(∅,∅) = 0 if r + s > 0. This shows that

Λr,s(δ) contained in the set on the right hand side of (VI.3.0.1). It remains to show these two sets

have the same size. This follows from [CDDM], where the authors show that the right hand set

labels the simple Br,s(δ)-modules by another method.

We can now show that most simple OB-modules are (globally) infinite dimensional.

Corollary VI.3.2. The simple module L(λ) is (globally) finite dimensional if and only if δ = 0 and

λ = (∅,∅).

Proof. We have already observed the “if” part of the statement. Suppose δ 6= 0 or λ 6= (∅,∅). Then

by Theorem VI.3.1 we have λ ∈ Λr+t,s+t(δ) for all t ≥ 0, where λ ` (r, s). Hence 1↓r+t↑s+tL(λ) 6= 0

for all t ≥ 0, showing that L(λ) has infinitely many nonzero weight spaces. So L(λ) is infinite

dimensional.

Remark VI.3.3. It would have been nice to find a proof of Theorem VI.3.1 without appealing to

[CDDM], but we have been unable to do this.

59



REFERENCES CITED

[BCNR] Brundan, J., Comes, J., Nash, D., & Reynolds, A. A basis theorem for the affine oriented
Brauer category and its cyclotomic quotients. To appear in Quantum Top. arXiv:1404.6574.

[BR] Brundan, J. & Reynolds, A. Representations of the cyclotomic oriented Brauer category. In
preparation.

[BS] Brundan, J. & Stroppel, C. (2012). Gradings on walled Brauer algebras and Khovanov’s arc
algebra. Advances Math. 231, 709-773.

[CDDM] Cox, A., De Visscher, M., Doty, S., & Martin, P. (2008). On the blocks of the walled
Brauer algebra. J. Algebra 320, 169-212.

[CPS] Cline, E., Parshall, B., & Scott, L. (1998). Finite-dimensional algebras and highest weight
categories. J. Reine Angew. Math. 391, 85-99.

[CR] Chuang, J. & Rouquier, R. (2008) Derived equivalences for symmetric groups and sl2-
categorification. Ann. Math. 167, 245-298.

[CW] Comes, J. & Wilson, B. (2012). Deligne’s category Rep(GLδ) and representations of general
linear supergroups. Represent. Theory 16, 568–609, 2012.

[D] Davidson, N. Crystal Tensor Product Categorifications. Ph.D thesis in progress.

[G] Gabriel, P. (1962). Des catégories abéliennes. Bull. Soc. Math. 90, 323-448.
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