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THESIS ABSTRACT 
 
Julia Tonge Irizarry 
 
Master of Science 
 
Department of Geological Sciences 
 
June 2015 
 
Title: Modeling the Effects of Three-Dimensional Pore Geometry on Gas Hydrate Phase 

Stability 
 
 

Porous media affect hydrate stability by forcing hydrate-liquid interfaces to form 

high curvature geometries and by forcing the molecules of the hydrate, liquid, and 

sedimentary particles that compose the medium to interact where they are in close 

proximity. To evaluate these effects we first create synthetic spherical packings to 

approximate pore space geometry. We use the synthetic pore space to calculate the 

perturbation to the chemical potential caused by the geometrical constraints. Our model 

predictions agree with published data for ice-water and water-vapor systems. When 

particles are well-approximated as spheres, our model fits the data with R-squared values 

that range between about 80%  to over 99%. However, our model needs to be improved for 

porous media that contain a significant fraction of non-equant particles such as clay. Lastly, 

we demonstrate how our model can be used in predictions for the evolution of hydrate 

saturation.  

This thesis includes unpublished co-authored material.   
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CHAPTER I 

INTRODUCTION 

 

The material presented in this thesis is in preparation for publication with Alan 

Rempel as coauthor. 

 

 Gas hydrates are ice-like compounds that form on continental shelves from 

mixtures of methane and water. The sedimentary particles hosting the gas hydrates 

modify the two-phase equilibrium conditions of the hydrate-liquid system (Clennell et al., 

1999; Cook and Malinverno, 2013; Daigle and Dugan, 2011; Rempel, 2011). The phase 

equilibrium shifts from bulk phase equilibrium for two primary reasons: first, because the 

complex pore geometry forces the hydrate-liquid interface to curve (Fig. 1) and have 

higher surface energy than in a planar geometry, and second, because of the 

intermolecular forces that induce liquid water to wet the interfaces between sediment 

particles and hydrate crystals (Rempel, 2011). Similar behavior occurs in vapor-water 

systems, where the pore fraction occupied by liquid, or liquid saturation, depends on the 

matric potential, which is defined as the pressure difference between the non-wetting 

vapor phase and the wetting liquid phase (e.g. Or and Tuller, 1999). In ice-water systems 

the effects of curvature and wetting facilitate the stable equilibrium presence of residual 

liquid with a saturation that depends on the undercooling !", which is defined as the 

temperature depression below the normal melting point (e.g. Rempel, 2012). Our focus is 

on hydrate behavior, but we mention these other systems here, because we use them 
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below in tests to validate our numerical procedure. Below, we describe our approach, 

model validation tests, and how our model can be applied to the hydrate-liquid system. 

We developed a computational method for predicting the shift in phase 

equilibrium in three-dimensional porous media. Our codes are designed to: a) 

synthetically produce a sphere packing of poly-dispersed particles with a specified size 

distribution, b) determine the geometrical constraints on hydrate phase-equilibrium at any 

given point within the pore space, and c) quantify the effects of these constraints in 

modifying the phase behavior for a specified model. 

Several models have been developed that simplify the pore geometry while still 

capturing some effects of the porous medium on phase behavior. Pore geometry is most 

commonly modeled by approximating pores as circular cylinders (Denoyel and Pellenq, 

2002; Millington and Quirk, 1961; Mualem, 1976; Wilder et al., 2001). Other approaches 

include the use of circular pores connected by narrower pore throats (Liu and Flemings, 

2011), triangular pores (Rempel, 2011), and random packings of circles (Rempel, 2012). 

To extend beyond these two-dimensional idealizations, we develop a sphere-packing tool 

in MATLAB that creates a three-dimensional packing to emulate the arrangement of 

sedimentary particles. We use the three-dimensional pore geometry created by the to 

predict the perturbations to the phase behavior that result. Even for idealized simple cubic 

and face-centered cubic packing, fully evaluating the shape of the evolving three-

dimensional interphase geometry can be prohibitively complex (Cahn et al., 1992). We 

avoid calculating the detailed geometry of the hydrate phase within each individual pore 

by sampling at discrete points within the synthetic pore space and instead focus only on 

the local geometry of the phase interface when it first intersects each sampled location.  
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Fig. 1. Diagram depicting the geometry of hydrate filling a pore. (A) Shows sedimentary 
particles at the seafloor. (B) A simplification of the non-planar geometry introduced by 
particle contacts. (C) The first hydrate crystal to a form within a pore is approximately 
the shape of the largest sphere that can fit within the pore. (D) The hydrate continues to 
grow into the crevices between particle contacts. (E) Even with increased cooling, liquid 
phase remains connected by thin liquid films that coat the particle surfaces. (F) At very 
low temperatures the final residual liquid disappears.  
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The pore-scale effects we examine can create small gas solubility differences 

between adjacent coarse and fine-grained sedimentary layers. Previous studies associate 

the occurrence of hydrate anomalies (sharp increases in hydrate saturation) with the 

stratified arrangement of layers containing coarse particles sandwiched between layers 

containing finer particles (Clennell et al., 1999; Cook and Malinverno, 2013; Daigle and 

Dugan, 2011; Rempel, 2011). These gas hydrate anomalies are not simply controlled by 

the well-understood effects of temperature, pressure, and salinity on hydrate and liquid 

phase behavior. Instead the formation and behavior of these anomalies depend on the 

micro-scale effects and interactions between the ice-like hydrate and the intricate pore 

geometry dictated by the encompassing porous medium. In our study, we quantify how 

the gas solubility changes as differences in particle-size distributions are encountered; 

this information can be used in reactive transport models for the evolution of gas hydrate 

deposits. We provide an example of this in Section 5, where we predict the saturation of 

a hydrate anomaly given particle size distribution data and a few other input parameters 

required to characterize the site at which the hydrate was found (Rose et al., 2014). 
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CHAPTER II 

GUIDING PRINCIPLES 

 

In the case of a hydrate-liquid system, we are interested in how the disturbance to 

the phase equilibrium causes changes in the equilibrium solubility of methane dissolved 

in the aqueous solution adjacent to hydrate crystals. Once we determine the undercooling 

!" that is produced by pore-scale effects, we can calculate the modification to the 

equilibrium concentration as 

 

!!" ≈ !!"#$ !!"#(!"! ),      (1) 

 

where!!!"#$ is the equilibrium concentration of the bulk solution neglecting porous 

medium effects at the in situ temperature and pressure, and the scaling temperature 

! = 14.4℃ for methane hydrate in salt-free water (Davie et al., 2004). 

In Section 4, we use laboratory data from ice-water and water-vapor systems to 

validate our modeling approach through comparisons against predicted changes in 

undercooling and matric potential. The process of predicting disturbances to the chemical 

potential in the ice-water and water-vapor systems is the same as predicting chemical 

potential disturbances in the hydrate-liquid system, for which there are comparatively 

little data. However, the shifts in chemical equilibrium in the ice-water and water-vapor 

systems, are typically measured in terms of the undercooling and matric potential, 

respectively, whereas we are interested in !!". 
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2.1. Phase Pressure Difference 

Our focus is drawn to natural gas hydrate systems that aggregate over periods of 

centuries to millennia, allowing sufficient time to reach equilibrium phase distributions.  

We begin with a brief review of the well-understood ways that pore characteristics 

modify phase equilibrium. Starting at a reference state with bulk melting temperature !! 

and pressure !!, equilibrium implies that 

 

!! !!,!!! = !!" ! !!,!! ,     (2) 

 

where ! is the chemical potential, and the subscript ! denotes a wetting phase variable, 

whereas !"!denotes a non-wetting phase variable. The wetting phase against the 

sediment particles is assumed to be liquid water and the non-wetting phase may refer to 

hydrate, ice, or water vapor. Now we use the Gibbs-Duhem equation to write the 

following equalities describing the chemical potentials of the wetting and non-wetting 

phase in a perturbed state 

 

!! !(!,!! !) = !!(!!,!!!)− !! !(! − !!!)+ !! !(!! − !!!),    (3) 

 

and 

!!" !(!,!!" !) = !!" !(!!,!!!)− !!" !(! − !!!)+ !!" !(!!" − !!!),           (4) 

 

where ! is the specific entropy and ! is the specific volume (Kofke, 1993; Lomba et al., 

1996; Rempel et al., 2001) Equilibrium implies that we can equate the chemical 
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potentials along the phase boundary, where ! is the same in each phase but the phase 

pressures can be different, i.e. !! ≠ !!", so that  

 

0 = (−!! + !!" !)(! − !!!)+ !!"(!! − !!" !)+ (!! − !!" !)(!!! − !!).  (5) 

 

We introduce the latent heat ! and densities ! so that we can substitute 

 

!! − !!" ≈ !
!!
!,            (6) 

!!" = !
!!"

,         (7) 

and 

!! = !
!!
!!      (8) 

to arrive at  

 

0 = !!
!!
(! − !!!)− !

!!"
!!(!!" − !! !)+ ( !!! !−

!
!!"

!)(!! − !!!).   (9) 

 

To focus on the effects of the porous medium in modifying the phase behavior, we set the 

pressure in the wetting phase equal to the reference pressure !! that defines the bulk 

melting temperature !! and rearrange equation (9) to obtain 

 

!!"!
!!

!!(!! − !) = !!"!
!!

!!Δ! = !!" − !! = !!" − !!.    (10) 
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2.2. Incorporation of Curvature Effects 

We can use equation (10) to calculate the perturbation that has occurred to phase 

equilibrium due to enhanced pressure in the solid phase that arises from curvature and 

wetting effects. First we consider the curvature effects, using Laplace’s equation 

(Laplace, 1831) 

 

∆! = !!" − !! = !" = ! !
!!
+ !

!!
.     (11) 

 

Here, ! is the surface energy of the phase interface, ! is the curvature of the phase 

interface, and !! and !! are the principle radii of curvature along the phase interface. For a 

sphere !! = !!, therefore across a spherical interface 

 

∆! = !!
! .       (12) 

 

Equation (12) will be useful when the hydrate crystals can approximated as spheres, and 

also as a component of the calculation for the thin films that conform to the surfaces of 

the sediment particles, which we approximate as spheres.  

 

2.3. Incorporation of Liquid Film 

Next we account for the presence of thin liquid films that remain coated on 

particles far below the bulk melting temperature, often referred to as premelt or premelted 

films (Dash et al., 2006; Rempel et al., 2001). Israelachvili (2011) has exhaustively 

studied the details of wetting phenomena, but the thickness of liquid films are commonly 
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described by a simple power-law equation (Cahn et al., 1992; Elbaum and Schick, 1995; 

Garvin and Udaykumar, 2006; Rempel and Worster, 1999; Tuller and Or, 2005; 

Watanabe and Mizoguchi, 2002). Other functional forms are possible, however, the 

qualitative behavior is always the same insofar as the film thickness must decrease as the 

pressure difference between the two phases is enhanced (Bischof et al., 1996; De Gennes, 

1985; Hansen-Goos and Wettlaufer, 2010; Rempel et al., 2001). In this study, we account 

for wetting interactions using 

 

∆! = !!(!!! )
!,        (13) 

 

where ! is controlled by the dominant microphysical interactions and is treated as 

constant, ! is the thickness of the liquid film, and !! is the film thickness at reference 

pressure !!. By combining the wetting effects with the curvature effects from equation 

(11), we have the general relationship  

 

∆! = !" + !!!(!!! )
! = !( !!! +

!
!!
)+ !!!(!!! )

!,     (14) 

 

which is the pressure jump across a curved interface separated by distance ! from a 

particle surface. Now we can adapt this general relationship to describe the specific 

problem of wetting on the surface of a particle with radius !! so that the two principle 

radii of curvature !! = !! = −!!, which implies that 

∆! = !!(!!! )
! − !!

!!
.      (15) 
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Equation (15) is equivalent to the matric potential along the thin films that coat 

sediment particles in a liquid-vapor system. By substituting equation (15) into equation 

(10) we can describe the undercooling along a wetting film interface for an ice-liquid 

system, as  

 

!!"!!!
!!

Δ! = !!(!!! )
! − !!

!!
.      (16) 

 

For hydrates we are interested in the shift in solubility from the bulk equilibrium 

concentration !!"#$, to a new equilibrium concentration !!", because this shift in 

dissolved methane content can cause hydrate anomalies to form. Substituting equation 

(16) into equation (1), the equilibrium concentration can be described by  

 

!!" ≈ !!"#$!"#(!"! ) ≈ !!"#$!"# !!
!!"!"

!! !!
!

!
− !!

!!
.     (17) 
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CHAPTER III 

METHODS 

 

3.1. Modeling Pore Geometry 

In Rempel (2012), a similar study was performed in two-dimensions. We chose to 

adapt the problem to three dimensions because the pore geometry of three-dimensional 

sedimentary packing differs from two-dimensional pore geometry in two distinct ways. 

First, the pore itself is three-dimensional, therefore surfaces within three-dimensional 

pore have two principle radii of curvature rather than just one. Second, a difference in 

geometry arises from off-plane particle contacts in three-dimensional packing. We model 

three-dimensional pore geometry by simulating a sphere packing process in MATLAB 

(described in further detail in the appendix). To describe the geometry of the particle 

spheres that are being “packed,” the model accepts as inputs a number of particles !, and 

either a Gaussian distribution with a mean radius !!"#$, and standard deviation !, or 

some other particle size distribution. This allows pore geometry to be simulated for a 

desired set of particles both when only an average value for the particle radii is available, 

as shown in Section 4.2-4.4, and when an exact probability distribution for particle radii 

is available, as shown in Section 5.  

Once the packing process is complete, the three-dimensional pore geometry is 

available for evaluating the equilibrium phase perturbations. We implement a Monte 

Carlo integration routine in which the phase behavior is evaluated at a large number of 

randomly selected test points.  If a given test point lands within a particle, the model 
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records the event for a porosity calculation.  If the test point falls within the pore space, 

we use the location of the test point and the geometrical constraints imposed by the 

nearest particles for a series of calculations to predict the magnitude of undercooling at 

which hydrate first encompasses that point. After the data are compiled, the residual 

liquid saturation is determined as the ratio of the number of test points that are outside the 

non-wetting phase at a particular undercooling relative to the total number of test points 

contained within the pore space. 

 

3.2. Three-Dimensional Calculations 

3.2.1. Pore Hydrate 

As the temperature begins to drop below freezing, the curvature of the hydrate is 

primarily responsible for the undercooling, as illustrated in Fig. 2. We calculate the 

largest sphere that can fit in the pore and still contain the test point, and refer to the 

resulting undercooling as the “pore hydrate” value. 

 

Fig. 2. Simplification of pore hydrate geometry. The diagram shows how we use the 
location of a test point to find the radius !!, of curvature for a pore hydrate. The asterisk 
is an example of a test point randomly chosen in a packing of spherical sedimentary or 
“sand” particles.  
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This process begins by first putting a sphere in the pore with the test point as the 

center and a radius that is equal to the distance between the test point and the nearest 

particle. Then we grow the sphere by incrementally moving its center point and changing 

its radius to match the new distance to its nearest neighbor. If the pore geometry does not 

permit a particular move or if the radius decreases, the model retains the previous size 

and location of the hydrate sphere. When the model reaches a set number of iterations, 

the radius is saved as the radius of the pore hydrate crystal !!. The undercooling that 

would be required to place the point within this approximation for the largest hydrate 

crystal that could nucleate within the pore is found by combining equations (10) and (12) 

to obtain 

 

!! − ! ≈ !!
!!!

!!!!
!!

.       (18) 

 

3.2.2. Crevice Hydrate 

After hydrate forms within a pore, the hydrate will continue to grow with a non-

planar geometry, as seen in Fig. 1D and Fig. 3. We simulate the curvature of the “crevice 

hydrate” by finding the radius of the largest sphere that is tangent to the test point and the 

two particle spheres that are closest to the test point. The process to find this radius 

involves several steps. First, the test point and the center points of the two nearest spheres 

are rotated into the same two-dimensional plane to solve for the radius of the largest 

tangent circle. The two nearest circles now have center points (!!,!!) and  (!!,!!) and 

radii of !! and !!, while !!,!!  describes the location of the test point, with a radius of 

!! = 0. Apollonius, a Greek geometer from the 3rd century BC (Cantarella et al., 2002), 
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showed that given three initial circles, a total of eight tangent circles exists. However, by 

reducing one of the three initial circles to a point, the number of solution circles reduces 

to two. The solution circles are tangent to the two initial circles and the two solution 

circles are tangent to the initial circle that has been reduced to a point. Because we want 

to solve for a tangent solution circle that does not intersect the two original circles, there 

exists only one solution circle with a center at !,! and a radius !. We calculate the 

solution by first using the equation of a circle to produce six quadratic equations, where 

! = 1: 3, using  

! − !! ! + ! − !! ! − ! ± !! ! = 0.    (19) 

 

Which can be expanded to six equations described by the following equation, 

 

!! + !! − !! − 2!!! − 2!!! ∓ 2!!! + !!! + !!! − !!! = 0.   (20) 

 

Then by subtracting equation (20) with ! = 2 from the version with ! = 1 and again with 

! = 3 from ! = 1!we obtain 

!" + !" + !" = !      (21) 

and 

!!! + !!! + !!! = !′        (22) 

where  

                          ! = 2 !! − !! ,      !′ = 2 !! − !! ,                  (23 – 24) 

        ! = 2 !! − !! ,      !!! = 2 !! − !! ,        (25 – 26) 

                                 ! = ±!! ± !! ,        !! = ±!! ± !!,            (27) 



!

! 15 

!!!!!!! = !!! + !!! − !!! − !!! + !!! − !!! ,             (28) 

and 

      !′ = (!!! + !!! − !!!!)− !!! + !!! − !!! .       (29) 

 

The equations above can then be substituted back into equation (19) and solved 

using the quadratic formula. For our purposes, the equations are simplified because 

!! = 0. Once we find the two Apollonius circles, the circles that are tangent to the test 

point and the two nearest circles, we can narrow down our solutions to the only circle that 

meets our requirements. Now we know the positive radius of curvature for the crevice 

hydrate, !!!. However, the crevice hydrate is not necessarily spherical, but can grow 

around the crevice in the third dimension. We also account for the negative radius of 

curvature !!! for the hydrate growing in the crevice points as illustrated in Fig. 3. 

 

Fig. 3. Simplification of crevice hydrate geometry. The diagram shows how we use a test 
point to find the positive and negative radii of curvature for a crevice hydrate, !!!and 
!!! respectively. The asterisk is an example of a test point randomly chosen in a packing 
of spherical sedimentary or “sand” particles. 



!

! 16 

Finally, we can calculate what perturbation to the chemical potential would be 

required to place the point within a crevice between particles with a constant curvature 

hydrate-liquid interface using  

!! − ! ≈ !!!!!
!!!

!
!!!

− !
!!!

.          (30) 

 

3.2.3. Wetting Film 

After hydrate saturates nearly all of the pore space, the particles are still coated by 

thin liquid films (Fig. 4).   

 

 

Fig. 4. Simplification of liquid film geometry. The diagram shows how we use a test 
point to find the radius of curvature for a particle sphere nearest to the test point for the 
film undercooling calculation. The asterisk is an example of a test point randomly chosen 
in a packing of spherical sedimentary or “sand” particles. 
 

We use the distance of the point from the particle ! and the radius of the particle 

!! to calculate the undercooling that would be required to place the point on the edge of 

a wetting film as 

!! − ! ≈ !!
!!!

!! !
!

!
− !!!!

!!
.     (31) 
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Equation (31) is essentially equation (16), with a more specific application to the 

hydrate-liquid system. The precise nature of the wetting interactions that produce liquid 

films depends on the surface chemistry and is the least well-constrained portion of our 

calculations. There exists a range of potential wetting interactions with different 

functional dependencies between undercooling and film thickness. To provide flexibility, 

we have produced a follow-up code that uses the geometrical output (i.e. !!!, !!!, !…) 

of the original model, but allows us to adjust any parameter, and the entire film thickness 

parameterization to test their effects. 

 

3.3. Model Output 

Equations (18), (30), and (31) yield estimates for the undercooling that is 

expected of “pore hydrate,” “crevice hydrate,” and “film hydrate.” We use the largest of 

these perturbations to the melting temperature at each test point to determine the 

undercooling at that particular location. Once this process is completed for all of the 

desired test points, we can calculate the undercooling versus liquid saturation for the 

system. Here, the liquid saturation is defined as the fractional volume of the pore space 

that is occupied by liquid. Our model produces two total undercooling curves, which 

differ slightly in their treatments of “crevice hydrate”. In Section 4 and Section 5 we use 

both of the total curves from Fig. 5, which we refer to as the “crevice curve” and the 

“pore curve”, to fully test our model against analytical approximations and measured 

undercooling data. Later we show that the pore curve (Fig. 5A) is more valid at higher 

liquid saturations and the crevice curve (Fig. 5B) becomes more valid at lower liquid 

saturations. 
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Fig. 5. An example of model prediction results. The black curves show the total predicted 
undercooling Δ! for a unit cube of simple-cubic packing with a radius, !!"#$ = 1!". The 
portion of the total undercooling the model attributes to pore hydrate geometry is plotted 
in cyan. The portion of the total undercooling the model attributes to crevice hydrate 
geometry is plotted in blue. The portion of the total undercooling that is caused the 
presence of thin liquid films is plotted in red. (A) Shows the undercooling curve that is 
influenced by the crevice hydrate points. Later we show that this curve, the crevice curve, 
becomes more valid at lower liquid saturations than (B). (B) Shows the undercooling 
curve that we refer to as the pore curve, which is not influenced by crevice hydrate 
points. Later we show that this curve is more valid at higher liquid saturations than the 
crevice curve.  
 

For the crevice curve, we omit the pore hydrate calculation for test points that are 

in positions likely to be incorporated within crevice hydrates with two oppositely signed 

radii of curvature. This is judged by comparing the “particle-circle angle” subtended by 

line segments connecting the center of the Apollonius circle to the tangencies on two 

nearest particle spheres, to the maximum angle subtended by the line segments 

connecting the test point with the center of the Apollonius circle and each of the two 

tangencies. If this maximum angle is less than the “particle-circle angle,” then the point is 

a candidate crevice point and we do not perform the pore-hydrate calculation for this 

point when we generate the crevice curve. In the second case, which we refer to as the 

pore curve, we omit this filtering step and treat each point as though it might fall on a 

hemispherical hydrate cap. Unfortunately, which of these two cases better represents the 
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hydrate geometry at a particle test point depends on hydrate occupancy in adjacent pores 

and is not easily diagnosed by our numerical treatment. Nonetheless, we expect that the 

true saturation behavior will be somewhere between these limiting cases, and our 

calculations demonstrate that both sets of model saturation curves are similar (Fig. 5). 

The particle size distributions of the spheres we pack drastically affects the degree 

of undercooling i.e. the more fine-grained the particles, the more dramatic the 

undercooling or disturbance to the phase equilibrium. To illustrate this point, in Fig. 6 we 

plotted the undercooling curves for packed sphere models that have different mean radii 

!!"#$, and standard deviation ! = !!"#$
!"" . Notice that the slopes of the undercooling 

curves in log space begin to become more gradual at lower liquid saturations for the more 

fine-grained sphere packings; this is due to the increasing influence of the thin liquid 

films that coat the particles. 

 

Fig. 6. Particle size versus undercooling. This graph illustrates the change in 
undercooling magnitudes that accompany a change in mean radius, the smaller the mean 
radius, the larger the undercooling for a given liquid saturation. The mean radius is 
labeled as !!on the graph. We only plot the pore total curve associated with each sphere 
packing to simplify the plot. 
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CHAPTER IV 

MODEL VALIDATION 

 

We test our model in several different ways. The input parameters used by our 

model are described in Table 1. 

Table 1. Model input parameters for the calculations that are discussed below.  

 Idealized Packing Ice-liquid Ice-liquid Liquid Vapor 

Composition of 
porous medium 

None – 
computationally 
modeled sphere1 

Polystyrene 
powder1 

Graphitized carbon 
black powder1 

Millville Silt 
Loam2 

!!"#$! !"  
mean radius 11 2.51 0.10751 17.12 

!! !"   
standard deviation 01 0.16* 0.06251 0.385* 

!!! !  
reference 

temperature 
2731 2731 2731 2731 

!! !"!!  
density non-

wetting phase 

9171 9171 9171 NA 

!! !
!!  

interfacial surface 
energy 

0.0291 0.0291 0.0291 0.0733 

!! !
!"  

latent heat 
9171 9171 9171 NA 

!!! !"   
film thickness at 

!! 
3.5e-91 3.5e-91 3.5e-91 1.6e-6 

!!! !"   
scale for disjoining 

pressure 
1.1e61 1.1e61 1.1e61 1.1e61 

! 
power-law 

exponent for film 
thickness 

31 31 31 31 

NA is not applicable 
1Source is Cahn et al. (1992) 
2Estimated using values provided in Or and Tuller (1999) 
3Source is Vargaftik et al., (1993) 
*Not provided, so we used ! = !!"#$ !"". 
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First we compare it against idealized simple-cubic (SC) sphere packing with an 

undercooling curve that has several attributes that are easily calculated analytically. Then 

we use our model to compare the model predicted undercooling against laboratory-

measured values for two ice-liquid systems. Finally, we test our model by comparing the 

change in matric potential versus liquid saturation for a liquid-vapor system.  

 

4.1. Comparison to Analytical Approximation 

We compare our undercooling predictions for idealized SC packing against an 

analytic approximation for idealized SC packing (Fig. 7). 

  

               

Fig. 7. An example of simple-cubic packing of spheres with radii !!" = 1!" shown at an 
oblique angle. 
 

Cahn et al. 1992 use the geometry of SC sphere packing to predict the evolution 

of ice formation as a function of undercooling within an idealized pore space. They 

develop theoretical equations for the undercooling of ice freezing in SC sphere packing 

for any given radius that we refer to as, !!" (Cahn et al., 1992). We modify the equations 
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used to develop their theoretical curve to match only the undercooling effects that we 

account for in this study, by neglecting grain-boundary effects that are sensitive to 

unknown crystallinity. 

In Fig. 8 we illustrate some important features of the undercooling predictions 

produced by our model. Notice that the pore total curve, that is not influenced by crevice 

solids, does a better job matching the expected behavior from a liquid saturation of 1 to 

about 0.35 than the crevice total curve. This suggests that the pore total undercooling 

curve is more accurate at warmer temperatures than the crevice total curve. The crevice 

total curve does a better job matching the expected behavior starting around a liquid 

saturation of 0.1 and below. This suggests that while erroneous at warmer temperatures, 

the crevice total undercooling curve becomes more accurate as the temperature continues 

to drop and the liquid saturation decreases. Further calculations suggest neither of the 

model predicted curves accurately captures the undercooling between the liquid 

saturations of about 0.35 to about 0.1 for SC sphere packing. However, the similarity 

between the two models and the analytical approximation suggests that the resulting 

errors in predicted saturation are likely small.  

We expect this difference between the pore and crevice undercooling curves 

because the pore filling process dominates as solid first begins to fill the pore space, and 

becomes less substantial as the solid continues to fill the pore space and the temperature 

decreases (Fig. 1). Both of the model predicted undercooling curves converge as the 

temperature continues to drop and wetting interactions between the solid, liquid, and 

particles begin to dominate over curvature effects. We use both curves in our model 

comparisons against laboratory data in Section 4.2.  
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Fig. 8. Model predicted undercoolings versus analytical approximations. The figure 
contains both the model predicted pore total undercooling curve, shown in red, and the 
model predicted crevice total undercooling curve, shown in blue. The black dashed curve 
is the analytical approximation from Cahn et al. (1992) that approximates the 
undercooling based on the geometry of SC sphere packing with a radius of !!" = !1!" 
accounting for crevice and film points, but not the pore hydrate points included in this 
study. The dashed straight lines intersect at the first kink in our model’s curves. This kink 
occurs at a liquid saturation of 0.57, and undercooling 0.078 °C, that correlate to the 
central pore being filled by the largest sphere that can occupy the void space. The pore 
total curve captures this feature, but the crevice total curve allows hydrate formation at 
warmer temperatures than are possible, a limitation also shared by the Cahn et al. (1992) 
approximation. 
 

4.2. Ice-water Comparisons  

After the successful comparison between our model predictions and anticipated 

behavior in simple-cubic packing, we compare our model results to laboratory data as 

shown in Fig. 9. We use two undercooling datasets from Cahn et al. (1992) for a two-

phase ice-water system within a medium composed of monosized spheres composed of 
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polystyrene powder and graphitized carbon black. First we compare our model results 

against the measured undercooling values for the graphitized carbon black (Fig. 9A).  

   When comparing our model’s undercooling predictions against the undercooling data 

for graphitized carbon black powder, Fig. 9A, both curves fit entirety of the dataset well. 

However, at saturations above approximately 10%, the pore total slightly overestimates 

the undercooling liquid. This is not surprising because the pore total curve should account 

for an excess of curvature effects, leading to slightly over-predicted undercooling values.  

               

Fig. 9. Model predicted undercooling versus undercooling data from ice melting 
laboratory experiments. The red curves in both plots represent the undercooling curves 
that are dominated solely by pore hydrates until the liquid saturation is sufficiently low 
for the wetting effects to govern. The blue curves in both plots represent the undercooling 
curves that are influenced by crevice hydrates. Notice that the axes are slightly different 
between the plots, optimized for the data that each is displaying. (A) Comparison of our 
model’s undercooling predictions against undercooling data for ice melting in mono-
dispersed graphitized carbon black powder shown in black asterisks (Cahn et al., 1992). 
The R-squared values for the pore and crevice curves in (A) are 99.35% and 99.75%, 
respectively. (B) Comparison of our model’s undercooling against undercooling data for 
ice melting in mono-dispersed polystyrene powder shown in black asterisks (Cahn et al., 
1992). The R-squared values for the pore and crevice curves in (B) are 82.33% and 
79.25% respectively. 
 

When comparing our model’s undercooling predictions against the undercooling 

data for the polystyrene powder, both curves mimic the general trend of the data, but the 

model does not do nearly as good of a job predicting the undercooling in Fig. 9B as it 

does for graphitized carbon black in Fig. 9A. However, notice that in Fig. 9A, only two 
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of the data points fall below 10% liquid saturation. In Fig. 9B, the majority of the data 

occurs between 10% and 0.1% liquid saturation. At such low liquid saturations, wetting 

effects are responsible for most of the residual liquid. The detailed nature of the 

intermolecular forces that cause pre-melted films to form is the least well-constrained 

part of our calculation. In fact, because wetting effects are dependent on particle 

composition and surface chemistry, we expect some variance in the undercooling effects 

between the two systems depicted in Fig. 9A and Fig. 9B. Due to the complicated nature 

of the pre-melted films, we developed our model to output the predicted undercooling 

data as well as geometrical information we compiled for pore characteristics that could 

affect hydrate growth at each test point. This allows us to run quick simulations where we 

can recalculate the undercooling curve for the same pore geometry but with desired 

adjustments in the reference film thickness !!, the power-law exponent !, or any of the 

other input parameters. This is useful for undercooling values such as those shown in Fig. 

9B, where several of the data points occur where the liquid saturation is between 1% and 

0.1% and the behavior of pre-melted films can become increasingly complex (Cahn et al. 

1992). 

 

4.3. Liquid-vapor comparison 

The adsorption of water to sedimentary particles in a liquid-gas system occurs in 

the vadose zone. This important effect is essential for plants to obtain water in 

unsaturated soil, and is a consequence of the same forces that cause undercooling in ice-

liquid systems. We compare our model prediction for the matric potential of Millville 
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silt-loam against experimental results (Or and Hanks, 1992; Or and Tuller, 1999; Tuller 

and Or, 2005) in Fig. 10. 

 

 

Fig. 10. Model predicted matric potential curve versus matric potential data. This plot 
displays the comparison of our model’s prediction plotted as a red curve to data from Or 
and Hanks’s (1992) laboratory experiments plotted as black asterisks. Notice that the 
slope of the curve is more gradual than those in Fig. 9. This shallow slope of the matric 
potential curve for this dataset suggests that wetting effects are dominating the system. 
To match the data we require strong intermolecular forces, so we increase !! in 
comparison with the previously used values (Table 1). Because wetting effects dominate, 
the pore total curve and the crevice total curve are nearly identical and we only plot the 
pore total curve. The model predicted curve accurately predicts the matric potential 
required for the saturation to begin decreasing. The R-squared value for our matric 
potential curve is 96.84%. 
 

The !! parameter, which scales the film thickness, needed to match the data was 

nearly three orders of magnitude larger than the !! used for the ice-liquid experiments 

(Table 1). It is not entirely unexpected that the Millville silt-loam sediments might 

produce stronger wetting effects than the powders used in Section 4.2. The most obvious 

difference is that natural soil was used by Or and Hanks (1992). The intermolecular 

forces active in natural soil may cause wetting effects to be stronger or weaker than in 
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laboratory prepared monosized powders (Saarenketo, 1998). The Millville silt-loam 

sediments are composed of a broad range of particle sizes: 33% sand, 49% silt, and 18% 

clay (Or and Tuller, 1999). To estimate the mean radius !!"#$, we used estimates on the 

finer side of their particle size classifications for each grain size, where radius of sand 

particles = 50!", radius of silt particles = 1!!", and radius of clay particles = 0.5!!". 

Because loam is composed partly of clay, the surface wetting interactions are likely even 

more complex (Oss and Giese, 1995). The presence of clay in the Millville silt loam 

presents another issue, inherent to the sphere-packing model design: non-spherical 

particles. The presence of non-spherical particles likely has a dramatic effect on the 

ability of our code to model the pore geometry accurately, thereby affecting our ability to 

predict disturbances to the chemical potential caused by the pore geometry. If the average 

of the specific surface areas (76.5!! !) reported in Or and Tuller (2005) for the 

Millville silt loam is used to calculate a spherical particle radius using a silica density of 

2.65! !"!, the corresponding radius should be about 0.015 !", which is about three 

orders magnitude smaller than our estimated radius shown in the table at 17.1 !". As the 

size of spherical particles decrease, their specific surface area increases linearly; the 

relationship between clay particles and specific surface area is not as simple. However, 

by simply increasing !! we have been able to produce model results that well 

approximate the data.  
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CHAPTER V 

HYDRATE MODEL 

 

Our model is designed so that particle size distributions from adjacent layers can 

be used to predict the phase behavior that leads to the growth of hydrate anomalies. The 

particle size distribution data allow us to predict the equilibrium concentration difference 

between adjacent sedimentary layers. This is important because the methane 

concentration at layer boundaries is tied to the equilibrium concentration in the coarser 

material in which hydrate precipitates, as illustrated in Fig. 11 (Clennell et al., 1999; 

Cook and Malinverno, 2013; Daigle and Dugan, 2011; Rempel, 2011).  

 

 

Fig. 11. Layer boundary effects on methane concentration, modified from Figure 4 in 
Cook and Malinverno 2013. This diagram illustrates that although there is a jump in 
equilibrium concentration of methane between the mud and the sand (red dashed lines), 
the concentration of methane within the pore water cannot abruptly change (light blue 
line). Therefore, in the locations where the mud is directly adjacent to the hydrate-bearing 
sand, methane hydrate is absent in the mud (Cook and Malinverno; 2013).  
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To demonstrate how our model could be used to predict hydrate anomalies using 

particle size distributions, we use borehole data collected during the Indian National Gas 

Hydrate Program Expedition 1 (NGHP-01) at site 17A in the Andaman accretionary 

wedge (Collett et al., 2008; Rose et al., 2014). Here, thin (~10 cm), coarser-grained ash 

layers punctuate the stratigraphic record, which is otherwise dominated by pelagic 

sediments (Rose et al., 2014). These ash layers contain anomalous accumulations of 

hydrate, in many cases filling more  than 70% of the ash pore-space (Rose et al., 2014). 

Such hydrate saturation anomalies may be the result of diffusive methane flux from finer-

grained sediments into coarser-grained layers (Cook and Malinverno, 2013; Malinverno 

and Goldberg, 2015; Rempel, 2011). Using our model, we predict undercooling values 

for the ash and pelagic sediment layers at NGHP-01 site 17A given particle size 

distributions for each layer from Rose et al. (2014).  

First, we use the plot from Figure 3 from Rose et al., (2014) describing the ash 

layer and the surrounding bulk sediments from core 51X to calculate the probability 

distribution functions (PDFs) for the particle radii. We use these PDFs to create two sets 

of randomly ordered spheres (Fig. 12).  

 
 
Fig. 12. Randomized radii distribution for the first 500 particles for layers created by 
using the data from Figure 3 in Rose et al., 2014. Notice that the ash particles are 
substantially coarser than the bulk sediments that encompass the ash layer.  
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Once the datasets describing the particle sizes have been randomized, we were 

able to pack the spheres and mimic the pore space geometry of the ash and surrounding 

bulk sedimentary layers (Appendix A). We use the methods outlined in Section 3 to 

predict the undercooling for each of the datasets (Fig. 13). 

 

 

Fig. 13. Undercooling curves for hydrate model. This plot shows that as hydrate forms 
and the liquid saturation reduces, the undercooling caused by the pore geometry and 
interactions with the particles more dramatically affects the finer grained sediments 
relative to the coarser ash layers. This implies that at the same subzero temperature, more 
hydrate will be frozen in the coarser ash layer than in the more fine-grained sedimentary 
deposits layer.  
 

However, for hydrate anomalies, we are interested in how porous media affect the 

solubility of methane in aqueous solution adjacent to the hydrate within each layer. By 

utilizing equation (17), we convert the undercooling caused by the porous medium to the 

change in equilibrium concentration relative to the bulk equilibrium concentration (Fig. 

14).  
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Fig. 14. Relative porous medium effects on equilibrium concentration. This plot shows 
that the difference in equilibrium concentration required for hydrate freezing within a 
porous medium is greater in the more fine-grained sedimentary layer. This difference in 
equilibrium concentrations causes methane hydrate solubility differences between the 
adjacent layers that are ultimately the cause of hydrate anomalies. Because the altered 
equilibrium concentration in the more fine-grained sedimentary layer is higher than in the 
ash layer, hydrate is slightly more stable in the coarser ash layer (Cook and Malinverno, 
2013; Rempel, 2011; Malinverno and Goldberg, 2015). Therefore, the higher 
concentration of methane required for hydrate to form in the adjacent fine-grained 
deposits cannot be achieved until sufficiently high hydrate saturation (corresponding with 
a liquid saturation of a few percent in this figure) is reached in the ash layer. 
 

The difference in solubility between the adjacent layers is an important factor 

when considering hydrate anomaly formation (Rempel, 2011).  By using our tools 

described in this paper, we can predict this difference in solubility. In Fig. 15 we show 

the results of a model that used our model’s results as input along with parameters 

provided in Rose et al., (2014) to predict the saturation of methane hydrate growing 

within the ash layer sandwiched between more fine-grained sediments. 
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Fig. 15. Hydrate saturation over time. This plot shows the hydrate saturation !! versus 
meters below seafloor (mbsf) predicted using parameters from Rose, et al. (2014) and the 
model predicted differences in undercooling. The model predicted hydrate saturation of 
the anomaly is 80.7% and measured hydrate saturation of the anomaly is 83%. The 
different colored lines correspond to how long the hydrate was allowed to accumulate in 
the model. This figure was provided by Brandon VanderBeek. 
 

Following the 1D formulation of Rempel (2011), we use the predicted 

undercooling curves from the model to predict the diffusive growth of hydrate within a 

horizontal, 10 cm thick ash layer at 428 meters below the seafloor (Rose et al., 2014). For 

modeling simplicity, we approximate the dependence of undercooling on hydrate 

saturation as a power-law relationship and find the best-fit exponent (! = 1.35) to the 

undercooling curves in Fig. 13 for liquid saturations between 0.02 and 0.75. This 

approach is valid as we are interested in hydrate saturations well below 98%. We assume 

dissolved methane is supplied from below at an upward fluid transport rate of 0.5 mm/a, 
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a rate representative of the region (Dewangan et al., 2011) and the pore water methane 

concentration is initially at equilibrium. Additional site-specific information required to 

model hydrate accumulation includes water depth (1344 m), seafloor temperature (5.5 

°C), geothermal gradient (0.021 °C /m), and depth to the base of the gas-hydrate stability 

zone (605 mbsf) are taken from Rose et al. (2014). We find hydrate saturations reach 

83% within the thin ash layer at 600 ka (Fig. 15). The sediment surrounding the ash layer 

contains <1% hydrate. These results compare well with borehole measurements at 

NGHP-01 site 17A, where a 9.5 cm thick ash layer at 428 mbsf was found to contain 

81% hydrate (Rose et al. 2014). However, because the age of the hydrate deposit is 

unknown, similar hydrate saturations can be produced for a range of undercooling values. 

Nonetheless, pore-scale effects control the size and distribution of hydrate anomalies and 

will continue to prove useful when characterizing hydrate reservoirs. 
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CHAPTER VI 

CONCLUSION 

 

As we continue to increase our understanding of the nature and distribution of gas 

hydrates, we become more aware of the importance of gas hydrate anomalies. In an effort 

to help predict the occurrence and saturation of gas hydrate anomalies, we focus our 

efforts on understanding the pore-scale effects that are likely to be the cause of the gas 

hydrate anomalies (Rempel, 2011; Rose et al., 2014). The differences in sedimentary 

properties, particularly grain size, between adjacent sedimentary layers produce small 

differences in the equilibrium concentrations. These small differences are likely the cause 

of gas hydrate anomalies that compose most of the volume of gas hydrate off the 

continental shelf (Clennell et al., 1999; Cook and Malinverno, 2013; Daigle and Dugan, 

2011; Rempel, 2011). We demonstrate that our tool closely approximates the chemical 

disturbance to the equilibrium within porous media that have mostly spherical particles. 

The shortcoming of our model is that the model less effectively captures the pore 

geometries of sedimentary layers that contain non-equant particles and the associated 

increase in the strength of the wetting interactions for these layers. The increase in the 

strength of the wetting interactions is likely due to the increase in specific surface area of 

clay particles. Improvements can be made in the future to try to account for the presence 

of non-spherical particles. Fortunately, as our comparison in Section 4.3 demonstrates, 

these interactions may be accounted for by increasing the reference film thickness !!. 

These predictions are the first step to developing reliable quantified estimations of 

hydrate anomaly reservoirs and saturations.  
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APPENDIX 

 MODELING A 3D POROUS MEDIUM 

 

 We created a tool that simulates a sphere packing process in MATLAB to use the 

curvature of the spheres and the void space geometry between the spheres as a way to 

model the pore space geometry of naturally accumulated sediments. As stated in Section 

3.1, the model can run given inputs as straightforward as the number of desired particles 

!, a mean radius value !!"#$, and standard deviation !.  However, the tool can also 

create a data set for a set of ! particles from a particle size distribution curve, or even 

from a volume percent versus radius curve; the latter was developed for the specific 

application addressed in Section 5. We cover the steps for the sphere packing process 

started by inputting a particle size distribution to determine the distribution of particle 

radii (Fig. 16), as the overall sphere packing process is the same regardless of the chosen 

input. 

 

Fig. 16. A Gaussian probability distribuion function (PDF) in microns for the radii of a 
set of particle spheres. This particular PDF describes a set of particles with !!"#$ = 1!" 
and ! = 0.5!" for a set of ! = 1000 particles. 
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To create a set of particles whose radii satisfy the PDF in Fig. 16, we must sum 

the probabilities for each radius of the PDF to calculate the corresponding cumulative 

distribution function (CDF) as shown in Fig. 17. We can then split the CDF into ! equal 

intervals, each n division corresponds to a particle radius ! 

 

 

Fig. 17. The segmentation of a cumulative distribution function to create a dataset 
containing particles with radii that satisfy a corresponding PDF. Here, !!is chosen to be 5 
for the purpose of illustrating the process used to choose the radii. The solid red lines 
show equally spaced probability of ! intervals. For each probability interval, there is a 
corresponding radius, illustrated by the dashed red lines. For ! intervals we determine 
!!radii. 
 

After the CDF has been used to choose ! particle radii, we have a synthetic data 

set that describes the radii of ! particles (Fig. 18). 

 

Fig. 18. Particle spheres with their corresponding radii. In this plot ! = 1000. 
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Once a set of ! particles has been developed that satisfy the desired PDF, our next step is 

to randomize the order of the particles (Fig. 19). We randomize the particle order because 

our sphere packing process involves dropping the particle spheres one by one and the 

goal is to create a pore geometry with natural characteristics. 

 

 

Fig. 19. Randomized particle spheres and their corresponding radii. In this plot ! =
1000. 
 

Once the dataset containing the randomized particle spheres is complete, we can 

begin the sphere dropping process. The process works by dropping each particle sphere 

one at a time. We simulate the dropping process by first choosing an arbitrarily high z-

coordinate. Then the x-y coordinates at which each particle sphere is dropped is chosen 

by first defining lengths of a “container” and randomly choosing x-y coordinates within 

the specified x-y container space. The particle sphere is then “dropped” down the z-axis 

with the corresponding x-y coordinates. We mimic this process by checking the x-y 

position of all of the previously dropped  spheres to see if the dropping sphere and the 

previous spheres would overlap. If there are no previously dropped spheres within this 

“window,” then the particle sphere will make contact with the “ground” defined at ! = 0 
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(Fig. 20A). If the dropped sphere comes into contact with a previously dropped sphere, it 

begins to roll longitudinally off of the sphere, we mimic this process by decreasing the 

angle between the center of the previously dropped sphere and the center of the dropping 

sphere (Fig. 20B). If the dropped sphere does not come into contact with a second 

dropped previously sphere as it is “rolling” around the previously dropped sphere, then it 

is dropped and the dropping process is repeated but with a new x-y “window.” If the 

dropped sphere does come into contact with a second previously dropped sphere, it 

becomes tangent with both of the previously dropped spheres (Fig. 20C). At this point, 

the “fitting” process begins. The fitting process involves the dropped sphere going 

through a series of very small lateral and longitudinal rotations until the dropped sphere 

also becomes tangent to the floor or a third previously dropped sphere.  

 

 

Fig. 20.  A simplification of the sphere packing process. In this diagram the colored 
circles are used to represent particle spheres. (A) The yellow sphere drops to the floor at z 
= 0 and does not contact another sphere on its way down. (B) The blue sphere is dropped 
and makes contact with the yellow sphere. The blue sphere rolls tangentially around the 
yellow sphere until it is again dropped and then makes contact with the floor. (C) The 
blue sphere is dropped and again make contact with the yellow sphere. This time, as the 
blue sphere rolls tangentially down the yellow sphere, it makes contact with a second 
previously dropped sphere. The dropped blue sphere becomes tangent to both the yellow 
and the green sphere. (D) After the blue sphere becomes tangent to both the yellow and 
green spheres (C), the blue sphere will repeat a number of rotations that allow the 
dropped blue sphere to roll downwards while maintaining its tangencies to the two 
initially contacted spheres.   
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A sample of the results of such a sphere packing process is shown in Fig. 21. The 

dropping, rolling, and fitting processes are intended to create a sphere packing that is 

more natural than an idealized packing, with the additional benefit of not having to 

explicitly characterize the geometry of each pore within the sphere packing.  

 

 

Fig. 21. An example packing of spheres with !!"#$ = 1!" and ! = 0.5!" for a set of 
! = 1000 particles, which have radii that satisfy the PDF in Fig. 16. A cross-section at a 
chosen height can then be taken from the packing of heterogeneously sized spheres and 
used for testing. Much larger packings can be made, but this size of an assemblage is 
appropriate for displaying the results of the sphere packing process. 
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