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DISSERTATION ABSTRACT 

 

Danielle Gilberte Barth 

 

Doctor of Philosophy 

 

Department of Linguistics 

 

September 2015 

 

Title: To HAVE and to BE: Function Word Reduction in Child Speech, Child Directed 

Speech and Inter-adult Speech 

 

 

Function words are known to be shorter than content words. I investigate the 

function words BE and HAVE (with its content word homonym) and show that more 

reduction, operationalized as word shortening or contraction, is found in some 

grammaticalized meanings of these words. The difference between the words’ uses 

cannot be attributed to differences in frequency or semantic weight. Instead I argue that 

these words are often shortened and reduced when they occur in constructions in which 

they are highly predictable. This suggests that particular grammaticalized uses of a word 

are stored with their own exemplar clouds of context-specific phonetic realizations. The 

phonetics of any instance of a word are then jointly determined by the exemplar cloud for 

that word and the particular context. A given instance of an auxiliary can be reduced 

either because it is predictable in the current context or because that use of the auxiliary 

usually occurs in predictable contexts. The effects cannot be attributed to frequency or 

semantic weight. 

The present study compares function word production in the speech of school-

aged children and their caregivers and in inter-adult speech. The effects of predictability 

in context and average predictability across contexts are replicated across the datasets. 
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However, I find that as children get older their function words shorten relative to content 

words, even when controlling for increasing speech rate, showing that as their language 

experience increases they spend less time where it is not needed for comprehensibility. 

Caregivers spend less time on function words with older children than younger children, 

suggesting that they expect function words to be more difficult for younger interlocutors 

to decode than for older interlocutors. Additionally, while adults use either word 

shortening or contraction to increase the efficiency of speech, children tend to either use 

contraction and word shortening or neither until age seven, where they start to use one 

strategy or the other like adults. Young children with better vocabulary employ an adult-

like strategy earlier, suggesting earlier onset of efficient yet effective speech behavior, 

namely allocating less signal to function words when they are especially easy for the 

listener to decode.  
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CHAPTER I 

INTRODUCTION 

 

The English words BE and HAVE are old and complex. Both words have multiple 

meanings as part of different constructions and vary in degree of grammaticalization. In 

its possessive use (I have a dog), HAVE is usually considered to be a content word, while 

in auxiliary uses (have written) it is a function word, with semi-modal uses (have to) in 

between. BE is somewhat more grammaticalized in its main (copula) verb usage 

(Dachshunds are long), where it is considered grammatical despite being a main verb. It 

is also a function word in all of its auxiliary usages (e.g. am writing). As they vary in 

where they are on the content/function cline, the different uses of BE and HAVE provide 

a useful window on form variation among grammaticalized constructions.  

The different BE and HAVE constructions have different levels of usage 

frequency. Interestingly, as detailed in Chapter II, the less grammaticalized uses of the 

two words are the most frequent ones, which is not (thought to be) the usual case since 

function words are prototypically more frequent than content words (Bybee, 2007, 2011).  

These words therefore allow us to deconfound frequency and other factors in the 

phonetic and phonological reduction that usually accompanies grammaticalization. If 

there is indeed a difference in level of reduction due to meaning, we would expect the 

more grammaticalized uses of HAVE and BE (i.e. auxiliaries) to have the highest level of 

reduction. Since the grammaticalized meanings of BE and HAVE are less frequent than 

their source meanings (possessive and copular), greater levels of reduction in the more 
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grammaticalized auxiliary uses could not be attributed to frequency (cf. Bybee 2011, 

Traugott 2011). Instead, the greater reduction could be attributed to lower semantic 

weight of the more grammaticalized uses (Bybee and Pagliuca, 1985; Bybee, Perkins and 

Pagliuca, 1994; Gabelentz, 1891; Givón, 1985; Heine, 1993; 2003; Hopper and Traugott, 

1993; Lehmann, 1995). In information-theoretic terms, lower semantic weight decreases 

information content but so does greater predictability in context: what is expected is not 

informative and therefore also not surprising. Langacker (2011) argues that 

accompanying grammaticalization is diminished attention and salience (as one would 

expect of relatively uninformative elements), and that this diminished attention and 

salience results in signal compression, where duration, amplitude and pitch level are 

reduced, which in turn results in diminished attention and salience. In the present 

dissertation, I show that average predictability of a word use in a constructional context is 

indeed associated with reduction, as it is only some grammaticalized uses of a word 

(namely, ones that tend to be predictable in context) that are associated with greater 

reduction relative to the source construction. 

In this dissertation, I attempt a usage-based description of reduction patterns in 

BE and HAVE in the speech behavior of adults speaking to other adults, adults speaking 

to children and children speaking to adults. By “description” I mean a fairly exhaustive 

investigation of the factors influencing reduction of BE and HAVE, focusing particularly 

on the roles of probability and syntactic construction, as these predictors are of 

fundamental theoretical importance in the usage-based framework I follow here.  

By ‘reduction’ I mean adjustments to form that happen when that form conveys 

little information, i.e., when it is predictable in the context. These adjustments most 
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prototypically affect duration (e.g. Baker and Bradlow, 2009) but may also alter the 

spectral characteristics of speech (e.g. Aylett and Turk, 2004; Wright, 2004). The present 

dissertation adopts an exemplar-based framework for thinking about how this kind of 

form variation is implemented: reduced forms of various kinds are selected from a richly 

specified lexicon of articulatory exemplars tagged with various contextual characteristics 

(e.g. Pierrehumbert, 2001; 2002). Framing reduction as selection of ‘reduced’ exemplars, 

associated with low-informativity contexts, allows for investigating both ‘phonetic’ 

reduction (shortening) and ‘phonological’ reduction (contraction) in a unified framework 

(as opposed to treating the former as a matter of phonetic implementation and the latter as 

an outcome of a variable rule à la Labov, 1969). In the exemplar-based framework, both 

contraction and shortening reflect selection of a context-appropriate exemplar in low-

informativity contexts. In some forms of HAVE and BE, shortening and contraction are 

alternatives that occur in similar contexts and achieve the same goal, although there are 

also contexts where only shortening is available.  

Note that by adopting this selection framework I do not wish to deny that there 

are also online parametric adjustments to, particularly, duration and  fundamental 

frequency (F0), driven by factors like gender, speech rate (Dilts, 2013), disfluency for 

buying time for lexical access (Schnadt, 2009) and, as I argue below, individual’s 

reduction strategy preferences. These factors do not affect contraction but do affect 

shortening. Therefore these factors are also included in this dissertation alongside 

probability. Other factors known to influence duration and F0 in specific contexts, like 

contrastive focus on function words (Mathieu-Reeves and Redford, 2009), are not 

included because of their rarity in casual speech.  
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Constructions are form-meaning pairings, and they are thought to be the basic 

units of language by proponents of usage-based linguistics and usage-based construction 

grammar in particular (Goldberg, 1995; 2006). The same form, like is or have, is not 

always an instance of the same word-level construction, and different word-level 

constructions tend to combine with different phrasal and sentence-level constructions. 

One aim of the present dissertation is then to see whether reduction patterns differ by 

construction. The word-specific phonetics approach of Pierrehumbert (2002) is extended 

here to grammaticalized words in the context of  phrase-level construction such as the 

English Perfect. The language learner is thought to learn and remember richly specified 

exemplars of words tagged with attributes of contexts in which the exemplars occurred, 

including the semantics that identify the construction containing the word. However, 

when the learner aims to produce the word in a certain construction, they may at least 

occasionally select an exemplar that is not particularly suited to the present context but is 

highly representative of previous pronunciations of that word in that construction: the 

context and the word-in-construction cloud of exemplars are jointly determining the 

produced phonetics. Thus, for example, a word-level construction that tends to be 

probable in context will become associated with many reduced exemplars. A speaker will 

then be likely to produce a reduced exemplar of the word even when the context calls for 

an unreduced exemplar (Bybee, 2002; Bybee and Torres Cacoullos, 2008; Raymond and 

Brown, 2012).  As a result, words that tend to occur in different contexts may gradually 

drift away from each other, acquiring distinct pronunciations (Bybee, 2001). At the 

phonological contraction level, this is true for HAVE in American English, where only 
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the perfect HAVE is eligible for contraction while the semi-modals can fuse with the 

following to (hafta, hasta, hadda), and the source possessive HAVE can do neither. 

I look at the behavior of HAVE and BE in the speech of school-aged children, 

their caregivers and in inter-adult speech. We know that adult speakers’ productions of 

function words are generally reduced (shorter, less prominent, cliticized, etc.) in 

comparison to their production of content words. This is the case when parents are 

speaking to their children (Brown, 1973; Swanson, Leonard and Grandour, 1992) 

resulting in children acquiring first content words, then function words, despite the much 

higher frequency of function words in running speech. However, by age five, children 

have acquired function words and content words alike in that they generally produce 

them in the correct contexts. This study examines HAVE and BE in child speech, in 

addition to adult speech, to assess whether the words’ productions are also affected by 

construction and probability in the same way for both speaker populations. Function 

words are susceptible to reduction in adult speech because of their frequency, their 

predictability in context, their low informativity, their low semantic weight and because 

they tend to be unstressed. However, children are less proficient at producing reduced 

syllables, so their productions could potentially be less affected by these factors. If 

children’s productions are affected by frequency, probability and informativity, then they 

are tracking either specific statistical information about word co-occurrences or 

generalizations derived from those statistics, just like adults. Furthermore, if the 

influences of predictability-related variables increase with age, then children must not 

simply get better at producing weak syllables as they get older; rather,  they must be 

getting a better handle on contextual probabilities and/or improve in being able to utilize 
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the learned probabilities in online language production. Better production of weak or 

unstressed syllables is a sign of improved speech production, but improved tracking and 

using statistical information about word frequency, predictability and informativity is a 

sign of improved language production. 

Given the focus of the present work on describing linguistic behavior, I adopt an 

information-theoretic approach to statistical analysis (Burnham and Anderson, 2002). 

Instead of being concerned with statistical significance (i.e., the likelihood of obtaining 

the observed data if the predictor had no effect), the information-theoretic approach is 

concerned with predictiveness. In the present case, we are interested in the variables that 

will help us predict characteristics of reduction behavior in (future) samples of speech 

from the same kinds of speakers. The analyses below focus on a measure of variable 

predictiveness called ‘cumulative probability’. When cumulative probability is above .5, 

models that include the variable in question are more predictive (are better models) than 

models that exclude it. All such variables are therefore considered as useful for 

describing the observed reduction behavior. 

The problem with focusing on significance in an exploratory study is that it 

discourages careful examination of the data (Kruschke, 2010): the fewer predictors one 

examines, and the fewer ways one looks at the data, the easier it is to achieve significance 

(because of the ‘multiple comparisons problem’). Indeed, if one were to, say, only look at 

any of the probabilistic predictors in the present study, it would be massively significant, 

while if one were to examine all predictors we know to play a role in reduction, none 

would be significant in any reasonably-sized dataset.  The information-theoretic approach 
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tries to avoid this problem by focusing on whether the predictors overall improve our 

ability to predict (Burnham and Anderson, 2002). 

 The current work contributes to our knowledge of speech production by 

combining strains of research on word reduction in speech production, 

grammaticalization and child language acquisition. Chapter II presents a literature review 

summarizing relevant theories of speech production and the factors that influence word 

reduction, particularly for function words, before turning to a summary of additional 

factors relevant to child and caregiver productions of function words and then finally 

discussing the words BE and HAVE, summarizing their history in English, their 

acquisition by children and the frequency distributions of their meanings (copular, future, 

passive and progressive and modal, perfect and possessive, respectively). The next three 

chapters present the results from two corpus studies and one experimental study 

investigating function word production. Chapter III presents results from the Redford 

Corpus, a corpus developed from picture book narrations of school-aged children and 

their caregivers. As detailed in chapter III, the data was collected by Prof. Melissa A. 

Redford as part of her larger study on the development of prosody in the speech of 

school-aged children. Chapter III is the longest chapter of this dissertation because this is 

the first detailed, quantitative investigation of the production of function words by this 

age group or their caregivers. I conclude that children must develop strategies for 

reduction as part of their acquisition of language and that as they get older they learn 

what words are uninformative as part of learning about word meanings. As they learn 

more about the unimportance of function words, they are able to speak more efficiently 

and in a more adult-like manner. Chapter IV presents results from the Buckeye Corpus 
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(Pitt, et al, 2007), a corpus of interviews of adults from Ohio. The Buckeye Corpus is 

much larger than the Redford Corpus, allowing us to confirm results from the smaller 

corpus, as well as investigate some word inflection-specific effects. Finally chapter V 

offers a discussion of the results and their place in the literature on speech production and 

grammaticalization theory.  
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CHAPTER II 

LITERATURE REVIEW 

2.1. Introduction 

In this chapter, I first summarize the etymological history and frequency 

distribution of the function words under examination in this study: BE and HAVE.
1
 Next, 

I describe the importance of lexical class, frequency and predictability in predicting 

reduction, including a discussion of theories that account for the occurrence of 

probabilistic reduction. I then go on to describe speaker-specific characteristics that are 

known to influence reduction, including factors that are important to consider when 

examining child speech. Finally, I outline other factors that are necessary to take into 

account when examining patterns of reduction in both adult and child speech. 

2.2. Word Specific Characteristics 

The specific words under investigation in this study are inflections of BE: am, 

are, is, was, were and inflections of HAVE: had, has, have (capitalized words indicate a 

reference to all word inflections, lower case words indicate a reference to a particular 

word form). These particular inflections have been selected because they are frequent 

enough in short texts that there is a reasonable amount of data to investigate. HAVE and 

BE  have different meanings that vary in frequency which allows for an empirical 

investigation if word meaning matters for word form reduction and if so, if it is the form 

with the most frequent or the most grammaticalized word meaning that is the most 

                                                 
1
 Capitalized words represent a lemma: word and all its inflections. I use the capitalized words BE and 

HAVE to stand for all meanings of these words as well. 
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reduced. In this section I present a brief history of HAVE and BE, showing which uses are 

more grammaticalized. I also examine the meanings’ frequency distributions in several 

corpora, showing that usage frequency is not aligned with degree of grammaticalization 

in this case. 

2.2.1. HAVE 

2.2.1.1. History 

The possessive construction is the source for the perfect and modal constructions. 

It is the oldest HAVE construction and was present in Old English. The beginnings of the 

perfect construction also developed during the Old English period. In Old English, a 

construction consisting of a possessive verb followed by a past participle was still 

considered a possessive construction and usually had an object explicitly expressed, with 

the past participle agreeing with the object in gender and number (Visser, 1973: 2189). 

Over time, but still in the Old English period, there developed ambiguity between this 

construction expressing a state that had arisen from an antecedent action or expressing a 

completed action, as in (1) below (ibid). 

1) gyt ge habbaÞ eowre heortan geblende? 

have ye your heart hardened? (Visser, 1973: 2189 citing the Old English Gospels) 

Although possessives and perfects are not ambiguous in Present-Day English due 

to word order (cf. I have my work done v. I have done my work) this word order 

difference did not disambiguate resultative antecedent action (possessive construction) 

and completed action (perfect construction) in Old English, allowing for semantic 

ambiguity between the two (Visser, 1973: 2189). Later in Old English, this construction 

could be used with transitive verbs without a direct object, leading to even more 
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ambiguity between the expression of resultant states and completed actions (Visser, 1973: 

2191). By Middle English, the construction could use intransitive verbs as well as 

transitive verbs (Visser 1973: 2191-2192) as in They have gone and therefore we can 

clearly state that a new construction, the perfect, existed as there is no ambiguity because 

an intransitive (de facto no object), such as gone, does not describe a possessed object in 

a resultative state; it clearly describes a completed action.  

The past tense of the perfect, the pluperfect, also began its development in Old 

English with the same trajectory: HAVE + object + past participle of transitive verb > 

HAVE + past participle of transitive verb > HAVE + past participle of intransitive verb 

(Visser, 1973: 2212). 

 Modal HAVE developed from possession to meaning possession plus the ability to 

do something (Visser, 1969: 1474), as in (2) below during Old English. Although (2) is a 

Middle English example, similar constructions were found in Old English. Later in Old 

English, the possessive meaning weakened and the construction gained an additional 

meaning of duty and obligation, as in (3) below (a Modern English example, but similar 

examples were present in Old English). Finally, around the end of the Old English period, 

HAVE appears directly before to and the infinitive verb and clearly indicates obligation 

and not possession. Any object in the clause is an object of the infinitive now, rather than 

HAVE, meaning HAVE is clearly a function word (Visser, 1969: 1478, and cf. van der 

Gaaf, 1931), as in (4) below (a Modern English example but other such examples were 

found in Middle English). 

2) they hadden na more to giuen 

‘They had no more to give / they could not give anymore’ (Visser, 1969: 1476). 
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3) He hath some message to deliver us 

(Visser, 1969: 1477 citing Shakespeare (1588) Titus IV). 

4) It’s getting dark; so I have to stop now 

(Visser, 1969: 1478) 

This last use was rare in Old and Middle English and did not firmly become 

established until Modern English (Visser, 1969). Some researchers do not consider these 

kinds of instances to actually be modal auxiliaries in Old English (Brinton, 1991; Bock, 

1931; Fischer, 1994; Mitchell, 1985). Fischer (1994) argues that the semantic ambiguity 

in meanings is not enough to clearly say that a modal usage has developed and argues 

instead for a structural criterion (word order change) to determine the onset of new 

construction, which does not occur until late Middle English. 

 

2.2.1.2. Frequency Distribution 

The Corpus of Contemporary American English (COCA) (Davies, 2008-) is a 

large corpus of 450 million words consisting of newspapers, fiction, magazines, academic 

publications and a spoken section of transcripts of radio and television news programs. 

The spoken section consists of 95 million words. Figure 1 shows the distribution of the 

three HAVE construction types in the spoken section of the COCA. Have is clearly the 

most common inflection, likely because it is the word form used for both the third person 

plural and the infinitive. The possessive and perfect constructions occur at relatively 

equal frequencies, but the modal construction is far less frequent. These patterns manifest 

themselves again in the Buckeye Corpus (Pitt et al., 2007), a smaller 307,000 word 

corpus of adult interviews. But the patterns are on a much smaller scale, as shown in 
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Figure 2, although there is proportionally more contraction in the Buckeye Corpus. 

Figure 3 shows the patterns of HAVE frequency distribution in the Redford Corpus, a 

78,000 word corpus of child and caregiver story narrations. For this corpus data, the 

distribution patterns are slightly different. The word form that occurs most often is had, 

because most of the story telling done by caregivers and children is done in the past 

tense. There are also far fewer perfect constructions in the Redford Corpus, although 

modal constructions are still the least frequent construction type. Additionally, there is 

proportionally less perfect construction contraction than in either of the two larger 

corpora. 

 

 

Figure 1. COCA HAVE Frequency Distributions 
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Figure 2. Buckeye Corpus HAVE Frequency Distributions 

 

 

 

Figure 3. Redford Corpus HAVE Frequency Distributions 

 

2.2.2. BE 

2.2.2.1. History 

Copula constructions with BE, as well as the beginnings of the progressive and 

passive constructions with BE, were present in Old English. The copula construction had 

an inflection of BE as the main verb and a predicate. Example (5) shows this, with beo 
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‘am’ and a prepositional phrase beginning with mid ‘with.’ The copula construction with 

BE has not changed greatly since then. The main verb has changed and limited its 

inflections, but it is still found in the same syntactic position and takes the same kind of 

predicates, i.e., prepositional, adjectival and nominal. 

5) Ic beo mid eow ealle dagas  

‘I am with you always’ Gospel Matthew 28:20 cited by Visser (1963:160) 

  

There is debate as to the source construction for the progressive construction but 

both potential sources are copula constructions. The first is adjectival: a construction of 

BE with a present participle, i.e. he wӕs huntende. The second is locative: a construction 

of BE with a preposition and a gerund, i.e. he wӕs on huntunge (Leech et al. 2009:120).  

The first potential progressive source is a durative aspect construction found in 

Old English, as in (6-7), which sometimes was indistinguishable from simple tense, as in 

(8). It could be used to express an ingressive aspect as well (9) (Mitchell and Robinson 

2001:110, Quirk and Wrenn 1957:79-80). The present particle has the inflectional ending 

<ende>. However, durative aspect could alternately be expressed without using this kind 

of construction, using another structure instead. 

 

6) ic mē gebidde to ðǣm Gode þe bīō eardigende on heofonum 

'I pray (at this moment) to the God who is dwelling (not only at this moment) in the 

heavens' (Quirk and Wrenn 1957:80). 
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7) Đǣr wǣron sume of  ðǣm bōcerum sittende, and on hiera heortum ðencende 

(Erant...sedentes...cogitantes) 

'There were some of the scribes sitting there and thinking in their hearts' (Quirk and 

Wrenn 1957:80). 

 

8) Þa wæs se cyning openlice andettende Þam biscope 

'The king openly confessed to the bishop' (Mitchell and Robinson 2001:110) 

 

9) þætte nǣnig...wære āwendende þās ūre dōmas 

'that no one should set about changing these our decrees' (Quirk and Wrenn 1957:80). 

 

 In Middle English, one could still express the durative or progressive aspect 

without using the progressive construction, but there was a dramatic increase in its 

frequency for expressing these aspects. During the Middle English period, the present 

participle started to occur with the ending <ung> or <ing>. Jones (1972) claims this is 

likely due to analogy with the deverbal noun or gerund that ended with a vowel followed 

by <ng(e)>. This ending replaced <ende> in many contexts, including in the progressive 

construction (Visser 1966:1089-94). The variation between these two ending forms in the 

progressive construction starts around 1250.  

The locative type construction, as in ‘he is on huntung’, is the second possible 

source for the progressive construction. In this scenario, the source for the progressive 

was a copula followed by a preposition and then the present participle with a <ung> or 

<ing> ending, not the <ende> ending. It is also quite possible that the progressive 
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construction developed under the simultaneous influences of both of these constructions. 

In any case, the <ende> type participles were obsolete after 1500, and the ‘on hunting/a 

hunting’ became dialectal in Modern English, leaving the <ing> participles, without 

prepositions, to become the present day form of the progressive construction (Visser 

1966:1094-5). Typical examples of the Middle English progressive can be seen in (10-

11).   

 

10) Oδδo swa hwar swa heo sy sittende, standende, oδδo gangende, ӕfre beo hniwiende 

mid hyre heafede 

‘Wherever he may be, sitting, standing or walking, let him always be with head bowed 

down’ Rule of St. Benedict cited by Visser (1966:1095) 

 

11) Heo...iuunden Þene king Þӕr he wes an slӕting 

‘and they found the king where he was hunting’ Layamon’s Brut cited by Visser 

(1966:1095) 

 

 The progressive doubled in use between 1500 and 1570 and then doubled again 

between 1640 and 1710. The rate of progressive use has also increased by 45% from 

1950 to the present in spoken British English, based on searches in the Diachronic 

Corpus of Present-Day Spoken English (Leech et al. 2009:121, 126). Progressive 

constructions are becoming more and more frequent as they are replacing simple present 

tense to describe ongoing actions. 
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 There were a few ways of expressing the passive in Old English, including a 

passive construction with BE (12). There was also another type of passive construction 

with the copula  

 'become' woerðan. The former was typically used in durative constructions, the later in 

perfective, but with lots of variation between the two. Authors tended to use just one or 

the other type. The form of this construction was an inflection of BE and a past participle 

(Quirk and Wrenn 1957:80-81). 

 

12) Ne bið ðǣr nǣnig ealo gebrowen 

 'No ale is (ever) brewed there' (Quirk and Wrenn 1957:80) 

 In Middle English most passive constructions occurred with the BE construction 

(13), but could still be expressed with the copula ‘become’, (at that time worte) (Burrow 

and Turville-Petre 1996:52). 

 

13) he...wæs wæl underfangen fram Þe pape Eugenie 

 'He was well received by Pope Eugenius' (Burrow and Turville-Petre 1996:52) 

 

 In present day English, there is a decrease in the use of the passive construction 

with BE, as it is being replaced with the got passive construction (he got picked for the 

team). There were 90 instances of the BE past participle passive per 10,000 words in 

1650, but only 30/10,000 words in 1990 based on searches in A Representative Corpus of 

Historical English Registers (ARCHER) (Hundt 2004:116). In spoken American English, 

there is a 28.2% decrease in the use of the passive from 1950 to 1990 based on searches 
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in the Brown Family of Corpora (Leech et al. 2009:148). 

 

2.2.2.2. Frequency Distribution 

The copula is an extremely frequent word, with is always being one of the top-ten 

words in corpora of running speech. Passive constructions are infrequent in inter-adult 

speech (Xiao, McEnery and Qian, 2006) child-directed speech (Gordon and Chafetz, 

1991) and in child speech (Pinker, Lebeaux and Frost, 1987; Israel, Johnson and Brooks, 

2000). The frequency of progressive constructions is almost as low as the frequency of 

passive constructions. Future constructions are even lower in frequency, as seen in Figure 

4 below, using construction frequencies from the COCA. 

 

Figure 4. COCA BE Frequency Distributions 

 

 Figures 5and 6 show the inflection and construction frequency distributions in the 

Buckeye and Redford corpora, respectively. In both corpora, copula constructions far 

outnumber any other constructions and passives are quite rare. Both have around the 

same proportion of future constructions, but the Redford Corpus has proportionally more 
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progressive constructions than either the COCA or the Buckeye Corpus. This is likely 

due to the genre of the Redford Corpus, which is made entirely of narratives (cf. Chapter 

III, Section 2), which describe actions in progress in order to move the narrative along. In 

any case, copulas are far more frequent than any other kind of BE, so if construction 

frequency were to play a role in either word shortening or contraction, we would expect 

to see the effects strongest with the copula. 

 

 

Figure 5. Buckeye Corpus BE Frequency Distributions 

 

 

Figure 6. Redford Corpus BE Frequency Distributions 
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2.3. Factors Influencing Reduction Related to Word Class and Constructions 

2.3.1. Lexical Class and Frequency 

 Previous research has shown that grammatical words are more subject to reduction 

than lexical words (Ansaldo and Lim, 2004; Bell et al., 2009; Swanson et al., 1992; van 

Bergem, 1995).  This could be due to what some authors have argued is a fundamental 

difference in how lexical and grammatical words are stored and processed by speakers.  For 

instance Ullman (2001, 2004) argues that the mental lexicon is idiosyncratic and dependent 

on declarative memory but that the mental grammar is regular and so is dependent on 

procedural memory.  He has even argued that these areas are stored in different parts of the 

brain, with the former located in the temporal lobe and the latter located in the frontal 

cortex and basal ganglia.  It is well known that event-related potentials have shown that 

difficulties in semantic processing can elicit a N400 peak, which is an increase in electrical 

activity about 400 milliseconds after encountering the problematic triggering target, and 

that difficulties in syntactic processing elicit a P600 peak (Ullman, 2001). FMRI studies 

have shown that lexical and semantic processing is associated with activation in the 

temporal lobe (Bookheimer et al., 1993; Damasio et al., 1996) and that syntactic processing 

activates the left basal ganglia (Embick et al. 2000, Stromswold et al. 1996).  However 

Ullman also states that “lexically stored syntactic knowledge” such as knowing the 

arguments a verb takes (2001) can activate the temporal lobe as well (Kuperberg et al., 

2000), which makes the distinction between lexical and grammatical knowledge seem less 

distinct. Nonetheless, under this kind of “words and rules” approach, frequency effects are 

thought to influence lexical words but have little to no impact on grammatical words 

(Ullman 2001). Accordingly, Bybee (2001) argues against this approach by documenting 
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effects of word frequency on the phonetic reduction of the regular, eminently grammatical, 

-ed past tense suffix. 

Research on grammaticalization documents a cline from prototypically lexical to 

prototypically grammatical words, which is traversed by words as they grammaticalize, 

with no clear point at which a word ceases to be lexical and becomes grammatical 

(Bybee, 2001). Instead of talking about lexical and grammatical classes of words, 

grammaticalization theorists speak of degree of grammaticalization, referring to the 

synchronic position of a word (in a particular use) on the diachronic lexical-to-

grammatical cline. According to this perspective, the processing differences between 

grammatical and lexical words may be due to uncontrolled and uncontrollable differences 

between function and content words, the extremely high frequency of grammatical words 

in comparison to lexical words (Bates and Goodman, 1997; Bell et al., 2009; Bybee, 

2001; Bybee, 2007; King and Kutas, 1998). On this account, we expect probability and 

frequency to influence pronunciation of both “lexical” and “grammatical” units, as 

documented by Bybee (2001) for –ed. 

Pierrehumbert (2001) argues that phonological grammar includes not only “the 

general principles of phonological structure”, but also “word-specific phonetic detail.” 

This word specific detail is needed in part because of frequency effects on pronunciation. 

The same morpheme appearing in words with different frequencies can have different 

realizations. This is because “words which are highly expectable are produced faster and 

less clearly than words which are rare or surprising” (Pierrehumbert, 2001). In her 2001 

application of exemplar theory to phonetics, this means that listeners build up memories 

of hypo-articulated forms of frequent words, and then in turn use these memories to 
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produce their own speech. Words that are often lenited will become more lenited in their 

long-term representations.  

There are certainly duration differences in homophonic word forms based on their 

frequency levels in corpus studies (Bell et al., 2003; Jurafsky et al., 2002; Gahl, 2008; 

Schuchardt, 1885).  For example, Gahl (2008) showed that homonyms such as the more 

frequent time and less frequent thyme have different lengths, where more frequent words 

are shorter.  However, she excluded grammatical words from her study.  Jurafsky et al. 

(2002) examined the homophonous (or at least polysemous) grammatical words to, that, of 

and you. Frequency was found to be an explanatory factor for reduced vowel production for 

that and of. However, these corpus studies did not specifically compare grammatical items 

to lexical ones. 

 An experimental study from van Bergem (1995) did compare homophonous 

grammatical morphemes to lexical morphemes, in Dutch.  The examples used were 

equivalent to comparing the modal verb can to the first syllable of candy.  He found that 

grammatical morphemes were shorter and pronounced less distinctly than lexical 

morphemes.  He also found that lexical morphemes were more subject to differences in 

stress than grammatical morphemes.  Swanson et al. (1992) also found that lexical words 

are more likely to be lengthened when they are spoken to children than adults, whereas 

the durations of grammatical words are unlikely to change no matter the audience. Other 

authors have argued that content words typically have longer vowels than function words 

because they are more likely to be stressed, focused or carefully pronounced (i.e., 

accented) due to higher information content and higher semantic weight (Aylett and 

Turk, 2004; Bolinger, 1972; 1975; 1985). 
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 The present study teases apart reduction due to degree of grammaticalization and 

the reduction due to usage-frequency because for HAVE and BE  because for HAVE, the 

content word HAVE is so much more frequent than the function words HAVE and for BE, 

while all meanings are function word meanings, the oldest/source meaning is so much 

more frequent than the newer/grammaticalized meanings. 

2.3.2. Construction 

In studies of contraction, authors found that construction type (or ‘syntactic 

context’) was predictive of rates of contraction. Labov (1969) compared BE before 

gonna, progressive verbs, noun phrases, adjectives and locatives in AAE. The most 

contraction and deletion occurred before gonna and other progressive verbs. Less 

contraction occurred before locatives and adjectives and the least reduction was found 

before noun phrases. Overall, Labov’s data suggest that progressive and future 

constructions favor reduction over copula constructions, with the caveat that it is not clear 

which (if any) of the differences reported in Labov (1969) are statistically significant, as 

no inferential statistics are reported. Four other studies examined the influence of 

syntactic context on contraction, all in SAE. McElhinny (1993) argues that contraction is 

most favored before progressive verbs, then before adjectives, then locatives, then before 

gonna, with the least reduction before noun phrases. MacKenzie (2012) distinguishes 

between verbal, nominal and adjectival following contexts for BE, finding more 

contraction in pre-verbal contexts (progressive and future constructions) than when BE is 

a copula. This finding is also reported by Bresnan and Spencer (2013), who use the same 

coding as MacKenzie (2012). Thus, overall the literature appears to be in agreement that 

there is more contraction in progressive constructions than in copula constructions but 
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there is disagreement about where the future construction falls. Barth and Kapatsinski (In 

Press) found that contraction is more likely for future constructions and less likely for 

passive constructions (not included in any of the previous studies), but that rates of 

contraction of copula and progressive constructions were relatively equal. The present 

study focuses not only on contraction for these constructions, but on word shortening as 

well. 

2.3.3. Probability 

Perhaps more important than frequency for reduction in speech generally is 

probability.  

The probabilistic reduction hypothesis (Bell et al., 2003; Gregory et al., 1999; Jurafsky et 

al., 2001) states that word forms are more reduced when they are probable given the 

current context (i.e., predictable). Context includes local context (neighboring words), 

syntactic or lexical structure, semantic or style expectations, and discourse factors (Bell et 

al., 2003). In the current study, reduction is operationalized as words being short (in 

milliseconds) and/or contracted, although other studies of probabilistic reduction have 

also included consonant lenition, flapping, stop release, vowel centralization, increased 

coarticulation, and lack of intonational prominence as ways to measure reduction (Aylett 

& Turk, 2006; Bell et al., 2009; Byrd, 1994; Bybee, 2001; Fowler & Housum, 1987; 

Gahl, 2008; Gahl and Garnsey, 2004; Jurafsky, 2003; van Bergem, 1995).  

Most previous studies of probabilistic reduction have investigated content words, 

excluding function words due to the assumption of content and function words being 

processed differently (a la Levelt, Roelofs and Meyer, 1999; Ullman, 2001). Some 

studies have also found evidence supporting processing differences between content and 
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function words. For example, function words are less affected by repeated mention (Bell 

et al., 2009) and more affected by predictability given preceding context (Jurafsky et al., 

2001. Nonetheless, there are also strong similarities. For example, both content and 

function words alike the following context has a strong effect on word duration (Bell et 

al., 2009). Furthermore, the processing differences may be explainable by other 

differences between content and function words rather than the function/content 

distinction. In particular, repetition has weaker effects in frequent words compared to rare 

words (Forster and Davis, 1984), and preceding context may be more variable for 

function words (which tend to follow content words) than for content words (which tend 

to follow function words). Furthermore, in English, some function words, including 

auxiliaries, cliticize to preceding words, making it unsurprising that they are strongly 

affected by the units to which they cliticize. 

Several studies have examined reduction of function words, and particularly 

HAVE and BE. In particular, contraction is more likely when BE or HAVE occurs in a 

high-frequency word sequence (Krug, 1998; Bresnan and Spencer, 2013) or is highly 

probable given the context (Frank and Jaeger, 2008; Bresnan and Spencer, 2013). Krug 

(1998) finds that singular subjects are more likely to trigger contraction of BE or HAVE 

than plural subjects and that first person subjects are more likely to trigger contraction 

than second person subjects, which are more likely to trigger contraction than third 

person subjects. He argues that the source of this hierarchy lies in differences in joint 

probabilities of particular host words and the contracted element. He finds that high joint 

probability of the target and the word preceding it (its host) predicts contraction better 

than transitional probability. Barth and Kapatsinski (in press) also found this to be the 
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case for low frequency words preceding is, am and are, but found that for all preceding 

words, a simple a difference between pronouns vs. full noun phrases predicts contraction 

better than a continuous probability variable. Additionally, they found that high 

transitional probability (and not joint probability) of the target and the word following 

predicts contraction. 

It is clear that there are probabilistic effects in human speech for both content and 

function words. There are two main types of theories accounting for why these effects 

exist: speaker-internal accounts and listener-oriented accounts. Proponents of speaker-

internal (production-based) models argue that words are reduced when they are highly 

frequent or highly predictable from context because it takes less time for a speaker to 

retrieve the word from their own mental lexicon in the course of speech production (Bell 

et al., 2009; Ferreira, 2008; Gahl 2008; Gahl, Yao, and Johnson, 2012; Seyfarth, 2014) or 

because of speed of word choice or syntactic construction during syntactic production 

(Ferreira, 2008; Ferreira and Dell, 2000). Although listener-oriented and speaker-internal 

models both predict that the words that are quick for a speaker to produce (leading to 

reduction) are the same words that are easy for a listener to understand (also leading to 

reduction), studies of the effects of high density phonological neighborhoods (Gahl, et al., 

2012; Munson, 2007) provide evidence for a speaker-internal account. When a word has 

many phonological neighbors, associated activations between semantic and phonological 

forms spread to neighbors. This makes words with dense neighborhoods more difficult to 

perceive because of competition from many neighbors. However, high neighborhood 

density makes lexical access in production easier, as assessed by reaction time in picture 

naming (Vitevitch, 2002). Word duration appears to pattern with production difficulty, 
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reflecting the speaker’s, and not the listener’s ease of lexical access. Thus, words are 

shorter in dense neighborhoods despite being more difficult to understand  (Gahl, et al., 

2012; Munson, 2007). Since words with more neighbors present more competition for a 

listener to decode which word they are hearing, it would be helpful to a listener if words 

with more neighbors had longer, clearer signals, which, evidently, they do not always 

have (Gahl et al., 2012)
2
. But note that Jaeger and Tily (2010: 326-327) stress that the 

time to produce a word and the time to plan a word are not necessarily linked under a 

probabilistic view of speech production:  

While longer latencies would be expected if less predictable word tokens 

are harder to produce, longer durations would only be expected if each 

segment (phone) in less predictable word tokens is harder to retrieve than 

the segments in more predictable word tokens. In other words, longer 

durations for less predictable tokens are only expected if the segments of 

less predictable word tokens are on average less predictable than the 

segments of more predictable word tokens (emphasis in original). 

 Proponents of listener-oriented (intelligibility-based) models argue that words 

reduce when the speaker assesses them to be easy for a listener to predict from context. 

Less signal (in terms of milliseconds of duration) is necessary for a listener to decode the 

meaning of the word and therefore understand the speaker’s intent, so a speaker can get 

away with a shortened, reduced pronunciation, saving effort. Words are longer when a 

word may be difficult for a listener to understand because it is infrequent, difficult to 

predict from context or highly confusable with similar other words (i.e., has a dense 

                                                 
2
 Several studies using experimental data or different measures of neighborhood density have shown the 

opposite, that words with high neighborhood densities are produced more clearly (Munson, 2007; Munson 

and Soloman, 2004; Watson and Munson, 2007; Wright, 2004, inter alia) 
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phonological neighborhood). Speakers adjust their speech in speed, coarticulation, 

consonant lenition, vowel centralization and vowel choice, among other adjustments, 

based on what they perceive as listener-needs (Arnold, 2008; Aylett and Turk, 2004; 

Clark et al., 1991; Clark et al., 1987; Flemming, 2010; Fox Tree and Clark, 1997; Freed, 

1978; Ferguson, 1977; Galati and Brennan, 2010; Levy and Jaeger, 2007; Lindblom, 

1990; Lockridge and Brennan, 2002; Pluymaekers, Ermestus and Baayen, 2005; Swanson 

et al., 1992; van Son and Pols, 2003). Function words, in particular, are high in frequency 

and lack much semantic content, meaning they can be reduced or deleted because they 

are not essential for a listener to process the information in a speaker’s utterance, or are 

recoverable from context (Krug, 1998). Bates and colleagues (Bates et al., 1991; Bates, 

Devescovi and Wulfeck, 2001; Chen and Bates, 1998) have argued that Broca’s aphasics 

omit function words for this reason (also cf. Pick [1913]). Because production is oriented 

to the listener in a particular context in each speech act, words extracted from 

conversation and presented to listeners in isolation tend to be difficult for listeners to 

decode (Ernestus et al., 2002; Tucker, 2011; Van de Ven et al., 2011; Pickett and Pollack, 

1963). Due to word reduction, context is needed for the words to be successfully 

recognized or decoded (Ernestus and Warner, 2011; Shockey, 1998; Warner et al., 2009). 

Researchers have found that listener accommodation takes place at many levels of 

language including discourse variation, such as the inclusion or omission of a narrative 

element, number of words and detail (Galati and Brennan, 2010; Lockridge and Brennan, 

2002), not only in word production. 

 An information-theoretic account of probabilistic reduction is presented by 

Uniform Information Density (UID) theory. Words that are more informative are longer 
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than words that are less informative to maintain a “uniform information density” so that 

over a period of time roughly the same amount of information is transmitted. (Fenk and 

Fenk, 1980; Frank and Jaeger, 2008; Jaeger 2010; Jaeger and Tily, 2010; Zipf, 1935). As 

an example, in a speech segment of 500 milliseconds, a speaker may produce one 

“informative” (unpredictable) word, such as bees, or two uninformative (or predictable) 

words such as that one. Essentially, the idea behind UID is that speakers want to transmit 

information to their listeners and prefer to spend time on informative segments of their 

utterances rather than uninformative ones, because they want to maintain a fairly 

consistent transfer of information over time, rather than lengthening and shortening to 

highlight the importance of informative words and signal the unimportance of predictable 

words. Researchers have found that uniform information transmission is preferred at 

levels of language beyond pronunciation variation, including syntactic variation such as 

the inclusion or omission of relativizers in relative clauses (Levy and Jaeger, 2007; 

Wasow et al., 2011). 

Unlike more ‘active’ listener-oriented models such as H&H Theory (Lindblom, 

1990), UID does not commit to the speaker constantly monitoring the listener’s state of 

mind. Uniform Information Density may also be an outcome of adaptation and long-term 

accommodation over the course of multiple interactions with a listener rather than online 

adjustment of signal clarity based on moment-to-moment estimation of common ground. 

Minimization of online computation appears to be a recent trend in listener-oriented 

theorizing in response to concerns about memory and processing time demands of 

listener modeling. Thus, working in an audience design framework, Galati and Brennan 
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(2010) propose a one-bit model of the listener where the speaker only keeps track of 

whether the listener has heard the narrative before at a relatively coarse level.  

 Some studies have found that although lexical reduction is influenced by 

accommodation of a listener, articulatory reduction is not (Bard et al., 2000; Bard and 

Aylett, 2004), but other studies have shown that both speaker experience and estimation 

of addressee knowledge or task importance affects word shortening (Gregory et al., 

2001), as well as prominence measured by pitch (Watson, Arnold & Tanenhaus 2008). 

 In the present study, either a speaker-internal or listener-oriented account would 

predict the same basic behavior for the words under investigation: namely that words will 

be more reduced (shortened or contracted) when they are probable and words will be less 

reduced (lengthened or uncontracted) when they are less probable. As it is a corpus study, 

the present work does not provide information on whether the speaker engages in online 

modeling of the listener or whether this modeling affects articulation. However, if any 

kind of listener accommodation constitutes support a listener-oriented framework, 

without evidence for online listener modeling being necessary, then my results on speech 

directed by the same caregiver speakers to children of different ages fit the bill. The same 

speakers appear to speak differently to the same interlocutor as the interlocutor ages, in a 

way consistent with the effects of age on child language knowledge. 

 

2.3.4. Reduction Begets Reduction 

If factors often facilitate efficient production or high intelligibility for particular 

words in particular contexts, those words can retain the effects of those factors even 

outside of those contexts. For example, Baese-Berk and Goldrick (2009) found longer 
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VOT of initial voiceless consonants in words that had a minimal pair with an initial 

voiced consonant (pox vs. box) but not when a word lacked a corresponding minimal pair 

(posh vs. *bosh). Importantly, this effect persisted even when the minimal pair did not 

occur in the stimulus set presented to participants (Peramunage et al., 2010). Dilts (2013) 

found that adverbs that shorten more when they occur after words with parts-of-speech 

that typically precede adverbs. Torres Cacoullos (1999) found that Spanish auxiliary-

gerund sequences diachronically increased in frequency and reductive change, but that 

the construction frequency also interacted with register to influence reduction. In 

Spanish, the kinds of verbs that occur in constructions with less reduction (stand alone 

gerunds encouraging postposed clitic position as opposed to –ndo constructions) are 

associated with formal contexts, so much so that over time the postposed clitic has itself 

become associated with formality. Raymond and Brown (2012) find influence on 

reduction of word-initial /s/ in Spanish from both online production factors and factors 

due to cumulative exposure to reduction-likely contexts. Seyfarth (2014) found that 

content words that often occur in highly probable context tend to be reduced, even when 

in an unpredictable context. These kind of findings indicate that speakers are sensitive to 

tendencies associated with words because they produce more intelligible speech (i.e., 

voicing contrast) or more efficient speech (i.e., word shortening) even when the current 

context does not require it. Bybee and Torres Cacoullos (2008) argue this can be 

accounted for by an exemplar account, where words that tend to occur in reduced 

contexts have a greater proportion of reduced exemplars in their exemplar cluster than 

words that do not tend to occur in reduced contexts, making a reduced exemplar more 

likely to be selected for production.  
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In the present study, we are interested in a particular kind of context: construction 

context. If the construction that BE or HAVE occurs in usually makes BE and HAVE 

predictable and therefore reduced, does that reduction persist in the particular 

construction even when the particular instance of HAVE or BE is less predictable? If so, 

then speakers are keeping track of and storing phonetic information as a characteristic of 

the construction, and if this is so, we then can ask if children do it or if it is only adults, 

who have had enough experience to learn the phonetic peculiarities of constructions and 

may be better at tracking probability in context. If not, then findings would support online 

calculation of probability in each instance and would reject abstraction over construction 

productions.  

 

2.4. Factors Influencing Reduction Due to Speaker Characteristics 

2.4.1. Speech Rate 

Speech rate, or tempo, is an important factor to consider when examining 

reduction because in adult speech, faster speech rate is associated with short vowels, 

particularly shortened stressed vowels (Gay, 1978, 1981; Redford 2014) meaning that 

reduction will be at least partially dependent on tempo. In child speech, faster speech rate 

is associated with both shortened vowel and consonant durations (Redford, 2014), not 

just shortened vowels.  

Older adults’ speech rates are just slightly slower than younger adults, and gender 

differences in speech rate are below the just noticeable difference threshold (Quené, 

2007) after phrase length is taken into account (but cf. Bell et al., 2003 and Yuan et al., 

2006). Speech rate increases as utterance length increases (Quené, 2008) and both 
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children and adults pause for a longer time before longer utterances (Redford, 2013). 

Speech rate also varies by region (cf. Kendall, 2013 and Jacewicz et al., 2009 for the 

United States, Quene, 2008 for the Netherlands). Words are lengthened phrase-finally as 

well (Oller, 2008; White, 2002; Yuan et al., 2006), and the magnitude of phrase-final 

lengthening also varies across speakers (Snow, 1994).  

Using the Buckeye Corpus (Pitt et al., 2007), Dilts (2013) found that when 

speakers spoke quickly, they shortened words and deleted segments to a higher degree. 

Speakers with high average speaking rates showed more segment deletion than speakers 

with slower average speaking rates, but the reverse was true for word duration. He 

attributes this to faster speakers having more even speaking rates across a conversation 

and slower speakers shortening their words to a greater degree when they do speak 

quickly. 

Speakers also vary their speech rate to accommodate their interlocutors based on 

interlocutor characteristics (Kendall, 2013) and whether the content of the utterance is 

unpredictable or important (Nooteboom & Eefting, 1994; Zwaardemaker & Eijkman, 

1928). 

Child age obviously has a huge impact in speech rate. As children get older, they 

are able to increase their speaking rates substantially until they are about 13 or 14 years 

old, with the greatest increases seen from 5 to 8 years old, due to better motor control 

(Kowal, O’Connell, and Sabin 1975; Redford, Forthcoming) and children’s segment 

durations are longer when they are younger (Smith, 1978; Kent and Forner, 1980; Lee et 

al., 1999). As children get older, because of their increase in speech rate, they are able to 

say more in the same amount of time (Redford, 2013; 2014). Along with an increase in 
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the fine motor control necessary for speech, during this same time the complexity of 

syntactic structures increases in child speech (Brown, 1973; Tomasello, 2003; Tomasello, 

2008) alongside an increase in working memory (Baddeley, 1986; Gathercole & 

Baddeley, 1993). 

2.4.2. Age 

In adult speech, Gahl et al. (2012) did not find a significant difference in duration 

reduction or vowel dispersion in the speech of younger vs. older adult speakers using the 

Buckeye Corpus (Pitt et al., 2007), although faster speech rate was associated with 

shorter durations. We know little about the differences in probabilistic reduction based on 

age in child speech. This dissertation seeks to fill that gap. Child speech and child-

directed speech are particularly interesting for examining function words because 

although function words are highly frequent in infant-directed and child-directed input, 

they are acquired late in comparison to content words. 

The three construction types for HAVE are ‘possessive’, in which HAVE is 

lexical, ‘modal’ and ‘perfect’, in which HAVE is grammatical. Some authors have argued 

that modals are semi-grammaticized forms (Bybee 1985; Plank 1985; Palmer 1986) 

meaning they are something between a lexical and grammatical word. For the present 

study, I consider the semi-modal auxiliary to be a grammatical word as it takes a 

dependent verb. Example sentences from the children’s narrations used in the present 

study are: 

14) possessive: They had a pet frog named Bob. 

15) modal: It sank the boat and his mother had to get it for him. 

16) perfect: The boy was real sad to find that the frog had left. 
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The lexical, possessive verb HAVE is produced in appropriate contexts by age 3. 

Some examples from Diessel (2004:102) show its use by a child at ages 2;9 and 2;10: He 

sayed he has something to play with for me and She gonna say I have a pretty dress on. 

Tomasello (1998:354-355) reports the use of possessive have by one child at age 1;7-10: 

Have-it, Girl have that umbrella, Have juice in my bottle and Have a donut for you. 

The perfect auxiliary HAVE is generally used appropriately around age 5 

according to Brown (1973), but Diessel (2004:64 and 100) finds perfect constructions in 

the speech of a 3;8 and 4;6 year old: Children have begin to sing and I see you have 

bought new toys respectively. The modal verb is generally used correctly around age 2;3 

(Diessel, 2004:74), but initially as a pivot (Braine, 1963)  in the form of hafta. The 

related gotta is acquired generally around age 2;6 (Diessel, 2004:74). There are variable 

specific ages of acquisition for these constructions, but they can be ranked in a given 

child’s acquisition as follows: 1) lexical possession, 2) semi-modal auxiliary and 3) 

perfect auxiliary. 

 Children acquire present tense forms of BE by age 3 and past tense forms by age 

5. Copulas and progressive auxiliaries are acquired by Brown’s (1973) stage II (2-3 year 

olds). Before that, children simply omit copulas, auxiliaries and the –ing of the participle 

of progressive constructions. In progressive constructions, children start producing the 

full participle, with –ing, before they include the auxiliary (Brown, 1973:253). Passives 

come later, but are acquired before age four (Brown, 1973). Brown’s data (1973:259) 

also shows that children produce non-contracted copulas and auxiliaries before they 

produce contracted ones, perhaps because parents in his study did not contract copulas or 

auxiliaries very often (359).  



 

37 

 

While BE and HAVE are used in appropriate contexts early, it takes longer to 

acquire adult-like patterns of contraction, and in dialects that permit it, omission. Kovac 

and Anderson (1981) examine the deletion and contraction of BE in the speech of 

children, from groups matched for age (3 year olds, 5 year olds, 7 year olds), race (black, 

white) and income-level (middle-income, lower-income). BE deletion is a well-known 

feature of African American English and is more likely after vowels, after pronouns and 

when it is a progressive or future auxiliary, as opposed to a copula (Labov 1969). The 

youngest children in Kovac and Anderson’s study were still acquiring copula and 

auxiliary usage, sometimes omitting BE for developmental reasons, rather than to match 

adult non-standard dialects. However, the oldest children in the study reflected adult 

usage patterns, although not fully. There was a decrease in deletion and an increase in 

contracted (’s, ’m, ’re) and non-contracted (is, am, are) forms over the age cohorts of 

white middle class children, which is appropriate to Standard American English. This 

pattern was the same for most white working class children as well. Black working class 

children learn deletion earlier than black middle class children, probably due to higher 

rates of BE deletion from their parents, and then later from their peer groups. Two white 

working class children in the 7 year old cohort also had high rates of BE deletion, 

probably due to influence from their peers. Kovac and Anderson (1981) also examine the 

contexts for BE deletion and contraction for the black children, finding that their 

contraction patterns match adult usage, but that their deletion patterns do not. However, 

for some of their linguistic variables there are fairly low n’s, so with more data, it may be 

that child usage patterns would be more similar to adult usage patterns. 
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 In the child speech portion of the data, it is necessary to be aware that until at least 

ages 7-12, children have a great deal more within-category acoustic variation in their 

speech than adults (Foulkes and Docherty, 2005; Lee, Potamianos and Narayanan, 1999; 

Smith and Kennedy, 1994; Smith, Kennedy and Hussain, 1996, Snow, 1995) and some 

aspects of speech motoric development persist past adolescence (Cheng et al., 2007).  

Children’s durations of reduced (unstressed) syllables, while relatively shorter 

than prominent (stressed) syllables, are much longer than reduced syllables in adult 

production (Allen and Hawkins, 1980; Kehoe, Stoel-Gamon, and Buder, 1995) and the 

variability in unstressed syllable duration is higher than in stressed syllable duration 

(Goffman, 1999). Particularly, producing the very short vowel durations associated with 

unstressed syllables is difficult for children, even at age seven (Allen and Hawkins, 1980; 

Ballard et al., 2012). Although they can successfully produce relatively shorter vowel 

durations in unstressed syllables in relation to stressed syllables, their short vowel 

durations are still much longer than those of adults (ibid). This may indicate that school-

aged children will still be producing very long function words, which are often unstressed 

monosyllables, particularly when they occur before a stressed syllable. 

 Even when children’s production of stressed syllables is perceived as correct, the 

kinematic movements underlying those productions are slower for 3;10-4:9 year olds 

than for adults (Goffmann and Malin, 1999). Motor control is still developing in late 

childhood, until 12-16 years of age (Lee, Potamianos and Narayanan, 1999; Smith, 

2006). Until then, children have a significant amount of variability and differences in 

magnitude of their segment durations until age 12 (Lee et al., 1999) and even after that 
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there is further development in their consistency in oral-motor coordination (Smith, 

2006). 

 Children do not reduce function words as much as adults do (Allen and Hawkins, 

1978; Goffman, 2004; Redford, Forthcoming; Sirsa and Redford, 2011) and children that 

fail to reduce function words in relation to content words while reading aloud are 

perceived as reading less fluently (Lord, Berdan, and Fender, 2009). Second language 

speakers who reduce function words to a lesser extent are also rated as sounding less 

proficient (Baker, Baese-Berk, Bonnasse-Gahot, Kim, Van Engen, and Bradlow, 2011). 

As children get older, they find that in their own speech production, only certain parts of 

a message can be reduced while maintaining intelligibility. The present study seeks to 

address whether there is a wholesale reduction in all instances of function words over 

increased age (due simply to their undisputed better production of unstressed syllables) or 

whether the reduction is influenced by meaning, context and probability, indicating an 

additional understanding of what is important and unimportant in an utterance. 

2.4.3. Gender 

Studies of probabilistic reduction in adult speech have conflicting results as to 

whether there is a significant difference between the genders. Using a corpus of read 

speech, Byrd (1994) found that men spoke faster than women, used more taps and 

syllabic [n], but did not centralize vowels to a greater degree than women. Bell et al. 

(2003) also found that men spoke faster than women using a corpus of spontaneous 

speech and that there was a significant interaction between age and gender that older 

women spoke more slowly than old men. Gahl et al. (2012) did not find a significant 

difference in duration reduction or vowel dispersion in the speech of males vs. females. 
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Using data from the Buckeye corpus, Dilts (2013) found that although word duration was 

unaffected by gender, men were more likely to delete segments than women. 

Additionally, he found that the gender of the interlocutor (interviewer) had an effect on 

segment deletion. Over the course of an interview, speakers tended to increase their rate 

of segment deletion with male interviewers and decrease segment deletion with female 

interviewers, particularly for frequent words, showing sensitivity to characteristics of 

their listener.  

Studies of child-directed speech have shown strong differences between male and 

female caregivers. When comparing speech to adults v. preverbal infants in French, 

Italian, German, Japanese, British English and American English, Fernald et al. (1989) 

found that all parents used higher F0 means, minima, maxima, and variability as well as 

shorter utterances and longer pauses when speaking to infants. Only mothers used a wider 

F0 range. Of all the language groups, American English speaking mothers had the 

greatest intonational exaggeration in their infant-directed speech. For F0 range, F0 hertz 

were converted into semitones, which is a logarithmic transformation of the difference in 

hertz values. Rondal (1980) found that like mothers, fathers simplified their speech when 

speaking to toddlers (1;6-3;0) in French, shortening their MLUs even more than mothers, 

matching average MLU of the children they were speaking with. In addition to 

differences between adult males and females in caregiver speech, some caregivers speak 

differently to their child, depending on whether or not the child is male or female 

(Foulkes, Docherty and Watt, 2005). Additionally, there may be some interaction 

between parent and child gender. Reese, Haden and Fivush (1996) found that mothers 

made distinctions in their speech depending upon whether or not they were speaking to 
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boys or girls, but that fathers did not. Caregivers’ use of features of infant directed speech 

taper off by age five (Bellinger, 1980) and the child’s need for this speech from 

caregivers diminishes over time (Garnica 1977) and so gender is unlikely to be a factor 

influencing function word reduction in caregiver speech. 

2.5. Additional Factors Influencing Reduction  

2.5.1. Preceding Phonological Context 

Studies of contraction have found that the host word for a contraction has an 

effect on its likelihood of contraction. Host words that end in a vowel, as opposed to 

consonants, are favorable for contraction (Labov, 1969; MacKenzie, 2012; McElhinny, 

1993) or deletion in African American English (AAE) (Labov, 1969). These same studies 

found that pronoun host words were favorable to contraction, which should be expected 

as many pronouns end in vowels. Barth and Kapatsisnski (In Press) found that pronouns 

were predictive of contraction, but that neither the preceding nor following phonological 

context had a significant effect on rates of contraction once word type was taken into 

account. 

2.5.2. Priming 

Studies have shown that a speaker’s use of a particular variant can prime the 

further use of that variant over another. Poplack (1980) found that plural –s deletion in 

Spanish is more likely if the preceding instance of plural –s within the same phrase is also 

reduced. Scherre and Naro (1991) found that agreement marking or non-marking was 

likely to prime further agreement marking or non-marking across different phrases within 

the same clause in Brazilian Portuguese. Cameron and Flores-Ferrán (2004) found that 
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speakers of regional dialects of Spanish preserve the same kind of subject expression 

(null or pronominal) over clauses, as did Travis (2007) in other Spanish varieties. Torres 

Cacoullos and Travis (2013) find that American English speakers are much more likely 

to use the rare strategy of an unexpressed first person subject when it is preceded by 

another unexpressed first person subject. Barth and Kapatsinski (In Press) found that 

American English speakers are much more likely to contract is, am or are after 

contracting one of these words earlier in their utterance, or to produce non-contracted 

forms if they had recently produced non-contracted forms of these words.  

 

2.5.3. Disfluencies 

Speakers lengthen word durations before disfluencies, presumably in order to buy 

time to access the word they trying to find (Bell et al., 2003; Schachter et al., 1991; 

Kapatsinski, 2005; Schnadt, 2009). Disfluencies also often occur before low probability 

words more than before high probability words (Beattie & Butterworth, 1979; Goldman-

Eisler, 1957; Maclay & Osgood, 1959; Schachter et al., 1994; Tannenbaum et al., 1965), 

resulting in longer durations (Tily et al., 2009), showing that high probability positively 

affects ease of word access. 

 

2.6. Conclusion and Roadmap 

The present study examines in detail whether there are effects of probabilistic 

reduction on the production of the function words BE and HAVE in adult speech, child-

directed speech and child speech. I find that there are effects of probabilistic reduction in 

the speech of all of these groups, and these effects strengthen in child speech as children 
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get older. Strengthening of sensitivity to probabilistic factors indicates that children, in 

addition to progressing in speech ability, also progress in language production during 

their school-age years. Children become more aware of what is (un)important in their 

speech and then use this information to be more efficient speakers. 

 In Chapter III, I first examine in detail reduction of BE and HAVE in the Redford 

Corpus, examining the speech of children and their caregivers. I show children are 

sensitive to probability in word shortening and contraction. In this chapter I also show 

that speakers have styles of reduction, that is, a strategy for the compression of 

unimportant information, and that children develop a style around age 7. 

 In Chapter IV, I confirm the results of the probabilistic reduction of BE and 

HAVE from Chapter III in a larger corpus: the Buckeye Corpus. In this chapter I also 

examine the probabilistic effects of construction types and show that even though copula 

and possessive constructions are more frequent than other construction types, they also 

have lower average following transitional probability. I show that constructions that 

reduce to the highest degree have higher average following transitional probability, 

showing that speakers are more sensitive to probability as a feature of constructions than 

they are to frequency as a feature of constructions. Crucially, I show that effects of high 

average probability increase reduction, even in specific contexts of low probability, 

meaning that an association between high probability and reduction is at least partially 

stored in the mental lexicon, not calculated online during language production. 

 Finally in Chapter V, I bring the results of the above studies together to show how 

probabilistic reduction affects language even at low levels, like function word production, 

and that sensitivity to probabilistic factors is a sign of language proficiency. I also argue 
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that average word predictability captures the intuition of grammaticalization researchers 

that phonetic erosion accompanies grammaticalization due to the restricted contexts that a 

grammaticalized word can occur in. 
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CHAPTER III 

REDFORD CORPUS: REDUCTION IN CHILD AND CHILD-DIRECTED SPEECH 

 

3.1. Introduction 

The present chapter examines probabilistic reduction in child speech (CS) and 

child-directed speech (CDS) using data from the Redford Corpus. Children’s speech is 

quite different than adults’ speech. It is more variable, varies in less pattern-based ways, 

and has a more restricted inventory of lexical items and grammatical constructions, 

among other differences (Foulkes and Docherty, 2005). Much of the speech children hear 

is not like inter-adult speech. Although produced by adults, it is directed towards children 

and has its own special characteristics: simplified syntax and vocabulary, repetitions, 

slower speech rate, longer pause durations, larger pitch range, additional emphasis on 

lexical items, but no additional emphasis on grammatical items (Fernald et al., 1989; 

Gallaway and Richards, 1994; Snow, 1995; Swanson et al., 1992). Yet, all children 

acquire adult-like speech and adult-like patterns of variation. In order to examine the 

progression from child speech to more adult-like speech, I examine here patterns of 

probabilistic reduction from children ages 5-10 and compare them to patterns of 

probabilistic reduction in CDS. 

 I first discuss the Redford Corpus in some detail in section 3.2 and the 

methodology of the study in 3.3 including dependent and independent variables and the 

statistical analyses used: random forest variable importance ranking and multimodel 
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inferencing for significance testing.  In sections 3.4-3.7 I present the results of the studies 

of probabilistic reduction on word shortening and contraction in CS and CDS. In section 

3.8, I present a discussion of the results showing that there is indeed development in 

probabilistic reduction in CS from ages 5-10, and that caregivers adapt their speech to 

children in this age range as well. 

 

3.2. Data 

Child Speech and Child-Directed Speech data come from data collected by 

Professor Melissa A. Redford as part of a large-scale, longitudinal study examining the 

development of prosody of school-aged children
3
. As one part of a larger study involving 

a battery of tests
4
, children narrated a picture book called One Frog Too Many (Mayer 

and Mayer, 1975), A Boy, a Dog and a Frog (Mayer, 1967) or Frog, Where Are You? 

(Mayer, 1969). The books are approximately twenty pages long but contain no text, so 

children spontaneously produced a story to accompany the pictures. The caregiver was 

present with the child and narrated the book first, followed by the child. The caregiver 

narrated the book once more, followed by the child once more. Sometimes a research 

assistant narrated the book in alternation with a child, instead of a caregiver. Narrations 

produced by research assistants are not included in the present corpus. Generally, the 

second story was transcribed either by the research assistants in the Redford lab, or by the 

present author. Some instances of the first story were also transcribed. For the current 

                                                 
3
NICHD grant Award Number R01HD061458  

 
4
 The tests were not given by the author. Tests were given by Prof. Redford and her research assistants from 

2009-2011. 
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study, a selection of 216 stories are used, resulting in a 77,822 word corpus of picture 

book narrations from children and their caregivers, hereafter the REDFORD CORPUS. 

The children in the study were typically developing, as reported by their 

caregivers, in school, and all spoke a west coast variety of American English (Redford, 

2014). Not all caregivers spoke this dialect and for some caregivers, English was not their 

native language. The data from the participants in these caregiver-child dyads was 

checked carefully for outliers, and if outliers occurred, those data points were excluded 

from analyses.  

Narrations in the present corpus are from typically developing, hearing children. 

The corpus of “frog stories” is made up of 146 narrations from 58 children (34 female, 24 

male) and 70 narrations from 35 parents
5
 (28 female, 7 male) at three different time 

points (in 2009, in 2010 and in 2011), allowing us a longitudinal view of the development 

of variation. Not all stories were transcribed at the time of data collection for this project; 

therefore for some children there are only data from two time points, or even only one 

time point.  The range of ages of the children is 62 months-130 months. For the specific 

time points the ranges are 62-107 months for the 2009 cohort, 63-118 months for the 

2010 cohort and 63-130 months for the 2011 cohort. Most stories were produced by 

children between the ages of 90-110 months, that is (7;5-9;2 years old) as shown in 

Figure 7. The length of the stories ranged from 1 minute 2 seconds to 8 minutes 3 

seconds for children and from 1 minute 47 seconds to 6 minutes 47 seconds for adults.  

 

                                                 
5
 More children and caregivers participated in the Redford Lab studies than those that have narrations in the 

corpus in the present study. As the project focused on child speech, many more child narrations were 

transcribed than adult narrations. 
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Figure 7. Numbers of stories by age of children in months 

 

3.2.1. Word and Bigram Frequency in a Small Corpus 

 

The Redford Corpus is relatively small and has a different distribution of words 

and bigrams than a large corpus such as the Corpus of Contemporary American English 

(Davies, 2008-) or COCA. The COCA contains adults’ speech and writing from 

television news programs, radio programs, newspapers and books and has over 450 

million words. Table 1 compares the ten most frequent words and bigrams in COCA vs. 

in the Redford Corpus. From this table we see that there are some similarities: 

grammatical words are the most frequent in both corpora, but the Redford Corpus is 

heavily skewed toward frogs. We also see bigrams that are associative with narrative 

story-telling, i.e. and then, and he, and they. 
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Table 1. Ten most frequent words and bigrams in the COCA and in the Redford Corpus 

 COCA word COCA bigram Redford Corpus 

word 

Redford Corpus 

bigram 

1 the (22,038,615) of the (2,551,888) the (7,444) and the (1,255) 

2 be (12,545,825) in the (1,887,475) and (5,414) the frog (1,159) 

3 and (10,741,073) to the (1,041,011) frog (2,848) and then (752) 

4 of (10,343,885) on the (861,798) he (2,817) the boy (724) 

5 a (10,144,200) and the (676,658) a (1,929) and he (681) 

6 in (6,996,437) to be (648,408) to (1,566) the dog (655) 

7 to (6,332,195) for the (578,806) they (1,522) the little (505) 

8 have (4,303,955) at the (561,171) was (1,513) in the (477) 

9 I (3,978,265) in a (498,217) then (1,214) and they (446) 

10 it (3,872,477) with the (455,367) boy (1,194) frog and (400) 

 

The advantage of using the COCA for calculating word and bigram frequencies 

and probabilities is that there are over 450 million words in the corpus, meaning the 

frequency measures are fairly reliable. If something occurs rarely, we can be confident it 

is indeed rare, rather than this being merely an artifact of a small corpus. The Redford 

Corpus has many sentences using the word frog (and turtle, dog, etc.), and the COCA has 

very few, meaning it may potentially be less reliable for predicting the behavior of words 

like these that are prominent in the Redford Corpus. However, because the Redford 

Corpus is so small, there are many words and bigrams that occur only once. They are 

what are called hapax legomena and they are unreliable for predicting wider 

probabilities. With a small corpus, we do not know if these words/bigrams are truly rare, 
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or if the small corpus just happens to lack them by chance. Therefore, throughout the next 

sections, I use both frequency information that is task-based, from the Redford Corpus, 

and frequency information that is more reliable due to size, from the COCA. Dilts (2013) 

found that local frequencies from the Buckeye Corpus predicted reduction in the Buckeye 

Corpus better than frequencies from the COCA, so it is possible that local context 

information is more predictive for its specific context. 

 

3.2.2. Data Structure Visualization in Redford Corpus 

We know that children have smaller vocabularies than adults, and we know that 

children’s vocabularies are made up primarily of frequent words. Using the Fruchterman-

Reingold layout algorithm in NodeXL (a Microsoft Excel Add-In for the exploration of 

network graphs), we can get a sense of the structure of the Redford Corpus and 

differences in the structure of the child v. adult portions of the corpora. The Fruchterman-

Reingold algorithm is a force-directed graph drawing algorithm that displays vertices and 

the edges between them (Fruchterman and Reingold, 1991). Nodes are placed closer 

together if they have a strong attractive force and placed farther from each other if they 

have a strong repulsive force. For the present data, the calculation of force by the 

algorithm is based on how often words co-occur in a string, given all possible co-

occurrences (i.e., joint probability). In the figures that follow, each bigram in the Redford 

Corpus is represented as two vertices connected by an edge. Bigrams that are often used 

in the corpus (i.e., have a high joint probability) have a strong attractive force and 

therefore shorter edges. Bigrams that are less often used in the corpus, given all possible 

combinations, (i. e., have a lower joint probability) have a repulsive force between the 



 

51 

 

words of the bigram and therefore longer edges between those words. A loop represents a 

word that has been repeated, because the edge connects a bigram made of two of the 

same words. The exact placement of nodes depends on the placement of all other nodes 

and their edges, resulting in the specific shape of the structure. Figure 8 shows the 

structure of both the child speech (CS) and child-directed speech (CDS) portions of the 

corpus and Figures 9 and 10 compare the CS and CDS portions of the corpus. There are 

more child stories than parent stories, so Figure 9 is based on a sample of data from the 

CS portion of the corpus equal to that of the CDS portion of the corpus used in Figure 10. 

 

Figure 8. Structure of the Child Speech and Child-Directed Speech Corpus. 

 

Notice in Figure 9 below, where we see the structure of the CS portion of the 

corpus, that there is a high concentration of highly frequent bigrams. In Figure 10, where 

we see the CDS portion of the corpus, there is a higher number of infrequent bigrams. In 
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Figure 9, notice that after a child has used a less frequent bigram, the following word will 

usually be part of a frequent bigram again. This is represented by edges from the vertices 

far from the center returning to the center of the figure to be connected to vertices with 

short edges. In Figure 10, we see that vertices with long edges are more often connected 

to other vertices with long edges. This represents that an adult will use one infrequent 

bigram after another. Additionally, the center is far less dense and the dark black center 

part is relatively smaller than in the one in Figure 9. This represents that the adults use the 

highly frequent bigrams less often than children. 

 

Figure 9. Structure of the Child Speech Texts 

 

 In Figures 11 and 12 we see the same text structures as in the previous two 

figures, but with a red line connecting a selection of the vertices. This red line represents 

one narration from a child (Figure 11) and one from an adult (Figure 12). Figure 11 

allows us to better see that a child will often use highly frequent bigrams, and when they 

do use a less frequent bigram, will then follow it with another highly frequent bigram, as 

in a pivot grammar for a young child (Braine, 1963; Tomasello, 2003). Figure 12 shows 
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us that an adult uses more bigrams with lower frequency and may use a few less frequent 

bigrams, one after another. 

 

 

Figure 10. Structure of the Child-Directed Speech Texts 

 

Figure 11. Structure of one Child Speech text 
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Figure 12. Structure of one Child-Directed Speech text 

 

 The graphs generated with the Fruchterman-Reingold algorithm show that we 

should expect more similarity between children than between adults. The high frequency 

bigrams are frequent for children not only because each child uses the same bigrams over 

and over again, but because they all do. This was also shown in Figure 19, where the 

dense red area of the one child’s most frequent bigrams overlayed a dense black area 

representing the rest of the children’s most frequent bigrams. The high number of 

infrequent bigrams from adults is so high because other adults do not use these different 

bigrams: there is more uniqueness in each narrative for the adults. In the next section, I 

present a measure to compare the number of (in)frequent words in each text as one way 

to quantitatively show the difference between child and adult narratives. 
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3.2.3. Measures of Language Proficiency 

Here I show two measures of general language proficiency, text entropy and 

syllable rate, and how they relate to each other for speakers in the Redford Corpus. Text 

entropy is a heuristic for semantic complexity of a given text, and shows level of 

proficiency in terms of meaning and quality of word choice. Syllable rate indicates how 

fast a speaker can produce language and reflects both physiological development and 

speech planning capabilities (Redford, 2014). 

 Entropy is a measure of the randomness in a set of observed data (Shannon, 

1948). It is applied here to the probability distributions of the texts in the present data. A 

perfectly predictable distribution will have entropy of 0, meaning there is no randomness 

in the distribution. A perfectly random distribution will have entropy equal to log(N), that 

is the logarithmic transformation of the number(s) we are interested in. Language is 

obviously neither perfectly predictable nor perfectly random.  

Entropy here is an average of the log probability of the corpora, or the various 

texts in the corpora. Entropy for each text is calculated as the total log probability of a 

text, divided by the number of words in the text, or the average log probability per word 

(Goldsmith, 2007; Shannon, 1948). The formula for entropy of words in a set of data can 

be expressed as:−∑ 𝑝𝑟(𝑤𝑜𝑟𝑑𝑗)𝑙𝑜𝑔2𝑝𝑟(𝑤𝑜𝑟𝑑𝑗)
𝑉
𝑗=1 . This formula for entropy has a 

negative sign so what is expressed is a positive log, rather than a normal log. It is a sum 

of the probability of words in the corpus by the log probability of each word in the 

corpus. Entropy is used for things like evaluating data compression algorithms 

(Schürmann, 2004; Schürmann and Grassberger, 1996), the complexity of a 
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cryptographic key (Malone and Sullivan, 2005; Massey, 1994) or for evaluating 

morphological complexity (del Prado Martin et al., 2004).  

An empirical question that can be answered with entropy is whether a child’s 

language use is more or less predictable (or random) than that of an adult, A second 

empirical question we can answer with an entropy measure is whether the similarity 

between different children’s word probability distributions are more similar than those of 

adults, for a given text? The frog story narrations that make up the Redford corpus are a 

good data source to answer these questions. The stories cover the same topics, limiting 

the possible vocabulary. Therefore, I do not draw from the probability of all possible 

English words, but from the probability of words used by school-aged children and their 

caregivers to narrate frog stories (as used in the Redford Corpus), meaning probabilities 

are from a closed set of vocabulary choices.  

Words can be improbable for several reasons, associated with different ends of 

the proficiency spectrum. A word may be highly improbable because it is associated with 

more advanced vocabulary, such as: absentminded, frustration, uncurled or pranced, all 

of which occur only once in the Redford Corpus. Or a word may be highly improbable 

because it is a nonce word, like a sound effect, which is associated with a less advanced 

vocabulary level, such as: arr, woosh, or zoom, which also occur only once in the 

Redford Corpus. Although it should be noted that some sound effects, like kerplunk, 

occur twelve times. Finally, errors may be highly improbable, which is also associated 

with lower vocabulary levels, like sitted or stucked which occur once and stinged which 

occurs six times in the Redford Corpus. Therefore, it is possible that both a text replete 

with errors and a text composed of advanced vocabulary words may have high entropy.  
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As seen in Figures 13 and 14, entropy goes up as children get older (R
2 

= 0.18, p < 

0.01) and that parents’ narrative entropy also increases as children get older (R
2 

= 0.13, p 

< 0.01). This indicates that caregivers are adapting their speech to their children. 

Caregivers use more familiar and frequent words in the narrative when they are speaking 

to younger children than to older children. 

Although narrative content is adapted for child age, speech (syllable) rate is not, 

as seen in Figure 15. In Figure 15, we see that the speech rate of caregivers does not 

depend on the age of the child to whom they are speaking (R
2 

= -0.02, p = 0.75). Syllable 

rate here is measured as the average time in milliseconds that it takes for a speaker to 

produce one syllable. Syllable rates were calculated for each utterance in a text. Pauses of 

over 150 milliseconds are excluded. There are fewer data points examined in Figures 15 

and 16 than in Figures 13 and 14 as entropy rates were calculated for all transcribed 

narratives and syllable rates were calculated only for narratives that were used for the 

phonetic analyses (cf. 3.4 – 3.11). 

Children, however, increase their speech rate over time dramatically, as seen in 

Figure 16 (R
2 

= 0.22, p < 0.01).
6
 As children get older, their motor control is better and 

they are able to speech more quickly (Redford, 2014). For children, increased speech rate 

is a sign of fluency and better language skills. In Figure 17, we see that entropy and 

syllable rate are correlated for children (R
2 

= 0.15, p < 0.01), showing that children who 

can speak faster are also children that use higher-level vocabulary words.  

 

                                                 
6
 One outlier was excluded. One child who was 110 months old had a syllable rate of over 500 milliseconds 

per syllable. 
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Note: Adjusted R-squared. Raw R-squared is 0.4305 

Figure 13. Text Entropy by Age in Children’s Speech 
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Note: Adjusted R-squared. Raw R-squared is 0.4305 

Figure 14. Text Entropy by Age in Caregivers’ Speech 
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Figure 15. Syllable Rate by Child Age in Caregiver’s Speech 
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Note: Adjusted R-squared. Raw R-squared is -0.48 

Figure 16. Syllable Rate by Child Age in Children’s Speech 
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Note: Raw R-squared, Adjusted R-squared is -0.4077 

Figure 17. Syllable Rate by Entropy in Children’s Speech 

 

Although child age and caregiver syllable rate are not correlated, entropy and 

syllable rates are correlated in caregiver speech (R
2
 = 0.236, p < 0.001), as seen in Figure 

18. This result indicates that caregivers who are using higher level vocabulary with their 

children are also speaking faster to those children, and that this is (at least somewhat) 

independent of the age of the child. 
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Figure 18. Syllable Rate by Entropy in Caregiver’s Speech 

 

 Figures 19 and 20 examine the relationship in syllable rates and text entropy 

within child-caregiver dyads. A dyad represents one time point, therefore a child-

caregiver pair who participated in the study for three years in a row will have three data 

points in the figures below, and a child-caregiver pair who participated in the study only 

once will be represented by one data point. Figure 19 presents the correlation of text 

entropies between caregivers and their children, which is significant (R
2
 = 0.0932, p < 

0.001). Figure 20 presents the correlation of syllable rates between caregivers and their 

children, which is not significant (R2 = -0.023, p = 0.795).  



 

64 

 

 

Figure 19. Caregiver-Child Dyad Text Entropy Correlation 
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Figure 20. Caregiver-Child Dyad Syllable Rate Correlation 

These figures show us that children are progressing in two clear ways (syllable 

rate and entropy) during the ages of 5-10. These figures also show that although parents 

accommodate their children in terms of content, they do not accommodate their children 

in terms of speech rate. The listener accommodation that the caregivers engage in does 

not extend to slower speech rate once there children are school-aged, despite it being a 

feature of CDS with younger children. The accommodation through vocabulary choice 

shows that caregivers are modeling their children’s vocabularies and adapting their own 

to match. The higher rates of entropy associated with adult narratives over child 
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narratives could be due to imperfect modeling of their children’s vocabularies. An 

alternate explanation is that caregivers model their children’s vocabularies but 

nonetheless use some high level vocabulary in addition to encourage better vocabulary 

comprehension, and later production, in their children. 

 

3.3. Methodology 

 

3.3.1. Dependent Variables 

3.3.1.1. Normalized Word Duration 

For each target word, duration was measured in milliseconds, and this measure 

was normalized by the duration of the phrase and then number of syllables it contained. 

The software program Praat (Boersma and Weenink, 2014) was used to analyze the 

sound files associated with the transcripts. Two Praat scripts (Kendall, 2009a; Kendall, 

2009b) were adapted to measure the duration of each target of interest. The word 

durations were normalized by dividing their lengths by the syllable rate of the utterance 

they were a part of. An utterance was defined as a string of words with no pauses. A 

pause was defined as a silence longer than 150 milliseconds (following Redford, 2013; 

2014). The number of syllables in an utterance was obtained by using a syllable counter 

function (Kendall, 2011) in R (R Development Core Team, 2011). As an example, 

speaker 1016-2 produced the utterance that was right there. This utterance has four 

syllables. This particular utterance is 1191.31 msec. long, giving a syllable rate of 297.83 

msec. per syllable. The word was is 391.71 msec. in duration. The normalized duration 

then is 1.315: token duration/(utterance duration/syllables in utterance). A long 
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normalized duration will be over 1, and a short normalized duration will be less than 1 

and if the target word is exactly as long as the average syllable in the utterance, it will be 

1. Normalized durations over 4 were excluded (only 1 case). The ranges of normalized 

durations are presented in Table 2 for each group. The word forms for the particular 

reported values are included in parentheses. 

Table 2. Ranges of Normalized Durations by Speaker Group 

Group Shortest Normalized 

Duration 

Longest Normalized 

Duration 

n 

Caregivers 0.2215 (is) 2.3893 (is) 619 

Children (all) 0.21079 (were) 2.1425 (had) 755 

Kindergartners & 1
st
 

graders
7
 

0.3478 (were) 2.1425 (had) 137 

2
nd

 graders 0.2486 (were) 1.9895 (is) 213 

3
rd

 graders 0.21079 (were) 2.1025 (was) 293 

4
th

 & 5
th

 graders 0.3019 (was) 1.8709 (was) 112 

 

  

3.3.1.2. Contraction 

Several words examined in the present study have the possibility of phonological 

reduction (contraction) in addition to phonetic reduction (shortening of duration with no 

reduction in length, as measured in segments). Is, am, are, have, had and has can shorten 

                                                 
7 Because of low token numbers from kindergartners and 5th graders, kindergartners were combined with 1st graders 

and 5th graders were combined with 4th graders. In the Kindergartner-1st grader group, speakers 1011, 1017, 1020, 

1045, 1053 and 2009 have data points from two different years. In the 4th-5th grader group, speakers 1010 and 1015 

have data points from two different years. 
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in duration or can be contracted to ’s, ’m, ’re, ’ve, ’d, or ’s respectively. All instances of 

is, am or are can contract but have, had and has only contract as perfect auxiliaries. Only 

inflections of BE occur frequently enough in the Redford Corpus to statistically analyze 

the contraction distribution of the word forms. Analyses for the contraction of BE are 

found in Section 3.13 and 3.14. Contraction distributions for HAVE are described in the 

same sections, but not statistically tested due to low occurrence, as can be seen in Table 3 

below. 

Table 3. Proportion of contraction for is, am, are, have, had and has by corpus 

Word Child Speech Caregiver Speech 

is-’s 357/527 365/504 

are-’re 90/138 121/255 

am-’m 13/13 49/52 

have-’ve 2/3 11/19 

had-’d 1/20 2/21 

has-’s 2/4 16/25 

 

3.3.2. Independent Variables 

3.3.2.1. Probability and Construction Cariables 

3.3.2.1.1. Probability 

Several probability measures were used as independent variables. Two main kinds 

of probability were measured: joint and transitional. Two types of frequencies were used 

to calculate the probabilities: frequencies from the COCA and frequencies from the 

Redford Corpus. This two-by-two structure resulted in four probability measures. Joint 
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probability is defined as the probability that two words occur together. This measure is 

also called string frequency (Krug, 1998). It is calculated by taking the amount of times 

that a string of two words (bigram) occurs and dividing it by the overall number of words 

in the corpus. However, joint probability can be high because two words are frequent 

without necessarily being predictive of each other, such as the string of the. Transitional 

probability (Saffran et al., 1996; Bush, 1999) is then used to measure predictability of a 

word, given the frequency of the other word in the bigram. In this way, it can be high 

when a pair of words is infrequent, but one word is predictable from the other every time 

it occurs. This is also called conditional probability (Bell et al., 2003; Manning and 

Schütze, 1999). It is calculated by taking number of times a string of two words occurs 

together and dividing it by the number of times one of those words occurs. Following 

common practice (Bell et al., 2009; Goldsmith, 2007) I have logarithmically transformed 

the probabilities because their distributions are highly skewed. The formulas I used for 

calculating joint probability are log((w+w1)/N)) for following joint probability or log((w-

1+w)/N)) for preceding joint probability where N is the number of words in the corpus, w 

is the target word, w1 is the word that follows the target words, and w-1 is the word that 

precedes the target word. The formulas I used for calculating transitional probability are 

log((w+w1)/N)) – log(w1/N) for following transitional probability or log((w-1+w)/N)) - 

log(w-1/N) for preceding transitional probability. 

 Frequencies from both the Redford Corpus and the COCA were used to calculate 

the probabilities. When a bigram in the Redford Corpus did not occur in the COCA, a 

value of 1 was used for its frequency. For many common bigrams in the COCA, logged 

probabilities were similar based on either Redford Corpus or COCA frequencies. The 
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joint probability of is a is log(105/78,000) = -2.87 using frequencies from the Redford 

Corpus and log(592,300/450,000,000) = -2.88 using frequencies from the COCA. The 

transitional probability of is a is log(105/78,000) -log(2,000/78,000) = -1.28 using 

frequencies from the Redford Corpus and log(592,300/450,000,000) – 

log(9,907,180/450,000,000) = -1.22 using frequencies from the COCA. However, for 

some bigrams in the Redford Corpus, especially ones involving frogs, turtles, etc., the 

joint probabilities were quite different, although transitional probabilities were still 

similar.  The joint probability of turtle was is log(33/78,000) = -3.37 using frequencies 

from the Redford Corpus and log(39/450,000,000) = -7.06 using frequencies from the 

COCA. The forward transitional probability of turtle was is log(33/78,000) -

log(307/78,000) = -0.97 using frequencies from the Redford Corpus and 

log(39/450,000,000) – log(2,921/450,000,000) = -1.22 using frequencies from the 

COCA. 

Target words that are more predictable, as measured using transitional probability, 

should be shorter in duration (Bell et al., 2003). Words with a high preceding joint 

probability should also be shorter, however words with a high following joint probability 

may actually be longer, which “to some extent counterbalances the shortening effect of 

the conditional probability” (Bell et al., 2003: 1016).  

 

3.3.2.1.2. Construction 

For BE, constructions were coded as copula, future, passive and progressive. For 

HAVE, constructions were coded as modal, possessive and perfect. Construction will be 

investigated to see if there are any construction-specific effects of reduction beyond the 

specific following joint or transitional probability. For BE, the copula construction is the 
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most frequent, oldest historically and first to be acquired construction. For HAVE, the 

possessive construction is the most frequent, oldest historically and first to be acquired 

construction and HAVE in the possessive construction is a content word and should be 

less subject to reduction. The HAVE in the perfect construction is clearly a function word 

and should be subject to more reduction. The HAVE in the modal construction is semi-

lexical, semi-grammatical. Here I investigate whether modal HAVE behaves more like its 

content word or function word homonym. 

3.3.2.2. Speaker Variables 

3.3.2.2.1. Age 

The age range of children in the present study was [5;5-10] or [65-120] months. 

Their ages in months were included as a variable in the analyses of child speech. All 

adults were considered “adults” as a homogenous group, and their ages were not part of 

the analyses. In the present study, I am not interested in the developmental trajectory of 

adults which should be much shallower than the developmental trajectory of children. 

Additionally, I did not have age information for most of the adult speakers in my study. 

Age of the child listener is included as a variable for caregiver speech to investigate the 

accommodations made by caregivers over time. 

 

3.3.2.2.2. Gender 

Two gender variables were coded, one for children and one for parents. I 

investigated whether either speaker or interlocutor gender had an effect on reduction. 

More differences are expected for adults by gender than children by gender, as mothers 
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seem to show more aspects of child-directed speech than fathers (Fernald et al., 1989; 

Foulkes et al., 2005; Reese et al., 1996; Rondal, 1980; Snow, 1995) 

3.3.2.2.3. Speaker 

Speaker is included as a random effect in the mixed effects regression models. In 

the random forest analyses, two kinds of speaker variables are investigated for 

importance: Speaker (Gross) and Speaker (by text). Many speakers (but not all) in my 

subset of data from Redford Corpus produced 2 or 3 narrations, over the course of the 3 

years of data collection. When using speaker as a random effect, then, I could use the 

“speaker” from each particular narration (something like person-1003-year_1 and person-

1003-year_2 and person-1003-year_3), but this would mean that the same actual person 

is represented by three levels in the random effect structure. Alternatively, I could use 

“Speaker” to represent a particular individual for each narration they contributed (person-

1003 for each text they produced) resulting in fewer levels in the random effects 

structure. In the former, there are fewer tokens per level of the factor and in the latter, 

there are more tokens per level. The former risks over-fitting due to fewer cases per level 

and the later risks attributing a lot of variation to the random effects because a 

participant’s behavior may change dramatically over three years, particularly if that 

participant is a child. Therefore, both kinds of “Speaker” were included as factors in 

random forest variable importance rankings to investigate which grouping better 

accounted for the data and which would be used as the random effect term in the mixed 

effects models. 
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3.3.2.2.4. Syllable and Contraction Rates 

Although word durations were normalized by the utterance they occurred in, 

overall syllable and contraction rates were included as control variables in the analyses. 

An average syllable rate was calculated for each speaker by averaging the syllable rate of 

each utterance in the corpus, whether or not it included a target word of interest. The 

measure is operationalized as the average length (in milliseconds) it takes for a speaker to 

produce one syllable.  

Additionally, I calculated a contraction rate for each speaker. The contraction rate 

for a speaker is the proportion of times that they contracted a word when it was possible 

to contract. Possible contractions were: contractions of is, am, are, would, did, does, will, 

not, perfective had, has, have and the reductions of going to to gonna, want to to wanna, 

do not (don’t) know to dunno, out of to outta and got to to gotta. 

 

3.3.2.3. Control Variables 

3.3.2.3.1. Quartile 

Because word lengthening may increase as a function of utterance length, over the 

utterance, the target’s position in its utterance was taken into account. Targets were coded 

as occurring in the first, second, third or fourth quartile of the utterance and this variable 

was used as a factor (non-numeric) predictor. Rather than an exact measure, a heuristic 

was used to calculate the rough position of a target in its utterance. Utterances were 

coded for number of characters and the position of the first character of the target word in 

this total character count from the utterance was used to determine the word’s quartile. 

Quartile is a control variable in the present study. I am interested in examining the effects 
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of probability and speaker-based variability while statistically controlling for the effects 

of utterance quartile. 

3.3.2.3.2. Pauses and Disfluencies 

Words were coded for being preceded or followed by a pause, error or disfluency. 

A pause was defined as 150 milliseconds or more for the Redford Corpus (following 

Redford, 2013, 2014). A pause delineated an utterance boundary. An error was defined as 

a restarting of a word or stopping in the middle of a word. Function words are highly 

unlikely to be preceding or followed by a pause in normal discourse (an exception is 

ellipsis ‘I thought he wasn’t going but he was’), so pauses generally indicates the 

presence of a disfluency. Other disfluencies coded were elements like “um,” “uh,” or, 

“er” as these were usually cases of a filled pause or a speaker searching for the next word. 

Words in disfluent contexts are likely to be longer and contain unreduced vowels (Bell et 

al., 2003 inter alia). Disfluency is a control variable in the present study. I am interested 

in the effects of probability and speaker-based variability that happens while controlling 

for the effects of neighboring disfluencies. 

 

3.3.2.3.3. Stress Context 

Targets were coded for whether they were preceded or followed by a stressed 

syllable, as speakers may be more likely to reduce after a stressed syllable (Echols and 

Newport, 1992; Davis et al., 2000; Jusczyk et al., 1999; Young, 1991). Stress context is 

also a control variable in the present study. 

3.3.2.3.4. Phonological Context 

Targets were coded for whether they were preceded or followed by a vowel or a 

consonant, as some studies have shown that contraction occurs more frequently after 
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vowels than consonants (Labov, 1969; MacKenzie, 2012; McElhinny, 1993), although 

the presence of vowels before a target and the presence of a pronoun before the target, 

which also lead to shortening or contraction, are highly correlated. 

3.3.2.3.5. Subject Noun Phrase Type 

Research has shown that BE is more likely to contract after a pronoun, 

particularly after a personal pronoun, than a full noun phrase (Barth and Kapatsinski, 

Forthcoming; Krug, 1998; Labov, 1969). To determine if this effect is due to the higher 

transitional (or joint) probability of pronouns + BE or due to word class, Subject Noun 

Phrase Type is included as a control variable in the analyses below. This factor has three 

levels: personal pronoun (I, you, he, she, it, they, we) v. non-personal pronoun (e. g. what, 

who, there, here) v. nominal noun phrase (e. g. the frog, the boy, a baby). 

3.3.2.3.6. Priming 

I investigated effect of priming in two senses: contraction priming contraction and 

shortening resulting from repeating a word within a short time span, as several studies 

have shown that speakers are more likely to use a particular word form or structure if 

they have previously used it (Barth and Kapatsinski, In Press; Cameron and Flores-

Ferrán, 2004; Poplack, 1980; Scherre and Naro, 1991; Torres Cacoullos and Travis, 

2013; Travis, 2007) and that repetition of a word makes it more accessible (e.g. Forster 

and Davis, 1984) which could lead to shortening/reduction (e.g. Baker & Bradlow, 2009; 

Fowler, 1988; Fowler & Housum, 1987; Galati & Brennan, 2010).  

If there were any instances of contraction or reduction (as listed above in the 

section on contraction rate), this was considered potential priming for further contraction. 

The 10 words before each target were examined for an instance of contraction. This 
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variable was binary, if there were one or more instances of contraction, it was coded as 

contracted (1), otherwise it was coded as uncontracted (0). 

When a speaker produces a word they have recently produced, they may expect 

that that information is more accessible to their listener, leading to shorter productions, as 

less listener accommodation is needed. Or a recently produced word may be more 

accessible for a speaker, resulting in easier processing, which in turn results in a shorter 

production. Therefore, for each target word, the preceding ten words were examined for 

instances of the lemma of the target. 

For is, am, are, was and were, the previous ten words were examined for 

contracted variants of is, am and are, non-contracted variants or other inflections of BE, 

like be, been, being, was, and were. Barth and Kapatsinski (In Press) show that 

contracted variants are likely to precede contracted targets and non-contracted variants 

are likely to precede non-contracted targets, but that other inflections have no effect on 

the likelihood of the target word being contracted. It is an open question in this research 

if contracted v. non-contracted forms have an effect on duration measures of is, was and 

were. This variable has five levels: (1) contracted, (2) non-contracted, (3) non-

contractible (4) not present and (5) both contracted and not contracted present. 

For had, has, and have, the previous ten words were examined for contracted 

variants of the perfective auxiliary or any inflection of HAVE. There was only one case of 

having occurring within ten words of a target word, so this case was collapsed with the 

presence of had, has or have. There were only four cases of a contracted variant of HAVE 

occurring before a target word, so these cases were collapsed with the presence of had, 

has or have. This variable has two levels: (1) lemma present and (2) lemma not present. 
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All the priming variables are also control variables in this study. I am interested in 

the effects of reduction that are not due simply to priming. 

 

3.3.3. Random Forests 

Random forests are an analysis based on a type of recursive partitioning analysis 

called classification trees, or ctrees done in the party() package (Horton et al. 2006a, 

Horton et al. 2006b, Strobl et al. 2007, Strobl et al. 2008) in R. This kind of model 

determines which variable at which level(s) makes the best binary split of the data. Then 

after the first split, the classification tree determines which variables, or levels of a 

variable, makes the best split of the remaining cases under each node. This continues 

until a stopping criterion is reached. Because each set of data under a node is looked at 

anew, the same variable can be used again in a lower level of the tree, with different 

levels.  This feature of the classification makes it useful to explore nonmonotonic 

relationships. Party classification trees also provide p values for each node indicating 

whether the group difference indicated by the split was significant. The algorithm for 

creating the tree model will not necessarily use all independent variables listed in the 

model specification. If there are IVs that would not make a significant split in the data, 

they go unused. 

Figure 21 shows an example classification tree. In a random forest analysis, many 

classification trees are computed based on different subsections of the data and subsets of 

IV levels. Figure 22 shows a slightly different classification tree based on all but 30 of 

the cases of the data used to create the classification tree in Figure 21. 
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Figure 21. Example Classification Tree 

 When many classification trees are averaged, factors can be ranked by their 

importance, determined by which factors most often make a significant split in the data. 

Random forests are very useful for determining which of several collinear predictors is 

the best predictor for the data (Schneider, 2014; Tagliamonte and Baayen, 2012) because 

the resampling of data involved in generating a random forest reduces the possibility that 

a variable will be considered important by overfitting the noise in the data, while 

resampling of predictor levels helps deal with collinearity. Slightly different data subsets 

will result in potentially different groupings performing well (sometimes preceding 

phonological context, sometimes preceding pronoun vs. nominal, sometimes preceding 

JP, sometimes preceding TP, etc.) but after looking at many cases (a few thousand), one 

will generally be the best factor for predicting the DV. This one factor will be ranked 

higher than the other. For each of the dependent variables, I rank here potentially 



 

79 

 

influential independent variables by importance using random forest analyses. Several of 

the potentially influential factors are highly multicollinear, making them inappropriate to 

combine in a regression analysis. A random forest analysis using cforest() allows for a 

comparison of collinear factors, and the factors are ranked by importance using varimp(). 

 

 

Figure 22. Example Classification Tree on New Data Subset. 

 

In sections 3.4-3.14, I examine the potentially influential factors in the reduction 

of grammatical words am, are, had, has, have, is, and was in both caregiver and child 

speech. I present variable importance rankings for each collinear group of factors: 
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preceding context factors, following context factors and speaker-specific factors. Results 

from the function varimp() where a factor is ranked above a particular threshold (the 

absolute value of the ranking worst performing factor) are considered significant (Shih 

and Grafmiller, 2011). If a factor is ranked as important in the random forest analyses, it 

can potentially be included in a regression model for significance testing. The random 

forest analyses here combine all grammatical words. The best performing factors from 

each group (preceding context, following context and speaker-specific) are then tested for 

correlations in each subset of data for model testing had-has-have, is, and was. The best 

performing factor or factors from the group random forest analyses that are not correlated 

for the specific data subset are then selected for the regression models.  

 Because a word’s phonemic structure also influences its length, “lemma” is 

included as a potentially influential factor as well in the random forest analyses. It is 

grouped with the speaker-specific factors, as a word-specific factor, although it should 

not be collinear with any of the speaker-specific factors. 

 For child speech, random forest analyses are done for the children as a group, but 

as there is expected longitudinal development in reduction behavior, random forest 

analyses are also presented for each grade of children, kindergarten through 5
th

 grade. 

 

3.3.4. Multimodel Inferencing 

Based on the random forest analyses, regression models are built using the best 

performing, non-collinear factors. Collinearity is tested for each specific subset of the 

data for which a regression model is built using mixed.cor in the psych() package 

producing Pearson correlation coefficients (Revelle, 2014). Regression models are 
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presented for all words together in caregiver speech, models for each word of interest in 

caregiver speech when word specific results differ from the all-word model, all words 

together in child speech with an interaction for child age and models for each word of 

interest in child speech when word specific results differ from the all-word model. The 

kind of regression analysis done here is multimodel inferencing (Barth and Kapatsinski, 

In Press; Burnham and Anderson, 2002; Kuperman and Bresnan, 2012). Multimodel 

inferencing builds all possible models out of a given set of predictors, up to a specified 

maximal model, as well as a null model with no predictors. If three factors were of 

interest, there would be three models with each factor alone, two models with each 

combination of two factors, one model with all three factors and the null model for 10 

models total, which would be ranked by their corrected Akaike Information Criterion or 

AICc. For some of the models reported below, there are many possible models, so only 

the models with possible predictive value are reported, those that are within Δ 2 in AICc 

of the best performing model, as only these have substantial empirical support based on 

the data (Burnham and Anderson, 2002). I also report the null model, as a way of 

comparing how much support the best performing models have. All models reported 

below substantially outperform the corresponding null model. 

For each set of models, the performance of factors is averaged. Factors that 

perform well in many models, and especially many highly predictive models, have a high 

cumulative probability (CP) score, indicating that they are highly probable of being 

predictive. I report coefficients with shrinkage, adjusted standard error and significance 

values that have been punished or “shrunk.” Factors that are significant are in bold. 

Factors that have high cumulative probability, but are not significant are bold and grey. 
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Often factors that have high cumulative probability but p values more than 0.05 were 

significant before punishment. As the number of potential factors increases, the severity 

of the punishment increases. In model building, many of the models included several 

non-significant, non-probable factors. These are factors that random forest analyses 

identified as potentially contributing to predictiveness, but that were not significant when 

random effects, etc. were taken into account and relationships were constrained to be 

linear (rather than arbitrarily shaped and potentially even non-monotonic) in the 

regression model. Using backward-elimination, I removed factors that had a CP of less 

than 0.4. In model building, some of the model outputs had w values that were quite low. 

The w indicates the Akaike weight of a model, and the w of all models sums to one. 

Therefore, with many possible models w of any one model is quite low unless one model 

substantially outperforms all others. When the non-probable, non-significant factors were 

removed and the same the multimodel procedure was done, the cumulative probability 

values remained fairly stable, but p values for individual factors and w values for the 

highest ranked models went up. In the reported models below, non-probable factors have 

been removed but some non-significant predictors remain as they have CP scores of over 

0.40. Discussion of the predictors and of the model ranking results follows each table of 

results. 

 

3.4. Word Shortening in Child-Directed Speech 

3.4.1. Introduction 

The analyses of word shortening in child-directed speech are aimed to answer the 

following primary research questions: 
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Q1. Are the function words HAVE and BE subject to probabilistic reduction? 

Q2. Do caregivers adapt their speech in one or more phonetic characteristics to school-

aged children? 

Q3. Do adults who contract more often also shorten grammatical words to a greater 

degree than those who contract less often? 

Q4. Do adults differentiate function word production by construction (meaning)? 

In this results section on word shortening in caregiver speech, I first present 

random forest analyses and then multimodel inferencing results. I present three random 

forest analyses for each group of potentially collinear factors: speaker (and word) based 

factors, preceding context factors and following context factors. Based on the rankings of 

those analyses, I present multimodel inferencing analyses, building models from highly 

ranked, non-collinear factors. During the model building process I eliminate factors with 

low cumulative probabilities (under 0.4) that are highly unlikely to make a positive 

contribution in a model. In the model building process, I also test for BE and HAVE 

specific factors. As it will be seen below, only HAVE constructions show differences 

from the combined analysis of all words, and so two model outputs are presented, one for 

all words combined and one for instances of HAVE. 

 

3.4.2. Random Forest Variable Importance Rankings for Word Shortening in Child-

Directed Speech 

 Figures 23 through 25 present the variable ranking importance for caregivers’ 

speech. Figure 23 shows that for caregivers, the length of the particular word was 

important, which is expected. A word-specific effect of length shows that it is appropriate 
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to look for word-specific interactions analysis of normalized duration and to include word 

inflection as a random effect. The contraction rate of individual speakers is also ranked as 

important. Contraction rate is a measure of how often a speaker contracted a word given 

the possibility of contraction, for a given text. Those who contract grammatical words 

often potentially also reduce (or fail to reduce, as directionality is not specified in the 

random forest analyses) grammatical words phonetically more often as well. Both 

Speaker (Gross) and Speaker (by Text) are ranked as important, but for the caregivers, 

Speaker (Gross) is ranked as more important. Speakers that participated in the study more 

than one year, have contributed more than one story to the data. The random forest 

analysis shows that behavior of the particular speaker is fairly constant across years or 

texts. For adults, this is unsurprising; their behavior in reduction should be stable over a 

few years. This ranking also indicates that Speaker (Gross) is a more appropriate random 

effect for the regression analyses than Speaker (by Text). Utterance quartile is also 

ranked highly, indicating that a word’s position in an utterance affects its length, 

presumably word lengthening in the last quartile of the utterance. This effect will be 

examined in more detail in model testing. There are also several factors that are rated as 

relatively unimportant, although they do have importance values above the threshold, and 

therefore will be used in the regression models after testing for correlations. The gender 

of the child matters to some degree, as does the age of their child. The gender of the 

caregiver barely reaches the threshold. The average syllable rate of the speakers per text 

is not ranked very highly. As the word durations have already been normalized, this is 

unsurprising. However, when we compare this factor to contraction rate, we see that 

grammatical word reduction is related to a speaker’s propensity to contract other 



 

85 

 

grammatical words, rather than their speech rate. One reduction behavior influences 

another. It is not the case that fast talkers reduce (these) grammatical words to any higher 

degree than other words in their utterances.  

 

Figure 23. Speaker-specific and word-specific variable importance for CDS grammatical 

word duration 

 

 Figure 24 shows the importance of the preceding context variables in caregiver 

speech. The best performing variables are all multicollinear. The four probability 

variables are all ranked as important: Preceding Transitional Probability based on 

frequencies from the COCA, Preceding Joint Probability based on frequencies from the 

COCA, Preceding Transitional Probability based on frequencies from the Redford 



 

86 

 

Corpus and Preceding Joint Probability based on frequencies from the Redford Corpus. 

The Joint Probability measures outperform both of the Transitional Probability measures. 

When joint probability has a stronger influence than transitional probability, it indicates 

that there is a strong bond between elements in a bigram, here between the subject and 

the verb or auxiliary. The probabilities based on the COCA frequencies also outperform 

the probabilities based on the Redford Corpus frequencies. As the COCA frequencies are 

based on much more data, their effects should be more robust and reliable than the 

frequencies based on the narrative task. Additionally, probabilities based on COCA 

frequencies outperforming probabilities based on Redford Corpus frequencies shows that 

caregivers are more sensitive to global or overall word experience, rather than being more 

sensitive to the predictability within particular task they are performing: narrating frog 

stories. Whether or not the target is preceded by a stressed syllable also has an effect on 

duration, as does whether or not the preceding element is a pronoun or not. Both of these 

factors are highly collinear with the probability factors and it is likely that the effect of 

stress or pronouns is due to the particular preceding word and its frequency. The next 

three variables are priming variables. If a HAVE, BE or contraction has preceded the 

target recently, it is possible that that reduction would prime further reduction. We see 

that only a preceding BE has an effect that is ranked as important. There may not be 

enough instances of HAVE preceding targets for it to have an effect. We also see that 

recent contraction has no effect, although overall contraction rate does (cf. Figure 23). 

Finally, we see that a target preceded by a pause is not likely to be any shorter or longer 

than a target not preceded by a pause. 
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Figure 24. Preceding Context variable importance for CDS grammatical word duration 

 

Figure 25 shows the importance of the following context variables in caregiver 

speech. The most important variable is whether or not there is a following pause. There 

are only 28 instances where a target is followed by a pause, filled pause or error, but 

these instances are demonstrably longer than the others. Based on my posthoc 

examination of the data, all of these instances occurred when a speaker was searching for 

a word. The longer durations then, are likely used by speakers to buy time to access the 
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word they are trying to find (Bell et al., 2003; Kapatsinski, 2005; Schachter et al., 1991; 

Schnadt, 2009). Because disfluencies occur in low probability contexts more than in high 

probability contexts (Beattie & Butterworth, 1979; Goldman-Eisler, 1957; Maclay & 

Osgood, 1959; Schachter et al., 1994; Schnadt, 2009, Tannenbaum, et al. 1965), it will be 

important to examine the correlations of pauses/errors and probability for each data 

subset before putting both factors in a regression model. The constructional meaning of 

the target is also important. Constructional meanings differ based on the particular words, 

so this factor will be examined in more depth in the regression analyses. All four 

probability variables are ranked above the threshold, but barely: Following Transitional 

Probability based on frequencies from the COCA, Following Joint Probability based on 

frequencies from the COCA, Following Transitional Probability based on frequencies 

from the Redford Corpus and Following Joint Probability based on frequencies from the 

Redford Corpus. Finally, we see that whether or not the following context is stressed or 

not has no influence on the duration of the target words, although the stress of the 

preceding context is ranked as important (cf. Figure 24). Following context could matter 

less for most of the auxiliaries as they are more likely to form a bond with the preceding 

word (Bybee, 2002). The exception to this is the modal HAVE, which can form a bond 

with the following context: hafta, hasta, hadda. As this specific case of potential bonding 

before an unstressed monosyllabic word (to) is found only in modal HAVE, the 

constructional meaning variable can account for the potential effect of the stress of to on 

the duration of HAVE in this circumstance. However, Bell et al. (2009) show that 

following context probability is more likely to have an effect on word duration than 

preceding context probability.  
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Figure 25. Following Context variable importance for CDS grammatical word duration  

 

3.4.3. Multimodel Inferencing Analyses for Word Shortening in Child-Directed Speech 

Based on the random forests, the following variables were initially selected for 

model testing for caregiver speech: Lemma (as a random effect), Speaker (Gross) (as a 

random effect), Quartile, Speaker Contraction Rate, Speaker Gender, Child Gender, Age 

of Child, Preceding Joint Probability based on COCA frequencies and Redford Corpus 

frequencies, Preceding BE Type, Preceding Stress, Construction, Following Transitional 
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Probability based on COCA frequencies and Following Pause. These variables were 

ranked as important in the random forests and do not correlate with each other (cf Table 4 

below for an example of a correlation check). Preceding BE Type is only relevant for the 

is and was datasets, as this is a variable capturing the priming of uttering a word similar 

to the target word within ten words before the target. There is no theoretical reason for a 

preceding BE to prime and therefore reduce a form of HAVE. A model is built for 

examining normalized duration overall for child-directed speech and this model contains 

neither construction, which has different levels depending on the specific word, nor 

Preceding BE Type, which is not relevant for all word types, as explained above. 

 The first model built to compare normalized word durations for caregivers 

combined all word types: had (n = 71), has (n = 26), have (n = 42), is (n = 127) and was 

(n = 356), (total n = 622). Random effects for this model are Speaker (Gross) and Word. 

Preceding context variables were selected from the random forest analysis of preceding 

context variables (Figure 24) and significant, applicable variables were checked for 

correlation using mixed.cor in the psych() package producing Pearson correlation 

coefficients (Revelle, 2014). COCA preceding joint probability was highly correlated 

with COCA preceding transitional probability (r = 0.66) and Noun Phrase Type (r = 1), 

but not with Redford Corpus preceding joint probability (r = 0.41), nor with Preceding 

Stress (r = 0.15), which is also not highly correlated with Redford Corpus preceding joint 

probability (r = 0.42). Therefore, included in the model are COCA preceding joint 

probability, Redford Corpus preceding joint probability and Preceding Stress. Following 

Context variables were selected in the same manner, referencing the random forest 

analysis of following context variables in Figure 25. Following pause was not highly 
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correlated with any of the following probability measures (see Table 4 below), but both 

Redford Corpus probability measures were highly correlated (> 0.6) with one of the 

COCA probability measures, which ranked higher in the random forest analysis, and so 

were not included. As the COCA following probability measures correlated highly with 

each other (r = 0.25), they were both included in the model with Following Pause. 

Speaker was a random effect, but Speaker Contraction Rate, Speaker Gender, Child Age 

and Child Gender were checked for correlations and there were none. These four speaker-

based variables were included in initially model testing. All variables were checked for 

interaction with specific word forms, and none were found.  

 

Table 4. Pearson Correlation Matrix of CDS Following Context Variables for CDS 

Duration Analysis 

 Following 

pause 

COCA TP 

post 

COCA JP 

post 

Redford JP 

post 

Redford TP 

post 

Following pause 1     

COCA TP post 0.44 1    

COCA JP post 0.34 0.25 1   

Redford JP post 0.28 0.24 0.75 1  

Redford TP post 0.19 0.65 -0.22 0.05 1 

Note: variables listed in order of random forest analysis rankings. Variables that correlate 

above 0.6 are in bold. Correlations calculated using the function mixed.cor from the 

{Psych} package in R (Revelle, 2014). 
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Variables that had a cumulative probability lower than 0.4 were considered highly 

unlikely to have a strong effect, and were eliminated in a backward (step-down) selection 

procedure
8
. 

 

 Results from the multimodel output of the caregiver duration model are presented 

in Tables 5 and 6 below. In Table 5, we see that five factors have high cumulative 

probability and in Table 6, we see that those five factors make up the best performing 

model: Following Pause, Contraction Rate, Preceding Stress, COCA Following TP, and 

Child Age. Before shrinkage, all five of these factors were significant, after shrinkage 

Contraction Rate and Following Pause, the best performing factors, remain significant, as 

seen in Table 5.  

Table 5. CDS Duration Multimodel Inferencing Results 

Predictor β̅ σ̅ LoCI HiCI p CP 

(Intercept) 0.775 0.131 0.517 1.032 0.000 NA 

Following Pause 0.590 0.051 0.490 0.690 0.000 1 

Contraction Rate 0.213 0.079 0.059 0.368 0.007 0.96 

Preceding Stressed Syllable -0.047 0.033 -0.112 0.018 0.157 0.80 

Following COCA TP -0.034 0.027 -0.087 0.018 0.199 0.76 

Child Age -0.001 0.001 -0.003 0.001 0.226 0.74 

Following COCA JP -0.007 0.009 -0.026 0.011 0.452 0.52 

Note: reported values are coefficients with shrinkage and adjusted standard error, n = 

622. 

  

                                                 
8
 Forward (step-up) selection was not needed in model building as initial predictors were already 

determined in the random forest analyses. 
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Table 6. Models of CDS duration with a Δ below 2
9
 

Model factors k df log likelihood AICc Δ w 

13456 5 9 -17.96 54.22 0 0.22 

123456 6 10 -17.01 54.37 0.15 0.2 

12456 5 9 -18.72 55.73 1.51 0.1 

3456 4 8 -19.99 56.22 2 0.08 

(Null) 0 4 -97.54 203.15 148.93 0 

Note: Cutoff: Δ < 2, 1 = Age of Child, 2 = Following JP from COCA, 3 = Following TP 

from COCA, 4 = Contraction Rate, 5 = Following Pause, 6  = Preceding Stress 

 

 Positive coefficients in Table 5 are associated with longer normalized durations, 

and negative coefficients are associated with shorter normalized durations. A following 

pause (or filled pause or disfluency) results in a longer duration. The following pauses are 

in contexts where the speaker is searching for a word. This is consistent with research 

showing that when speakers have trouble accessing a word, they lengthen previous words 

(Bell et al., 2003; Schnadt, 2009). A higher speaker contraction rate results in longer 

normalized durations. This result contradicts my initial hypothesis that speakers who 

contract more are also likely to phonetically reduce words at a higher rate. In fact, it 

seems the opposite is true: speakers who contract more, phonetically reduce words at a 

lower rate. The adult speakers in this corpus show a strategy for compressing the time 

                                                 
9
 There are a number of ways to limit the set of models to only the most predictive ones, as discussed in Burnham and 

Anderson (2002: 170-171). One approach is to select the top models such that the sum of their Akaike weights 

(probabilities) is just over 0.95. Another possibility is to use ratios of Akaike weights, where models with weights 

below 1/8 (0.125) of the best model are not considered. Another heuristic is to use a cutoff on ΔAICC values.  ΔAICC 

values between 0 and 2 indicate ‘substantial’ level of empirical support for the models with those values. However, 

Burnham and Anderson (2002: 131) also note that a model may be within 2 units of the best model on the ΔAICC scale 

and not be a serious contender as long as it has all the parameters of the best model plus one (which punishes it by 2 

units of AIC) and achieves the same data coverage, as measured by log likelihood. I present models with ΔAICC values 

of 2 or less. Models with ΔAICC values above ten have ‘essentially no’ empirical support (Burnham and Anderson 

2002: 170). 
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spent on function words: either contraction or reduction, but not both. I discuss this 

finding further below. Target words following a stressed syllable are shorter than ones 

following an unstressed syllable, consistent with a trochaic bias. Words with a high 

following transitional probability, i.e., that are in a predictable context, are shorter than 

words in an unpredictable context. Following probability contexts are more important 

than preceding probability contexts for these grammatical items (cf. Bell et al., 2009). 

The final variable that has a high cumulative probability is Child Age. Caregivers 

use shorter normalized durations with older children. Based on previous research, we 

know that parents emphasize lexical words, but not grammatical words when speaking to 

infants. In these cases, the lexical words would make up the greatest proportion of the 

utterance and grammatical words should have a quite small proportion of the utterance 

duration. Over time, parents emphasize lexical items less, which should result in 

grammatical words making a larger proportion of the utterance. However, based on the 

current results, it seems that by the time children are five years old, this process must 

have finished. Caregivers use short normalized durations of auxiliary words that only get 

shorter as the children get older. As we know that grammatical words have very short 

durations in adult speech, it seems that as children get older, caregivers speak to them 

more and more as they would speak to other adults. Taken together, the results of the 

probability measures indicate that for duration in caregiver speech, transitional 

probability outperforms joint probability, probability measures based on frequencies from 

the COCA outrank probability measures based on frequencies from the Redford Corpus, 

and following probability outranks preceding probability. 
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 It is to some degree surprising that a higher contraction rate results in longer 

grammatical words. The results seem to show that speakers use one strategy or another to 

shorten their grammatical words: contraction OR shortening. Both of these strategies 

allow the compression of predictable, grammatical words so that more content can be 

included per utterance. Because this factor had such a strong effect, I examine its 

interaction with other speaker variables, in particular syllable rate and child age. To do 

this I am using functions gam(), te() and vis.gam() in package {mcgv} (Wood, 2014). 

This allows the fitting of a generalized additive model (GAM) and then the smoothing 

and visualization of the model predictions in a contour plot. Figure 26 shows in more 

detail the relationship between Speaker Contraction Rate and Speaker Syllable Rate on 

normalized duration. Random effects for the GAM are Speaker (Gross) and Target word. 

It seems clear that adults either contract more or they reduce grammatical words more, 

and that there is a slightly stronger effect for fast speakers (F = 3.636, p = 0.012), in that 

fast speakers who contract more have longer grammatical word durations (almost 1, 

meaning equal to the average syllable length of a given utterance) than slower speakers 

who contract more. In Figure 27, we see the relationship between Speaker Contraction 

Rate and Child Age on normalized duration. There is an interaction effect here (F = 

3.360, p = 0.013). When speaking to young children, grammatical words are long no 

matter what the caregiver’s contraction rate is, but when speaking to older children, either 

they use longer grammatical words and contract often or reduce their grammatical words 

and contraction infrequently. 
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Figure 26. Interaction of Speaker Contraction Rate and Speaker Syllable Rate on CDS 

word duration 
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Figure 27. Interaction of Speaker Contraction Rate and Child Age on CDS word duration 

 

 Figure 28 below presents a classification tree analysis of contraction rate on word 

duration to determine where the best split in the data is. The partitioning of the data is at a 

contraction rate of 0.5. Child age was included in this analysis as a potential factor, but 

was not selected. This indicates a strong effect for contraction rate and a less strong effect 

for child age and no interaction between the two factors. 
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Figure 28. Partitioning of Speaker Contraction Rate on CDS word duration 

 

 No analysis for BE words are presented. There were no interactions with specific 

inflections of BE, factors specific to BE such as construction and preceding BE type were 

not significant and significant factors for BE word were no different than significant 

factors for all words combined. However, there are significant construction effects for 

HAVE words. There were no interactions with specific inflections of HAVE, so inflection 

was used as a random effect along with speaker. Factors that had a cumulative probability 

below 0.4 were eliminated in a backward selection procedure. As seen in Tables 7 and 8, 

child age, following COCA JP and contraction rate were not significant for this data set. 

Perfect auxiliaries are significantly shorter than modal semi-auxiliaries or possessive 

verbs. 
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Table 7. CDS HAVE Duration Multimodel Inferencing Results 

Predictor 

β̅ σ̅ LoCI HiCI p Cumulative 

Probability 

(Intercept) 0.891 0.126 0.643 1.138 0.000 NA 

Following Pause 0.545 0.103 0.344 0.747 0.000 1 

Construction:  

Modal (reference level) 

     

0.70 

Perfect -0.111 0.094 -0.294 0.073 0.237  

Possessive -0.008 0.049 -0.103 0.087 0.865  

Preceding Stressed Syllable -0.058 0.065 -0.185 0.070 0.375 0.59 

Following COCA TP -0.031 0.046 -0.122 0.060 0.505 0.48 

Note: reported values are coefficients with shrinkage and adjusted standard error, n = 

138. 

 

 

Table 8. Models of CDS HAVE duration with a Δ below 2. 

Model factors k df log likelihood AICc Δ w 

234 3 8 -5.1 27.31 0 0.27 

23 2 7 -6.49 27.84 0.53 0.21 

134 3 7 -6.72 28.31 1.00 0.17 

1234 4 9 -4.79 28.99 1.68 0.12 

123 3 8 -6.15 29.41 2.10 0.10 

13 2 6 -8.39 29.42 2.11 0.10 

(Null) 0 4 -22.72 53.74 26.43 0 

Note: Cutoff: Δ < 2, 1 = Following TP from COCA, 2 = Construction, 3 = Following 

Pause, 4 = Preceding Stress 
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After shrinkage, only Following Pause is significant for caregiver reduction of 

duration of HAVE. However, the most predictive model includes Construction and 

preceding stress as well. The model containing only the significant predictor of 

Following Pause is not included in Table 8, as it has a Δ of 23.16, showing that some 

additional predictors need to be included to achieve a predictive model. The predictors 

with high probability of being truly predictive are Following Pause, Construction and 

Preceding Stress. Adults, then, have differences in their duration based on the meaning of 

HAVE, as well as the presence of a following pause. There are only 8 instances where 

HAVE is followed by a pause, but these instances are significantly longer than the others. 

All of these instances occurred when a speaker was searching for a word. The longer 

durations then, are likely used by speakers to buy time to access the word they are trying 

to find (Bell et al., 2003; Kapatsinski 2010). Caregivers produce shorter durations when 

HAVE is a perfect auxiliary than when HAVE is the model semi-auxiliary. The durations 

of possessive verbs are also significantly longer than the durations of perfect auxiliaries, 

but the modal semi-auxiliary and the possessive verbs are not different from one another. 

The reduced auxiliary duration distinction shows a sensitivity to grammatical status, as 

the lexical possessive verb is longer than the grammatical perfect auxiliary, even though 

the lexical word is more frequent than the grammatical word. As in the model for all 

words, having a preceding stressed syllable results in a shorter target word, consistent 

with English’s trochaic bias. 

3.4.4. Conclusion for Word Shortening in Child-Directed Speech 

 Now it is possible to return with answers to the research questions presented at the 

beginning of this section. 
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Q1. Are the function words HAVE and BE subject to probabilistic reduction? 

 Yes, just like content words, these function words are more reduced (here 

operationalized as shorter in milliseconds, normalized by speaking rate of the given 

utterance) when they are in more probable contexts. Even for very short, frequent words, 

speakers are sensitive to context probability and modify their behavior accordingly. This 

effect could either be due to faster access to words in a more probable context, reducing 

the time needed for planning, resulting in faster production, or due to the speaker’s 

expectation that the listener will understand a lenited or fast production because the 

listener also knows the context is probable. 

Q2. Do caregivers adapt their speech in one or more phonetic characteristics to school-

aged children? 

 Yes, caregivers not only adapt their speech to school-aged children in content, but 

also in the phonetic characteristics of function words. Function words are produced faster 

(in raw duration), as well as proportionally faster as compared to content words, as a 

caregiver’s child gets older. Because caregivers do not adapt their speech rate to child age 

(cf. Figure 15), but do adapt their function word production to child age, I conclude that 

the caregivers are lessening their listener-accommodation to their children by not needing 

to spend time on unimportant function words. Because there is a change in duration over 

time, while still being probabilistic for all age groups, it seems that a listener oriented 

account of function word shortening is more appropriate than a speaker-internal account, 

at least for this speaker group. The effect of predictability on word accessibility within 

the production system of a caregiver does not change over time, as their child ages. That 

is, it should be just as easy for a speaker to access word from the mental lexicon in a high 
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probability context when speaking with a young child as with an older child, making a 

speaker-internal account for increased function word shortening with older children 

unconvincing. Note, however, that this result indicates some kind of listener sensitivity 

on the part of the caregivers, not necessarily one implemented as online monitoring and 

modeling of the addressee. 

Q3. Do adults who contract more often also shorten grammatical words to a greater 

degree than those who contract less often? 

 No, adults use one reduction strategy or another: they either shorten words (and 

do not contract them) or they contract words (and do not shorten them). Both of these 

strategies are means to compress unimportant, predictable information into a short time 

window, so that more time can be spent on important, unpredictable information. Adults 

choose one or the other of the strategies. 

Q4. Do adults differentiate function word production by construction (meaning)? 

 Sometimes. Productions of BE do not differentiate in word length in relation to 

their meaning. However, productions of HAVE do differ in word length in relation to 

meaning. Perfect auxiliaries are significantly shorter than other meanings of HAVE, even 

when other variables are controlled for. 

3.5. Word Shortening in Child Speech 

3.5.1. Introduction 

The analyses of word shortening in child speech are aimed to answer the 

following primary research questions: 

Q5 Are the function words HAVE and BE in child speech subject to probabilistic 

reduction? 
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Q6. Does school-aged children’s function word production change over time? 

Q7. Do children who contract more often also shorten grammatical words to a greater 

degree than those who contract less often? 

Q8. Do children differentiate function word production by construction (meaning)? 

Q9. Are the factors that influence word shortening in child speech different than those 

factors that influence word shortening in their input (caregiver speech)? 

3.5.2. Random Forest Variable Importance Rankings for Word Shortening in Child 

Speech 

Figures 29 through 34 present the variable importance ranking for children’s 

speech. These figures show that the relative importance of preceding context and 

speaker-based variables stay fairly stable over time, but that there is quite a bit of 

variation in the ranking of following context variables. There are also several variables 

that are influential for children but not for caregivers, particularly: a preceding pause 

influences duration for children but not caregivers and a slower syllable rate, associated 

with less developed motor control for children, also increases duration for children but 

not caregivers. 

Figure 29 shows the importance of speaker- and word-specific variables. As with 

caregivers, the particular lemmas and word forms make a difference in normalized 

duration. Although they are all monosyllabic words, they differ in their phonemic 

structure, leading to differences in duration relative to the rest of the syllables in the 

utterance in which they occur. Utterance Quartile is also ranked as important, just as it 

was in the importance ranking for caregivers, although it was not significant in the 

regression models for caregiver duration. Speaker is also ranked as an important variable, 
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but Speaker (Gross) and Speaker (by Text) are ranked at relatively the same importance. 

As Figure 23 showed, for adults, Speaker (Gross) was ranked much higher than Speaker 

(by Text), indicating that there is more stability within the behavior of a particular 

speaker over time in adult productions, and more variability within the behavior of a 

particular speaker over time in child productions. As with adult speech, Contraction Rate 

is an important variable in child speech. Unlike for caregivers, Speech Rate is an 

influential variable for normalized duration of grammatical words. For children, this 

variable is associated with developmental ability of motor control and correlates with 

age. Speaker Age (in Months) and Grade also reached significance, but were ranked 

lower than Speech Rate, showing that actual development of motor control ability is more 

important than simple age or grade, which are heuristics for developmental ability, for 

predicting reduced duration.  

 

Figure 29. Speaker-specific and word-specific variable importance for CS grammatical 

word duration 
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Figure 30 shows the development of variable importance rankings over time for 

the speaker-specific and word-specific factors. For every grade group, the phonemic 

structure of the word is important, just as it is for adults. Longer words take longer to say, 

although there is variability, as seen in Table 2, the shortest and longest words in duration 

are not necessarily the shortest and longest words in phonemic structure. Only the 

kindergarten-1
st
 grade and the 4

th
 grade-5

th
 grade groups had data points from the same 

speaker from different texts, so only for these two grade groups were both Speaker 

(Gross) and Speaker (by Text) included as factors to rank. For the kindergartners and 1
st
 

graders, neither is important. For the 4
th

 and 5
th

 graders, Speaker (Gross) outranks 

Speaker (by Text) in importance, mirroring the importance ranking found in adult speech. 

Age (in months) is important only for the youngest group. This also shows that there is 

some stability in reduction behavior for the older group, as there is not as much variance 

due to specific ages. Utterance quartile is ranked as important for the youngest three 

groups. However, all factors ranked as important are only barely important in comparison 

to the importance of the word form. This indicates we should not expect to see a great 

deal of significance for speaker- or word-specific factors, and where we find significance, 

we should not expect to see a strong interaction with age of the child. 

 Figure 31 shows the importance ranking for preceding context variables on 

normalized word duration. Preceding Transitional Probability based on frequencies from 

the COCA is ranked as the most important variable. For caregivers, as shown in Figure 

24, it was Preceding Joint Probability. For preceding elements, transitional probability 

here is a “forward transitional probability”: how likely is it that is, was, have, etc. is going 

to come next given that the preceding word is he, there, we, etc. A high preceding 
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transitional probability example from this dataset is there was (-0.923). Given there, was 

is a likely word to come next. A low preceding transitional probability example from this 

dataset is turtle were (-3.465). Given turtle, were is not a particularly likely word to come 

next. When preceding transitional probability is calculated based on frequencies from the 

Redford Corpus, bigrams like there was still have high transitional probability (-0.495), 

but bigrams like turtle were have higher transitional probabilities than in the COCA (-

1.708) as proportionally, there are more instances of turtles doing things in the Redford 

Corpus than in the COCA. Preceding transitional probability based on Redford Corpus 

frequencies is also ranked as important, but less that the transitional probability based on 

frequencies from the COCA. Whereas both Joint Probability variables were ranked as 

influencing grammatical word duration for caregivers, only the Joint Probability based on 

Redford Corpus frequencies is ranked as important for influencing duration for children. 

The more probable the bigram, the shorter the target tends to be. The range of 

probabilities here for preceding joint probability based on Redford Corpus frequencies is 

small (-2.402 to -4.892). The three most highly probable bigrams from this data subset 

are he was (-2.402), he is (-2.487) and frog was (-2.569). Less probable bigrams occur 

only once and include errors such as a was, was be, and goes has (-4.892). 

Figure 31 also shows that the priming variable Preceding BE Type significantly 

influenced duration, although Preceding HAVE Type and Preceding Contraction did not, 

just as it was for adults. Preceding HAVE Type probably has less influence because there 

are few tokens of HAVE in the corpus to actually precede the targets. As with adult 

speakers, when the word preceding the target is stressed, the target is somewhat shorter in 

normalized duration than when the preceding word is unstressed. Children, like adults, 
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are motivated by stress patterns, with an unstressed function word likely to be even 

shorter when appearing after a stressed syllable. Finally, a preceding pause results in a 

longer duration for targets in children’s speech, although it does not in caregiver speech. 

Children either have long utterance-initial words in general, or when an utterance-initial 

word is a grammatical word which normally is utterance-medial, it could be a sign they 

are still planning and are buying time with longer durations to allow for further time to 

access the upcoming word. 

 

 

 

Figure 30. Speaker-specific and word-specific variable importance for CS grammatical 

word duration by school grade 
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Figure 31. Preceding Context variable importance for CS grammatical word duration 

 

Figure 32 shows the development of variable importance rankings over time for 

preceding context factors. The ranking of preceding context variables are more stable 

over time than the ranking of speaker-specific variables. For all grade groups, the two 

highest ranked variables, ranked at relatively the same position, are 1) Preceding 

Transitional Probability based on frequencies from the COCA and 2) Preceding BE type, 

which is a priming variable. For all grade groups the next best performing variable is 

Preceding Joint Probability based on frequencies from the Redford Corpus, followed by 
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Preceding Transitional Probability based on frequencies from the Redford Corpus, a 

Preceding Stress Context and finally Presence of a Preceding Pause. A preceding pause 

was not a significant factor influencing duration for adult speakers. 

 

 

 

Figure 32. Preceding Context variable importance for CS grammatical word duration by 

school grade 

 

 

Figure 33 shows the variable importance ranking for following context variables 

on children’s normalized word durations. Results from children’s productions are similar 
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to results from adults’ productions. The most important variable is the presence of a 

following pause, indicating the effects of the need for planning time to access an 

upcoming word and final lengthening. Following Transitional Probability based on 

COCA frequencies is rated next most highly. Following transitional probability here is a 

“backward transitional probability”: how likely is it that the preceding word is have, is, 

was, etc. if the following word is got, still, glad, etc. A high following transitional 

probability example from this dataset is have got (-0.655). Given the occurrence of got, 

the preceding word is likely to be have. A low following transitional probability example 

from this dataset is has water (-3.626). Given the occurrence of water, the preceding 

word is unlikely to be has. Construction meaning is also an influential variable on 

duration. As with caregivers, Transitional Probability based on Redford Corpus 

frequencies and Joint Probability based on COCA frequencies are also ranked as 

important, although in the reverse order: Redford Corpus Following Transitional 

Probability was ranked as more important for child speech. Joint Probability based on 

Redford Corpus frequencies does not rank as important for children’s productions. A 

following stressed syllable means that the target is somewhat likely to be shorter, but this 

is not ranked much higher than the importance threshold. 

 Figure 34 shows the longitudinal development for following context variable 

importance in children’s speech. The most important variable for both child and caregiver 

speech overall is the presence of a following pause. This variable is ranked as important 

only for 2
nd

 and 3
rd

 graders. For all of the groups, except for third graders, the next most 

important variables paralleled the overall analysis, as Construction Meaning and 

Following Transitional Probability based on either frequencies from the Redford Corpus 
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or COCA, are all highly ranked, however their relative ranking differs. Following Joint 

Probability based on frequencies from the Redford Corpus is ranked as important for all 

of the groups except for the oldest. A following stress context is important only for the 

oldest two groups. Joint Probability based on frequencies from the COCA is ranked as 

important, but barely, for all of the groups except for third graders. 

 

 

 

Figure 33. Following Context variable importance for CS grammatical word duration 
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Figure 34. Following Context variable importance for CS grammatical word duration by 

school grade 

 

 Although a Following Pause is predictive of longer durations in Caregiver Speech 

(cf. Figure 25) and in the speech of children in other grades, it is not predictive for the 

youngest grade group, as there are very few instances of a target grammatical word being 

following by a pause (3 followed by a pause v. 174 not followed by a pause). 

 For the first three grade groups, transitional probability from COCA frequencies 

outranks transitional probability from Redford Corpus frequencies, but for the oldest 

grade group, the relationship is reversed.  
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3.5.3. Multimodel Inferencing Analyses for Word Shortening in Child Speech 

Models for child speech included an interaction term for age, in order to see the 

developmental trajectory of reduction and the developmental trajectory of factors 

affecting reduction. All possible non-collinear variables were included in models, with an 

interaction term for age and then backwards selection procedures were used until only 

factors (or interactions) with a cumulative probability over 0.4 remained. First all words 

were combined in one analysis, checking for interactions with specific words or 

inflections. None were found and so Lemma was used as a random effect. Second, 

analyses were conducted for BE and HAVE words, testing for effects of priming and 

construction. None were found for BE, but paralleling the results in caregiver data, there 

were construction specific effects for HAVE, therefore results for HAVE are also 

presented below. After presenting the results from the models, I discuss the differences 

between the results for caregivers and their children. 

 The first model built to compare normalized word durations for children 

combines all word types: are (n = 18), be (n = 14), had (n = 67), has (n = 16), have (n = 

9), is (n = 97) was (n = 420) and were (n = 100), (total n = 741). Random effects for this 

model are Speaker (Gross) and Lemma. Factors that were ranked as important in the 

random forest analyses were Preceding and Following Transitional Probability based on 

COCA frequencies, Utterance Quartile, Preceding and Following Pause, Average 

Syllable Rate, Speaker Contraction Rate and Speaker Gender. Eliminated variables that 

were ranked as important in the random forest analyses, but were not ranked as probable 

in multimodel averaging include: Speaker Gender, Speaker Syllable Rate, Preceding 
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Pause, COCA preceding Transitional Probability, Preceding Stress, COCA following 

Joint Probability. 

 As seen in Table 9 below, a probable following context results in a shorter target 

word and a following pause or disfluency results in a longer target word. Both of these 

variables have a high cumulative probability (1), indicating that these variables always 

have a reducing and lengthening effect, respectively, no matter the age of the child. A 

following pause results in a longer duration, as was the case for caregivers. Second 

graders, as well as third, fourth and fifth graders, have proportionally more instances of a 

pause following a target grammatical word than the adults (2
nd

 graders: 6.77%, 3
rd

 

graders: 7.42%, 4
th

 and 5
th

 graders: 6.50%, caregivers: 4.03%), indicating that they may 

be having more difficulty searching for upcoming words than the adults, which is to be 

expected. The youngest grade group has a lower percentage of disfluencies following a 

target, but it should be noted that they are also speaking considerably slower than the 

other groups, meaning they have more time to plan without stopping and restarting an 

utterance. 

A speaker with a high contraction rate has shorter normalized durations, as the 

coefficient is negative. The effect of speaker contraction rate on normalized duration was 

positive for the caregivers. The interaction term of speaker contraction rate and speaker 

age is also highly probable and is positive for children. This indicates that the effect of 

contraction rate on reduction is attenuated over time. The direction and strength of this 

interaction is investigated more fully below (cf. Figure 36 below).  

Finally, we see that as children get older, their normalized auxiliary durations also 

are shorter. Proportionally, less time is spent on the grammatical words in the utterances 
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in which they occur. However, because duration is also influenced by context probability 

for children, we know that it is not only better speech production, but also better 

sensitivity to meaning and context that results in shorter word durations. Finally, words 

that are in the final quartile of an utterance are longer than words in any of the other 

quartiles. There is also a negative interaction between Utterance Quartile and Age, 

indicating that as children get older, the lengthening effect in the final quartile is 

diminished. This indicates that younger children are more likely to engage in word 

lengthening in the final utterance quartile than older children. There was no effect of 

lengthening in the final utterance quartile for caregivers, indicating that this effect will 

likely continue to diminish over time for function words. 

 The model ranking output (Table 10) shows that there is low model selection 

uncertainty for the given predictors. The weights of the top three models add up to 0.93, 

all other remaining possibilities have a high Δ and very low w. The best performing 

model includes all of the predictors. The next best model, which lacks the main effect and 

interaction for Utterance Quartile, fares worse. Therefore, we can be confident about the 

predictiveness of the best performing model. 

Figures 35 and 36 show in more detail the relationship with age and contraction 

rate and syllable rate and contraction rate for normalized duration. In Figure 35, we see 

that children who speak quickly have chosen a reduction strategy: they either contract 

often, but do not reduce grammatical words or they reduce grammatical words, but do not 

contract them (F = 3.642, p = 0.012). Slow speaking children either contract and reduce 

word duration or do neither. Syllable rate and age are tied together for children, but we 

see that there is a stronger effect for age and contraction rate (F = 5.966, p < 0.000) than 
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there is for syllable rate and contraction rate on normalized word duration. Figure 36 

shows that the effect for age is quite clear, older children either contract or reduce, 

younger children either contract and reduce or neither. The pattern for the older children, 

then, matches the pattern of adult usage. Sometime around age 7;6 (90 months), children 

choose a strategy for shortening predictable, grammatical words: contract or reduce. 

 

 

Table 9. Child Speech Duration Multimodel Inferencing Results 

Predictor β̅ σ̅ LoCI HiCI p CP 

(Intercept) 0.882 0.263 0.366 1.397 0.001 NA 

COCA Following TP -0.083 0.021 -0.125 -0.042 0.000 1 

Following Pause 0.325 0.053 0.222 0.428 0.000 1 

Speaker Contraction Rate -0.851 0.438 -1.710 0.008 0.052 0.99 

Speaker Age -0.003 0.003 -0.008 0.002 0.259 0.97 

Age by Contraction Rate 0.010 0.004 0.001 0.019 0.026 0.93 

Quartile 1 (Reference Level) 

Quartile 2 0.059 0.159 -0.254 0.371 0.712 0.66 

Quartile 3 0.063 0.164 -0.257 0.384 0.698  

Quartile 4 0.331 0.388 -0.429 1.091 0.394  

Age by Quartile 1 (Reference Level) 

Age by Quartile 2 -0.001 0.002 -0.004 0.003 0.687 0.43 

Age by Quartile 3 -0.001 0.002 -0.004 0.003 0.725  

Age by Quartile 4 -0.003 0.004 -0.010 0.004 0.440  

Note: reported values are coefficients with shrinkage and adjusted standard error, n = 

741. 
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Table 10. Models of Child Speech duration with a Δ below 2. 

Model factors k df log likelihood AICc Δ w 

1234567 7 15 -82.4 195.46 0 0.41 

12346 5 9 -88.88 196.01 0.55 0.31 

123456 6 12 -86.16 196.74 1.29 0.21 

(Null) 0 4 -136.25 280.56 85.1 0 

Note: Cutoff: Δ < 4, 1= Speaker Age, 2 = Following COCA TP, 3 = Speaker Contraction 

Rate, 4 = Following Pause, 5 = Utterance Quartile, 6 = Speaker Age by Contraction Rate, 

7 = Speaker Age by Utterance Quartile 

 

 

 

Figure 35. Interaction of Speaker Contraction Rate and Speaker Syllable Rate on CS 

word duration 
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Figure 36. Interaction of Speaker Contraction Rate and Speaker Age on CS word duration 

 

Figure 37 examines the relationship between parent and child contraction rates. 

For a subset of children and caregivers there are dyads, we have texts from both child and 

their caregiver (65 pairs of texts). For these dyads, we can see that there is no correlation 

between caregivers’ contraction rate and those of their children. This indicates that 

children choose a reduction strategy on their own that is independent of the reduction 

strategy of their parents. 



 

119 

 

 

Figure 37. Correlation of Caregiver and Child Dyad Contraction Rates 

 

In summary, for both children and caregivers, the age of the child matters, with 

older children hearing and producing proportionally shorter function words. For both 

caregivers and children, a following probable context results in a shorter word. 

Contraction Rate is important for both caregivers and children, but with child behavior 

becoming more like caregiver (adult) behavior as the child gets older. Quartile is 

important for children, especially for young children with its importance diminishing 

over time. These results show that as children get older, their behavior becomes more 

adult-like in function word production. 
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 Only a few factors were significant for HAVE. There was a small n here, only 98 

cases, so when there are significant effects it is possible to have confidence the effects are 

strong. As seen in Table11, there are no interactions for age for this data set, also possibly 

due to the low n. There are main effects for Following Transitional Probability, with 

more following contexts resulting in shorter words. There is a main effect for 

Construction, with perfect auxiliaries being significantly shorter than modal semi-

auxiliaries or possessive verbs, just as there was for caregivers. Preceding stress is 

significant, with targets following a stressed syllable being shorter than targets following 

an unstressed syllable. Finally, targets occurring in the final quartile of the utterance are 

significantly longer than targets occurring in other quartiles. As seen in Table 12 further 

below, there is fairly low model selection uncertainty, with the best performing model 

including all factors and having a w of 0.49.   

Table 11. CS HAVE Duration Multimodel Inferencing Results 

Predictor β̅ σ̅ LoCI HiCI p CP 

(Intercept) 0.961 0.169 0.630 1.293 0.000 NA 

COCA Following TP -0.064 0.056 -0.174 0.046 0.252 0.70 

Construction 

Modal (Reference Level) 

     0.99 

Perfect -0.340 0.103 -0.542 -0.139 0.001  

Possessive -0.053 0.079 -0.207 0.101 0.497  

Preceding Stressed Syllable -0.136 0.098 -0.329 0.056 0.164 0.79 

Quartile 

Quartile 1 (Reference Level) 

     0.89 

Quartile 2 -0.028 0.074 -0.172 0.117 0.709  

Quartile 3 0.077 0.075 -0.071 0.224 0.309  

Quartile 4 0.242 0.122 0.002 0.482 0.048  

Note: reported values are coefficients with shrinkage and adjusted standard error, n = 98. 
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Table 12. Models of CS HAVE duration with a Δ below 2. 

Model factors k df log likelihood AICc Δ w 

1234 4 11 -4.83 35.05 0 0.49 

234 3 10 -6.99 36.76 1.71 0.21 

(Null) 0 4 -22.66 53.8 18.75 0 

Note: Cutoff: Δ < 2, 1 = Following TP from COCA, 2 = Preceding Stress, 3 = 

Construction Meaning, 4= Utterance Quartile 

 

 The results for HAVE dataset in child speech parallel the results for child-directed 

speech. Utterance Quartile is only significant for children (as with the combined words 

analysis) and Following Pause is only significant for caregivers, but there were only five 

instances of HAVE followed by a pause, so there may not have been enough cases for 

significance to be reached, as it was in the combined word analyses for both groups.    

3.5.4. Conclusion for Word Shortening in Child Speech 

 It is now possible to return with answers to the research questions presented at the 

beginning of this section. 

Q5. Are the function words HAVE and BE in child speech subject to probabilistic 

reduction? 

 Yes, even the short and highly frequent words BE and HAVE are subject to 

probabilistic reduction in child speech. 

Q6. Does school-aged children’s function word production differ over time? 

 Yes. Function words get shorter over time, as is clear through examining raw 

measures of duration, and over time function words get proportionally shorter compared 

to content words. Increased syllable rate does not account completely for the raw 

reduction in milliseconds needed to produce these words. Even though duration measures 
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are normalized for syllable rate, older children still produce shorter function words than 

younger children. Older children have learned that these kinds of predictable words are 

still understood by their listeners and less effort can be expended in their production. If 

the shorter function words were due only to increased motor skill in producing unstressed 

syllables, then children would not produce variable durations according to context 

probability. Because their productions do reflect a sensitivity to context probability, that 

is a sign that word predictability, not just motor skills, affects function word production 

in child speech. In addition, the change in the influence of predictability over age 

indicates that in these five years, children become more adult-like in their function word 

production. 

Q7. Do children who contract more often also shorten grammatical words to a greater 

degree than those who contract less often? 

 Yes and no, as it interacts with child age. Young children who reduce more also 

contract more. These children also have higher text entropy scores than young children 

who do not reduce or contract (cf. Figure 38 below for effect of age and text entropy on 

word shortening). This indicates that young children who use information compression 

early on have a better understanding of what is important and unimportant in an 

utterance. They are more sensitive to context. However the strength of this entropy-age 

interaction effect on normalized duration diminishes over time. Older children use one 

strategy or another for information compression, just like their caregivers, and then there 

is no longer a strong correlation between what kind of information compression strategy 

a speaker uses and their language proficiency (as inferred by text entropy). 
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Figure 38. Child Normalized Duration by Text Entropy and Age 

 

Q8. Do children differentiate function word production by construction (meaning)? 

 Sometimes. As with caregivers, BE does not vary in duration by construction but 

HAVE does. HAVE tokens in perfect constructions are significantly shorter than HAVE 

tokens in possessive or modal constructions. 
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Q9. Are the factors that influence word shortening in child speech different than those 

factors that influence word shortening in their input (caregiver speech)? 

 Not really. Children were not sensitive to stress context or joint probability, as 

adults were, and children were more sensitive to the position of a word within an 

utterance (Utterance Quartile), but otherwise children and caregivers were sensitive to the 

same factors. Where there were interactions with age, older children behaved more like 

adults than young children, showing their behavior becoming more adult-like. 

 

3.6. Contraction in Child-Directed Speech 

The previous four dependent variables were based on phonetic data. Contraction 

can be extracted from orthographic transcripts much more easily. Therefore, as described 

in 3.2, more data was used for the contraction analyses than for the phonetic analyses. 

The data in this section is based on 74 narrations from caregivers as opposed to 44 

narrations used in the analyses above. The main research questions for this section are: 

Q10. Are there differences in caregiver contraction depending on the age of the child? 

Q11. Are there different motivations for contraction vs. word shortening (duration 

reduction)? 

 

3.6.1. CDS Contraction of HAVE 

As seen in Figure 39, almost half of the time that caregivers produce perfect 

auxiliaries, they contract them. Some adults always contract, some always use full forms, 

but about a third sometimes contract and sometimes do not. As there are so few perfect 

auxiliary contractions, no statistical analyses of HAVE contractions were done 
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Figure 39. CDS Contraction rate of Perfect HAVE by Speaker 

 

3.6.2. Contraction of BE 

3.6.2.1. Introduction 

 As seen in Figure 40, most caregivers mix full and contracted forms of BE, 

although some contract at higher rates than others. 

 
Figure 40. CDS Contraction rate of Perfect BE by Speaker 
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3.6.2.2. Random Forest Variable Importance Rankings 

Here I present the results of contraction random forest analyses variable 

importance rankings for caregiver speech. Figure 41 shows that there is variation in 

contraction due to which utterance quartile the target is in, the particular inflection of BE, 

and that Speaker Contraction Rate is very important for predicting contraction, as is 

reasonable. Contractors contract more, non-contractors contract less. Speaker (Gross) is 

ranked higher than Speaker (by text), indicating that the differences between particular 

speakers are more important than the differences between speakers, year-to-year. Finally, 

we see barely significant effects for child age and child gender. 

 
Figure 41. CDS Word and Speaker-specific factor variable importance ranking for 

contraction 
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 From the random forest analyses of preceding contexts in Figure 42, it is clear 

that the COCA based probabilities preform much better than any of the other factors. 

Transitional probability preforms better than joint probability, even though we may 

expect that contracted elements are highly associated with their preceding element 

leading to stored chunks. If this were the case, then joint probability should perform 

better than transitional probability in predicting contraction. But note that the COCA JP 

and TP are very highly correlated (r = 0.84), so it is likely that either would have a high 

cumulative probability in a multimodel inferencing analysis.  

 

Figure 42. CDS preceding context factor variable importance ranking for contraction 
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 For following context factors, as seen in Figure 43, probabilities based on the 

Redford Corpus frequencies perform better than probabilities based on COCA 

frequencies. Again, transitional probability performs better than joint probability, which 

is what we should expect: there is not such a strong bond between a contracted element 

and the word that follows it, but expected, accessible following words as measured 

through transitional probability, should allow a speaker to contract. It appears here that 

caregivers are sensitive to task frequencies and are contracting when a word predictable 

from task-centric context is the following word. The combination  is~’s totally has a high 

probability based on Redford Corpus frequencies (-0.097) but lower based on COCA 

frequencies (-0.893). The combination are~’re big has a low probability based on 

Redford Corpus frequencies (-2.651), but a bit higher based on COCA frequencies (-

2.128). 

3.6.2.3. Multimodel Inferencing 

 Table 13 presents the output from the multimodel comparison of contraction in 

caregiver speech. Positive coefficients are associated with more contraction. High 

probability contexts are associated with more contraction, but preceding context has a 

stronger effect (cumulative probability = 1) than following context (cumulative 

probability = 0.85). This makes sense, as a contracted element cliticizes to the preceding 

element, not the following, forming a strong bond between the preceding element and the 

clitic. Speaker contraction rate is also predictive of contraction, which also makes sense. 

The variable of speaker contraction rate is calculated by looking at contractions and 

potential contractions of a variety of words, including the contraction of BE. Quartile is 

also significant for contraction. The second and third quartiles have higher contraction 
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rates than the first quartile, and the final quartile has significantly less. Construction also 

has a probable effect (cumulative probability = 0.91), with future and progressive 

constructions contracting more often than copula construction. Child Age had no real 

probable effect on contraction. 

 

 

Figure 43. CDS following context factor variable importance ranking for contraction 
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Table 13. Multimodel Inferencing Output of CDS Contraction 

Predictor β̅ σ̅ LoCI HiCI p CP 

(Intercept) 1.731 0.118 1.500 1.963 0.000 NA 

Preceding COCA TP 0.392 0.020 0.352 0.432 0.000 1 

Speaker Contraction Rate 0.392 0.020 0.352 0.432 0.000 1 

Quartile: 

Quartile 1 (Reference 

Level)      1 

Quartile 2 0.263 0.036 0.192 0.333 0.000  

Quartile 3 0.083 0.041 0.002 0.163 0.044  

Quartile 4 -0.185 0.074 -0.330 -0.040 0.012  

Construction: 

Copula (Reference Level)       

Future 0.150 0.075 0.004 0.296 0.045 0.91 

Passive 0.115 0.091 -0.062 0.293 0.202  

Progressive 0.061 0.035 -0.009 0.130 0.086  

Following COCA TP -0.052 0.032 -0.115 0.012 0.109 0.85 

Child Age -0.001 0.001 -0.002 0.001 0.481 0.47 

Note: reported values are coefficients with shrinkage and adjusted standard error, n = 

778. 

 

Table 14 presents the model comparison for the caregiver contraction model. We 

see fairly low model selection uncertainty, as the w for the best performing models equal 

0.81, and only two models have Δ below 2. The second best model has all of the factors 

and the best model has all of the factors except for child age. In this case, Burnham and 

Anderson (2002: 131) say that the second best model with just one extra factor is not a 

serious contender. Therefore, there is very high certainty that the highest ranked model is 

the best one to account for the data with the given factors. 
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Table 14. Models of CDS Contraction with a Δ below 2. 

Model factors k df log likelihood AICc Δ w 

23456 5 13 -238.82 504.12 0 0.43 

123456 6 14 -237.9 504.34 0.22 0.38 

(Null) 0 4 -472.15 952.36 448.24 0 

Note: Cutoff: Δ < 0.02, 1 = Child Age, 2 = Following COCA TP, 3 = Preceding COCA 

TP, 4 = Speaker Contraction Rate, 5 = Construction, 6 = Utterance Quartile 

 

3.6.2.4. Conclusion for BE Contraction in Child-Directed Speech 

Now we return to the research questions put forth at the beginning of this section. 

Q10. Are there differences in caregiver contraction depending on the age of the child? 

Not really. There is only a very minor effect of child age on caregiver contraction. 

Caregivers contract slightly less with older children, but the effect does not have enough 

cumulative probability in the multimodel inference output for us to take it seriously. 

What matters more for adult contraction behavior is whether or not the specific adult is 

someone who tends to contract words (generally, not just the specific targets under 

investigation here) or not. 

Q11. Are there different motivations for contraction vs. word shortening (duration 

reduction)? 

 Yes. Word shortening is influenced by following context probabilities, where high 

probability contexts result in shorter target words. Contraction, on the other hand, is 

influenced to a greater degree by preceding context probabilities, where high probability 

contexts result in contraction. Utterance quartile had no strong effect for adult word 

shortening (although there was an utterance final lengthening effect in child speech), but 

adults tend to contract more in the middle (second and third quartiles) of an utterance. 
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Additionally, there were no word shortening effects for BE by construction type, only for 

HAVE. In the case of HAVE, only one construction type is permissible to contract: the 

perfect, which also had a high degree of shortening. All BE construction types contract 

(for present tense inflections), and we saw that future and progressive constructions 

contract at a higher rate than copula or passive constructions in the adult data.  

 

3.7. Contraction in Child Speech 

As described in 3.13 more data was used for the analyses of contraction than for 

the analyses of phonetic dependent variables. The analyses that follow used 152 

narrations from children as opposed to 74 that were used in the phonetic analyses. 

Because more data was used, it was possible to break up age groups into five different 

age groups (kindergartners v. first graders v. second graders v. third graders v. fourth and 

fifth graders) for random forest age comparison analyses rather than the four used in the 

previous sections. The main research questions for this section are: 

Q12. Are there differences in contraction over time for children? 

Q13. Are there different motivations for contraction vs. word shortening (duration 

reduction) in child speech? 

 

3.7.1. CS Contraction of HAVE 

As seen in Figure 44, most children, if they produce perfect auxiliaries, use full 

forms. Children who did not produce any perfect auxiliaries are not included in the 

figure. The children contracting perfect auxiliaries are all different children, not one child 

(nor one child over several time points) who happened to provide all contracted tokens.  
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Figure 44. CS Contraction rate of Perfect HAVE by Speaker 

 

 

As there are so few perfect auxiliary contractions, no analyses of HAVE 

contractions were done. However, there is a clear difference in child and caregiver 

behavior. Although caregivers contract perfect auxiliaries when speaking to their 

children, the children prefer the full form of the perfect auxiliary. 

 

3.7.2. CS Contraction of BE 

3.7.2.1. Introduction 

 As seen in Figure 45, some children never contract BE, but most contract far more 

than using full forms, especially the children who use many instances of BE. 
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Figure 45. CS Contraction rate of Perfect BE by Speaker 

 

3.7.2.2. Random Forest Variable Importance Ranking 

 This section presents random forest analysis of contraction, investigating speaker 

and word specific factors, preceding context factors and following context factors. 

Figures 46 and 47 show that, as with caregivers, speaker contraction rate is highly 

important (cf. Figure 41). Speaker (Gross) is ranked higher than Speaker (by text), 

indicating relatively high stability in individual differences between speakers over time. 

The utterance quartile that the target is in is also important, as is a speaker’s syllable rate 

and age. The particular inflection of BE is also ranked as important, indicating that some 

inflections of BE are more likely to contract than others.  
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Figure 46. CS word and speaker specific factors variable importance ranking for 

contraction 
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Figure 47. CS word and speaker specific factors variable importance ranking for 

contraction by grade 

 The preceding context factors importance ranking for children parallels the 

importance ranking for caregivers, as seen in Figure 48. The probabilities based on the 

COCA corpus perform best, and transitional probability performs better than joint 

probability. The priming variables of preceding BE type and preceding contraction are 

also ranked as important. As can be seen in Figure 49 below, these variables are not 
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influential in the younger groups, nor in the oldest group, which has a lower number of 

tokens. The data from the third graders is driving the high ranking of the priming effect. 

 

 

Figure 48. CS preceding context variable importance ranking of contraction 

 

 For the youngest group, probabilities based on the Redford Corpus frequencies 

are more influential than those based on the COCA frequencies, as seen in Figure 49. 
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Figure 49. CS preceding context variable importance ranking of contraction by grade 

 

 Figure 50 shows that in the child data, as with the caregiver data, probabilities 

based on Redford Corpus frequencies are ranked as more important than probabilities 

based on COCA frequencies. This indicates that the children are also sensitive to the 

task-based frequencies and it is influencing their propensity to contract. Unlike with the 

adults, joint probability is ranked slightly higher than transitional probability, even 
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though these variables did not correlate highly (r = 0.03). Figure 51 shows that there is a 

lot of variation in variable importance rankings between the different age groups. 

 

 

Figure 50. CS following context variable importance ranking of contraction 
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Figure 51. CS following context variable importance ranking of contraction by grade 

 

 

3.7.2.3. Multimodel Inferencing 

 In Table 15 we see that several predictors have a very high cumulative 

probability, including interaction terms with Speaker Age. Positive coefficients are 

associated with higher contraction. As children get older, they contract more often 
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(cumulative probability = 1). When the target follows a highly probable context, it is also 

more likely to contract (cumulative probability = 1). In analyses of duration, the 

following context, rather than preceding context, was more predictive of shortened 

duration. As with caregivers, it makes sense for preceding context to have a stronger 

effect than following for contraction, as the contracted element cliticizes to the preceding 

element and there is no strong bond with the following element. There was no probable 

effect for following context probability and so it is not included in the output below. As 

with their caregivers, construction meaning is important for predicting contraction for 

children. Future auxiliaries contract more often than copulas, as do progressive 

auxiliaries. However, for children, passive auxiliaries contract less often than copulas. 

This result, however, is based on relatively few tokens of passive auxiliaries (copula: n = 

560, progressive: n = 165, future: n = 43, passive: n = 15). There is also an interaction 

with age for construction. As children get older, they contract the passive auxiliary more 

and the future and progressive auxiliaries less. This goes in the opposite direction of the 

adult pattern. As with their caregivers, speaker contraction rate was highly predictive of 

contraction. People who have higher contraction rates contract BE forms more often than 

people with a lower contraction rate. There is an interaction with age, with a positive 

coefficient, meaning the facilitatory effect of high speaker contraction rate on target 

contraction is only strengthened over time. That is, an older child with a high contraction 

rate is even more likely to contract in a specific instance than a younger child with a high 

contraction rate. There is a high cumulative probability for utterance quartile, with the 

third quartile having less contraction than the first quartile, although there is no 

significant difference for the other quartiles. As seen in Figure 52, this does not capture 
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the real trends in the data. This figure shows that targets are much more likely to occur in 

the first half of the utterance (first two quartiles) and are much more likely to contract. 

Targets are successively less likely to occur in each of the next two quartiles and also 

have lower contraction rates in those quartiles. 

 

Table 15. Multimodel Inferencing Output of CS Contraction 

Predictor β̅ σ̅ LoCI HiCI p CP 

(Intercept) 1.033 0.324 0.399 1.668 0.001 NA 

Speaker Age 0.009 0.004 0.002 0.016 0.016 1 

Preceding COCA JP 0.117 0.009 0.099 0.134 0.000 1 

Construction: 

Copula (Reference Level)       

Future 0.787 0.477 -0.147 1.722 0.099 1 

Passive -4.733 2.255 -9.152 -0.314 0.036  

Progressive 0.832 0.170 0.498 1.166 0.000  

Speaker Contraction Rate 1.225 0.488 0.269 2.181 0.012 1 

Speaker Age by Construction: 

Age by Copula (Reference Level)      1 

Age by Future -0.007 0.005 -0.017 0.003 0.159  

Age by Passive 0.045 0.021 0.003 0.087 0.035  

Age by Progressive -0.009 0.002 -0.013 -0.006 0.000  

Quartile: 

Quartile 1 (Reference Level)      0.95 

Quartile 2 0.018 0.035 -0.050 0.086 0.596  

Quartile 3 -0.106 0.046 -0.197 -0.015 0.022  

Quartile 4 -0.041 0.060 -0.158 0.076 0.492  

Speaker Age by Contraction Rate -0.006 0.005 -0.017 0.005 0.274 0.62 

Note: reported values are coefficients with shrinkage and adjusted standard error, n = 

647. 
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Figure 52. CS Contraction by Quartile 

 

As seen in Table 16, the best performing model has a much higher weight than the 

next best performing model, and all of the best performing models have much lower 

AICc scores than the null model. This indicates rather low model selection uncertainty, 

with the top model being likely to be the most predictive model. 
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Table 16. Models of CS Contraction with a Δ below 2. 

Model factors k df log likelihood AICc Δ w 

1234567 7 17 -257.62 550.21 0 0.65 

123456 6 16 -259.46 551.78 1.56 0.3 

(Null) 0 4 -395.72 799.5 249.29 0 

Note: Cutoff: Δ < 0.02, 1 = Speaker Age, 2 = Preceding COCA JP, 3 = Construction, 4 = 

Speaker Contraction Rate, 5 = Utterance Quartile, 6 = Age by Construction, 7 = Speaker 

Age by Speaker Contraction Rate 

 

3.7.2.4. Conclusion for BE Contraction in Child-Speech 

Now we return to the research questions set forth at the beginning of this section. 

Q12. Are there differences in contraction over time for children? 

 Yes. Children have high rates of contraction in the Redford Corpus, and they only 

contract more as they get older. There is also an interaction for construction type with 

age. Overall, as with caregivers, the progressive and future constructions are more likely 

to contract than the copula, and especially passive constructions. The effect for 

contraction in future constructions is stronger for adults and the effect for lack of 

contraction in passive constructions is stronger for children, but they show a similar 

pattern overall. However, as children get older, they contract progressive constructions a 

bit less and passive constructions a bit more. Speaker contraction rate has a facilitatory 

effect on contraction of a specific instance for all children and this effect strengthens as 

children get older. This indicates that the children follow their information compression 

strategy to a greater degree as they get older. If they go with the contraction strategy, they 

follow it more fully and to a greater degree than younger children. 

Q13. Are there different motivations for contraction vs. word shortening (duration 

reduction) in child speech? 
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 Somewhat. As with adults, construction type matters for BE contraction, even 

though it did not matter for BE word shortening. Although caregivers had more 

contraction mid-utterance and no word lengthening, children showed lengthening at the 

end of an utterance and more contraction early in an utterance. This pattern shows 

reduction (either of duration or by contraction) early and lack of reduction late in the 

utterance. Children, then, are more sensitive to position of the target word in the utterance 

than adults. Additionally, the targets under investigation here tend to occur earlier in the 

utterance rather than later. Children are likely to reduce targets when they are in their 

more probable utterance position (first half). This may indicate that children are also 

sensitive to utterance position probability in addition to bigram probability. When a target 

is occurring in an unlikely portion of the utterance, it is perhaps more difficult to process 

or access, leading to a lack of reduction, or they are letting their interlocutor know that 

something weird is going on: a verbal function word late in the utterance. For adults, it 

may be less of an issue due to a much better ability to plan long utterances which they 

may also expect of their interlocutors. For adults, who are more likely to produce 

complex noun phrase subjects than children, a ‘late’ auxiliary is less unusual.  

 

3.8. Discussion and Conclusion 

This chapter showed that over time children get better at signaling the 

unimportance of function words. As they get older, they reduce the proportion of time 

spent on function words, they contract more, they develop a strategy of information 

compression (shortening or contracting) and adhere more strongly to their strategy as 

they get older. In this section I will discuss types of reduction, information compression, 

child language proficiency and child-directed speech to school aged children. I will 
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conclude with a discussion of the statistical methodology used in this chapter, which will 

also be used in Chapter IV. 

3.8.1. Results Summary 

Based on the results above, children appear to be good at contracting and reducing 

the duration of words appropriately (in an adult-like way) even at the age of 5. Table 17 

summarizes the results from this chapter. 

 For adults and children alike, probability is a very important factor in influencing 

reduction. High transitional probability contexts, particularly following contexts, are 

associated with shorter words and more contraction, for both children and adults. Perfect 

auxiliaries are shorter, for both children and adults. Children and adults alike seem aware 

of the more grammatical nature of the perfect auxiliary, as opposed to the lexical 

possessive and the semi-auxiliary modal verb which are always longer than the perfect 

auxiliary. 

Following pauses and disfluencies are associated with lengthened word durations 

for both children and adults. Children also have more pauses and disfluencies than their 

caregivers. Based on my reflections of the data, following disfluencies are associated 

with problems of lexical access and high cognitive planning load (Bell et al., 2003; 

Bortfeld et al., 2001; Kapatsinski, 2010) for both children and adults, and for children, 

this is the case for preceding disfluencies as well. Pauses and disfluencies have been 

shown not only to be used for speakers to gain time to access a word, but also as a 

metalinguistic cue to their interlocutor that they are having trouble accessing a word and 

potentially seeking assistance in word recovery (Brennan and Schober, 2001; Schachter 
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et al., 1991; Schnadt, 2009). For adults, preceding pauses are associated with recovery 

and have no lengthening effect for word duration. 

 

Table 17. Redford Corpus Results by Dependent and Independent Variables 

 Normalized Duration Contraction 

Probability Variables   

High Following COCA TP ↓ ↑ 

High Preceding COCA TP  ↓ 

High Preceding COCA JP       ↓ 

Construction   

Possessive ↑    ↑  

Modal ↑    ↑  

Perfect ↓    ↓  

Copula  ↑    ↑ 

Passive        ↑* 

Progressive  ↓    ↓* 

Future  ↓    ↓ 

Speaker Variables   

Age/Child Age ↓    ↓      ↓ 

High Contraction Rate ↑    ↓* ↓   ↓* 

Control Variables   

Preceding Stress ↓  

Following Pause ↑    ↑  

Quartile       ↑ ↑   ↑ 

Note: Green arrow indicates cumulative probability over 0.6 for caregiver speech, orange 

arrow indicates cumulative probability over 0.6 for child speech (factors with cumulative 

probability over 0.6 were in bold in the multimodel inferencing output tables). Arrows 

pointing up indicate the IV had a lengthening/non-reducing effect (or is associated with 

full forms for the contraction IV) and arrows pointing down indicate the IV had a 

shortening/reducing effect (or is associated with contracted forms for the contraction IV). 

An asterisk shows a interaction with age that reached a cumulative probability of 0.6. 
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 Over the course of the study, adults decreased the length of grammatical words, as 

did children. Adults are signaling that grammatical words should be short and children 

are picking up on that and doing likewise. 

3.8.2. Information Compression 

One strong pattern we see in the data is that people have a reduction strategy for 

grammatical words: either they contract, or they reduce duration. Caregivers all do this, 

and children start to choose a strategy around age seven. Caregivers are fairly consistent 

in their contraction rates over the three years of the study (cf Figure 53, where only one 

speaker has variability in their contraction rate). Children have a lot of difference in their 

contraction rates over time (cf. Figure 54), but by age 7, they are a bit more stable (cf. 

Figure 55). However, they may still be testing out strategies even after age 7. 

 At age 7, children are not as consistent in their choice of information compression 

strategies as adults, but they have nonetheless made a leap forward from the younger 

children. Some children show more consistency in an information compression strategy 

than others, so individual differences likely also have an effect as well. Information 

compression is a kind of listener accommodation. Spending less time on unimportant 

words means speakers can spend more time on important words. A longer or clearer 

signal for more important words insures that a listener will be able to decode and 

understand those words more easily. Listeners do not need clear signals for expected or 

unimportant words because they are inferable from context. When children (or second 

language speakers) spend too much time on function words or frequent words they fail to 

accommodate their listeners by confusing them with strong signal strength for 

unimportant/predictable content (see Caballero and Kapatsinski, 2014, for evidence that 
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augmenting predictable information is unhelpful to the listener). Children who are more 

proficient speakers are the ones more likely to use an information compression strategy 

and be more consistent with its use early on. The next section examines issues of child 

language proficiency. 

 

 

Figure 53. Caregiver contraction rates by speaker 
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Figure 54. Child contraction rates over time by speaker 
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Figure 55. 7+ Child contraction rates over time by speaker 

3.8.3. Child Language Proficiency 

There are three measures, or indicators, of proficiency that are discussed in this 

chapter and they all have a relationship with child age and with reduction in child speech. 

The first measure is syllable rate. Children with a faster syllable rate have more 

articulatory control than children with a slower rate. They show an advanced physical 

ability. However, when they are able to speak faster, they in turn are also able to say 

more within in the same time period, and they do. Utterances do not decrease 

dramatically in milliseconds for older speakers; they are simply able to say more within a 

similar amount of time. This points toward advancement in cognitive abilities as well 

(Redford, 2014). The relationship between age and syllable rate is monotonic. As 

children get older, their syllable rates increase. When judging their effect on the 
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normalized auxiliary duration, which is a way of showing children’s sensitivity to word 

importance and sensitivity to the needs of their listener, we see that generally age and 

syllable rate affect normalized duration in the same way. As shown in Figure 56, younger 

children have normalized duration proportions that are not strongly affected by syllable 

rates. For older children, however, faster speakers show longer normalized durations 

(red) than slower speakers (green). As we will see, this unexpected effect is due to an 

interaction with other means of evaluating proficiency in child speech. 

 

Figure 56. Relationship of Speaker Age and Syllable Rate on Duration Reduction in 

Child Speech 
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 The second indicator of child language proficiency is text entropy. Entropy, as 

calculated here, is vocabulary measure. Children use higher-level vocabulary words (rarer 

words) as they get older. All adults have higher text entropy than the children. Text 

entropy indicates a kind of cognitive ability, in word-learning and word choice skills. As 

shown in Figure 57, young children who have low text entropy scores also tend to have 

longer normalized auxiliary durations (red) and young children who have high text 

entropy scores tend to have shorter normalized auxiliary durations (green). This shows 

that young children who have good vocabularies also tend to be more sensitive to word 

importance and listener accommodation. For the oldest speakers, there is again a reversal, 

where older children who have very low entropy rates also have shorter normalized 

auxiliary durations (green) and older children who have very high entropy rates actually 

have longer normalized auxiliary durations (red). 

 The third measure of proficiency is information compression, which we saw 

above can be accomplished with short normalized durations or an increase in contractions 

(cf Figure 35 in section 3.5). On a listener-oriented account of reduction, information 

compression is a social competence measure, since it is predicted listener 

accommodation. When we examine the relationship between contraction rate and the 

other measures of proficiency (text entropy and syllable rate) absent of age, the picture 

becomes clearer. Figures 58 shows that children with high entropy rates tend to either 

have low contraction rates and reduce word durations a great deal (green in top left 

corner) or have high contraction rates and then do not reduce word durations (red in top 

right corner). It is children with low text entropy rates (less proficient on the vocabulary 

measure) that follow an all or nothing pattern, reducing and contracting to a high extent 
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(green in bottom right corner) or doing neither (red in bottom left corner). Figure 59 

below shows essentially the same pattern for syllable rate as Figure 35 shows for age.  

 

 

 

Figure 57. Relationship of Speaker Age and Text Entropy on Duration Reduction in 

Child Speech 
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Figure 58. Relationship of Contraction Rate and Text Entropy on Duration Reduction in 

Child Speech 
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Figure 59. Relationship of Contraction Rate and Syllable Rate on Duration Reduction in 

Child Speech 

When all of these variables are taken together (syllable rate for physical ability, 

text entropy for cognitive ability, the effect of informativity on reduction for social 

competence), we see that children who are proficient in one area tend to be proficient in 

other areas and this is not only due to their age. There are at least a few older children 

who show low proficiency on a couple measures, as indicated by the pattern reversals in 

Figures 57 and 56. When looking at the speaker details, it seems that three of the older 

children have low text entropy and low contraction rates, despite having fast syllable 
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rates. Another child has a medium contraction rate, but particularly low text entropy and 

also a very slow syllable rate. The effect of proficiency is stronger for young children on 

auxiliary duration. If a young child shows proficiency in one area, they tend to show it in 

other areas as well, particularly on the cognitive and social competence measures. There 

are several kindergartners and first graders in the study who have very high text entropy 

rates, and these children tend to contract a great deal, even while their syllable rates are 

still variable. Through these patterns, we see that certain children “get it” sooner than 

others and are able to show their language and social competence in a few different ways 

as a package. However, there are older children who are still developing in a few of these 

areas and need more time to acquire vocabulary and information compression skills. It 

may also be that these children choose not to perform well on this task in the lab. They 

may choose to take it easy (or perhaps rebel) and not show language competence through 

their word choice and not make an effort to accommodate their listener. In any case, these 

proficiency measures go together, either through ability or choice in performance. 

 

3.8.4. Child Directed Speech Features for 5-10 Year-olds 

Many of the features of CDS are no longer apparent in the speech of the 

caregivers in the Redford Corpus. As discussed in section 3.2.3, semantic content in the 

narratives is more complex for older children, but caregivers do not speak any slower 

with their younger children. Research of child directed speech (Swanson et al., 1992), 

which indicates that content words are lengthened and function words are not, meaning 

that there is a very low proportion of time spent on function words compared to content 

word. Based on this, I predicted that the duration proportion of function words would 

increase as children got older and caregivers no longer lengthened content words. The 
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opposite was true for the age group in the present study. Swanson et al. (1992) studied 

speech of caregivers (mothers) of children 1;6-2;4. The present results indicate that 

between the ages of 2 and 5, caregivers must stop lengthening content words and after the 

age of 5, caregivers start to reduce function words. Figure 60 below shows a 

schematization of this development. The utterances produced by caregivers get longer 

over this time period, but the proportions of content words to function words decreases 

and then increases again. 

 

Figure 60. Schema of caregiver content to function word duration proportion 

 

3.8.5. Methods Comparison 

Both recursive partitioning through random forests and multimodel inferencing 

mixed effects regression models were used in this chapter to examine function word 

reduction behavior in a small corpus. The random forests were used primarily as a first 

pass to see what factors made an impact on the dependent variables. All of the factors 
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examined had a theoretical basis for being included, but clearly not all had a strong 

effect. Random forests were particularly useful in this case because so many of the 

potential variables were collinear and could not be included together in a regression 

analysis. Rather than a lot of model testing and model comparison to determine which of 

several collinear predictors was the best one to use, random forests were built which gave 

clear rankings of factor performance. However, the random forest variable importance 

ranking did not show the directionality of effects and counted many factors as important 

that did not have high cumulative probability in the multimodel inferencing output. For 

example, in Figure 23 we saw that contraction rate had an important effect for word 

duration, but my hypothesis was that a higher contraction rate would result in shorter 

word durations. In the regression analysis, we saw that this effect was actually in the 

opposite direction: a higher contraction rate is associated with longer word durations. 

Additionally, it is potentially confusing that the numbers on the x-axis of the variable 

importance rankings are only relative values and are not comparable to x-axis values in 

other importance ranking graphs. As the rankings are relative to the predictors included, 

the importance values are also relative and do not directly reflect effect size, so some 

predictors that are ranked very highly in one graph make actually be less important than 

predictors ranked as low in another graph with a different set of predictors. For example, 

in CDS word shortening analyses, Figures 25 and 24 show probability variables ranked 

far above the threshold for preceding context factors, and close to the threshold for 

following context factors, despite following context factors being significant and 

preceding context factors being non-significant in the regression models. 
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After factor selection and collinearity-testing, multimodel inferencing was then 

conducted to evaluate effect directionality, significance levels and predictiveness, while 

constraining predictors to have monotonic, linear effects. All possible models were 

ranked and the multimodel comparison showed that sometimes the best performing 

model (as indicated through AICc scores or log likelihood values) was not the only 

reasonable model. Sometimes the second best model included all factors but one and 

achieved similar data coverage. The multimodel comparison procedure, along with the 

cumulative probability ranking in the output showed that sometimes many factors were 

likely to have an effect on the DV, and several combinations of those factors would make 

a reasonable, high performing model. These are the cases in which multimodel inference 

is particularly valuable in allowing the researcher to avoid committing to a single model 

in the absence of strong evidence that that model is the most predictive one (see also 

Barth and Kapatsinski, In Press). At other times, only one combination of factors would 

be a reasonable choice for building an effective model. In these cases, a standard model 

selection procedure would be equally appropriate. Nonetheless, one advantage of 

multimodel inference is that it allows us to empirically determine the degree of model 

selection uncertainty and therefore to evaluate whether model selection can be safely 

performed as well as a way to still make valid inferences when a unique best model 

cannot be chosen (see also Burnham & Anderson, 2012). 

Dilts (2013) uses both random forest analyses and LMER modelling and 

concludes that random forest analyses are helpful for determining dominant factors 

among correlated predictors and discovering interactions and non-linear relationships 

between factors. He argues that random forest models should be used in conjunction with 
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LMER modelling because random forest analyses lack the ability to account for the by-

word and by-speaker variation than can be accounted for by random slopes in mixed 

effects modelling. He states that this is especially important for studies of reduction 

where people have different reduction strategies and words are subject to particular 

reduction patterns of their own. However, he makes it clear that factors with many levels 

in the random slopes can lead to over fitting (also cf. Barth and Kapatsinski, under 

review), and that it is not clear how many “levels can be included without limiting the 

generalizability of results” (p. 143). In a comparison of generalized linear modeling, 

generalized linear mixed effects modelling and conditional inferencing using random 

forests, Tagliamonte and Baayen (2012) conclude that the latter two are the more 

advantageous. Mixed effects modelling allows for the inclusion of random effects that 

result in better fit of the model to data, as well as allowing for increased confidence about 

making generalizations from the specific data to a larger population. Random forests 

allow for the comparison of similar phenomena that use different factor level 

configurations, all within one analysis. They argue that using classification trees allows 

the researcher to see how the most important predictors work together in a data set, 

sometimes producing complex interactions that could not be captured in regression 

modelling. Because it is computationally expensive and because currently conditional 

inferencing does not handle well factors with many levels (such as those one may use as a 

random effect), Tagliamonte and Baayen (2012), like Dilts (2013), advise the use of 

random forests for a preliminary view of the impact of the factors under investigation on 

the data. 
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In the present study, we saw that in using both random forest analyses for variable 

importance ranking and multimodel inferencing with linear mized-effect regression 

models that the random forest analyses often consider a predictor important that does not 

turn out to be significant in the regression analysis. The regression analyses in the present 

study were always mixed effects model with a random effect of speaker and often a 

random effect of word inflection as well. The inclusion of these random effects allows us 

to account for variation that is due to word or speaker difference, variation that is less 

important to us theoretically than variation due to differences in levels of the fixed effects 

predictors. This effectively reduces the amount of variation that fixed effects can account 

for, making a larger effect size necessary for fixed effects to be significant. Additionally, 

using a multimodel averaging approach punishes (reduces) the factor coefficients. The 

multimodel inferencing approach means that a larger effect size is necessary for there to 

be statistical significance. However, like random forests, multimodel inference draws the 

focus of attention away from statistical significance given a single model and towards the 

predictiveness of a factor across models. However, ‘important’ predictors in random 

forests are often non-probable in the regression analysis. Why then use random forests at 

all? Aside from using random forests to select the best of several collinear factors 

(Schneider, 2014; Tagliamonte and Baayen, 2012), the random forests gave us a sense of 

the data before regression model building. For example, we saw that preceding TP and 

preceding JP often performed equally well, but that following TP often far outperformed 

following JP. We also saw that the difference between the two variations of speaker 

(speakers collapsed by year and speakers treated as separate individuals for each year 

they participated) was higher for children than for adults and that age differences were 
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more important for younger children than older children. If we were doing regression 

model comparisons, these patterns might not have been as obvious. Additionally, I 

presented random forests by grade for the child data. These figures allowed us to see the 

movement (or lack thereof) of factors over time for children. This gave us a more 

complete picture that an interaction term for age in the regression models, which gives us 

a better simplified summary picture. Both of these analysis types, when used in 

conjunction, provide us with a good sense of what is going on in the data. With language 

data, that is necessarily probabilistic and has variation that is driven by multiple similar 

processes, these techniques are helpful for the researcher and give a more complete 

picture for readers. 
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CHAPTER IV  

REDUCTION IN INTER-ADULT SPEECH 

 

4.1. Introduction 

This study examines polysemous grammatical words in inter-adult speech, that is, 

adults being interviewed by other adults. As in the corpus studies of child and child 

directed speech, I examine productions of am, are, had, has, have, is, was, and  were and 

contracted variants ’m, ’re, ’s, ’d and ’ve. I find, as in the speech of children and 

caregivers, probable context, particularly following transitional probability, increases the 

likelihood of word duration reduction, as do certain construction meanings. This study 

uses a large corpus to confirm the results found in the smaller Redford Corpus. 

4.2. Data and Methodology 

4.2.1. Data 

The Buckeye Corpus (Pitt et al., 2007) contains 40 interviews with native 

residents of Central Ohio. All speakers are white middle or working-class individuals. 

Speakers are balanced for age and gender in the corpus. Each interview lasts about an 

hour and speakers were told they were participating in a focus group about local issues. 

Sound files were force aligned and then hand-corrected by the corpus creators. Time 

stamps from the corpus data were used to calculate the durations used in the present study 

using Python. Tokens were limited to words occurring utterance medially and not 

occurring next to pauses or disfluencies such as um, uh, er, or other hesitations or word 
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re-starts. Therefore, pauses and disfluencies were not considered as independent variables 

for the Buckeye Corpus data. 

4.2.2. Dependent Variables 

4.2.2.1. Normalized Duration 

Normalized duration was calculated in the same manner as in the other studies 

(the length of the word divided by the length of the average syllable in the utterance). 

4.2.2.2. Contraction 

Contraction was a discrete DV: contraction or not. Contraction was only 

examined in places where it was possible, so examples were eliminated that had an is 

following a word ending in a sibilant such as forgiveness, phrase, lodge, Texas, this, 

which, etc. 

4.2.3. Independent Variables 

4.2.3.1. Probability and Construction Variables 

4.2.3.1.1. Probability 

Tokens were coded for preceding and following context probability, both joint 

and transitional, using frequencies from the COCA (Davies 2008-). Too many of the 

words neighboring the targets did not occur in the Redford Corpus to be able to compare 

the effects of Redford Corpus frequencies.  There are therefore four probability context 

variables to investigate: preceding joint, preceding transitional, following joint and 

following transitional probability. Probability measures are logarithmically transformed. 

Preceding transitional probability is a forward transitional probability, calculating how 

likely it is that have, is, was, etc. will occur after a particular word, given the frequency of 
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that particular word. Following transitional probability is a backward transitional 

probability, calculating how likely it is that have, is, was, etc. will occur before a 

particular word given the frequency of that particular word.  Table 18 below shows 

bigrams with particularly high and low joint and transitional probabilities. 

Table 18. Bigram probability examples from the Buckeye Corpus 

Probability 

measure 

High 

probability 

bigram 

Numerical 

value 

Low 

probability 

bigram 

Numerical 

value 

Preceding Joint it is -2.60673 Krushchev is -8.65321 

Following Joint is a -2.87876 are crummy -8.65321 

Preceding 

Transitional 

there is -0.23407 whether was -4.82295 

Following 

Transitional 

was born -0.06226 am during -4.98528 

 

4.2.3.1.2. Construction 

BE can occur in four different constructions: copula, future, passive or 

progressive. HAVE can be modal, possessive or perfect. Construction is investigated to 

see if there are any construction-specific effects of reduction beyond the specific 

following joint or transitional probability of the target instances.  

4.2.3.2. Speaker Variables 

4.2.3.2.1. Age and Gender 

The Buckeye Corpus is balanced for gender and age with two groups for each. 

There are twenty women and twenty men speakers in the corpus. There are twenty 

‘younger’ speakers and twenty ‘older’ speakers. Actual ages are not provided. As I do not 
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expect any developmental differences between older and younger adults, age (as well as 

gender) is a control variable for inter-adult data. 

4.2.3.2.2. Speaker 

Speaker is included as a random effect in following the mixed effects regression 

models used in the multimodel inferencing procedure. Each speaker (N=40) is one level 

in the variable. Speaker is also included in the random forest analyses that follow to 

determine whether and how much variability exists between speakers. 

4.2.3.2.3. Syllable and Contraction Rates 

For speaker syllable rate, instead of averaging syllable rate from every utterance 

per speaker in the corpus (as was down with the data from the Redford Corpus) syllable 

rates were averaged only from utterances containing a target word. This provided 87 - 

355 (mean 184.85) utterances to average per speaker, which is comparable or more than 

the total number of utterances for each text/speaker in the Redford Corpus (31 – 144 

utterances, mean = 78 for caregivers). 

All speakers in the Buckeye Corpus had very high contraction rates, as compared 

to speakers in the Redford Corpus. All 40 speakers from the Buckeye Corpus had 

contraction rates above 0.50. One particular contraction that contributed to the high rates 

of contraction was you know contracting to yknow. Including yknow as a contraction 

resulted in contraction rate ranges of 0.57 – 0.86, whereas without yknow rates were 

slightly lower (0.50 – 0.81). For speakers in the Redford Corpus, yknow was included as 

a contraction but there were very few speakers who used it and they did not use it often. 

This difference is one of genre and context (interview vs. story narration) and possibly 

also age. In any case, two different contraction rates were calculated in order to determine 
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which made more of a difference for reduction because contraction like yknow is in some 

ways substantively different than a contraction like it’s because it is a tag question and is 

clearly treated as a unit. Only in its tag question meaning can it be contracted (*yknow it 

to be true). 

4.2.3.3. Control Variables 

4.2.3.3.1. Quartile 

Word duration may vary as a function of position in the utterance. Just as for the 

Redford Corpus data, targets were coded as occurring in the first, second, third or fourth 

quartile of the utterance as a factor (non-numeric) predictor. Quartile is a control variable 

in the present study. I am interested in the effects of probability and speaker-based 

variability that happens when utterance quartile is statistically controlled. 

4.2.3.3.2. Stress Context 

Stress context is a control variable in the present study. Targets were coded for 

whether they were preceded or followed by a stressed syllable, as speakers may be more 

likely to reduce after a stressed syllable (Echols and Newport, 1992; Davis et al., 2000; 

Jusczyk et al., 1999; Young, 1991).  

4.2.3.3.3. Phonological Context 

Phonological context is a control variable in the present study. Targets were 

coded for whether they were preceded for followed by a consonant or vowel. 

4.2.3.3.4. Subject Noun Phrase 

Subject Noun Phrase Type is included as a control variable in the analyses below. 

This factor has three levels: personal pronoun (I, you, he, she, it, they, we) v. non-

personal pronoun (e. g. what, who, there, here) v. nominal noun phrase (e. g. my friend, a 
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house, the neighbor, etc.). Subject Noun Phrase Type is expected to be highly correlated 

with the preceding probability context variables. 

4.2.3.3.5. Priming 

For lemma priming (cf. section 3.3.2.1), the previous ten words were searched for 

an occurrence of the target, rather than any inflection of BE (for BE targets) or HAVE (for 

HAVE targets) as was done for the Redford Corpus data. This different implementation of 

a repetition priming variable was easier to code for automatic processing in Python, a 

necessity for the large sample size of the Buckeye Corpus dataset.  

4.2.4. Statistical Procedure 

Some independent variables such as stress context and probability context were 

potentially collinear, so random forest variable importance ranking was done for 

preceding contexts, following contexts and speaker- and word-based variables using the 

party() package (Horton et al. 2006a, Horton et al. 2006b, Strobl et al. 2007, Strobl et al. 

2008) in R. Variables that were ranked as important were tested for collinearity using the 

Psych() package (Revelle, 2014) in R and then non-collinear variables were tested for 

significance using multimodel inferencing using the MuMin() (Bartoń, 2013) and 

lmerTest() (Kuznetsova, 2014) packages in R. See section 3 for more details about this 

methodology. 
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4.3. Results 

4.3.1. Duration 

4.3.1.1. Word Distribution in Sample 

Words with a normalized duration of below 0.19 or above 3.4 were removed from 

the sample leaving 7,394 tokens. The number of remaining tokens for each word is 

depicted in Table 19 below, as well as the ranges for normalized duration and raw 

duration in milliseconds. 

Table 19. Word distribution and length ranges 

Word n Range in milliseconds Normalized range Mean of 

normalized values 

am 32 65.751 – 349.870 0.443 – 1.841 0.951 

are 729 28.950 – 548.383 0.201 – 2.124 0.616 

had 747 32.000 – 469.582 0.207 – 2.510 0.976 

has 273 55.837 – 893.854 0.397 – 3.136 1.195 

have 1,674 24.623 – 696.048 0.190 – 2.768 0.996 

is 1,129 32.292 – 558.000 0.211 – 2.979 0.867 

was 2,269 31.410 – 580.000 0.225 – 3.177 0.957 

were 541 34.151 – 407.329 0.196 – 2.248 0.694 

 

4.3.1.2. Random Forests 

Random forests were built using the {party} package (Horton et al. 2006a, Horton 

et al. 2006b, Strobl et al. 2007, Strobl et al. 2008) in R. Potential variables were ranked in 
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three groups: speaker and word specific variables, preceding context variables and 

following context variables. Only variables ranked above the absolute value of the lowest 

ranked variable (red line) have any real importance. Variables ranked as important were 

checked for collinearity and non-collinear variables were then used in the multimodel 

analyses that follow. In the random forest analyses, all words (BE and HAVE) were 

collapsed and included. 

 The first variable group is word and speaker-specific variables, as depicted in the 

variable importance ranking in Figure 61. Quartile is included in this group of variables, 

as it is neither a preceding nor following context predictor. Word is by far the most 

important variable, and will therefore be included as a random factor in the multimodel 

analyses to follow. Speaker is also somewhat important and will also be included as a 

random factor. The next two highest ranked variables are only barely ranked as 

important: Quartile and Speaker Contraction Rate. These variables ended up being 

significant in the Redford Corpus dataset. In Figure 61 below we see the two different 

kinds of speaker contraction rate: contr.rate and contr.rate.yknow. Because the 

contraction rate including yknow is ranked higher than the one without, this indicates that 

for word shortening, more contraction means greater effect, and the kind of contraction 

does not matter. 

Figure 62 shows the variable importance ranking for preceding context variables 

of duration in the Buckeye Corpus. The probability context variables are ranked highest, 

with Joint Probability outranking Transitional Probability. We saw this same ranking in 

child-directed speech (but not child speech) in the Redford Corpus dataset. Noun Phrase 

type, Preceding Stress and the priming variable Preceding Contraction were also ranked 
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as important. However, the priming variable examining a preceding occurrence of a 

target in the ten words preceding the target was not ranked as important. 

Figure 63 shows the variable importance ranking for following context variables 

for duration using the Buckeye Corpus. Following Transitional Probability was ranked 

highly, just as it was in child-directed and child speech in the Redford Corpus. 

Construction was ranked highly, but its influence is increased by the difference between 

BE words and HAVE words which are part of different constructions. Following Stress 

Context is ranked as unimportant. 

 

 

Figure 61. Random forest importance ranking of speaker-based and word-based factors 

for normalized word duration in IAS 
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Figure 62. Random forest importance ranking of preceding context factors for normalized 

word duration in IAS 

 



 

174 

 

 

Figure 63. Random forest importance ranking of following context factors for normalized 

word duration in IAS 

4.3.1.3. Multimodel Inferencing Full Model 

Because we want to compare results of inter-adult speech to the results presented 

in Chapter III for child and child-directed speech, the main research questions for this 

section are: 

Q14. What variables influence word shortening for adult speakers in a casual setting? Are 

these the same variables that influence word shortening for children and adults in a story 

narration task? 

Q15. With the large Buckeye Corpus and a larger dataset, do variables reach significance 

that were not significant for the Redford Corpus data? 
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 Multimodel inferencing was done for duration first on all words together then on 

inflections of BE and inflections of HAVE. Factors that were ranked as important, and 

were not collinear, were used to build a model and then a backward selection procedure 

was used until all variables had a cumulative probability of at least 0.40. Words in highly 

probable following contexts, as measured by transitional probability, had shorter 

normalized durations. Words that follow stressed syllables are shorter than words that 

follow unstressed syllables, as predicted, and as seen in child-directed speech. Higher 

joint probability, either preceding or following, results in longer word durations. This 

supports results seen in Bell et al. (2003), but not in the child-directed speech from the 

Redford Corpus. It may be that many data points are necessary before the lengthening 

effect of joint probability appears. Additionally, while not highly correlated in the 

Buckeye Corpus dataset, joint probability and transitional probability were often highly 

collinear in the Redford Corpus dataset, meaning the effects of joint probability could not 

always reliably be explored. The relationship between joint and transitional probability is 

explored further below. Next, there are two factors that show an effect of contraction on 

duration, and they tell a complex story. Speakers who contract more shorten their word 

durations more. This is the opposite effect of speaker contraction rate that we saw in 

child-directed speech and the speech of older children. However, the contraction rates for 

speakers in the Redford Corpus ranged from 0.0 to 1.0 for kids and 0.0 to 0.77 for 

caregivers. The contraction rates for speakers in the Buckeye Corpus are in a much 

narrower range, only 0.57 to 0.86. The range of contraction rates for these speakers may 

be too narrow to see the same contraction rate effect we saw in for the speakers in the 

Redford Corpus. However, when examining the 10 words before the target, if one of 
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those words is contracted, the target word is longer. This is consistent with the idea that 

speakers have a strategy to save effort on the production of grammatical words, but the 

effect is seen per utterance, rather than by speaker. Because speakers are contracting so 

often, the effect does not emerge from their specific contraction rates. However, for the 

speakers in the Redford Corpus, preceding contraction never was ranked highly in the 

random forest analyses for that data. 

 

Table 20. IAS Duration Multimodel Inferencing Results 

Predictor β̅ σ̅ LoCI HiCI p CP 

(Intercept) 0.976 0.123 0.734 1.218 0.000 NA 

Following Transitional 

Probability -0.130 0.007 -0.144 -0.116 0.000 1 

Preceding Contraction - Y 0.054 0.009 0.037 0.071 0.000 1 

Preceding Stress Context - Y -0.059 0.010 -0.078 -0.040 0.000 1 

Preceding Joint Probability 0.042 0.007 0.028 0.057 0.000 1 

Quartile: 

First (Reference Level)      1 

Second 0.005 0.010 -0.014 0.023 0.632  

Third 0.018 0.010 -0.002 0.039 0.078  

Fourth 0.073 0.014 0.046 0.100 0.000  

Preceding Transitional 

Probability 0.056 0.029 -0.001 0.113 0.055 1 

Pre JP * Pre TP 0.017 0.005 0.007 0.027 0.001 0.99 

Following Joint Probability 0.007 0.005 -0.002 0.016 0.138 0.82 

Speaker Contraction Rate -0.135 0.139 -0.407 0.138 0.333 0.63 

Note: reported values are coefficients with shrinkage and adjusted standard error, n = 

7394. 
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Both models presented in Table 21 are reasonable models, containing following 

joint and transitional probability, preceding contraction, preceding stress context, 

utterance quartile, preceding joint probability and following joint probability and their 

interaction. Additional factors ranked as important in the random forest analyses all had 

cumulative probabilities under 0.50, showing they are not likely to make a substantial 

contribution to word duration difference. Speaker gender also made no substantial 

contribution to word duration difference in child-directed speech and were removed in 

the backwards elimination procedure. 

Table 21. Models of IAS duration with a Δ below 2 

Model factors k df log likelihood AICc Δ w 

123456789 9 15 -2315.08 4660.22 0 0.52 

23456789 8 14 -2316.63 4661.33 1.11 0.3 

(Null) 0 4 -2591.05 5190.1 529.88 0 

Note: Cutoff: Δ < 2, 1 = Speaker Contraction Rate, 2 = Following JP, 3 = Following TP, 

4 = Preceding Contraction, 5 = Preceding JP, 6 = Preceding Stress, 7 = Preceding TP, 8 = 

Quartile, 0 = Preceding JP * Preceding TP 

 

 Higher following transitional probability is associated with shorter durations but 

higher following joint probability is associated with longer durations. Why would this be 

the case? In Figure 64, we see that the lengthening effect (red area) of high joint 

probability seems to be restricted to cases where there is low transitional probability. 

Some specific bigrams that make up this area are are and, was and and had that. These 

cases have high joint probability as both words in the bigram are really frequent. 

However, they have low transitional probability because there is nothing about the word 

and or that that would lead a speaker to predict that any particular word would occur 
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before it. There are too many possibilities, so most bigrams containing and or that would 

have low transitional probability, even when they have high joint probability. We also see 

that, particularly for are and and was and, that these are generally cases of ellipsis, in 

sentences such as “it doesn’t really matter what sex they are and they treat them well” or 

“uh he was quite a bit younger than i was and i knew” and even though there is high joint 

probability of the bigrams, these words do not form a grammatical unit. Targets that were 

cases of ellipsis were eliminated from the dataset for the Redford Corpus, so that may be 

another reason the lengthening effect of high joint probability was not found. In cases of 

had that, it would be possible that that is a relativizer, but for all the tokens measured, 

that was a determiner in utterances like “yeah my roommate actually had that teacher 

and”. For these cases, the lengthening cannot be due to ellipsis, but it is still the case that 

that is so general that it does not give clues as to what other words should occur with it in 

bigrams. 

 High Preceding Joint Probability and Transitional Probability also had overall 

lengthening effects. In Figure 65 below we see that the effect is a little complicated. 

There is generally not a strong effect of transitional probability or joint probability except 

for a sweet spot where both are high (although not in the very top range for joint 

probability), where there is shortening, indicated by a bright green area. The bigrams that 

make up this sweet spot are I am, it is and it was. The first two bigrams are incredibly 

likely to be contracted (as explored in section 4.3.2.3 below). These bigrams have both 

high JP and TP and are quite short. 
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Figure 64. Following Joint Probability and Transitional Probability on Duration for IAS 
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Figure 65. Preceding Joint Probability and Transitional Probability on Duration for IAS 

 

When we return to our primary research questions for this section, we see that 

word shortening results from the Buckeye Corpus are remarkably similar to results from 

the Redford Corpus.  

Q14. What variables influence word shortening for adult speakers in a casual setting? Are 

these the same variables that influence word shortening for children and adults in a story 

narration task? 

Word shortening was primarily influenced by the same variables in both the Redford 

Corpus and Buckeye Corpus data, showing that results in the smaller dataset were 
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confirmed by the similar results from the larger dataset
10

. High Following Transitional 

Probability and the occurrence of a stressed syllable before the target both resulted in 

word shortening in child, child-directed and inter-adult speech. High Speaker Contraction 

Rate was a significant variable influencing the lengthening of function word duration in 

the Redford Corpus. In the Buckeye Corpus, high speaker contraction rate had a medium 

high cumulative probability (0.63) but did not reach significance. In the discussion above, 

this difference was attributed to the much higher rates of contraction for the speakers in 

the Buckeye Corpus, showing either a genre difference, audience difference (child-

directed vs. adult-directed) or a speaker-specific differences. In the discussion of the 

Redford Corpus data, I argued that speakers were choosing an overall strategy for 

information compression: word shortening or contraction. If this is really the case, then 

everyone in the Buckeye Corpus has chosen contraction as their information compression 

strategy. However, we do see a significant lengthening effect for Preceding Contraction 

instead, an effect not found for the Redford Corpus data. If speakers have recently 

contracted, then they are likely to lengthen targets, showing a more local, rather than 

overall, information compression strategy. It is possible that with more data, this local 

information compression effect would have appeared in the Redford Corpus as well, 

particularly for speakers with high contraction rates. 

Q15. With the large Buckeye Corpus and a larger dataset, do variables reach significance 

that were not significant for the Redford Corpus data? 

                                                 
10

 Some variables, such as age and following pause, were only relevant for the Redford Corpus dataset. The 

speakers in the Buckeye Corpus were all adults, speaking to adults. Targets preceding or following a pause 

were eliminated from the Buckeye Corpus dataset. 
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Yes. Preceding context probability variables (Preceding TP and Preceding JP) were 

significant for the Buckeye Corpus dataset but not for the Redford Corpus dataset. 

Although preceding context variables were ranked as important in the random forest 

variable importance rankings, they did not end up being significant or probable in the 

multimodel regression analyses. It is possible that a larger dataset is needed for preceding 

context probability to have a strong enough effect. In the Buckeye corpus dataset we also 

saw significant lengthening in final quartile. Utterance quartile was ranked as probable, 

but not significant, for the child data in the Redford Corpus and as neither probable nor 

significant for the child-directed data in the Redford Corpus, despite being ranked as 

important in the random forest variable importance rankings. Again, it is possible that 

greater power is needed to see the effect of utterance final lengthening. 

4.3.1.4. Multimodel Inferencing – Word Specific Results: BE 

The primary research questions for this section are: 

Q16. Are there construction specific effects for word shortening in the Buckeye Corpus 

data? 

Q17. Are there word-specific effects for word shortening? 

In order to answer these questions, I examine first the transcriptions of BE words 

as transcribed in the Buckeye Corpus and the distribution of those transcriptions. I then 

present a multimodel inferencing output for all BE instances in the corpus. No word-

specific models were notably different from the collapsed BE model, and so no separate 

analyses are presented here. 
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In the Buckeye Corpus there are 86 different transcriptions of was. Figure 66 

shows the distribution of transcriptions that occur 20 times or more. The citation form of 

[w ah z] is by far the most common, but reduced versions abound. Common reduced 

transcriptions show that often the initial glide is omitted, the final fricative is devoiced 

and other lax vowels are used.  

 

 

Figure 66. Distribution of was phonemic transcriptions in the Buckeye Corpus 
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In the Buckeye Corpus there are 25 different transcriptions of is. Figure 67 shows 

the distribution of transcriptions that occur 10 times or more. The citation form of [ih z] 

is by far the most common. Common reduced transcriptions show that often the final 

fricative is devoiced or the vowel is centralized. There are several instances where the 

transcription of full (non-contracted) is is [z] or [s], 35 and 17 times respectively. When 

listening to these specific instances in the corpus, it seems like an uncontracted variant 

was the speakers’ intention, however there was simply a great deal of undershoot. These 

instances are not restricted to a handful of speakers, most speakers produced at least one 

of these 52 tokens. However, it may be the case that the is (as opposed to ’s) of the 

transcriptions was somewhat influenced by knowledge of when contraction is likely or 

unlikely. Most of these instances are preceded by nouns, rather than pronouns (although 

there are a few cases of there is or she is) and many are preceded by words that preclude 

contraction such as Texas is, else is, this is, place is, which is, yknow is. Because it a rule 

of (written) Standard American English that contraction cannot happen with these words, 

the listener (transcriber) then hears is even though what is produced is [s] or [z]. 

In the Buckeye Corpus there are 25 different transcriptions of are. Figure 68 

shows the distribution of transcriptions that occur 10 times or more. The citation form of 

[aa r] is not the most common. The most common form is the vowel [er] which in 

Buckeye’s phonetic alphabet represents an unstressed rhotic vowel. Other forms have 

vowel centralization and/or lack the [r]. 
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Figure 67. Distribution of is phonemic transcriptions in the Buckeye Corpus 
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Figure 68. Distribution of are phonemic transcriptions in the Buckeye Corpus 

 

In the Buckeye Corpus there are 34 different transcriptions of were, but most only 

occur once. Figure 69 shows the distribution of transcriptions that occur 5 times or more. 

The most common form is the glide [w] with the unstressed rhotic vowel [er]. The next 

most common form lacks the glide and only a few forms are transcribed with a full glide, 

vowel and approximate. 
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Figure 69. Distribution of were phonemic transcriptions in the Buckeye Corpus 

 

Below, Table 22 presents the multimodel output for duration of BE words in the 

Buckeye Corpus. Fewer factors have high cumulative probability or significance than 

with the all words dataset. Construction, as with child and child-directed speech, had no 

probable effect on BE duration. The only significant variables were Following 

Transitional Probability, where high probability is associated with shorter targets, 

Preceding Contraction, where occurrence of contraction in the preceding ten words is 

associated with longer targets and Utterance Quartile, where targets in the final quartile 

of an utterance are longer than targets in preceding quartiles. The effects of these 
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variables are all in the same direction in the BE dataset as for the full dataset. Three more 

variables have high cumulative probability but did not reach significance. High Preceding 

Joint Probability is associated with longer targets (as with the full dataset), although 

neither Preceding Transitional Probability, nor an interaction between the preceding 

context variables had cumulative probability over 0.40. High Speaker Contraction Rate is 

associated with shorter targets and when a target follows a stressed syllable it tends to be 

shorter, as is the case for the all words dataset. 

Table 22. IAS Duration Multimodel Inferencing Results: BE 

Predictor β̅ σ̅ LoCI HiCI p CP 

(Intercept) 0.774 0.128 0.523 1.024 0.000 NA 

Following Transitional 

Probability -0.100 0.008 -0.116 -0.084 0.000 1 

Preceding Contraction - Y 0.059 0.011 0.038 0.079 0.000 1 

Quartile: 

First (Reference Level)      0.97 

Second -0.003 0.011 -0.026 0.019 0.764  

Third 0.007 0.012 -0.017 0.031 0.543  

Fourth 0.053 0.019 0.016 0.089 0.005  

Preceding Joint Probability 0.005 0.005 -0.005 0.015 0.287 0.68 

Speaker Contraction Rate -0.159 0.148 -0.449 0.130 0.280 0.68 

Preceding Stress Context - Y -0.013 0.013 -0.040 0.013 0.323 0.65 

Note: reported values are coefficients with shrinkage and adjusted standard error, n = 

4700. 

Table 23 presents the model comparison for the Buckeye BE dataset. Three 

models have a Δ below 2 and all perform much better than the null model. The best 

model includes all of the predictors, and the next best models include all predictors but 

Speaker Contraction Rate and Preceding Stress, respectively.  
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Table 23. Models of IAS duration with a Δ below 2 

Model factors k df log likelihood AICc Δ w 

123456 6 12 -1240.36 2504.79 0 0.32 

23456 5 11 -1242.15 2506.36 1.57 0.15 

12346 5 11 -1242.26 2506.57 1.78 0.13 

(Null) 0 4 -1349.50 2707.01 202.22 0 

Note: Cutoff: Δ < 2, 1 = Speaker Contraction Rate, 2 = Following TP, 3 = Preceding 

Contraction, 4 = Preceding JP, 5 = Preceding Stress, 6 = Quartile 

 

We now return to the research questions specified at the beginning of this section: 

Q16. Are there construction specific effects for word shortening in the Buckeye Corpus 

data? 

No. Just as with child speech and child-directed speech in the Redford Corpus, there were 

no word shortening effects of construction for BE in the Buckeye Corpus. Therefore we 

can conclude that the lack of construction-specific shortening in the Redford Corpus was 

not due to a low n, but because speakers do not utilize word length to signal construction 

meaning differences. In the Redford Corpus, contraction rates were significantly different 

for different construction meanings and so we can examine this effect with the larger 

Buckeye Corpus sample in section 4.3.2.3. 

Q17. Are there word-specific effects for word shortening? 

For one BE word (am) there were too few tokens to do a separate analysis. For all other 

BE words (are, is, was, were), there were no substantive differences between word-

specific analyses and the full, collapsed analysis. For some of the words, fewer variables 

were significant, but for none of the words were additional variables significant. It does 
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not seem that any particular word is driving the effects shown in the full analysis. 

However, it seems that some words are more likely to undergo phonemic changes than 

others. For is and was, the citation forms were the most frequent found in the corpus, 

although there were many variants. For are and were, reduced (non-citation forms) were 

more frequent than citation forms. These words contain [r] and speakers were more likely 

to produce these function words with an unstressed vocalic [r] than a vowel and [r]. 

 

4.3.1.5. Multimodel Inferencing – Word Specific Results: HAVE 

The primary research questions for this section are: 

Q18. Are there construction specific effects for word shortening in the Buckeye Corpus 

data? 

Q19. Are there word-specific effects for word shortening? 

In order to answer these questions, I examine first the transcriptions of HAVE words as 

transcribed in the Buckeye Corpus and the distribution of those transcriptions. I then 

present a multimodel inferencing output for all HAVE instances in the corpus. No word-

specific models were notably different from the collapsed HAVE model, and so no 

separate analyses are presented here. 

In the Buckeye Corpus there are 40 different transcriptions of had, but most only 

occur once. Figure 70 shows the distribution of transcriptions that occur 5 times or more. 

The citation form [hh ae d] is the most common, but reduced commonly forms have a 

deleted initial, centralized vowel, or flap in place of the final stop or deleted final stops. 
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Figure 70. Distribution of had phonemic transcriptions in the Buckeye Corpus 

 

In the Buckeye Corpus there are 29 different transcriptions of has, but most only 

occur once. Figure 71 shows the distribution of transcriptions that occur 5 times or more. 

The citation form [hh ae z] is the most common, but reduced commonly forms have a 

deleted initial, centralized vowel, or devoicing of the final fricative. 
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Figure 71. Distribution of has phonemic transcriptions in the Buckeye Corpus 

 

In the Buckeye Corpus there are 70 different transcriptions of have, but most only 

occur once. Figure 72 shows the distribution of transcriptions that occur 10 times or 

more. The citation form [hh ae v] is the most common, but reduced commonly forms 

have a deleted initial, centralized vowel, or devoicing of the final fricative or deletion of 

the final fricative. 
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Figure 72. Distribution of have phonemic transcriptions in the Buckeye Corpus 

 

Table 24 below shows the results for word shortening in the Buckeye Corpus for 

HAVE. There is a clear effect of construction, with perfect auxiliaries being shorter than 

possessive verbs and modal semi-auxiliaries, but possessive verbs and model semi-

auxiliaries showing no significant difference. As with BE tokens, high Following 

Transitional Probability or the presence of a stressed syllable preceding the target is 

associated with shorter targets. A target in the final utterance quartile is significantly 

lengthened compared to targets earlier in the utterance and high speaker contraction rate 

is associated with longer durations. Unlike with BE data or all data combined, preceding 
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contraction had no probable effect on duration. This indicates that either more data is 

necessary for this effect to show up as significant, or that HAVE tokens do not seem to be 

affected by preceding contraction, perhaps because they cannot contract, only shorten. In 

the Redford Corpus, HAVE words’ duration was not affected by high speaker contraction 

rate, even though BE words were, in both child and child-directed speech. 

Table 24. IAS Duration Multimodel Inferencing Results for HAVE 

Predictor β̅ σ̅ LoCI HiCI p CP 

(Intercept) 1.137 0.156 0.830 1.444 0.000 NA 

Construction:      1 

Possessive (reference level)       

Modal -0.018 0.018 -0.054 0.018 0.339  

Perfect -0.324 0.024 -0.371 -0.277 0.000  

Following Transitional Probability -0.072 0.012 -0.096 -0.048 0.000 1 

Preceding Stress Context - Y -0.108 0.016 -0.139 -0.077 0.000 1 

Quartile: 

First (Reference Level)      1 

Second 0.017 0.017 -0.016 0.050 0.308  

Third 0.029 0.018 -0.006 0.065 0.107  

Fourth 0.117 0.024 0.070 0.164 0.000  

Speaker Contraction Rate -0.142 0.195 -0.525 0.241 0.468 0.51 

Note: reported values are coefficients with shrinkage and adjusted standard error, n = 

2694. 

 Table 25 shows that the best two models have the full weight of all models 

combined. They differ only in their inclusion or exclusion of Speaker Contraction Rate as 

a factor. The other factors however, are highly likely to be influential in HAVE word 

shortening. 
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Table 25. Models of IAS duration with a Δ below 2 for HAVE 

Model factors k df log likelihood AICc Δ w 

12345 5 12 -946.96 1918.03 0 0.51 

1345 4 11 -947.99 1918.09 0.06 0.49 

(Null) 0 4 -1189.44 2386.90 468.87 0 

Note: Cutoff: Δ < 2, 1 = Construction, 2 = Speaker Contraction Rate, 3 = Following TP, 4 

= Preceding Stress, 5 = Quartile 

 

In the HAVE results for the Buckeye Corpus we saw results that paralleled those 

in the smaller Redford Corpus. We can now turn to the primary research questions for 

this section. 

Q18. Are there construction specific effects for word shortening in the Buckeye Corpus 

data? 

Yes. As with child and child-directed speech, perfect auxiliaries were significantly 

shorter than possessive, and in the Buckeye Corpus, perfect auxiliaries were also shorter 

than modal semi-auxiliaries. Additionally, as with the Redford Corpus data, Following 

Transitional Probability was significant, as was preceding stressed syllable. As with the 

child data, there was a significant difference between targets in the final quartile of an 

utterance and targets in the first three quartiles of an utterance. 

Q19. Are there word-specific effects for word shortening? 

No. Have, has and had all pattern similarly. Citation forms were always the most 

frequent form and no word-specific models showed any differences from the collapsed 

HAVE model. All HAVE words show the word shortening for perfect auxiliaries. 
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4.3.2. Contraction 

4.3.2.1. Word Distribution in Sample 

 The above examination of word duration in the Buckeye Corpus confirmed results 

from the smaller Redford Corpus: Perfect auxiliaries are shorter than other variants of 

HAVE, high following transitional probability results in shorter words. However, the 

much larger n of data points allowed us to see some effects expected from the literature, 

but not fully realized in the smaller number of examples in the Redford Corpus, for 

instance, high joint probability can lead to longer words (Bell et al., 2003). In the 

examination of contraction below, there are much higher ns for the Buckeye Corpus, 

allowing us to confirm results from the Redford Corpus and also to examine perfect 

construction contraction. Table 26 below shows the distribution of contraction by lemma 

in the Buckeye Corpus. 

In the Redford Corpus, there were too few instances of perfect constructions that 

were contracted to examine contraction in a model. In the Buckeye Corpus, there are 

overall more instances of the perfect construction, and therefore more instances of 

contraction, resulting in enough data to do a quantitative analysis. In Figure 73 below, we 

see rates of perfect construction contraction by speaker. In this figure, we see that all 

speakers vary in their production of perfect HAVE, producing both contracted and non-

contracted variants. We also see that speakers contract more often than they produce full 

(non-contracted) forms. 
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Table 26. Contraction by Lemma in the Buckeye Corpus 

Word Contracted Non-Contracted Total 

am 1008 32 1040 

are 1478 502 1980 

had 55 83 138 

has 319 73 392 

have 722 226 948 

is 4,887 921 5,808 

Total 8,469 1,837 10,306 

 

 

Figure 73. IAS Contraction rate of Perfect HAVE by Speaker 
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 In addition to more examples of perfect constructions than in the Redford Corpus, 

there are many more examples of BE contraction in the Buckeye Corpus. Similar results 

across the analyses of the Redford Corpus and Buckeye Corpus would allow us to feel 

confident that the smaller dataset is showing a wider pattern. Figure 74 shows contraction 

rates of BE by speaker in the Buckeye Corpus. Like the adult and child speakers in the 

Redford Corpus, speakers in the Buckeye Corpus tend to contract more than they produce 

non-contracted forms. Because there is about ten times more contraction data in the 

Buckeye Corpus, we also see that all the speakers vary in their production of contracted 

and non-contracted variants. In the Redford Corpus, there were some instances of too few 

(one) variants per speaker and the speaker showed only contraction or non-contraction. In 

addition, a couple of the children produced 20~30 potentially contractible variants but 

contracted all of them. 

4.3.2.2. Random Forests 

In the random forests variable importance rankings below, the most important variables 

for contraction overall are clear. The top ranking variables were checked for collinearity 

for specific subsets before conduction multimodel inferencing. Variables that were 

collinear at r = 0.5 or higher were not included. In Figure 75, we see that the quartile that 

a word form appears in also has a important effect on its contraction. Figure 76 shows 

that more contraction occurs earlier in an utterance and proportionally more full forms 

occur as the utterance continues. However, the overall rate of contraction is so high that 

the lowest proportion of contracted forms is only about 50% in the fourth quartile. 
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Figure 74. IAS Contraction rate of BE by Speaker 

 

The variable Lemma is highly ranked, meaning that some BE and HAVE 

inflections (am, are, had, has, have, is) contract more often than others. As there are 

some independent variables that apply to only one word form or another, separate 

multimodel analyses are presented below for each word (BE, HAVE) and each inflection 

(am, are, is, had, has, have). Speaker is also highly ranked and will be a random effect in 

each of the regression models that follow. Speaker Contraction Rate is significant, and 

unlike for the duration random forests Speaker Contraction Rate that does not include 

yknow as a contraction is more predictive than Speaker Contraction Rate that does 

include yknow as a contraction. This obviously makes sense as the contraction DVs for 
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this analysis are only for BE and HAVE, and not for yknow or any other contractions. As 

the Contraction Rate IVs result in different levels of predictiveness, it seems that 

contraction of yknow is a different class of contraction. Speakers who contract yknow 

more (resulting in a different rate for contr.rate and contr.rate.yknow) do not necessarily 

contract HAVE or BE more. In the variable importance ranking, we also see that Local 

Syllable Rate is ranked higher than Average Syllable Rate, meaning the speed at which a 

person is talking makes more difference than their overall talking rate in predicting 

contraction. Finally, we see that age is ranked as important, but barely. 

 

Figure 75. Random forest importance ranking of preceding context factors for contraction 

in IAS 
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Figure 76. IAS Contraction by Utterance Quartile 

 Figure 77 below shows the importance of preceding context variables. Preceding 

contraction in the ten words preceding the target is important in predicting contraction of 

the target. Preceding Joint Probability and Preceding Noun Phrase Type are both ranked 

as important, with preceding JP being ranked as slightly more important (these variables 

are highly collinear for each of the data subsets). Bigrams with high joint probability in 
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the Buckeye Corpus include it IS (-2.606), that IS (-2.606), I AM (-2.963) there IS (-

3.097), you ARE (-3.139), he IS (-3.141), they ARE (-3.143), we ARE (-3.180) and I 

HAVE (-3.209). Figure 78 below shows the distribution of contraction proportions for 

different NP types for BE. Clearly, targets following personal pronouns are much more 

likely to contract. The random forest variable importance ranking also shows that 

Preceding Transitional Probability is important. Bigrams with high transitional 

probability in the Buckeye Corpus include there IS (-0.234), it IS (-0.289), they ARE (-

0.498) we ARE (-0.539), might HAVE (-0.548), homosexuality IS (-0.584), must HAVE (-

0.584), there ARE (-0.596) and what IS (-0.612). Several of these bigrams have both high 

joint probability and transitional probability. 

 

Figure 77. Random forest importance ranking of preceding context factors for contraction 

in IAS 
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Figure 78. IAS Contraction Rate by NP Type for BE 

 Figure 79 below shows the variable importance ranking for the following context 

factors on contraction in the Buckeye corpus. Clearly Following Transitional Probability 

is the highest ranking factor, while Following Joint Probability, Following Stress and 

Construction Type are important, but less so. Examples of bigrams with high transitional 

probability include IS happening (-0.064), AM sorry (-0.093), HAVE been (-0.163) HAVE 

gotten (-0.201), AM glad (-0.240), HAS been (-0.335), IS ridiculous (-0.337), HAVE seen 

(-0.343) and HAD grown (-0.354).  
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Figure 79. Random forest importance ranking of following context factors for contraction 

in IAS 

 

4.3.2.3. Multimodel Inferencing – Word Specific Results: BE 

 

4.3.2.3.1. All BE Data Collapsed 

This section examines the influences on contraction for inflections of BE: is, am 

and are. The main research questions for this section are: 
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Q20. Is BE contraction influenced by the same factors as BE contraction in the Redford 

Corpus? 

Q21. Because there are enough tokens of each inflection of BE (is, are, am), we can 

investigate particularities of the individual word forms. Are there word-specific 

characteristics for contraction? 

 

 Table 27 below presents the multimodel output for contraction of BE (that is, am, 

are, and is). Positive values of coefficients are associated with more contraction, negative 

values are associated with less contraction. Several factors have a cumulative probability 

of one, meaning they are extremely likely to influence contraction. First, we see that 

contraction begets contraction. A speaker with a high overall rate of contraction is highly 

likely to contract in a given instance, if a speaker has contracted HAVE or BE in the 

previous ten words, they are likely to contract again. The inflections am, are, and is are 

associated with different contraction rates. Am is extremely likely to contract, is less so 

and are even less so. In model testing when is was used as the reference level for this 

variable, are contracted significantly less than is. Construction Type is also highly 

predictive of contraction with both the future and progressive constructions being 

associated with higher rates of contraction than the copula construction. The passive 

construction does not differ significantly than the copula construction. High following 

transitional probability and high preceding joint probability are also associated with high 

levels of contraction, meaning the more probable the context, the more likely contraction 

is to occur. The final variable with a cumulative probability of one is Utterance Quartile. 
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The highest rates of contraction are likely to occur in the first quartile of an utterance. 

Each following quartile is less likely to have contracted forms than the quartile preceding. 

Additionally, as seen in Figure 76 above, BE and HAVE are much more likely to occur in 

the first quartile of an utterance than each subsequent quartile. Speaker Syllable Rate also 

has a very high cumulative probability (0.99), and before shrinkage this factor had a 

positive coefficient showing that higher syllable rates are associated with more 

contraction, so the slower a speaker produced an utterance, the more likely they were to 

contract. The last factor that has some predictiveness is the following stress context. 

When the syllable following the target is stressed, the target is more likely to be 

contracted than when the following syllable is unstressed. Factors that did not achieve 

high cumulative probability, and are therefore unlikely to be predictive for contraction 

are Following Joint Probability and Speaker Age. 

Model rankings for BE contraction are presented Table 28 below. There is one 

clear best model accounting for most of the model weight. The next best model has a 

delta below 2 (2.15) and accounts for most of the remaining weight (w = 0.23). All of the 

factors included in the model are important and there is no model using this set of 

predictors that comes in a close second. In this case, a traditional step-wise model 

selection approach would come up with the same model ranked highest in the multimodel 

output procedure (but in essence assign it 100% probability). 
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Table 27. IAS Contraction of BE Multimodel Inferencing Results 

Predictor β̅ σ̅ LoCI HiCI p CP 

(Intercept) 1.582 0.049 1.485 1.679 0.000 NA 

Speaker Contraction Rate 0.306 0.063 0.182 0.429 0.000 1 

Preceding Contraction - Y 0.618 0.009 0.600 0.637 0.000 1 

Word Form: 

AM (Reference Level) 

     

1 

ARE -0.108 0.009 -0.126 -0.090 0.000  

IS -0.037 0.009 -0.055 -0.019 0.000  

Construction:      1 

Copula (reference level)       

Future 0.056 0.013 0.031 0.080 0.000  

Passive 0.029 0.020 -0.011 0.069 0.151  

Progressive 0.054 0.008 0.038 0.070 0.000  

Following Transitional Probability 0.035 0.005 0.025 0.045 0.000 1 

Preceding Joint Probability 0.147 0.003 0.141 0.152 0.000 1 

Quartile: 

First (Reference Level) 

     

1 

Second -0.016 0.006 -0.028 -0.005 0.005  

Third -0.037 0.007 -0.051 -0.023 0.000  

Fourth -0.097 0.011 -0.119 -0.075 0.000  

Speaker Syllable Rate 0.000 0.000 0.000 0.000 0.001 0.99 

Following Stress Context - Y 0.007 0.008 -0.009 0.023 0.377 0.84 

Note: reported values are coefficients with shrinkage and adjusted standard error, n = 

8401. 
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Table 28. Models of IAS contraction of BE with a Δ below 2 

Model factors k df log likelihood AICc Δ w 

123456789 9 17 836.34 -1638.61 0 0.69 

(Null) 0 3 -3731.3 7468.61 9107.22 0 

Note: Cutoff: Δ < 2, 1 = Construction, 2 = Speaker Contraction Rate, 3 = Lemma, 4 = 

Following Stress, 5 = Following TP, 6 = Preceding Contraction, 7 = Preceding JP, 8 = 

Quartile, 9 = Speaker Syllable Rate 

 

4.3.2.3.2. is-’s 

 

 Table 29 shows the multimodel inferencing results for contraction of is in the 

Buckeye Corpus. As with BE contraction, contraction of one of the ten preceding words 

results in a higher likelihood of contraction of the target. When the subject noun phrase is 

a non-personal pronoun (there, what, who, everyone, everybody, here, nobody, nowhere, 

etc.), there is not a significant difference in rates of contraction than when the subject NP 

is a nominal. Targets following subject NPs that are personal pronouns (he, it, she), are 

more likely to contract. Targets in highly probable contexts (with Following Transitional 

Probability and Preceding Joint Probability) are more likely to contract. However, targets 

with high Following Joint Probability are actually significantly less likely to contract 

(cumulative probability = 0.92). Targets in the first quartile of an utterance are more 

likely to contract than in any later quartile. Targets in the final quartile of an utterance are 

the least likely to contract. As there are significantly more targets in the first quartile, 

decreasing in each subsequent quartile, this also means that targets in the most probable 

context, as measured by quartile, are also the targets most likely to contract. This is an 

additional kind of context probability beyond bigram probability that affects contraction. 

Speakers who have high contraction rates generally are significantly more likely to 

contract. Construction Type also has a high cumulative probability (0.99), with the 
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progressive construction being associated with much higher rates of contraction than the 

copula construction. The passive and future constructions do not have significantly 

different rates of contraction from the copula construction. Targets followed by a stressed 

syllable are more likely to contract than targets followed by an unstressed syllable. 

Finally, the last factor with a cumulative probability over 0.5 is Syllable Rate, with 

utterances produced at a higher (slower) rate associated with more contraction. 

 The model rankings for IS contraction are presented in Table 30 below. The best 

performing model has a very high weight of 0.56. This model includes all factors. The 

next best model includes all factors except for syllable rate. Both of these models 

reasonably account for the data. 

4.3.2.3.3. are-’re 

Although there were some instances of are contracting after a non-personal 

pronoun target, such as there’re and where’re, these were infrequent, so are contraction 

was only examined in the context of personal pronoun + ARE. This meant that there were 

only a few different contexts where are contraction could be examined (n = 1554). The 

preceding bigram joint probabilities for the are-’re data subset are you ARE (-3.139), they 

ARE (-3.143) and we ARE (-3.180). This was not significant when examined with 

multimodel inferencing. Only a few factors showed high cumulative probability and 

significance: Speaker Contraction Rate, Preceding Contraction and Following 

Transitional Probability. These effects were all in the same direction as the collapsed BE 

analysis, so no further results for ARE contraction are presented here. 
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Table 29. IAS Contraction of IS Multimodel Inferencing Results 

Predictor 

β̅ σ̅ LoCI HiCI p Cumul 

Prob 

(Intercept) 1.440 0.059 1.324 1.556 0.000 NA 

Preceding Contraction – Y 0.662 0.012 0.638 0.685 0.000 1 

Following Transitional Probability 0.050 0.007 0.036 0.065 0.000 1 

Preceding Joint Probability 0.121 0.004 0.114 0.128 0.000 1 

Quartile: 

First (Reference Level) 

     
1 

Second -0.019 0.007 -0.033 -0.006 0.005  

Third -0.064 0.009 -0.081 -0.047 0.000  

Fourth -0.163 0.014 -0.190 -0.135 0.000  

Speaker Contraction Rate 0.302 0.074 0.157 0.447 0.000 1 

Construction:      0.99 

Copula (reference level)       

Future 0.027 0.019 -0.010 0.064 0.155  

Passive -0.020 0.027 -0.072 0.032 0.457  

Progressive 0.049 0.013 0.023 0.075 0.000  

Preceding NP Type: 

Nominal (Reference Level) 

     
0.98 

Personal Pronoun -0.015 0.008 -0.031 0.001 0.061  

Non-Personal Pronoun 0.013 0.009 -0.005 0.032 0.155  

Following Joint Probability -0.008 0.004 -0.016 0.000 0.043 0.92 

Following Stress Context – Y 0.017 0.010 -0.001 0.036 0.071 0.89 

Speaker Syllable Rate 0.000 0.000 0.000 0.000 0.255 0.71 

Note: reported values are coefficients with shrinkage and adjusted standard error, n = 

5807. 
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Table 30. Models of IAS contraction of IS with a Δ below 2 

Model factors k df log likelihood AICc Δ w 

1/2/3/4/5/6/7/8/9/10 10 18 534.2 -1032.27 0 0.56 

1/2/3/4/5/6/7/8/9 9 17 532.33 -1030.56 1.72 0.24 

(Null) 0 3 -2358.63 4723.27 5755.54 0 

Note: Cutoff: Δ < 2, 1 = Construction, 2 = Speaker Contraction Rate, 3 = Following JP, 4 

= Following Stress, 5 = Following TP, 6 = Preceding Contraction, 7 = Preceding JP, 8 = 

Preceding NP Type, 9 = Quartile, 10 = Speaker Syllable Rate 

 

4.3.2.3.4. am-’m 

 The contraction of AM is an interesting case because the overall rate of 

contraction is so high (96.82% of the time am is contracted in the Buckeye Corpus). 

However, as seen in Table 31, there are several factors which are associated with 

particularly high contraction, including Preceding Contraction, high Following 

Transitional Probability and Quartile.  

Table 31. IAS Contraction of AM Multimodel Inferencing Results  

Predictor β̅ σ̅ LoCI HiCI p CP 

(Intercept) 1.044 0.038 0.970 1.118 0.000 NA 

Preceding Contraction - Y 0.970 0.031 0.910 1.030 0.000 1 

Following Transitional Probability 0.023 0.006 0.011 0.035 0.000 1 

Quartile: 

First (Reference Level) 

     
0.99 

Second -0.033 0.009 -0.052 

-

0.015 0.000  

Third 0.001 0.011 -0.021 0.023 0.920  

Fourth 0.014 0.019 -0.024 0.052 0.477  

Following Joint Probability -0.003 0.004 -0.012 0.005 0.442 0.53 

Note: reported values are coefficients with shrinkage and adjusted standard error, n = 

1040. 
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Table 32 shows that the best ranked model includes all of the factors. The next 

best model includes all factors but one: Following Joint Probability. The factors 

contained in both models, Following Transitional Probability, Preceding Contraction and 

Quartile are highly likely to be influential in AM contraction. 

Table 32. Models of IAS contraction of AM with a Δ below 2  

Model factors k df log likelihood AICc Δ w 

1234 4 9 720.51 -1422.85 0 0.53 

234 3 8 719.36 -1422.58 0.26 0.46 

(Null) 0 3 350.8 -695.58 727 0 

Note: Cutoff: Δ < 2, 1 = Following JP, 2 = Following TP, 3 = Preceding Contraction, 4 = 

Quartile 

 

In Figure 80 we see that normally AM shows up in the first two quartiles of the 

utterance. There are examples of AM in the last half of the utterance but these are much 

rarer: “out in the real world I’m talking about” or “if they open up the intern program like 

I’m hoping they will”. In any case, there is only a significant difference in AM contraction 

between the first two quartiles, with contraction more likely in the first quartile of the 

utterance. Bigrams with high following transitional probability include AM sorry (-

0.093), AM glad (-0.240), AM guessing (-0.306), AM afraid (-0.459), AM amazed (-

0.672), and AM sure (-0.687). These top probable combinations reflect expressions of 

subjectivity (“expression of self and the representations of a speaker’s (or, more 

generally, a locutionary agent’s) point of view in the discourse” [Finegan 1995:1]), where 

speakers are generally commenting on their feelings about other content in the utterance: 

“I’m sorry let him pay the penalty” or “yknow what I mean they shouldn’t even be out on 

the street I’m sorry,” although there are examples that do not reflect subjectivity: “I'm 
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afraid sometimes that I'll die before I get a chance to do.” Other factors do not reach a 

high level of cumulative probability for AM contraction. 

 

 

 

Figure 80. IAS Contraction of AM by Utterance Quartile 
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4.3.2.3.5. Conclusion 

We now return to the research questions put forth at the beginning of this section. 

Q20. Is BE contraction influenced by the same factors as BE contraction in the Redford 

Corpus? 

Yes. In both the Redford Corpus and Buckeye Corpus, high preceding probability context 

is associated with more contraction, as are preceding instances of contraction, future and 

progressive constructions, position in the first utterance quartile and high overall speaker 

contraction rate. Only in the Buckeye Corpus data is Speaker Syllable Rate an important 

variable for contraction, with slower speakers contracting more often than faster ones. 

Q21. Are there word-specific characteristics for contraction? 

Yes. IS contracts with more kinds of subject NPs, but still contracts particularly often 

with personal pronouns. AM contracts at very high rates, and a closer look at the data 

showed that it contracts often in cases of speaker subjectivity. 

 

4.3.2.4. Multimodel Inferencing – Word Specific Results: HAVE 

4.3.2.4.1. All HAVE Data Collapsed 

In Chapter III, it was not possible to investigate the factors influencing 

contraction of the perfect auxiliary, due to low occurrence of this construction, 

particularly for contracted auxiliaries and particularly in child speech. There are, 

however, many instances of the perfect auxiliary, contracted and non-contracted, in the 

Buckeye Corpus. The main research questions for this section are: 
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Q22. Is contraction of HAVE influenced by the same factors that influence the word 

shortening of HAVE? 

Q23. Is contraction of HAVE influenced by the same factors that influence the contraction 

of BE? 

Q24. Because there are enough tokens of each inflection of HAVE (have, has, had), we 

can investigate particularities of the individual word forms. Are there word-specific 

characteristics for contraction? 

 Figure 81 shows the distribution of contracted and non-contracted HAVE perfect 

auxiliaries by word form. As seen in Figure 81, there are many more instances of have-

’ve in the corpus than other inflections of HAVE, however it is HAS that contracts 

proportionally most often. In Figure 82, we see that auxiliaries contract often with 

have~’ve as well, as in must’ve, should’ve, might’ve, etc. Some nominal subjects contract 

with have and has perfect auxiliaries as well: “all their life people’ve been saying, “all 

the work Gore’s been doing,” and “because that’s what Dad’s gotta do.” Excluded from 

analyses are instances of HAVE that could not contract, including had with nominal 

subject NPs and cases where has follows a word ending in a sibilant. 

There are a few instances of have contracting with nominal subjects, as indicated 

in Figure 82. There are three instances of people’ve. There are only a few examples of 

have contracting with a non-personal pronoun. These include who’ve, there’ve and 

that’ve. 
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Figure 81. IAS Contraction of HAVE by Inflection 
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Figure 82. IAS Contraction of have~’ve by Subject Noun Phrase Type 

 

 Table 33 shows that Preceding Contraction (of any word) occurring before a 

target makes it more likely to contract. However, Speaker Contraction Rate has no 

probable effect on contraction of perfect auxiliaries, even though it did on perfect 

auxiliary reduction in child and child-directed speech. The inflection has-’s is the 
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inflection most likely to contract. High Preceding Joint Probability and Preceding 

Transitional Probability increase the likelihood of contraction. Speakers with higher 

syllable rates (slower speakers) are more likely to contract, although age and gender has 

no effect on perfect auxiliary contraction. Perfect auxiliaries that are followed by a 

stressed syllable (he’d seen, he’s tried) are more likely to contract than perfect auxiliaries 

that are followed by an unstressed syllable (he had developed, he has become). Finally, 

perfect auxiliaries are significantly most likely to contract when they are in the first 

quartile of the utterance than any other quartile, although there is no significant difference 

between any of the other following quartiles. 

There is one clear best performing model for this dataset, and it contains all of the 

factors included. The next best model (not shown in Table 34 below) has a delta of 8.15, 

indicating that it is much worse performing than the best model. 

4.3.2.4.2. have-’ve 

There are several potential variables to investigate for preceding context: 

Preceding Joint Probability, Preceding Transitional Probability and Preceding NP Type. 

Preceding NP Type is not correlated strongly with either of the probability variables, but 

the latter two are correlated with each other,. Preceding Transitional Probability performs 

better than Preceding Joint Probability for predicting HAVE contraction, so it was 

included in the multimodel analysis. As seen in Table 35, perfect auxiliaries followed by 

personal pronouns are more likely to contract than auxiliaries followed by any other 

subject type. Auxiliaries in high preceding probability contexts are more likely to 

contract, but those in low following probability contexts are actually more likely to 

contract, making the coefficient for Post Transitional Probability negative. Despite this, 
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the bigram with highest following transitional probability, HAVE been, is more likely to 

contract than not (63% of the time). As with the collapsed HAVE data, slower speakers 

contract more often and if a speaker has contracted recently, they are likely to contract 

again. 

There is one model that performs well, and it is the model including all of the 

factors. The next best model has a delta of 2.13 and lacks Speaker Syllable Rate, as seen 

in Table 36.  

 

Table 33. IAS Contraction of HAVE, HAD and HAS Multimodel Inferencing Results 

Predictor β̅ σ̅ LoCI HiCI p CP 

(Intercept) 1.441 0.064 1.316 1.566 0.000 NA 

Preceding Contraction - Y 0.728 0.022 0.685 0.772 0.000 1 

Word Form: 

HAD (Reference Level) 

     
1 

HAS 0.198 0.029 0.141 0.256 0.000  

HAVE 0.023 0.027 -0.030 0.076 0.393  

Preceding Joint Probability 0.101 0.013 0.076 0.126 0.000 1 

Quartile: 

First (Reference Level) 

     
1 

Second -0.064 0.017 -0.097 -0.030 0.000  

Third -0.071 0.021 -0.112 -0.031 0.001  

Fourth -0.062 0.029 -0.118 -0.006 0.029  

Speaker Syllable Rate 0.001 0.000 0.000 0.001 0.001 0.99 

Preceding Transitional Probability 0.090 0.028 0.035 0.145 0.001 0.99 

Following Stress Context - Y 0.051 0.017 0.017 0.084 0.003 0.98 

Note: reported values are coefficients with shrinkage and adjusted standard error, n = 

1478. 
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Table 34. Models of IAS contraction of HAVE, HAD and HAS with a Δ below 2  

Model factors k df log likelihood AICc Δ w 

1234567 7 13 -161.28 348.81 0 0.97 

(Null) 0 3 -857.68 1721.37 1372.57 0 

Note: Cutoff: Δ < 2, 1 = Lemma, 2 = Following Stress, 3 = Preceding Contraction, 4 = 

Preceding JP, 5 = Preceding TP, 6 = Quartile, 7 = Speaker Syllable Rate 

 

Table 35. IAS Contraction of HAVE Multimodel Inferencing Results  

Predictor 

β̅ σ̅ LoCI HiCI p Cumul 

Prob 

(Intercept) 1.092 0.054 0.054 20.358 0.000 NA 

Preceding Contraction - Y 0.484 0.026 0.026 18.644 0.000 1 

Preceding NP Type: 

Auxiliary (Reference Level) 

     
1 

Nominal -0.047 0.045 0.045 1.037 0.300  

Personal Pronoun 0.493 0.022 0.022 22.490 0.000  

Non-Personal Pronoun 0.000 0.056 0.056 0.001 0.999  

Preceding Transitional Probability 0.175 0.033 0.033 5.299 0.000 1 

Following Transitional Probability -0.024 0.016 -0.055 0.008 0.140 0.83 

Speaker Syllable Rate 0.000 0.000 0.000 1.235 0.217 0.75 

Note: reported values are coefficients with shrinkage and adjusted standard error, n = 

948. 

 

Table 36. Models of IAS contraction of HAVE with a Δ below 2  

Model factors k df log likelihood AICc Δ w 

12345 5 10 86.39 -152.54 0 0.58 

(Null) 0 3 -531.43 1068.88 1221.42 0 

Note: Cutoff: Δ < 2, 1 = Following TP, 2 = Preceding Contraction, 3 = Preceding NP 

Type, 4 = Preceding TP, 5 = Speaker Syllable Rate 
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4.3.2.4.3. has-’s and had-’d 

Contraction results for HAS and HAD parallel closely the results for contraction of 

all HAVE inflections combined, so no further tables of results are presented here. For 

HAS, Preceding Contraction, Preceding JP and TP as well as Utterance Quartile had high 

cumulative probability (over 0.60) and for HAD, which had fewer tokens, all of the above 

factors excepting Preceding TP had high cumulative probability in multimodel analyses. 

 

4.3.2.4.4. Conclusion 

 We now return to the questions set forth at the beginning of this section. 

Q22. Is contraction of HAVE influenced by the same factors that influence the word 

shortening of HAVE? 

Yes and No. High probability contexts resulted in reduced variants of HAVE, but for 

word shortening, following context mattered and for contraction, preceding context 

mattered. For stress context, the effect was in the other direction. Preceding Stress had an 

effect on word shortening, but Following Stress had an effect on contraction. Both of 

these effects serve to promote a trochaic syllable pattern. Preceding Contraction and 

Syllable Rate was only relevant for contraction of HAVE, while Speaker Contraction Rate 

was only relevant for word shortening for HAVE. Utterance Quartile was important for 

both kinds of reduction. For word shortening, longer targets occurred in the final 

utterance quartile (more than any other quartile) and for contraction, more contraction 

occurred in the first quartile (more than any other quartile). This indicates that reduced 

variants are more likely to occur earlier in an utterance than later, but for two different 
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reasons. The word lengthening at the end of an utterance is due to signaling the end of an 

utterance or turn, or is due to less breath and intensity (cf. Lieberman, 1967). The higher 

contraction is likely due to the given status of the topic (additionally signaled by high 

rates of subject pronoun use). 

Q23. Is contraction of HAVE influenced by the same factors that influence the contraction 

of BE? 

Yes. For both HAVE and BE contraction, occurrence in the first utterance of a quartile, 

preceding instances of contraction, slow syllable rate, high preceding context probability 

and following stress syllables all lead to contraction. BE contraction, however, is also 

influenced by following context probability and HAVE contraction is not. There is a 

wider range of following TP for BE, than contractible HAVE, however, because HAVE 

can only contract in perfect constructions. Additionally, construction types (which have 

different contraction rates) have different average following TP rates for BE, which may 

account for the effect of following TP for BE words. 

Q24. Are there word-specific characteristics for contraction? 

No. All inflections of HAVE pattern similarly, even have, which can contract after 

auxiliaries (would’ve), but still contracts more often after pronouns, just as had and has 

do. 

4.4. Discussion and Conclusion 

The results in Chapter IV confirm the findings of Chapter III: function word 

reduction is influenced by a word’s probability in context, its position in an utterance and 

meaning. For BE, contraction is influenced by construction type and for HAVE, it is 
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duration that is influenced by construction type. Table 37 provides a summary of the 

results. 

Table 37. Buckeye Corpus Results by Dependent and Independent Variables 

 Normalized 

Duration 

BE Contraction HAVE 

contraction 

Probability Variables    

High Following COCA TP ↓ ↓  

High Following COCA JP ↑   

High Preceding COCA TP ↑  ↓ 

High Preceding COCA JP ↑ ↓ ↓ 

Construction    

Possessive ↑   

Modal ↑   

Perfect ↓   

Copula  ↑  

Passive    

Progressive  ↓  

Future  ↓  

Speaker Variables    

High Contraction Rate ↓   

Fast Syllable Rate  ↓ ↓ 

Control Variables    

Preceding Stress ↓   

Following Stress  ↓ ↓ 

Following Pause    

Quartile ↑ ↑ ↑ 

Preceding Contraction ↑ ↓ ↓ 

Note: Arrows indicate a cumulative probability over 0.6 Arrows pointing up indicate the 

IV had a lengthening/non-reducing effect (or is associated with full forms for the 

contraction IV) and arrows pointing down indicate the IV had a shortening/reducing 

effect (or is associated with contracted forms for the contraction IV). 
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This section concludes Chapter IV by comparing the results from the Redford 

Corpus and Buckeye Corpus as well examining the effect of average probability and 

frequency on construction type. I argue that it is sensitivity to average high probability 

that results in more reduction, even in specific cases of low probability. I argue that this 

sensitivity means that speakers are storing phonetically detailed word representations 

making the production of a word (in its particular meaning) sensitive to the typical 

contexts in which the word tends to occur. 

4.4.1. Corpus Comparison: Redford Corpus vs. Buckeye Corpus 

The Buckeye Corpus is much larger than the Redford Corpus but the patterns 

found in function word production are remarkably similar. Because of this, we can feel 

confident about the results found in the previous chapter. Despite the different genres of 

the corpora (narratives vs. interviews) the patterns of function word reduction were 

remarkably similar.  There were more fillers like yknow in Buckeye Corpus and all 40 

speakers in the Buckeye Corpus had high contraction rates, but we still saw that high 

contraction patterns with longer word length, just on an utterance level instead of a text 

level. With more data, it may be that we would have seen utterance level differences in 

the Redford Corpus as well. In the Redford Corpus there were more effects from 

unexpected bigrams including words like frog and turtle. Bigrams involving story-

specific words led to corpus-specific effects where bigrams had low joint probability but 

high transitional probability within the corpus. As the Buckeye Corpus has more data, 

there is naturally a larger number of distinct word types, following a power law (Zipf, 

1929). Although there are certainly corpus-specific effects of specialized bigrams in the 

Buckeye, they are harder to spot than in the smaller Redford Corpus. Dilts (2013) found 
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that word informativity based on frequencies from the Buckeye Corpus better predicted 

content word reduction in Buckeye Corpus than word informativity based on frequencies 

from the larger COCA. There are probably fewer Buckeye-specific effects for function 

words than for content words, but they may still exist. 

Because more data is available in the Buckeye Corpus, some patterns were 

present in this corpus that were not present in the Redford Corpus. For example, the 

lengthening effect of high joint probability (cf. Bell et al., 2003) was present with the 

larger amount of data available in the Buckeye Corpus. In the multimodel analyses 

presented in the Redford Corpus, many factors had high cumulative probability but still 

did not have a significant p value because of the shrinkage punishing the coefficients. 

Most of the factors with high cumulative probability in the Buckeye Corpus also had low 

p values. Factors reached significance due to more statistical power from the higher n. 

Further, we saw that the higher n and increased power resulted in more model selection 

certainty. There were few models with a delta value of within 2 of the best performing 

model and model weights were higher due to fewer probable models.   

4.4.2. Construction Effects 

The construction meanings for BE and HAVE with the highest frequency are the 

oldest (copula and possessive respectively), but not the ones associated with higher rates 

of reduction. Bybee (2002; 2007) posits that it is the jump in frequency of new 

grammatical constructions that leads to reduction of grammaticalized elements. However, 

in both the BE and HAVE cases, the older construction is still the most prevalent, but it is 

(one of) the newer constructions that has the most reduction (in terms of duration or 

higher proportion of contraction). If it is not an increase in frequency that leads to the 
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reduction, what does? The evidence in this corpus study shows that it is higher 

probability that results in more reduction, not higher frequency. Because a 

grammaticalized element occurs in more restricted conditions, the transitional probability 

context increases. There is a higher (and narrower) range of probability values when a 

word become grammaticalized and therefore restricted to certain contexts. Table 38 

shows that the constructions with the most reduction have higher mean following 

transitional probability. The mean preceding transitional probability is more similar 

between the construction types, but also follows a general trend of having higher average 

transitional probability for constructions with more reduction. 

Table 38. Mean probability contexts by Construction 

Construction Mean Post TP Mean Pre TP 

BE   

Copular -1.359 -0.822 

Passive -1.052 -0.954 

Progressive -0.999 -0.860 

Future -0.668 -0.805 

HAVE   

Possessive -1.939 -1.326 

Modal -1.543 -1.237 

Perfect -0.855 -1.169 

Note: Probability values combined from both contraction and duration data 
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 The higher concentration of following high probability bigrams for future and 

progressive constructions can be seen in Figure 83 below and for perfect constructions in 

Figure 84 below. 

 

Figure 83. Following TP by Construction Type for BE 
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Figure 84. Following TP by Construction Type for HAVE 

 

To test whether construction effects remained significant even in low probability 

contexts, I built models for portions of the data which had a following transitional 

probability below the median. For the BE dataset, to investigate construction effects for 

contraction, that meant instances with a following transitional probability below -1.056 

(mean was -1.192). This left 4523 cases, or about half of the cases, with 3947 copula 

constructions, 41 future constructions, 60 passive constructions and 448 progressive 
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constructions. Even in these low transitional probability contexts, the main effects from 

the model of the full dataset remained significant. For Construction, the progressive 

construction continued to show significantly more contraction than the copula 

construction. Additionally, using the full BE contraction dataset, I built a logistic fixed 

effects regression model with following transitional probability as the sole fixed effect. I 

then used the residuals from this model (error leftover after taking following TP into 

account) as the dependent variable for a mixed effects regression model using all of the 

main effects from Table 27. The future and progressive constructions continued to show 

significantly higher contraction than the copula. All other main effects remained 

significant as well. For the HAVE dataset, to investigate construction effects for duration, 

I looked at the subset of cases with a following transitional probability below the median 

of -1.609 (mean was -1.7114). This left 1489 cases, or a bit over half of the original 

dataset. This dataset consisted of 1297 possessive constructions, 152 modal constructions 

and 40 perfect constructions. Even for this small amount of perfect constructions, the 

effect of construction was still significant with perfect constructions having significantly 

shorter HAVE normalized durations than other meanings of HAVE. Additionally, using 

the full HAVE duration dataset, I built a logistic fixed effects regression model with 

following transitional probability as the sole fixed effect. I then used the residuals from 

this model as the dependent variable for a mixed effects regression model using all of the 

main effects from Table 24. The targets in the perfect construction were still significantly 

shorter than targets in other constructions. 

Seyfarth (2014) finds word informativity given the following word (average 

following contextual [transitional] predictability) captures word shortening effects 
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beyond local contextual predictability, frequency or segment count for content words in 

the Buckeye Corpus and the Switchboard Corpus (Godfrey and Holliman, 1997) using 

the NXT Switchboard Annotations (Calhoun et al., 2009). He finds that word 

informativity and local predictability have similar effect sizes. The current study shows 

that the average high probability of a construction leads to reduction or contraction even 

in specific low probability contexts. If speakers reduce even in particular low probability 

contexts, then they must be sensitive to broader patterns of use of the words in question. 

Bybee and Torres Cacoullos (2008) (among others including Ernestus, 2014; Goldinger, 

1998; Johnson, 2007; Pierrehumbert, 2001, 2002) argue that this effect provides evidence 

for an exemplar account, where words that tend to occur in reduced contexts are 

associated with larger numbers of reduced representations than words that do not tend to 

occur in reduced contexts, making a reduced exemplar more likely to be selected as a 

target for production, even when the specific context is not one that would normally be 

associated with a reduced target. The exemplar account is concerned primarily with the 

previous experience of the speaker (also cf. Seyfarth, 2014 for a nice discussion of other 

production-based accounts of this finding). Some other usage-based accounts make 

listener-accommodation a primary consideration. Under these models, the reduction here 

could be accounted for by speakers knowing that listeners expect reduced variants in 

certain situations (short words for perfect auxiliaries, contracted forms for progressive 

and future auxiliaries) or unreduced variants in other situations, and then using the 

expected form even when the specific probability context would make that choice 

unlikely. Or, it may be that over time speakers use reduced forms for these contexts and 

learn that they are still understandable by their listeners while producing reduced variants 
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and that it is not necessary to go through more articulatory effort for these forms, even in 

low probability contexts where normally more articulatory effort would be required to be 

understandable (Jaeger and Ferreira, 2013; Jaeger, 2013). 

In the grammaticalization literature, it is emphasized that words do not 

grammaticalize on their own, they grammaticalize in specific contexts (Bybee, 2002; 

Diewald, 2002; Heine, 1993; Hopper and Traugott, 1993; Traugott, 2003 inter alia). The 

average backward following transitional probability is a means of understanding why 

reduction may occur in these new contexts. When a word can be used in a new context, 

and its meaning is limited to that particular context, then it is part of a new construction. 

When the contexts a word can occur in are more limited, it becomes more predictable in 

those contexts. For auxiliaries in particular it is backward following transitional 

probability that matters. Take for example the three HAVE constructions. When HAVE is 

in the possessive construction, many words may follow it as part of that possessive 

construction including determiners, adverbs, etc. and many nouns, a large open class. 

This means that HAVE as a possessive is highly unlikely to be predictable given any of 

those words. When HAVE is used as a semi-modal auxiliary, it must occur before to. 

Although that is a very limited context, there are still many words that can occur before 

to and therefore the backward transitional probability is still not extremely high. When 

HAVE is used as a perfect auxiliary, it occurs before past participles, and sometimes 

adverbs or negator words (he has not been to the park recently). In the cases of adverbs 

or words like not, HAVE is not predictable as the word occurring before them. However, 

in the case of the past participles, HAVE is highly predictable because one of the few 

words that can occur, and occurs with any regularity, before past participles is HAVE 
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(and BE, in the case of passives). Further, the past participles that are part of passives 

constructions do not completely overlap with past participles that are part of perfect 

constructions. Past participles are sometimes used as adjectives as well, but as is captured 

in Figure 84 above, HAVE is highly likely to occur before the kinds of past participles 

that occur in perfect constructions. 

4.4.3. BE – Contraction vs. HAVE – Duration Shortening 

Many of the patterns for BE and HAVE productions are similar: high preceding 

joint probability resulting in contraction (where licensed), high following transitional 

probability resulting in shortening and contraction, following stressed syllables leading to 

shorter productions, among others. However, there are some particularities of each word 

form. 

For BE words, both contraction and shortening are available options for reduction. 

It seems from the data from the Buckeye and Redford Corpus Studies, that construction 

differences are represented by variations in proportion of contraction, but that duration is 

not used to signal differences in BE by construction type. Even for BE words that cannot 

contract, such as was and were, we do not see any shortening by construction. But for 

HAVE, speakers can only contract perfect auxiliaries. The Buckeye Corpus shows that 

speakers do contract perfect auxiliaries fairly often, and do so in high probability contexts 

more than in low probability contexts. Despite being able to contract perfect HAVE, 

speakers still shorten perfect HAVE when they do produce the full variant. Why does BE 

contract but not shorten in all constructions, but HAVE contracts and shortens, but only in 

one construction? It may be that there is a floor for word shortening. On average, all the 

BE words are shorter than the HAVE words and the range of duration values is narrower 
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(cf. Table 19). It may be that there are not enough perceptible differences by construction 

type for shorter durations to become associated with a construction. If this were to be the 

case, we would still need to account for why shorter durations are still associated with 

higher probability contexts. A processing account of word shortening (fast access or 

expectation of listener comprehension even in a degraded signal) would need to exist 

alongside a usage-based account where certain reduction patterns become associated with 

constructions (contraction with some BE construction types, duration for perfect 

constructions). Another explanation may be that contraction is so strongly associated with 

is, am and are inflections of BE as a reduction strategy, that failing to use duration 

shortening has expanded to other inflections of BE like was and were.  

In any case, this detailed study of two words has shown that there are word-

specific reduction strategies in addition to general word reduction strategies, just as there 

are speaker-specific reduction strategies. A close examination of these words, instead of 

an amalgamation of all words (or all content words) in a corpus, lets us know that as 

researchers we need to be aware of the specific behavior of words, and that some of this 

behavior could not be captured by a simple random effect term of “word.” Different 

inflections of BE and HAVE also have special behavior, such as extremely high rates of 

am contraction. Therefore, I advocate the close examination of the effects of particular 

words in a corpus, in conjunction of studies of reduction collapsing many word types 

together.  
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CHAPTER V 

CONCLUSION  

 

5.1. Introduction 

 Several studies of probabilistic reduction have examined the impact of frequency 

and or probability on the production of words. Studies such as Gahl (2008) show clearly 

that the more frequent word of a homophone pair (time vs. thyme) is the shorter one. This 

shows that frequency is a property of a lemma, not just its phonological form, contra 

Levelt et al. (1999) and Newmeyer (2006). It is not simply the repetition of a word’s 

phonological form over and over that leads to fluent, practiced productions (cf. Bybee, 

2002; Kapatsinski, 2010). People know when a word should be more reduced (when it is 

predictable) and when it should not. However, Gahl (2008) examines only content words 

homophone pairs with different orthographic spellings. Function words and content 

words homophonous with function words were expressly excluded. Seyfarth (2014) 

showed that low average informativity of words (not just homophones) results in shorter 

durations, controlling for segment count, syllable count and frequency. However, he too 

excluded function words from his analyses. Previous studies examining function words, 

such as Jurafsky (2002) and Bell et al. (2003) found that once factors such as speaking 

rate, segmental context, pitch accent and contextual predictability are accounted for, there 

is no frequency effect for different meanings of words such as to, that, of, you, I, and, the, 

a and it. Krug (1998) looks at the contraction of BE and HAVE, but focuses on bigram 

frequency (joint probability) rather than meaning differences, meaning frequency or 

conditional probability on contraction.  



 

235 

 

The present study focuses on two words in particular, with different meanings that 

have different meaning frequencies. All meanings of BE are function words, allowing a 

controlled look at pronunciation differences among various grammatical meanings of the 

same word. Some meanings of HAVE are grammatical, but the possessive meaning is 

lexical, allowing an examination of grammatical vs. lexical meanings of the same word 

form. It does not matter if one considers these meanings to be polysemous because of the 

historical connection, or homonymous because of the present day differences in meaning. 

I show that the relative frequency of these meanings is in fact not the determining factor 

in production differences, contra Gahl (2008) for content words, but I also show that 

there are production differences according to different meanings of function words, 

contra Bell et al. (2003). The predictability of the particular token under investigation in 

its particular context is very important, suggesting an online component to reduction 

(Gregory et al., 1999; Jurafsky et al., 2001). However, average probability of a word’s 

meaning across contexts is also as important, suggesting that phonetic detail is stored 

with forms linked to meanings a.k.a. constructions (Bybee, 2002; Pierrehumbert, 2002; 

Raymond and Brown, 2012; Torres Cacoullos, 1999). The detailed examination of two 

particular words in the present study also has shown speaker-based differences in 

reduction strategy patterns, word-based differences in reduction strategies, as well as a 

developmental trajectory of function word production in child speech. Future studies 

should focus on other function words to determine how much of the findings are 

restricted to these words, but there is no reason a priori that the findings would not be 

generalizable. Corpus studies that examine polysemous meanings of words or words that 

are homophonous while also being homonymous are costly in time as they require hand-
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coding. However the time spent here shows that probabilistic reduction and average 

probability effects are not restricted to content words, showing a further similarity in 

content and function word production, also contra Levelt et al. (1999). 

In the rest of this chapter I summarize the findings on production of HAVE and 

BE function words in child speech, child-directed speech and inter-adult speech. I will 

discuss the differences and similarities in reduction strategies between children and 

adults, the differences over time in child speech and the differences in adult speech 

directed at children vs. other adults. I will discuss what I take this to mean for theories 

about speech production and speaker behavior. 

5.2. Child and Adult Reduction Strategies 

Children and adults alike contract words in probable contexts and shorten words 

in probable contexts. However, adults use a consistent information compression strategy: 

word shortening or contraction, which is seen at the narrative level in the Redford 

Corpus, which interacts with speaking rate. When speaking slowly, adult speakers are 

more likely to contract than to shorten their words. Children develop an information 

compression strategy around age seven, or earlier when they have other language 

competence skills.  

5.3. Child Reduction Strategies Over Time 

Children’s function word production becomes more adult like over time. Children 

produce shorter function words (in both raw duration and normalized duration) as they 

get older and they contract more often. These behaviors are consistent with 

deemphasizing function words, that is, deemphasizing the importance of words that are 

predictable to listeners. Children also have a stronger adherence to an information 
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compression strategy over time. They show more strongly a preference to contract (and 

not shorten) function words or to shorten (and not contract) function words as they get 

older. At the same time, children show less variability in their behavior over time. When 

examining the variability in the random forest analyses by grade group, the youngest 

grade groups often patterned against the older grade groups. Younger children have many 

differences in their proficiency levels, but these differences level out to a great extent 

over time. 

The results of this study strongly support that phonetic reduction is pervasive in 

spontaneous speech (Cruttenden, 1994; Dalby, 1986; Dilts, 2013; Johnson, 2004; 1994; 

Shockey, 2003) and that this pervasive reduction starts early (already at age five), even 

while children are still working on getting good at reduction. That is, children are still in 

the process of fine-tuning their motor skills from ages five to ten in that they are still 

getting faster, they are still developing their ability to produce differences between strong 

vs. weak syllables (Allen and Hawkins, 1980; Ballard et al., 2012; Redford and Sirsa, 

2011). Despite this, probabilistic reduction effects are already present in their speech. 

Word shortening is occurring in highly probable contexts, even when the mechanisms to 

shorten are still under development. The present study is the first study to investigate 

probabilistic reduction in child speech. Although I investigate probabilistic reduction 

effects for only a few words (is, am, are, was, were, had, has, have), this study suggests 

that probabilistic reduction should be happening through the lexicon at a remarkably 

young age. Research shows that sensitivity to transitional probability helps children 

bootstrap language learning and determine word boundaries (Kuhl, 2004; Saffran et al., 

1996 inter alia) and may be a domain general learning mechanism (Ellis and Ferreira-
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Junior, 2009; Kirkham et al., 2002). Therefore, it should be no surprise that children are 

paying attention to transitional probability at the word level and that transitional 

probability affects their speech production. Further study is needed to determine at what 

age we start to see probabilistic reduction in child speech.  

5.4. Caregiver v. Inter-Adult Speech Reduction Strategies 

Results from this study showed that when speaking to their young children, 

caregivers did not speak any slower, but that they spent proportionally more time on 

function words than when speaking to older children. This shows that when speaking 

with younger children, caregivers use a steadier rate of words, but consequently a more 

variable rate of information transfer, where more equal amounts of time are spent on 

informative and uninformative words. When speaking with older children, they use a 

more steady rate of information transfer, spending more time on important (lexical) 

information and less time on unimportant (grammatical) information, just as adults do 

when speaking to other adults. 

A speaker-internal account of word reduction argues that speakers reduce words 

because they are easily accessible from the lexicon due to their high frequency and 

probability, and therefore can be retrieved quickly, meaning the speaker does not need to 

slow down while planning for the next word (cf. Ernestus, 2014). A listener-oriented 

account argues that because high frequency and high probability words are predictable 

for listeners, and speakers are aware of that, then speakers do not feel they need to spend 

any extra articulatory effort on uninformative, predictable words. A listener-oriented 

account, then, includes a model of the interlocutor for speech production (Galati and 

Brennan, 2010).  
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The results from child-directed speech in the current study suggest that speakers 

modulate their behavior based on characteristics of the listener. This is consistent with a 

listener-oriented account. However, the modulation in question does not have to be 

online, driven by in-the-moment modeling of the listener. Rather, the listener adaptation 

may be on the timescale of learning, with the speaker developing a style for speaking to a 

particular interlocutor or class of interlocutors (namely, five year-old children). The data 

from child-directed speech shows that there is more reduction of function words in 

caregivers’ speech over time (as children get older). The function words remain equally 

accessible for caregiver-speakers when they are talking to five year-olds and when they 

are talking to ten year-olds. Therefore the longer productions associated with speaking to 

five year olds must be due to accommodation, whether online or longer-term.  

 

5.5. Usage-Based Speech Production 

To accommodate the results found in the present study, a theory of speech production 

must be able to account for the following four facts: 

A) The degree of reduction differs for the same string of phonemes, beyond reduction 

due to speech rate 

B) The degree of reduction for a word differs based on the specific transitional 

probability of that word and the word following it 

C) The degree of reduction for a wordform-meaning pairing (construction) differs based 

on the average transitional probability of that construction given the words following 

it 
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D) The degree of reduction for a word as described in C is not due to differences in raw 

frequency of that word 

Abstractionist models of speech production assume that word (and morpheme) 

representations in the mental lexicon consists of strings of abstract symbols, often 

phonemes (Chomsky and Halle, 1968; Levelt et al., 1999; Prince and Smolensky, 2004). 

Although specific instances of production differ, they come from one representation, 

passed to a phonetic implementation system where rules or constraints, even optional 

rules or variable constraints (cf. Boersma, 1998; Cedergren and Sankoff, 1974), result in 

the phonetic detail of the specific instance of production. A key consequence of these 

models of speech production is that the meaning of the word should have no bearing on 

the pronunciation of any particular string of phonemes and  that reduction associated with 

one word should be inherited by any homonyms (Gahl, 2008; Levelt et al., 1999). 

Abstractionist models of this sort fail to account for finding A, as shown in many studies 

cited in Chapter II, as well. 

Pierrehumber (2002) and Ernestus (2014) explain how finding B could still be 

accommodated in abstractionist models of speech production. Although Pierrehumbert 

(2002) argues for an exemplar model with long-term memories of linguistic events 

(including speaker and phonological information) which affect phonological encoding 

and the representation of a lexical network, she argues that reduction due to high 

frequency and high probability effects could be theoretically implemented as due to on-

line modifications of speech. In a modular feedforward model, “when a lexeme is 

retrieved and loaded into the phonological buffer, assume that a gradient value 

representing the ease of retrieval is passed to the buffer as a quantitative attribute of the 
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Prosodic Word node. This parameter would control, or rather play a part in controlling, 

an overall parameter of articulatory clarity and effort” (Pierrehumbert, 2002:104). 

Ernestus (2014:31), who also argues for a model of speech processing which has storage 

of different pronunciation variants as well as procedural phonetic implementation, 

explains how this could work (although it is not clear why it is predictability of the 

current word rather than that of the upcoming word that matters on this account): 

Interestingly, reduction degree appears to be correlated especially with the 

predictability of the word given the following word rather than the 

preceding word. These predictability effects can be well accounted for 

with the assumption that more predictable words are easier to plan and to 

retrieve from the mental lexicon (e.g., Jescheniak and Levelt, 1994) and 

therefore do not require speakers to slow down: While planning highly 

predictable words, speakers can continue speaking as fast as they would 

like to. The higher speech rate with which highly predictable units can be 

produced would be responsible for their higher reduction degree (see e.g., 

Pluymaekers et al., 2005a; Bell et al., 2009).  

Abstractionist models that allow for the implementation of variable production due to 

high context probability still fail to accommodate finding C. Perfect auxiliaries, even 

when they have low backward following transitional probability, are still short. 

Progressive and future auxiliaries, even when they have low backward following 

transitional probability, are still likely to be contracted. Ernestus (2014) also reviews 

some studies that show that some aspects of variation in word reduction cannot be 

explained by online processes. Words with the same phonological, prosodic and 

predictability characteristics should not differ in their degree of reduction if done through 

online phonetic processes, but they do. The bigram I think, although consistent in its 

phonological makeup and bigram probability, differs in realization when it conveys a 

pragmatic meaning rather than a lexical one (Local, 2003; see also Bybee and 

Scheibman, 1999). The realization of the Dutch word eigenlijk ‘actually’ differs 
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depending on whether the word signals a contrast with a previous proposition or a 

speaker’s assumption of the listener’s expectations (Plug, 2005). 

Because of these findings, usage-based models of speech production are more 

convincing in accounting for the variable productions. However, the reduction associated 

with different word forms cannot be due only to a word’s raw frequency (as seen in 

Aylett and Turk, 2006; Bybee, 2001; Gahl, 2008) due to finding D. The words with the 

highest degree of reduction in this study are not the most frequent, in fact they are far less 

frequent than their source constructions.  

A usage-based theory of speech production is one in which generalizations, 

representations and categories emerge through language use. There are no strong 

boundaries between levels of representation (i. e., grammar v. the lexicon, the lexicon v. 

phonological system), rather all levels of representation are interconnected in a network 

(Bates and Goodman, 1997, Bybee, 2001; Langacker, 1987; 2000). Factors of usage, such 

as word frequencies, word co-occurrence and stochastic variability influence language 

representation and these representations can change over time due to changes in 

experience. Below I discuss two usage-based models and how the findings from the 

present study can be understood (or not) under these frameworks. I discuss an exemplar 

model and a schema-based development model and how they relate to acquisition and the 

present data. 

There are many examples of exemplar-based models in speech production 

literature (Bybee and Torres Cacoullos, 2008; Goldinger, 1998; Johnson, 2007; Munson, 

2010; Pierrehumbert 2001; 2002 inter alia). In exemplar-based models, speakers store 

memories of word productions. All pronunciation variants are found together in a word 
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cloud in the mental lexicon. When a speaker plans word production, they select an 

episodic memory as the basis for their production. Words that are more frequently 

reduced have more reduced representations in the word cloud, so that when a speaker 

goes to produce a word, in turn they are more likely to select a reduced representation as 

a basis for production and then produce a reduced variant. Episodic memory of words 

includes semantic and syntactic properties (and perhaps also social contexts), so speakers 

will activate a memory (or cloud of memories) most closely relevant to the current 

situation for speech planning. As speakers build their cloud of word memories, they 

become aware of the patterns in variability through statistical learning (Pierrehumbert, 

2003). From this sensitivity to the patterns in word clouds emerges speaker awareness of 

phonological categories (Pierrehumbert and Gross, 2003) and could also emerge 

awareness of constructional categories, such as future and progressive constructions tend 

to have contracted auxiliaries, etc. 

 Foulkes and Docherty (2006) argue for an exemplar model that integrates issues 

of language acquisition and sociophonetic variability. They argue that a lexical 

representation should include detailed acoustic traces of every experience of a word that 

an individual has had, along with information about who was speaking and what the 

speaker’s voice sounded like so that no human utterance occurs absent of indexing social 

factors. Foulkes and Docherty (2006) also assume that there will be abstractions over 

exemplars and associations with different social indexical information (presumably along 

with structural and neighboring context information) and that speakers will become 

aware of (or at least sensitive to) acoustic proprieties of the speech that highlight social 

indexation of different kinds. In early acquisition, they posit, it is likely that children will 
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have three basic groups that emerge through their experience with their families: adult 

males, adult females and children, based on nature-based divisions like F0 and formant 

frequencies. Although the child may initially form groups based on specific people 

(father, mother, sibling), they later will be able to make generalizations to kinds of people 

from their experience with specific people. Some kinds of variation associated with 

groups of people would be easier to learn, variation that has a biological basis for 

instance, but through enough experience and exposure, children would learn arbitrary 

associations between groups of people and sociophonetic patterns. As children get older, 

and as their social world becomes wider and more complex, they may pay attention to 

speech they see as better representing themselves (a boy paying attention to adult male 

speech despite its lower frequency of exposure) or consider certain types of speech to be 

more important because it is closer to what they are able to produce (school aged children 

beginning to sound more like their friends than their parents, cf. Kerswill and Williams 

(2000)). While children are learning the social associations of speech, they are also 

learning the lexical and structural associations that result in reduction in this study. The 

associations are of a different kind, but if categories of complex social variability can 

emerge through exposure to speech, then other categories of complex variability can 

emerge as well and indeed seem to, based on the results of this study. 

 The results from the present study are compatible with an exemplar based model 

of language production, in that there is patterned variation in pronunciation, in child as 

well as adult speech. In the present study we saw that the most frequent examples do not 

lead to more reduction, rather it is examples with high conditional probability (and 

average high conditional probability) that lead to reduction. Bybee and Torres Cacoullos 
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(2008) argue that words which often occur in reduced contexts have stronger reduced 

representations than words that do not tend to occur in reduced contexts. This makes a 

reduced exemplar more likely to be selected as a target for production, even when the 

specific context is not one that would normally be associated with a reduced target. Take 

as example, HAVE production. Listeners have many exemplars of possessive 

constructions but fewer exemplars of perfect constructions, but all of the latter tend to be 

short. When new perfect constructions are produced, exemplars are selected from the 

storage of perfect exemplars, which tend to be reduced, leading to short productions. 

When a speaker wants to produce a perfect construction using a series of words they have 

never heard before, despite its low frequency, they will still select a reduced exemplar as 

a basis for their production, because most perfect constructions are represented with 

reduced exemplars in the exemplar-cloud lexical representation. In this way, it would not 

be necessary for a speaker to have built up a generalization that perfect auxiliaries tend to 

be short; because of their exposure to short tokens, new tokens will also be short. In an 

exemplar model that includes abstractions over categories, a speaker would have an 

averaged perfect auxiliary from all of their exposures (or perhaps several averaged 

representations that represent different styles, speaker categories, etc. or whatever 

emerged as relevant). This averaged representation would be biased towards being short 

from repeated exposure to short examples and so when a speaker went to produce a 

perfect auxiliary using a string of words they have never before encountered, that 

production would still be short, despite the low frequency of the bigrams. Because 

productions differ due to specific probability of bigrams, not just averages, online 

reduction mechanisms would still be needed. 
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5.6. Grammaticalization 

 It is well known that one of the consequences of grammaticalization can be 

phonetic erosion, or reduction (Gabelentz, 1891; Lehmann, 1995; Bybee and Pagliuca, 

1985; Givón, 1985; Heine, 1993; 2003; Hopper and Traugott, 1993; Bybee, Perkins and 

Pagliuca, 1994). It is argued that erosion can take place because of a speaker’s desire to 

differentiate the grammaticalized words (or words in context, namely constructions) from 

the source words, or because the grammaticalized word increases in frequency in 

comparison to the source word (Bybee, 2001; 2007; Traugott, 2011). The results of the 

present study show that an increase in frequency cannot be the reason for the higher 

levels of reduction of the auxiliaries in the perfect, progressive and future constructions. 

However, the increase in predictability due to the narrower context in which the 

grammaticalized use of a word comes to occur as a result of grammaticalization (Bybee, 

2002; Diewald, 2002; Heine, 1993; Hopper and Traugott, 1993; Traugott, 2003) is a good 

reason for the higher level of reduction in some of the more grammaticalized uses of the 

examined auxiliaries. 

 For HAVE, there are two constructions that have grammaticalized from the source 

possessive construction: perfect and semi-modal. The average following transitional 

probability for the two constructions is similar (cf. Table 38) but the average following 

transitional probability for the perfect construction is much higher. As seen in the results 

above, child and adult speakers alike do not shorten the semi-modal auxiliary any more 

than the possessive verb. However, as expected if reduction is driven by average 

predictability of the target word within the construction, the perfect auxiliary is 

significantly more likely to reduce than either the possessive or the semi-modal. 
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 For BE, there are two constructions that have grammaticalized from the source 

copula construction: passive and progressive. The future construction has further 

grammaticalized from the progressive construction. The progressive and future 

constructions have higher levels of contraction rates in child, child-directed and inter-

adult speech. These constructions also have higher average following transitional 

probability than the copula construction. The passive construction has higher average 

following transitional probability than the copula construction, but not much higher. 

Consequently, the passive construction is associated with more contraction in child-

directed and inter-adult speech, but not significantly so. For children, the passive 

construction is associated with significantly less contraction than the other construction 

types. Children do not use the passive construction often and the passive construction, for 

them, may feel more formal or awkward. This shows that it is not solely something like 

informativity or average transitional probability that influences reduction. Other aspects 

associated with the construction, such as context of use (Raymond and Brown, 2012; 

Torres Cacoullos, 1999) and usage frequency (Alba, 2008; Bybee, 2002; 2007; Hollman 

& Siewierska 2007; Torres Cacoullos and Walker, 2011) also matter. However, the 

measure of average following transitional probability quantitatively captures the intuition 

that grammaticalization researchers have had for over a century that more grammatical 

(and therefore less informative and more predictable, a.k.a. ‘bleached’) information is 

more subject to reduction (or phonetic erosion) than source lexical items. This account is 

advantageous as it also corresponds with psycholinguistic research showing the same 

tendencies are found throughout language production as speakers spend less time and 

effort on producing items that are predictable for the listener (Arnold, 2008; Aylett & 
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Turk, 2004; 2006; Bell et al., 2003; Bell et al., 2009; ; Byrd, 1994; Bybee, 2001; Clark et 

al., 1991; Clark et al., 1987; Ernestus, 2014; Ferguson, 1977; Ferreira, 2008; Flemming, 

2010; Fowler & Housum, 1987; Fox Tree and Clark, 1997; Freed, 1978; Gahl, 2008; 

Gahl and Garnsey, 2004; Gahl, et. al, 2012; Galati and Brennan, 2010; Gregory et al., 

1999; Jaeger and Tily, 2010; Jurafsky et al., 2001; Jurafsky, 2003; Levy and Jaeger, 

2007; Lindblom, 1990; Lockridge and Brennan, 2002; Munson, 2007; Pluymaekers, et 

al., 2005; Seyfarth, 2014; Swanson et al., 1992; van Bergem, 1995; van Son and Pols, 

2003). One novel contribution of the present work is that predictability does not only 

influence reduction in the moment of speaking. Predictability effects also accumulate 

over time, so that word uses that occur in predictable contexts may also be reduced in 

contexts where they are less predictable due to accumulation of reduced pronunciations 

of that lemma in long term memory. Grammaticalization causes the grammaticalized 

lemma to consistently occur in specific contexts where it is relatively predictable, thus 

resulting in both increased online reduction of the lemma’s form and increased 

association of the lemma with reduced form exemplars.  
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