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Background. Total knee arthroplasty (TKA) is becoming increasingly common 

in the United States. Over 3.4 million older US adults are predicted to undergo primary 

TKA annually by the year 2030, and over 4.5 million Americans already live with a 

primary knee prosthesis. Immediately following surgery, significant muscle atrophy 

occurs, compromising strength and functional mobility of the patient. Essential amino 

acid supplementation has been proven to mitigate post-operative muscle atrophy in 

TKA patients at the level of whole muscle, and this strategy has the potential to 

attenuate individual muscle fiber atrophy as well. Metl,ods. Data collection for this 

Honors Thesis is part of an ongoing double-blind, placebo-controlled randomized 

clinical trial. This Honors Thesis will present blinded raw data from 14 patients who 

have completed the study. Patients are randomized to ingest either 20 g of EAAs or 

placebo twice daily between meals for 1 week before and for 6 weeks after TKA. At 

baseline, 2 and 6 weeks post-TKA, an MRI was performed on each leg to measure 

muscle mass over time. In addition, each subject had bi-lateral biopsies performed in 

the operating room just prior to surgery and again at either 1 or 2 weeks post-TKA 
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(random allocation within each cohort). Digital analysis methods were developed to 

quantify muscle volume (MRI) and muscle cell cross-sectional area (histology) .  

Results. This blinded study is not yet complete and therefore this Honors Thesis will 

not report any results. The data reported are coded and randomized in order to maintain 

the integrity of the clinical trial. Conclusion. Unfortunately, the effectiveness of 

essential amino acid supplementation in attenuating muscle atrophy cannot be assessed 

in this Honors Thesis. However, the precision of the analysis techniques developed here 

can be evaluated and confirmed. Furthermore, the clinical importance of EAA 

supplementation in potentially decreasing post-operative muscle atrophy in TKA 

patients is substantiated as this surgery is becoming increasingly prominent in the US.  
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Introduction  

Total knee arthroplasty (TKA), or total knee replacement, is defined as the 

surgical reconstruction of the knee joint with the ultimate intention of restoring physical 

integrity and function to the damaged or degenerated joint. Total knee replacements are 

becoming increasingly common in the United States, with over 4.5 million Americans 

currently living with a primary total knee prosthesis1. Over 650,000 total knee 

replacements were conducted in 20101, and by 2030 it is projected that nearly 3.4 

million primary TKAs will take place in the United States annually2. Older individuals 

most often receive this treatment, with over 98% of TKA surgeries involving patients 

over the age of 451.  

The primary diagnosis leading up to TKA is osteoarthritis of the knee. This 

involves chronic inflammation, and progressive deterioration, of hyaline cartilage, 

eventually leading to bond-on-bone contact within the knee joint. This condition is 

painfully debilitating and severely limits movement about the knee joint, contributing to 

immobility and sedentarism in the affected patient. The adoption of an inactive lifestyle 

in response to this chronic injury greatly increases risk of mortality through increasing 

risk of developing cardiovascular and musculoskeletal pathologies, as well as metabolic 

syndrome3. Therefore, the implications of knee osteoarthritis should be considered 

serious and life threatening to those effected by it.  

A comprehensive solution is necessary to remedy the chronic pain associated 

with knee osteoarthritis in order to bolster active lifestyles and improve quality of life 

for the affected older population. Total knee arthroplasty is a remarkably successful 

treatment solution for patients suffering from chronic osteoarthritic knee pain. Over 
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95% of TKA patients (96% of whom were suffering from osteoarthritis) reported 

satisfaction with their surgical outcome and 90% reported dramatic pain relief as a 

result of surgery1. Increases in strength in the operative leg improve knee functionality 

after surgery4 and drastically improve overall quality of life for patients. However, 

surgery alone is insufficient in returning TKA patients to their preoperative levels of 

strength and function, even though their chronic knee pain is often remedied. Many 

patients experience significant quadriceps muscle atrophy post-operatively, ultimately 

compromising the ability to maximally regain knee strength and function to levels 

similar to healthy age-matched controls5,4,9,33. Muscle atrophy following TKA occurs at 

a rate of 1% per day for the first 2 weeks after surgery9.   Long-term muscle atrophy 

limits rehabilitation potential and diminishes complete recovery. Further complicating 

the situation, the older adult demographic receiving TKA inevitably experiences 

sarcopenia, or age-correlated muscle degeneration, in addition to post-operative muscle 

atrophy. Sarcopenia is experienced by almost half of people over the age of 80, and 

contributes largely to age related disability in general6. TKA exacerbates sarcopenia and 

accelerates total muscle loss in patients after surgery. In conjunction with one another, 

these atrophic factors greatly impede the ability of TKA patients to return to baseline 

levels of strength and function after surgery. Unfortunately, the atrophy in this context 

is likely permanent due to the age-associated muscle dysfunction inherent in 

sarcopenia15.  

There is therefore a present and increasing demand for improving post-operative 

recovery for TKA patients in order to attenuate the muscle atrophy associated with the 

rehabilitation process.  Decreasing overall muscle loss post-operatively translates into 
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shorter and easier recovery periods for patients, as well as a better end-result in regards 

to strength and function of the joint. It is known that essential amino acid (EAA) 

supplementation increases lean muscle mass7,8, and this has the potential to remedy the 

negative muscle atrophy experienced by patients undergoing a total knee replacement. 

In a 2013 study, Dreyer et al. found that twice daily ingestion of 20 grams of EAAs 

between meals for 1 week before TKA and 2 weeks-post helped reduce the degree of 

post-operative muscle atrophy and associated weakness in patients undergoing total 

knee arthroplasty9. These findings have far reaching clinical implications not only in the 

realm of total knee replacements, but in joint prosthesis in general. If essential amino 

acid supplementation can successfully remedy muscle loss post-operatively, simple 

administration of them before and after surgery could help patients with TKAs or other 

prostheses recover more quickly and completely after surgery.  

 A 2013 study published by Dreyer et al, showed that essential amino 

acid supplementation was successful in attenuating quadriceps and hamstrings/adductor 

muscle atrophy in TKA patients following surgery9. However, Dreyer and colleagues 

did not address how muscle fiber cross-sectional area was affected by EAA 

supplementation during recovery. Therefore, the primary purpose of this study is to 

assess how twice daily ingestion of 20 grams of EAAs for 1 week before and 6 weeks 

after TKA influences changes in muscle cell cross-sectional area. Secondarily, this 

study seeks to confirm their previous findings (Dreyer et al, 2013) that EAA 

supplementation attenuates muscle loss and accelerates the return of functional mobility 

at 6 weeks post-TKA. By coupling muscle cell cross-sectional area data from 

histological analysis with muscle volume data from MRI scans, this Honors Thesis aims 
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to assess the effectiveness of EAAs in deterring muscle atrophy at both the whole-

muscle and cellular level. This bilateral approach aims to address how individual 

muscle cell alterations ultimately affect whole muscle structure and function after TKA. 

It is hypothesized that twice daily ingestion of 20 grams of essential amino acids will 

decrease muscle atrophy (both volume and cross-sectional area) of the quadriceps 

muscle group in both the operative and non-operative leg following total knee 

arthroplasty.  
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Background 

Osteoarthritis 

Chronic osteoarthritis (OA) is a crippling condition in which joint articular 

cartilage and its underlying bone become progressively degenerated, resulting in pain 

and stiffness during movement. OA is currently the most common reason for 

hospitalization for adults aged 45 to 85 in the United States, with a 160% increase in 

admission rates between 1997 and 201110. Prevalence of osteoarthritis will increase 

drastically by 2030, with over 67 million adults (totaling 25% of the adult population) 

predicted to experience the debilitating symptoms11. In terms of pathologic origin, 

osteoarthritis results from a failure in the joint's repair process whereby damaged 

cartilage fails to be replaced with new and healthy cartilage as a function of 

biomechanical and biochemical alterations in the joint space12. Ultimately, an 

imbalance develops favoring degradation of chondrocytes and the extracellular matrix, 

producing a vulnerable joint environment unable to withstand continued mechanical 

stress. Being avascular, cartilage is largely restricted from blood circulation, and thus 

essential nutrients and oxygen availability in the event of an injury. Cartilage is also 

aneural, meaning that these degenerative joint changes fail to produce clinical 

symptoms until adjacent innervated tissues, such as bone, become damaged12. 

Consequentially, OA is often diagnosed late and patients can sustain severe cartilage 

diminution before intervention is enacted.  

OA of the knee is the diagnosis in over 96% of TKA cases, making it the 

principle diagnosis associated with this surgery1. Knee osteoarthritis, specifically, is 

characterized by progressive deterioration of the hyaline articular cartilage and bone of 
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the knee, accompanied by ligament and tendon alterations, resulting in inflammation of 

the joint space and painful, constrained ambulation13. This cartilage loss eventually 

progresses into bone-on-bone contact between the distal femur and proximal tibia, 

resulting in intense pain during articulation. TKA is most often prescribed to remedy 

this pathology, and it is remarkably effective in reducing pain caused by OA by directly 

removing the source. However, many confounding factors complicate post-operative 

recovery and limit a patient’s ability to return to their pre-operative levels of knee 

strength and function.  

Sarcopenia 

The generally older population experiencing OA and the associated pain often 

suffers from skeletal muscle deficiencies due to sarcopenia. Sarcopenia is defined as the 

progressive and involuntary loss of skeletal muscle mass as a function of normal aging. 

It is a phenomenon that contributes to development of frailty in old age,14 and is directly 

related to increased risk of falls, development of disability, and loss of independence15. 

In the year 2000, it is estimated that the United States spent $18.5 billion on healthcare 

directly attributable to sarcopenia, accounting for 1.5% of total healthcare costs that 

year16. After the age of 35, 3-8% of total skeletal muscle mass may be lost per decade 

due to sarcopenia, and this loss is accelerated after 60 years of age17,18. Muscle power 

output simultaneously decreases with age19 and likely accounts for the observed 

discrepancies in the elderly relating to functional independence,20,21. The quality of 

skeletal muscle components also declines with age, negatively influencing cross-bridge 

cycling and excitation-contraction coupling, further exacerbating functional declines in 

older individuals17.  
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The etiology of sarcopenia remains unknown, although it is likely caused by a 

varying combination of possible cellular mechanisms. These include declines in 

conduction velocity of motor neurons (specifically type II), motor unit loss, muscle cell 

loss, interference in excitation-contraction coupling, mitochondrial DNA deletions, 

alterations in satellite cell physiology, hormonal changes, impaired tissue response to 

nutrients, malnutrition, all of which are exacerbated by a lack of physical activity15. 

Regardless of the individual involvement of each of these contributing factors, it 

remains that the muscle fiber atrophy associated with sarcopenia is due to an imbalance 

between muscle protein synthesis and breakdown. There is evidence to suggest that the 

muscle protein synthesis pathway in sarcopenic adults is not disrupted due to a lack of 

difference in anabolic response between healthy young and old adults in response to a 

protein (essential amino acid) stimulus15. Therefore, the catabolic pathway seems to 

dominate protein turnover in older adults experiencing sarcopenia, resulting in a net 

decrease of muscle protein content and explaining the diminished muscle mass and 

force production. 

The atrophy associated with sarcopenia also has a dramatic influence on bone 

health. The connection between osteoarthritis and sarcopenia serves to manifest the 

important relationship between skeletal muscle mass and bone strength in the elderly. 

The application of mechanical force on bone increases bone modeling and remodeling, 

processes which ultimately increase bone mass and strength22. Considering that the 

greatest amount of force applied to bones is from skeletal muscle22, it is clear that 

voluntary contraction of muscle contributes to bone mass and strength. As sarcopenia 

progresses and muscle mass diminishes, the ability of muscle to provide adequate force 
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on bone for remodeling declines, and accordingly, bone health suffers. Thus, muscle 

loss is accompanied by bone loss. In fact, quadriceps weakness (15%-18% below 

baseline) is associated with development of osteoarthritis in a number of studies23,24. 

This highlights the importance of muscle mass retention on overall health and mobility, 

especially in the elderly. 

The Knee Joint and the Quadriceps Muscle Group: Functional Stability 

The knee joint is the largest and most superficial joint in the human body. 

Although well constructed, this synovial joint is considered relatively weak due to the 

variance in shape of its articular surfaces, as well as its requirement of adequate muscle 

mass for proper strength and function25. The quadriceps femoris muscle group performs 

extension of the knee and stabilizes it during ambulation by serving as one of the most 

powerful muscle groups in the human body. The quadriceps group is comprised of 4 

muscles, the rectus femoris, vastus lateralis, vastus intermedius, and vastus medialis. 

Common practical function of these muscles includes walking, running, jumping, rising 

from sitting or squatting, or climbing stairs. Considering many elderly people, and 

especially those with osteoarthritis11, experience increased difficulty performing these 

activities with age, it is clear that maintaining specifically quadriceps function through 

muscle mass retention is of primary concern in keeping the elderly dynamically stable26. 

This becomes even more important in the context of an elderly patient undergoing a 

total knee arthroplasty.  

A severe decline in specifically quadriceps muscle mass and strength has been 

observed for TKA patients during the post-operative recovery process9,27, and this is 

highly correlated with declines in functional mobility more so than other measures of 
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physicality34. Dreyer and colleagues observed an 18% reduction in quadriceps muscle 

mass in control TKA subjects 6 weeks after surgery9. Considering the patient 

population, the combined degenerative effects of sarcopenia and low mobility seem to 

have combined negative affects on quadriceps muscle mass and appropriately affect 

functional mobility post-operatively. Quadriceps weakness can also encourage further 

injury in the patient. Weakness in the operative leg causes changes in movement 

patterns that result in increased loading of the non-operative leg, exacerbating potential 

osteoarthritic damage in the non-operative leg and risking necessity for contralateral 

knee replacement in the future28.  

Mobility Reduction and Muscle Atrophy 

Postoperative mobility impairments directly challenge TKA patients’ efforts to 

return to their preoperative levels of knee strength and function. While not rendered 

completely immobile, TKA patients remain severely limited in activity after surgery; 

despite twice-daily physical therapy sessions that begin postoperative day one. 

Extensive loss of muscle mass, strength, and function as a product of prolonged 

hospitalization and reduced mobility likely contribute to a longer recovery times for 

patients after surgery29. Models of disuse atrophy in human subjects indicate a decrease 

in muscle protein synthesis of approximately 60%, as well as a reduction in the anabolic 

stimulus of EAAs by 50%, after four weeks of sustained immobility30. This decrease in 

muscle protein synthesis results in a loss of 0.3% - 0.8% muscle cross-sectional area per 

day30,31. This loss in muscle mass associated with surgery and recovery is likely to 

accelerate sarcopenia in elderly patients9, ultimately extending recovery times and 

limiting positive clinical outcomes. The atrophy experienced by older patients during 
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this period is likely permanent15, which severely compromises long-term functional 

gains32. In addition, immobility-derived muscle loss sustained preoperatively due to 

chronic knee pain further challenges recovery efforts by decreasing baseline skeletal 

muscle mass. This likely occurs because of the time delay between the onset of 

osteoarthritic symptoms and surgical intervention, which may require years to achieve. 

Thus, it follows that patients suffering from chronic knee osteoarthritis have about two-

thirds the quadriceps muscle mass of comparative adults33. It is clear that patients 

undergoing a total knee replacement are functionally challenged post-operatively, and 

attenuation of atrophy in the quadriceps muscle group is directly correlated to 

improvements in strength and function, ultimately translating to shorter recovery times 

and better overall outcomes for patients.  

Attenuating Muscle Atrophy 

In general, administering hormones, performing exercise, and manipulating 

nutrition are all potential strategies in attenuating loss of muscle mass and function14. 

Hormonal therapy such as the use of testosterone or epinephrine/cortisol blockers has 

positive effects on muscle loss and function, however, treatment involving them is often 

accompanied by undesirable and unpredictable complications. Therefore, the use of 

hormones in this clinical context is limited14. Exercise increases functional mobility in 

elderly patients experiencing sarcopenia, however, it does not seem to actually attenuate 

loss of muscle mass14. However, some studies indicate early onset of exercise post-

operatively aids in recovery of functionality and provides a "higher plateau" for 

improvement, translating to more independence and mobility34. However, the elderly 

population primarily receiving TKA is largely limited in their ability to perform 
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resistance exercise as a function of osteoarthritic pain and compromised muscle mass 

from sarcopenia. Therefore, this strategy, too, is limited in the cohort of subjects under 

investigation. Although hormonal therapy and exercise seem to be ineffective strategies, 

manipulation of nutrition has vast potential for remedying loss of muscle mass and 

function.  

It is known that high-protein diets increase protein synthesis based on expansion 

of amino acid availability35, and this phenomenon happens dose-dependently36, 

meaning that higher rates of protein intake correspond to higher rates of protein 

synthesis. Ingestion of dietary protein above DRI values is known to stimulate the 

fractional synthesis rate (FSR) of muscle protein during protein turnover37, and this is 

positively correlated with strength increases38. It is likely that higher muscle protein 

turnover rate results in formation of new myofibrillar proteins that ultimately function 

with greater capacity14. Essential amino acid supplementation increases muscle mass, 

strength and function similarly to a high protein diet, independent of exercise39,40. In a 

recent study, elderly individuals who daily ingested amino acids above normal dietary 

recommendations for 3 months had improved muscular strength and function41. In 

addition, it is likely that amino acid supplementation also increases skeletal muscle 

metabolic function by increasing mitochondrial protein synthesis, ultimately allowing 

for greater oxidative efficiency42. These findings have far reaching clinical implications. 

If simple oral supplementation of amino acids improves muscle strength and function, 

simple administration of them could help attenuate muscle loss both from sarcopenia 

and the impaired mobility associated with hospitalization and post-operative recovery. 

Findings from the Dreyer Lab provide proof-of-principal for the potential of essential 
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amino acid supplementation to attenuate muscle loss post-operatively in older adults 

having TKA9, providing inspiration for this study.  

Nutrition and muscle protein synthesis seem to be negatively affected by the 

narcotics often prescribed to patients after surgery to manage pain and encourage range 

of motion in the operative knee. Hydrocodone/acetaminophen, oxycodone, and dilaudid 

(hydromorphone) are common opioid narcotics prescribed to patients after TKA to 

manage pain. In a recent review, Wiffen et al. found that anorexia or decreased appetite 

was a side affect of opioid use in 1 out of 8 prescribed patients43. Partial or complete 

loss of appetite could result in a decrease in dietary protein ingestion and the absence of 

the associated anabolic stimulus. This could ultimately encourage muscle atrophy if 

muscle catabolic processes remain active. Dreyer et al. observed a decrease in protein 

ingestion in control subjects 2 weeks after TKA, and they surmised that this dietary 

deficiency could be a contributing factor to postoperative muscle atrophy and observed 

declines in strength and function9. It is possible that narcotic use following surgery 

could contribute to this decrease in dietary protein ingestion through appetite 

suppression.  
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Methods  

Subjects 

The subject pool for this experiment consisted of adult males and females 

between the ages of 50 and 80 who were scheduled to undergo primary total knee 

arthroplasty (TKA). The study aimed to enroll 40 subjects. For the analysis presented 

here, 14 of the 40 subjects had completed the experimental protocol. Through 

collaboration with Slocum Center for Orthopedics and Sports Medicine in Eugene, 

Oregon, subjects were chosen from a pool of potential candidates scheduled to receive a 

primary knee joint prosthesis. Candidates were cleared prior to inclusion into the study 

for various preexisting medical conditions, such as significant heart, kidney, liver, or 

blood disease, untreated endocrine disease, peripheral vascular disease, active cancer, or 

past treatment with anabolic steroids or oral corticosteroids (>1 week). Patients 

undergoing a revision total knee arthroplasty were also excluded due to possible bias in 

recovery process expectations. All subjects completed a detailed informed consent 

agreement before participating in the study. Upon enrollment, each subject was 

assigned to either a treatment (EAA) or placebo group (NEAA) using a set of random 

assignment procedures designed by the Principal Investigator. Considering the double-

blind nature of this study, all researchers were unaware of the group-identity of the 

subject, and all subjects remained unaware of their placement within the groups. 

 

Trial Design 
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This placebo-controlled, double-blinded study began in January of 2015 with 

Dr. Hans Dreyer as Principal Investigator. The study incorporates a dual armed, 

parallel-designed trial with a group allocation ratio of 1:1 between treatment and 

placebo groups. All subjects completed MRI imaging at 2 weeks pre-TKA (baseline), 2 

weeks post-TKA, and 6 weeks post-TKA for the purpose of analyzing quadriceps 

muscle volume. Muscle biopsies were obtained on the morning of the TKA operation, 

and at either 1 week post-TKA or 2 weeks post-TKA (randomized), for the purpose of 

analyzing muscle fiber cross-sectional area. Baseline measures of quadriceps volume 

and muscle cross-sectional area were obtained prior to the total knee replacement, as 

well as before the introduction of amino acid treatment (MRI only).    

Figure 1: Trial design timeline 

This timeline illustrates the trial design and time points of data acquisition. Arrows in 

blue represent MR image acquisition; Arrows in green indicate muscle biopsy 

acquisition (* denotes second biopsy – each subject contributed one biopsy at either 

randomly selected time). Arrow in red indicates day of TKA operation. Dotted line in 

pink represents duration of amino acid supplementation (twice daily, 49 days total). 
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Supplementation  

Subjects in the treatment group were orally administered a regime of 20 grams 

essential amino acids (EAA) twice-daily for 1 week before, and 6 weeks after TKA. 

The placebo group was twice- daily given 20 grams nonessential amino acids (NEAA) 

for the same duration. Supplementation began one week prior to the TKA operation, 

resumed again one day post-surgery, and continued 42 additional days, for a total of 49 

days of supplementation. Ingestion of the amino acid supplement occurred at 10 am and 

2 pm daily. After surgery and during inpatient hospitalization, subjects ingested their 

morning supplement one hour after their early physical therapy session. Subjects 

ingested their second daily supplement an hour after completion of their afternoon 

physical therapy session. Subjects completed three physical therapy sessions per week 

for the first two weeks after TKA intervention. Supplement ingestion occurred after 

regularly scheduled physical therapy sessions in order to maximize the anabolic effects 

of the essential amino acids in muscle protein synthesis44,45. Subjects were encouraged 

to continue this behavior after inpatient hospitalization in outpatient rehabilitation. The 

composition of the essential amino acid supplement was: histidine, 2.2 g (11% of total); 

isoleucine, 2.0 g (10%); leucine, 3.6 g (18%); lysine, 3.2 g (16%); methionine, 0.6 g 

(3%); phenylalanine, 3.2 g (16%); threonine, 2.8 g (14%); and valine, 2.4 g (12%). 

Subjects in the placebo group were administered a supplement of 20 g (100%) alanine 

(non-essential amino acid). The EAA concoction was mixed offsite at Northwest 

Compounders in Tualatin, Oregon. A study coordinator distributed either the EAA or 

NEAA supplements, which were coded to ensure blindedness of researcher and study 
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subject. Records of supplementation were maintained throughout the study and were 

routinely monitored by research personnel during regular visits.  

Total Knee Arthroplasty 

On the morning of the operation, each subject was admitted to Sacred Heart 

Medical Center at RiverBend (Springfield, Oregon) in a postabsorptive state. Either an 

epidural, spinal, or general anesthesia was administered. Intravenous Propofol was used 

to initiate general anesthesia, and either inhalational desflurane or sevoflurane 

(sometimes combined with a muscle relaxant, rocuronium bromide) was used to 

maintain anesthesia throughout the surgery. A 10-cm wide Zimmer inflatable tourniquet 

was placed on the proximal third of the operative thigh and inflated to 300 mmHg in 

order to minimize perfusion during surgery. The tourniquet was removed after the 

major components of the surgery were completed to allow reperfusion of the operative 

limb. 

MRI Acquisition 

All magnetic resonance imaging for the study was conducted at the Lewis 

Center for Neuroimaging (LCNI) at the University of Oregon in Eugene. Patients 

arrived at LCNI two weeks prior to their scheduled TKA surgery for baseline MRI 

scans of the bilateral lower extremities between the anterior iliac spine of the pelvis and 

the tibial plateau. A Siemens Magnetom Skyra T3 system was used to acquire 90-2mm 

thick transverse slice images using the following scan parameters: T1 weighted; TR: 

600 ms; TE: 9.9 ms; echo spacing 9.86 ms; 2D Distortion Correction and Prescan 

Normalize filters; minimum flip angle 150°. Automatic table repositioning was used 



 

17 
 

during the three employed 90-slice scans to grant contiguousness between slices. The 

subject was positioned supine within the scanner and two flexible Siemens Body 18 

coils (18 channel, phased arrayed coils) were placed and adjoined anteriorly over the 

subject’s pelvis and distal femur to acquire images in the area of interest. A Siemens 

Spine 32 array coil was used in conjunction with the Body array coils, and was located 

posteriorly underneath the subject during the scans. Early in the study, placement of the 

flexible Body coils directly on the subject resulted in anteromedial visual interference in 

the image. This interference greatly complicated data analysis. By including an 

additional layer of foam (appx. 1.5 cm), the interference was dampened and the issue 

was resolved. The Dixon technique was applied to obtain additional “water” and “fat” 

images, which served useful in the analysis protocol. Patients returned to LCNI for 

additional MRI acquisition two weeks and six weeks post-TKA, and the same scan 

parameters and equipment were employed. Images for the study were made available to 

the Principal Investigator, who then concealed the subject identity and time point of 

acquisition before releasing each set of scans for analysis. 

MRI Analysis, Determination of Quadriceps Volume 

Each of the subject’s three image subsets (2w pre-op, 2w post-op, 6w post-op) 

was encoded by the Principal Investigator to ensure blindedness during analysis. The 

Principal Investigator produced a single 9-image sequence (referred to as a stack) from 

each subset; each stack consisted of three sub-sequences, each of which was applied 

with a different image filter – “muscle”, “water”, or “fat”. Each of the three sub-

sequences within the 9-image stack was comprised of three images (proximal, middle, 

distal thigh) from the area of interest. Each sub-sequence consisted of the same three 
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images, albeit under different filters. Images (1-3) consisted of a proximal, middle, and 

distal image under the “fat” sub-sequence filter. Images (4-6) consisted of the same 

three images under the “muscle” sub-sequence filter. Similarly, Images (7-9) were the 

identical images under the “water” sub-sequence filter.  Images were chosen from the 

mid-thigh region (~5 cm window) based on clarity and lack of distortion/interference. 

Figure 2 shows an example of a single image stack utilized for analysis.  

 
Figure 2: A single image stack for a subject.  

Images [1,2,3] represent a “fat” sub-sequence; Images [4,5,6] represent a “muscle” 

sub-sequence; Images [7,8,9] represent a “water” sub-sequence. Images [1,4,7] are 

identical proximal thigh images; Images [2,5,8] are identical middle thigh images; 

Images [3,6,9] are identical distal thigh images.  

 MR image analysis was conducted using ImageJ, a dynamic Java-based 

computer application developed by the National Institutes of Health (NIH). A single 9-

image stack (Figure 2) was imported into ImageJ in RGB (red, green, blue) format. 

While all three image sub-sequences were available during analysis, only the “fat” sub-

sequence (Images [1,2,3]) was used to quantify area of muscle because it manifested 
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contrasts between muscle and fat most accurately (Figure 3, Image 1). Beginning at 

Image 1, the Wand tool, which uses a tolerance gradient (1-100) for selection of similar 

particles based on color homogeneity, was used (tolerance = 25) to highlight the femur 

and quantify its area in the proximal, middle and distal image (Figure 3, Image 2). Area 

of the femur for each image was then recorded. The Wand tool (tolerance = 25) was 

used again to select and remove subcutaneous fat from the cross-sectional image of the 

thigh. Left with exclusively the skeletal muscle of the thigh (Figure 3, Image 3) the 

quadriceps muscle group was separated from the hamstrings muscle group by tracing 

both the medial and lateral intermuscular septums, which divide the anterior and 

posterior compartments of the thigh (Figure 3, Image 4). This manual delineation was 

verified for accuracy by cross-referencing the tracing with the identical images in other 

sub-sequences (“muscle” and “water”). This “raw” area of the isolated quadriceps was 

measured in the proximal, middle, and distal Images (1-3) and was recorded. Next, 

intramuscular fat was isolated from skeletal muscle by using a thresholding procedure 

to select and quantify fat within the muscle based on a range of particle shades. Prior to 

thresholding, the image stack was converted from RGB format to 8-bit, or binary, 

format. In addition, the medullary cavity of the femur, which appears light grey in the 

Image, was selected and darkened in Images (1-3) order to ensure its area was not 

included in quantification of intramuscular fat. Manual thresholding using the “Otsu” 

method was chosen because it minimizes intra-class variance within each of the two 

tissue types (muscle and fat) and maximizes inter-class variance between them46. 

Beginning at Image 1, the upper bound of the selection module was set to near 

maximum (254/255) (maximum would include the white background in the selection) 
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in order to include the lightest possible shades in the threshold window. The lower 

bound was then manually manipulated to include as much intramuscular fat as possible 

in the threshold window (selected particles appear red) without including skeletal 

muscle (Figure 3, Image 5). The area of these selected particles was then measured and 

recorded. This procedure was repeated for Images 2 and 3. Quadriceps muscle area was 

calculated by subtracting the raw quadriceps area (Figure 3, Image 4) from the 

combined area of the femur and intramuscular fat for each image.  

 
Figure 3: Image series detailing muscle volume determination from an MRI stack 

[1] displays an unedited MRI image of the “fat” subsequence. [2] shows the femur 

highlighted in the image. [3] shows the skeletal muscle of the thigh, with 

subcutaneous fat removed. [4] shows the quadriceps muscle, separated from the 

hamstrings by tracing the intermuscular septums. [5] shows the intramuscular fat 

within in the quadriceps, highlighted in red using the thresholding tool.  

Prior to calculating quadriceps volume from the area measurements described 

above, each image set was assigned a scale for converting area measurements from 

1 2 

3 4 5 
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pixels2 to cm2. Because the view size of the image file often varied, each stack received 

its own scale. The green scaling bar denoting 10 cm (located on the left aspect of each 

image, see Figure 2) was measured within ImageJ in order to quantify the equivalent 

measurement in pixels. This ratio of (pixels/cm) was squared in order to get a (pixels2 

/cm2) ratio, which each area measurement was divided by in order to convert area 

measurements from pixels to cm.  

Quadriceps muscle volume for a subject was calculated by multiplying the 

average quadriceps area from the proximal, middle, and distal image of each subset (2w 

pre-op, 2w post-op, 6w post-op) by the total distance between the proximal and distal 

image. Counting the number of images located between the proximal and distal images, 

and multiplying by the slice thickness of 2 mm, rendered this quantity. Distance was 

approximately 5 cm for each stack, though it varied based on the location of each image 

within the subset chosen for analysis. A “distance factor” of 10% was added to each 

distance measurement to account for the 0.2 mm separation between slices within each 

subset.  

Acquisition of Muscle Biopsies 

Muscle biopsies were obtained from the vastus lateralis muscle of both the 

operative leg and non-operative leg on the morning of TKA, and at 1 or 2 weeks post-

operation (randomized, see Figure 1). Each subject thus contributed four muscle 

biopsies for analysis. Baseline biopsy samples were obtained by the surgeon in the 

operating room (OR) prior to application of the tourniquet for surgery. Biopsies were 

obtained using a suction-modified Bergstrom biopsy needle, inserted into the muscle 

through a previously made 1-cm incision.  Correspondents from the Dreyer Lab 
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received and processed the tissue in the OR immediately after acquisition. Each biopsy 

was mounted on a short needle inserted through a 1-cm2 square of cork. This was then 

bonded with OCT (Optimal Cutting Temperature) compound to a cryostat chuck, before 

being frozen in isopentane cooled to the temperature of liquid nitrogen for 

approximately 30 seconds. Frozen samples were then transported back to the Dreyer 

Lab where they were labeled with the appropriate subject code and kept at -80° C.  The 

Principal Investigator performed the second biopsy in the Dreyer Lab facility at the 

randomly assigned time (1 or 2 weeks post-op). Standard aseptic procedures were 

performed and a local anesthesia [1% Lidocaine HCl (10 mg/mL)(Hospira Inc, Lake 

Forest, IL)(approximately 10 cc)] was employed during the procedure. Samples were 

processed identically as before and kept at -80° C for future analysis. 

Immunohistochemistry and Fluorescence  

Prior to histological preparation, the principal investigator retrieved a single 

subject’s four muscle biopsies (pre- and post-surgery, left and right leg) and assigned 

each a numerical code (1-4) to conceal the time point of acquisition. The pre-mounted 

samples were then placed in a Leica CM1850 UV cryostat and allowed to equilibrate to 

the cutting temperature of -21° C. Each of the four biopsies was cross-sectioned at 7 μm 

and serially collected in a single vertical row on two individual Fisherbrand Superfrost 

Plus microscope slides. Each biopsy contributed approximately 4-6 sections per row on 

both slides. Muscle sections were allowed to air-dry at room temperature for 

approximately 1 hour before being fixed in cold acetone (4° C) for 3 minutes. Slides 

were allowed to dry before a Pap Pen was used to circumscribe a hydrophobic barrier 

around the biopsy sections. Muscle sections were washed in PBS [(phosphate-buffered 
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saline)(3x3min)] before being incubated with rabbit anti-laminin primary antibody 

(IgG1 ((1:1000) in PBS, DAKO, Carpinteria, California)) or ((1:200) in PBS, Sigma 

Aldrich, St. Louis, Missouri) for 1 hour. Muscle sections were again washed in PBS 

(3x5 min) before being treated with 3% hydrogen peroxide (H2O2) in PBS for 7 

minutes to block endogenous peroxidase activity and non-specific staining. Sections 

were again washed in PBS (3x3 min) before being incubated with goat anti-rabbit IgG1 

secondary antibody (target is laminin antibody, above (AlexaFluor 488 

(1:500)(Invitrogen, Carlsbad, California))) for 1 hour. Muscle sections were washed in 

PBS (3x3 min) before 3% NDS (normal donkey serum; Jackson Immunoresearch, West 

Grove, Pennsylvania) in PBS was applied for 1 hour to block additional non-specific 

staining. Muscle sections were again washed in PBS (3x5 min) before being applied 

with SlowFade Diamond anti-fade mount with DAPI (labeling all 

nuclei)(ThermoFisher, Eugene, Oregon). VECTASHIELD Antifade Mounting Medium 

(Vector, Burlingame, California) was applied and a coverslip was placed on the sample. 

Sections remained at 4° C overnight (~12-16 hrs) before immunofluorescent images 

were obtained.  

Fluorescent Microscopy 

Muscle tissue cross sections were visualized and photographed using a Leica 

DM4000B fluorescent microscope, equipped with a high-speed Leica DFC360 FX 

camera, a DFC 295 color camera, and a Prior Lumen 200 epifluorescence light source. 

The Leica Application Suite (LAS) software was used for image acquisition. Beginning 

with the first section in row 1 (corresponding to the first biopsy), one laminin image 

was obtained from the visual field using λ=488 nm excitation light. Once the image was 



 

24 
 

taken and filed for a given location, the microscope stage was moved left, completely 

out of the current field of view, to expose a new group of cells for image acquisition. 

After the right border of the muscle section was reached, the stage was returned to its 

starting position on the left side of the slice, below the field of view of the previously 

captured image. The specific location of image acquisition within the muscle slice 

depended largely on the quality of the tissue and laminin stain at that site. Care was 

taken to avoid photographing the same cells multiple times. Eight individual fields of 

view were photographed per biopsy, encompassing 32 total laminin images per biopsy. 

Histological Analysis 

Skeletal muscle cell cross sectional area (CSA) was determined using ImageJ 

analysis software. Laminin immunofluorescent images were used during this analysis to 

identify the borders of each muscle cell in the field of view (Figure 4, Image 1). Each 

laminin image was individually imported into ImageJ. Image brightness and contrast 

were then simultaneously increased in order to intensify the extracellular matrix (ECM) 

signature, and to reduce the appearance of any non-specific background staining (Figure 

4, Image 2). The thresholding tool was then used to isolate the muscle cells (dark in the 

image) from the ECM (bright white). The threshold parameters were “applied,” and the 

image was converted to a manipulation-friendly binary image that separated individual 

muscle cells (white) from ECM (black)(Figure 4, Image 3). Any discrepancies in the 

ECM were manually amended with the Brush tool (width: 2-4) in order to fully 

complete the perimeter of as many cells in the window as possible. The identity of very 

small muscle cells was confirmed by cross-referencing the binary image with the 

original laminin image. Once the cellular borders in the binary image were augmented, 
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the image was cross-referenced with the original laminin image a final time to confirm 

the identity of the muscle cells as such. Confirmed muscle cells with an uninterrupted 

membrane lying entirely within the viewing window (not on the border) were colored a 

non-specific shade of grey for differentiation from damaged cells or non-muscle cells. 

This process was repeated until the entirety of muscle cells within the window was 

highlighted. The appropriate pixel-scale ratio (1.953 pixels/μm) was entered in the Scale 

window in order to convert area measurements from pixels to μm2. The thresholding 

tool was again used to select exclusively the grey-highlighted cells, excluding damaged 

muscle cells, non-muscle cells and the ECM. The Analyze Particles macro was used to 

expeditiously measure the cross-sectional area of the individual cells in the image. 

“Show Outlines” and “Display Results” were selected in the drop-down menu in order 

to auto-generate an outline “drawing”, or rendering, of the cell borders, along with area 

measurements for each cell (Figure 4, Image 4). The macro auto-assigned numbers to 

each cell, which coincided with individual area measurements listed in the Results table. 

Muscle cell cross-sectional area measurements were then imported into Microsoft 

Excel, where average fiber CSA was calculated for each biopsy. Each “drawing”, or 

rendering, of the group of cells was saved for reference purposes.  
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Figure 4: Image sequence detailing CSA determination from a single laminin-stained 

muscle biopsy image (7 μm).  

[1] shows an unedited laminin image. [2] shows the image with enhanced 

brightness/contrast. [3] shows the image in binary form, converted using the 

thresholding procedure. [4] shows the “drawing” of the laminin image, with 

individually numbered muscle cells, generated by the “Analyze Particles” macro 

within ImageJ.  
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Results  

 At the conclusion of this Honors Thesis, the study presented here 

remains ongoing due to requirements for additional subjects as per the National Institute 

of Health (NIH) grant funding this research. Because only 14 of the required 40 subjects 

completed the experimental protocol at the conclusion of this Honors Thesis, the data 

must remain blinded so as to eliminate bias in further analysis. Therefore, subject group 

identity (treatment vs. placebo), as well as time point of data acquisition of both MRI 

scans and muscle biopsies remains encoded and unknown. Consequentially, subject data 

cannot be allocated to groups for statistical analysis. Therefore, the discussion of results 

in this study is highly limited because changes in both muscle volume and muscle cross-

sectional area cannot be compared with baseline values. Nevertheless, analysis was 

conducted on the blinded data of the 14 subjects that completed the experimental 

protocol, and this raw data is located in the Appendix. Figures for quadriceps cross-

sectional area (CSA) and quadriceps muscle volume were reported together for each 

subject. Figure 4, shown below, is an example of one subject’s dataset.  
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Figure 5: Quadriceps muscle cross-sectional area (CSA) and muscle volume for a single 

subject.  

The bar graphs above display quadriceps CSA and muscle volume for Subject 1232. 

Each of the four muscle biopsies (pre- and post-surgery, left and right leg) used to 

quantify quadriceps CSA were assigned a random numerical code (1-4) by the 

Principle Investigator to ensure blindedness during analysis. The numbers positioned 

above each column in the CSA figure indicate the number of muscle cells analyzed 

for that biopsy. The 3-digit numbers listed below each column in the quadriceps 

volume figure represent a time point of MRI acquisition (2w pre-op, 2w post-op, 6w 

post-op), and were also encoded by the Principle Investigator. All are ordered least-

to-greatest in numerical order. "R" and "L" refer to right and left leg. Error bars in 

both charts represent ± standard error of the mean (SEM). Data for all 14 subjects 

analyzed for this study are listed in the Appendix.  

 

0

2000

4000

6000

8000

10000

1 2 3 4

M
us

cl
e 

ce
ll 

C
SA

 (μ
m

^2
)  

 

Subject 1232 Quadriceps CSA 

341 
185 361 

403 

0

100

200

300

400

500

�168_R�168_L �737_R�737_L �956_R�956_L

M
us

cl
e 

V
ol

um
e 

(c
m

^3
) 

Subject 1232 Quadriceps Volume 



 
 

29 
 

Discussion  

The primary purpose of this study was to determine how twice daily ingestion of 

20 grams of essential amino acids (EAAs) for 1 week before and 6 weeks after TKA 

influenced changes in muscle cell cross-sectional area following surgery. Secondarily, 

this study sought to confirm findings by Dreyer et al. that EAA supplementation 

attenuates muscle loss and accelerates the return of functional mobility at 6 weeks after 

TKA9. It was hypothesized that twice daily ingestion of 20 grams EAAs would 

attenuate muscle cell and whole-muscle atrophy of the quadriceps in both the operative 

and non-operative leg after TKA.  

Unfortunately, because this double-blind study is incomplete and ongoing due to 

requirements for additional subjects stipulated in the supporting NIH grant, the results 

cannot be unblinded here for analysis. The concealment of subject identifying 

information, group allocation, and time point of data acquisition, is essential in this 

study in order to remove potential bias on the part of the researchers. Removing these 

elements before the experiment is complete would compromise its status as a 

randomized, placebo-controlled, double blind study and ultimately invalidate it. 

Subsequently, evidence-based conclusions about the effectiveness of EAA 

supplementation in attenuating muscle atrophy after TKA cannot be made here because 

they would be merely conjecture. 

However, conclusions can be made about the efficacy of the analysis methods 

developed for this Honors Thesis. The digital strategies designed to determine muscle 

cell CSA and volume are accurate, objective, and yield highly reproducible results. 
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Both methods systematically isolate different tissue types in both contexts, allowing for 

easy quantification of various muscle parameters.  

Intra- and inter-class variance analysis was conducted on these methods in order 

to determine their consistency in measurement. These metrics indicate the objectivity 

and reproducibility of the analysis techniques. Intra-class variance analysis was 

conducted on the muscle volume quantification protocol in order to determine the 

percent difference between measurements of the same dataset over the course of the 

study by a single researcher. This analysis yielded an approximately 2-3% change 

between quadriceps volume measurements conducted at different time points in the 

study. This value is low and well within the accepted range of precision for this analysis 

protocol (<10%).  

Similarly, Inter-class variance was conducted to determine the percent 

difference in measurement between separate researchers analyzing the same dataset. 

These values varied between 0.5%-3.4% and were also well within the accepted range, 

indicating proficiency and precision of technique (<10%).  Intra-class variance analysis 

was also conducted on the muscle fiber CSA protocol. The analysis yielded a 0.15% 

change between average fiber CSA for a subject’s single biopsy, measured at different 

time points in the study. This value, too, is low and well within the accepted range of 

precision (<10%).  

It should also be noted that over 98% of the fibers originally analyzed were 

analyzed again during the follow-up analysis for intra-class variance. Inter-class 

variance analysis could not be conducted on the muscle fiber CSA protocol because 

only one researcher conducted this protocol. Taken together, the low percent changes 
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yielded from these metrics indicate that the analysis protocols developed in this Honors 

Thesis are unbiased and appropriately rigorous in quantifying muscle CSA and volume.  

In addition to being meticulous, both procedures are more time efficient and 

allow for greater analysis capabilities in comparison to past techniques. The protocol for 

determining CSA of muscle cells is particularly expeditious and facilitates analysis of 

large quantities of cells in a reasonable time frame. Of the 14 subjects included in this 

study, 315 cells per biopsy on average were counted and analyzed for each subject 

using the described method. This is a notable increase from other studies measuring 

muscle fiber CSA, such as Dreyer et al.’s 2005 study comparing satellite cell numbers 

in young and older men after eccentric exercise, where, on average, only 119 fibers per 

biopsy per subject were analyzed47. The expanded analysis capacity of this method 

empowers this study even though it is impossible to conduct meaningful statistical 

analysis on the blinded data here.   

The protocol for determining quadriceps muscle volume is similarly efficient 

and dynamic. While exclusively employed to calculate quadriceps muscle volume in 

this study, it can easily be exploited to quantify hamstrings muscle volume (along with 

hamstrings intramuscular fat) and subcutaneous fat volume from the same MRI scans 

depicted in Figures 2 and 3.  The effectiveness of this protocol is further strengthened 

by the wide array of capabilities of MRI technology. The “fat” and “water” images 

provided by the Dixon technique facilitate accurate tissue differentiation and greatly 

simplify the process of quantifying otherwise hard to visualize or ambiguous muscle 

parameters (such as intramuscular fat).  
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The ability to cross-reference the same image under various filters imparts 

confidence during analysis and allows confirmation that manual selections (such as the 

tracing of intermuscular septums, Figure 3, Images 3 and 4) are as detailed as possible. 

The combination of versatile analysis techniques with comprehensive MR image data 

contributes to results that are detailed and reliably reproducible. 

Although the successes of essential amino acid supplementation in attenuating 

muscle atrophy after TKA cannot be directly assessed in this study, discussion of the 

potential advantageousness of this strategy in a clinical context is worthwhile. Findings 

from the Dreyer Lab provide proof-of principle for essential amino acid 

supplementation in mitigating muscle atrophy and the correlated functional declines 

after TKA9. Results concerning muscle fiber cross-sectional area from this study could 

further support these conclusions and ostensibly provide a mechanism for the observed 

retention of strength and functional mobility in patients supplementing EAAs. Although 

complex, the positive relationship between muscle fiber cross sectional area and 

strength in healthy young and older individuals has been established48,49,50,51.  

If EAA supplementation reduces muscle wasting at the cellular level, this could 

be a pertinent strategy in helping TKA patients retain strength, and ultimately maintain 

long-term functional mobility after surgery. The noninvasiveness of EAA 

supplementation makes it appealing in a clinical context, especially because it is not 

associated with adverse side effects or kidney damage.  
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Further research is necessary to determine how EAA supplementation affects the 

daily lives of patients, and if it is a universally realistic approach for all TKA patients. 

However, it remains that EAA supplementation has the capacity to be an exceedingly 

simple strategy in helping the rising number of individuals undergoing total knee 

arthroplasty to regain functional mobility and independence after surgery.  
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Appendix 

Listed below are subject-matched graphs for both quadriceps muscle cross-

sectional area (CSA) and volume. Data within these graphs remains blinded due to the 

stipulations described in the Results and Discussion.  
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