
SEARCH FOR THE FLAVOR-CHANGING NEUTRAL CURRENT

IN TOP PAIR EVENTS IN
√
s = 8 TEV PROTON-PROTON

COLLISIONS AT THE LARGE HADRON COLLIDER

USING THE ATLAS DETECTOR

by

ELIZABETH CAITLIN BROST

A DISSERTATION

Presented to the Department of Physics
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

March 2016



DISSERTATION APPROVAL PAGE

Student: Elizabeth Caitlin Brost

Title: Search for the Flavor-Changing Neutral Current in Top Pair Events in√
s = 8 TeV Proton-Proton Collisions at the Large Hadron Collider Using the ATLAS

Detector

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Physics by:

Stephanie Majewski Chair
James Brau Advisor
Graham Kribs Core Member
Miriam Deutsch Core Member
Marina Guenza Institutional Representative

and

Scott L. Pratt Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded March 2016

ii



c© 2016 Elizabeth Caitlin Brost

iii



DISSERTATION ABSTRACT

Elizabeth Caitlin Brost

Doctor of Philosophy

Department of Physics

March 2016

Title: Search for the Flavor-Changing Neutral Current in Top Pair Events in√
s = 8 TeV Proton-Proton Collisions at the Large Hadron Collider Using the ATLAS

Detector

In this dissertation, a search for the flavor-changing neutral current in top-

antitop events is presented. The flavor-changing neutral current is forbidden at

tree level in the Standard Model and suppressed at higher order due to the GIM

mechanism. In the Standard Model, the top quark is expected to decay to a W

boson and a bottom quark nearly 100 percent of the time. While the Standard

Model branching fractions for flavor-changing neutral currents in top decays are

well beyond current experimental reach, there exist theoretical models which

predict large enhancements to those branching fractions. Observation of the flavor-

changing neutral current in top decays would be an unambiguous confirmation of

new physics.

This search was conducted in data from proton-proton collisions at the Large

Hadron Collider, running at a center-of-mass energy of
√
s = 8 TeV, which were

collected with the ATLAS detector in 2012. These data correspond to an integrated

luminosity of 20.3 fb−1. Candidate events include a lepton (electron or muon), a

photon, at least two jets (one of which is b-tagged), and missing transverse energy.

As no signal is observed, an observed (expected) upper limit on the branching ratio

BR(t→ qγ) of 0.063% (0.062%) is presented.
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CHAPTER I

INTRODUCTION

The Standard Model [1, 2, 3] of particle physics is famously successful, having

stood up to the vast majority of experimental test to date. The experimental high-

energy physicist has two choices, then: to measure the Standard Model predictions

to greater and greater accuracy (compare theory and observation), or to push the

boundaries of the Standard Model until it breaks.

It is interesting to study the inconsistencies that are observed between the

Standard Model predictions and nature. Such problems include:

– Why do neutrinos have mass?

– What is dark matter, and does it interact with SM particles (and if so, how)?

– What is the origin of the matter-antimatter asymmetry?

The Standard Model describes the fundamental particles (quarks, leptons,

and gauge bosons) and their interactions. There are six flavors of quarks: up, down,

charm, strange, bottom, and top. There are three flavors of leptons: electron,

muon, and tau. The quarks experience the electromagnetic, weak, and strong

interactions, and the leptons experience the electromagnetic and weak interactions.

1.1. The Top Quark and the Standard Model

The top quark is the heaviest fundamental particle, with mass 173.21 ± 0.51

± 0.71 GeV [4] (for comparison, the proton weighs about 1 GeV). The top quark

was discovered in 1995 at the Tevatron [5, 6]. The top quark’s enormous mass also

1
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FIGURE 1. Top quark decays through the charged (a) and neutral (b) currents

means that it has a very short lifetime (0.5 ∗ 10−24 s) [4]. The top quark decays

before it can hadronize, so studying top quarks is a unique opportunity to study

bare quarks.

In the Standard Model (SM), the top quark is expected to decay to a W

boson and a bottom quark (t → W b) nearly 100 percent of the time, as in Figure

1a. The flavor-changing neutral current (FCNC), where the top decays to a neutral

boson and an up or charm quark (t → qγ, for example, as in Figure 1b), is highly

suppressed in the Standard Model. Flavor-changing neutral top decays can still

occur very rarely through loops (at a level < 10−14). The SM branching ratio is so

far below the current experimental sensitivity that any observation of FCNC decays

could be indicative of new physics. Even if FCNC decays are not observed, the

setting of upper limits can help to constrain possible new physics models. The most

stringent upper limits on the branching ratio BR(t → qγ) are 0.013% (t → uγ) and

0.17% (t→ cγ), in single top production, set by the CMS Collaboration in 2015 [7].

1.2. Studying the Top Quark

Some of the top quark’s properties were studied at the Tevatron, but more

careful studies require a larger dataset.

The Large Hadron Collider (LHC) [8], located at CERN, outside Geneva,

Switzerland, is the world’s largest particle accelerator, at 27 km in circumference.
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The LHC just completed Run 1 in February 2013, after 3 years of enormously

successful running. Nearly 25 fb−1 of data from proton-proton collisions at

a center-of-mass energy of 8 TeV were delivered in 2012 alone. This is an

unprecedented dataset (both in size and energy), and it will allow us to make

precision measurements that were not possible in the past. The Large Hadron

Collider is a top quark factory, and it provides enough statistics to make precise

measurements of the top quark’s properties, such as mass, spin, and charge. It

is also possible to search for unexpected behaviors (such as new decay processes)

which would hint at new physics, like supersymmetric or technicolor models. Since

the top coupling to the Higgs boson is of order 1, it is of great interest for new

theoretical models. The top pair production cross-section at 8 TeV is about 240

pb [4], so this dataset corresponds to ∼ 6 million top quark pairs delivered to each

of the large experiments, ATLAS and CMS in 2012.

1.3. Searching for FCNC with Top Quarks

Many searches for new physics beyond the Standard Model (commonly

abbreviated BSM) in the top sector have already been performed by the ATLAS

Collaboration during LHC Run I. For example, ATLAS has performed several

searches for the flavor-changing neutral current (FCNC). FCNCs are interesting,

because they violate a fundamental property of the Standard Model: in the

Standard Model, the neutral current conserves flavor at tree level. FCNCs can

occur in the Standard Model through loops, but even that is very rare. However,

there exist theoretical models which predict enhancements to that branching ratio

of many orders of magnitude: for example, R-parity-violating SUSY models [9] and
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two Higgs doublet models [10]. Observation of the FCNC in top decays would be

an unambiguous confirmation of new physics.

In this dissertation, a search for the flavor-changing neutral current in

top decays in 20.3 fb−1of data from pp collisions at
√
s = 8 TeV by the ATLAS

detector at the Large Hadron Collider (LHC) will be presented. In Chapter II,

the theoretical background is studied. In Chapter III, the LHC and the ATLAS

detector are described. In Chapter IV, the simulation of signal and background

simulation are discussed. In Chapter V, the details of the search method are

described. In Chapter VI, the search results are presented. In Chapter VII,

conclusions are made and plans for future work are recommended.
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CHAPTER II

THEORETICAL BACKGROUND

In this chapter, the Standard Model of particle physics is described. I discuss

why there is no flavor-changing neutral current at tree-level in the Standard Model,

and why it is particularly interesting to study the flavor-changing neutral current

with top quarks.

2.1. The Standard Model

The Standard Model Lagrangian is a function of fields and their derivatives

only, and depends on those fields taken at one space-time point xµ only:

L[φi(x), ∂µφi(x)]

It is invariant under certain internal symmetry groups.

The Standard Model predicts a local symmetry:

SU(3)C × SU(2)L × U(1)Y

which will eventually be spontaneously broken:

SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)EM .

The most general Standard Model Lagrangian can be written as

LSM = Lkinetic + Lψ + Lφ + LY ukawa
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where the four terms are the kinetic, fermion, scalar, and Yukawa interactions.

The particle spectrum of SU(3)C × SU(2)L × U(1)Y is as follows:

Quarks: QLi(3, 2)
+
1
6
, URi(3, 1)

+
2
3
, DRi(3, 1)

−1
3

Leptons: LLi(1, 2)
−1
2
, ERi(1, 1)−1

Scalars: φ(1, 2)
+
1
2

and there are twelve generators,

8 La = 1
2
λa (0) for SU(3)C triplets (singlets)

3 Tb = 1
2
σb (0) for SU(2)L triplets (singlets)

1 Y for U(1)Y

three coupling constants,

gS for SU(3)C

g for SU(2)L

g′ for U(1)Y

twelve gauge bosons, Gµ
a(8, 1)0, W

µ
b (1, 3)0, and Bµ(1, 1)0, and a covariant derivative,

Dµ = ∂µ + igSG
µ
aLa + igW µ

a Ta + ig′Y Bµ. Then, the kinetic term is:

Lkinetic = −1
4
Gµν
a Gaµν − 1

4
W µν
a Waµν − 1

4
BµνBµν + (Dµφ)†(Dµφ) +

iQLi
/DQLi + iURi /DURi + iDRi

/DDRi +

iLLi /DLLi + iERi /DERi
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Thus far, Lψ = 0, since the quarks and leptons are in a chiral representations and

charged under U(1)Y , and therefore have no Dirac or Majorana mass terms.

To find those masses, one can write the Yukawa interaction Lagrangian:

LY ukawa = Y u
ijQLiURjφ+ Y d

ijQLiDRjφ+ Y e
ijLLiERjφ+ h.c.

where Y u,d,e are complex 3× 3 matrices of dimensionless couplings. Without loss of

generality, one can choose a basis where these matrices are diagonal:

Y e → VeLY
eV †eR = Ŷ e = diag(ye, yµ, yτ )

Y u → VuLY
eV †uR = Ŷ u = diag(yu, yc, yt)

Y d → VdLY
eV †dR = Ŷ d = diag(yd, ys, yb)

The entries y are the Yukawa couplings to each fermion.

This leads to the CKM matrix, V = VuLV
†
dL, which will be discussed in more

detail in Section 2.1.3. Then, in the basis where Y u = Ŷ u, Y d = V Ŷ d, and vice

versa.

V =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



=


0.97427± 0.00015 0.22534± 0.00065 0.00351+0.00015

−0.00014

0.22520± 0.00065 0.97344± 0.00016 0.0412+0.0011
−0.0005

0.00867+0.00029
−0.00031 0.0404+0.0011

−0.0005 0.999146+0.000021
−0.000046
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Finally, the scalar Lagrangian is:

Lφ = −µ2φ†φ − λ(φ†φ)2

Choosing µ2 < 0 and λ > 0 leads to spontaneous symmetry breaking with | < φ > |

= ν√
2
. Since φ is an SU(3)C singlet, SU(3)C is unbroken. The full local symmetry,

SU(3)C × SU(2)L × U(1)Y , however, is broken to SU(3)C × U(1)EM .

2.1.1. Particles

The local SU(3)C × U(1)EM symmetry implies a massless color octet

gluon, and a massless neutral photon. The spontaneous symmetry breaking

SU(2)L × U(1)Y → SU(3)C × U(1)EM implies 3 massive vector bosons (W±, Z) and

one massive Higgs boson. The charged fermions acquire Dirac masses mf =
yfν√

2
.

Thusly, the full particle spectrum is shown in Table 1.
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TABLE 1. The particles in the Standard Model

particle spin color charge mass

W± 1 (1) ±1 1/2g

Z 1 (1) 0 1
2

√
g2 + g′2

γ 1 (1) 0 0
g 1 (8) 0 0

h 0 (1) 0
√

2λ

e, µ, τ 1/2 (1) -1 ye,µ,τ/
√

2
νe, νµ, ντ 1/2 (1) 0 0

u, c, t 1/2 (3) +2/3 yu,c,t/
√

2

d, s, b 1/2 (3) -1/3 yd,s,b/
√

2

2.1.1.1. Leptons and Quarks

The charged fermions, which existed in chiral representations of SU(2)L ×

U(1)Y are now in vectorial representations of SU(3)C × U(1)EM .

In the Standard Model, there are three massive, charged leptons, called the

electron, the muon, and the tau. There are also three massless, neutral leptons,

called neutrinos. There are six charged, massive quarks.

e, µ, τ : (1)−1

νe, νµ, ντ : (1)0

u, c, t : (3)
+
2
3

d, s, b : (3)
−1
3

Free quarks do not exist in nature. One can observe quarks as part of bound states

called hadrons. Hadrons can contain quark-antiquark pairs (qq), called mesons,

or sets of three quarks or antiquarks (qqq or qqq), called baryons or antibaryons.
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FIGURE 2. A baryon (qqq) and a meson (qq̄)

The proton (uud) and the neutron (udd), which make up the nuclei of atoms, are

baryons. An artist’s rendition of a baryon and a meson is shown in Figure 2.

2.1.2. Interactions

The Standard Model also describes the ways that particles are allowed to

interact. The fundamental interactions in the Standard Model are shown in Table

2.

TABLE 2. Interactions between Standard Model particles

interaction force carrier coupling range

Yukawa h yq short
Electromagnetism γ eQ long

Strong g gS long

Weak (neutral current) Z
e(T3−s2WQ)

sW cW
short

Weak (charged current) W± qV short
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2.1.2.1. Yukawa Interaction

The charged fermions and the massive vector bosons acquire mass through

their interactions with the Higgs boson:

Lh = 1
2
∂µh∂

µh − 1
2
m2
hh

2 − m2
h

2ν
h2 − m2

h

8ν2
h4

+ m2
WW

−
µ W

µ+(2h
ν

+ h2

ν2
) + 1

2
m2
ZZµZ

µ(2h
ν

+ h2

ν2
)

− h
ν
(meeLeR + mµµLµR + mττLτR

+ muuLuR + mccLcR + mttLtR

+ mddLdR + mssLsR + mbbLbR + h.c.)

The Higgs boson couples diagonally to mass eigenstates. These couplings are NOT

universal, instead they are proportional to the mass of the particle (yf ∝ mf ). The

Yukawa couplings are diagonal, however – Standard Model fermions are chiral, so

no bare mass terms. This fact is supported by experimental evidence in the quark

and lepton sectors. ATLAS [11] and CMS [12] have set stringent limits on the

quark-flavor violating process t → qH, where the top quark decays to a light quark

and a Higgs boson, and on the lepton-flavor violating process H → τµ [13, 14],

where the Higgs boson decays to a tau and a muon.

2.1.2.2. Strong and Electromagnetic Interactions

The strong and electromagnetic interactions in the Standard Model are

universal. The strong interaction is mediated by the gluon (g), which couples to

color. Therefore, quarks, which are charged under QCD, participate in the strong

interaction. Leptons, which are color singlets, do not.
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LQCD (fermions) = −1
2
gSqλ /Gaq

(q = u, d, c, s, b, t)

The electromagnetic interaction is mediated by the photon (γ), which couples to

electric charge. The quarks and the charged leptons (e, µ, τ) participate in the

electromagnetic interaction. Neutrinos do not.

LQED (fermions) = −eei /Aei + 2
3
eui /Aui − e

3
di /Adi

(ei = e, µ, τ ui = u, c, t di = d, s, b)

2.1.2.3. Weak Interaction

The neutral current interaction is mediated by the Z boson. It is chiral,

parity-violating, diagonal, and universal.

LNC = e
sW cW

[−(1
2
− s2W )eL /ZeL + s2W eR /ZeR + 1

2
νL /ZνL

+ (1
2
− 2

3
s2W )uL /ZuL − 2

3
s2W )uR /ZuR

− (1
2
− 1

3
s2W )dL /ZdL + 1

3
s2W )dR /ZdR]

The charged current weak interaction is mediated by the W boson. The

interaction with leptons is simpler than that with quarks, since the interaction basis

is the same as the mass basis for leptons. This can be seen in the charged current

Lagrangian LCC :
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LCC = − g√
2
[νeL /W+e−L + νµL /W+µ−L + ντL /W+τ−L + h.c.]

− g√
2
[

(
uL cL tL

)
V /W+


dL

sL

bL

 + h.c.]

where V is the CKM matrix. Only left-handed particles participate in the charged

current weak interaction. Parity is violated. This process is NOT diagonal and

NOT universal.

2.1.3. The CKM Matrix

The Cabibbo–Kobayashi–Maskawa (CKM) matrix [15, 16] is a 3×3 unitary

matrix that relates the flavor and mass eigenstates of the down-type quarks.


d′

s′

b′

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




d

s

b


One could equally well express this information in terms of the up-type quarks, but

this is the traditional way. Its entries have been determined experimentally. The

CKM matrix is nearly diagonal, which tells us that the up and down quarks, charm

and strange quarks, and top and bottom quarks experience the strongest mixing. In

particular, the parameter Vtb is nearly 1, while Vts and Vtd are very small.
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VCKM =


0.97427± 0.00015 0.22534± 0.00065 0.00351+0.00015

−0.00014

0.22520± 0.00065 0.97344± 0.00016 0.0412+0.0011
−0.0005

0.00867+0.00029
−0.00031 0.0404+0.0011

−0.0005 0.999146+0.000021
−0.000046


2.2. The Top Quark

The top quark is the most awesome of all the quarks. It is also the heaviest,

by an order of magnitude. Since it is so heavy, it decays before it can be observed,

and it does not combine with other quarks to form hadrons. Thus, studying the top

quark is a unique opportunity to study a bare quark.

The presence of the a third generation up-type quark could be inferred from

many sources: 1) from symmetry – there are three down-type quarks, and three

generations of leptons, so there are probably three up-type quarks as well 2) from

precision measurements of electroweak observables in the Standard Model (such as

the W mass, the Higgs mass, and the FCNC process BS → µ+µ−) and 3) from

measurements of the flavor-changing neutral current in B meson decays, which

suggested ∆m(c, t).

2.2.1. Discovery

The top quark was discovered in 1995 [5, 6] at the Tevatron at Fermilab, by

the CDF and D0 experiments. The experiments at the Tevatron made the first

measurements of the top quark, but they lacked the statistics to make detailed

studies of its properties.

The LHC is a top quark factory, with nearly 6 million top quark events

delivered to each of ATLAS and CMS in 2012 alone. This unprecedented dataset
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made possible accurate measurements of the top quark’s properties, such as

production cross section, mass, and charge. There are 5 experiments capable of

studying the top quark: CDF, D0, ATLAS, CMS, and now LHCb, with a first

measurement of top production in the forward region [17].

2.2.2. Production and Decay

The study of top quarks can be characterized by their production and decay

mechanisms.

The top quark is dominantly produced in pairs with its antiquark, the anti-

top or t̄. Top/anti-top (top pair) production is a strong process, and therefore

common. Top pair production is shown in Figure 3. Top quarks can also be

produced singly through weak interactions, which is less common. Single top quark

production is shown in Figure 4. Least commonly, top quarks can be produced in

association with a boson, as in Figure 5.

At the LHC, in proton-proton collisions, tt̄ pairs are dominantly produced

through gluon-gluon fusion, as in Figure 3a. At the Tevatron, since they were

colliding protons and anti-protons, the dominant production mechanism for tt̄ pairs

was through quark/antiquark annihilation, as in Figure 3b.

g

g

t

t̄

(a)

q

q̄

t

t̄

(b)

g

g

t

t̄

(c)

FIGURE 3. Top quark pair production mechanisms
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t̄

(a)

W

q

q̄

t

b̄

(b)

g

b

t

W

(c)

FIGURE 4. Single top quark production mechanisms

g

g

t

W,Z

t̄

(a)

g

g

t

H

t̄

(b)

g

g

t

γ

t̄

(c)

FIGURE 5. Top quark production in association with a boson

t

b

W

(a)

b

W

t

q = u, c

Z, γ,H, g

(b)

FIGURE 6. Top quark decays in the Standard Model
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FIGURE 7. Top quark decays in the SM can be further categorized by the decay of
the W boson

Since top quarks decay essentially one hundred percent of the time to a W

boson and a bottom quark, as in Figure 6a, top pair events are typically further

categorized by the decays of the W bosons, as shown in Figure 7. If both W bosons

decay leptonically (to an electron or a muon and a neutrino– events with taus are

generally treated separately), the event is categorized as “leptonic”. If both W

bosons decay to quarks (hadronically), the event is categorized as “all-hadronic”.

Finally, if one W boson decays leptonically and the other decays hadronically, the

event is categorized as “lepton+jets” or “semi-leptonic”.

2.2.3. Top Physics Beyond the Standard Model

It is particularly interesting to probe the properties of the top quark, to see

if they agree with Standard Model predictions. There are many reasons to believe

that the top quark will to play a large role in the discovery of whatever new physics

is out there to discover. For example, the top quark’s enormously large mass means

that radiative corrections from new massive particles will show up in the top sector

before they affect other, lighter fermions. Furthermore, the top quark’s large mass
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implies a correspondingly large coupling to the Higgs boson (“Yukawa coupling,”

which is about 1), which suggests that the top quark might even play a special part

in electroweak symmetry breaking.

2.3. The Flavor-Changing Neutral Current

As presented in the previous two sections, the flavor-changing neutral current

is not permitted to occur at tree-level in the Standard Model. The flavor-changing

neutral current is also CKM-suppressed for heavy quarks.

2.3.1. Flavor in the Standard Model

Here, the word “flavor” refers to copies of the same SU(3)C × U(1)EM

representation, as shown in Table 3:

The flavor-changing neutral current is a process that involves either up- or

down-type quarks (but not both), or involves charged or neutral leptons (but

not both). The flavor of the quark or lepton is changed, but the electric charge is

conserved. These processes are forbidden at tree-level in the Standard Model, but

can occur through higher-order processes, such as loops.

FCNC cannot be mediated by any of the Standard Model bosons at tree-

level. The W boson cannot mediate– charge must be conserved; so FCNC must be

mediated by a neutral boson. The photon and gluon have diagonal, flavor-universal

TABLE 3. Quark and Lepton flavor in the Standard Model

Electric charge Flavors

up-type quarks +2/3 u, c, t
down-type quarks -1/3 d, s, b
charged leptons -1 e, µ, τ

neutrinos 0 νe, νµ, ντ
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couplings. The SM Higgs boson cannot couple to fermions of different flavors– SM

fermions are chiral (which means there are no bare mass terms). Since there is a

single Higgs doublet in the Standard Model, the Higgs boson is out as well.

2.3.2. The GIM Mechanism

In the late 1960s, studies of kaon decays suggested that there was no neutral

current in the Standard Model. There was an observation of K+ → µ+νµ but not

K0
L → µ+µ−. In the Cabibbo model, there were only three quarks (u,d,s), so even

in the absence of a tree level decay through the neutral current, the box diagram

ds̄→ µµ should have been possible though the exchange of W s.

∆S = 0 : uū+ dd̄cos2ΘC + ss̄sin2ΘC

∆S = 1 : (sd̄+ ds̄)sinΘCcosΘC

The non-observation of that process led Glashow, Iliopoulos, and Maiani to predict

the existence of a fourth quark in 1970. The addition of that fourth quark, the

charm quark, led to two quark doublets, as well as an almost perfect cancellation

between the box diagrams involving a charm and an up quark in neutral kaon

decays.

∆S = 0 : uū+ cc̄+ (dd̄+ ss̄)cos2ΘC + (ss̄+ dd̄)sin2ΘC

∆S = 1 : (sd̄+ ds̄− ds̄− sd̄)sinΘCcosΘC

Now, with the addition of the charm quark, the ∆S = 1 terms cancel exactly (in

the approximation where the charm and up quarks have the same mass). This can

be seen in Figure 8, the box diagram contributions to neutral kaon decay.
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FIGURE 8. Neutral kaon decays through FCNC to a pair of muons

W

t

γ

u, c

FIGURE 9. Top quark decay to a light quark and a photon, through a loop

The flavor-changing neutral current in top decays is CKM- as well as GIM-

suppressed. Flavor-changing processes are proportional to off-diagonal entries in

the CKM matrix, which are all very small. (FCNC ∝ ∆m2 between quarks in the

same sector). This suppression was used to predict the masses of the charm and

top quarks:

∆mK ∝ (m2
c −m2

u)/m
2
W

∆mK ∝ (m2
t −m2

c)/m
2
W

The flavor-changing neutral current can occur in the Standard Model through

loops, although this process is very rare. The SM branching ratios for top FCNC

are shown in the first column of Table 4. The SM top quark FCNC decay is shown

in Figure 9.
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TABLE 4. Flavor-changing neutral current branching ratios in the Standard Model,
as well as several BSM scenarios: two-Higgs-doublet models with flavor-violating
Yukawa couplings [10, 18], quark singlet models [19, 20], minimal supersymmetric
models with 1 TeV squarks and gluinos [21], R-parity-violating supersymmetric
models [9], and models with extra dimensions [22]

Process SM 2HDM QS MSSM RPV XD

t→ uγ 4 ∗ 10−16 - ≤ 4 ∗ 10−8 ≤ 10−8 ≤ 10−9 -
t→ cγ 5 ∗ 10−14 ≤ 10−7 ≤ 4 ∗ 10−8 ≤ 10−8 ≤ 10−9 ≤ 10−9

t→ uZ 7 ∗ 10−17 - ≤ 6 ∗ 10−4 ≤ 10−7 ≤ 10−6 -
t→ cZ 1 ∗ 10−14 ≤ 10−6 ≤ 6 ∗ 10−4 ≤ 10−7 ≤ 10−6 ≤ 10−5

t→ ug 4 ∗ 10−14 - ≤ 9 ∗ 10−7 ≤ 10−7 ≤ 10−6 -
t→ cg 5 ∗ 10−12 ≤ 10−4 ≤ 9 ∗ 10−7 ≤ 10−7 ≤ 10−6 ≤ 10−10

t→ uH 2 ∗ 10−17 ≤ 6 ∗ 10−6 - ≤ 10−5 ≤ 10−9 -
t→ cH 3 ∗ 10−15 ≤ 2 ∗ 10−3 - ≤ 10−5 ≤ 10−9 ≤ 10−4

2.3.3. FCNC Beyond the Standard Model

Theoretical models of new physics are designed to solve problems that exist

with the Standard Model, or to explain observed phenomena that are not in

agreement with the Standard Model. For example, they might present solutions to

such problems as the lack of a dark matter candidate in the SM or the unnaturally

high fine-tuning of the Higgs mass due to loop corrections.

The flavor-changing neutral current in top decays happens so rarely in the

Standard Model that it will be very difficult to observe, even with major advances

in collider and detector technology. Beyond the Standard Model, however, there

exist many and varied theoretical models which predict large enhancements to

the flavor-changing top couplings. In most of these models, the enhancement

comes from loop terms with heavy particles moving in the loops. It is particularly

interesting to study models of new physics which solve one or more outstanding
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problems presented by the SM. Example branching ratios for top FCNC decays in a

variety of models are shown in Table 4.

2-Higgs-Doublet Models: The two-Higgs-doublet models are a natural

extension to the Standard Model that predict a second Higgs doublet. This

results in an additional four Higgs bosons after the SM Higgs boson h: a

heavy CP-even neutral boson H, a CP-odd pseudoscalar A, and two charged

bosons H±. Many supersymmetric and axion models posit the existence of

an extra Higgs doublet. 2HDMS can also explain the baryon asymmetry of

the universe, through the flexible mass spectrum of the scalar sector, and

additional sources of CP violation [23].

Branching ratios for top FCNC decays in 2HDMs can be particularly large.

Extended electroweak symmetry breaking sectors with flavor-violating

couplings between the heavy Higgs H or pseudoscalar A can occur through

loops involving the extra Higgses, or even at tree-level in these models. Since

the couplings generally scale with quarks mass, limits on light quark FCNC

are preserved, while allowing for potentially measurable top FCNC [10, 18].

Quark Singlet Models: It is also interesting to imagine extending the SM with

an extra vector-like quark singlet (QS), which couples strongly to the top

quark. Additional top-partner quarks could explain the fine-tuning to the

Higgs mass, by canceling the top loop diagrams.

In models with vector-like quark singlets added to the Standard Model, the

CKM matrix is no longer unitary, and top FCNC decays can occur at tree

level [19, 20].
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MSSM: Supersymmetric (SUSY) extensions to the Standard Model, where each

Standard Model particle has a super-partner, are very popular, since they

provide solutions to several outstanding questions. For example, the lightest

supersymmetric particle is a good candidate for dark matter. In the Minimal

Supersymmetric extension to the Standard Model (MSSM) with squarks and

gluinos which have mass ∼ 1 TeV, top FCNC decays can occur through loops

involving stop quarks [21].

R-Parity-Violating SUSY Models: Top decays through FCNC can also occur

at one loop in supersymmetric models where R-parity is violated (RPV).

These loops can involve baryon or lepton number violation. The values shown

in Table 4 correspond to the case where the squarks have mass 1 TeV [9].

Models with Extra Dimensions: Models with warped extra dimensions

offer a potential solution to the hierarchy problem, by constructing a

mechanism that explains the huge difference between the Planck scale

and the electroweak symmetry breaking scale. In models with warped

extra dimensions (XD), there can be flavor-violating couplings between the

Standard Model fermions and Kaluza-Klein (KK) excitations of Standard

Model bosons. In these models, flavor-violating couplings involving the top

quark will be largest, because of its overlap with the KK gauge modes [22].

2.3.4. Top FCNC Measurements at ATLAS

It is possible to search for the flavor-changing neutral current in a variety

of channels, which are shown in Figure 10. Different channels have their own

advantages and challenges. For example, searching for FCNC in single top

production allows for a sharp separation between the processes pp → u → tg
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FIGURE 10. Flavor-changing neutral top quark decays (forbidden at tree-level)

and pp → c → tg, since there are more up quarks in the proton than charm quarks.

The process t → qZ can be observed in a nearly background-less final state by

exploiting the three-lepton topology of tt̄ → WbqZ → `νbq``. A search for the

process t→ qH can take advantage of the many decay channels of the Higgs boson.

Previous searches for FCNC in top quark decays that have been performed by the

ATLAS collaboration are shown in Table 5. A summary of previous searches for

top FCNC is shown in Figure 11.

TABLE 5. Previous ATLAS limits on top FCNC

Channel Exp. Limit Obs. Limit Reference

BR(t→ cg), single top 0.015 0.017% [24]
BR(t→ ug), single top 0.0035 0.004% ”
BR(t→ qZ), Z → `+`− 0.08% 0.07% [25]
BR(t→ cH), H → bb̄ 0.41% 0.56% [11]
BR(t→ uH), H → bb̄ 0.64% 0.61% ”
BR(t→ cH), H → WW ,τ+τ− 0.54% 0.80% [11]
BR(t→ uH), H → WW ,τ+τ− 0.57% 0.79% ”
BR(t→ cH), H → γ γ 0.51% 0.79% [26]

BR(t→ cH), combined 0.25% 0.46% [11]
BR(t→ uH), combined 0.29% 0.45% ”

It is particularly interesting to search for the flavor-changing neutral current

in top decays t → qγ, because of the many interesting final-state topologies that

correspond to this process.
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FIGURE 11. Summary of current limits on top FCNC decays, BR(t → cX) (left)
and BR(t→ uX) (right).
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FIGURE 13. FCNC search at LEP in single top production

One can measure the coupling tqγ in single top production. Searches for

single top production via FCNC were performed at HERA, an electron-proton

collider, at LEP, an electron-positron collider, and at the LHC, a proton-proton

collider. Searches were performed by the ZEUS and H1 Collaborations in the

process ep → etX, as shown in Figure 12. Searches were performed by the LEP

collaborations in the process e+e− → γ → tq̄, as shown in Figure 13. A search

was performed by the CMS Collaboration in the process pp → q → tγ, as

shown in Figure 14. One can also search for FCNC in top quark decays. The CDF

Collaboration at the Tevatron performed a search in the process pp̄ → tt̄ → Wbqγ,

as shown in Figure 15. Previous limits set on the process t → qγ can be seen in

Table 6.
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FIGURE 15. FCNC search by CDF in top decays

TABLE 6. Upper limit on BR(t→ qγ) in previous searches

Experiment Process Upper Limit Reference

CMS pp→ tγ BR(t→ uγ)<0.013% [7]
BR(t→ cγ)<0.17%

ZEUS ep→ etX BR(t→ uγ)<0.59% [27]
H1 ep→ etX BR(t→ uγ)<0.64% [28]
DELPHI e+e− → t̄q BR(t→ qγ)<4.65% [29]
L3 e+e− → t̄q BR(t→ qγ)<4.1% [30]
CDF tt̄→ Wbqγ BR(t→ qγ)<3.2% [31]

The search presented in this dissertation will exploit the final-state topology

of top pair events where one top decays t → qγ. In this process, tt̄ → Wbqγ →

`νqγ, there is one of each object that can be reconstructed using the ATLAS

detector (except for a tau lepton). There will be one charged lepton (and electron

or a muon), one neutrino, two jets (one from the bottom quark and one from the
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up or charm quark), and one photon. Finally, the excellent mass resolution for the

top quark that decays t → qγ allows for very good separation between this process

and others.
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CHAPTER III

THE LHC AND THE ATLAS DETECTOR

In this chapter, the experimental apparatus used to collect the data presented

in this dissertation is described. The Large Hadron Collider and the ATLAS

detector are described in detail, and physics object reconstruction techniques and

Monte Carlo simulation techniques are summarized.

3.1. The Large Hadron Collider

The Large Hadron Collider (LHC) [8] is the world’s largest particle

accelerator, at 27 km in circumference. Located at CERN, 100 m under the French-

Swiss border, the LHC accelerates protons clockwise and counter-clockwise around

the ring at 99.999997828% of the speed of light. The proton beams are focused,

steered and accelerated around the ring using superconducting magnets. The

protons are then made to collide at four interaction points, where the four main

LHC experiments (ATLAS [32], CMS [33], LHCb [34], and ALICE [35]) are located.

3.1.1. Accelerator Complex

It takes several separate machines to accelerate the protons to LHC collision

energy. Figure 16 shows an artist’s rendition of the accelerator complex at CERN,

which accelerates the protons to high energy for injection into the LHC. The

protons that will be collided in the LHC begin inside a small bottle of hydrogen

at the main CERN site (each hydrogen atom is composed of one proton and

one electron). Hydrogen atoms are placed in an electric field, which separates

the protons and electrons. The protons are inserted into the Linac 2 (shown in
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FIGURE 16. The accelerator complex at CERN [36]

purple) accelerates the protons to 50 MeV. They are then injected into the Proton

Synchrotron Booster (shown in lilac), and accelerated to 1.4 GeV. Next, they go

into the Proton Synchrotron (shown in magenta), and further accelerated to 25

GeV. The protons are then injected into the Super Proton Synchrotron (shown in

light blue), where they are accelerated to 450 GeV. Finally, the protons arrive at

the LHC (shown in dark blue), where they will be accelerated to collision energy.

The first proton-proton collisions in the LHC in 2008 occurred at the injection

energy of
√
s = 900 GeV (450 GeV per beam). Then, after a few years of machine

development and improvements, LHC Run I began. In 2010, the then-world-record

collision energy of
√
s = 7 TeV was achieved. While there was only a small amount
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FIGURE 17. Total luminosity versus time delivered to (green), recorded by
(yellow), and declared good for analysis by (blue) the ATLAS experiment in 2011
and 2012, during 7 TeV and 8 TeV pp collisions.

of data collected in 2010, the short run served as training for the years to come.

In 2011, the LHC ran for most of the year at
√
s = 7 TeV, and delivered 5.46

fb−1 of data. In 2012, the LHC ran at
√
s = 8 TeV for the majority of the year,

and delivered 22.8 fb−1of data. The total luminosity delivered to the ATLAS

experiment in 2011 and 2012 is shown in Figure 17, and the peak instantaneous

luminosity over time is shown in Figure 18.
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FIGURE 18. Peak instantaneous luminosity delivered to the ATLAS experiment
per day in 2010, 2011 and 2012, during 7 TeV and 8 TeV pp collisions.

3.1.2. LHC Magnets

The LHC contains thousands of superconducting magnets to move the

protons around the 27 km ring. 1232 14.3 meter long dipole magnets steer the

proton beams, and 392 5-7 meter long quadrupole magnets focus the beams. The

magnets have two apertures, one for each of the counter-rotating proton beams.

3.1.3. Pileup

One of the biggest challenges for data-taking at a proton accelerator is the

number of interactions per bunch crossing. This quantity, known as “pileup”, is

shown in Figure 19 for the LHC in 2011 and 2012. At the LHC in 2012, the average

number of interactions per bunch crossing was 20.7. It is then necessary to separate

the tracks and energy deposited in the detector by the hard-scatter event from the

other collisions that happened at nearly the same time.

The difficulty of separating one event from another in a high-pileup

environment can be seen in Figure 20. This event, captured in 2012, is a Z → µ+µ−

event with 20 associated pileup vertices.
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FIGURE 19. Luminosity-weighted distribution of the mean number of interactions
per crossing in 2011 and 2012.
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FIGURE 20. Z → µ+µ− event with 20 pileup vertices.
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3.2. The ATLAS Detector

The ATLAS detector is a general-purpose detector located near the main

CERN site at the Large Hadron Collider. A computer-generated image of the

ATLAS detector is shown in Figure 21. It is the largest collider detector ever built,

at 46 meters long and 23 meters in diameter. It weighs 7000 tons.

The ATLAS detector [37] at the LHC covers nearly the entire solid angle

around the collision point. It is comprised of many detector subsystems, each of

which is optimized for a different particle signature. From the inner-most part of

the detector to the outside, there is an inner detector, which measures the tracks of

charged particles, a solenoid, which provides an axial magnetic field, a calorimeter,

which measures the energy deposited by electromagnetic particles and charged or

neutral hadrons, and a muon system with toroids.

In this search, the final-state particles include an electron or a muon, a

photon, jets, and missing transverse energy (Emiss
T ). Therefore, every subsystem

in ATLAS is used to identify one or more of the objects in this search. The

subsystems used to identify each species of particle are summarized in Table 7,

and illustrated in Figure 22.

TABLE 7. Particles identified by each detector system

Particle Detector Subsystem Quantity Measured

Electron Inner Detector Track
Electromagnetic Calorimeter Energy

Photon Electromagnetic Calorimeter Energy
Jets + Emiss

T Inner Detector Tracks
Calorimeters Energy

Muon Inner Detector Track
Muon Spectrometer Momentum
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FIGURE 21. The ATLAS detector [38]
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FIGURE 22. A cartoon of a cross-section of the ATLAS detector, and particle
identification in each detector subsystem
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3.2.1. Coordinate System and Common Variables

ATLAS uses a right-handed coordinate system [37] with its origin at the

nominal interaction point (IP) in the center of the detector and the z-axis along

the beam pipe, as shown in Figure 23. The x-axis points from the IP to the center

of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, φ) are

used in the transverse plane, φ being the azimuthal angle around the z-axis. The

pseudorapidity η is defined in terms of the polar angle θ as η = − ln tan(θ/2).

Angular distance is measured in units of ∆R ≡
√

(∆η)2 + (∆φ)2.

  

Y

Z

Y

X
θ

φ

MET

FIGURE 23. The ATLAS coordinate system is shown, detailing the right-handed
xyz coordinates, and the variables Θ and φ. The missing transverse energy (Emiss

T )
is represented here by the dotted dark blue line, resulting from the negative vector
sum of the particles in this event, which are represented by the colored arrows.
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3.2.2. Inner Detector

The inner detector system (ID) is used to reconstruct tracks of charged

particles, as they bend in a magnetic field. The inner detector is shown in Figure

24. It is contained in a 2 T axial magnetic field and provides tracking in the range

|η| < 2.5.

The silicon pixel detector covers the vertex region, and provides detailed

information about particle tracks and vertex location. Charged particles passing

through the pixel detector create current in the silicon detector elements. There

are three layers in the pixel detector, and thus typically three hits per track,

each of which contribute to the track fit the (x, y, z) position of the hit. The

silicon microstrip tracker (SCT) provides up to four additional two-dimensional

measurement points per track.

The transition radiation tracker (TRT) complements the silicon detectors, and

enables radially extended track reconstruction up to |η| = 2.0, using 73 straw planes

in the barrel, and 160 in the endcap. Charges from gas ionizations are passed

down these wires, which provide (x, y) location and z from timing data. Electron

identification information can be gathered from the fraction of hits (typically

30 in total) above a higher energy deposit threshold corresponding to transition

radiation.

The reconstructed tracks from hits in the inner detector can then be

extrapolated back to primary and secondary vertices. The primary vertex

corresponds to the hard-scatter pp interaction, and secondary vertices arise from

decays of long-lived hadrons (B mesons, for example). The primary vertex is chosen

to be the one with maximum Σp2T. Other vertices can occur, due to pile-up.
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FIGURE 24. The ATLAS inner detector [39]

During Long Shutdown 1 in 2013 and 2014, an additional fourth layer was

added to the inner detector. The Insertable B-Layer (IBL) is a high-granularity

silicon pixel detector, which consists of 14 staves arranged around the beam pipe to

ensure full azimuthal coverage. The average distance of the staves from the beam is

33.25 mm. The silicon pixel size is just 50 x 250µm. The addition of this new layer

to the inner detector necessitated a new, smaller beam pipe, only 25 mm from the

beam.

3.2.3. Calorimeters

The ATLAS calorimeter system, shown in Figure 25, is designed to absorb

and measure the energy of neutral and charged particles. The signal is created by

energy deposited in the calorimeter, so it is important that the energy is completely

absorbed before the particle can pass through the back of the calorimeter. This

is a sampling calorimeter– it uses dense material for absorption power, combined

with active material to measure signal, which is generated from ionizations in the

active material. The active material in the electromagnetic calorimeter is liquid

argon. This method has limitations: it only directly measures a few tens of percent
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FIGURE 25. The ATLAS calorimeter [40]

of the signal, and so is subject to sampling statistics. Also, hadrons generate less

signal than electrons depositing the same energy in a sampling calorimeter. For a

sampling calorimter, one wants to know the ratio
Evisible
Edeposited

– therefore, one needs

to know about multiple scattering in inactive material (since particles can take

several paths through the material), which changes the sampling fraction. One has

to measure this ratio in test beams where the original beam energy is known very

precisely.

The ATLAS calorimeter system covers the pseudorapidity range |η| < 4.9.

Within the region |η| < 3.2, electromagnetic calorimetry is provided by barrel and

endcap high-granularity lead/liquid-argon (LAr) electromagnetic calorimeters, with

an additional thin LAr presampler covering |η| < 1.8, to correct for energy loss

in material upstream of the calorimeters. The electromagnetic calorimeter covers

26-35 radiation lengths, depending on exactly where the particle ends up in the
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FIGURE 26. The material in each layer of the Electromagnetic Calorimeter, in
radiation lengths, as a function of |η|. [32]

detector. The “accordion” geometry of the LAr calorimeter, shown in Figure 25,

provides full azimuthal coverage.

Since the measurement of energy in a sampling calorimeter depends on the

amount of material traversed by each particle, it is important to understand not

only the detector material, but also the support structures and cables used for

data transport, etc. The material in each layer of the electromagnetic calorimeter is

shown in Figure 26.

Hadron calorimetry is provided by the steel/scintillating-tile calorimeter,

segmented into three barrel structures within |η| < 1.7, and two copper/LAr hadron

endcap calorimeters. The hadron calorimeter extends to 10 interaction lengths. The

material in each layer of the hadron calorimeter is shown in Figure 27.

The solid angle coverage is completed with forward copper/LAr and

tungsten/LAr calorimeter modules optimized for electromagnetic and hadronic

measurements respectively. Although the calorimeter provides nearly 4π coverage

around the interaction point, its complex geometry means that there are some

“cracks”, particularly in the region between the barrel and the endcap. However,

there is nearly hermetic coverage in the azimuthal angle φ.
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3.2.4. Solenoid Magnet

The ATLAS superconducting solenoid is aligned with the beam axis, and

surrounds the inner detector. It provides a 2T magnetic field, which makes tracking

of charged particles possible.

3.2.5. Muon System

The outermost layer of the ATLAS detector is used to measure the

momentum of muons, and constists of a separate trigger system and high-precision

tracking chambers which measure the deflection of muons in a magnetic field

generated by superconducting air-core toroids. The precision chamber in the barrel

region, |η| < 2.7, has three layers of Monitored Drift Tubes (MDTs) for tracking,

and Resistive Plate Chambers (RPCs) for triggering. This is complemented

by three layers of Cathode Strip Chambers (CSCs) for tracking and Thin Gap

Chambers (TGCs) for triggering in the endcap region, where the backgrounds are

highest. The various parts of the muon system are shown in Figure 28. Muons will

typically hit three layers of the muon system in either the barrel or endcap.
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FIGURE 28. The ATLAS muon system [41]
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3.2.6. Toroid Magnets

The ATLAS toroid system provides 0.5T and 1T magnetic fields to the barrel

and endcap regions, respectively. The barrel toroid has eight-fold symmetry, and

consists of eight superconducting air-core toroid coils. The two end-cap toroids also

consist of eight coils, which are interleaved with the barrel coils. A magnetic field is

provided in the range |η| < 1.4 by the barrel toroids, and in the range 1.6 < |η| <

2.7 by the endcap toroids. The remaining region is covered by a combination of the

barrel and endcap toroids. The goal is to have the muon trajectory be orthogonal

to the magnetic field in all areas.

3.2.7. Trigger and Data Acquisition

The ATLAS trigger system selects interesting collisions out of the mountain

of data provided by the LHC. The proton bunch crossing rate was 40 MHz in 2012,

and we were only able to read out data at a few hundred Hz, so this is a reduction

of 5 orders of magnitude. In order to accomplish this reduction, while making sure

to keep the best events, ATLAS uses a multi-step hardware and software trigger.

A three-level trigger system is used to select interesting events [42]. The Level

1 (L1) trigger is implemented in hardware and uses a subset of detector information

to reduce the event rate to a design value of at most 75 kHz. This is followed by

two software-based trigger levels, collectively known as the High-Level Trigger

(HLT) which together reduce the event rate to about 200 Hz.

3.2.7.1. Level 1 Trigger

The Level 1 hardware trigger uses coarse information from some of the sub-

detectors to make fast initial trigger decisions. The L1 trigger uses information
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from the RPCs and TGCs for muons, and from all of the calorimeter systems for

electrons, hadrons, photons, jets, and missing transverse energy. The decision time

for the L1 trigger is 25 µs. The L1 trigger identifies one or more regions of interest

(RoI), defined in η and φ, which are then passed to the HLT.

3.2.7.2. High Level Trigger

The Level 2 (L2) trigger uses the information from the RoIs received from L1,

as well as the full detector granularity to make a decision. Finally, the Event Filter

(EF) has an additional 4 seconds to make a decision, and can make more detailed

selections, such as b-tagging or vertex position.

3.2.7.3. Trigger Menu During Run 1

The trigger system can be configured during data-taking by making changes

to what is known as the trigger menu. The trigger menu consists of a set of trigger

chains, which are made up of trigger decisions at each of the three trigger levels,

L1, L2, and EF. The trigger menu is divided among a variety of trigger signatures,

which correspond to the physics objects being selected: electrons, muons, photons,

jets, MET, b-tagged jets, and hadronically decaying taus. In order to keep the

entire trigger within the available bandwidth (a few hundred events per second),

the trigger chains can be pre-scaled. Pre-scaled trigger chains will only select a

fraction of the events which pass their selection. Pre-scales can be dynamically

adjusted during data-taking as the instantaneous luminosity decreases. In this way,

the maximum number of interesting events are always being recorded.
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3.2.8. Data Quality

Not all data recorded by the ATLAS detector can be used for analysis.

Detailed records are kept for each detector subsystem, with information on detector

performance.

3.2.9. Luminosity Measurement - Forward Detectors

Two detector subsystems are used to determine the luminosity delivered to

the ATLAS experiment: LUCID and ALFA. Both detectors are located around the

beampipe, forward and backward of the ATLAS detector. LUCID (LUminosity

measurement using a Cherenkov Integrating Detector) is located at ± 17 m

from the interaction point, and consists of 20 1.5 m-long gas-filled tubes with

photomultiplier tubes at the ends used to measure the relative luminosity bunch-

by-bunch, as well as diffractive physics. The ALFA (Absolute Luminosity for

ATLAS) sub-detector is located at ± 240 m from the interaction point, and is used

to measure the total luminosity delivered to the ATLAS experiment. ALFA consists

of eight scintillating fiber detectors inside roman pots, located above and below

the beampipe. ALFA takes measurements during dedicated LHC runs, called vDM

scans. An additional measurement of the luminosity is provided by the Zero-Degree

Calorimeter (ZDC), located at ± 140 m from the interaction point.
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CHAPTER IV

SIMULATION AND RECONSTRUCTION

This chapter describes the simulation of physics processes and the

reconstruction of physics objects from recorded data and from simulation.

4.1. Simulation of pp Collisions

The ATLAS experiment uses Monte Carlo (MC) simulations to make

predictions and to compare data to theoretical models. Simulations of Standard

Model processes can be used as validation, to check that object reconstruction is

working correctly. Simulations of new physics are used to predict what will be seen

if a particular theory turns out to be true. A flow chart showing the process of

simulation is shown in Figure 29.

FIGURE 29. Flow chart which shows the process of ATLAS simulation, from
event generation (top left) to reconstruction (top right). SDO = “Simulated Data
Object”, ROD = “Read Out Driver” [43]
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4.1.1. Monte Carlo Generators

Different generators specialize in simulating different physics processes.

Monte Carlo generators can also be classified by the precision of their calculations

(leading-order (LO) vs. next-to-leading-order (NLO), etc.). The Monte Carlo

generators used in this search are summarized below.

Alpgen: Alpgen is a leading-order generator for hard processes. It specializes in

processes with high multiplicity final states [44]

Herwig: Herwig is a general-purpose leading-order generator [45]

Madgraph: MadGraph is a leading-order generator for hard processes [46]

Powheg: Powheg is a next-to-leading-order generator that can be interfaced with

other generators (Pythia, for example) for showering [47, 48]

Protos: Protos is a specialized generator for anomalous top couplings [49, 50]

Pythia: Pythia can generate hard processes as well as perform showering. It is

commonly interfaced to other generators [51]

Sherpa: Sherpa is a leading order generator [52, 53, 54, 55, 56]

In order to take advantage of powerful and well-validated generators of

Standard Model processes, such as Herwig and Pythia, a common input file

format was designed in the Les Houches Accords [57]. This allows users to generate

the hard process with a specialized generator, such as Protos, and then simulate

the rest of the event (the parton showers, underlying event, hadronization, and

ordinary decays) with Herwig or Pythia.
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4.2. Detector Simulation

In order to compare the simulated physics processes with data collected with

the ATLAS detector, it is necessary to model the response of the detector [43] as

particles move through it.

The interaction of particles with the detector materials is modeled in

GEANT4 [58].

4.3. Object Reconstruction

This section describes the physics object selection and reconstruction. Events

selected for this search include one lepton, one photon, at least two jets (exactly

one of which is b-tagged), and missing transverse energy (which corresponds to

a neutrino). Each species of particle leaves a unique signature in the ATLAS

detector, as shown in Figure 30.
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FIGURE 30. Particle identification with the ATLAS detector [59]

52



4.3.1. Electrons

When electrons interact with matter in the detector, showers form entirely by

QED processes (bremsstrahlung and photon pair production). The process through

which electrons form a shower in the detector, known as “cascade development”, is

a very regular process. Showers always look the same, and their longitudinal and

lateral development are very correlated. It is possible simulate these showers with

high precision.

Electron candidates are reconstructed from energy clusters in the

electromagnetic calorimeter, which are then associated with charged tracks from

the inner detector, as described in [60]. Electrons are required to have transverse

energy, ET, greater than 25 GeV, and 0 < |ηcluster| < 2.47, with the crack region

(1.37 < |ηcluster| < 1.52) excluded. tight++ identification [61] for the cluster

and track is used for electron candidates, following the specifications provided

by the Egamma Combined Performance group. To separate electron candidates

from QCD multi-jet background, cuts are placed on two isolation variables: the

energy deposited in a cone of ∆R < 0.2 around the electron candidate, and the

transverse momentum of all the tracks within a cone of ∆R < 0.3 around the

electron candidate. The value of each cut is chosen to have 90% selection efficiency

in simulation. Finally, the longitudinal impact parameter of the electron track

with respect to the identified primary vertex of the event, z0, is required to be

less than 2 mm. Figure 31 shows an electron candidate in the xy-plane of the

ATLAS detector, next to a muon candidate and a jet. Jets within ∆R < 0.2 of

an electron candidate are removed from the event. If another jet (with pT > 25

GeV and |JV F | > 0.5) is found within ∆R <0.4 of the electron candidate, then the

electron is removed.
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FIGURE 31. Discriminating leptons from jets in the detector

4.3.2. Jets

In contrast with the simple shower development from electrons, jets form

showers through QCD processes. These are much harder to simulate well. The

showers are also larger– so we need larger detectors to see the entire jet. There

are many different jet-finding algorithms available. Some are better than others

(and there the best choice of algorithm might depend on the final state that you

are trying to model). The goal of jet-finding is to bring together all the final-

state particles that originate from the same source and re-establish the original

connections between particles coming from the same source.

In this search, jets are reconstructed with the anti-kT algorithm [62] with

a radius parameter R = 0.4, starting from energy clusters in the calorimeter

reconstructed using the energy scale established for electromagnetic objects. The

anti-kT is preferred to naive seeded cone jet algorithms, because it is infrared and

collinear safe. (Infrared safety implies that two jets should not be merged by a soft
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emission between them, that is, adding or removing a soft term should not change

the jet finding results. Collinear safety means that the splitting of a high-pT object

should not affect the jet finding.) Selected jets have pT > 25 GeV, and |η| < 2.5.

To reduce selected jets that originate from pileup interactions, a requirement on the

jet vertex fraction (JVF) is made. The requirement ensures that at least 50% of the

tracks associated with a jet with pT > 50 GeVand |η| < 2.4 are compatible with

originating from the primary vertex.

4.3.2.1. b-tagging

Jets that originate from bottom quarks can be identified separately from

light-flavor jets, since the lifetime of bottom quarks (≈ 10−12s) is so much longer

than that of light quarks. Due to this long lifetime, jets that originate from bottom

quarks are displaced compared to the primary vertex, as can be seen in Figure

32. A multivariate algorithm (MV1 tagger) is used to select jets that are most

compatible with the hadronization of a bottom quark. The b-tagging weights used

as a cut in this search were determined from tt̄ Monte Carlo samples to result in a

70% selection efficiency for jets with pT > 20 GeV, and |η| < 2.4.
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FIGURE 32. B-tagging variables [63]
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4.3.3. Missing Transverse Energy

The missing transverse energy (Emiss
T ) is calculated from the energy deposited

in all electromagnetic and hadronic calorimeter cells in |η| < 4.5 range and from

momenta of muon tracks reconstructed with |η| < 2.7, as described in [64].

4.3.4. Photons

Photon candidates are reconstructed from energy clusters in the

electromagnetic calorimeter. Candidates are required to have pT > 15 GeV,

0 < |ηcluster| < 2.37 (excluding the crack region 1.37 < |η(cluster)| <

1.52), and to meet the tight identification [65], as defined by the Egamma

Combined Performance Group. The tight selection includes requirements on the

total transverse energy deposited in the hadronic calorimeter (to reject neutral

hadrons) and the shower shape in the strip and middle layers of the electromagnetic

calorimeter (to reject neutral pion decays). The tight photon requirements are

listed in Table 8.

Jets are removed from the event if they are within ∆R(γ,jet) < 0.1 of a

selected photon. Figure 33 shows a photon candidate in the xy plane of the ATLAS

detector, next to an electron, a neutral hadron decaying to a pair of photons, and

a jet. Further photon selection is then implemented with isolation variables pT

cone20 and topoET cone40. pT cone20 is a measure of the scalar sum of the track

pT in a cone of ∆R < 0.2 around the photon candidate and topoET cone40 is the

sum of ET of clusters within ∆R < 0.4 of the photon candidate.
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TABLE 8. Photon identification variables

Variable Description

ws3 Shower width for in the EM strip layer for the three strips around the
shower maximum

wstot Total shower width in the EM strip layer
Fside Energy in three central strips / energy outside of three central strips but

within seven
∆E Energy difference between the second shower maximum in the EM strip

layer and the shower minimum between the 1st and 2nd maxima
Eratio Ratio of the first and second shower maxima over their energy sum
wη2 Shower width in the EM middle layer
Rhad1 Ratio of ET in the first sampling of the hadronic calorimeter to ET of the

EM cluster
Rhad Ratio of ET in all of the hadronic calorimeter to ET of the EM cluster

  

               

electron
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photon

               

π0 →γγ

               

jet

FIGURE 33. Discriminating photons from other objects in the detector
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4.3.5. Muons

Muon candidates are selected by matching track segments from the muon

chambers with tracks from the inner detector, as described in [66]. Candidates

are required to have pT > 25 GeV and |ηtrack| < 2.5. Cosmic muons are rejected

by requiring the longitudinal impact parameter of the track with respect to the

selected primary vertex of the event, z0, is less than 2 mm. Muon candidates are

also required to pass the mini isolation requirement, MiniIso10 4/pmuonT < 0.05, as

defined in [67]. Jets within ∆R < 0.2 of a muon candidate are removed from the

event. The muon candidate is required to be separated from selected jets (with pT

> 25 GeV and |JV F | > 0.5) by ∆R >0.4 . Figure 31 shows a muon candidate in

the xy-plane of the ATLAS detector, next to an electron candidate and a jet.
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CHAPTER V

THE SEARCH FOR FCNC IN tt̄ EVENTS

This chapter describes the search for the flavor-changing neutral current in

tt̄ events, where on top decays to a W boson and a bottom quark, and the other

decays to a light quark (up or charm) and a photon: tt̄ → Wbqγ.

5.1. Data and Simulation

The data used in this search were recorded in 2012 pp collisions at
√
s =

8 TeV. Monte Carlo simulation samples are used to estimate backgrounds from

Standard Model processes, as well as predict features of signal events.

5.1.1. 2012 ATLAS Data

This dissertation contains an search of the entire 2012 ATLAS dataset,

collected between April and December 2012. The events analyzed are required

to pass data quality requirements for physics in the standard “All Good” Good

Runs List (GRL), which corresponds to 20.3 fb−1. Single lepton (electron or muon)

triggers are used to select events for this search. In both the Egamma (electrons

and photons) and Muon data streams, a logical OR of the two lowest un-prescaled

triggers which were available for the entire year are used.

Selected events in the Egamma stream must have fired either the

EF e24vhi medium1 or EF e60 medium1 triggers, which differ in pT threshold

and isolation requirement. EF e24vhi medium1 requires a loose isolation cut,

ptcone20/ET < 0.1. The electron trigger efficiency curves [68] are shown in Figure

34.
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Selected events in the muon stream are required to pass EF mu24i tight or

EF mu36 tight. The isolation requirement in EF mu24i tight is ptcone20/pT <

0.12. Efficiency curves [69] for the EF mu24i tight and EF mu36 tight triggers are

shown in Figure 35.
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5.1.2. Monte Carlo Generators

Monte Carlo (MC) processes are used to simulate the signal and background

events studied in this search. This section summarizes the generators used.

The signal Monte Carlo sample of 100,000 full simulation tt̄ events, where

tt̄ → Wbqγ (q=u,c) and the W boson decays leptonically, was produced using

Protos 2.2 [49, 50] + Pythia 6.426 [51], with CTEQ6L1 PDF set [70] and 2011C

tune.

5.1.2.1. Background Samples

There exist a large number of other Standard Model processes that result in

the same final state topology as the signal process tt̄ → b`νqγ. Those processes

are also modeled with Monte Carlo (MC) simulation (with the exception of

fake leptons and photons, which are not modeled well in MC, and therefore are

estimated using data-driven methods that will be discussed later.) The nominal

MC samples used in this search are listed in Table 9.

Non-all-hadronic Standard Model tt̄ production is modeled with Powheg

[47, 48] and Pythia 6.427 [51], with PDF set CT10 [71] and P2011C tune. The

hdamp parameter is set to the top mass [72]. (The hdamp parameter in Powheg

is used to regulate matrix element and parton shower matching, and regulates

the high-pT radiation. It is normally set to infinity, but better data- Monte Carlo

agreement for observables such as tt̄ pT was seen when hdamp was set to the top

mass.) This is a full-simulation sample. The top cross-section is calculated to

be σt = 252.9 +6.4
−8.6 (scale) ± 11.7 (PDF + αS) pb using the Top++2.0 program

to next-to-next-to-leading order in perturbative QCD, assuming mtop = 172.5

GeV[73]. The uncertainties come from varying the factorization and normalization
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TABLE 9. Signal and background MC samples used in this search. More details
can be found in Appendix B

Process Generator

FCNC tt̄ Protos + Pythia
SM tt̄ Powheg + Pythia
tt̄ +V+jets Madgraph + Pythia
W+jets Alpgen + Pythia
W+heavy flavor+jets Alpgen + Pythia
Z+jets Alpgen + Pythia
Z+heavy flavor+jets Alpgen + Pythia
Diboson Herwig
Single Top Powheg + Pythia
Single Top + γ Sherpa
V+γ +jets Sherpa
W+γ +jets Alpgen + Pythia
tt̄ + γ Madgraph + Pythia

scales, and from varying the PDF following the PDF4LHC prescription with the

MSTW2008, CT10, and NNPDF2.3 5f FFN PDF sets [74, 75, 76, 77]. More details

on the sample can be found in Table 19 (see Appendix B for Tables 18-25).

W+jets and Z+jets backgrounds were simulated with Alpgen [44] and

Pythia 6.426 [51] On-The-Fly, with P2011C tune and CTEQ6L1 PDF set, using

full simulation. These samples contain up to five extra partons, with light-flavor

and heavy-flavor extra jets separated. Overlap between light- and heavy-flavor

samples is removed using the Heavy Flavor Overlap Removal (HFOR) tool. The

W and Z decay leptonically. More details on these samples can be found in Tables

20, 22, 21, and 23.

Diboson processes WW, WZ, and ZZ are simulated with Herwig 6.520.2 [45],

with AUET2 tune and PDF set CTEQ6L1, using fast simulation with ATLFASTII.

More details on these samples can be found in Table 24.
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tt̄ + W,Z events with up to two extra partons are simulated with Madgraph

[46] + Pythia 6.426 [51], with AUET2B tune and CTEQ6L1 PDF set, using full

simulation. More details on these samples can be found in Table 24.

Standard model processes with an associated photon are also modelled. tt̄ +

γ events are simulated with Madgraph [46] + Pythia 6.427 [51], with P2011C

tune and CTEQ6L1 PDF set, using full simulation. Photons in the sample have

truth pT > 10 GeV. Single top + γ events are modelled with Sherpa 1.4.5 [52, 53,

54, 55, 56], with PDF set CT10, using full simulation. The simulated top quarks

decays to a W boson and a bottom quark, and the W boson decays leptonically. W

or Z + γ samples are generated with Sherpa 1.4.1 [52, 53, 54, 55, 56], with PDF

set CT10, using full simulation. The W and Z bosons decay leptonically. There are

up to three extra partons, and the truth photon has pT > 8 GeV. A comparison

is made in the W+γ validation region between the Sherpa W+γ samples and

Alpgen + Pythia W+γ samples. The Alpgen + Pythia W+γ samples are

filtered with lepton pT > 18 GeVand photon pT > 8 GeV, for more statistics. More

details on these samples can be found in Table 25.

Overlap removal is applied between samples with and without a real photon.

For example, there may be overlap between Standard Model tt̄ and tt̄ +γ samples.

Events are removed from the tt̄, W+jets, Z+jets, and single top samples if they are

outside of the truth phase space for the sample with photons, and they contain a

truth photon which does not originate from a hadron or lepton, as determined by

the MCTruthClassifier tool.
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5.1.3. Background Estimate Summary

The dominant backgrounds in this search are SM tt̄, SM tt̄ with an associated

photon (tt̄ +γ), and W+jets with an associated photon (W+γ). Most backgrounds

are modeled with Monte Carlo, with some data-driven estimates and corrections.

This is a reference list on how different backgrounds are modeled in this search:

SM processes: Standard Model processes tt̄, W+jets, Z+jets, single top,

diboson, and tt̄ +V are modeled with Monte Carlo simulation. Control

regions are defined to test the performance of the largest background

contributions, tt̄ and W+jets. More details are given in Section 5.4.2.

SM processes with an extra photon: Standard Model + extra photon

processes tt̄ +γ, W+γ, Z+γ and single top + γ are modeled with Monte

Carlo simulation. Overlap removal is applied between SM and SM+γ

samples. More details are given in Section 5.4.1.

Fake leptons: The number of events with fake leptons is estimated using the

matrix method, as in Section 5.4.4.1.

Fake photons: The number of events with fake photons are estimate using Z →

e+e− tag-and-probe (e → γ fakes, Section 5.4.3) and the ABCD method (jet

→ γ fakes, Section 5.4.4.2)

5.2. Event Selection

This search is performed in tt̄ candidate events where one top quark decays to

a W boson and a bottom quark (and the W boson then decays leptonically– to an

electron or muon and associated neutrino, W → `ν) and the other top quark decays

to a light quark and a photon, t → qγ. The selected events are then tt̄ → Wbqγ
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→ `νbjγ. Selected events will contain at least two jets (exactly one of which is b-

tagged, using the MV1 tagger), exactly one isolated lepton (an electron or a muon),

one high-pT photon, a large amount of missing transverse energy (Emiss
T ), and large

transverse W mass (mW
T =

√
2 ∗ pT` ∗ Emiss

T ∗ (1− cos(φ` − φMET ))). The transverse

W mass requirement selects events with a lepton and Emiss
T which are consistent

with a W decay.

5.2.1. Pre-selection

The pre-selection is defined to select events with exactly one good lepton (and

electron or muon), at least two jets (at least one of which is b-tagged), missing

transverse momentum, and at least one photon. The expected final-state topology

for this signal is shown in Figure 36.

– OR lowest un-prescaled isolated and non-isolated triggers

– Require a primary vertex with Ntracks > 4

– Exactly one good lepton (pT > 25 GeV)

– Require trigger matching

t

t̄

g

g

γ

u, c

b̄

W

FIGURE 36. A candidate FCNC tt̄ event, where one top decays to Wb and the
other decays to qγ
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– Overlap removal

– At least two good jets (pT > 25 GeV)

– Emiss
T > 30 GeV and mW

T > 30 GeV (electron channel)

– Emiss
T > 20 GeV and Emiss

T + mW
T > 60 GeV (muon channel)

– At least one b-tag (MV1 at 70% - at least one good jet has MV1 > 0.7892)

– Exactly one good photon, pT > 15 GeV

5.3. Event Reconstruction

Once the candidate events have been selected, it is necessary to reconstruct

the W boson and top quarks from the final state particles. There is only one way

to reconstruct these events (no combinatorics!), but there is an ambiguity in the

choice of neutrino z-momentum (one can only measure pxν and pyν with the ATLAS

detector). By minimizing χ2 =
(mbjet,`,ν−mt)2

σ2
SMtop

+
(m`,ν−mW )2

σ2
W

, one can find pzν . Widths

σSMtop and σW are determined from signal Monte Carlo (truth information is used

for neutrino, reconstructed objects are used for lepton, jets, photon), as shown in

Figure 37:

FIGURE 37. Widths for the SM top quark (σSMtop) and W boson (σW ) are
determined from Monte Carlo: σSMtop = 11.2 GeV, σW = 2.7 GeV

Reconstruction of W bosons and top quarks is as follows:
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– Vary pzν to minimize χ2

– Finally, reconstruct W and top quarks: W = neutrino + lepton, topSM =

Wboson + b-tagged jet, topFCNC = photon + highest-pT light jet

The reconstructed mass m(`νb) of the candidate SM top quark, and the

reconstructed mass of the candidate FCNC top quark m(qγ) is shown in Figure

45, after signal region pre-selection, for the electron (a) and muon (b) channels.

5.3.1. Final Selection

The final selection adds more cuts on kinematic variables, as well as further

refining the signal selection. These cuts are designed to reduce background

contributions from Standard Model processes, while retaining the maximum

number of signal events. Further constraints are applied to the photon candidate

to improve signal purity (background processes enter the signal region when jets or

electrons are mis-indentified as photons). The final selection is shown below as a

list, and then each cut is described in further detail.

Final photon-related cuts:

– Photon pT > 50 GeV

– ∆R(γ, closest jet) > 0.4

– ∆R(γ, `) > 0.7

– Photon isolation:

∗ pT cone20 < 3 GeV

∗ topoET cone40 < 4 GeV
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The signal photons are very high pT, since they originate from top decays,

whereas background photons are typically from soft processes. Therefore, a cut on

photon candidates at high pT removes much of the backgrounds, as shown in Figure

38. In order to remove photon contributions from initial- or final-state radiation,

events are removed where the photon candidate is too close to another object. If

the photon candidate is within ∆R=0.4 of the closest jet, or within ∆R=0.7 of

the lepton candidate, the event is removed. Candidate photons are required to be

isolated from other objects and from other activity in the detector. Two isolation

variables are used: ptcone20, which is the scalar sum of the pT of all of the tracks

within ∆R=0.2 of the photon candidate, and topoET cone40, which the the sum of

clusters in the calorimeters within ∆R=0.4 of the photon candidate. Both isolation

variables are shown in Figure 39.

Other final cuts:

– EXACTLY one b-tag (Exactly one good jet has MV1 > 0.7892)

– |meγ −mZ | > 10 GeV (electron channel only)

– meγ > 5 GeV(electron channel only)

– Emiss
T + HT < 350 GeV, to minimize tt̄ and W backgrounds, where HT = ΣpT

– Top mass requirement: |mb`ν −mtop| < 50 GeV, |mqγ −mtop| < 50 GeV

Background processes involving Standard Model tt̄ production and decay

(Figure 40), tt̄ → WbWb, which are a large part of the background to this search,

can be rejected by requiring exactly one b-tagged jet. The rejection power of this

cut is illustrated in Figure 41, which shows the b-tagged jet multiplicity after the

pre-selection.
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(a) electron channel

 [GeV]
T

photon p
0 50 100 150 200 250 300

1−10

1

10

210

310

410

ttbar (6179.1 evts)

Wjets (1640.7 evts)

Zjets (559.4 evts)

Diboson (22.5 evts)

Singletop (535.7 evts)

ttbar+V+jets (29.7 evts)

W+gamma+jets (973.4 evts)

Z+gamma+jets (879.6 evts)

ttbar+gamma (3487.4 evts)

Singletop+gamma (194.0 evts)

Data (14770 evts)

FCNC ttbar (1204.0 evts)

-1
 L dt = 20.3 fb∫

= 8 TeVs

+jetsµ  2  jets≥  1  b-tags≥

 [GeV]
T

photon p
0 50 100 150 200 250 300

D
at

a/
P

re
d.

0.6

0.8

1

1.2

1.4 data stat. unc.

MC stat. unc.

(b) muon channel

FIGURE 38. Photon candidate pT after the signal region pre-selection, in the
electron and muon channels. FCNC signal BR(t → qγ) is scaled to 1% on these
plots. A photon candidate pT cut of 50 GeV is applied to the final signal selection.

The Z+jets background (as shown in Figure 42) is a large contribution

to the signal region in the electron channel. Z+jets events can enter the signal

region if the Z boson decays to an electron-positron pair, and one electron is mis-

reconstructed as a photon. This background can be rejected by eliminating events

with invariant mass m(e, γ) within 5 GeV of the Z boson mass, 91 GeV, as shown

in Figure 43.

Signal-like events should have several high-pT objects in the final state.

Therefore, the variable ST is a good discriminator between signal and background.

ST is the scalar sum of the pT of each object in the event, plus Emiss
T . This takes

into account all of the visible objects, as well as the neutrino, which is not visible in

the detector. The ST distribution after pre-selection is shown in Figure 44.
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Selected events in the signal region are selected to have reconstructed top

candidate masses m(`νb) and m(qγ) within 50 GeV and 20 GeV of the top mass,

172.5 GeV, as shown in Figure 45. The single best discriminator between signal and

background is the FCNC top candidate mass, m(qγ).

Further plots for the signal pre-selection (photon, lepton, and jet pT, Emiss
T ,

mW
T , and jet multiplicity) are shown in Figures 46 and Figure 47, for the electron

and muon channels, respectively.
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FIGURE 39. Photon isolation variables, after the signal region pre-selection, in the
electron and muon channels. FCNC signal BR(t → qγ) is scaled to 1% on these
plots. Isolation cuts of topoET cone40 < 4 GeV and pT cone20 < 3 GeV are applied
to the final signal selection.
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FIGURE 41. B-tagged jet multiplicity after the signal region pre-selection, in the
electron and muon channels. FCNC signal BR(t → qγ) is scaled to 1% on these
plots. For the final signal selection, events with exactly one b-tagged jet are chosen.
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FIGURE 43. Invariant mass of the electron and photon candidates, m(eγ), after
the signal region pre-selection, in the electron and muon channels. FCNC signal
BR(t → qγ) is scaled to 1% on these plots. A cut of |m(eγ) - mZ | > 5 GeV is
applied to the final signal selection.
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FIGURE 44. ST after the signal region pre-selection, in the electron and muon
channels. FCNC signal BR(t → qγ) is scaled to 1% on these plots. A cut of ST >
375 GeV is applied to the final signal selection.
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FIGURE 45. Candidate top masses, m(`νb) and m(qγ), after the signal region pre-
selection, in the electron and muon channels. FCNC signal BR(t → qγ) is scaled to
1% on these plots. Cuts |m(Wb) - mtop| < 50 GeV and |m(qγ) - mtop| < 20 GeV are
applied to the final signal selection.
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FIGURE 46. Photon pT (a), leading jet pT (b), lepton pT (c), mW
T (d), Emiss

T (e),
and Njets (f) plots in the signal pre-selection region (electron channel)
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FIGURE 47. Photon pT (a), leading jet pT (b), lepton pT (c), mW
T (d), Emiss

T (e),
and Njets (f) plots in the signal pre-selection region (muon channel)
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5.4. Background Evaluation

In order to test the performance of the Monte Carlo samples, control regions

are designed to isolate different physics processes. Scale factors which will scale the

backgrounds to the data in the control regions can be determined and then tested

in another region, for validation. The control and validation regions should be close

enough to the signal region so that the derived scale factors can be translated into

the signal region. The control and validation region selections should be orthogonal

to the signal region selection, so that there is no signal contamination. The main

backgrounds are Standard Model tt̄ events (tt̄ → WbWb) and W+jets events, as

well as tt̄ and W+jets events produced with an associated photon (tt̄ +γ, W+γ).

In order to best characterize those backgrounds, control regions are defined in the

next sections.

5.4.1. Backgrounds With Real Photons

Standard Model processes with an extra real photon are irreducible. tt̄

+γ and W+γ +jets backgrounds are the largest contributors to this region.

Overlapping events between W+jets and W+γ backgrounds and tt̄ and tt̄

+γ backgrounds are removed using the MCTruthClassifier tool. Signal

photons, which do not originate from hadrons or leptons, as identified by the

MCTruthClassifier tool, are removed from the tt̄ MC sample and from the

W+jets MC sample.

5.4.1.1. W+γ

The W+γ validation region selection is as follows:

– OR lowest un-prescaled isolated and non-isolated triggers
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– Require a primary vertex with Ntracks > 4

– Exactly one good lepton (pT > 25 GeV)

– Require trigger matching

– Overlap removal

– At least 2 good jets (pT > 25 GeV)

– Emiss
T > 30 GeV and mW

T > 30 GeV (electron channel)

– Emiss
T > 20 GeV and Emiss

T + mW
T > 60 GeV (muon channel)

– Exactly zero b-tagged jets (MV1 at 70%)

– Exactly one good photon with pT > 50 GeV

– Photon isolation cuts: pT cone20 < 3 GeVand topoET cone40 < 4 GeV

– Z mass cut: |m(eγ) - mZ | > 5 GeV

Sample distributions in the W+γ validation region are compared in Figures

48 and 49.
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FIGURE 48. Lepton pT (a), photon pT (b), leading jet pT (c), Njets (d), Emiss
T (e),

and mW
T (f) distributions for the W+γ validation region (electron channel). FCNC

signal BR(t→ qγ) is scaled to 0.1%
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FIGURE 49. Lepton pT (a), photon pT (b), leading jet pT (c), Njets (d), Emiss
T (e),

and mW
T (f) distributions for the W+γ validation region (muon channel). FCNC

signal BR(t→ qγ) is scaled to 0.1%
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5.4.1.2. tt̄ +γ

The tt̄ +γ validation region selection is as follows:

– OR lowest un-prescaled isolated and non-isolated triggers

– Require a primary vertex with Ntracks > 4

– Exactly one good lepton (pT > 25 GeV)

– Require trigger matching

– Overlap removal

– At least 4 good jets (pT > 25 GeV)

– Emiss
T > 30 GeV and mW

T > 30 GeV (electron channel)

– Emiss
T > 20 GeV and Emiss

T + mW
T > 60 GeV (muon channel)

– At least 1 b-tagged jet (MV1 at 70%)

– Exactly one good photon with pT > 15 GeV

– Reverse m(qγ) cut – orthogonal to FCNC signal region

– Photon isolation cuts, as in signal region

The tt̄ +γ validation region is shown in Figures 50 and 51. These

distributions include the same photon isolation cuts used in the signal selection:

pT cone20 < 3 GeVand topoET cone40 < 4 GeV. Good data-MC agreement is

observed.
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FIGURE 50. Lepton pT (a), photon pT (b), leading jet pT (c), Njets (d), Emiss
T (e),

and mW
T (f) distributions in the tt̄ +γ validation region (electron channel). FCNC

signal BR(t→ qγ) is scaled to 0.1%.
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FIGURE 51. Lepton pT (a), photon pT (b), leading jet pT (c), Njets (d), Emiss
T (e),

and mW
T (f) distributions in the tt̄ +γ validation region (muon channel). FCNC

signal BR(t→ qγ) is scaled to 0.1%.
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5.4.2. Backgrounds With No Real Photons

Background processes that contain no real photons can enter the signal

region if an electron or jet is mis-reconstructed as a photon. Standard Model

tt̄ and W+jets production are the largest contributors. Two control regions are

designed to isolate the tt̄ and W+jets processes. It is difficult to design a single

tt̄ or W+jets control region which is adequately close to the signal region, so two

regions are designed, one of which is W+jets-rich and the other which is tt̄-rich.

Scale factors are derived from both regions simultaneously, and then tested in a

validation region, before being applied in the signal region.

The tt̄ and W+jets control region selection is as follows:

– OR lowest un-prescaled isolated and non-isolated triggers

– Require a primary vertex with Ntracks > 4

– Exactly one good lepton (pT > 25 GeV)

– Require trigger matching

– Overlap removal

– At least 3/4/5+ good jets (pT > 25 GeV)

– Emiss
T > 30 GeV and mW

T > 30 GeV (electron channel)

– Emiss
T > 20 GeV and Emiss

T + mW
T > 60 GeV (muon channel)

– Exactly one b-tagged jet (MV1 at 70% - at least one good jet has MV1 >

0.7892)

– Zero good photons with pT > 10 GeV
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The region with exactly three jets is the W+jets-rich region, while the region

with 5+ jets is the tt̄-rich region. The efficacy of the scale factors can then be

tested in the validation region, which has exactly 4 jets, before being applied to

the signal region. The ST distribution is shown for all three regions in Figure 52.

Scale factors for the tt̄ and W+jets MC are then derived as follows:

N(W )3j N(tt̄)3j

N(W )5j N(tt̄)5j


WSF

tt̄SF

 =

N(data− bkg)3j

N(data− bkg)5j


Figures 53 and 54 show the control region distributions after the scale factors

are applied:

– WSF = 1.29(1.26), e(µ)

– tt̄SF = 0.98(0.96), e(µ)

The derived scale factors are then applied to the tt̄ and W+jets MC in the

signal region.
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FIGURE 52. ST distribution in 3, 4, and 5+ jets tt̄/W+jets control region, before
scale factors are determined
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FIGURE 53. Event-level variables in tt̄ and W+jets validation region with exactly
4 jets (electron channel), after scale factors are applied
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FIGURE 54. Event-level variables in tt̄ and W+jets validation region with exactly
4 jets (muon channel), after scale factors are applied
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5.4.3. e→ γ Fakes

There are several scenarios in which electrons can be reconstructed as photons

with the ATLAS detector. For example, if it is not possible to associate the

track and the shower in the electromagnetic calorimeter, the object can be mis-

reconstructed as a photon instead of an electron. Similarly, if an electron radiates

all of its energy to a photon, the object will be correctly reconstructed as a photon,

but does not correspond to a signal-like prompt photon, since it came from an

electron.

Therefore, backgrounds with an extra real electron can enter the signal region:

dilepton tt̄ events where both W bosons decay to an electron and a neutrino, Z →

`+`− events with two electrons, or a variety of diboson events with more than one

electron in the final state. Z → e+e− and Z → e“γ′′ processes are shown in Figure

55. Since the rate of e → γ fakes is slightly different in data and MC, it is possible

to identify (in data and MC) how often electrons are reconstructed as photons, and

then apply an appropriate scale factor to MC events which contain a fake photon.

A tag-and-probe method is used to determine the rate of e → γ fakes in data

and in Z → e+e− MC. A Z → e+e− selection is designed to be similar to the signal

selection:

W
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q

q′

q′

e+

e−

(a)
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q′

e+

“γ′′

(b)

FIGURE 55. Z → e+e−+jets and Z → e“γ′′+jets
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– OR lowest unprescaled isolated and non-isolated triggers:

∗ Electron triggers: EF e24vhi medium1 and EF e60 medium1

– Require a primary vertex with Ntracks > 4

– At least one good electron (pT > 25 GeV)

– Require trigger matching

– At least two good jets (pT > 25 GeV)

– Emiss
T > 30 GeV

– At least one b-tagged jet (MV1 @ 70%)

– At least one more electron (pT > 15 GeV)

– 86 GeV < m(e+e−) < 96 GeV (Z mass requirement)

Then, a Z → eγ selection is defined:

– OR lowest unprescaled isolated and non-isolated triggers:

∗ Electron triggers: EF e24vhi medium1 and EF e60 medium1

– Require a primary vertex with Ntracks > 4

– At least one good electron (pT > 25 GeV)

– Require trigger matching

– At least two good jets (pT > 25 GeV)

– Emiss
T > 30 GeV

– At least one b-tagged jet (MV1 @ 70%)
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FIGURE 56. Sub-leading electron pT vs. leading electron pT (a) and photon pT vs.
leading electron pT (b), in data

– At least one good photon (pT > 15 GeV)

– 86 GeV < m(e“γ”) < 96 GeV (Z mass requirement)

The pT distribution for the leading and sub-leading electrons, and for the

electron and photon candidate, for data and MC, are shown in Figures 56 and 57.

To determine the fake rate: Select (Z → e+e− + jets + MET) and

(Z → e“γ” + jets + MET) events, with m(e+e−) and m(e“γ”) near the Z mass.

Then,
N(e“γ”)

N(e+e−) +N(e“γ”)
= fake rate. The fake rate is shown, binned by photon

candidate pT and η, in Figure 58. We are only interested in events which could

enter the signal region, that is, where the fake photon has pT greater than 50 GeV.

The fake rate does not depend heavily on photon pT above 50 GeV, as shown in

Figure 59. The final fake rate (for high-pT objects) in data and MC is shown in

Figure 60, and listed in Table 10.
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FIGURE 57. Sub-leading electron pT vs. leading electron pT (a) and photon pT vs.
leading electron pT (b), in Z → e+e− MC
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FIGURE 58. e → γ fake rate in MC (a) and data (b), binned by photon candidate
pT and η.
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FIGURE 59. e→ γ fake rate in MC (a) and data (b) as a function of photon pT
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FIGURE 60. e → γ fake rate in MC (a) and data (b) as a function of photon η,
after photon candidate pT cut
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TABLE 10. Fake rate (F.R.) measured in Z → e+e− MC and in data. The
data over MC scale factor (S.F.) is applied to events in MC identified by
MCTruthClassifer as having originated from electrons.

γ η 0. - 0.6 0.6 - 1.37 1.52 - 1.81 1.81 - 2.37

Z MC F.R. 0.07 ± 0.01 0.09 ± 0.01 0.15 ± 0.02 0.16 ± 0.02
data F.R. 0.09 ± 0.02 0.11 ± 0.03 0.19 ± 0.09 0.12 ± 0.05

S.F. (data/Z) 1.22 ± 0.287 1.27 ± 0.249 1.29 ± 0.470 0.755 ± 0.455

5.4.4. Jet → Lepton and Jet → Photon Fakes

To estimate the number of jet fakes that enter the signal region, two methods

are used. To estimate the multi-jet background with lepton fakes, the matrix

method is used, and to estimate the multi-jet background with photon fakes, an

ABCD method is used.

5.4.4.1. Matrix Method for Lepton Fakes

A data-driven matrix method [78] is used to determine the rate of jets faking

leptons in semi-leptonic tt̄ events. This method uses efficiencies for selecting tight

and loose-only leptons in data, to estimate fake contributions.

5.4.4.2. ABCD Method for Photon Fakes

The multi-jet → photon background is modeled by dividing the data into

four regions, where region A is the final signal selection, and regions B-D are

background-enriched control regions that will be used to estimate the number of

multi-jet events in region A. The distribution of data and signal MC are shown in

Figure 61.

ABCD selection:
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FIGURE 61. A,B,C, and D regions are shown for ABCD method cuts on Emiss
T and

photon isolation

TABLE 11. Jet to photon fake yield in electron and muon channels

j → γ yield

electron channel 0.238 ± 1.65 (stat.)
muon channel 1.59 ± 1.75 (stat.)

A: isolated photon, mW
T and Emiss

T cuts

B: isolated photon, mW
T and Emiss

T cuts reversed

C: non-isolated photon, mW
T and Emiss

T cuts

D: non-isolated photon, mW
T and Emiss

T cuts reversed

Then, for each region, the difference between the data and the sum of the

other background estimates (denoted “MC”) is taken to be equivalent to the

number of jet → photon fakes. We can then estimate the number of jet → photon

fakes in region A with: NA
fakes = (NB

data −NB
MC)(NC

data −NC
MC)/(ND

data −ND
MC). The

jet → γ fake estimates are shown in Table 11 for the electron and muon channels.
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TABLE 12. Number of events in the signal region, after all cuts (stat. errors only)

sample evts±stat. (el) evts±stat. (mu)

signal (BR(t→ qγ)=10−3) 13.05 ± 0.57 19.22 ± 0.71

tt̄ 6.57 ± 0.67 10.39 ± 0.91
W+jets 0.00 ± 0.00 0.00 ± 0.00
Z+jets 1.59 ± 0.58 0.28 ± 0.13
tt̄ +γ 11.56 ± 0.48 17.17 ± 0.61
W+γ +jets 2.84 ± 0.69 3.29 ± 0.70
Z+γ +jets 1.30 ± 0.84 1.19 ± 0.77
Single top 0.52 ± 0.38 0.17 ± 0.10
Single top+γ 0.04 ± 0.02 2.01 ± 0.46
Diboson 0.25 ± 0.22 0.00 ± 0.00
tt̄ +V+jets 0.07 ± 0.02 0.12 ± 0.03

total MC 24.75 ± 1.55 34.61 ± 1.59

data 27 31

5.5. Signal Region

Figures 62, 63, 64, and 65 show distributions in the signal region, with final

selection cuts and scale factors applied. The signal MC is scaled to BR(t → qγ)

= 0.01%. Table 12 shows the total number of signal and background events in the

signal region, after all the final selection cuts.
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FIGURE 62. Photon pT (a), leading jet pT (b), lepton pT (c), photon η (d), leading
jet η (e), and lepton η (f) plots in the signal region, with scale factors applied
(electron channel)
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FIGURE 63. FCNC top mass (a), SM top mass (b), ST (c), mW
T (d), Emiss

T (e), and
Njets (f) plots in the signal region, with scale factors applied (electron channel)
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FIGURE 64. Photon pT (a), leading jet pT (b), lepton pT (c), photon η (d), leading
jet η (e), and lepton η (f) plots in the signal region, with scale factors applied
(muon channel)
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FIGURE 65. FCNC top mass (a), SM top mass (b), ST (c), mW
T (d), Emiss

T (e), and
Njets (f) plots in the signal region, with scale factors applied (muon channel)
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CHAPTER VI

RESULTS

The purpose of this search is to either observe the FCNC top decay t → qγ,

or set an upper limit on the branching ratio BR(t → qγ). As no significant excess

of events is observed in data, an upper limit on the branching ratio BR(t → qγ)

will be set. In this chapter, the methods used to set the upper limit on the

branching ratio BR(t → qγ) and to determine the systematic uncertainties on

that limit are discussed.

6.1. Systematic Uncertainties

There are systematic uncertainties which influence the observed number of

events in data and simulation. Those uncertainties and the tools used to derive

them are described below, and enumerated in Tables 13 and 14.

Luminosity: The uncertainty on the integrated luminosity is ±2.8%. It is

derived, following the same methodology as that detailed in Ref. [79], from a

preliminary calibration of the luminosity scale derived from beam-separation

scans performed in November 2012.

Lepton Identification and Trigger: Lepton identification and trigger

efficiency differ between data and simulation. Scale factors are determined

by the Egamma and Muon Combined Performance groups, by comparing

Z → `+`− tag-and-probe techniques in data and Monte Carlo. Scale factors

are applied to Monte Carlo.
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Electron Reconstruction Efficiency: Scale factors are determined from Z →

e+e− tag-and-probe. This systematic is evaluated by varying the scale factors

up and down by 1σ and repeating the event selection.

Electron Energy Scale and Resolution: The accuracy of the electron energy

scale and resolution in Monte Carlo are validated by comparing Z → e+e−

and J/ψ → e+e− mass distributions in data and Monte Carlo.

Muon Reconstruction Efficiency: The muon reconstruction efficiency is

different in data and Monte Carlo, so a scale factor is applied to Monte Carlo

to bring them into agreement, as recommended by the Muon Combined

Performance group. In addition, the muon momentum is smeared in Monte

Carlo to make the momentum resolution agree with data.

Muon Momentum Scale and Resolution: The muon momentum scale and

resolution are varied, using the method described in [80].

Photon Energy Scale and Resolution: Photon energy scale and resolution

are varied in Monte Carlo.

MET Uncertainties: Jet and lepton variations are propagated to Emiss
T when

calculating each uncertainty. In addition, uncertainties in MET CellOut and

SoftJet scale and resolution are considered.

Jet Energy Scale: The jet energy scale (JES) systematic uncertainty is derived

from a variety of sources. In-situ measurements were performed in 8 TeV

data to determine the uncertainties due to jet energy scale. Each input to

the JES uncertainty depends on modeling, detector, mixed (both detector and

modeling), or statistics. Further uncertainties due to flavor composition of the

samples used, pileup, and η intercalibration are also considered.
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Jet Energy Resolution: As only a small difference is seen in the jet energy

resolution (JER) between data and Monte Carlo, the energy of each jet in

the Monte Carlo is smeared, the event selection is repeated, and then the

difference between the data and MC is taken as a systematic uncertainty, as

recommended by the Jet/EtMiss Combined Performance Group.

105



TABLE 13. Systematic uncertainties (electron channel)

uncertainty bg stat. bg syst. (%) sig stat. sig syst. (%)

nominal 2.25 – 0.57 —
err down 2.25 -0.11 0.57 0.05
err up 2.25 0.30 0.58 -0.74
ees down 2.25 -0.53 0.58 -0.67
ees up 2.25 0.49 0.57 0.09
jes down EffectiveNP Statistical1 2.25 0.40 0.57 0.84
jes down EffectiveNP Statistical2 2.25 -0.08 0.57 -0.06
jes down EffectiveNP Statistical3 2.20 2.27 0.57 0.73
jes down EffectiveNP Statistical4 2.25 -0.46 0.57 0.94
jes down EffectiveNP Modelling1 2.10 3.36 0.57 2.01
jes down EffectiveNP Modelling2 2.25 -0.15 0.57 0.12
jes down EffectiveNP Modelling3 2.25 0.49 0.57 0.73
jes down EffectiveNP Modelling4 2.25 -0.18 0.57 0.04
jes down EffectiveNP Detector1 2.21 0.93 0.57 0.42
jes down EffectiveNP Detector2 2.25 0.18 0.57 0.94
jes down EffectiveNP Detector3 2.25 -0.07 0.57 -0.07
jes down EffectiveNP Mixed1 2.25 -0.56 0.57 0.39
jes down EffectiveNP Mixed2 2.25 0.14 0.57 0.11
jes down EffectiveNP Mixed3 2.25 0.42 0.57 0.55
jes down EffectiveNP Mixed4 2.25 0.00 0.57 0.00
jes down EtaIntercalibration Modelling 2.21 1.33 0.57 1.24
jes down EtaIntercalibration TotalStat 2.25 0.01 0.57 0.56
jes down MuOffsetTerm 3.51 -10.52 0.57 0.28
jes down NPVOffsetTerm 2.10 3.74 0.57 1.92
jes down PileupPtTerm 2.25 0.39 0.57 0.49
jes down RhoTopology 2.25 0.17 0.57 1.26
jes down SingleParticle HighPt 2.25 0.00 0.57 0.00
jes down FlavourComp 2.10 3.17 0.57 2.52
jes down FlavourResponse 3.51 -11.44 0.57 -0.27
jes down BJESUncert 2.25 -0.32 0.58 -0.48
jes down PunchThrough 2.25 0.00 0.57 0.21
jes up EffectiveNP Statistical1 2.25 0.08 0.57 -0.47
jes up EffectiveNP Statistical2 2.25 0.26 0.57 0.25
jes up EffectiveNP Statistical3 2.25 -0.17 0.57 0.03
jes up EffectiveNP Statistical4 2.25 0.46 0.57 0.31
jes up EffectiveNP Modelling1 3.49 -8.47 0.57 1.59
jes up EffectiveNP Modelling2 2.25 0.25 0.57 0.45
jes up EffectiveNP Modelling3 2.25 -0.18 0.57 0.26
jes up EffectiveNP Modelling4 2.25 0.50 0.57 0.12
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TABLE 13. (continued)

uncertainty bg stat. bg syst. (%) sig stat. sig syst. (%)

jes up EffectiveNP Detector1 3.51 -9.19 0.57 1.04
jes up EffectiveNP Detector2 2.25 0.13 0.57 0.05
jes up EffectiveNP Detector3 2.25 0.43 0.57 0.27
jes up EffectiveNP Mixed1 2.24 1.39 0.57 0.76
jes up EffectiveNP Mixed2 2.25 0.11 0.57 0.85
jes up EffectiveNP Mixed3 2.25 -0.18 0.57 0.34
jes up EffectiveNP Mixed4 2.25 0.11 0.57 -0.00
jes up EtaIntercalibration Modelling 2.25 -0.20 0.57 0.15
jes up EtaIntercalibration TotalStat 2.25 0.18 0.57 0.33
jes up MuOffsetTerm 2.20 1.74 0.57 0.50
jes up NPVOffsetTerm 2.24 0.95 0.57 0.19
jes up PileupPtTerm 2.25 0.27 0.57 0.72
jes up RhoTopology 3.52 -11.15 0.57 1.39
jes up SingleParticle HighPt 2.25 0.00 0.57 0.00
jes up FlavourComp 3.49 -8.83 0.57 1.37
jes up FlavourResponse 2.21 1.62 0.57 2.76
jes up BJESUncert 2.20 3.09 0.57 1.80
jes up PunchThrough 2.25 0.00 0.57 0.21
jeff 2.25 -0.06 0.57 0.00
jer DataMC Difference 2.25 0.00 0.57 0.00
jer up NP0 2.18 5.34 0.57 0.81
jer up NP1 2.20 2.19 0.57 0.27
jer up NP2 2.23 3.51 0.57 -0.46
jer up NP3 2.20 3.42 0.57 2.74
jer up NP4 2.25 -0.52 0.57 0.98
jer up NP5 2.23 2.97 0.57 1.81
jer up NP6 2.20 3.36 0.57 0.35
jer up NP7 2.21 0.67 0.57 0.60
jer up NP8 2.25 0.00 0.57 0.00
met res soft down 2.23 0.77 0.57 1.23
met res soft up 3.51 -9.73 0.57 1.55
met sc soft down 3.51 -10.54 0.57 0.13
met sc soft up 2.25 0.22 0.57 0.20
ph erdown 2.24 0.72 0.57 0.63
ph erup 2.25 -0.23 0.57 0.12
ph esdown 2.25 -0.93 0.58 -0.72
ph esup 2.24 1.43 0.57 2.16
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TABLE 14. Systematic uncertainties (muon channel)

uncertainty bg stat. bg syst. (%) sig stat. sig syst. (%)

nominal 4.62 – 0.71 —
mu idres 4.62 -0.04 0.71 0.15
mu msres 4.62 -0.21 0.70 0.68
mu scaledown 4.62 0.04 0.71 0.05
mu scaleup 4.62 0.00 0.71 0.10
jes down EffectiveNP Statistical1 4.62 0.75 0.71 0.14
jes down EffectiveNP Statistical2 4.62 0.15 0.71 -0.00
jes down EffectiveNP Statistical3 4.63 -0.20 0.71 -0.35
jes down EffectiveNP Statistical4 4.62 0.15 0.70 0.57
jes down EffectiveNP Modelling1 4.62 0.37 0.70 0.82
jes down EffectiveNP Modelling2 4.62 0.07 0.71 0.16
jes down EffectiveNP Modelling3 4.62 0.29 0.71 -0.21
jes down EffectiveNP Modelling4 4.62 0.45 0.71 -0.01
jes down EffectiveNP Detector1 4.62 -0.08 0.71 0.38
jes down EffectiveNP Detector2 4.62 0.08 0.71 0.13
jes down EffectiveNP Detector3 4.62 0.42 0.71 -0.00
jes down EffectiveNP Mixed1 4.62 0.38 0.70 0.69
jes down EffectiveNP Mixed2 4.62 -0.20 0.71 -0.13
jes down EffectiveNP Mixed3 4.62 0.44 0.71 -0.03
jes down EffectiveNP Mixed4 4.62 0.23 0.71 -0.00
jes down EtaIntercalibration Modelling 4.62 0.39 0.70 0.50
jes down EtaIntercalibration TotalStat 4.62 0.48 0.70 0.57
jes down MuOffsetTerm 4.62 0.42 0.71 0.33
jes down NPVOffsetTerm 4.63 -0.84 0.70 1.17
jes down PileupPtTerm 4.62 -0.38 0.71 0.36
jes down RhoTopology 4.62 0.67 0.71 0.55
jes down SingleParticle HighPt 4.62 0.00 0.71 0.00
jes down FlavourComp 4.62 1.08 0.70 1.12
jes down FlavourResponse 4.62 -0.76 0.71 -0.98
jes down BJESUncert 4.62 0.48 0.70 0.61
jes down PunchThrough 4.62 -0.07 0.71 -0.01
jes up EffectiveNP Statistical1 4.62 -0.30 0.71 -0.34
jes up EffectiveNP Statistical2 4.62 0.36 0.71 -0.00
jes up EffectiveNP Statistical3 4.62 0.32 0.71 0.29
jes up EffectiveNP Statistical4 4.62 0.14 0.71 -0.16
jes up EffectiveNP Modelling1 4.63 -1.03 0.71 -0.84
jes up EffectiveNP Modelling2 4.62 0.18 0.71 0.01
jes up EffectiveNP Modelling3 4.62 0.02 0.70 0.44
jes up EffectiveNP Modelling4 4.62 0.13 0.71 0.02
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TABLE 14. (continued)

uncertainty bg stat. bg syst. (%) sig stat. sig syst. (%)

jes up EffectiveNP Detector1 4.62 0.21 0.71 0.15
jes up EffectiveNP Detector2 4.62 0.05 0.71 -0.14
jes up EffectiveNP Detector3 4.62 0.01 0.71 0.02
jes up EffectiveNP Mixed1 4.63 -0.34 0.71 0.08
jes up EffectiveNP Mixed2 4.62 0.24 0.71 -0.07
jes up EffectiveNP Mixed3 4.62 -0.07 0.70 0.43
jes up EffectiveNP Mixed4 4.62 -0.03 0.71 -0.00
jes up EtaIntercalibration Modelling 4.62 0.15 0.71 0.24
jes up EtaIntercalibration TotalStat 4.62 -0.46 0.71 -0.20
jes up MuOffsetTerm 4.62 -0.05 0.71 -0.29
jes up NPVOffsetTerm 4.62 0.19 0.71 -0.63
jes up PileupPtTerm 4.62 -0.07 0.71 -0.41
jes up RhoTopology 4.63 -0.87 0.71 -0.23
jes up SingleParticle HighPt 4.62 0.00 0.71 0.00
jes up FlavourComp 4.63 -1.93 0.71 -0.45
jes up FlavourResponse 4.62 0.44 0.70 1.19
jes up BJESUncert 4.63 -0.35 0.70 0.45
jes up PunchThrough 4.62 0.00 0.71 0.00
jeff 4.62 0.13 0.71 0.06
jer DataMC Difference 4.62 0.00 0.71 0.00
jer up NP0 4.56 -0.58 0.69 3.81
jer up NP1 4.56 0.77 0.70 0.52
jer up NP2 4.57 -0.82 0.70 1.12
jer up NP3 4.56 0.79 0.71 0.17
jer up NP4 4.56 1.63 0.71 -0.13
jer up NP5 4.63 -1.55 0.70 2.58
jer up NP6 4.62 -0.52 0.71 0.22
jer up NP7 4.62 0.04 0.71 -0.32
jer up NP8 4.62 0.00 0.71 0.00
met res soft down 4.62 0.09 0.71 0.54
met res soft up 4.62 0.27 0.71 -0.14
met sc soft down 4.62 0.24 0.71 0.07
met sc soft up 4.62 0.15 0.70 0.48
ph erdown 4.62 0.74 0.71 0.14
ph erup 4.62 0.15 0.71 -0.25
ph esdown 4.62 -0.94 0.71 -1.73
ph esup 4.62 1.36 0.70 1.19

109



6.2. Statistical Treatment

The CLs technique [81, 82] is used to set an upper limit on BR(t → qγ). A

test statistic, qµ, is constructed to depend on nuisance parameters, Θ(µ).

qµ = −2ln
L(µ, ˆ̂Θ(µ))

L(µ, ˆΘ(µ))

µ is the signal strength parameter, the ratio of the signal cross section to the

predicted signal cross section: µ = σ
σprediction

, so the background-only hypothesis is

fulfilled when µ = 0. In this search,

µ =
BR(t→ qγ)BR(t→ Wb)

BRref(t→ qγ)BRref(t→ Wb)

=
BR(t→ qγ)[1− BR(t→ qγ)]

BRref(t→ qγ)[1− BRref(t→ qγ)]

∼ BR(t→ qγ)

BRref(t→ qγ)

.

Then, values of µ from 0 to 2 (background-only to 2x the nominal branching

ratio) are tested.

CLs =
pµ

1− pb
where pµ =

∫ ∞
qµ,obs

f(qµ)dqµ, 1− pb =

∫ ∞
qµ,obs

f(qµ)dqµ

In order to calculate expected and observed limits, 5,000 toy Monte Carlo

simulations were thrown. In the toy Monte Carlos, the nuisance parameters are set

to their conditional estimate (Θ = Θ̂µ), while global variables b0 are varied:
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L = Pois(nobserved|µs+ b)Gaus(b0|b, σb)

To set expected limits, the p-value was computed for quantiles (median, ±1σ,

±2σ) of the background-only (µ = 0) test statistic distribution, and that value was

used for for qobserved.

6.3. Setting a Limit on BR(t→ qγ)

Limits were calculated using the CLS method, implemented in RooStats

[83]. Table 15 shows the observed and expected limits separately in the electron

and muon channels, and Figure 66 shows the variation in observed and expected

CLS for increasing values of µ. Table 16 shows the combined limit for both

channels together. Figure 67 shows the variation in observed and expected CLS

for increasing values of µ, for both the electron and muon channels together.
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FIGURE 66. Expected and observed upper limits on the branching ratio BR(t →
qγ) for the electron (a) and muon (b) channels

TABLE 15. Expected and observed upper limits on BR(t→ qγ)

channel obs. limit exp. limit -σ exp. limit exp. limit +σ

e 1.27 ± 0.05 ∗10−3 0.733 ∗ 10−3 0.916 ∗ 10−3 1.32 ∗ 10−3

µ 0.654 ± 0.048 ∗10−3 0.610 ∗ 10−3 0.759 ∗ 10−3 0.984 ∗ 10−3
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FIGURE 67. Combined electron and muon channel upper limits on the branching
ratio BR(t→ qγ)

TABLE 16. Combined upper limits on the branching ratio BR(t→ qγ)

obs. limit exp. limit -σ exp. limit exp. limit +σ

0.631 ± 0.0362 ∗10−3 0.492 ∗ 10−3 0.617 ∗ 10−3 0.799 ∗ 10−3
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CHAPTER VII

OUTLOOK AND CONCLUSIONS

The Standard Model of particle physics is hugely successful, and has stood

up to the vast majority of experimental tests to date. It is interesting, therefore,

to look for ways in which the Standard Model does not work. These broken pieces

could be indicative of new physics beyond the Standard Model. This new physics

might be something that has already been predicted, or even something else

entirely. Top quarks are an ideal portal for new physics searches, since they decay

immediately and are produced in very large numbers at the Large Hadron Collider.

7.1. Future Directions

It will be interesting to repeat this search in the ATLAS Run 2 dataset

which is being collected now. During Run 2, the Large Hadron Collider is colliding

protons at a higher energy, with higher instantaneous luminosity, and with closer

spacing between the bunches of protons. With pp collisions at
√
s = 13 TeV, the

probability to produce new, heavy particles will increase. At the same time, the

tt̄ production cross section goes up by almost a factor of three, which means that

there will be more top quark pairs produced, and more chances to observe rare top

decays. Higher instantaneous luminosity and close bunch spacing will allow the

ATLAS experiment to collect data faster. All of these factors will result in a larger

and better dataset in which to search for new physics with top quarks.
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7.2. Conclusions

A search has been performed for the flavor-changing neutral current in top

decays, in the tt̄ → b`νqγ channel. This search was performed in data from proton-

proton collisions, collected by the ATLAS detector at the Large Hadron Collider

in 2012. The full dataset from 2012 consists of 20.3 fb−1 of
√
s = 8 TeV data. As

no signal was observed, an observed (expected) upper limit on the branching ratio

BR(t→ qγ) of 0.063% (0.062%) was presented.
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APPENDIX A

UNITS AND COMMON ABBREVIATIONS

A.1. Natural Units

Particle physics results are presented in natural units, where c (the speed of

light - 299,792,458 m/s), ~ (the reduced Planck constant - 1.054∗10−34 Jṡ), and kB

(the Boltzmann constant - 1.380∗10−23 J/K) are set to 1. In this system of units,

all quantities can be defined in terms of one unit: the electron-volt. An electron-

volt (eV) is the amount of energy needed to accelerate an electron across once volt

of potential difference. Physical quantities are then presented in units of electron-

volts (eV): mass and energy both have units of eV, while distance and time have

units of eV−1. One eV of mass is equivalent to 1.783∗10−36 kg. The SI prefixes for

powers of ten (shown in Table 17) are also used.

Power of ten Number Prefix

10−15 0.000000000000001 femto-
10−12 0.000000000001 pico-
10−9 0.000000001 nano-
10−6 0.000001 micro-
10−3 0.001 milli-
10−2 0.01 centi-
10−1 0.1 deci-
100 1 -
101 10 deca-
102 100 hecto-
103 1000 kilo-
106 1000000 mega-
109 1000000000 giga-
1012 1000000000000 tera-
1015 1000000000000000 peta-

TABLE 17. Powers of Ten
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A.2. ATLAS Common Abbreviations

A (non-exhaustive) list of the acronyms and abbreviations used by the

ATLAS Collaboration:

ADC Analog-to-Digital Converter

ALFA Absolute Luminosity for ATLAS

ATLAS A Toroidal LHC ApparatuS (deprecated)

BCID Bunch Crossing IDentification

BCM Beam Conditions Monitor

CERN European Organization for Nuclear Research

COOL ATLAS-wide conditions database

CSC Cathode Strip Chambers

CTP Central Trigger Processor

DAQ Data AcQuisition system

EF Event Filter

EMEC Electro-Magnetic End-cap Calorimeter

FCAL Forward Calorimeter

FPGA Field-Programmable Gate Array

HEC Hadronic End-cap Calorimeter

HLT High-Level Trigger
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JES Jet Energy Scale

JER Jet Energy Resolution

L1Calo Level-1 Calorimeter Trigger

L1 Level-1 Trigger

L2 Level-2 Trigger

LAr Liquid Argon

LHC Large Hadron Collider

LUCID LUminosity measurement using Cerenkov Integrating Detector

MDT Monitoring Drift Tubes

MIP Minimum Ionizing Particle

ROB ReadOut Buffer

ROD ReadOut Driver

RoIB Region of Interest Builder

RoI Region of Interest

RPC Resistive Plate Chambers

SCT SemiConductor Tracker

TDAQ Trigger and Data AcQuisition

TGC Thin Gap Chambers

TileCal Tile Calorimeter
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TLA Three Letter Acronym

TRT Transition Radiation Tracker

ZDC Zero Degree Calorimeter
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APPENDIX B

DATA AND MC SAMPLE DETAILS

B.1. 2012 ATLAS Data-Taking Periods

Table 18 shows the data-taking periods in 2012 and their corresponding

triggers.

Period Run
Numbers

e Triggers µ Triggers L
[pb−1]

A 200804-
201556

e24vhi medium1 +
e60 medium1

mu24i tight +
mu36 tight

794

B 202660-
205113

e24vhi medium1 +
e60 medium1

mu24i tight +
mu36 tight

5095

C 206248-
207397

e24vhi medium1 +
e60 medium1

mu24i tight +
mu36 tight

1406

D 207447-
209025

e24vhi medium1 +
e60 medium1

mu24i tight +
mu36 tight

3288

E 209074-
210308

e24vhi medium1 +
e60 medium1

mu24i tight +
mu36 tight

2526

G 211522-
212272

e24vhi medium1 +
e60 medium1

mu24i tight +
mu36 tight

1275

H 212619-
213359

e24vhi medium1 +
e60 medium1

mu24i tight +
mu36 tight

1445

I 213431-
213819

e24vhi medium1 +
e60 medium1

mu24i tight +
mu36 tight

1016

J 213900-
215091

e24vhi medium1 +
e60 medium1

mu24i tight +
mu36 tight

2596

L 215414-
215643

e24vhi medium1 +
e60 medium1

mu24i tight +
mu36 tight

840

TABLE 18. 2012 data periods, triggers, and integrated luminosity after the good
runs list has been applied.
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B.2. Monte Carlo Samples

Process Simulation DSID Number of Events Cross Section K-Factor
[pb]

tt̄ → Wbqγ fullsim 110605 99999 – 1
tt̄ → Wbqγ AFII 110605 200000 – 1
tt̄ non-all-hadronic fullsim 110404 49948212 114.48 1.1995

TABLE 19. Details of the tt̄ Monte Carlo samples used in this search.
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Process DSID Number of Events Cross Section [pb] K-Factor

W → eν + Np0 147025 29464244 8126.7 1.1330
W → eν + Np1 147026 47936004 1792.7 1.1330
W → eν + Np2 147027 17495947 542.18 1.1330
W → eν + Np3 147028 4855289 147.65 1.1330
W → eν + Np4 147029 5403283 37.736 1.1330
W → eν + Np5 incl. 147030 2787277 11.962 1.1330

W → µν + Np0 147033 31965655 8127.1 1.1330
W → µν + Np1 147034 43622615 1792.9 1.1330
W → µν + Np2 147035 17611454 542.24 1.1330
W → µν + Np3 147036 4796077 147.66 1.1330
W → µν + Np4 147037 5498881 37.745 1.1330
W → µν + Np5 incl. 147038 2790985 11.970 1.1330

W → τν + Np0 147041 31877158 8127.1 1.1330
W → τν + Np1 147042 48070179 1792.8 1.1330
W → τν + Np2 147043 17586943 542.21 1.1330
W → τν + Np3 147044 4982982 147.61 1.1330
W → τν + Np4 147045 2553295 37.738 1.1330
W → τν + Np5 incl. 147046 794096 11.905 1.1330

TABLE 20. Details of the Alpgen + Pythia OTF W+jets Monte Carlo samples
used in this search.
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Process DSID Number of Events Cross Section [pb] K-Factor

Z → e+e− + Np0 147105 6298988 718.97 1.1800
Z → e+e− + Np1 147106 8184476 175.70 1.1800
Z → e+e− + Np2 147107 389996 58.760 1.1800
Z → e+e− + Np3 147108 894995 15.636 1.1800
Z → e+e− + Np4 147109 398597 4.0116 1.1800
Z → e+e− + Np5 147110 229700 1.2592 1.1800

Z → µ+µ− + Np0 147113 6298796 719.16 1.1800
Z → µ+µ− + Np1 147114 8193384 175.74 1.1800
Z → µ+µ− + Np2 147115 389999 58.795 1.1800
Z → µ+µ− + Np3 147116 894799 15.673 1.1800
Z → µ+µ− + Np4 147117 393200 4.0057 1.1800
Z → µ+µ− + Np5 147118 229200 1.2543 1.1800

Z → τ+τ− + Np0 147121 19202764 718.87 1.1800
Z → τ+τ− + Np1 147122 10674582 175.76 1.1800
Z → τ+τ− + Np2 147123 3765893 58.856 1.1800
Z → τ+τ− + Np3 147124 1096994 15.667 1.1800
Z → τ+τ− + Np4 147125 398798 4.0121 1.1800
Z → τ+τ− + Np5 147126 229799 1.2561 1.1800

TABLE 21. Details of the Alpgen + Pythia OTF Z+jets Monte Carlo samples
used in this search.
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Process DSID Number of Events Cross Section [pb] K-Factor

W + bb̄ + Np0 200256 1599997 52.237 1.1330
W + bb̄ + Np1 200257 1398396 45.628 1.1330
W + bb̄ + Np2 200258 699398 23.955 1.1330
W + bb̄ + Np3 incl. 200259 398397 13.633 1.1330

W + cc̄ + Np0 200156 4299592 149.39 1.1330
W + cc̄ + Np1 200157 4137891 143.90 1.1330
W + cc̄ + Np2 200158 2394394 84.227 1.1330
W + cc̄ + Np3 incl. 200159 985295 44.277 1.1330

W + c + Np0 200056 22999046 758.93 1.52
W + c + Np1 200057 8198769 274.47 1.52
W + c + Np2 200058 2090290 71.643 1.52
W + c + Np3 200059 499498 16.482 1.52
W + c + Np4 incl. 200060 199499 4.7824 1.52

TABLE 22. W + heavy flavor + jets Monte Carlo samples
Details of the W + heavy flavor + jets Monte Carlo samples used in this search.
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Process DSID Number of
Events

Cross Section
[pb]

K-
Factor

Z → e+e− + bb̄ + Np0 200332 1799992 6.5083 1.1800
Z → e+e− + bb̄ + Np1 200333 999896 3.2948 1.1800
Z → e+e− + bb̄ + Np2 200334 994594 1.2546 1.1800
Z → e+e− + bb̄ + Np3
incl.

200335 885392 0.61800 1.1800

Z → µ+µ− + bb̄ + Np0 200340 1799797 6.5056 1.1800
Z → µ+µ− + bb̄ + Np1 200341 999897 3.2909 1.1800
Z → µ+µ− + bb̄ + Np2 200342 999395 1.2585 1.1800
Z → µ+µ− + bb̄ + Np3
incl.

200343 880894 0.61808 1.1800

Z → τ+τ− + bb̄ + Np0 200348 300000 6.5062 1.1800
Z → τ+τ− + bb̄ + Np1 200349 100000 3.2935 1.1800
Z → τ+τ− + bb̄ + Np2 200350 50000 1.2485 1.1800
Z → τ+τ− + bb̄ + Np3
incl.

200351 49800 0.61363 1.1800

Z → e+e− + cc̄ + Np0 200432 284999 11.763 1.1800
Z → e+e− + cc̄ + Np1 200433 499500 7.1280 1.1800
Z → e+e− + cc̄ + Np2 200434 498997 3.3603 1.1800
Z → e+e− + cc̄ + Np3
incl.

200435 443697 1.7106 1.1800

Z → µ+µ− + cc̄ + Np0 200440 298998 11.795 1.1800
Z → µ+µ− + cc̄ + Np1 200441 499799 7.1254 1.1800
Z → µ+µ− + cc̄ + Np2 200442 499500 3.3694 1.1800
Z → µ+µ− + cc̄ + Np3
incl.

200443 443999 1.7003 1.1800

Z → τ+τ− + cc̄ + Np0 200448 299000 11.760 1.1800
Z → τ+τ− + cc̄ + Np1 200449 199998 7.1410 1.1800
Z → τ+τ− + cc̄ + Np2 200450 99800 3.3582 1.1800
Z → τ+τ− + cc̄ + Np3
incl.

200451 49400 1.7046 1.1800

TABLE 23. Details of the Alpgen + Pythia OTF Z + heavy flavor + jets
Monte Carlo samples used in this search.
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Process DSID Number of
Events

Cross Section
[pb]

K-
Factor

WW 161995 9992987 32.486 1.6833
ZZ 161996 19988481 12.007 1.5496
WZ 161997 1999999 4.6891 1.9011

t-channel single top (t
→W → `ν)

110090 4994481 17.520 1.0500

t-channel single top (t̄ →
W → `ν)

110091 4999879 9.3932 1.0616

s-channel single top (t
→W → `ν)

110119 5999781 1.6424 1.1067

Wt-channel single top (incl.) 110140 999692 20.461 1.0933

tt̄ + W + Np0 119353 399497 0.10410 1.1700
tt̄ + W + Np1 174830 399896 0.053372 1.1700
tt̄ + W + Np2 incl. 174831 399798 0.041482 1.1700
tt̄ + Z + Np0 119355 399996 0.067690 1.3500
tt̄ + Z + Np1 174832 399995 0.045357 1.3500
tt̄ + Z + Np2 incl. 174833 398798 0.039772 1.3500

TABLE 24. Details of the diboson, single top, and tt̄+V Monte Carlo samples used
in this search.
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Process DSID Number of
Events

Cross Section
[pb]

K-
Factor

tt̄ + γ 117478 200000 1.4329 1.8

single top (W → eν) +
γ

185832 799997 0.21984 1

single top (W → µν) +
γ

185833 794999 0.21984 1

single top (W → τν) +
γ

185834 799998 0.21969 1

W → eν + γ 126739 11798964 162.88 1
W → µν + γ 126742 11798473 162.89 1
W → τν + γ 126856 6559890 162.96 1
Z → e+e− + γ 145161 8849673 32.298 1
Z → µ+µ− + γ 145162 9178579 32.326 1
Z → τ+τ− + γ 126854 3999409 32.317 1

TABLE 25. Details of the Standard Model + associated photon Monte Carlo
samples used in this search.
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