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DISSERTATION ABSTRACT

Peter Morse

Doctor of Philosophy

Department of Physics

June 2016

Title: A New Perspective on the Jamming Transition: Geometry Reveals Hidden Symmetries

Jamming is a physical process which is both easy to describe and incredibly difficult to

understand. One such difficulty is that mechanical treatments of jamming focus on pressure,

force, stress, and strain, which are identically zero below jamming, making it hard to differentiate

systems whcih which are near or far from the transition. Instead, I introduce a geometric

framework based on the Voronoi tesselation which treats all of phase space on an equal footing.

This work will show that the jamming transition can be seen entirely through the geometry of the

local environment of particles encoded in the Voronoi tesselation, and it will build the framework

for an as yet undefined field theory for jamming.

This dissertation includes previously published and unpublished coauthored material.
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CHAPTER I

INTRODUCTION

To best enjoy this thesis, go to the beach and grab a handful of sand and hold onto it

tightly. The sand holds its shape in your hands. As long as you hold on tight, this sand is a solid:

mechanically jammed and acting as a whole. But as soon as you let your grip loose, the sand

flows like water between your fingers. This sand, unconstrained, acts like a liquid: unjammed and

acting like many weakly interacting particles. With the simple loosening or tightening of your

grip, you have witnessed a phase transition that is just as physically real as the transition from

ice to water, and yet something seems more simplistic about it. In doing this experiment, you

might expect that in the realm of phase transitions this jamming or unjamming transition would

be more well understood than the more dramatic ice to water transition. You would be wrong.

There are many unsolved problems in the jamming community. In order to understand and

predict behavior in a phase transition, there needs to be a field theory. As it stands, there is no

mean field theory in finite dimensions, and furthermore, there are no small parameters that can

be expanded upon to create a field theory. There has been a proposed field theory solution in

infinite dimensions [1], but there is still much work to be done to translate the results to a three

dimensional world. Because there is no field theory in finite dimensions, there is no explanation of

power law scaling and no justification for the specific jamming point φJ .

The difficulty in characterizing granular systems is evident from the simplest experiments.

While I’ve used the analogy of flowing sand as a liquid, it is fundamentally different from a liquid

like water. If you fill a bathtub with sand, the sand will conform to the shape of the tub like

water, but unlike water the sand will hold your weight and you will be able to stand on top

of it (unlike the previous experiment, I would like to strongly discourage attempting this one

unless you’ve got a great plumber). This is due to the size and energy scales of sand particles

and water molecules being vastly different. The energy of water molecules is almost entirely

thermal, whereas the thermal ernegy is a negligible fraction of a sand particle’s total energy. For

this reason, I will only be addressing particles which are athermal.

Sand particles are both frictional and non-spherical, and both of these properties present

major difficulties. There is some debate on how to treat friction in the context of jamming [2–5],
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and so as a starting point I have restricted all of my work to frictionless spheres. In theory, my

work could be expanded to include elipses or polymer chains, both of which would yield new and

exciting results due to inherent symmetry breaking. It is my hope that this work will be expanded

to someday cover both frictional cases and non-spherical particles, either by myself or by others.

The jamming of frictionless spheres can be split into two classes: thermal hard sphere

glasses and athermal soft sphere jamming. Hard spheres are ones that cannot ever overlap, and

thus they can only be treated below jamming. There is a great deal of literature on hard spheres,

including a spectacular review of modern physics [1]. Soft spheres in this context are not ones

that deform, but rather ones that are allowed to overlap. By using soft spheres, we can treat the

entirety of phase space above and below jamming equally, and so I have decided to focus entirely

on them in this work.

The goal of my work has always been to treat athermal soft sphere systems the same

regardless of whether they are below, above, or at the jamming transition. This means that

mechanical quantities such as pressure, stress, strain, and force will be useless, because below

jamming, these quantities are all identically zero [6]. Instead, I will focus on the local environment

encoded into the Voronoi tesselation [7], which splits all of space into regions which are closest

to each particle. The Voronoi tesselation is well defined for all packing fractions, and so it treats

all systems agnostically. Once I have the tesselation of a given packing, I can then calculate any

geometric property of the cells and compare them to different packing fractions and preparation

procedures.

This work will show that the jamming transition can be seen entirely through the geometry

of the local environment of particles encoded in the Voronoi tesselation, and it will build the

framework for an as yet undefined field theory for jamming. Chapter 2 will introduce this concept

by showing both the jamming transition and a pre-jamming phase transition in the statistics

of the Voronoi tesselation. Chapter 3 will focus on expanding this understanding by including

more geometric parameters and by defining a correlation function which shows a signature of the

transition. Chapter 4 will introduce two transformations involving the Voronoi tesselation, which

will reveal as yet unseen symmetries of the jamming transition. Chapter 2 has been published

in Physical Review Letters [8] and chapter 3 has been published in Soft Matter [9]. At the time

2



of this writing, chapter 4 has been accepted but not yet published in the Journal of Statistical

Mechanics: Theory and Experiment.
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CHAPTER II

GEOMETRIC SIGNATURES OF JAMMING IN THE MECHANICAL VACUUM

Abstract

Jamming has traditionally been studied as a mechanical phenomenon and characterized

with mechanical order parameters. However, this approach is not meaningful in the “mechanical

vacuum” of systems below jamming in which all mechanical properties are precisely zero. We find

that the network of nearest neighbors and the geometric structure of the Voronoi cell contain well

defined and meaningful order parameters for jamming which exist on both sides of the transition.

We observe critical exponents in these order parameters and an upper critical dimension of 3.

Further, we present evidence for a new incipient-jamming phase below the jamming transition

marked by additional symmetry in the Voronoi tessellation.

This work was originally published in Physical Review Letters [8]. Eric Corwin advised all

of this work and so he is added as a coauthor, but the majority of the work and writing was my

own.

Background

Since 1727 when the Reverend Stephen Hales studied the contact statistics of peas

compressed in a pot [10] the study of jamming has primarily concerned itself with mechanical

properties. It is well known how pressure [6], bulk and shear modulus [11–13], stress and strain

[6], force [14], and contact number [15, 16] scale with packing fraction φ above the jamming point

φJ [17]. While these properties can be used as order parameters to study the mechanical jamming

transition, this understanding does not extend to the “mechanical vacuum.” The mechanical

vacuum describes states below jamming wherein the system has no mechanical response and

lacks stable force carrying contacts. This leaves half of the phase space with a trivial order

parameter that does not capture the physical reality that a system slightly below jamming is

very different from one far below jamming [18]. This phase space has previously been studied

within the realm of liquid theory and hard sphere jamming [1, 19–21] but the structural properties

of static unjammed packings have yet to be addressed.
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High dimensional sphere packings offer an opportunity to study the underlying physics and

geometry of jamming [18, 22, 23]. Recent attempts to construct a field theory for jammed systems

have been successful in describing mechanical properties. The Gaussian Replica Theory uses a

mapping between spin glass systems and jammed systems to develop a field theory with predictive

power for some scalings around jamming [1]. This theory is applicable in arbitrary dimensions

and correctly predicts φJ will take on a range of values that are method dependent [23]. Recent

simulational work has exploited finite size scaling of the mechanical properties of jamming for d =

2 and d = 3 to find critical exponents and evidence for an upper critical dimension of dUCD = 2

[24]. However, because these works are restricted to mechanical properties they can not describe

the physics of systems below jamming.

The local structure of jammed systems has also emerged as an active area of study. The

properties of the nearest neighbor network for sphere packings at and above jamming are key

components of Granocentric models [25–29]. These models are purely local in scope and yet

manage to predict global properties, suggesting that the local geometry plays an important role in

jamming.

Methods

In this paper we analyze simulations of sphere packings using two local geometric quantities

which are derived from the Additively Weighted Voronoi tessellation [30] of space around each

particle: 1) the mean number of nearest neighbors and 2) the maximum inscribed sphere in each

cell (Fig. 1). Both are well defined above and below jamming and, as will be shown, contain a

signature of the jamming transition.

Simulation: Energy minimization

Packings of particles are created similarly to references [23, 31]. Particles exist in a d-

dimensional hypercube with periodic boundary conditions and unit side length and interact with a

contact potential dependent on their dimensionless overlap

δ = 1− ‖~x1 − ~x2‖
r1 + r2

(2.1)
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a

d

c

b

FIGURE 1. (a) The Additively Weighted Voronoi tessellation for a polydisperse mixture of
particles in two dimensions. The particle shown in blue has a set of nearest neighbors shown in
red. (b-d) The maximum inscribed sphere (MIS) in a given Voronoi cell below jamming (b), at
jamming (c), and above jamming (d). The physical particle is illustrated as a gray circle, the
Voronoi cell is shown in black lines, the MIS is shown as a blue dashed circle, and the contacts
between the MIS and the Voronoi cell are shown as red stars.
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where ~x1 and ~x2 are the particle positions and r1 and r2 are the radii. The potential is defined as

V (δ) =


ε
αδ

α : δ > 0

0 : δ ≤ 0
(2.2)

where α is the order of the potential (α = 2 for a Hookean potential and 2.5 for a Hertzian

potential) and ε is the characteristic energy scale chosen to be 1. Unless specified, we use α = 2.

A packing is considered unjammed if the energy of overlap per particle is less than 10−20.

Simulation: Infinite quench and golden mean search

We explore a wide range of packing fractions using two protocols: 1) infinite temperature

quench (IQ) 2) golden mean search (GM). The IQ protocol is used to create a packing at a

specified φ by placing particles randomly throughout the simulation volume with appropriately

scaled radii [15]. The system is then relaxed to its local energy minimum using a home-built,

GPGPU-optimized version of conjugate gradient minimization [32] or the fast inertial relaxation

engine (FIRE) [33] running on the University of Oregon’s ACISS supercomputer. We demonstrate

in Supplemental Figures 1 and 2 that our results close to jamming are robust to choices among

our minimization techniques. The GM protocol is used to approach arbitrarily close to the

jamming point, φJ . The resulting value of φJ is dependent on whether jamming is approached

from below or above, but the properties of packings at the transition do not depend on the

packing history [23]. A GM packing is created from above (below) by choosing two packing

fractions that bound φJ . An initial packing is created at the bound above (below) using the IQ

protocol. The radii of particles in this packing are then scaled by a uniform factor to achieve an

intermediate packing fraction and re-minimized. If the resulting packing remains above (below)

jamming it is made the new upper (lower) bound and the process continues. If it is below (above)

then it becomes the new lower (upper) bound and a new packing is made by dilating the previous

upper (lower) bound packing. This process is continued until the upper and lower bounds differ by

less than 1 part in 1015.
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FIGURE 2. (a) The scaled mean number of neighbors as a function of scaled distance to the
jamming point. Shown are d= 2 (gray), 3 (black), 4 (purple), 5 (blue), 6 (green), 7 (orange), 8
(red). The k values used for collapse are 1, 1, 1.4, 1.4, 1.2, 1, and 0.75 respectively. All packings
are created using the infinite temperature quench (IQ) protocol. Inset, Log-log plot of scaled mean
number of neighbors as a function of distance to the jamming point for d ≥ 3. Packings plotted
in the inset are created using the GM protocol from below the jamming transition (solid lines)
and above (dashed lines). (b) Scaled mean neighbor number for varied polydispersity in d = 3.
The radii of the polydisperse particles are drawn from a log-normal distribution with µ = 1 and σ
ranging from 0 (red), 0.05 (black) up to 0.2 (light gray) in steps of 0.05. (c) Scaled mean neighbor
number for varied power-law potentials. Values of the order of the potential α range from 1.5
(black) to 4 (light gray) with the Hookean potential (α = 2) shown in red.
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The Voronoi Tesselation

The nearest neighbor network determines the local environment of a particle. For a given

particle, the Additively Weighted Voronoi (sometimes called the navigation map or Johnson-Mehl

tessellation) cell contains all points in space closer to the particle’s surface than to that of any

other particle [30]. For monodisperse particles this reduces to the Voronoi diagram in which all

cells have flat interfaces. Two particles are said to be nearest neighbors if their respective cells

share an interface. In order to calculate the Additively Weighted Voronoi tessellation in high

dimensions, we implemented the algorithm described by Boissonnat and Delage [? ]. However,

we should note that our results continue to hold for other choices of tessellation, most notably

the Radical Voronoi (or Laguerre) tessellation, as demonstrated in Supplemental Figure 3.

As a packing approaches jamming the neighbor network is very sensitive to the small spatial

rearrangements of particles. We observe a continuous phase transition in the mean number of

neighbors 〈N〉 as a function of packing fraction (Fig. 2a). All curves for dimensions d ≥ 3 collapse

onto a single master curve near φJ when scaled as (〈N〉 − NJ)/kNJ vs (φ − φJ)/φJ , where k is a

tunable parameter of order 1 and Nj is the mean number of nearest neighbors at jamming and φJ

is the jamming density found through our GM protocol. Note that k is a scale factor which only

depends on dimension, similar to the universal amplitude ratio of the lambda transition [34]. This

master curve has power-law scaling on both sides of the transition point with exponents ' 0.75

as shown in the inset to Fig. 2a, demonstrating that φJ controls the physics on both sides of the

transition. There is no a priori reason why the power laws on either side should be the same or

different and our data is insufficient to conclusively distinguish the two. For d = 2 this curve is

trivially flat due to the Euler relation which requires 〈N〉 = 6 for all φ. Since this collapse only

occurs for d ≥ 3 we have evidence for an upper critical dimension of dUCD = 3, in stark contrast to

the mechanical picture which yields dUCD = 2 [6, 24].

Individual curves peel away from the master curve in Fig. 2a when sufficiently far below

φJ . There is a seemingly trivial point in phase space at φ = 0 which nonetheless controls

the physics of low-density packings. At zero density the contact potential and polydispersity

are meaningless as every particle has radius r = 0 and zero overlap. The network of nearest

neighbors at this point is thus the result of a Poisson process and its properties are calculable

using stochastic geometry [35, 36]. Analytic values for 〈N〉 at zero density have been found for

9



d 1 2 3 4 5 6 7 8

〈N〉 2 6 48π2

35 + 2 340
9 89.3(8) 203.(6) 458.(8) 1016.(3)

TABLE 1. Table of 〈N〉 at zero density for dimension d from 1-8.

d ≤ 4 [36] and agree with our results to within numerical error. Exact values have not yet been

derived in higher dimensions but are easily numerically computed with our simulations (Table 1).

Systems very close to zero density are controlled by this point up to a cross-over density, beyond

which the system is controlled by φJ .

The effect of sample polydispersity is shown in Fig. 2b. Varying polydispersity changes the

numerical value of φJ [37], but the shape of the curve near jamming is unchanged. This suggests

that the distance between surfaces of particles is more important to the dynamics of the phase

transition than center-to-center distance. Thus, monodisperse and polydisperse packings are

controlled by the same physics in this regime.

Figure 2c demonstrates the effect of varying the contact potential. We use power law

contact potentials (Eqn. 2.2) with order α ranging from 1.5 to 4. All potentials follow the same

master curve below jamming. This is unsurprising because below jamming the only role of the

potential is to prevent overlap. Above jamming, the potential determines the distribution of

overlaps between particles which in turn determines the local structure of the packing. This is

manifested by a change in the slope of the curve above φJ with lower order potentials giving

steeper slopes, suggesting that higher order potentials tend to lock in local structure and give

higher barriers to structural rearrangements.

Maximum Inscribed Sphere

The maximum inscribed sphere (MIS) in the Voronoi cell of each particle contains a very

different signature of the jamming transition. The radius R of the MIS in a given Voronoi cell

is calculated using an algorithm similar to the FIRE minimization of particle packings and an

imposed repulsive harmonic potential between the inscribed sphere and the cell walls. We perform

a GM search by choosing two radii that bound the true MIS radius. If the minimized energy is

less than 10−20, the test radius is now used as the lower bound, and if it is greater, the test radius

is used as the upper bound. The search process is continued until the upper and lower bounds

differ by less than 1 part in 1015.
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FIGURE 3. (a) Distributions of radii of MIS at 0.5φJ (light blue), 0.9φJ (dark blue), φJ (purple),
1.1φJ (dark red), and 1.5φJ (light red) for d = 3. The packings above and below jamming were
made using the IQ protocol, and the jammed packing was made using the GM protocol from
above. (b) Semi-log plot of scaled distribution width of MIS as a function of scaled distance to
the jamming transition. The color scheme is the same as in Fig. 2a. (c) Log-log plot of scaled
distribution width for packings approaching jamming from below with GM protocol. Inset, power-
law behavior shows ∆R/r approaching φ∗ quadratically. (d) Log-log plot of scaled distribution
width for packings approaching jamming from above showing a power-law with exponent 1. (e-
f) Plot of the scaled number of constraints on the MIS as a function of scaled distance to the
jamming point. Packings are created using the GM protocol. Inset, plot of φ∗/φJ as a function of
dimension d.
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Figure 3a shows P ( r−RL ), the distribution of the normalized difference between the MIS

radii, R, and the particle radius, r, for monodisperse particles in d = 3. We normalize the

difference in radii by the characteristic distance between centers L = ρ−d where ρ is the number

density of particles. Below jamming no particles overlap, therefore the MIS radius R must be

strictly less than the particle radius r (Fig. 1b). Above jamming every non-rattler particle has

some overlap, therefore the MIS radius R must be strictly greater than the particle radius r (Fig.

1d). At jamming the particle is fully constrained and kissing the boundaries of the Voronoi cell

(Fig. 1c) causing the MIS to be identical to the particle. Therefore, any translation or dilation

relative to the jammed particle must puncture the surface of the Voronoi cell. Thus, at jamming

P ( r−RL ) must be a δ-function at zero. In this way jamming links the mechanical structure of a

packing to the geometric structure of the nearest neighbor network.

Because the functional form of the MIS distribution changes dramatically, and to discount

the influence of rattlers, we characterize its evolution with packing fraction by defining a

distribution width ∆R/r to be the width of the middle 80% of the distribution. We use this

definition of width rather than the standard deviation to minimize the influence of rattlers. We

find that our width is robust to changes in this cutoff value (Supplemental Figure 4). When we

approach jamming from above (the right side of Fig. 3b) we see a linear convergence to zero in

∆R/r at φJ (Fig. 3d). However, when we approach from below jamming (left side of Fig. 3b) we

also see a convergence of the width toward zero but at a packing fraction significantly less than

φJ . We call this new critical point φ∗ and find that ∆R/r approaches this point from below with

a power-law of ' 2 (Fig. 3c inset and tabulated in Supplemental Figure 5).

As a consequence of the identity between the particle and the MIS at jamming the mean

number of constraints 〈M〉 on the MIS should also contain a signature of jamming. In general,

the MIS in a convex polytope in d dimensions is constrained to contact M = d + 1 sides of the

cell. However, since jammed packings at φJ are mechanically stable they satisfy isostaticity, which

requires the mean number of contacts 〈Z〉 = 2d [24]. This in turn requires that the mean number

of constraints on the MIS be M = 2d. In order for an inscribed sphere to have more than d + 1

contacts there must be degeneracy in the constraints. This implies that a heretofore unobserved

symmetry must be present in the Voronoi cells at jamming.
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We define the normalized number of constraints M̃ on an MIS as

M̃ =
M − (d+ 1)

2d− (d+ 1)
(2.3)

such that at jamming where M = 2d, M̃ = 1 and generically when M = d + 1, M̃ = 0. As

expected, we see a transition in M̃ from M̃ = 0 far from jamming to M̃ = 1 close to jamming.

When approaching jamming from above the transition happens at a distance to φJ comparable to

our numerical precision (Fig 3f) whereas when approaching from below the transition occurs at φ∗

rather than at φJ (Fig. 3e). This is further evidence that φ∗ is a meaningful critical point related

to this new symmetry. The ratio φ∗/φJ decreases linearly with increasing dimension, indicating

that the phase between φ∗ and φJ becomes more important in higher dimensions (Fig. 3e inset).

Conclusion

Our results demonstrate that the geometric structure of a packing contains a clear

signature of the jamming transition. We have measured critical exponents in order parameters

derived from this geometric structure which should prove instrumental to developing a fully

realized field theory for both sides of the jamming transition. Surprisingly, we find dUCD = 3

whereas measures of mechanical properties yield dUCD = 2. This result can be interpreted

in alternative ways: 1) There are two independent phase transitions, one mechanical and the

other geometric, that happen to coincide at precisely the same point in phase space. 2) The

jamming/un-jamming transition is a new type of phase transition consisting of linked mechanical

and geometric transition with different dUCD. Each interpretation is unsettling in it’s own way.

It beggars belief that two entirely independent phase transitions would just happen to precisely

coincide so (1) seems quite unlikely. Interpretation (2) requires the extraordinary claim that the

jamming transition is characteristically unlike any other understood physical process. Indeed,

jamming and by extension the glass transition [38] has been curiously resistant to theoretical

explanation. Under either interpretation these results point the way towards new physics.

Finally, we observe a new critical point φ∗ well below φJ . This new critical point is

obscured by the mechanical vacuum, and there is no signature of it in simple statistics of the

neighbor network. One can only find it by looking at the local structure of Voronoi cells. It

remains to be uncovered what underlying symmetry is revealed by this phase transition.
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CHAPTER III

VORONOI GEOMETRY SHOWS THE JAMMING TRANSITION

Abstract

A jammed packing of frictionless spheres at zero temperature is perfectly specified by the

network of contact forces from which mechanical properties can be derived. However, we can

alternatively consider a packing as a geometric structure, characterized by a Voronoi tessellation

which encodes the local environment around each particle. We find that this local environment

characterizes systems both above and below jamming and changes markedly at the transition.

A variety of order parameters derived from this tessellation carry signatures of the jamming

transition, complete with scaling exponents. Furthermore, we define a real space geometric

correlation function which also displays a signature of jamming. Taken together, these results

demonstrate the validity and usefulness of a purely geometric approach to jamming.

This work was originally published in Soft Matter [9]. Eric Corwin advised all of this work,

and so he is added as a coauthor, but the majority of the work and writing was my own.

Introduction

Over the past two decades the jamming of athermal frictionless spheres has been seen

as the limiting case of several different kinds of systems[1, 15, 38–41]. Athermal soft sphere

systems can be brought to the limit of zero internal energy and isostaticity, achieving a critically

jammed system which is typically characterized by mechanical properties [6, 11, 13, 15, 17, 40].

However, when such systems are below the jamming density there is no longer a mechanical

network of force-bearing contacts and so mechanical order parameters are all identically zero.

Conversely, hard sphere thermal liquids are studied below the glass or jamming transition and

are characterized by dynamic quantities such as mobility and pressure [1, 41, 42]. As density

is increased they reach the limit of diverging reduced pressure and become a critically jammed

system. Above this density, hard sphere systems can not exist. While both athermal soft sphere

systems and thermal hard sphere glass systems have been successful models for predicting

and measuring scaling exponents of various parameters near the jamming phase transition

[1, 13, 15, 41], neither of these model systems speak to the behavior of unjammed athermal
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systems. This leaves a gap in the understanding of the athermal jamming transition. In this

paper we introduce new geometric order parameters which characterize the athermal jamming

transition both above and below jamming, placing both sides of the transition on equal footing

and providing a meaningful way to interrogate soft sphere systems below the jamming transition.

The structure of jammed systems has long been studied in terms of geometry [25, 26, 35,

43–46] however a systematic study of geometric changes as a function of distance to the transition

has not yet been performed. The Voronoi tessellation [7], which is well defined at all packing

fractions, provides a natural lens through which to study both unjammed and overjammed

systems. In previous work we have demonstrated that the number of facets (corresponding to

the number of nearest neighbors) provides a good order parameter for the jamming transition

[8]. This order parameter raised a new problem, however, because it exhibited an upper critical

dimension (above which, all order parameters share the same scaling laws) of d = 3. This

stood in contrast to the well known fact that mechanical order parameters exhibit an upper

critical dimension of d = 2 [15, 24]. This, coupled with the recent success of replica theory in

predicting high finite dimensional scaling [41] has motivated us to explore a range of geometric

order parameters in dimensions ranging from d = 2 to d = 5.

In this paper we show that most geometric properties of the Voronoi tessellation are

controlled by the jamming point φJ , suggesting that jamming can be described in purely

geometric terms. Further, we present a new geometrically defined correlation function which

changes qualitatively at the jamming transition. Surprisingly, none of these measures show any

indication of the previously discovered pre-jamming transition, associated with the maximum

inscribed sphere of the Voronoi cell, which we have found to happen at a density φ∗ < φJ [8].

Generating a packing

We simulate packings of frictionless athermal particles with a harmonic contact potential in

periodic boundary conditions as described in references [8, 23]. In d = 3 − 5, we use monodisperse

spheres, and in two dimensional systems, we use a 50:50 mixture of bidisperse disks with a ratio

of radii that is 1:1.4, known to show mechanical jamming. We present data obtained with three

packing protocols: Infinite Quench (IQ)[15], Geometric Mean (GM)[8, 23], and Energy Sweep

(ES)[41].
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FIGURE 4. Plots of scaled order parameters vs. the scaled packing fraction. Closed circles
represent IQ data, x’s represent GM data (from below), and triangles represent ES data (from
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Our three protocols differ only in how jamming is approached. All begin with a set of

particles in random positions at a specified density. The energy of this system is then minimized

to find the so-called inherent structure, found at the local energy minimum. Each of these

protocols works as an iterative process by finding the inherent structure at a given density and

then using this packing as the seed to find a minimized packing at a new density.

The IQ protocol begins with a random packing at zero density. Every particle is inflated

to achieve a new packing at a specified higher density and this packings energy is then minimized.

The results of this minimization are then used to create a denser packing, and so on. This

proceeds in linearly spaced steps of packing fraction until the desired range of packing densities

is covered. The range is chosen to cover densities from φ = 0 to φ = 2φJ . The limits of this range

are somewhat arbitrary but are chosen to be symmetric about φJ . While the most relevant region

is near the transition point, we include data at both the high and low extremes for completeness.

Data for d = 3− 5 uses 65536 (216) particles, while d = 2 uses 16384 (214) particles.

The GM protocol is designed to zero in on the transition point, either approaching from

above or below, without ever overshooting. In this manuscript, we only report on GM systems

approaching from below because the ES protocol (described below) converges much faster when

approaching from above. The GM protocol requires an initial bounding of the jamming point by

choosing two densities, one above and one below. A packing is initially created at the lower bound

and its energy minimized. A new packing is created between the upper and lower bounds using

the original packing as its seed. If this packing is below jamming (taken to mean an energy per

particle of < 10−20), it becomes the new lower bound and serves as the next seed. If, however,

this packing is found to be above jamming it is discarded and its density is used as the upper

bound in picking a new intermediate density. This proceeds until we approach the jamming point

to within our energy per particle tolerance of 10−20. In this way we are able to create a packing

right at the edge of jamming that is the result of only inflationary steps, without ever crossing

into the jammed regime. Because the convergence is slow, we are only able to report on 8192 (213)

particles.

The ES protocol is limited in that it can only serve to approach jamming from above,

but as previously mentioned, it converges faster than GM. The ES protocol exploits the scaling

of system energy with excess packing fraction E ∝ (φ− φJ)
2

to gently approach jamming from
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FIGURE 5. Log-log plots of each scaled order parameter vs. the scaled packing fraction
approaching jamming from below (left) and above (right). Closed circles represent IQ data, x’s
represent GM data (from below), and triangles represent ES data (from above). The parameters
shown are (a,f) mean surface area, S, (b,g) standard deviation of volume divided by the mean of
the volume, Ṽ , (c,h) mean surface to volume ratio S/V (d−1)/d (d,i) mean aspect ratio, A, and (e,j)
mean aspect ratio angle cos θ. We plot data for d = 2 (smaller particles light gray, larger particles
dark gray, combined black), d = 3 (green), d = 4 (red), and d = 5 (blue).
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above, creating nsteps logarithmically spaced packings per decade. Given an initial system density

φi, system energy Ei, and a guess for the jamming density φ̃i we calculate the packing fraction for

the next system as

φi+1 = φ̃i +
(
φi − φ̃i

)
10−1/nsteps . (3.1)

Once this new system’s energy is minimized we compute a better estimate for the true jamming

density as

φ̃i+1 =
φi+1 − φi

√
Ei/Ei−1

1−
√
Ei/Ei−1

. (3.2)

This process continues until we achieve an energy per particle of 10−20.

We choose the starting point of the approach to be approximately 2φJ . It has been

previously shown that the jamming density when approaching from above is dependent on the

initial packing density for systems that start close to φJ . When the initial packing density is

significantly high, however, the value of φJ is independent of the initial packing density [23]. We

choose to start at such a high value of φ to ensure that our results are independent of the starting

density.

All ES data sets use 16384 (214) particles. Data for d = 2, d = 3, and d = 4 are averaged

over 10, 63, and 79 systems respectively while data for d = 5 is taken from a single system.

Geometry of the Voronoi tessellation

Given a packing created via any of our protocols and in any dimension we calculate the

Voronoi tessellation using an in-house implementation of the algorithms described by Boissonnat

and Delage [47] as used in our previous work [8] and extract the associated vertices using the

Delaunay triangulation [48]. For the monodisperse packings we create in d = 3 − 5, this Voronoi

tessellation is the standard Voronoi tessellation wherein the size of a cell is independent of the

size of the particle. However, due to the bidispersity used in d = 2 we use the radical Voronoi (or

Laguerre) tessellation [7], which makes the boundaries between cells the bisecting plane between

the particle edges. This preserves the convexity of each cell and thus provides a natural extension

of the classical Voronoi cell. From each Voronoi cell, we extract all of our measurements. The
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FIGURE 6. Illustration of the aspect ratio axes in two Voronoi cells. For each cell, the short axis
is shown in green (short dashes) and the long axis is shown in orange (long dashes). The angle θ
between the two axes is defined to be the acute angle between the short and long axis. The angle
α between two long axes of different cells is also shown.

Parameter χ N S Ṽ S/V (d−1)/d A cos θ
Appx. Power γ 0.7 1.0 0.75 1.0 0.75 0.33
χJ , d = 2, large 6 3.00(5) 0.03(1) 3.73(8) 1.22(1) 0.56(7)
χJ , d = 2, small 6 2.27(5) 0.04(7) 3.82(7) 1.30(6) 0.55(9)
χJ , d = 2, all 6 2.64(0) 0.29(5) 3.78(2) 1.26(4) 0.56(3)
χJ , d = 3 14.29 5.3(8) 0.03(8) 5.3(8) 1.32(2) 0.42(9)
χJ , d = 4 32.74 6.8(7) 0.03(6) 6.8(8) 1.3(7) 0.38(5)
χJ , d = 5 74.62 8.2(6) 0.03(4) 8.2(6) 1.4(1) 0.35(0)

TABLE 2. Scaling laws and critical values for all parameters χ, such that χ−χJ

χJ
∝ (φ−φJ

φJ
)γ .

Critical values quoted have their error in the least significant digit, which is reported in
parentheses. Both GM and ES data agree on each critical value. All critical values are unitless

except for SJ which is reported as the unitless SJN
(d−1)/d
particles . For d = 2, we report separately on χJ

values for the larger particles, the smaller particles, and the system as a whole.

number of facets of the Voronoi tessellation gives us 1) the number of nearest neighbors N ; The

vertices of the Voronoi cell allow us to calculate 2) the surface area S and 3) the volume V ; The

ratio between the largest and smallest possible distances between parallel planes kissing the cell

defines 4) the aspect ratio A; Finally, the dot product between the headless vectors defining the

aspect ratio provides 5) the cosine of the cell’s internal angle θ.

Volume and Surface Area

Volumes and surface areas can be calculated easily by breaking the cell into simplices. To

find volumes and surface areas we exploit the fact that the d-dimensional volume of a d-simplex

can be calculated from the generalized triple product of its vertices. The Delaunay triangulation
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of the surface of a Voronoi cell breaks down the surface of each facet k into a number of (d − 1)

dimensional simplices labeled by the index m. There are d-vertices association with each simplex,

which we denote as ~vm,i where i ranges from 1 to d, and we denote the outward facing normal

vector to a facet k as n̂k. From this, the surface area of each facet is calculated as the sum of the

surface of all of its constituent simplices as

Sk =
∑
m

|n̂k ·
[
(~vm,1 − ~vm,d) ∧ · · · ∧ (~vm,d−1 − ~vm,d)

]
|

(d− 1)!
, (3.3)

where ∧ denotes the d-dimensional wedge product. The total surface area of a given

Voronoi cell is then the sum of all facets

S =
∑
k

Sk. (3.4)

By choosing an interior point of the cell ~r, we can subdivide the volume of the cell into a

number of d-simplices whose volumes sum to the volume of the cell as

V =
∑
m

|(~vm,d − ~r) ·
[
(~vm,1 − ~vm,d) ∧ · · · ∧ (~vm,d−1 − ~vm,d)

]
|

d!
. (3.5)

For a given packing, the mean cell volume is just the simulation volume divided by the

number of particles. The distribution of cell volumes, however, does change, and so we report on

Ṽ , the ratio of the standard deviation of the volume distribution to the mean. We also report on

the mean of the unitless surface to volume ratio S/V (d−1)/d.

Aspect Ratio and Internal Angle θ

The ratio of surface area to volume S/V
d−1
d defines a simple notion of an aspect ratio,

but one that is insensitive to the anisotropy of the cell. We define another aspect ratio, explicitly

sensitive to anisotropy by looking at the ratio between the longest one dimensional span in a cell

to the shortest one dimensional span of a cell (Figure 6). To calculate this aspect ratio we define
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FIGURE 7. The normalized long axis correlation between Voronoi cells plotted as a function of
distance between particles in d = 2 − 5. Correlations are shifted vertically to show the effect
of changing φ with a color scheme that fades from purple (φ = 0) to black (φ = φJ) to green
(φ = 2φJ). Gray dashed lines show the line corresponding to completely uncorrelated axes, open
circles denote minima and open stars represent secondary maxima. A black line has been drawn
over each curve representing the Savitsky-Golay filter. Data obtained using the IQ protocol.
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the long axis ~̀ as the maximum distance between any pair of vertices and the short axis ~s as the

minimum of the set of maximum distances between each vertex and each facet. Given a set of

vertices ~vi and introducing a point ~pk on each facet k, these definitions can be formalized as

~̀= {~̀ | ‖~̀‖ = Maxij‖~vi − ~vj‖}, (3.6)

and

~s = {~s | ‖~s‖ = Mink(Maxi|n̂k · (~vi − ~pk)|)}. (3.7)

The aspect ratio is then simply defined as

A =
‖~̀‖
‖~s‖

. (3.8)

We can further measure the skewness of a cell by defining the angle between the long axis

and the short axis as

cos θ =
|~̀ · ~s|
‖~̀‖‖~s‖

, (3.9)

where the absolute value is taken because ~̀ and ~s are headless vectors.

Correlation Function

We can examine the interaction of each cell with its neighbors by defining a correlation

function based on the angle between the axes of pairs of cells. When cells are packed together to

fill space neighboring cells must share facets, potentially causing the axes to align. To characterize

this we measure the cosine of the angle between two long axes ~̀i and ~̀j associated with particles i

and j respectively (illustrated in Figure 6). Because the axes are headless vectors we must use the
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formalism of directors, giving rise to the definition for the cosine as

cosαij =
|~̀i · ~̀j |
‖~̀i‖‖~̀j‖

. (3.10)

To compare systems in different dimensions, we must first calculate the expectation values

of completely uncorrelated directors. The expectation value of the cosine of the angle in dimension

d is given by

〈cosα〉d =

∫ π/2
0

cosα sind−2 αdα∫ π/2
0

sind−2 dα
=

Γ
(
d
2

)
√
π Γ
(
d+1
2

) . (3.11)

The standard deviation of the angle between uncorrelated directors in dimension d is defined as

σd =
√
〈cosα〉2d − 〈cos2 α〉d. Therefore we also calculate the expectation of the square of the cosine

of the angle of uncorrelated directors as

〈cos2 α〉d =

∫ π/2
0

cos2 α sind−2 αdα∫ π/2
0

sind−2 dα
=

Γ
(
d
2

)
2 Γ
(
d+ 1

2

) . (3.12)

Thus we find the standard deviation of uncorrelated directors in dimension d to be

σd =

√√√√ Γ
(
d
2

)2
π Γ
(
d+1
2

)2 − Γ
(
d
2

)
2 Γ
(
d+ 1

2

) . (3.13)

We define our correlation function as the normalized value of the cosine of the angle

between the long axes of every pair of particles as a function of the distance between cells as

C`(r) =
∑
ij

δ(‖~ri − ~rj‖ − r)
cosαij − 〈cosα〉d

σ(d)
. (3.14)

We note that this correlation function, relating the shape and asymmetry of Voronoi cells,

is logically distinct from the pair correlation function, or indeed from any correlation function

based solely on particle positions.
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Analysis

Order Parameters

Figure 19 presents the geometric order parameters described above calculated for systems

created with all protocols as a function of distance to φJ for d = 2 − 5. Data across multiple

dimensions is presented on the same scale by subtracting off the value at the jamming transition

and then dividing by that same value. The packing fraction is similarly scaled as (φ − φJ)/φJ .

Below jamming all of these parameters change rapidly with increasing packing fraction. Jamming

is marked by a sharp kink and above jamming they evolve with a much gentler slope.

For all measures except the surface area to volume ratio the d = 2 data does not seem to

collapse onto the same family of curves as the higher dimensions. Because the d = 2 packings

are bidisperse we show separate curves for each particle size (shown in dark and light gray)

and a single curve representing the combined data (shown in black). The difference is especially

apparent in the surface area: the Voronoi surface area increases for larger particles and decreases

for smaller particles as jamming is approached from below. This makes intuitive sense; at

extremely low packing fractions the Voronoi cells for the two sets of particles should be almost

identical and near jamming the larger particles will end up having a larger surface area and

a larger volume than their smaller counterparts. In the combined data, the surface area curve

collapses to follow the trend observed in d = 3 − 5, which is somewhat surprising considering the

very significant geometric structure of bidisperse packings versus monodisperse. However, when

considering each size separately, this universality is broken. For completeness we provide data on

3d bidisperse systems in the supplementary material. These 3d bidisperse systems do not always

exhibit the same behavior as monodisperse systems, however they always show power-law scaling

when approaching jamming.

In order to explore the behavior very close to jamming we use the GM protocol to approach

from below and ES to approach from above. In this way we obtain packings that converge

logarithmically on φJ . Plotted on a log-log scale (Figure 20) we find that each parameter scales

with its own power-law on both sides of the transition with power law values and critical values

listed in Table 2. We have previously demonstrated that the mean number of neighbors 〈N〉

scaling is consistent with a power of ∼0.7 [8].
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Below jamming, there must be a limit to the scaling regime. The mean surface area 〈S〉,

volume 〈V 〉, and number of facets 〈N〉 of Voronoi cells at φ = 0 and their respective dimensional

dependence can be semi-analytically determined [35, 49–51]. The same should be true for aspect

ratio 〈A〉 and internal angle 〈cos θ〉 but to our knowledge those studies have not yet been done.

This is responsible for the changes in curvature seen at low φ in Figure 19.

While most of the power laws work well over at least five decades, there are a few

exceptions. The data from below is very sparse, and so we cannot claim that the power laws fit

exactly and can only suggest that the plots look like power-laws within the plotting area. Precise

claims about the scaling exponents of these power laws would require a method which approached

jamming more predictably from below and which converged much faster so that averaging could

be used, as it is done above jamming.

It is also important to note that the d = 2 data deviates significantly in the standard

deviation of the volume for particle sizes considered separately (Figure 20g) and the internal angle

for all cases (Figure 20j). What is unclear is the extent to which this non-universal behavior is

due to the dimension or the bidispersity. We can probe this question by examining the d = 3

bidisperse system which is presented in the supplement. Unlike the d = 2 bidisperse system,

the d = 3 case shows non-universal behavior even in the combined statistics. This suggests that

the fault lies in the polydispersity and perhaps not the dimension as was claimed in our earlier

work [8]. It is not surprising that adding polydispersity will change the behavior of these detailed

geometric properties. The result is that it is impossible to decouple the effects of polydispersity

from those of dimension in causing the non-universal d = 2 behavior.

Correlation Function

From the measurements of the aspect ratio we can see that at jamming the Voronoi cells

are much more isotropic than they are far from jamming. At jamming, the aspect ratio is close

to 1 and the direction of the long and short axes are uncorrelated as measured by cos θ. In

contrast, at very low density the cells are elongated and have a large aspect ratio and axes that

are nearly perpendicular. Figure 7 shows the measured correlation function between the long

axes as a function of interparticle distance for packing fractions ranging from φ = 0 to φ = 2φJ

in dimensions d = 2 − 5. Far below jamming, neighboring particles are highly correlated. This
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FIGURE 8. The position of the minimum (closed circles) and secondary maximum (open star)
of the correlation shown in Figure as a function of distance from the jamming transition. Colors
shown represent dimensions 2 (black), 3 (green), 4 (red), and 5 (blue).

correlation decreases with increasing distance, showing an anti-correlated dip at intermediate

distances and then finally decaying to completely decorrelated at large distances. At jamming, the

correlation function changes qualitatively, marked by the appearance of a positive correlation peak

at intermediate distances in addition to the short distance dip. Both the dip and the peak become

more prominent and sharpen at higher packing fractions. These extrema are found using a cubic

Savitzky-Golay filter with a span of 51 data points [52] and the positions of the dip and peak are

indicated by circles and stars respectively in Figure 7 and plotted as a function of packing fraction

in Figure 8. The position of the maximum shows a clear signature of the transition in d = 2 − 5.

However, the position of the minimum for d = 3 − 5 does not show a clear signature of this

transition. We find that the correlation functions plotted in Figure 8 only depend on interparticle

distance, with no angular dependence when oriented to the long axes of each given particle. This

correlation function is unusual in that the jamming transition is marked by the disappearance

of the nearest neighbor correlation, seen in the value of the correlation function at the shortest

possible interparticle distance.
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Conclusion

We have observed a clear signature of the jamming transition in each of the studied

measures of the Voronoi cell as well as in our newly defined axis-correlation function. These

results bolsters the claim that while jamming is a mechanical transition, it can be viewed

separately as a purely geometric phenomenon via the Voronoi cells. These results justify the

use of the Voronoi cell as a tool to understand the jamming transition. Ultimately, each of the

measures are sensitive to the fluctuations in the size and shape of individual Voronoi cells. Each

measure reflects a different change in the cell. The fact that we see power-law scaling in all of

these measurements, even in 2d bidisperse systems (albeit with different exponents), suggests

that nearly every aspect of the cell changes and is controlled by the transition from unjammed to

jammed. Our results demonstrate that the mechanical jamming transition coincides perfectly with

a transition in the geometry of the packing at φJ .
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CHAPTER IV

HIDDEN SYMMETRIES IN JAMMED SYSTEMS

Abstract

There are deep, but hidden, geometric structures within jammed systems, associated

with hidden symmetries. These can be revealed by repeated transformations under which these

structures lead to fixed points. These geometric structures can be found in the Voronoi tesselation

of space defined by the packing. In this paper we examine two iterative processes: maximum

inscribed sphere (MIS) inversion and a real-space coarsening scheme. Under repeated iterations

of the MIS inversion process we find invariant systems in which every particle is equal to the

maximum inscribed sphere within its Voronoi cell. Using a real-space coarsening scheme we reveal

behavior in geometric order parameters which is length-scale invariant.

This work is unpublished, but has been accepted into the Journal of Statistical Mechancis:

Theory and Experiment. Eric Corwin advised all of this work and so he is added as a coauthor,

but the majority of the work and writing was my own.

Background

The jamming of athermal spheres has been called the epitome of disorder [6], but this

doesn’t mean that it is devoid of all symmetries. The structure found within jammed systems

distinguishes them from Poisson point processes, for which there is no structure or correlation.

This structure is reflected in the non-trivial behavior of correlations (such as the pair-correlation

function) [53, 54], geometry [8, 9], contact number distributions [55], hyperuniformity [20, 56],

and volume distributions [26, 57]. Recent theoretical work has demonstrated the existence,

and breaking of an abstract replica symmetry at the jamming and glass transitions, namely

liquid systems have replica symmetry and glasses or jammed systems break that symmetry.

[1, 58]. In this work we search for evidence of hidden symmetries in the spatial and geometric

structure of systems below, at, and above jamming. We employ the general scheme of repeated

transformations in the hope that they will lead to fixed point systems reflective of the underlying

symmetries.
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a b

FIGURE 9. Diagram showing the maximum inscribed sphere (MIS) inversion. (a) An initial
monodisperse packing is shown with particles colored gray, their radical Voronoi cells in black, and
the MIS shown as a dashed blue line. (b) The first step of the MIS inversion with the same color
scheme. Note that the MIS from (a) is the new particle, the Voronoi cell has changed, and the
system is now polydisperse.

We have previously shown that a number of geometric properties of the Voronoi tesselation

carry signatures of the jamming transition, including the number of neighbors, surface area,

volume, aspect ratio, and maximum inscribed spheres (MIS). There is an obvious symmetry that

jumps out precisely at the jamming transition. Because each particle in a jammed system is in

contact with several of its neighbors it must kiss the boundaries of its Voronoi cell. Therefore,

the maximum inscribed sphere of a Voronoi cell must be equal to the particle. This suggests a

transformation of repeatedly replacing every particle with the maximum inscribed sphere of it’s

Voronoi cell. Under such a transformation, jamming will necessarily be a fixed point.

The renormalization group has been very successful in understanding phase transitions. At

present, jamming lacks an appropriate field with which To construct a renormalized field theory.

Nevertheless, we barrel ahead with a brute force real space coarsening and rescaling scheme

in the hopes of pointing the way to the appropriate field theory. By repeated iteration of this

coarsening we test a range of geometric order parameters to see if they mimic the behavior of a

proper renormalized field.

31



Methods

Packing Simulations

In order to generate the initial packings for our MIS Inversion and coarse graining, we use

an infinite temperature quench protocol [15] as described in reference [8]. The process begins with

uniformly randomly distributed athermal fricitonless particles with monodisperse or polydisperse

radii chosen to achieve a desired packing fraction. The packing fractions for monodisperse

packings are chosen within the range φ = 0 to φ = 2φJ (where φJ is the packing fraction

at jamming) to obtain the full spectrum of behavior, both well below and well above jamming.

Polydisperse packings are generated with densities from φ = 0 to significantly above φJ but not

all the way to 2φJ . We choose a harmonic contact potential between particles and then allow

the system to relax to its local potential energy minimum (also called its inherent structure)

via the conjugate gradient algorithm [32] for systems below φJ or the fast inertial relaxation

engine (FIRE) algorithm [33] for systems above φJ . For studies of the MIS Inversion we use

monodisperse packings of 8192 particles and polydisperse packings of 16384 particles. Coarse

graining requires higher numbers of particles, and so we use monodisperse systems that contain

65536 particles. All data is monodisperse unless otherwise stated.

For polydisperse packings, we choose radii from a log-normal distribution. We characterize

a polydisperse packing by the standard deviation of the radii divided by the mean. For the MIS

inversion, we report on initial polydispersities of 0, 0.05, 0.1, 0.15, and 0.2.

Geometric Cell Properties

The maximum inscribed sphere (MIS) of a Voronoi cell is the largest sphere that is fully

contained within the boundaries of the cell. It is calculated using linear programming techniques

[59].

Detailed descriptions of how we calculate the number of neighbors, the surface area,

the volume, and the aspect ratio can be found in our previous work [8, 9]. Two particles are

considered neighbors if their Voronoi cells share a facet, so to find the number of neighbors, we

calculate the number of facets via a method developed by Boissonnat [47]. To find the surface

area and the volume, we calculate the veritices of each cell and take a delaunay triangulation to
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split each facet into simplicies. From these simplices and an interior point of the cell, it is simple

to calculate the surface area and volume associated with each cell.

The aspect ratio that we use for convex cells is defined by the maximum distance between

any pair of vertices contained in a cell divided by the minimum of the maximum distance between

each vertex and every facet. Thus, the aspect ratio can be seen as the ratio between the longest

and shortest spanning lengths of a cell.

Maximum Inscribed Sphere Inversion

The MIS inversion process starts with a sphere packing at any density. From this packing

we calculate the radical Voronoi tesselation (also sometimes called the Laguerre tesselation).

We choose to use the radical Voronoi tesselation as opposed to the additively-weighted Voronoi

tesselation (or indeed any other tesselation) to ensure that the Voronoi cells are always convex

regardless of polydispersity [7]. From this tesselation we calculate the MIS for each cell. Finally,

this new set of spheres is treated as a new sphere packing upon which we can iterate this

procedure. We note that each MIS is in general uniquely determined, with the exception of the

pathological case in which there is a high degree of symmetry in the underlying Voronoi cell (for

example, if the cell is a rectangular solid). This pathological case will not happen in a disordered

system, and so we do not explicitly account for it. However, even if such cases were present they

would simply manifest as a degenerate set of spheres, of which our analysis would choose one.

We find that for all systems this process converges to a fixed point packing, dependent on

the initial input. In practice, we find that repeating this process 30 times is sufficient to find fixed

points in which each particle deviates by less than one part in 106 from it’s former position, as

shown in figure 10a.

Even though the MIS inversion constructs packings that are guaranteed to have no overlaps

we can still define a coordination number z for each particle by choosing an appropriate cutoff

distance. We pick this distance to fall immediately after the first peak in the pair-correlation

function.
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FIGURE 10. Convergence of the MIS inversion. a) Log-linear plot of the mean displacement
per particle from the previous MIS iteration. Each line represents a system at a different initial
packing fraction, with color scale indicating initial packing fraction as shown beneath the plots.
The lower dashed line is drawn at φJ and the upper dashed line is drawn at φ∗, the lowest
packing fraction for which initial packings are fixed points under the MIS inversion. b) Packing
fraction at each step of the MIS inversion, using the same color scheme as a. The upper dashed
line is drawn here at φJ and the lower dashed line is at φ∗, which is flipped from a.
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a b c

FIGURE 11. The coarse graining procedure pairs each cell in with the unpaired cell that shares
the highest surface area. a) The original Voronoi diagram, b) the system after one step of the
coarsening procedure, c) the system after two steps of coarsening. Colors denote the membership
in cells after two rounds of coarsening.

Real-Space Coarsening

Given a sphere packing at any density, we compute the Voronoi tesselation and the

geometric cell properties, defined above. Because the systems under study here are monodisperse

it doesn’t matter which Voronoi tesselation we choose, as they are all degenerate. Our real space

coarsening scheme creates a coarser grained packing by joining pairs of neighboring cells. To do

so, we choose a random ordering of cells and sequentially pair each cell in our list with the the

unpaired neighboring cell that shares the largest interfacial surface area. Both cells are then

removed from the list, and the process continues until nearly all cells are paired. Because of

the random nature of this process there will always be a few singleton cells remaining which

we join with the previously paired cell with which it shares the highest interfacial surface area

(with the caveat that no composite cell can be made up of more than three cells). These triplet

cells constitute less than 3.5% of the total cells in d = 3, 1.7% in d = 4, and 0.7% in d = 5.

The set of paired cells covers all space and thus produces a new tesselation. Note that this new

tesselation is not a Voronoi tesselation and is not even convex. However, our pairing scheme is

designed to create cells that are compact and nearly convex upon high iterations. We continue

this process iteratively to create a further new tesselation with approximately half as many cells

as the previous one. Thus the number of iterations possible in this scheme is limited by the

number of particles in the initial packing. In d = 3, we average this process over 100 different

orderings. In d = 4, we use one ordering due to the increased computation time.

If we label two neighboring cells A and B we can call the combined cell A ∪ B. The

neighbors of A ∪ B are the union of the set of neighbors of A and B (not counting each other),
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the volume is simply the sum of the constituent volumes, and the surface area is the sum of the

constituent surface areas minus twice the interfacial surface area. Because the new cells are not

convex and our aspect ratio only applies to convex cells, we take the convex hull of the vertices

of all the constituent cells and we calculate the aspect ratio as defined above. This preserves the

definition that the aspect ratio is the longest one dimensional distance divided by the shortest

one dimensional distance, but these two distances are no longer constrained to be fully contained

within the cell.

When a combined cell is made of three constituent cells A, B, and C, this process is done

for A ∪B and then (A ∪B) ∪ C.

Discussion

Maximum Inscribed Sphere

Under repeated action of the MIS inversion, we find that every initial packing quickly

reaches a fixed point depending only on the initial packing fraction and initial polydispersity.

Figure 12a plots the asymptotic polydispersity against the asymptotic packing fraction. Each

curve shown corresponds to a different starting polydispersity, ranging from 0 to 0.2, in steps

of 0.05, with varied initial packing fraction from φ = 0 to φ = 2φJ represented by the color

scale. These fixed points form a continuous line in this phase space, demonstrating that packings

with similar initial properties to one another transform into fixed point packings with similar

asymptotic properties.

The presence of rattlers (particles which are unconstrained, even in a jammed system)

induces a small drift between the initial packings and fixed point packings, even at φJ . If we were

to apply this same transformation in higher dimensions where the presence of rattlers is greatly

diminished [23], we expect that the points would correspondingly drift even less.

By design, jammed packings at φJ are a fixed point under this repeated transformation.

We find that systems extending a significant distance below jamming are also fixed points.

Surprisingly, this extends down to a density consistent with our previously discovered φ∗ [8].

This is the point at which the distribution of MIS radii first becomes a delta function. The values

used for φ∗ are 0.615 and 0.427 in d = 3 and d = 4 respectively. However, we find that the

mean coordination number in dimension d jumps from d + 1 to 2d not at φ∗, but at φJ , which
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FIGURE 12. Asymptotic properties of the MIS inversion. a) Fixed points of the MIS Inversion
are represented by their polydispersity and their final packing fraction. Initial packings start
at polydispersities of 0 (closed circles), 0.05 (squares), 0.1 (x’s), 0.15 (open circles), and 0.2
(triangles). Points that remain fixed through the entire process lie on the dotted lines associated
with their starting polydispersity. Initial packing fraction is coded into the color. b) Asymptotic
mean number of contacts 〈Z〉 as a function of initial packing fraction for d = 3 (black), and d = 4
(green).
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simply indicates that the particles in this range are not jammed. The fact that systems between

φ∗ and φJ are fixed points of this transformation points conclusively to a symmetry that exists

only within this range: all non-rattler particles are exactly equal to the MIS of their Voronoi cells.

Systems that begin well above jamming get folded back to systems below jamming under

this transformation. This is because the MIS of a Voronoi cell for an overjammed particle is

always smaller than the particle itself due to the fact that overjammed particles are not fully

contained within their Voronoi cells [8]. These systems always appear to be folded onto the range

between φ∗ and φJ .

We observe a cluster of data points near an asymptotic φ = 0.53, with no fixed points

falling below this density. This packing fraction is strikingly similar to those obtained in frictional

random loose packing (RLP) experiments and simulations [2, 60]. Further, these fixed points all

have a mean coordination number of 〈Z〉 ' 4 in d = 3 (shown in figure 12b), as required for RLP.

By design, each MIS particle must have a minimum of Z = d + 1 non-cohemispheric contacts,

but this only sets a lower bound. Thus, these fixed point packings appear to be a frictionless

analog of RLP. In this way, MIS inversion offers an interesting, non-physical mechanism for

generating polydisperse RLP packings. It would be interesting to compare the same process in

higher dimensions to high dimensional simulations of RLP if they were to become available.

Real-Space Coarsening

For all of the parameters studied, our systems reach fixed points under appropriate

rescaling after only a few iterations of the coarsening procedure. However, the shape of the curve

of fixed points appears to be strongly dependent on the parameters in question. Figure 13a-d

shows the iterative application of the coarse graining to a range of systems between φ = 0 and

φ = 2φJ in d = 3 for the mean number of neighbors (a), the mean surface area (b), the standard

deviation over the mean of the volume (c), and the mean aspect ratio (d). Figure 13e-h shows just

the original order parameter and the fixed point after 6 iterations of the coarsening for d = 3 and

d = 4, showing similar behavior across dimension.

The mean number of neighbors (Figure 13 a,e) retains its shape most closely, but is highly

susceptible to noise, as each cell can only have an integer number of neighbors. The volume

graph (Figure 13 c,g) appears to be even more susceptible to noise, as the standard deviation

38



-0.04

0

0.04

0.08

0

2

4

6

8

-1 -0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

(ф - фJ )/ фJ

(A
R 

- A
R J )/

 A
R J

(V
 - 

V J )/
 V

J~
~

~
(S

A
 - 

SA
J )/

 S
A

J
(N

 - 
N

J )/
 N

J

-0.05

0

0.05

0.1

0.15

0

0.05

0.1

-0.04

0

0.04

0.08

0

2

4

6

8

-1 -0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

(ф - фJ )/ фJ

(A
R 

- A
R J )/

 A
R J

(V
 - 

V J )/
 V

J~
~

~
(S

A
 - 

SA
J )/

 S
A

J
(N

 - 
N

J )/
 N

J

a

b

c

d

e

f

g

h

FIGURE 13. Under the coarse graining scheme, the behavior of each parameter of the cells
reaches a curve of fixed points as a function of packing fraction. On the left, we have plotted
the initial parameter (black) and the first 6 coarse grainings (each corresponding to a lighter shade
of gray, with the 6th in red) in three dimensions for the mean number of neighbors (a), mean
surface area (b), standard deviation over the mean of volume (c) and aspect ratio (d). In each,
we scale by subtracting off and dividing by the order parameter at φJ in that iteration, such that
the jamming point is always at the origin. On the right (e-h), we have plotted only the original
(closed circles) and the 6th iteration (open circles) for d = 3 (black) and d = 4 (green).
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have plotted 3 system sizes in d = 3 at the 6th iteration of the coarsening (as done in figure 13h),
with system sizes of 4096 (red open circles), 8192 (blue triangles), and 65536 (black closed circles).

over the mean goes to zero upon even modest iterations of the process. It is the surface area

and the aspect ratio which show the strongest and most interesting behavior. The surface area

(Figure 13 b,f) appears to come into the transition linearly at first, but after the transformation,

the trend reverses itself and quickly reaches a fixed point that is almost a mirror of the original.

Interestingly, each packing fraction retains perfect memory of where it began before the iterations.

The same statement about memory could possibly be said for the neighbors if the graphs weren’t

so susceptible to noise.

The aspect ratio (Figure 13 d,g) gives us the strongest signature of the jamming transition

under repeated iterations of the coarse graining. We observe that at high iterations of the process

we get one value of the aspect ratio far below jamming and one value above jamming. There is

a cross-over region which may be related to the pre-jamming phase transition that occurs at φ∗,

as the halfway point seems to coincide with the numerical values used for φ∗. By examining this

behavior as a function of system size in figure 14 we can conclude that this extended cross-over

regime is not merely the finite size blunting of a step function. Indeed, there is very little change

at all between systems of 4096 particles and those of 65536.
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Conclusion

Each of these transforms provide a new perspective towards understanding jammed

systems. Through the MIS inversion, we have clarified the pre-jamming phase transition at

φ∗. Systems between φ∗ and φJ are fixed points of the inversion, meaning that they exhibit a

symmetry wherein the MIS is equal to the particle itself. This symmetry is interesting in that it

relates the real particles to the Voronoi network, which is a purely geometric construct. We posit

that the transition at φ∗ can only be seen when observing an order parameter that is influenced

both by the mechanical network of contacts as well as the geometric Voronoi cell. Thus, it is

perhaps not surprising that this pre-jamming transition is absent in purely mechanical or purely

geometric order parameters. It is interesting to note that the value of φ∗ is very close to the value

of the ideal glass transition in thermal hard spheres [61]. We are actively pursuing this line of

research.

The coarse graining reveals a different symmetry which could be useful in constructing

a renormalizable field theory for jamming. Both the surface area and the aspect ratio present

interesting features under coarse graining which preserve knowledge of the underlying packing

while other features are washed out. Somehow, the surface area retains perfect memory of

the underlying packing. Aspect ratio is particularly intriguing as it separates systems into

two clearly different classes, above and below the jamming transition. This is reminiscent of

the renormalization group’s delineation between relevant and irrelevant graphs. If this can be

translated into a rigorous renormalization group analysis, it would imply that either the surface

area, the aspect ratio, or both reveal symmetries that fundamentally differentiate a jammed

packing from an unjammed one.
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CHAPTER V

SUPPLEMENTARY MATERIAL FOR CHAPTER 2
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FIGURE 15. Scaled mean number of neighbors vs. scaled packing fraction for various packing
protocols. Solid lines represent Infinite Quench data and dashed lines represent Geometric Mean
search data. The same values for φJ , NJ , and k are used for collapse in each dimension. In
general it is not required that we use the same parameters, but we have done so to show how
strong the agreement is between the methods used to approach jamming. Shown are d= 3 (black),
4 (purple), 5 (blue), 6 (green), 7 (orange), 8 (red).

42



Dim φ∗ φJ below φJ above
3 0.6150 0.6372 0.6472
4 0.4270 0.4517 0.4636
5 0.2820 0.3031 0.3155
6 0.1792 0.1965 0.2066
7 0.1115 0.1238 0.1309
8 0.0672 0.0758 0.0809

TABLE 3. Table of values for φ∗, and φJ used in this manuscript. Note that there are a range of
values for the jamming transition dependent on method.
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FIGURE 16. Scaled mean number of neighbors vs. scaled packing fraction for various packing
protocols. Solid lines represent Infinite Quench data and dashed lines represent a simulated
annealing wherein each point represents a dilation from the previous data point followed by an
energy relaxation. The same values for φJ , NJ , and k are used for collapse in each dimension.
In general it is not required that we use the same parameters, but we have done so to show how
strong the agreement is between the methods used to approach jamming. Shown are d= 3 (black),
4 (purple), 5 (blue), 6 (green), 7 (orange), 8 (red).
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FIGURE 18. Width of the distribution of Maximum Inscribed Spheres calculated from the middle
15% (red) to 85% (black) of the distribution in steps of 10%. A width of 80% is used in the text.
Note that each definition corresponds to a slightly different φ∗, but that the general trend of φ∗

with dimension is robust. The packings analyzed are the same as seen in Figure 3b in the paper.
The packings above φJ are made using a Geometric Mean search and the packings from below are
made via Infinite Quench.
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CHAPTER VI

SUPPLEMENTARY MATERIAL FOR CHAPTER 3

In the main manuscript, we examine the effect of dimension on the geometric order

parameters associated with the Voronoi tesselation as we approach jamming. While the majority

of the work is done with monodisperse spheres, in d = 2 monodisperse disks spontaneously

crystalize. We thus use a 50:50 mixture of bidisperse disks with a 1:1.4 ratio of radii which are

known to exhibit jamming. In doing so, we observe that the scaling of the standard deviation of

the volume and the internal angle differs from the d = 3 − 5 case. It is not immediately clear

whether this is a dimensional effect, an effect of the bidispersity, or both. In this supplement,

we compare d = 3 systems of 16384 particles with a 50:50 mixture of 1:1.4 ratio of radii to the

monodisperse d = 3 cases presented in the manuscript. We still observe power law scaling in

all of the order parameters, with the possible exception of internal angle when approaching from

below. However, the power laws for each parameter are not consistent with the power laws for

monodisperse spheres. This seems to suggest that bidispersity and dimensional effects cannot be

decoupled.
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FIGURE 19. Plots of scaled order parameters vs. the scaled packing fraction. Closed circles
represent IQ data, x’s represent GM data (from below), and triangles represent ES data (from
above). Note that on this linear scale the GM and ES data is nearly all clustered right at φJ . The
parameters shown are (a) mean surface area, S, (b) standard deviation of volume divided by the
mean of the volume, Ṽ , (c) mean surface to volume ratio S/V (d−1)/d (d) mean aspect ratio, A,
and (e) mean aspect ratio angle cosθ. We plot data for d = 3 bidisperse spheres (smaller particles
light gray, larger particles dark gray, combined black) and d = 3 monodisperse spheres (green).
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FIGURE 20. Log-log plots of each scaled order parameter vs. the scaled packing fraction
approaching jamming from below (left) and above (right). Closed circles represent IQ data, x’s
represent GM data (from below), and triangles represent ES data (from above). The parameters
shown are (a,f) mean surface area, S, (b,g) standard deviation of volume divided by the mean of
the volume, Ṽ , (c,h) mean surface to volume ratio S/V (d−1)/d (d,i) mean aspect ratio, A, and (e,j)
mean aspect ratio angle cosθ. We plot data for d = 3 bidisperse spheres (smaller particles light
gray, larger particles dark gray, combined black) and d = 3 monodisperse spheres (green). The
slopes shown give the power laws for monodisperse spheres for comparison.
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CHAPTER VII

CONCLUSION

This work has established that geometry plays an important role in the jamming transition.

It has given a new set of tools with which to explore all of the familiar properties of a phase

transition. With these new tools, there are many questions that have been answered and many

more that are left for future work.

In chapter 2, I showed that there is a phase transition precisely coinciding with the

jamming transition in the mean number of neighbors of a particle’s Voronoi cell. This phase

transition is independent of preparation protocol within the parameters tested and shows power

law scaling. Most importantly, that power law shows the same behavior when approaching the

transition point from above and below. This was the first indication of a transition parameter that

could treat all of phase space equally.

In addition, chapter 2 introduced the concept of the maximum inscribed sphere of the

Voronoi cell, which shows a different behavior when approaching the transition point from above

and below. From below, there are two phase transitions: one at jamming and one significantly

below jamming. This pre-jamming phase transition happens when the distribution of radii of the

maximum inscribed spheres becomes a delta function. I explored this concept further in chapter

4, but the importance of this phase transition is that it gives a link between the geometry of

the Voronoi cells and the underlying particles. In the phase space between the two transitions,

all non-rattler particles are exactly equal to the maximum inscribed spheres of their Voronoi

cells, and thus there is a constraint on the phase space. This constraint manifests itself in a new

symmetry of the jamming phase space.

In chapter 3, I have shown that the phase transition explored in chapter 2 was not specific

to the mean number of neighbors. Indeed all of the shape parameters that I tested (barring

the maximum inscribed sphere) showed a similar phase transition at the jamming point. They

all show power law behavior that is independent of packing protocol within the parameters

tested. This indicates that the jamming transition is a change in the local environment of a

particle, as this is what the Voronoi cell shape encodes. It is interesting to note that none of

the shape parameters have a pre-jamming phase transition. It seems likely that this is because

49



the underlying particles don’t provide any constraints on the Voronoi cell’s surface area, volume,

aspect ratio, or number of neighbors. Without an added constraint, I would not expect an extra

transition, and so it is unsuprising that none is seen.

Furthermore, in chapter 3 I have shown that the Voronoi cell has an orientation

characterized by the aspect ratio, and the correlation of cell orientations as a function of

distance between particles, shows a signature of the jamming transition. This provides a natural

correlation length, which may prove useful when attempting to characterize the transition from a

field theory perspective.

In chapter 4, I introduced two transformations which were designed to explore hidden

symmetries of the jamming transition. I defined the maximum inscribed sphere inversion as

a transformation which keeps jammed systems fixed initially, and lets all other systems flow

to different fixed points. The symmetry associated with this transformation is one in which

jammed particles are equal to the maximum inscribed spheres of their Voronoi cells. Through

this transformation, the same pre-jamming transition discussed in chapter 2 is revealed. The real

space coarsening was designed to keep parameter curves fixed with respect to packing fraction.

Upon coarsening, I found that the aspect ratio and the surface area retained knowledge of the

underlying packing, and the curves remained fixed when using an appropriate rescaling. The

hope in doing this was to flesh out the symmetries that one would find in renormalizable fields

in a complete field theory. Namely, I wanted to find an order parameter which, upon coarse

graining, took one value above jamming and one value below jamming, which the aspect ratio

does. A field theory for the jamming transition, however, does not exist. The intent in creating

this transformation was to mimic renormalization and to see whether something interesting came

out of the process, and in that goal I was successful.

Because my work has taken an entirely new approach to understanding jammed systems,

it has opened up a vast field of possibilities for further research. Some of these will be explored

further within Eric Corwin’s lab, and some will be directly applicable to the work that I will

do with Lisa Manning at Syracuse University. It is quite fortunate that both are members of a

recently awarded Simons’ Foundation grant. The collaborative group of 13 professors who are

involved will work to unify the jamming and glass transitions into a full theory. Some of the work
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that I will suggest will further those aims, and other pieces will simply tie up loose ends that I

find important.

The most obvious extension for most of this work is to push towards higher dimmensional

results. While d = 5 and d = 8 are plenty high for many applications, there is much that can be

said if the infinite dimensional limit is known. It is in this limit that the glass transition has been

exactly mapped via the replica symmetry model by Zamponi, Parisi, and Charbonneau [1]. By

pushing the simulations to higher dimensions, the infinite dimensional limit can be extrapolated

more effectively. However, this is futile at a certain point. The simulation time and the calculation

time for all the quantities that I measure go at best exponentially and at worst factorially with

dimension. If an analytic solution were found for the values of the parameters at the transition

and their power laws as a function of dimension, one could take the appropriate limits and have

grounds for comparison with the replica symmetry model. This work has already begun by

comparing the scaling of weak contact forces in my systems with the exact infinite dimensional

result [41].

Along these same lines, I think it is worth pursuing the aspect ratio of the Voronoi cell as

a potentially renormalizable field with which one can create a field theory for jamming. While

I have developed a coarse graining procedure which may be useful, and I have demonstrated

a correlation function involving those components, there is much work to be done. First, the

correlation function should be checked to see if it changes upon renormalization. This will

require larger system sizes, which my analysis can easily handle. Next, it is important to find

an approximate functional form that shows how the aspect ratio changes upon coarse graining. If

a form were found, the appropriate limits could be taken to see how the arbitrarily large systems

behave. It will then be important to find a functional which is analogous to an energy which will

be minimized. This is not a trivial task, but it is the key in transforming my work into a field

theory.

Another direction that should be taken with this work is the application to hard sphere

glasses in finite dimensions. It is trivial to calculate all of the geometric quantities that I have

described at any snapshot of a thermal system. However, this hardly captures the complexity that

a hard sphere glass exhibits. It would be helpful to develop the algorithms to calculate first order

fluctuations in the geometric properties of the Voronoi cells with small movements of particles. It
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would then be useful to analyze systems where temperature is a small parameter so that one could

perhaps find interesting relations between temperature and the average distribution width of each

parameter.

A new direction that I have begun to probe is the phase space relations between soft

spheres and hard spheres, as they share the same configuration space below and at jamming.

One trajectory is to map out the local phase space environment of a system. With a phase

space dimensionality of N ∗ d (where N is the number of particles and d is the dimension) this

is no easy task. There are two manageable paths to take. One is to take a step in a random

phase space directions, which will in general always correspond to a higher energy. The energy

can then be reminimized to see if the system ends up in the same phase space configuration or

whether it relaxes into a new configuration. Repeating this process for different step sizes will give

the average well depth. It could also indicate whether the phase space is fractal, which will be

instrumental in determining whether there is a Gardner transition before or at jamming [58]. The

other useful approach is to choose an eigendirection in phase space, which correspond to global

soft modes. Mapping out the length of the allowable steps in these eigendirections will again give

access to the fractality of the phase space.

There are other applications of this work in cell networks, which is what I will be

exploring in my post doctoral position at Syracuse. Specifically, there is a glass transition in two

dimensional biological cells that can be well explained by the self-propelled Voronoi (SPV) model.

The SPV model correctly predicts that the glass transition happens when the dimensionless

surface to volume ratio of the cells reaches a value of 3.81 [62], which is consistent with the value

I have measured for bidisperse particles at jamming [9]. I am currently collaborating with the

Manning group to see if the aspect ratio and the standard deviation of the volume also match up

between the two transitions. Their group is also investigating three dimensional cells using the

same model, and preliminary data shows that the dimensionless surface to volume ratio matches

between the two transitions. My first task at Syracuse will be to investigate whether there is any

theoretical basis for the lining up of these two transitions.

Finally, I would like to investigate the application of this work to experimental systems. As

with simulations, there are two avenues to consider: hard spheres and soft colloids. Soft colloids

are advantageous in that there are a wide range of packing fractions available above and below
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jamming [63], but spheres above jamming can have significant deformations which may make

the application of my results less concrete. Hard sphere systems present their own problems, as

they are only available below the phase transition. And while simulations can provide arbitrary

precision, power law scaling in experiments will be difficult to confirm, as the precision in particle

centers and radii is always quite limited [63]. It would be beneficial for my lab to seek out

experimentalists to share data with, as many of these experiments require great expertise. In

my lab, we once had a summer project led by Ben Strickland who attempted to use sedimenting

spheres in a suspension to obtain a variety of packing fractions as a function of height. However,

the difficulties in obtaining high precision results should not be a deterrent to this line of work.

The notion that the physics governing this transition depends on highly tuned experimental

parameters seems fundamentally flawed. If it were true, then the exercise that you began with,

a walk on the beach, could have wildly varying and unfortunate consequences depending on where

you stepped.
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