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DISSERTATION ABSTRACT

Chad Thomas Fulton

Doctor of Philosophy

Department of Economics

June 2016

Title: Sectoral Prices and Price-setting

This dissertation explores the price-setting behavior of firms both

theoretically and empirically. The first portion constructs a theoretical model of

price-setting in which firms are rationally inattentive: they cannot perfectly attend

to all sources of uncertainty. By accommodating multiple sources of uncertainty

within the model, it is possible to reasonably calibrate key parameters of the

model. This bolsters the case for rational inattention as a microfounded alternative

to ad-hoc mechanisms in order to generate price-stickiness and it not only allows

for multiple sectors but demonstrates why their introduction is important.

The second portion contributes to the empirical literature exploring

disaggregated price series. Taking into account the lessons from the theoretical

model, a combination of dynamic factor and unobserved component models are

applied to explicitly model heterogenous dynamic processes for sectoral prices. The

key finding is that models with enforced homogenous dynamics are outperformed

under a variety of criteria. More importantly, models with enforced homogenous

dynamics can generate erroneous conclusions with respect to the speed of price

responses to aggregate and idiosyncratic shocks.
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A large body of recent empirical work on price-setting, including the empirical

exercise described above, estimates a dynamic factor model using a relatively

simple and partially non-parametric method. This method is valid in large

samples, but alternative parametric methods exist that may be more efficient in

small samples. The final portion of this dissertation compares methods for the

estimation of dynamic factor models, including non-parametric, classical, and

Bayesian techniques. The results of a Monte Carlo experiment validate the use

of the partially non-parametric method, but find that the Bayesian approach may

provide weakly superior results.
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CHAPTER I

INTRODUCTION

Recently empirical research has emphasized that theoretical models of price-

setting must distinguish between the effects of aggregate and sector-level shocks,

and moreover that they must support heterogeneous behavior across sectors. The

second chapter of this dissertation develops a model that can deliver these features

by extending the rational inattention price-setting approach pioneered by Makowiak

and Wiederholt (2009) to a multisector setting. Our analytic solution to a special

case of the rational inattention problem allows us to detail attention allocation

mechanisms and explore implications. More generally, we find that the multisector

setting preserves the desirable characteristic that firms respond differently to

different types of shocks, allows for heterogeneous responses, and reduces the need

for extreme calibration of key parameters.

The third chapter of this dissertation examines the reduced form dynamics

of disaggregated inflation series. We present a unified framework for understanding

these dynamics under the heading of unobserved components models. We consider

a wide range of candidate models to establish stylized facts, finding that inflation

series have sufficiently heterogeneous dynamics that this wide range of models is

necessary to adequately describe them. Equipped with the estimated dynamics,

we find no evidence of pervasive measurement error that substantially distorts

estimated stochastic characteristics. Finally, we buttress the proposition that

sector-level prices respond quickly to idiosyncratic shocks while responding slowly

to aggregate shocks, a point that was a crucial motivating factor for the preceding

chapter but had been recently called into question.
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The fourth chapter explores the finite-sample performance of dynamic factor

models, considering two estimators not previously examined in this context -

maximum likelihood using quasi-Netwon optimization and Bayesian Gibbs sampling

- and constructing a more general Monte Carlo setup than has previously been

used so as to explore performance under a wider range of empirically relevant

data generating processes. The Monte Carlo analysis suggests the Gibbs sampling

procedure is the weakly superior method but confirms previous studies that find

generally good performance across estimators as the sample size becomes large;

this holds even in the general data generating processes we consider here. We find

that a simple two-step estimator used in the third chapter, above, is sufficient to

adequately estimate factors are provide forecasts, providing a justification for using

it rather than a more complicated estimators. In addition to evaluting estimators

based on summary statistics, we look at the distribution across Monte Carlo

replications to examine poor performance of maximum likelihood estimation in

estimating factors with complex dynamics. If factor estimates are the objects of

interest, our results support the common practice of removing outliers, but we find

it to be detrimental to forecasting.
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CHAPTER II

OPTIMAL PRICES IN MULTISECTOR MODELS UNDER RATIONAL

INATTENTION

Introduction

A large branch of macroeconomic literature is concerned with the apparent

non-neutrality of monetary policy in the short-run, addressing the question of

why nominal changes have real effects.1 This literature stretches back to Keynes

who suggested wage and price stickiness as a mechanism by which an economy

might fail to fully and immediately adjust to nominal changes - and, thus, why

an economy might operate out-of-equilibrium. Speaking somewhat loosely, if

not all prices and wages adjust each period - whether due to existing contracts,

menu costs, informational costs, etc. - then, for example, it may be in a recession

that wages are “stuck” too high relative to their “natural” level resulting in

unemployment “stuck” too high until such time passes that wages adjust, at which

point the economy returns to long-run equilibrium.

This paper augments a typical general equilibrium model with

monopolistically competitive intermediate goods firms by considering a multisector

extension in which prices are fully flexible but firms face uncertainty about

aggregate variables and real marginal costs. Following Makowiak and Wiederholt

(2009), this uncertainty is modeled with rationally inattentive firms and results in a

delay in the response of prices to monetary policy shocks. The baseline multisector

1 This question can equivalently be put in terms of aggregate demand (why can governments
manipulate aggregate demand in order to produce short-run economic effects?), aggregate supply
(why is there an upward sloping short-run aggregate supply curve?), or the Phillips curve (why is
there a short-run trade-off between inflation and output?).
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model and an extension with relative demand shocks and intermediate production

inputs provide additional targets for the attention of firms. Compared to Makowiak

and Wiederholt (2009), we are able to relax the need for extreme calibration of

volatilities in order to achieve a reasonable delay.

Contemporary sticky price general equilibrium models often introduce such

stickiness by assuming a la Calvo (1983) that monopolistically competitive firms

may only adjust their price each period with some constant exogenous probability

related to the length of time since the adjustment (more generally, in these so-

called “time-dependent” models the probability of adjustment may be related

to the length of time since the previous adjustment). Other mechanisms include

“state-dependent” models in which the probability that a firm may adjust their

price depends also on the state of the economy (see for example Dotsey et al.,

1999); the introduction of fixed costs associated with price-setting (see Golosov

and Lucas Jr., 2007 for a recent example of this “menu-cost” approach); or the

assumption that prices are fixed due to contracts (see for example Chari et al.,

2000).

There exists another branch of the literature, however, that addresses the

issue of short-run monetary non-neutralities by focusing instead on informational

limitations of agents, so that the impediment to full adjustment is not a restriction

on the flexibility to perform such changes, but rather a restriction on the

information that would prompt change.2 This idea was famously described by

Phelps (1968) and Friedman (1968) and soon after was formalized by Lucas

(1972) in the eponymous Lucas Islands model, in which agents face a signal-

extraction problem to distinguish aggregate from idiosyncratic conditions. More

2 See Mankiw and Reis (2010) for a summary of the recent literature.
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recent incarnations of this idea can be found in Mankiw and Reis (2002), in which

agents have a Calvo-like probability of receiving new information each period

(the “sticky information” approach); Woodford (2001), in which agents face a

dynamic signal-extraction problem; Angeletos and La’O (2010), in which the

focus is on the heterogeneity of information imperfections across agents takes

pride of place; and Makowiak and Wiederholt (2009), in which, following Sims

(2003) in a a so-called “rational inattention” model, agents must split a limited

amount of attention between observing aggregate and idiosyncratic conditions. It is

within this literature that the current paper falls, following the rational inattention

approach.

While many of the above mechanisms rely to at least some degree on an ad

hoc imposition of sub-optimal behavior, in the seminal work on rational inattention

Sims (2003) lays out a framework for microfoundations of imperfect information.

While agents are still fully optimizing, in Sims’ model they face an information-

processing capacity constraint. Recognizing that they cannot pay attention to

everything - that their information must necessarily be imperfect - they optimally

use what capacity they do have.

We pursue this approach in this paper. In the perfect-information

case firms set prices as a markup over nominal marginal costs, a step that

requires knowledge of the contemporaneous aggregate price level, one’s own

contemporaneous productivity shock, and, due to the effect on aggregate demand,

the contemporaneous shocks to every other firm. In the imperfect-information case,

firms’ uncertainty is formalized in terms of an information-processing capacity

constraint, requiring firms to optimally divide their attention between aggregate

and idiosyncratic shocks. In the special case of Gaussian white noise shocks, we
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derive analytic results on the optimal allocation of attention. More generally, the

equilibrium behavior allows heterogeneous behavior related to firm- and sector-level

characteristics.

This line of research is motivated by recent empirical work - in particular Bils

and Klenow (2004), Golosov and Lucas Jr. (2007), Klenow and Kryvtsov (2008),

and Boivin et al. (2009) - that suggests first that the results from traditional

models of inducing monetary non-neutralities are not consistent with all observed

inflation dynamics, and second that because disaggregated price series display

markedly different inflation dynamics than do aggregated series, a successful

model must begin work at the level of individual sectors. The former suggestion

motivates the use of rational inattention as the key deviation allowing monetary

non-neutralities - a suggestion that was also made in Sims’ original work and

has been already been followed up on, in particular in Makowiak and Wiederholt

(2009). The latter implies that special attention must be paid to modeling sectors

themselves; pursing this is one of the contributions of this paper.

Finally, this paper is especially related to three recent theoretical models.

Woodford (2001), key in the recent revival of imperfect information models,

describes a one-sector model in which firms face a dynamic signal-extraction

problem. Whereas it motivates information imperfections by appealing to

rational inattention, this paper (as does Makowiak and Wiederholt, 2009, below)

derives the imperfections from optimizing behavior. Angeletos and La’O (2010)

use a multisector real business cycle model to emphasize that heterogeneity of

information can generate business cycles. The current paper’s multisector approach

and its focus on sectoral heterogeneity in particular follows from this realization.

Finally, this paper can be thought of most directly as an extension of Makowiak
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and Wiederholt (2009) who present a one-sector rational inattention model and

derive conditions for optimal allocation in the cases of Gaussian white-noise and

stationary shocks. In the stationary case they describe the implications for inflation

dynamics but are forced to use computational techniques. A one-sector special case

of the current paper’s primary result reduces to the model found in section IV of

their work.

The remainder of this paper is structured as follows. In section 2, the

literature is reviewed in some detail. Section 3 introduces information theory and

details some useful results. Section 4 presents the model, section 5 the equilibrium

conditions, and section 6 the results. Section 7 concludes.

Related Literature

With the threefold goal of (1) positioning the current paper along the arc

of the existing literature, (2) explaining the relationship between this model

and closely related models, and (3) describing relevant features of the data that

inform modeling choices, this section proceeds by briefly describing the imperfect

information literature, presenting related empirical research, and introducing recent

theoretical models against which this paper’s model will be contrasted.

Lucas (1972, 1973)

Robert Lucas, Jr. laid out the first formal models with imperfect information

leading to monetary non-neutrality using geographically separated islands as the

device preventing perfect information. Agents on each island receive signals about

unknown variables and must solve a (static) signal extraction problem each period

to distinguish idiosyncratic from aggregate conditions, with the key result that

individuals’ misperceptions of movements in nominal price for movements in real
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price can allow monetary policy to affect real variables. In particular, if firms

(individuals in the model) mistake a purely nominal increase in the price level

for an increase in their real price they will increase employment. While these

simple models have been superseded, the insight that individuals’ optimizing

behavior depends on aggregate variables that may be unknown permeates all of

the subsequent imperfect information literature, and will be a central focus in the

model presented in the current paper.

Despite a high level of subsequent interest in imperfect information models,

the literature largely died out by the early 1990s due especially to several critiques

that could not at the time be overcome. The first was the difficulty of squaring

the model with data - for example, the model required all information to become

available after one period, implying that effects of monetary policy would not be

more persistent than that delay. However, “periods” long enough to match the

observed persistence of monetary policy effects implied an implausibly long delay

before agents were made aware of that policy. Second, technical difficulties arose in

modeling higher order expectations (see Townsend, 1983).

Strategic effects between individuals, a feature not highlighted in Lucas’

models, have since become important and are considered in more recent imperfect

information models as well as in models with other mechanisms inducing stickiness;

for example, the implications of pricing decisions as strategic substitutes or as

strategic complements are important to New Keynesian models (see Woodford,

2003 sections 3.1.3 - 3.1.4). Strategic considerations are similarly important in

Angeletos and La’O (2010), described below, and will aid interpreting the current

paper’s results.
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Morris and Shin (2002)

Stephen Morris and Hyun Song Shin (2002) were instrumental in restarting

the discussion of imperfect information models, demonstrating welfare implications

of imperfect and heterogeneous information in the presence of strategic

complementarities and drawing out the link between higher order expectations

and strategic behavior. In their model, agents receive public and private signals

about unknown variables; one important result is that increasing precision of public

signals may actually reduce welfare. While they do not focus specifically on pricing

decisions, they show that Lucas’ model is equivalent to the one they consider.

Their intuition and solution techniques carry over to a wider range of modeling

approaches, including the multisector model in Angeletos and La’O (2010) and the

current paper.

Sims (2003)

Chris Sims (2003) introduced rational inattention, a modeling paradigm in

which rational optimizing agents could fail to take into account even freely available

information, thus providing microfoundations for information imperfections.3 His

suggestion provides a response to one critique of the Lucas model: if agents do not

pay attention to monetary policy, it does not matter how quickly the information

is made available. The technical component of these models introduces information

theory to economics, a topic that is described below in some detail (see Information

Theory).

Notice that many of the papers described here use “signals” received by

agents as the technical device encoding imperfect information. Sims shows that

3 For more on modeling rational inattention, see Sims (1998), Sims (2005), and Sims (2010).
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in a special case - a linear quadratic optimization problem along with Gaussian

stochastic processes - rational inattention can lead to results that are identical to

simply assuming agents receive noisy signals, but the rational inattention approach

provides a framework for the optimal selection of signals by agents and shows how

the noise varies systematically with underlying model parameters.

The central contribution of the current paper is the solution of a rational

inattention problem by intermediate goods firms in the presence of both

idiosyncratic and aggregate shocks.

Woodford (2001)

A paper prepared by Michael Woodford for a conference commemorating

Edmund Phelps was similarly important in the revival of the imperfect information

literature. It extended Lucas’ model to one in which information does not become

available after a one period delay, so that individuals face a dynamic signal

extraction problem. Agents are also less informed than in Lucas’ model: not only

are they unaware of aggregate conditions, they are also unaware of other agents’

expectations of aggregate conditions (and their expectations of expectations of

...). Woodford shows in a one-sector model that results hinge on an infinite sum of

higher order expectations and uses the Kalman filter to solve the (dynamic) signal

extraction problem. The key result, driven largely by sluggishness in the response

of higher-order expectations, is that the real effects of monetary policy can persist

for an arbitrary number of periods.

In solving the model, the assumption is made that individuals are given

signals about aggregate quantities. To justify it, Woodford briefly refers to

Sims (2003) but does not explore the rational inattention problem. Pursuit of

microfoundations for the optimal selection of signals by agents has been an area

10



of subsequent research; one example is Makowiak and Wiederholt (2009) who solve

the rational inattention optimal price problem for a one-sector model comparable

to Woodford’s. Their paper is described in detail below, and the current paper is a

partial extension of their results to a multisector setting.

Angeletos and La’O (2010)

While imperfect information has traditionally been an amplification

mechanism for monetary policy, Angeletos and La’O (2010) consider its ability

to induce business cycles in a purely real setting. They develop a multisector

model in which islands provide boundaries to information dispersion and in which

intermediate goods firms set quantities (rather than prices, as has been the case

above). They show that it is the heterogeneity of information across the islands

rather than the magnitude of imperfection that drives their results.

They find that dispersed (and heterogeneous) information can lead to

fluctuations and inertia in macroeconomic variables and that the generated

fluctuations match qualitative facts about business cycles that other imperfect

information models cannot (although they do not pursue any quantitative

investigation). Furthermore, they emphasize that the model can generate these

fluctuations even when individuals are nearly perfectly informed, so long as

information is dispersed.

Strategic complementarities (although not those of the New Keynesian type,

as they point out) induced by “trade linkages” (the between-island elasticity

of substitution) are important in understanding the interdependence of firms’

decisions and are crucial to their results. In particular, it is only when firms’

decisions are complementary (goods across islands are not perfect substitutes) that

imperfect information has real effects.

11



Their paper provides both the theoretical motivation and basic model setup

for the current paper, although here we return to the consideration of price-

setting firms. Their emphasis on the importance of modeling the interactions of

heterogeneous agents in the presence of imperfect information provides an impetus

for the extensions of Makowiak and Wiederholt (2009) that this paper considers

(this point discussed at greater length below).

Mackowiak and Wiederholt (2009)

Bartosz Mackowiak and Mirko Wiederholt (2009) (hereafter MW) consider

optimal price-setting behavior of rationally inattentive firms in the face of

idiosyncratic and aggregate shocks, finding that for certain calibrations (in which

idiosyncratic shocks are an order of magnitude more volatile than aggregate shocks)

the real effects of monetary policy can persist for an arbitrary number of periods,

a result that hinges on agents choosing not to pay much attention to monetary

policy.

They first consider a special case of the model in which stochastic processes

are Gaussian white noise and in which case an analytical result may be found.

Although this case does not induce persistence in the model (since all shocks are

purely transitory), it draws out the intuition of rational inattention and shows

how the firms’ attention allocation decision depends on model parameters. One

interesting point involves strategic complementarities: strategic complementarities

in price setting imply strategic complementarities in information acquisition. It is

this portion of their paper that the current paper extends to a multisector setting.

Second, they consider more realistic stochastic processes for shocks; this

sufficiently complicates results that computational techniques must be used to

solve the information allocation problem, and show that their model can generate
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real effects of monetary policy and explain why firms might respond quickly to

idiosyncratic shocks but slowly to aggregate shocks. In order to do this, their model

requires calibrating the volatility of idiosyncratic shocks to be at least an order of

magnitude larger than the volatility of aggregate shocks. While the data suggests

that idiosyncratic shocks are more volatile than aggregate shocks, it does not

support this degree of difference (see the discussion of the related empirical work,

below, for details). One of the contributions of this paper is relaxing the differential

in volatility required to achieve the appropriate behavior.

A more complete discussion of the contributions of the current paper vis a vis

MW follows a brief summary of Makowiak et al. (2009), below.

Boivin et al. (2009)

Jean Boivin et al. (2009) use a factor augmented vector autoregression

(FAVAR) approach to estimate separately the effects of aggregate and idiosyncratic

disturbances on price-setting behavior, finding that prices are flexible with

respect to idiosyncratic shocks but sticky with respect to aggregate (in particular

monetary) shocks, a feature of the data that they suggest is not consistent with

many contemporary stickiness-inducing mechanisms (for example they suggest that

the Calvo mechanism cannot explain the flexibility with respect to idiosyncratic

disturbances). They lay out seven stylized facts, all of which provide a rich research

agenda with respect to the theoretical modeling of imperfect information, and two

of which may justify modeling decisions in this paper.

First, their primary result is the importance of distinguishing between

idiosyncratic and aggregate components of price change; this is of central

consideration in the rational inattention approach to modeling optimal pricing

decisions. Note that this result is not specific to Boivin et al. (2009) but is also
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borne out in related empirical efforts.4 Second, they suggest that idiosyncratic

shocks driving price changes are supply shocks at the sectoral level, providing

support for the approach in the current paper for integrating idiosyncratic shocks

(as opposed to introducing them as, for example, demand shocks).

Their other facts have implications for extensions of the current paper

and will be of particular importance when introducing persistence in shocks.

Several are suggestive of interesting extensions (for example, including a further

integration of the effects of market power, see below), while several others appear

to present challenges to the current approach. For example, they suggest that the

reaction to all types of shocks is faster in sectors with more volatile idiosyncratic

shocks, whereas the results of MW specifically suggest that increased volatility in

idiosyncratic shocks reduces the reaction to aggregate shocks.

Finally, the FAVAR approach allows them to estimate the relative volatilities

of the aggregate and idiosyncratic components. They find that “while the mean

volatility of the common component of inflation lies at 0.33 percent, the volatility

of the sector-specific component is more than three times as large”. While this

differential is not enough to generate the appropriate behavior in the single-sector

model of MW, it can be enough in the multisector model presented here. Thus

our model insulates the rational inattention approach from criticism that extreme

calibrations are required.

Mackowiak et al. (2009)

Mackowiak et al. (2009) (hereafter MMW) consider a simple multisector

extension to their model in MW as part of an effort to compare the ability of

4 See in particular Bils and Klenow (2004) and Klenow and Kryvtsov (2008) for supporting
empirical evidence.
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several mechanisms for stickiness to match empirical results. The mechanisms they

consider including the Calvo model, sticky information, menu costs, and rational

inattention. The stylized facts they attempt to match are in the same vein as those

described by Boivin et al. (2009), and they find that the rational inattention model

is best able to fit them. There are several key points that distinguish the approach

of MW and MMW from that of the current paper.

In both papers, Mackowiak et al. consider the tradeoff firms face between

paying attention to aggregate conditions or idiosyncratic conditions, where

idiosyncratic conditions refers specifically to the firm’s own productivity shock.

Productivity shocks to other firms either net to zero in aggregate, as in MW, or

are simply grouped with other aggregate shocks (for example monetary policy

incorporated via aggregate demand shocks), as in MWW. This leads to simpler

optimization problems as firms only spread their attention between two signals and

still distinguishes nominal (monetary policy) from real (productivity) shocks.

In contrast, the current paper considers firms’ attention problems as between

all shocks separately; this is desirable for several reasons. First, it embraces the

emphasis in Angeletos and La’O (2010) of the importance of considering how

interactions of heterogeneous firms with dispersed information alone can generate

real effects; they note that “even if one is ultimately interested in a monetary

model, understanding the positive and normative properties of its underlying real

backbone is an essential first step”.

Second, this paper is meant to provide a baseline model for considering

more complicated models of firm interactions and allocation problems, and for

introducing firm-level heterogeneity in pricing decisions. For example, it would

make sense that firms are more easily able to pay attention to shocks of more

15



closely related sectors. Integrating this requires a model like that of the current

paper. Another motivating example can be found in the stylized facts of Boivin

et al. (2009), who find that the speed of reaction to monetary policy shocks is

related to the degree of monopoly power enjoyed by firms, an extension that will

require attention to the underlying heterogeneity of firms’ attention allocation

problems.

De Graeve and Walentin (2014)

Two stylized facts derived in both Boivin et al. (2009) and Makowiak

et al. (2009) are that aggregate shocks display substantial persistence but are

characterized by low volatility, and that idiosyncratic shocks have low persistence

but high volatility. It is partially these facts that validate the rational inattention

approach. More recently, De Graeve and Walentin (2014) suggests that if the

effects of measurement error are properly accounted for, these stylized facts may be

overturned. In particular, they suggest that idiosyncratic shocks may be persistent

and have low volatility, potentially presenting a problem for the rational inattention

approach. The multisector model presented here allows the rational inattention

approach to respond.

First, the authors note that their estimation approach does not allow them to

distinguish between measurement error and additional structural shocks, but they

argue that the rational inattention model in MW can not obviously account for the

required additional shocks. By contrast, the multisector model developed below

can easily accomodate the required additional shocks. Chapter 2 of this prospectus

presents evidence that supports the features they identify as measurement error are

more likely structural shocks affecting certain sectors.
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Second, as discussed above, the multisector model reduces the volatility

differential required by the rational inattention approach. Thus even if

measurement error is distorting the stylized facts as they argue, rational inattention

may still be used to explain observed price dynamics.

Information Theory

Rational inattention borrows from the theory of information and

communication a mathematical model of information processing, and applies

it to economic agents.5 A telegraph wire serves as a channel through which a

message passes from source as input to recipient as output. That it can only

transmit a finite message in any given time interval is described as a finite Shannon

“capacity”.6 In our model, an agent serves as a channel through which observations

about the economy are translated into economic actions; the inability of the agent

to process all information is modeled in terms of a finite Shannon capacity.

The basic quantity in information theory is entropy, a measure of the

uncertainty associated with a random variable. Letting X denote a random variable

with probability mass function or density P , entropy is defined as

H(X) = −E[log(P (X))] Entropy

Notice that entropy is defined over probabilities and therefore must be positive

and that is zero exactly when the distribution of X is degenerate. The units in

which entropy is expressed depend on the base of the logarithm; typically “bits”

5 See Sims (2003) or Sims (2010) for an introduction to rational inattention in economics, or
Cover and Thomas (2006) for a general book length treatment of information theory. This section
is largely drawn from chapters 2 and 9 of that work.

6 The seminal work in information theory is Shannon (1948).
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are used, corresponding to log base 2. Two closely related quantities are joint

entropy and conditional entropy which measure, respectively, the uncertainty of

two random variables together and the uncertainty of a random variable conditional

on the observation of another random variable. Letting S denote a second random

variable, these quantities and their connection (called the “chain rule”) are defined

H(X,S) = −E[log(P (X,S))] Joint entropy

H(X|S) = −E[log(P (X|S))] Conditional entropy

H(X,S) = H(X) +H(S|X) Chain rule

In the case that the two random variables are independent, the conditional entropy

is identical to the (unconditional) entropy and so the joint entropy is the sum of

the individual entropies.

Using these two definitions, we can define a quantity that will be of central

interest in rational inattention, mutual information. The mutual information

between two random variables X and S is the reduction in uncertainty about

X given the observation of S; in that way it measures the information content

contained in one variable about another. It is defined as

I(X;S) = H(X)−H(X|S) Mutual information

In the case that the variables are independent so that is no reduction in

uncertainty, then I(X;S) = H(X) − H(X) = 0. Supposing that X and S are

finite n-dimensional independent vectors such that Xi and Sj are independent if
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and only if i 6= j, then

I(X;S) =
n∑
i=1

I(Xi;Si)

This result is important because in our model we will consider attention allocation

problems in which X and S will be vectors and our assumptions will make them

internally independent though mutually dependent. Typically we will think of

X as fundamentals of interest (for example a stochastic shock) and S as signals

received by agents that provides some information about those fundamentals.

In the rational inattention framework, agents optimally choose the signals, but

must do so subject to an information constraint. That constraint is formalized as

a maximum level of mutual information between the fundamental and the signal:

I(X;S) ≤ κ. Since the fundamental is a vector, in addition to respecting the

overall information-capacity constraint the agents must tradeoff between paying

close attention to one variable or to another.

Notice that entropy and mutual information are scalar valued regardless of

the dimension of the random variables, so that all of the data regarding uncertainty

and information is expressed in a single number. It is this property that leads to

the simplicity of the capacity constraint, which can be introduced into the model

with only a single new free parameter, κ.

Despite the ease of modeling the constraint, calibrating the value of κ is

difficult for two reasons. First, it is measured in bits, where 1 bit is the level of

uncertainty related to a fair coin toss. This is a difficult to interpret quantity in

the context of real-world economic decisions, and is complicated further by the

simplification inherent to an economic model. Second, even supposing that the

bit-value of actual information-processing capacity could be assessed, the model
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only captures one aspect of the decision problems facing a firm, so it is unclear

what proportion of their attention is specifically devoted to the stochastic elements

represented in the model.

Sims (2010) suggests that when a price is assigned to additional information

capacity so that the amount is variable, agents choose a relatively small amount. In

practice, these models are often calibrated such that agents set prices that are close

to the optimum.

Model

There are a continuum of identical households h ∈ H with associated measure

µH , each of which consumes a continuum of differentiated goods j ∈ J with

associated measure µJ . Consumers have nested constant elasticity of substitution

(CES) preferences that induce a partition on the goods (alternatively firms) J

into sectors {J1, . . . , JI}, not necessarily of equal size. For convenience and so that

aggregates can be identified with averages assume the total measure of households

and goods is unity, so that µH(H) = µJ(J) ≡ 1. To ease the remaining notation

define µi ≡ µJ(Ji) as the size (measure) of sector i in the space of all firms.7

Sectors will be typically indexed by i; l will also be used when multiple sector-level

indices are required.8

7 In general a subscript j will refer to a firm j ∈ J , whereas the subscript i will denote a sector
Ji ⊆ J . Since the sectors partition the set of goods, it is implicit that there is exactly one sector i
corresponding to each firm j.

8 The convention is that when j and i appear in the same equation, i refers to the industry
such that j ∈ Ji. When a sector-level variable not referring to the sector of firm j is present, it
will be indexed by l.
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In each period households consume, supply labor to each firm j9, buy bonds,

and receive profits based on their ownership in firms. For simplicity, each household

owns an equal share of every firm. Firms set their prices each period to maximize

the expected value to households of profits.

Households

Household utility is a discounted stream of expected utility, additively

separable in time

U ({Chjt, nhjt}j∈J,t≥0) = E0

∞∑
t=0

βt
[
U ({Chjt}j∈J)−

∫
J

v(nhjt)dj

]

The nested constant elasticity of supply (CES) preferences yield two Dixit-Stiglitz

aggregators. The first level of aggregation describes “sector-level” goods10

Chit =

[∫
Ji

µr−1
i Cr

hjtdj

] 1
r

where the associated within-sector elasticity of substitution is η = 1
1−r . As usual,

assume that goods are gross substitutes so that η ∈ [1,∞) and so r ∈ [0, 1). The

sector-level goods are then further aggregated into a “consumption good”

Cht =

[
I∑
i=1

µ1−p
i Cp

hit

] 1
p

where the associated between-sector elasticity of substitution is ρ = 1
1−p . Again

assuming that goods are gross substitutes yields ρ ∈ [1,∞) and p ∈ [0, 1). η and

9 This is merely for convenience. An equivalent setup has each household specializing in only
one type of labor, see for example Woodford (2003) section 3.1.

10 Notice that in the integral there appear both the indices i and j. Thus the i refers to the
unique sector such that j ∈ Ji.
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ρ are not constrained otherwise - for example they are not necessarily the same.

Using this same basic setup, Angeletos and La’O (2010) describe the within-sector

elasticity as the degree of market power of intermediate goods and the between-

sector elasticity as a measure of trade linkages and strategic complementarities.

From this it is clear that the sizes of the sectors µi are defined entirely by

consumers’ relative demand weights. However, as in Woodford (2003) section

3.2.5, these weights can be reinterpreted as the product of a structural sector size

parameter together with a relative demand weight.

Then given these aggregates, the households’ optimization problems can be

written

max
{Cht}t≥0{nhjt}j∈J,t≥0

= E0

∞∑
t=0

βt
[
u(Cht)−

∫
J

v(nhjt)dj

]

where u is the instantaneous utility of consumption defined in terms of the

consumption good and v(nhjt) is the instantaneous disutility of labor. These are

assumed to have the usual constant relative risk aversion forms

u(C) =
C1−σ

1− σ
and v(n) =

n1+ε

1 + ε
.

Each period, the households’ choices must satisfy the budget constraint

PtCht +Bht+1 ≤
∫
J

θhjπjtdj +

∫
J

Wjtnhjtdj +RtBht

where Cht is the consumption good, Pt is a price index corresponding to the cost-

minimizing way to purchase one unit of the consumption good, Bt+1 is a risk-

free bond purchased in period t that yields income in period t + 1 subject to the
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gross nominal risk free rate of return Rt+1, θhj is the share of firm j owned by the

household, πjt denotes profits from firm j, Wjt is the wage paid by firm j, and nhjt

is the labor provided by household h to firm j.

Firms

All intermediate goods firms produce differentiated output using a constant

returns to scale technology with labor (denoted njt) as the sole input and a sector-

specific productivity shock11

Yjt = ϕitnjt

For the moment we will remain agnostic about the variables present in the firms’

information sets at time t. The nature of the shocks is discussed below. Assuming

competitive factor markets, a firm’s period profit is

πjt = PjtYjt −Wjtnjt

Firms have a degree of market power controlled by the within-sector elasticity

η, and face inverse demand curves derived from households’ optimizing behavior.

Thus they choose prices so as to maximize the value of their profits to the owning

households whose marginal utility of wealth is u′(Ct); the intertemporal problem at

time t for firm j is

max
{Pjt+s}∞s=0

Ejt

∞∑
s=0

{
u′(Ct)

[
s∏
l=1

1

Rt+l−1

](
Pjt+s −

Wjt+s

ϕit+s

)
Yjt+s

}
.

11 The model be expanded to allow a composite productivity shock, with firm-specific, sector-
specific, and aggregate components, relative demand shocks, and intermediate inputs. A model
with these extensions is introduced in Extension: relative demand shocks and intermediate inputs.
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Since this model forgoes sticky prices in favor of informational frictions, firms re-

optimize each period and need only solve the following static problem in each

period separately

max
Pjt

Ejt

[
u′(Ct)

(
Pjt −

Wjt

ϕit

)
Yjt

]

Government

Following the literature on imperfect information (Lucas, 1972, Woodford

(2001), Mankiw and Reis (2002), Mankiw and Reis (2002)) we appeal to a

quantity theory of money to specify a exogenous stochastic process for aggregate

demand, assumed to be the result of monetary policy implemented by some policy

instrument. This process will be the only aggregate shock to the economy.

Qt = PtYt

As formulated above, fiscal policy is excluded from the model to maintain focus on

the firms’ attention allocation problem, although in a very similar model Angeletos

and La’O (2010) find that government intervention is only useful insofar is it can

mitigate the distortionary effects of market power to improve efficiency, a topic not

under central consideration here.

Stochastic processes

There are two exogenous stochastic processes to be specified, that for

nominal aggregate demand {Qt}∞t=0 and that for idiosyncratic productivity shocks{
[ϕlt]

I
l=1

}∞
t=0

. Here we assume the simple case that all processes are distributed log-
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normal in such a way that their logs are Gaussian white noise. All processes are

assumed to be mutually independent. Formally the shocks are described

qt ≡ logQt qt
iid∼ N(0, σ2

q )

φit ≡ logϕit φit
iid∼ N(0, σ2

φi
) l = 1, . . . , I

Insofar as it would be difficult to argue that independent Gaussian white noise

shocks represent the true stochastic nature of the economy, this specification is only

a precursor to a more complete analysis attempting to match actual macroeconomic

dynamics. Unfortunately models with more realistic stochastic processes do not

admit analytic results and the Gaussian white noise case provides an illuminating

special case in which to consider the attention allocation trade-offs faced by firms.

One could easily accomodate non-zero mean processes by redefining the above

variables as be deviations from the mean. Processes with a deterministic trend

could be similarly incorporated.

For notational convenience, collect the stochastic processes into an ordered

tuple

Ω = {{qt}, {φ1t}, · · · , {φIt}}

indexed by ω.

Imperfect Information

The expectations operator in the above formulation of an intermediate good

firm’s problem suggests that at least some contemporaneous economic variables -

in this case aggregate consumption, firm-specific nominal wages, the sector-specific
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aggregate shock, and aggregate output - are unknown to the firm at the time they

must set the price of their differentiated good. This raises two questions: (1) why

would a firm be unaware of these (or any) contemporaneous conditions, and (2)

which contemporaneous variables are unknown to the firm. Both of these questions

have been of considerable interest in the literature on imperfect information, as

described above.

Here we take the position that insofar as agents must process any information

they wish to use and have a limited ability to assimilate even widely available

information, all variables are a priori unknown. Agents only observe variables at all

to the extent that they specifically allocate attention to do so. This is formalized

in terms of the rational inattention framework of Sims (2003) with the assumption

that agents have a finite information processing capacity κ. The imperfections are

thus inherent to the agents and not the information itself; in fact, this approach

requires that all the relevant information exists and is freely available.12

Signals

The device through which agents will receive (incompletely processed)

information takes the form of signals s
(ω)
jt where j is the firm receiving the

signal and ω indicates one of the stochastic processes described above. While in

principle the space of possible processes among which agents may select signals is

unrestricted with respect to distribution, in practice the structure of this problem

- in particular the Gaussian white noise exogenous processes and a log-quadratic

approximation to the profit function taken below - implies that optimal signals will

12 See Sims (2005) for a discussion of this and related topics regarding the assumptions implicit
to rational attention models.
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be Gaussian.13 For this reason, we follow MW section IV in hereafter restricting

the space of possible signals to those that are of the form “true state plus white

noise”14

s
(q)
jt = q̃t + ψ

(q)
jt s

(q)
jt ∼ N(q̃t, σ

2
q + σ2

ψ
(q)
j

)

s
(l)
jt = φ̃lt + ψ

(l)
jt s

(l)
jt ∼ N(φ̃lt, σ

2
φl

+ σ2

ψ
(l)
j

) l = 1, . . . , I

The signals are written in terms of the deviation-from-mean forms to maintain

the possibility of non-zero-mean processes even though here, for example, q̃t =

qt−Eqt = qt. Although a formal connection will be derived below, a firm’s attention

problem can be informally described as the optimal reduction (or more properly

selection) of the noise in signals subject to a constraint on the maximum amount of

noise reduction across all signals.15

Equilibrium

An equilibrium is a collection of processes for consumption, labor, wages,

prices, and signals

{Chjt, nhjt,Whjt, Pjt, s
(ω)
jt }h,j,ω,t

such that markets clear, households maximize utility, and firms (1) set optimal

prices given available information, and (2) direct their attention such that the

13 See Sims (2003) or Makowiak and Wiederholt (2009) for a proof of this result.

14 The use of the index l indicates that each firm j receives a separate signal for the shock to
each industry.

15 This model falls under the special Gaussian-linear-quadratic case. Sims (2010) section 3.2
presents this and related intuition for these types of models.
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signals they receive about unknown quantities of interest are optimal. Notice that

due to constant elasticity of substitution preferences, household optimization will

uniquely define the processes for the aggregate price level {Pt} and real aggregate

demand {Yt}, see (2.5) and (2.5) respectively. The full conditions governing optimal

behavior are derived below.

Market Clearing

The three markets in this model - goods, assets, and labor - yield three

market clearing conditions. Since we have assumed constant elasticity of

substitution preferences, we need only specify market clearing in terms of the

consumption good, Ct = Yt. If this holds, then in equilibrium (in particular given

optimal household behavior) the demand functions for intermediate and sector-

level goods, detailed below, guarantee market clearing at those levels. Since this

model admits a representative household, no bonds will be purchased or sold in

equilibrium so that the asset market clearing condition is Bt = 0 for all periods t.

Finally, the labor market equilibrium requires njt =
∫
H
nhjtdh.

Optimal Household Behavior

Standard results for constant elasticity of substitution preferences give

demand functions for disaggregated goods in terms of aggregated quantities.16

Since all households are identical their optimal behavior will be identical and can

be analyzed as derived from a optimizing representative household. For this reason,

in all of what follows we drop the household subscript.

Cjt =
1

µi

(
Pjt
Pit

) 1
r−1

Cit Cit = µi

(
Pit
Pt

) 1
p−1

Ct

16 See Constant Elasticity of Substitution Preferences for details.
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Corresponding to these demand functions are price indices prescribing the

(minimal) cost of obtaining one unit of an aggregated quantity

Pt =

[
I∑
i=1

µiP
p
p−1

it

] p−1
p

Pit =

[∫
Ji

1

µi
P

r
r−1

jt dj

] r−1
r

Given these demand functions, the household’s intertemporal problem can be

analyzed in terms only of the consumption good. As usual, the solution is described

by an Euler equation and a static first-order condition17

u′(Ct) = βEt

[
Rt+1

Pt
Pt+1

u′(Ct+1)

]

v′(njt) =
Wjt

Pt
u′(Ct)

Optimal Price Setting

Optimal behavior on the part of the firm will be considered in two stages.

First, no matter the signals they actually receive about the state of the economy,

firms must optimally set their decision variable given that information. In the case

of perfect information this is the standard profit maximization problem faced by a

monopolist. In the case of imperfect information a log-quadratic approximation to

the profit function yields the certainty equivalence result that the optimal imperfect

information price is simply the expectation of the optimal perfect information price.

17 See Optimal Household Behavior for details.
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Second, firms must select the signals they receive. Here they achieve this by

allocating their attention such that they minimize the expected loss in profits from

setting a non-optimal price subject to a constraint on the maximum attention they

can spread across all variables.

Perfect Information

As a baseline, consider firms with perfect information. In this case there is no

attention allocation so that the firms’ entire problem reduces to the standard profit

maximizing problem faced by a monopolist

max
Pjt

u′(Ct)

(
Pjt −

Wjt

ϕit

)
Yjt

This yields the standard result that monopolists set price as a markup over nominal

marginal costs

P �jt =
1

r

Wjt

ϕit

which can be rewritten in terms of model fundamentals and in the form of

proportional (log) deviation from the point at which all prices are the same as18

p̃�jt = −γφ̃it + ζq̃t + (1− ζ)p̃t

where q̃t represents nominal aggregate demand, ζ ≡ α(σ + ε) relates to strategic

complementarities between firms’ pricing decisions, γ ≡ α(1 + ε), and α ≡ (1 +

ρε)−1.19 Integrating across all firms and applying a log-linear approximation yields

18 See Perfect Information

19 See Optimal Price Setting
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the perfect-information equilibrium aggregate price

p̃�t = q̃t −
γ

ζ

I∑
l=1

µlφ̃lt

Strategic complementarities

The firm’s pricing rule (2.5) exposes (1−ζ) as a parameter governing strategic

complementarities in the model. If it is positive (so ζ < 1), firms’ responses

to changes in the aggregate price level will be complementary, whereas if it is

negative, the aggregate price will act as a strategic substitute. This parameter

appears in and has been important to both models with price stickiness and models

with informational frictions. Typical calibrations put the value of ζ between 0.12

and 0.4, which implies that prices are strategic complements, and the parameter

governing strategic complementarities, (1 − ζ), is between 0.6 and 0.88.20 This

parameter will be important not only in the firms’ pricing decision given available

information, but also in the firms’ attention allocation problem, described below.

Imperfect Information

Defining the expected value of period profits as

Πjt(Pjt, Pit, Pt, Yt, ϕt) ≡ Ejt

[
u′(Yt)

(
Pjt −

Wjt

ϕit

)
Yjt

]

firm j faces the problem maxPjt Πjt. Taking a log-quadratic approximation to Πjt

around the perfect information non-stochastic equilibrium yields the following

20 See Mankiw and Reis (2010)
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formula for firm profits

Π̃jt =Π̂1p̃jt + Π̂11p̃
2
jt + Π̂12p̃jtEjtp̃it + Π̂13p̃jtEjtp̃t + Π̂14p̃jtEjtỹt + Π̂15p̃jtEjtφ̃it

+ other terms

where Π̂1 is a constant times the partial derivative of profit with respect to the

first argument and the Π̂1∗ coefficients are constants times the second partial

derivatives, all evaluated at the point at which all prices are the same; “other

terms” collects all terms of the second-order approximation that do not depend

on p̃jt (irrelevent for our purposes since they do not affect the firm’s pricing

decision).21 The associated first-order condition yields the following imperfect-

information pricing rule

p̃∗jt = −γEjtφ̃it + ζEjtq̃t + (1− ζ)Ejtp̃t

= Ejtp̃
�
jt

To find the imperfect information equilibrium aggregate price we follow a guess

and verify approach. Given the form of the perfect-information aggregate price, we

guess that under imperfect information it is described by

p̃t = aq̃t −
γ

ζ

I∑
l=1

blµlφ̃lt

This guess will be verified in the next section in conjunction with the solution to

the attention allocation problem. In the meantime, substituting this guess in to the

21 See Optimal Price Setting and Log-quadratic approximation to an intermediate good firm’s
profit function for details.
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imperfect information pricing rule yields

p̃∗jt = [(1− ζ)a+ ζ]Ejtq̃t − (1− ζ)
γ

ζ

I∑
l=1

blµlEjtφ̃lt − γEjtφ̃it

and noticing that since firms only observe Gaussian signals the expected values can

be solved using typical signal extraction results:

p̃∗jt = [(1− ζ)a+ ζ]

 σ2
q

σ2
q + σ2

ψ
(q)
j

 sqjt

− (1− ζ)
γ

ζ

I∑
l=1

blµj

 σ2
l

σ2
l + σ2

ψ
(l)
j

 s
(l)
jt − γ

 σ2
i

σ2
i + σ2

ψ
(i)
j

 s
(i)
jt

The firm’s attention allocation problem is to select optimal signals s
(ω)
jt . Since

the variance of the fundamentals is given, in practice this means that firms will

optimally select the variances of the signals’ noise.

Optimal Attention Allocation

Having solved for optimal firm behavior given available information, we now

derive the optimal information structure by considering the attention allocation

problem.22 The firm is concerned with the difference between the price it actually

sets and the price it would set under full information only to the extent that it

results in a loss in profits. This expected loss in profits is

Ejt

[
Π̃jt

(
p̃�jt, ·

)
− Π̃jt

(
p̃∗jt, ·

)]
=

(
Π̂11

2

)
Ejt

[(
p̃�jt − p̃∗jt

)2
]

22 See Information Theory and Rational Inattention under Gaussian White Noise for all details
related to this section.
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The firm’s attention problem then is to optimally select signals to minimize a

quadratic loss

min
{s(ω)
jt }ω∈Ω

Ejt

[(
p̃�jt − p̃∗jt

)2
]

subject to the constraint that the total information content of the signals does

not exceed some value κ. This constraint can be put formally in terms of mutual

information

I
({
q̃t, φ̃1t, · · · , φ̃It

}
;
{
s

(q)
jt , s

(1)
jt , · · · , s

(I)
jt

})
≤ κ

Then given the independence assumptions and defining for notational convenience

κ
(ω)
j ≡ I

(
{ωt}; {s(ω)

jt }
)

, it can be reformulated as
∑

ω∈Ω κ
(ω)
j ≤ κ.23 Since the

signals are Gaussian, it can be shown that the mutual information is a function

only of the ratio of the variances of the fundamental and the noise

κ
(ω)
j =

1

2
log2

 σ2
ω

σ2

ψ
(ω)
j

+ 1

 ω ∈ Ω

After some algebra, the firm’s attention problem can be finally written

min
{κ(ω)
j }ω∈Ω

∑
ω∈Ω

(
κ̄

(ω)
j

)2

2−2κ
(ω)
j ; κ̄

(ω)
j =



[(1− ζ)a+ ζ]σq ω = q

(1− ζ)γζ−1blµlσφl ω = l 6= i

[(1− ζ)γζ−1biµi + γ]σφi ω = i

23 Recall that ω indexes the set of all stochastic processes Ω - see Signals for the definition.
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subject to
∑

ω∈Ω κ
(ω)
j ≤ κ and κ

(ω)
j ≥ 0 for ω ∈ Ω. The terms κ̄

(ω)
j can be thought

of as importance-weighted volatilities ; their origin is in the firm’s optimal imperfect-

information pricing rule (2.5).

This can be solved using standard techniques to yield the following interior

solution for the optimal allocation of attention to each fundamental

κ
(ω)
j

∗
= log2 2κ̄ + log2 κ̄

(ω)
j − log2 κ̄j ω ∈ Ω

where κ̄ = κ
|Ω| (recall that |Ω| is the number of stochastic processes) and κ̄j =[∏

ω′∈Ω κ̄
(ω′)
j

] 1
|Ω|

. This equation is intuitive: the first term gives an equal allocation

of attention across all stochastic processes, and the second term adds (subtracts)

attention if the importance-weighted volatility of the stochastic process in question

is above (below) the (harmonic) mean of importance-weighted volatility across all

stochastic processes.

The above is an interior solution; we abuse notation to set

κ
(ω)
j

∗
=



κ κ
(ω)
j

∗
> κ

κ
(ω)
j

∗
κ

(ω)
j

∗
∈ [0, κ]

0 κ
(ω)
j

∗
< 0

To fully incorporate corner solutions with more than two options we need to specify

a solution process in the case that κ
(ω)
j < 0, which corresponds to a “negative”

attention allocation to some stochastic process. This is not allowed. When this

occurs, the problem can be solved by replacing the negative value with zero and

then rescaling the remaining allocations such that they sum to κ.
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Using these optimal attention allocations in the firms’ imperfect-information

pricing rules and integrating across all firms yields the imperfect-information

equilibrium aggregate price

p̃∗t =

[
I∑
i=1

µl[(1− ζ)a+ ζ]
(

1− 2−2κ
(q)
i

∗)]
︸ ︷︷ ︸

a

q̃t −
γ

ζ

I∑
l=1

[
I∑
i=1

wli

(
1− 2−2κ

(l)
i

∗)]
︸ ︷︷ ︸

bl

µlφ̃lt

where wli =
[
(1 − ζ)blµi + ζ1(l = i)

]
and 1(l = i) is the indicator function that

takes the value 1 if l = i and is 0 otherwise. We have applied symmetry across

within-industry firms to write κ
(ω)
j

∗
= κ

(ω)
i

∗
j ∈ Ji, i = 1, . . . , I. This verifies our

guess.

Notice that through the term κ̄j, the optimal attention allocation for each

fundamental depends on all of the coefficients a, {bl}Il=1. For this reason, in general

there are not analytic solutions to these coefficients, although computational

techniques can be used to solve the fixed point problem.

Results

Interpretation

First we will consider the terms κ̄
(ω)
j from the attention allocation objective

function. They can be written as

κ̄
(ω)
j =



(1− ζ)aσq + ζσq ω = q

(1− ζ)γ
ζ
blµlσφl ω = l 6= i

(1− ζ)γ
ζ
biµiσφi + γσφi ω = i
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They are the products of structural parameters related to the importance of

the process to the firm’s pricing decision along with the parameter governing the

volatility of the shock, and so may be considered as terms describing “importance-

weighted volatility”. In that light, the firm’s objective is to minimize the overall

importance-weighted volatility that they face.

It can be seen, moreover, that the importance of the process is derived from

two distinct mechanisms related to the firm’s pricing problem. First, there are

direct effects: nominal aggregate demand has a direct effect on the demand curve

for the firm’s differentiated product and the firm’s sector-specific shock has a

direct effect on marginal costs. These direct effects appear as the terms that do not

include the strategic complementarity (1− ζ) and do not depend on the coefficients

that determine the aggregate price level a, {bl}Il=1.

The second type of effect is due to strategic complementarities that arise

insofar as firms are concerned with their relative price. If (1 − ζ) > 0, so that there

are strategic complementarities, firms will want to raise their price in response

to a general increase in prices. Larger coefficients a, {bl}Il=1 amplify the effect of

strategic complementarities through a larger response of the aggregate price level to

firms’ responses to the direct effects described above.

Finally, notice that the problem is complicated by the circularity of

definitions: the firms’ objective depends on the coefficients determining the

aggregate price, which in turn depend on the solution to the firms’ objective

problem. Thus the coefficients and optimal attention levels are determined by the

solution to a fixed point problem.
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The optimal allocation of attention to a stochastic process can be written

κ
(ω)
j =

κ

|Ω|
+ log2

 κ̄
(ω)
j[∏

ω′∈Ω κ̄
(ω′)
j

] 1
|Ω|


where κ denotes the total information processing capacity available to the agent,

|Ω| is the total number of stochastic processes and the κ̄
(ω)
j terms are as just

described. The first observation is that if all importance-weighted volatility terms

were equal, the second term would be zero and the optimal attention allocation

would be to evenly divide capacity across all shocks. The second observation

is that the denominator of the second term can be interpreted as an “average”

importance-weighted volatility across all shocks. Then the optimal allocation gives

more attention to those processes whose importance-weighted volatility exceeds the

“average” and less attention to those that fall below the “average”. Finally, notice

that through the first term of the optimal allocation, as total capacity becomes

infinitely large, the level of attention devoted to each shock also becomes infinitely

large.

Returning to the coefficients induced by the firms’ optimal allocations, notice

that they can be rewritten to emphasize the strategic complementarities parameter

a = (1− ζ)a
I∑
i=1

µi

(
1− 2−2κ

(q)
i

∗)
+ ζ

I∑
i=1

µi

(
1− 2−2κ

(q)
i

∗)
bl = (1− ζ)bl

I∑
i=1

µi

(
1− 2−2κ

(l)
i

∗)
+ ζ

(
1− 2−2κ

(l)
l

∗)

As noted above, this exposes the constitution of these coefficients as combinations

- weighted by the strategic complementarities parameter - of the average direct

effect of shocks to firms, weighted by sector size, and the effect arising through
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the influence of the aggregate price level on firms’ relative prices. One interesting

implication is that as strategic complementarities become strong, so that (1 − ζ) →

1, the coefficient a governing the influence of monetary policy on the aggregate

price level is decoupled from real aggregate demand, since that term disappears

from firms’ pricing rules.

Note that as total capacity tends to infinity, so that the model tends to

perfectly informed agents, we have

a→ (1− ζ)a+ ζ =⇒ a→ 1

bl → (1− ζ)bl + ζ =⇒ bl → 1

Thus the aggregate price under imperfect information tends to the aggregate

price under perfect information as total information processing capacity becomes

arbitrarily large.

A one-sector model

In the special case of a one-sector model, we have I = 1, bl ≡ 0, and µ1 = 1.

The imperfect information equilibrium aggregate price level is then

p̃∗t = [(1− ζ)a+ ζ]
(

1− 2−2κ
(q)
1

∗)
︸ ︷︷ ︸

a

q̃t
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and in this case, the coefficient a can be solved for explicitly

a =



(22κ−1)ζ
1+(22κ−1)ζ

κ
(q)
1

∗
> κ

1− 2−κ
(
γ
ζ

)(
σφ1

σq

)
κ

(q)
1

∗
∈ [0, κ]

0 κ
(q)
1

∗
< 0

This is identical to the result in MW section IV, and although it appears in a

slightly different form, the interpretation has the same implications as the more

general discussion above.

Notice that here there is no transmission mechanism for idiosyncratic shocks

to affect the aggregate price level. Although this is a one-sector model, so that

the firm literally has only two signals to observe (their own productivity shock

and monetary policy), the multisector extension in MWW does not depart too far

from this approach in that firms still receive two signals, one regarding aggregate

conditions and one regarding idiosyncratic conditions. The above discussion of

the current paper’s results demonstrates that there are important subtleties that

arise from idiosyncratic and aggregate components of each shock, re-emphasizing

the previous arguments in favor of the current paper’s approach, that models each

firm’s attention allocation problem between each stochastic shock separately.

Calibrating volatilities

The basic point of the rational inattention approach is that firms may not

immediately react to monetary policy (or other aggregate shocks) if they are

not paying attention to them. Makowiak and Wiederholt (2009) formalized this

concept and show that when the volatility of aggregate shocks is low relative to

the volatility of a sector-specific shock, firms will optimally devote more of their
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attention to sector-specific conditions. If the volatility differential is great enough,

the lack of attention paid to aggregate shocks will imply slow adjustment, meaning

that prices will appear to be sticky in response to aggregate shocks. In their model,

to achieve the appropriate degree of stickiness, they suggest that the differential in

standard deviations needs to be an order of magnitude.

In particular, they calibrate idiosyncratic volatilities to match the size of

average absolute price changes; this is performed under perfect information. Thus

the term calibrated is the absolute expected value of p̃�jt. When all disturbances

are Gaussian, the absolute value is distributed half-normal with expected value

E[|p̃�jt|] = σpj

√
2
π
. Equilibrium in the one-sector and multi-sector models, along

with independence assumptions, implies

σ2
pj

= σ2
q + γ2σ2

φi
One-sector

σ2
pj

= σ2
q + γ2σ2

φi
+

(
1− ζ
ζ

)2

γ2

I∑
l=1

µ2
l σ

2
φl

Multi-sector

In the baseline model calibrated in MW, γ is normalized to one since changes to

it have the same practical effect on the model as changes to σ2
φi

. The calibration

exercise fixes the value of σ2
q according to the observed volatility of detrended

nominal GNP, and fixes the value of σ2
pj

according to the size of average absolute

price changes, as described above. Thus the volatility of the idiosyncratic shocks is

fixed by their difference. The resultant calibration then has σz = 11.8σq.

However, empirical work suggests that while the aggregate component is less

volatile than the idiosyncratic component, it is not an order of magnitude less

volatile; for example, the decomposition in Boivin et al. (2009) find that for the

average firm, the standard deviation of the common component (σq, above) is 0.33
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while the standard deviation of the aggregate component (σz, above) is 1.09. For

the median it is even closer, at 0.27 and 0.71 respectively. Even with the average

values, this suggests that σz = 3.03σq. The effect of this change on the model is

illustrated in Fig. 1.24

FIGURE 1. Impulse response functions in the one-sector model. Panel (a) shows
the impulse responses when σz = 11.8σq (as in Makowiak and Wiederholt, 2009)
and Panel (b) shows the impulse responses when σz = 3.03σq (as suggested by
results from Boivin et al., 2009)

Furthermore, as they point out, their calibration is conservative in a

number of ways. First, they exclude sales, which lowers the reported average

absolute price change from 11.5% to 9.5%, and second they calibrate against the

perfect information equilibrium rather than the rational inattention equilibrium.

Changing either of these decisions would force their calibration to yield even more

idiosyncratic volatility.

Finally, as developed in this paper, it is not merely the volatility of shocks

that matters, it is also the weight in the pricing solution. This insight is important

for calibrations. Here, MW normalize γ = 1, so what they calibrate as σz is

actually γσz. Now, if γσz = 11.8σq, then σz = 11.8
γ
σq. Recalling that γ =

(1 + ε)/(1 + ρε) and using calibrations as in Mankiw and Reis, 2010, we calculate

γ ≈ 1/5, so that 1
γ
≈ 5 (alternative reasonable calibrations make γ even smaller).

24 These figures were created using the MATLAB programs accompanying Makowiak and
Wiederholt (2009) by varying the volatility calibration.
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Thus their conservative calibration actually requires σz = 59σq. This is far removed

from the results of Boivin et al. (2009).

A multi-sector model

What the analysis of the previous section points out is not that the approach

of Makowiak and Wiederholt (2009) is fundamentally flawed, but rather that a

more complex model is required in order to achieve realistic calibrations. Their

insight that aggregate demand (i.e. monetary) shocks play a relatively small role in

firms’ pricing decisions merely requires that, in the language introduced above, the

importance weighted volatility of aggregate demand shocks be small relative to that

of other shocks.

Now the intuition for why a multisector approach is appealing is easy to see.

To achieve aggregate price stickiness, all that is required is that firms pay little

attention to aggregate conditions. Whereas in the one-sector case there were only

two types of conditions to pay attention to (so that a decrease in attention to one

meant an increase in attention to the other), here firms also pay attention to each

other. This creates two channels by which an increase in idiosyncratic volatility

reduces attention paid to aggregate conditions. First, firms are still concerned

about their own productivity shock, which influences their marginal costs directly,

and second they are concerned about the productivity shocks to all other firms

because of the general equilibrium effect on aggregate demand and the aggregate

price level.

In essence, the multisector model gives firms more reasons to pay attention

to idiosyncratic components, which leaves less attention available for the aggregate

component.

43



To illustrate this result, we present a simple calibration exercise for a multi-

sector model, matching sectors to major groups of the Consumer Price Index

(CPI). Structural parameter calibrations follow Mankiw and Reis (2010) and

Nakamura and Steinsson (2010) and are presented in Table 1. The persistence and

variances of aggregate demand and sectoral productivity shocks are calibrated as in

MW with data on absolute price changes taken from Table VIII of Nakamura and

Steinsson (2008). Weights and the absolute sizes of price changes for each sector

and the resultant ratio of the variance of sectoral productivity shocks to aggregate

demand shocks are presented in Table 2. The resultant volatility differentials

between sectoral and aggregate fluctuations are now considerably reduced relative

to the one-sector model. In fact, the weighted average of the differentials across

sectors is 4.18.

TABLE 1. Benchmark structural parameters

Discount factor β = 0.99

Coefficient of relative risk aversion σ = 1
Inverse of Frisch elasticity of labor supply ε = 0
Within-sector elasticity of substitution η = 2
Std. dev. of innovation to aggregate demand σq = 0.01
Persistence of shock processes ρ = 0.95
Marginal cost of attention 1.5× 10−4

Using the constant marginal cost of attention approach, we numerically

compute results in the case of AR(1) shocks with the above calibration. As in MW,

the rational inattention parameter (here the marginal cost of attention) is chosen

so that the prices are set nearly optimally.25 Impulse response functions from

two of the sectors to several types of shocks are presented in Fig. 2. Two results

are apparent: (1) the multi-sector model can produce quick and strong responses

25 As described in MW, rational inattention parameters have so far proven difficult to calibrate
meaningfully. This is an important direction for future research.
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TABLE 2. Sectoral calibration for multi-sector
model

Weight Abs. Size Volatility
Name (%) (%) Differential

Processed Food 8.2 13.2 6.0
Unprocessed Food 5.9 14.2 6.5
Household Furnishings 5.0 8.7 4.0
Apparel 6.5 11.5 5.2
Transportation Goods 8.3 6.1 2.8
Recreation Goods 3.6 10.1 4.6
Other Goods 5.4 7.3 3.3
Utilities 5.3 6.3 2.9
Vehicle Fuel 5.1 6.4 2.9
Travel 5.5 21.6 9.9
Services 38.5 7.1 3.2

to idiosyncratic productivity shocks but slow and weak responses to aggregate

demand shocks, and (2) it can generate heterogeneous responses across sectors to

productivity shocks.

FIGURE 2. Impulse response functions in a multi-sector model. Panel (a) shows
the impulse responses to a shock to the Processed Goods sector; Panel (b) shows
the impulse responses to a shock to the Recreation Goods sector; and Panel (c)
shows the impulse responses to a shock to aggregate demand.

In particular, in this simple illustration firms in the both the Processed Food

and Recreation Goods sectors respond quickly to shocks to their own sector and
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they respond slowly to shocks to aggregate demand. However, while Recreation

Goods firms respond quickly to shocks to Processed Foods, Processed Foods firms

respond slowly to shocks to Recreation Goods.

Extension: relative demand shocks and intermediate inputs

In this section, we consider augmenting household and firm behavior to

include relative demand shocks, composite productivity shocks, and intermediate

inputs. These variations not only introduce desirable model characteristics but also

provide additional motivation the implicit claim in the baseline model that firms

pay attention to each other. Here, firms must pay attention to each other because

their production process requires intermediate inputs.26 To introduce demand

shocks, we replace the demand weight µi with Ditµi so that the nested CES Dixit-

Stiglitz aggregators can be written

Chit =

[∫
Ji

(Ditµi)
r−1Cr

hjtdj

] 1
r

Cht =

[
I∑
i=1

(Ditµi)
1−pCp

hit

] 1
p

and where every period we require
∑

iDitµi = 1.27 All other changes result from

modifications to firms’ production functions. In particular, we write:

Yjt = Φjtn
α
jtX

1−α
jt

where Φijt = ϕtϕitϕjt is the composite productivity shock, and Xjt is a composite

intermediate input constructed from the output of other firms. In particular,

we suppose that, like the demand composite, it exhibits constant elasticity of

26 See Basu (1995), Bouakez et al. (2009), and Carvalho and Lee (2011) for examples of similar
models with Calvo-type pricing.

27 Notice that this specification nests the baseline model when Dit ≡ 1, i = 1, . . . , I.
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substitution, so that

Xjt =

[
I∑

k=1

(Dktµk)
1−pXp

ijkt

]1/p

Xijkt =

[∫
Jk

(Dktµk)
r−1Xr

ijkltdl

]1/r

where Xijklt is the quantity of the good produced by firm l (in sector k) used by

firm j (in sector i). Similarly, Xijkt is a composite of all the goods produced by

firms in sector k used by firm j (in sector i). Finally, Xjt is a composite of the

goods produced by all firms used by firm j.

Along the same lines as the baseline model, it is not too hard to show that

this results in the following log-linear pricing equation28

p̃�jt = ψd̃it − υφ̃jt − γ(φ̃t + φ̃it) + ζq̃t + (1− ζ)p̃t

where aggregate prices evolve according to

p̃t = q̃t −
γ

ζ

I∑
i=1

µiφ̃it −
γ

ζ
φ̃t

These equations differ from those in the baseline model through more complex

parameters and the introduction of new shocks (dit ≡ logDit is the demand shock,

and φjt, φt are the new productivity shock components). Qualitatively, however,

it tells much the same story. Under reasonable calibrations, all of the parameters

above are positive, indicating that the price set by firm j rises with relative and

aggregate demand, falls with increased productivity (either firm-level, sectoral, or

28 For example see the equation for marginal costs in Carvalho and Lee (2011).
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aggregate), and, as long as there are strategic complementarities, increases with the

aggregate price level.

Similarly, the rational inattention solution is qualitatively the same. More

attention will be paid to those shocks that are relatively more important (the

coefficient in the above pricing equation is higher) or more volatile. The log-linear

rational inattention price-setting problem reduces to a sum of weighted shocks,

which can be solved in the white noise case as described above, and again the

unknown coefficients can be found as the solution to a fixed-point problem. Finally,

it preserves the calibration result introduced above, that through the effect of

multiple targets for a firm’s attention prices can adjust slowly with respect to

monetary policy shocks while responding quickly to idiosyncratic shocks, without

requiring unrealistic volatility differentials.

Conclusion

In this paper we extend the rational inattention model of price-setting to

account for multiple sectors in which firms care about their own idiosyncratic

shocks, idiosyncratic shocks to other firms, and aggregate shocks. In addition to

the baseline model, we consider an extension including relative demand shocks

and intermediate inputs. We derive optimal attention allocations and the implied

optimal price-setting behavior, allowing us to consider the effect of various

parameterizations on the responsiveness of prices. The functional forms derived

herein inform new directions for continued empirical research into price-setting

behavior.

Our results provide several novel contributions. First, we allow firms to

exhibit heterogenous behavior that depends not only on their own idiosyncratic

shocks but also on firm characteristics and their relationship to other firms. Second,
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we show that not only can the model generate slow responses to aggregate shocks

along with quick responses to idiosyncratic shocks, it can do so with less extreme

parameter calibrations than in related work. Finally, we emphasize the role of

importance-weighted volatility in generating optimal attention allocations, rather

than volatility only.

Finally, the basic model considered here provides a baseline for future

research. It would be interesting, for example, to further extend the multi-sector

model to account for additional firm characteristics in order to derive testable

cross-sectional implications for price-stickiness; another interesting direction is to

introduce network effects as in Acemoglu et al. (2012).
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CHAPTER III

ESTIMATING HETEROGENEOUS INFLATION DYNAMICS VIA

UNOBSERVED COMPONENTS

Introduction

While the dynamics of aggregate inflation have been vexing economists

for decades, recently it has become clear that understanding the behavior of

disaggregated inflation series is key to validating theoretical models of price setting.

There is wide agreement that aggregate inflation displays substantial persistence,

a result that suggests that prices may be relatively “sticky”. However, recent

studies using micro-level data suggest that prices may change more frequently than

previously thought and dynamic factor models have corroborated these results in

finding that disaggregated series respond quickly and strongly to idiosyncratic

shocks, but slowly and weakly to aggregate shocks. If the former shocks induce

frequent price changes that cancel out in the aggregate, while the latter induce

infrequent price changes that are similar across all sectors, the apparent stickiness

in the aggregate price level may belie considerable flexibility in individual prices.1

These questions are important because their answers provide guidance about the

appropriate specification of price-setting behavior in theoretical models.

Unfortunately, this forward progress is complicated by the well-known issues

related to collecting price data, including the presence of sales, substitutions,

product or quality changes, and measurement error introduced by the sampling

process. De Graeve and Walentin (2014) invoke these concerns in suggesting that

1 See Bils and Klenow (2004) and Nakamura and Steinsson (2008) for studies using micro-level
data. The seminal articles applying the dynamic factor approach are Boivin et al. (2009) and
Makowiak et al. (2009)
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the true variance and persistence of disaggregated inflation series are being masked

by measurement errors. Refining the dynamic factor model to allow idiosyncratic

processes with multiple dynamic components, they find that the data almost

unanimously prefers a specification consistent with the above types of measurement

error and that, properly identified, idiosyncratic shocks in fact give rise to price

responses very similar to those generated by aggregate shocks.

This paper furthers the investigation into the appropriate model for the

dynamic responses of prices to idiosyncratic shocks. Considering a wider range

of candidate multi-component models, we find heterogeneity in the preferred

specifications, most of which do not have a clear interpretation in terms of

measurment error in price collection. We reassess idiosyncratic component of

inflation and find that, as in the seminal paper of Boivin et al. (2009) but contrary

to De Graeve and Walentin (2014), persistence is low. This then reconfirms the

original result that prices appear to be flexible with respect to idiosyncratic shocks.

The paper proceeds as follows. Section 2 describes the simple and multi-

component dynamic factor approaches, presents candidate models for the

idiosyncratic process, and inteprets them in terms of prices and inflation. Section

3 presents analysis parallel to that considered in the previous literature, but with a

wider range of candidate models, using US PCE data and discusses implications for

inflation dynamics and price flexibility. Section 4 concludes.
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Reduced form model

The baseline specification for a disaggregated inflation series i is the following

dynamic factor model:

πit = λ′iCt + eit

Ct = ΦCt−1 + ηt

where πit is the log change in price series i, Ct is a k × 1 vector of factors

with associated factor loading vector λi, and eit is a residual. The factors are

extracted from a large number of time series. Together, λ′iCt is termed the common

component for series i, and eit the idiosyncratic component. All disturbances are

assumed to be Gaussian, and Φ is typically assumed to be the companion matrix

for a lag polynomial, so that the factors evolve as a vector autoregression. The

model is dynamic due to the evolution of the factors and because the idiosyncratic

component is not constrained to be white noise. Each series can exhibit distinct

dynamics through the idiosyncratic component, and also through the series-specific

common component, even though all series share the same underlying driving

factors, because factor loadings are series-specific. This basic model is ubiquitous

in the related literature, although different approaches are used to estimate the

factors and in modeling the idiosyncratic component.

Boivin et al. (2009) (BGM), De Graeve and Walentin, 2014 (DGW), and

Kaufmann and Lein (2013) (KL) extract a number of factors from a large number

of macroeconomic indicators including inflation series, whereas Makowiak et al.

(2009) (MMW) extracts a single factor from inflation series only. In section 3, to

facilitate comparison with BGM and DGW, we estimate the factors using their
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dataset, so that the factors are extracted from macroeconomic indicators as well as

inflation series. In Factor selection, we show that only one of the factors extracted

from the dataset of indicators explains a substantial amount of the flucuations in

the disaggregated price series, and that this factor largely spans the same space as

the single factor extracted from only price series. For simplicity then, we perform

the estimation of section 4 using a single factor extracted from price series only.

The idiosyncratic component is modeled as an autoregressive process in all

of the above cases except DGW, in which case multi-component processes are

considered. Following their lead, we consider a wide range of multi-component

specifications; these models are described below.

As described in, for example, Bernanke et al. (2005) and Stock and

Watson (2011), there are a range of methods for estimating the factors. One

of the most popular methods, used here and in all of the papers above except

MMW, is principal components estimation. It is relatively easy to perform and

is computationally cheap. Assuming a correctly specified model, the principal

components estimator consistently recovers the space spanned by the true factors,

even in the case of weak cross-sectional or serial correlation in the idiosyncratic

component. Moreover, due to results in Bai and Ng (2006), the factors converge

quickly enough to be used as data in subsequent estimation. This fact is used in

DGW, and will be used in the results below.

Estimation proceeds in two steps. First the factors are estimated using

a principal components approach. Given the factors as data, the second step

puts the model into state space form and estimates both the factor loadings and

any parameters governing the dynamics of eit jointly via maximum likelihood
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estimation. The likelihood is calculated as a byproduct of the Kalman filter

iterations.

The dynamic factor model, above, is a very reduced form model. Not only

has it not been derived from a structural model, the factors are not structurally

identified. Instead, it is a convenient way to separate the dynamics of inflation

into those driven by a common component (aggregate shocks) and those driven

by series-specific conditions (idiosyncratic shocks).

To get a sense of the inflation series, Fig. 3 displays three graphs. The first

shows the standardized inflation series (the log change in aggregate and sectoral

prices, de-meaned and normalized to a standard deviation of one). Four aggregate

series, corresponding to headline CPI and the CPI series for durable goods,

nondurable goods, and services, are represented by darker lines. One hundred and

ninety sectoral inflation series are plotted in light blue. The second graph shows the

common components (with factor loadings estimated by OLS), and the third graph

shows the residual, or idiosyncratic, components. The specifics of estimating the

factors will be described in section 3, below.

Idiosyncratic dynamics

Here we consider three alternative classes of specifications for the

idiosyncratic component. First we describe the simple model used in Boivin et al.

(2009), Makowiak et al. (2009), and Kaufmann and Lein (2013), next we describe

the multi-component model of De Graeve and Walentin (2014), and finally we

present the extended range of multi-component models considered here.
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FIGURE 3. Standardized inflation series, common components, and idiosyncratic
components.

The simple model

The simple model fits an autoregressive process

eit = ρi(L)eit−1 = εt

where the number of lags is either imposed (to 13 in BGM and the simple model

from DGW, to 6 in MMW, and to 1 in Reis and Watson (2010)) or is selected by

information criteria (as in KL).

The refined model

The refined model of De Graeve and Walentin (2014) augments the

autoregressive process with an iid white noise component, intended to control

for measurement errors in inflation or item substitutions, and a moving average

component, intended to control for sales or measurement errors in the price level.
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The final specification is then

eit = Pit + Iit +Mit

Pit = ρi(L)Pit−1 + εit

Iit = εit

Mit = ξit − ξit−1

They set the number of lags to 13 for their primary analysis, but note that their

results are similar if 3 lags are used or if lags are selected using standard criteria.

Anticipating the class of unobserved components models described next, it is

interesting to note that this refined model can be generated as the first difference of

the following local level with stationary drift model (see, for example, Clements and

Hendry (2011)):

eit = ∆yit

yit = µit + ξit

µit = µit−1 + Pit + εit

Pit = ρi(L)Pit−1 + εit

Generically, unobserved components models have an equivalent formulation as some

ARIMA(p,d,q) specification. The ARIMA form of this model is more complicated

than that of the local level model due to the drift term, but remains integrated of

order one and inherits the moving average unit root.
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Notice that this specification is not unreasonable for a technology process

like zit. As noted in DGW, their preferred interpretation, in which the multiple

components account for various types of measurement errors, is observationally

equivalent to an interpretation in which there simply exists a sector-specific

productivity process described as a trend with stationary drift.

Unobserved components

Finally, this paper considers a wide range of candidate models, all broadly

falling into the class of unobserved component models. Unobserved components

models, also known as “structural time series models”, are designed to explain the

dynamics of a time series in terms of components with a natural interpretation,

such as trends and cycles. The basic structural time series of Harvey (1990) is

yt = µt︸︷︷︸
trend

+ γt︸︷︷︸
seasonal

+ ct︸︷︷︸
cycle

+ εt︸︷︷︸
irregular

These models are popular in deriving stylized facts of time series, since they are

often more interpretable than ARIMA-type models.2

Notice that just as the refined model, above, nests the simple model, the

class of unobserved components models nests the refined model. We thus embrace

the primary conclusion of De Graeve and Walentin (2014) that the idiosyncratic

process is potentially best explained in terms of multiple components. The problem

of interpretation, that the specific multi-component specification in the refined

model matches certain types of measurement errors as well as certain types of

2 To clarify the somewhat confusing language, note that trend inflation as described by Cogley
et al. (2010) and Stock and Watson (2007) is actually consistent with inflation described a local
level model and not a local linear trend model.
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structural shocks, is mitigated here since we allow the data to select between a

variety of components.

The trend component allows the model to exhibit a dynamic intercept (or

level), and in fact the most basic trend is just a static intercept term. The most

general specification we consider allows the level to change over time and introduces

a slope component allowing its rate of change to change over time as well. If both

the level and the slope both evolve according to a random walk, the trend can be

written:

µt+1 = µt + βt + ηt+1 ηt+1 ∼ N(0, σ2
η)

βt+1 = βt + ζt+1 ζt+1 ∼ N(0, σ2
ζ )

Notice that under this specification, the original time series would be integrated of

order 2. If this specification was applied to prices, it would imply trending inflation;

since most idiosyncratic inflation series appear to be stationary, we also consider

a model that replaces the random walk evolution of the slope with an AR(p)

process: βt+1 = ρ(L)βt + ζt+1 (although of course we do not require a slope, or

even a level term).3 Another specialization of interest occurs when σ2
ζ = 0. Then

the stochastic slope is replaced with a deterministic drift term. In this case, the

differenced series (inflation) would display a deterministic level (an intercept) along

with an additional white noise component.4

3 Given the lack of a pricing friction, this equation is not useful for serious analysis of observed
pricing behavior, and is presented only to illustrate how different shocks may enter into pricing
decisions. For a treatment describing how a similar model behaves in the context of a variety of
pricing frictions, see Makowiak et al. (2009), section 7.

4 See Harvey (1990) for a comprehensive treatment and Harvey and Jaeger (1993) for several
specific applications. Elements of the following discussion on specification are also taken from
Durbin and Koopman (2012) and Harvey and Shephard (2005).
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It is important to point out one implication of the above discussion, which

is that if there is a stochastic trending component at the level of prices, then

at the level of inflation there will appear an additional white noise component.

Therefore, if a theoretical model can result in price-setting behavior with a trending

idiosyncratic fundamental shock, the Iit term introduced by De Graeve and

Walentin (2014) has a straightforward structural interpretation.

This model also lends an interpretation to the persistent component included

in both the simple model and the refined model of DGW as the slope of the price

trend. If it is stationary, it suggests that unconditionally we expect the price

level to evolve according to a random walk and occasionally a shock will cause an

additional, persistent, drift effect that dies out over time.

A cursory examination of raw price series reveals that many have a strong

seasonal component, which means that incorporating a seasonal component is

important; in this literature, the data used in analysis is typically pre-processed

to remove seasonal effects. In the spirit of the unobserved components approach, it

would be interesting to work instead with unadjusted data and include the seasonal

term directly.

Of more concern here is the possibility that the seasonal adjustment process

either does not completely eliminate the seasonal effect or, in removing it, distorts

other dynamic characteristics (see Harvey and Jaeger (1993) for a discussion of

these issues). While we continue to use seasonally adjusted data, after we allow the

possibility of an additional seasonal term. This is discussed below when we present

the correlograms of the idiosyncratic series. This issue again suggests working

directly with unadjusted data, a possible direction for future work.
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The cycle term is intended to capture smoothly evolving and cyclical effects

at frequencies much larger than those found in seasonal effects. There is no

overwhelming reason to suspect this type of behavior in price-setting, but it may

be present in the fundamental shocks underlying price series behavior. In practice,

the data here tends not to select models with a cycle, or else estimates the cycle’s

frequency at the time scale of decades (indicating that the cycle is likely picking up

an intercept-like feature of the data).

The irregular component is assumed to be white noise, indicating that the

underlying fundamental shock is not perfectly captured by the trend, cycle, and

seasonal components, but that the unexplained part has no additional structure to

exploit. Notice that if this term is present at the level of prices, then at the level of

inflation we would expect to see a moving average component exactly as in DGW.

Candidate models

The class of unobserved components models is very broad, and, as described

above, many models can be eliminated immediately. In order to narrow the

candidate models, we consider a correlogram of the idiosyncratic inflation

components {eit}, shown in Fig. 4 (the autocorrelations from a given series are

joined with a line so that trajectories can be made out).

Several common features of most series are immediately apparent. First, for

most series, the autocorrelations die away relatively quickly (with 190 series, we

would expect a small number of autocorrelations to appear outside of the 95%

confidence intervals each lag due to chance). This is our first indication from the

data that this component of inflation may be stationary. Nonetheless a few series

do appear to die away slowly, potentially indicating non-stationarities. Second,

there is a negative autocorrelation at lag 1 for many series, possibly corresponding
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FIGURE 4. Autocorrelation functions of idiosyncratic components, 1976 - 2005

to the moving average component included by DGW and discussed above. Next,

there appear to be remaining seasonal effects at lags 6, 12 and 24. Finally, the

autocorrelations corresponding to aggregate series are largely within the confidence

bounds, suggesting that the inflation gap (the deviation of aggregate inflation from

trend) is stationary and exhibits limited persistence.

The components of the candidate models fall into the following categories:

trend behavior, autoregressive persistence, and seasonal effects.

The primary candidate model for trend behavior at the price level is the

local level model. Alternate specifications in the stationary case add either a

deterministic or stationary drift component. All inflation series are pre-tested for

the presence of a unit root, and for those series in which it cannot be rejected the

drift term is modeled instead as a random walk.

Autoregressive persistence enters the model through the stationary drift term.

To assess typical persistence, we consider models with up to 13 consecutive lags.5

5 Stock and Watson (2007) suggest a model in which aggregate inflation is I(1), but here
any trend in inflation appears to be captured in the common components, rather than the
idiosyncratic components.

61



Given that the data is seasonally adjusted, the goal is simply to prevent

the effects of remaining seasonality from distorting estimates of autoregressive

persistence. With this in mind, we consider models in which an unobserved

components seasonal element is directly introduced into the inflation series (rather

than first introduced at the price level and then differencing them to find a model

for inflation, as would be appropriate if the seasonal effects themselves were of

interest).

Note that the candidate models described here nest as special cases both

the simple and the refined models from Boivin et al. (2009) and De Graeve and

Walentin (2014). Thus, the model selection exercise in the following section allows

the data to select between their models as well as the newly introduced unobserved

components models, some of which are simpler and some of which have more

components.

Altogether, for stationary series, we consider 8 variations in the trend

/ autoregressive persistence component, and 3 specifications for the seasonal

component (no seasonal component, and seasonal components with periodicity 6

or 12), for a total of 24 candidate models. Note that different model specifications

imply different numbers of parameters, a fact that will be important when we

consider model selection.

Estimation and Results

Data

The dataset used is the same as in De Graeve and Walentin (2014) and

Boivin et al. (2009). It is composed of 111 macroeconomic indicators, 4 aggregate

personal consumption expenditure (PCE) inflation series, 190 sector-level inflation

series and the 190 corresponding PCE quantity series, and 154 producer price index
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series. All series run from 1976:1 to 2005:6. As described in Appendix B to Boivin

et al. (2009), all series have been transformed to induce stationarity. In the case of

the price series the transformation applied was the first difference of the logarithm,

so that the dataset contains inflation series.

Estimation

Estimation proceeds in two steps. In the first step, the number of underlying

factors, k, is selected and the estimated factors Ĉt, t = 1, . . . , T are are calculated as

the first k principal components of the observed data. In all that follows, we impose

k = 5 as in the previous literature; however, results are robust to other values,

largely because regardless of the number of factors, one of the factors essentially

tracks inflation behavior. This is documented in Factor selection. Equipped with

estimates of the unobserved factors, and appealing to the results mentioned above

related to the consistency of principal component estimation, we take Ĉt as data for

subsequent analysis.

In the second step we estimate, for each series separately, the following

dynamic regression model with unobserved error components:

πit = λ′iĈt + eit

where πit is the i th observed PCE inflation series, λ′i are regression coefficients,

and eit is one of the unobserved components specifications described in the previous

section.

Since all of the candidate models (including the simple and refined models

from the previous literature) fall into the class of unobserved components models,

this dynamic regression model can be cast into state space form and the likelihood
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evaluated as a byproduct of Kalman filter iterations.6 All parameters, including the

regression coefficients, are joinly estimated via maximum likelhood estimation.

Model selection

Since all candidate models are nested as specializations of the unobserved

components model, we use standard model selection criteria to select between

models with the same order of integration. To select the appropriate order of

integration, the augmented dickey-fuller (ADF) test for unit roots is applied as a

pre-test to each series, and only the candidate models appropriate for the implied

order of integration are considered. Ten series are classified as non-stationary.

These series cannot be accomodated at all under either the simple or refined

models, so they clearly favor the extended models presented here. These series also

suggest new results in terms of persistence, since as non-stationary series, shocks

are infinitely persistent.7,8

The specific selection criteria we consider when selecting between candidate

models are the Akaike and Schwarz information criteria (AIC and SBIC,

respectively) . While asymptotically equivalent, these two selection criteria can

yield different results in finite samples, due to the different penalty they impose on

the number of included parameters.

6 See Durbin and Koopman (2012) for a book length treatment on the specification and
estimation of state space models.

7 Specifically, a series is considered to be non-stationary if the ADF test fails to reject the null
hypothesis of a unit root at the 10% level. There are 10 such series. Note that if instead of pre-
testing, we allow the information criteria to select between stationary and non-stationary models,
3 of these 10 series would still be classified as non-stationary using the AIC and under the BIC, 8
of the 10.

8 A Bayesian approach to estimation would not suffer from the same difficulties regarding
parameters at boundaries, like unit roots, as found in classical estimation. Thus incorporating a
Bayesian approach, so that order of integration and model selection could be performed jointly,
would be an interesting extension.
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Generically, (see, for instance, Koehler and Murphree, 1988) either of these

criteria can be written IC = −2 logL + γk where L is the maximized value of

the likelihood and γ is a penalty multiplier. For the AIC, γ = 2, and for the

SBIC, γ = log T . The selected model is the model that minimizes the applicable

information criteria, so the effect of the larger penalty multipier is to prefer models

with fewer parameters, all other things equal. Here T = 353, so the SBIC penalty

is nearly three times as high as that for the AIC. This is important to the results

presented below, since for many series there are several candidate models with

similar maximized likelihood values but different numbers of parameters, and so

the model selection exercise results in different specifications for roughly half of the

models depending on which information criteria is used.

Since they are asymptotically equivalent, there is little to recommend one

over the other, although Koehler and Murphree (1988) and Sneek (1984) suggest

that the AIC has a tendency to overparameterize models. Since one goal here is to

derive stylized facts about the sectoral inflation time series, we prefer parsimonious

specifications that emphasize the interpretable unobserved components rather than,

for example, difficult-to-interpret AR(13) models. For this reason, in the discussion

of stylized facts obtained by looking at the specific models selected by the data we

will emphasize the results found using the SBIC.

Results related to persistence are largely unaffected regardless of the

information criteria used, which suggests that it is the increased latitude to select

an appropriate model, rather than the specific form of the selected unobserved

components that makes our results different from those in De Graeve and Walentin

(2014).
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A final issue related to model selection is the time frame of the sample. Again

in contrast to DGW, we find that different models are selected if we consider the

post 1984 sample rather than the full sample, 1976-2005. In the context of inflation

models, the mid 1980s is often associated with a substantial decrease in inflation

volatility. Since stochastic volatility is not considered here, we present results from

the post 1984 sample.

Table 3 presents a high level look at the results of the model selection exercise

using the different information criteria. It shows the number of series for which

the selected model falls into the three broad categories considered here. Since

all categories of models potentially have an autoregressive persistent component,

another comparison vector is the autoregressive order of selected models; these

results are presented in subsequent tables.

TABLE 3. Selected models for
stationary series.

AIC SBIC

Simple 60 65
Refined 96 36
Unobserved Components 24 79

Table 4 shows the number of models selecting each autoregressive order,

across all categories, and Table 5 shows the mean and median selected lag orders

broken out by category. Recall that since only stationary series are considered, the

total number of series in each table is 180.

The full implications of the results will be discussed below, but a few

immediate comments are merited. First, it is clear that, as described above, the

additional parameter penalization in the SBIC has a dramatic effect. This is most

clearly seen in the number of series for which no autoregressive component is found;
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TABLE 4. Lag orders of selected
models, stationary series

0 1 2 3 4 6 12 13

AIC 4 20 28 12 22 30 46 18
SBIC 68 50 35 8 9 3 4 3

TABLE 5. Lag order statistics by
model class, stationary series

(mean / median) AIC SBIC

Simple 4.4 / 3 2.0 / 1
Refined 8.0 / 6 3.2 / 2
Unobserved Components 5.5 / 5 0.5 / 0

this increases from 2% of the series under the AIC to 38% under the SBIC. In fact,

under the SBIC, only 15% of series are well described by a lag order greater than 2.

Second, these results contrast with the model selection exercise in DGW,

that finds that 88% of the series are best described by the refined model. Here the

number is below 55% for the AIC, and is 20% for the SBIC. Finally, from Table 3,

for both the AIC and SBIC, those series that select the refined model are also series

that select longer lag lengths.

Next, we consider which components are present in the selected models under

each criteria; these results are presented in Table 6 (not that rows do not sum to

100% because multiple components can be present in a single time series). The last

row of Table 6 is taken from Table II in De Graeve and Walentin (2014) to show

how our results differ (note that since they do not make the distinction between

stationary and non-stationary series, their values take into account 10 additional

series).

Since these models are at the level of inflation, “deterministic level”

corresponds to the local level model with deterministic drift at the level of prices,
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TABLE 6. Components of selected models, stationary series

Deterministic level Stationary level Seasonal I M Simple

AIC 2% 11% 7% 43% 24% 33%
SBIC 38% 6% 8% 15% 6% 36%
DGW - - - 77% 66% 11%

and “stationary level” correponds to the local level model with stationary drift.

I refers to the white noise component in the refined model, and M refers to the

moving average component. “Simple” refers to models in which only an AR

component is present.

It is immediately clear that regardless of the information criteria used, the

presence of additional candidate models and lag orders substantially reduces

the number of series for which the refined model is selected. Not only that, but,

conditional on the refined model being selected, the incidence of a moving average

component has declined.

Taken together, the above model selection exercise yields the following

conclusions regarding the idiosyncratic components of inflation series: (1) many

series are best described either an AR(p) or as white noise with an intercept; and

(2) across most specifications, a long autoregressive lag length is not required to fit

the data well.

In terms of idiosyncratic price series, the data suggest that the local level

model, or even simply an integrated autoregression of order p ≥ 0, is a reasonable

specification. This result supports the approach taken in Makowiak et al. (2009),

where in the simple case the idiosyncratic component of the price follows a random

walk.
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Persistence

Here we use our selected models to reconsider the stylized facts of persistence

in the idiosyncratic component. Figures below display histograms of the sums

of autoregressive coefficients across series. Fig. 5 restricts the specification to

that considered in Boivin et al. (2009), Fig. 6 restricts the specification to that

considered in De Graeve and Walentin (2014), and Fig. 7 uses the model selected

as above. When model selection is applicable, results are presented for both

information criteria. Notice that our Fig. 5 replicates part of Figure 1 from DGW,

and Fig. 6 replicates their Figure 5.

The key finding of this section is that when a wide range of candidate

models is considered, the idiosyncratic inflation components display heterogeneous

persistence with a median close to zero. The tables and figures just presented

provide strong evidence that it is the imposition of the refined model drives up

estimates of persistence and not the imposition of the simple model that drives

them down.

FIGURE 5. Persistence of idiosyncratic series under the simple model of Boivin
et al. (2009).

In terms of validating structural models, this provides new support for the

argument in BGM, MMW, and others that in order to match the facts of the

data, theoretical models of price-setting must include quick and strong responses

to sector-specific shocks.
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FIGURE 6. Persistence of idiosyncratic series under the refined model of
De Graeve and Walentin (2014).

FIGURE 7. Persistence of idiosyncratic series under the class of unobserved
components models considered here.

Measurement errors

Finally, let us reconsider the case for the presence of substantial measurement

errors. Recall that the goal of the refined model was to use the white noise and

moving average components to soak up distorting effects from substitutions and

sales, respectively.

The evidence presented here suggests that this is not the role those

components play. Moreover, even if measurement errors are sometimes captured by

those components, there is no pervasive distorting effect. With the wider range of

models considered here, the number of models in which these components entered

fell substantially under both information criteria, and under the SBIC in particular

they were only present in 20% of series. Thus either the data does not generally

exhibit these characteristics or else their effect on model fit is small.
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As described above, it is not the case that these components are wholly

inconsistent with structural shocks; in fact, quite resaonable specifications for

fundamental shocks could lead to similar components. The problem identified in

De Graeve and Walentin (2014) is that if only the refined model is considered, the

data cannot speak to the difference between structural shocks and the defined types

of measurement errors. By enlarging the range of candidate models we allow the

data to speak. The fact that only a moderate number of selected models contain

the components supports the idea that they spring from characteristics of certain

types of idiosyncratic shocks that affect only certain series, rather than from

pervasive measurement issues.

As suggested by DGW, one way to assess these components is to take

advantage of the characteristics of price series identified in the micro-level study

of Nakamura and Steinsson (2008). They suggest that sales ought to be high

in series corresponding to Apparel, Household furnishing and Food, and low in

Utilities, Vehicle fuel, Services and Travel. Substitutions ought to be high in series

corresponding to Apparel and Transportation goods and low in Vehicle fuel and

Utilities. On the contrary, upon inspection we find that almost no apparel series

have either component, that only a few food series have either component, that a

number of services-related series have one or both components, and that gasoline

has both components.

Conclusion

In this paper we have examined the dynamics of the idiosyncratic components

of disaggregated inflation series in order to investigate the possibility of distortions

caused by pervasive measurement errors and to identify stylized facts against which

theoretical models of price-setting can be validated.
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By embracing the multi-component approach first considered by De Graeve

and Walentin (2014), but extending it to allow a wide range of candidate

models, we create a setting in which the interpretation of the components can

be informed by the data. Using unobserved components models, we present a

unifying framework that both nests the models from the previous literature and

provides a natural setting in which new models can be considered. We discuss the

construction, interpretation, and implications of these models at both the level of

prices and the level of inflation.

We use the model selection process and the features of the selected models to

argue that rather than capturing measurement error, the unobserved components

are in fact capturing the heterogeneous dynamics from fundamental shocks

underlying pricing decisions by individual firms.

Finally, we reassess the stylized facts that led Boivin et al. (2009), Makowiak

et al. (2009) to suggest that firms respond quickly and strongly to idiosyncratic

shocks, and find that this stylized fact survives in the multi-component approach as

long as the data are allowed to select heterogeneous dynamic processes, rather than

being restricted to a specific imposed model.
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CHAPTER IV

COMPARING APPROACHES FOR THE ESTIMATION OF DYNAMIC

FACTOR MODELS

Introduction

Dynamic factor models have seen widespread use in the past few decades

due to their ability to make use of the large number of relatively short time series

available to macroeconomists, explain economic trends, and produce improved

forecasts.

Accompanying their increased use in empirical studies has been increased

attention to the theoretical and finite-sample properties of the available estimators,

and there is now an extensive literature exploring non-parametric principal

components estimators and maximum likelihood methods.1 Similarly, a number

of studies have explored finite-sample properties of these estimators in a variety of

simulation and forecast comparison settings.2

In deriving theoretical properties of estimators, it is commonly assumed that

the true data generating process is more complex than the one hypothesized by

the estimator, so that the object of interest is consistency in large samples under

misspecification; a certain robustness to misspecification is one of the attractive

elements of dynamic factor models. As with any asymptotic results, however, it is

not clear exactly how large a sample is required for them to obtain, particularly

since there are many possible types of misspecication. Since previous work has

1 For principal components, see especially Bai and Ng (2002), Stock and Watson (2002a),
and Bai and Ng (2008b), Forni et al. (2005) for generalized principal components, and Doz et al.
(2011) for a hybrid method. For maximum likelihood, see Bai and Li (2012) or Doz et al. (2012).

2 Examples include Boivin and Ng (2005), Boivin and Ng (2006), and Alvarez et al. (2016)
among many others.
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found that differences between estimators may not be evident under the simple

Monte Carlo analyses usually performed (see Boivin and Ng, 2005), this paper

constructs a more general data generating process to explore a wider variety of

misspecifications.

The combination of increased computing power and improved computational

methods have made feasible estimation approaches that were previously

unavailable. This paper considers two previously excluded approaches: maximum

likelihood by quasi-Newton optimization and Bayesian posterior simulation by

Gibbs sampling. Both methods require a more sophisticated set of computational

tools, and so have not been extensively studied, although the latter method has

been used in empirical work.

Section 2 describes the dynamic factor model and section 3 describes each of

the estimators under consideration. Section 4 presents the data generating process

used by the Monte Carlo analysis, describes the specific exercises studied, and

presents the results. Section 5 concludes.

Model

Factor models relate a potentially high-dimensional dataset of observations

to a small number of unobserved common factors; if the model is well-specified, the

factors should be able to capture the co-movement of the observables. In particular,

the literature has consistently found that the co-movements in macroeconomic time

series can be explained by a few factors.3 The use of factor models in dynamic

settings was pioneered by Geweke (1976) and the dynamic factor model is now

3 The seminal paper on this topic is Sargent and Sims (1977).
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commonly written as

yt = λ1gt + · · ·+ λpgt−p + εt

In this formulation, the observables yt are related to the contemporaneous and

lagged values of an unobserved vector of factors gt. The factors are themselves

assumed to follow some dynamic process, often a vector autoregression. More

usually in applied work, the so-called “static form” of the dynamic factor model

is used. In the static form, the factors are stacked so that the observation equation

can be rewritten with Λ =

(
λ1 . . . λp

)
and ft =

(
g′t . . . g′t−p

)′
as

yt = Λft + εt

where yt and εt are n × 1 vectors and ft is an r × 1 vector, for t = 1, . . . , T . Λ is

referred to as the matrix of factor loadings, Λft as the “common” component, and

εt as the “idiosyncratic” component. Specification of the idiosyncratic component

will be deferred to the next section. Throughout, we will use the static form of the

dynamic factor model and assume that the unobserved stacked factors ft evolve as

a vector autoregressive process.

Φ(L)ft = ηt

where the factor disturbance term satisfies E[ηt] = 0, E[ηtη
′
t] = Q.

It is well known that the factors in the model described above are not

separately identified from the factor loadings. In particular, for any invertible

matrix A, we have Λft = Λ∗f ∗t where Λ∗ = ΛA and f ∗t = A−1ft. In the univariate
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case, this can be rephrased as the lack of identification of the “scale” of the factor.

A variety of normalization strategies are available to enable parameter estimation,

although in most cases the true factors will not be recovered - the estimated factors

and loadings will still only be rotations of the true factors and loadings. Letting

F =

(
f1 · · · fT

)′
, in this paper we normalize F ′F/T = Ir so that the estimators

described below will recover the factors up to a rotation.4

Exact Factor Model

The hypothesized data generating process under which our estimators will

be well-specified is the exact factor model, in which the idiosyncratic component

has no cross-sectional correlation. Allowing for serial correlation, we can write the

idiosyncratic component as

φi(L)εit = eit(
e1t · · · ent

)′
≡ et ∼ N(0, H)

Under the exact factor hypothesis, the idiosyncratic innovation covariance matrix

H is diagonal.

Approximate Factor Model

For the exact factor model to hold, it must be that the common variation in

the observable series can be entirely captured in the factors. Since this is unlikely

to hold exactly in practice, the true data generating process is often specified

to be an “approximate factor model”.5 In this case, the innovation disturbance

4 See Bai and Ng (2013) and Bai and Li (2015) for alternative identification strategies.

5 The designation is from Chamberlain and Rothschild (1983).
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matrix H is allowed to have off-diagonal elements. Although most estimators

(including those considered here) are only well-specified for the exact factor model,

assumptions limiting the cross-correlation in an asymptotic sense justify their use in

the approximate factor model.6

This paper considers the finite-sample properties of estimators when the

true data generating process is assumed to be “approximate” but the hypothesis

maintained by the estimators is “exact”, so that the model is misspecified.

Estimators

The two objects of interest in estimating dynamic factor models are the

unobserved factors (or a rotation) and the underlying model parameters. This

paper considers four popular classes of estimators: principal components, maximum

likelihood estimation, Bayesian estimation via posterior simulation, and a hybrid

two-step estimator.

The latter three estimators require putting the model into linear Gaussian

state space form, which we present here. This form consists of an “observation

equation”, linking the data series to the unobserved factors and a “transition

equation”, describing the dynamic process followed by the factors.

yt = Λft + εt εt ∼ N(0, H)

ft+1 = Φft + ηt ηt ∼ N(0, Q)

Here we abstract from higher order vector autoregressive factor transitions and

from autocorrelated idiosyncratic disturbances. In the first case, a p-th order vector

6 See Bai and Ng (2008b) for a general discussion of these assumptions, Doz et al. (2011) for a
discussion in terms of the the two-step estimator (introduced below), and Doz et al. (2012) or Bai
and Li (2015) for a discussion in terms of maximum likelihood estimation.
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autoregressive transition can be easily accommodated by stacking the lags of the

factors and writing the transition equation as a first-order vector autoregression in

companion form. In the second case, if the autocorrelation takes a known form, it

can similarly be accommodated by expanding the state vector.7

Given system matrices Λ, H,Φ, Q, the Kalman filter and smoother (KFS) can

be applied to retrieve optimal estimates of the unobserved factors.8 Instrumental to

maximum likelihood and Bayesian posterior simulation approaches, the prediction

error decomposition can be used to compute the value of the likelihood function

and the simulation smoother of Durbin and Koopman (2002) (or the forward-filter

backward-smoother of Carter and Kohn (1994)) can be used to sample from the

distribution p(F | YT ). The KFS can immediately accomodate missing data, and

the system matrices may have arbitrary restrictions.

In addition to these benefits of adopting the state space form, forecasting is

performed simply by iterating the transition equation. Letting Λ̂, Φ̂ represent the

estimated factor loading and VAR coefficient matrices and ft|t = E[ft | Yt] (the

“filtered” estimate of the factor), it is easy to see that

ŷt+j|t ≡ E[yt+j | Yt] = Λ̂Φ̂jft|t

One vector of comparison between estimators will be the one-step-ahead forecast

error.

7 See, for example, Chapter 3 of Durbin and Koopman (2012) for a detailed presentation of
state space formulations of many common time series models.

8 In the classical framework, “optimal” here refers to minimum mean squared error estimation.
Chapter 4 of Durbin and Koopman (2012) describes three other senses in which the estimates are
optimal, including from the Bayesian perspective.
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A potential issue that arises with conventional KFS implementations in the

context of dynamic factor models (for example the presentation in Harvey (1990))

is the requirement to invert dense matrices of size n × n. To make the KFS feasible

for large-n models, the univariate approach of Koopman and Durbin (2000) or the

collapsed approach of Jungbacker and Koopman (2008) can be used in practice.

Software implementations of the KFS, often including the univariate approach, are

widely available.

Principal components estimator (PCA)

The recent literature on dynamic factor models has thoroughly studied the

properties of the principal components estimator; see Bai and Ng (2008b) or Bai

and Ng (2013) for details. In brief, the principal components estimator is a non-

parametric method that applies an orthogonal transformation to construct a few

series that capture most of the covariation in the original dataset. In the factor

model context, these constructed series form the PCA estimates of the factors,

f̂PCAt , and these estimates are consistent for large n and T .9 Consistent estimates

of the factor loadings are similarly available, although often the observation

equation above is used to estimate the loadings via OLS from the estimated factors.

To construct estimates of the VAR coefficients Φ̂PCA, the transition equation

is estimated using OLS; as usual for VAR models, this provides a consistent

estimator.

The construction of the principal components and loadings implicitly imposes

the normalization restrictions described in the previous section. These are sufficient

that to guarantee that the estimated common component F̂ PCA′Λ̂PCA recovers

9 Principal components analysis can also be viewed as a process that minimizes a residual sum
of squares, see the citations in the text.
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the true common component F ′Λ, although separately the estimated factors and

loadings are only rotations of the true factors and loadings.

It can be shown (see for example Bai and Li, 2012) that the PCA estimator

coincides with the maximum likelihood estimator (described below) in the case that

the idiosyncratic disturbances are homoskedastic ( H = σIn).

Two of the great advantages of PCA are the lack of parametric assumptions

and the ease and robustness of computation. The former suggests that one might

expect reasonable results even in the case that the true data generating process

substantially deviates from the exact factor model described above. The latter

makes the PCA estimator attractive in applied work because computation amounts

to calculation of eigenvalues and eigenvectors. Methods to compute these are

widely available and scale well even to very large datasets. Due to the large number

of parameters (models with a hundred or more observed series can easily have

thousands of parameters), numerical, non-linear maximization of the likelihood

function problem can prove very difficult, exhibit convergence issues, and is

generally computationally expensive. On the other hand, the PCA method will

rarely ever fail to produce estimates.

There are a number of disadvantages to PCA. First, PCA is not invariant

to the scale of the observed data series and the ideal situation is one in which all

variables share the same scale. Since this is not true in most situations, the data

are usually normalized to have sample mean zero and sample variance one prior

to estimation. Second, as mentioned above, it will only be efficient in the case

of homoskedastic idiosyncratic disturbances; more generally, a correctly specified

parametric estimator will be more efficient.10 Finally, deviations from the standard

10 A generalized principal components estimator allowing heteroskedasticity using an approach
similar to feasible generalized least squares has been investigated, for example in Choi (2012).
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model are somewhat inconvenient to incorporate. For example, known idiosyncratic

dynamics, missing data, or more complex factor structures (for example the case

when some factors only load on a subset of observed series) can be accommodated,

but must be done on a case-by-case basis.

Two-step estimator

The two-step estimator of Doz et al. (2011) computes preliminary estimates

of the factors using PCA and estimates of the system matrices by OLS in the

first step, and then in the second step applies the KFS to retrieve updated

estimates of the factors. As above, this approach is consistent for large n and T

and incorporates some of the advantages of PCA (robust and easily computed

parameter estimates) and some of the advantages of the state space form (for

example ease of forecasting). One interpretation of the two-step estimator is as a

single iteration of the expectation maximization algorithm, described below.

In our Monte Carlo simulations below, this will be considered the reference

estimator against which the less complicated PCA estimator and more complicated

maximum likelihood and Bayesian estimators will be compared.

Maximum likelihood estimation

The maximum likelihood estimator (MLE) has recently received more

attention in the dynamic factor literature, see especially Doz et al. (2012), Bai and

Li (2012), and Bai and Li (2015). Since the true data generating process is the

approximate factor model but the maintained hypothesis for estimation is the exact

factor model, MLE is usually interpreted as a quasi-maximum likelihood estimator

in the sense of White (1982).
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In order to compute the likelihood function the model is put into state

space form and the prediction error decomposition is applied. To be concrete, the

objective function is11

logL(θ | YT ) = −Tn
2

log 2π − 1

2

T∑
t=1

(
log |Ft|+ v′tF

−1
t vt

)
where θ collects the parameters from the system matrices and vt, Ft are the one-

step-ahead prediction error and covariance matrix computed by the KFS. This

optimization problem does not have an analytic solution, so numeric methods must

be used. As shown in the references above, the resulting quasi-MLE estimator is

consistent.

There are two available strategies for numerically maximizing the

likelihood function of a dynamic factor model cast into state space form.12

The first is applying a quasi-Newton algorithm (for example the widespread

BroydenFletcherGoldfarbShannon, or BFGS, method) and the second is applying

the expectation maximization (EM) algorithm of Dempster et al. (1977) and

Watson and Engle (1983).

These two methods are complimentary. While the EM algorithm is generally

robust even to very poor starting parameters (and under certain assumptions is

guaranteed to increase the likelihood at each iteration), it can take a large number

of iterations to converge to the optimum. While the quasi-Newton method is less

robust to poor starting parameters and suffers to a greater extent from the curse of

dimensionality, when starting close to the optimum it converges quadratically. For

11 See Durbin and Koopman (2012), Chapter 7.

12 Like many numerical maximization routines, the algorithms described here generally consider
local maximization.
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this reason, it is often recommended that the EM algorithm be initially applied for

some fixed number of iterations and then a quasi-Newton method be applied for

the remaining iterations until convergence is obtained.

Although quasi-Newton methods are more popular than the EM algorithm for

many types of models, they often require numeric computation of the score vector

which can be prohibitively time-consuming to compute in large-dimensional models,

even with the recent improvements to the KFS, because the Kalman filter must

be run once per parameter at each iteration. For this reason, they have received

little attention in the high-dimensional dynamic factor literature, and the EM

algorithm is usually used by itself.13 Kose et al. (2003) partially motivate their

choice of Bayesian methods due of the impracticality of using numerical derivatives

in a quasi-Newton scheme.

Nonetheless, it is possible to compute the score vector analytically using a

single pass of the KFS as shown in Koopman and Shephard (1992). Jungbacker

and Koopman (2008) and Jungbacker et al. (2011) use the analytic score along with

a quasi-Newton method to estimate dynamic factor models. A contribution of this

paper is considering the effect of applying both the EM and quasi-Newton methods

as described above.

To facilitate comparison of the estimators, here we briefly describe the

intuition of the EM algorithm as applied to the model (4.3), in the case of no

missing data.14 First, notice that if the factors were known the observation and

transition equations could separately be consistently estimated by OLS. This was

the approach of the non-parametric estimators, where the PCA estimates of the

13 An influential paper using the EM algorithm alone is Reis and Watson (2010).

14 A more complete recent treatment for dynamic factor models can be found in Babura and
Modugno (2014).
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factors were used in place of the true factors. The EM algorithm essentially iterates

on this process: at each iteration, estimates of the factors are first constructed and

then the parameters are (re-)estimated to maximize the “expected” likelihood

function, in which the unknown factors are replaced by their expectation. These

two steps are known respectively as the expectation and maximization steps. In

this case, given the the known factors, the expected likelihood function can be

maximized analytically; as might be expected, the optimal parameters are the least

squares estimates.

Practically, then, the EM algorithm consists of iterations in which the KFS

is first applied to compute the “smoothed” factors f̂t ≡ E[ft | YT ], and then the

parameters of the observation and transition equations are estimated by OLS.

The EM algorithm requires starting parameters to begin the iterations; a natural

(and often used) set of starting parameters are those constructed by applying OLS

to the PCA factor estimates - i.e. by applying the two-step estimator. Iterations

continue until the differences in the likelihood in subsequent steps fall below a given

tolerance.

Bayesian estimation

Bayesian estimation of dynamic factor models has generally received less

attention in both the theoretical and applied dynamic factor literature. Two of the

most influential papers that apply the Bayesian approach are Kose et al. (2003) and

Bernanke et al. (2005). While the former uses it exclusively, the latter suggests that

the PCA estimator outperforms the Bayesian estimator to some degree. Similarly

to MLE, the Bayesian estimator here will be misspecified but will retain desirable
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asymptotic properties; for example, the posterior will be centered at the MLE

estimates.15

Here we give only the briefest overview of Bayesian methods as applied to

state space models; complete treatments can be found in Koop (2003) or West and

Harrison (1999).

The Bayesian approach to parameter estimation begins by considering

parameters as random variables and applying Bayes’ theorem to derive a

distribution for the parameters conditional on the observed data. In this case, the

posterior is not available analytically so we simulate the posterior using Markov

chain Monte Carlo (MCMC) techniques and apply a law of large numbers so that

sample averages can be used to approximate population quantities.

Selection of a prior distribution for the parameters is required in Bayesian

applications; here we select natural conjugate priors for two reasons. First, dynamic

factor models are generally characterized by large amounts of data so that the

effect of the prior on the posterior will typically be small, and second the Gibbs

sampling scheme made possible by these priors yields a form that makes clear

the relationship with the other estimation methods discussed above. Writing the

observation equation line-by-line as yit = λift + εit with εit ∼ N(0, σ2
i ), we select

independent Normal-Gamma priors: λi | σ2
i ∼ N(0, Ir) and 1

σ2
i
| λi ∼ Γ(10−4, 3).

Considering the transition equation as a seemingly unrelated regression with fixed

variance (due to the identification strategy described above), we select a restricted

Normal prior so that vec(Φ) ∼ N(0, Ir2)[ρ(Φ)<1] where ρ(·) is the spectral radius and

the restriction guarantees that the factors are stationary. These priors are similar

to those selected in Bernanke et al. (2005).

15 See, for example, Mller (2013) for a discussion of misspecification in the Bayesian context.
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Because we have selected conjugate priors, the MCMC method used in this

paper is a Gibbs sampling algorithm as in Carter and Kohn (1994). For other prior

selections that do not permit Gibbs sampling, Metropolis-within-Gibbs schemes

could alternatively be used with only minor modifications.

Again to facilitate comparison of the estimators, we briefly describe the

intuition of the Gibbs sampler. Gibbs sampling allows the simulation of the full

(joint) posterior through simulation of a collection of k conditional posteriors{
π
(
θ(i) | Yn, θ(−i))}k

i=1
, where θ = ∪ki=1θ

(i), ∩ki=1θ
(i) = ∅, and θ(−i) = θ \ θ(i).

The partitions of the parameters are referred to as blocks.

The Gibbs sampler is an iterative algorithm that proceeds as follows. Given

a vector parameters drawn from the posterior, θ
(−1)
j−1 , new parameters are drawn

block-by-block.16 First, θ
(1)
j are drawn from π

(
θ(1) | Yn, θ(−1) = θ

(−1)
j−1

)
. As described

in the references above, this constitutes a valid draw of the θ(1) block from

π(θ | YT ). Then θ
(2)
j are drawn from π

(
θ(2) | Yn, θ(1) = θ

(1)
j , θ(−1,2) = θ

(−1,2)
j−1

)
; this

continues until all blocks have been drawn, at which point iteration j is complete

and the collection ∪ki=1θ
(i)
j is a valid draw from the full (joint) posterior.

With the dynamic factor model cast into state space form, we partition the

parameter vector into four blocks: θ = {F,Λ, H,Φ}. To construct the conditional

posterior distributions, notice that conditional on the factors F , the observation

equation reduces to a line-by-line linear regression and the transition equation is a

seemingly unrelated regression (SUR). A standard result applying conjugate priors

to regression models yields independent Normal-Gamma conditional posteriors in

the line-by-line case and independent Normal-Wishart conditional posteriors in the

16 The immediate problem is how to start the chain, since an initial draw from the posterior
is not available. As usual with MCMC methods, the iteration can be initialized with arbitrary
starting parameters but then requires a “burn-in” period in which the Markov chain converges to
the posterior.
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SUR case. Then given the parameters of the model, sampling from the conditional

posterior of the factors is possible through the KFS simulation smoother. Thus the

Gibbs sampler proceeds as follows:

0. Initialize the sampler with starting parameters.

1. Draw Fj from π(F | YT ,Λ = Λj−1, H = Hj−1,Φ = Φj−1) using the simulation

smoother.

2. Draw Λj line-by-line from π(Λ | YT , F = Fj, H = Hj−1,Φ = Φj−1)

3. Draw Hj line-by-line from π(H | YT , F = Fj,Λ = Λj,Φ = Φj−1)

4. Draw Φj from π(Φ | YT , F = Fj,Λ = Λj, H = Hj)

5. Repeat steps 1-4 until enough draws have been taken from the converged

posterior.

Intuitively, step (1) performs a function synonymous with the expectation

step of the EM algorithm; it provides an “estimate” of the factors. Steps (2-4)

perform a function synonymous with the maximization step; conditional on the

factors, they “estimate” the parameters. Except for the influence of the prior

(which is asymptotically negligible), the conditional posteriors in steps (2-4)

are centered on the OLS estimates. This correspondence provides an intuitive

explanation of the way in which one difference between the Bayesian and ML

estimators - that in the former a full distribution is constructed whereas in the

latter only a point estimate is found - is exhibited in the dynamic factor case.17

17 See also footnote 4 of Otrok and Whiteman (1998) for a description of the relationship
between the EM algorithm and Gibbs sampling.
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Monte Carlo Exercises

In order to better understand how factor and parameter estimation are

affected by complex features of real-world data, we investigate the following

elements: (1) inclusion of unrelated data series; (2) outliers; and (3) more complex

factor transitions. In addition, we estimate baseline models for comparison. A

short description of these features is provided following the presentation of the

data generating process, which includes serial and cross-sectional correlation in

idiosyncratic disturbances.

Data generating process

This section describes the generic data generating process for the Monte Carlo

simulations. First, we decribe how the observed series are constructed from the

factors

yit =
r∑
j=1

Λijfit + eit i ∈ N1 ∪N2; j = 1, . . . r

yit = eit i ∈ N3

Λij ∼ N(0, 1) i ∈ N1 ∪N2; j = 1, . . . , r

Λij = 0 i ∈ N3; j = 1, . . . , r

The observed data series, denoted yit are divided into into three groups; the

first and second groups (N1 = {1, . . . , n1}, N2 = {n1 + 1, . . . , n2}) contain

data series that are generated by the factors, whereas the third group (N3 =

{n1 + n2 + 1, . . . , n1 + n2 + n3}) is unrelated to the factors. Next, we specify the
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dynamic processes followed by the factors and idiosyncratic disturbances.

Φ(L)ft = ut ut ∼ tν(0, Q)

D(L)et = vt vt ∼ tµ(0, T )

Φ(L) = Ir − A1L− · · · − ApLP

Dij(L) =


1− dL i = j

0 otherwise

i, j ∈ N1 ∪N2 ∪N3

The persistence of idiosyncratic series is controlled by the autoregressive parameter

d. The vector autoregressive coefficient matrices {Φi}pi=1 are constructed by

generating matrices {Bi}pi=1 and applying the transformation described in Ansley

and Kohn (1986). Each entry of each matrix Bi is distributed N(0, ξ2). The

parameters tν and tµ control the quantity of “outliers” generated by the model

(lower values imply fatter tails and increased incidence of outliers), and the

parameter ξ2 acts to control persistence (the higher is ξ2, the more persistent

on average is the resultant VAR process). Next we specify the generation of the

idiosyncratic innovation correlation structure.

σ2
i =


∑r

j=1 Λ2
ij i ∈ N1 ∪N2

σ2 i ∈ N3

βi ∼ U ([uβ, 1− uβ]) i ∈ N1 ∪N2 ∪N3

αi = σ2
i

βi
1− βi

1

1− ρ(A)2

Tij = [(1− 1(i, j))τ ]|i−j| (1− d2)
√
αiαj
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where the indicator function is

1(i, j) =


1 (i ∈ N1 & j 6∈ N1) | (j ∈ N1 & i 6∈ N1)

0 otherwise

The parameter σ2 acts like variance multiplier on the “unrelated” series, uβ controls

heteroskedasticity, and τ controls the extent of cross-correlation. Finally we specify

the generation of the factor innovation correlation structure.

δi ∼ U ([uγ, 1− uγ]) i = 1, . . . , r

γi =
δi

1− δi
1

1− d2

Qij = q|i−j|(1− ρ(A)2)
√
γiγj

The parameter uγ controls heteroskedasticity, and q controls the extent of cross-

correlation.

By tuning the free parameters, this framework can incorporate the desirable

features described above to a greater or lesser extent. The free parameters are

collected and described in Table 7.

Exercises

We first consider a baseline specification replicating known results and then

introduce complicating features individually. Finally, we consider a model with all

features included simultaneously.
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TABLE 7. Free parameters in Monte Carlo data generating process

Parameter Description

%n1 Percentage of series that are “clean”
%n2 Percentage of series that are “contaminated”
%n3 Percentage of series that are “unrelated”
r Number of unobserved factors
p Order of factor lag polynomial
ν Degrees of freedom of factor innovation t-distribution
µ Degrees of freedom of idiosyncratic innovation t-distribution
d Idiosyncratic autoregressive coefficient
ξ Controls persistence of the factor lag polynomial; ξ → 0 yields zero persistence
σ2 Variance multiplier for “unrelated” series
uβ Controls heteroskedasticity of idiosyncratic disturbances; uβ → 0.5 yields

homoskedasticity
τ Controls cross-correlation of idiosyncratic disturbances; τ → 0 yields independence
uγ Controls heteroskedasticity of factor disturbances; uγ → 0.5 yields homoskedasticity
q Controls cross-correlation of factor disturbances; q → 0 yields independence

Baseline

The baseline data generating process corresponds to the Monte Carlo exercise

presented in Doz et al. (2012), which is a specialization of the data generating

process presented above. In particular, by setting n2 = n3 = 0, ν = µ = ∞,

Q = Ir, p = 1, and A1 = 0.9Ir, we recover their model. The full specification is

provided in Table 8. For all other exercises, a specification table will be presented

that will only include the parameters that differ from the baseline specification.

Because d > 0, uβ 6= 0.5, and τ > 0, the baseline model contains

heteroskedasticity and both serial- and cross-correlation. The factors are highly

persistent and independent from each other. Although this falls into the class of

approximate factor models, it is comparatively well-behaved.

TABLE 8. Baseline parameter specification

Parameter %n1 %n2 %n3 r p ν µ d ξ σ2 uβ τ uγ q

baseline: AR(1) 100% 0% 0% 1 1 ∞ ∞ 0.5 - - 0.1 0.5 - -
baseline: VAR(1) 100% 0% 0% 3 1 ∞ ∞ 0.5 - - 0.1 0.5 - -
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Outliers

In many studies making use of dynamic factor models, a small number of

outlier observations are identified and eliminated prior to estimation. In order

to generate models with outliers, here we generically specify innovations as t−

distributed. By setting an infinite number of degrees of freedom we can recover the

typical Gaussian case, but we can also investigate the effect of outliers by specifying

a finite number.

We consider three specifications incorporating outliers, with full details

in Table 9. The first specifies that the idiosyncratic disturbances are Cauchy

distributed (ν = 1), the second specifies a t distribution with ν = 2, and the third

specifies that both idiosyncratic and factor disturbances are t− distributed with

degree of freedom ν = µ = 10.

For the first two exercises, we also consider a variant of the estimation

procedure in which outliers, defined to be data points more than 4 standard

deviations from the mean, are replaced with the sample mean. Some variant of this

procedure is commonly done in empirical studies.18 In large samples, approximately

16% of innovations would be classified as outliers under the Cauchy specification,

about 6% when the degree of freedom is 2, and 0.25% when the degree of freedom

is 10. With infinite degree of freedom (the Gaussian case), only 0.006% would be so

classified.

Unrelated series

Although many studies making use of dynamic factor models use standard

large datasets, recent work suggests that such models are not immune to data

18 See for example Jungbacker and Koopman (2008) and Reis and Watson (2010).
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TABLE 9. Changed parameter specifications for
outlier exercises

ν µ Remove outliers

outliers: cauchy 1 ∞ No
outliers: cauchy + removal 1 ∞ Yes
outliers: dof=2 2 ∞ No
outliers: dof=2 + removal 2 ∞ Yes
outliers: dof=10 10 10 No

selection issues.19 As pointed out by Boivin and Ng (2006), Bai and Ng (2008a),

and Alvarez et al. (2016), incorporating large numbers of series that are unrelated

to the factors of interest may reduce estimation performance.

The above data generating process allows for three types of series. “Clean”

series (those in N1) are the types typically studied in dynamic factor Monte Carlo

exercises; they are related to the factors and exhibit a small amount of cross-

correlation with each other. Following Boivin and Ng (2006), we include two

other types of series. “Unrelated” series (those in N3) are unrelated to the factors,

although they may follow an autoregressive process and may be correlated with

each other. Finally, “contaminated” series (those in N2) are generated by the

factors but are correlated with the “unrelated” series.

The goal of these exercises is to gauge the extent to which increased

numbers of unrelated series will make it more difficult to recover the underlying

factors and the extent to which more volatile unrelated series degrade forecasting

perfomance. We consider three specifications incorporating unrelated data series,

with parameterizations provided in Table 10.

19 Due to frequent use, the Federal Reserve Economic Database has even recently made
available ongoing updates to the dataset popularized by Stock and Watson (2002b).
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TABLE 10. Changed parameter
specifications for unrelated exercises

%n1 %n2 %n3 σ2

unrelated(20%, 10) 40% 40% 20% 10
unrelated(60%, 1) 20% 20% 60% 1
unrelated(60%, 10) 20% 20% 60% 10

Factor transition dynamics

While it is common in empirical work to specify factors as having a vector

autoregressive transition (see for example Bernanke et al. (2005) and Boivin and

Ng (2005) among many others), Monte Carlo studies typically have factors evolving

according to univariate autoregressions, often of order one. Since an important

question is whether explicitly specifying the transition dynamics through the state

space form improves efficiency in finite samples, it is important that we allow

more complex transition dynamics. In particular, we allow for varying degrees of

persistence, varying lag orders, and vector autoregressive processes.

Specifically, we consider four parameterizations. The first two only modify

the autoregressive coefficient to investigate the effect of persistence. The last two

exercises instead draw the persistence randomly as described above. Of those, the

first incorporates a higher lag order and the second incorporates both an increased

lag order and vector autoregressive dynamics. Specifications are in Table 11.

TABLE 11. Changed parameter specifications for factor
transition exercises

r p ξ uγ Alternative transition

AR(1) low persistence 1 1 - - A1 = 0.2
AR(1) high persistence 1 1 - - A1 = 0.98
AR(4) variable persistence 1 4 0.9 0.5 -
VAR(2) variable persistence 3 2 0.9 0.5 -
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Omnibus exercise

Finally, to explore performance in very complex scenarios, we consider a

single omnibus model incorporating a large number of unrelated series, Cauchy

distributed innovations, and vector autoregressive transitions with strong

persistence. The parameterization is given in Table 12.

TABLE 12. Changed parameter specifications for
omnibus exercise

%n1 %n2 %n3 r p ν ξ σ2 uγ

omnibus 1 20% 20% 60% 3 4 1 0.9 10 0.5

Evaluation criteria

In order to evaluate the performance of the estimators, we consider two

criteria that are standard in the literature. The first is a multivariate trace R2

statistic, defined to be

R̂2(F, F̂ ) =
tr(F ′F̂ (F̂ ′F̂ )−1F̂ ′F )

tr(F ′F )

This statistic captures the extent to which the estimated factors span the same

space as the true unobserved factors. Better performance is indicated by an R2

statistic close to one.

The second statistic is the root mean squared forecast error from a one-step-

ahead forecast.

RMSE(y, ŷ) =

√∑n
i=1(ŷi,T+1|T − yi,T+1)2

n

Better performance is indicated by a smaller RMSE statistic.
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Procedure

Each Monte Carlo exercise generates observed series and unobserved factors

according to the model above, estimates the factors and parameters using each

of the estimators, performs one out-of-sample forecast, and computes the R2 and

RMSE statistics above. All exercises are performed separately for T = 50, 100 and

n = 5, 10, 25, 50, 100; each exercise is replicated 100 times.

There are two differences to note in estimation for the PCA method. First,

the data were standardized to have sample mean zero and sample standard

deviation one prior to computing the principal components. Second, forecasts were

not computed for this method. For this reason, the RMSE results shown below do

not have a PCA column.

For Gibbs sampling we must specify the number of burn-in draws and the

number of draws from the posterior. The results reported below are based on the

median value of the parameters from from 100 draws from the posterior, after 100

burn-in draws.20

Results

Results are reported in Table 13 for the case T = 100 and are based on

median values across replications.21 The first two columns identify the exercise and

the next two columns give the value of the R2 and RMSE statistics for the 2-step

estimator. The next four columns give the value of the R2 statistic for the other

estimators relative to the 2-step value, and the last three columns give the value of

the RMSE statistic for the other estimators relative to the 2-step value.

20 These number of draws for both burn-in and from the posterior are quite small, due to
computational constraints. Simulation of exercises with a larger number of draws are on-going,
although preliminary results suggest that it does not substantially affect results.

21 A similar table for the T = 50 case is reported in the Appendix, along with all other results.
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For the columns reporting relative statistics, cells are lightly shaded if they

represent any improvement over the 2-step estimator and are darkly shaded if they

represent at least a 10% improvement. For all R2 columns higher values imply

better performance; for the RMSE columns lower values imply better performance.

Comparisons across exercises are possible using the values reported for the

2-step estimator. For example, from these columns it is clear that the ability of

the estimators to recover the true factors degrades substantially in the presence of

outliers, relative to the baseline model.

Comparisons across estimators for each of the exercises are possible using the

relative statistics. For example, it is easy to see that in the presence of outliers,

the Gibbs sampler is generally able to recover more of the true factor space than

any other estimator (of course, in absolute terms, it is still not doing a particularly

good job).

The distribution of the statistics across the replications is also informative,

and we employ scatterplots to present this information visually. A scatterplot for

the baseline exercise is given in Fig. 8 for the case T = 100. To improve clarity,

the combination EM and quasi-Newton estimator is not shown because it is nearly

identical in all cases to the EM estimator.

TABLE 13. Evaluation statistics from Monte Carlo exercises

R2 RMSE R2
· /R

2
2-step RMSE·/RMSE2-step

n 2-step PCA EM EM,QN GS EM EM,QN GS

baseline: 5 0.83 2.48 0.81 1.00 1.00 1.00 0.96 0.96 0.95

AR(1) 10 0.93 2.38 0.84 1.00 1.00 0.99 1.03 1.03 1.02

25 0.97 2.94 0.87 1.00 1.00 1.00 0.98 0.98 0.99

50 0.98 3.03 0.92 1.01 1.01 1.01 0.98 0.98 1.00

100 0.99 3.00 0.89 1.01 1.01 1.01 1.00 1.00 1.00

Continued on next page
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TABLE 13. Evaluation statistics from Monte Carlo exercises

R2 RMSE R2
· /R

2
2-step RMSE·/RMSE2-step

n 2-step PCA EM EM,QN GS EM EM,QN GS

baseline: 5 0.59 4.18 0.80 1.00 1.00 1.13 1.01 1.01 0.98

VAR(1) 10 0.69 4.81 0.75 1.11 1.11 1.12 1.06 1.07 1.03

25 0.89 4.96 0.80 1.02 1.02 1.03 1.01 1.01 1.04

50 0.95 5.42 0.84 1.00 1.00 1.01 1.00 1.00 1.00

100 0.97 5.33 0.84 1.00 1.00 1.01 1.00 1.00 1.01

outliers: 5 0.02 5.01 0.72 1.04 1.04 1.91 1.05 1.05 1.14

cauchy 10 0.02 6.20 1.08 1.00 0.87 1.69 1.04 1.04 1.12

25 0.02 5.97 0.61 0.85 0.85 1.00 1.04 1.04 1.05

50 0.02 7.73 0.76 0.89 0.89 0.97 0.96 0.96 1.04

100 0.01 7.28 0.91 1.02 1.02 1.21 0.99 0.99 1.00

outliers: 5 0.02 5.27 0.73 1.03 1.03 3.11 1.00 1.00 1.16

cauchy 10 0.03 7.82 0.59 1.29 1.29 1.39 0.94 0.94 1.06

+ removal 25 0.03 7.85 0.65 1.25 1.25 1.92 1.02 1.02 0.95

50 0.02 9.06 0.84 0.99 0.99 2.28 0.97 0.97 0.99

100 0.03 8.21 0.75 1.05 1.05 1.36 0.95 0.95 0.97

outliers: 5 0.12 2.79 0.57 1.54 1.54 2.51 1.02 1.02 1.07

dof=2 10 0.31 3.15 0.68 0.98 0.98 1.45 0.96 0.96 0.97

25 0.44 4.08 0.80 1.30 1.30 1.33 1.04 1.04 1.01

50 0.76 4.23 0.72 1.07 1.07 1.10 1.01 1.01 1.01

100 0.76 4.40 0.60 1.08 1.08 1.10 1.02 1.03 1.01

outliers: 5 0.24 2.89 0.63 1.76 1.76 1.95 0.99 0.99 0.98

dof=2 10 0.56 3.77 0.74 1.10 1.10 1.14 1.00 1.00 1.05

+ removal 25 0.78 4.22 0.74 1.05 1.05 1.05 0.95 0.95 0.98

50 0.89 4.65 0.78 1.03 1.03 1.02 1.02 1.02 0.98

100 0.94 4.66 0.88 1.01 1.01 1.02 1.01 1.01 0.99

outliers: 5 0.84 2.24 0.80 1.01 1.01 1.01 0.95 0.95 0.98

dof=10 10 0.92 2.65 0.85 1.00 1.00 1.00 1.02 1.02 1.04

25 0.96 3.19 0.93 1.00 1.00 1.00 1.02 1.02 1.01

50 0.98 3.09 0.88 1.00 1.00 1.00 1.00 1.00 0.97

100 0.98 3.30 0.93 1.01 1.01 1.01 1.02 1.02 0.99

unrelated: 5 0.77 3.43 0.79 1.04 1.04 1.04 0.99 0.99 0.99

20% 10x var 10 0.90 4.12 0.84 1.01 1.01 0.99 0.97 0.97 0.97

25 0.96 4.70 0.89 1.00 1.00 1.00 0.99 0.99 0.99

50 0.98 4.73 0.92 1.01 1.01 1.01 0.99 0.99 1.00

100 0.98 4.92 0.94 1.01 1.01 1.01 1.00 1.00 1.00

Continued on next page
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TABLE 13. Evaluation statistics from Monte Carlo exercises

R2 RMSE R2
· /R

2
2-step RMSE·/RMSE2-step

n 2-step PCA EM EM,QN GS EM EM,QN GS

unrelated: 5 0.07 2.14 1.07 3.81 3.81 5.91 0.99 0.99 0.98

60% 1x var 10 0.54 2.70 0.63 1.48 1.48 1.49 1.01 1.01 1.02

25 0.93 2.75 0.81 1.00 1.00 1.00 1.00 1.00 1.00

50 0.96 2.95 0.86 1.00 1.00 1.00 0.99 0.99 1.01

100 0.97 3.02 0.91 1.00 1.00 1.01 0.99 0.99 0.99

unrelated: 5 0.10 5.45 0.94 1.13 1.13 6.03 1.01 1.01 1.00

60% 10x var 10 0.41 6.79 0.63 1.34 1.34 1.98 0.95 0.95 1.02

25 0.91 7.06 0.84 1.01 1.01 1.00 0.99 0.99 1.00

50 0.95 7.43 0.87 1.00 1.00 1.00 1.00 1.00 1.00

100 0.97 7.65 0.91 1.01 1.01 1.01 0.99 0.99 1.00

AR(1): high 5 0.72 4.91 0.39 1.20 1.20 1.20 0.96 0.96 0.94

persistence 10 0.87 5.14 0.52 1.05 1.05 1.05 0.98 0.98 0.95

25 0.95 5.74 0.61 1.00 1.00 1.01 1.00 1.00 1.00

50 0.98 6.45 0.64 0.99 0.99 1.00 0.99 0.99 0.98

100 0.99 6.27 0.70 0.99 0.99 1.00 0.99 0.99 0.98

AR(1): low 5 0.84 1.14 0.99 0.92 0.92 0.93 0.98 0.98 0.97

persistence 10 0.93 1.41 0.98 0.99 0.99 0.98 1.00 1.00 0.99

25 0.97 1.53 0.99 1.00 1.00 1.00 1.00 1.00 1.00

50 0.98 1.44 0.99 1.00 1.00 1.00 0.99 0.99 0.99

100 0.99 1.59 0.99 1.00 1.00 1.00 1.02 1.02 1.02

AR(4): 5 0.08 3.55 0.25 0.93 0.93 0.90 1.01 0.98 1.02

variable 10 0.12 4.04 0.30 0.73 0.73 1.04 0.99 0.99 0.98

persistence 25 0.37 4.00 0.41 0.58 0.57 0.55 0.99 0.99 1.01

50 0.17 5.09 0.42 0.74 0.74 1.59 0.98 0.98 0.99

100 0.83 4.72 0.83 0.81 0.81 1.02 0.98 0.98 1.00

VAR(2): 5 0.53 4.71 0.75 0.74 0.71 0.99 0.96 0.98 0.90

variable 10 0.61 5.45 0.77 0.88 0.84 1.06 1.01 1.02 0.97

persistence 25 0.81 5.86 0.87 1.02 1.00 1.04 1.00 0.99 0.98

50 0.87 6.36 0.86 0.97 0.97 1.01 0.99 0.99 0.99

100 0.93 6.11 0.90 0.99 1.00 1.00 1.00 1.00 1.00

Omnibus: 1 5 0.13 54.13 0.21 0.95 0.97 0.89 1.04 1.04 1.03

10 0.13 69.65 0.24 0.93 0.94 0.92 1.05 1.05 1.03

25 0.12 66.81 0.21 1.01 1.01 1.09 1.00 1.04 1.03

50 0.12 51.00 0.21 0.97 0.98 0.92 1.35 1.39 0.89
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FIGURE 8. Hexagon-binned scatterplot of evaluation statistics for baseline:
VAR(1)

Baseline

Results in the baseline model are qualitatively very similar to those of Doz

et al. (2012) and generally reiterate a few well-known facts about dynamic factor

models.

First, the estimators generally perform very well, recovering the majority of

the true factor space. Second, in a well-specified model, the estimators making

use of a parametric specification are more generally more efficient in factor

factor estimation. Third, with the exception of the PCA, the performance of the

estimators is very similar, and it is hard to draw definitive conclusions about

the superiority of one estimator to another. Finally, as the number of “clean”

observations increases, all estimators are better able to estimate the factors.
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In particular, we note that the two estimators not previously considered in

Monte Carlo studies, the combination EM and quasi-Newton estimator and the

Gibbs sampler, share these well-known characteristics.

Considering the distribution of results across repetitions in Fig. 8, the

evaluation statistics appear to be similarly dispersed for all the estimators.

Increased sample size corresponds to reduced dispersion of both statistics for all

estimators, with the reduction occurring at roughly the same rate.

Factor estimation

Focusing first specifically on the R2 statistics, several results stand out. The

first is that the Gibbs sampler tends to weakly outperform the other estimators,

although this is by no means uniform. In most cases in which it does perform

better, the difference is not dramatic. Nonetheless, if on the basis of these results

one estimator had to be selected, it would be the Gibbs sampler. Counterbalanced

against this is the fact that it is the most computationally intensive estimator:

whereas the 2-step iterator requires only a single run of the KFS and the EM-

algorithm usually requires less than 100 applications of the KFS, the Gibbs sampler

requires as many applications as there are MCMC draws.22 Since this is often

thousands or tens of thousands in practice, the difference in computation time

can be substantial, particularly for models with a large number of observed series.

However, by employing the univariate or collapsed KFS approaches mentioned

above, estimation by Gibbs sampler is still easily feasible on modern desktop or

laptop computers.

22 If a Metropolis-within-Gibbs approach were required, even more applications of the Kalman
filter would be required.
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On the other hand, the PCA estimator consistently offered the worst

performance in recovering the true factors. This suggests that the only slightly

more complicated two-step approach should be used in its place.

Next, the maximum likelihood estimators had relatively poor performance

in exercises with more complicated factor transition dynamics. In the AR(4) and

VAR(2) models, the MLE estimators were consistently worse than the two-step

and Gibbs sampling approaches. For a more detailed look, the distribution of

the statistics across repetitions is plotted in Fig. 9. Two groups of results are

clear across all three estimators: a poorly estimated group in the upper left had

corner of each graph and a well estimated group in the lower right hand corner. We

conjecture that in the poorly estimated group, the MLE model converges to a local

maximum that is suboptimal globally, whereas the Gibbs sampler and two-step

estimators are better able to explore a wide range of models, resulting in a greater

number of replicates with intermediate values of the statistics. The n = 50 case is

particularly telling.23

It is also evident that the EM algorithm is able to converge quickly enough

to the local maximum that adding subsequent quasi-Newton iterations does not

noticeably improve results. In many cases, the convergence criterion for the quasi-

Newton method (based on the norm of the score vector) was immediately satisfied

by the parameters selected by the EM algorithm. Based on these results, and

since computation of the analytic score adds an additional layer of complexity to

estimation, it appears safe to use the EM algorithm by itself.24

23 It would be interesting to investigate the effects of trying different starting parameters for
MLE or making use of global optimization techniques. This is left for future work.

24 However, in some more complicated dynamic factor settings, the maximization step of the
EM algorithm no longer has a closed form solution and so the score vector is required anyway. See
Jungbacker et al. (2011) for details.
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FIGURE 9. Hexagon-binned scatterplot of evaluation statistics for VAR(2):
variable persistence

The third result is that the presence of outliers makes a substantial impact on

the ability of all estimators to recover the true factor space, and that the removal

of outliers can improve factor estimation, although this comes at the expense

of forecasting performance. The estimators were essentially unable to estimate

the factors with Cauchy disturbances regardless of the sample size (this is not

necessarily unexpected since the first two moments of the Cauchy distribution

do not exist and it is often described as a pathological distribution). In the two

degrees of freedom case, all estimators performed better and were able to recover

most of the factor space with a large enough number of observed series. Finally, the

parametric estimators were almost always superior to the 2-step estimator, with the

Gibbs sampler often performing much better.
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Next, with enough data the presence of unrelated series appeared to have

little effect on the performance of the estimators. However, for n = 5, 10 the

parametric estimators were substantially better.

Finally, the results of the omnibus exercise suggest that the 2-step approach

offers some protection in the case of extreme misspecification. Although it was

still unable to recover much of the factor space, it generally outperformed all other

estimators.

Forecasting

The evidence is much less clear about the preferred estimator from the one-

step-ahead out-of-sample forecasting exercise. Each of the parametric estimators

had superior performance in roughly half the cases, while the 2-step estimator

was superior in the other half. Furthermore, the RMSE statistics are much more

similar across all models than were the R2 statistics. All but a few lie within 5%

of each other and most are within 3%, so even in cases when a given estimator

was consistently preferred (for example parametric methods in the AR(1) high

persistence exercise), the absolute differences were still quite small.

As one might expect, the RMSE and R2 statistics were negatively correlated

overall, suggesting that better estimation of the factors corresponds to improved

forecasting performance, although again this does not hold across all exercises. In

the “outliers: dof=2” exercise, the parametric estimators had substantially higher

R2 statistics and yet largely performed worse at forecasting.

Conclusion

In this paper, we consider the finite-sample properties of non-parametric,

classical, and Bayesian estimators of dynamic factor models. Two of our estimators
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- maximum likelihood estimation (MLE) using quasi-Newton methods and Bayesian

Gibbs sampling - have been previously used in empirical applications but have

not been included in previous simulation studies, largely due to computational

limitations. We also consider a more complex set of data generating processes

than have previously been studied. Finally, in addition to evaluating estimators on

the basis of summary statistics, we explore the distribution of evaluation statistics

across the Monte Carlo repetitions.

First, we replicate previous results that find similarly good performance

across all estimators in terms of recovering the underlying factor space when the

estimating model is well-specified, and we show that these results extend to the two

estimators not previously considered in Monte Carlo studies.

Across all scenarious and exercises, we find that the Gibbs sampling estimator

appears to be the weakly superior method, although it does not uniformly

dominate other methods and in absolute terms its improvements are often small.

In selecting an estimator, these weak improvements must be balanced against its

larger computational requirements. We further find that the addition of quasi-

Newton MLE steps does not noticeably improve upon the more commonly used

expectation maximization algorithm, suggesting that concerns about its slow

theoretical convergence may not be relevant in practice.

Next, although the most basic non-parametric principal components method

consistently performs the worst, its recent evolution as a hybrid “two-step”

estimator is competitive with the parametric MLE and Gibbs sampling estimators.

In particular, one-step-ahead out-of-sample forecasting performance is quite similar

for all estimators, and R2 summary statistics are similar when the sample size is

large enough. These results combined with the modest computational requirements
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and ease of use of the two-step estimator make it an attractive option. In smaller

samples, however, the parametric estimators are often better.

Our Monte Carlo exercises also consider model misspecifications that may

be encountered in empirical work. We find that in the presence of outliers or when

unrelated data series are included, the parametric estimators, and especially the

Gibbs sampler, produce better estimates of the underlying factor space but do not

necessarily produce improved forecasts. As the sample size grows, the two-step

estimator becomes more competive. Across all estimators, we find that the common

practice of eliminating outliers can improve the factor estimation but tends to

degrade forecasting performance.

We find that in the presence of more complicated factor dynamics, the MLE

estimators perform worse and conjecture based upon the distribution of statistics

across Monte Calro repetitions that they may be more prone to getting stuck at

local maxima. Finally, an omnibus exercise suggests that the two-step estimator

may offer some protection in the case of extreme misspecification.
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APPENDIX A

APPENDIX TO CHAPTER 2

Model

Constant Elasticity of Substitution Preferences

Definition: Consumption good

The composite consumption good is defined as a monotonic transformation of

the generalized mean C̃ht as follows:

C̃ht =

[∑I
i=1 µ

1−p
i Cp

hit∑I
i=1 µ

1−p
i

] 1
p

Cht =

[
I∑
i=1

µ1−p
i Cp

hit

] 1
p

=

[
I∑
i=1

µ1−p
i

] 1
p

C̃ht

The exponent on the weight term is a normalization so that the resulting price

index has the property that if every industry-level good has the same price, that

price also is the index price. Furthermore, if all prices are the same then the

derived demand for each industry-level good is just the fraction of the demand for

the composite good weighted by the industry’s size. Mathematically Cd
hit = µiCht,

and since we normalized the total measure of goods to one, µi ∈ [0, 1] for each

industry i. This approach is the same as in Woodford (2003).
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Definition: Industry-level good

The composite industry-level good is defined as a monotonic transformation

of the generalized mean C̃hit as follows:

C̃hit =

[∫
Ji
Cr
hjtdj∫

Ji
1dj

] 1
r

=

[∫
Ji

µ−1
i Cr

hjtdj

] 1
r

Chit =

[∫
Ji

µr−1
i Cr

hjt

] 1
r

=

[
µri

∫
Ji

µ−1
i Cr

hjt

] 1
r

= µiC̃hit

The exponent on the weight term is for the same normalizing purpose as above.

Demand: Constant Elasticity of Substitution Preferences

As in Dixit and Stiglitz (1977), we can use a multi-stage budgeting procedure

to first solve for the demand for industry-level and intermediate goods’ demand in

terms of the consumers’ total demand for the consumption good, and then solve

their inter-temporal problem in terms only of the consumption good.

The first stage is itself split into two steps: (1) solve for industry-level demand

in terms of total demand, and (2) solve for intermediate good demand in terms of

industry-level demand.

Step 1: Industry-level demand The interpretation of the definition of the

consumption good is as a utility specification. Thus solving for demand is the

standard microeconomic constrained optimization problem

max
{Chit}Ii=1

u
(
{Ci}Ii=1

)
subject to

∑I
i=1ChitPi = W , where Pit is the price of industry-level good i at time

t and W is total wealth, and where the utility specification is the generalized mean,
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above:

u
(
{Ci}Ii=1

)
= C̃ht =

[∑I
i=1 µ

1−p
i Cp

hit∑I
i=1 µ

1−p
i

] 1
p

The model used in the paper is a monotonic transformation of this specification,

and it will yield equivalent demand specifications due the ordinal nature of utility

functions.

This constrained optimization problem can be solved by forming a Lagrangian

and taking first-order conditions. To ease notation, define wi ≡ µ1−p
i∑I

i=1 µ
1−p
i

.

L =

[
I∑
i=1

wiC
p
hit

] 1
p

− λ

[
I∑
i=1

ChitPit −W

]

Assuming an interior solution, the I first-order conditions are

∂L
∂Chit

= 0 =
1

p

[
I∑
i=1

wiC
p
hit

] 1
p
−1

wipC
p−1
hit − λPit = wiu

(
{Ci}Ii=1

)1−p
Cp−1
hit − λPit

Chit =

(
λPit
wi

) 1
p−1

C̃ht

This yields the demand for the industry-level good. The Lagrangian multiplier λ is

the marginal value of relaxing the constraint, or the marginal value of wealth.

C̃ht =

[
I∑
i=1

wiC
p
hit

] 1
p

=

[
I∑
i=1

wi

((
λPit
wi

) 1
p−1

C̃ht

)p] 1
p

= C̃htλ
1
p−1

[
I∑
i=1

w
1

1−p
i P

p
p−1

it

] 1
p

1

λ
=

[
I∑
i=1

w
1

1−p
i P

p
p−1

it

] p−1
p
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The price index is the price of the composite good C̃ht, which is equivalently the

price of increasing utility. This quantity is the inverse of the marginal value of

wealth, so that

Pt ≡
1

λ
=

[
I∑
i=1

w
1

1−p
i P

p
p−1

it

] p−1
p

Notice that if all industry-level prices are the same, so that Pit = Pi′t = P̄t, then:

Pt =

[
I∑
i=1

w
1

1−p
i P̄

p
p−1

t

] p−1
p

= P̄t

[
I∑
i=1

w
1

1−p
i

] p−1
p

Thus if we want to have the property that in this case Pt = P̄t, then we must

have

[∑I
i=1w

1
1−p
i

] p−1
p

= 1. This does not hold for C̃ht, but it does hold for the

transformation Cht since in that case wi ≡ µ1−p
i and then

[
I∑
i=1

w
1

1−p
i

] p−1
p

=

[
I∑
i=1

µ
1−p
1−p
i

] p−1
p

= 1
p−1
p = 1

Finally we can rewrite industry-level demand

Chit = w
1

1−p
i

(
Pit
Pt

) 1
p−1

C̃ht

If we use the transformed Cht, then this reduces to:

Chit = µ
1−p
1−p
i

(
Pit
Pt

) 1
p−1

Cht
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Collecting the final demand function and price index for the transformed Cht, we

have

Chit = µi

(
Pit
Pt

) 1
p−1

Cht

Pt =

[
I∑
i=1

µiP
p
p−1

it

] p−1
p

Step 2: Intermediate good demand Following similar steps as above, the

final demand function and price index are given by

Chjt =
1

µi

(
Pjt
Pit

) 1
r−1

Chit

Pit =

[∫
Ji

1

µi
P

r
r−1

jt dj

] r−1
r

And the CES demand function for intermediate goods in terms of the consumption

good is

Chjt =
1

µi

(
Pjt
Pit

) 1
r−1

µi

(
Pit
Pt

) 1
p−1

Cht

= P
1
r−1

jt P
1

1−r+ 1
p−1

it P
1

1−p
t Cht
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Budget Contraints

In each period, households purchase (1) consumption goods, and (2) invest

in risk-free bonds. They receive income from (1) wages, (2) a share of intermediate

goods firm profits, and (3) investment income from bonds purchased in the previous

period.

Assume that all households are endowed with equal ownership shares in each

of the intermediate goods firms. Then each household’s share of the profits can be

denoted πjt.

Bonds are indexed by time period in which they mature so that Bt refers to

bonds purchased in time t− 1 that yield income in period t. The gross nominal rate

of return on a bond purchased in period t− 1 is denoted Rt. The bonds are riskless,

so that Rt is known in period t− 1.

The nominal flow budget constraint is

∫
J

PjtChjtdj +Bht+1 ≤
∫
J

θhjπjtdj +

∫
J

Wjtnhjtdj +RtBht

Plugging the CES demand functions derived above into the consumption spending

portion of the budgent constraint yiels

∫
J

PjtP
1
r−1

jt P
1

1−r+ 1
p−1

it P
1

1−p
t Chtdj = P

1
1−p
t Cht

∫
J

P
r
r−1

jt P
1

1−r+ 1
p−1

it dj

= P
1

1−p
t Cht

I∑
i=1

µiP
r
r−1

it P
1

1−r
it

= P
1

1−p
t Cht

I∑
i=1

µiP
p
p−1

it

= P
1

1−p
t ChtP

p
p−1

t

= PtCht
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Using this, the nominal flow budget constraint can be rewritten

PtCht +Bht+1 ≤
∫
J

θhjπjtdj +

∫
J

Wjtnhjtdj +RtBht

Optimal Behavior

Optimal Household Behavior

Sequential Problem

The representative household’s problem is

max
{Ct}t≥0{njt}j∈J,t≥0

= E0

∞∑
t=0

βt
[
u(Ct)−

∫
J

v(njt)dj

]

subject to the nominal budget constraint

PtCt +Bt+1 ≤
∫
J

πjtdj +

∫
J

Wjtnjtdj +RtBt

Define wealth at time t as

At =

∫
J

πjtdj +

∫
J

Wjtnjtdj +RtBt

Notice that given wealth and the household’s consumption choice, bond holdings

are determined by Bt+1 = At − PtCt.
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Bellman system

The solution to the sequential problem is equivalent to the solution to the

following functional equation

V (A) = max
C,{nj}j∈J

{
u(C)−

∫
J

v(nj)dj + βE [V (A′)]

}

subject to

A′ =

∫
J

π′jdj +

∫
J

W ′
jn
′
jdj +R′B′

=

∫
J

π′jdj +

∫
J

W ′
jn
′
jdj +R′(A− PC)

First-order Conditions

0 =
∂V (A)

∂C
= u′(C) + βE [V ′(A′)] (−P )R′

0 =
∂V (A)

∂nj
= −v′(nj) + βV ′(A′)WjR

′

Envelope Condition

V ′(A) = βV ′(A′)R′

Euler Equation Combining the first-order condition for consumption and the

envelope condition yields

V ′(A) =
u′(C)

P

which can then be forwarded and plugged back into the first-order condition

for consumption to give the household’s Euler equation governing intertemporal
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consumption tradeoffs

u′(Ct) = βEt

[
Rt+1

Pt
Pt+1

u′(Ct+1)

]

Static First-order Condition Then from the first-order condition for labor we

get

v′(njt) =
Wjt

Pt
u′(Ct)

Optimal Price Setting

Perfect Information

Firms face the problem

max
Pjt

u′(Ct)

(
Pjt −

Wjt

ϕit

)
Yjt

which can be rewritten using the CES demand function as

max
Pjt

u′(Ct)

(
Pjt −

Wjt

ϕit

)
P

1
r−1

jt P
1

1−r+ 1
p−1

it P
1

1−p
t Ct
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Their first-order condition is:

0 = u′(Ct)

[(
1 +

1

r − 1

)
P

1
r−1

jt −
(

1

r − 1

Wjt

ϕit

)
P

1
r−1
−1

jt

]
P

1
1−r+ 1

p−1

it P
1

1−p
t Ct

rP
1
r−1

jt =
Wjt

ϕit
P

1
r−1
−1

jt

Pjt =
1

r

Wjt

ϕit

This is the standard result that monopolists set price as a markup over marginal

costs.

Proceed by substituting out wages using the household’s static first-order

condition and using (1) the goods market clearing condition, (2) the production

function, and (3) the demand function for the intermediate good

Pjt =
1

r

1

ϕit

[
Pt

nε

C−σt

]
=

1

r

1

ϕit

[
PtY

σ
t

(
Yjt
ϕit

)ε]
=

1

r

(
1

ϕit

)1+ε [
PtY

σ
t

(
P

1
r−1

jt P
1

1−r+ 1
p−1

it P
1

1−p
t Yt

)ε]

Since productivity shocks are industry-level and they represent the only difference

between firms, we can now apply symmetry between all firms within a given

industry to note that Pjt = Pit.

Pjt =
1

r

(
1

ϕit

)1+ε [
P

ε
p−1

jt P
1−p+ε

1−p
t Y σ+ε

t

]
P

1−p+ε
1−p

jt =

[
1

r

(
1

ϕit

)1+ε

Y σ+ε
t

]
P

1−p+ε
1−p

t

Pjt =

[
1

r

(
1

ϕit

)1+ε

Y σ+ε
t

] 1−p
1−p+ε

P
1−p+ε
1−p+ε
t
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Defining α ≡ 1−p
1−p+ε = 1

1+ρε
we arrive at the final perfect information pricing

equation

P �jt =

[
1

r

(
1

ϕit

)1+ε

Y σ+ε
t

]α
Pt

It will also be convenient to have this expression with variables in log-form, where

lowercase variables denote logs of uppercase variables

p�jt = α log
1

r
− α(1 + ε)φit + α(σ + ε)yt + pt

To expose strategic complementarities define ζ = α(σ + ε), and for notational

convenience define γ = α(1 + ε). Recall also that qt = pt + yt. Then the firms’

perfect information pricing rule is

p�jt = α log
1

r
− γφit + ζqt + (1− ζ)pt

To aid interpretation of the imperfect information pricing rule we express the

pricing-rule in proportional deviation from common price form below by defining

x̃t ≡ (Xt−X̄)

X̄
≈ log

(
Xt
X̄

)
= xt − x̄

p�jt − p̄jt =

(
α log

1

r
− γφit + ζqt + (1− ζ)pt

)
−
(
α log

1

r
− γφ̄it + ζq̄t + (1− ζ)p̄

)

which reduces to

p̃�jt = −γφ̃it + ζq̃t + (1− ζ)p̃t
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Imperfect Information

This section describes optimal firm behavior under imperfect information

using results based on log approximations; it is just a summary of the

approximations derived in detail in Log Approximations .

The generic problem facing an intermediate goods firm is given above in

(A.2). In equilibrium, the objective can be written as a function only of prices,

shocks, and aggregate output (this is because wages can be substituted out as a

function of these variables, using the households’ static first-order condition)

Πjt(Pjt, Pit, Pt, Yt, ϕt)

Given this, the firm’s problem can be expressed as

max
Pjt

Πjt

We proceed by taking a log-quadratic approximation to Πjt around the perfect-

information equilibrium,

Π̃jt =Π1P̄ p̃jt +
Π11

2!
P̄ 2p̃2

jt + Π12P̄
2p̃jtEjtp̃it + Π13P̄

2p̃jtEjtp̃t + Π14P̄ Q̄p̃jtEjtỹt

+ Π15P̄ ϕ̄itp̃jtEjtφ̃it

+ other terms

where Π1 is the partial derivative of profit with respect to the first argument

(Pjt) and the Π1· coefficients are the partial derivatives of Π1, all evaluated at the

perfect-information equilibrium values, and P̄ is the perfect-information equilibrium

price. The “other terms” are all other terms in the second-order approximation
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that do not depend on p̃jt, which are irrelevent here since they will not affect the

firm’s pricing decision.

The problem faced by firm j can now be written

max
Pjt

Π̃jt

And the solution is characterized by the first-order condition

∂Π̃

∂p̃jt
= 0 =Π1P̄ + Π11P̄

2p̃jt + Π12P̄
2Ejtp̃it + Π13P̄

2Ejtp̃t

+ Π14P̄ Q̄EjtQ̃t + Π15P̄ ϕ̄itẼjtφ̃it

which reduces to

p̃∗jt = −γEjtφ̃it + ζEjtq̃t + (1− ζ)Ejtp̃t

= Ejtp̃
�
jt

Log Approximations

Log-linear approximation to the aggregate price index

For results that follow, we will require a log-linear approximation to the price

index Pt. Recall from Constant Elasticity of Substitution Preferences that Pt is

derived as the (minimum) cost of purchasing one unit of the consumption good and

is defined to be

Pt =

[
I∑
i=1

µiP
p
p−1

it

] p−1
p
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We take the log-linear approximation around the where all prices are the same

Pjt = Pit = Pt ≡ P̄ . Define p̃t ≡ (Pt−P̄ )

P̄
≈ log

(
Pt
P̄

)
= pt − p̄ so that p̃t is the

aggregate price in proportional deviation-from-steady-state form.

P̄ + (1)(Pt − P̄ ) = P̄ +
I∑
i=1

p− 1

p
P

1
1−p
t µiP

1
p−1

it

p

p− 1
(Pit − P̄ )

(Pt − P̄ ) =
I∑
i=1

µi(Pit − P̄ )

P̄ p̃t =
I∑
i=1

µiP̄ip̃it

Thus the log-approximation aggregate price is described by

p̃t =
I∑
i=1

µip̃it

Log-quadratic approximation to an intermediate good firm’s profit function

Recall from Optimal Price Setting that the problem faced by firm j can be

written

max
Pjt

Πjt(Pjt, Pit, Pt, Yt, ϕit)
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A second-order approximation to this objective function around the perfect

information non-stochastic equilibrium is given by

Π̄ + (1)(Πjt − Π̄) =Π̄ + Π1(Pjt − P̄ ) +
Π11

2!
(Pjt − P̄ )2 + Π12(Pjt − P̄ )(Pit − P̄ )

+ Π13(Pjt − P̄ )Ejt(Pt − P̄ ) + Π14(Pjt − P̄ )Ejt(Yt − Ȳ )

+ Π15(Pjt − P̄ )Ejt(ϕit − ϕ̄t)

+ other terms

where P̄ denotes the price at which Pjt = Pit = Pt ≡ P̄ and Q̄t and ϕ̄t denote

the means of the processes. Π1 is the partial derivative of profit with respect to the

first argument Π1∗ represent second partial derivatives, all evaluated at the point at

which all prices are the same. The term “other terms” collects all terms that do not

depend on p̃jt (irrelevent for our purposes since they do not affect the firm’s pricing

decision). The forms of these partial derivatives are derived below.

In log-deviation form the objective function is

Π̃(p̃jt, p̃it, p̃t, ỹt, φ̃it) =Π1P̄ p̃jt +
Π11

2!
P̄ 2p̃2

jt + Π12P̄
2p̃jtp̃it + Π13P̄

2p̃jtEjtp̃t

+ Π14P̄ Ȳ p̃jtEjtỹt + Π15P̄ ϕ̄tp̃jtEjtφ̃it

+ other terms

Derivatives

Below we calculate the first and second partial derivatives used in the log-

quadratic approximation, above. The second partial derivatives are all first with

respect to Pjt and then second with respect to the given variable. Evaluation of
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derivatives will be around the perfect information non-stochastic equilibrium (see

Perfect Information) in which all prices are the same (we will use that the means of

the shocks have been defined to be identical, see Stochastic processes , to guarantee

the last condition).

Before calculating the derivatives, simplify the objective function by applying

market clearing and household optimization so that it can be written

Πjt = Ejt

[
U ′(Yt)

(
Pjt −

Wjt

ϕit

)
Yjt

]
= Ejt

[
Y −σt

(
Pjt −

Wjt

ϕit

)(
1

µi

)(
Pjt
Pit

) 1
r−1

µi

(
Pit
Pt

) 1
p−1

Yt

]

= Ejt

[(
Pjt −

Wjt

ϕit

)
P

1
r−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1−σ

t

]
= Ejt

[
P

r−p
(p−1)(r−1)

it P
1

1−p
t Y 1−σ

t

(
P

1+ 1
r−1

jt − P
1
r−1

jt

Wjt

ϕit

)]

Since factor markets are perfectly competitive, so that firms are wage-takers, the

wage cannot yet be substituted out.

First derivative, with respect to Pjt

∂Πjt

∂Pjt
= Ejt[

(
1

r − 1

)
P

1
r−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1−σ

t

−
(

1 +
1

r − 1

)
P

1
r−1
−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1−σ

t

Wjt

ϕit
]
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After taking the derivative, wages can be substituted out using the firm’s static

first-order condition

∂Πjt

∂Pjt
= Ejt

(
r

r − 1

)
P

1
r−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1−σ

t

− Ejt
(

1

r − 1

)
1

ϕit
P

1
r−1
−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1−σ

t

(
Pt

nεjt
Y −σt

)
= Ejt

(
r

r − 1

)
P

1
r−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1−σ

t

− Ejt
(

1

r − 1

)
1

ϕ1+ε
it

P
1
r−1
−1

jt P
r−p

(p−1)(r−1)

it P
2−p
1−p
t Yt [Yjt]

ε

= Ejt

(
r

r − 1

)
P

1
r−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1−σ

t

− Ejt
(

1

r − 1

)
1

ϕ1+ε
it

P
1
r−1
−1

jt P
r−p

(p−1)(r−1)

it P
2−p
1−p
t Yt

×

[(
1

µi

)(
Pjt
Pit

) 1
r−1

µi

(
Pit
Pt

) 1
p−1

Yt

]ε

This finally yields the first derivative of the log-quadratic approximation to the

profit function with respect to price

∂Πjt

∂Pjt
=Ejt

(
r

r − 1

)
P

1
r−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1−σ

t

− Ejt
(

1

r − 1

)
1

ϕ1+ε
it

P
1+ε
r−1
−1

jt P
(1+ε) r−p

(p−1)(r−1)

it P
2−p+ε

1−p
t Y 1+ε

t

Evaluation at the point where all prices are the same implies Pjt = Pit = Pt ≡ P̄ .

At this point we also have ϕ̄it ≡ ϕ̄t for i = 1, . . . , I. Then the exponent on the price

on the left hand side is

1

r − 1
+

r − p
(p− 1)(r − 1)

− 1

p− 1
=

(p− 1) + (r − p)− (r − 1)

(p− 1)(r − 1)

= 0
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and the exponent on price on the right hand side is:

1 + ε

r − 1
+ (1 + ε)

r − p
(p− 1)(r − 1)

− 1 + ε

p− 1
= (1 + ε)

(p− 1) + (r − p)− (r − 1)

(p− 1)(r − 1)

= 0

this leads to

Π1 ≡
∂Πjt

∂Pjt

∣∣∣∣
P̄ ,Ȳ ,ϕ̄t

=

(
r

r − 1

)
Ȳ 1−σ −

(
1

r − 1

)(
1

ϕ̄t

)1+ε

Ȳ 1+ε

Recall that Ȳ = Y n
t = r

α
ζ

(
1
ϕ̄t

)− γ
ζ

when shocks have a common mean (see Perfect

Information). Then

Π1 ≡
∂Πjt

∂Pjt

∣∣∣∣
P̄ ,Ȳ ,ϕ̄t

=

(
r

r − 1

)
r

1−σ
σ+ε

(
1

ϕ̄t

)−(1−σ) 1+ε
σ+ε

−
(

1

r − 1

)(
1

ϕ̄t

)1+ε(
1

ϕ̄t

)−(1+ε) 1+ε
σ+ε

r
1+ε
σ+ε

=

(
1

r − 1

)
r

1−σ
σ+ε

+1

(
1

ϕ̄t

)−(1−σ) 1+ε
σ+ε

−
(

1

r − 1

)(
1

ϕ̄t

)1+ε−(1+ε) 1+ε
σ+ε

r
1+ε
σ+ε

=

(
1

r − 1

)
r

1+ε
σ+ε

(
1

ϕ̄t

)−(1−σ) 1+ε
σ+ε

−
(

1

r − 1

)(
1

ϕ̄t

)1+ε−(1+ε)r
1+ε
σ+ε 1+ε

σ+ε

= 0
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where the last equality can be found by noting that the right-hand side exponent

on 1/ϕ is the same as the left-hand side exponent:

(1 + ε)− (1 + ε)
1 + ε

σ + ε
= (1 + ε)

[
1− 1 + ε

σ + ε

]
= (1 + ε)

[
σ + ε− 1− ε

σ + ε

]
= (1 + ε)

[
σ − 1

σ + ε

]
= −(1 + ε)

[
1− σ
σ + ε

]
= −(1− σ)

[
1 + ε

σ + ε

]
Second derivatives Note that

W̄ =
1

ϕ̄εt
P̄ Ȳ σ

[(
1

µi

)(
P̄

P̄

) 1
r−1

µi

(
P̄

P̄

) 1
p−1

Ȳ

]ε
=

1

ϕ̄εt
P̄ Ȳ σ+ε

= rϕ̄tP̄

Second derivative, with respect to Pjt

∂2Πjt

∂P 2
jt

=
∂

∂Pjt
Ejt

(
r

r − 1

)
P

1
r−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1−σ

t

−
(

1

r − 1

)
P

1
r−1
−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1+ε

t

1

ϕ1+ε
it

Pt

[(
Pjt
Pit

) 1
r−1
(
Pit
Pt

) 1
p−1

]ε
= Ejt

(
r

r − 1

)(
1

r − 1

)
P

1+ε
r−1
−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1−σ

t

−
(

1

r − 1

)(
1

r − 1
− 1

)
P

1
r−1
−2

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1−σ

t

Wjt

ϕit
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Π11 ≡
∂2Πjt

∂P 2
jt

∣∣∣∣
P̄ ,Ȳ ,ϕ̄t

=

(
r

r − 1

)(
1

r − 1

)
P̄−1Ȳ 1−σ

−
(

1

r − 1

)(
2− r + ε

r − 1

)
P̄−2Ȳ 1−σ 1

ϕ̄t
W̄

=

(
1

r − 1

)2

P̄−1Ȳ 1−σ
[
r − (2− r + ε)

1

ϕ̄1+ε
t

Ȳ σ+ε

]
=

(
1

r − 1

)2

P̄−1Ȳ 1−σr [1− (2− r + ε)]

=

(
1

r − 1

)2

P̄−1Ȳ 1−σr [r − 1− ε]

Notice that since r ∈ [0, 1), then this term is strictly negative.

Second derivative, with respect to Pit

∂2Πjt

∂Pjt∂Pit
=

∂

∂Pit
Ejt

(
r

r − 1

)
P

1
r−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1−σ

t

−
(

1

r − 1

)
P

1
r−1
−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1+ε

t

1

ϕ1+ε
it

Pt

[(
Pjt
Pit

) 1
r−1
(
Pit
Pt

) 1
p−1

]ε
= Ejt

(
r

r − 1

)(
r − p

(p− 1)(r − 1)

)
P

1
r−1

jt P
r−p

(p−1)(r−1)
−1

it P
1

1−p
t Y 1−σ

t

−
(

1

r − 1

)(
(1 + ε)(r − p)
(p− 1)(r − 1)

)
P

1
r−1
−1

jt P
r−p

(p−1)(r−1)
−1

it P
1

1−p
t Y 1−σ

t

Wjt

ϕit

Π12 ≡
∂2Πjt

∂Pjt∂Pit

∣∣∣∣
P̄ ,Ȳ ,ϕ̄t

=

(
r

r − 1

)(
r − p

(p− 1)(r − 1)

)
P̄−1Ȳ 1−σ

−
(

1

r − 1

)(
(1 + ε)(r − p)
(p− 1)(r − 1)

)
P̄−2Ȳ 1−σ W̄

ϕ̄t

=
r − p

(p− 1)(r − 1)2
P̄−1Ȳ 1−σ

[
r − (1 + ε)

1

ϕ̄1+ε
t

Ȳ σ+ε

]
=

r − p
(p− 1)(r − 1)2

P̄−1Ȳ 1−σr [1− (1 + ε)]

=
r − p

(p− 1)(r − 1)2
P̄−1Ȳ 1−σr [−ε]
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Second derivative, with respect to Pt

∂2Πjt

∂Pjt∂Pt
=

∂

∂Pt
Ejt

(
r

r − 1

)
P

1
r−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1−σ

t

−
(

1

r − 1

)
P

1
r−1
−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1+ε

t

1

ϕ1+ε
it

Pt

[(
Pjt
Pit

) 1
r−1
(
Pit
Pt

) 1
p−1

]ε
= Ejt

(
r

r − 1

)(
1

1− p

)
P

1
r−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p−1

t Y 1−σ
t

−
(

1

r − 1

)(
1

1− p
+ 1 +

ε

1− p

)
P

1
r−1
−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1+ε

t

Wjt

Ptϕit

Π13 ≡
∂2Πjt

∂Pjt∂Pt

∣∣∣∣
P̄ ,Ȳ ,ϕ̄t

=

(
r

r − 1

)(
1

1− p

)
P̄−1Ȳ 1−σ

−
(

1

r − 1

)(
2− p+ ε

1− p

)
P̄−1Ȳ 1+ε W̄

P̄ ϕ̄t

=
1

(1− p)(r − 1)
P̄−1Ȳ 1−σ

[
r − (2− p+ ε)

1

ϕ̄1+ε
t

Ȳ σ+ε

]
= − 1

(p− 1)(r − 1)
P̄−1Ȳ 1−σr [−1 + p− ε]

= (−1)α−1 1

r − 1
P̄−1Ȳ 1−σr

Second derivative, with respect to Yt

∂2Πjt

∂Pjt∂Yt
=

∂

∂Yt
Ejt

(
r

r − 1

)
P

1
r−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1−σ

t

−
(

1

r − 1

)
P

1
r−1
−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1+ε

t

1

ϕ1+ε
it

Pt

[(
Pjt
Pit

) 1
r−1
(
Pit
Pt

) 1
p−1

]ε
= Ejt

(
r

r − 1

)
(1− σ)P

1
r−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y −σt

−
(

1

r − 1

)
(1 + ε)P

1
r−1
−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y ε

t

1

ϕ1+ε
it

Pt

×

[(
Pjt
Pit

) 1
r−1
(
Pit
Pt

) 1
p−1

]ε
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Π14 ≡
∂2Πjt

∂Pjt∂Yt

∣∣∣∣
P̄ ,Ȳ ,ϕ̄t

=

(
r

r − 1

)
(1− σ)Ȳ −σ

−
(

1

r − 1

)
(1 + ε)P̄−1Ȳ ε 1

ϕ̄1+ε
t

=
1

r − 1
Ȳ −σ

[
(1− σ)r − (1 + ε)

1

ϕ̄1+ε
t

Ȳ σ+ε

]
=

1

r − 1
Ȳ −σr [(1− σ)− (1 + ε)]

= (−1)
1

r − 1
Ȳ −σr [ε+ σ]

Second derivative, with respect to ϕt

∂2Πjt

∂Pjt∂ϕt
=

∂

∂ϕit
Ejt

(
r

r − 1

)
P

1
r−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1−σ

t

−
(

1

r − 1

)
P

1
r−1
−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1+ε

t

1

ϕ1+ε
it

Pt

[(
Pjt
Pit

) 1
r−1
(
Pit
Pt

) 1
p−1

]ε
=

(
1

r − 1

)
(1 + ε)P

1
r−1

jt P
r−p

(p−1)(r−1)

it P
1

1−p
t Y 1+ε

t

1

ϕ2+ε

×

[(
Pjt
Pit

) 1
r−1
(
Pit
Pt

) 1
p−1

]ε

Π15 ≡
∂2Πjt

∂Pjt∂ϕt

∣∣∣∣
P̄ ,Ȳ ,ϕ̄t

=

(
1

r − 1

)
(1 + ε)Ȳ 1+ε+σ−σ 1

ϕ̄2+ε
t

=

(
1 + ε

r − 1

)
rȲ 1−σ 1

ϕ̄t
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Log-linear approximation to an intermediate good firm’s pricing decision

Taking first-order conditions with respect to the firm’s objective function

(A.3) yields

∂Π̃

∂p̃jt
= 0 =Π1P̄ + Π11P̄

2p̃jt + Π12P̄
2p̃it + Π13P̄

2Ejtp̃t

+ Π14P̄ Ȳ Ejtỹt + Π15P̄ ϕ̄tẼjtφ̃it

=0 + Π11P̄
2p̃jt + Π12P̄

2p̃it

+ Π13P̄
2Ejtp̃t + Π14P̄ Ȳ Ejtỹt

+ Π15P̄ ϕ̄tEjtφ̃it

=0

+

(
1

r − 1

)2

P̄−1Ȳ 1−σr [r − 1− ε] P̄ 2p̃jt

+
r − p

(p− 1)(r − 1)2
P̄−1Ȳ 1−σr [−ε] P̄ 2p̃it

+ (−1)α−1 1

r − 1
P̄−1Ȳ 1−σrP̄ 2Ejtp̃t

+ (−1)
1

r − 1
Ȳ −σr [ε+ σ] P̄ Ȳ Ejtỹt

+

(
1 + ε

r − 1

)
rȲ 1−σ 1

ϕ̄t
P̄ ϕ̄tEjtφ̃it

= +

(
1

r − 1

)2

[r − 1− ε] p̃jt

+
r − p

(p− 1)(r − 1)2
[−ε] p̃it

+ (−1)α−1 1

r − 1
Ejtp̃t

+ (−1)
1

r − 1
[ε+ σ]Ejtỹt

+

(
1 + ε

r − 1

)
Ejtφ̃it
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Notice that Pit = Pjt since all firms within an industry face the same problem, and

also that:

(p− 1)(r − 1− ε) + (r − p)(−ε) = pr − p− pε− r + 1 + ε− rε+ pε

= r(p− 1− ε)− (p− 1− ε)

= (r − 1)(p− 1− ε)

and p−1−ε
p−1

= 1−p+ε
1−p ≡ α−1. Then we have

0 =
1

(p− 1)(r − 1)2
[(p− 1)(r − 1− ε) + (r − p)(−ε)] p̃jt

+ (−1)α−1 1

r − 1
Ejtp̃t

+ (−1)
1

r − 1
[ε+ σ]Ejtỹt

+

(
1 + ε

r − 1

)
Ejtφ̃it

=α−1p̃jt

+ (−1)α−1Ejtp̃t

+ (−1)(ε+ σ)Ejtỹt

+ (1 + ε)Ejtφ̃it

and finally this reduces to the firms’ imperfect-information pricing rule

p̃∗jt = −γEjtφ̃it + ζEjtỹt + Ejtp̃t

= −γEjtφ̃it + ζEjtq̃t + (1− ζ)Ejtp̃t

= Ejtp
�
jt
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Log-quadatic approximation to profit loss due to imperfect information

We cconsider the loss in profit from a firm setting a non-profit-maximizing

price p∗jt = Ejtp
�
jt. The log-quadratic approximation to the profit function is

Π̃(p̃jt, p̃it, p̃t, ỹt, φ̃it) =Π1P̄ p̃jt +
Π11

2!
P̄ 2p̃2

jt + Π12P̄
2p̃jtp̃it + Π13P̄

2p̃jtEjtp̃t

+ Π14P̄ Ȳ p̃jtEjtỹt + Π15P̄ ϕ̄tp̃jtEjtφ̃it

+ other terms

and recall that the “other terms” do not depend on the firm’s price decision. The

loss in profits is then

Π̃(p̃�jt, ·)− Π̃(p̃∗jt, ·) =Π1P̄ (p̃�jt − p̃∗jt)

+

(
Π11

2

)
P̄ 2
(
p̃�

2

jt − p̃∗
2

jt

)
+ (Π12P̄

2p̃it + Π13P̄
2p̃t + Π14P̄ Ȳ Ỹt + Π15P̄ ϕ̄tφ̃it)

× (p̃�jt − p̃∗jt)

Note first that Π1 = 0, and second, from the first-order condition above in the

perfect-information case, that Π12P̄
2p̃it + Π13P̄

2p̃t + Π14P̄ Ȳ Ỹt + Π15P̄ ϕ̄tφ̃t =

−Π11P̄
2p̃�jt. Then we can rewrite the loss in profits as

Π̃(p̃�jt, ·)− Π̃(p̃∗jt, ·) = P̄ 2

(
Π11

2

)(
p̃�

2

jt − p̃∗
2

jt

)
− P̄ 2Π11p̃

�
jt(p̃

�
jt − p̃∗jt)

= −P̄ 2

(
Π11

2

)(
p̃�

2

jt + p̃∗
2

jt

)
+ P̄ 2Π11p̃

�
jtp̃
∗
jt

=

(
−Π11

2
P̄ 2

)(
p̃�jt − p̃∗jt

)2
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Finally recall, from above, that Π11 < 0 so that the above is positive overall,

indicating setting p̃∗jt yields less profits than setting p̃�jt. The expected loss in profits

due to imperfect information can be written

Ejt

[
Π̃(p̃�jt, ·)− Π̃(p̃∗jt, ·)

]
= −Π̂11

(
p̃�jt − p̃∗jt

)2

where Π̂11 =
(

Π11

2
P̄ 2
)
< 0.

Information Theory

This appendix collects information theoretic results.

Mutual Information of Random Vectors

In the case that the variables are independent so that is no reduction in

uncertainty, then I(X;S) = H(X) − H(X) = 0. Supposing that X and S are

finite n-dimensional independent vectors such that Xi and Sj are independent if

i 6= j, then

I(X;S) = H(X1, · · · , Xn)−H(X1, · · · , Xn|S1, · · · , Sn)

=
n∑
i=1

H(Xi) +
n∑
i=1

H(Xi)−H(X1, · · · , Xn, S1, · · · , Sn)

=
n∑
i=1

H(Xi) +
n∑
i=1

H(Xi)−
n∑
i=1

H(Xi, Si)

=
n∑
i=1

I(Xi;Si)

where the third equality follows from an iterative application of the chain rule.
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Gaussian Mutual Information

Suppose, as we do above, that we have two mutually Gaussian random

variables, ω and sω such that

s(ω) = ω + ψ

where ψ is Gaussian white noise. A well-known result (see for example Cover and

Thomas, 2006) for Gaussian random processes is that mutual information can be

simply expressed.

I(ω, s(ω)) =
1

2
log2

(
1

1− ρ2
ωs(ω)

)

where ρ2
ωs(ω) is the correlation coefficent between the two processes. Now, notice

that the correlation coefficient can be rewritten in terms of the processes variances

ρ2
ωs(ω) =

[
Cov(ω, s(ω))

σωσs(ω)

]2

=

[
σ2
ω

σωσs(ω)

]2

=
σ2
ω

σ2
s(ω)

=
σ2
ω

σ2
ω + σ2

ψ

and 1− ρ2
ωs(ω) =

σψ
σ2
ω+σ2

ψ
. Then the mutual information can be rewritten also in terms

of the processes variances

I(ω, s(ω)) =
1

2
log2

(
σ2
ω + σ2

ψ

σ2
ψ

)

=
1

2
log2

(
σ2
ω

σ2
ψ

+ 1

)
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Expressions for Mutual Information

Define the mutual information as κ
(ω)
j ≡ I(ω, s

(ω)
j ). Assume the processes are

defined as above.

1. Using this, we can find an expression for the ratio of the variances in terms as

a function of a level of mutual information:

22κ
(ω)
j − 1 =

σ2
ω

σ2
ψ

2. Immediately we also have an expression for the variance of the signal in terms

of a level of mutual information and the variance of the fundamental

σ2
ψ =

(
22κ

(ω)
j − 1

)−1

σ2
ω

3. The ratio of the variance of the fundamental to the variance of the signal, a

key term in typical signal extraction results, can be derived from (2)

22κ
(ω)
j σ2

ψ = σ2
ω + σ2

ψ

2−2κ
(ω)
j =

σ2
ψ

σ2
ω + σ2

ψ

1− 2−2κ
(ω)
j =

σ2
ω

σ2
ω + σ2

ψ
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4. Finally, from (1) - (3) follows a result that will useful in expanding the

expected loss of profits from setting a price with imperfect information

(
1− 2−2κ

(ω)
j

)2

=

(
22κ

(ω)
j − 1

22κ
(ω)
j

)2

(
1− 2−2κ

(ω)
j

)2

σ2
ψ =

(
22κ

(ω)
j − 1

22κ
(ω)
j

)2 (
22κ

(ω)
j − 1

)−1

σ2
ω

(
1− 2−2κ

(ω)
j

)2

σ2
ψ =

(
22κ

(ω)
j − 1

24κ
(ω)
j

)
σ2
ω

Equilibrium

Perfect Information

In the perfect information case, firms set prices according to (see Optimal

Price Setting):

p�jt = α log
1

r
− γφit + ζqt + (1− ζ)pt

Applying symmetry across firms within each industry, integrating across all firms,

and using the log-linear approximation to the aggregate price index around the

point where all prices are the same (see Log-linear approximation to the aggregate
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price index ) yields

∫
J

pjtdj =

∫
J

α log
1

r
dj −

∫
J

γφitdj +

∫
J

ζytdj +

∫
J

ptdj

I∑
l=1

µlplt = α log
1

r
− γ

I∑
l=1

µlφlt + ζyt + pt

pt = α log
1

r
− γ

I∑
l=1

µlφlt + ζyt + pt

The perfect information equilibrium level of (real) output is then

y�t = −α
ζ

log
1

r
+
γ

ζ

I∑
l=1

µlφlt

If nominal output is assumed to be an exogenous process Qt = PtYt then the

perfect information equilibrium aggregate price level is

p�t = qt − ynt

= qt +
α

ζ
log

1

r
− γ

ζ

I∑
l=1

µlφlt

In deviation from steady-state form, these are written

ỹ�t =
γ

ζ

I∑
l=1

µlφ̃lt

p̃�t = q̃t −
γ

ζ

I∑
l=1

µlφ̃lt
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And plugging this into the firms’ pricing decision yields

p̃�jt = −γφ̃it + ζq̃t + (1− ζ)p�t

Non-stochastic equilibrium

In the non-stochastic case where shocks are set to their means, we have

ynt = −α
ζ

log
1

r
+
γ

ζ

I∑
l=1

µlφ̄lt

pnt = q̄t +
α

ζ
log

1

r
− γ

ζ

I∑
l=1

µlφ̄lt

Plug in the aggregate price level to the firm’s pricing rule

pnjt = α log
1

r
− γφ̄it + ζq̄t + (1− ζ)

[
q̄t +

α

ζ
log

1

r
− γ

ζ

I∑
l=1

µlφ̄lt

]

=

(
1 +

1− ζ
ζ

)
α log

1

r
− γφ̄it + (ζ + 1− ζ)q̄t + (1− ζ)

γ

ζ

I∑
l=1

µlφ̄lt

= q̄t +
α

ζ
log

1

r
− (1− ζ)

γ

ζ

I∑
l=1

µlφ̄lt − γφ̄it

which yields the non-stochastic equilibrium price rule

pnjt = pnt + γ

[
I∑
l=1

µlφ̄lt − φ̄it

]
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To confirm that this is an equilibrium, integrate this pricing rule over all firms and

use the log-linear approximation to the aggregate price index.

Notice that if all shocks are eliminated so that φit = 0 for i = 1, . . . , I or if

the shock is purely aggregate so that φit = φi′t for i, i′ = 1, . . . , I then the perfect

information equilibrium corresponds to point where all prices are the same and are

equal to the aggregate price index (this last point is by construction, see Budget

Contraints).

Rational Inattention under Gaussian White Noise

Here we follow a guess and verify approach. Given the form of the perfect

information equilibrium, we guess that the equilibrium aggregate price level is given

by

p̃∗t = aq̃t −
γ

ζ

I∑
l=1

blµlφ̃lt

where a and {bl}Il=1 are coefficients governing the extent of adjustment of the price

level due to shocks.

Imperfect Information Pricing Rule

With this guess, firms’ imperfect-information optimal price rule is

p̃∗jt = Ejtp̃
�
jt

= −γEjtφ̃it + ζEjtqt + (1− ζ)Ejtp̃t

= −γEjtφ̃it + ζEjtqt + (1− ζ)

[
aEjtq̃t −

γ

ζ

I∑
l=1

blµlEjtφ̃lt

]

= [(1− ζ)a+ ζ]Ejtq̃t − (1− ζ)
γ

ζ

I∑
l=1

blµlφ̃lt − γEjtφ̃it
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To ease notation in the following optimization problem in which the constant term

simply be carried around, define ā ≡ [(1− ζ)a+ ζ] and b̄l ≡ (1− ζ)γ
ζ
bl; they will be

unpacked again at the end to aid interpretation. Then the optimal price rule is

p̃∗jt = āEjtq̃t −
I∑
l=1

b̄lµlφ̃lt − γEjtφ̃it

Price-Setting Mean Squared Error

Given the signals the firm receives, we can solve the expectations using

typical signal extraction results

p̃∗jt = ā

 σ2
q

σ2
q + σ2

ψ
(q)
j

 sqjt −
∑
l 6=i

b̄lµl

 σ2
l

σ2
l + σ2

ψ
(l)
j

 s
(l)
jt

− (b̄iµi + γ)

 σ2
i

σ2
i + σ2

ψ
(i)
j

 s
(i)
jt

Using results from Expressions for Mutual Information, we can rewrite this in

terms of mutual information as

p̃∗jt =ā
(

1− 2−2κ
(q)
j

)(
q̃t − ψ(q)

jt

)
−
∑
l 6=i

b̄lµl

(
1− 2−2κ

(l)
j

)(
φ̃lt − ψ(l)

jt

)
− (b̄iµi + γ)

(
1− 2−2κ

(i)
j

)(
φ̃it − ψ(i)

jt

)
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The expected loss in profits from setting an imperfect-information price is

Ejt

[
Π̃jt

(
p̃�jt, ·

)
− Π̃jt

(
p̃∗jt, ·

)]
=

(
Π̂11

2

)
Ejt

[(
p̃�jt − p̃∗jt

)2
]

which is a constant times the mean squared error of the imperfect-information

price. The difference between the perfect- and imperfect-information prices is

p̃�jt − p̃∗jt =ā
[
q̃t −

(
1− 2−2κ

(q)
j

)(
q̃t + ψ

(q)
jt

)]
−
∑
l 6=i

b̄lµl

[
φ̃lt −

(
1− 2−2κ

(l)
j

)(
φ̃lt + ψ

(l)
jt

)]
− (b̄iµi + γ)

[
φ̃it −

(
1− 2−2κ

(i)
j

)(
φ̃it + ψ

(i)
jt

)]
=ā
[
2−2κ

(q)
j q̃t −

(
1− 2−2κ

(q)
j

)
ψ

(q)
jt

]
−
∑
l 6=i

b̄lµl

[
2−2κ

(l)
j φ̃lt −

(
1− 2−2κ

(l)
j

)
ψ

(l)
jt

]
− (b̄iµi + γ)

[
2−2κ

(i)
j φ̃it −

(
1− 2−2κ

(i)
j

)
ψ

(i)
jt

]

then noting that independence implies that all cross terms have expected value

zero, the mean squared error can be expressed

Ejt

[(
p̃�jt − p̃∗jt

)2
]

=ā2

[
2−4κ

(q)
j σ2

q +
(

1− 2−2κ
(q)
j

)2

σ2

ψ
(q)
j

]
+

I∑
l=1

b̄2
l µ

2
l

[
2−4κ

(l)
j σ2

φl
+
(

1− 2−2κ
(l)
j

)2

σ2

ψ
(l)
j

]
+ (b̄iµi + γ)2

[
2−4κ

(i)
j σ2

φi
+
(

1− 2−2κ
(i)
j

)2

σ2

ψ
(i)
j

]
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then using result (4) from Expressions for Mutual Information, it can be finally

written

Ejt

[(
p̃�jt − p̃∗jt

)2
]

= ā22−2κ
(q)
j σ2

q +
I∑
l=1

b̄2
l µ

2
l 2
−2κ

(l)
j σ2

φl
+ (b̄iµi + γ)22−2κ

(i)
j σ2

φi

The Attention Problem

The firm’s attention problem can now be fully specified

min
{κ(ω)
j }ω∈Ω

∑
ω∈Ω

(
κ̄

(ω)
j

)2

2−2κ
(ω)
j ; κ̄

(ω)
j =



āσq ω = q

b̄lµlσφl ω = l 6= i

(b̄iµi + γ)σφi ω = i

such that
∑

ω∈Ω κ
(ω)
j ≤ κ and κ

(ω)
j ≥ 0. This is a constrained optimization problem

and can be represented as a Lagrangian (where the constraint is assumed to be

binding, since in any optimum firms will use all available attention)

L =
∑
ω∈Ω

(
κ̄

(ω)
j

)2

2−2κ
(ω)
j − λ

[∑
ω∈Ω

κ
(ω)
j − κ

]

Assuming an interior solution, the |Ω| first-order conditions for an optimum are

∂L
∂κ

(ω)
j

= 0 =
(
κ̄

(ω)
j

)2

2−2κ
(ω)
j (−2 ln 2)− λ

22κ
(ω)
j =

(
κ̄

(ω)
j

)2

(−2 ln 2)

λ

κ
(ω)
j =

1

2
log2

(
−2 ln 2

λ

)
+

1

2
log2

[(
κ̄

(ω)
j

)2
]
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Define κ̂
(ω)
k = 1

2
log2

[(
κ̄

(ω)
j

)2
]

to ease notation and use the first condition to

substitute out the Lagrange multiplier

1

2
log2

(
−2 ln 2

λ

)
= κ

(ω1)
j − κ̂(ω1)

j

Then use this in the remaining |Ω| − 1 conditions to get:

κ
(ωk)
j = κ

(ω1)
j − κ̂(ω1)

j + κ̂
(ωk)
j

−κ(ω1)
j + κ

(ωk)
j = −κ̂(ω1)

j + κ̂
(ωk)
j k = 2, . . . , |Ω|

Including the constraint
∑

ω∈Ω κ
(ω)
j = κ there are |Ω| equations and |Ω| unknowns.

This can be written in the following linear system:



−1 1 0 · · · 0

−1 0 1 · · · 0

...
. . . . . .

...

−1 · · · 0 1 0

−1 · · · 0 1

1 1 · · · 1 1 1





κ
(ω1)
j

κ
(ω2)
j

...

κ
(ω|Ω|−1)

j

κ
(ω|Ω|)

j


=



−κ̂(ω1)
j + κ̂

(ω2)
j

−κ̂(ω1)
j + κ̂

(ω3)
j

...

−κ̂(ω1)
j + κ̂

(ω|Ω|)

j

κ



This can be solved using the following steps:

1. Multiply row 1 by −1

2. For rows 2 through |Ω|, iteratively add the previous row and multiply by −1

3. For rows l = 1, . . . , |Ω| − 1, substract l times the lth for from row |Ω|.

4. Divide row |Ω| by |Ω|
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5. For rows l = |Ω| − 1, . . . , 1, add the l + 1th row

6. Simplify

This process yields optimal interior allocations that can be expressed as

κ
(ω)
j

∗
= |Ω|−1

[
κ−

∑
ω′ 6=ω

κ̂
(ω′)
j + (|Ω| − 1)κ̂

(ω)
j

]
ω ∈ Ω

We can abuse notation to take into account the corner conditions

κ
(ω)
j

∗
=



κ κ
(ω)
j

∗
> κ

κ
(ω)
j

∗
κ

(ω)
j

∗
∈ [0, κ]

0 κ
(ω)
j

∗
< 0

The allocations can be rewritten

κ
(ω)
j

∗
= |Ω|−1

[
κ−

∑
ω′∈Ω

κ̂
(ω′)
j + |Ω|κ̂(ω)

j

]

= |Ω|−1

[
1

2
log2

(
22κ
)
−
∑
ω′∈Ω

1

2
log2

[(
κ̄

(ω′)
j

)2
]

+ |Ω|1
2

log2

[(
κ

(ω)
j

)2
]]

defining κ̄ = κ
|Ω| and κ̄j =

[∏
ω′∈Ω κ̄

(ω′)
j

] 1
|Ω|

, we have the final expression for the

optimal allocation of attention

κ
(ω)
j

∗
= log2 2κ̄ + log2 κ̄

(ω)
j − log2 κ̄j ω ∈ Ω

Note that it is straightforward that

1− 2−2κ
(ω)
j

∗

= 1−
(
2−2κ̄

) (
κ̄

(ω)
j

)−2

κ̄2
j
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Verifying the Guess

Returning to the optimal imperfect-information pricing rule

p̃∗jt =ā
(

1− 2−2κ
(q)
j

∗)(
q̃t − ψ(q)

jt

)
−
∑
l 6=i

b̄lµl

(
1− 2−2κ

(l)
j

∗)(
φ̃lt − ψ(l)

jt

)
− (b̄iµi + γ)

(
1− 2−2κ

(i)
j

∗)(
φ̃it − ψ(i)

jt

)

Integrating over all firms, applying symmetry to within-industry firms’ optimal

attention allocations, and applying the log-linear approximation to the aggregate

price yields

p̃∗t =

∫
J

ā
(

1− 2−2κ
(q)
i

∗)
q̃tdj

−
∫
J

[∑
l 6=i

b̄lµl

(
1− 2−2κ

(l)
i

∗)
φ̃lt

]
dj

−
∫
J

(b̄iµi + γ)
(

1− 2−2κ
(i)
i

∗)
φ̃itdj

notice that the noise variables are mean zero and firm-specific so that the integral

with respect to a continuum of firms is equal to zero. Uhlig (1996)
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Then we have

p̃∗t =

[
I∑
i=1

µiā
(

1− 2−2κ
(q)
i

∗)]
q̃t −

I∑
i=1

µi

[∑
l 6=i

b̄lµl

(
1− 2−2κ

(l)
i

∗)
φ̃lt

]

−
I∑
i=1

µi(b̄iµi + γ)
(

1− 2−2κ
(i)
i

∗)
φ̃it

=

[
I∑
i=1

µiā
(

1− 2−2κ
(q)
i

∗)]
q̃t

− γ

ζ

I∑
i=1

µi

[
I∑
l=1

(1− ζ)blµl

(
1− 2−2κ

(l)
i

∗)
φ̃lt

]

− γ

ζ

I∑
i=1

ζµi

(
1− 2−2κ

(i)
i

∗)
φ̃it

=

[
I∑
i=1

µi [(1− ζ)a+ ζ]
(

1− 2−2κ
(q)
i

∗)]
q̃t

− γ

ζ

I∑
l=1

[
(1− ζ)bl

I∑
i=1

µi

(
1− 2−2κ

(l)
i

∗)]
µlφ̃lt

− γ

ζ

I∑
l=1

ζ
(

1− 2−2κ
(l)
l

∗)
µlφ̃lt

=

[
I∑
i=1

µi [(1− ζ)a+ ζ]
(

1− 2−2κ
(q)
i

∗)]
q̃t −

γ

ζ

I∑
l=1

[
I∑
i=1

wli

(
1− 2−2κ

(l)
i

∗)]
µlφ̃lt

where wil = (1 − ζ)blµi + ζ1(l = i) and 1(l = i) is the indicator function that takes

the value 1 if l = i and is 0 otherwise. This verifies the guess with

a =

[
I∑
i=1

µi [(1− ζ)a+ ζ]
(

1− 2−2κ
(q)
i

∗)]

bl =

[
I∑
i=1

[(1− ζ)blµi + ζ1(l = i)]
(

1− 2−2κ
(l)
i

∗)]
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these can be rewritten to emphasize the effect of the parameter of strategic

complementarities

a = (1− ζ)a
I∑
i=1

µi

(
1− 2−2κ

(q)
i

∗)
+ ζ

I∑
l=1

µl

(
1− 2−2κ

(q)
l

∗)
bl = (1− ζ)bl

I∑
i=1

µi

(
1− 2−2κ

(l)
i

∗)
+ ζ

(
1− 2−2κ

(l)
l

∗)

Notation

Parameters

Indices

– h ∈ H index for households

– µH measure for households with µH(H) = 1

– j ∈ J index for firms

– µJ measure for households with µJ(J) = 1

– µi ≡ µJ(Ji) convenience notation

– i ∈ {1, . . . , I} index for sectors

– {J1, . . . , JI} partition on firms induced by sectors

Households

– σ: coefficient of relative risk aversion; inverse of the elasticity of intertemporal

substitution parameter
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– ε: inverse of Frisch elasticity of labor supply “measures the substitution

effect of a change in the wage rate on labor supply.” Comes from the derived

Household optimization equation wt = cσt n
ε
t , so that nt = w

1
ε
t c

σ
ε
t .

– r ∈ [0, 1): within-industry generalized mean exponent

– p ∈ [0, 1): between-industry generalized mean exponent

– η = 1
1−r ∈ [1,∞): within-industry elasticity of substitution; measure of market

power

– ρ = 1
1−p ∈ [1,∞): between-industry elasticity of substitution; measure of trade

linkages

Equilibrium

– α = 1
1+ρε

parameterizes strategic complementarities specifically arising from

heterogeneous information, see Angeletos and La’O (2010).

– γ = α(1 + ε)

– ζ = α(σ + ε) is the typical New Keynesian parameter governing strategic

complementarities generally (see Morris and Shin, 2002, Woodford (2003)

chapter 3, and Mankiw and Reis (2010)) and also related to the degree of

“real rigidities” (see Ball and Romer, 1990).

Stochastic Processes

– Ω = {{qt}, {φ1t}, · · · , {φIt}} is an ordered tuple gathering all stochastic

processes and indexed by ω.

– ωl is the lth item in Ω; for example ω1 ≡ q.
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Fundamentals

– qt
iid∼ N(0, σ2

q ): nominal aggregate demand

– φit
iid∼ N(0, σ2

φi
) idiosyncratic productivity shocks

Signals

– s
(q)
jt = q̃t + ψ

(q)
jt is the signal to firm j related to aggregate conditions. s

(q)
jt ∼

N(q̃t, σ
2
q + σ2

ψ
(q)
j

)

– s
(l)
jt = φ̃;t + ψ

(l)
jt is the signal to firm j related to the productivity shock to

industry l. s
(l)
jt ∼ N(φ̃lt, σ

2
φl

+ σ2

ψ
(l)
j

)

Information

– κ represents the Shannon capacity of a channel, measured in bits. This term

is also used for the specific parameter describing total capacity available to

agents.

– κ
(ω)
j ≡ I(ω, s

(ω)
j ) represents the information capacity allocated by firm j to

stochastic process ω

– κ
(ω)
j

∗
represents the optimal allocated capacity by firm j

– κ
(ω)
i

∗
represents the optimal capacity by any firm in sector i allocated to

stochastic process ω; requires appealing to symmetry
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APPENDIX B

APPENDIX TO CHAPTER 3

Factor selection

The baseline model considered in the paper imposes 5 factors as in the

related literature. Here we show that this choice does not influence our results.

As suggested by Jungbacker and Koopman (2014), it is difficult to interpret

the (hundreds of) factor loading coefficients directly, but one way to assess the

contributions of each factor is to regress each series separately on each factor and

a constant, and the results displayed as an index plot. Fig. 10 shows this plot for

the five factors estimated via principal components.

FIGURE 10. Portion of variance of each observed series explained by each factor.
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This plot suggests that the vast majority of the common component for the

PCE price series is driven only by the first factor. Since the ordering of the factors

is not arbitrary - the first factor is the one which explains the most variation in the

data - the common component for inflation series will be little affected, regardless

of the number of factors chosen.

Another way to assess the consequences of our assumptions is to reconsider

the model to extract factors only from the price series (ignoring the macroeconomic

indicators, quantity series, and PPI). Fig. 11 shows the contributions of a factor

estimated in this way (i.e. only from price series) to all of the series in the model.

Its contributions appears almost identical to the first original factor.

FIGURE 11. Portion of variance of each observed series explained by a single
prices-only factor.

To directly check that the single factor extracted from only price series spans

the same underlying space as the first factor extracted from all series, we turn to

regression analysis. We regress each of the five original factors on the single price

factor. The R2 value from each of these regressions is reported in Table 14.
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TABLE 14.
R2 statistic
expressing factor
contributions

R2

Factor 1 0.953913
Factor 2 0.001450
Factor 3 0.007194
Factor 4 0.001825
Factor 5 0.005854
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