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Abstract 

Calibration concerns the relationship between subjective 

probabilities and the long-run frequencies of events. Theorems from 

the statistical and probability literature are reviewed to discover 

the conditions under which a coherent Bayesian expects to be calibrated. 

If the probability assessor knows the outcomes of all previous events 

when making each assessment, calibration is always expected. However, 

when such outcome feedback is lacking, the assessor expects to be 

well calibrated on an exchangeable set of events if and only if 

all the events in question are viewed as independent. Although this 

strong condition has not been tested in previous research, we speculate 

that the past findings of pervasive overconfidence are not invalid. 

Although experimental studies of calibration hold promise for the 

development of cognitive theories of confidence, their value for the 

practice of probability assessment seems more limited. Efforts to train 

probability assessors to be calibrated may be misplaced. 



Calibration 2 

A Subjectivist View of Calibration 

The need for subjectively assessed probabilities has become widely 

recognized in the last ten years. Such probabilities are routinely 

used by weather forecasters (Murphy, in press) and are gaining adherents 

in medicine (Lusted, 1968), business (Brown, Kahr & Peterson, 1974), 

intelligence analysis (Cambridge & Shreckengost, Note 1), and 

technological risk assessment (even the "Rasmussen Report", USNRC, 

1975, used subjectively assessed probabilities to quantify failure 

rates). 

Accompanying this interest has been a burgeoning experimental 

literature exploring the validity of such assessments. This validity 

has usually been sought in a characteristic called calibration (also 

sometimes called reliability, Murphy, 1973). For probabilities assigned 

to the outcomes of discrete events (e.g., will it rain tomorrow?), 

probability assessments are calibrated, or well calibrated, if, in the 

1.on~run, the proportion of true events is equal to the probability 

assigned to the events. Thus just 70% of all events to which one assigned 

a probability of .7 should be true. For probability density functions 

assessed over the range of an uncertain continuous quantity (e.g., how 

many inches of rain will fall tomorrow?), the assessments are well 

calibrated if, in the long run, the proportion of true values that fall 

at or below the n'th fractile of the assessed probability density 

functions is equal ton. Thus, for example, just 50% of the true values should 

fall at or below the .50 fractile, or median, of the assessed distributions. 
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For a review of the research literature on calibration see Lichtenstein, 

Fischhoff, and Phillips (1982). 

The research on calibration seems to have been motivated both by a 

concern for its practical implications and by an interest in the 

cognitive processes involved in thinking under uncertainty. Practically 

speaking, people want other people to be well calibrated. If you are a 

surgeon recommending that your patient undergo an operation, the patient 

can more easily evaluate your advice when your statement, "There is only 

X% chance of serious complications" can be interpreted as a statement 

consistent with your previous surgical outcomes. A drug company can more 

effectively plan for the future when the predictions its staff makes 

about possible new drugs are well-calibrated probabilities (Balthasar, 

Boschi, & Menke, 1978). 

For the cognitive psychologist, measures of calibration provide a 

tool for investigating the conditions that affect our feelings of 

uncertainty and the processes underlying these feelings. The research 

has been directed towards such questions as: Are people overconfident? 

When? Why? 

The subjectivist, or Bayesian, view of probability (de Finetti, 

1974; Savage, 1954) rejects the idea that relative frequencies provide 

the definitional foundation for probabilities. But subjectivists have 

seemed to regard calibration, which is frequency-based, as somehow a 

good thing. Raiffa, for example, has written: 

As consumers, we should like probabilistic reports to be 

externally validated by empirical frequencies. We should want 

our experts to calibrate themselves in such a way that if we 

were to group together a large number of forecasts in the 



Calibration 4 

.8 probability category (say), then roughly .8 of the forecasts 

should turn out to be correct (Note 2, p. 5). 

Roberts made a similarly intuitive appeal: 

Even among people who are enthusiastic about expressing 

numerical probability assessments, there is a feeling that 

these assessments will have been in vain unless they are borne 

out by subsequent frequencies (Note 3, p. 5). 

More recently, subjectivists have been no more specific about the 

theoretical foundations of calibration: 

To most people, it seems reasonable to say that events 

which are assigned a subjective probability of 30% should, 

on the average, occur 30% of the time (Harrison, 1977, p. 322). 

The present paper attempts to fill this gap in subjectivist theory 

by exploring the conditions under which a person (called you) who 

subscribes to the subjectivist theory of probability would expect to 

be well calibrated and under what conditions you would expect not to 

be well calibrated. 

We begin by setting the stage with some general considerations. 

We then discuss separately two situations that turn out to be critical 

for calibration. In the first situation we assume that each time 

you make a probability assessment,. you know the outcomes of all the events 

for which you ha& previously assessed probabilities. Two theorems 

are presented for this outcome-feedback situation, one for probability 

density functions assessed for uncertain continuous quantities and the 

other for probabilities of discrete events. The results of these 

theorems are very general: you will always expect to be well calibrated. 
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In the second situation, outcome feedback is lacking. That is, 

you must make a large number of probability assessments before learning 

the outcome of any one of the events being assessed. Here the results 

are very different: you will expect to be well calibrated only under 

strong (and thus perhaps rarely met) assumptions. 

Along the way, we will try to explicate the implications of these 

theorems for psychological research on calibration and for the practice 

of probability assessment. 

General Considerations 

Subjectivism and coherence. We assume, throughout this paper, the 

subjectivist view of probabilities, under which probabilities are 

coherent degrees of belief, beliefs you would be willing to bet on. 

Coherence is the key concept in the subjectivist theory; indeed, the 

usual axioms of probability (i.e., probabilities are numbers from Oto 

1 such that the probability of a union of two mutually exclusive events 

is the sum of the probabilities of the events and the probabilities 

of mutually exclusive and exhaustive events sum to one) can be derived 

from the single idea of coherence (de Finetti, 1980; Kemeny, 1955; 

Kyberg, & Smokler, 1980; Lehman, 1955; Ramsey, 1980; Savage, 1954; 

Shimony, 1955). Coherence is defined in terms of betting, specifically, 

in terms of a Dutch book. A set of probabilities are coherent if no 

Dutch book can be made from them. A Dutch book is a set of two or more 

bets placed on the outcomes of one or more uncertain events such that 

the person holding the bets will surely lose money, regardless of the 

outcome(s) of the event(s). 

As an example of incoherent probabilities, suppose you believe that 

P(A) = .75 and that P(not-A) = .80. Then I can form two bets that 

individually seem fair but together constitute a Dutch book, as follows: 
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Bet 1: If A occurs, you win $1. 

If not-A occurs, you lose $3. 

Bet 2: If A occurs, you lose $4. 

If not-A occurs, you win $1. 

Bet 1 is based on your first belief, that A is three times as likely 

as not-A to occur. Bet 2 is based on your second belief, that not-A 

is four times as likely to occur as A. But the two bets taken together 

guarantee that you will lose money. If A occurs, you will win $1 and 

lose $4, for a net loss of ~3. If not-A occurs, you will lose $3 and 

win $1, for a net loss of $2. 

Unless otherwise specified, we assume throughout this paper that 

probabilities are coherent. In particular, all the probabilities in 

the theorerrs below are coherent. 

Telling the truth. We note here, in order to exclude them from 

further consideration, situations in which the payoffs (either 

monetary or otherwise) ensuing from your assessments motivate you to 

lie, that is, to report as probabilities something other than your 

true beliefs. We would not, in general, expect such probabilities to 

be well calibrated. As an extreme example, suppose you are told that 

the occurrence of any event to which you have previously assessed a 

probability of .25 or less will lead to your immediate execution by 

firing squad, yet you are required to use, at least occasionally, 

small but non-zero probabilities. Under these conditions, you would 

expect to be quite badly calibrated (you would certainly not want 

20% of your .20 assessments to occur). We thus begin by assuming that 

our search for conditions under which you expect to be well calibrated 

will be limited to those situations for which the payoffs encourage you 
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to tell the truth. Such payoff functions are called proper scoring 

rules (Stael von Holstein, 1970) or, equivalently, reproducing scoring 

systems (Shuford, Albert & Massengill, 1966). This limitation to 

proper scoring rules is not a trivial one in practice. While we know 

of no assessors who will be shot at dawn if "wrong", we suspect that 

many real uses of probabilities entail payoffs such as "being made to 

look the fool" or "increased chance of job promotion" that may not 

be proper. 

Communicating with others. We exclude from this paper any 

discussion of how you might view other people's probability assessments 

or how you should use information concerning both their probability 

assessments and their possible lack of calibration to alter your own 

beliefs. These topics are discussed by DeGroot and Fienberg (Note 4), 

Lindley (Note 5), Lindley, Tversky, and Brown (1979), and Morris (1974; 1977). 

Almost sure convergence. Finally, a technical note about the 

theorems that follow: The theorems use a particular kind of convergence 

of a sequence of random variables to a probability distribution, called 

almost sure convergence (Loeve, 1960). This is a strong sense of 

convergence, and can be thought of as meaning, "it is a virtual certainty 

to you that .••• " 

With these general matters behind us, we turn now to the theorems 

about calibration. 

Outcome Feedback 

A fundamental distinction in the theory of calibration is whether 

one knows the outcome of all previous events before one is required 

to state one's probability for the next event. If one has that 

information, we say that one has outcome feedback. 
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The following result, due to Pratt (Note 6) and reported here with 

his permission, concerns the assessment of continuous uncertain 

quantities, e., in the case of outcome feedback. 
l 

Pratt's theorem. Suppose that you are going to assess judgmentally 

the distributions for a set of parameters 81, e2 , Let S be 
n 

the number of 8. among 81 , •.. , 8 such that 8. falls below the p'th fractile 
1 n 1 

of its assessed distribution, and assume for convenience the assessed 

distributions are all continuous. 

- -Theorem 1. Under these conditions, if you know 81, . • . , ek when 

you make your assessment of ek+l' 

(a) You must regard S as binomially distributed with parameters n . 

(b) 

n and p; 

1 
You are almost sure that - S + p. 

n n 

Pratt's proof is given in the Appendix. 

An example might help make the theorem clear. Suppose it is your 

job to predict how many people will attend a particular movie house 

each night. For each night, you assess a distribution over the then-

uncertain parameter, total number of tickets sold < e.) . 
l 

Typically, you 

express each distribution as a set of fractiles. The .25 fractile (p) 

for night i might be, say, 100, meaning "my probability that attendance 

will be equal to or less than 100 is .25." The next morning you find 

out how many tickets were in fact sold (outcome feedback) and then make 

an assessment for the coming night. Over n such nights, you count the 

number of times (S) that the actual attendance was equal to or smaller 
n 

than the attendance you associated with fractile p (did 100 or fewer 

people attend on night i?). Part (b) of Theorem 1 shows the convergence 

of the proportion S /n to the fractile p; thus it says that you are 
n 

virtually certain you are (in the long run) well calibrated. 
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The importance of Pratt's result is its generality. It places no 

conditions on what kind of events you are assessing or on what beliefs 

you hold concerning possible interrelationships among the events. It 

simply says that under conditions of outcome feedback for the assessment 

of continuous probability density functions, coherence alone implies 

calibration. 

Dawid's theorem. The case of probabilities assessed for discrete 

events has been explored by Dawid (in press), who has proven a theorem 

as general as Pratt's. 

Suppose that A1 , A2 , •.. , Aj, ••• is a set of events. 

Suppose that p1 , p2 , ..• are someone's subjective probabilities for 

A
1

, A2 ...• The assessment of pi is made only after th~ outcomes of 

A1 , ... , Ai-l are known. 

Now we wish to form a sum, like S in Pratt's Theorem, whose 
n 

convergence is to be studied. To have a hope of convergence, this sum 

must have infinitely many events in it. Thus,although it might be 

natural to form the sum by including all the events, and only those events, 

within some prespecified interval of subjective probability, we 

could not be certain, in advance, of having infinitely many events in 

the sum. For this reason, Dawid introduces the technical device of 

a probability~- that the event A. is selected for inclusion in the sum. 
1 1 

Here~- can depend on the outcomes of A. 
1

, A. 2 , .•. in an arbitrary 
1 1- 1-

way, and so in particular, ~- can depend on p .• 
j 1 1 

Now we can let n. = 
J 

E ~ • , which is 
i=l 1 

roughly the number of events from the first j to be 
j 

included in the sum. Finally, let S. = E ~.Y., where Y. takes the 
J i=l 1 1 1 
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value 1 if Ai occurs and zero otherwise. Then Sj can be interpreted 

roughly as the number of the first j events that are selected and occur. 
j 

Finally let T. = I: ~.p., which is roughly the sum of the subjective 
J i=l 1 1 

probabilities for the events that are included in the sum. Then Dawid 

proves the following: 

Theorem 2. If j + 00 and the~. are chosen so that n. + 00 , then 
1 J 

S. T. 
_J_ - __J_ + 0 almost surely. 
nj nj 

This theorem says (roughly) that the difference between the 

proportion of events that occur, S./n., and the average assessed 
J J 

probabilities, T./n., goes to zero; thus, you expect with near certainty 
J J 

to be well calibrated. 

Like Pratt's Theorem, Dawid's Theorem requires no assumptions on the 

pr~bability structure of the se_t of events, A1 , _ A2 ._ •. , except feedback. We 

summarize the import of Pratt and Dawid's work by saying that coherence 

implies calibration in the presence of outcome feedback. 

How is calibration achieved? How might you accomplish the calibration 

you almost surely expect from Theorems 1 and 2? One obvious possibility 

is to keep a running tally of assessments and outcomes ("So far I've 

used .7 six times, of which three were right", etc.). Such a tally 

could be summarized in a calibration curve, which shows, for all your 

assessments, the relationship between your assessments (on the abcissa) 

and the proportion of events that occurred (on the ordinate). If the 

running tally or the calibration curve indicate poor calibration, you might 

wish to use the data to find a transformation function y(E;p), where y depends 

'lUly on p and is a continuous function of p. You intend to say y 

whenever, in the future, you believe p, and in this way be well 

calibrated. 
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If your initial beliefs, p, are coherent, however, you are 

confronted with the following paradox: 

Let A1 and A2 be any two disjoint events having probabilities p1 

and p
2

, respectively. Then since y is to be a probability, it must 

satisfy y(A
1
UA

2
; pl+ p

2
) = y(A

1
;p

1
) + y(A

2
;p

2
) 

Hence we must have (using continuity of y) 

y(A; p) = a.p for all p, 0 ~ p ~ 1, for some number a.. 

Noting that y must assign probability one to the universal set, 

y(Q;l) = 1 implies at = 1. 

Hence we have 

y(A; p) = p for all p, 0 ~ p ~ 1. 

We conclude that if p and y are both coherent, they are identical 

(see also Edwards, 1962, Theorem 3). This is a bit of an embarrassment 

for you, because you had hoped to recalibrate your probabilities on the 

basis of the function y. 

Since a calibration curve or calibration tally presents a kind of 

y function (e.g., for all the times you said ".8," only 65% occurred), 

it cannot be used to "correct" your assessments. Indeed, we know of 

no valid model for how people should change their opinions when 

assessments they believe are coherent systematically deviate from the 

observed frequencies of events. We speculate that the fault in the 

transformation-function approach lies in the idea, expressed mathematically 

by the requirement that the function y depends on p alone, that all 

events of probability p should be transformed in the same way to some 

new probability y. Instead, we believe that what people should learn 

from outcome feedback is something about the properties of the world, 
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not about the properties of p. For example, a person who assesses 

movie attendance at a particular movie house may learn that musicals are 

less popular than previously thought, Robert Redford is a big draw, 

and space adventures are growing in popularity. Such information will 

lead to calibration through selective changes in belief, with some 

probabilities increasing and some decreasing. 

Under this view, the innocent-sounding assumption of Theorems 1 

and 2, that you know the outcome of all previous events before you state 

your probability for the next event, is seen as a psychologically strong 

requirement: Not only must you have a perfect memory for past outcomes 

but also you must be able to use the outcome information to develop a 

better understanding of the world in which these events occur. Given the 

oft-documented limitations on human cognitive abilities (Kahneman, Slavic 

& Tversky, 1982), can people achieve good calibration if given outcome 

feedback? We know of no laboratory research speaking to this issue, but 

an abundance of field research on weather forecasters (e.g., Murphy, in 

press; Murphy & Winkler, 1977) indicates that the answer is yes in their 

case. The U.S. Weather Bureau instituted probabilistic assessments in 

precipitation forecasts nationwide in 1965. These forecasts are made 

under conditions that come close1 to satisfying Theorem 2. As a group, 

the forecasters are superbly well calibrated. 

In the laboratory, however, subjects will not typically have, or 

receive, the thorough knowledge of the content area that weather 

forecasters have. Moreover, in many experiments (see Lichtenstein, 

Fischhoff & Phillips, 1982) there isn't any single content area. For 

example, subjects are first asked how many eggs were produced in the 

U.S. in 1979; next they are asked how many dimples there are on a 

golf ball, and so forth across a wide variety of topics. Our 
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speculations on the importance of content learning to the achievement 

of calibration with outcome feedback leads us to predict that when the 

content is the same for each item (e.g., predicting the winning horse 

from a large number of horse-racing past performance charts), laboratory 

subjects will quickly learn to be well calibrated, whereas they will 

find greater difficulty in achieving calibration with items of diverse 

content. 

We further speculate on the more applied problem of how to design 

training programs for assessors who will be receiving outcome feedback 

in the course of their work. Initial training in the meaning of 

probabilities will be necessary, to ensure an understanding of coherence. 

The assessor should understand, for example, that the assessment of a 

probability of 1.0 indicates not only a willingness, but even an eagerness, 

to accept a bet which pays, say, $1 if the event in question occurs, and 

which has a loss of all one's present and future worth if the event does 

not occur. 

Thereafter, however, we would not recommend a training emphasis on 

calibration, per se. A reliance on calibration tallies or calibration 

curves may encourage the trainee to search, futilely, for a transformation 

function, y. Furthermore, such summaries discard the very information 

that, we believe, is essential for satisfying the conditions of Theorems 

1 and 2: which events occurred, and which didn't? Thus we would 

recommend that training in probability assessment be fully integrated 

with training in the content material. Medical schools, for example, 

should teach about uncertainty in diagnosis while teaching about diagnosis. 

No Outcome Feedback 

We turn now to a consideration of calibration without feedback, 

and begin by exploring whether exchangeability is sufficient to ensure 

calibration. 
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Exchangeability. A set of events is exchangeable to you if each 

event has the same probability, each pair of events has the same 

probability of occurrence as each other pair, each triple the same, etc. 

Thus exchangeability is similar to independence of events with the 

same probability, but more general, since independence requires, for 

example, that the probability of two events both occurring be the 

product of their single event probabilites, while exchangeability does 

not specify what the joint probability is, as long as it is the same 

for all possible pairs. 

Exchangeability is an entirely subjective notion. You must examine 

your beliefs about joint occurrence to determine whether the events in 

a set are exchangeable. It is thus presumptuous for us to tell you when 

events are or are not exchangeable for you. 

As an example of exchangeable but not independent events, suppose 

that E. is the event that it snows on block i of Minneapolis tonight. 
1 

Suppose that you judge each block to have the same probability of being 

snowed on tonight, because it either will snow everywhere, which you 

consider it will with probability s, or it will snow nowhere, which for 

you has probability 1 - s. Under these assumptions, the events E. are 
1 

exchangeable but not independent to you; you believe that the probability 

of snow in each pair of blocks is s, each triple of blocks is s, and so 

forth. But you are sure that you will not be well calibrated on these 

events, because you are sure that either all of them will occur or none 

of them will occur. 

The following two theorems formalize our conclusion from the 

Minneapolis snow example: exchangeability does not ensure calibration. 
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deFinetti's Theorem. A fundamental theorem of deFinetti (see 

Feller, 1971, p. 228) gives the following structure for a set of exchangeable 

events: Let A
1

, •.. be an infinite exchangeable set. Then the 

probability of exactly k out of n events occurring is given by 

(1) 

for all k and n and some density f. Thus a Bayesian with an exchangeable 

opinion on a set views the events as if a p were drawn from a distribution 

with density f(p), and then, conditional on p, the events are Bernoulli 

with probabilty p. Theorem 3 follows from equation (1). 

Theorem 3. If A
1

, A
2

, .•• are exchangeable, the proportion k/n 

of events that occur converges to a random variable with density f(p). 

Every event in an exchangeable set has,~ ante, the same 

probability to you, namely, the mean of the distribution with density 

f(p), as can be seen by substituting k = n = 1 in (1). So before 

receiving outcome feedback, you will report that mean, Jlpf(p)dp, as 
0 

your probability for each event. You expect the proportion of events 

that occur to converge top, but you are not sure what the value of pis. 

Your beliefs about the value of pare expressed as f(p). If f(p) is 

heaped up at its mean, you will have some modest hope that k/n will 

converge to a value close to its mean, so that you will be close to 

being well calibrated, but you would not be astonished if k/n were to 

converge on any other value of p for which f(p) has non-zero probability. 

In the Minneapolis snow example, f(p) has spikes at p = 0 and p = 1 

(" .•. it will either snow everywhere ... or it will snow nowhere") and is 

zero elsewhere, so here you are sure you will not be well calibrated. 

In general, Theorem 3 says that with exchangeable events, you will not 

automatically expect to be well calibrated. 
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Two further examples may help to illustrate Theorem 3. First, 

we ask you to assess the probability that a ball drawn from an urn will 

be red, for each of many such draws (with replacement). The urn 

contains either three red balls and one white ball or three white 

balls and one red ball, but you don't know which; you put probability 

1/2 on each of these two possibilities. Thus you assess, for each draw, 

the probability of a red ball as .5. All draws are exchangeable for 

you, but you do not expect that 50% of the draws will be red balls. 

Instead, you expect that either 25% or 75% of them will be red. Your 

f(p) is spiked at the values .25 and .75, and you would be extraordinarily 

surprised, indeed, quite suspicious of our honesty, should we report to 

you that you were well calibrated on a long series of draws. 

Consider now a national election. Suppose that you are assessing 

the probability of winning for a set of liberal candidates across 

the nation, each of whom, you believe, has probability .6 of winning. 

Further assume that these races are exchangeable to you. But suppose 

that at the same time you are aware of a nation-wide effort by ultra­

conservatives to encourage all other conservatives to vote in unprecedented 

number. If such an effort succeeds, you expect fewer than 60% of the 

liberals to win; if the effort fails or backfires, you expect more than 

60% to win. Your beliefs about the probability of success by the ultra­

conservatives are expressed in f(p), which has a mean of .6. For most 

reasonably smooth, widely spread f(p) functions, no particular set of 

outcomes will surprise you much more than any other. Still, these 

considerations, and the realization that you likely will not be well 

calibrated, do not lead you to change your assessment of .6 for each race 

in the set. 
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The following theorem adds a further constraint on your beliefs, 

in order to characterize sets of exchangeable events for which 

calibration is a consequence of coherence, under conditions of no outcome 

feedback. 

Theorem 4. Let A
1

, A
2

, ... , Ai, ..• be a set of events 

exchangeable to you, let S be the number of them that occur among the 
n 

first n, and let p be the probability that any given A. occurs. Then 
1 

you are almost sure that 

s 
n 

n 
+ p 

if and only if the set is a set of independent events to you. 

Theorem 4 follows immediately from Theorem 3. 

Thus, with no outcome feedback, if events are both exchangeable 

to you and independent to you, you will expect to be well calibrated. 

Other possible conditions. Theorems 3 and 4 do not speak to the 

question of calibration in the absence of both outcome feedback and 

exchangeability. A more extensive mathematical treatment of calibration 

in the absence of outcome feedback may be found, though expressed in a 

different vocabulary, in ergodic theory (Breiman, 1968), interpreted 

subjectively. 

Ergotic theory arose in the physics of systems composed of large 

numbers of identical particles (Reif, 1965, p. 583ff). Interest 

centers on conditions under which the average over time of some system 

parameter under a fixed system state is equal to the average at a fixed 

time across all possible system states. The parallel with calibration 

is as follows: Suppose the system parameter under study is a 0-1 

variable. Then its average over time is a relative frequency. The 
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average at a fixed time across all system states may be interpreted as 

the subjective probability of the system parameter's occurrence at that 

time. The question can thus be rephrased: Under what conditions does 

the relative frequency approach the subjective probability? For large 

classes of stochastic processes, these relative frequencies converge 

to a particular random variable, as in Theorem 3, and under very special 

circumstances they converge to a constant, here interpreted as subjective 

probability, as in Theorem 4. However, none of these classes has the 

subjective intuitive appeal of exchangeability, so we will not report 

those further results here. Instead, we simply note that there do exist 

other conditions under which one would expect to be well calibrated, 

but we doubt that these conditions would ever be met either in laboratory 

or in real-life settings of subjective probability assessment. 

Violations of independence. Independence, like exchangeability, 

is an entirely subjective notion, speaking to the beliefs you hold about 

events. Two ways of testing independence are to ask yourself either 

"Will knowing the outcome of event B change my belief about A?", that 

is, P(A!'B) = P(A) is required for independence, or "Is the probability 

of the joint occurrence of A and B the same as the product of the single 

probabilities?", that is,P(A~B) = P(A) • P(B) is required for independence. 

Since independence is an essential condition for you to expect to be 

well calibrated with exchangeable events in the absence of outcome feedback, 

we here briefly discuss ways in which independence might be violated. 

The examples of exchangeability given above (snow in Minneapolis, red and 

white balls drawn from an urn, and the elections predictions) are all examples of 

non-independence; in each case the non-independence is driven by a causal 
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link between the events. Similarly, a physician's beliefs about the 

likelihood of a highly contagious flu bug present in the community will 

generate non-independence in the physician's diagnostic assessments of 

otherwise unrelated patients. 

Non-independence might also result from events whose definitions 

have some logical relation. For example, suppose I ask you to assess 

the probability that the population of one city exceeds the population 

of another, for a large set of pairs of cities (Lichtenstein & 

Fischhoff, Note 7.). Suppose that several of these city-pairs have one 

city in common. For example, you assess p
1 

that Seattle is more populous 

than Phoenix and p2 that Seattle is more populous than Wichita, etc. 

If you realize that you might be quite wrong on the population of Seattle, 

then you will recognize that you will tend to systematic error in your 

assessments of all the Seattle pairs; the product of p
1 

and p
2 

will thus 

not be equal to your probability that Seattle is more populous than 

both Phoenix and Wichita. 

In general, beliefs about the possible interconnectedness of your 

beliefs as well as beliefs about the interconnectedness of events will 

lead to nonindependence. 

Implications for experimental research. Virtually all the published 

research on calibration (except the literature on weather forecasters) 

has been conducted without outcome feedback. When feedback has been 

given, it usually has involved information about calibration (i.e., 

calibration tallies or curves) without providing the subjects with 

answers to the items assessed (Adams, & Adams, 1958; Lichtenstein, & 

Fischhoff, 1980; Oskamp, 1962). Thus the experimenters should have 

expected to observe good calibration and discussed the psychological 
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import of contrary findings only if the items used in the research were 

viewed by the subjects as independent. No one has ever asked research 

subjects about independence, but we suspect that strict independence 

among items has been rare. 

The use of general-knowledge or "trivia" items has been popular in 

calibration research. Here, independence may be violated because of 

overlapping content of items. When collecting the large number of 

items needed for such research, it is difficult to avoid such overlap 

entirely. One subject of Lichtenstein and Fischhoff's (1980) took 

great glee in pointing out to the experimenters such problems (for example, 

the same alternative was used as one of two possible answers to two 

different questions; it could not have been the correct alternative for 

both). 

Some research had used items all of which refer to the same content 

(e.g., 100 handwriting samples, for each of which the task was to 

assess the probability that it was written by a European rather than 

an American; Lichtenstein & Fischhoff, 1977). Research on assessments 

of uncertain quantities has sometimes used group-generated proportions 

for their items (e.g., Alpert & Raiffa, 1982 ; Moskowitz & Bullers, 

Note 8; Selvidge, Note 9). In these tasks, the subjects were first asked 

facts <;1bout themselves, like "Do you prefer bourbon to scotch?"; then 

they assessed the proportion of subjects answering yes to those questions. 

Suppose in these situations that the assessor uses some strategy or theory 

to aid in making all the assessments. For example, subjects assessing 

group-generated proportions may believe that "Most people have preferences 

like mine." For the handwriting task, an assessor may believe that cramped 
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writing is more likely to be European than American. If the assessor 

has uncertainty about the validity of the theory, that uncertainty would 

lead to lack of subjective independence among the events. 

A relatively new area of research in calibration deals with the 

assessment of future events (most of this research has not yet been 

published, but see Fischhoff and Beyth, 1975). In developing a large 

number of items all of which will be decided within a relatively short 

period of time (so that the experimenters can score the items), it is 

difficult to avoid items with relationships among them (e.g., will 

Democrat X win the upstate election? Will Democrat Y win downstate?). 

For these reasons, we suspect that the items used in past research 

would not have all been judged strictly independent by all subjects. 

Thus, one could say that the finding that subjects are often badly 

calibrated (usually, overconfident) has little meaning, since Theorem 4 

says that one wouldn't expect good calibration. However, we reject this 

reasoning. We believe that the non-independence in most past studies 

was so small as to have virtually no impact on the results. With large 

numbers of items, most subjects do not remember previous items when 

responding to the current one. Moreover, subjects who use simplifying 

theories to aid them in the task ("cramped writing is more likely to be 

European") probably do not question or doubt their own theories, and it 

is the doubt about such a theory, not the theory itself, which induces 

non-independence. Finally, with items of diverse content, one could 

reasonably expect that the effects of the few interdependencies would 

tend to cancel each other out (some leading to too many items being 

correct, others to too few) in the overall calibration. Therefore, 
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we find ourselves still believing the results of past research purporting 

to show that people are generally overconfident in the extent and 

accuracy of their own knowledge. Still, research that specifically 

addresses problems of subjective non-independence is needed. 

Let us suppose for a moment that previous laboratory findings will 

replicate when subjective independence of items is carefully satisfied; 

specifically, suppose that people tend to be badly calibrated with trivia 

items, but that this overconfidence can be eliminated to some degree by 

showing the assessors their own calibration curves (without outcome 

feedback; Lichtenstein & Fischhoff, 1980) or by making the assessors 

focus on reasons why they might be wrong (Koriat, Lichtenstein & 

Fischhoff, 1980). How should we view such results in the light of 

Theorem 4? The subjects in psychological experiments are typically 

not Bayesians, indeed, are not informed at all about probability theory. 

The instructions they receive do not educate them about the fine 

points of coherence. Thus we would not be surprised if subjects' 

responses aren't coherent probabilities and are quite easy to change. 

Despite some promising beginnings (Pitz, 1974; Ferrell & McGoey, 

1980), we still do not have an adequate theory about how people form 

and express feelings of uncertainty. Even when the exchangeability and 

independence assumptions are not met, research on calibration can serve 

to advance our understanding of these processes. For example, experimental 

manipulations that change calibration (e.g., Koriat, Lichtenstein, & 

Fischhoff, 1980; Lichtenstein & Fischhoff, 1977) can suggest what 

processes are involved in the formation of uncertainty. In these 

endeavors to build cognitive psychology, however, we should take care not 

to claim that good calibration is a goal to which reasonable people 

should always strive. 
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On becoming rich. Calibration tasks do not provide evidence about 

the assessor's coherence (such evidence would be sought in the assessments 

of not only P(A) and P(B), but also P(AjB), P(BjA), P(AOB), and so forth). 

Thus we cannot use calibration tasks to become rich by developing Dutch 

books on other assessors. However, if people are generally overconfident 

in assessing probabilities, seemingly attractive bets having negative 

expected value to the assessor can easily be written. In a wide 

/ 

variety of tasks involving the assessments of fractiles for uncertain 

quantities, for example, naive assessors are, overall, so overconfident 

that some 40% of all true answers lie outside their central 99% confidence 

intervals (Lichtenstein et al., 1982 ). Such assessors should be 

willing to accept bets that seem quite favorable to them yet provide 

the offerer excellent odds of winning. Subjects' willingness in such 

situations has been reported by Pitz (1974), whose subjects showed a 

systematic preference for betting on the central regions rather than 

on the tails of their own assessed distributions, and by Fischhoff, 

Slovic, and Lichtenstein (1977), some of whose subjects expressed 

eagerness to enter what was in fact a losing "trivia-hustling" game. 

Implications for practice. Some authors (e.g., Brown, Kahr & 

Peterson, 1974, pp. 437-438) have recommended that probability assessors 

study their own calibration on trivia items and apply the lessons so 

learned to their real-world assessments. We recommend against such a 

training procedure. First, a justification of this procedure would 

require strong and quite dubious assumptions about exchangeability and 

independence between the set of trivia questions and the set of real­

world events to be considered later. Secondly, there is no evidence that 

the lessons learned from such exercises ("I'm overconfident with trivia 
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items") would be appropriately generalized when people make assessments 

in their area of expertise. Finally, with sufficient effort by the 

designers, trivia items can be written that strike everyone as independent 

(What's the relationship between golf ball dimples and egg production?). 

This may lull assessors into carelessly assuming, without critical 

examination, that the real-world events they are assessing are also 

independent. 

A reasonably stable measurement of calibration requires a large 

amount of data. It may be rare to find situations outside the laboratory 

in which an assessor makes a large number (e.g., 500) of assessments 

before receiving any outcome feedback. More typically, an assessor 

may make only a few assessments, five or twenty, before receiving 

outcome feedback. If so, the situation is more like that of Theorems 1 

and 2; concern for independence is lessened, and the focus of the assessor's 

attention in evaluating the feedback is to learn which events occurred 

and why. 

When a large number of assessments are made in practical settings 

before outcome feedback is received, the question of independence is 

crucial in evaluating calibration. Sometimes non-independence will be 

obvious, as when a set of assessments about future economic events all 

depend on, say, the growth of the national economy. Then the message 

from Theorems 3 and 4 is that assessors should just not care about their 

calibration. Indeed, it may be misleading even to look at a calibration 

tally. 

Still, there may be occasions when it is appropriate to study 

calibration in practical settings. What can be learned from such 
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exercises? Suppose that you assess probabilities (without outcome 

feedback at the time) for a set of events that you believe are 

exchangeable and independent. Suppose the data (when later you get 

outcome feedback) suggest that you are quite badly calibrated. How 

should you regard these data? You might attribute the source of your 

trouble to one or more of the following causes: 

1. It might be that you are indeed well calibrated in the long 

run, but the finite sample of data is a rare one. This possibility 

becomes less likely as the sample size increases, but can never be 

entirely ruled out. 

2. Despite your best efforts, your probability assessments may 

be incoherent. Calibration tallies or curves do not, in themselves, 

provide evidence of incoherence. It may be, however, that if you 

assessed probabilities of joint events (unions, intersections, etc.), 

you would discover a way to write a Dutch book against yourself. The 

existence of such a Dutch book would show that your assessments were 

incoherent. 

3. Your expressed probabilities and assumptions may not have 

truly represented your beliefs. For example, you may have been too 

quick to assume independence among the events, without critical 

examination. You should especially be alert to the existence of 

previously unnoticed conditioning events (e.g., assuming that the U.S. 

would not enter a severe depression when forecasting future energy 

needs) that linked all your assessments. 

4. It may be that your beliefs about the world are wrong. You 

may have, at the time, unquestioningly believed that the incidence of 

cramped handwriting is more likely among Europeans than Americans, 
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but when outcome feedback becomes available, you learn that your belief 

was false. The theorems presented above are subjectivist; they describe 

the conditions under which you believe you are well calibrated. But 

they do not guarantee that you will, in fact, be well calibrated. 

The theorems presented above will not help you to choose among 

these four possibilities. Only further exploration and consideration 

of the events in question may inform you of the source of your difficulty. 

Calibration, we conclude, is dependent more on the characteristics of 

and interrelationships among the events than on your feelings of 

uncertainty concerning each event considered in isolation. 



Calibration 27 

Reference Notes 

1. Cambridge, R. M.,& Shreckengost, R. C. Are you sure? 

The subjective probability assessment test. Unpublished manuscript. 

Langley, Va.: Office of Training, Central Intelligence Agency, 1978. 

2. Raiffa, H. Assessments of probabilities. Rough draft, 

Harvard University, January 1969. 

3. Roberts, H. V. On the meaning of the probability of rain. 

A paper prepared for presentation to the First National Conference 

on Statistical Meteorology, American Meteorological Society, May 1968 

in Hartford, Connecticut. 

4. DeGroot, M. H., & Fienberg, S. E. Assessing probability 

assessors: Calibration and refinement. Technical Report 205, Department 

of Statistics, Carnegie-Mellon University, Pittsburgh, Pa., 1981. 

5. Lindley, D. V. The improvement of probability judgments. 

Unpublished manuscript, 1981. 

6. Pratt, John W. Must subjective probabilities be realized as 

relative frequencies? Memo dated September 27, 1962. 

7. Lichtenstein, S., & Fischhoff, B. How well do probability 

experts assess probabilities? Technical Report PTR-1092-80-8. Woodland 

Hills, Ca.: Perceptronicsi Inc., 1980. 

8. Moskowitz, H., & Bullers, W. I. Modified PERT versus fractile 

assessment of subjective probability distributions. Paper No. 675, 

Purdue University, 1978. 

9. Selvidge, J. Experimental comparison of different methods for 

assessing the extremes of probability distributions by the fractile method. 

Management Science Report Series, Report 75-13. Boulder, Co.: Graduate 

School of Business Administration, University of Colorado, 1975. 



Calibration 28 

References 

Adams, P. A., & Adams, J. K. Training in confidence judgments. 

American Journal of Psychology, 1958, l.!._, 747-751. 

Alpert, M., & Raiffa, H. A progress report on the training of 

probability assessors. In D. Kahneman, P. Slovic, and 

A. Tversky (Eds.), Judgment under uncertainty: Heuristics and 

biases. New York: Cambridge University Press, in press. 

Balthasar, H. A., Boschi, R. A. A. & Menke, M. M. Calling the shots in 

R & D. Harvard Business Review, 1978, 56, 151-160. 

Breiman, L. Probability. Reading: Addison-Wesley, 1968. 

Brown, R. V., Kahr, A. S., & Peterson, C. Decision analysis for the 

manager. New York: Holt, Rinehart, & Winston, 1974. 

Dawid, A. P. The well-calibrated Bayesian. Journal of the American 

Statistical Association, in press. 

de Finetti, B. The theory of probability, 2 volumes. New York: Wiley, 1974. 

de Finetti, B. Foresight: Its logical laws, its subjective sources. 

In H. E. Kyborg, Jr., and H. E. Smokler (Eds.), Studies in 

subjective probability, 2nd ed. New York: Kreiger, 1980. 

Edwards, W. Subjective probabilities inferred from decisions. 

Psychological Review, 1962, _§2, 109-135. 

Feller, W. An introduction to probability theory and its applications, 

Vol. II. New York: Wiley, 1971. 

Ferrell, W. R., & McGoey, P. J. A model of calibration for subjective 

probabilities. Organizational Behavior and Human Performance, 

1980, ~. 32-35. 

Fischhoff, B., & Beyth, R. "I knew it would happen"--remembered 

probabilities of once-future things. Organizational Behavior 

and Human Performance, 1975, 13, 1-16. 



Calibration 29 

Fischhoff, B., Slavic, P., & Lichtenstein, S. Knowing with certainty: 

The appropriateness of extreme confidence. Journal of Experimental 

Psychology: Human Perception and Performance, 1977, l, 552-564. 

Harrison, J.M. Independence and calibration in decision analysis. 

Management Science, 1977, 24, 320-328. 

Kahneman, D., Slavic, P., & Tversky, A. (Eds.), Judgment under uncertainty: 

Heuristics and biases. New York: Cambridge University Press, 1982. 

Kemeny, J. G. Fair bets and inductive probabilities. Journal of 

Symbolic Logic, 1955, 1..Q_, 263-273. 

Koriat, A., Lichtenstein, S., & Fischhoff, B. Reasons for confidence. 

Journal of Experimental Psychology: Human Learning and Memory, 

1980, 2._, 107-118. 

Kyburg, H. E., Jr., & Smokler, H. E. Introduction. In H. E. Kyburg, Jr. 

and H. E. Smokler (Eds.), Studies in subjective probability, 

2nd ed. New York: Krieger, 1980. 

Lehman, R. S. On confirmation and rational betting. Journal of 

Symbolic Logic, 1955, 1..Q_, 251-262. 

Lichtenstein, S., & Fischhoff, B. Do those who know more also know 

more about how much they know? The calibration of probability 

judgments. Organizational Behavior and Human Performance, 1977, 

20, 159-183. 

Lichtenstein, S., & Fischhoff, B. Training for calibration. 

Organizational Behavior and Human Performance, 1980, ~. 149-171. 

Lichtenstein, S., Fischhoff, B., & Phillips, L. D. Calibration of 

probabilities: The state of the art to 1980. In D. Kahneman, 

P. Slavic, and A. Tversky (Eds.), Judgment under uncertainty: 

Heuristics and biases. New York: Cambridge University Press, 

1982. 



Calibration 30 

Lindley, D. V., Tversky, A., & Brown, R. V. On the reconciliation of 

probability assessments (with discussion). Journal of the Royal 

Statistical Society, A, 1979, 142, Part 2, 146-180. 

Loeve, M. Probability Theory, Princeton: Van Nostrand, 1960. 

Lusted, L. B. Introduction to medical decision making. Springfield, 

IL: Thomas, 1968. 

Morris, P.A. Decision analysis expert use. Management Science, 1974, 

~' 1233-1241. 

Morris, P. A. Combining expert judgments: A Bayesian approach. Management 

Science, 1977, ~' 679-693. 

·Murphy, A.H. A new vector partition of the probability score. 

Journal of Applied Meteorology, 1973, 12, 595-600. 

Murphy, A.H. Subjective quantification of uncertainty in weather 

forecasts in the United States. Meteorologische Rundschau, 

in press. 

Murphy, A.H. & Winkler, R. L. Can weather forecasters formulate 

reliable probability forecasts of precipitation and temperature? 

National Weather Digest, 1977, l, 2-9. 

Oskamp, S. The relationship of clinical experience and training methods 

to several criteria of clinical prediction. Psychological 

Monographs, 1962, Ji. (28, Whole No. 547). 

Pitz, G. F. Subjective probability distributions for imperfectly known 

quantities. In L. W. Gregg (Ed.), Knowledge and cognition. Potomac, 

Maryland: Lawrence Erlbaum, 1974. 

Ramsey, F. P. Truth and probability. In H. E. Kyburg, Jr., and 

H. E. Smokler (Eds.), Studies in subjective probability, 2nd ed. 

New York: Kreiger, 1980. 

Reif, F. Fundamentals of statistical and thermal physics. New York: 

McGraw-Hill, 1965. 



Calibration 31 

Savage, L. J. The foundations of statistics. New York: Wiley, 1954. 

Shimony, A. Coherence and the axioms of confirmation. Journal of 

Symbolic Logic, 1955, ~' 1-28. 

Shuford, E. H., Jr., Albert, A., & Massengill, H. E. Admissible 

probability measurement procedures. Psychometrika, 1966, l!_, 125-145. 

Stael von Holstein, C.-A. S. Assessment and evaluation of subjective 

probability distributions. Stockholm School of Economics, 

Economic Research Institute, Stockholm, 1970. 

U. S. Nuclear Regulatory Commission. Reactor safety study: An 

assessment of accident risks in U.S. commercial nuclear power plants. 

WASH 1400 (NUREG-75/014), Washington, D. C.: The Commission, 1975. 



Calibration 32 

Footnotes 

The preparation of this article was supported in part by the Office 

of Naval Research under Contract N00014-80-C-0150 to Perceptronics, Inc. 

Request for reprints may be sent to Sarah Lichtenstein, Decision 

Research, A Branch of Perceptronics, 1201 Oak Street, Eugene, Oregon 97401. 

The discussions which led to the development of this paper were 

initiated at an invitational workshop on "Expert Judgments for Policy 

Analysis" sponsored by the Department of Engineering and Public Policy 

of Carnegie-Mellon University and the Biomedical and Environmental 

Assessment Division at Brookhaven National Laboratory with funds from 

the Alfred P. Sloan Foundation, the National Science Foundation, the 

MPC Corporation and the United States Energy, Research and Development 

Administration. We are grateful, also, to the many friends with whom we 

have discussed these ideas, including Ruth Beyth-Marom, Baruch Fischhoff, 

Seymour Geisser, Max Henrion, Richard Jeffrey, Jill Larkin, Dennis Lindley, 

Don MacGregor, L. D. Phillips, Mark Schervish, Teddy Seidenfeld, 

Amos Tversky, and Bob Winkler. 

1. These forecasters usually make three forecasts at a time, for 

example, one for the forthcoming six hours and two more for the two 

12-hour periods thereafter. They thus do not know the outcomes of the 

first two of these when assessing the third. 
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Appendix 

Let X. = 1 if a. falls below the p-point of its assessed 
l. l. 

distribution, Xi= 0 otherwise. Then 

P(Xl = 1) = p 

P(X
2 

= lla1 ) = P 

and in general 

for all k and all a
1

, •.• , ak. 

Since x1 is a function of a
1

, it follows from (2) and the properties 

of conditional expectation that 

- - - -

(1) 

(2) 

(3) 

(4) 

Since x1 , ••• , ~-l are functions of a1 , ..• , ak-l' it follows similarly 

that 

P(~+l = 1IX1 , ... , ~) = P for all k and for all x
1

, . • • , ~· (5) 

From (1), (4), and (5) it follows that x1, x2 , ... is (marginally, i.e., 
n 

initially) a Bernoulli process with parameter p and hence S = r x_ 
n k=l -K 

is Binomial. This proves part (a). Part (b) follows immediately. 


