Oregon
Department of Land Conservation and Development 635 Capitol Street NE, Suite 150

Salem, Oregon 97301-2540
Kate Brown, Govencr
Phone: 503-373-0050
Fax: 503-378-5518
www.oregon.gov/LCD

NOTICE OF ADOPTED CHANGE TO A COMPREHENSIVE PLAN OR LAND USE REGULATION

Date: July 24, 2015
Jurisdiction: City of Coburg
Local file no.:
DLCD file no.: 001-14

The Department of Land Conservation and Development (DLCD) received the attached notice of adopted amendment to a comprehensive plan or land use regulation on 07/21/2015. A copy of the adopted amendment is available for review at the DLCD office in Salem and the local government office.

Notice of the proposed amendment was submitted to DLCD 37 days prior to the first evidentiary hearing.

Appeal Procedures

Eligibility to appeal this amendment is governed by ORS 197.612, ORS 197.620, and ORS 197.830. Under ORS 197.830(9), a notice of intent to appeal a land use decision to LUBA must be filed no later than 21 days after the date the decision sought to be reviewed became final. If you have questions about the date the decision became final, please contact the jurisdiction that adopted the amendment.

A notice of intent to appeal must be served upon the local government and others who received written notice of the final decision from the local government. The notice of intent to appeal must be served and filed in the form and manner prescribed by LUBA, (OAR chapter 661, division 10).

If the amendment is not appealed, it will be deemed acknowledged as set forth in ORS 197.625(1)(a). Please call LUBA at 503-373-1265, if you have questions about appeal procedures.

DLCD Contact

If you have questions about this notice, please contact DLCD's Plan Amendment Specialist at 503-934-0017 or plan.amendments@state.or.us

DLCD FORM 2

NOTICE OF ADOPTED CHANGE TO A COMPREHENSIVE PLAN OR LAND USE REGULATION

FOR DLCD USE
File No.:
001-14
\{19952 \}

Received: 7/21/2015

Local governments are required to send notice of an adopted change to a comprehensive plan or land use regulation no more than 20 days after the adoption. (See OAR 660-018-0040). The rules require that the notice include a completed copy of this form. This notice form is not for submittal of a completed periodic review task or a plan amendment reviewed in the manner of periodic review. Use Form 4 for an adopted urban growth boundary including over 50 acres by a city with a population greater than 2,500 within the UGB or an urban growth boundary amendment over 100 acres adopted by a metropolitan service district. Use Form 5 for an adopted urban reserve designation, or amendment to add over 50 acres, by a city with a population greater than 2,500 within the UGB. Use Form 6 with submittal of an adopted periodic review task.

Jurisdiction: City of Coburg
Local file no.: Ordinance A-199E
Date of adoption: 7/14/15 Date sent: 7/21/2015
Was Notice of a Proposed Change (Form 1) submitted to DLCD?
Yes: Date (use the date of last revision if a revised Form 1was submitted): 6/8/15
No
Is the adopted change different from what was described in the Notice of Proposed Change? Yes No If yes, describe how the adoption differs from the proposal:

No.

Local contact (name and title): Petra Schuetz, City Administrator
Phone: 541-682-7871 E-mail: petra.schuetz@ci.coburg.or.us
Street address: P.O. Box 8316
City: Coburg
Zip: 97408-

PLEASE COMPLETE ALL OF THE FOLLOWING SECTIONS THAT APPLY

For a change to comprehensive plan text:

Identify the sections of the plan that were added or amended and which statewide planning goals those sections implement, if any:
Implementation of the Coburg Urbanization Study by amending the Coburg UGB to include an additional 153 acres of residential land and 106 acres of regional employment land to meet the city's houisng needs for the next 20 years and to meet ten percent of the regional economic development needs.

For a change to a comprehensive plan map:

Identify the former and new map designations and the area affected:

Change from change.	to	acres.	A goal exception was required for this
Change from change.	to	acres.	A goal exception was required for this
Change from change.	to	acres.	A goal exception was required for this
Change from			

Location of affected property (T, R, Sec., TL and address):

The subject property is entirely within an urban growth boundary
The subject property is partially within an urban growth boundary
If the comprehensive plan map change is a UGB amendment including less than 50 acres and/or by a city with a population less than 2,500 in the urban area, indicate the number of acres of the former rural plan designation, by type, included in the boundary.
Exclusive Farm Use - Acres: 168.5
Non-resource - Acres:
Forest - Acres:
Rural Residential - Acres: 88.9
Rural Commercial or Industrial - Acres:
Marginal Lands - Acres:
Natural Resource/Coastal/Open Space - Acres:
Other: - Acres:
If the comprehensive plan map change is an urban reserve amendment including less than 50 acres, or establishment or amendment of an urban reserve by a city with a population less than 2,500 in the urban area, indicate the number of acres, by plan designation, included in the boundary.

Exclusive Farm Use - Acres:
Forest - Acres:
Rural Residential - Acres:
Rural Commercial or Industrial - Acres:

Non-resource - Acres:
Marginal Lands - Acres:
Natural Resource/Coastal/Open Space - Acres:
Other: - Acres:

For a change to the text of an ordinance or code:

Identify the sections of the ordinance or code that were added or amended by title and number:
The Coburg Comprehensive Plan is amended to add a Policy \#28 to Goal 9 that reads:
"In order to meet a regional industrial need, properties with a Light Industrial designation located on the east side of Interstate 5 shall not be partitioned into parcels smaller than 20 acres."

For a change to a zoning map:

Identify the former and new base zone designations and the area affected:

Change from	to	Acres:
Change from	to	Acres:
Change from	to	Acres:
Change from	to	Acres:

Identify additions to or removal from an overlay zone designation and the area affected:
Overlay zone designation: Acres added: Acres removed:
Location of affected property (T, R, Sec., TL and address):
List affected state or federal agencies, local governments and special districts: Lane County

Identify supplemental information that is included because it may be useful to inform DLCD or members of the public of the effect of the actual change that has been submitted with this Notice of Adopted Change, if any. If the submittal, including supplementary materials, exceeds 100 pages, include a summary of the amendment briefly describing its purpose and requirements.
The 2010 Coburg Urbanization Study Update and 2014 Addendum are in the DLCD files for this Plan Amendment.

ORDINANCE A-199-E

> AN ORDINANCE EXPANDING THE COBURG URGAN GROWTH BOUNDARY, CREATING MEDIUM AND HIGH DENSITY RESIDENTIAL AND MIXED USEPLAN DESIGNATION5, AND REQUIRING THE DEVEIOPMENT OF TAX LOT 105, LANE COUNTY ASSESSOR'S MAP $16-03-33-G O$ TO BE SUBIECT TO CHAPTERXV OF THE COBURG ZONING CODE

WHEREAS, the City of Coborg wishes to update its Comprebensive Plan to reflect current and future needs for land, housing and economic opportünities and to justify the expansion of the urban growth boundary to accommodate these needs; and

WHEREAS, an Urbanization Study Update was created In April of 2010 that reflected a planoing period from 2010 to 2030 but the update had not yet been adopted by the Coburg City Councili and

WHEREAS, the urbanization study update was modified in 2014 to reflect a planrimg period from 2014 to 2034 to satisfy requirements of Statewide Planoing Goals \#2 and \#14; and

WHEREAS, the City Council wishes to implement recommendations made by the Coburg. Urbanization Study regarding expansion of the Coburg Urban Growth Boundary and for land uses on tax lot 105, Lane County Assessar's Map 16-03-33-00.

WHEREAS, additional findings to substantiate the importance of selecting appropiate properties to include within the boundaries of the Coburg Uiban Growth Boundary are necessary to respond to questions, and ta demonstrate the viability of compaot urban growth.

THE GITY OF COBURG ORDAIMS AS FOLLOWS:

Section I. The City Council wishes to encourage the development of tax lot 105, Lane County Assessor's Map 16-03-33-00 by designating this property for mixed uss. At least eight acres of this parcel may be developed for medium density residential at an average density of ten units per acre. Development must be implemented through a Master Planning process that allows for a gradiual transition of Medium Density Residential east to Traditional Residential densities west and. the creation of a new access road for the property along Pearl Street at the west. Until a Mixed-Use Zoning District is adopted development within the Mixed Use Designation shall be subject to the Master Planned Developments requirements of Chapter XV of the Coburg Zaning Ordinance.

Section 2. In addition to the properties identified herein, the properties listed in Exhibit A tu this Ordinance are bereby added to the Cuburg Drban Growth Bouncary,

Section 3. The Caburg Comprehensive Plan is hereby amended by adding the fallowing three policies to its Goal 2: Land Use Planning section:
> "Policy 18: Medlum Density Residential- The Medium Density Residential designation is intended to guide the development of new, livable neighborhoods located outside the historic and traditional core of the Coburg at an averege residential density of 10 units per acre.

Policy 19: High Denslty Residential- The High Density Besidential designation is intended to guide the development of new livable neighborhoods located outside the historic and traditional core of the Coburg at an average residential density of 14 units per acre.

Policy 20: Mixed Use - The Mlxed Use designation allows commercial and residential development with density ranges of the latter being abave 12 dwelling units per acre with an average overall density of 15 dwelling units per acre,"

Section 4. The Coburg Comprehensive Plan Diagram is hereby amended to adr two acres of property desigoated as High Density Residential near the southwest comer of Tax Lat 500, Lane County Assessor's. Map 16-03-28-00, adjacent to North Coburg Road on the East and adjacent to the City Limits on the South.

Section 5. The Coburg Comprehensive Plan Diagram is hereby amended to add up to 15 acres of property designated as Niedium Density Residential near the southwest eomer of Tax Lot 500, Lane County Assessor's Map 16-03-28-00, adjacent to the north and west of the High Density Residential land described in Section 4, above.

Section 6. Properties added to the Coburg Urban Growth Boundary by this Ordinance but: not otherwise specifically assigned a plan designation by this Drdinance shall be designated as Traditional Residential.

Section 7. Tax Lot 202, Assessor's Map 16-03-34-00 shall be added to the Coburg Urban Grawth Boundary and shall the designated Light Industrial on the Comprehensive Plan Diagram. The Eoburg Camprehensive Plan /s hereby amended to add a Policy 28 to Gaal 9: Econamy of the City that reads:
> "Policy 28: In order to meet a regional industrial need, properties with a Light Industrial designation lacated an the east side of laterstate 5 sball not be partitioned into percels smaller than 20 acres."

Sention 8. A revised Comprefiensive Plan Diagram; attached to by reference as Exhibit B, is herety adopted.

Section 5. The Coburg Urbanization Study Update (April 2010) and Addendum (2014). attached to this Ordinance as Exhibits C and D, are hereby adopted and made a part of this Ordinance.

Section 10. Findings af fact in support of the expansion of the Coburg Urban Growth Boundary, attached to this Ordinance as Exhibit E, are hereby adopted and made a part of this Ordinance.

Section 11. Severability. The sections and subsections of this ordinance are severable. The invalidity of any section or subsection shall not affect the validity of the remaining sections and subsections.

Section 12. Conflicts. In the event that sections or provisions of this ordinance conflicts with other ordinances, then the standards established by this ordinance shall take prlonty.

After public notice and reading pursuant to the Coburg City Charter and after Council deliberations followed by councilor motion and second, this ordinance was put to a vote, the results of which were;

ADOPTED by the City Council of the City of Coburg this 14th day of July, 2015, by a vote of 5 for and 0 against.

APPROVED by the Mayor of the City of Coburg this $14^{\text {th }}$ day of July, 2015.

ATTEST:

City of Coburg: Proposed Comprehensive Plan Map
Plan Designation Description
\square CENTRAL BUSINESS DISTRICT \square FARKRECREATION PUBLIC FACILTTY HWY COMMERCIAL TRADITIONAL RESIDENTIAL LIGHT INDUSTRIAL

EXRIBIT E

Findings in Support of Ordinance A-199-E

Abstract

The 2010 Urbanization Study Update, as modilied in 2014 , Tceommends that 149.3 G actes be added to the Cobutg Urban Growth Boundary to meet a 20 -year forecasted need for residential land, These acces are proposed to be obtanined from Study Areas 1, 2, 5 and 6. The Urbanization Study Update also supiors the conclusion of the 2004 Urbanization Study that one or two 20 -acre, or larger parects are necessary for economic oppoitunity teeds. The Update proposes that this land be provided by the inclusion of Study Area 8 in the Coburg Urban Growth Boundary. Study Area B is a single parcel, Iarger Lhan the minimum nccessary. To avoid parcelization and in a mamer consistent with state law, the entirety of the parcel has boen included.

LOCAL EXPAYSION CRITERYA

Coburg has pndertaken a number of expansion-telated planting processes in the last fecade. These inelude the Coburg Crossroads visioning process of 2003, the 2004 Urbanization study and periodic review effort, the 2005 update of the Comprehensive Plan and the 2010 Update of the Utbatization Study. The policies that were incorporated into the 2005 comprehensive plan update are a retlection of cxtensive efforts to summarize the City's idcals, including those related to the City's growlh. Below ate listed a ferm of these guiding poolicies of tho Coburg Comprehensive Plan that are specifically related to outwand expansion:

Econamy Policies

> Pollicy 2: Lands for the expansion within the City of busintess (conmercial and induxtrial nctivities), will be provided to the extent necessany to ment lacal enployntent needs, to accommodate the identified regional needs, to provide rin adenunte tax. hase, and to suppon future populution growth.

The Economic Oppoxtunities Analysis provided in the 2010 Urbanization Situdy Update, and the Regional Economic Analysis recognized by the 2014 Addendum itentified the lands needed for expansion to accommodate local and ifentified regional employment needs. The cconomie growth these lands will facilitate will support future population growit.

Poticy b: An adequate nroount of leyel, huidable land which has good access to arterial streets shall be provided within existing city limits to meet lacal and reginital industrial needs.

This goticy was considered in the selcction of properties identified as potential industral sites suitable for mecting economit srowth needs.

Policy 7: Industríal uses shall be grouped togelher within well-designated thdustrial parks or subdivision to as to promote:

- A pollution trec envivomonents

6 The highest aesthetic standards possible:

- Minimum impact an adjucent lands;
- Developinent within the constraints of the natural enyironments and
- Compliance with LCDC Goals and Guidelines

The maintenatice of a compact urban growth form has been one of the mote significant factors in determining those properties identified as potential sites sind fecommended for inclusion into the urban growth boundary.

Urbatization Goal Policies

Pulicy 1. The City shall prescrue urbanizable land and provide for orderly efficiens developmem by controlling densisiss through propision of the Zoning and Subdivision Ordinantes, thereby preventing the need for overly exiensive publle serfices uftd restricting arhanization to that commenstavate with the carrying capacity of the land.

Policy 1% The Cigy shall pronote the efficient use of hand within the urban growth boundary and sequendial developntert that expands in are orilerly woy outward jhom the existing vity center.

Wythin the context of ORS 197.298 and Statewide Plannigg Goal 14, the City bas attempted to maintain a compacturban growth form by including scljacent exception arcas and resource lands that are contiguous to the existing urbat gowth boundary. Growth in the exlreme distant areas of exception lands in Study Area 5 will be disectly contradictory to this polity and to the goalis that support it. Inclusion pf portions of Study Area 6 that are already survounded by the City on three sides will promote compact urban growth,

Policy Id: The City shall provide a suffictent supply of devetopable land within the utroan growth hnundary to neet the needs of the exising and projected population for residential, connatercial, industriat, and recreational uses avet she ftext $20-50$ yenss, while preserving the small own chapacier of the communits

The 2010 Utbanization Study Update, as modified in 2014, ingludes a bousing ncods analysis and a buildable lands inventory that identifies the City's land use needs for the next 20 ycars.

Pwicy 19: The City shall accommodate projected growh, expand the wifbun growth boundary in a manner that balances the tueed to protect high qualiyy farm and forest rasource lanils with the needs of the saisting and future populativn and with effecient public facility and service delivery.

This policy has been address through the 2010 Urbanization Study Update by addressing the pricritics of ORS 197.298 and the factors of Statevide Planning Goal 14. Extending services for a considerable distance to the furthest exception area of Study Ates 5 will cost the City more in operational costs, and will bayc a significant cost impact on any potential for development in that area. Extersive growth distant fom the City centor will have an adverse impact on some intersections that are already threatened with failure. The cfficiont use of facilities limits the areas within the exisfigg urban growth boundary that neww industrial uses can be placed.

Policy Aa; The Cigy shafl promote lanul ase and development patterns that nuytaiv and inmpove quality of life, are campatihte with mass transit, muitutin the community's identity, protect significant nataral and hisioric resources, and meet the needs of existing and fuure residents for housing, employment, and parks and open spaces.

The issues contained in this poilcy have been addressed in the 2010 Urbanization Study Update.

Transportation Goal Policies

Policy It Develop a sireet netrork system that eventy distributes truffic throughour the vomimurity, lessening traffic impacts ont residensial streess, and identifying a system of arlerialy for moving people, goods, and vervices safely and efficientls. Policy 46: Provide a thansportation system that is safe, convenient, cucessible, entipommentally responsihle, efficient, responsive to conmunity needs, and considerate. of neighborhood impacis, particularly in the National Historic District Policy 47: Develop and maintain a street network that is inter-conthected.

These policies have becn implemented turough the recent aduption of the City's Iransportation System Plath, which utilized the land use needs of the onty identified in the 2010 Urbanization Study Update. Further, the proposed bypass, which is a patt of the alopted TSP will significantly lessen the traffic impacts on residential streets. Projections show that, without the bypass, the major intenseccions of Coburg will likely fail within the planning period, which will drive vehieles onto the residential strets to avoid fhe failing intescetions. The bypass forms a basic part of the City's tratnspoitation plan and will play an imporiant part in mceting these policies.
To promote cfficiency and safety in the use of City streets and fhe I-5 interchangc, the City and the Oregon Department of Transportation have entered into an Interchange Area Management Plan (IAMP). One of the releyant provisionis concerns the level of use of the intervection of Industrial Way and Pearl. The plan limits uses of undeveloped propettics within the designated area of the TAMP and limits any cxpanded aecess of properties withon the IAMP arca.

Public Facility and Servicos Goal Policies

Pollcy 15; The cig shale expand the urban grownh bowndayy and cty fismits and provide savitany sewer service, when availabie, to existing exception areas and other appropriate areas whear such expansion is appropriate to meet city needs.

The preferred rcommendations of the 2010 Jrbanization Study Update has identified cxisting exception areas and other arcas that should be added to the existing urban grewth boundary. The availability of public services was considered during the analysis of thc second Jocsitional factor of Statcwide Planning Goal 14 䢎 the 2010 Ubfanization Study Update.

Some exception aneas are not proposed for inclusion within the expanded urban grewth hourdary. Among the reasons for rot including thesc areas is the evidence of the very high cosis of extending sanitary sewer service the greal distance that would he necessary ITall of the exception areas were included. At approximately 834 a fool Lor the eollection system, extending wastewater conmestions to the most distant cxecption areas would cost eack of the six most distant propertics th these most distant prortions of the cxccption aren more than $\$ 25,000$ per property. The small number of additional residential properties that can be developed from the execption area properties, combined with the cost of infrastructutc development would make any additional residential development on these: properties very expensive. Such extensive cosis for a single element of the public improvencents aceessary to develop these propertics demonstrate that it is mpractical to plan on inclusion of these exception areas. Especcially when compared with areas available much closer to the existing wastewater infrastructure, the dislath exception areas were tuled inappropriate.
Watcr scrvice is also not available to the majority of the exception area of Sundy Ares 5 , and cannot be cxtonded from existing services because that would involve enmemnation of private lands. Water service extensions are roughly equivalent to the cost of wastewater cxtensions. Together these costs would be a tremendous burden on a small number of potential new residences.
There are scyeral other reasons that aigue aganst the inclusion of these distant exception lands. It wil! detract rather than cnhance the compact nature of Cobutg urtan growhth area. The properties are not Tikely to develop any additional residential bomes within the planning period, su inclusion would detract rather tham improve the city's potential for accommodation of its futpere housing needs. The nature of the properties and the distarice from the city center makes the developmert of housing densitics such as are required for Coburg to develop appropriately unlikely.

Housing Goal Policios

Polfer 28: The City shail encourage new housing to radiate ous from the city center and discourage leapfrog development in order to promote connectiviyy nad commonity interaction.

The maintenatice of a compact unban growth form has beci one of the more significant factors in detemining those properties recomariended for inclusion into the urban growth
boundary. To oomply with this Policy the expanded urban growth boundary must melude some dgricultural land. To exclude that portion of the agriculiural propertics that is surtounded on three sides by the city would create a distorted city, with uworkable leugthy extensions of exceptions land completely contrany to tbe goals of connectivity and emmunity inleraction.

Natimal Resources Goal Policies

Policp 20. The City shali protect, restore, manoge, and enhance important natural resources; maintain high qualiy air, water, lath wod historic resources; and provide green spuaes in and urpund the commanith-
Policy 21: The City shall protect or miligate, whenever possible, fish and wilallfe habitus including pivers, wethands, and forests, and significant matural areas and habitats of rare ar endangered species.
Policu 17: Apeas containing any other umique ecalogical, scenic, aesthetic, scieniffe or educatianal valueg shall te considered in the plarming provess.

These policies have been implamented through the applieation third locational factor of Statewide Planning Goal 14 in the 2010 Urbanization Study Update.

Agriculturil Lands Goal Policies

Polficy 2: Ta the extent to which it has influcnce, the Cigy shall promote the retention of lands ontside its Uphan Grawh Binandary for agriculture use by encouragimg Lane County ty maintainh caftent agricultural zoning within the Cify's area of influence as defined in the Intergoverwmental Ayreement with Land Courty. Polley 5 The Cigy supports, and may require, measures to promote contonibility and trunsition between urban develviment at the edge of the Urban Growth Bowndary and adjacent ugricuitural areas.
Poficy Te The Chb supporns, unil shall parste, establishment of a southern greenbelt that ensures opermament open character for the area between Coburg and the Mchenzie River.
Policy 8: The City shall protect high quality farmland surrounding the communi0, from premature development.

These policics have becn implemented through the application of ORS 197,298 and the fourth looational factor of Statewide Elaning Goal 14 in the 2010 Untanization Study Update.

The 2010 Urbuntzation Stody Update includes a list af local expansion criteria or "focal criteria" from the above listed gulding policies. They are as iollows:

Local Eritcria 15 Expansion shouid be lionted to areas and far lots which promure the greutest order and efficienoy:
Local Criteria 2: Expansion should be limited io areas and tan lous that are appropriate to mee city matas.

Local Criterla 3: Exponston shotid be timited lo areas and lax lots that would promate sequemtial development that expands in an orderly way ousward from the existing cins center, and piramote a street network that is interconnected in ardier to promote conncctiviyy and pommunity interaction.
Local Criteria 4: Expomion should be limitel to areas and tax lols that promole Livability
Local Criteria 5: Expansiom shiuld be Timited to areas and lax lows that discourage premafure development of agriculitural lands and compauihility and transition between uriban developmeni and agricultural areas.

Expansion of the proposed urban growth boundary noto the more distan portions of the adjacent exception areas wil not promote onder and officicncy. Providing public facilities in the form of water and wastewster servieen to these distant arcas will cost significantly more than would the cost of expansion into areas closer to the city center. will ereate greater and more adverse transportation implacts, because they would require longer trips to obtain cily serviccs, and will undemine rather than promote the development of an intercomected street network and the development of walksble reighborhoods. Inclusion of the distant exception areas would weaken rather than promote the livability of the City.

STATEWIDE PLANNING GOAL 14

Statcwide Planning Goal 14 provides that the establishment uod chinge of urban growth boundaries shall be basod on the following:

(1) Denonstrated heed to accommodate long range urban population, comsistent with a 2 ll-year popputation forecast coordinutel with uffected locat goverfubents; and

- The Coburg Urbanization Study (2010) used Cane County ${ }^{7}$ is Courdinated Population Forecast to estimate a twenty-ycar planing period.
- The Lane County Coordinatod Population Forecast provided a population forecast for Coburg int five-year increments.
- The population forccast anticipated growth due to the construction of Coburg's first wastewater system. Due to the 2008 recession and a de facto growth moratorium because of a lack of a community waslewater systern the City's attual population (bascd upon the 2010 Census and PSU's estimate for 2013) fell well below the Lane County Coordinated Population Eorecast for the period between 2010 and 2015. (Table A.3, Uמぁmication Study - Revised)
$+\quad$ The City's wastewater system has been completed. In the final monihs prior lo completion, and since that time, Cohurg las begun to experience signifieant commercial developtnent and residential development consistent with the growth rate forecast to occur.

Abstract

Atter adjuslug tor the lowict than average growith rate that begins around the time the wastewater system is vompleted (now 2015 instcad of 2010), the anticipated growith rate appears to be consistent with that of the coordinated population forecast except that it begins five years later. Thus, the expected growth rate of 7.88 percent that was supposed to oceut between 2015 and 2020 will now occur bctween 2020 and 2025 , and so forle.

(2) Demorwtrated need for housing, employment opporanities, livability or ases such as public facilities, sircets and mads, sckianls, parks wr open space, ot afy combination of the need categories in this subsection (2).

Prior to exparding an urban grawit buundary, lacal governments shall demansthute that needs cannot reasanably be accommodated on land aiready inside the urban growth havidary.

Residential Land Needs

- The 2010 Urbanization Study's buildable lands inventory is still valid as very lifte developmeni has occurred in Coburg during the period of 2010 -2014 . For instance, only three additional residential units, consuming 0.5 acres of land, have occurred during this period. The inventory has been adjusted, however, to address the reduced growth rate caused by the 2008 recessiou and the late development of the wastewater system.
- For the reason explamed sbove, the basic assumptions of Coburg's housing needs antalysis have not changed. Thic average housebold size and bousing mix have not chatged and the extension of the plannitg period has only slighily changed the number of new housing units needed, (See Table A. 8,2010 Urbanization Study - Revised)
- The assumptions regarding public infrastructure aeeds have nat ehianged and neither has the amount of total residential buildabic lands.
- The lise of lbe new 20-ycar planning period has ouly increased the amount of tatal new needed acres for residenifal use by 2,3 ancs. Thi total anount of land needed for 7 cridential development, including supporting streets and parkdand, is 148.8 acres.
- The 2010 Urbanization Study Update, as modified slightly in 2014, has ideutified the amount of land needed for medium and high density residential development. The preferred residential recommendation identifies Study Area 6 as (he locadion for this type: of housing.

Employment Opportonitics

- The Ecouomic Oppormities Analysis of the 2010 Urbanization Study states tbat Cobutg's local employment land need is for one or two parcels
of at least 20 acres and the Regromal Econome Ahalysis states a regonal need for 20 sere or larger sites. All of the exception lands within the 11 sludy areas arealready divided mo parcels significantly smaller than 20 acres in size. Therefore, they arc all inapproptiate, and would not accommodate cmployment land need pursuant to ORS 197,298(3)(a), because the specific typer of identified employment land nocds cannot be reasonably accommodated on the exception land parcels.
- The soil classifications on Study Area 9 and Study Arca 8 arc sfmilar, the hext stop in the required analysis under Goal 14 is to weigh the four locutional factors within the Goal language, and deternine which Sudy Arca is morc suitable for inclusion in the UGB. Table 7.6 summarizes the andysis of these four factors. Based upor the analysis, Study Area 8 scored 12 points, while Subarca 9 scorcs only seven points.
- The annalysis leading to the selection or Sludy Area S has since been validated by the exptession of interest in the deyelopment of a portion of the property. This expanded employment opportunity is cxactly the kind of regional nced that the analysis is cesigned to capture.

Goal 14 also requiyes that the location of the urban growth boundary and changes to the boundary shall be determined by evaluating alternative boundary locutions consistent with ORS 197,298 and with conslderation of four factors.

ORS 197,298
Ppiorisy of lafla to be inctuded within urbun growth hinuidary:
(I) In addition to uay requirentents establishell by rade addressing urhanization, Jand miay not be included widhith an artan growth boundary except ander the jollowing prionities:
(a) First priorǐy is land that is designated arban vesenve lanil ander ORS 195.145, rule ar methopolian service district action plan.

The Coburg Comprehensive Plan does not designiate any lands as urban reserve:
(b) If land under paragraph (a) of this subsection is inadequate to accommodate the amsnunt of land needed, second priorioy is tand aifjacent to an urban growth boundary that is idevtiffell in an acknowledged connprehensive plan as an excepuion area or nomresource land. Second prionity may indfude resource lutd that is completely sherounded by exception areas moless sach resource iand is high-vathe farminad as described in ORS 215.710.

Resideniral Land Needs

Map II of the 2010 Urbanization Study shows "bult upon and devcleped" exception areas (designiated as Rural Residential) and natural resource areas ((zoned either exclusive farm use or impacted forest) located adjaccnt to the Coburg Urban Growth Boundary. For purposes of analyzug the potential for copanding the Coburg Urban Growth Boundery, all of the exception areas are located within one of the 11 study arcas. The rnajority of the exception lands are located adjacent and northwest of the Cobury Urban Grosylh Boundaty, in the Stallings Lane arca.

The 2010 Urbanization Study recommends that, 169 actes of land be addal to the Coburg Urban Growth Boundary to meet the city's 20-year reed for residential larid. The ciiny has decided at this time to add oniy 148 acres to. address its nocd for residential land; and option that is avaitable to cities sroaller than 25,000 . Larid to meet this neced is proposed to be provided by portions of Study Areas 1, 2,5 and 6.

Sudy Area 1: Study Area 1 includes lands south of the existing UGB, cast or Coburg Road and Wcst of Roberts Road. The eastern edge of the stody area is bounded thy the Southem Pacific Railroad right-of way. The arca is contiguous with the cxisting UGE on three sides. The area corsists of approximately 95 acres in five patcals.
More than 90 acres of the site is soned for agricultural uscs ($\mathrm{E}-40$), with 4.4. acres designated $R R-2$ (ar exception area). Three dwelling mits exist on the site as well as a Cew Farm-telated structures. The land is largely in active tarm uscs. Topographically, the site is largely flat. While no identified wellands exis on tho sitc, about 16 acres of the site are in flood zone A (the 100-year floodplain).

The preferref residential altemative includes the 4.4 actes of erception lands. This alternative also includes 13,6 acres of resource land that is out of the flood plain. The resource land is separated from actively managed agricultural land to the south by a creek. In addition, it is occupied thy several out buildings.

Study Area 2: This study area is 65 acres in size gnd contains 21 aeres of exception lands. Nine of these exception acres, located immediately adjacent to the city limils are proposed to be added to the urban growth boundary. The remaiming exception acres 12 acres ate not proposed fot gddition to the boundary because they are itadequate to accommodate the residential land need. Eight of fhese acres are lueated wilhin the 100 -year floodplain, which is an enviromental consequenec pursuant to Factor 3 of Goal 14. In addition this land is bounded on thiree sides by agriculural land with Class II soils, and devclopment with orban uses would pose compatitility issues with these agriculture activities purstant to Factor 4 of Goal 14. For these reasons, inclusion of this exception land into the
urban growth boundary is mappropriate and would not acconumodate thic residential necd.

Twelve acres of exception area lands in this study arca, located immediately adjacent to the Coburg Urban Growth Boundary on the north and Coburg Road on the east, are included in the preferred residentia! alfcrmative.

The recommended expanision of the urban growth boundary includes all of the exception areas localed within Study Area 1 and most of the exception areas located within Study Area 2 plus an additional 18.3 acres of scsource land located in Study Area 1. This equates to a total of 27.3 developable land to be added to the urban growth boundary.

Study Anea 3. Study Area 3 inciudes lands south and west of the existing UGB, west of Cobryg Road. The area is contigupus with the existing DGB on the northeast side. The study area inoludes approximately 74 steres in 8 parcels: The majority of the stady area (73.3 acres) is zoned for agrieultural uses ($\mathrm{E}-30$), with only one lot for tural residential usek. The rutal residential lot is separated from the Coburg UGB by the agricultural lands within this study arca. Agricultural lands in the study area are in orchaxds and other crops. Orily two divelling units exist in the study aret, one of which is located in the exceptions arca. Topographically, the sile is largely flat. However, the sile is several leet lower than the remainder of Cobure and is separated from the UGB by a vegetative buffer. The majority of the site (81%) is in hood zone A (the 100 -year floodplain). Between the elevation difference and areas in the floodplain, this study area presents significant development constrainis. All of the 73.3 acres zoned for agricultural uses in this study area are ideutified as Class II soil typus. For these rcasons, Study Arca 3 was not included in the residenti:i land expansion recommendation.

Study Area 4: The 17 actes of exception land within this subarea are not proposed to be added to the urban grovith boundary because they are located at the southern end of the study area; separated from the existing Coburg Urban Growth Boundary by agricultural land with Class I soils, which would also have to be brought inte the boundary as part of including this exception area. This exception area is surrounded by agriculturat land with Class I soils. Inclasion of this exception land into the urban growth boundary is inappropriate and would not accommodate. the tesidential land need pursuant to Factor 3, the ecomemic and social consequences of removing the intervening agicultural land from agriculturat use, and Factor 4, the impact of potential urban uxes an this exception land upon agricultural land surounding the exception area.

Study Area 5. Study Areas includes lands notih and west of the existing UGB. The area is contiguous with the existing UGB on part of the east side. The stody arca includes approximately 200 actes in 56 parcels. The majority of the study area (172,3 seres) is in exception areas (RR-5 zoning), Only one tax lot of about 28 actes is in agricoltural coting (E 40), but many of the properties are in agricuitaral production, with only one residenge and jntersive agricultural use. A total of 43 dwolling umits exist in the study arca; 39 of which are located in exceptions areas: Topograptically, the site is largely flat. Of the 28.1 acres in this swdy arca zoned for agricultursl uscs, 18.1 actes are in Class 1 soil lypes and 9.4 acres arc identified as Class 11 soil types. The residential preferred altemative includes 75 acres of these lands, and cxcludcs 97 acres; 20 acres at the southern cnd of the exception area on the south side of Van Duyn Rodd, and 77 acres at the northerm end of the exception ritca.

The southern 20-acte area, located south of Van Duyn Road, is bounded on three sides by agricultural lands with Class II soils-exclusion of this arca would place the urban growth boumdary along Van Duyn Road, which would provide an appropriate transition between urban and agricultural uses, Inclusion of this exception lana into the urban grow th boundaty is itiappropriate and would not accommodate the residential land need pursuant to Factor 4, the inupact of potenial urban uses on fhis exception land upon ayricultural land surrounding the exception arca.

The tortherin 77 -dcre srea is farthest from the existing urban growth boundary among exception lands in Study Arcit S. As such, il would be morc expensive io serye with public fasilities such as water, sewer, and transportation facilities. The extracrdinary cost of providing water and sewer services to lbis distanl area would preclade development, even if the residents were interested in development. The existing division intomoderatc sized parcels would prevent the develapment of thousing densities such as bas been determined to be needed to accommodate the population growth. The extreme distances between these exception areas and the cental portions of Coburg are contrary to the policy provisions supporting compact grovith. The extreme distance between these exception areas and the Eentral portions of Coburg would increase the usc: of vehicle travel in Coborg, perhaps hastening the need for consmuction of a new northem conmector zoadway (see Map 17). It is also adjacent to agricultural lands with Class 1 and In soils to the north, east, and west and is itself in agricallural use dexpite being in an exception area. Existing residents of this grea werc split in terms of wishing inconforation into the Coburg Drbat Growib Boundary. Therefore, inclusion of this exception land inte the urban growth boundary is inappropriate and would not: accommodate the residential land need pursuant in Factor 3, the economie. (facilities costs) and social (resident opposition) impacts, and Facler 4, the
impact of potential urban uses on the exception land upon agricultural land surounding the exception area

The preferred residential altemative includes 75 acres of exception seres lowated noth of Van Duyn Road; which provide 64 tetes of developabic residentisl land.

While the discussion and tundings appended hereun demonsirater compliance with Goal 14, the strictest interpretation of the provisions of the Goal suggest that an erception to portions of Goal 14 migh be appropriare as well. The City has done an exceptions analysis as set forth in the attached Fxceptions Appendix and which is incorporatod in full into these indings. For the reasons set forth there, it is the City's Findings that with regard to Study Area 5, and other study area there are valid reasons to take an exception to the requitements of Goal 14 to show overall compliance with statutes and with the statewide goals.

Study Arci 6: Study Area 6 includes Jands direcily north of the existing UGB. The area is contiguous with the existing UGB on the zorth side and part of the cast and west sides. The study area includes approximately 209 Hacres in 4 parcels (one parcel contains over 300 acres) and the majority of the ares is in a common owncrship. Most of thic shudy arca (208 acres) is. zurred for agrioultural uses ($\mathrm{E}-40$). Less than 1 acre is zomed for rural residential uses (RR-5) and this pareel is separated from the Cobutg UGB by the agricullurally zoned land, A total of 6 dwelling units exist in the study area. Topographically, the site is largely flat.
Forty-nine acres $(48,9)$ of this study area, all of it developable resoutec land, are included in the preferred residential alkeraaive. Expansion in this area is preferred because it is immediately adjacent to the Urban Crowth Boundary and its noribem boimdary is slated by fhe adopted Transpontation Systern Pfan to be the location of a new east-qrest comector. This project is necessary to provide radumdent east-west conmectivity as Pearl Street is the enly through east-west route in the city: The proposed collector is also nccessary to mitigato the significant deteromation of inafic conditions on Willamette and Yearl Streets and to serve the proposed build-out of the Stollings Lanc arca. (Pg, 22 of the TSP and supplemiental tratfe study).

This property also reprebents the greatest potential for Kigher density residential development as it not adjacent to property locatce within the Coburg Histaric. District or any leveloped neighborhoods. This property is already partially inside the UGB. While currcntly undevcloped, when these already included potions of the properties are developed, they will increase the committed character of these parcels, and nay well have the effoct of linditig of corlaling agricultural use of the parcels, whether of not they ere included in the UGB.

Study Arca 7. Sudy Arca 7 includes lands easl of the existing UGB and across I-5 and conlains no built upon ou committed exception lands. The area is uot contiguous whith the existing UGB. Inclusion of this arca would require additional expansion of the UGB aeross I-5. The study anea includes approximately 240 acres in 3 very large pareels. The catire swody ares (239.9 acres) is zoned tor agricultural uses (E-40). Agricultital lands in the study $\mathrm{area}_{\text {a }}$ are used primarily for grazing. No development exists in this study area. Topographically; the site is largely flat. The study area has (23 acrcs) is in flood zone A (hee 100-year floodplain) or in identified wetland area. The major deyelopment constraint in this study area is extending munierpal services across 1-5.

Study Area 8: Study Area 8 included lands east of the cxisting UGB and across I-5 and contains no built upar ar committed exception areas. Lrilike Study Area 7, Stody Area 8 shares a significant border with the existing UGB. A portion of the original Study Area 8 , identified in the 2004 Uibamization Study, was brought inta the UGB in 2006 . Study Area 8 now consists of the remaining sarcage that was not included in Shat expansion.

Study Area 9: Study Ares 9 includes lands east of the existing UGB and across Interstate 5 and contains no built upon or committed excepticri areas. The norllwest comer of the area is contiguous with the existing UGB.
Joclusion of this area would recuire additional expansion of the UGB across I-5. The sludy area includen one parcel of appmsimately 26 acres. This parcel is designated by Lanc County as resoutce (Forest) land. Half of the sitc is significanily wooded and the eastern most portion is nestled kgainst the foothills of the Comurg Hills. As a result Study Arca 9 contains the most signiticant slopes of any of the it study areas, alloough it is noted, the slopes are relatively insignificant.

Stady Area 10; Study Area 10 includes lands south of the existing UGB, both east and west of Coburg Road and south of Study Areas I and 2. The eastern edge of the study area is bounded by Interstate 5 and includes a parcel between I-5 and the Southern Pacific Railroad tight-of-way. The easterh portion of the study area is contiguous with the southermmost arm of the existing UGB. The study area is long and namow running easi and west and consisting of four parieels and two residentes. The area straddles the southern gatewiy to the City of Coburg from Eugencaloug Cobuzg Road.

The entire area is zoned for agricultural ise, much of it largely in attive Farm uses, and contains no built upon or committed exceptien atcas:
Topouraphically, the site is largety flat

Study Area 11. The exception land within this subareat is not proposed to be added to the urbair growth boundary. The 18 actos of mural residential land is located at the northern ond or the sludy area, and is separated from the existing Cobirg Urban Growith Boundary by agricultural land with Class land Class \amalg soils, which would also have ta be brought into the boundary as part of including this exception area. This exception area is surtaunded by agricultaral land with Class L, I, and III soils. Inchsion of this exception land into the urban growth boundary is inappropriate and would not accummodate fhe residential land need pursuant to Factor 3, the ecomomie and soeial consequenees of removing the intervenith g agricultural land from agricultural use, and Factor 4 , the impact of potential urban uses on this exception land upon agricultural land surrounding the cxception area.

Economio Opportunity Necds

The Economic Opportunities Analysis of the Urbanization Study has found that Coburg's local employment land need is for one or lwa parcels of at lcast 20 acres in sive and the Regimal Employment Analysis found a need for 51.4 net àres in $20+$ gere parcel sizes to capture ten percont (10%) of the regional large site industrial need. Therefore, none of the exception lands withim the study aress are suitable for iudustrial development as they are already divided into parcels significantly smaller than 20 acres.

Futher, no properlies currently within the Cobugg UGE we suitable. The only parcels that come ear to approaching the noed arc the properfies north of Pearl that arc zoned highway cotnmereid. These properties barely come up to the minimum needed size. The lack of flexibility in size may well climinate some of the potential uses. Further actess to these parcels is linnited and development as industrial uses is currently contrary to the Coburg- ODOT Intcrchange Area Management Plan, Deyelopmert as indistrial parcels would have an adverse effect on adjacent properties, specifically including the nowly developed Serenity Late facility across Industral Way

Study Areas 1,6,7,8,9 and 10 are located immediately adjacent to existing lands designated and zoned for highway commercial and indusirial use. Of these study areas only Study Area 1 contains an exception area and this small arca is projected to be brought inio the urban growth boundary to help satisfy the need for residential land. Study Area 8 is the roly other study area wilhin this group that is contiguous to at exception arca. The Cily has received inguines about developing a pontion of Study Area \& if it is included in the UGB.
accomanodete the awoum of land needed, thind prioniny is land designated as marginal land pursand to ORS 197.247 (1991 Edition).

There is no land adjacent to the Coturg Urban Growth Boundary that has been desienated as marginal land.
(d) If lund under paragraphs (a) to (c) of this sulsection is inadequete to acconmodate the anount of lavid needed, fourth priorioy is land designated in an acknowledged comprehensive plan for agricsture or foresty, we buth.
(2) Higher prionity shull be giver to lund of lower capability ns neaxured by the capahility classification system or by cubic foof site class, whichever is appropriate for the current use.
(3) Land af Lover priority under subsection (I) af this section may be included in un urban growth boundary if lana of higher priority is fousd to be inadequate to accummodate the amunant of land ewimated in subsection (i) of thas section for one or more of the following reasons:
(a) Specific types uf identified land nesds cannot be tearomahly accommodated on higher priority lands;
(b) Future usbun services could not yeasonably be provided fo the higher priority lands due to topographical or other physical constrains; or
(c) Mixciontan efficiency of Lund wses wàhön a proposed urhan growih boundary requires inclusion of lover priority lands in order to include or to pruvile vervicas to higher priomity lunds.

Residential Land Needs

For Coburg to adopt the prefened residential land alternative, it must make appropriatc findings pursuant to ORS 197.298 that justify bis altermative in contrast to Expansion Altemative \#tl: Expansion Altemative筬 proposed UGB additions for residential development (178 acres, 151 developable) that consisted entirely of exceptions lands, while the city's preferred residential land alternative adds 169 acres (143 devclopable), 88 acres of exceptions land and 81 acres or resource land. Discissions with the property owners and ofher interested parties resulted in a modification, so the final acreage of residential land to be included is.149,36 acref.

Existing residential development in Coburg is located on the west side of I-5 aud the City wishes to continue this urban form. With the exception of the property located west of I-5, the Coburg Urban Growth Boundary is tolally surrounded by Class I-गI agricultural soils. ORS $197.298(2)$ provides that a higher prionty shall lee given to land of lower capability as measured by the capability classification system or by cubic foot site class. whichever is appropriate for the curcont use:

With a few exceptions, most of the Class 1 agricultural soils adjacent to the

Caburg Urban Growth Boundary on the west side of I-5 are built upon or cormitted to urban development. The retnainder of the immediately adjacent soils are Class II. Thus, because the immediately adjacent exception areas cannot totally meet the forccasted ncod for residential land, some land with Class II soils must be included in the expansion of the urban groyith boundary. The resource land that is added has been laken from Study Area's I and 6 as thesc arcas atc contiguous to the existing urban growth boundary and, as proposed, will preservea compact urban Tom for puaposes of the efficient provision of urban services and trauspottation secces.

The residential preferred alternative docs not include higher priority exception lands in Study Areas 2, 4, 5, and 11. Note that it also docs not ituclude exception fands in subaress 3 and 6 - however the amount of exception lands in these subareas is neglivible and the negligible exceptiot lands in these subareas are separated from the existing Coburg urban growth boundary by dgricultural land. In also does not inchade higher prionty agricultural and forest lands with lower soils classifications (Class TI, Class IV, and Class VI) that arc within Study Areas 7, 8, and 9. The city makes the following rindings justifying dowering the priority for inclusim of these lands in the urban growth boundary, and adding lower priority lands in their place;

EXCEPTION LANDS

Study Area 2; 12 aeres of exception land, located south of nine acres of exception land that is greposed for addition to the uban growth boundary, is not proposed for addition to the boundary because it is inadequate tor accommolate the residential land reed. Eightit of the 12 acres is located within the 100 -year floodplain, which is an cnyitonmental consequence porsuant to Factor 3 of Goal I4 In addition this land is bounded on three sides by agricultugal land with Class 4 soils, and devclopmeni with urban uses would pose compatibility issues with thene agrieultare activities pursuanil to Factur 4 of Goal 14. For these reasons; inclusion of this exception land into the urtban growth boindary is inappropsiate and would not accommodate the residential need.

Study Area 4: Seventeen aders of exception land within thats subara is not proposed to be added to the urban growith boundary. The 17 acres is located al the soulhem end of the stody area, and is separated from the existing Coburg Urban Growth Boundary by agricultural land with Class II soils, which would also tave to be brought into the boundary as part of inolnding fhis exception sarea. This cxcoption arca is surrounded by agricultural land with Class II soils, Inclusion of this exception land into the vibam sowth boundary is inappropriatc and would not accommodatethe residential land necd porsuani wo Factor 3. the economic and social
consequences of removing the intervening agncultural land from agricultural use, and Factor 4, the inpact of potential urban uses on this exception land upon agricultural land surounding the exception arca.

Study Area 5. This study area contains 172 aeres of exception lands. The residential preferred alternative includes 75 actes of these lands, and excludes 97 acres; 20 actes at the soilhem end of the exception area on the south side of Van Duyn Road, and 77 acres at the northern cnd of the excention area

The southern 20 -acre area is bounded on three sides by agricultaral lands With Class II soils - exclusion of this area would place the urban growth boundary alang Van Duyn Road, which would provide an appropriate transition betwon urban arid agricultural uses. Inclusion of this exception land into the uban growth boundary is inappropriate and would not eccommodate the residential land need pursuant to Factor 4, the impaci of potcatial urban usé on this exception land upon agricultural land sumpunding the exception ared.

The northem 77 ate area is farthest from the existing urtian grawth boundary among execption lands in Study Alea 5. This noilhem area is listant from the centul ares of the City and is a distance between 2400 and 5500 feet from the ncarest available connection point for water and serwer comedions. Using ihe comparable costs of comstuetion of a water Tine to another distant exception area 5,000 fect from the Coburg water $5 y s t \mathrm{~cm}$, providing water service would require at mifial capital investment of at least $\$ 250,000$. (Supplemental information; Statement of Damicn Gilbert) This does not inelude the cost of (be local delivery system, which would be ineluded as a cost of any development. In addition to the costs of construction, such long distance scrvices arcas arcmost expensive to serve, tequining an increase in water service costs to such areas. (Supplemental information; Statoment of Robert Butler)

In addition, the cost-of eonstruction of a new wastewater linc would impose a bigh burden on the development of properties, Based on the experience of the just completed City wastewater system, the cost of constructing an new wastewater line to the full extent of this exception area would cost $\$ 168,300$ ($\$ 33.66$ a foot for 5,000 feet) (Supplemental information: email from Benjamin Bosse).

Because of the distanee to fhe smenties of Coburg, such as sity government, sctinols and commercial activities, any development in the distant areas of the exception area would necessanily lead to more vehicular travel, all of which would ticrease use of Coburg streets and hasten the failure of the critical interscetions in Coburg. (Supplemental Informaliont memo form Susan Payne)

For all of the above included reasons this portion of the study area would be more expensive to serve wilh public facilities such as water, sewer, and transportation facilities. The extraordiary cost of providing water and sewer serviecs to this distant arca would preclude developuent, even if the residents were interested in development. The existing division into moderate sized parcels would prevent the development ot housing densilies such as has been deteranined to te needed to accommodate the popalation growth. The extreme distances between these exception arcas and the central portions of Coburg are conifary to the policy provisions supporting compact growth. The extreme distance between these exception areas and the central portions of Coburg would inctease the use of vchicle travel in Cobutg, perhaps hastening the need for construction of a new northern connector roudway (see Map 17). It is also adjacent to agricuitaral lands wifh Class I and If soils to the north, east, and west and is itself in agriculual use despite being in an exception area. Existing. residents of this aces were spift in terms of wishing incorporation inte the: Coburg Urban Growit Boundary. Therefore, melusion of thjs exception land into the urban growth boundary is inappropriate and would noi accommodate the residential land need pursuant to Factor 3 , the economic (facilities costs) and social (residentopposition) impacts, and Factor 4, the impact of potcotial urban uses on the exception land upon agricultarg? land surfounding the exception area.

The proposed inclusion of apricultural areas immediately adjacent to the existing developed portions of the City decs not suffict from the same signilicantly increased cost of infrastructure service. The areas proposed to be included are adjecent to several availabic water and wastewater services, and would therefore not face any significant infrastucture development costs.

Study Area 11: The exception land within this subared is not proposed to bc added to the urban growih boundary. The 18 acres of rival residential land is located at the northem end of the study ares, and is separated from the existing Cobarg Urban Growth Boundaty by agticullural land with Class I and Class II soils, which would also have to be brought into the boundary as part of including this cxecption anea. This exception area is girrounded by agricultiral land with Class I, Π, and Π II scils. Inclusion of this exception land into the urban growth boundary is inapproptiale and would not accommodale the residential land need pursuant to Fiactor 3, the economic and social consequences of rernoving the interyening agricultaral land from agricultural use, and Factor 4, the impact of potential urtan uses on this exception land upon agrioultural land surrounding the exceplion area.

Economic Opportunity Necis

For Coburg to adopt the preterred employment land alternatrive, it must also make appropriate findings pursuant to ORS 197.298 that justify the alternative in contrast to molusion of higher priority exception lands to mect the cmployment iand need. The preferted employment land allernative would add 106 acres of agicultural land and no exception Tands.

As stated above, Study Areas 1, 6, 7, 8,9 and 10 are located immediately adjacent to existing laids designated and zoned for highway commerciaf and industrial use and these are the most logical locations for cxpansion of these uses in order to be consistent with the current urban form. However. Study Areas 1,6 and 10 , located on the west side of $1-5$, are largely accupied by Class I and II agricultural soils. ORS $197.298(2)$ slates, "Highes prionity shall be given to latd of lower capability as measured by. the caprability classification system or by cubic foor sitc class, whichever is appropriate for the curront use." For this reason, they are nor considered ss prime candidates if expand the uban growth boundary to address. forecasted economic opportunity necds.

The soils on the east side of $1-5$ are lawer class agricultural soils than those on the west side, Study Area 7 is cormosed largely of Class IV and Study Areas 8 and 9 are composed of Clase IV and VI sails.

EMPLOYMENT LAND ALTERNATTVES

For Coburg to adopt the preferred employment land alternative, it must make appropriate findings pursuant to ORS 197.298 that justify fhis alternative instead of nicomporating allertative exception lands inta the ubban growth boundary to satisfy the aced tor cmployment land. Amung resource lands, Study Area 8 has worse soils (Class TV and Class V1) than all other agricultural and forest lands except for Study Arca 9, which has a predominance of class IV soits and approximately équal areas of Class in and VI sails.

Regarding employment lands, Coburg finds that all exception lands within the Study Areas arc urruitable for industrial development for the following reâsoms:

> The Economic Cpprrunities Analysis states that Coburg's employment land need is for onc or two parcels of at least 20 acres and the Regional Economic. Analysis indicate that regional-scalc industrial opportunities exist for parcels of 20 gercs or greater in size. All of hee exception lands within the 11 study aress are already divided inte parcels significantly smater than 20 acres in sizc. Therefore, they are all inappropiate, and would not accommonate empleymeme land need pursuat to ORS
197.298(3)(a), because the specifie types of identified employment latid nieeds cannot be reasonably acoommodated on the exception land parcels.

- Regarding Study Area 9, since the soil classifications on this Study Arca and Study Area 8 are largely similar, the nest step in the required analysis under Chal 14 is to woigh the four lecational factors within the Goal language, and deterraine which Study Area is mote suilable for inclusion in the UGB. Table 7.6 riom the 2010 Utbanization Srudy Updatc summanizes the analysis of the four factors discussed earlier in thik chapter. Based upon the analysis, Study Area 8 scores 12 points, while Subatea 9 scores only seven points. Further discussion of the Goal 14 locational factors is included below.

HIGHLR PRIORITY RESOURCE LANDS

Study Areas 7,8 and \$: These three study areas contain a total of 373 acres. Most of these tiree subareas havc Clase IV soil types, with smaller areas of Class VI and Class III. They are located to the east of the Intersfate 5 freeway: Study Area 8 is proposed to be added to the urban growth boundary for employment land pupposes (see discussion below), so it is not available to sativfy residemtial Jand need. Study Arcas 7 and 9 would be most difficult and expensive to scrive with public facilities, due to the need for interchange improvements to provide transpottainon and extension of water, sewer, storm drainage, and clectricity lines under Interstate 5 , in addition, exlension of the urban growth boundary to the cast side of Interstate 5 has been a sourec of significant opposition from Tural property owners to she easi. Additiondly, Study Areas 7 and 9 bolh contain mapped wetlands, and Study Area 7 also contains land withim the 100 year floedplain: Inclusion of this higher priority agricultursl and forest land into the utban growth boundary is insppropriate and weuld not accommodate the residcatial land need purstant to Factor 3, the economic conscquances of providing expensive and difficull public facilities to these. pareels, the envrormental conscquences of development within the 100 year flocdplain and impacts to mapped wetlands, and the social consequences of residential and community opposition to expanding the uban growth boundary east of the Interstate 5 greeway.

FOUR LOCATIONAL GACTORS OF GOAL 14

Once higher priority exception lands and agricullural lands with lawer soil classitications. are excluded, the nexl slep in the required analysis under Goal 14 is to weigh the four locitiogal factors withon the Goal 14 vext, and then delemine which Study Area is more suitable for inclusion in the UGB.

The aralysis ahove has resulted in a defitit of 76 developable residental acres that musi come from the remaining Study Arcas and agricultual land with Class I or II seils. Table 7.6 summarizes the analysis of the faut factors discussed earlier id this chapter. Study Area 6, with 17 points, and Study Area 2, with 13 points, scorc higher than any of the other Study Areas other than Study Area. 5 , which consists of exception lands except for one parcel in the nonthern portion of the sudy area owned by the Engene School District, and suffering from issues similar to those thei resuited in the exolusion of the northem portion of Subarea 5 from the Cobury urban growth boundary.

The analysis above has resulted in a deficit of 91.7 net developatie industrial acres that mosi come from the Study Areas, Table 7.6 summarizes the aralysis of the fous factors discussed earlier in this chapter. Study Area 8 scored 12 points and Study Area 9 scored 7 points.

Further discussion of ibe Goal 14 locational factors is ineluded below,
The following are the four Goal 14 factors that must be considered to madify an cristing urban growth boundary:

(i) Efficient accommadation of identified Iana needs;

This factor is generally interprcted to equate "cficiency" writh being "contigunus or adjacent" io exising development."Following the priorities analysis required by stature and Goal 14, and miroring the process followed in the 2004 Urbanization Study, the Coburg urbanzation study team developed 11 study areas. The actusl expansion alternatives may inchude portions of one or more study arca as deemed appropriate.

Coburg's Urban Growth Boundary has a perimeter of approximately 7.5 miles. The study areas constitute almost all lands adjacent to the current UGB (sce Map 10). The study areas are generally numbered in a clockwise direclion, beginming with Study Area $I_{\text {, lowated along the southem portion of the current Coburg }}$ Urban Growth Boundery and continuing around its porimetcr. The study areas utilized for finis expansion analysis are identical, for the most part, to the study areas utilized in the 2004 Vrbanization Study. The only difference is the addilion of Study Areas 9, 10 and 11, and the reconfigiration of Stedy Areag 8 to account for lands which have been added to Coburg's LGB since 2004.

The following comsiderations were considered in developing logions study area bomolaties:

* Properly lines/ownership patterns, based upon Lane County Asscssor Map recards of the tax lot bountaries.
- Natual Features, such as watlands, streams, and i00-year floodplains
- Streets and roads
- Tisx lots reported by the Caunty Assessor records as "Unimproved."
- Fundamentel understanding of water and sanitary sewer service infrastructure.

Not all of the area adjacent to the existing UGB is included in the study areas. An initial review of the land surrourding the UGB identified areas adjacent to the UGB that could be excluded from cotsideration for cxpansion State OAR (660)-$024-0060(5)$ provides local govemmats the authonily to guide the selection of expansion alternatives through City policies specifying eertain land characteristics as necessary for land to be suitable for expansion.

The identification of study areas included considerations of both ORS Prionities as well as locally specified characteristics or "local crilenia" (ast they are referred to throughout the 2010 Urbanivation Study). Lands to the northeast of Coburg are the ouly lands excluded entirely fom considcratien within a study area. These areas were not inoluded based on a local priority for expansion that "propides the best ofpurtunity for developing an efficterf urban form. "The isolated rature of the lands adjacent to the northeast corncr af Coburg was viewed as sulficient justiffeation tor diszegarding their inelusion within a study atea.

Residential Land Noods

Sudy Areas 1 and 6 have the greatest ability to mect the intent of this factor due to their proximity to the cxisting urban growih brundary and existing devolopment dherein. Lands within Stady Areas 2 and 5 arc included because they are the exception areas with the greatesl contiguity to the existing urban growth boundary.

Economic Opportunity Needs

Coburg's existing highway cornmercial and industrial land is located adjacent to [-5 and this location remains the mosi ctricient and logical area to meet future ceonomic opporlunily needs. Study Areas 1,6,7,8,9 and 10 are Jocated iminediately adjacent to existing lands desiguated and zoned for highway commercial and indistrial use. Study Areas 1, 6, and 7 gre excluded from consideration because of heir high value agricultutal solls and, except for Study Area 7, anc boing consideted necesstry to meet residential land noeds. Study Area 8 tepresents the most "efficient" accommodation of identified land neads because of its sharimg of a major property boundary wifh the existing uban growth boundary.
(2) Orderly and etonomic pmisian of public facilisies amil services;

Residemtial Land Needs

While a detailcd cost study has not been onducted, a generalizod estimate of general service extension costs was provided by the Caburg Public Wurks Department and city chginecrs familiar with the onst of extending water acol
sewer services in Coburg. This estimate indicated that in terms of property minctiately adjacent to the curtent compact urban form, sewer and water servico can must inexpensively be exteuded to Study Areas 5 and 6 , followed by Study Arcas I and 2. Study Arca's 10 and 11 also have the lowest cost for service extension but they are located farthest away from the urban core of the city and generally contain the best agricultural soils.

Economic Opportumity Needs

The major development constraint regarding propertics located cast of E-5 isludy Arcas 7-9) is extending mumicipal services acrosst $1-5$, Water, sewer, electricity, and storm drainage would all probably require horing under the interstatc. A pump station might be required to nove sewage from the area to the treatnent plant on the noriti end of Cobuge Transpotation access to the site would come from Van Duyni Road-a County Road. Development in these areas may be constraincd until the I-5 interchange improvements are completed. It is poted that Study Area 8 is adjacent to lands already within the UGB (cast of I-5), athd for which the City has an obligation to provide service to, and is adjacent to Van Duyw Road and a proposed wastewater sewer connection.

(3) Comparative environmenval, energy, economic and social consequences; and

Residential Land Needs: Study Area 1

Ecomomic consequences. Study Area 1 has limited opportunitics in the arca for commercial or even industral uses, however, public sientiment favors residential use for the areat. Impacts to existing economis conditions would include the semoval of tamiand acreage that is currently producing a conmercial crop.

Social consequances. This area dbuts thastrial uses off of Robents Count, and conflicting uses could create limited impacts or Iimitations (obvious or subfle) to Their operation is adjacent to scetions of Coburg's city limits that are developed wift a residenfial neightorhood (to the norih) and industrial uses (to the east). The area also inciudes existing residenees, which occur on both County designated cxecptions land (two homes) and non-exceptions land (one home). To the west and across from Coburg Road is a significant arca of exceptions land as well, This dynamic has potential for both positive and negative social consequences. The lifestyle of current residents in this area will be alterct; however the livability of the area will be relatively high for new residents movigg in. Expansion in this area will also have significant potential to redefine the southorn gateway to the City along Coburg Road. There has been some inlerest expressed from propenty owners in this area about future annexation into the City as part of long-term plans for the property,

Environmental consequences. The environmental consequmeres of adding this study area to the whan growth bounday are primarily deternined by the existence of the floodplain as the area contains signifinat acrage poithin 100 -
year floodplain. Although floodplain does not prohibie developnents, it does prescnt an enviroumental conflict that docs not exist in all study areas.
Development within these flocdplain areas would introduce an increased risk of fazard to housing stock within Cobiurg. In addition, Muddy Creek flows through the western portions of Study Arcal.

Energy consequences. The energy consequences of expanding the urban growth boindary into Siudy Area 1 are generally posilive. Water and sewer Tines already extend up to several areas adjacent to Study Area 1 and would provide a relatively efficient conversion to utboan usc. Access to Study Area I would be very good as the area could be served by Coburg Road, other local streeis and pethaps Roberls Road to the cast.

Residentiad Land Neets: Study Area 2

Economic consequences. Like Study Area 1, Study Arca 2 would be nettier the least expensive area to service nor the most. The area contains sureage that would be remaved from active farming if devcloped.

Sosidl consequences. Study Area 2 containe a significant amonnt of exceptions land (35%). There are aboul eight residences in Study Arca Z_{1} most of which are within the exceptions land. Athough there may be resistance to expaasion in this area amongsi current property owners, livability in the arca, execpting floodplain dynamies, would be very high given its proximity to downown and Cobarg Road. Also bccanse many Coburg tcsidents work in the Eugene-Springfield Area, expansion on this end of town will ease traffic through Downtown Coburg on Willamefte Strect. There bas becn some interest expressed from property awners in this area about future anmexation into the City-

Environmental consequences. This study area contains significant acteage within the 100 -year floodplain (21\%). Most of the floodplain sreas are located on the exceptions Jand. The remalning resource acreage is Class II soils, most of which is being actively farmed. There is also a small wetland identified in the National Wellands Inventory located in the nothliwest comer of Study atca.

Energy consequences. The arca would be relativcly casy to scrvice duc to ite ilat topography. Weter service would be relatively easy to extend to the site, as would electrical. Coburg Rond provides access into the area. The overall energy consequences are generally positive.

Residentiv1 Land Needsy Study Area 5

Economic conscquences. Study Ares 5 is onc of the least expensive areas to extend City water and stomwater service inio. This is due to the fach that mucb of the area is currently served by water along North Coburg Road North. An important consideration me expanston inlo Study Arca 5 is the sewer scrvice obligation to existigg residents that will be immediately effective if all or any
porthon of area 5 is included. This obligation is more significant in Study Area 5 than cther areas, and is an important cost relited issue for the city to consider. The more northern portions of Study Area Swould be progressively more expensive to provide services to bccaluse of the increased distance from existing city facilities to the south, and would acselerate the need to construct an expcrsive northen sommector rond.

Study Area 5 is not idenlified as an area for employment cxpansion and expansion would provide no benefit in that regard. The arca contains a number of small farms aud mid-sized fams. Economic impacts will be more substantial for the relatively few operating-mid-sized farms. The only tesource land in Stady Area 5 is the 28 ecre piece owned by Eugete 4I School District. The overall cconomic consequences of expansion into Study Area 5 are not scen as loaning significanfly ellber way.

Social consequences. Study Area 5 contains many exising yesidenss (43 dwelling units). Expansion impacts will affect many more people in Study Arca 5 than in most other areas. If can, however, be argued that the individual impacts will be relatively less to residents in Study Area 5 than in some other areas since the area is currently residenitally zoned, of a certain residential charactet, and already has a relatively significant population. The area conlains many rural residences, which, if included in the UGB will receive significant development pressure. Previous effonts lave suggested the residents in Study Area 5 are split in them support of expansion in their direction. The area is in very olose proximity to Coburg Elementary School, a potential future school site, and lhe southem portions of this study ares are telatively near Cobury's downtoth, all of which promotc high livability.

Enyironmental consequences. The environmental consequences of expansion into Study Ared 5 are seen as minimal for about haf or the exceptions lauds. Although the area consists of Class I ond IT soils, the area contains significant existing development The limited resource 1and within Study Area 5 is predommantly Class I soils. By directing growih in this area, areas of greater cnvirontnental significance and with greater potential can be avoided. However, the portion of this study area south of Vatu Duyn Roud is bounded on three sides by agricultural land with Class II soils. Urban development of this arca wonld have significant consequenees to adjaccnt agricultural lands. The northem half of this study area is a "peninsula" of rural residential development surrounded on three sides by agnicultural land, and urban development on these lands would have significani conseguences to adjacent agncultural lands. For this reasom, the northem and southem pertion of this Study Area are nol proposed to be included within the expanded urban growth boundary.

Energy consequences. Study Arca 5 appears relatively easy to bervice duc to its proximity to the proposed sewage treatment plant. As noted, much ol Study Area 5 is already served with both watce and stormwater. Expansions on the north cud of town will place greater trallic prefsure mi arterials that earry traftie through

Coburg to rcach Eugene-Springfield (Willamette Street and Pcarl), and might require the oonstrustion of an expensive ticw northern connector road, With existing facilitics in place, and high livability potential, the overall encrgy consequences are generally positive.

Restidential Land Nocds: Study Area 6

Economic consequences. Study Atca 6 is the least expensive area to proyide water and stormwater service to. The area is adjacent to the proposed sewen iteatment plant and therefore provides grcater cfficicncy in thairegard as welt. Study Area 6 is currently made up of two residential Iots and two large active. farms.

Study Arca 6 is nat idenifited as an area for employmert expansion; bowcver industrial opportanities seem possibie in the northeastern portions of the area, due to its proxinity to cxisting Industrial uses, and its proximity to the water treatroent plant.

Because inclusion of the porihem portion of this subarea into the UGE would likely require construction of the expensive northem conneciur road, this poution of the study area is not proposed to be included within the expanded urban growth boundary:

Sncial consequences. Study Arca 6 has potential for creating a high livability standard [öt expansion. The area presents many options for comnectivity to existing neighborheods and strcat networks. Expansion into the area supports local policy encouraging "sequential development that cxpande in an orderly way nutward from the existing city center." Srudy Area 6 pravides apporturities for execlient access to lacilities such as sethools and downtown. Expansion in this area involves a limited number of property owners, which minimizes the complexity of realizing expamsioniflaming objectives. it is also noted that the owners of the property adjacent to the curnent JJGB bave expressed interest in urbanizationi.

Environmental conscoucndes. Only 7 of the 209 aeres in Study Ares 6 are in flood zone A (he 100-year floodplain). Areas in flood zone A are mostly in a canal that transects the study atca. Of the 208 acres in this study area zoned for agricultural uses, 63,6 actes ate in Class I soil types and 138.5 acres are identified as Class II soil types, and 5.9 acres arc in Class. IV sell lypes. The area is prime farmiand. Although Area 6 consists of Class Tand II solls, the area contains significant development. By directing growth to Atea 6 , areas of greater environmental signifiosnce can be avoided.

Energy consequences. Study Arca 6 appears relatively aasy to service due to its proximity to the proposed sewage aeatment plant. Although Arca 6 is not already served with both water and stormwatcr, an abundance of connection points make it a very serviceable option. As noted earlier exparsions on the north end of town
will place greater traffic pressure on ancrials that carry trattic through Cobing to reach Eugene-Spinguleld (Willamette Street and Pearl).

Economic Opportunity Needs: Study Area 8

Economic consegucnces. Like Study Aica 7. Study Area 8 is among the mozl difficull to service due to its location east of J-5. It is also among the most expensive altematives because water, sewer; electricity, and storin drainage would ali probably nequite boring under the Interstate. In adidition, improyements to the interchange may be necessary to address development not included in the LAMP review,

It should be noted that Study Arca 8 is directly adjacent to the only portions of Coburg's existing IGGB easi of I-5. The entire site consists of one parcel with one use (a catte ranch). The acreage belongs to the same ranch operation occupying Study Area 7. Study Arca B is vicwed by the City as having prime employment potential. The economic consequerises of the reduction of the ranching activities would likely be ontweighod by potential cconomic gains of utilizing the land for industrial puposes. Additionally, the economic opportunities for areas east of I-S have the potential to outweigh the negative economic conscquence of expansion into the area (cosi of exlending service, etie.),

Social conscoucnces. Because Study Atea 8 is separaled from the other ranch properties to the north by Van Duyn, and is surrounded by other uses, the owners may be more amenable to its inclusion than Study Area 7. However, as noted, Ihere has been publie resistance in the past to expansion of Coburg's UGB east of 1-5. Study Area 8 is directly adjacent to a number of propertics under varionis. pwhership and uses, including a few residents in the rural areas east of the interstate, Again, correspondence with property owners has suggested a willingress on their part to entertain ideas about expansion on dieir property. Expansion east into Study Area 8 will allow for both the growth of the communty, and the ptescrvation of appropriate separation and buflers between the City's industrial and residential uses.

Envirommental consequences. Of all of the goreage in Study Area 8, 98\% is Class V or VI soils. These soils are of the lowest values that are typically mapper. The stady area has the lowest value soils overall of any other study area. Area 8 also contains 10 mapped wetlande, of floodplain arcas while Srudy Arcas 7 and 9 both have mapped wetlands:

Encrgy consequences. Transportation aceess to the site would come from Yai Duyn Road-a County owted extersion of Pearl Street. Economic activity is undertaken boore efficiently in areas acarcst to transportation corridors such as I5. In this manmes expansion into this stady area has positive errergy consequences. This study area was favored over lands north of Van Duyn (Study Area 7) targely duc to the ract thai a frontage road is already plantied to be constructed to serve sites sauth and east of the interchange and because it is already separated from
wher like uses (Area 7) to the north by Van Drryn, Areas north of Van Duyn do have the bencfit of greater scparation from existing residential uses east of the intershale, and freeway frontage (exposure), but in the end Study Atea 8 seemed better surited to the need overall. It is also notad that the 2004 Urbanization Siudy recommended fhat the City consider Study Areas 7 and 8 for employment growth and to take steps to preserve these areas for future employment growth:

Ecumtumic Opportunity Needs: Study Areal 9

Economic Consequences. Study Area 9 joins Arcas 7 and 8 in being the most expcisive arcas to cxiend services due to is location east of I-5. Mnst signifieant 10 Study Area 9's profile is that the area abuts a rare crossing and connction to aseas of Coburg cast of I-S. It is also noted, however, that the condition of the bridge is not immediately known. Expensive repairs may be necessary if the bridge is not in propercondition, or docs not moct required specifications.

Although Study Area 9 does not share the access advantages of Study Arcas 7 and 8_{i} it is in verty close proximity to I- 5 and is connected to sections of existing industrial land within Coburg via Reed Road/Selty Way, Reduction of or discontimuance of activitics currendly on fhe sine is not viewed as having negative economic consequences when balanced with the potential positive economic consequences of cmployment growth on the sitc.

Secial Consequences. There is one owncr of Study Area 9 and one existing residence. As noted with previous areas, this can reduce the womplexity of the expansion process and the potential for reaching planning objectivcs It alsó may result in significant impacts (positive and/or negalive) to the individual property owner.

The area would be most appropriately used for employment pupposes. It is noted that one advantage for considctation of Study Arca $\overline{9}$, is the existing access to the site over I- 5 vis Selby Way Access via Selby Way would recessitate a relatively lengity and eircuitous ronte for commercial and industrial traffic, contribulitg to noise, pollution and traffic in the area. As compared to Study Areas 7 and 8 , Study Ares 9 appears to present greater negative social conscquences.

Envixonmental consequences. Study Area 9 inchates the only iorest designated land within all sludy areas. 11 is not prime furest land. Study Area 9's soil proflle is largely Class IV and VI, with smaticr portions of Class III The sife iacludees sevcral small water Ceatures, however none are located on either the National or Local Wetbands Inventory. Study Area 9 presents the only expransion alternative that encrosches onio the Urban-Wildand ineerface (foothills of the Caburg Hills). It is not immediately understood what inpacts such expansion might have.

Encrgy consceucnces. Sndy Area 9 will requite the extension of all services. IT
residential uses are directed to the area, it is noted that the area does not have a school site or an cxisting scheol within several miles of ite boundarics. Transpoftation access to the site would come from Selby Way-a County Road. The condition of the existing bridge actoss $\mathrm{I}-5$ is not completely understood. Developmeni on the site may beconstrained if the bridge is not in proper coudition, or does not meet required specifications.

Expansion inio Study Aroa 9 does not as clearly meet the cfliciency telated policy of expancion that is "sequential development that expands in an orderly way outward from the existing city centcr.

(4) Compatibility of the proposed usban uses with nearhy agricultural and forest activities occurring on farm and forest land ousside the UGB.

Residchitial Latrat Neceds

Areas with more land contiguous to existing development, such as study areas 1 and 6 arc probably most compatible whith ncarby agricultural activities. Howeyer, any land that is adjacent to agroultural activifies will have an impact with respect to this factor. The 2004 Untrinization Study's evaluation of this factor suggested that the compatibility impacts do not appear to be muen different between the UGB study areas.

Ecomorac Opportumity Noeds

Because of the higher class agricultural soils located on the west side of $1-5$, and the attendant active agricultarel uses, expansion to meet ecomomic oppartamity ueds has been focused on the wesi side of the freeway. The worst agrieultural soils are logated in Study Areal \& and the agricultural uses on flis and adjacent properties is not intensive; essentially consisting of the grazing of cattle. The types of industries identified as targets for econemic grawth by the 2010 Urbanization Study Update and the Regional Economic Anslysis are inherently compatible with exising and agriculumal and Torest activities in the area.

EXCEPTIONS ANALYSIS

The provisions of Goal 14 allow for the niclusion of agricultural lands when the specifed criteria are met. The findings presented here demonstrate compliance with the requiremens of ORS 197.298 . These requiremenis are incorporated into Goal 14, but the additional discussion of these requirements, as they are stated in Goal 14, and as they are applied ta the conditions in the City of Coburg suggest that an exception to the Goal 14 requirements, as they relafe to the inclusion of lower prionty land instead of inclusion of some of the potentially available higher priority land is appropriate.

Reasons justify why the state policy entiodied in the applicable goals stound mot apply

The releyant polncy in Goal 14 is the requirement that ald of the exception fands available for potential expansion of the UGB be included yrior to the inclasion of any lewwer priority lands. In Coburg's case there are ample reasons why the policy of inclusion of all exception lands prior to the consideration of any lam land should not apply.

The residential land meed is clear for Coburg over the next twenty ycars. Calsurg nocds 148.8 acres of additional residential lard. There are exception lands, higher prionity lands, adjaccnt to Coburg that, puder different circumstances might be able to accomonodate the needed growlh over the nexi twerty years. There are exceptional circumstances, however, tbat together demonstrate that the chaice to include sufficient exception lands to accommodate the need will not actually result in the land being available for residential development over the next twenty years. Further, inclision of portions of the potentially available exception lands would create conditions that would violate numerous policies of the idopted Coburg Conntrehensive Pan and would be contrary to the intent of Goal 14. For the reasous set forth here and more smiprehensively in the attached Exceptions Appendix, the City finds that an cxecption is justified and adopts the Exeeptions Appendix as sufficient justification for that exception.

The potentially available exception lands for the city of Coburg extend for such a distance north of Coburg that the uorth-south Jengit of the City would be more than doubled, creating a long exiension that vouuld change Coburg from a reasonably compact. city into an ungainly and unworkable structure. New residents of this area of Coburg would be an unaceseptably great lislance from Coburg and the rest of the fesidents of Coburg. Coburg's goal of wallkable neighborhoods would be lost, as these distant residents would ineviably be foreed to drive to Coburg, or most probably, to more distant urban areas for urban services. Sitre the oniginal Coburg urban growit boundary, ihere has been a large, agriculturaliy zoned property that has introded into the city, As a part of the original Coburg Urban Growth Boundary a portion of (his agricultural land was included within the Coborg Urban growth boundary. This agricultural lind is surounded -on three sides by the City. Inclusion of an additional portion of this large property will allow for compact and contiguous growth of the City.

Expansion to the most distant portions of the exception aress near Coburg, which would he necessary to meet Coburg's needs will not actually accomplish the objcet of providing additional land for residential development of the type Coburg needs:

- Coburg needs residential land that will acoommodate housing gnowh of increased density. The exception lands adjacent to Coburg are composed of multiple small lots that would not be able to accommedate the higher density housing identified as a need. Thus, inclusion of a portion of atca 6 -agricultural zoncd land-is more practical than including all of Study Area 5 exception land.
- Many of the residents of the exception lands that would need to be included to meet Coburg's twenty year residential needs are opposed to the idea of dividing their lots to accommodate addifional residential growth. No residents of the exceptions areas testified in favor of the exparision, sevical appeared specifically, lo oppose dhe conceph, and cxpressed thair refusal to help meet Coburg's futore
residential needs. On the other fiand, the owner of the agncultaral land adjacent to Ceburg, which would be included in fhe proposed UGB expansion - Study arca 6 - is ansious to develop additional porfions of the lot firal is already partially within the urban growth boundary.
- Lafastructore development for the extensive area of the exception lands of Study Area 5 would be burdensome for the properties and would further disoourage development, even if the owners were intercsted in such residential development. Water and sewer lines extended to include all of the exception lands within Study Area 5 would significantly increase the per lot price of any residential development in that anea, dereating the policies of the Coburg Comprefiensive Plan designed to make Coburg an affordable place to live, and undermining the intent of Goal 14 and Goal 10 to cncoutage affordable and adequate residenlial housing
- The inlersection of Van Duyn Street and Cobutg Road is a lheatened intersection, thatanalysis shows nay become a failing intersection if traffic through the intersection increases without some paliative neasures, such as the planned Coburgcuit off. The plamed cutall would bisect the agricultural land of Stuay Area 6. Inelusion of larger areas of Study Area. 5, the exception lands north west of Coburg would exacerbate vehicle traficic through the Van Duyn / Coburg Road intersection and would hasten the failare of the intersection, On the other hand, inclusion of a portion of Study Area 6 would have no adyerse cffect on the Van Duyr./ Colurg Road minersection.
- The exception lands of Stody Area 5 arenow mostiy used for agriculiural purposes, with the same type of residences that are common in agricultural areasThe agricultural land of 'Study Area 6 is currently surrounded on three sides by urbat areas and, in the exception lands of Study area 5 are included, the area of Study Area 6 would be nesfly completely sumounded by urbanizable land. While the land of Study Aroa 6 is currently in agricultural production, the encroachmeni of urban areas has already impacted agricultural uses. Over time, especially because portions of the properry that make up Stody Area 6 is already th the city and the owner is planimig development of this portion of the property, actual use of this property for agrieultural purposes is likely to docline.

Similar reasons also support the fociusion of agricultutal lands to meet regional ceonomic opporiunity needs.

- The regional need is clear, and Coburg is requived by the statewide rules to consider whether Coburg can contribute to meeting the regional need. Coburg, has limited its share of the regional need to a small amourt, to allow other areas of the region to consider mecting the regional need.
- There are no properties in the present UGB that would meet even the small portion of the tegonal need that Coburg is taking up. White Coborg has properties - zoned highway commercial - that are neafly the minimum sized parecl needed to accommodate the regional need, this property is constrained and could not possibly be rezoned to accommodate the kind of use that nakes up the regional need. The vacant highway commercial properties have limited access,
cspecially confined by the Interchange Area Management Plan that Coburg and the state Department of Transportation have signed. The vacant highway commercial properties atc also actoss a strect from a now development in Coburg, the regional facilities of Serenity Lane a substance abuse treatonent facility. Thelusion of industrial development on these propertics, even if possible under an amonded LAMP, would have an adverse effect of existing development in Coburg. Coburg has experienced the difficulties of industrial uses in elose proximity to residential uses, The policy of scparating residential uses from industrial uses by placing new indusitial usés on the opposite side of the freeway will helpmake Coburg as a whole a more viable place to live and work.
- The Coburg / ODOT LAMP Jequires the development of an access lane to the erist of $1-5$. This new facility is designed to give existing properties in Coburg east of the freeway a safe means of acoess to Van Duyn and the freeway. This new facility will necessarily include aportion of Study Area 8 , the property to be included ta meet the regional employment need. Bringing this property inside the UOB will facilitate this development.
- The property of Study Atea 8 is the lowest qual ity agricultural land capable of only being used as grazing, and not used for that for most of the ycar. Transilioning a portion of this low quality agnicultoral land fo employment land will not adversely affect Lane County's supply of resource lands. This chatge is the only way that Coburg will be able to meet its obligation to provide an economic opportanity for the Lane county region.

There are no areas culvide the current Urban Growth Boundary that are nol already iocluded within the proposed UGB expansion that could reasonably accommodate the needed uses,

- The potential exception areas not imoluded are either within the tlood plain, or arc so distant from the present city that, as shown above, it is impractical to assume That these properties will ever develop in time to meet Coburg's residential growh needs.
- There are no properties within the curtent UGB that could accommodate the types of uses that are inchuded within the regional ccongmic developncat nced.

The long term envirommental, economic, social and energy consequences resulting from the use of the proposed sites are Icss adverse than the incluslon of any other arean. including other resource land and the exclnded exception lands.

- The EESE analysis has already hecn donc on the proposed inelusion of properties into the UGB. The satne analysis can be used to support an exception to Goal 14 ,
- The proposed UGB will create a cotipact city, with residential development located in tough proximity to other residential properties. Residents of Caburg will not be reguired to drive to attend Coburg events, as they would if more distant exception areas were included in the LIGB. When compared with any altemstive, this will enhance the social connections of the commonity, sa\%
energy, and improve the character of the City. Econominally the proposed UGB will do norre for Coburg than any other altemative. Including more of the exception ateas would freeze Caburg where it is, because the exception areas will not develop at any speed that will actually meet Caburgin needx. If Coburg fails to include fhe needed ermployment lands, Cobarg's eoonomy will not improve, and all of Lane County will be deprived of the ecotionic opportunity.

The proposed uses of the agricultural land are compatible with other adjacent uses. A portion of the agricultural land to be included in the residential inventory of Cohurg is aIready in the City and scheduled for residential development. This property abouts on two sides wifh already developed urban uses of the City. On the third side or lhe proporty, the Cily or Coburg extends neatly talf way up the west side of the agricultural property: The exception area of Study Area 5 extends further north and cast, so that only a portion of the northern side of the properiy is nol already sumonded by non-resourcezoned properties, Many of the exception lands are also in active farm usc; espccially the nreas in the north of Study Arca 5 - the arca proposed to nol be fincluded in the expanded UGB. These agricaltural areas in the exception lands are less impacted by surrounding urbati uses than is the agricultural land of Study Arca 6 to be included in the erpanded UGB.

The agricultural land of Study Area \& is of the lowest quality syricultural land fof the highest prionty among agncoltural lands to be ncluded within the UGB, and it is only occasionally used for agricultural porposes. It abous developed land iwilbin the City and is Tikely to be impacted by fle develogronent of an access road on the property.

Fot the rcasons set forth here, and supported by the analysis of all the findings and evidence suggiorting the findings, it is appropriato to take an cxception to that portion of Goal 14 which requires all higher prority land be included in a UCBB hefore lower priority land is included. In this ase incloding portions of the higher priority land will be contrary to other goals and to the other provisions of Goal 14.

These findings, including the attached appendix, are based on all the evidence in the record accumulated during the urbanization study. Without reducing the importance of any element, certain attachmente ate spccifically inchuded to facilitate the process uf understanding these findings,

Allachment I Maps showing the study areas and the areas seleoted for inclusion in the UCB

Atrachment 2 Fingineering statements regarding the costs of infrastructuc installation, and the irafric impacts of the proposed typass

Atachment 3 Email from DLCD representalives supporing the analysis in the Urbanization Study.

Exceptious Appendix

City of Coburg UGB Expansion
 Reasous Exception to Goal 14

i. ETTRODUCTION

This memorandum provides the snatysis required for the City of Coburg to take a Goal 2 exception to the boundary location requircments of Statewide Panning Goal 14 as part of the city's urban growth boundary (UGB) expansion, 'The purpose for taking the oxecption is to include land designated in the Lane County Comptehensive Plan as resource land instead of land identified as exceptien area to meet a portion of the city's demonstrated housing needs.

The evidence an the record leads the city to conclude that, amougother reasons; the degree of parcelization on adjacent nusal residential ateas, the historic slow rate of infill development on underdeveloped residential parcels, and the cost of extending publie services to excepion lands will prechude the city mecting its rosidential land needs within the planning period should the city attempt to meel that rieed solely hy including exception arcas with the city's UGB expansion. Consequently, the city is laking this cxception to allow it to address a portion of its residential land needs within the planuing period by including land designated Tot agriculture qses, which can be developed in a more timely and enficient manner, Unike the industrial land uesd, the residential need cantiot meet the statutory exception to the prionilies requivements provided for under ORS 197.298(3).

This exception draws extensively forn the existing record for this proceeding to include, but not limited to, the Coburg Urbanizafion Sludy and its amendments, technical memoranda regarding public tacilities and servises, and written and oral testimory provided throughout fhe oity's 1/GB expansion proccedings. The amalysis below reflects the policy choices developed during the Cobug Crossroads community visioning project, as incorporated into the City of Coburg Comprchonsive Plan. The exception also includes an area maps and an cconmic, social, enviromental and energy (ESEE) analysis prepared specifically for this exception.

OAR 660-004-0020, ORS $197.732(2)(0)$ and Goal II, Part 2 use identical reasons excepion language. Because the rulc provides additional inquiries addressed herc, the: reasons exception analysix is organized belew under the rule, with correspending Gasi and statatory provisions identificd within brackets.

II. REASONS EXCEPTION JUSTIFICATION

OAR 660 Division 24 govens urban growth boundaries, OAR 660-024-0020 provides, in felevant part:
(1) All statemide goals and related administrative rules are applicable when establishing or amending o UGB, except as follows:
"(s) The exceptions process in Goal 2 and OAR chapter 660, division 4 , is not applicable unless a local government chooses to take an exception to a partictiar goal requirement, for example, as provided in OAR 660-0040010(1);
"(b) Goals 3 and 4 are дol applicable[.]" (Emphasis Supplied)
OAR 660-004-0010(1)(e) proyidcs:
"When a local govermment changes an established urban growth boundary applying Goal 14 as amended April 28, 2005, a goal exception is not Fequired valess the local government seeks an exception to any of the requirements of Gual 14 or other applicable goals." (Emphasis Supplied).

OAR $660-004-0022(1)$ provides, in relevant part:
(1) For uses not specifically provided for in this division, or in OAR 660 $011-0060,660-012-0070,660-014-0030$ or $660-014-0040$, the reasons shal justify whby the state policy cmbodied in the applicable goals should not apely:

Analysis: Consistent with OAR 660-024-0010(1)(c) and OAR 660-004-0020(1)(a) the City of Coburg is taking an exception to the boundary location requirements of Sts lewide Plaming Goat 14 to include land designated in the Lane County Comprehensive Plan for agriculure instead of land identified as exception area to meet part of the city's demonstrated bousing aceds. Fursuant to OAR 660-0024-0020(1)(b), the city does not nced to lake an exception to Goal 3 to expanid its urban growth boundary.

OAR chapter 660 division 004 ducs not specificily provide requirements for urban growth boundary expansions and the provisions noted under OAR 660-004 0022 (1) arc not applicable, consequemily the atandard reasons exception provisions apply to this exception.

OAR 650-004-0020(2) provides;
(2) The four standards in Goal 2 Part II (c) requtred to be addressed when taking an exception to a goal are ciescribed on subsections (a) through (d) of inis section including general requirements applicable to each of the factors:

Amalysis: Each of the four standards of Goal 2 part II(c) is addressed separately below in the tesponses lo OAR 660-004-0020(2)(a) through (d).

OAR 660-004-10210(2)(a) 1Goal 2. Part 11 (c)(1) ORS 197.732(2)(c)(A) Lprovides;

(a) "Rearsng pustify why the state policy embindiel in the applicable goads should not appty." The exception shall set forth the facts and assumptions used as the basis for defermining that a statepolicy embodied in a goal should not apply to specific properties or situations, including the amount of land for the use being planned and why the use requires a focation on resource land:

Analysis: The primary rcason for this execption is that the city has concluded that if the entite of the city's demonstrated residantial land need is "met" with surounding exjsting rural residential cxecption land, then fhe need will not in fact, be met within the 20 -year plaming honizon. In plain terms, For the reasons provided here the city does not believe that rural residential areas will develop to the densities and at the pace necessary for the city to meen il housing needs. Strict adherence to the statatory prionity scheme referenced in Goal 14 will be insufficient to meet the demonstrated need that Goal 14 requires the city to mect. While the city should and docs plan to mect much of the residential land need through inchasion of exception areas, for the reasons provided below, the city concludes that at least a portion of the demonstrated nood must be met through lower priorily resource lands, which cath be developed in larger blocks aty therefore thate. densely, efficiently and timely than can already developed rural residential parcels. The city does not belfeve the statewide planning goals requires strict adhercnce to a framework the city knows will not solve the problems it reguires be fixed. Thus the city is taking this exception, which is intended to afford an avenue to suceessful implementation of the intent of the statewide plaming goals.

The rationale for the chity ennclusion somer frum the 2010 Coburg Ubanization Study and update, as well from several technical memoranda that address a range of public services and facilities. It involves no reasons for laking the exceptionachieving the residential depsity gecessary to meet the demonstrated need within the: mandated planning period, and the provision of public facilities and services io. residenial lands brought into the UGB.

Areedotal evidence about the difficulty of efficiemily transforming rural residential land to more dense, urban residential uses in a timely manner led the eity to examine whether eviderce supports that position. The buildable lands analysis provided in the Urbanization Study provides information that supports the conclusion that Coburg area residents ate reluctant to develop oversized parcels to bigher density zesidential use. That analysis leokod at oversized and undeveloped parcels and evaluared the infill potential of residential uses within the existing UGB. See, e.g., 2010 Coburg Uebanization Study Map 4: Residential Infill Potential; Map 7: Parcel Classification. Excluding lataily vacant land, particularly the large parceis that could not practically be developed until the relatively recent completion of the new city sewer plant, that analysis faenified $\$ 3$ residential parcels outside of the central business district as underdeveloped.

The Coburg Crossreads visionity process and the UGB expansion proceeditgs revealed a range of reasons for this high number of underdevcloped residential parcels. Those reasons ranged from it is too cost prohbitive to develop to "We love it he way it is!" Whatever the reasons, the buildable lands analysis conctuded that the city could only expect that approximately tee percent (10%) of the underdeveloped parcele within the: existing UGB would further deyelop to more appropriate residential densities within the planning period. Given the high cost of extending public facilities and seryices discussed in morc dctail below, and the public statements made by residents from rural residential areas under consideration that fhey would not develop or sell their properties if brought titto the UGB, it is reasonable to assume that a tair number ot oversized/inderdeveloped parcels would exist in these exception areas once they are brought into the UGB and that they would not develop to the densities or at the rate necessary for the city to moct its residential need.

The otber reason invoives the practicality of providing public facilities and serrices te exception areas. As the technical memoranda document, extending public facilities and scrvices to land outside the UGB is an expensive proposition, mora so for property owners and developers who musi, as the comprehensive plam provides, enver their share of the costs of expansion that results from their development. This inclodes the cost of extending these services, which reinforces fhe imporlatice of growth that results in a compact urban form. Far properties in the north of Cabuqg, necessary infrastructure improvements includc devclopment of the East - West Connector: The transportation system analysis prepared for the city indicates that residencal growth in the north of the city will cause failure of the city's transportation system. Those adverse impacts will be mitigated if the connector is built.

Large infrasiructure costs are best absarbed by larger development projects that can better spreaf the costs of development among a large number of residential units. The exisling development pallems en tural residential properfies make it dificult to aggregate sufficiently large blocks of land to accommodate and fand urban levels of development. Stnaller units of land present further design restraints that will likely result in lower densities that will further increase the per-dwelliag cost of infrastructure fmprovements and that will be insufficiont for the city to meet its fesidential veeds duting: the plannitg horizon. The higher infiastructure costs to provide public facilities to smaller parcels can become so constraining that it makes rcsidential development of an area cost-probibitive and prevert development altogether.

The city's solation to these issues is to ensute that there are properties that car be developed in large blocks at the necessary densities and able to off-set much of the major public facitities extension costs in areas that are alse in close proximity to exception areas included in the proposal. That way the execption areas will benefit from the shated faciltics extension costs, which will miligate against one major constrainl on development for the exceptions area. This reguires a location on lower priority resource land at the locations included in the UGB expansion proposal. The cuty has already reduced the anount of land to be taken as an exception thronghout the review process, reduicing the amount of latd requested by 23.1 arres as part of the city's most recent
review of how best to meet the city's residential land necds. The current tolal acreage of latid reguested in the exception is 62.5 acres. Of that, 48.9 acres is located in Study Area 6 to the north of the city and 73.6 acres are located to the south in Study area I. By comparison, 88.9 actes of exception Jand is proposed for meeting the city's residential land needs.

The proposed solufon, parlicularly in the north, is consistent aith several guiding comprehensive plan policies. It will allow the city to grow with a compact urban form radiating from the city center, within walling distance of both the public setiool and downtown. It will also expand necessary public facilites and services at the developers' expense and will fasilitate establishment of the East - West Conncetor, which will improve downlown traffic conditions, promote the separation between local and through traffic; and enable compliance tvith Goal 12. The exception srea in the south will promote a more compact urban form, help ollsel the cost of extending publieservices and helf minimize conflicts with rural uses.

The proposal complies woth OAR $6(0)-004-0020(2)(a)$.

OAR 660-004-0020(2)(b) [Comal 2, Pari II (c)(2); ORS 197.732(2)(c)(B) provides:

(b) "Areas that do not requare a new exception cannot reasoriahly accommodale the use", The exception musy meet the fallowing requirements:
(4) The exception shatl indicate on u map or otherwise descrite the location of passible altemative areas considered for the use that do wot require a new exception. The area for which the exception is taken shall be identified.
(B) To show why the porticular site is fusiffied, it in necessarg to discuss why other areas that da not require a new exception canhot reasonably accommodate the proposed wee. Economic factors may be considered along with other relevant factors in determining that the use cannot reasonably be cecommoduted in other areas. Under this test the following querions shall be addressed:
(i) Can the prapased iure be reasonably acommodated on nonresource land that would not requipe an exceplion, including thereasing the density of wises an noneesaurce land? If not why not?
(ii) Can fhe proposed use he reasonably accommodated on resource land that is atready irrevocably committed to nonresource uses nor allowed by the applicable Goal, including resource land in evisting unineaparated communities, or by increasing the density of uses an committed lards. If not, why not?
(iii) Can the proposed use be reasonably accommodated ingide on arbay growth boundary? If not, why not?
(iv) Can the proposed use be reasonably accommodated without the provision of a proposed public Jacility or servicel If not, why not?
(C) The "aiternative areas" standard in paragraph B may be mel by a. broad review of similor types of areas vather than a revew of pectfic alternative sites. Initially, a local government adopling an exception need cassess only whether those similar lypes of oreas in the vicinity could nat reasonably accomoncalate the propessed ure. Site specific comparisoms are not required of a local government taking an exceptiot unless wnother paris to the local proceeding describes specific sites that can more reasonably accommodate the proposed use, A detailed evaluation of specifto aliemalive siles is thus not required unless such sites are specifically described, with facts to support the assertion that the sites are more reasonable, by another pariy during the local exueptions proceeding:

Auslysis: Thi Urbanization Study, as updated, contams several maps that skow the UGB expansion areas considered for the city's proposal as well as the UGB expansion recommendation snd a consiraints map, cspccially showing the areas subjech to flood limitations. Those maps include possible altemative sress considered for residential lands expansion that do not require a new exception. The proposal includes all the excoption land from Sludy Arear 1 and portions of the exception lands from Study Aress 2 and 5. The excluded exception lands afe discussed by study area.

Study Area 2 includes approximately 21 acres of exception land, only a portion of which is preposed for inclusion into the UGB. The majority of the ramaining exception land lies withim the floodplam, which is an envirommental constraint to development. Additionally, the excluded Study Arca 2 exception areas extend inta resource land in active resource use and would rehult in a small area of urban residential development that is surrounded on threc sides by active agricultural uses, thus increasing the potential for conflicis between uses. This situation also exists for the extreme southern portion of Sudy Area 5, which is similarly avoided. It is not reasonable to accommodate urban levels of residential uses in small peninsular areas sunnouded hy auricultural uses given the inevitable use conflies that would ensue and is contrary to comprchensive plat policies to minimize land use connlicts through effective planning. Exclusion of a portion of the exception land will also promote comprohensive plan policics that promote a compact urban form and to establish a southern buffer between the city and the MoKenzie Kiver that promotes separation between the cities of Coburg and Eughe (Goal 14, Policy 44).

Study Area 4 includes approximately 17 acres of exception land not proposed for inclusion into the UGB. That exception area is not locented adiacent to the cxisting UGB, and is separated from the UGB by cetensive arcas of agticultural lands with Class II soils

Inclusion of the exception area would likely requir temoving those lands from agricultural use. Without inclusion of the ediacent agricultural lands, the costs of extending and paying for publio facilities and services would be oost prohibitive given the exisling development pattem would make it difficult to aggregate sufficiently large blocks of land to finarce the cxtension of services, which comprehensive plan polices requirc. Additionally, this area, like much of the lated to the west of the corrent UGB, is within the Iloodplain, which inhibits development of the type necessaty to meet the city's residential land needs. Giveri the costs associated with cxtending services to the ares and its general location within the foodplain area, Study Area 4 cannot reasonably accommodate the demonstrated residential land need.

The residential land proposal includes a portion of the exception latas. in Study Area 5 but not others. The southernmost portion of Study Area 5, sonth of Van Duym Road fs surronded on three sides by agricuttural Tanda with Class II soils. Similar to Study Area 2, this creates a high potential for conflicts for this relatively smallarea and makes it unable to reasonably accommodite the city's residential necd. The far northern portions of Stady Area 5 camot rcasonably accommodate the rieeded residential uses because of the extraordinary cost of providing public facilitics and services to those areas given the existing development pationn of multiple parcels under different ownerships and the increased infrastructure costs resulting from the distances involyed. Furfhemmere, unlike several other roral residential areas, most of these properifes temain in active farm use by the residents. Testimony from several residents in this study area made clear they had no intention of ceasiag farm production within the planning horizon or to subdivide their property to ufban densities; others sought inclusion into the UGB. Lnclusion of the Farthest portions of the study area would inczease transportation and energy impacts and is inconsistent with the city's policies to develop a contpact niban form that promotes pedestrian access to the city center. Given fhe costs of providing services to the northerpmost properties, the entrent configuration of parcels and unvillinguess to devclop expressed by some property owners it is unlikely that this area would reasonatly accommodate fice proposed use at the densities necessary to meet the city's rcsideafisal land needs within the plarming thorivon.

Soudy Area 11 contanis 18 acres of rural ocsidential exception land focated on the northernmost portion of the study area. That exception area is surrounded by agricuttural lands in class T and T soils and is the romotest area from the existing public services and facilitics. It is therefore the most difficult and costliest to scrve. It is also mostly developed with very few overgized lots that could be further develoned. Inclusion of this excoption area, without the remaindet of the sludy arca's agricuitural land would do little to off-set the dernonstrated residential land need while doing so at fle grealest facilitics cost. Inclusion of this area would also run contrazy to plan polieies that promote a compact uban form and the cstabtishment of neighborheods that allow for pedestion access to the city center. This exception area cannot reasonably accommodate the proposed use.

None of the exception arcas around the City of Coburg that are not already included in the city's DGB expansion proposal can reasonably accommodate the demonstrated residential land need.

Responiding directly to the questions presented in OAR 660-004-0020(b)(B), there are no nomresource lands that would not tequire an exception and could accommodate the temonstrated residential land needs that are within fhe vicinity of the City of Coburg. OAR $660-0040020(b)(B)(i)$. The arcas already concmitted to nonresounce use are discussed immedialely above, OAR 660-004-0020(b)(B)(ii). The buildable lands inventory section of the Urbanization Study demonstrates that there is insufficient land uside thc cxisting urban growth boundary to accommodate the demonstrated residential land need. OAR 660-0004-0020(b)(B)(iii). Develupment of residential land at urban densitics cannot be ascommodated without the provisions of $k e y$ public services and facilities. Uiban residential uses require public services and the comprehensive plan requires the city to provide public services. OAR 660-004-0020(b)(B)(iv).

None of the exception areas not already included in the UGB expansiom proposal can reasonably accommodate the proposed use. Most are remote from the city center and existing UGB, which yreatly increases the cest of public facilities and services, and inclusion of thesc arcas is not consistent with comprehensive plan policies that promote a tompact urban fimn and reighbarhiouls with pedestrim oonnections to downtown. Given the existing parcelized development patterns of those areas, it is noi reasonable to assume that the large blocks of land that conld allow for a subdivision to pay for expensive public infrastruchure extension costs, as comprehensive platt policy zequies. Thus the cost of providing public services to these arcas would become a major inhibitor to development and to the city meeting its residential land demand within the planing period. Most of these ateas arc sutrounded on multiple sides by agricultural lands, which would increase the potential for urbam-rural connticts ir developed with intense residential use as needed for the city to mect its residential land neets. As noted above, inclusion of these remote lands is inconsistent with plan policies that govern residential uses, public facilities and scrvices and ubbanization. Consequently, these areas cannot reasomably accommodate the proposed use.

The proposal complies wifh OAR 660-004-0020(2)(b).

OAR 600-004-0020(2)(c) [Gos1 2, Part II (c)(3) ORS 197.732(2)(c) C)I provides:

(c) 'The Zons-tern environmental, economic, social and energy' cansequences resulting jron the use at the proponed site with measures. designed to reduce adverse impacts arc not significanty more adverse than wostd topicolty result from the rame phoposal heing located in aneas requiring a goal excepoton other than the proposed site." The exception Whall describe: the characteristics of each allemative area conndered by the jurisdiction in which an exteption might be taken, the typical actonuager and disadyanages of using the area for a ase not allowed by the Goal, and the bpical positive and negative conseguewcer resulting

Abstract

from the use at the proposed stue with measures destgned to rectuce cudverse impucts. A detailed evaluation of specific alternative sites is nint required unless such sites are specifically described with facts to support the assertion that the sites hove significantly fower adverse inpacts during the local exeptions proceding. The arcoption shall include the reasans why the cnnsequences of the use at the choven site are not significanthy more adverse than would topically result fom the same proposal being ticated in areas requiring a soal exception other than the proposed site. Such reasons shall inelude but are not limited to a description of the facto used to determine which resource land is least productive, the ability to sustain revource uses near the proposed use, and the tong-term economin impact on the general area cansed by ireversible reminal of the land from the resource base. Othet possible impocts to be addressed include the effects of the proposed use on the water table, on the costs of improving roaids and in the cosis ta special service diswicts;

This ESEE analysis draws from and builds upon the ESBE analysis conducted for the 2010 Coburg Urbanizaliots Sludy. Unilike that ESEE, this amalysis will examine the resource lands more generally by Eeographic location. In addition to the resource lands proposed for inclusion into foc UGB, the analysis will address inpacts to resource land in the north that includes land from Study Areas 6 and 11, the west from Siudy Areas 3 and 4, the south from Study arcas 1, 2 and 10 , and the east, from Stuily Areas 7 and 9 . Detailed descriptions of each of the sudy areas ate provided in the 2010 Coburg Urbanization Study. Study Area 8, alfough consisting of resousce land, is not coosidered in this analysis becoase it has been designated to micet the ciry's emplayment land needs and meets the statutory exception criteria pravided under ORS 197.298(3).

The resource land in atl of these areas is generally in achive agrfeultural use. Each is zoned for farm use with the exception of Study Arca 9, which is zoned for forestry ube, but has agricultural activity taking place mit. That is where the similarities end. Lands to the north are generally flat and intcrtupted only by the occasional road or inigstion chamel, Land to the west is at lower elevalions, wilb much of it within the 100 -ycar flood plain. A sizcable portion of Study Area 4 is part of e hazelnut orchard. To the 500 h are lage agricultural fields, a portion of which is also within the floodplain. To the east, across I-5, arc arcas used ws a catite ranch (Study Area 7) and, in part, for dgricultural use (Study Area 9).

Economic Consequences

The econothic consequences for the subject site are perhaps the most faverable averall of the potential expansion areas. Like each of the geographic areas, there will be an economie lose of agricultural lands gencrally in active conmercial use. That is the: case for the portion of Study Area 6, but not so for the small acreage of Sudy Area 1. Each of the two arcas are considered among the least expensive to serve with public scrvices and facilities given their location adjacent to residemial developments and existing public frcilitics, which minimizes the cost of extending these services. The area
is gencrally flat with no constraints that would increase the cost of development Each of the areas is adjaceni to developed industrial or comancrcial uses to the east, and has potential residential - economic inse conflicts that eould affect those economic uscs if not considered during development. However, for each, the residential - enployment boundary is along the natrow side of the expansion arca.

Ta the norif, with the remsining Jarge portion of Study Area 6 and Study Area 77, there would be a loss of agricultoral activity dentical to that of the subject site. The costs of providing public facilities and seryices will increase the further away from the city center and pxisting infrasteucture at area fot consideration is locatod. Otherwise the arca is similar to the southern portion of Stady Area 6 with nothing thal would seriously add to development costs. These arcas also would face the same potential residentialindustrial confliet issues that are present with Study Area 6. This arca is also was examined as a potential cmployment lands area given its proximity to existing industrial development for both Study Areas. Given the public inlerest in locating mote impactiol employment uses to the east of [-5, this potential economic loss should be considered miner,

The agricultural activities to the west are the most diverse and represent the greatest potential loss of commersial sgricultural activily of all of the geographic atcas. The loss of the hazelnut orchard in Study Area 4 would represent the removal of a significant player in the arsas agricultwal economy. Exccpt for the northorumost portions of Study Arca 4, tbe arcas to the west of the city are among the most expensive to service given the distances invelved from key facilitics and the geography of the area. In addidion, the fact that much of the area lies within the 100 -year floodplain would lave potential severe eronomic and social impacts resulting from a significent flood event. There are no potential residential - existing economic use comfficts, other flam the residenial-agnculnital interactions that are common among all of the study arens.

To the south, outside of the exception area portion of Study Area 2, development of residential uses will resule in the lass of moderate sized fams in active use. The torthon and casten portions of this geographic area should be velatively inexpensive to serve, the areas farther west and southwest would see increased costs for extending public facilitics and services. Also, portions of the area are within the floodplains which could increase development costa and potenfial adyerse economic impacts if a storm cvent occurs. In addition to potential resitiential - Jigtot industrial eonflicts on the eastem portion of the geographic area, there are potential residential - fural industrial contlicts with the mining activity to the immediate south. This geographic area poses the greatest potential of confliets with existing ases of all the goographic arcas.

Acruss I-5 to the east, the loss of dgricultural uses would primarily be in cattle ranching to the oorth, or in faming in the fat south, but poses ino significant differcues compared to The maiority of the ather areas. However, this would be the most expensive geographic ared to serve given the necessity of extending public facilitics and scrvices under I-5, a cosi that would be difficuit for residential development to tonance on its own. Significant residential development on the east of I-5 would also ercate densities and
trafic loads that are incomsistent with the Interstate 5 Lnterchange Area Management Plan (IAMP) and would require moditication of the I-5 interctange at polentially significami additional cost. Furthermore, access to the southem area, Suhject Area 4, is across a bridge that has not been evaluated for adecuacy, trising the potential for further transportation-relaled costs. This geographic area does not present any significant potential conflicts with existing uses that would flew from residential development. However, this arca would represent a divergenec from the publicts stated interest in keeping residential development to the west of $1-5$.

Social Consequences

Thic preferred option for residential growth oplimizes the adopted city policy to promute "sequential development that expands in an orderly way cutward from the cxisting city eenter," It best implements polieies that promote interconnected neighborhouds that will have pedestrian access to downtown and, in the northem preferred option area, to schools. This option also involves a relatively low number of properiy owners and would therefore minimize lbe social disruption caused by the transition from rural to uban densities. The southern preferred option area would present an altcred lifestyle for the existing tural tesidential patcels in the western areas, but overall हhould mamtain a very livabie enviionment. This area of the preferred option alsoholas the potential to rodefine the gateway to the Gity of Coburg.

The geographic area to the noth would also gencraily minimier the social distapion caused by urbanization because of the low numbet of properly owners, at least within Study Area 6. The farthest north area also has a well-developed residcatial arca that could intcgrate with a new residential community. But while a portion of ihis geographic area is in close proximity to the school, it would not represent orderly, sequential developinent from the city center if developinent of the noith leap-fioge the preferred site, Such development would isolate the new neighborhoods from the downtowa arca and run contrary to adopted comprehensive plan policies for residential development.

The western geographic area faces geographic obstacles in the form of waterways, a vegetative buffer and elevation changes that separate it from existing development in the city, Connectivity is likely to be poor given that the existing road patterns comnect with the city by going north or south, and it will be difficult for any residential tueighborhoods to become part of an integrated whole. Also the loss of the hazelnut orchard would likely have a greater adverse social consequence that the loss of other agricultural lands in the area and the fact that much of this area lies within the floodplain presents the potential for sosjal disruption resulting from flood events. Residents have gencrally beeti resistant to talk of amexation and bave expressed concerns about urbanivation of the area. However, the relatively fewer land owners impacted by an axpansion would be a positive and the area presents opporturities to develop neightorioods that have a bigh degree of livability.

The southern geographic ares presents a mixed bag neganding social consequences. Ont the one hand, livability is likely to be very high for much of the southerr area and development could be used to establish a clcat gateway to the city. Additionally, many rcsidenis from the south have expressed an interest in annexing into the city and development in this area could lessen traffic impacts on downtown that result from residents commuting to Eugene for cmployment. On the ofher hand, much of the arca is subject to Iloodplain dynamics, the furthent sonth areas are adjacent to existing sand and gravel actixity, which raises livability concerns, and expansion of the city southward rons contrary to the city policy that promoles the "establishiment of a southern greenbelt that ensures a permanent open character for the area between Coburg and the MoKenzie River." Additionally, residential development in thc southern area would quickly become quile remote fim the city certer and lose the sense of neighborhood conmectivity the city desires and the comprehensive plan mandatcs.

While the property owners to the east of $1-5$ have exprcssed an intercst in being amexed into the oity, the gencral public has expressed resislanee 10 locating residential uses in that geographic area, Residentigl gromth eastward does not follow the scquential development pattern that results in pedestrian-oriented neighborhoods contected with downtown that envisioned by the comprehensive plan. Residential neighborhoods east of T - 5 will be remote from the city center. Such growth runs contrary to the devclopmeni pattern expressed by the city's residents duting the Cohurg Crussroads visioning project to Extate residenfial development to the west of $1-5$, and larger scale, morc intense cmployment-related developthent to the east on I-5.

Environmental Consequences

The adyerse euvirommental consequenecs tesulting from the preferred option flow latgely trom the renoval of bigh value solls from productive dgricultural use, Again, this is an aspect of each of the potential sites an the wost side of $1-5$. There are no signilicant natural environmental features within either of the lwo preferred option areas, with an irrigation canal that is technitally within the floodplain that lies to the north, and a mix of distarbed vegetation in the area to the south. As the Utbanivation Study notes for Subject Area 6, the envitonmental advantage to looking at that area is that devclopmicnt there will help to avoid impacting other arcas of greater envirommental signilicance.

The resource land areas to the noth are similarly lacking in significant natural areas. Here too; the primary adverse anvirommental consequence would be that residential development would take place on land that consists of predoninantly Class T and II soils. The canal from the preferred option slsonuns though this faimland gica, but is not an environmentally significant water feature,

The impacts to the enviroment from residential development in fie weriern geographic region paith a yery different pictore than those discussed above. As noted previously, extensive areas within this region lie within the 100 -year floodplain. Furthermore, this area includes the most significant wetlands focated on the local wefland inventory of all of the potential sites. Additionally, the exterision of public scryices and

Facilities to the western arca would likely adversely impact these welland sites. The westen geographic area represents the greatest potenlial negadive exviromontat impacts of all of the aress examined.

The soulhen gengraphie ared is similarly includes land within the 100 -year flocodplain, although not to the same degres as to the west. Still, the presence of the floodplain while nol prohbiting development, raiscs an increased potential for adverse anvironmental affects resulting from a flood event. A stark differcnce between the two aneas is that the southorn area does not have any arcas on the national wetland inventory despite the floedplain areas. However the land in the majority of this area consists of Class I and II soils that would be adversely impacted by residential development.

The eastem geographic arca contains the lowest soils elessificationis of any of the surrounding greas, with Siudy Area 7 baving 98% Class IV and VI soils and only 2\% Class I. However, that area also containe sigmificant areas of inventorice weilands along the west and north, as well as a small percentage of the arca within the floodplain. However, given their location, development of that area could likely avoid the envitonmental resources, which cannot be salid for development in the westem or southern goographic areas. Study Area 9 contains the only ferested area under consideration, although it is not considered prime forestland. There are water features in that area, but they are nol inventoried as wetlands. However, Study Area 9 is the only atca that eticroaches onto the urban-wildlands interface of the Coburg foothills and development will likely impact the environmental benctits of the weoded portions of the property.

Energy Conscouences

The cncrgy consequences for developing the prefened option are generally positives. The energy costs of providing public services and acilitics to the twas preferred option areas arc thinimal given they are adjacent to cxisting infrastructure. The southim area has nuitiple transportation access points, which allow for efficient accase to I-S or south directly to Eugenc wifhout going through the city center. The norihem area provides for deyeloppent of the East-West County Conmector, which will facifitale access to I-5 that bypasses downtown and will ensire compliance with Goal 12 as the city grows. The close proximity to downtown will also encourage walking and biking to Alwntown, thereby lesscning transportation energy expenditures.

Areas further to the rorth present a mixed bag of enicrgy consequences. While tire encrgy costs of providing some services and facilites witl be minimal because they already exist, other serviccs will require extensive energy expenditures and from a practical matter are only reasonable once Study Areas 5 and 6 are developed. Additionaliy, there will be greater longet-tern transportation costs than the preferred option because the greater distances to get to downtown and the school make travel an Fool or bicyde unsikely. Furthermores development of these areas will require construction of the Easi-Went Connector in order to cotoply with Gual 12.

The westery geograpitic arca has poor transportation aceess to the city's downown area, requring travel along Coburg Loop Road north or south, then to the city. There is no divect transportation access to the city and nonc is likely to be buill given the intervening waterway. Thus longer-lem (ransportation energy expenditures are higher than for most outher areas. The northem portion of Study Area 4 is in close proximity to most public facilities and scrvices, so the cnergy costs of extending those resources are relatively low, so long as ihey would be extended incrementally. Again, dovelopment within this area mill require construction of the East-West Conncctor to provide accese to 1-5 that bypasses central downtown in order to comply with Goal 12.

The southern geographie ato has goncrally positive encrgy consequentes. Much of that area has mulgile transportation sceess toutes, which facilitates access to $1-5$ without going through downtown or directly south to Eugenc. The cnargy costs of developing this area wauld also be lower given the generally flat topougraphy of the ares and the fact that services are developed in close proximity to the north and cast of the area. However, for the southernmost portions of this geagraphic area to see minimal energy expenditures for public infrastruchure extension, Study Areas 1 and 2 would first. need to be developect fully.

Another geographic area that presents a mixed bag on the energy tront is the castem area.. On the tiothem portion, Study Area 7 , its proxinity to $1-5$ makes it fhe most energy efficient from a transportation perspective. It provides the most immediate access to I- 5 for commuters hcadiag to other cities, pardicularly Springfield or Eugene. However, as roted above, residential deyelopment at higher densities may involve revisiting the LAMP. The same transportation efficiencies cannot be said for the southern area, Study Area 9, which has one of the minst circuitous routes to either the highrway or the city's downtown, and thus the greatest transportation expenditures. Neifier area is within close proximity lo schools, so would pose itucreased transportation energy costs for educational pupposes. And while Study Aner I is nelatively flat and moulda't requite excessive costs to develop infrastructure for that site, the extersion of public facilities and seryices to the east of 1 - 5 would incur greater energy costs than the othcr grographic arcas, although this would likcly be off-set somewhat by shared funding for such extensions by ermployment lands plamed to be brought into the city.

Conclusion

The ESEE anulysis above derconstrates that the eoonomic, social, envirotimenta] and energy consequences of developing tesidential uses at the preterred allemative are not significantly more adverse than would occur from similar development at any of the pther possible locations around the City of Coburg that would recuire a goal exception, and in most instances would resulf in less adverse impacts than the other locations. Under no circumstances does the preferred alternative nopmesent the location that results in the grealesi adverse consequences. From an overall perspective the preferred alternative plainly represents the best sections of the study arcas that results in the fewest sdverse ESEE consequences. This analysis concludes that the long-term enviromental, ecomomie, social and energy consequences resulting from residential wes at the proposed
site are notsignificanly more adverse than would lypically result from the same proposal being located in areas requiring a goal exception other than the proposed site.

The proposed UGB expansiom oonqfies whith OAR 660-004-00206(2)(0).

OAR 660-004-0020(2)(d) /Goal 2, Part II (c)(4); ORS 197.732(2)(C)(D) L mrovides:

> (d) "The proposed usss are compatite with other adjacent uses or will be so rexdeved through mearures denigned to neduce adverse impacts. "The atception shall describe how the proposed use will be revdered compatible with adjacent land uses. The exception shall demonstrate thai the proposed use is sitwated in such a manner as ta be compatible with surrounding naiwral resources and resource mancgenunt or production practices. "Compatible" is not intended as an absolute term meaning no. infenference of adverse impacts of any type with udjucent uses:

Analysis: The conflguration of the areas proposed for inclusion for residential uses, to include the cxecption arcas, as well as the development code will help reduce potential adverse impacts between the residential uses and adjacent agricultural and urban uses, and render them compatible.

The proposal for Sudy Area asimply moves a common urban residential agriculiural designafism boundary northward. The northward mavement is limited to the northeminost portion of an existing school, to the west of the area and will share the eastern boundary wilh light indusitial uses. Comprehensive plan policies (see, e.g., Goal 3 Policy 5) and the local development onde wifl ensure that the desigu for residential uses whith Study Area 6 include mitigating measures that will render the residenlial uses compatible with the adjacent agocribural, industrial and public uses. The southem boundary will be shared with other residential uses that are, by defintion, compatible.

The proposed portion of Study Arca I lies north of the 100-ycar floodplain and, when combined with the portion of Study Area I inculuded in fhe propusal, forms as linear a boundary as possible for this soubent part of the City's core, inptementation of the plan and code will establish buffers between the proposed residential use and Highway Commercial uses that twill lie to the east, as well as mitigate potential adverse impacts to the continued agricultoral use to the souith, Given that, like Study Area 6 to the north of the city, there is already an existing residential - agricultural use boundary and that boundary is only on one side of the area, the uses should be compatible. The inclusion of this portion of Study Area I will also minimize potential conflicts that could have arisen for the Study Arca 2 exception land by reducing adjacent agricaltural uses from inree sides of that area te two sides, thus making the overs!l UGB expansion to the south more compatible with adjacent land uses,

The propossal satisfice the requircments of OAR 660-004-0020(2)(d),

II. CONCLUSTON

For the reasons proyided stove, the proposed UGB cxpansion complies with thi requirements for a reasons cxecetion to Geal i4.

Comparison of Previous and Revised Expansion Recommendations

\square Revised (Current) Residential Expansion Altemative
Previous Residential Expansion Alternative
Exceptions Land
Study Areas

Attachment

Stutemert of Damien Gilbert

1. My datne is Damien Gibert I am an Oregeo Ijcensoid Professional Engineer and am especially quylified an Civit Brgingering. I mat a Principal Engineer at Eranch Enginoomg which serves ss the City of Coburg's Engiveer. My duties at Brsnch Eugineering inctude serviag as the first point of contuct for the City on gencrel sagineering questions, assiesting the City with enginering woik whem refpested by the Clity, mad overseeing fhe work of ather engineers at Branch Engingering who tuay be requested to do worle for thit City of Cobirg.
2. I 3 m familiar prith PV as a pact of the Coburg water systan. Branch Engineening designel the 3800 thot line that runs from the City of Coburg to PVE, fraddition to flye crigmal dosigh of the pipe to PVE, Brach Engineening is involved in anginoming disaussions related to PVE: These discuscintejachade plonting with the City for contixued management of thie P VB system. I estimate that over the past two yean, rougly forty percent of the engryeering time in meeting's with the City that were related to the City's pruter aystern inyolved PYB. This woold be a cost of $\$ 400 \mathrm{which}$ when divided amang the 35 service connections in PVE comes to $\$ 0.48$ per month. Additionally, capitel project forecasting etgintafing woik has baer perfinved by Branch Ragineering during this same period of time. This engoeatig plarning vork is estivented at a cost of $\$ 4,000,00$ whith when diyided emoge that 35 service comertions in PVB orrmes to $\$ 4.76$ per month.
3. There are additional conceras that will lead to Nuture costs to the City for the PVE hystem,
a. The metera in PYE have excealed their ureful tife and need to be replaced. Replacing. \#eters in PVE may be aiftipult because, it is necossary to then off wate serviesto cvaryone in PYE to replact a singie meter in soine cases. It is my wudeatunding Inad maintenance has beent deferred in PVE because ibe systeme is diffigult to maithein sad mekes/Bervices have been replaced less fieguenty than the reat af the city: My estimate of the cost of foplacing meters and the ussociated water service for PVE will enst appromimitely $\$ 120,000$ at 4013 prices. This seraits in roggly $\$ 57$ a month from esch of PVI's 35 service connections should they pay the cost of these repsirs over the nexd ave years. (Cost divided by 2100 [12 monthe times 35 users stimes 5 yearis])
b. The water aytimin in PVE is asansed to the vhe origithe syatem that was constructed in the 1960s. The pipe is belicvod to be ghe joint PVC pine which is genetedly consideed to be anore breakage prone than other comman pipe materials of thet era. We are aware of at least two majar hrealages to the paphing in tha last decade. Until replacement, the City will likely face the regalar costs of xepairs in the PVE syatem. I extimate that, at 2013 dollars the cost to replace the systent is approximately $\$ 200,000$. This reaults in approximitely $\$ 95$ i month ficm each of PVE's 35 ssertice compechonis iot pay the cost of these repairs preer the aext Eve years. (Cost divided by 2100 [12 monlbs times 35 users times 5 years])
c. The line from the City to PVE is cstimated to have approximately a 50 year life expectarcy. Ala 2013 adimater doller cost of 550 per foot, fhe cost to replace the line would het ronghiy $\$ 225$, 000. Without incluwing functase in coests for iffation or changed instalialion

Statement of Dratiea Gilbert Page 2

standards, this $\$ 225,000$ results in the need to raise $\$ 5,600$ a year for the nat 40 years. This equites to an approximate annual coat of $\$ 160$ for cache of the 35 service connections in PVE, or a cost of approximaifily $\$ 13$ per month per service connection to provide for the eventual replacement cost of the connecting limes.

STATE OF OREGON

COUNTY OF LANE

On wis Coth day of Sop len tier, 2013, Thereby certify that 1 know or have satisfactory tividerse that Damien Gilbert appeared before me, and said poison acknowledged that he made the statement voluntarily and that it represented a complete and accurgits statement of facts as be knew them at the time of signing this instrument.

Notary Public in and for the state of OR My comanission expires Dec al ye ill

Stazement of Robert Buriter

1. My natue is Rotert Buffer, I em the directar of the Coburg Public Works Deparmentit, a position whict I have held for mare tham one yari:
2. Since iny skart at Coburg Public Works Thave nbserved the following factors related to the City's operation of the water system in Pioneer Valloy Esistes:
a. The Criy is requited to male dan y rearlage of the residual chlonine level at PVE. This involves a utility worker, who bills at $\$ 45$ an hour traveling to PYE to take a chlonine sample. State law requires that a chlonite reeding be baken at the most distan service point foce the location of the chiortue ietrodantion. This recuirement waild be more efficiendy done bot-for the distance involved in travel to PVE. I estimate lhat at least sixty percent of the amigh cost of cblorine monitoxing of $\$ 9.675$ or $\$ 5,805$ is atributable to the extra distance of PVE, When this cost is divided among the 35 usems in PVE, it reprcsents a cost per riser of $\$ 13.82$ a month.
3. There ane moke water main tresks in PVE than in the City. This is Jue to the initial lower quality of pipe installed in PVE and the deferred maintenonce that has been gracticed. During the past year thare bave been no main breaks in the City, tut there bas been ane in PVE. A maja break roquires three operstois for 12 hours to repair. At a cost of $\$ 52, \$ 45$ and $\$ 38$ an hour, a single zsion buake costa the City \$1,620 in fabor. The material and equipaent ase is am additional $\$ 600$ or more for cach line 7 reak. When dividel anong the 35 users in PV\&, fris represeats a $\$ 5,28$ a monfl cost. This does not include the cost of the water lost dusing the - line break. Given the age of the pipes in PVE, it is quate possinle that there will be line breaiks every year untill the syatem is spgended.
c. Collectong water bills in PVE is more expensive. Like the oflorine monitaring, there is a cost to tavel the extra distmice outside tha City to read the meters every month If is my estimate that, inchuding the tsevel time to and from PVE, it takes at least an adritiond half hour to read the PVE meters over reading 35 moters in Cobucg. Since the cost of the meter reader is billed ut $\$ 38$ sn hout, this means an addedi $\$ 0.54$ a month for PYE customets.
4. It is my conchrsion that PVE costs the Cify at least $\$ 19.64$ more a mocech in operational cesfs

Signed:

STATE OF OREGON)) Es
COUNTY OR LANE)

On this \qquad 2013, I हerolyy cestify that I hiow or hasve satisfactory evidence thai Roburt Butler_appearred hefrare me, gid said porson achwowledged that he miade the statement volentarily eud that it represented a complete and acuturio statement of facts as he knew thern at the finito of signing this instrucenent.

From:	Benjarnur Bosse < BenjarninBosse@Kennedylenks can>
Sent:	Tuesday, Januacy 06, 20151237 FW
To:	MECHAM Mila R; Ron Watr .
Subject:	RE, cost per foot of coliestion-systert
Ataxchments:	Caburg sewer extansion cosis xtsx

Mi Milo, attached are some basic costs for mainilne construction, escalated from Phase 2 at 3% per yean. In the first coJumn are costs associated with trenching in open areas, alsead of constnistion, streets etc. If there neeods to bea. cannection underiying an existing street, then Pive included a second column that includes costs forimported fiil, pavement saw culting and trench patch.

To fisure the cost for service laterals, the ' 2 " fine size cost is approximately correct. Fgure the average latera is 30 , the average tost per each lo open ground would be $\$ 30 n \$ 15=\$ 450$. The servige connection box is $\$ 350$ EA, so the total lateral cost would be $\$ 800 / E A$.

The tank figure of $\$ 5,000$ looks OK. Hard to gange from Phase 4 as the developer wouldn't be paying prevailing wage, The un-marked up materlal costs thaugh were about ${ }^{\sim} \$ 1,200$ for the tank ond " $\$ 1,200$ for the pump and cortrois. Material and installation for the private side latetal was $\$ 2,200$, again that's with prevailing wage, tanks in back yards, and includes issues assaclated with exjsting sites/urilitues, ert, Figure $\$ 500$ for an open site.

No contingency is included with these figures. The typical statet range of accuracy far conceptual leval cost estimating is - 230 to $4 \% 59$ of each foure.

Hope this helps, and that you had a nice hollday season.

Berr
> - Original Message-

> From: MECHAM Milo R [mailfo:MMECHAM@imgorg]
> Sent: Tuesday, January 06, 20158:59 AM
> To: Ron Walzr Benjamin Bosse
> Subject: cost per foot of collection system

We are trying to figure out the cost of exterding the wastewater system to few areas that might come into coburg. Do You know the average coscper foot af the collection system? I am figuring that the average cost of a new or refurblshed tank was around $\$ 5000$.
If you don't have an average cost, just let me know what you have on the total footage of the phase 1 and phase il parts of the project, I can do the math from there.

Thanks for what you can get me.

Mika Mecham
LCOG
e59 Willamette 5t, Suite 500
Eugene, OR 97401-2910
54.1-682-4023
mmecham@loog.arg

	Maiistine Cost per LF (Phase 2 2 bid form)	
Size	Open area, native fill	Paved area, imported fill
2^{n}	$\$ 15.32$	$\$ 29.22$
4^{n}	$\$ 18.32$	$\$ 31.59$
$6^{\prime \prime}$	$\$ 25.86$	$\$ 33.65$
$8^{\prime \prime}$	$\$ 25.92$	$\$ 34.66$
$10^{\prime \prime}$	$\$ 30.61$	$\$ 48.37$
Average	$\$ 23.21$	$\$ 35.50$

Memo

From: Busan Eayme LCOG
Tp: Petra Schueta, City of Coburg
Detie: 22 Jan 2015
Subject: Evafuation of Coburg 2035 Scenonos
\section*{Anulysis Approach}

The Regional Travel Demand Medel is maintained by ICOG and is used for long range estimotion of fume traffe volunes within the Central Lane MPO area. These forecasts are then uscd to evaluate firture system condtions and to ascettain whether the results are in aceord with the destived ontcomes of the planners:

The model has been updated over the past dhree yeurg in cordination with the various TSP update projects of Engene, Springtield and Coburg. The base year that is, the scenatio that useg all known data to oreate a representation wilhin the model suructure of curren conditions) is 2010. The futare horizon year is 2035. Different future scenarios have been constructed as needed by each City but in sll cases the 2035 coordinuted populations and employment totals for earb UGB are beld constant. That is, megional enotrol totals are maintained.

The travel noded jequires a lind use patiero that describes the population, honseholds, residences by structure type (eg single family, aparment), and cmployecs in uach area of the region. The model also requires the definition of the trivel networks - roads, transit, bike and pedestrian: Various conbinations of these attributes ereate scenatios which the model can then analyse. Becausc the model is 'regtonal', the drpacts of ghowth of emplayment in Sprigitield on the roads within Coburg, for example, can be evaluated. The impact of UGB expansion anta losation on travel volumes can also be evaluated.

Trafic flowing finough and into the region from outside the MPO area are included in the estimated vehicle volumes on the rosds.

The travel model thus integrates land use and transportation, and provides infomasion an tuavel flows from one ares of the region to the other It is not a simalation engineering model - results from the mondel are typically used by engineers to forecast growh rates which can be lised in simulation modols of in processes that forecast intersection perfomance. Single point reselts from the xoodel should not he velied inom: However, obange or diflerences between scenarios is an appropriate use. If interscction performanoc is tequifed, an enginear needs to be called upon to do the eviluation, asing the travel toodel reselts.

Fer the City of Coburg, fous funce scenarios were investigated to ningerstand how the location of the north residential 0 GBB exparsion grea would affect future itaffie volumes inside the LKGB, and to Anvestigate the effects of the proyosed east-west collecton. The four scenarios ate described below.

Seenamios

Four 2075 scenanios were describec, It all cases, only residential UGB expansion areas were included in the future land use patteris:

Scenmio 95126 - Preferre: Scennio:

- Residenial UGB expansion area north of Cobnarg inoludes land directly annt of centeal Cohurg as well as the area noithwest of Cobirg in the Stallings Rd/N. Coburg Rd aves.
* The project list inchudes an east-west collector moud located to the north of Coburg inside the UGB expansion area and romsing from Coburg Rd west of Stallings Rd to Industrial Way
- Local roads conieot the E-W Colleator into central Coburg

Scenario 96120 - Preferred land use, Exclodes E-W Collector

- Same as 95120 but excludes E-W Collector project and the local conoecting roads frams the collector to central Coburg

Scainria 97120 - Alternate land use expansion sinea; Exclucter E-W Collector

* Residential UKB espansion area norfowest of Caburg melades land in Stallings Rd/N. Coburg Rd area only. There is ac expansion area directly north of Coburg,
- The project List excludes E- - W Collector Project and all Incal connectivg roads to tote Collectior
- About 50% of the trips onginating in the UGA expension area are allocated to Stallings Rdand 50% to N, Coburg Rd.

Scenario 98120 - Alternate land use expansion area; Lheludes E-W Collector

* Same as 97120 but includes E-W Collector- However, no local comenting roads from the collector to central Coburg are included.

Conclusions

This section of the memo summarizes the findings of the analysis. See the Appendix for more details.

Four "themes ${ }^{4}$ are revealed in the analysis.
Theseare
a) Impact of trafic grawth on Winanetfe St, through the heart of the Coliveg downtown area - increasing auto and uruck traffic alomg Willamefte is shownto occur in sil scenarios due to population and ezaployment growth The Prefernd Scenario shows less congestion on Willametie St than any of the other scemanios. Scenario 98120 has slightiy larger yolucues, bui is likely as acceptable as the Preferred Scenario in this respect.
b) Impact of traficic growth at the Willamette/Peari St intersection - The sarde cunclusion can be dravyu as in (a) above.
c) Impact of traffic growth within the residenial neighborhoods With the E-W Collector in place, less traffic diverts through the residential nejghborhoods. The Preferred Scensrio performs the best in this cespect Scenario 98120 is next best
d) Impact of trafic growith at the North Coburg/Churg 2 Rd Intersection - this location is particularly sensitive to traffer thie ta the location of the Coburg Cominumity School and fhe Fire departrient/Emergency services, Again, the Preferred Scemsrio results in the least amount of growith in traftic around this area, with Scesario 98120 as the next best It bofh scenarios 97120 snd 96120 wifhout the E - W Collector, traffic volumes in this area are expected to incraase sigrificently,

The modeling resolis indicate that the transpotiation system within Coburg will functions botier with the building of the B-W Collector, no metter whether the UGB expansion area is located in the NW area around Stallinge Rd or tha area dircefly ronth of Coburg. This roadway thas the: added advantage of being able to act as the freight reute through Coburg so as lo reduce the presence alleaty vehicles in the heart of the city and particularly around the school on Colauge Rd. With the recent relocation of the Rexius Fotest Profucts landscape supply yards to N: Coburg Rd, horth of the City of Colburg, truck traffic heading toward Eugene from this location could reasonably be expected to use the E-W Collector if it was in place, and thereby bypass the Cobarg school area and the Coburg doyntown.

If the UOB expansion area is located entielly to the NW of Coburg rather than across the noutherde edge of Coturg, the analysis shows fhat there would be additional traffio volume hit the vicinity of the soluol evea with the broilding of the E-W Colicctor, This is caused by the lack of unnections from the F-WV Collector south inta Coburg and the necessity to use N. Coburg Rd and Stallings Rd for access, Regartless of whether parely is a constderation, this dependence or a single link (Coburg Rd) cati restut in poor system performance due to non-recurrent congestion swoh as incidents, work zones, wealier-induced roud condinions, as well as tecurreat congestion due to growft in demand. This sibation introduces uncelability which in tum increases traveler time and dissatisfaction.

APYENDIX

More detail is provided in this appenair to justify the conclusions made in the memo.
Traffic conditions for the PM Peak 1 hour period were examined for cach scenario. Note that the discussion below includes all vehicles and does nat discriminate betyeen autos and trucks. Classification counts taker in 2010 indicate that on WilamettéSt terth of Pearl St, ayptoximately 20% of fhe vebieles are tancks.

In the 2011 base year scepario, litle to tò congestion exists in the PM Peak 1 hour period. All rodeds ane well within the level of service standard designated by a 0.85 volume to capacity (v/c) ratio (Fig. 1). Traffic through the residential central Coburg nelghborhoods is quite low (Fig 2). Bighest volumes are found on Willamatte St, Coburg Rd, Pearl St, and on Industrial Way.

In 2035, all four scenarios show fhat Willamette St fs expected to suffer congested conditions in the nonthbound direotion in the PM. The wodeled restils suggest that the Willametie St/Pesrl St intersection will need impravements. The physical extent of the increased congestion and the degree to which fi occors is affected by the location of the UGB expansion area and the presence/absence of he E-W collector.
L. The Preferxed Scenatio (95120) shows the best transportatinu system perfomance:
a. It is the least congested of the four scenarios. The Willamette/Pearl intersectiva is the area of highest concem. (Fig-3)
b. The E-W collector provides an allonate route for davel from east bonorlik-west Coburg in the PM peak period. Sraffic on Pearl St heading west from the 1-5. interchange splits at lodustrial Way in response to the congested contitions at the Willamelte/Pearl interscotion-about half the vehicles take the pew collector route wije the rest stay on Pearl. The collector thus performe to allew diversion of traffic fiom the Willamette St area, redicirg the degree of congestion on that facility, and in particulat lessening the impaci at the WIlsmette/Pearl St intersection. Little diversion through the norkwest Cobarg residential neighborhood is shown.(Fig. 4).
c. The esst-west section of Coburg Rd within the existing UGB bctween N. Coburg Rd/Stallings Rd and Willanetie remains within staudards. (Fie . 3)
d. VMT/day/capita for travel by Coburg households is reduced by 21% when compared with the base year of 2010.
2. Seenario 97120 has the most impacted transportation system.
a. This scenario has the highest congestidn of the four scenarios. Model results suggest that g good portion of the length of norfabound WHilamette StCoburg Rd Within the existing Coburg UGB will have a level of service below the County standard, aud will apptoach a level of service of F (Fig. 5). In comparison to the preferred scenario the Willamette/Dearl St intersection will experiense bbout a 15% increase in traffic enterigg the intersection, resulting in more lengthy delay? and thereby encouragitg bsffic to diven through the neighborhoods of nonth-
central Coharg. In comparisom with Scenarie 95120 , it is eqtimated that an additional 200 vehicles will use these local residentiad-area noeds during the PM peak hour perisc, approximately a four-foid increase (Fig 4 and 7)
b. Congestion will increase on portione of westbond Pearl Stto appreach the standatd wo of 0.85 . (Fig. 5).
c. The erist-west section of Coburg Rd between Sitillings Rd und N, Coburg Rd is particulanly affected. Wriwat the E-W colleoter and without other routes to Eccess the new UGB expansion anez, this noad section will beorme nore of a choke point in the system, and difficult travel conditions will ensue with siow speeds and lengthy delarys,(Fig+ S)
4. The intersection at N. Coburg Rd/Coburg Rd is expectied to see an approximately 80% increase in volume compared with the preferred scenario 95120. (Figs 4 and 7 .
e. Key Coburg instiontions - the Cobitg Commusity Schoel and the Fire/Emergenay Units, are located at N. Coburg Rd/Cobury Rd intersection Adverse traffic conditions at this intersection will likely impact respocuse times and satety.
3. Scenario 98120
a. Shows similar performance as the Preferred Scenario (95120) along Willamette St (Fig. 8). Whale the UGB expansion areas differ, both of these scenarios include fbo E-W Collector. The results show that the building of the E-W Collector has a positive inpact on the system performante in Cobug.
b. At the $\$ 1$ Cobuag Rd and Cobirg Rd intersectipn, trafthe volumes into the intersection ingrease by about 22% above that of the Prelerred Seenmio (Fig. 9 and Fig. 4), but intersection periomance is like y to remgir adequate.

1. Tutal two way traffio along N. Caburg Rd incrases by about 190 yehicles/iour io the PM peak hour period, compared with the Preferred Sconario (Fig. 10). This, along with the two-way increase of about 165 vchiclos/hour along Cobure Rd east of N. Coburg Rd emphasizes the challenges that potentially exist in this area to safe passage of children at the Coburg Community School.
2. Bcenarios 961 zo
h. This scenario lacks the E-W Collector with access to the UGB expansion arcas being provided only by local rogis from nonth central Coburg and from Coburg Rc. The result is moreased tratioc along Whilamette and Coburg Reds, with congestion reducing petformance to дear LOS F (Fig 11). Traffic also increases Hhough the residential neighborhcods due to the diversion cansed by increased congestion on Willamette and due to the need to access the narth central UGE expansion area from the south. Fig. 12 shows the volame differences between Scenario 96120 and the Pteferced Scenario.
v. Thafic volumes in the Willamette/Pearl iniersection are about 13% bigher than in scenario 95120. Tratic volumes into the N. Cohurg Coblarg Rat intersection are about 35% above that of the Preferred Scenario.

TECHNICAL MEMORANDUM

DATE March 16, 2015
PROJECT: Coburg TSP Update Suppart
Branch Project No. 15-004A
To: Susan Payne Lane Cound of Governments (LCOG)

CC: Perta Schuetz, Clty Administrator cley of Coburg

Fromi Damien Gilbert, P.E., City Engineer Dan Haga, RE.

RE Transpoitation Syscem Plan Alternatives Analysis

In an effort to assist the City of Coburg and the Lane Coundl of Governments (LCDG) th the evaluation of the transportation system at key intersections for potential future land use and streef connectivity scenamios to be indaded in the update of the City of Coburg's Transportation System Plan, I am supplying this memoranduna

Background

The city of Cobnrg is currently in the process of updating its transportation system plan, and is evaluating several land use and transportation network scenarios for improving its system capacity to address projected growth in planning horizoo year 2035 design hour conditions. With the contimation of historic growth bends in the Coburg area, the design hour trapfic valumes associated with the year 2035 planuing horizon are forecast to degrade operational condidions through town from E. Pearl Street at Industial Way through W. Van Duyn Streer at N, Cobarg Road, and intersections between throughout the Cryy of Coburg.

Currenty the Peand-willamette-West Van Duyn Street comidor is the suain tirough fare from the interstate through tawn, efther to Willamette Street (Coburg Road) that stretches to the Crty of Eugene to the south, or through W. Van Duyn (also Coburg Road) that ends in Harrisburg to the northivest. The corndor users melude lacal and non-local commuters and Coburg area residents as well as commerctal and indisthal vebictes that include large delivery trucks atilized in transport freight and construction materials and equipment to/from destinations along the 1.5 corridor and throughour the stare, Local and commuter trafific includes all modes of framsportation, including pedestrian and motorized and non-motorized vebleles.
The potential land use development and sficet connection scenarios nonalyzed in this memorandura inciude a new east-west collector street connection to be constructed berween

BIGENE-SPTUHGFIEED

SRALEM-KEZER

Industrial Way and Coburg Road aorthwest of the initersection at N. Coburg Road and W. Vala Duyn Sreet that may serve to divert trucks from the downtown area through a mure suitable route better equipped for truck traffic, with lmproved separation of large vehicles from pedestrians and lessening the congestion and other tmpacts assodated with trucks in the growing downtown Coburg area The analysis of the transportation systern contitions include land use and transportation system seenarins provided by the Lone Conncil of Govermmencs (LCOG), including:

- Existing Conditions. The existing year $201530^{\text {mi }}$ highest hour design hour traffic conditions were analyzed as a ceferenee to compare future year scenarios to.
- Iand Use and Transportation Scenario 95120: The desim hour traffic conditons during the $30^{\text {th }}$ highest hour of the year 2035 planning hocizon year were analyzed based on land use and transportation condtions associated with LCOG's model stenario 95120 , LCOG supplied EMME/2 model data for scenatio 95120 included forecast tuming mevement traffic volumes during the transportation systom's PM peak 1 -hour period (destan hour) for the year 2035 plaming hortzon. Scenarlo 95120 is referred to as the "preferred land use" scenarlo and includes a future east-west collector street comnection between N Coburg industrial Way and Coburg foad to the northyest of the intersecton of Stallugs Road. The LCOG models simulate traffic growth by amalyzing land uses, aevelopment pattens and transportation infrastructure in Transportation Analysis Zones (TAZs).
- Land Use and Transportation Scenario 96120: The design hour traffic condinons during the $30^{\text {th }}$ bighest hour of the year 2035 plannimg horizon year were analyzed based on land use and transportation conditions associated with LCOG's land use and transportation scetiario 96120 . Scenatio 96120 is referred to as the "preferred land use", and does not include a future street connection betiven N. Coburg Induspial Way and Colurg Road.
- Land Use and Transportation Scenario 97120 The design how rraffic conditions during the $30^{\text {ih }}$ highest hour of the year 2035 planning horizon year were analyzed based on land use and transportation conditions assaciated with LCOGs land use and transportation scenario 97120. Scemario 97120 is referred to as "alternate land use", and daes rint indude a future street conmection betaveen N. Cobirg industrial Wey and Cobury Road
- Land Use and Transportation Scenario 98120, The design hour traffic sonditions duming the $30^{1 /}$ highest hour of the year 2035 planning horizon were analyzed based on land usc and tramsportation coriditions associated with LCOG's Jand use and transportation scenario 98120. Scenario 98120 is relerted to as "alternate land use", and includes a future struet connection between N. Coburg Industrial Way and Coburg Road.

Analysís Area

To provide a representanve analysis of the transportation system, the following key fotersections were selected to be analycui onder the five previously desurbed lind use and qansportation scenatios:

- W. Van Duyn Street/Coburg Road at Coburg Botrom Loop/N Coburg Roat: LCOG modeling seenarins refer to this intersection as node ! 826 . This intersection features twowity stop controls on the nerth and southbound approaches, with N . Cobuirg Road on the North leg. Coburg Bottom Loop ge the south leg, Coburg Road on the west leg and W. Van Duyn Road at the east Ief. A construction project occuring around the year 2000 realigned this intersection to include Coburg Bortom Lonp Road at the south Ieg, which previousty intersected Coburg Road to the $\begin{gathered}\text { dest } \\ \text { of }\end{gathered}$ the turncht intersection af N, Cobury Road.
W. Van Duyn Street is cunsidered an urban minor arterial street betweon Willanette Street and N. Coburg Road, Coburg Road (west leg) and N. Coburg Road are considered rural major collector streets, whlle Coburg Bottom Loop Road is considered a rural local street. AD intersecting streets at this intersection are owoed and manrained by lame County.
- Whllamette Street at Van Duyn Street: LCoG modeling scenarlos referred to this intersection as node 1802. This intersection features stop controls on the eastbound through and left movements (W. Van Durn Srreet), westbound (E, Van Duyn Street) and soathbound (\mathbb{N}. Willamette Street), while the castbound right and northbound (Willametfe Street) approach movements are free. W. Van Duyn street and Willamette Strect are urban minor arterial strects falso knuwn as Coburg Road) under Lante County jurisdiction on the west and south legs, while E. Vich Duyn Strect at the cast leg and N. Willamette Stieet north of the intersection are City of Coburg local streets.

2. E. Pbirl Strect at Willamette Street: LCOG seenarios reforced to this intersection as rode 1R04. E. Poarl Strect at Willamette Street is a signalized intersection with E . Pearl Strect at the cast lag, a private driveway at the west leg, and Wollamette on the north aind south approaches. Willamette Street and E. Fearl Streers currently create the main fhrough fare through town and are lane County awned minof arterial streets. E, Peard Street is a direct link to Interstare 5 to the east, Wilamette Sireet (Coburg load) provides comectivity between the City of Eugene and the City of Hartisburg through Coburg.

- E. Pearl Street at Coburg industrial Way. LCOG scenarios referred to this intersecuon as node 1806. This intersection is a signallzed intersection that features E. Peari Street on the east and west approaches and Coburg todustral Way on the uorth and south appioaches. The intersection was realipned with the implementation and of an ODOT Frterchange Area Management Man (IAMP) construction project berween years 2012 and 2013 to consolidate the previous intersection of Roberts Road to the east with the new south leg of Coburg Industrial Way. E.

Pearl Street is a Lane Comity owned minor arterial street. Cotburg Trdustrial Way is an urban collector street awned by Lane County north of the intersection and owned by City of Coburg to the south. The south leg of this intersection was re-aligned in yeas 2013, when Rolorts Rund to the east was closed and access was consolldated at the south leg of the intersection. Coburg Industial Wav north and south curent
serves significan industrial and conmercial uses and has beer subject to stgnfleant growth ower the past 5 years.

Traffic Volumes

Thee hour incersection turning movement uraffo count data wore eollected in February, 2015 for the prevousiy listed intersections in Coburg. The traffic counts were collected on typical Tuesdays, Wednesdays and/or Thirsdays between 3:00 PM and 6:00 PM on weeks withoun holidays or weather conditions that could produce unusual traffie trends. Collected traflic count data and adjustracnts are included in Aftarfment A.

As described previously, four intersections were studica fon this analysis. A comprehensive CHZM Hill transportation system afalysis that included 11 intersection traffic suunts indicated that the ransportation sjstem peak hour occurred berween 3:15 PM and 4:15 PM, therciore, traffic data collected in February 2015 for this aadlysis was based on the fatersection rurning mavernent volumes occurring during this one-hour period. Existing Year 2015 Raw traffic Count Volumes are displayed on Figure 1 on the following page.

Seasonal Adjusument

The collected intersection turning movement fraffic count volume data wero seasonally didjustud to be consistent with the CHON Hill methodology that assumed a commuter traffic reend on Coburg area transportation system pradways. The calculated average seasonal adjustment factor for a count date le early February was 1.125 . This factor was applied to the collected traffic colint volumes to produce peak hour rorning movement volumes, since data collection did not occur during what is considered the peak stasum for the commoter traffic trend. The seasomaliy adjusted traffic volumes were rounded up to the neirest 5 intering whicle tips/movement to produce design how traffic conditions to be input to SYNCHRO modeling software, as will be describud later. ODOT's current (year 2014) Seasonal Trend Table and seasonal adjusment factor culculations art included in Attachment R. The seasonally adjusted Existing Year 2015 Traffic Volumes are included on Figurc 2 on the page B.

Traffic Growth

As described previously, LCOG supplied forecast EMME/2 model scenariu traffic volumes for base ycar 2010 and future year 2035 plaming horizon conditons based on growth and transportation trends that include "preferred" and "alternate" land use scenarios both wodth and Without the addition of a fuiturc cast-west collector street connection constructed between N . Coburg hduscrial Way and Coburg Road northwest of the Stallings. Street intersection. The new collector street conmection would allow through fare traffic to by-pass the downtown area and provide traffic relief with a more direet route to Interstate 5 . The provided LCog base year conditions did not account for a prevtous realignment of Coburg Bottom Loop Road to the south leg of W. Van Duyn Street at N, Coburg Road that occurted around the year 2000 . The LCOG modes also did not include the realignment of Roberts Road, where drect access to E . Piencl Street was relncated to the souith leg of the signalized intersection of Coburg Industetal Way in 2012. Because base ycar TMME/2 modeling did not include these realignment scenarios, turning movenent traffe yolumes that were collected and inctuded in the vear 2010/2011 traffle analysis by CH2M Hill for the Update th the Transportation System Ilan were used in combination with the forecast year 2035 EMME/2 model runs provided by LCOG to calculate a linear average annual growth rate that was applied seasonally adjusted year 2015 furning soovement raffic polumes collected by Branch Engtneering in Tebruary 2015 at cach intersection for aach furne year 2035 analysis scenario. Calculated growth rates at each approach turning inovement differed by each land use and transportation alternative. Since the intersection of Roberts Road was relocated of the south leg of Industrial Way ar E, Pearl Streer after the 2010 traffic counts collected with the CH2M Hill analysis, the Roberts Road and existing yeur 2010 south leg approaeh furning mavement traffic volumes were consolldated in base year scenarios to calculate growth.
Due to the number of strect intersections and the distante berween iatersections analyzed along the sublect through fase corridon, balancing was maly peformed between the intersections of W. Van Duyn Street at Willamette Street and W. Van Duya Street at N. Coburg Road. 'There is a street comnection on W, Van Dupa Street betweun these intorsections (Warer Streef) that could provide an additional by-pass commection to Willamette Strect nouth of \mathbf{k}. Van Duyn Street at Bruce Way, At least two of the EwMe/2 model scenarios showed traffic increases an these two links for future volume forecasts that appeared to be a result of surpassing a prodeternined unodel threshold rraffic volune ar the intersection of Wi Van Duyn street and

Wtllamerte Street, Uotization of this route would increase travel time and distance on the through fare of the street network and would introduce at least one additional stop on the route, therefors, traffic volumes were balanted between the intersections of W. Van Druyn Street at WMamette Street and W: Van Duyn Street/Cubury Road at N. Coburg Road/Coburg Bottom Loop Road to provide a conservative analyss.

The LCOG provided EMME/2 model rum scenario sereen shots, a summary of the CH2M Hill seasonaily adjusted taming movement raffic volumes and the calculated and applied AAGRs that were applied to year 2015 waflit sounts collected by Branch Engineering are provided as Attachacnt C. Figure 3a - 3d on pages 9-12 show the projected foture design hour traffic conditions assoclated with edele of the land use and transpertation alternatives..

Traffic Analysis

Studied aualysis corridor intersections were evaluated to determine average calculated delay, Level of Serwice (LOS) based on average delay, and volume-to-capacity ratio, Calculations for the signalized and unsignalized intersections were performed based on the Highway Capacity Analysis (HCM) methodology with the computer program SYNCHRO 7 $7^{\text {© }}$ by Traffic wave.

Level of service, based on vehicle delay, is classified by a letter scole from 'A to ' F ', LOS ' A ' represents opomum operating conditions and minimal delay. LOS 'F' indicates over tapacity conditions causing unacceptable deliy. The City of Coburg refers to Lane County roadway performance standards on roadways owned by Lane County, such as those on the analysis corridar hercin. Based on the current (2004) Lane County Transportation System Plan and the Lanc Cannty Code (LC); Chapter 15.896 , LOS 'D' is considered the minimum acesptable level of service standard for stop controlled approaches at unsignalized intersections and for oyerall level of service at simnalized intersections on Lanc County owned facilitles located inside the UGE and within the MPO area.

terte	Tiry -	"Mraum me
\star	Sminco	cils
,		
\%		(x)
5		Sesal mise

In addition to the L,OS standard previously described, the 2004 Lane County Transportation System Plan and LC 15.696 , alsu specify that the minmum standard V/C ratio of 0.85 shall be maintained at approaches that are not stopped at unsignalized intersections and road approaches with two-way stop controls (TWSC) for county facilities located inside the UGB and within the MPO arce. For two-way seop controlled intersections, approaches that are required to stop have a standard V/C ratio of 0.95 . Volume-to-capacity ratio (V/C) is a measure of congestion caleulated by dividing the number of vehicles utilizing a transportation facllty by the calculated capacity of the facility. A copy of Lanc County's roadway performance standards. is Included as Attachment D.
To provide an analysis compatible with the HCM mettondulagy to evaluate the entersection of W. Van Duỵn street at Willamette Street, the intersection had to be reconfigured in SYNCHLCO and SimTraffic Analysis software, with the edsting eastbound W. Van Duyn Street approach modeled as the southbound approach and with the existing southbound N. Willamette Street approach monded as the eastboud approach, since the existing intersection controls feature it right-turn permitted without stopping condition from eastbourd to southbound is the field.

The eastbound inght-turn movement provides the primary arterialaterial through fare traffic volume twaveling through town from the W. Van Dray Streer intersection ar N. Coburg Road to the E. Pearl Street intersection on Willamette Street.

Table 2 below shows the results of the performance analysis, including calculated delays. SYNCHRO output files with inputs and caltulations are provided as Attachment E. The W. Van Duyn Street at Wllamette Street intersection operational performance shown below has beca corrected to represent actual intersecton geomerry.

	$30^{\prime \prime \prime} \text { High }$	StFie	peratio	al Per	是	
$1802^{2} /$ W. Van Duyn at N. Willamette (westbound)	Delay (Sec)	13.3	20.6	18,1	20.4	13.7
	Level of Service (LOS)	LOSB	LOS C	LOS C	LOS ${ }^{\circ}$	LOS B
	volume to Capacity (v / C)	0.04	0.05	0.44	0.56	0.08
$1804 /$ Pearl at Wijlamette	Delay	9.9	8.8	8.9	9.1	8.8
	Level of Service (LOS)	LOS A	LOSA	cosa	LOSA	LOSA
	Volumae to Capacity (v/c)	0.48	0.57	0.58	0,97	0.57
1806/ Pearl at Industrial	Delay	23.0	32.0	22.8	22.6	32.4
	Level of Service (LOS)	Los C	LOSC	LOSC	LOS C	$\operatorname{LOS} C$
	Volume to Capacity (v / c)	0.47	0.65	0.50	0.49	0.66
1826/W: Van Duyn at N. Coburg (sourhbound)	Delay	18.9	20.6	32.e	163.6	27.9
	$\begin{aligned} & \text { level of } \\ & \text { Service (LOS) } \end{aligned}$	LOS C	$\operatorname{Los} \mathrm{C}$	LOS D	Los F	LOED
	volume to Capacity (v/c)	0.37	0.29	0,48	>1.00	0.53

 the righ-urn witnoutswogng condition that is cursently utilized from W. Van Duyn anto N. Willamette street.

As shown above, the preferred land use and transportation scenarlo assoctated with LCOG's skenario 95120 with the new wollector strect tonnection between Coburg Industrial Way and Coburg Road northwest of the intersection at Stallings Street (west of N. Coborg Road/Bottom Loop ar Coburg Road/w, Vari Duyn Street) for the plaming horizon year 2035 condtions is the only scenario with all calculated levels of service above LOS D. Generally all of the scenamos are
considened acecptabie with LOS and V/C withen the county's performance standard except scenario 97120 , which dues not Include the new srreet comection described previously,

Vehicle Cueulng

Although there is nor a tangible periormance standard for vehicie queuing om approath lanes, excessive vehicle queue lengths on interscetion approach laties can be an indication of congested conditions. There are typically two vehide quele Iengths analyzed for intersections. The $50^{\text {th }}$ percentile (average) queue length is the maxinum back of craeue lengit ealculated with an average number of arrivals during the analyss period. The average queue is the queue Itogth that would be expected ar a miven approach lane at any time duzing the analysis period. The $95^{\prime \prime}$ percentile queue is the queue length that has only a five percent probability of being exceeded during the analysis period and is not necessarily representative of complete design hour traffic conditions.

To analyze vehicle queuing, SimTralfic 7e by Trafficware was मffized to calculate vehcie queue lengths. SimTraffic utilizes raudam number seeding to generate approaching traffec volume and peak bonir factor application scenarios and simulate resulting traffic conditions. five runs were simulated ar each intersection for each scemario with the queue lengus calculated from the average of the five ruins, as directed by the analysis procedures mamual, It should be ooted that the random number seeding may not pradute dentical results cach time five runs are averaged. Calculated queue lengths vary on scparate five run averages and depend on the seeding. The following tables summarize the projucted intersaction quening aquaded up to the nearest 25 foot increment where appropriate from SimTraffic Reports. SimTraffic Output files dncumenting vehicle qucue lengtk caleulations are included as Actadment E. The following Tuble shows the calenlated velable queue lengths for each of the analysis scenarios.

Neider melerserang ＝						280 s）empin पह12I		210）का वantu 18148			
					an 20			Yeustas	4093采	Sunere	W8．730
［R0．24］ Tiv，Van Duyn al S．Willamete	EBLTT5	2 a	25	25	50	50	25.	25	50	50	75
	WHiTRE	25	25	25	50	50	100？	78	173	50	100
	NBETR	25	25	50	125	50	125	$2 \overline{2}$	25	50	I25
	SPLIIS	25	25	25	30	25	73	25	75	25	75
1804／7earl at Willamette	EBLTR	25	25	25	25.	35	25.	25	2.5	35	2.5
	WHLL	5π	125	50	150	30	107］	50	100	50	100
	Whar	25	7.5	25	75	59	75	5	100	50	73
	Nbilt	100	150	125.	275	150	275	150	3 3（2）	150	$2{ }^{2}$
	3 BL	50	125	5 L	100）	100	2007	100.	175	100	269
	SRTR	50	100	75	150	1001	225	75	175	100	275
1806／ Pearl at Industrial	EBL	25.	50	50	100	50	700	50	100	50	（10）
	EBT	50	125	75	125	75	125	75	150	73	125
	EBIK	75	150	75	125	75	125	75	I少号	75.	12.5
	W／BL	（10）	150	100	200	125	S60	100	200	125	200
	WHT	30	125	75	17.5	125	225	123	边5	125	225
	WITTR	25	75	75	150	75	150	75	150	75	150
	MBI．	50	75	25	25	50	100	25	25	50	160
	NBITR	75	$1{ }^{2} 5$	150	250	100	2007	100	175	100	2000
	5BL	75	125	100	150	75	125	75	125	75	125
	SETR	50	125	30	125	50	100	50	100	50	100
	EBETP	50	7．	30	75	50	190	125	275	30	100
	Whis ${ }^{\text {a }}$	25	50	25	25	25	35	25	5	25	25
	NBLIR	25	50	25	50	25	50	25	30	3.5	50
	SBITE	25	25	25	25	25	25	25	30	25	25

 atopping condiưu that is corrently utized from W．Van Duyn onto N，Willamette Street For the guenuge stmulation resuits reporten above，the west leg is W．Wan Drifa Road and the north leg is N．Willamette Street．

New Collector Street Connection

As described above，the potential new street comection would shift some through fare traffic between the interstate and origins／destinations north of Coburg to an altemate route currently north of town，preferable truck traftic that currently utilizes W，Van Duyn，willamette，and E． Pearl Strects．The new collector street connection would provide relief from truck traffic in the downtown arta and would provide a more direct routc to／from the interstate with a straight alignment and higles potential speed zone that could work to reduce travel time，system wide delays，and time spent stopped．The new street cioonnecton could also provide a grid systern with potental street connections made to existing City of Coburg residential streets located north of E，Pearl Street between Wllamette Street to the west and Coburg Industrial Way tor the east．A grid system would benefft the Coburg residents by providing congestion relicf and additional secondary benefits，such as emergency response time improvements．

Safety Analysis

Titersection and segment exash data was requested and rccoived from the Oregon Department of Transportation for the nost recent three years of available complefe asta, which was the period from January 1, 2009 thruagh December 31, 2013. The aveilible crash data did not identify any discernable crash patterns within the analysis contdor. All of the studied intersections had three or fewer crashes, whith was not considered abnomal. Intersection and segment erash data is included as Attachment G.

The forceast future condibions show uicreases in approach traffic votumes and a steady flow of vehicular traffic from the northwest through downtown to the Interstate and from the incerstate through Cuburg to the northwest. Steady vehtcular traffic flows do not support pedestian activities in downtowa areas, since the number and duradon af gaps in the traffic stream that are necessary for safe podestrian crossighs of E. Pearl and willamette Streets are reduced with increased traffic volumes. An east-west ectlector street connection that by-passes downturn would tomprove pedestrian safety by reducing through town traffe volumes and creating roore froquent and longer gaps in the traffic stream to facilitate pedestrian crossings. The new east-west collector street conmection would alsu improve pedestraa safety by relocating truck traffic out of the downtown business area.

Although there were zero crashes reported at the intersection of W. Van Duyn Srreet at Willamerte Street, during traffic volume data collection at the intersection, large delivery vehicles turning from Willamette Streef northbound anto W. Van Duyn Strect westbound and from W. Van Duyn Street eastbound onto Willamette Street southbound were observed to overlap oncoming traffje lanes to execute left und right turning maneuvers to avold uff-tracking rear triviler ades from overlapping into unpaved shoulder arcas. To evaluate the truck turning conditions, AutoTurn s^{e} and hutoCad were udized to shmulat taming maneuvers. Figure 4 on the following page show the results of the moming simulations at W, Van Duyn Sireet at Willamette Street and ar E. Pcarl Strect and Willamette Street.

As shown in Figure 4, the larger delivery vehcles surgele to execute certain vehicle marieuvers within the paving and lane suripiag at the intersections discussed proviunsly. The count data revealed that muck percentages were between 2 and 5 pcrcunt at these approach movements. Althoogh there was no history of crashes roported during the available 5 vears of crash data, the increase in traffic with grouth could create uffavorable future conditions. Unfavorable fiture conditions assochated with the large velicle turnmg manewvers at these intersccions rowuld iriclude exctssive delays resulting in lengthened vehicle queves and degraded levcls of service resulting from drivers awaiting a needed gap in onurning traffic to aver steer right or Ieft-tum mameavers, or drivers taking umnecessary risks by taking a shortened gap to execure q mom waing for a gap in rafitic to over steer right or laft-furn maneuvers.

Conclusion

In summary, a new collector strex conmection would provide relief to forecasted conditions on the reraway newwerk in the downtown area of Colourg by providing a secondary through fare for trucks and other commute velicle traffic traveling through the City of Coburg to orggin/destnaton pairs that includes accessibility to toe interstate hightiby system and areas surrounding the City of Coburg The new colloctor strect would allerw separation of trucks from the downtown area, resulting in improved sufety for all modes of transpartation. With forecasted growth the new collector street comnection would provide a system wide improvernent by providing the framework for a grid system to je developed on existing sireets narth of E. Puarl Street, specfically between Willamette Sreet and Coburg Iradustrial Way, rusulting in improyed north and south street comectivity and an addftional Ievel of redundancy to emerguncy velucle access, as well as improving secondary access for residuces an uxisting streets.

ATTACHMENT A
 RAW TRAFFIC COUNTS

File Name ；Coburg Rd at Bottom Loop
Site Code ： 1826
Start Date：2／3／2015
Page No ： 1
Groups Printad－PASSENGER VEHICLES－TRUCKS－EICYCLES

Slayt $7 / \mathrm{mic}$	Groups Printed－PASSENGER VEHICLES－TRUCKS－EICYCLES																				nit Teas
	N COBURG ROAD BOUTHSOLUND					WYAN DUYT WESTBOUND					COBURG BOTTOM LOOF NORTHEOUND					COBURG ROAD EASTBOUND					
	Left	Thru	Reigai	Peda	4 tax 退4	Lat	Thris	Regat	Pada	in tras ：	Lsft	Thn！	Ripht	Pads	dontal	Lefl	Tinil	Fugh	Pads	Aaprom	
Factor	180	10	1.0	1.01		\％ 0	10，	1．	10		1．01	1.0	10	1 1，		1.1	1.0	TD	1.0		
02：30 FM	9	Q	0	0	9	4	28	42	D	74	0	0	4	0	4	1	30	D	0	311	112
02：45 PM	35	0	2	0	37	4	30	49	\dagger	84.	\square	\square	2	0	2	2	43	1	0	46	169
Total	44	0	2	6	46	8	58	91	7	1581	（2）	σ	5	0	6	3	73.	1	\square	77	287
03：00 PM	36	0	D	0	36	10	29	35	2	76	0	0	4	\square	4	3	54.	1	D	$5{ }^{5}$	174
0S：15 PM	估	0	1	0	16	6	4D	17	0	63	2	0	5	0	7	1	29	0	0	30	14f1
03：30 PM	23	0	6	D	27	7	54	24	0	95	0	0	\％	0	6	1	22	0	0	25	141
03：45 PM	12	0	1	1	14.	4	40	22	0	65	f	1	4	0	5	2	22	0	7	25	110
Total	86	D	6	\dagger	93	27	164	98	2	200	2	1	19	0	22	7	127	1	1	1361	541
04：0］PM	20	1	1	0	22	3	46	20	\square	69	0	0	4	0	4	2	27	1	0	30	125
D4：15 PM	13	0	0	0	13	9	34	23	1	67	1	1	5	B	7	0	31	D	0	31	118
（4330 PM	12	0	0	0	12	7	39	24	0	70	0	d	4	0	4	1	25	1	0	27	113
04.45 PM	16	1	1	0	18	q．	5b	14	0	79	0	d	6．	0.	6	0	25	0	0	25	128
Total	51	2	2	0	65	28	175	E1	T	295	1	1	19	D	211	3	108	2	D	113	4EA
05.00 PM	11	1	0	［1）	12	3	56	21	17	80	6	1	3	0	4.	0	27	3	0	29	125
0515 FM	15	0	0	0	15	13	49	29	0	90	\square	0	1	2	3	व	29	1	0	30	13
$05 ; 30 \mathrm{FM}$ ，	18	D	1	0	19	6	44	2,	0	75	1	0	2	0	3	1	22	0	0	23	120
05：45 PM	11	0	1	0	12	5	33	32.	0	B0	0	0	3	$\frac{2}{4}$	5	0	20.	0	0	20	87
Tabal	65	1	2	0	58	27	182	96	0	305	1	1	9	4	15°	1	98	3	θ	102	480
Grand Total	246	3	12	1	262	90	578	360	4	1098	4	3	58	4	64	14	406	7	1	428	1782
Approh \％	33，2	1.1	4.15	0.4		B． 7	55.7	35.3	0.4		6.2	4.7	82．8	6.2		3.1	94．9	1.7	［12		
Total \％	13.7	0.2	0.7	0.1	14.6	5	32.3	20.4	0，2	57．8	0.2	0.2	8	0.2	3,6	Q． 6	22.7	0， 4	0.1	23.9	
4ses－xite งнит＞，	243	3	12	1	259	90	574	360	4	1028	4	3	52	4	64	14	396	t	1	$413{ }^{\prime \prime}$	1768
Nwhenmi	98． 8	100	1DII	108	9B9	700	99.3	98.4	100	的年	100	100	100	700	100	100	37.5	100	106	97.	96.7
TRUCK5	3	g	0	D	3	0	4	6	0	10	0	0	D	\square	0	－	10	0	－	10	23
䧲 TPUCRS																					
BUCYGLES｜	0	0	D	（1）	D	0	0	0	0	0	0	0	0	0	01	0	0	D	0	0	0
\％archeles	0	0	0	0	D	0	0	D	0	19 ，	0	0	（1）	0	0	0	0	0	0	0	0

	N COBURG ROAD SOUTHBOUAD Thrui prone Fode：					W VAN DUYN WESTBOUND										COBURG RDAD EASTBOUND The mark Pade																								
Itart Tim																																								
Peak Hour Analysis From 02：30 PM to of：45 FM－Peaks 1 of 1 Peak Hour for Entira intersaciton Elegins at J2：45 PM																																								
02：45 PM	35.	a	2	0	37	4	30	$\Delta 3$	4	84.	d	0	2	0	2	2	43	1	0	46	168																			
03008 PM	38	0	0	1	96.	10	29	35	2	76	0	0	4	0	4	3	54	1	0	53	174																			
93：15 PM	45	0	1	0	16	－	40	17	0	6＊	2	0	，	D	7	1	28	0	D	30	115																			
03：30 RM	23	0	4	0	27	7	54	24	4	85	0	0		0	6	1.	22	0	0	23	141																			
Tosed toump	109	O	7	，	116	27	153	125	3	309	2	0	17	D	19	7	148	2	Q	157	EDO																			
\％Ampe Tolel	94	0	8	0		8.8	49.7	40.6	1		10.5	D	39.6	0		4.5	34.3	1,3	0																					
PHF	767	000	498	． 000	784	． 675	706	． 688	75	305	250	000	．708	000	67\％	583	．685	500	000	67	， 62																			

File Name ；Willamette at W．Van Duyn
Site Cade ： 1802
Start Date：2／5／2015
Page No ： 1
Groups prfitad－PASSENGER VEHIGLES－TRUGKS－BICYCLES

	WILLAMETTE SOUTHBOUND				W VAM DUYN WESTBOUND					WILLANAETTE NORTHBOUND					W VAN DUTYM EASTEOUND					
5 barctime	Leif	Tbru	Platt Pods	nom	Lsit	Thry	Tribtid	Psods	4 p 102	Leff	Thin	Righa	Pada		L6it	1 Thiru	Piatal	Peds！	4mame	Mutal
Factor	1.0	1.0	10.10		10	1.0	1.01	10		1.0	1.1	1，9	4.0		1.0	1.0	1.0	1.0		
0300 PM	D	0	02	2	1	0	0	2	3	75	2	0	［	77	0	1	109	0	110	192
03.15 PM	0	0	10	1	1	1	0	I	2	70	．	D	0	72	－	0	51	0	51	128
193：30 PB	0	吕	d D	0	，	0	0	\％	0	76	0	，	0	76	O	d	55	0	55	131
0 ST 45 PM	0		Q 0	1.	T 1	0	0	1	2	88	2	1	1	92	0	0.	嗗	0	56	161
Total	0	1	12	4	－	1	0	3		309	6	4	7	3.77	0	，	281	0	282	610
0400 PM	，	0	，	0	0	，	0	0	1	80	1	0	0	91	，	1	B0］	0	62	144
04：15．PM	0	0	10	1	6	0	0	1	7	85	\mathfrak{Q}	4	1	87	0	0	54	D	54	145
04：30 PM	0	0	0 0	0	3	0	0	（V）	3	B	0	1	0	31	0	0	88	0	88	152
04：45 PM	0	0	0． 0	D	0		0	0	，	83	市	\square	1	E4	0	0	52	0	52	136.
Total	0	0	10	1	3	1	0	1	5	328	I	2	2	333	1	1	294	0	2381	575
DS．00 PWA1	0	D	1	0	，	1.	0	1	2	73	9	1	t	55	a	0	31	a	at	12S
05.15 PM	4	1	$0 \quad 0$	7	D	1	0	0	1	55	9	1	0	69	0	0	51	直	51	122
05：30 PM	0	\pm	0 0	1	\dagger	，	0	日	2	71	0	2	，	73	0	1	31	，	32.	108
05.85 Cm	0	0	D－ 0	0	0	D	，	1	1	60	1	1	1	63	0	0	35.	1	38．	100
Total	1	2	0 －	2	9	3	Q	2	6	289	4.	5	2	260］	0	，	148	1	150	438
Grand Tolar	0	3	22	7	7	5	0	6	481	906	11	8		930	，	3	603	1	668	1623
Apprch \％	0	42.5	28.8 206		388	27.8	，	33.5		67．4	1.2	0.8	0.5		01	0.4	99， 3	0.1		
Tokel	0	0.2	0.10 .1	0.4	0.4	03	0	0.4	1.1	56.1	0.7	0.5	0.3	57.5	0.3	0.2	40.8	Q， 2	41.2	
लिलवस formatis	0	3	22	7	7	5	0	B	18	892	11	e	5	918.	1	3	545］	1	651	1592
Tansomea	0	100	100.100	100	100	1010	0	100	100	985	100	100	600	貁． 5	100	＇00	37.4	100	37.5	96.1
TRIEKSA	0	0	D 0	0	D	［	0	0	0	Ha	0	0	0	13	0	0	14	\bigcirc	14	27
\％TRUCKS																				
	0	a	0 0	0	0	0	a	0	0	01	$\frac{1}{0}$	0	0	Q1	$\frac{9}{1}$	${ }_{0}^{0}$	0.5	9	0.3	0.2

File Name ：willamette at pear
Site Code： 1804
Slart Date：2／5／2015
Page No ： 1
Groups Printed－PASSENGER VEHICLES－TRUCKS－BICYCLES

	WILLAMETTE SOUTHEOUND					PEARL WESTBOUND					WILLAMETTE NORTHBOUNE					PEARL EASTROUND					Im Tol
Stan Time	Left	Thu，	Rught	Pade｜	taver	Left	Thia	Flipl	Eeda	ambed	Latt	Thu	1 rikht．	Pedas	－	Left	Thins			taricu	
Factor	1.0	10	T．0	100		10	70	1.0	1.0		101	11.0	10	1，0		7 I	10				
0300 FM	29	78	1	\downarrow	108	21	3	29	0	53	1	54	12	σ	67	0	0	0	0	0	323
（ $6,15 \mathrm{Fb}$	24	36	－	0	80	14	1	29	1	45	a	44	15	1	60	0	0	\square	D	0	195
08330 PM	21	45	1	0	67	18	－	24	0	42	0	61	23	0	84	0	3	d	0	0	793
03：45 PM，	18	35	2	D	56	31	0	43.	0	74	1	61.	29	0	91	0	0	\square	0	0	221
Total	93	180	，	D	2881	84	4	125	1	214	2	220	79	$\stackrel{1}{4}$	abl	0	¢	，	0	，	8 g 2
O4，00 PM	31	33.	0	0	64	23	0	30	a	53	，	53	30	（1）	83	0	\square	，	，	0	200
（14．15 PM	23	3	0	0	59	15	1	33	1	53	0	B4	17	0	日	［	0	区	0	0	193
Q4：30－PM	85	44	1	0	60	29	0	3	2	61	，	54	18	0	71	0	0	0	0	0	219
04．45．PM	21	$3{ }^{3}$	2	a	$6_{62}{ }^{1}$	29	D	47	0	75	0	60	20	0	89	\square	0	0	0	0	217
Total	110	152	3	0	265	98	1	140	3	242	0	2S	85	－	316	0	0	0	0	0	B23
OFSOIPM	27	24	0	0	45	27	1	40	0	68	0	54	17	1	69	0	0	0	1	1	789
05：16 PM	36	39	0	1	75	21	0	35	\square	56	\square	55	14	0	69	0	a	1	0	1	201
05：30 PM	12	27	1	0	49	20	0	26		46	D	54.	13	0	70	0	0	0	，	7	157
05.45 Fm	8	27	0	0	35	9	3	28	0	38	D	55.	13	0	681	，	0	0	0	0	141
Total	77	117	1	0	195	π	＂	129	0	200		217	57	，	2781	0	［	1	\％	3	限运
Giand Total	280	d59	1	0	$7{ }^{\text {P }}$	259	7	394	4	664	3	668	221	2	89.4	0	D	38	2	9	2307
Apprch \％	37.5	61.4	1.1	0		35	1.1	59.3	0.6		03	74.7	24.7	0.2		0	D	33.8	86.7		
Tptel 名	12.1	12.8	0.5	0	323	11．2	0.3	17．t	0.2	20.6	0.1	29	9，6	0.1	18，8	0	0	0	0.1	0.1	
Nombel Tarce	258	450	8	4	717	䢒象	7	391	4	Se2	9	854	209	2	8 GT	0	0	1	2	3	2229
人）	92．5	98.3	100	D	昭， 1	96，5	100	367	190	96． 7	100	67．0	34.1	105	97	0	0	100	100	100	恠 6
TRUCKS等TRUCKS	स	8	6	0	29	9				22	σ			0	27	0	0	0	0	D	78
MCYGLES	0	12	\square	0	a	0	0	0	D	0	0		0	0	${ }^{0}$	0	1	0	0	0	0
＊Gicyeles	0	0	d	0	\square	0	0	0	D	ก	0	1	0	0	0	0	1	D	0	0	0

		WILLAMETTE SOUTHEOUND				PEARL WESTBOUND					WILLANETTE NGRTHEOUND					PEARL EASTBOUND					nutooll
Stiart Time	Leff	Thas	Faght	Freas	nesu）	Lė	Thns	Ripht	Pead	Ant［ow	Leat	Thru	Flight	Fsael	OrTal	Left	Tbus	Fates	Padis	Us．Tos	
Psak Hour A	nalysi	From	03：0	Mt to	445	PM－	eak	af 4													
Peak Hour fi	or Erti	回 Int白	－iscictic	Beg	at 0	3；45 P															
03／45 Ph	19	35	2	0	561	［ 31	D	43	D	74	1	61	29	0	97	0	0	0	0	0	221
Qdiod PM	31	33	0	V	84	24	D	30	6	53	0	53	30	I	85	0	B	0	TI	0	200
（14．15 PM	23	36	0	II	59	18	1	33	1	58	0	64	17	I	81	0	0	0	D	0	193
O4 32 FPM	35.	48	1	0	60	29	0	30	2	61	0	54	18	d	72	0	0	0	D	0.	213
Total spolume	108	148	3	0	259	101	7	136	3	241	1	232	发4	0	327	I	0	0	D	D	827
\％A Am．Told	4.7	57.1	1，2	0		41．${ }^{\text {d }}$	0.4	56.4	1，2		0.3	70.8	28.7	0		0	0	6	0		
PHF	L．711	d41	． 375	000	808	815	250	． 791	375	814	． 250	906	798	000	． 888	000	000	C001	000	000	939

	ingeustrial SOUTHBOUNO					PEARL WESTBOUND					INDUSTRIAL NDRTHBOUND					PEARE EASTBOUND					
Start Time	Left	Thul	Piby	Pats		Left	Thiu	Flaht.	Peris]	manel	Leff!	Thns	Hidat	Pedts		Lent	That		Peus		ctiser
Peak Hour for Entire intersection Begins at 03:30 PM																					
CS:30 PM	33	5	11	D	53	32	40	4	2	90	10.	2	40	0	$52^{\frac{1}{4}}$	4	87	9	0	70	$2{ }^{2} 5$
03:45 P6	0	8	25)	113	3. 3	37	5	0	75	7	J	34	a	42	7	48	12	0	51	291
04000 PM	47	1	23	0	76	25	41	7	2	75	7	0	32	1	40	1	39	12	0	50	241
04:15. PM	23	0	4	0	27	38	38.	1	0	17	9	1	30	0	40	2	47	12.	2	6	207
Tratyatere	186	20.	63	0	268	134	162	17	4	317	38	4	138	1	17.4	a	191	43	2	244	1004
(\%AApan Toial	63.7	74	33.4	a		42.3	51.1	5.4	1.3		19	23	7 B .2	0.5		9.3	78.3	17.5	B.a		
PHF	. 581	,825	,630	DDO	5 595	, 颠	P边	00.7	500	861	P25	500	. 850	250	337	S00	B38.		250	871]	$6{ }^{63}$

ATTACHMENT B SEASONAL ADJUSTMENT

ATTACHMENT C

EMME/2 MODEL SCREEN SHOTS AND GROWTH RATE CALCULATIONS

Aremerted Lu W／V／0 Coilector 1		Mayament	Eaterng	21 Boitar	Lomp			TWT゙\＃	$3 \mathrm{E2E}$			
Stanario	SBI：	SET	SEA	WEL	WET	wap	FABL	NBT	NER	EBL	EBT	EER
CH2M	60	1	4	3 E	223	48	1	1	18	3	141	D
Count 3015	79	1	8	22	2 Dz	93	z	1	21	7	113	1
9612t 2033	54	D	g	5	541	104	0	0	2	10	298	D
25 YiR Gravith	－7．75\％	－100．00\％	92．3840	－60．25\％	742，1625	16．48\％	－106n0\％	－100．00\％	－	20.30 m	110．87\％	5.006
मAG月	－0，15\％	－190	\＄．70\％	－3．45\％	S．69\％	0.56%	\＄0．07\％	－4，00\％	$-3,55 \%$	0．82\％	4．43\％	900E
$z 0 \mathrm{yr}$ Growith Factor	097	10，20	1.74	0.31	2.44	113	020	$0.2 x$	0.99	1.16	$2 ; 89$	100
2035 Voluhtes	77	$\mathfrak{\sim}$	14	7	439	0.05		D	6	8	212	
Preferyed Lu Wha Collecion 1		Movalment	W，Van	Duym	làmeré			3WTH	1802			
Scanario	5 BL	SBT	58 B	WE1	WET	3 H 目	NBL	NBT	NBR	EBL	EBT	EBk
ChHZM 2019	V	2	1	1	0	0	345	4	8	0	0	213
Courit 2015	0	I	1	2	2	0	359	5	1	1	1	258
96120 2035	7	91	－	4	156	11	356	109	\square	3	45	328
25 H／Grcwith	70，00\％	4278．79\％	－100009	2845	400\％	0．00\％	6 6，${ }^{5}$	3496．769\％	－100000\％	0.008%	0.000%	$53.9 \mathrm{~B}^{2} 4$
AAGR	0.00095	17.254	4．00\％	11.40%	0.00%	0.0048	0.2498	99．948E	-4005	0.0091	0.005	216\％
20 ys Growiv Fatior	1.00	35.27	Q20	3.28	1.90	1.50	7.05	20829	0,20	1.00	1 ± 0	1.43
2035 volumes	0	35	Q	7	2	0	370	126	D	1	3	369
Praterrer Le w／a Collactor 3		Morement	Eear	lackumar	ette			INT \＃	1804			
5canario	5 BL	SBT	SBR	WEL	WET	WEE	NBL	NET	NBR	E6L	EET	EER
CH2M 2011	118	155	2	136	1	$1{ }^{165}$	2	228	62	0	1	z
Count 2005	107	158	3	92	1	142	1	2.46	189	0	0	0
96120 2035	125	349	d	300	0	144	0	5501	72	0	0	12
25 YR．Growth	57．02\％	120.1250	－100．00\％		－100．009\％	－23， 34%	－190，08\％	141．037\％	15485	0．009\％	$=10100 \mathrm{OK}$	100.019
SAEA	228\％	4.80%	4, ஏ0\%	－1069\％	$-4,0 \mathrm{E} \%$	094%	-1.00%	5574	0，6285	0.00%	-4.00%	ADrom
30 yr Growh Factor．	$1,46$	196	0.20	0.79	0.20	0.61	0.20	$2,1: 1$	1.12	1.00	0.20	$4,20$
2035 Volumes	156	329	1	76	0	115	\square	525	123	0	8	［1］
Preterrad Luw／a Cailectar j		Mavement		ri at ）Selcio				INT \＃	jern			
Sanatio	5 EL	SBT	38 R	WMai	SVEET	WHEF	NBL	NET	NBR	Eal	ERT	EER
CH2N 2019	398	18	149	g3	195	32	31	0	75	10	229	29
Count 2015	299	24	72	134	$1{ }^{3}$	24	36	b	142	8	199	45
45122 2035	468	15	483	104	381	125	10	15	240	89	2 za	6
25×1 Gmpwih	175055	－19．085	23，16\％	25．114\％	95．73\％	483．27\％	-100.010%	［1509\％	220．79\％	756518	14， 61 尔	－100，010\％
AAGR	0．70\％	0.000%	0．93te	1．00\％	3．89\％	17．73\％	-4.00%	U00\％	8，83\％	90，26\％	0．58\％	－4．10\％
$304 t$ Growith Factor	1.14	$0.8 \text { 路 }$	1， 16	9.70	1.77	4.55	0.30	IDE	7.77	7105	1.22	928
2 c ［5S Voluines	238.	21	85	361	323	108	7	古	393	56	222	3

	1		Mavement	Doburp	gal Holtem	Lapp			1边T	1226			
Scaitario		SBL	3日T	58 F	WEL	WWT	Wer	Nai	NET	Nas	EEL，	EST	ERR
CHZM	2011	60	1	4	36	323	80	1	1	18	8	141	0
Eount	2045	79	1	3	33	205	93	2	1	21	7	711	1
98120	2095	I12	1	－ 2	$\stackrel{4}{4}$	365	723	a）	0	2	0	235	iI
z9 W6Groution		85．844\％	－3．750\％	－100，008\％	28980	57.3896	168．78\％	－100 cian	－100．00\％	－286，68\％	xphtiearc	81.26%	里场品
AAgR		3．439	-0.15%	－4．00\％	－ 565%	250%	4，19\％	－4．00］	－4．pant	－3，55\％	－4．07\％	3.27%	0，00\％
CWy Grownh factor		1.89	0.97	0.20	0.29	1，51	1.84	0.20	0.20	029	0.20	1．855	100
2035 volumes		133	1	2	7	306	171	0	\square	6	1	187	1
Alcernate tid suth Corlientior Scanario 542 l		Mavement W．Van Durnat Whilamette						INTH		1802			
		SBL	SBT	58 B	WVIL	NBET	W日年	NBL	NBT	NBH	EBL	EAT	E日R
5 H 2 M	3011	4	7	1	1	0	－	345	2	1	0	0	243
לount	2015	0	1	1	2	2	a	353	6	1	1	1	258
98720	2035	9	D	0	0	25	4	468	Q	D	V	29	\＄725
		0,0049	－100．00\％	－10DICD	－100．00\％	tidu\％	$0.00 \% \%$	35．96\％	－100．019\％	200．079	71．00\％		53．04x ${ }^{\text {a }}$
AAGR		0.00%	－ 40 ［0\％	4．00\％	4．00\％	0，0096	0.008%	1.43%	-406%	－4．000\％	0.00%	D, पn \%	2．12\％
20 ve Erowth Factor		1.00	9.20	0.20	0.20	1.00	1．EAI	189	0．20	0.20	$1: 0 \times 1$	1.00	$1,42$
2035 Volumes		0	0	0	D	2	a	454	1	a）	1	1	367
Alternate L0 writh Collector－		Movement Pearlat Whilla					INTH			1884			
		SBL	58T	$5{ }^{\text {cha }}$	Wers	WET	WER	NBL	Q日T	NBR．	E8L	EBT	E日f
EH21M	$2 \mathrm{LL1}$	118	155	2	135	1		2.	228	52	0	1	2
colinc	20.15	197	358	3	57	1	142	1	246	109	0	0	0
58120	2035	92	335	0	117	0	43	0	925	74	0	0	D
25 YF\％rowit		－22，33\％	117.50%	－100．00\％	－14．1254	－190， 7×40	－55．87\％	－200．069\％	330，72\％	12，28\％	90003	－120．00\％	-100.00%
AAGR		－0．89\％	4．70\％	－4．00\％	－0， 6%	－4，00\％	2．23\％	－4，00\％	5．23\％	0.984	0．00\％	4，009\％	－4，009\％
20 yr Grounh Eactor		0.82	1.54	$02]$	0.89	0.20	$\text { D. } 55$	0.20	205	7.10	100	0.20	0.20
2035 Volumes		88	325	1	86	0	79	Q	$50 ⿴ 囗$	120	0		a
Aternate Li／whinh collector		MOYement Per			arl at｜nduastial				阯䓪	1s06			
		SBL	5BT	SeR	WGL	7／18T	308R	NBL	NET	NRR	EEL	EET	E日R
CH2M	2011	348	12	203	83	195	32	31	5	75	Wi）	239	29
Couint	2015	209	24	32	13.4	183	24	35	E	192	8	139	45
99120	$3 \sqrt{35}$	459	13	111	101	198	367	9	69	236	74	216	$\underline{1}$
25 7RGrawth		31.86%		－753096	21.50%	2.279	109337\％	－100．00\％	0.0005	21944%	660．27\％	-5.518	$-20[001 \%$
AAGR		1.17%	3．47\％	－1．019	0.86	0.0996	4157\％	－4，00\％	0.00%	8， 62%	26，41\％	-0.27%	-4.00%
20.90 Growth Factor		1.25	1.69	［180	1.17	1.02	9.31	0.20	1.06	272	$6,28$	$0,96$	$0 \geq 20$
2035 Valurnes		$2 \mathrm{S2}$	41	57	157	186	224	7	6	397	50	190	g

The volumes displayed below represent seasomally adjusted peak hour volumes for 2010 counts hicoburg．DR．Thesystem peak hour shown is for $3 ; 15-4 ; 15$ phi
CH2MHILL TOUNT DETA SUMMARY

Intersuction	Fastbound Approach			Southbound Appraach			Narthbound Appreadh			Westhound Approach		
	E8L	EBT	EEFP	8日L	SET	A日f	MEL	NIST	NBK	WELL	wat	mere
I Coburs Bottom Loop Road \＆W Wan Duyn 5 t．	8	141	0	60	1	4	1	1	18	35	229	$89)$
2 N Willamerte St \＆W Van duyn st	0	4	213	0	z	1	345	4	8	1	U	0
3 Willamette St \＆Pearl St	0	1	2	118	155	2	2	228	62	135	2	188
4 Pearl St \＆skinmer st	1	192	3	1	z	1	1	1	3	2	331	0
5 Puari St \＆Caleman St	1	194	3	4	D	1	z	5	3	5	331	4
6 Pearl St \＆\＄tuart Way	0	197	10	0	d	0	4	0	38	18	377	0
7 Peart St \＆Gabun industrial Way	10	208	23	348	18	149	16	9	30	45	185	32
8 Peartst d Roberts Rd	0	607	6.	0	Ω	0	15	0	45	38	272	2
9 Pearist \＆1－5 58 Ramps	－	116	597	3	0	68	0	\％	D	112	241	0
	媸	34	0	0	0	0	309	1	49	（1）	42	16
11 Whllametie St R Diapn St	1	2	2	7	295	1	1	291	9	7	1	4

Scenario 95120 - 2035, Preferred Scenario, PM Pk 1 br

Intersection 1802-Willamette and Van Duyn

Intersection 1804 - Willamette and Pearl

1614
.

4	70041	T6	岤		\ldots	The	Anctiver	seliel	Teres	Athetis	¢dat	Testat
'1806	1807	2511	57		,	now	354	0	A54	Q.is	396	0.00
1056	1007	*580	2			0.8.	20	t	200	0.50	0.31	0.00
1805	1907	80\% ${ }^{\text {a }}$	-105			9.00\|	191	6	401	0.55	46:	0.83
180s	2 m 11	7807	-g9		-	0.50	458)	48t	5.50	000	000
H0S	2 F 11	-	30		-	0.00	151	0	72	DVF	05	000
Ress	2 z 11	-0.4	A 4		,	0.008	35	1	3	850	D05	708
185	4 690	1007	2		-	大.06	215	0	25	505	Div	[52
1005	4 tag	25.51	83)		r	0.00	72	0	7	2.85	0.00	20.0
1806	4690	conel	-		\checkmark	0.02	0	8	7	5.2.	002	0.50
1206	coial	Went	16		=	0.00	25	\checkmark	458	2.09	270	2, EO
1806	60.1	2511	14.		1	0.009	5	0	37	30\%	253	Dit ${ }^{2}$
TEDS	soet	$4 \operatorname{Heg}$	-77		7	0.00	9	U	\square	DO\%	a. ${ }^{\text {a }}$	0.50

Intersection $1826-\mathrm{N}$. Coburg Rd and Coburg Rd.

4

Scenario 96120 - 2035, Preferred Land Use, No E-W Collector, PM Pk 1 hr

Intersection 1802 - Willamette and Van Duyn

Intersection 1804 - Willametie and Pearl

e

堆	Form	To	Ande Penfet	Tine	ALeVo	Aderyod		Tax ${ }^{\text {d }}$	Aitohts	Adstics	Tapth
1804	184	250,	-13	0.00	550		9)	550	1000	0.00	0.00
\% ${ }^{\text {mat }}$	1814	-6045	*	0,00	72		0	72	0.20	0.00	0.50
7804	25013	4814	13	0.00	343		0	343	000	0.08	0.00
1894	251]	6056	-7]	0.00	185		0	180	0.00	0.00	axi
1804	605	1214	- 5	O, 0.0	100		\square	1 LCO	J00	C.LDB	D.205
1804	6064	2409	70	200	144		5	(4)	200	0.00	DS0

Intersection 1806 Industrial Way and Pcatl

*

Interscetion $1826-$ N. Coburg Rd and Coburg Rd.

Scenario 97120 －2035，Alternate Land Use，No EW Collector，PM Pk 1 hr

Intersection 1802 －Willamette and Van Duyn

4

隹	from	To	Fnge feriz	Tree		aeritiol	Totral	2tectat	2cests	Tath
1802	2508	60591	－5	908	48	0	405	5.25	8.0	0 Sts
1802	2000	6070	7＊1	－ 030	0	$\frac{6}{7}$	0	000	2.78	200
1802	2508	607\％	20	O6\％	8	$1)$	0	$0 刃 0$	0.02	2.85
1807	E0crs	2000	Ef	－ 500	－12	0	415	200	50	9．00）
1802	5059	Cinco	$4)$	－ 0.65	23	0	23	0.00	950	038
1802	605	－108	－80	C6	D	U	5	D35	D．50	0.000
1812	Enfl	2 Fag	.111	－ 3 Na	5	0	5	3．09	0.00	Sta
38.02	6970	cica	2	0\％	241	0	2 47	0.00	2.00	000
1802	E0］	Eife	35	F98080	0	0	0	500	40^{2}	E，i，D
1800	6089	2sed	120	－300	σ	8	0	050	0 放	3.63
1002	0079	5059	52	830	0	9	0	050	0．70	D． 20
18 DR	E6FP	－10］	38	0 ES	0	12	D）	0.52	0.02	0.00

Intersection 1804 - Willamette and Pearl

H	Fram	To	Ande	Panfa	Thme	Ancyal	Adidivot	Totvol	Nuthes	Additia	Tathe
1894	1214	4 ExP	-13		200	50	0	550	D.00	408	[5 g
1804	1814	6005	9		0.00	71	0	71	0100	000	10y
1884	2509	1814	13		2.50	348	0	346	0.00	200	0.03
repa	2549	coter	-70		0.00	183	0	173	001	0000	0.00
trne	s0m	7抱奴	* 8		2.00	90	\square	98	0.00	0.00	0.00
1800	6nes	2509	71		0.00	177	1	17	0.00	0.00	0.00

Intersection 1806 Industrial Way and Pearl

\qquad

4	Fim？	7	F60	Feris	Tino	A $45^{\circ} \mathrm{i}$ 21	Serat	Terel	Aticixt	tectita	－tim
1806	1807	各刲	\％		2005	1\％	0	1 1 星	000	000	0.00
1806	1607	4650	－2		8 cm	$3 \mathrm{E}_{2}^{2}$	0	322	200	0.00	0×20
1896	1807	6081	． 205		0.00	103	\％	105	\＄05	060	000
1806	2511	1807	s		v． 2	411	i	411	0.00		000
1806	2511	4598	年		0.50	121	0	181	5.82	208	［09
1806	2511	6081	－ 2		000	15	π	15.	0.68	100	6.08
1806	4590	1827	2	－	200	253	θ	259	000	03	［103
1805	$4 \mathrm{4cos}$	2511	3）	－	200	\％	12	39	0.00	n5s	0.30
H206	4650	5081	5	，	50\％	！	$1)$	4	0.00	Acd	0020
1606	5081	1807	105	．	505	242	11	242	0.00	200	000
1806	6001	2511	\％		0.50	\％	0	15	3 y	2001	000
HENS	6087	＊650	－7\％		（0）	0	0	0	00	900	O． 80

Intersection $1826-\mathrm{N}$. Coburg Rd and Coburg Rd.

is	Fers:	Ts	Soge Fentirs	I-	Hisist		Tervel	Andohts.	Addths	Teltam
1826	1800	1801	10	$\bigcirc \triangle D$	2	π	0	0.05	900	3.55
1825	1800	1627	!	- \quad - 0 品	298	0	$2 \times \overline{4}$	0.90	20.8	50.5
1836	1809	6057	-19	002	30	0	10]	0.00	2.80	605
1826	1809	1800	$\times 13$	- 20,	0	3	0	O.C\%	0.92-	050
1426	T801	1827	78		2	0	2	0.00	200	90in
182\%	1801	旿57	-30		0	0	D)	[0]	139	İ
1826	1827	1800'	-3	903	541	0	541	000	D.09	0×10
1926	1827	1801	-79	- 000	5	0	5	500	208	2.32
1826	3827	6057	F-	Qut	$35!$	0	331	0.00	2.05	-28
H265	6057	1800	115	- 202	8	0	a	0.00	0 OH	0.008
1825	6057	1801	3		$!$	0	θ	Q00	2.00	200
7025	0057	1227	5	2. 35	12\%	II	156	0.00	0.0	13,

Scenario 98120－2035，Alternate Land Use，E－W Collector，PM Pk 1 hr

Intersection 1802 －Willamette and Van Duyn

4

${ }^{*}$	Frem	To	knot	Fertor	Tine	Nattion	Actildet	Torid	Atcts	34－45	Tre
1812	2518	6059	58		D．00］	$4{ }^{4}$		C 4 at	fore	n， 0 n	DR2．
1802	2508	5070	117		U0．	$\stackrel{3}{2}$		3 滣	\％20	20.10	200
1802	2508	60，	π		2 B	5		（1） 0	000	800	208
1802	6159	2 Lrag	88		2 C	73		） 328	0.00	TW	0．0．
1802	60，${ }^{\text {a }}$	6070	－7		70］	3		（2）2＊	095	0.00	NOD
	6059	6079	积		201	II		0 吅	200	200	P50
14.6	6970	2508	． 131		DS0	0		0 ＊	0.00	act	2.00
1802	6070	6059	0		A0，	综		1） 28	0.05	D60	0.00
1802	6070	8079	\geqslant		$0 \% 0$	2		0 O	0.00	00.00	700
1802	6079	2508	＋20		20	π		$0 \quad 0$	0.00	200	2 x
1802	6079	5059	S		408	0		$0 \quad 0$	0.00	300	0×8
1802	5079	6070	－68		006	0		$0 \quad 0$	0.00	308	5.00

Intersection 1804 －Willamette and Pearl

4

N	FIom	To	Anale	Peafa	The	Asatid	Adat ${ }^{\text {a }}$	Tertad	Nutolts	Adaltis	Tothes
1604	1814	2－09	－13		0.000	525	0	525	0.00	D．06	120］
1004	1914	606x	断		C．EEB	T	0	T1	0.00	D，称	0.5
1804	2004	1814	13		D． 00	379	0	338	9，00	6.00	0.00
1894	2509	6065	［7）		\％， 00	92	0	52	ath	0.00	10．00
1804	exes	1814	㗊		3.50	117	0	117	0.00	0.00	［090
1804	60¢5	2508	70		2． 29	85	0	93	0.00	9.00	0.00

Intersection 1806 Industrial Way and Pear?

\cdot
$=3$ \square

Intersection 1826 - N. Coburg Rd and Coburg Rd.

ATTACHMENT D
 LANE COUNTY PERFORMANCE STANDARDS

15.695 Specific Rond Improviments.

Putsuath to LC 15.696 thitough 15.697 bclow, the owner of land being developed may be required, as a condition of development approval, to make road improyements neeressitated by the development. The Dixactor shsil specify any required improvernents and these shall be in addition to other requirentents of this chapter, (Revteid by Oramarice No

15.696. Ruadway Performance Standartis.

Lane County uses the volume to capacity ratio (v/c) as the brosic peak hour perfonnance standand for evaluation of project need, plan amendments, and laud development proposals. Table 4 felow contains maximum v/e for County Roads, Achieviag or maintsining the v / e standard means the k/e is, or is prejected to be, numerically equal tor of less that, the applicable v/c in Table 4 below.
(1) In seddition to the v / c standards in Table 4, other analysis methods probluing a predicted level of service may be required as specitied in the Trafpe Impact Analysis Guidctincs of the Public Works Engineering Division The Higtway Capacity Manual publication sited in LM 15 AS0 provides nationally rccognized methods and procedures for estimnting level of servies and apacity for various types of transportation facilities. Where level of service andysis is required, the peak heut periformance standard is to achieve or msintain, and not exceed, LOS D. Not exceeding LOS Ds means "A," "B," "C," or "D." Frilure to meet the standard, or "exceadence" of the standard treans that the predicted level of service is "E" or "F," Where level of service antlysis is
reguired, both the v/e standard and the level of serviee standard must be achieved or maintsined.
(2) When analyzing Connty roakls within cities, Lane County standards shall apply, except that within uitian goowth boundaries, the applicable design standards, of the tespective city shall apply to County Roads fimctionally classified as Local Roads. In the alosence of city standards for such roads, the County's road design standards shall apply. Traffic study Requizements should be coordinsted with cities and ODOT when develapment proposals affect facilitics under the jurisdiction of these agencies.
(3) When analyzing signalized intersections, locations where signal warrants may be met, or intersections with all-way stop control (AWSC), the primary objective is bo maintain the performante of the overall intersection. The overall ftterscction v/e must meet the applicable standand. If level of service analysis is required, the level of service standard must also be met.
(4) At unsignalized intersections and road approaches with two-way stop controil (TWSC), the objective is to achieve or maniain the volume to capasity radios specified in Table 4 for the apposiches that are not stopped.
(5) Approaches at which traffic most stop, or otherwise yield the rigat of way, shall be oparated to maintain safe operation of the intersection and all its approeches and shall not excecd a v/c of 0.95 within urbun growth boundaries and a v/e of 0.80 outside of utban grawth boundafies.
(6) If noarby public or private roads, streets, on driveways ase predicted to exceed the suandards as a result of the proposal requiring a traffic impact analysis; mitigation measures shall be recommended. If nearby read, strect or driveway performane is predicted to exceed standards in order to maintain flow on the hoad ot streat where access is proposed, adequate space for vehicle queving (based on 95% probability) mast be maintamed on the nearby road, street oridiveway.
(7) At the intersection of a Caunty road and a state, highoway, stats highway standards must be achieved or maintained for the state highwey.

Roadway Category	Location/ Speed Limits				
	Inside Lrban Growth Bowndary			Outaide Trban Grawth Bunidary	
	Eugene- Springtield Metro Aren	Outside BugcacSpringficld Metro ares where speed Jimit 455 mph	Outside Bugcac- Springfield Metro area where speed 345 mph	Within Unincorporated Commurities	Gubside Lititicor porated Communited
Freeways and FapressMrays	0.80	n/a	5/a	D/a	n/a
	0.85	0.85	0.75	0.80	0.70

[^0]
ATTACHMENT E PERFORMANCE CALCULATIONS (SYNCHRO OUTPUT FILES)

Whorment	EEf	E®）	ERR	WBL	产碞	MF｜\％	VBL	同卧	NER	361	S車！	SBE
Lane Configurations		4			4			4			4	
Volume（vehoh）	5	0	5	5	0	5	5	345	5	5	245	5
Sign Control		Stop			Stop			Free			Free	
Grade		0\％			0\％			0\％			0\％	
Peak Hour Factor	0.50	0.50	0.50	0.50	D． 50	0.50	0.88	0.88	$0.8 B$	0.88	0.88	0.88
Hourly flow rate（Yph）	10	0	10	10	0	10	6	392	6	6	278	G

Pedestrians
Lane Wiith（fit）
Walking Speed（its）
Percent Blackage
Right turn flare（veh

Median type									None
Median storage veh）									
Upstream signal（ft）									
pX，platean unblacked									
w，conflicting volume	709	702	281	709	702	395	284	398	
WC1，stage 1 conf yol									
vC2，stage 2 conf vol									
vCu，umblocked vol	709	702	281	709	702	395	284	398	
the，single （s）	7.1	6.5	6.2	7.1	6.5	6.2	4.1	4.1	
tc， 2 stage（ 5 ）									
比（1）	3.5	4.0	3.3	3.5	4.0	3.3	22	2.2	
po queue free \％	97	100	99	97	100	$9{ }^{\text {9 }}$	100	100	
CM capacity（veh／h］	341	359	758	345	359	659	1278	1172	

Iratersoction Summaly

Average Delay	0.9	
Intersection Capacity Utilization	32.8%	lCu Level of Service
Analysis Penod（min）	15	

c Critical Lane Group

	\dagger	＊		5			，	4	p		$\frac{1}{1}$	\downarrow
Movement	E91	ERT	E日成	Wha	W／ET	MER	Mal	N新	N⿵冂⿱丷丅犬	S81	SEF	3065
Lane Configurations	\％	4\％		\％	＋1／4		${ }^{7}$	\％		\％	\％	
Volume（2ph］	10	200	45	135	185	25	40	5	145	210	25	75
Idaal Flow（vphpl）	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost lime（s）	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95		1.00	1.00		0.97	1.00	
Frt	1.00	0.97		1.60	0.98		1.00	0.85		1.00	0.89	
Fit Protecteod	0.95	1.00		0.95	1.00		0,95	1.00		0.95	1.00	
Satd．Flow（prot）	1247	2414		1032	2692		1385	1220		2764	1322	
Fit Permitted	0.60	1.00		0.43	1.00		0.95	1.00		0.95	1.00	
Satd．Flow（perm）	78.8	2414		468	2892		1385	1220		2764	1322	
Peak－hour factor，PHF	0.80	0.80	0.80	0．8．8．	0 ¢ 8	0.0 百	D． 78	（1．78）	D．78	0．60	0.60	0．60
Adj．Frow（vph）	12	250	56	157	215	29	51	6	186	350	42	125
RTOR Reduction［uph）	0	13	0	0	6	0	0	158	0	0	84	0
Lane Group Flow（wph）	12	233	0	157	298	0	51	34	0	350	83	0
Heary Vehicles（\％）	20\％	20\％	29\％\％	45\％	B\％	18%	8\％	21\％	10\％	5\％	8\％	5\％
Turn Type	pmopt			protat			Spllt			Split		
Protected Phases	5	2		1	6		8	8		4	4	
Permitted Phases	2			6								
Actuated Green，G（s）	19.7	18.2		35.1	29.6		10.8	10.9		14.1	14.1	
Effective Green， B （ \mathbf{s} ）	19.7	18.2		35.1	29.6		10.8	10.9		14.1	14.1	
Accuated gic Ratio	D． 27	D． 25		0.49	0.41		0.15	0.15		0.20	0.20	
Clearance Time（3）	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension（s）	3.0	3.0		3.0	3.0		3.0	$3 . \mathrm{D}$		3.0	3.0	
Lane Grp Cap（tph）	225	609		329	1105		209	184		541	259	
vis Ratio Pret	0.00	0.12		60.09	0.09		c0．04	0.03		50.13	0.06	
wis Ratio Perm	0.01			c0． 15								
w／e Ratio	0.05	0.48		0.48	0.21		0.24	0.19		0.65	0.32	
Uniform Delayr dt	19.2	22.8		11.5	13.7		27.0	26.7		26.7	24.8	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay， d 2	0.1	0.6		1.1	0.1		0.6	0.5		2.7	0.7	
Delay（s）	19.3	23.5		12.6	13.8		27.6	27.2		29.4	25.6	
Level of Senvios	B	C		H	B		C	G		C	0	
Approach Delay（s）		23.4			13.3			27.3			28.1	
Approach LOS		C			B			C			C	
Intersection Summany												
HCMA Average Control Delay			23.10		M Level	Servic			6			
HCW Volume to Capacity ratio			0.47									
Actuated Cycle Length（s）			72.1		1 of lest	me（s）			12.0			
Intersection Capacity Utilization			50．2\％		Level o	Service			A			
Analysis Feriod（min）			15									
Description：Pean Sreet and Industrial Way												

Mokelment	E退	㖪	踁明	Wel	W近	SR	N8：	N8，	NEF	S51	385	S樶
Lane Configurations		4			4			4			4＊	
Volume（yehlh）	10	135	5	25	225	105	5	5	25	95	5	10
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％\％			0\％	
Peak Hour Factor	0.83	0.83	D．83	0.89	0.89	0.89	0.79	0.79	0.79	0.72	0.72	0.72
Hourly flow rate（uph）	12	163	6	28	253	118	6	6	32	132	7	14

Lane Whidth（ t ）
Wtalking Speed（ft＇s）

Percent Blockage
Right fum flare（veh）
Median type None None
Median storage veh）
Upstream signal（ ft$)$

Volume Total	101	399	44	153
Volume Left	12	28	6	132
Volume Right	6	118	35	14
cSH	1159	1421	659	410
Volume to Capechty	0.01	0.02	0.07	0.37
Queue Length 95th（ti）	1	2	5	42
Control Delay（s）	0.6	0.7	10.9	18.9
Lane LOS	A	A	B	C
Approach Delay（s）	0.6	0.7	10.9	18.9
Approach LOS			B	C

Finersection Surnmany

Average Delay	4.8		
Intersectlon Capactity UHilzation	47.9%	ICU Level of Service	A
Analysis Perlod（min）	15		

	-	\rightarrow		\checkmark			4	4	p		\downarrow	\downarrow
Movement	Esi.	Feit	EER	W/	TVEI	W35	NBE.	NE		SE:	SBI	STER
Lane Conifigurations		4			嵒			4			4	
Volume (velliti)	5	0	25	5	0	5.	120	405	5	15	315	5
Sign Control		Stap			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Psak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.90	0.90	0.90	0.85	0.85	0.85
Hoully flow rate (yph)	6	0	29	,	0	-	133	450	6	18	371	6
Pedestrians												
Lane whith (fit)												
Walking Speed (tis)												
Percent Blockage												
Right tum flare (veh)												
Mediar type								None			Nohnd	
Madian storege veh)												
Upetream signal (f)												
pX , platoon unthocked												
$\mathrm{VC}_{\text {c }}$ coanficting volume	1134	1131	374	1158	1431	453	376			458		
wC1, stage 1 conf vol												
vC2, stage 2 conf vol												
4 Cu , unblocked vol	1134	1131	374	1158	1131	453	376			456		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (6)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	96	100	96	96	100	99	89			98		
cM capacity (yeth h)	161	178	673	151	978	611	1182			1116		
Girection, Lane\%	F98	WS 1	MR ${ }^{\text {a }}$	359								
Vokume Total	35	12	589	394								
Volume Left	6	6	133	18								
Voluma Right	29	6	B	6								
cSH	439	242	1182	1116								
Volume to Capacily	0.08	0.05	0.11	0.02								
Queue Length 95th (f)	7	4	10	1								
Control Delay (s)	13.9	20.6	2.9	0.5								
Lane LOS	B	c	A	A								
Approach Delay (s)	13.9	20.6	2.9	0.5								
Approach LOS	8	6										
mersection Surnnabi												
Average Delay			2.6									
Intersection Capacity Uf			63.2\%		Level 0	Services			B			
Analysis Period (min)			15									

	\rangle			1			4	4	p		\dagger	\downarrow
Mavement	恠	E日T	E日R	WBi	Wer	Wen	Fil	Whar	N（2）T		ST	S嫄
Lane Conflgurations	7	4		\％	4\％		\％	\％		17	8	
Volume（yph）	50	190	10	160	190	225	10	70	235	285	45	55
（deal Flow（yphyl）	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time（s）	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Litll．Factor	1．00	0.95		1.00	0.95		1.00	1.00		0.97	1.00	
FH	1.00	0.99		1.00	0.92		1.00	0.88		1.00	0.92	
Fil Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Saty．Flow（prot）	1247	2472		1032	2424		1385	1238		2784	1359	
Fil Permitied	0.49	1.00		0.44	1.00		0.95	1.00		0.95	1.00	
Satc．Flow（perm）	639	2472		475	2424		1385	1238		2764	1359	
Peak－hour factor，PHF	D． 2.85	0.85	0.85	0.90	0.90	0.90	0.85	0.85	0.85	0.90	0.90	0.90
Adj．Flow（yph）	59	224	12	178	211	250	12	82	276	294	50	61
RTOR Reduction（vph）	0	3	，	D	159	0	0	84	0	0	36	0
Lane Group Flow（vph）	59	233	0	178	302	0	12	274	0	234	75	0
Heary Vehicles（\％）	20\％	20\％	23\％	45\％	8\％	18\％	8\％	21\％	10\％	5\％	B\％	5\％
Tum Type	pmopt			pmipt			Split			Split		
Protectad Phases	5	2		1	6		8	8		4	4	
Pemmittad Phaseb	2			8								
Actuated Grenn， G （6）	23.6	15.6		36.3	24.3		25.9	25.9		14.6	14.6	
Effective Green，g（s）	23.6	15.6		36.3	24.3		25.9	25.9		14.6	14.6	
Actuated g／C Ratio	0.27	0.18		0.41	0.27		0.29	0.29		0.16	0.16	
Clearance Time（s）	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension（s）	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lana Gm Cap（vph）	225	434		299	663		404	361		454	223	
wis Ratto Prot	0.02	0.09		c0．11	0.12		0.01	60.22		c0．11	0.06	
y／s Ratho Pem	0.05			c0． 13								
wic Ratio	0.26	0.54		0.60	0.46		0.03	076		0.65	0.34	
Unilom Deiay，di	25.1	33.3		19.0	26.6		22.5	28.6		34.7	32.8	
Pregression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay，d2	0.6	1.3		3.2	0.5		0.0	8.8		3.2	0.9	
Delay（s）	25.7	34.6		22.2	27.3		22.5	37.4		37.9	33.7	
Level of Service	c	0		C	c		c	D		－	C	
Approach Delay（s）		32.8			25.8			36.9			36.7	
Approach LOS		C			c			D			0	
Intersection Sumiman												
			32.0		HCM Level of	Service			C			
HCM Average Control Delay HCM Volume to Capacity ratio			0.65									
			88.8		Sum of lost tim	time（s）			12.0			
Actuated Oycie Lengit（B） Intersection Capacity Utitization			67．7\％		CULevel of	Service			C			
Anahysis Period（min）			15									
Description：Pearl Street and Industrial Way												
c Critical Lane Group												

	λ	\rightarrow			4				1	7		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	MET	WBR	NQL		NBT	NGER	SEL	SET	SBR
Lane Coniguurations		4			4				4			*	
Volume (velih)	5	240	5	5	325	85				聟 25	370	5	230 5
Sign Control		Free			Freg				Stop			Stop	
Grade		0\%			0%				0\%			6\%	
Peak Hour Fector	0.85	0.85	0.65	0.90	0.90	0.90	0.85		0.85	0.85	0.85	0.85	0. 85
Hourty flow rate (yoh)	6	282	6	6	361	94	6		6	29	B2	6	6
Pedestrians													
Lane Whith (ti)													
Waiking Speed (tds)													
Percent Elockage													
Right tum flare (veh)													
Median type		Nons			None								
Median storage veh)													
Upsteam signal (it)													
pX, platoon unblocked													
wC, conficting volume	458			288			725		764	285	749	719	408
yc1, stage 1 conf vol													
yC2, stage 2 conf vol													
yCu. unblocked yol	456			288			725		764	285	749	719	408
(c, single (s)	4.1			4.1			7.1		6.5	6.2	7.1	8.5	6.2
tC. 2 stage (3)													
tF (s)	2.2			2.2			3.5		4.0	3.3	3.5	4.0	3.3
p0 queve free \%	99			100			98		98	\%	74	98	99
cM capaclit (vehth)	1116			1265			333		333	758	311	357	647
Difactan, Lane ${ }^{\text {a }}$	E5.	W ${ }^{\text {S }}$	Ne?	SET									
Volume Total	294	461	41	94									
Volume Left	6	6	6	82									
Yolume Right	6	94	29	6									
cSH	1116	1285	556	324									
Volume to Capacliy	0.01	0.00	0.07	0.29									
Qusue Langth 95th (fi)	0	0	6	28									
Control Delay (6)	0.2	0.1	12.0	20.6									
Lane LOS	A	A	B	C									
Approach Delay (s)	0.2	0.1	12.0	20.6									
Approach LOS			B	c									
Titerseciog Sumimay													
Average Delay			2.9										
Intersection Capacity Uillizailon			45.1\%		Level or	Service				A			
Analysts Pelliod (min)			15										

	¢	\rightarrow		1	*	4	-	4	p		\pm	4
Mosement	EEL	EBT	EER	WVBL	MEET	MBR	NBL	NET	N(1)R	S8L	SBT	SBR
Lane Conligurations		4			4			4			43	
Volume frehki)	5	5	90	5	10	165	125	385	5	15	370	5
Sign Control		Stop			Stop			Free			Free	
Grade.		D\%			0\%\%			D\%			0\%	
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0. 85	0.90	0.90	(1).90	0.85	0.85	0.95
Hourly flow rate (wh)	6	6	106	6	12	184	139	428	6	18	435	6
Pedestrians												
Lane Writh (tt)												
Walking Speed (fis)												
Percent Blockage												
Right tum flare (veh)												
Medlan type								None			None	
Wedlan storage veh)												
Upstream zignal (it)												
pX, phatoon unblocked												
ve, conflicting volume	1382	1185	438	1291	1185	431	441			433		
VE1, stage 1 cont vol												
WC2, stage 2 carlf Yol												
WCu, unblacked vol	1382	1185	438	1291	1185	431	441			433		
tC, single (s).	7.1	6.5	62	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (6)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
po queur frae \%	92	96	83	94	93	69	88			98		
cM capacity (vehh)	71	163	619	102	163	629	1119			1137		
Direction, Laneat	ES 1	461	MET	381								
Volume Total	118	212	572	459								
Volume Left	6	6	139	18								
Volume Right	106	194	6	6								
CSH	405	483	1119	1137								
Volume to Capacity	0.29	0.44	0.12	0.02								
Queue Length 95th (t)	30	55	11	1								
Control Delay (s)	17.5	18.1	3.2	0.5								
Lane LOS	C	C	A	A								
Approach Delay (s)	17.5	18.1	3.2	0.5								
Approact LOS	C	6										
Intersextion Summary												
Average Delay			5.8									
Intersection Capacity Utilization			75.9\%	10	Level 0	Service			0			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis
Branch Engineering 1806: Pearl \& Industrial 3162015

	＊	\rightarrow		1	－	4	，	1	${ }^{*}$		1	1
B－x＞ement	E日l	EWT	SEP	V991	NGT	WER	NBE	NET	NEP	S9E	$3 \mathrm{~S}^{\circ}$	Sgife
Lane Configurations		勫			4			4			40	
Volume（vehth）	10	285	5	5	445	105	5	5	25	80	5	15
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			D\％			0\％			0\％	
Peak Hour Factor	Q． BE_{5}	0.85	0.85	0.90	0.90	0.90	0.85	0.85	0.85	0.85	0.85	0.85
Hourly fiow rate（yph）	12	335	6	6	454	117	6	8	29	94	6	18
Pedestrians												
Lane Width（tt）												
Walking Speed（fts）												
Percent Blockage												
Right tum flare（veh）												
Median type		None			None							
Median storage veh）												
Upstream signal（ft）												
pX ，platoon anblorked												
vC，conficting volume	614			341			946	984	338	958	929	553
vC1，stage 1 canf vol												
vC2，stage 2 cont val												
vCu，unblecked vol	611			341			946	984	338	958	929	553
1 C ，single（ s ）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	62
tS， 2 stage（s）												
tF［s］	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
P0 queue free \％	99			100			97	98	96	58	98	97
ctiv capacity（wehth）	978			1229			229	246	708	222	255	597
Direction，L．ane ${ }^{\text {a }}$ ，	硈！	WE 1	181	351								
Votume Toial pre	353	617	41	118								
Volume Left	12	B	6	94								
Vakme Right	6	117	29	$1{ }^{10}$								
cSH	976	1229	452	246								
Volume to Capacity	0.01	0.00	0.09	0.48								
Queue Length 95th（f）	1	0	7	80								
Contol Delay（s）	0.4	0.1	13.8	32.4								
Lane LOS	A	A	E	D								
Approach Delay（s）	0.4	0.1	13.8	32.4								
Approach LOS			B	D								
Intersection Summiry												
Average Delay			4.1									
Intersection Capacity Utilization			54．0\％	IO	Leval	Service			A			
Anslysis Period（min）			15									

	4	\rightarrow		1		4	）	4	p		$\frac{1}{7}$	4
Mrovement	8EI	E4TIT	ESF	W退	M ${ }^{\text {BT }}$	WEF	NBE	수네	NEX	S 8 BL	可兵	3阿
Lane Configurations		4			4			＊			4	
Volume（vehth）	5	5	5	5	［1］	240	5	490	5	20	460	5
Sign Control		Stop			Stop			Free			Free	
Grade		D\％			0\％			0\％			D\％	
Peak How Factor	D． 85	0.85	0.85	D． 85	0.85	0.85	0.90	0.80	0.90	0． 85	0.85	O． 85
Hoult fiow rate（vph）	G	5	6	6	0	282	6	544	b	24	541	6
Pedestrians												
Lane Width（做）												
Walking Speed（it／s）												
Persent Blockage												
Rught tum flare（veh）												
Medlan type								None			None	
Medlan storage veh）												
Upstream signal（ f ）												
pX，platoon unblocked												
WC，contiting volume	1432	1152	544	1158	1152	547	547			550		
YC1，stage 1 comf wol												
VC2，stage 2 cant vol												
vCu，unblocked vor	1432	1152	544	1158	1152	547	547			550		
tC，single（s）	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
1c． 2 stage（s）												
tF（s）	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
po queus free $\%$	89	97	99	96	100	48	99			98		
CM capacity（venth）	52	192	539	165	192	541	1022			1030		
Directon Lars \＃	E1		NE	8\％ay								
Volume Total	－ 18	289	550	571								
Volume Left	合	6	6	24								
Volume Right	6	282	6	6								
CSH	115	517	1022	1090								
Volume to Capacly	0.15	0.58	0.01	0.02								
Queve Length 95th（fi）	13	85	0	2								
Control Dolay（s）	42.0	20.4	02	0.6								
Lane LOS	E	C	A	A								
Approach Dislay（s）	42.0	20.4	0.2	0.6								
Approach LOS	E	6										
hrtarsection Summary												
Average Dealay			4.9									
Intersection Capacly Ufilzaten			63．6\％	ICU Level of Service					B			
Analysts Period（min）			15									

Movement	E日	ERT	Hep		WMET	W日只	NB1	N2］	Hek	SEL5	उ헤	
Lane Configurations		4			\leqslant	7		両		7	4	
Volume（vph）	0	5	5	75	5	135	5	525	125	155	335	5
ldeal Flow（uphpl）	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time（s）		4.0			4.0	4.0		4.0		4.0	4.0	
Lane Utili．Factor		1.00			1.00	1.00		1.00		1.00	1.00	
Fit		0.93			1.00	0.85		0.97		1.00	1．00	
Flt Protected		1.00			0.96	1.00		1.00		0.95	1.00	
Satd，Flow（prot）		1800			1624	1444		1858		1539	1712	
Flt Permitsed		1.00			0.73	1.00		1.00		0.39	1.00	
Satd．Flow（perm）		1600			1244	1444		1655		629	1712	
Peak－hour factor，PHF	0.85	0．85	0.85	0.90	0.85	0.80	0.85	0.90	0.90	0.90	0.80	0.85
Ad］，Flow（vph）	0	6	6	83	6	150	6	583	139	172	372	6
RTOR Reduction（yph）	0	5	0	0	0	126	0	10	0	0	1	0
Lane Group Frow（vph）	0	7	0	0	89	24	0	719	0	172	377	Q
Heany Vehicles（\％）	2\％	2\％	2%	3\％	2\％	3\％	2\％	2\％	6\％	8\％	2\％	2\％
Tum Type	Peim			Perm		Perm	Petrin			Perm		
Protected Phases		4			8			2			6	
Pemitted Phases	4			8		8	2			6		
Actuated Green，G（s）		10.7			10.7	10.7		49.2		49.2	49.2	
Effective Green， g （s）		10.7			10.7	10.7		49.2		49.2	49.2	
Actuated gric Ratio		0.16			0.16	0.16		0.72		0.72	0.72	
Clearance Tlims（s）		4，0			4.0	4.0		4.0		4.0	4.0	
Vehlcie Extension（s）		3．D			3.0	3.0		3.0		3.0	3.0	
Lane Grp Cap（ush）		252			196	228		1199		456	1241	
wis Ratio Prot		0.00									0.22	
Wis Ratio Perm					0.0 .07	0.02		0.43		0.27		
w／e Ratio		0.03			0.45	0.10		0.60		0.38	0.30	
Uniform Delay． $\mathrm{d}^{\text {d }}$		24.2			25.9	24.5		4.6		3.5	3.5	
Progression Factor		1.00			1.00	1.00		1.00		1.00	1.00	
Incremental Delay， d^{2}		0.0			1.7	0.2		2.2		2.4	0.6	
Delay（s）		24.2			27.6	24.7		6．${ }^{\text {¢ }}$		5.9	3.9	
Level of Serilce		C			C	c		A		A	A	
Approach Delay（s）		24.2			25.8			6.8			4.6	
Approach LOS		6			c			A			A	
Intricecton Sunmary												
HCM Average Confrol Delay			9.1		HCM Leval	frentice			A			
HCM Volume to Capacity ratio			0.57									
Actuater Oycle Length（s）			67.9		Sumof logt	$m e(s)$			Br			
Intersection Capacliy Utilization			79．5\％		CU Level	Service			D			
Analysis Peried（min）			15									

© Critical Lane Group

Moysmient	ESL	2911	E髙5	Ne9	ReT	Wha	WBL	NET	N篤	Stic	S3	限限
Lane Contiguratlons	7	45		${ }^{5}$	45		易	P		7i	5	
volume（4ph）	55	225	10	160	325	110	5	15	240	240	25	85
（dieal Flow（yphpl）	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time（s）	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane UVII．Factor	1.00	0.95		1.00	0.95		1.00	1.00		0.97	1.00	
Frt	1.00	0.89		1.00	0.96		1.00	0.86		1.00	0.88	
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd．Flow（prot）	1247	2475		1032	2605		1385	1223		2764	1318	
Fit Permitted	0.48	1.00		0.45	1.00		0.95	1.00		0.95	1.00	
Satd．Flow（pemm）	625	2475		489	2605		1385	1223		2764	1318	
Peak－hour factor，PHF	0.85	0.85	0.85	0.90	0.90	0.80	0.85		0.85	0.90	0.90	0.90
Adj．Flow（vph）	65	265	12	178	361	122	6	18	282	267	28	94
RTOR Reduction \｛vph）	0	2	0	0	23	0	0	235	0	0	78	0
Lane Group Fiow（uph）	65	275	0	172	460	0	6	65	0	287	44	0
Heavy Vehiches（\％）	20\％\％	20\％	23\％	45\％	8\％	18\％	B\％	21\％	10\％	5\％	8\％	5\％
Turn Type	protipl			$\mathrm{pm}+\mathrm{pt}$			Split			Split		
Prutected Phases	5	2		1	6		8	8		4	4	
Permitted Phasiss	2			6								
Actuated Green，G［s］	25.0	16.9		34.4	22.3		11.6	11.6		12.3	12.3	
Effective Green， g （s）	25.0	15.9		34.4	22.3		11.6	11.6		12.3	12.3	
Actuated gic Ratio	0.36	0.24		0.49	0.32		0.17	0.17		0.17	0.17	
Clearange Tirue（s）	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension（s）	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Gpp Cap（vph）	294	595		344	826		229	202		484	291	
W／s Ratio Prot	0.03	0.11		［0． 10	c0．18		0.00	00.05		co． 10	0.03	
uls Ratlo Pemm	0.05			0.15								
whe Ratio	0.22	0.45		0.52	0.56		0.03	0.32		0.55	0.19	
Uniform Dealay，dt	15.4	22.8		11.3	19.8		24.6	25.9		26，5	24.8	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Ineremental Delay，d2	0.4	0.6		1.3	0.8		0.0	0.8		1.4	0.4	
Detay（s）	15.8	23.4		12.6	20.7		24.7	26.8		27.8	25.2	
Leval of Service	目	c		B	C		C	C		C	6	
Approach Delay（ 5 ）		21.9			18.5			26.7			27.0	
Apprach LOS		C			B			C			C	
Intersection Summany												
			22.6		M Level	Servic			Q			
HCM Volume to Capacity ratio			0.49									
Actuated Cycle Length（s）			70.3		not logt	itra（s）			12.0			
Intersection Capacity Utilization			63．9\％		Level of	Service			B			
Analysis Period（min）			15									
Description：Pear Street and Industrial Way a Gritical Lane Group												

	*	\rightarrow	7		-	4	4	1	p	*	-	4
Mavement	LE)	2817	EtEs	WEL	W17	W日ris	NHE	NEI	MEE	Sel	S3i	36]
Lans Contigurations		4			4			4			4	
Voluma (vehin)	10	280	5	5	435	295	5	5	25	180	-	15
Slgn Contral		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0%	
Peak Hour Factor	0.85	0.85	0.85	0.90	0.90	0.90	0.85	0.85	0.85	0.85	0.85	0.85
Hourly flow rate (yph)	12	329	6	6	483	328	6	6	29	212	6	18
Pediestians												
Lans Whath (fi)												
Walking Speed (ftes)												
Percent Blockage												
Right tumf flars (veh)												
Mediantype		None			None							
Median storage veh)												
Upetream signal (t)												
pX , platomen untrocked												
WC, confilicting volume	811			335			1035	1778	332	1047	1017	647
VC1, stage 1 conf Yal												
$\mathrm{yC2}$, stage 2 conf vol												
vCu, unblocked vol	811			335			1035	1178	332	1047	1017	647
tC, singte (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	62
tC, 2 stage (s)												
IF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
pO quesre free \%	99			100			97	97	96	0	97	9
ccM capacily (vehili)	824			1235			197	189	714	182	235	474
Dinection, Lame ${ }^{\text {a }}$	咕		NET	E6								
Volume Total	347	817	41	235								
Volume Left	12	6	6	212								
Volume Right	6	328	29	18								
cSH	824	1235	403	202								
Volume to Capacity	0.01	0.00	0.10	1.17								
Queue Length 95ith (ft)	1	0	8	293								
Control Delay (s)	0.5	0.1	14.9	163.6								
Lane LOS	A	A	B	F								
Approach Delay (s)	0.5	0.1	14.9	163.6								
Approach LOS			B	F								
Intersection Summan												
Average Delay			27.3									
Intersection Capacity Utilization			72.1\%		Level or	Service			0			
Analysis Period (min)			15									

	λ	\rightarrow					4	4	7	*	1	\downarrow
Movernem	E8L	EBT	ERR	UBL	WBT	MER	WBL	NBT		Stic	SB	38 F
Lane Configurations		\$			*			4			4	
Yolume (wehth)	5	5	5	5	0	25	5	465	5	5	350	5
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0%			0\%	
Peak Hour Factor	0.85	0.85	0.85	Q.85	0.85	0.85	0.90	0.90	0.90	0.85	0.85	0.85
Hourly flow rate (vph)	-	6	6	6	D	29	6	517	5	6	412	6
Pedestriens												
Lene Wifth (ft)												
Walking Speed (fts)												
Percent Elookage												
Right tum flare (veh)												
Msedan type								None			None	
Median storage veh)												
Upstream signal (做)												
$\mathrm{px} \mathrm{X}_{1}$ platoon unblacked												
$\mathrm{VC}^{\text {c }}$ conflicting volume	986	960	415	966	960	519	419			522		
vC1, stage 1 coni val												
vC2, stage 2 conf vol												
vCu, unblocked wol	986	960	415	965	960	519	418			522		
IC. single (3)	7.1	6.5	6.2	7.1	6.5	62	4.1			4.1		
tc, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
po queue free \%	97	98	99	97	100	95	100			99		
chat capacty (vehth)	213	254	638	228	254	560	1141			1054		
Ofectlon, Lane \#	EF	WE	NEII	56.1								
Vorume Total lielt - Eeas	18	35	528	424								
Volume Left	6	6	6	6								
Volume Right	6	29	6	6								
CSH	294	451	1141	1054								
Volume to Capacity	0.06	D. DB	0.00	0.01								
Queue Length 95th (fi)	5	6	0	0								
Control Delay (s)	18.0	13.7	0.1	0.2								
Lane LOS	c	B	A	A								
Approach Delay (s)	18.0	13.7	0.1	0.2								
Approach LOS	C	B										
Average Delay			0.9									
Intersectlon Capacity Utilization			40.0\%		Level of	Service			A			
Analysis Perlod (min)			15									

Movement	EEL	E6	E\% ${ }^{\text {P }}$	V192	Whes	W185	992-	NET	9010	3)	자베	SER
Lane Comfigurations	\%	年		7	$4{ }^{4}$		$\%$	\$		7\%	1	
Volume (uph)	50	190	10	160	190	235	5	70	240	265	45	60
Ideal Flow (yphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lans Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		0.97	1.00	
Frt	1.00	0.98		1.00	0.92		1.00	Q.88		9.00	0.91	
FHt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1247	2472		1032	2417		1385	4238		2764	1355	
Fit Pemitited	0.43	1.00		0.44	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (pame)	632	2472		473	2417		1385	1238		2764	1355	
Peak-hour factor, PHF	0,85	0.85	0.85	0.90	0.90	0.90	0.85	0.85	0.85	0.90	0.90	0.90
Adj. Flow (vph)	59	224	12	178	211	261	-6	82	282	294	50	67
RTOR Reduction (yph)	0	3	0	0	166	0	0	85	0	0	39	0
Lane Group Flow (vph)	59	233	0	178	306	0	6	279	0	294	78	0
Heavy vehicles (\%)	20\%	20\%	23\%	45\%	B\%	18\%	B\%	21\%	10\%	5\%	8%	5\%
Turre Type	pm+pt			pm+pt			Split			Split		
Protected Phases	5	2		1	禹		0	B		4	4	
Perritted Phases	2			6								
Actuated Green, G (s)	23.6	15.6		36.3	24.3		26.7	26.7		14.6	14.6	
Effective Greer, g (s]	23.6	15.6		36.3	24.3		26.7	26.7		14.6	14.6	
Actuated g/C Ratio	0.26	0.17		0.41	0.27		0.30	0.30		0.16	0.16	
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lans Gp Cap (yph)	221	430		296	650		413	369		450	221	
vis Ratio Prot	0.02	0,08		00.11	0.13		Q.DO	00.23		c0.11	0.05	
wis Ratio Perm	0.05			c0.13								
wfe Ratio	0.27	0.54		0.60	0.47		0.01	0.76		0.65	0.35	
Uniferm Delay, d1	25,5	33.7		19.4	272		22.2	28.5		35.1	33.3	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.7	1.4		3.4	0.5		0.0	8.6		3.4	1.0	
Delay (s)	26.2	35.1		22,8	27.8		22.2	37.1		38.5	34.3	
Level of Service	C	D		C	c		C	D		D	6	
Approach Delay (\$)		33.3			26.4			38,8			37.3	
Approach LOS		0			C			D			D	
Intersestion Summany												
HCM Average Contral Delay			32.4		1 Level	Servic			c			
HCM Volume to Capacity ratio			D. 66									
Actuated Cycle Length (\$)			88.6		of lost	me (9)			12.0			
Intersection Capacity Utilization			68.5\%		Level	Service			C			
Aralysis Period (min)			15									
Description: Peart Street and Industrial Way												
c Criticai Lane Group												

	λ	\rightarrow		\checkmark	-	4	4	4	p		\downarrow	4
Maxement	EBL.	EET	ERR	WEL	MBT		NEL	N(1)	NER	96:	S1	580.f
Lane Configurations		\$			*			4			4	
Volume (vehh]	5	200	5	5	310	180	5	,	25	135	,	5
Sign Control		Free			Fres			Stop			Stop	
Grade		0\%			0\%			D\%			${ }^{0} \%$	
Peak Hour Factior	0.85	0.85	D. 85	0.90	0.90	0.90	0.85	0.85	0. 0.5	D.85	0.85	0.85
Houriy flow rate (yph)	6	235	6	6	344	200	-	6	29	159	6	8
Pedestrians												
Lane Width (tt)												
Walking Speed (tts)												
Percent Blockage												
Right tum flare (veh)												
Median type		None			Nane							
Median storage veh)												
Upstream signal (t)												
$p \mathrm{X}$, platoon unblocked												
$\mathrm{vC}^{\mathrm{C}, \text { conficting valume }}$	544			241			714	806	298	738	708	444
wC1, stage 1 conf vor												
WC2, stage 2 conf vol												
VCL, unblocked Yol	544			241			714	BDG	238	738	708	444
tC, single (s)	4.4			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
15 (s)	2.2			2.2			3.5	4.0	9.3	3.5	4.0	3.3
pt queve free \%	99			100			98	98	96	50	88	98
con capacity (vehilh)	1035			1337			339	315	806	317	358	618
Einsection, Lane \#	斯1	WE 1	NE 41	s371 1								
Volume Total wiel an	247	550	41	171								
Volume Left	6	6	6	159								
Volume Right	6	200	29	6								
[SH	1035	1337	567	324								
Volume to Capacity	0.01	0.00	0.07	0.53								
Queue Length 95th (tit)	0	0	6	73								
Conteol Delay (s)	0.3	0.1	11.8	27.9								
Lane LOS	A	A	B	D								
Approach Delay (s)	0.3	0.1	11.8	27.8								
Approach LOS			B	D								
intersection Summany												
Averrege Delay			5.3									
Intersection Capacity ubilization			54,4\%		Level	Service			A			
Analysis Period (min)			t5									

ATTACHMENT F

VEHICLE QUEUING CALCULATIONS (SIMTRAFFIC OUTPUT FILES)

Intersection：1802：W．Van Duyn St \＆N．Willamette Street，Interval \＃1

Wevemert	EB	W晛	NB	SE
Drections Served	LR	LR	LTR	LTR
Maximum Queus（ft）	37	27	23	6
Avergge Queue（ti）	14	11	6	1
95 th Queue（fi）	42	32	38	9
Link Distance（ t ）	462	500	759	1274
Upstream Bls Thme（\％）				
Queuing Penalty（weh）				
Storege Bay Dist（If）				
Storage Blk Time（\％）				
Queuing Penaly（iveh）				

Intersection：1802：W．Van Duyn St \＆N．Willamette Street，Interval \＃2

mevement	EE	WE	NB	SB
Directions Served	LR	LR	LTR	LTR
Maximum Queue（ft）	34	27	13	59
Average Queue（fit	3	6	1	4
95ith Oueve（ft）	20	24	8	27
Link Distance（ft）	462	500	759	1274
Upsitream Bik Time（\％）				
Queuing Penalty（veh）				
Storage Bay Dist（ft）				
Storage Blk Time（\％）				
Queving Penatity（veh）				

Intersection：1802：W．Van Duyn St \＆N．Willamette Street，All Intervals

Sauemen	E日	W景	N0］	狺
Directiras Served	LR	LR	LTR	LTR
Maximum Queue（ti）	38	27	29	59
Average Queue（t）	6	7	2	3
95th Queue（ f ）	27	26	19	24
Link Distance（ t ）	482	500	759	1274
Upstream Ete Time（\％）				
Queuing Fenalty（veh）				
Storage Bay Dist（ft）				
Storage Blk Time［\％］				
Queuing Penally（veh）				

Queuing and Blocking Report
Existing 2015 PM30 DHV
Intersection：1804：Pearl Street \＆N．Willamette Street，Interval \＃1

Movement	E8	WVE	W／B	NB	SB	僰
Directions Served	LTR	LT	R	LTR	L	TR
Maximum Queve（fit）	15	132	82	166	122	94
Average Quewe（tit	2	81	3 B	97	62	50
95 th Queue（f）	14	144	81	171	133	86
Link Distance（ft）	229	232	232	1565		571
Upstream Elk Time（\％）						
Queuting Penalty（veh）						
Storage Bay Dist（ f ）					105	
Storage Blk Time（\％）					3	0
Queuing Penalty（veh）					6	0

Intersection：1804：Pearn Street \＆N．Willamette Street，Interval \＃2

Moycment	暟	WE	W／	NB	SP	316
Directions Served	LTR	LT	R	LTR	L	TR
Maximum Queve（ft）	26	121	83	155	136	107
Average Queue（it）	5	47	22	79	54	43
95 th Queue（ f ）	22	85	50	148	107	84
Link Distance（fit）	229	232	232	1565		571
Upstream Elk Time（\％）						
Qureuing Penalty（veh）						
Storgge Bay Dist［位）					105	
Storage Blk Time（\％）					1	0
Qusuing Penalty（veh）					？	0

Intersection：1804：Pearl Street \＆N．Willamette Street，All Intervals

Movement	EE	VVB	WE	4 C	39	是可
Directions Seryed	LTR	LT	R	LTR	L	TR
Maximum Queve（ti）	26	138	86	182	146	112
Average Queve（tit）	4	56	26	83	56	45
95 th Queue（ft）	20	112	60.	154	114	85
Link Distance（ f ）	229	232	232	1565		571
Upstream Elk Time（\％）						
Queuing Penalty（veh）						
Storage Bay Dist（ f t					105	
Storage Bik Time（\％）					2	D
Queuing Penaly（veh）					，	0

Queuing and Blocking Report Existing 2015 PM30 DHV
Intersection: 1806: Pear[\& Industrial, Interval \#1

Moxement	E6	E8	Es	WB	108	We	NE	NB	SU	S2	39
Direclions Served	L	T	TR	L	T	TR	L	TR	L	L	TR
Maximum Quele (ft)	43	127	172	174	130	73	69	155	143	140	143
Average Queue (t)	9	72	$\$ 1$	103	72	36	37	83	83	95	78
95th Queue (fi)	36	128	174	174	148	77	76	154	140	146	157
Link Distance (ft)		685	B855		731	731		813			1762
Qusuing Penally (veh)											
Storage Bay Dist (ft)	225			125			200		350	350	
Storage Blk Time (\%)				3	1			0			
Queleuing Penalty (ven)				3	2			0			

Intersection: 1806: Pearl \& Industrial, Interval \#2

Movement	Es	E5	EB	W(EIE	VWS	WII	k ${ }^{\text {a }}$	NB	St	38	56
Directlons Served	L	T	TR	L	T	TR	L	TR	L	L	TR
Maximum queue (ty)	60	162	149	163	102	77	86	126	91	98	109
Averagac Qusue (tit)	9	51	63	79	46	17	30	53	40	54	42
95th Queve (it)	38	117	126	143	B8	57	71	99	80	91	83
LInk Distiance (it)		685	685		731	731		813			1762
Upetream BIK Time (\% ${ }^{\text {a }}$											
Queuling Penitity (veh)											
Storage Eay Dist (fit)	225			125			200		350	350	
Storage Elk Tirre (\%)				2	0						
Queving Pentalty (veh)				2	0						

Intersection: 1806: Pearl \& Industrial, All Intervals

Mevamens	匦	S ${ }^{\text {B }}$	EF	W	W/6	WE	NS	M 18	$5 \square^{51}$	SE	E5,
Directions Served	L	T	TR	L	T	TR	L	TR	L	L	TR
Haxdmum Queue (t)	64	166	175	182	130	84	85	159	143	140	143
Average Quelve (ft)	9	56	70	85	52	22	32	60	50	64	51
95th Queue ((t)	38	122	141	153	108	64	72	117	104	114	109
LInk Distance (fi)		685	685		731	731		813			1762
Upstream Blk Time (\%)											
Queuing Penalty fueh)											
Storage Bay Dist (f)	225			125			200		350	350	
Storage Blk Time (\%)				2	0			0			
Queuing Penalty (veh)				2	0			0			

Queuing and Blocking Report

Existing 2015 PM30 DHV
Intersection: 1826: Coburg Road \& N. Coburg Road, Interval \#1

Mrovement	EB	WB	NB	SE
Directions Served	LTR	LTR	LTR	LTR
Mgximum Queve (f)	5	50	35	81
Average Queve (th)	1	10	26	55
G5th © Weve (t)	7	45	48	84
Link Distance (f)	795	1274	770	570
Upstream Blk Time (\%)				
Queuing Penalty \{veh')				
Storage Eay Dist (\ddagger)				
Storage Elk Time (\%)				
Queling Penalty (veh)				

Intersection: 1826: Coburg Road \& N. Coburg Road, Interval \#2

Moxtement	L4	M 26	NE	$5{ }^{5}$
Directions Servad	LTR	LTR	LTR	LTR
Maximum Qusue (th)	33	72	42	74
Average Queue (tt)	3	6	25	39
95th Queue (ft)	18	37	48	64
Link Distance (ft)	795	1274	770	570
Upstream Bk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (f)				
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Intersection: 1826: Coburg Road \& N. Coburg Road, All Intervals

Movement	Em	V13	NB	$5{ }^{\text {S }}$
Direclions Served	LTR	LTR	LTR	LTR
Maximum Quese (ft)	33	82	42	87
Average Queue (ft)	2	7	25	43
95th Queve (ft)	16	39	48	71
Link Distance (i)	795	1274	770	570
Upstream Blk Time (\%)				
Queuring Penalty (veh)				
Storage Eay Dist (t)				
Storage Elk Time (\%)				
Queuing Penalty (veh)				
Zone Summary				
Zone wide Quesing Penalty, Interval \#1: 11				
Zone wilde Queuing Penalty, Interval \#2:4				
Zone widde Oueving Pentalty, All Intervals: 6				

Queuing and Blocking Report
2035 PM30 DHV Scenario 95120 Conditions with New Collector
Intersection: 1802; W. Van Duyn St \& N. Willamette Street, Interval \#1

Movement	EB	W	NB	8E
Difections Served	LR	LR	LTR	LTR
Maximum Oueue (f)	42	35	119	31
Average Queus (t)	25	B	51	5
95th Quatue (ft)	52	33	124	25
Link Distance (ft)	462	500	759	1274
Upstream Blk Time $(\%)$				
Queuing Penally (weh)				
Storaga Bay Dist (it)				
Storage Blk Time (\%)				
Queuing Penalty (feh)				

Intersection: 1802: W. Van Duyn St \& N. Willamette Street, Interval \#2

Movernent	FE	WL	MB	SF
Directions Senved	LR	LR	LTR	LTR
Maximum Queve (ft)	43	37	144	54
Average Queue (ft)	22	9	41	6
S5th Queue (fi)	48	31	109	33
Link Distance (ft)	462	500	759	1274
Upstream Blk Time (\%)				
Queuing Penally (veh)				
Storage Bay Dist (ft)				
Storage Blk Time (\%)				
Queulng Penally (veh)				

Intersection: 1802: W. Van Duyn St \& N. Willamette Street, All Intervals

Movement	EE	WE	N0]	SE
Directions Served	LR	[R	LTR	LTR
Maximum Queve (th)	52	47	175	58
Average Queue (fi)	23	9	43	6
95th Queue (ti)	49	31	113	32
Llink Distanca (tt)	462	500	759	1274
Upsitream Blk Tine (\%)				
Queuing Penally (weh)				
Storage Bay Dist (ti)				
Storage Blk Time (\%)				
Queuing Penalty (vah)				

Queuing and Blocking Report

2035 PM30 DHV Scenario 95120 Conditions with New Collector
$3 / 6 / 2015$
Intersection：1804：Pearl Street \＆N．Willamette Street，Interval \＃1

Mauement	㵊	WE	WD	NE	58，	38
Directions Served	LTR	LT	R	LTR	L	TR
Maximum Quene（tt）	24	112	69	272	84	134
Average Queus（ f ）	8	55	33	156	49	65
95 th Ousue（ft）	28	117	68	276	99	132
Link Distance（th）	349	238	238	1495		570
Upstrearn Blk Tine（\％）						
Quauing Penally（veh）						
Storage Bay Dist（ t t）					105	
Storage Blk Time（\％）					1	1
Queuing Penalty（reh）					4	1

Intersection：1804：Pearl Street \＆N．Willamette Street，Interval \＃2

Moverners	EB	WE	MA	NE	51	Qin
Directions Served	LTR	LT	R	LTR	L	TR
Maximumt Queue（ ft ）	31	115	69	310	141	161
Avarage Dueue（t）	6	47	26	123	50	66
95th Queus（t）	25	96	58	255	105	136
Llik Distance（tt）	349	238	238	1496		570
Upstrsam Blk Time（\％）						
Queuing Penalty（veh）						
Storage Bay Dist（f）					105	
Sterage Bik Time（\％）					1	1
Quauing Penally（weli）					2	1

Intersection：1804：Pearl Street \＆N．Willamette Street，All Intervals

Meverneril	E8	W9EI	W日	N发	31	
Directions Seryed	LTR	LT	R	LTR	L	TR
Maximum Queue（ f ）	31	124	74	349	148	176
Average Queue（f）	7	49	28	131	48	66
55th Oueve（ti）	25	102	61	263	104	135
LInk Distance（ t ）	349	238	238	1496		570
Upstream Blk Time（\％）						
Quesuing Penalty（veh）						
Storage Bay Dist［ft）					105	
Storage Blk Time（\％）					1	1
Queuing Penalty（veh）					3	1

Queuing and Blocking Report
2035 PM30 DHV Scenario 95120 Conditions with New Collector
3162015
Intersection：1806：Pearl \＆Industrial，Interval \＃1

Hovement	88	Et	EE	We	WE	V號	NE	NE	55	S9	$9{ }^{\text {P }}$
Directions Seryed	L	T	TR	L	T	TR	L	TR	L	L	TR
Maximum Queue（th）	111	115	116	204	226	168	26	256	137	148	93
Average Queve（ f ）	45	82	72	128	125	85	5	167	B1	92	56
85th Queur（ft）	113	123	124	214	218	172	24	274	135	147	96
Link Distance（ f ）		685	685		731	731		813			1762
Upstream Blk Time（\％）											
Queuing Penalty（weh）											
Storage Eay Dist（ft）	225			125			200		350	350	
Storage Blk Time（\％）				6	2			5			
Oureuing Penalty（veh）				7	4			1			

Intersection：1806：Pearl \＆Industrial，Interval \＃2

Movement	EL	Etit	F	WE	NES	5 Mg	NE	NiB	59	इस	SE
Directlons Served	L	T	TR	L	T	TR	L	TR	L	L	TR
Maximum Queus（ft）	115	129	118	205	198	165	b0	278	158	157	145
Average Queue（ft）	37	60	54	92	73	65	7	132	76	84	51
95 th Cueue（ft）	95	117	103	178	152	127	33	240	135	142	109
Link Distance（ t ）		685	685		731	731		813			1762
Upstream Blk Time（\％）											
Queuing Penalty（veh）											
5torage Bay Dist（ft）	225			125			200		350	350	
Storage Blk Time（\％）				4	1			2			
Queuling Penalty \｛veh）				4	1			0			

Intersection：1806：Pearl \＆Industrial，All Intervals

Margmant	ED	陌	E9	NE	1）${ }^{5}$		He\％	廌	（1）	58	3．
Dirsctions Served	L	T	TR	L	T	TR	L	TR	L	L	TR
Maximum Queus \｛ft	131	145	131	210	267	187	60	294	158	171	145
Arerage Qusue（ft）	39	61	59	101	81	70	6	141	77	86	52
95 th Quale（ti）	100	118	110	181	172	140	31	251	135	144	107
Link Distance（ f ）		685	685		731	731		813			1762
Upstream Blk Time（\％）											
Queuing Penalty（veh）											
Starage Bay Dist（it）	225			125			200		350	350	
Storage Elk Time（\％）				5	1			3			
Queuing Penalty（yehi）				5	2			0			

Queuing and Blocking Report

2035 PM30 DHV Scenario 95120 Conditions with New Collector

Intersection: 1826: Coburg Road \& N. Coburg Road, Interval \#1

Movement	E日	WB	NB	SB
Ditections Served	LTR	LTR	LTR	LTR
Maximum Queue (ti)	21	18	35	64
Average Queve (fit)	4	3	26	38
95th Queue (fit)	22	23	48	72
Link Distance (ti)	795	1274	770	570
Queuling Penalty (yeh)				
Storage Bay Dist (f)				
Storage Bik 71 me (\%)				
Queuling Penalty (veh)				

Intersection: 1826: Coburg Road \& N. Coburg Road, Interval \#2

Morement	EB	W8 8	NB	SB
Directions Serred	LTR	LTR	LTR	ITR
Maximum Queue [a $^{\text {a }}$	11	10	50	88
Average Queue (fi)	1	0	25	38
95 th Quese (ti)	7	6	52	67
Link Distance (fit)	795	1274	770	570
Upstream Blk Time (\%)				
Queuing Penathy (veh)				
Storage Eay Dist (f)				
Storage Blk Time (\%)				
Quewing Penaly (veh)				

Intersection: 1826: Coburg Road \& N. Coburg Road, All Intervals

Queuing and Blocking Report

Intersection: 1802: W. Van Duyn St \& N. Willamette Street, Interval \#1

Movelment	嘬	WE	N3	SE
Directions Serred	LTR	LTR	LTR	LTR
Maximum Queue (t)	87	92	107	87
Average Queue fit	52	54	54	24
95 th Queue (tt)	89	94	110	102
Link Distance (f)	462	500	759	1274
Upstream Blk Time (\%)				
Queuing Penalty (weh)				
Storage Bay Dist (ft)				
Storage Blk Time $/$ /\%)				
Queuling Peralty (veh)				

Intersection: 1802; W. Van Duyn St \& N. Willamette Street, Interval \#2

Infersection: 1802: W. Van Duyn St \& N. Willamette Street, All Intervals

Moyemeni	EE:	V噱	NB	512
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (ft)	109	97	145	108
Average Queue (fi)	45	47	51	13
95th Queue (ft)	79	82	111	64
Link Distance (ft)	462	500	759	1274
Upstream Elle Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)				
Storage Bik Time (\%)				
Queuing Penaly (veh)				

Queuing and Blocking Report

2035 PM30 DHV Scenario 96120 Conditions with New Collector
Intersection: 1804: Pearl Street \& N. Willamette Street, Interval \#1

Movement	ES	WE	WE	NE	SE	$5{ }^{2}$
Directions Served	LTR	LT	R	LTR	L	TR
Maximum Queue (ft)	25	95	98	320	179	340
Average Queue (ft)	6	59	51	$1{ }^{155}$	122	137
95th Queue (ft)	25	99	93	300	208	398
Link Distance (tt)	349	238	238	149\%		570
Upstream Elk Time (\%)						3
Queuing Penally (veh)						14
Starage Bay Dist (ft)					105	
Stprage Blk Time (\%)					25	2
Queuing Penalty (yoh)					94	3

Intersection: 1804: Pearl Street \& N. Willamette Street, Interval \#2

Movement	EE	WH	WB	NE	36	SE
Directions Served	LTR	LT	R	LTR	L	TR
Maxmum Queue (th)	26	118	89	275	204	343
Average Qusue (fit)	5	46	36	128	87	73
95th Quede ((t)	21	93	70	246	170	200
Link Distance (ft)	349	238	238	1496		570
Upstream Bk Time (\%)						0
Qusuing Psnalty (veh)						0
Storage Bay Dist (fit)					105	
Storage Elk Tirne (\%)					9	1
Queuling Pesalty [veh)					30	1

Intersection: 1804: Pearl Street \& N. Willamette Street, All Intervals

Movement	F5	W/81	WH	ME	S	S\%
Drections Saryed	LTR	LT	R	LTR	L	TR
Maxaimum Queue (ft)	30	119	111	349	204	423
Average Qubue (fi)	5	49	40	137	95	88
95th Queue (ti)	22	96	77	262	183	264
Link Distance (Ct)	349	238	238	1496		570
Upstream Blk Time (\%)						1
Queuing Penalty (veh)						4
Storage Elay Dist (ft)					105	
Storage Blk Time (\%)					13	1
Queuing Penalty (weh)					46	2

Queuing and Blocking Report

2035 PM30 DHV Scenario 96120 Conditions with Now Collector
366015
Intersection：1806：Pearl \＆industrial，Interval \＃1

Mevement	F5	日月	EF	WE	WE	ME	NB	NE	SB	3 B	St
Directlons Seved	L	T	TR	L	T	TR	L	TR	L	L	TR
Maximum Queue（ft）	91	124	115	212	266	170	128	238	114	122	95
Average Queue（fi）	50	77	74	131	143	86	53	114	70	78	50
95th Queus（ft）	85	128	123	213	270	178	118	244	119	123	93
Link Distance（th）		685	685		731	731		813			1782
Upstream BIk Thme（\％）											
Queuling Penalty（veh）											
Storage Bay Dist（ft）	225			125			200		350	350	
Storage Blk Time（\％）				9	9			1			
Queuing Penatty（ven）				15	16			1			

Intersection：1806：Pearl \＆Industrial，Interval \＃2

Mhevement	ES	憣	E通	WE	W／6	WE	NE	NB	311	\＄88	35
Directions Served	L	T	TR	L	T	TR	L	TR	L	L	TR
Juaximum Queue（f）	120	127	133	210	257	156	127	212	128	129	146
Average Queue（ft）	44	62	64	112	404	59	50	的	66	68	50
95th Queue（（t）	100	116	120	201	203	122	104	161	113	112	101
Link Distanos（tt）		685	685		731	731		日你			1762
Upsiream Blk Time（\％）											
Queuing Penality（veh）											
Storage Bay Dist（ tt ）	225			125			200		350	350	
Storage Blk Time（\％）				6	4			0			
Queuing Penalty（ven）				9	6			0			

Intersection：1806：Pearl \＆Industrial，All intervals

Maverneit	ER	E日	E朢	W8		W ${ }_{\text {W }}$	WE5	WE	SE	SE	8E
Directions Sewed	1	T	TR	L	T	TR	L	TR	L	L	TR
Kaximum Queue（t）	120	133	136	22010	284	191	140	280	137	130	148
Average Queue（1）	45	66	66	117	114	66	51	90	b7	71	50
95th Queue（fi）	99	120	121	205	223	139	106	186	115	115	99
Link Distance（ft）		685	685		731	731		813			1762
Upstream BIK Time（\％）											
Qusuing Penalty（veh）											
Storage Bay Dist（fi）	225			125			200		350	350	
Storage Blk Time（\％）				6	5			1			
Qusuing Penalty（wen）				10	8			U			

Queuing and Blocking Report

Intersection: 1826: Coburg Road \& N. Coburg Road, Interval \#1

Nowement	EB	WB	NB	SB
Directions Served	LTR	[TR	LTR	LTR
Maximum Queue (tt)	37	28	43	107
Average Queule (fi)	8	6	26	62
95th Quaue (ti)	39	45	52	111
Link Distance (ft)	795	1274	770	570
Upstream Blk Tme (\%)				
Ousuling Penalty (yeh)				
Storage Bay Dist (ft)				
Storage Blk Tine (\%)				
Queuing Penalty (veh)				

Intersection: 1826: Coburg Rcad \& N. Coburg Road, Interval \#2

Maverment	E5	US	NB	S5
Directions Seryed	LTR	LTR	LTR	LTR
Maximum Queue (ft)	42	41	49	86
Average Queue (f)	4	2	23	42
95th Queus (${ }_{\text {(}}$)	24	23	50	72
Link Distance ((t)	795	1274	770	570
Upstream Blk Time $\{7$ [$)$				
Queuing Penalty (veh)				
Storags Bay Dist (ti)				
Storage Elk Time (\%)				
Queuling Penally (veh)				

Intersection: 1826: Coburg Road \& N. Coburg Road, All intervals

Mavemeni	EE	相	19	981
Directions Sented	LTR	LTR	LTR	LTR
Maximum Queue (ti)	62	52	52	113
Average Queue (ti)	5	3	24	47
95th Oueve (th)	28	29	50	85
Llak Distance (f)	795	1274	770	570
Upstream Blk Time (\%)				
Queuing Peralty [veh)				
Storage Eay Dist (tt)				
Storage Blk Time (\%)				
Quauing Penalty (veh)				
Zone Summary				
Zone wide Queuing Pen	Nval			
Zone wide Queuing Pen	rual			
Zone wide Quexuing Pen	terva			

Quauing and Blocking Report

2035 PM30 DHV Scenario 97120 Conditions with New Collector

Intersection：1802：W．Van Duyn St \＆N．Willamette Street，Interval \＃1

Movernent	E	WV8	N（1）	55
Directions Served	LTR	LR	LTR	LTR
Maximum Cueus（ft）	34	214	22	76
Average Queue（f）	18	112	6	23
95th Queue（ti）	42	277	34	91
Unk Distance（ft）	462	500	759	1274
Upsitraam BIk Time（\％）				
Queuling Penalty（veh）				
Storage Bay Dist fit				
Storage Bilk Time（\％）				
Queuling Penality（veh）				

Intersection：1802：W．Van Duyn St \＆N．Willamette Street，Interval \＃2

Movernen！	ELI	Ne	寝	88
Directions Served	LTR	LR	LTR	LTR
Maximum Queue（ft）	44	148	12	84
Average Queue（f）	15	60	1	16
95th Queue（ti）	44	111	7	66
Link Distance（f）	452	500	769	1274
Upstream Blk Time（\％）				
Queuing Penalty（veh）				
Storase Bay Dist（t）				
Storage Bik Time（\％）				
Queuing Penatty（weh）				

Intersection：1802：W．Van Duyn St \＆N．Willamette Street，All Intervals

Mowement	LE	NB	可国	Sti
Directions Senved	LTR	LR	LTR	LTR
Maximum Queue（ft）	44	225	28	112
Average Queue（fi）	16	73	2	18
95th Queue（ （ $) ~_{\text {a }}$	44	172	17	73
Link Distance fft	462	500	759	1274
Upsitream Blk Time（\％）				
Queuling Penalty（reh）				
Storage Bay Dist（t）				
Storage Blk Time［\％）				
Queuing Penalty（veh）				

Queuing and Blocking Report

2035 PM30 DHV Scenario 97120 Conditions with New Collector

Intersection：1804：Pearl Street \＆N．Willamette Street，Interval \＃1

Movement	EB	WB	WE	NB	SE	S日
Directions Served	LTR	LT	R	LTR	L	TR
Meximum Queue（ft）	21	86	103	372	176	187
Average Queue（ft）	，	54	54	189	111	76
95th Queue（ t ）	22	86	105	400	181	171
Link Distance（做）	349	238	236	1486		570
Upstream Bk Time（\％）						
Queuing Penalty（veh）						
Storage Bay Dist （fit）					105	
Storage Bik Time（\％）					15	1
Queting Penalty（veh）					57	2

Intersection：1804：Pearl Street \＆N．Willamette Street，Interval \＃2

Movement	E5	We9	可弗	N䦽	38	$3{ }^{\text {P }}$
Directions Served	LTR	LT	R	LTR	L	TR
Maxmum Queve（ t ）	36	93	98	287	168	208
Average Qusue（ft）	．	40	40	132	76	66
95th Cueue（fi）	26	83	82	262	148	168
Link Distancs（ft）	349	238	230	1496		570
Upstream BRK TIme （\％\％						
Queuing Pernalty（veh）						
Starage Bay Dist（fit）					105	
Storage Blk Tirne（\％）					5	1
Queuing Penalty（veh）					16	2

Intersection：1804：Pearl Street \＆N．Willamette Street，All Intervals

Movement	Hex	N（1）	NNE	AFS	S易	SE
Drectlons Sewed	LTR	LT	R	LTR	L	TR
Maximum Queue（th）	36	98	120	392	182	230
Average Qusus（ ft ）	6	43	43	146	85	68
95th Quesse（ft）	25	85	89	304	180	167
Link Distancs（ft）	349	238	238	1496		570
Upstream Blic Time（\％）						
Queuing Penalty（veh）						
Storage Bay Dist 佼）					105	
Storage Blk Time（\％）					7	1
Queuing Penaly（veh）					26	2

Queuing and Blocking Report
2035 PM30 DHV Scenario 97120 Conditions with New Collector
$3 / 620015$
Intersection：1806：Pearl \＆Industrial，Interval \＃1

Moyement	\％	F9	EF	WMe	W5：	WE	NB	3	限	$3 E$	SB
Directions Served	L	T	TR	L	T	TR	L	TR	L	L	TR
Maximum Pueue（做）	116	133	141	199	253	159	20	202	12 B	126	82
Avarage Quaus（ft）	56	75	75	122	141	83	4	112	73	78	42
95th Qusue（tt）	116	141	142	219	279	173	20	189	126	134	74
Unk Distance（ft）		685	685		731	731		813			1762
Upstream Elk Time（\％）											
Oueuing Peralty（weh）											
Storase Bay Dist（it）	225			125			200		350	350	
Storage Blik Time（\％）				6	6			1			
Queuing Penality（weh）				11	11			0			

Intersection：1806：Pearl \＆Industrial，Interval \＃2

hiovernent	E［2	2E	Es	WE	W68	WE	ME	NE	Sb	88	St
Directions Served	L	T	TR	L	T	TR	L	TR	L	L	TR
Maximum Queue（tt）	115	220	131	215	248	144	34	186	136	126	128
Average Queue（ t ）	40	64	55	96	99	52	4	87	68	75	47
95th Queue（0）	92	151	105	187	192	117	20	155	120	118	94
Link Distance（ t ）		685	685		731	731		813			1762
Upstream BIk Time（\％）											
Queuing Penalty（weh）											
Storage Bay Dist（ti）	225			125			200		350	350	
Storage Blk Time（\％）				4	3			0			
Quauing Penalty（yeh）				6	4			0			

Intersection：1806：Pearl \＆Industrial，Al Intervals

Moyement	ELI	－181	E	W＇ts	M ${ }^{\text {W／}}$	WE	HL_{4}	8H	4	35	3 H
Directions Served	L．	T	TR	L	T	TR	L	TR	L	L	TR
Maximum Queue（ft）	137	220	148	215	294	169	34	213	148	137	133
Average Queue（t）	44	67	如	102	109	60	4	93	69	75	46
95th Quene（ti）	99	149	115	196	219	135	20	165	122	122	80
Link Disiance fit		685	685		731	731		813			1762
Upsiteam Bik Time（\％）											
Queting Penalty \｛ Yeht											
Storage Eay Dist（fi）	225			125			200		350	350	
Storage Bik Tirne（\％）				5	4			0			
Queuing Penally（veh）				8	B			0			

Queuing and Blocking Report

2035 PM30 DHV Scenario 97120 Conditions with New Collector

Intersection: 1826: Coburg Road \& N. Coburg Road, Interval \#1

Mayemen	E8	YV8	NB	SB
Dinections Served	L.TR	LTR	LTR	LTR
Maximum Queue (f)	62	60	48	313
Average Queue (fi)	19	9	30	208
95 th Queue (ti)	92	59	59	421
Link Distance (ft)	795	1274	770	570
Upstream Blk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)				
Storage Bilk Time (\%)				
Queuing Penalty (veh)				

Intersection: 1826: Coburg Road \& N. Coburg Road, Interval \#2

Intersection: 1826: Coburg Road \& N. Coburg Road, All Intervals

Mavement	HE	Wis	ME	Sk
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (ft)	80	71	66	329
Average Queue (tt)	B	4	25	122
95th Queue (f)	50	34	55	276
Link Distance (f)	795	1274	770	570
Upsitream Blk Time (\%)				
Queving Penalty (veh)				
Storage Bay Dist (ti)				
Storage Blk Time (\%)				
Queuing Penaliy (veh)				
Zone Summary				

Zone wide Queuling Penaity, Interval \#1: 82
Zone wide Queulng Penality, Interval \#2: 29
Zone wide Queuing Penally, All Intervals: 42

Queuing and Blocking Report

2035 PM30 DHV Scenario 96120 Conditions with New Collector

Intersection: 1802: W. Van Duyn St \& N. Willamette Street, Interval \#1

Movernent	Es	W:	NE	SE
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (ti)	${ }^{67}$	92	107	87
Average Cueus (t)	52	54	54	24
95 th Queue (ft)	89	94	110	102
Link Distanco (ft)	462	500	759	1274
Upstream Bkk Ting (\%)				
Queuing Penality (yeh)				
Storage Bay Dist (ti)				
Storage Bili Time (\%)				
Quesing Penalty (van)				

Intersection. 1802: W. Van Duyn St \& N. Willamette Street, Interval \#2

Mouement	$E 8$	Mrs	NB	SB
Directions Seved	LTR	LTR	LTR	LTR
Maximum Queve (ft)	100	92	144	82
Average Queue (ft)	42	45	50	9
95 th Queue (ft)	75	7	112	46
Link Distance (tt)	462	500	759	1274
Upstream Elk Time (\%)				
Queuling Penalky (weh)				
Storage Bay Dist (t)				
Storage Bik Time (\%)				
Queuing Penalty (weh)				

Intersection. 1802: W. Van Duyn St \& N. Willamette Street, All Intervals

Maverment	ET	NV	N(δ_{5}
Directions Sewed	LTR	LTR	LTR	LTR
Maximum Queve (fi)	109	97	145	108
Average Queue (ft)	45	47	51	13
95 h Dureue (ft)	79	82	111	64
Link Distance (tit)	462	5000	759	1274
Upstream Blk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)				
Storage Blk Time (\%)				
Queving Penalty (veht)				

Queuing and Blocking Report

Intersection：1804：Peari Street \＆N．Willamette Street，Interval \＃1

Movement	誏	VUS	WE	N退	5 S	55
Drections Served	LTR	LT	R	LTR	L	TR
Maximum Queve（t）	25	95	98	323	179	340
Average Queue fit	6	59	51	165	122	137
95th Queue（ft）	25	99	93	300	208	398
LInk Distance（ t ）	349	238	238	1496		570
Upstream Blk Time（\％）						3
Queuing Penaly（veh）						14
Storage Bay Dist（ft）					105	
Storage Blk Fime（\％）					25	2
Queulng Penatty（weh）					94	3

Intersection：1804：Pearl Street \＆N．Willarnette Street，Interval \＃2

Mavament	EE	We	栕	－	S3	5 5月
Directions Served	LTR	LT	R	LTR	L	TR
Maximum Queut（ft）	26	118	89	275	20.4	343
Averaje Queue（ f ）	5	46	36	129	87	73
S6ith Queue（ ft ）	21	93	70	246	170	200
Link Distance（tt）	349	238	238	1496		570
Upstream Blk Time（\％）						0
Queuing Pennalty（veh）						0
Storage Bay Dist（f）					105	
Storage Bik Time（\％）					9	1
Queuing Penalty（veh）					30	1

Intersection：1804：Pearl Street \＆N．Willamette Street，All Intervals

Hovement	陙	158	ME	1\％	S	Stit
Directions Served	LTR	LT	R	LTR	L	TR
Maximum Queue（fit）	30	119	111	349	204	423
Average Queue（ t ）	5	49	40	137	95	88
95in Queue（ti）	22	96	77	262	183	264
Link Distance（ t （）	349	239	238	1496		570
Upstream Blk Time（\％）						1
Queuing Penaly（veh）						4
Storage Bay Dist（t）					105	
Storage Blk Time（\％）					13	1
Quauing Penalt＇t［yeh）					46	2

Queuing and Blocking Report
2035 PM30 DHV Scenario 96120 Conditions with New Collector
Intersection：1806：Peart \＆Industrial，Interval \＃1

Movement	职	E6i	FB）	， V_{5}	We	WB	NE	NEI	Sb	Sif	45
Direciions Served	L	T	TR	L	T	TR	L	TR	L	L	TR
Maximum Qusue（th）	81	124	115	212	268	170	12 f	298	114	122	95
Average Queus（ti）	50	71	74	131	143	86	53	114	70	78	50
95 th Queue（ti）	95	128	123	213	270	178	110	244	119	12，${ }^{\text {a }}$	93
Link Distance（t）		685	685		731	731		813			1762
Upstream Bik Time（\％）											
Queuing Peralty（veh）											
Storrige Bay Dist（ft）	225			125			200		350	350	
Storage Elk Time（\％）				9	9			\dagger			
Queving Penally（ven）				15	16			1			

Intersection：1806：Pearl \＆Industrjal，Interval \＃2

Maventin	EH5	景	EA	M	WME	Nis	Nal	Ne	96	38	SE
Directions \＄erved	L	T	TR	L	T	TR	L	TR	L	L	TR
Maximum Queue（t）	120	127	133	210	257	156	127	212	128	129	146
Average Queue（t）	44	的	64	112	104	58	50	83	66	68	50
95th Queus（ti）	100	116	1201	201	203	122	104	161	113	112	101
Link Distance（ f ）		685	685		731	731		813			1762
Upstream Bk Time（\％）											
Queuing Penalty（yeh）											
Storage Bay Dist（t）	225			125			200		350	350	
Storage BIk Tirne（\％）				6	4			0			
Queulng Peinality（veh）				9	b			0			

Intersection：1806：Pearl \＆Industrial，All Intervals

Movemani	E9	EEF	ET	WE	MU	W／E	ND	N18	56	85	36
Directions Seryed	L	T	TR	L	T	TR	L	TR	L	L	TR
Maximum Queue（ft）	120	133	136	220	284	181	140	280	133	130	148
Average Queue（ti）	45	66	6 6	117	114	66	51	80	67	71	50
95th Queue（ft）	99	120	121	205	223	139	106	186	115	115	99
LInk Distance ftt		685	685		731	731		813			1762
Upstream Blk Time（\％）											
Qusuing Penalty（vaht											
Storage Bay Dist（ ft ）	225			125			200		350	350	
Storage Blk Tims（\％）				8	5			1			
Queuing Penalty（voh）				70	9			0			

Intersection：1826：Coburg Road \＆N．Coburg Road，Interval \＃1

Intersection：1826：Coburg Road \＆N．Coburg Road，Interval \＃2

Mavement	EE	願	N（1）	嵒
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue（ t ）	42	41	49	86
Average Queus（tt）	4	2	23	42
95th Cueue（fi）	24	23	50	72
Link Distance（tt）	795	1274	770	570
Upstream Blk Time（\％）				
Queuling Penalty（Yeh）				
Storege Bay Dist（ft）				
Storage Blk Time $\{\%$ ）				
Queving Penathy（ven）				

Intersection：1826：Coburg Road \＆N．Coburg Road，All Intervals

Mayement	EB	W回	NE	3 3
Directions Served	LTR	LTR	LTR	LTR
Maximum Dueue（t）	62	52	52	113
Average Queue（ft）	5	3	24	47
95th Qualue（fi）	28	29	50	85
Link Distance（ft）	795	1274	770	570
Upstream Blk Time（\％）				
Queuing Penalty（veh）				
Storage Bay Dist（ft）				
Storage Bik Time（\％）				
Queuing Penalty（veh）				
Zone Summary				
Zone wide Queuing Penalty，Interval \＃1： 143				
Zone wide Queuing Penalty，Interval \＃2： 46				
Zone wide Queuing Penalty，Al intervals： 70				

ATTACHMENT G
 ODOT CRASH DATA

cos 150 03\%102005	OREGON DEPAFTMENT OF TRANSPDRTATION - THANSPORTATION DEVELORMENT DIYISION TRANSPORTATION DATA SECTION-CWASH ANALYSIS AND REPORTING UNTT CRASH SUMMMARIES EY YEAR GY COLLISION TYPE										pane: 1			
Januiry 1, 2008 trrough December 31, 2013														
COLLISIONTYPE	FATAL CRASHES	NOM FATAL CRASHES	RROESRTK DAMACE ONLY	TOTAL CRRSGMES	PECTILE KluEa	PEGPLE INJUREI	Trucks	$\begin{aligned} & \text { DPY } \\ & \text { SURF } \end{aligned}$	$\begin{aligned} & \text { WEI } \\ & \text { SUFFE } \end{aligned}$	DAY	EAAK	INTERSECTIOR	INTERSECTION RELATED	$\begin{aligned} & \text { DFF } \\ & \text { ROAD } \end{aligned}$
TEAP: 2016														
TURINING MOVEMENTS	0	1	0	1	0	2	b	ఫ	ถ	1	0	1	0	0
$2 \mathrm{zl} \mathrm{F}_{3}$ TOTAL	1	1	6	1	0	2	0	\pm	\square	1	0	1	0	0
YEAF: 2022														
ANGLE	(1)		0	,	0	1	0	\dagger	0	1	W	1	0	0
TURNING MOVEMENTS	0	-	1	1	0	0	t	0	1	1	E	1	0	D
$20+2$ TOTAL	O	1	1	2	0	1	1	1	1	2	0	2	4	0
VEAR: 20%														
TURNING MONEMENTS	0	1	11	1	0	4	0	1	0	0	!	1	If	0
3010 TOTAL	0	1	0	*	0	4	0	1	0	0	1	1	L	0
EIMALTOTAL		- 3	1	4	0	7	1	3	1	3	1	4	0	5

CFEEGON DEPARTHAENT OF TRANSPQRTATION - TRANSFQRTATION DEVELOPMENT DIVISION
MGE

CFABH SUMMARIES BY YEAR DY COULSICN TVPE

Cobuing Bottom Loop Rosed \& Eobura Road lanuary 1, 2009 through December 31, 2013

OIEGCN DEPARTMENT OF TRANSPORTATION-TRANSPOFTATION DEVELOFMEENT DHVGIOM

TRANSPOIRTATION DATA SECTION. URASH ANALVSIS AND REPGIRTING LINIT

GRASH SUMMARIES BY YEAR BY COLUSION TMPE
Wilemette Straet a Van Duym Sireet
Lanuary 1, 2009 ithough Decemben 31, 2078

YEAR:

TDTAL
FINAL TOTAL

OREEON DEPARCTMENT OF YRANSPORTATIQN - TRANGPORTATION DEVELOPMENT DIVISION
TEANSACIRTATION OATA SECTION - CRASH ANAIYGIS AFID REPORTING UNTT
CRASH SUMMAFIES GY YEAR BY COLLISION TY胃E
Willamente Street \& Fuar street
January S, 200er through Desamber 31, 2013

COLLSIONTYPE	$\begin{aligned} & \text { FATKL } \\ & \text { QXUSHES } \end{aligned}$	$\begin{array}{r} \text { NDN } \\ \text { FAHIAC } \\ \text { CRAsHES } \\ \hline \end{array}$	PROPERTY IIAMAGE ONLY	$\begin{array}{r} \text { TOTAL } \\ \text { CROSHE } \end{array}$	$\begin{aligned} & \text { REQPIE } \\ & \text { KILIED } \\ & \hline \end{aligned}$	PEOPLE 	TRUCKE	$\begin{aligned} & \text { DRY } \\ & \text { SuRF } \end{aligned}$	$\begin{aligned} & \text { WEX } \\ & \text { SURF } \end{aligned}$	DAY	SAARK	INTER: SECTSON	INTERE SEGTION PELATEG	$\begin{aligned} & \text { OFF } \\ & \text { ROAE } \\ & \hline \end{aligned}$
YEAR 2010														
FIXEX OTHER OBNECT	0	,	0	1	0	1	0	0	1	1	D	1	0	III
TURNING MOVEMENTS	0	1	0	1	0	1	0	1	0	1	0	1	D	0
\#MO TOTAL	0	2	0	2	0	2	0	1	1	2	0	2	\square	1
FINAL TOTAL	0	?	0	$\overline{2}$	0	7	0	1	1	2		2	U	1

 Pleane bs awowe of this thange when comparing pre-2017 erach eletistics.

CREGON DEPARTMENT OF TRANSPORTATION -TRANSPORTATION DEVEI OPMENT DIVISIGN
MGE: TRANBPDMYAYION DATA SECTION - CRASH AMALYSIS AND REPORTING IINIT

CRASH SUMMARES EY YEAR BY CCOLLISION TYPE

Jenaly 4, 206id trotigh Vecomber 31,2013

COLISMONTYPE	PNTAL CRNDMES	$\begin{aligned} & \text { NOHA } \\ & \text { EATAL } \\ & \text { CRASHES } \\ & \hline \end{aligned}$	PBOREFTV Damaine DRLC	YOTAL CRUBHEAE	PEgFLE rauEn	PEOFLE IN, JUたED	TrOCISS	$\begin{aligned} & \text { BRY } \\ & \text { SURF } \end{aligned}$	$\begin{aligned} & \text { WET } \\ & \text { SURE } \end{aligned}$	BAN	HARK	$\begin{aligned} & \text { NTER- } \\ & \text { SECTICN } \end{aligned}$	INTERSECTION MELATED	$\begin{aligned} & \text { OFF } \\ & \text { PMAD } \\ & \hline \end{aligned}$
YSAR: 2013														
TURNINGMOVEMENTS	I	1	n	1	0	2	0	1	0	1	0	1	0	\square
2013 TOTAL	\square	1	0	1	¢	2	0	1	0	1	0	t	0	0
VEAR 2012														
REAR-EMD	0	11	1	1	0	0	0	1	0	1	0	, 1	0	0
2012 TGTAL	0	0	1	I	U	0	0	1	0	1	1	1	0	0
YEAR: 2010														
TLRNING MONEMENTS	0)	0	1	0	4	0	1	0	0		- 1	0	5
2015 TOTRL	0	1	Q	1	θ	4	0	7	V	4		-	10	\square
Final toral	0	2	1	3	0	6	4	3	0	2	1	J	0	D

To:
Subject:
Autachments:

MECHAMM MilO R
FWV: Coburg UGB Expenshon Analysis WORO DOCOMENT
Coburg $4 G 8$ Expansion analysis winth stits, qoc; coburg ugb Map potf

Froim: Howaid, Gordon [mailtorgordon, howardecstate, on us]
Sents Wedresday, Mäy 21, 2014 9:12 AM
To: CALLISTER Jacob (LCOG)
CEA MODRE ED (LCOG LISt); HOGLE Thamas (OR)
Subject RE: Cobugy UGB Expansion Analysis WORD DOCDIMENT
Heilo Jacob, thave atteched my revisions to the UGB locational arialosis. The main changes) bave made are 1) revising the Geol 14 factor analysis to reflect the 4 lpcational goais in the curtent Goal 14 rather than the seven such goals in the pre-200.5 Goal 29; and 2). Additional justification of the preferred alternatives based upon the methods sec forth in the
"McMinnvilie" Cout of Appeals decisiondn 201.,

Some commants:

The resideitial locational analysis presents an interesting "test case" ot how to apply the "McMinnvill e" locational analysis. Coburg's preferred alternative is eminently defendable from a practical sity-building perspective, but pare difficult: ro justify when pitt into the more rigid framework of the state arban growth boundary laws. I believe that what 1 have presented hace makes the best possible case for justitying Coburgs decision -but I think additional on-theground ${ }^{4}$ evidence in the form of findings would be desirable to back up the more broad assentions I have included in the edits.

The employment locational analysis is more straight-forward - the chaice fits in well vitte the tequired locational analysis. Howeyer, there remans one parddox-the cost af extending servites actoss the freewhy is a primary feason Why adufitional east of freeway study areas weren't inctuded for residential fand need, but the employment land need discounts thls issue and selects this parceh.

Abditionally, I would note, as we discussed last Wednesday, that the EOR's defemintation of any kind of industrial land need in Coburg, which is not based upon past trenids but iristead upan future economlc "asplrational" projectlons, may be subject to legal attack as has occurred th other cities in Dregol.

Ginally, I would nate that the amount of land to be added-over 100 acres $-1 /$ far in excess do the amount of land need identified (maximum 40 acres), understand the zancern about "cunting off" part of this agricultural property from unified ownership to the north, so I would suggesf an altertative inclusfon, as shown an the attached map. The revised area, while long and rectangulat, would be divided into two parcels that ane less so, and the remaining property would still be connected witf the ownership to the north. Without stich action, I think the employment land proposal would easily succumb to a lagal challenge. And any thought of uesignating this property as "highway commerclal" would be opposed by the depariment and most Hikely other parties, and would also easily succumb to a iegal challetige.

Please lat me know if you bave any questons.
Gordon Howand / wiban Plarning Speclatist
Communty Services Division
Oregon Dept, of Land Fanservation and Development
535 Capitol Street NE, Sulte 150 (Selem, OR 97301-2544
Direct; 503-934-0034 T Main: (503) 373-0050 ext 259

[^0]: (Reveved ho Ordinuriae 10-04, Eyfective 6.-fit)

