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DISSERTATION ABSTRACT 

 

Penghao Li 

 

Doctor of Philosophy 

 

Department of Chemistry and Biochemistry 

 

June 2017 

 

Title: Strained Aromatic Macrocycles as the Building Blocks for Functional Materials 

 

 

Commonly viewed as the shortest cross sections of armchair carbon nanotubes 

(CNTs), cycloparaphenylenes (CPPs) represent a unique class of conjugated macrocycles 

with rigid backbones. In addition to their utility in seeding the growth of uniform CNTs, 

these strained nanohoops and their derivatives have unique optoelectronic and 

supramolecular properties for potential applications in materials science. Herein we 

present our efforts in designing novel nanohoop architectures and new types of strained 

macrocycles that serve as building blocks for functional materials.  

Chapter I briefly reviewed the under-represented reactivity studies of strained 

aromatic macrocycles. Chapter II describes our early efforts in probing the structure-

property relationships of oligophenylene macrocycles focusing on the understanding of 

the influence of structural bending and cyclic conjugation on the optoelectronic 

properties. Chapter III reports the reactivity study of 1,4-anthracene-incorporated 

[12]CPP, a model substrate to examine the feasibility of using anthracene as the 

functional handle to crosslink nanohoops. Chapter IV presents the synthesis of a 

molecular propeller with three nanohoop blades and examines its unique hexagonal 

layered packing structure. In Chapter V, we disclose the synthesis of strained stilbene 

macrocycles suitable for ring-opening metathesis polymerization (ROMP) as well as the 
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initial ROMP studies of this monomeric system.   

This dissertation includes previously published and unpublished co-authored 

material. 
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CHAPTER I 

 

THE REACTIVITY OF STRAINED AROMATIC MACROCYCLES  

 

This chapter was written by myself and edited by Prof. Ramesh Jasti.  

Chapter II is based on co-authored work published in Organic Letters in 2014. Dr. 

Thomas Sisto performed electrochemical characterizations and was involved in the 

preparation of the main manuscript. Dr. Evan Darzi was involved in the development of 

the synthesis and assisted with the preparation of the supporting information. Prof. 

Ramesh Jasti edited this chapter and the original manuscript.  

Chapter III is based on published work in Organic Letters in 2016. Prof. Bryan 

Wong (UC Riverside) conducted the computational studies and wrote the corresponding 

section in the main manusript. Dr. Lev Zakharov performed the X-ray crystallographic 

analysis. The manuscript was edited by Prof. Ramesh Jasti. 

Chapter IV is based on published work in Angewandte Chemie in 2017. Dr. Lev 

Zakharov performed the crystollographic analysis and assisted with the preparation of 

supporting information. Editing was provided by Prof. Ramesh Jasti. 

Chapter V is based on unpublished work. Dr. Yosuke Ashikari and Prof. Andrew 

J. Boydston from University of Washington provided assistance with the polymerization 

studies as well as the initial characterization of the polymers. Dr. Lev N. Zakharov 

conducted the X-ray crystallographic studies. Editing was provided by Prof. Ramesh 

Jasti.  

 

 

1.1. Introduction 

Strained organic molecules provide a unique platform on which the reactivity 

associated with the inherent strain can be exploited to fulfill chemical transformations 

that are otherwise difficult or impossible.1-7 Representative examples are copper-free 

Huisgen 1,3-dipolar cycloaddition of cyclooctynes2-4 and cycloheptynes8 that has been 

widely employed in biological systems, and the ring opening metathesis polymerization 
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(ROMP) of norbornenes and oxonorbornes that gives access to functional polymeric 

materials with unique topologies.9-10  

Over the last two decades, conformationally distorted aromatic macrocycles have 

been gaining increasing attention due to their aesthetic molecular architectures, unique 

solid state packing motifs as well as useful physical properties for potential material 

applications.11-12 Similar to the case of strained small molecules, the imposed ring strain 

in macrocycles influences their chemical behaviors.6-7, 13 On one hand, this can lead to 

enhanced chemical reactivity compared to the acyclic (non-strained) analogues. On the 

other hand, it can cause instability and result in unwanted reaction pathways that 

complicate the synthetic design. Thus, understanding the mechanism of the strain-related 

reactivity in macrocycles is beneficial for the design and synthesis of novel macrocyclic 

architectures, and will offer guidance for the construction of complex functional materials 

using the strained macocycles as building blocks. 

This chapter focuses on the survey of the studies on the reactivity of strained 

macrocycles. Discussions are divided into three major aspects: (1) anomalous chemical 

transformations, (2) strain-promoted cycloadditions and (3) enthalpy-driven ring opening 

polymerization/oligomerization.  

 

 

1.2. Anomalous Chemical Transformations  

The abnormal chemical behaviors of strained cyclophanes have been well 

documented.6-7 As early as in 1978, Bickelhaupt and coworkers discovered that the photo 

irradiation induced the valence isomerization of strained [6]paracyclophane I.1 to form 

the Dewar-type isomer I.2.14 Later in 1990, Tobe and coworker observed a similar 

transformation wherein [6](1,4)naphthalenophane I.3 isomerized to I.4 upon photo 

irradiation (Figure 1.1).15 Such transformation was not possible for non-strained benzene 

and naphthalene derivatives under similar conditions. Tobe and coworkers attributed this 

unique valence isomerization to the extreme level of strain that forces the bridged ring to 

adopt a boat-like conformation thus lowering the activation energy of the transformation. 

The reverse isomerization to regain aromaticity was also observed upon thermal 

activation.  
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Figure 1.1. Reversible photochemical valence isomerization of [6]paracyclophane (I.1) 

and [6](1,4)-naphthalenophane (I.3).14-15 

 

 

Anthracene is well known to undergo photo-induced [4+4]-cycloaddition to give 

dimeric product joined at the C9 and C10 positions.16 However, irradiation of 

[6](1,4)anthracenophane I.5 afforded a series of [2+2]-dimers (e.g. I.6a-b) of which two 

anthracene moieties are connected at C1 and C2 (Figure 1.2).17 Neither the [4+4]-

photodimer I.7 nor the Dewar-type isomer I.8 were formed. The lack of stereoselectivity 

of the observed [2+2]-cycloaddition indicated that the process proceeds via the excited 

triplet state, which is different from the case of [4+4]-cycloaddition and valence 

isomerization that proceed via the excited singlet state. Thus, it was suggested that the 

distorted anthracene undergoes facile intersystem crossing upon photoexcitation, leading 

to the population of triplet state that favors the [2+2]-cycloaddition. Additionally, 

computational studies indicated that the C1-C2 bond has an enhanced double bond 

character which might also influence the photochemical process.  

 

 

 

Figure 1.2. Anomalous photo-induced [2+2]-dimerization of [6](1,4)-anthracenophane 

(I.5).17 

 

Furthermore, I.5 reacted rapidly with tetracyanoethylene (TCNE) in a polar 

solvent (dichloromethane), giving exclusively [2+2]-adduct I.9 instead of [4+2]-adduct 
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I.10 (Figure 1.3).18 This was also explained by the enhanced double bond character of 

C1-C2 bond. It was proposed that the reaction is likely to take place via a zwitterion 

intermediate I.11 that releases strain energy in the bridged ring.  

 

 

 
 

Figure 1.3. [2+2] Cycloaddition of I.5 with TCNE to form I.9 via possible zwitterion 

intermediate I.11.18  

 

 

In 2016, Jasti and coworkers reported the ring strain-releasing cationic 

rearrangement of a [8]cycloparaphenylene derivative I.12 (Figure 1.4).19 Subjecting I.12 

to cationic Scholl reaction conditions resulted in a complex mixture of isomeric products 

(e.g. I.13) rather than the target triphenylene cycle I.14. Computational investigations 

implied that the rearrangement via 1,2-aryl shift with a presumable cationic intermediate 

I.13a is thermodynamically and kinetically favored over the formation of I.14 via a 

possible intermediate I.14a. This study provides a valuable insight that chemical 

transformations involving cationic intermediates should be avoided when designing 

synthetic sequence using strained macrocycles as starting materials.  

 

 

Figure 1.4. Cationic rearrangement of nanohoop I.12 under Scholl reaction conditions.19 
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1.3. Strain Promoted Cycloaddtions 

Angle-strained cycloalkynes experience copper-free Huisgen 1,3-dipolar 

cycloaddition with azides.2-3 This facile transformation is well-tolerated in cellular 

system, and has been recognized as a powerful tool in bioorthogonal chemistry.3 There 

are so far only two examples that study the reactivity of strained macrocyclic alkynes.  

In 2016, Stoddart and coworkers reported a tetracationic bisalkyne cyclophane 

I.15 that undergoes tandem cascading cycloadditions with dienes and azides (Figure 

1.5).20 The enhanced reactivity of I.15 towards azides and dienes is attributed to the 

electron-deficient pyridinium units and the ring strain in the cyclophane backbone. 

Reactions of I.15 with cyclopentadiene and 1-azidoadamantane afforded bis-adducts I.16 

and I.17 respectively in high efficiency. It is noteworthy that the mono-adducts I.16a and 

I.17a were not observed during the reactions by NMR. Computational modeling 

indicated that the alkyne in the mono-adducts (I.16a and I.17a) is more strained than the 

alkynes in the starting material I.15. This resulted in a much more reactive alkyne for the 

consecutive cycloaddition. Such cooperative reactivity wherein the first reaction activates 

the second is expected to be of use to prepare complex molecular structures. 

 

 

 

Figure 1.5. Tandem cascading cycloadditions of tetracationic cyclophane I.15 via highly 

reactive mono-adducts I.16a and I.17a.20 
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A concurrent report from the Moore group disclosed the synthesis of a strained 

alkyne-embedded macrocycle I.21 that is capable of undergoing three-fold 1,3-dipolar 

cycloaddition with azides (Figure 1.6).21 Utilizing alkyne metathesis with catalyst I.19, 

V-shaped building unit I.18 was efficiently assembled into macrocycle I.20 in a 

quantitative yield. The subsequent reductive aromatization using sodium naphthalenide 

(NaNaph) afforded strained macrcocyle I.21 with a strain energy of 47.8 kcal/mol. The 

alkyne angle of I.21 was calculated to be 166°, which is comparable to the values of 

cycloalkynes reported by Bertozzi.3 When heated at 50 °C, I.21 reacted with three 

equivalent of azide I.22 to form tris-triazo compound I.23 as a mixture of two isomers. 

The thermodynamics of the multi-fold cycloaddition was theoretically investigated, 

suggesting that the enthalpy gain via release of strain in each cycloaddition increases as 

the reaction proceeds. This macrocycle represents a useful building block for complex 

carbon-rich architectures.  

 

 

 

Figure 1.6. Alkyne metathesis as an efficient strategy to synthesize macrocyclic alkyne 

(I.21) and the strain-promoted cycloaddition of I.21 with azide I.22.21 
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1.4. Enthalpy-Driven Ring Opening Polymerization/Oligomerization 

Ring-opening polymerization (ROP) is a well-established strategy in polymer 

chemistry to access structurally and chemically unique polymeric materials.22-23 With the 

development of stable and functionality-tolerant ruthenium-based metathesis catalysts, 

ring opening metathesis polymerization (ROMP) has emerged as one of the most popular 

methods of ROP.24 The most widely used ROMP monomers are strained bicyclic olefins 

including norbornenes and oxonorbornenes.9-10 The ring strain stored in the cyclic system 

provides the enthalpic driving force for chain growth and compensates for the entropy 

loss in the ROMP process. However, the enthalpy-driven ROMP of strained macrocyclic 

monomers is under explored with only a few examples. 

Bazan and coworkers pioneered the ROMP of strained paracyclophanes in 1994.25 

Schrock-type molybdenum carbene complex I.25 was discovered to initiate the 

polymerization of I.24 to produce polymer I.26 with high regio-regularity (98% cis-

double bond) and a narrow polydispersity of 1.1 (Figure 1.7a), indicating a living 

polymerization process. The ROMP of paracyclophanes was later applied to synthesize 

well-defined poly(para-phenylvinylene) (PPV), which was not achievable using the 

Gilch polymerization method. To circumvent the synthetic challenge posed by the 

insolubilty of unsubstituted PPV units, paracyclophane I.27 with a solubilizing silyloxy 

group was designed as the masked precursor for unsubstituted PPV polymers (Figure 

1.7b).26 Indeed, ROMP of I.27 with I.25 formed a soluble and monodispered polymer 

I.28, which was successfully converted to the target PPV I.29.  

 

 

Figure 1.7. a) ROMP of paracyclophane I.24 with Schrock initiator I.25. b) ROMP of 

paracyclophane I.27 toward the synthesis of PPV polymer I.29.26 
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In order to produce soluble PPV polymers with improved processibility, a series 

of substituted cyclophane precursors such as I.30-32 were designed by the groups of 

Turner27-28 and Bunz29 (Figure 1.8). Bench stable Ruthenium complexes I.33 or I.34 

were utilized as the initiator for the synthesis of highly functionalized polymer I.35-37. 

Satisfyingly, moderate to good polydispersities were achieved. Additionally, the 

molecular weight of these polymer could be controlled by varying the monomer to 

initiator ratio, demonstrating that the polymerizations are living and controlled. These 

synthetic developments have further allowed access to a variety of PPV polymers with 

different optical and electronic properties. 

 

 

 

 

Figure 1.8. a-c) ROMPable functionalized cyclophanes (I.30-32) as the precursors for 

PPV related polymers.27-29 

 

 

In 2008, Nuckolls and workers reported the living ROMP of dibenzo[a,e]-

[8]annulene I.38 which is composed of a “kinked” trans alkene that is distorted out of 

planarity and an expanded cis double with an angle of 142° (Figure 1.9).30 Polymer I.40 

with polydispersity below 1.1 was achieved using initiator I.39 and ancillary 

tricyclophenylphosphane and the molecular weight was controllable via the variation of 



9 

monomer to initiator ratio. Additionally, equal amount of cis and trans double bonds in 

the polymer backbone was observed in 1H NMR. This high regio-regularity was ascribed 

to the selective metathesis of the cis double bond which is more strained and possesses 

the majority of the HOMO (highest occupied molecular orbital) density.  

 

 

Figure 1.9. ROMP of kinked dibenzo[a,e]-[8]annulene I.38.30 

 

 

Strained ene-yne annulene I.41 was first synthesized by Sondheimer and 

coworkers in 1974.31 Due to the severe ring string introduced by the triple bond, I.41 is 

unstable and decomposes rapidly at ambient conditions. New reactivity of I.41 with 

alkene and alkyne metathesis catalysts was disclosed also by the Nuckolls group in 2008 

(Figure 1.10a).32 Interestingly, the metathesis reaction of I.41 with Ruthenium complex 

I.33 yielded structurally unique trimeric products I.42a-b, presumably via an alkyne-

trimerization mechanism. ROMP of I.41 was initiated by Schrock alkyne metathesis 

catalyst I.43 to form polymer I.42c with a polydispersity of 2.4. The relatively broad 

polydispersity was caused by the inefficient chain initiation as well as the low solubility 

of the monomer. Later in 2010, the same group designed a stable and functionalized 

[8]annulene I.44 with improved stability.33 Living ROMP of I.44 was achieved utilizing 

tungsten complex I.43 and 2-nitrophenol as activating ligand (Figure 1.10b). The 

resulted monodispersed (PDI < 1.1) polymer I.45 possess a unique chemical sequence 

that can be exploited to create novel properties. 
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Figure 1.10. a) Reactivity of a strained ene-yne annulene (I.41) with alkene metathesis 

catalyst I.33 and alkyne metathesis catalyst I.42.32 b) ROMP of strained alkyne I.44.33 

 

 

In 2001, reports from Colquhorn and coworkers described the ring-expanding 

oligomerization of a strained ether-sulfone macrocycle I.47, which was synthesized via 

nickel-mediated intramolecular homocoupling of I.46 (Figure 1.11).34 The high ring 

strain is evident as crystallographic analysis showed that the biphenylene unit is severely 

distorted from collinearity. In dilute solution at 150 °C, the ring expansion of I.47 was 

triggered by catalytic amount of nucleophilic fluoride ion, forming less strained larger 

cyclic oligomers I.48.   

 

 

 

Figure 1.11. Ring-expanding oligomerization of strained macrocycle I.47 synthesized 

from intramolecular homocoupling of I.46.34 
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Four years later in 2005, the same group reported the first example of enthalpy-

driven nucleophilic ring opening polymerization (ROP) of macrocyclic monomers 

(Figure 1.12a).35 Similar to the synthesis of I.47, nickel-catalyzed intramolecular 

coupling was applied to access the strained biaryl macrocycle I.50 from the precursor 

I.49. ROP of I.50 was best initiated with potassium 4,4’-biphenoxide, producing soluble 

and high molecular weight polymer I.51 with high conversion. A random distribution of 

monomer sequence was observed for I.51, which is due to the existence of two ring-

opening sites on the macrocycle. In comparison, the analogous polymer I.52 prepared 

form the polycondensation method exhibited simple alternating monomer consequence 

(Figure 1.12b). Compared to I.52, polymer I.51 exhibited higher viscosity, a key 

parameter for thermoplastic processing, demonstrating that ROP of strained macrocyclic 

monomers is a useful strategy to synthesize high performance polymeric materials.  

 

 

 

Figure 1.12. a) Ring opening polymerization of strained biaryl macrocycle I.50 to form 

random polymer I.51. b) Polycondensation to synthesize polymer I.52.35 
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1.5. Bridge to Chapter II 

Central to the theme of this dissertation is the design of strained aromatic 

macrocycles as building blocks for the construction of function materials. This chapter 

serves to provide a background for strain-promoted transformations in macrocyclic 

systems, an aspect that is crucial to the whole dissertation. In Chapter II, we describe our 

early efforts in systematically probing the structure-property relationships of strained 

oligophenylene macrocycles.  
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CHAPTER II 

 

THE EFFECTS OF CYCLIC CONJUGATION AND BENDING ON THE 

OPTOELECTRONIC PROPERTIES OF PARAPHENYLENES  

 

From Li, P.; Sisto, T. J.; Darzi E. R.; Jasti, R., The Effects of Cyclic Conjugation 

and Bending on the Optoelectronic Properties of Paraphenylenes. Org. Lett. 2014, 16 (1), 

182-185.    

Cycloparaphenylenes (CPPs) have optoelectronic properties that are unique when 

compared to their acyclic oligoparaphenylene counterparts. The synthesis and 

characterization of two bent heptaphenyl-containing macrocycles has been achieved in 

order to probe the effects of bending and cyclic conjugation on the properties of the 

CPPs. The study suggests that both bending and cyclic conjugation play a role in the 

novel properties of the CPPs. 

 

 

2.1. Introduction 

The [n]cycloparaphenylenes (CPPs) are structurally unique macrocycles 

consisting of n para-linked benzene units (Figure 2.1). Since first synthesized and 

characterized in 2008, numerous routes to a variety of [n]CPPs have been reported by the 

Jasti,1-6 Itami,7-10 and Yamago11-14 laboratories. Although often cited for their potential 

application in the bottom-up growth of uniform carbon nanotubes,15-18 the CPPs have 

unique optoelectronic properties in their own right. As new conjugated organic materials, 

the CPPs are attractive due to their size-dependent optoelectronic properties,1,2,12 as well 

as their guest-host properties4,19-21 and highly porous solid state structures.5,8,9,13 The 

CPPs have increasing HOMO energies and decreasing LUMO energies (narrowing band 

gap) with decreasing molecular size.12 This behavior is exactly opposite to that observed 

in the case of acyclic paraphenylenes.21-22 In addition, solubility of the CPPs is vastly 

improved as compared to the linear oligoparaphenylenes, presumably due to differences 

in the number of intermolecular π-π contacts accessible when comparing nonplanar 

compounds to flat linear compounds (vide infra). All known CPPs (sizes [6]-[18]CPP) 
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are soluble, while unsubstitued paraphenylenes larger than sexiphenyl are completely 

insoluble.23 

When rationalizing the origin of the unique optoelectronic properties of the CPPs 

versus acyclic oligoparaphenylenes, the most obvious structural differences are the bent 

phenylene units,  the cyclic conjugation, and the smaller torsional angles of the CPPs.24 A 

fundamental understanding of the effects that structure has on optoelectronic properties is 

paramount when designing better-performing conjugated organic materials.24-28 To probe 

the effects these structural characteristics have on the properties of the CPPs, we have 

synthesized alkyl-tethered heptaphenyl-containing macrocycles II.1 and II.2 (Figure 

2.1). Drawing inspiration from the related studies by Bodwell and coworkers,29-32 we 

recognized that we can systematically vary the degree of bending of the heptaphenyl 

moiety through the insertion of various length alkyl chains into the backbone of a 

macrocycle. This alkyl tether also serves to break the conjugation of the macrocycle. 

Comparison of [7]CPP to macrocycle II.1 by cyclic voltammetry, absorption, and 

fluorescence experiments allows for an approximation of the effect of cyclic conjugation 

due to their similar degrees of bending and torsional angles (vide infra). Comparison of 

II.1, II.2, and linear heptaphenyl II.3 allows for insight into the effects of bending.  

Herein, we report the syntheses and characterization of II.1 and II.2 in order to gain 

insight into these phenomena. 

 

 

Figure 2.1. DFT optimised geometries of [7]CPP, II.1 and II.2, along with previously 

reported linear heptaphenyl II.3.22 
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2.2. Results and Discussion 

2.2.1. Synthesis 

Our strategy for the synthesis of II.1 and II.2 relies upon the 3,6-syn-

dimethoxycyclohexa-1,4-diene moieties of fragment II.6 as masked arene units to 

provide the curvature necessary for a macrocyclization reaction with tethers II.9 and 

II.10 (Schemes 2.1 and 2.2). Subsequent aromatization of the resultant macrocycles 

would lead to II.1 and II.2. To synthesize II.6, we began with lithium halogen exchange 

of II.42 followed by addition of monoketal protected benzoquinone (Scheme 2.1). 

Subsequent deprotection of the crude reaction mixture at room temperature with 10% 

aqueous acetic acid yields hydroxy ketone II.5 in 90% yield over 2 steps. Deprotonation 

of II.5 with NaH at −78 °C leads to a charged sodium alkoxide that directs addition of 

lithiated 1,4-bromochlorobenzene in a diastereoselective manner.2 This addition is 

followed by a simple iodomethane quench to lead directly to dichloride II.6 in 90% yield. 

Noteably, this synthesis can readily produce tens of grams of II.6 from commercially 

available quionone monoketal using standard two-liter glassware. Synthesis of alkyl 

tethered coupling partners II.9 and II.10 began with dibromides II.733 and II.8,34 and is 

achieved in 90% and 99% yield respectively through simple lithium halogen exchange 

and subsequent quench with isopropoxyboronic acid pinacol ester (Scheme 2.1). 

With the necessary fragments in hand, we turned our attention to preparing the 

macrocyclic precursors to structures II.1 and II.2. A Suzuki coupling34 of dichloride II.6 

and either bisboronate II.9 or II.10 formed macrocycles II.11 and II.12 in 14% and 21% 

yield respectively. The yields are predictably low due to the high strain of the 

macrocycles and the indiscriminate nature of the coupling reaction, which leads to high 

amounts of oligomerization. Subjecting macrocycles II.11 and II.12 to single electron 

reductant sodium napthalenide at −78 °C gives bent heptaphenyls II.1 and II.2 in 39% 

and 47% yield respectively. Characterization by NMR (1H and 13C), IR, and MALDI-

TOF confirmed the structural assignment.  
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Scheme 2.1. Synthetic route to coupling partners  II.6, II.9 and II.10. 

 

 

Scheme 2.2. Macrocyclization and aromatization reactions to prepare bent p-

heptaphenyls II.1, and II.2. 

 

 

2.2.2. Photophysical and Electrochemical Properties  

With the syntheses complete, we next probed the electronic differences between 

each molecule utilizing cyclic voltammetry (Table 2.1). Similar to all CPPs, [7]CPP 

shows a reversible peak in the negative potential range corresponding to a reduction wave 

with a half-wave potential of -2.57 V (vs. Fc/Fc+), along with a reversible peak in the 
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possitive potential range, corresponding to an oxidation wave with a half-wave potential 

of 0.53 V (vs. Fc/Fc+). Compound II.1 exhibits a quasi-reversible peak corresponding to 

a reduction wave, however the half-wave potential is significantly higher at -2.74 V (vs. 

Fc/Fc+). Additionally, the oxidation of II.1 is irreversible with an on-set potential at 0.63 

V (vs. Fc/Fc+).  Since macrocycle II.1 contains phenylene units close to as bent as 

[7]CPP and the torsional angles between phenyl units are also similar (vide infra), one 

can conclude that cyclic conjugation plays a substantial role in raising the HOMO and 

lowering of the LUMO in the CPPs. Similar to macrocycle II.1, structure II.2 has a 

quasi-reversible peak corresponding to a reduction wave with a half-wave potential at -

2.75 V (vs. Fc/Fc+) and an irreversible peak corresponding to an oxidation wave with an 

onset potential of 0.71 V (vs. Fc/Fc+). Macrocycles II.1 and II.2 are very similar with 

only a slight increase in potentials as compared to the difference between [7]CPP and 

II.1. The oxidation potential of II.3, as reported by Rathore,21 shows a first half-wave of 

1.4 V versus SCE, which correlates to a half-wave potential of 1 V versus Fc/Fc+. This 

large difference in oxidation potentials between II.2 and II.3 provides experimental 

evidence for bending in oligophenylenes also leading to narrowing of bandgaps (i.e. 

raising of the HOMO and lowering of the LUMO). 

 

 

Table 2.1. Cyclic voltammetry data for [7]CPP,  II.1, II.2 and II.3. (V versus 

ferrocene/ferrocenium couple) 

entry Ered (V) (half-wave) Eox (V) (onset) 

[7]CPP 2.57 0.47 

II.1 2.74 0.63 

II.2 2.75 0.71 

II.322 N/A 1.0 

 

 

Next we investigated the UV-Vis and fluorescence spectra of the new bent 

heptaphenyl-containing macrocycles in order to compare with [7]CPP.  Macrocycle II.1  

displayed an absorption maximum of 321 nm along with a small shoulder peak at 390 nm 

(Figure 2.2 and Table 2.2). The extinction coeffecients for these features are 5.15 × 104 

M-1cm-1 and 0.814 × 104 M-1cm-1 respectively. Macrocycle II.2 has a similar absorption 
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pattern, displaying one large absorption maximum and one smaller shoulder peak (λabs1 = 

319 nm, ε1 = 4.45 × 104 M-1cm-1; λabs2 = 375 nm, ε2 = 1.43 × 104 M-1cm-1). For 

comparison, [7]CPP displays an absorption maximum at 340 nm (ε = 6.58 × 104 M-1cm-1) 

along with a very weak shoulder peak at 408 nm (ε = 0.316 × 104 M-1cm-1). Linear 

heptaphenyl II.3 displays a single absorption at 326 nm with an extinction coefficient of 

9.16 × 104 M-1cm-1.22 Noteably, the HOMO-LUMO transition that is forbidden in the 

CPPs (the minor red-red-shifted absorption) becomes more prominent as symmetry is 

broken by the alkyl tether.24,36,37 A large difference also exists between the wavelength of 

the HOMO-LUMO transitions of the bent molecules when compared to the linear 

paraphenylene, consistent with cyclic voltammetry data. TD-DFT calculations confirm 

this trend by showing that the λHOMO-LUMO blue shifts while the oscillator strength 

increases moving from [7]CPP through the methylene spaced heptaphenyl macrocycles 

(1-20 methylenes, see Figure 2.12). Fluorescence data was also collected for each of the 

final compounds (Figure 2.2 and Table 2.2). [7]CPP displays a weak fluorescence 

emission at 588 nm (ϕf = 0.006), while II.1 and II.2 emit strongly at blue-shifted values 

of 502 nm (ϕf = 0.23) and 469 nm (ϕf = 0.25). Acyclic analogue II.3 is reported to emit at 

408 nm, interestingly with a much higher quantum yield of 1.0.22  

 

 

Figure 2.2. UV-vis absorption and fluorescence for [7]CPP,  II.1, and II.2. 
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Table 2.2. Summary of the experimental and calculated optoelectronic data of [7]CPP,  

II.1, II.2 and II.3. 

entry λabs1 

 (nm) 

ɛ1×104 

 (M-1cm-1) 

λabs2 

(nm) 

ɛ2×104 

 (M-1cm-1) 

λem 

 (nm) 

φF λ’abs1  

(nm) 

λ’abs2 

(nm) 

[7]CPP 340 6.58 408 0.316 588 0.006 340 475 

II.1 321 5.15 390 0.814 502 0.23 321 412 

II.2 319 4.45 375 1.43 469 0.25 325 395 

II.39 326 9.16 NA NA 408 1.0 343 NA 

 

 

2.2.3. Theoretical Investigation 

In order to further understand the molecular geometry and electronic structures of 

this class of molecules, we performed theoretical calculations for bent heptaphenyls with 

methylene tether lengths from one to twenty carbons (Figure 2.3). [7]CPP and linear p-

heptaphenyl were also calculated for comparison. Predictably, as the tether is increased in 

size the heptaphenyl becomes less bent. As this occurs, the HOMO energies decrease 

while the LUMO energies increase, though structural anomalies provide small 

fluctuations within the larger overall trend. In addition, we observe a trend of slightly 

increasing average torsional angles when moving from [7]CPP to macrocycle II.1 to 

macrocycle II.2 to acyclic analogue heptaphenyl (25.5°, 29.9°, 30.3°, and 36.3° 

respectively). When evaluating the data, the most important finding was the significant 

difference between the bandgap of [7]CPP and any tethered macrocycle, presumably due 

to cyclic conjugation. Furthermore, another large difference exists between the HOMO 

energy level of the largest tethered macrocycle and linear heptaphenyl.  

 

 

2.3. Outlook and Conclusion 

In the last eight years, the cycloparaphenylenes have become synthetically 

accessible in various sizes and on gram-scale. Throughout the development of these 

syntheses, characterization of the optoelectronic properties of the cycloparaphenylenes 

has revealed striking differences when compared to acyclic paraphenylenes. We have 

demonstrated experimentally that there are two structural features, bending and cyclic 

conjugation, that play a prominent role in the optoelectronic differences between the 

CPPs and OPPs. By breaking the cyclic conjugation of [7]CPP with one methylene, we 
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have shown that this similarly bent heptaphenyl II.1 is significantly harder to oxidize and 

reduce. Decreasing the bending of the heptaphenyl unit by increasing the macrocycle 

tether length results in a minor increase in the oxidation and reduction potentials. 

Similarly, we have shown that bent heptaphenyl has substantially different optical 

properties compared to acyclic heptaphenyl, while being much easier to oxidize and 

reduce. This series of compounds has allowed for the experimental demonstration that the 

bending and cyclic conjugation of the CPPs provides optoelectronic characteristics and 

solubility rendering them novel building blocks to new conjugated organic materials. 

 

Figure 2.3. DFT calculated HOMO and LUMO energies for [7]CPP, liear p-heptaphenyl, 

p-heptaphenyl macrocycles with tether length from 1 to 20 methylenes.  

 

 

2.4. Experimental Sections 

2.4.1. General Experimental Details 

Moisture and oxygen sensitive reactions were carried out under nitrogen 

atmosphere using standard syringe/septa technique. All the glassware was thoroughly 

washed, dried in oven at 140°C overnight and cooled under nitrogen atmosphere before 

use. All reagents were obtained commercially. Bis(4-bromophenyl)methane and 1,6-

Bis(4-bromophenyl)-n-hexane were prepared following known literature procedure.33-34  

Tetrahydrofuran, dichloromethane and dimethylformamide were dried by filtration 

through alumina according to the method descried by Grubbs.38 Silica column 
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chromatography was conducted with Zeochem Zeoprep n60 Eco 40-63 µm silica gel. 

Thin Layer Chromatography (TLC) was performed using Sorbent Technologies Silica 

Gel XHT TLC plates. Developed plates were visualized using UV light at wavelength of 

254 and 365 nm.  

1H NMR spectra and 13C NMR spectra were recorded respectively at 500 MHz 

and 125 MHz on a Varian VNRS. Deuterated chloroform was used as NMR solvent for 

all the compounds and all spectra were referenced to TMS. The matrix used for MALDI 

was a solution of 7,7,8,8-tetracyanquinodimethane in THF with 1% silver trifluoroacetate 

as a promoter.38 

 

2.4.2. Synthetic Details 

 

Scheme 2.3. Synthesis of key intermediates  II.4, II.9 and II.10. 

 

4'-Chloro-1-hydroxy-[1,1'-biphenyl]-4(1H)-one II.14 

 

The procedure for II.14 was adapted from prior literature procedures.39  
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4-Chloro-1-bromobenzene (74.3 g, 0.388 mol, 1.5 eq) was dissolved in THF (300 

mL) and cooled to 78°C. n-BuLi (2.5 M in hexanes, 120 mL, 0.427 mol, 1.1 eq) was 

added dropwise via addition funnel. The reaction was stirred for 30 minutes at 78°C to 

give the lithiated species as a milky white solution. 

After 30 minutes, II.13 (15 g, 97.4 mmol, 1 eq) was injected neat. The reaction 

was stirred for 1.5 hours at 78°C. The reaction was quenched with H2O and allowed to 

warm to room temperature. The mixture was extracted with DCM. After separation of the 

phases, the aqueous layer was washed with DCM (3 × 50 mL). The combined organic 

layers were washed with brine and dried over sodium sulfate before being filtered and 

concentrated down to a solid. The solid was carried on crude.  

The solid from above was dissolved in acetone (150 mL). An equal volume of 

10% AcOH (150 mL) was added. The solution was refluxed for 1 hour. Following 

completion of the reaction, the mixture was cooled to room temperature and quenched 

with saturated bicarbonate. The acetone was removed by rotary evaporation. The 

remaining aqueous layer was extracted with DCM (3 × 100 mL). The combined organic 

layers were washed with brine and dried over sodium sulfate before being concentrated 

down to a yellow solid. The solid was then purified by washing with hexanes to yield a 

white solid (32 g, 65% yield). m.p. 172-173°C. IR (neat): 3381, 3104, 3070, 1662, 1617, 

1485, 1397, 1282, 1171, 1093, 1059, 1010, 946, 867, 829, 725 cm-1; 1H NMR (500 MHz, 

CDCL3): δ(ppm) 7.42 (d, J = 10.8 Hz, 2H, Ar-H), 7.35 (d, J = 10.8 Hz, 2H, Ar-H), 6.86 

(d, J = 12.5 Hz, 2H, CH=CH), 6.24 (d, J = 12.5 Hz, 2H, CH-CH), 2.6 (s, 1H, OH); 13C 

NMR(125 MHz, CDCl3): δ(ppm) 185.69, 150.55, 137.35, 134.61, 129.29, 127.31, 

127.01, 70.86; HRMS (Q-TOF, ES+) m/z calcd for C12H10ClO2 (M+H)+ 221.0369, found 

221.063. 

 

(1's,4's)-4-bromo-4''-chloro-1',4'-dimethoxy-1',4'-dihydro-1,1':4',1''-terphenyl II.4 

 

II.14 (30 g, 0.14 mol, 1 eq) was dissolved in dry THF (250mL) in a flame dried 

500mL flask equipped with a stir bar and was cooled to −78°C for 1 hour. In a separate 
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flame dried 1 L flask equipped with as stir bar was added 1,4-dibromobenzene (70.5 g, 

0.30 mol, 2.2eq) and dry THF (300 mL). This was cooled to −78°C for 1 hour. NaH (7.1 

g, 0.18 mol, 1.3) was added to the cooled ketone as a solid and was allowed to stir for 2 

hours. Meanwhile, n-BuLi (130.3 mL, 0.13 mol, 2.3 eq) was added drop wise over 1 hour 

to the 1,4-dibromobezene solution. The deprotonated quinol was then transferred to the 1-

bromo-4-lithiobenzene via cannulation. The resulting slurry was allowed to stir at −78°C 

for 2 hours at which point iodomethane (84.6 mL, 1.36 mol. 10 eq) was added to the 

slurry followed by dry DMF (200mL). The reaction was allowed to warm to room 

temperature overnight while stirring. The reaction was quenched with H2O and extracted 

Et2O (3 × 200 mL). The combined organic layers were washed  H2O (3 × 300 mL), brine 

(1 × 300 mL), dried over Na2SO4.
 The organic layer was concentrated under reduced 

pressure to give a yellow oil. This was diluted with hexane (200 mL) which was then 

reduced down under reduced pressure to give an off yellow solid. The solid was 

recrystallized in hot hexanes to give the product as a white crystalline solid (44.1 g, 

80%).  Characterization was consistent with what was previously reported. 2 

 

(1''s,4''s)-4'''-chloro-1,1'',4''-trimethoxy-1'',4''-dihydro-[1,1':4',1'':4'',1'''-quaterphenyl]-

4(1H)-one II.5 

 

II.4 (12.4 g, 30.5 mmol, 1 eq) was added to a dry flask and dissolved in dry THF 

(200 mL). The solution was cooled to −78°C. n-BuLi (2.5 M in hexanes, 13.5 mL, 33.6 

mmol, 1.1 eq) was added dropwise over 5 minutes. After stirring at 78°C for 10 

minutes, II.13  (6.12 g, 39.7 mmol, 1.3 eq) was added neat. The reaction was stirred for 1 

hour before being quenched with H2O. The aqueous layer was then washed with diethyl 

ether (3 × 100 mL). The combined organic layers were washed with brine and dried over 

Na2SO4, and concentrated down to a yellow oil. Upon trituration and washing with cold 

hexanes, the oil became solid. This solid was dissolved in acetone (50 mL) and 5% 
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AcOH/H2O was added (50 mL). The solution was stirred at room temperature for 1 hour. 

The solution was neutralized with sodium bicarbonate and extracted with diethyl ether (3 

× 100 mL). The combined organic layers were washed with brine and dried over Na2SO4. 

The solution was concentrated under reduced pressure to yield a solid. The solid was 

washed with cold hexanes to give white crystals (4.5 g, 85%). m.p. 168-170° C. IR (neat) 

3419, 2936, 2106, 1661, 1621, 1486, 1401, 1031, 1014, 946, 855, 833, 729  cm-1;  1H 

NMR (500 MHz, CDCl3): δ(ppm) 7.41 (d, J = 8.6 Hz, 2H, Ar-H), 7.38 (d, J = 8.6 Hz, 

2H, Ar-H), 7.32 (d, J = 8.6 Hz, 2H, Ar-H), 7.27 (d, J = 8.6 Hz, 2H, Ar-H), 6.86 (d, J = 10 

Hz, 2H, CH=CH), 6.20 (d, J = 10 Hz, 2H, CH=CH), 6.08 (s, 4H, CH=CH), 3.42 (s, 6H, 

OCH3); 
13C NMR (100 MHz, CDCl3): δ(ppm) 185.90, 150.88, 143.79, 142.05, 138.33, 

133.68, 133.65, 133.49, 128.75, 127.60, 127.09, 126.73, 125.64, 74.72, 74.58, 71.05, 

52.25; HRMS (Q-TOF, ES+) m/z calcd for C26H24ClO4 (M+H)+: 435.1363, Found: 

435.1341. 

 

(1's,4's)-4,4''''-dichloro-1',1''',4',4'''-tetramethoxy-1',1''',4',4'''-tetrahydro-

1,1':4',1'':4'',1''':4''',1''''-quinquephenyl II.6 

 

Ketone II.5 (10 g, 23 mmol, 1 eq) and 1-bromo-4-chlorobenzene (9.68 g, 51 

mmol, 2.2 eq) were added to a dry round bottom flask and dissolved in dry THF (200 

mL). The solution was cooled to 78°C for 1 hour. To this solution was added NaH (1.1 

g, 27.6 mmol, 1.2 eq) as a solid. The reaction was stirred for 2 hours. After 2 hours, n-

BuLi (22.3 mL, 55.6 mmol, 2.4 eq) was added drop-wise. The reaction was stirred for 2 

hours at which time MeI (14.3 mL, 230 mmol, 10 eq) and dry DMF (100 mL) were 

added. The reaction was allowed to warm to room temperature overnight while stirring. 

The reaction was quenched with H2O and extracted with diethyl ether (3 × 200 mL). The 

combined organic layers were washed with brine, dried with Na2SO4 and concentrated 

under reduced pressure to give a solid. The solid was washed with cold hexanes to give 

the product as a white powder (10 g, 76%). m.p. 150-153° C. IR (neat): 2985, 2940, 
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2897, 2824, 1489, 1402, 1174, 1083, 949, 824, 770 cm-1; 1H NMR (500 MHz, CDCl3): 

δ(ppm) 7.29 (overlap, 8H, Ar-H), 6.10 (d, J = 10.4 Hz, 4H, CH=CH), 6.05 (d, J= 10.4 

Hz, 4H, CH=CH), 3.42 (s, 6H, OCH3); 
13C NMR( 100 MHz, CDCl3): δ(ppm) 142.65, 

141.96, 133.62, 133.37, 133.06, 128.46, 127.42, 126.02, 74.55, 74.43, 52.02; HRMS (Q-

TOF, ES+) m/z calcd for C34H33Cl2O4 (M+H)+:  575.1756, found 575.1756. 

 

Bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methane II.9 

 

Bis(4-bromophenyl)methane (Compound II.7) was synthesized following 

literature procedure.33 

II.7 (4.325 g, 13.27 mmol, 1 eq) was dissolved in 200 mL THF and cooled to 

78°C. Then n-BuLi (10.6 mL, 26.53 mmol, 2 eq) was syringed into the cooled solution 

over the course of 3 min. Immediately, neat isopropyl pinacol borate (10.8 mL, 53.06 

mmol, 4 eq) was quickly added in stream. The mixture was stirred at 78°C for 5 min 

and allowed to warm to room temperature slowly. After two hours, the reaction was 

carefully quenched with water (100 mL). 

The mixture was extracted with dichloromethane (3 × 100 mL) and combined the 

organic layers were washed with brine and dried over sodium sulfate. After concentrating 

under reduced pressure, the crude product was put on high vacuum to remove volatile 

which yielded 1 as white powder (5.02 g, 90%). m.p. 229-230 °C. IR (neat) 2975, 2939, 

2861, 1609, 1399, 1358, 1319, 1164, 1106, 1088, 1019, 962, 858, 782, 677 cm-1; 1H 

NMR (500 MHz, CDCl3): δ(ppm) 7.73 (d, J = 10 Hz, 4H, Ar-H), 7.18 (d, J = 10 Hz, 4H, 

Ar-H), 4.00 (s, 2H, CH2), 1.32 (s, 24H, CH3); 
13C NMR (125MHz, CDCl3): δ(ppm) 

144.10, 135.01, 128.42, 83.66, 42.31, 24.86, C-B signal not observed. HRMS (TOF MS 

ES+) m/z calcd for C25H35B2O4 (M+H)+: 421.2721, Found: 421.2730. 
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1,6-Bis(4-bromophenyl)hexane II.8 

 

II.15 was prepared following literature procedure.34 

II.15 (3.125 g, 7.368 mmol, 1 eq) was dissolved in a mixture of 50 mL DCM and 

TFA. Then triethylsilane (11.8 mL, 73.68 mmol, 10 eq) was slowly added and solution 

was stirred at room temperature overnight. After cooled the reaction with salt-ice-bath for 

30 minuesi, the reaction was quenched with concentrated sodium hydroxide solution until 

TFA was fully neutralized (monitored by pH paper). Afterwards, the mixture was 

extracted with DCM (3 × 70 mL). The combined organic phase was sequentially washed 

with water (2 × 100 mL) and brine solution (100 mL). After dried over sodium sulfate, 

the solution was concentrated and resulting colorless oil was purified by column 

chromatography (silica, hexanes) to yield II.15 as white solid (2.43 g, 83%, m.p. 63-64 

°C). IR (neat) 2927, 2852, 1484, 1466, 1300, 1068, 1006, 798; 1H NMR (500 MHz, 

CDCl3): δ(ppm) 7.39 (d, J = 8.2 Hz, 4H, Ar-H), 7.04 (d, J = 8.2 Hz, 4H, Ar-H),, 2.55 (t, J 

= 7.7 Hz, 4H, CH2), 1.59 (m, 4H, CH2), 1.34 (m, 4H, CH2); 
13C NMR (125 MHz, 

CDCl3): δ(ppm) 141.63, 161.26, 130.15, 119.30, 35.28, 31.17, 28.94. Characterization 

was consistent with what was previously reported.34 

 

1,6-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)hexane II.10 

 

The procedure is same as making II.9. II.8 (2.259 g, 5.702 mmol, 1 eq), THF 

(100 mL), n-BuLi (4.75 mL, 11.40 mmol, 2 eq), neat isopropyl pinacol borate (4.65 mL, 

22.81 mmol, 4 eq), product as white solid (2.764 g, 98.8%, m.p. 124-125 °C). IR (neat) 

2978, 2924, 2853, 1609, 1515, 1271, 1140, 1019, 961, 859, 822, 739, 656;  1H NMR (500 

MHz, CDCl3): δ(ppm) 7.74 (d, J = 8.2 Hz, 4H, Ar-H), 7.19 (d, J = 8.2 Hz, 4H, Ar-H), 

2.61 (t, J = 7.7 Hz, 4H, CH2), 1.62 (m, 4H, CH2), 1.35 (m, 28H, CH3 and CH2); 
13C NMR 

(125 MHz, CDCl3): δ(ppm) 146.27, 134.82, 127.88, 83.58, 36.13, 31.21, 29.09, 24.87, C-
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B signal not observed. HRMS (TOF MS ES+) m/z calcd for C30H44B2O4Na (M+Na)+: 

513.3323, found 513.3333. 

 

(31s,34s)-31,34,51,54-tetramethoxy-1,2,4,6,7(1,4)-pentabenzena-3,5(1,4)-

dicyclohexanacyclooctaphane-32,35,52,55-tetraene II.11 

 

II.6 (500 mg, 0.869 mmol, 1 eq), II.9 (401 mg, 0.955 mmol, 1.1 eq), Pd(OAc)2 

(32 mg, 0.139 mmol, 0.16 eq), K3PO4 (369 mg, 1.738 mmol, 2 eq) and S-Phos (143 mg, 

0.348 mmol, 0.4 eq) were charged in 1 L round bottom flask equipped with a condenser 

and a stir bar. The flask was evacuated and backfilled with nitrogen for 10 times, after 

which 300 mL degassed DMF/H2O (9:1) was added under nitrogen atmosphere. The 

mixture was heated at 100 °C and stirred for 18 hours. 

Upon cooling to room temperature, the reaction mixture was passed through a 

celite plug. The filtrate was added H2O (100 mL) and extracted with DCM (3 × 100 mL). 

The combined organic layer was washed with 5 wt% LiCl aqueous solution (10 × 250 

mL) and brine (250 mL), then dried over anhydrous Na2SO4. The solution was 

concentrated and crude was purified by column chromatography (silica, 0% to 15% ethyl 

acetate in DCM) to yield product as white solid (79 mg, 13.6%). d.p. > 310 °C. IR (neat) 

3023, 2945, 2925, 2820, 1493, 1433, 1187, 1115,850, 816, 716; 1H NMR (500 MHz, 

CDCl3): δ(ppm) 7.39 (d, J = 8.5 Hz, 4H, Ar-H), 7.30 (s, 4H, Ar-H), 7.24 (d, J = 8.5 Hz, 

4H, Ar-H), 7.20 (d, J = 8.3 Hz, 4H, Ar-H), 7.12 (d, J = 8.3 Hz, 4H, Ar-H), 6.11 (d, J = 

10.3 Hz, 4H, CH=CH), 5.98 (d, J = 10.3 Hz, 4H, CH=CH), 3.92 (s, 2H, CH2), 3.43 (s, 

6H, CH3), 3.37 (s, 6H, CH3); 
13C NMR (125 MHz, CDCl3): δ(ppm) 143.23, 142.94, 

142.02, 140.78, 138.54, 133.26, 132.84, 128.01, 127.70, 127.51, 126.02, 125.94, 74.26, 

73.94, 52.20, 51.63, CH2 peak was not detected due to the poor solubility in available 

deuterated solvent; MALDI-TOF m/z calcd for C47H42O4 (M)+: 670.31, found: 670.61. 
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(31s,34s)-31,34,51,54-tetramethoxy-1,2,4,6,7(1,4)-pentabenzena-3,5(1,4)-

dicyclohexanacyclotridecaphane-32,35,52,55-tetraene II.12 

 

The procedure is same as II.11. II.6 (500 mg, 0.869 mmol, 1 eq), II.12 (426 mg, 

0.869 mmol, 1 eq), Pd(OAc)2 (32 mg, 0.139 mmol, 0.16 eq), K3PO4 (369 mg, 1.738 

mmol, 2 eq) and S-Phos (143 mg, 0.348 mmol, 0.4 eq), column chromatography (silica, 

0% to 20% ethyl acetate in DCM), product as colorless oil (133mg, 20.6%). m.p. 213-214 

°C. IR (neat) 3022, 2990, 2852, 2820, 1493, 1450, 1085, 1005, 946, 799, 719; 1H NMR 

(500 MHz, CDCl3): δ(ppm) 7.62 (d, J = 8.4 Hz, 4H, Ar-H), 7.54 (d, J = 8.4 Hz, 4H, Ar-

H), 7.44-7.48 (overlap, 8H, Ar-H), 6.96 (d, J = 8.1 Hz, 4H, Ar-H), 6.12 (s, 8H, CH=CH), 

3.48 (s, 6H, CH3), 3.45 (s, 6H, CH3), 2.50-2.60 (m, 4H, CH2), 1.60-1.72 (m, 4H, CH2), 

1.12-1.22 (m, 4H, CH2); 
13C NMR (125 MHz, CDCl3): δ(ppm) 142.92, 142.44, 141.09, 

140.34, 137.58, 133.35, 133.15, 129.21,  126.73, 126.63, 126.38, 126.04, 74.65, 74.47, 

52.01, 51.92, 33.22, 29.44, 25.71; MALDI-TOF m/z calcd for C52H52O4 (M)+: 740.39, 

found: 740.83. 

 

1,2,3,4,5,6,7(1,4)-heptabenzenacyclooctaphane II.1 

 

II.11 (79 mg, 0.118 mmol, 1 eq) was dissolved in 80 mL THF under nitrogen. 

The solution was cooled to 78 °C, at which point sodium naphthalenide (11 mL, 11 

mmol, 93 eq) was added drop by drop. The reaction was stirred at 78 °C for two hours 
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and then quenched by adding I2 (1 M solution in THF). The mixture was allowed to 

warm to room temperature and saturated Na2S2O3 was added to remove excess I2. After 

adding H2O (30 mL), the mixture was extracted with DCM (3 × 100 mL). Combined 

organic layer was washed with brine and dried over anhydrous Na2SO4. After removing 

solvent, the crude yellow solid was purified by chromatography (silica, 0% to 30% DCM 

in hexanes) to give II.1 as yellow powder (25 mg, 39%). IR (neat) 3020, 2920, 2851, 

1718, 1485, 1261, 806, 734; 1H NMR (500 MHz, CDCl3): δ(ppm) 7.40-7.47 (overlap, 

20H, Ar-H), 7.27 (d, J = 8.3 Hz, 4H, Ar-H), 7.08 (d, J = 8.3 Hz, 4H, Ar-H), 3.78 (s, 2H, 

CH2); 
13C NMR (125 MHz, CDCl3): δ(ppm) 143.77, 138.05, 137.97, 137.60, 137.15, 

137.11, 136.73, 128.32, 127.78, 127.73, 127.35, 127.30, 126.89, 126.39, 42.12; MALDI-

TOF m/z calcd for C43H30 (M)+: 546.23, found: 546.89. 

 

1,2,3,4,5,6,7(1,4)-heptabenzenacyclotridecaphane II.2 

 

Procedure same as II.1. II.12 (43 mg, 0.058 mmol, 1 eq), THF (50 mL), sodium 

naphthalenide (2.8 mL, 5.8 mmol, 100 eq), purified by column chromatography (silica, 

0% to 30% DCM in hexanes), product as light yellow solid (17 mg, 47%). IR (neat) 

3021, 2922, 2852, 1485, 1261, 822, 736; 1H NMR (500 MHz, CDCl3): δ(ppm) 7.60 (s, 

4H, Ar-H), 7.56 (d, J = 8.8 Hz, 4H, Ar-H), 7.52 (d, J = 8.8 Hz, 4H, Ar-H), 7.44 (s, 8H, 

Ar-H), 7.35 (d, J = 8.2 Hz, 4H, Ar-H), 7.07 (d, J = 8.2 Hz, 4H, Ar-H), 2.55 (t, J = 7.0 Hz, 

4H, CH2)  1.35-1.45 (m, 4H, CH2), 1.10-1.20 (m, 4H, CH2); 
13C NMR (125 MHz, 

CDCl3): δ(ppm) 142.19, 138.61, 138.33, 137.98, 137.69, 137.43, 137.33, 128.89, 127.67, 

127.62, 127.50, 127.25, 126.91, 126.50, 35.76, 32.89, 29.73; MALDI-TOF m/z calcd for 

C48H40 (M)+: 616.31, found: 616.80. 
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2.4.3. Photophysical Characterizations 

Absorbance and fluorescence spectra were obtained in a 1cm Quartz cuvette with 

dichloromethane using a Varian 100 Bio UV-Vis spectrometer and a Horiba Jobin Yvon 

Fluoromax3 fluorimeter. Fluorescence was measured by excitation at 340 nm for [7]CPP 

and at 320 nm for II.1 and II.2.The extinction coefficients were calculated by measuring 

the slope of Beer-Lambert plots (absorbance: [7]CPP, 340 nm; II.1, 323 nm; II.2, 318 

nm) and averaging over three independent trials. The quantum yield was determine 

following the methods described by Williams40 with anthracene (ethanol) and quinine 

sulphate (1 M H2SO4) as external standards. Anthracene, quinine sulphate and [7]CPP 

were excited at 340 nm and the fluorescence were integrated from 360-480 nm, from 

380-630 nm and from 400-660 nm, respectively. II.1 and II.2 were excited at 320 nm and 

the fluorescence were integrated from 360-650 nm and from 400-600 nm, respectively. 

 

 

Figure 2.4. Beer-Lambert plots for the determination of extinction coefficient of [7]CPP 

(ɛ = 6.58 × 104 M-1cm-1).  
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Figure 2.5. Beer-Lambert plots for the determination of extinction coefficient of II.1 (ɛ = 

5.15 × 104 M-1cm-1).  

 

 

Figure 2.6. Beer-Lambert plots for the determination of extinction coefficient of II.2 (ɛ = 

4.45 × 104 M-1cm-1).  
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Figure 2.7. Quantum yield measurement of [7]CPP (0.06), II.1 (0.23) and II.2 (0.25). 

 

 

2.4.4. Electrochemical Measurement 

Circular voltammetry for all compounds is was performed on a Princeton Applied 

Research Potentiostat/Galvanastat Model 273 running M270/250 Electrochemical 

Software (Princeton Applied Research) with a silver reference electrode, a glassy carbon 

working electrode and a platinum counter electrode.. Ferrocene/ferrocenium couple was 

used as an internal or external reference. Supporting electrolyte tetra-n-butylammonium 

hexafluorophosphate (nBu4PF6) was purchased from Sigma-Aldrich and was 

recrystallized from methanol for 3 times before use. DCM, THF and acetonitrile were 

distilled according to literature procedure. Solvents were totally degassed by subjecting it 

to at least six successive freeze-pump-thaw cycles, after which they were transferred to a 

glove box under an N2 atmosphere.  
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Figure 2.8. Cyclic Voltammetry of [7]CPP.  

 

 

Figure 2.9. Cyclic Voltammetry of II.1. 

 

 

Figure 2.10. Cyclic Voltammetry of II.2. 
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2.4.5. Computational Details 

All calculations were carried out with Gaussian 09 package at B3LYP/6-31g* 

level of theory.41 All excited state calculations (TD-DFT) were performed on fully 

optimized structures. The fully optimized structures were confirmed to be true minima by 

vibrational analysis. 

 

Figure 2.11. Calculated UV-Vis spectra using TD-DFT (at B3LYP/6-31g* level of 

theory). 

 

Figure 2.12. Oscillation strength of HOMOLUMO transition with respect to methylene 

tether length. 
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Table 2.3. Major electronic transitions for [7]CPP determined by TD-DFT method using 

B3LYP/6-31G*. 

Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 

21037 475 0.0087 HOMO->LUMO (98%) 

27711 360 0 H-1->LUMO (51%), HOMO->L+1 (49%) 

28296 353 0.0036 H-2->LUMO (56%), HOMO->L+2 (44%) 

29397 340 1.1212 H-1->LUMO (48%), HOMO->L+1 (50%) 

2993 334 1.1021 H-2->LUMO (43%), HOMO->L+2 (55%) 

31519 317 0.0197 H-3->LUMO (13%), HOMO->L+3 (78%) 

32789 305 0.0008 H-2->L+1 (41%), H-1->L+2 (37%) 

32929 304 0.025 H-2->L+2 (21%), H-1->L+1 (77%) 

 

 

Table 2.4. Major electronic transitions for II.1 determined by TD-DFT method using 

B3LYP/6-31G*. 

Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 

24308 411 0.1251 HOMO->LUMO (97%) 

29319 341 0.0049 H-1->LUMO (55%), HOMO->L+1 (43%) 

30712 325 1.13 H-1->LUMO (43%), HOMO->L+1 (53%) 

31340 319 0.0002 H-2->LUMO (52%), HOMO->L+2 (47%) 

32205 310 0.5081 H-2->LUMO (44%), HOMO->L+2 (48%) 

33156 302 0.0722 H-5->LUMO (14%), HOMO->L+3 (74%) 

33656 297 0.064 H-1->L+1 (84%) 

34424 290 0.0333 HOMO->L+4 (65%) 

 

 

Table 2.5. Major electronic transitions for II.2 determined by TD-DFT method using 

B3LYP/6-31G*. 

Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 

25324 395 0.4641 HOMO->LUMO (98%) 

29536 339 0.0237 H-1->LUMO (63%), HOMO->L+1 (35%) 

30760 325 1.3081 H-1->LUMO (35%), HOMO->L+1 (63%) 

32900 304 0.0063 HOMO->L+2 (28%), HOMO->L+3 (38%) 

33133 302 0.0411 H-2->LUMO (58%), HOMO->L+3 (27%) 

33660 297 0.0368 H-1->L+1 (84%) 
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Table 2.6. Major electronic transitions for other tethered p-heptaphenyls determined by 

TD-DFT method using B3LYP/6-31G*. (N stands for the number of the carbon in the 

alkyl tether). 

N=2 

Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 

23614 423 0.2543 HOMO->LUMO (97%) 

28022 357 0.0078 H-1->LUMO (58%), HOMO->L+1 (41%) 

29939 334 1.236 H-1->LUMO (41%), HOMO->L+1 (58%) 

31502 317 0.0034 HOMO->L+2 (16%), HOMO->L+3 (64%) 

32087 311 0.003 H-2->LUMO (66%), H-1->L+1 (23%) 

32351 309 0.0122 H-1->L+1 (59%), HOMO->L+2 (26%) 

33777 296 0.0007 H-6->LUMO (13%), HOMO->L+4 (61%) 

 

N=3 

Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 

23710 422 0.3071 HOMO->LUMO (98%) 

28586 350 0.0119 H-1->LUMO (59%), HOMO->L+1 (39%) 

30210 331 1.361 H-1->LUMO (39%), HOMO->L+1 (59%) 

31644 316 0.0496 H-2->LUMO (79%), HOMO->L+2 (19%) 

31986 313 0.0028 H-4->LUMO (11%), HOMO->L+3 (77%) 

32910 304 0.2081  H-1->L+1 (31%), HOMO->L+2 (56%) 

33648 297 0.0559 H-1->L+1 (29%), HOMO->L+4 (38%) 

 

N=4 

Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 

24056 416 0.3271 HOMO->LUMO (98%) 

28465 351 0.0176 H-1->LUMO (61%), HOMO->L+1 (37%) 

30152 332 1.3534 H-1->LUMO (38%), HOMO->L+1 (61%) 

31898 313 0.004  HOMO->L+2 (19%), HOMO->L+3 (60%) 

32287 310 0.0159 H-2->LUMO (71%), HOMO->L+2 (15%) 

32834 305 0.0046 H-1->L+1 (73%), HOMO->L+2 (18%) 

33988 294 0.0003 H-7->LUMO (10%), HOMO->L+4 (60%) 

 

N=5 

Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 

26020 384 0.4162 HOMO->LUMO (97%) 

29977 333 0.0569 H-1->LUMO (71%), HOMO->L+1 (27%) 
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308877 323 1.2237 H-1->LUMO (27%), HOMO->L+1 (71%) 

329347 303 0.0375 H-2->LUMO (75%), HOMO->L+2 (19%) 

335027 298 0.0063 H-1->L+1 (87%), HOMO->L+2 (10%) 

341607 293 0.0225 HOMO->L+3 (70%) 

34234 292 0.2353 H-2->LUMO (19%), HOMO->L+2 (54%) 

 

N=7 

Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 

25295 395 0.6236 HOMO->LUMO (98%) 

29407 340 0.0822 H-1->LUMO (74%), HOMO->L+1 (24%) 

30587 327 1.2964 H-1->LUMO (24%), HOMO->L+1 (74%) 

32983 303 0.0573 H-2->LUMO (79%), HOMO->L+2 (12%) 

33263 301 0.001 H-5->LUMO (10%), HOMO->L+3 (73%) 

33485 299 0.0048 H-1->L+1 (86%) 

34408 291 0.0236 H-7->LUMO (11%), HOMO->L+4 (52%) 

 

N=8 

Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 

25057 399 0.6202 HOMO->LUMO (98%) 

29218 342 0.0555 H-1->LUMO (69%), HOMO->L+1 (29%) 

30443 328 1.4186 H-1->LUMO (30%), HOMO->L+1 (69%) 

32724 305 0.013 H-2->LUMO (62%), HOMO->L+2 (27%) 

32924 304 0.0222  H-2->LUMO (13%), HOMO->L+3 (59%) 

33390 300 0.0139 H-1->L+1 (79%), HOMO->L+2 (11%) 

34530 290 0 H-7->LUMO (13%), HOMO->L+4 (55%) 

 

N=9 

Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 

25765 388 0.7801 HOMO->LUMO (98%) 

29769 336 0.1263 H-1->LUMO (79%), HOMO->L+1 (19%) 

30885 324 1.2237 H-1->LUMO (19%), HOMO->L+1 (79%) 

33394 299 0.065 H-2->LUMO (79%), HOMO->L+2 (11%) 

33656 297 0.0006 H-6->LUMO (12%), HOMO->L+3 (72%) 

33792 296 0.0094 H-1->L+1 (86%) 

 

N=10 

Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 
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25716 389 0.7719 HOMO->LUMO (98%) 

29733 336 0.0917 H-1->LUMO (74%), HOMO->L+1 (24%) 

30770 325 1.3446 H-1->LUMO (24%), HOMO->L+1 (75%) 

33181 301 0.0259 H-2->LUMO (71%), HOMO->L+2 (22%) 

33536 298 0.0314 H-1->L+1 (21%), HOMO->L+3 (47%) 

33734 296 0.0132 H-1->L+1 (65%), HOMO->L+3 (19%) 

 

N=11 

Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 

26124 383 0.9197 HOMO->LUMO (97%) 

30081 332 0.1556 H-1->LUMO (82%), HOMO->L+1 (16%) 

31165 321 1.1581 H-1->LUMO (16%), HOMO->L+1 (82%) 

33725 297 0.0691 H-2->LUMO (80%), HOMO->L+2 (10%) 

33948 295 0.0003 H-6->LUMO (15%), HOMO->L+3 (70%) 

34086 293 0.0226 H-1->L+1 (87%) 

 

N=12 

Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 

26215 381 0.9392 HOMO->LUMO (97%) 

30096 332 0.1358 H-1->LUMO (80%), HOMO->L+1 (18%) 

31003 323 1.2422 H-1->LUMO (19%), HOMO->L+1 (80%) 

33517 298 0.0452 H-2->LUMO (70%), HOMO->L+2 (17%) 

33842 295 0.0525 H-1->L+1 (76%), HOMO->L+2 (13%) 

34127 293 0.0025 H-6->LUMO (12%), HOMO->L+3 (60%) 

 

N=13 

Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 

27450 364 0.9916 HOMO->LUMO (97%) 

30978 323 0.2931 H-1->LUMO (92%) 

31843 314 0.9354 HOMO->L+1 (92%) 

34215 292 0.0874 H-2->LUMO (69%), H-1->L+1 (17%) 

34415 291 0.0225 H-2->LUMO (14%), H-1->L+1 (78%) 

35306 283 0.0083 H-6->LUMO (17%), HOMO->L+3 (63%) 

35485 282 0.0547 HOMO->L+2 (45%), HOMO->L+4 (18%) 

 

N=14 
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Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 

26638 375 1.1238 HOMO->LUMO (97%) 

30403 329 0.1838 H-1->LUMO (85%), HOMO->L+1 (13%) 

31228 320 1.1033 H-1->LUMO (14%), HOMO->L+1 (85%) 

33812 296 0.0909 H-2->LUMO (58%), H-1->L+1 (29%),  

34036 294 0.0458 H-2->LUMO (17%), H-1->L+1 (64%),  

34559 289 0.0032 H-6->LUMO (15%), HOMO->L+3 (61%) 

 

N=15 

Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 

26729 374 1.1428 HOMO->LUMO (97%) 

30361 329 0.2077 H-1->LUMO (87%), HOMO->L+1 (11%) 

31319 319 1.0486 H-1->LUMO (11%), HOMO->L+1 (87%) 

33838 296 0.1678 H-2->LUMO (10%), H-1->L+1 (86%) 

34151 293 0.0089 H-2->LUMO (71%), HOMO->L+2 (16%) 

34414 291 0.003 H-6->LUMO (17%), HOMO->L+3 (62%) 

 

N=16 

Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 

27031 370 1.3121 HOMO->LUMO (97%) 

30694 326 0.2258 H-1->LUMO (89%) 

31457 318 0.9476 HOMO->L+1 (89%) 

34050 294 0.1676 H-2->LUMO (31%), H-1->L+1 (62%) 

34261 292 0.0179 H-2->LUMO (46%), H-1->L+1 (32%),  

34948 286 0.0026 H-6->LUMO (15%), HOMO->L+3 (59%) 

 

N=17 

Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 

27842 359 1.2636 HOMO->LUMO (97%) 

31286 320 0.3351 H-1->LUMO (95%) 

32188 311 0.7704 HOMO->L+1 (95%) 

34530 290 0.1064 H-2->LUMO (73%), H-1->L+1 (14%) 

34717 288 0.0707 H-2->LUMO (12%), H-1->L+1 (81%) 

35640 281 0.0048 H-6->LUMO (18%), HOMO->L+3 (61%) 

 

N=18 
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Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 

27376 365 1.5065 HOMO->LUMO (97%) 

30928 323 0.2587 H-1->LUMO (92%) 

31641 316 0.784 HOMO->L+1 (93%) 

34170 293 0.2403 H-2->LUMO (10%), H-1->L+1 (85%) 

34484 290 0.0025 H-2->LUMO (67%), HOMO->L+2 (20%) 

35291 283 0.0017 H-6->LUMO (15%), HOMO->L+3 (56%) 

 

N=19 

Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 

27987 357 1.3948 HOMO->LUMO (97%) 

31406 318 0.3349 H-1->LUMO (96%) 

32324 309 0.6999 HOMO->L+1 (95%) 

34651 289 0.1091 H-2->LUMO (75%), H-1->L+1 (11%),  

34839 287 0.1072 H-2->LUMO (10%), H-1->L+1 (83%) 

35764 280 0.0036 H-6->LUMO (18%), HOMO->L+3 (60%) 

 

N=20 

Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 

27714 361 1.7003 HOMO->LUMO (96%) 

31183 321 0.2748 H-1->LUMO (95%) 

31880 314 0.619 HOMO->L+1 (95%) 

34351 291 0.3023 H-1->L+1 (89%) 

34738 288 0.0014 H-2->LUMO (73%), HOMO->L+2 (19%) 

35594 281 0.0009 H-6->LUMO (16%), HOMO->L+3 (54%) 

 

 

Table 2.7. Major electronic transitions for linear p-heptaphenyl determined by TD-DFT 

method using B3LYP/6-31G*. 

Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. Strength 

(f) Major contribs 

29180 343 2.514 HOMO->LUMO (97%) 

32883 304 0.0003 H-1->LUMO (91%) 

33379 300 0.0006 HOMO->L+1 (91%) 

36210 276 0.2181 H-2->LUMO (53%), H-1->L+1 (28%) 

36294 276 0.4649 H-2->LUMO (21%), H-1->L+1 (67%) 

36631 273 0.0001 H-6->LUMO (23%), HOMO->L+3 (54%) 
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Table 2.8. Frontier orbital energy summary. 

n E(H-2) E(H-1) E(HOMO) E(LUMO) E(L+1) E(L+2) 

0 ([7]CPP) -5.72 -5.65 -4.97 -1.8 -1.12 -1.02 

1 -5.88 -5.63 -5.11 -1.58 -1.03 -0.8 

2 -6.04 -5.54 -5.03 -1.64 -1.09 -0.57 

3 -5.95 -5.59 -5.05 -1.65 -1.07 -0.63 

4 -6.02 -5.55 -5.05 -1.62 -1.07 -0.58 

5 -5.69 -5.58 -5.2 -1.5 -1.07 -0.62 

6 -6.03 -5.59 -5.14 -1.5 -1.05 -0.56 

7 -6.03 -5.57 -5.15 -1.57 -1.08 -0.52 

8 -6.02 -5.57 -5.13 -1.59 -1.09 -0.59 

9 -6.05 -5.58 -5.18 -1.55 -1.07 -0.49 

10 -6.03 -5.58 -5.18 -1.55 -1.08 -0.57 

11 -6.07 -5.59 -5.2 -1.53 -1.05 -0.47 

12 -6.05 -5.59 -5.21 -1.53 -1.08 -0.57 

13 -6.04 -5.61 -5.29 -1.44 -1.03 -0.52 

14 -6.06 -5.59 -5.25 -1.51 -1.08 -0.55 

15 -6.08 -5.58 -5.25 -1.5 -1.07 -0.48 

16 -6.08 -5.6 -5.27 -1.49 -1.08 -0.54 

17 -6.05 -5.62 -5.32 -1.43 -1.02 -0.51 

18 -6.09 -5.61 -5.3 -1.47 -1.08 -0.53 

19 -6.06 -5.63 -5.34 -1.42 -1.01 -0.5 

20 -6.1 -5.62 -5.32 -1.45 -1.08 -0.52 

Linear 3 -6.27 -5.81 -5.47 -1.43 -1.04 -0.51 

 

 

2.5. Bridge to Chapter III 

This chapter details our work in probing the structure-property relationship of 

strained oligophenylene macrocycles. It suggests that the nanohoop topology with 

structural bending offers a new venue to control the properties of conjugated materials. In 

Chapter II, we describe the reactivity studies of 1,4-anthracene-incorporated [12]CPP, a 

model substrate to examine the feasibility of using anthracene as the functional handle to 

crosslink CPPs towards novel solid materials.  
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CHAPTER III 

 

INVESTIGATING THE REACTIVITY OF 1,4-ANTHRACENE-INCORPORATED 

CYCLOPARAPHENYLENE 

 

From Li, P.; Wong, B. M.; Zakharov, L. N.; Jasti, R., Investigating the Reactivity 

of 1,4-Anthracene-Incorporated Cycloparaphenylene. Org. Lett. 2016, 18 (7), 1574-1577. 

Cycloparaphenylenes (CPPs) and their derivatives are unique conjugated 

macrocycles with novel optoelectronic and host−guest properties. A better understanding 

of their reactivity is essential for creating new functional materials utilizing these strained 

aromatic molecules as building blocks. 1,4-Anthracene-incorporated CPP III.1 was 

synthesized and exhibited Diels−Alder reactivity but was unable to photodimerize. 

Comparison studies with cyclophane III.2 and unstrained III.3 indicated that the 

distorted anthracene geometry is likely the major contributor to the anomalous reactivity 

of III.1. 

 

 

3.1. Introduction 

The development of novel synthetic porous materials has a direct impact on a 

variety of technologies such as catalysis, separation, gas storage, and electronics.1 These 

porous materials are commonly prepared by linking organic building units through 

covalent bonds (covalent organic frameworks and porous polymers),2-4 metal 

coordination (metal organic frameworks),5-6 or noncovalent interactions (porous 

molecular solids).7 In addition to the collective effects of the entire building components, 

porous materials also inherit the intrinsic properties of their organic building blocks.1 

Therefore, developing novel molecular building blocks with unique properties is 

beneficial in expanding the applications of porous materials. 

Cycloparaphenylenes (CPPs) are conjugated molecules with hoop-shaped 

backbones comprised of 1,4-connected benzene rings.8-28 These strained aromatics and 

their related macrocyclic structures have potential materials applications owing to their 

ring-size dependent optoelectronic properties,29 selective host−guest properties,13,31-34 as 
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well as scalable gram-scale syntheses.13,17,19 We have been interested in utilizing CPPs as 

building blocks to construct new carbon materials, which would potentially preserve the 

useful properties of CPPs including discrete porosity and tunable electronic behavior.18 

Herein, we report the synthesis, characterization, and reactivity study of 1,4-anthracene-

incorporated [12]CPP III.1 (Figure 3.1), in order to evaluate the practicality of utilizing 

anthracene as the reactive functional handle for crosslinking CPP-related molecules. 

Additionally, compounds III.2 and III.3 were prepared and studied to further elucidate 

the structural influence on the reactivity of the 1,4-diphenylanthracene (DPA) core. 

 

 

Figure 3.1. Structures of III.1-3. 

 

 

The versatility and adaptability of anthracene chemistry have enabled chemists to 

create sophisticated architectures from complex molecules35 to functional polymeric 

materials.36 Recently, two-dimensional polymers (2DPs) were successfully prepared from 

the cycloaddition reactions of anthracene-containing monomers.37-41 We envisioned that 

CPP structures with multiple 1,4-anthracene subunits could potentially be cross-linked to 

produce new types of network structures in a similar fashion as the case of 2DPs. 

However, previous seminal works on anthracenophanes suggest that the strained 

anthracene unit of III.1 might have different reactivity compared to the planar 

counterparts.42-44 Moreover, the substituent effect from the neighboring bent 

oligophenylene fragment might also impact the reactivity of the anthracene in III.1. 

Thus, we designed a strained cyclophane structure III.2 that is free from the influence of 

this substituent effect, as well as a planar 1,4-DPA molecule III.3, in order to determine 

the key factors (bent geometry or substituent effect) that governs the reactivity of III.1. In 

this chapter, we surveyed the reactivity of III.1-3 in photo-induced [4+4]-cycloaddition 

reactions and thermal Diels−Alder (DA) reactions, in combination with theoretical 

analyses to rationalize the structure−reactivity relationships. 
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3.2. Results and Discussion 

3.2.1. Synthesis of III.1-3 

In planning the synthesis of macrocyclic structures III.1 and III.2, we adapted the 

generic strategy of CPP chemistry,30 which takes advantage of the curved cyclohexadiene 

building units to assemble a less strained macrocyclic precursor which can be later 

aromatized to produce the target molecular skeleton. However, our initial synthetic 

attempt using anthryl intermediates failed to deliver isolable final products III.1 and III.2 

(Scheme 3.3). We discovered that compounds III.1 and III.2 are unstable in the presence 

of light and oxygen, presumably due to the formation of labile endoperoxides.42 

Inspired by Miller’s works on hydrogen-protected acenes,45 we developed a two-

step aromatization strategy employing intermediates with a 9,10-dihydroanthryl moiety, 

which allowed for the purification and subsequent characterization of III.1 and III.2 in a 

glovebox with a chemically inert N2 atmosphere. Depicted in Scheme III.1, the synthesis 

of macrocycles III.8 and III.9 was achieved by applying a Suzuki coupling condition 

using S-Phos Gen II precatalyst46 from corresponding coupling partners in 30% and 27% 

yield, respectively. Treating III.8 and III.9 with single electron reductant sodium 

naphthalenide at −78 °C followed by quenching the reaction with I2 gave the 

corresponding dihydroanthryl precursors III.10 (71%) and III.11 (50%). Finally, heating 

III.10 or III.11 with Pd/C in degassed toluene successfully yielded respective target 

molecule III.1 (47%) or III.2 (67%). Additionally, compound III.3 and key 

intermediates III.4-7 were easily prepared, and the synthetic details are provided in the 

Experimental Section (Scheme 3.4-5). The structures of III.1-3 were confirmed by NMR 

(1H, 13C), IR, and mass spectrometry. 

 

 

3.2.2. Electronic Properties of III.1-3 

With these compounds in hand, we first investigated their electronic structures 

utilizing cyclic voltammetry and theoretical calculations. The first oxidation peaks for 

III.1-3 are reversible with respective half wave potentials at 0.65, 0.60, and 0.72 V (vs 

Fc/ Fc+). As Density Functional Theory (DFT, B3LYP/631G*) calculations predicted that 

the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular 
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orbital (LUMO) mainly delocalize on the DPA cores for compounds III.1-3, we 

confirmed that the measured first oxidation potentials truly represent the HOMO energy 

levels of the DPA segments. This observation of higher-lying HOMO energy levels in 

III.1 and III.2 compared to III.3 is consistent with our previous finding that bending 

destabilizes the HOMO of the polycyclic aromatic hydrocarbons (PAHs).47 We also 

observed an increasing calculated HOMO/LUMO energy gap from III.1 (3.06 eV) to 

III.2 (3.22 eV) to III.3 (3.42 eV). 

 

 

 

Scheme 3.1. Synthesis of III.1 and III.2 from 9,10-dihydroanthryl intermediates; X-ray 

single crystal structures of III.1 and III.3 (ORTEP). 

 

 

3.2.3. Photophysical Properties of III.1-3 

Next, we characterized the photophysical properties of III.1-3 (Figure 3.2). The 

UV-Vis spectra of III.1 exhibit an intense [12]CPP backbone absorption band (λmax = 

338 nm),8 as well as anthracene absorption bands (λmax = 268 nm and the broad band 

from 400 to 460 nm). Similarly, III.2 displays both the p-terphenyl absorption (λmax = 

285 nm) and the anthracene absorption (λmax = 268 nm and the broad band from 370 to 

450 nm). For III.3, the UV−Vis spectra feature a characteristic anthracene absorption 

structure with well resolved vibrational bands (λmax = 363 nm) and a high energy band at 

263 nm.48 From the onset absorption data, we calculated the optical band gaps to be 2.72 

eV (III.1), 2.78 eV (III.2), and 2.98 eV (III.3), which is consistent with the trend of 

theoretical HOMO/LUMO energy gaps. Furthermore, TD-DFT calculations (B3LYP/6-
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31G*) predicted that the lowest energy absorptions of III.1-3 can be assigned to the 

HOMO/ LUMO transitions of the DPA cores. The fluorescence spectra were also 

recorded, where the emissions exhibit a hypsochromic shift from III.1 (487 nm), to III.2 

(463 nm), to III.3 (442 nm). 

 

 

Figure 3.2. UV-Vis absorption and fluorescence spectra of III.1-3 (measured in DCM 

solutions). 

 

 

3.2.4. Molecular Structure Analysis of III.1-3 

We were able to obtain single crystals of III.1 and III.3 suitable for X-ray 

crystallography (Scheme 3.1 and Figures 3.9-11). For comparison, DFT calculations 

(B3LYP/6-31G*) were also performed to optimize the molecular geometries. Notably, 

the calculated molecular structures of III.1 and III.3 are in good agreement with the 

empirical X-ray crystal structures (Table 3.2). By analyzing the calculated structural data 

(Table 3.1), we found that the DPA cores of III.1 and III.2 have similar deformation 

angles α (7.4°, 9.5°), bent angles β (6.7°, 8.9°), and torsional angles θ (42.8°, 43.0°). By 

comparing III.2 to III.3, it can be seen that the ring strain causes a decrease in torsional 

angles and an increase in the bent and deformation angles, which agrees with the 

observed trend when comparing CPPs to linear oligoparaphenylenes (LPPs).29 

Additionally, the calculated strain energies49 on the DPA cores of III.1-3 were 56.34, 

62.04, and 4.78 kcal/mol, respectively. Interestingly, the strain energy trend correlates 
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well with the experimental trend of HOMO energy levels determined from the cyclic 

voltammetry. Overall, our electrochemical, photophysical, and theoretical studies 

demonstrated that the DPA cores in III.1 and III.2 share similar electronic and geometric 

characters that are distinct from those of III.3.  

 

Table 3.1. Calculated structural properties of III.1-3 (DFT, B3LYP6-31G*). Dihedral 

angles (θ) shown are average values. 

 

entry θ, deg α, deg β, deg 
III.1 42.8 7.4 6.7 
III.2 43.0 9.5 8.9 
III.3 54.5 4.5 0.7 

 

 

3.2.5. Reaction Survey of III.1-3 in Cycloaddition Reactions 

We examined the photodimerization and DA reactions of these anthracene-

containing compounds. Upon UV irradiation, III.3 undergoes [4+4]-cycloaddition to 

generate the head-to-tail photodimer III.12 in quantitative yield (Scheme 3.2). In 

contrast, no reactions were observed for III.1 and III.2 when similar conditions were 

applied. Changing the light source to a different wavelength or altering solvent polarity 

still produced no photodimer products for III.1 and III.2. We also attempted crossover 

experiments by mixing excess III.3 with either III.1 or III.2 only to observe photodimer 

III.12 and unreacted III.1 or III.2. As for DA reactions, III.1-3 readily reacted with 

dienophiles tetracyanoethylene (TCNE) and diethyl acetylenedicarboxylate to produce 

the corresponding DA-adducts III.13-18, of which the new bonds form at the 9,10-

position of the anthracene core (Scheme 3.2). As III.1 and III.2 have higher-lying 

HOMO levels compared to III.3, it is expected that III.1  and III.2 should be more 

reactive with dienophiles than III.3.50 Surprisingly, III.1 and III.3 show no DA reactivity 

with C60 while the DA-adduct of III.3 with C60 was observed under similar and less 

energetic conditions. Additionally, we synthesized 1,4-anthracene incorporated [10]CPP, 

which is also unreactive with C60, though the host−guest complex was observed as 

expected. These reaction studies clearly indicated that compound III.2 exhibits identical 
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reactivity as III.1, from which we conclude that the distorted anthracene geometry is 

likely the main contributor to the anomalous photochemical and DA reactivity of III.1 

compared to unstrained III.3. 

 

 

Scheme 3.2. Photodimerization of III.1-3; DA-adducts of III.1-3 with 

tetracyanoethylene (III.13-15) and with diethyl acetylenedicarboxylate (III.16-18). 

 

 

3.2.6. Computational Investigations 

In order to rationalize the relationship between the distorted anthracene geometry 

and the observed anomalous reactivity, we conducted theoretical calculations at the 

ωB97XD/6-31G* level of theory51 to analyze the reaction free energies and the transition 

state energy barriers. Since our calculations omitted the configurational entropic factors 

(ΔS), the actual free energy (ΔG = ΔH − TΔS) is higher than the calculated values 

(TΔS > 0).52 We found that the reaction free energy for dimerization of III.1 is 

endergonic (1.2 kcal/mol), which alone indicates that the dimerization is not favored in 

terms of thermodynamics. The free energies for the dimerization of III.2 and III.3 are 

exergonic with respective values of −1.6 and −6.7 kcal/mol. It is possible the change of 

the entropy for the dimerization of III.2 is pronounced enough that the reversed 

dissociation reaction is favored.53 We also calculated the reaction barriers for each of the 

cases but found that the transition state structures exhibited broken-symmetry and 

multireference effects which are beyond the scope of the single-reference DFT approach 
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used here.54 Additionally, the reaction free energies for DA reactions of C60 with III.1-3 

are all calculated to be exergonic (III.1, −16.0 kcal/mol; III.2, −15.6 kcal/ mol; III.3, 

−20.9 kcal/mol) and the activation free energies for III.1-3 are determined to be 17.9, 

16.9, and 12.7 kcal/mol, respectively. Though no definitive conclusion could be made 

regarding the reaction outcomes from these data, the DA reaction of C60 with III.3 is 

suggested to be both kinetically and thermodynamically favored. Likewise, the 

configurational entropy (i.e., the number of possible molecular configurations increases in 

the order of III.3, III.2, and III.1) could play an important role in differentiating the DA 

reaction outcome between III.1 (III.2) and III.3. Thus, our theoretical analysis seemed to 

suggest that the bent geometry influences the reactivity by elevating the transition energy 

barriers and by destabilizing the products.  

 

 

3.3. Conclusion and Outlook 

We have synthesized and characterized 1,4-anthracene incorporated [12]CPP 

III.1 and two reference compounds III.2 and III.3. We discovered that III.1, though 

unable to photodimerize, can still react with certain dienophiles. Therefore, the DA 

reaction is a potential strategy to construct new carbon materials from anthracene-

incorporated CPPs. Additionally, through the comparison studies with reference 

compounds III.2 and III.3, we determined that the unusual reactivity of III.1 is likely to 

originate from the bent and distorted geometry, rather than the substituent effect from the 

backbone. Importantly, our work suggests that the change in the reactivity of strained 

PAHs should be taken into consideration when planning cross-linking strategies. 

 

 

3.4. Experimental  

3.4.1. General Experimental Details 

Tetrahydrofuran (THF) and dioxane were obtained from a solvent system with 

columns packed with activated alumina. Moisture and oxygen sensitive reactions were 

carried out under nitrogen atmosphere using standard Schlenk line techniques. Silica 

column chromatography was conducted with Zeochem Zeoprep n60 Eco 40-63 µm silica 
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gel. Thin layer chromatography (TLC) was performed using Sorbent Technologies Silica 

Gel XHT TLC plates. Developing plates were visualized using UV light at wavelength of 

254 and 365 nm. UV-Vis spectra were measured on an Agilent Cary 100 UV-Vis 

spectrophotometer. NMR spectra were recorded on a Bruker Avance-III-HD 600 (or 500) 

spectrometer with a Prodigy multinuclear broadband cryoProbe. Chemical shifts were 

reported in parts per million (ppm) and were referenced to the residual protio-solvent 

(CDCl3, 
1H: 7.26 and 13C: 77.16). IR spectra were recorded on a Thermo Scientific 

Nicolet 6700 spectrometer equipped with a diamond crystal Smart ATR Attachment. 

Cyclic voltammetry was performed in a N2 atmosphere glove box using a Solartron 1287 

potentiostat. A 3-electrode set-up was employed comprising a glassy carbon working 

electrode, a platinum coil counter electrode and a silver wire pseudo reference electrode. 

Electrolyte solutions (0.1 M) were prepared from HPLC-grade DCM and anhydrous 

Bu4NBF4, and the solutions were thoroughly degassed prior to analysis.  

 

 

3.4.2. Synthetic Details 

 

 

Scheme 3.3. Initial synthetic scheme using anthryl intermediates. 
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Scheme 3.4. Synthesis of compounds III.3, III.4 and III.7. 

 

 

 

Scheme 3.5. Synthesis of key intermediates III.5 and III.6. 

 

 

 

Scheme 3.6. DA reactions of III.1-3 with C60. 
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Scheme 3.7. Synthesis of 1,4-anthrancene-incorporated [10]CPP III.30. 

 

 

1,4-dibromo-9,10-dihydroanthracene III.7 

 

To a 1 L round bottom flask equipped with a stir bar was added 1,4-

dibromoanthracene-9,10-dione (8.56 g, 23.4 mmol, 1 eq), red phosphorus (8.56 g. 276 

mmol, 12 eq), hydriodic acid (47%, 50 mL) and glacial acetic acid (350 mL). The 

mixture was heated at 125 °C in dark for three days. When cooled to room temperature, 

the mixture was poured into water (1 L) and filtrated. The red solid collected was washed 

with DCM (200 mL) to dissolve the product. Then the solution was concentrated to about 

20 mL, at which point methanol (5 mL) was added. After sitting overnight, the product 

crystalized as colorless needle and was collected via filtration (2.75g, 35%). IR (neat) 

3096, 3066, 3027, 3010, 2891, 1665, 1479, 1455, 1435, 1194, 890 cm-1; 1H NMR (600 

MHz, CDCl3): δ(ppm) 7.38-7.34 (overlap, 4H, Ar-H), 7.30-7.26 (dd, J = 5.3, 3.3 Hz, 2H, 

Ar-H), 4.14 (s, 4H, CH2); 
13C NMR (150 MHz, CDCl3): δ(ppm) 137.73, 134.63, 131.41, 

127.83, 126.80, 123.13, 36.52; HRMS (Q-TOF, EI+) m/z cald for C14H10Br2 (M)+ 

335.9150, found 335.9135. 

 

1-((1's,4's)-4''-chloro-1',4'-dimethoxy-1',4'-dihydro-[1,1':4',1''-terphenyl]-4-yl)-4-(4''-

chloro-1',4'-dimethoxy-1',4'-dihydro-[1,1':4',1''-terphenyl]-4-yl)-9,10-dihydroanthracene 

III.4 
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III.20 (3.38 g, 7.45 mmol, 2.4 eq), III.7 (1.05 g, 3.11 mmol, 1 eq), Na2CO3 (1.65 

g, 15.5 mmol, 5 eq) and Pd(PPh3)4 (0.36 g, 0.31 mmol, 0.1 eq) were placed in a 250 mL 

round bottom flask equipped with condenser and stir bar. The flask was evacuated and 

backfilled with N2 for 10 times. Then THF (75 mL) and H2O (15 mL) were transferred to 

the flask via syringe. The resulting yellow mixture was heated at 80 °C under N2 

overnight. After cooling down to room temperature, DCM (80 mL) was added to the 

reaction. The mixture was washed with H2O (50 mL) and brine (100 mL) and then dried 

with Na2SO4. Solvent was removed under reduced pressure and the crude was purified by 

column chromatography (silica, 0% to 12% ethyl acetate in hexanes) to yield product as 

white powder (1.90 g, 78%). IR (neat) 3030, 2935, 2822, 1745, 1474, 1402, 1264, 1227, 

1172, 1079, 1013, 949, 823 cm-1; 1H NMR (600 MHz, CDCl3): δ(ppm) 7.51 (d, J = 8.2 

Hz, 4H, Ar-H), 7.41-7.36 (overlap, 8H, Ar-H), 7.29 (d, J = 8.6 Hz, 4H, Ar-H), 7.21 (s, 

2H, Ar-H), 7.15-7.11 (m, 4H, Ar-H), 6.25 (d, J = 10.3 Hz, 4H, CH=CH), 6.14 (d, J = 

10.3 Hz, 4H, CH=CH), 3.93 (s, 4H, CH2), 3.51 (s, 6H, OCH3), 3.47 (s, 6H, OCH3); 
13C 

NMR (150 MHz, CDCl3): δ(ppm) 142.12, 142.10, 141.00, 139.53, 137.54, 135.33, 

133.87, 133.58, 133.46, 129.80, 128.64, 127.65, 127.48, 127.13, 126.23, 125.99, 74.90, 

74.70, 52.30, 52.22, 34.62; MALDI-TOF m/z cald for C54H44Cl2O4 (M)+ 828.28, found 

828.02. 

 

(1''s,4''s)-4,4''''-dichloro-1'',4''-dimethoxy-1'',4''-dihydro-1,1':4',1'':4'',1''':4''',1''''-

quinquephenyl III.22 

 

III.21 (3.00 g, 6.66 mmol, 1 eq), 4-chlorophenylboronic acid (6.13 g, 40.0 mmol, 

6 eq), K2CO3 (4.60 g, 33.3 mmol, 5 eq) and Pd(PPh3)4 (0.38 g, 0.33 mmol, 0.05 eq) were 

placed in a 250 mL round bottom flask equipped with condenser and stir bar. The flask 

was evacuated and backfilled with N2 for 10 times. Then THF (100 mL) and H2O (20 

mL) were transferred to the flask via syringe. The resulting yellow mixture was heated at 

90 °C under N2 overnight. After cooling down to room temperature, DCM (100 mL) was 

added to the reaction. The mixture was washed with H2O (50 mL) and brine (100 mL) 
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and then dried with Na2SO4. Solvent was removed to yield black solid to which and 

acetone (100 mL) was added. Then the mixture was sonicated for 5 min and then filtered. 

The filtrate was concentrated and re-subjected to filtration. The combined crude solid was 

purified by chromatography (silica, 0% to 100% DCM in hexanes) to yield product as 

white solid (2.70 g, 79%). IR (neat) 3030, 2980, 2396, 2821, 1484, 1392, 1264, 1231, 

1175, 1090, 1004, 948 cm-1; 1H NMR (600 MHz, CDCl3): δ(ppm) 7.53–7.48 (overlap, 

12H, Ar-H), 7.39 (d, J = 8.5 Hz, 4H, Ar-H), 6.17 (s, 4H, CH=CH), 3.48 (s, 6H, OCH3); 

13C NMR (150 MHz, CDCl3): δ(ppm) 142.98, 139.39, 139.29, 133.58, 133.57, 129.05, 

128.46, 127.12, 126.71, 74.84, 52.20; HRMS (Q-TOF, EI+) m/z cald for C32H26Cl2O2 

(M)+ 512.1209, found 512.1315. 

 

2,2'-((1''s,4''s)-1'',4''-dimethoxy-1'',4''-dihydro-[1,1':4',1'':4'',1''':4''',1''''-quinquephenyl]-

4,4''''-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) III.5 

 

To a 100 mL round bottom flask was added III.4 (2.70 g, 5.26 mmol, 1 eq), 

B2Pin2 (10.5 g, 42.1 mmol, 8 eq), K3PO4 (8.90 g, 42.1 mmol, 8 eq), Pd(OAc)2 (0.140 g, 

0.21 mmol, 0.01 eq) and S-Phos (0.217 g, 0.53 mmol, 0.1 eq). The flask was evacuated 

and backfilled with N2 for 10 times. After switching the vacuum adapter with septum, the 

flask was purged with N2 for another 30 min. At this point, degassed dioxane (40 mL) 

was added to the flask and the mixture was heated at 80 °C overnight. Upon cooling 

down to room temperature, solvent was removed under reduced pressure. Then the 

residue was mixed with hexanes (100 mL) and sonicated for 10 min. Light-grey colored 

product (3.24 g, 89%) was collected using vacuum filtration. Analytical pure sample can 

be achieved using column chromatography (silica, 0% to 10% ethyl acetate in hexanes). 

IR (neat) 3029, 2977, 2933, 2821, 1608, 1525, 1469, 1396, 1356, 1271, 1142, 1020, 

950cm-1; 1H NMR (600 MHz, CDCl3): δ(ppm) 7.89 (d, J = 8.0 Hz, 4H, Ar-H), 7.65-7.56 

(m, 8H, Ar-H), 7.51 (d, J = 8.4 Hz, 4H, Ar-H), 6.18 (s, 4H, CH=CH), 3.48 (s, 6H, 

OCH3), 1.37 (s, 24H, CH3); 
13C NMR (150 MHz, CDCl3): δ(ppm) 143.49, 142.92, 

140.35, 135.38, 133.50, 127.36, 126.58, 126.51, 83.93, 74.84, 52.15, 25.01, C-B signal 
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not observed; HRMS (TOF, ES+) m/z cald for C44H50B2O6Na (M+Na)+ 719.3691, found 

719.3706. 

 

(4-bromophenyl)(4-chlorophenyl)methanol III.23 

 

A solution of 1,4-dibromobenzene (40.3 g, 171 mmol, 1.2 eq) in THF (200 mL) 

was cooled to 78 °C, at which point nBuLi (2.1 M, 163 mmol, 1.15 eq) was added drop-

wise over 30 min. The resulting white slurry was kept stirring at 78 °C for another 20 

min and then 4-chlorobenzaldehyde (20.0 g, 142 mmol, 1 eq) was added as solid in one 

portion. The mixture was allowed to warm to room temperature overnight. To the 

solution was added H2O (10 mL) to quench the remaining nBuLi. The reaction was 

extracted with ethyl acetate (200 mL), washed with brine (300 mL) and dried over 

Na2SO4. The solution was concentrated to 50 mL and hexanes (50 mL) was added. The 

mixture was placed in freezer (20 °C) for 2 h. At this point, crude solid product 

precipitated on the bottom of the flask and was collected by vacuum filtration. The solid 

was washed with hexanes (50 mL) and dried under vacuum to give product as white 

powder (33.0 g, 78%). IR (neat) 3330, 2901, 1904, 1590, 1484, 1404, 1292, 1189, 1088, 

1037, 1008, 863, 791 cm-1; 1H NMR (600 MHz, CDCl3): δ(ppm) 7.46 (d, J = 8.4 Hz, 2H, 

Ar-H), 7.31 (d, J = 8.6 Hz, 2H, Ar-H), 7.27 (d, J = 8.6 Hz, 2H, Ar-H), 7.22 (d, J = 8.4 

Hz, 2H, Ar-H), 5.76 (d, J = 3.3 Hz, 1H, CH), 2.31 (d, J = 3.3 Hz, 1H, OH); 13C NMR 

(150 MHz, CDCl3): δ(ppm) 142.45, 141.86, 133.74, 131.83, 128.90, 128.31, 127.98, 

121.86, 75.12; HRMS (Q-TOF, EI+) m/z cald for C13H10BrClO (M)+ 295.9603, found 

295.9605. 

 

1-bromo-4-(4-chlorobenzyl)benzene III.24 

 

III.23 (24.46 g, 82.2 mmol, 1 eq) was dissolved in a mixture of DCM (150 mL) 

and trifluoroacetic acid (150 mL) in a 1 L round bottom flask. The solution was chilled 

with brine-ice bath for 30 min. Sodium borohydride (8.40 g, 222 mmol) was added 
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portion-wise over 20 min. The mixture was allowed to stir for extra 2h, at which point 

concentrated NaOH solution was slowly added until pH > 7. Then the mixture was 

extracted with diethyl ether (3 × 200 mL). Combined organic extract was washed with 

H2O (200 mL), brine (300 mL) and dried over Na2SO4. The solvent was removed to give 

product as light yellow oil which, upon standing, solidified to white solid (22.3 g, 96%). 

IR (neat) 3079, 3060, 3023, 2939, 2922, 2852, 1907, 1485, 1438, 1402, 1132, 1112, 

1069, 1010, 859 808, 778 cm-1; 1H NMR (600 MHz, CDCl3): δ(ppm) 7.40 (d, J = 8.4 Hz, 

2H, Ar-H), 7.24 (d, J = 8.4 Hz, 2H, Ar-H), 7.07 (d, J = 8.3 Hz, 2H, Ar-H), 7.02 (d, J = 

8.3 Hz, 2H, Ar-H), 3.88 (s, 2H, CH2);
 13C NMR (150 MHz, CDCl3): δ(ppm) 139.64, 

139.02, 132.28, 131.76, 130.71, 130.31, 128.81, 120.31, 40.73; MS (TOF, CI+) m/z cald 

for C13H10BrCl (M)+ 279.9654, found 279.9655. 

 

4,4''-bis(4-chlorobenzyl)-1',4'-dimethoxy-1',4'-dihydro-1,1':4',1''-terphenyl III.26 

 

A solution of III.24 (4.00 g, 24.0 mmol, 1.2 eq) in THF (80 mL) was cooled to 

78 °C, at which point nBuLi (2.1 M, 6.8 mL, 14.2 mmol, 1.2 eq) was slowly added in 

10 min. The resulting orange solution was allowed to stir at 78 °C for 10 min, then a 

solution of 4,4-dimethoxy-2,5-cyclohexadien-1-one (1.82 g, 11.8 mmol, 1 eq) in THF (6 

mL) was added in stream. Then the cold bath was removed and the resulting mixture was 

allowed to warm to room temperature in 2 hours and quenched with water (2 mL). DCM 

(100 mL) was and the resulting mixture was washed with brine (200 mL) then dried over 

Na2SO4. After removing the solvent, acetone (30 mL) and acetic acid (10 wt% in water, 

30 mL) was added to the residue. The resulting mixture was stir at room temperature for 

30 min, at which point DCM (50 mL) was added. The organic layer was separated and 

washed saturated aqueous NaHCO3 solution (4 × 100 mL), brine (100 mL) and dried over 

Na2SO4. Removing solvent produced crude yellow oil III.25, which was used without 

further purification. 

Crude III.25 and III.24 (7.00 g, 24.9 mmol, 2.1 eq) was dissolved in THF (80 

mL). The resulting solution was cooled to 78 °C, at which point NaH (60 wt%, 24.9 
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mmol, 1.00 g, 2.1 eq) was added as solid. The resulting mixture was allowed to stir at 

78 °C for 2 hours. Then nBuLi (2.1 M, 6.8 mL, 14.2 mmol, 1.2 eq) was slowly added 

over the course of 20 min. The mixture was kept stirring at 78 °C for another 2 hours. 

Afterwards, methyl iodide (15.2 mL, 249 mmol, 20 eq) and DMF (50 mL) were added. 

The mixture was eventually allowed to warm to room temperature and stir overnight. 

Water (10 mL) was slowly added to quench the reaction. Then DCM (100 mL) was 

added and resulting mixture was washed with aqueous LiCl solution (5 wt%, 3×150 mL), 

brine (150 mL) and dried over Na2SO4. After removing solvent, the crude orange oil was 

purified by column chromatography (silica, 0% to 6% ethyl acetate in hexanes) to yield 

product as colorless oil (4.32 g, 43% over two steps). IR (neat) 3022, 2935, 2820, 1505, 

1489, 1405, 1264, 1230, 1171, 1080, 1015, 948, 812, 789 cm-1; 1H NMR (600 MHz, 

CDCl3): δ(ppm) 7.31 (d, J = 8.3 Hz, 4H, Ar-H), 7.21 (d, J = 8.4 Hz, 4H, Ar-H), 7.09-7.03 

(overlap, 8H, Ar-H), 6.07 (s, 4H, CH=CH), 3.88 (s, 4H, CH2), 3.40 (s, 6H, OCH3); 
13C 

NMR (150 MHz, CDCl3): δ(ppm) 141.64, 139.89, 139.53, 133.44, 131.96, 130.35, 

128.96, 128.60, 126.29, 74.68, 52.06, 40.91; MALDI-TOF m/z cald for C34H31Cl2O2 

(M+H)+ 541.17, found 541.14. 

 

2,2'-(((1',4'-dimethoxy-1',4'-dihydro-[1,1':4',1''-terphenyl]-4,4''-

diyl)bis(methylene))bis(4,1-phenylene))bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) III.6 

 

A similar procedure to synthesize III.5 was adapted. III.26 (1.3 g, 2.40 mmol, 1 

eq), B2Pin2 (4.87 g, 19.2 mmol, 8 eq), K3PO4 (4.07 g, 19.2 mmol, 8 eq), Pd(OAc)2 (0.130 

g, 0.19 mmol, 0.08 eq) and S-Phos (0.197 g, 0.48 mmol, 0.2 eq), product was purified by 

column chromatography (silica, 0% to 10%  ethyl acetate in hexanes) as white powder 

(1.2 g, 69%). IR (neat) 2977, 2936, 2816, 1613, 1555, 1510, 1360, 1270, 1143, 1018, 

951, 858, 810 cm-1; 1H NMR (500 MHz, CDCl3): δ(ppm) 7.73 (d, J = 7.6 Hz, 4H, Ar-H), 

7.29 (d, J = 7.9 Hz, 4H, Ar-H), 7.18 (d, J = 7.9 Hz, 4H, Ar-H), 7.10 (d, J = 7.6 Hz, 4H, 

Ar-H), 6.07 (s, 4H, CH=CH), 3.96 (s, 4H, CH2), 3.40 (s, 6H, OCH3), 1.33 (s, 24H, CH3); 

13C NMR (150 MHz, CDCl3): δ(ppm) 144.43, 141.42, 140.22, 135.10, 133.41, 129.06, 
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128.57, 126.21, 83.80, 74.74, 52.06, 41.87, 24.99, C-B signal not observed; HRMS (Q-

TOF, ES+) m/z cald for C46H54B2O6 (M)+ 725.4185, found 725.4222. 

 

Macrocycle III.8 

 

To a 250 mL round bottom flask was added III.4 (542 mg, 0.653 mmol, 1 eq), 

III.5 (500 mg, 0.718 mmol, 1.1 eq), S-Phos Gen II precatalyst (52 mg, 0.072 mmol, 0.1 

eq) and dioxane (180 mL). The mixture was deoxygenated by bubbling N2 for 2 h and 

was then heated to 80 °C. At this point, aqueous K3PO4 solution (2 M, 18 mL) was 

added. The solution gradually turned light orange within 5 min and was kept stirring at 

80 °C overnight. Upon cooling to room temperature, the crude reaction was passed 

through a short plug of Celite. DCM (50 mL) was used to wash the Celite and combined 

with the filtrate. The solution was added extra DCM (200 mL) and washed with H2O 

(100 mL), brine (200 mL) and dried over Na2SO4. After removing solvent, the crude 

reaction was purified with column chromatography (silica, 0% to 4% ethyl acetate in 

DCM) to give product as white powder (236 mg, 30%). IR (neat) 3030, 2933, 2819, 

1487, 1449, 1389, 1264, 1174, 1076, 948, 814 cm-1; 1H NMR (600 MHz, CDCl3): δ(ppm) 

7.68-7.54 (overlap, 24H, Ar-H), 7.52 (d, J = 8.3 Hz, 4H, Ar-H), 7.41 (d, J = 8.0 Hz, 4H, 

Ar-H), 7.27 (s, 2H, Ar-H), 7.17-7.09 (overlap, 4H, Ar-H), 6.26 (d, J = 10.3 Hz, 4H, 

CH=CH), 6.23 (d, J = 10.3 Hz, 4H, CH=CH), 6.19 (s, 4H, CH=CH), 3.95 (s, 4H, CH2), 

3.56 (s, 6H, OCH3), 3.53 (s, 6H, OCH3), 3.50 (s, 6H, OCH3); 
13C NMR (150 MHz, 

CDCl3): δ(ppm) 142.75, 142.67, 142.36, 140.36, 139.97, 139.90, 139.73, 139.60, 137.57, 

135.33, 133.85, 133.67, 133.64, 129.80, 127.52, 127.51, 127.45, 127.17, 127.10, 127.07, 

126.65, 126.21, 126.03, 75.16, 75.12, 75.10, 52.32, 52.25, 52.22, 34.67; MALDI-TOF 

m/z cald for C85H69O5 (M-OMe)+ 1169.51, found 1169.20, cald for C86H72O6 (M)+ 

1200.53, found 1200.22. 
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61,64-dimethoxy-29,210-dihydro-2(1,4)-anthracena-1,3,5,7(1,4)-tetrabenzena-6(1,4)-

cyclohexanacyclooctaphane-62,65-diene III.9 

 

A similar procedure to synthesize III.8 was adapted. III.6 (500 mg, 0.690 mmol, 

1.1 eq), III.7 (212 mg, 0.627 mmol, 1 eq), S-Phos Gen II precatalyst (23 mg, 0.031 

mmol, 0.05 eq), dioxane (200 mL), K3PO4 solution (2 M, 20 mL), product purified by 

column chromatography (silica, 0% to 15% ethyl acetate in hexanes) as white powder 

(110 mg, 27%). IR (neat) 3020, 2922, 2835, 1599, 1503, 1488, 1383, 1263, 1222, 1178, 

1059, 1024, 946, 732 cm-1; 1H NMR (600 MHz, CDCl3): δ(ppm) 7.39 (d, J = 8.0 Hz, 4H, 

Ar-H), 7.35 (dd, J = 5.3, 3.3 Hz, 2H, Ar-H), 7.21 (dd, J = 5.3, 3.3 Hz, 2H, Ar-H), 7.15 (d, 

J = 8.0 Hz, 4H, Ar-H), 7.07 (d, J = 8.3 Hz, 4H, Ar-H), 6.82 (s, 2H, Ar-H), 6.57 (d, J = 8.3 

Hz, 4H, Ar-H), 5.97 (s, 4H, CH=CH), 4.32 (s, 4H, CH2),  3.92 (s, 4H, CH2), 3.26 (s, 6H, 

OCH3); 
13C NMR (150 MHz, CDCl3): δ(ppm) 142.56, 140.86, 140.77, 140.05, 138.48, 

138.03, 135.31, 132.63, 131.58, 130.20, 129.17, 128.42, 126.82, 126.32, 126.03, 73.34, 

51.60, 40.94, 35.55; MALDI-TOF m/z cald for C48H41O2 (M+H)+ 649.31, found 649.28. 

 

1,4-(9,10-dihydroanthryl)-[12]CPP III.10 

 

Under N2, III.8 (120 mg, 0.1 mmol, 1 eq) dissolved in dry THF (40 mL) was 

cooled to 78 °C. Freshly prepared sodium naphthalenide (0.25 M, 12 mL, 3.0 mmol, 30 

eq) was added drop-wise to the solution, which was kept stirring at 78 °C for 30 min. 

Then I2 (1 M solution in THF) was added until green color disappeared, followed by 

adding saturated Na2S2O3 solution (2 mL). The mixture was allowed to warm to room 

temperature at which point DCM (50 mL) was added. The crude reaction was washed 

with H2O (80 mL), brine (100 mL) and dried over Na2SO4.  Removing solvent, the 

product was isolated using column chromatography (silica, 0% to 30% DCM in hexanes) 

as yellow solid (72 mg, 71%). IR (neat) 3075, 3023, 2925, 2808, 1593, 1482, 1384, 1263, 
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1001, 809 cm-1; 1H NMR (600 MHz, CDCl3): δ(ppm) 7.75-7.58 (overlap, 40H, Ar-H), 

7.49 (d, J = 8.4 Hz, 4H, Ar-H), 7.32 (dd, J = 5.5, 3.3 Hz, 2H, Ar-H), 7.22 (dd, J = 5.5, 3.3 

Hz, 2H, Ar-H), 6.81 (s, 2H, Ar-H), 4.31 (s, 4H, CH2); 
13C NMR (150 MHz, CDCl3): 

δ(ppm) 140.45, 138.84, 138.80, 138.72, 138.70, 138.67, 138.65, 137.99, 135.06, 129.94, 

129.69, 127.57, 127.52, 127.49, 127.43, 127.17, 127.14, 126.39, 35.39; MALDI-TOF 

m/z cald for C80H54 (M)+ 1014.42, found 1014.42. 

 

29,210-dihydro-2(1,4)-anthracena-1,3,5,6,7(1,4)-pentabenzenacyclooctaphane III.11 

 

A similar procedure to synthesize III.10 was adapted. III.9 (93 mg, 0.14 mmol, 1 

eq), sodium naphthalenide (5.7 mL, 1.43 mmol, 10 eq), product purified by column 

chromatography (silica, 0% to 30% ethyl acetate in DCM) as yellow powder (42 mg, 

50%). IR (neat) 3040, 3018, 2969, 2927, 2856, 2808, 1898, 1591, 1502, 1440, 1382, 

1264, 1065, 966, 862 cm-1; 1H NMR (600 MHz, CDCl3): δ(ppm) 7.27 (s, 4H, Ar-H), 7.21 

(d, J = 8.3 Hz, 4H, Ar-H), 7.16-7.09 (overlap, 8H, Ar-H), 7.07 (d, J = 8.2 Hz, 4H, Ar-H), 

6.10 (s, 2H, Ar-H), 4.11 (s, 4H, CH2),  3.91 (s, 4H, CH2); 
13C NMR (150 MHz, CDCl3): 

δ(ppm) 144.45, 143.87, 139.82, 138.77, 138.53, 138.41, 137.83, 134.10, 130.64, 129.26, 

128.28, 128.11, 127.40, 127.29, 127.04, 126.22, 43.40, 34.99; MALDI-TOF m/z cald for 

C46H35 (M+H)+ 587.27, found 587.03. 

 

1,4-anthryl-[12]CPP III.1 

 

To a 50 mL Schlenk flask was added III.10 (17 mg, 0.0017 mmol, 1 eq), Pd/C 

(10 wt%, 107 mg, 0.104 mmol, 5.9 eq) and dry toluene (25 mL). The mixture was 

degassed through free-pump-thaw for 5 times, after which it was covered with aluminum 

foil and heated at 120 °C for 3 days. After cooling to room temperature, the Schlenk flask 

with the crude reaction was transferred into a glove box. The crude reactions was passed 
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through a short plug of Celite. The solvent was then removed to produce product as 

yellow solid (8 mg, 47%).IR (neat) 3026, 1907, 1598, 1482, 1389, 1264, 1281, 1264, 

1108, 1102,  cm-1; 1H NMR (500 MHz, CDCl3): δ(ppm) 8.96 (s, 2H, Ar-H), 8.02 (dd, J = 

6.5, 3.3 Hz, 2H, Ar-H), 7.74-7.57 (overlap, 44H, Ar-H), 7.51 (dd, J = 6.5, 3.3 Hz, 2H, 

Ar-H), 7.07 (s, 2H, Ar-H); 13C NMR (125 MHz, CDCl3): δ(ppm) 140.43, 139.35, 138.85, 

138.75, 138.70, 138.68, 138.32, 131.81, 130.67, 129.69, 128.65, 128.52, 127.55, 127.50, 

127.45, 127.37, 125.94, 125.87; MALDI-TOF m/z cald for C80H52 (M)+ 1012.41, found 

1012.92. 

 

2(1,4)-anthracena-1,3,5,6,7(1,4)-pentabenzenacyclooctaphane III.2 

 

A similar procedure to synthesize III.1 was adapted. III.11 (42 mg, 0.072 mmol, 

1 eq), Pd/C (Pd 10 wt%, 30 mg, 0.028 mmol, 0.38 eq), product was purified by filtering 

through a short pug of celite as greenish yellow powder (28 mg, 67%). IR (neat) 3053, 

2929, 2855, 1636, 1594, 1500, 1485, 1411, 1265, 1195, 1120, 959, 903 cm-1; 1H NMR 

(600 MHz, CDCl3): δ(ppm) 8.78 (s, 2H, Ar-H), 7.92 (dd, J = 6.6, 3.3 Hz, 2H, Ar-H), 7.43 

(dd, J = 6.6, 3.3 Hz, 2H, Ar-H), 7.32-7.26 (overlap, 8H, Ar-H), 7.22 (d, J = 8.3 Hz, 4H, 

Ar-H), 7.16-7.10 (overlap, 8H, Ar-H), 6.43 (s, 2H, Ar-H), 3.91 (s, 4H, CH2); 
13C NMR 

(150 MHz, CDCl3): δ(ppm) 143.91, 142.89, 138.77, 137.79, 137.49, 137.13, 130.58, 

129.04, 128.23, 128.22, 127.46, 127.31, 127.25, 126.44, 126.35, 124.62, 124.60, 42.35; 

MALDI-TOF m/z cald for C46H32 (M)+ 584.25, found 584.89. 

 

1,4-bis(4-(tert-butyl)phenyl)anthracene III.3 

 

A similar procedure to synthesize III.22 was adapted. 1,4-Dibromobenzene (642 

mg, 1.91 mmol, 1 eq), 4-tbutylphenyl boronic acid (1360 mg, 7.64 mmol, 4 eq), K2CO3 

(1320 mg, 9.55 mmol, 5 eq) and Pd(PPh3)4 (441 mg, 0.38 mmol, 0.2 eq), THF (50 mL), 
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H2O (12 mL), column chromatography (silica, 100%,hexanes) product as off-white solid 

(622 mg, 74%). IR (neat) 3043, 2959, 2900, 2864, 1509, 1460, 1360, 1326, 1266, 1114, 

1019, 889, 828 cm-1; 1H NMR (600 MHz, CDCl3): δ(ppm) 8.60 (s, 2H, Ar-H), 7.92 (dd, J 

= 6.5, 3.2 Hz, 2H, Ar-H), 7.62-7.56 (overlap, 8H, Ar-H), 7.45 (s, 2H, Ar-H), 7.41 (dd, J = 

6.5, 3.2 Hz, 2H, Ar-H), 1.47 (s, 18H, CH3);
 13C NMR (150 MHz, CDCl3): δ(ppm) 150.39, 

139.72, 138.18, 131.47, 130.85, 129.99, 128.52, 126.01, 125.52, 125.50, 34.86, 31.66; 

HRMS (Q-TOF, EI+) m/z cald for C34H34 (M)+ 442.2660, found 422.2648. 

 

(5R,11S,12S)-1,4,7,10-tetrakis(4-(tert-butyl)phenyl)-5,6,11,12-tetrahydro-5,12:6,11-

bis([1,2]benzeno)dibenzo[a,e][8]annulene III.12 

 

A small conical containing III.3 (10 mg, 0.023 mmol) was evacuated and 

backfilled with N2 for 10 times, at which point degassed DCM (0.5 mL) was added to 

fully dissolve the solid. The vial was sealed and irradiated with LED light (360 nm) for 3 

h. The solvent was removed to produce product as off white powder (10 mg, 100%). IR 

(neat) 3022, 2961, 2901, 2865, 1518, 1474, 1456, 1392, 1360, 1269, 1195, 1112, 1016, 

828 cm-1; 1H NMR (600 MHz, CDCl3): δ(ppm) 7.47 (d, J = 8.2 Hz, 8H, Ar-H), 7.29 (d, J 

= 8.2 Hz, 8H, Ar-H),  7.04 (dd, J = 5.5, 3.2 Hz, 4H, Ar-H), 6.87 (dd, J = 5.5, 3.2 Hz, 4H, 

Ar-H), 6.82 (s, 4H, Ar-H), 4.81 (s, 4H, CH), 1.42 (s, 36H, CH3); 
13C NMR (150 MHz, 

CDCl3): δ(ppm) 149.72, 144.18, 141.35, 138.49, 138.46, 129.08, 127.07, 126.98, 125.68, 

125.01, 50.01, 34.72, 31.60; MALDI-TOF m/z cald for C68H68Na (M+Na)+ 907.52, found 

907.91. 

 

DA-adduct III.13 

 

In a glove box with N2 atmosphere, III.1 (6 mg, 6 µmol, 1 eq) and TCNE (15 mg, 

120 µmol, 20 eq) was mixed in DCM (2 mL) in a small conical vial. The vial was capped 



63 

and shaken for 10 seconds until deep blue color appeared. Then the vial was transferred 

out of the glove box and the crude mixture was purified by preparative thin layer 

chromatography (100% DCM) to give product as dull yellow solid (3 mg, 44%). IR 

(neat) 3077, 3026, 2921, 2850, 1907, 1596, 1481, 1392, 1276, 1001, 908, 810 768 cm-1; 

1H NMR (600 MHz, CDCl3): δ(ppm) 7.79 (dd, J = 5.4, 3.2 Hz, 2H, Ar-H), 7.70 (d, J = 

8.1 Hz, 4H, Ar-H), 7.71 (d, J = 8.1 Hz, 4H, Ar-H), 7.63-7.58 (overlap, 40H, Ar-H), 7.33 

(d, J = 8.1 Hz, 4H, Ar-H), 7.03 (s, 2H, Ar-H), 5.75 (s, 2H, CH); 13C NMR (150 MHz, 

CDCl3): δ(ppm) 140.53, 139.20, 138.94, 138.85, 138.71, 138.70, 138.68, 138.63, 138.43, 

138.06, 136.86, 135.00, 132.54, 131.40, 130.37, 129.86, 128.04, 127.60-127.48 (overlap), 

126.91, 110.81, 110.68, 51.01, 46.56; MALDI-TOF m/z cald for C86H52N4 (M)+ 1140.42, 

found 1139.65, cald for C80H52 (M-C6N4)
+ 1112.41, found 1112.47. 

 

(29R,210S)-29,210-dihydro-2(1,4)-9,10-ethanoanthracena-1,3,5,6,7(1,4)-

pentabenzenacyclooctaphane-211,211,212,212-tetracarbonitrile III.14 

 

A similar procedure to synthesize III.13 was adapted. III.2 (5 mg, 8.5 µmol, 1 eq) 

and TCNE (22 mg, 170 µmol, 20 eq). Product was purified by preparative thin layer 

chromatography (100% DCM) as white solid (4 mg, 67%). IR (neat) 3016, 2927, 2861, 

1595, 1501, 1486, 1479, 1388, 1188, 1115, 954, 835, 814, 790 cm-1; 1H NMR (600 MHz, 

CD2Cl2): δ(ppm) 7.69 (dd, J = 5.3, 3.2 Hz, 2H, Ar-H), 7.70 (broad s, 2H, Ar-H), 7.37-

6.73 (overlap, 20H, Ar-H), 6.49 (s, 2H, Ar-H), 5.62 (s, 2H, CH), 3.92 (s, 4H, CH2);
 13C 

NMR (150 MHz, CD2Cl2): δ(ppm) 146.39, 144.07, 139.06, 139.01, 138.72, 136.74, 

135.40, 133.42, 131.15, 130.45, 129.49 (broad), 128.78 (broad), 127.63, 127.20, 111.44, 

111.31, 51.23, 47.00, 43.61. MALDI-TOF m/z cald for C51H33N3 (M-CN+H)+ 687.27, 

found 687.68, cald for C46H33 (M-C6N4+H)+ 585.25, found 585.60. 
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(9R,10S)-1,4-bis(4-(tert-butyl)phenyl)-9,10-dihydro-9,10-ethanoanthracene-11,11,12,12-

tetracarbonitrile III.15 

 

A mixture of III.3 (50 mg, 0.11 mmol, 1 eq), TCNE (57 mg, 0.452 mmol, 4 eq) 

and in a 10 mL conical vial was sonicated at room temperature for 10 min. After removed 

the solvent, the crude solid was purified via column chromatography (silica, 0% to 5% 

ethyl acetate in hexanes) to give pure product as white powder (64 mg, 100%). IR (neat) 

3019, 2962, 2866, 1466, 1360, 1264, 1120, 1016, 830 cm-1; 1H NMR (600 MHz, CDCl3): 

δ(ppm) 7.67-7.59 (overlap, 6H, Ar-H), 7.52 (dd, J = 5.5, 3.1 Hz, 2H, Ar-H), 7.43 (s, 2H, 

Ar-H), 7.36 (d, J = 7.8 Hz, 4H, Ar-H), 5.42 (s, 2H, CH), 1.47 (s, 18H, CH3);
 13C NMR 

(150 MHz, CDCl3): δ(ppm) 151.57, 140.34, 135.03, 134.85, 132.20, 130.38, 130.04, 

129.11, 126.79, 126.25, 111.00, 110.77, 49.81, 46.21, 34.95, 31.54; MALDI-TOF m/z 

cald for C40H34N4Na (M+Na)+ 593.2681, found 593.2681. 

 

DA-adduct III.16 

 

In a glove box with N2 atmosphere, a solution of III.1 (5 mg, 5 µmol, 1 eq) in 

DCM (2 mL) was added to a microwave reaction vial with a stir bar. The vial was sealed 

with a septum cap then transferred out the glove box. DCM was removed by N2 stream 

with a vent needle, at which point a degassed solution of diethyl acetylenedicarboxylate 

(0.08 mL, 0.5 mmol, 100 eq) in toluene (2 mL) was added. The mixture was heated on a 

microwave reactor at 160 °C for 16 hours. Upon cooling to room temperature, the solvent 

was removed and the crude product was purified via preparative thin layer 

chromatography (10% hexanes in DCM) to yield product as colorless oil (2 mg, 34%). IR 

(neat) 3025, 2880, 2902, 1712, 1636, 1482, 1390, 1368, 1302, 1258, 1204, 1058, 1001, 

908, 810, 733 cm-1; 1H NMR (600 MHz, CDCl3): δ(ppm) 7.70-7.58 (overlap, 40H, Ar-

H), 7.50-7.44 (overlap, 6H, Ar-H), 7.08 (dd, J = 5.4, 3.1 Hz, 2H, Ar-H),  6.63 (s, 2H, Ar-

H), 6.10 (s, 2H, CH), 4.29 (q, J = 7.1 Hz, 4H, OCH2), 1.32 (t, J = 7.1 Hz, 6H, CH3);
 13C 
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NMR (150 MHz, CDCl3): δ(ppm) 165.71, 147.44, 144.62, 141.02, 139.09, 138.96, 

138.84, 138.75-138.65 (overlap), 138.55, 136.04, 129.95, 129.19, 127.65-127.40 

(overlap), 127.28, 125.66, 124.17, 61.71, 50.41, 14.29, ; MALDI-TOF m/z cald for 

C88H63O4 (M+H)+ 1183.47, found 1183.80. 

 

diethyl (21R,24S)-21,24-dihydro-2(5,8)-naphthalena-1,3,5,6,7(1,4)-

pentabenzenacyclooctaphane-22,23-dicarboxylate  III.17 

 

A similar procedure to synthesize III.16 was adapted. III.2 (4.0 mg, 6.8 µmol, 1 

eq), diethyl acetylenedicarboxylate (0.11 mL, 0.69 mmol, 100 eq), toluene (3 mL). After 

heating at 160 °C on a microwave reactor for 14 hours, the solution was allowed to cool 

to room temperature and the solvent was removed under vacuum to yield the crude 

orange oil, at which point hexanes (2 mL) was added. After 10 min, product precipitated 

from the solution and was further washed with hexanes and n-pentane to give off-white 

solid (4 mg, 77%). IR (neat) 3018, 2982, 2922, 2855, 1711, 1635, 1594, 1485, 1368, 

1262, 1202, 1094, 1058, 906, 794 cm-1; 1H NMR (600 MHz, CDCl3): δ(ppm) 7.34 (dd, J 

= 5.4, 3.1 Hz, 2H, Ar-H), 7.21 (s, 4H, Ar-H), 7.16 (d, J = 8.3 Hz, 4H, Ar-H), 7.11 (d, J = 

8.2 Hz, 4H, Ar-H), 7.08-7.03 (overlap, 8H, Ar-H), 7.01 (dd, J = 5.4, 3.1 Hz, 2H, Ar-H),  

5.93 (s, 2H, Ar-H), 5.89 (s, 2H, CH), 4.23 (q, J = 7.1 Hz, 4H, OCH2), 3.88 (s, 4H, CH2), 

1.27 (t, J = 7.1 Hz, 6H, CH3);
 13C NMR (150 MHz, CDCl3): δ(ppm) 165.59, 147.30, 

144.53, 144.45, 143.71, 139.83, 138.73, 138.53, 138.53, 135.87, 129.91, 128.27, 128.22, 

127.40, 127.32, 125.53, 124.04, 61.59, 50.08, 43.38, 14.25; MALDI-TOF m/z cald for 

C54H43O4 (M+H)+ 755.32, found 755.86. 

 

diethyl (9R,10S)-1,4-bis(4-(tert-butyl)phenyl)-9,10-dihydro-9,10-ethenoanthracene-

11,12-dicarboxylate III.18 
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A similar procedure to synthesize III.16 was adapted. III.3 (20.0 mg, 0.045 

mmol, 1 eq), diethyl acetylenedicarboxylate (0.15 mL, 0.904 mmol, 20 eq), product was 

purified by using chromatography (silica, 0% to 80% DCM in hexanes) to yield product 

as colorless oil (21 mg, 75%) IR (neat) 3053, 3027, 2962, 2903, 2867, 1711, 1636, 1478, 

1365, 1264, 1203, 1105, 1057, 1016, 819, 785 cm-1; 1H NMR (600 MHz, CDCl3): δ(ppm) 

7.53 (d, J = 8.1 Hz, 4H, Ar-H), 7.41 (d, J = 8.1 Hz, 4H, Ar-H), 7.31 (dd, J = 5.3, 3.1 Hz, 

2H, Ar-H),  7.05 (s, 2H, Ar-H), 7.00 (dd, J = 5.3, 3.1 Hz, 2H, Ar-H),  5.84 (s, 2H, CH), 

4.23 (m, 4H, OCH2), 1.26 (t, J = 7.1 Hz, 6H, CH3);
 13C NMR (150 MHz, CDCl3): δ(ppm) 

165.70, 150.20, 147.40, 144.45, 141.67, 137.21, 137.06, 129.19, 126.50, 125.49, 125.43, 

124.05, 61.49, 49.70, 34.79, 31.61, 14.14; MALDI-TOF m/z cald for C42H44O4Na 

(M+Na)+ 635.31, found 636.09, cald for C39H39O2 (M-CO2Et)+, 539.30, found 540.11.  

 

DA-adduct III.19 

 

A mixture of III.3 (6 mg, 14 µmol, 1 eq) and C60 (14 mg, 19 µmol, 1.4 eq)  in 

CS2/C6D6 (7:1, 2 mL) was placed in a sealed vial and sonicated at 50 °C overnight. After 

removing solvent, the residue was purified by chromatography (0% to 30% chloroform in 

hexanes) to yield product as dark brown solid (4 mg, 25%).   IR (neat) 3026, 2960, 2901, 

2865, 1479, 1461, 1429, 1267, 1188, 1110, 1017, 905, 821, 747 cm-1; 1H NMR (600 

MHz, CDCl3): δ(ppm) 7.76 (dd, J = 5.4, 3.2 Hz, 2H, Ar-H), 7.52-7.46 (overlap, 6H, Ar-

H), 7.45-7.40 (overlap, 6H, Ar-H), 6.11 (s, 2H, CH), 1,39 (s, 18H, CH3); 
13C NMR (150 

MHz, CDCl3): δ(ppm) 156.05, 155.97, 150.33, 147.67, 146.59, 146.53, 146.31, 146.29, 

145.80, 145.54, 145.52, 145.52, 145.47, 145.34, 144.78, 144.73, 143.14, 143.01, 142.68, 

142.67, 142.47, 142.39, 142.21, 142.14, 142.12, 141.75, 141.71, 139.99, 139.77, 139.56, 

139.05, 137.36, 137.09, 136.73, 129.30, 128.32, 127.43, 126.01, 125.62, 72.65, 55.04, 

34.81, 31.60; MALDI-TOF m/z cald for C98H43 (M+NH4)
+ 1219.33, found 1219.25, cald 

for C34H35 (M-C60+H)+ 442.27, found 443.26, cald for (C60+H)+ 721.01, found 721.84. 
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Macrocyle III.28 

 

A similar procedure to synthesize III.8 was adapted. III.27 (505 mg, 0.928 mmol, 

1.1 eq), III.4 (700 mg, 0.844 mmol, 1 eq), S-phos Gen II precatalyst (31 mg, 0.031 

mmol, 0.05 eq), dioxane (230 mL) K3PO4 solution (2 M, 23 mL) product purified by 

column chromatography (silica, 0% to 15% ethyl acetate in DCM) as white powder (120 

mg, 14%). IR (neat) 3027, 2933, 2896, 2817, 1609, 1490, 1456, 1396, 1228, 1173, 1081, 

1027, 949, 819, 744, 659 cm-1; 1H NMR (600 MHz, CDCl3): δ(ppm) 7.56 (d, J = 8.4 Hz, 

4H, Ar-H), 7.53 (d, J = 8.4 Hz, 4H, Ar-H), 7.52 (d, J = 8.4 Hz, 4H, Ar-H), 7.49 (d, J = 

8.4 Hz, 4H, Ar-H), 7.42-7.36 (overlap, 8H, Ar-H), 7.24 (s, 2H, Ar-H), 7.09 (m, 4H, Ar-

H), 6.28 (d, J = 10.3 Hz, 4H, CH=CH), 6.16 (d, J = 10.3 Hz, 4H, CH=CH), 6.12 (s, 4H, 

CH=CH), 3.96 (s, 4H, CH2), 3.54 (s, 6H, OCH3), 3.50 (s, 6H, OCH3), 3.43 (s, 6H, 

OCH3); 
13C NMR (150 MHz, CDCl3): δ(ppm) 143.07, 142.29, 141.93, 140.99, 140.00, 

139.87, 139.56, 137.55, 135.25, 133.85, 133.73, 133.11, 139.70, 127.89, 127.24, 127.17, 

126.98, 126.70, 126.50, 126.25, 75.52, 75.34, 74.16, 52.45, 52.12, 52.07, 34.72; MALDI-

TOF m/z cald for C74H62O6 2)
+ 1046.45, found 1046.93, cald for C74H62O6 (M)+ 

1048.47, found 1048.92. 

 

1,4-(9,10-dihydroanthryl)-[10]CPP III.29 

 

A similar procedure to synthesize III.10 was adapted. III.28 (57 mg, 0.056 mmol, 

1 eq), sodium naphthalenide (12.1 mL, 2.81 mmol, 50 eq), product purified by column 

chromatography (silica, 0% to 30% DCM in hexanes) as light yellow solid (42 mg, 50%). 

IR (neat) 3033, 2922, 2850, 1903, 1590, 1482, 1384, 1262, 1000, 858, 809, 720 cm-1; 1H 

NMR (500 MHz, CDCl3): δ(ppm) 7.85 (dd, J = 6.1, 3.4 Hz, 2H, Ar-H), 7.66-7.51 
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(overlap, 32H, Ar-H), 7.48 (dd, J = 6.1, 3.4 Hz, 2H, Ar-H), 7.41 (d, J = 8.6 Hz, 4H, Ar-

H), 7.32 (dd, J = 5.5, 3.3 Hz, 2H, Ar-H), 7.21 (dd, J = 5.5, 3.3 Hz, 2H, Ar-H), 6.68 (s, 

2H, Ar-H), 4.29 (s, 4H, CH2); 
13C NMR (150 MHz, CDCl3): δ(ppm) 140.42, 138.83, 

138.55, 138.52, 138.51, 138.49, 138.45, 138.44, 138.43, 138.16, 135.19, 133.74, 130.45, 

129.58, 128.06, 127.59, 127.57, 127.55, 127.49, 127.33, 127.11, 126.44, 125.97, 35.49; 

MALDI-TOF m/z cald for C68H46 (M)+ 862.36, found 862.44, cald for C68H46 (M+H)+ 

863.37, found 863.47. 

 

1,4-anthryl-[10]-CPP III.30 

 

A similar procedure to synthesize III.1 was adapted. III.29 (15 mg, 0.072 mmol, 

1 eq), Pd/C (Pd 10 wt%, 74 mg, 0.028 mmol, 4 eq), product was purified by filtering 

through a short pug of celite as greenish yellow powder (7 mg, 47%). IR (neat) 3023, 

1904, 1590, 1482, 1391, 1264, 1085, 1001, 905, 812, 737 cm-1; 1H NMR (600 MHz, 

CDCl3): δ(ppm) 8.96 (s, 2H, Ar-H), 8.02 (dd, J = 6.5, 3.3 Hz, 2H, Ar-H), 7.65 (d, J = 8.3 

Hz, 4H, Ar-H), 7.63-7.53 (overlap, 32H, Ar-H), 7.52 (dd, J = 6.5, 3.3 Hz, 2H, Ar-H), 

7.00 (s, 2H, Ar-H); 13C NMR (125 MHz, CDCl3): δ(ppm) 140.27, 139.28, 138.46, 

138.45, 138.42, 138.36, 138.32, 138.30, 138.30, 137.93, 131.78, 130.70, 129.34, 129.19, 

128.51, 128.38, 127.55, 127.54, 127.53, 127.50, 127.47, 125.96, 129.50; MALDI-TOF 

m/z cald for C68H46 (M+H)+ 861.35, found 861.50. 
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3.4.3. Electrochemical and Photophysical Characterizations 

 

 

Figure 3.3. Cyclic Voltammetry of III.1 (vs Fc/Fc+). 

 

 

 

Figure 3.4. Cyclic Voltammetry of III.2 (vs Fc/Fc+). 



70 

 

Figure 3.5. Cyclic Voltammetry of III.3 (vs Fc/Fc+). 

 

 

 

Figure 3.6. Tauc plot of III.1 for calculating the optical band gap. 
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Figure 3.7. Tauc plot of III.2 for calculating the optical band gap. 

 

 

 

Figure 3.8. Tauc plot of III.3 for calculating the optical band gap. 

 

 

3.4.4. X-ray Crystallography Data 

Diffraction intensities were collected at 173 (1) and 200(2) (5) on a Bruker Apex2 

CCD diffractometer using an Incoatec IS micro-focus source with CuK radiation, = 

1.54178 Å. Space groups were determined based on systematic absences. Absorption 

corrections were applied by SADABS.56 Structures were solved by direct methods and 

Fourier techniques and refined on F2 using full matrix least-squares procedures. All non-

H atoms were refined with anisotropic thermal parameters. H atoms in both structures 
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were refined in calculated positions in a rigid group model. All calculations were 

performed by the SHELXL-2013 packages.57 

 

 

Figure 3.9. ORTEP representation of the X-ray crystallographic structure of III.1 

(CCDC Registry #1452467). 

 

Crystallographic data for III.1: C108H42, M = 1381.75, 0.09 x 0.06 x 0.02 mm, T = 

173(2) K, Triclinic, space group P1, a = 10.8797(11) Å, b = 19.060(2) Å, c = 19.762(2) 

Å, α = 10.8797(11)°, β = 84.259(8)°, γ = 79.119(7)°, V = 3941.9(7) Å3, Z = 2, Dc = 1.164 

Mg/m3, µ(Mo) = 0.495 mm-1, F(000) = 1464, θ = 2.28-59.80°, 38159 reflections, 7981 

independent reflections [Rint = 0.0635], R1 = 0.0705, wR2 = 0.1844 and GOF = 1.028 for 

13411 reflections (800 parameters) with I>2σ(I), R1 = 0.1085, wR2 = 0.2015 and GOF = 

1.031 for all reflections, max/min residual electron density +0.676/-0.483 eÅ3. Two 

highly distorted toluene molecules located in the unit cell of the crystal and were treated 

by SQUEEZE.58 
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Figure 3.10. ORTEP representation of the X-ray crystallographic structure of III.3 

(CCDC Registry #1452466). 

 

Crystallographic data for III.3: C34H34, M = 442.61, 0.23 x 0.21 x 0.14 mm, T = 

173(2) K, Monoclinic, space group Pn, a = 11.8562(4) Å, b = 16.2582(5) Å, c = 

26.9243(8) Å, α = 90°, β = 94.715(2)°, γ = 90°, V = 5172.4(3) Å3, Z = 8, Dc = 1.137 

Mg/m3, µ(Mo) = 0.476 mm-1, F(000) = 1904, θ = 3.29-66.58°, 31975 reflections, 7893 

independent reflections [Rint = 0.0466], R1 = 0.0602, wR2 = 0.1641 and GOF = 1.035 for 

14421 reflections (1225 parameters) with I>2σ(I), R1 = 0.784, wR2 = 0.1837 and GOF = 

1.035 for all reflections, max/min residual electron density +0.436/-0.265 eÅ3. 

 

 

 

Figure 3.11. Crystal packing of III.1 (hydrogen atoms are omitted for clarity). 

 



74 

 

Figure 3.12. Crystal packing of III.3 (hydrogen atoms are omitted for clarity). 

 

Table 3.2. Structural properties from the empirical crystallographic data and from the 

calculated data (DFT, BL3YP/6-31G*).  

 

 Bond length (Å) 

a b c d e 

III.1a 1.365(4) 1.404(4) 1.436(4) 1.446(4) 1.396(4) 

III.1b 1.380 1.411 1.447 1.457 1.400 

III.3a 1.349(8) 1.425(9) 1.455(8) 1.427(8) 1.391(8) 

III.3b 1.377 1.417 1.446 1.452 1.402 

 Bond length (Å) 

f g h i j 

III.1a 1.397(4) 1.435(4) 1.421(4) 1.358(4) 1.424(4) 

III.1b 1.402 1.440 1.429 1.371 1.425 

III.3a 1.397(8) 1.432(9) 1.432(8) 1.359(9) 1.406(10) 

III.3b 1.400 1.440 1.430 1.370 1.426 

 

 

 θ, deg α, deg β, deg 

III.1a 49.9 7.6 6.3 

III.1b 42.8 7.4 6.7 

III.3a 57.5, 75.2 4.4 2.3 

III.3b 54.5 4.5 0.7 
aCrystallographic data.  
bCalculated data. 
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3.4.5. Computational Details 

3.4.5.1. Methods selection. 

Calculations were carried out with Gaussian 09 package.59 Molecular geometry 

optimization, FMO plots and energy levels, strain energy calculations and optical 

transition predictions were computed at B3LYP/6-31G* level of theory. The excited state 

calculations were performed on fully optimized structures. Reaction free energies and 

transition state energies and related structure optimizations were computed at 

ωB97XD/6-31G* level of theory.  

Reasons for level of theory selections: 1) ωB97XD functional incorporates a large 

amount of exact exchange as well as a description of dispersion effects. The large amount 

of exact exchange is essential for accurately calculating thermodynamic properties 

including reaction energy barriers; 2) the hybrid B3LYP/6-31G* has the advantages of 

cost-effectiveness and accuracy in optimizing molecular structures, calculating orbital 

energies and predicting optical transitions. However, B3LYP/6-31G* basis set exhibits 

obvious limitation in calculating thermodynamic properties when non-covalent 

interactions are involved.  

 

3.4.5.2. Molecular Geometry Optimizations, Electronic Structures and Optical 

transitions  

 

 

Figure 3.13. Representative HOMO (left) and LUMO (right) surfaces of III.1. (DFT, 

B3LYP-6-31G*). 
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Figure 3.14. Representative HOMO (left) and LUMO (right) surfaces of III.2. (DFT, 

B3LYP-6-31G*). 

 

 

Figure 3.15. Representative HOMO (left) and LUMO (right) surfaces of III.3. (DFT, 

B3LYP-6-31G*). 

 

Table 3.3. Calculated FMO properties of III.1-3 (B3LYP-6-31G*). 

 𝐸𝐻𝑂𝑀𝑂 (eV) 𝐸𝐿𝑈𝑀𝑂 (eV) 𝛥𝐸𝐿−𝐻 (eV) 

III.1 -4.97 -1.91 3.06 

III.2 -4.93 -1.71 3.22 

III.3 -5.02 -1.60 3.42 

 

Table 3.4. Major electronic transitions for III.1 determined by TD-DFT method 

(B3LYP-6-31G*). 

Energy (cm-1) Wavelength (nm) Osc. Strength Major contribs 

21518.21424 464.7225782 0.3476 HOMO->LUMO (95%) 

24919.47776 401.2925189 0.1689 HOMO->L+1 (78%) 

25354.2136 394.4117596 0.109 

H-1->LUMO (79%), HOMO->L+1 

(10%) 

25709.90656 388.9551281 0.2027 

H-2->LUMO (16%), HOMO->L+2 

(80%) 

25997.84848 384.6472145 1.3261 

H-2->LUMO (80%), HOMO->L+2 

(16%) 

27137.51776 368.4935405 0.3727 H-2->L+2 (10%), H-1->L+1 (73%) 

27473.04672 363.9931203 0.0775 

H-3->LUMO (13%), HOMO->L+3 

(73%) 

28255.40992 353.9145257 0.3781 

H-3->LUMO (76%), HOMO->L+3 

(14%) 

28703.05072 348.3950225 0.9675 H-2->L+1 (75%), H-1->L+2 (20%) 

28800.64448 347.2144523 0.0792 H-2->L+1 (21%), H-1->L+2 (75%) 

29743.51312 336.2077627 0.0234 H-2->L+2 (81%), H-1->L+1 (13%) 
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30191.96048    331.2140001   0.0009 H-6->LUMO (22%), H-4->LUMO 

(11%), HOMO->L+4 (29%), 

HOMO->L+6 (18%) 

 

 

Table 3.5. Major electronic transitions for III.2 determined by TD-DFT method 

(B3LYP-6-31G*). 

    

Energy (cm-1) Wavelength (nm) Osc. Strength Major contribs 

22930.5 436.1004 0.1371 HOMO->LUMO (97%) 

27113.32 368.8224 0.0294 H-1->LUMO (97%) 

27162.52 368.1543 0.006 HOMO->L+1 (95%) 

30382.31 329.1389 0.0145 H-4->LUMO (39%), HOMO->L+3 

(27%), HOMO->L+4 (13%), 

HOMO->L+5 (18%) 

30486.35 328.0156 0.0031 

H-2->LUMO (31%), HOMO->L+2 

(63%) 

31106.6 321.4752 0.1203 H-2->LUMO (28%), H-1->L+1 (63%) 

32018.82 312.3163 0.0205 H-3->LUMO (85%) 

32535.02 307.3611 0.4793 

H-2->LUMO (37%), H-1->L+1 (31%), 

HOMO->L+2 (28%) 

33027.02 302.7824 0.2394 

H-3->LUMO (10%), HOMO->L+3 

(59%), HOMO->L+5 (19%) 

33494.02 298.5608 0.0131 

HOMO->L+4 (61%), HOMO->L+5 

(24%) 

34252.99 291.9453 0.0159 

H-6->LUMO (10%), HOMO->L+6 

(79%) 

35470.9 281.9213 0.016 H-5->LUMO (74%) 

 

 

Table 3.6. Major electronic transitions for III.3 determined by TD-DFT method 

(B3LYP-6-31G*). 

Energy (cm-1) Wavelength (nm) Osc. Strength Major contribs 

24714.61 404.6189 0.2246 HOMO->LUMO (98%) 

30958.19 323.0163 0.0007 H-2->LUMO (43%), HOMO->L+2 

(51%) 

31714.75 315.3107 0.0001 H-1->LUMO (61%), HOMO->L+1 

(38%) 

33209.3 301.1205 0.2206 H-1->LUMO (37%), HOMO->L+1 

(61%) 

34251.38 291.9591 0.0208 H-3->LUMO (83%), H-2->LUMO (13%) 

36004.03 277.7467 0.0044 H-5->LUMO (31%), HOMO->L+3 

(66%) 
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36053.23 277.3676 0.0046 H-4->LUMO (41%), HOMO->L+4 

(51%) 

36333.91 275.225 0.1328 HOMO->L+5 (72%) 

36686.38 272.5807 0.0002 H-5->LUMO (67%), HOMO->L+3 

(32%) 

36706.55 272.431 0.0046 H-4->LUMO (53%), HOMO->L+4 

(30%), HOMO->L+5 (14%) 

39069.77 255.9524 0.0004 H-6->LUMO (71%), HOMO->L+6 

(27%) 

40105.39 249.343 0.9139 H-2->LUMO (27%), H-1->L+2 (13%), 

HOMO->L+2 (31%) 

 

 

3.4.5.3. Strain Energies 

Strain Energies were calculated by subtracting the total energy of the optimized 

1,4-diphenylanthracene from the total energies of the DPA cores from III.1-3 (terminated 

with hydrogen atoms).49 

 

 

Total Energy: 1001.63775776 Hartrees (DFT, B3LYP-6-31G*) 

Figure 3.16. Optimized geometry of DPA molecule (DFT, B3LYP-6-31G*). 

 

 

Total Energy: 1001.61630062 Hartrees (DFT, B3LYP-6-31G*) 

Figure 3.17. The bent DPA core of III.1 (terminated with hydrogen atoms). 
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Total Energy: 1001.61412722 Hartrees (DFT, B3LYP-6-31G*) 

Figure 3.18. The bent DPA core of III.2 (terminated with hydrogen atoms). 

 

 

Total Energy: 1001.63593799 Hartrees (DFT, B3LYP-6-31G*) 

Figure 3.19. The bent DPA core of III.3 (terminated with hydrogen atoms). 

 

 

3.4.5.4. Reaction Free Energies and Transition Barriers 

Table 3.7. Reaction free energies and transition energy barriers for the dimerization of 

III.1-3 (DFT, ωB97XD/6-31G*). 

 𝐸a 

 (Hartrees) 

𝐸𝑇𝑆
b 

(Hartrees) 

𝐸𝑑𝑖𝑚𝑒𝑟
c 

(Hartrees) 

𝛥𝐸𝑎𝑐𝑡
d 

(kcal/mol) 

𝛥𝐻𝑟
e 

 (kcal/mol) 

III.1 -3077.877496 NA -6155.753083 NA 1.1979 

III.2 -1771.022704 NA -3542.048008 NA -1.6315 

III.3 -1315.202096 NA -2630.414845 NA -6.6848 
a𝐸 refers to the total energies shown in Figure III.20 (III.1), III.24 (III.2) and III.28 (III.3). 
bAttempts to calculate 𝐸𝑇𝑆 were unsuccessful. 
c𝐸𝑑𝑖𝑚𝑒𝑟  refers to the total energies shown in Figure III.21 (III.1), III.25 (III.2) and III.29 (III.3). 
dAttempts to calculate 𝛥𝐸𝑎𝑐𝑡 were unsuccessful. 
e𝛥𝐻𝑟 = 𝐸𝑑𝑖𝑚𝑒𝑟 − 2𝐸.  
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Table 3.8. Reaction free energies and transition energy barriers for the DA reactions of 

C60 with III.1-3 (DFT, ωB97XD/6-31G*). 

 𝐸a 

(Hartrees) 

𝐸𝑇𝑆
b 

(Hartrees) 

𝐸𝐷𝐴−𝑎𝑑𝑑𝑢𝑐𝑡
c 

(Hartrees) 

𝛥𝐸𝑎𝑐𝑡
d 

(kcal/mol) 

𝛥𝐻𝑟
e 

 (kcal/mol) 

III.1 -3077.877496 -5362.964109 -6155.753083 17.8526 -16.0033 

III.2 -1771.022704 -4056.110862 -3542.048008 16.8831 -15.6124 

III.3 -1315.202096 -3600.296994 -2630.414845 12.6537 -20.8710 
a𝐸 refers to the total energies shown in Figure III.20 (III.1), III.24 (III.2) and III.28 (III.3). 𝐸𝐶60 =
−2285.115063 (Hartrees). 
b𝐸𝑇𝑆 refers to the transition state (TS) energies shown in Figure III.23 (III.1), III.27 (III.2) and III.31 

(III.3). 
c𝐸𝐷𝐴−𝑎𝑑𝑑𝑢𝑐𝑡  refers to the total energies shown in Figure III.22 (III.1), III.26 (III.2) and III.30 (III.3). 
d𝛥𝐸𝑎𝑐𝑡 = 𝐸𝑇𝑆 − 𝐸 − 𝐸𝐶60. 
e𝛥𝐻𝑟 = 𝐸𝐷𝐴−𝑎𝑑𝑑𝑢𝑐𝑡 − 𝐸 − 𝐸𝐶60.  

 

 

 

Total Energy: 3077.877496 Hartrees (DFT, ωB97XD/6-31G*) 

Figure 3.20. Optimized molecular structure of III.1 for reaction free energy calculation 

(DFT, ωB97XD/6-31G*). 

 

 

Total Energy: 6155.753083 Hartrees (DFT, ωB97XD/6-31G*) 

Figure 3.21. Optimized dimer structure of III.1 for reaction free energy calculation 

(DFT, ωB97XD/6-31G*). 
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Total Energy: 5363.018062 Hartrees (DFT, ωB97XD/6-31G*) 

Figure 3.22. Optimized DA-adduct of C60 with III.1 for reaction free energy calculation 

(DFT, ωB97XD/6-31G*). 

 

 

TS Energy: 5362.964109 Hartrees (DFT, ωB97XD/6-31G*) 

Figure 3.23. DA transition state of C60 with III.1 for reaction activation barrier 

calculation (DFT, ωB97XD/6-31G*). 

 

 

Total Energy: 1771.022704 Hartrees (DFT, ωB97XD/6-31G*) 

Figure 3.24. Optimized molecular structure of III.2 for reaction free energy calculation 

(DFT, ωB97XD/6-31G*). 

 

 

Total Energy: 3542.048008 Hartrees (DFT, ωB97XD/6-31G*) 

Figure 3.25. Optimized dimer structure of III.2 for reaction free energy calculation 

(DFT, ωB97XD/6-31G*). 
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Total Energy: 4056.162647 Hartrees (DFT, ωB97XD/6-31G*) 

Figure 3.26. Optimized DA-adduct of C60 with III.2 for reaction free energy calculation 

(DFT, ωB97XD/6-31G*). 

 

 

TS Energy: 4056.110862 Hartrees (DFT, ωB97XD/6-31G*) 

Figure 3.27. DA transition state of C60 with III.2 for reaction activation barrier 

calculation (DFT, ωB97XD/6-31G*). 

 

 

Total Energy: 1315.202096 Hartrees (DFT, ωB97XD/6-31G*) 

Figure 3.28. Optimized molecular structure of III.3 for reaction free energy calculation 

(DFT, ωB97XD/6-31G*). 

 

 

Total Energy: 2630.414845 Hartrees (DFT, ωB97XD/6-31G*) 

Figure 3.29. Optimized dimer structure of III.3 for reaction free energy calculation 

(DFT, ωB97XD/6-31G*). 
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Total Energy: 3600.350419 Hartrees (DFT, ωB97XD/6-31G*) 

Figure 3.30. Optimized DA-adduct of C60 with III.3 for reaction free energy calculation 

(DFT, ωB97XD/6-31G*). 

 

 

TS Energy: 3600.296994 Hartrees (DFT, ωB97XD/6-31G*) 

Figure 3.31. DA transition state of C60 with III.3 for reaction activation barrier 

calculation (DFT, ωB97XD/6-31G*). 

 

 

3.5. Bridge to Chapter IV 

In this chapter, with the aim to create CPP-based solid materials, we explored the 

possibility of using 1,4-anthracene as the functional handle to crosslink nanohoops. 

Chapter IV describes the synthesis of a nanohoop-related molecular propeller that 

exhibits ubiquitous hexagonal porous packing structure. It represents a new molecular 

design strategy to access functional soft materials. 



84 

CHAPTER IV 

 

A MOLECULAR PROPELLER WITH THREE NANOHOOP BLADES: SYNTHESIS, 

CHARACTERIZATION, AND SOLID STATE PACKING 

 

From Li, P.; Zakharov, L. N.; Jasti, R. A Molecular Propeller with Three 

Nanohoop Blades: Synthesis, Characterization and Solid State Packing. Angew. Chem. 

Int. Ed. 2017, 56 (19), 5237-5241; Angew. Chem. 2017, 129 (19), 5321-5325. 

Nanoscale carbon-rich molecular architectures are not only aesthetically 

appealing but also of practical importance for energy and biomedical technologies. 

Herein we report the synthesis of cyclic-oligophenylene-based nanopropeller IV.1 via an 

efficient synthon strategy involving sequential intramolecular bisboronate homocoupling 

and reductive aromatization by H2SnCl4. The nanopropeller molecules pack into a 

layered hexagonal lattice featuring long-ranged nano-sized channels and a total guest 

accessible volume of 48%, as revealed by X-ray diffraction studies. We suggest that such 

solid state arrangement is determined by an interplay between the propeller architecture 

and the intermolecular van der Waals interactions.  

 

 

4.1. Introduction 

Over the last three decades, sp2-hybridized carbon allotropes including fullerene, 

carbon nanotubes (CNTs) and graphenes have been the subject of intense scientific 

research across disciplines owing to their exotic physics as well as potential applications 

in a broad range of technologies.1-7 The properties of these materials are directly related 

to their shape, size and geometric arrangement of the carbon atoms.8-10 This has prompted 

the synthesis of a variety of molecular fragments of these carbon structures by organic 

chemists as new forms of nanocarbon materials.11-13 Among these, hoop-shaped 

cycloparaphenylenes (CPPs), as unit cross sections of CNTs, are gaining increasing 

attention since the initial synthesis in 2008.14 In addition to the envisioned application in 

seeding the growth of uniform CNTs,15-16 these strained nanohoops have proven to be of 
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a unique carbon-rich molecular entity, possessing attractive structural, optoelectronic and 

supramolecular properties that have direct implications in materials science.17-29  

  Most of the current nanohoop syntheses rely on a step-wise strategy wherein a 

less strained macrocyclic precursor is constructed from curved building units that contain 

masked arenes or cis-platinum complexes, followed by a late-stage reaction 

(aromatization or reductive elimination) to complete the buildup of the strained 

framework.30-35 Not only has this synthetic approach permitted the diversification of 

nanohoop structures,35-47 but also enabled the creation of unique 3D oligophenylene 

molecules (shown in Figure 4.1).48-51 In this respect, the chemistry developed in the 

context of the nanohoops presents a facile platform for the synthesis of structurally-

unique, nonplanar nanocarbon architectures that may give rise to novel functions.  

 

 

 

Figure 4.1. Unique nanocarbon architectures (from left to right): carbon nanocage,48-49 

3D carbon ball,50  and nanopropeller IV.1 in this chapter. 

 

 

Herein, we described the synthesis of a carbon nanopropeller IV.1 with three 

cyclic-oligophenylene blades on a triptycene hub, employing an efficient synthon 

strategy that involves intramolecular bisboronate homocoupling and subsequent reductive 

aromatization by H2SnCl4. The crystal structure of the nanopropeller displays a 

ubiquitous hexagonal layered packing motif with uniform 1D nanochannel arrays and a 

total guest-accessible volume of 48%, suggesting potential applications as guest-inclusion 

materials and porous molecular solids. 
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4.2. Synthesis 

The Pd-mediated intramolecular bisboronate homocoupling was serendipitously 

discovered in our synthesis of [5]CPP.52 This operationally simple homocoupling method 

has demonstrated satisfying efficiency and adaptability that have allowed us to 

synthetically achieve a variety of intrinsically strained macrocycles.53-54 When planning 

the synthesis of nanopropeller IV.1 using the homocoupling chemistry, we realized that a 

bisboronate synthon with a high tendency to undergo intramolecular homocoupling is 

required in order to execute the multi-fold macrocyclization process. Depicted in Scheme 

4.1, a model bisboronate substrate IV.2, which consists of two ortho-fused masked p-

terphenyl moieties, was found to fulfill the criteria, giving intramolecularly cyclized 

product IV.3 as the major product when subjected to the standard oxidative homocoupling 

conditions. Utilizing a modified tin(II)-mediated reduction protocol,55 macrocycle IV.3 

was cleanly aromatized to afford teardrop shaped nanohoop IV.4 in 67% yield. Adapting 

the synthon strategy based on this facile two-step transformation, the synthetic route 

towards the nanopropeller IV.1 was designed (Scheme 4.2). 

 

 

Scheme 4.1. An efficient two-step transformation from bisboronate IV.2 to nanohoop 

IV.4. 

 

 

First, a Suzuki coupling of hexabromotriptycene with six equivalents of IV.5 

produced hexachloride IV.6, which was then converted to the key intermediate 

hexaboronate IV.7 using a Miyaura borylation condition in the presence of Pd(OAc)2, S-

Phos, B2Pin2 and anhydrous K3PO4 in dioxane. As expected, under the standard 

bisboronate homocoupling conditions at room temperature in oxygenated THF/water 

with PdCl2(PPh3)2, B(OH)3 and KF, IV.7 proceeded through a three-fold intramolecular 



87 

cyclization, yielding compound IV.8 in 46% yield. Finally, compound IV.8 was 

successfully aromatized by H2SnCl4 to give the target product IV.1 as yellow solid in 

72% yield. Overall, the efficiency corresponds to a 77% yield for each macrocyclization 

and a 90% yield for each aromatization, which again underscores the power of this 

synthon strategy. It is worth mentioning that a similar strategy utilizing aryl halide 

homocoupling was recently reported by Cong in the synthesis of a dual-macrocyclic 

oligophenylene structure.43 

 

 

Scheme 4.2. Synthesis of nanopropeller IV.1. 

 

 

The formation of nanopropeller IV.1 was confirmed by NMR spectroscopy and 

mass spectrometry. The 1H NMR spectra showed only seven peaks (6.907.60 ppm) in 

the aromatic region and one peak at 5.60 ppm that can be assigned to the triptycene 

bridgehead protons. Such simple features confirm that the three cyclic blades are 
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equivalent. No broadening of the peaks was observed, suggesting free rotation of the 

phenyl rings at room temperature. Additionally, a parent peak ion corresponding to 

[IV.1]+ (m/z = 1616.6) was detected in MALDI-TOF spectrometry. These observations 

are consistent with the nanopropeller structure with three-fold symmetry. Notably, 

nanopropeller IV.1, though comprised of twenty-one phenyl rings without any 

solubilizing side chains, is soluble in common organic solvents. This phenomena can be 

attributed to its rigid 3D geometry with contorted nanohoop blades, which impedes 

intermolecular π-π stacking.39,56 

 

 

4.3. Solid State Packing Ananlysis  

  By slow diffusion of n-pentane vapor into a solution of IV.1 in chlorobenzene, 

single crystals suitable for X-ray crystallography were obtained. The nano-sized propeller 

architecture was thus unambiguously confirmed (Figure 4.1a). The crystal structure was 

solved in the hexagonal space group P63/m with two molecules in the unit cell. Molecules 

of IV.1, displaying a C3h symmetry conformation, adopt a lamellar packing motif with 11 

Å diameter channels that lie perpendicular to the layers (Figure 4.2b-c). Each layer is 

comprised of a 2D trigonal lattice wherein molecules are organized into repetitive 

patterns of triangular cavities and cyclic trimers via self-complementary CH···π 

interactions (Figure 4.3a-b). This nested supramolecular network prevents the in-plane 

translations and rotations therefore reinforcing the integrity of the 2D lattice. 

Furthermore, the layers are held in position by inter-layer CH···π interactions and are 

stacked in an alternating fashion with a rotation offset of 60° between adjacent layers 

(Figure 4.3c), thereby aligning the triangular cavities along the c axis to form the 

observed 1D nanochannels with a hexagonal honeycomb cross section. This alternating 

pattern also allows a dense inter-layer packing through shape matching in which the 

convex surfaces (where the cyclic trimers are located) of the 2D lattice are in close 

contact with the concave surfaces (where the triptycene units are located) of the 

neighboring layers. Additionally, twelve residual chlorobenzene molecules are trapped in 

the unit cell. Six are highly disordered and located in the free volumes near the triptycene 

unit. Their electron density was removed with the SQUEEZE function in the PLATON 
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software package. The other six solvent molecules are well refined, residing in the 

intrinsic cavities of the nanohoop blades via π···π stacking (Figure 4.6). Void analysis 

using CrystalExplorer software revealed that the solvent-free hexagonal crystal model has 

a total guest accessible volume of 48%, as well as a low density of 0.69 g/cm2.57 These 

features suggest potential applications as guest-inclusion materials58 and porous 

molecular solids.59-61 We also expect this hexagonal packing motif to open up possible 

applications in the bottom-up construction of new graphitic layer materials.62-63 

 

 

 

 

Figure 4.2. a) Solid state molecular structure of IV.1 with a C3h conformation (ellipsoids 

set at 50% possibility, hydrogen atoms removed for clarity). b) Layered packing 

arrangement, viewed along the a axis. c) 1D hexagonal channels with a minimum 

diameter of 11 Å (spacefilling model), viewed along the c axis (solvent molecules 

removed for clarity). 

 

 

11 Å
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Figure 4.3. a) Representation of 2D trigonal lattice with triangular cavities and cyclic 

trimers. b) Self-complementary CH···π interactions in the cyclic trimer structure. 

Involved hydrogen atoms and carbon atoms highlighted in yellow and black, 

respectively. c) Rotation offset of 60° between adjacent layers. 

 

 

A bulk powdered nanopropeller sample, simply prepared by solvent evaporation 

of a solution of IV.1 in dichloromethane, exhibits high crystallinity, as exemplified in its 

powder X-ray diffraction (PXRD) pattern with strong and distinct diffraction peaks 

(Figure 4.9). The majority of the powder crystallites is likely to adopt a hexagonal 

packing motif that is different from the packing structure of the single crystal. However, 

it is not trivial to obtain crystal structure solely from PXRD data. Further studies are in 

progress in order to elucidate the crystalline phase of the bulk powders and the self-

assembly process during rapid solvent evaporation. 

  It is noteworthy that the observed hexagonal packing structure closely resembles 

that found in tris(o-phenylenedioxy)cyclo-triphosphazene (TPP) and its inclusion 

adducts.64-68 Both TPP and nanopropeller IV.1 possess a three-fold symmetric molecular 

architecture that plays an important role in introducing free volumes and directing 

attractive intermolecular forces. In contrast, nanohoop IV.4, as a fragment of IV.1, adopts 

a densely packed crystal structure with no substantial extrinsic cavities (Figure 4.8). In 

60°

2.853 Å

2.853 Å

2.853 Å
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addition, the cyclic trimer supramolecular structure is not observed in case of IV.4. 

Therefore, it is plausible that the bulky propeller architecture and intermolecular CH···π 

interactions work cooperatively in dictating the self-assembly process, leading 

preferentially to the formation of the observed hexagonal packing motif that maximizes 

attractive intermolecular interactions, minimizes steric hindrance within the 2D lattice, 

and provides maximal inter-layer packing efficiency.  

 

 

4.4. Photophysical and Electrochemical Studies   

The photophysical and electrochemical properties of nanopropeller IV.1 were 

investigated in comparison with nanohoop IV.4 (data summarized in Table 4.1). 

Interestingly, we observed similar photophysical properties for IV.1 and IV.4 (Figure 

4.4). Both compounds display an absorption maxima near 330 nm and a low energy 

absorption band around 410 nm that corresponds to the HOMO-LUMO transition 

according to time-dependent DFT calculations. Additionally, a similar greenish yellow 

fluorescence was observed with a major emission peak at around 520 nm. The 

fluorescence decays of both molecules obey single-exponential kinetics with a similar 

lifetime (1.64 ns for IV.1 and 1.49 ns for IV.4). Taken together, it suggests a lack of 

significant intramolecular electronic interactions of the nanopropeller in either the ground 

state or excited state. However, a slightly less positive oxidation potential was recorded 

for IV.1 (0.55 V vs Fc+/Fc0) compared to IV.4 (0.63 V vs Fc+/Fc0) in cyclic voltammetry. 

Further electrochemical studies are underway in order to understand this phenomena. 

 

 

Table 4.1. Major UV-Vis absorption peaks (λabs), fluorescence emission peaks (λem), 

optical band gap (Egap), fluorescence lifetimes (), and oxidation potetial maximum (Eox) 

at room temperature. 

Compound λabs [nm] λem [nm] Egap [eV] [a]  [ns] Eox [V][b 

IV.1 328, 406 519 3.05 1.64 0.55 

IV.4 322, 416 515 2.95 1.49 0.63 

[a] Calculated from the lowest energy absorption peaks. [b] V versus Fc+/Fc0 
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Figure 4.4. UV-Vis absorption and fluorescence spectra of IV.1 and IV.4. 

 

 

4.5. Conclusion and Outlook 

In summary, we have demonstrated the synthesis of a carbon-rich nanopropeller 

employing an efficient synthon strategy via Pd-catalyzed bisboronate homocoupling and 

tin(II)-mediated reductive aromatization. The layered hexagonal crystal structure of IV.1 

features long-ranged 1D nanochannel arrays and large guest accessible volume (48%). 

With its ubiquitous molecular architecture and self-assembly properties, we envision 

nanopropeller IV.1 and its functionalized derivatives to have potential uses as molecular 

porous materials, as building blocks for artificial molecular rotors, and as tectons for 

crystal engineering. Our efforts towards these applications are underway and will be 

reported in due course. 

 

 

4.6. Experimental Sections 

4.6.1. General Experimental Considerations 

Tetrahydrofuran (THF) and dioxane were obtained from a solvent system with 

columns packed with activated alumina. Moisture and oxygen sensitive reactions were 

carried out under nitrogen atmosphere using standard Schlenk line techniques. Silica 

column chromatography was conducted with Zeochem Zeoprep n60 Eco 40-63 µm silica 
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gel. Thin layer chromatography (TLC) was performed using Sorbent Technologies Silica 

Gel XHT TLC plates. Developing plates were visualized using UV light at wavelength of 

254 and 365 nm. NMR spectra were recorded on a Bruker Avance-III-HD 600 (or 500) 

spectrometer with a Prodigy multinuclear broadband cryoProbe. Chemical shifts were 

reported in parts per million (ppm) and were referenced to the residual protio-solvent 

(CDCl3, 
1H: 7.26 and 13C: 77.16). IR spectra were recorded on a Thermo Scientific 

Nicolet 6700 spectrometer equipped with a diamond crystal Smart ATR Attachment. 

Cyclic voltammetry was performed in a N2 atmosphere glove box using a Solartron 1287 

potentiostat. A 3-electrode set-up was employed comprising a glassy carbon working 

electrode, a platinum coil counter electrode and a silver wire pseudo reference electrode. 

Electrolyte solutions (0.1 M) were prepared from HPLC-grade DCM and anhydrous 

Bu4NBF4, and the solutions were thoroughly degassed prior to analysis.  

UV-Vis absorption and fluorescence spectra were obtained in Quartz cuvette on 

an Agilant Cary 100 spectrophotometer and a Horiba Jobin Yvon Fluoromax-4 

Fluorometer, respectively. The fluorescence decay curves were measured using a time-

resolved fluorimeter (Horiba Tempro Fluorescence lifetime system) equipped with a 

NanoLED (Model: N-360, 36010 nm). The scatter curves were measured using a diluted 

Ludox® solution (from Sigma-Aldrich).  

 

 

4.6.2. Synthetic Details 

 

 

Scheme 4.3. Synthesis of bisboronate IV.2. 
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(1's,4's)-4,4''''''-dichloro-1',1''''',4',4'''''-tetramethoxy-1',1''''',4',4'''''-tetrahydro-

1,1':4',1'':4'',1''':2''',1'''':4'''',1''''':4''''',1''''''-sepiphenyl IV.9 

 

Compound IV.5 was prepared according to reported procedure.39 To a 250 mL 

round bottom flask was added o-dibromobenzene (1.00 g, 4.24 mol, 1 eq), IV.5 (4.22 g, 

9.33 mmol, 2.2 eq), K2CO3 (2.93 g, 21.2 mmol, 5 eq) and Pd(PPh3)4 (0.49 g, 0.42 mmol, 

0.1 eq). Then a condenser was attached to the flask and the setup was evacuated and 

refilled with N2 for 10 times. Then degassed THF (65 mL) and water (25 mL) were 

transferred to the flask via syringe. The resulting yellow mixture was heated at 90 °C 

under N2 overnight. After cooling down to room temperature, DCM (80 mL) was added 

to the reaction. The mixture was washed with H2O (50 mL) and brine (100 mL) and then 

dried with Na2SO4. Solvent was removed under reduced pressure and the crude was 

purified by column chromatography (silica, 0% to 20% ethyl acetate in hexanes) to yield 

product as yellow oil (1.53 g, 50%). 1H NMR (500 MHz, CDCl3): δ(ppm) 7.39 (s, 4H, 

Ar-H), 7.27 (d, J = 8.6 Hz, 4H, Ar-H), 7.20-7.25 (overlap, 8H, Ar-H), 7.10 (d, J = 8.6 Hz, 

4H, Ar-H), 6.11 (d, J = 10.2 Hz, 4H, C=C-H), 6.02 (d, J = 10.2 Hz, 4H, C=C-H), 3.42 (s, 

6H, CH3), 3.41 (s, 6H, OCH3); 
13C NMR (125 MHz, CDCl3): δ(ppm) 142.12, 141.56, 

140.99, 140.11, 133.90, 133.46, 133.14, 130.97, 130.06, 128.60, 127.67, 127.57, 125.66, 

74.81, 74.66, 52.15; IR (neat) 3055, 3025, 2980, 2934, 2896, 2820, 1915, 1608, 1593, 

1505, 0477, 1401, 1360, 1172, 1074, 1021, 949, 826, 783 cm-1; HRMS (TOF, ES+) m/z 

cald for C46H40Cl2O4Na (M)+ 749.2201, found 749.2196. 
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2,2'-((1's,4's)-1',1''''',4',4'''''-tetramethoxy-1',1''''',4',4'''''-tetrahydro-

[1,1':4',1'':4'',1''':2''',1'''':4'''',1''''':4''''',1''''''-sepiphenyl]-4,4''''''-diyl)bis(4,4,5,5-

tetramethyl-1,3,2-dioxaborolane) IV.2 

 

To a 50 mL round bottom flask was added IV.9 (1.53 g, 2.10 mmol, 1 eq), B2Pin2 

(4.27 g, 16.8 mmol, 8 eq), K3PO4 (3.57 g, 16.8 mmol, 8 eq), Pd(OAc)2 (0.071 g, 0.11 

mmol, 0.05 eq) and S-Phos (0.120 g, 0.27 mmol, 0.13 eq). The flask was evacuated and 

backfilled with N2 for 10 times. After switching the vacuum adapter with septum, the 

flask was purged with N2 for another 30 min. At this point, degassed dioxane (25 mL) 

was added to the flask and the mixture was heated at 80 °C overnight. Upon cooling to 

room temperature, the mixture was filtered through a short plug of Celite to remove the 

base. Then solvent was removed under reduced pressure and the resulting grey residue 

was purified via column chromatography (silica, 0% to 15% ethyl acetate in DCM) to 

yield product as white powder (1.12 g, 59%). 1H NMR (600 MHz, CDCl3): δ(ppm) 7.73 

(d, J = 8.2 Hz, 4H, Ar-H), 7.39 (s, 4H, Ar-H), 7.38 (d, J = 8.2 Hz, 4H, Ar-H), 7.24 (d, J = 

8.3 Hz, 4H, Ar-H), 7.09 (d, J = 8.3 Hz, 4H, Ar-H), 6.11 (d, J = 10.3 Hz, 4H, C=C-H), 

6.06 (d, J = 10.3 Hz, 4H, C=C-H), 3.42 (s, 6H, OCH3), 3.41 (s, 6H, OCH3), 1.33 (s, 24H, 

CH3); 
13C NMR (150 MHz, CDCl3): δ(ppm) 146.55, 141.62, 140.86, 140.22, 135.04, 

133.64, 133.21, 130.98, 129.98, 127.53, 125.72, 125.45, 83.87, 75.10, 74.87, 52.07, 

25.02; IR (neat) 2978, 2933, 2895, 2819, 1609, 1507, 1475, 1398, 1355, 1319, 1272, 

1086, 1076, 1053, 1031, 962, 833, 762 cm-1; HRMS (TOF ES+) m/z cald for 

C58H64B2O8K (M+K)+ 949.4434, found 949.4436. 
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(41s,44s,71s,74s)-41,44,71,74-tetramethoxy-1,3,5,6(1,4),2(1,2)-pentabenzena-4,7(1,4)-

dicyclohexanacycloheptaphane-42,45,72,75-tetraene IV.3 

 

Bisboronate IV.2 (400 mg, 0.439 mmol, 1 eq), PdCl2(PPh3)2 (62 mg, 0.088 mmol, 

0.2 eq) and B(OH)3 (136 mg, 2.20 mmol, 5 eq) were dissolved in THF (100 mL) in a 250 

mL round bottom flask equipped with a stir bar. The yellow solution was sparged with O2 

for 15 min. Then solid KF (25 mg, 0.439 mmol, 1 eq) and H2O (10 mL) were 

subsequently added. The mixture was subjected to sonication until orange color appeared, 

after which it was kept stirring over night at room temperature. After THF was removed 

under vacuum, DCM (70 mL) was added. The solution was washed with H2O (30 mL) 

and brine (30 mL) and dried over Na2SO4. The solution was then concentrated and the 

crude solid was purified via column chromatography (silica, 0% to 5% ethyl acetate in 

DCM) to yield product as white powder (198 mg, 66%). 1H NMR (600 MHz, CDCl3): 

δ(ppm) 7.40 (d, J = 8.7 Hz, 4H, Ar-H), 7.37 (d, J = 8.7 Hz, 4H, Ar-H), 7.31-7.25 

(overlap, 10H, Ar-H), 7.13 (dd, J = 5.8, 3.4 Hz, 2H, Ar-H), 6.35 (d, J = 10.3 Hz, 4H, 

C=C-H), 6.21 (d, J = 10.3 Hz, 4H, C=C-H), 3.51 (s, 6H, OCH3), 3.33 (s, 6H, OCH3); 
13C 

NMR (150 MHz, CDCl3): δ(ppm) 141.98, 141.85, 141.51, 139.50, 138.84, 134.92, 

133.98, 132.35, 129.59, 127.25, 126.81, 126.55, 126.35, 75.48, 74.41, 52.70, 51.66; IR 

(neat) 3028, 2980, 2933, 2897, 2820, 1605, 1556, 1479, 1397, 1264, 1225, 1185, 1174, 

1070, 1030, 947, 821, 760 cm-1; HRMS (TOF ES+) m/z cald for C46H40O4Na (M+Na)+ 

679.2824, found 679.2831, cald C45H37O3 (M-OMe) 625.2743, found 625.2751. 
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1(1,2),2,3,4,5,6,7(1,4)-heptabenzenacycloheptaphane IV.4 

 

A modified procedure from Ref. 55 was adapted. First, H2SnCl4/THF (0.04 

mol/L) was prepared by adding concentrated HCl/H2O (0.52 mL, 12 mol/L) into a 

solution of SnCl2·2H2O (690 mg) in THF (63 mL) and was allowed to stir at room 

temperature for 30 min. In a 50 mL round bottom flask equipped with a stir bar, IV.3 (56 

mg, 0.085 mmol, 1 eq) was dissolved in dry THF (10 mL). Then freshly prepared 

H2SnCl4/THF solution (4.9 mL, 0.194 mmol, 2.3 eq) was added in stream. After stirring 

at room temperature for 30 min, the reaction was quenched with NaOH/H2O solution. 

Then DCM (30 mL) was added to the mixture. The organic layer was separated and 

washed with H2O (80 mL), brine (100 mL) and dried over Na2SO4. Removing solvent, 

the product was isolated using column chromatography (silica, 0% to 40% DCM in 

hexanes) as yellow solid (30 mg, 67%). 1H NMR (600 MHz, CDCl3): δ(ppm) 7.54 (d, J = 

9.2 Hz, 4H, Ar-H), 7.52 (d, J = 8.7 Hz, 4H, Ar-H), 7.48 (d, J = 9.2 Hz, 4H, Ar-H), 7.45-

7.37 (overlap, 8H, Ar-H), 7.22 (d, J = 8.2 Hz, 4H, Ar-H), 7.01 (d, J = 8.2 Hz, 4H, Ar-H); 

13C NMR (150 MHz, CDCl3): δ(ppm) 140.78, 140.06, 138.50, 138.09, 137.52, 137.23, 

135.46, 130.43, 130.12, 128.33, 127.68, 127.46, 127.33, 127.25, 126.97; IR (neat) 3051, 

3022, 2923, 2850, 1899, 1667, 1593, 1574, 1489, 1469, 1441, 1387, 1261, 1186, 1105, 

1004, 984, 810, 760 cm-1; MALDI TOF, m/z cald for C42H29 (M+H)+ 533.23, found 

533.12. 
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Hexachloride IV.6 

 

Hexabromotriptycene (0.42 g, 0.58 mol, 1 eq), IV.5 (2.00 g, 4.42 mmol, 7.6 eq) 

and Pd(PPh3)4 (0.20 g, 0.17 mmol, 0.3 eq) were placed in a 25 mL microwave glass vial 

equipped with a stir bar. The vial was evacuated and refilled with N2 for 10 times, at 

which point degassed THF (13 mL) and NaOH (1M in H2O, 7 mL) were added. The 

reaction was stirred and heated with a microwave reactor at 90 °C for 4 hours. Upon 

cooling to room temperature, aqueous layer was removed with a glass pipette. Then 

DCM (50 mL) was mixed with the remaining yellow solution. The mixture was washed 

with brine (30 mL) and then dried over Na2SO4. Solvent was removed under reduced 

pressure and the crude was purified by column chromatography (silica, 0% to 10% ethyl 

acetate in DCM) to produce an orange oil residual, which was further washed with 

acetone to yield product as white power (0.88 g, 69%). 1H NMR (600 MHz, CDCl3): 

δ(ppm) 7.50 (s, 6H, Ar-H), 7.26 (d, J = 8.7 Hz, 12H, Ar-H), 7.23 (d, J = 8.7 Hz, 12H, Ar-

H), 7.19 (d, J = 8.4 Hz, 12H, Ar-H), 7.05 (d, J = 8.4 Hz, 12H, Ar-H), 6.10 (d, J = 10.3 

Hz, 12H, C=C-H), 6.01 (d, J = 10.3 Hz, 12H, C=C-H),  5.62 (s, 2H, Ph3C-H), 3.43-3.39 

(overlap, 36H, OCH3); 
13C NMR (150 MHz, CDCl3): δ(ppm) 144.24, 142.07, 141.41, 

140.90, 137.30, 133.88, 133.44, 133.09, 130.12, 128.58, 127.54, 126.43, 125.65, 74.79, 

74.65, 53.20, 52.13; IR (neat) 3026, 2981, 2935, 2896, 2821, 1913, 1791, 1673, 1593, 

1506, 1483, 1461, 1402, 1301, 1263, 1227, 1172, 1107, 1072, 1011, 985, 949, 805, 825, 

764 cm-1; HRMS (Q-TOF, ES+) m/z cald for C140H116Cl6O12Na (M+Na)+ 2221.6496,  

found 2221.6497. 
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Hexaboronate IV.7 

 

A similar procedure to synthesize IV.2 was adapted. IV.6 (0.800 g, 0.363 mmol, 1 

eq), B2Pin2 (1.844 g, 7.26 mmol, 20 eq), K3PO4 (1.540 g, 7.26 mmol, 20 eq), Pd(OAc)2 

(0.037 g, 0.054 mmol, 0.15 eq) and S-Phos (0.058 g, 0.142 mmol, 0.39 eq), dioxane (10 

mL). Product was purified by column chromatography (silica, 0% to 10% ethyl acetate in 

DCM) as white powder (0.683 g, 68%). 1H NMR (600 MHz, CDCl3): δ(ppm) 7.72 (d, J = 

7.8 Hz, 12H, Ar-H), 7.52 (s, 6H, Ar-H), 7.36 (d, J = 7.8 Hz, 12H, Ar-H), 7.19 (d, J = 8.0 

Hz, 12H, Ar-H), 7.05 (d, J = 8.0 Hz, 12H, Ar-H), 6.09 (d, J = 10.3 Hz, 12H, C=C-H), 

6.03 (d, J = 10.3 Hz, 12H, C=C-H),  5.69 (s, 2H, Ph3C-H), 3.41 (s, 18H, OCH3), 3.39 (s, 

18H, OCH3), 1.29 (s, 72H, CH3); 
13C NMR (150 MHz, CDCl3): δ(ppm) 146.52, 144.30, 

141.31, 140.98, 137.28, 135.04, 133.66, 133.09, 130.12, 126.49, 125.62, 125.41, 83.84, 

75.11, 74.86, 53.18, 52.04, 52.04, 25.00; IR (neat) 3027, 2976, 2932, 2899, 2822, 1609, 

1506 1462, 1397, 1358, 1318, 1271, 1215, 1143, 1075, 1017, 948, 857, 827, 761 cm-1. 

MALDI TOF, EI+ Q-TOF and other methods were attempted, but unable to obtain 

HRMS data. 

 

Nanopropeller precursor IV.8 
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A similar procedure to synthesize IV.3 was adapted. IV.7 (683 mg, 0.248 mmol, 

1 eq), PdCl2(PPh3)2 (105 mg, 0.149 mmol, 0.6 eq) and B(OH)3 (230 mg, 3.720 mmol, 15 

eq), KF (44 mg, 0.744 mmol, 3 eq), THF (260 mL), H2O (26 mL). Product was purified 

by column chromatography (silica, 0% to 20% ethyl acetate in DCM) as white powder 

(225 mg, 46%). 1H NMR (500 MHz, CDCl3): δ(ppm) 7.36 (d, J = 8.5 Hz, 12H, Ar-H), 

7.32 (d, J = 8.5 Hz, 12H, Ar-H), 7.22 (d, J = 8.6 Hz, 12H, Ar-H), 7.17 (d, J = 8.6 Hz, 

12H, Ar-H), 7.13 (s, 6H, Ar-H), 6.33 (d, J = 10.4 Hz, 12H, C=C-H), 6.19 (d, J = 10.4 Hz, 

12H, C=C-H), 5.25 (s, 2H, Ph3C-H), 3.49 (s, 18H, OCH3), 3.33 (s, 18H, OCH3);  
13C 

NMR (150 MHz, CDCl3): δ(ppm) 143.49, 141.88, 141.78, 141.50, 139.55, 136.05, 

134.86, 132.38, 129.66, 129.22, 126.83, 126.56, 126.39, 75.48, 74.44, 52.72, 51.66; IR 

(neat) 3028, 2976, 2933, 2899, 2821 1609, 1507, 1464, 1397, 1356, 1317, 1270, 1222, 

1172, 1143, 1077, 1015, 982, 945, 905, 852, 823, 760, 739 cm-1; HRMS (Q-TOF ES+), 

m/z cald for C140H116O12Na (M)+ 2011.8364, found 2011.8326. 

 

Nanopropeller IV.1 

 

A similar procedure to synthesize IV.4 was adapted. IV.8 (20 mg, 0.010 mmol, 1 

eq), H2SnCl4/THF solution (4.3 mL, 0.075 mmol, 7.5 eq). Product was purified by 

preparative gel permeation chromatography (chloroform as eluent) as yellow solid (12 

mg, 73%).  1H NMR (600 MHz, CDCl3): δ(ppm) 7.56-7.49 (m, 30H, Ar-H), 7.47 (d, J = 

8.9 Hz, 12H, Ar-H), 7.40 (d, J = 8.2 Hz, 12H, Ar-H), 7.19 (d, J = 7.9 Hz, 12H, Ar-H), 

6.95 (d, J = 7.9 Hz, 12H, Ar-H), 5.60 (s, 2H, Ph3C-H), 13C NMR (150 MHz, CDCl3): 

δ(ppm) 144.16, 139.96, 138.46, 138.06, 138.00, 137.51, 137.24, 135.44, 130.20, 128.32, 

127.67, 127.32, 127.24, 126.99, 125.96, 53.30; IR (neat) 3020, 2955, 2920, 2852, 1303, 
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1592, 1576, 1563, 1385, 1310, 1248, 1179, 1108, 1067, 1020, 1001, 961, 942, 902, 810, 

740, 714 cm-1; MALDI TOF, m/z cald for C128H80 (M)+ 1616.626 found 1616.657. 

 

 

4.6.3. Single Crystal X-ray Diffraction Studies 

Diffraction intensities for IV.1 and IV.4 were collected at 173 (2) on a Bruker 

Apex2 CCD diffractometer using an Incoatec IS micro-focus source with CuK 

radiation, = 1.54178 Å. Space groups were determined based on systematic absences 

and intensity statistics. Absorption corrections were applied by SADABS.69 Structures 

were solved by direct methods and Fourier techniques and refined on F2 using full matrix 

least-squares procedures. All non-H atoms were refined with anisotropic thermal 

parameters. H atoms in both structures were refined in calculated positions in a rigid 

group model. Both crystal structures have solvent molecules and some of them are 

disordered. In the crystal of IV.1, there are two types of chlorobenzene molecules. One of 

them is highly disordered and was treated by SQUEEZE.70 Diffractions from the crystal 

of IV.1 were weak and it was only possible to collect diffraction data up to 2θmax = 

99.134° even using a strong Incoatec Cu IS source. Single crystals of IV.4 were grown 

overnight from a mixed solution of DCM and n-pentane. A highly distorted n-pentane 

molecule fills the void of IV.4 and was also treated by SQUEEZE. All calculations were 

performed by the SHELXL-2014/7 packages.71 
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Figure 4.5. ORTEP representation of the X-ray crystallographic structure of IV.1 (CCDC 

Registry # 1528934). 

 

Crystallographic data for IV.1: C164H110Cl6, M = 2293.21, Size = 0.19 x 0.14 x 

0.10 mm, T = 173(2) K, Hexagonal, space group P63/m, a = 22.375(8) Å, b = 22.375(8) 

Å, c = 16.323(6) Å, α = 90°, β = 90°, γ = 120°, V = 7077(6) Å3, Z = 2, Dc = 1.076 

Mg/m3, µ(Mo) = 1.477 mm-1, F(000) = 2392, θ = 2.280-49.670°, 12474 reflections, 2498 

independent reflections [Rint = 0.0512], R1 = 0.0885, wR2 = 0.2540 and GOF = 1.042 for 

2498 reflections (235 parameters) with I>2σ(I), R1 = 0.1172, wR2 = 0.2756 and GOF = 

1.042 for all reflections, max/min residual electron density +0.715/-0.470 eÅ3.  
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Figure 4.6. ORTEP representation of the X-ray crystallographic structure of IV.1 and 

three trapped chlorobenzene molecules. Carbon atoms involved in π-π stacking are 

highlighted in red. 
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Figure 4.7. ORTEP representation of the X-ray crystallographic structure of IV.4 (CCDC 

Registry # 1528930). 

 

Crystallographic data for IV.4: C47H40, M = 604.79, Size = 0.19 x 0.14 x 0.10 

mm, T = 173(2) K, Triclinic, space group P-1, a = 10.8942(4) Å, b = 10.8972(3) Å, c = 

14.3818(5) Å, α = 103.020(2)°, β = 93.561(2)°, γ = 107.252(2)°, V = 1573.30(9) Å3, Z = 

2, Dc = 1.277 Mg/m3, µ(Mo) = 0.540 mm-1, F(000) = 644, θ = 3.185-67.524°, 27565 

reflections, 5492 independent reflections [Rint = 0.0468], R1 = 0.0462, wR2 = 0.1299 and 

GOF = 1.073 for 5492 reflections (379 parameters) with I>2σ(I), R1 = 0.0531, wR2 = 

0.1337 and GOF = 1.073 for all reflections, max/min residual electron density +0.256/-

0.189 eÅ3.  
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Figure 4.8. Representation of the triclinic packing structure of IV.4. 

 

 

4.6.4. Powder X-ray Diffraction Studies 

Powder X-ray diffraction (PXRD) patterns were acquired on a Rigaku Smartlab 

X-ray diffractometer with general Bragg-Brentano configuration using Cu Kα line 

focused radiation (40 kV, 30 mA) and with a 0.3 mm radiation entrance slit. Samples 

were prepared by first dispersing solid in DCM and dropping the mixture to zero ground 

sample holders, and allowed to dry overnight at ambient condition. 1H NMR spectra were 

recorded prior to the PXRD studies to confirm that DCM was fully evaporated. The 

PXRD pattern of the solvent free single crystal model was simulated using the Reflex 

module of Materials Studio.72  

PXRD discussion: We have attempted indexing of the experimental PXRD 

pattern using Materials Studio software package for unit cell parameter determination but 
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without success. For lower angle diffraction peaks (larger d-spacings), the ratio of d-

spacings of peaks at 4.4° and 8.8° is 1: 2, which agrees with the values required for 

diffractions from (100) and (200) in cubic, tetragonal or hexagonal lattices. As 

nanopropeller IV.1 has three-fold symmetry, we tentatively rule out the possibility of 

cubic and tetragonal lattices. The simulated PXRD pattern (Figure S6) exhibits distinct 

peaks at 4.5° and 9.1° (corresponding to (100) and (200) diffractions, respectively), 

suggesting that the powder crystallites might have a hexagonal packing structure. 

However, other diffraction peaks in the experimental PXRD pattern are obviously 

different from these in the simulated PXRD pattern.  Therefore, we tentatively conclude 

that “the majority of the powder crystallites is likely to adopt a hexagonal packing motif 

that is different from the packing structure of the single crystal”. 

 

 

 

Figure 4.9. Experimental PXRD pattern of IV.1. 
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Figure 4.10. Simulated PXRD pattern of IV.1 from the solvent free hexagonal crystal 

structure, (100) plane (green) shown in the hexagonal lattice. 

 

 

4.6.5. Photophysical and Electrochemical Characterizations 

 

 

Figure 4.11. Cyclic voltammetry of IV.1 and IV.4 (vs Fc+/Fc0). 
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Figure 4.12. Fluorescence decay of IV.1. Left, exponential. Right, linearized. 

 

 

 

Figure 4.13. Fluorescence decay of IV.4. Left, exponential. Right, linearized. 

 

 

4.6.6. Computational Details 

All computations were carried out with Gaussian 09 package.7 Molecular 

geometry optimizations and optical transition predictions were computed at the 

B3LYP/6-31G* level. The fully optimized structures were confirmed to be true minima 

by vibrational analysis. 
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Figure 4.14. Optimized molecular structure of IV.1 using DFT calculation (B3LYP/6-

31G*), exhibiting a C3 symmetric conformation. 

 

 

Figure 4.15. Optimized molecular structure of IV.4 using DFT calculation (B3LYP/6-

31G*), exhibiting a C2 symmetric conformation. 

 

 

Table 4.2. Major electronic transitions of IV.1 determined by TD-DFT calculation 

(B3LYP/6-31G*). 
Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. 

Strength 

Major contribs 

22482.05 444.7992 0.0002 H-2->LUMO (15%), H-1->L+1 (16%), H-1-

>L+2 (24%), HOMO->LUMO (41%) 

22489.31 444.6557 0.0025 H-2->L+1 (10%), H-2->L+2 (25%), H-1-

>LUMO (20%), HOMO->L+1 (40%) 

22539.32 443.6691 0.1994 H-2->L+1 (33%), H-1->LUMO (24%), 

HOMO->L+2 (35%) 

25379.22 394.0232 0.0026 H-2->LUMO (15%), H-1->L+1 (15%), 

HOMO->LUMO (53%) 

25382.44 393.9731 0.0027 H-2->L+1 (13%), H-1->LUMO (15%), 

HOMO->L+1 (54%) 

25491.33 392.2903 0.0017 H-2->L+1 (17%), H-1->LUMO (15%), 

HOMO->L+2 (64%) 

25622.8 390.2774 0 H-2->LUMO (46%), H-1->L+1 (43%) 

25752.65 388.3095 0.0017 H-2->L+1 (16%), H-2->L+2 (41%), H-1-

>LUMO (13%), H-1->L+2 (21%) 
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25755.07 388.273 0.0018 H-2->LUMO (13%), H-2->L+2 (21%), H-1-

>L+1 (14%), H-1->L+2 (43%) 

28171.53 354.9683 0.1188 H-4->LUMO (10%), H-1->L+5 (15%), 

HOMO->L+3 (12%), HOMO->L+4 (21%) 

28175.56 354.9175 0.1193 H-4->L+1 (11%), H-2->L+5 (14%), HOMO-

>L+3 (20%), HOMO->L+4 (11%) 

28240.89 354.0965 0.0003 H-6->LUMO (12%), H-5->L+1 (13%), H-4-

>L+2 (12%), H-2->L+3 (17%), H-1->L+4 (15%), 

HOMO->L+5 (19%) 

 

 

Table 4.3. Major electronic transitions of IV.4 determined by TD-DFT calculation 

(B3LYP/6-31G*). 
Energy 

(cm-1) 

Wavelength 

(nm) 

Osc. 

Strength 

Major contribs 

22682.89 440.861 0.0798 HOMO->LUMO (98%) 

28307.03 353.2691 0.0158 H-1->LUMO (39%), HOMO->L+1 (60%) 

30546.04 327.3747 1.229 H-1->LUMO (56%), HOMO->L+1 (34%) 

30792.85 324.7507 0 H-2->LUMO (50%), HOMO->L+2 (48%) 

31513.11 317.3283 0.4023 H-2->LUMO (46%), HOMO->L+2 (48%) 

31567.15 316.7851 0.1632 HOMO->L+3 (75%) 

33253.66 300.7188 0.0012 H-6->LUMO (10%), HOMO->L+4 (65%) 

33873.1 295.2195 0.0793 H-1->L+1 (87%) 

34617.56 288.8708 0 H-2->L+1 (39%), H-1->L+2 (29%), HOMO-

>L+5 (20%) 

35166.02 284.3655 0.0017 H-7->LUMO (11%), H-2->L+1 (13%), 

HOMO->L+5 (31%), HOMO->L+7 (20%) 

35191.02 284.1634 0.0006 H-6->LUMO (14%), H-4->LUMO (10%), 

HOMO->L+6 (52%) 

35655.6 280.4609 0.0197 H-3->LUMO (26%), HOMO->L+5 (21%), 

HOMO->L+7 (16%) 

 

 

4.7. Bridge to Chapter V 

In Chapter IV, we have shown that structurally unique nanocarbon architectures 

are accessible with estalished nanohoop chemistry. Chapter V continues to explore the 

application of nanohoop chemistry and highlights our efforts to synthesize highly strained 

stilbene macrocycles that represents a new class of monomer for ring-openig metathesis 

polymerization. 
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CHAPTER V 

 

STRAINED STILBENE MACROCYCLES AS A NEW CLASS OF MACROCYCLIC 

MONOMERS FOR RING-OPENING METATHESIS POLYMERIZATION 

 

This chapter is based on unpublished work. Dr. Yosuke Ashikari and Prof. 

Andrew J. Boydston from University of Washington provided assistance with the 

polymerization studies as well as the initial characterization of the polymers. Dr. Lev N. 

Zakharov conducted the X-ray crystallographic studies.  

 

Ring-opening metathesis polymerization (ROMP) has proven to be a powerful 

methodology to create macromolecules with unique architectures and functionalities. The 

most widely used monomers for ROMP are strained bicyclic olefins including 

norbornenes and oxonorbornenes of which the polymerization is driven by enthalpy gain 

via release of the ring strain. Non-strained macrocyclic olefins have also been extensively 

investigated as the monomers for entropy-driven ROMP (ED-ROMP). Though capable of 

introducing main chain functionalities, ED-ROMP, as a non-living polymerization 

process, is not a feasible strategy to create complex polymeric architectures. Therefore, 

there is a need for the development of strained macrocyclic olefins to achieve enthalpy-

driven living ROMP. In this chapter, we describe the synthesis of ROMPable strained 

stilbene macrocycles by employing an efficient intramolecular bisboronate homocoupling 

strategy. In addition to the advantage of scalable synthesis and easy functionalization, our 

monomers are shown to polymerize in a living fashion as indicated by our initial ROMP 

studies. We expect these novel ROMP monomers to open the doors to structurally unique 

polymeric materials with diverse functions.  

 

5.1. Background 

Ring opening metathesis polymerization (ROMP) has emerged as one of the most 

important methodologies in polymer chemistry since the discovery of well-defined olefin 

metathesis catalyst based on the alkylidene complexes of titanium (Ti), tantalum (Ta), 

tungsten (W), molybdenum (Mo) and ruthenium (Ru).1 With the availability of stable and 
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functionality-tolerant Ruthenium-based catalysts (V.1-6 in Figure 5.1) developed by 

Grubbs, Hoveyda and many others, ROMP has been widely employed among polymer 

chemists and material scientists to access polymeric materials with unique architectures 

and functionalities for the applications in biomedical technologies, (bio)electronics and 

renewable energies.2-3  

 

 

Figure 5.1. Common Ruthenium-based olefin metathesis catalysts: Grubbs 1st Gen 

(V.1), Grubbs 2nd Gen (V.2), Grubbs 3st Gen (V.3-4), Hoveyda-Grubbs 1st Gen (V.5) 

and Hoveyda-Grubbs 2nd Gen (V.6).1 

 

 

The most common ROMP monomers are strained bicyclic olefins including 

norbornenes and oxonorbornenes.2 The strain stored in the hydrocarbon skeletons 

provides the enthalpic driving force for chain growth and compensates for the loss of 

entropy during the ROMP process. A generalized ROMP mechanism is depicted in 

Figure 5.2.1 First, the metal-alkylidene complex (the initiator) coordinates with the 

olefin, which subsequently undergoes a [2+2]-cycloaddition to generate a 

metallocyclobutane intermediate. Cycloreversion of this intermediate affords a terminal 

metal-alkylidene that is reactive towards olefin metathesis, thus allowing chain 

propagation. Finally, the polymerization is terminated when the monomers are consumed 

or a quenching reagent (such as ether vinyl ether) is added. With an optimized 

combination of initiator, solvent and temperature, living ROMP of strained olefins can be 

achieved, which permits the synthesis of nearly mono-dispersed polymers with controlled 

chemical sequence and topologies.   
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Figure 5.2. The mechanism of ROMP: initiation, propagation and termination.1 

 

 

Strainless macrocyclic olefins have also been extensively used as monomers for 

entropy-driven ROMP (ED-ROMP) of which the main driving force is the gain of 

conformational entropy.4 One of the most prominent features of ED-ROMP is the ease to 

install novel main chain functionalities via the chemical modification of the macrocyclic 

monomers. However, ED-ROMP, as a biased ring-chain equilibrium, is not a living 

polymerization. As a result, block-copolymers and other macromolecules with complex 

architectures are not achievable utilizing the ED-ROMP methodology.  

Strained olefin macrocycles that exhibit living ROMP behaviors hold the potential 

to access structurally unique macromolecules with diverse functions.5 However, 

examples of ROMPable strained macrocyclic olefins remain scarce. This is mainly 

limited by the lack of efficient and versatile synthetic strategies to access desirable 

macrocyclic monomers.4  

In 1994, Bazan and coworkers pioneered the ROMP of strained paracyclophanes.6 

Schrock-type molybdenum carbene complex V.8 was discovered to initiate the 

polymerization of paracyclophane V.7 to produce polymer V.9 with high regio-regularity 

(98% cis-double bond) and a narrow polydispersity index (PDI) of 1.1 (Figure 5.3a), 

indicating a living polymerization process. The ROMP of paracyclophanes was later 

applied to synthesize well-defined poly(para-phenylvinylene) (PPV) which was not 

achievable using the conventional Gilch polymerization method. To circumvent the 

synthetic challenge posed by the insolubility of unsubstituted PPV units, paracyclophane 

V.10 with a solubilizing silyloxy group was designed as a masked precursor for 
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unsubstituted PPV polymers (Figure 5.3b).7 Indeed, ROMP of V.10 with V.8 produced a 

soluble and monodisperse polymer V.11, which was then successfully converted to the 

target PPV polymer V.12.  

 

 

Figure 5.3. Bazan’s pioneering ROMP studies of strained paracyclophanes.6-7 

 

 

It was not until twenty-two years later that Turner and coworkers reported the first 

ROMP approach to synthesize soluble PPV polymers.8 Highly substituted 

[2.2]paracyclophane-diene V.13 was polymerized using initiator V.2, producing polymer 

V.14 with PDI below 1.2 (Figure 5.4a). The number average molecular weight of V.14 

has a linear correlation (0.999) with the monomer/initiator ratio, confirming the living 

nature of the polymerization. As shown in Figure 5.4b, ROMP of cyclophane V.15 with 

V.2 was also found to be living, giving mono-dispersed polymer V.16 with a unique 

cross-conjugated 1,3-phenylenevinylene sequence.9 Additionally, block copolymers 

containing V.14 and V.16 segments were synthesized using the ROMP of these 

cyclophane monomers.10  

 

 

Figure 5.4. Turner’s direct ROMP approach towards soluble PPV polymers.8-9  
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In 2014, the Bunz group reported the synthesis of [2.2.2]paracyclophane-triene 

V.20 as a new type of ROMP monomer for PPV polymers (Figure 5.5).11 The synthesis 

began with the Grignard reduction of linear bisalkyne V.17 to form bis-(Z)-alkene V.18, 

which was then converted to V.19 via the deprotection of the ketals with hydrochloride in 

THF. Finally, intramolecular McMurry coupling of V.19 furnished the product V.20 in 

decent efficiency. Macrocycle V.20, with a lowered ring strain than that of V.13, is less 

reactive with metathesis catalysts. Thus, elevated temperature was needed for the ROMP 

of V.20 to occur. The resulted polymer V.21 was well-soluble in common organic 

solvents and its photophysical properties can be modulated via modification of the 

substituents. 

 

 

 

Figure 5.5. Bunz’s synthesis of macrocycle V.20 as the monomer for polymer V.21.11   

 

 

In 2015, the McMurry coupling strategy was also utilized by the Horie group in 

the synthesis of conjugated macrocycle V.23 with electron donating 

cyclopentadithiophene and V.25a-b with electron accepting dithienobenzothiadiazole 

(Figure 5.6).12 Crystallographic analysis revealed that the molecular structures of V.23 

and V.25a-b possess significant amount of torsional strain. A fully conjugated donor-

acceptor block copolymer V.26 was prepared by sequential ROMP of V.25a-b and V.23 

using V.2 as the initiator. The PDIs of polymer V.26 and the homopolymers of V.23 and 

V.25a-b are relatively broad (1.6-1.8) compared to that of V.14, which the authors 

attributed to the lower ring strain of V.23 and V.25a-b compared to that of V.13. 
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Figure 5.6. Horie’s synthesis of a donor-acceptor conjugated polymer V.26 via 

sequential ROMP of V.25a-b and V.23.12 

 

 

Of particular importance of the work discussed above is to demonstrate that 

ROMP of strained macrocycles is a feasible strategy to access functional polymers with 

unique topologies. Nevertheless, the lack of efficient synthetic routes to macrocyclic 

monomers with sufficient ring strain is the major drawback that hinders the further 

development of this research area. 

For further note, the group of Shimizu reported the synthesis of a bifunctional 

carbonate-stilbene macrocyle V.28 from the reaction of cis-stilbene diol V.27 with 1,1’-

carbonyldiimidazole (Figure 5.7).13 With a low strain energy of only 1.56 kcal/mol, 

macrocycle V.28 experienced ED-ROMP of which the monomer conversion and the 

polymer molecular weight were dependent upon the monomer concentration. This 

example further confirms that the cis-stilbene is a useful component for the design of new 

macrocyclic ROMP monomers. 
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Figure 5.7. ROMP of a low strained carbonate stilbene macrocycle V.26.  

 

 

5.2. Progress towards ROMPable Strained Macrocyclic Stilbenes 

5.2.1. Synthesis of Strained Stilbene Macrocycles 

In 2013, we serendipitously discovered Pd-mediated oxidative homocoupling of 

bisboronate which ultimately led to the successful synthesis of [5]CPP, the smallest 

nanohoop to date.14 This operationally simple bisboronate homocoupling chemistry has 

proven to be a powerful method to synthesize strained biaryl macrocycles.15 We surmised 

that strained macrocyclic stilbene V.29 could be accessed from the homocoupling of the 

curved bisboronate precursor V.30 (Figure 5.8). A representative stilbene macrocycle 

V.29a possesses a strain energy of 28.9 kcal/mol, which is comparable to those of known 

ROMPable paracyclophanes, demonstrating the potential use of V.29 as monomers for 

enthalpy-driven ROMP.  

 

 

Figure 5.8. Strained stilbene macrocycle V.29 accessible via the intramolecular 

homocoupling of bisboronate V.30, and the strain energies of the known ROMPable 

paracyclopanes. 
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A series of bisboronates (V.30a-e) with different R1 and R2 substituents were 

synthesized in order to examine the substrate scope of the macrocyclization. As shown in 

Table 5.1, under standard homocoupling conditions, all bisboronate substrates (V.30a-e) 

underwent efficacious intramolecular cyclization to give the corresponding macrocycles 

(V.29a-e) in 41-50%, indicating that the bulkiness of substituents on the sp3-carbons has 

trivial effect on the overall cyclization efficiency. No higher cyclic products were 

observed in these reactions. It is noteworthy to point out that V.29b-e exist as a mixture 

of trans- and cis-isomers because the synthetic routes to V.30b-e are non-stereoselective 

(Scheme 5.4 in Experimental Sections). Comparing entry 4 to entry 3, it can be seen 

that the installation of the bulky triethylsilane (TES) disfavors the formation of the cis-

isomer due to steric hindrance. Additionally, deprotection of the silyl groups of V.29d 

afforded V.29f comprised of hydroxyl groups, which, along with V.29e that contains 

aryl-chloride, will allow further derivatization of this macrocyclic scaffold.   

 

 

Table 5.1. Pd-mediated oxidative homocoulping of bisboronate V.30 to produce 

macrocycle V.29.  

 

 

 

 

Entry Bisboronate R1 R2 Macrocycle Yield (%) trans/cis ratio 

1 V.30a H H V.29a 41 NA 

2 V.30b H OCH3 V.29b 46 1:1 

3 V.30c H OC6H13 V.29c 50 1:1 

4 V.30d H OSi(C2H5)3 V.29d 48 4:1 

5 V.30e OCH3 p-chlorophenyl V.29e 45 1:1 
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Scheme 5.1. Deprotection of V.29d to afford V.29f. 

 

Single crystals of V.29a and trans-V.29e suitable for X-ray crystallography were 

obtained. The solid state molecular structures are shown in Figure 5.9. It can be seen that 

the strain is mainly distributed on the biphenylene unit that is severely bent out of 

collinearity. Additionally, the sp3-carbon angles are compressed to 107° for V.29a and 

104° for V.29e, which are deviated from the ideal angle of 114°. The stilbene fragments 

are not constrained with an average alkene angle of 130° for V.29a and 129° for V.29e, 

which are similar to the angle of 131° for non-strained stilbenes.  

 

 

 

Figure 5.9. Molecular structure of V.29a (left), trans-V.29e (right) from crystallographic 

analysis. Hydrogen atoms and residual solvent molecules are omitted for clarity. 

 

 

5.2.2. Preliminary ROMP Studies 

We first surveyed the reactivity of V.29a-c with Grubbs metathesis catalysts. 

Reaction of V.29a with V.2 at 100 °C gave highly insoluble polymers due to the lack of 

solubilizing chains. ROMP of V.29b-c was initiated by V.2 at 60 °C to produce well 

soluble polymers V.31b-c (Scheme 5.2). The 1H NMR spectra of V.31b-c are simple 

with only four aromatic doublet resonances and a singlet peak at 7.05 ppm that can be 

assigned to the trans-alkene protons, demonstrating a regio-regular microstructure of the 

polymers.  

130°

107°

129°

104°
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Scheme 5.2. ROMP of V29b-c initiated by V.2. 

 

The ROMP of highly soluble macrocycle V.29c was further investigated using the 

fast initiating catalyst V.3.16 As shown in Table 5.2, the polymerization proceeded slowly 

at 21°C. The reaction rate was accelerated at elevated temperatures. At 60 °C, full 

monomer conversion was achieved within six hours. The GPC traces of the polymers 

were symmetric and monomodal, indicating the lack of early chain termination. 

Additionally, the observed number average molecular weights (�̅�n) matched nicely with 

the expected values, indicating a high initiation efficiency. These observations suggested 

a living polymerization character. The PDI values of the polymers are relatively high, 

which is likely attributed to the gel-effect wherein the increased viscosity of the reaction 

solution alters the rate of the chain propagation.17  

 

 

Table 5.2. ROMP of V.29c with V3 (monomer concentration at 1 mol/L and 

monomer/initiator ratio at 100/1 for all entries). 

 

entry temperature  

(°C) 

time  

(h) 

conversion 

(%) 

Theo. �̅�n 

(kDa)  

Obs. �̅�n  

(kDa) 

Obs. �̅�w 

(kDa) 

PDI 

(�̅�w/�̅�n) 

1 21 1 0 -- -- -- -- 

2 21 40 47 -- -- -- -- 

3 21 132 93 52.0 52.4 81.3 1.55 

4 45 2 36 -- -- -- -- 

5 45 6 81 45.3 48.7 77.1 1.58 

6 60 2 34 -- -- -- -- 

7 60 4 93 52.0 50.2 94.0 1.87 

8 60 6 >99 55.9 62.1 107 1.72 
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5.2.3. Stillbene Macrocycles Containing Triarylamines (TAAs)  

Redox-active triarylamines (TAAs) have found applications as hole-transporting 

materials for photovoltaic18-20 and as luminogens for organic light emitting diodes.21-22 

With a molecular design strategy similar to that of V.29, conjugated stilbene macrocycle 

V.32 that contains TAA moieties was synthesized via the homocoupling of bisboronate 

V.34 (Scheme 5.3). Bisboronate V.34 was discovered to undergo rapid isomerization to 

the E-isomers during purification. Therefore, crude V.34 from the borylation of V.33 was 

directly used for the subsequent homocoupling without purification. Satisfyingly, decent 

yields were obtained for V.32a (27%) and V.32c (35%) over two steps. Macrocycle 

V.32b was isolated in a poor yield of 3% due to its instability at ambient conditions. 

Furthermore, the aryl-chloride groups of V.32c permit the installation of a variety of 

functionalities using the well-established transition-metal-mediated coupling 

chemistry.23-24  

 

 

 

Scheme 5.3. Conjugated macrocyclic stilbene V.32 accessible via the homocoupling of 

bisboronate V.34. 

 

 

We were able to grow single crystals of V.32a via slow evaporation of a 

dichloromethane solution. The molecular structure was obtained from the 

crystallographic analysis (Figure 5.10). Similar to the case of V.29a and trans-V.29e, 

V.32a displays a severely bent biphenylene unit, a non-strained stilbene unit with an 

alkene angle of 129°, as well as a compressed sp2-nitrogen angle (110°). Additionally, the 

strain energy of V.32a was estimated to be 36.5 kcal/mol, indicating a sufficient enthalpy 

driving force for ROMP.  
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Figure 5.10. Molecular structure of V.32a from crystallographic analysis. Hydrogen 

atoms and residual solvent molecules are omitted for clarity. 

 

 

With a highly strained conjugated backbone, V.32 represents a potential ROMP 

monomeric scaffold for the synthesis of conjugated TAA polymers. However, V.32a-c 

have poor solubility in common organic solvent, which precludes the investigation of 

their ROMP behaviors. Nevertheless, reactions of V.32a-c with V.2 or V.6 at 100 °C 

produced insoluble yellow solids, suggesting that the ring opening metathesis might take 

place. 

 

 

5.3. Summary  

We have presented the synthesis of strained stilbene macrocycles based on an 

efficient intramolecular homocoupling strategy. The ROMP of a representative 

macrocycle V.29e were investigated, revealing a living polymerization process. Further 

optimization of the ROMP condition is needed to narrow the PDI of the resulted 

polymers. Additionally, it is necessary to prepare soluble versions of macrocycle V.32 in 

order to examine the feasibility of using V.32 as the precursor for conjugated TAA 

polymers as well as to probe its polymerization behavior. We expect these novel ROMP 

monomers to open the doors to structurally unique polymeric materials with diverse 

functionalities. This project is ongoing in collaboration with Prof. Andrew J. Boydston 

(University of Washington).  

 

 

129°

110°
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5.4. Experimental Sections 

5.4.1. General Experimental Considerations 

Tetrahydrofuran (THF) and dioxane were obtained from a solvent system with 

columns packed with activated alumina. Moisture and oxygen sensitive reactions were 

carried out under nitrogen atmosphere using standard Schlenk line techniques. Silica 

column chromatography was conducted with Zeochem Zeoprep n60 Eco 40-63 µm silica 

gel. Thin layer chromatography (TLC) was performed using Sorbent Technologies Silica 

Gel XHT TLC plates. Developing plates were visualized using UV light at wavelength of 

254 and 365 nm. NMR spectra were recorded on a Bruker Avance-III-HD 600 (or 500) 

spectrometer with a Prodigy multinuclear broadband cryoProbe. Chemical shifts were 

reported in parts per million (ppm) and were referenced to the residual protio-solvent 

(CDCl3: 
1H δ 7.26 ppm, 13C δ 77.16 ppm; benzene-d6 C6D6: 

1H δ 7.16 ppm, 13C δ 128.06 

ppm; acetone-d6 (CD3)2CO: 1H δ 2.05 ppm, 13C δ 29.84 ppm). Automated flash 

chromatography was performed using a Biotage Isolera Flash System with pre-packed or 

re-packed cartridges (Biotage SNAP KP-Sil). Buchwald precatalysts (BINAP-Pd-G3 and 

XantPhos-Pd-G3) were prepared according to ref 25. Buchwald-hartwig amination 

reactions were performed using a Biotage Initiator Microwave Synthesizer.  

Grubbs G1, G2 and Hoveyda-Grubbs G2 catalysts were purchased from Sigma-

Aldrich. Grubbs G3 catalyst was prepared from Grubbs G2 according to ref 26. All 

polymerizations were carried out under an inert atmosphere of nitrogen in standard 

borosilicate glass vials purchased from Fisher Scientific with magnetic stirring unless 

otherwise noted. Gel permeation chromatography (GPC) was performed using a GPC 

setup consisting of: a Shimadzu pump, 3 in-line columns, and Wyatt light scattering and 

refractive index detectors with tetrahydrofuran (THF) as the mobile phase. Number-

average molecular weights (Mn) and weight-average molecular weights (Mw) were 

calculated from light scattering. Thermogravimetric analysis was performed using a TA 

instrument Q50 TGA. Samples were analyzed using a heating rate of 10 °C/min under a 

N2 stream. 
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Scheme 5.4. Synthesis of the key intermediates for V.29a-e.  
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Scheme 5.5. Synthesis of the key intermediates for V.32a-c.  

 

 

5.4.2. Synthetic Details 

(Z)-1,2-bis(4-(4-bromobenzyl)phenyl)ethane V.35a 

 

4,4’-Dibromostilbene was prepared according to reported procedure.27 To a 250 

mL round bottom flask with a magnetic stir bar was added V.34 (3.45 g, 10.2 mmol, 1.0 

eq) and THF (100 mL). The solution was cooled to 78 °C, at which point nBuLi in 

hexane (8.9 mL, 2.3 mol/L, 2.0 eq) was slowly added over the course of 5 min. After 

stirring at 78 °C for 3 min, 4-bromobenzaldehyde (4.15 g, 22.4 mmol, 2.2 eq) in THF 

(20 mL) was added in stream via syringe. Then the cold bath was removed and the 

reaction was kept stirring at room temperature for 2 hours. The reaction was quenched 

with water (5 mL). After solvent was removed under reduced pressure, DCM (100 mL) 

was added to the mixture, which was washed with H2O (100 mL) and brine (100 mL) and 

then dried over Na2SO4. Solvent was removed under reduced pressure and the crude 

residue was dissolved in trifluoroacetic acid (15 mL), resulting a deep blue solution. Then 
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triethylsilane (24.4 mL, 153 mmol, 15 eq) was added and the reaction was kept stirring in 

dark overnight. The reaction was quenched with NaOH/H2O and extracted with DCM (50 

mL). The organic phase was washed with H2O (100 mL) and brine (100 mL) and then 

dried over Na2SO4. Crude product was purified by column chromatography (silica, 0% to 

5% ethyl acetate in hexanes) to yield product as colorless oil (2.34 g, 89%).1H NMR (600 

MHz, CDCl3): δ(ppm) 7.43 (d, J = 8.3 Hz, 4H, Ar-H), 7.23 (d, J = 8.0 Hz, 4H, Ar-H), 

7.08 (d, J = 8.3 Hz, 4H, Ar-H), 7.04 (d, J = 8.0 Hz, 4H, Ar-H), 6.56 (s, 2H, C=C-H), 3.91 

(s, 4H, CH2); 
13C NMR (150 MHz, CDCl3): δ(ppm) 140.03, 139.45, 135.44, 131.62, 

130.78, 129.79, 129.14, 128.81, 120.07, 41.14. 

 

 

(Z)-1,2-bis(4-((4-bromophenyl)(methoxy)methyl)phenyl)ethene V.35b 

 

4,4’-Dibromostilbene (3.28 g, 9.70 mmol, 1 eq) was dissolved in THF (50 mL) in 

a 250 mL round bottom flask equipped with a magnetic stir bar. The solution was cooled 

to 78 °C, at which point nBuLi in hexane (8.8 mL, 2.2 mol/mL, 2.0 eq) was slowly 

added over the course of 5 min. After stirring at 78 °C for 3 min, 4-bromobenzaldehyde 

(3.95 g, 21.3 mmol, 2.2 eq) in THF (30 mL) in THF (40 mL) was added in stream via 

syringe. The reaction was allowed to stir at 78 °C for 2h. Then iodomethane (12.1 mL, 

194 mmol, 20 eq) and DMF (20 mL) was added. Then the cold bath was removed and the 

mixture was kept stirring at room temperature overnight. The reaction was quenched with 

water (20 mL). After THF was removed under reduced pressure, DCM (100 mL) was 

added to the mixture, which was washed with H2O (40 mL), 5 wt% aqueous LiCl 

solution (3 × 80 mL) and brine (40 mL) and then dried over Na2SO4. Solvent was the 

removed under reduced pressure. The product was isolated using column 

chromatography (silica, 0% to 10% ethyl acetate in hexanes) as colorless oil (2.81g, 

50%). 1H NMR (600 MHz, CDCl3): δ(ppm) 7.45 (d, J = 8.4 Hz, 4H, Ar-H), 7.23-7.19 

(overlap, 8H, Ar-H), 7.15 (d, J = 8.1 Hz, 4H, Ar-H), 6.52 (s, 2H, C=C-H), 5.15 (s, 2H, 
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CH), 3.36 (s, 6H, OCH3); 
13C NMR (150 MHz, CDCl3): δ(ppm) 141.14, 140.57, 136.76, 

131.68, 130.04, 129.11, 128.76, 126.89, 121.54, 84.67, 57.17. 

 

 

(Z)-(ethene-1,2-diylbis(4,1-phenylene))bis((4-bromophenyl)methanol) V.36 

 

To a 500 mL round bottom flask with a magnetic stir bar was added 4,4’-

dibromostilbene (12.0 g, 35.5 mmol, 1 eq) and THF (200 mL). The solution was cooled 

to 78 °C, at which point nBuLi in hexane (31.6 mL, 2.3 mol/mL, 2.05 eq) was slowly 

added over the course of 20 min. After stirring at 78 °C for 3 min, 4-

bromobenzaldehyde (13.1 g, 71.0 mmol, 2.0 eq) in THF (40 mL) was added in stream via 

cannula, during which the solution gradually became viscous with solid crashed out. 

Then the cold bath was removed and the mixture was kept stirring at room temperature 

for 2 hours. The reaction mixture was quenched with water (20 mL). After THF was 

removed under reduced pressure, DCM (200 mL) was added to the mixture, which was 

washed with H2O (100 mL) and brine (100 mL) and then dried over Na2SO4. Solvent was 

removed under reduced pressure. The resulted yellow gel was dissolved in DCM (80 mL) 

and stored in freezer (20 °C) overnight, resulting in powdered precipitate. The 

precipitate was collected by filtration and washed with DCM (10 mL) to give product as 

white powder (7.55 g). The filtrate was concentrated and the residual was purified by 

column chromatography (silica, 0% to 3% ethyl acetate in DCM) to yield more product 

(6.58 g). Overall, product was obtained in a yield of 74%.  1H NMR (600 MHz, CDCl3): 

δ(ppm) 7.46 (d, J = 8.4 Hz, 4H, Ar-H), 7.25 (d, J = 8.4 Hz, 4H, Ar-H), 7.22 (d, J = 8.4 

Hz, 4H, Ar-H), 7.19 (d, J = 8.4 Hz, 4H, Ar-H), 6.55 (s, 2H, C=C-H), 5.76 (d, J = 3.4 Hz, 

2H, CH), 2.18 (d, J = 3.4 Hz, 2H, OH); 13C NMR (150 MHz, CDCl3): δ(ppm) 142.74, 

142.34, 136.90, 131.73, 130.11, 129.25, 128.34, 126.59, 121.63, 75.62. 
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(Z)-1,2-bis(4-((4-bromophenyl)(n-hexyloxy)methyl)phenyl)ethene V.35c 

 

To a 500 mL round bottom flask was added NaH (4.10 g, 60 wt% in mineral oil, 

102.5 mmol, 4 eq) and THF (150 mL). The slurry was cooled to 0 °C at which point V.36 

(14.1 g, 25.6 mmol, 1 eq) in THF (30 mL) was added in stream. The mixture was stirred 

at 0 °C for 1h. Then 1-bromohaxane (28.8 mL, 205 mmol, 8 eq) and DMF (30 mL) were 

added and the reaction was stirred at room temperature overnight. The reaction was 

carefully quenched with water. After THF was removed under vacuum, DCM (150 mL) 

was added. The solution was washed with H2O (100 mL), 5 wt% aqueous LiCl solution 

(3×100 mL) and brine (100 mL), and dried over Na2SO4. The solution was then 

concentrated and the crude solid was purified via column chromatography (silica, 0% to 

8% ethyl acetate in hexanes) to yield product as colorless oil (15.0 g, 83%). 1H NMR 

(600 MHz, CDCl3): δ(ppm) 7.44 (d, J = 8.4 Hz, 4H, Ar-H), 7.22 (d, J = 8.4 Hz, 4H, Ar-

H), 7.20 (d, J = 8.1 Hz, 4H, Ar-H), 7.15 (d, J = 8.1 Hz, 4H, Ar-H), 6.52 (s, 2H, C=C-H), 

5.24 (s, 2H, CH), 3.42 (td, J = 6.6, 3.1 Hz, 4H, OCH2), 1.62 (dt, J = 15.0, 6.6 Hz, 4H, 

CH2), 1.37 (p, J = 7.0 Hz, 4H, CH2), 1.33-1.22 (overlap, 8H, CH2), 0.88 (t, J = 7.0 Hz, 

6H, CH3); 
13C NMR (150 MHz, CDCl3): δ(ppm), 141.75, 141.14, 136.61, 131.58, 130.01, 

129.03, 128.82, 126.89, 121.36, 82.87, 69.46, 31.79, 29.94, 26.04, 22.75, 14.21. 

 

 

(Z)-1,2-bis(4-((4-bromophenyl)((triethylsilyl)oxy)methyl)phenyl)ethene V.35d 

 

To a 250 mL round bottom flask was charged with V.36 (3.00 g, 5.45 mmol, 1 

eq), imidazole (1.48 g, 21.8 mmol, 4 eq) and dry DMF (40 mL). Then chlorotriethylsilane 

(2.8 mL, 16.4 mmol, 3 eq) was added drop-wise via syringe at room temperature. The 
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reaction was heated at 40 °C for 90 min. Saturated Na2CO3 solution was carefully added 

to quench the reaction until no gas bubbles evolved. The reaction mixture was extracted 

with ethyl acetate (3×50 mL). The combined organic fraction was further washed with 

H2O (100 mL), 5 wt% LiCl solution (3 × 100 mL) and brine (100 mL), and dried over 

Na2SO4. The solution was then concentrated and the crude solid was purified via column 

chromatography (silica, 0% to 15 % DCM in hexanes) to yield product as colorless oil 

(3.46 g, 81%). 1H NMR (600 MHz, CDCl3): δ(ppm) 7.41 (d, J = 8.3 Hz, 4H, Ar-H), 7.23 

(d, J = 8.3 Hz, 4H, Ar-H), 7.17-7.12 (m, 8H, Ar-H), 6.52 (s, 2H, C=C-H), 5.65 (s, 2H, 

CH), 0.88 (t, J = 8.0 Hz, 18H, CH3), 0.56 (q, J = 8.0 Hz, 12H, CH2); 
13C NMR (150 

MHz, CDCl3): δ(ppm) 144.33, 143.67, 136.41, 131.38, 130.09, 128.97, 128.08, 126.35, 

120.92, 75.76, 6.90, 4.98. 

 

 

(Z)-(ethene-1,2-diylbis(4,1-phenylene))bis((4-bromophenyl)methanone) V.37 

 

To a 250 mL round bottom flask equipped with a stir bar was charged with 

compound V.36 (3.00 g, 5.45 mmol, 1.0 eq) and MnO2 (14.2 g, 16.4 mmol, 30 eq) and 

chloroform (80 mL). Then a reflux condenser was attached and the mixture was heated at 

65 °C overnight. When cooled to room temperature, the reaction mixture was filtered 

through a plug of celite and the plug was further washed with DCM (120 mL). Removing 

solvent under reduced pressure yielded product as white solid (2.70 g, 91%). 1H NMR 

(600 MHz, CDCl3): δ(ppm) 7.68 (d, J = 8.3 Hz, 4H, Ar-H), 7.65 (d, J = 8.5 Hz, 4H, Ar-

H), 7.62 (d, J = 8.5 Hz, 4H, Ar-H), 7.36 (d, J = 8.3 Hz, 4H, Ar-H), 6.77 (s, 2H, C=C-H); 

13C NMR (150 MHz, CDCl3): δ(ppm) 195.11, 141.43, 136.40, 136.12, 131.79, 131.57, 

131.35, 130.35, 129.04, 127.64. 
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(Z)-1,2-bis(4-((4-bromophenyl)(4-chlorophenyl)(methoxy)methyl)phenyl)ethene V.35e 

 

Method 1: a similar procedure to synthesize V.35a was adapted. 4,4’-

dibromostilbene (3.18 g, 9.41 mmol, 1 eq), nBuLi in n-hexane (8.6 mL, 2.2 mol/L, 2 eq), 

V.38 (6.12 g, 20.7 mmol, 2.2 eq), iodomethane (11.8 mL, 188 mmol, 20 eq). Product was 

purified by column chromatography (silica, 0% - 20% DCM in hexanes) as faint yellow 

oil (3.15 g, 42 %). 

Method 2: A solution of 4-bromochlorobenzene (2.64 g, 13.8 mmol, 3 eq) in dry 

THF (80 mL)  was cooled to 78 °C, at which point nBuLi in n-hexane (6.0 mL, 2.3 

mol/mL, 3.0 eq) was slowly added over the course of 5 min. After stirring at 78 °C for 

10 min, V.37 (2.51 g, 4.59 mmol, 1.0 eq) in THF (10 mL) was added in stream via 

syringe. The reaction was allowed to stir at 78 °C for 1h. Then iodomethane (4.3 mL, 

68.9 mmol, 15 eq) and DMF (20 mL) was added. The cold bath was removed and the 

mixture was kept stirring at room temperature overnight. The reaction mixture was 

quench with water (20 mL). The product was isolated using column chromatography 

(silica, 0% to 20% DCM in hexanes) as colorless oil (2.60 g, 71%). 1H NMR (600 MHz, 

CDCl3): δ(ppm) 7.43 (d, J = 8.6 Hz, 4H, Ar-H), 7.33 (d, J = 8.7 Hz, 4H, Ar-H), 7.29-7.26 

(overlap, 8H, Ar-H), 7.21 (br s, 8H, Ar-H), 6.56 (s, 2H, C=C-H), 3.03 (s, 6H, CH3); 
13C 

NMR (150 MHz, CDCl3): δ(ppm) 142.86, 142.16, 141.77, 136.46, 133.28, 131.22, 

130.33, 130.15, 130.03, 128.69, 128.62, 128.26, 121.48, 86.37, 52.23. 

 

 

(4-bromophenyl)(4-chlorophenyl)methanone V.38 

 

V.39 (8.60 g, 28.9 mmol, 1 eq) was dissolved in acetonitrile (550 mL) in a 1L 

round bottom flask equipped with a stir bar and the solution was cooled to 0 °C. KMnO4 

was added portion-wise over the course of 30 min. The reaction was kept stirring at 0 °C 
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for one hour and then warmed to room temperature. Acetonitrile was removed under 

reduced pressure and DCM (200 mL) was added to the solid residue. The mixture was 

subjected to sonication until homogenous and filtered through a short plug of celite. 

Removing the solvent gave product as white solid (7.80 g, 91%). Characterization was 

consistent with what was previously reported.28 

 

 

(Z)-1,2-bis(4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)phenyl)ethene 

V.30a 

 

V.35a (1.35 g, 2.60 mmol, 1 eq) was dissolved in 30 mL THF and cooled to 

78 °C. Then nBuLi in n-hexane (2.50 mL, 2.3 mol/L, 2.2 eq) was syringed into the 

solution over the course of 3 min. Neat isopropyl pinacol borate (2.20 mL, 10.4 mmol, 4 

eq) was quickly added in stream. The mixture was stirred at 78 °C for 5 min and 

allowed to warm to room temperature slowly. After two hours, the reaction was carefully 

quenched with water (1 mL). The mixture was extracted with dichloromethane (3×20 

mL) and combined the organic layers were washed with brine and dried over Na2SO4. 

After concentrating under reduced pressure, the crude product was put on high vacuum to 

remove the volatile which yielded the desired product as white powder (1.00 g, 63%). 1H 

NMR (600 MHz, CDCl3): δ(ppm) 7.74 (d, J = 7.9 Hz, 4H, Ar-H), 7.20 (d, J = 7.9 Hz, 

4H, Ar-H), 7.16 (d, J = 8.2 Hz, 4H, Ar-H), 7.02 (d, J = 8.2 Hz, 4H, Ar-H), 6.50 (s, 2H, 

C=C-H), 3.95 (s, 4H, CH2), 1.33 (s, 24H, CH3); 
13C NMR (150 MHz, CDCl3): δ(ppm) 

144.41, 139.86, 135.30, 135.15, 129.77, 129.05, 128.88, 128.58, 83.80, 42.01, 25.00, 13C-

B signal not observed. 
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(Z)-1,2-bis(4-(methoxy(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methyl)-

phenyl)ethene V.30b 

 

A similar procedure to synthesize V.30a was adapted. V.35b (7.22 g, 12.5 mmol, 

1.0 eq), nBuLi in n-hexane (12.5 mL, 2.2 mol/L, 2.2 eq), isopropyl pinacol borate (10.2 

mL, 50.0 mmol, 4 eq). After workup, hexanes was added to the crude and the mixture 

was subjected to sonication. Product precipitated as white solid and was collected via 

filtration (5.22 g). The filtrate was concentrated and stored in freezer overnight to yield 

more product (1.00g). Overall, 6.22 g of product was collected with a yield of 74%. 1H 

NMR (600 MHz, CDCl3): δ(ppm) 7.79 (d, J = 7.6 Hz, 4H, Ar-H), 7.36 (d, J = 7.6 Hz, 

4H, Ar-H), 7.22-7.13 (m, 8H, Ar-H), 6.50 (s, 2H, C=C-H), 5.21 (s, 2H, CH), 3.73 (s, 6H, 

OCH3), 1.34 (s, 24H, CH3); 
13C NMR (150 MHz, CDCl3): δ(ppm) 145.10, 140.96, 

136.53, 135.07, 129.96, 128.99, 126.93, 126.36, 85.35, 83.88, 57.13, 25.00, 13C-B signal 

not observed. 

 

 

(Z)-1,2-bis(4-((n-hexyloxy)(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-

methyl)phenyl)ethene V.30c 

 

A similar procedure to synthesize V.30a was adapted. V.35c (14.7 g, 20.5 mmol, 

1.0 eq), nBuLi in n-hexane (21.5 mL, 2.3 mol/L, 2.4 eq), isopropyl pinacol borate (16.7 

mL, 81.8 mmol, 4 eq). Product was purified by column chromatography (silica, 0% to 

8% ethyl acetate in hexanes) as colorless oil (12.4 g, 76%). 1H NMR (600 MHz, CDCl3): 

δ(ppm) 7.77 (d, J = 8.0 Hz, 4H, Ar-H), 7.36 (d, J = 8.0 Hz, 4H, Ar-H), 7.22-7.13 (m, 8H, 

Ar-H), 6.48 (s, 2H, C=C-H), 5.29 (s, 2H, CH), 3.42 (t, J = 6.7 Hz, 4H, OCH2), 1.63 (dt, J 
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= 15.0, 6.7 Hz, 4H, CH2), 1.42-1.20 (overlap, 36H, CH2 and CH3), 0.88 (t, J = 6.9 Hz, 

6H, CH3); 
13C NMR (150 MHz, CDCl3): δ(ppm) 145.76, 141.52, 136.38, 135.01, 129.91, 

128.92, 126.94, 126.48, 83.86, 83.53, 69.43, 31.82, 29.97, 26.05, 25.01, 22.76, 14.22, 

13C-B signal not observed. 

 

 

(Z)-1,2-bis(4-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)((triethylsilyl)-

oxy)methyl)phenyl)ethene V.30d 

 

A similar procedure to synthesize V.30a was adapted. V.35d (3.34 g, 4.29 mmol, 

1.0 eq), nBuLi in n-hexane (4.1 mL, 2.3 mol/L, 2.2 eq), isopropyl pinacol borate (3.1 mL, 

15.0 mmol, 3.5 eq). After workup, hexanes was added to the crude and the mixture was 

subjected to sonication. Product precipitated as white solid and was collected via 

filtration (2.98 g). The filtrate was concentrated and subjected to sonication to yield more 

product (0.18 g). Overall, 3.16 g of product was collected with a yield of 85%. 1H NMR 

(600 MHz, CDCl3): δ(ppm) 7.74 (d, J = 7.9 Hz, 4H, Ar-H), 7.36 (d, J = 7.9 Hz, 4H, Ar-

H), 7.16 (d, J = 8.2 Hz, 4H, Ar-H), 7.13 (d, J = 8.2 Hz, 4H, Ar-H), 6.49 (s, 2H, C=C-H), 

5.70 (s, 2H, CH), 1.33 (s, 24H, CH3), 0.87 (t, J = 8.0 Hz, 18H, CH3), 0.55 (q, J = 8.0 Hz, 

12H, CH2); 
13C NMR (150 MHz, CDCl3): δ(ppm) 148.34, 143.99, 136.17, 134.84, 

129.99, 128.85, 126.41, 125.74, 83.81, 76.39, 25.02, 6.92, 5.00, 13C-B signal not 

observed. 
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(Z)-1,2-bis(4-((4-chlorophenyl)(methoxy)(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenyl)methyl)phenyl)ethene V.30e 

 

A similar procedure to synthesize V.30a was adapted. V.35e (3.20 g, 4.00 mmol, 

1.0 eq), nBuLi in n-hexane (4.4 mL, 2.2 mol/L, 2.4 eq), isopropyl pinacol borate (3.4 mL, 

16.0 mmol, 4.0 eq).  Product was purified by column chromatography (silica, 0% to 80% 

DCM in hexanes) as faint yellow oil (1.09 g, 30 %).1H NMR (600 MHz, CDCl3): δ(ppm) 

7.76 (d, J = 8.2 Hz, 4H, Ar-H), 7.42 (d, J = 8.2 Hz, 4H, Ar-H), 7.36 (d, J = 8.6 Hz, 4H, 

Ar-H), 7.25 (d, J = 8.6 Hz, 4H, Ar-H), 7.23 (d, J = 8.5 Hz, 4H, Ar-H), 7.21 (d, J = 8.5 

Hz, 4H, Ar-H), 6.53 (s, 2H, C=C-H), 3.03 (s, 6H, CH3), 1.32 (s, 24H, CH3); 
13C NMR 

(150 MHz, CDCl3): δ(ppm) 146.56, 142.66, 142.12, 136.27, 134.54, 133.01, 130.10, 

130.06, 128.81, 128.48, 128.11, 127.93, 86.74, 83.93, 52.23, 25.00, 13C-B signal not 

observed. 

 

 

(Z)-1,2,4,7(1,4)-tetrabenzenacyclooctaphan-5-ene V.29a 

 

Bisboronate V.30a (200 mg, 0.372 mmol, 1 eq), PdCl2(PPh3)2 (46 mg, 0.065 

mmol, 0.2 eq) and B(OH)3 (101 mg, 1.64 mmol, 5 eq) were dissolved in THF (250 mL) 

in a 500 mL round bottom flask equipped with a stir bar. The mixture was allowed to stir 

open to air at room temperature for 10 min until a clear yellow solution was achieved. 

Then KF (19 mg, 0.327 mmol, 1 eq) dissolved in H2O (25 mL) was added. The mixture 

was subjected to sonication until orange color appeared, after which it was kept stirring 

overnight at room temperature. After THF was removed under vacuum, DCM (70 mL) 

was added. The solution was washed with H2O (30 mL) and brine (30 mL) and dried over 

Na2SO4. The solution was then concentrated and the crude solid was purified via column 
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chromatography (silica, 0% to 30% DCM in hexanes) to yield product as white 

crystalline powder (48 mg, 41%). 1H NMR (500 MHz, CDCl3): δ(ppm) 7.37 (d, J = 8.4 

Hz, 4H, Ar-H), 7.10 (d, J = 8.4 Hz, 4H, Ar-H), 6.63 (d, J = 8.3 Hz, 4H, Ar-H), 6.44 (s, 

2H, C=C-H), 6.39 (d, J = 8.3 Hz, 4H, Ar-H), 3.73 (s, 4H, CH2); 
13C NMR (125 MHz, 

CDCl3): δ(ppm) 143.75, 141.62, 140.18, 134.86, 130.36, 130.15, 128.44, 127.97, 127.70, 

41.51. 

 

 

(Z)-3,8-dimethoxy-1,2,4,7(1,4)-tetrabenzenacyclooctaphan-5-ene V.29b 

 

A similar procedure to synthesize V.29a was adapted. Bisboronate V.30b (400 

mg, 0.596 mmol, 1 eq), PdCl2(PPh3)2 (84 mg, 0.108 mmol, 0.2 eq), B(OH)3 (184 mg, 

1.64 mmol, 5 eq), KF (36 mg, 0.596 mmol, 1 eq), THF (240 mL), H2O (24 mL). Product 

was purified by column chromatography (silica, 0% to 80% DCM in hexanes) as white 

powder (225 mg, 46%). 1H NMR (600 MHz, CDCl3): δ(ppm) trans 7.49 (dd, J = 8.5, 2.0 

Hz, 2H, Ar-H), 7.40 (dd, J = 8.5, 2.0 Hz, 2H, Ar-H), 7.34 (dd, J = 8.3, 2.0 Hz, 2H, Ar-H), 

7.02 (dd, J = 8.3, 2.0 Hz, 2H, Ar-H), 6.67 (d, J = 8.3 Hz, 4H, Ar-H), 6.53 (d, J = 8.3 Hz, 

4H, Ar-H), 6.47 (s, 2H, C=C-H), 5.21 (s, 2H, CH), 3.59 (s, 6H, OCH3); cis 7.47 (dd, J = 

8.5, 2.0 Hz, 2H, Ar-H), 7.37 (dd, J = 8.5, 2.0 Hz, 2H, Ar-H), 7.35 (dd, J = 8.3, 2.0 Hz, 

2H, Ar-H), 7.04 (dd, J = 8.3, 2.0 Hz, 2H, Ar-H), 6.67 (d, J = 8.3 Hz, 4H, Ar-H), 6.53 (d, 

J = 8.3 Hz, 4H, Ar-H), 6.47 (s, 2H, C=C-H), 5.20 (s, 2H, CH), 3.61 (s, 6H, OCH3); 
13C 

NMR (150 MHz, CDCl3): δ(ppm) trans 143.95, 141.83, 140.96, 136.04, 130.72, 128.33, 

128.05, 127.72, 127.20, 126.40, 125.89, 84.43, 57.29; cis 143.99, 141.90, 141.02, 135.97, 

130.70, 128.35, 128.01, 127.73, 126.08, 125.68, 84.34, 57.28. 
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(Z)-3,8-bis(n-hexyloxy)-1,2,4,7(1,4)-tetrabenzenacyclooctaphan-5-ene V.29c 

 

A similar procedure to synthesize V.29a was adapted. Bisboronate V.30c (3.00 g, 

3.76 mmol, 1 eq), PdCl2(PPh3)2 (0.26 g, 0.38 mmol, 0.1 eq), B(OH)3 (1.16 g, 18.8 mmol, 

5 eq), KF (0.44 g, 7.52 mmol, 2 eq), THF (450 mL), H2O (45 mL). Product was purified 

by column chromatography (silica, 0% to 50% DCM in hexanes) as colorless oil (1.05 g, 

50 %), which solidified upon standing. 1H NMR (600 MHz, CDCl3): δ(ppm) trans 7.45 

(dd, J = 8.5, 2.0 Hz, 2H, Ar-H), 7.39 (dd, J = 8.5, 2.0 Hz, 2H, Ar-H), 7.35 (dd, J = 8.3, 

2.0 Hz, 2H, Ar-H), 7.03 (dd, J = 8.3, 2.0 Hz, 2H, Ar-H), 6.65 (d, J = 8.3 Hz, 4H, Ar-H), 

6.53 (d, J = 8.3 Hz, 4H, Ar-H), 6.46 (s, 2H, C=C-H), 5.28 (s, 2H, CH), 3.77 (dt, J = 9.0, 

6.7 Hz, 2H, OCH2), 3.61(dt, J = 9.0, 6.7 Hz, 2H, OCH2), 1.78-1.69 (m, 4H, CH2), 1.50-

1.41 (m, 4H, CH2), 1.37-1.26 (overlap, 8H, CH2), 0.90 (t, J = 6.9 Hz, 6H, CH3); cis 7.46 

(dd, J = 8.5, 2.0 Hz, 2H, Ar-H), 7.39 (dd, J = 8.5, 2.0 Hz, 2H, Ar-H), 7.34 (dd, J = 8.3, 

2.0 Hz, 2H, Ar-H), 7.03 (dd, J = 8.3, 2.0 Hz, 2H, Ar-H), 6.65 (d, J = 8.3 Hz, 4H, Ar-H), 

6.53 (d, J = 8.3 Hz, 4H, Ar-H), 6.46 (s, 2H, C=C-H), 5.27 (s, 2H, CH), 3.77 (dt, J = 9.0, 

6.7 Hz, 2H, OCH2), 3.61(dt, J = 9.0, 6.7 Hz, 2H, OCH2), 1.78-1.69 (m, 4H, CH2), 1.50-

1.41 (m, 4H, CH2), 1.37-1.26 (overlap, 8H, CH2), 0.90 (t, J = 6.9 Hz, 6H, CH3); 
13C 

NMR (150 MHz, CDCl3): δ(ppm) trans 144.47, 142.46, 140.92, 135.90, 130.71, 128.29, 

128.02, 127.93, 127.36, 126.43, 125.86, 82.65, 69.59, 31.89, 30.07, 26.15, 22.81, 14.24; 

cis 144.49, 142.50, 140.95, 135.87, 130.69, 128.28, 127.90, 127.14, 126.58, 125.77, 

82.59, 69.56, 31.89, 30.07, 25.16, 22.81, 14.24. 

 

 

(Z)-3,8-bis((triethylsilyl)oxy)-1,2,4,7(1,4)-tetrabenzenacyclooctaphan-5-ene V.29d 

 

A similar procedure to synthesize V.29a was adapted. Bisboronate V.30d (500 

mg, 0.573 mmol, 1 eq), PdCl2(PPh3)2 (40 mg, 0.057 mmol, 0.1 eq), B(OH)3 (177 mg, 
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2.87 mmol, 5 eq), KF (66 mg, 1.15 mmol, 2 eq), THF (100 mL), H2O (10 mL). Product 

was purified by column chromatography (silica, 0% to 30% DCM in hexanes) as 

colorless oil (171 mg, 48 %). 1H NMR (600 MHz, CDCl3): δ(ppm) trans 7.40 (dd, J = 

8.2, 1.8 Hz, 2H, Ar-H), 7.37 (dd, J = 8.5, 1.8 Hz, 2H, Ar-H), 7.33 (dd, J = 8.5, 1.8 Hz, 

2H, Ar-H), 7.06 (dd, J = 8.2, 1.8 Hz, 2H, Ar-H), 6.65 (d, J = 8.2 Hz, 4H, Ar-H), 6.55 (d, 

J = 8.2 Hz, 4H, Ar-H), 6.46 (s, 2H, C=C-H), 5.64 (s, 2H, CH), 1.01 (t, J = 8.0 Hz, 18H, 

CH3), 0.72 (q, J = 7.9 Hz, 12H, CH2); cis 7.46 (dd, J = 8.5, 1.8 Hz, 2H, Ar-H), 7.42 (dd, J 

= 8.5, 1.8 Hz, 2H, Ar-H), 7.31 (dd, J = 8.3, 1.8 Hz, 2H, Ar-H), 6.99 (dd, J = 8.3, 1.8 Hz, 

2H, Ar-H), 6.65 (d, J = 8.2 Hz, 4H, Ar-H), 6.54 (d, J = 8.2 Hz, 4H, Ar-H), 6.46 (s, 2H, 

C=C-H), 5.65 (s, 2H, CH), 1.00 (t, J = 8.0 Hz, 18H, CH3), 0.70 (q, J = 7.9 Hz, 12H, 

CH2); 
13C NMR (150 MHz, CDCl3): δ(ppm) trans 146.82, 144.66, 140.97, 135.49, 

130.66, 129.34, 128.15, 127.01, 126.55, 125.90, 124.92, 75.45, 7.06, 5.14; cis 146.86, 

144.56, 140.93, 135.61, 130.67, 128.21, 128.20, 126.99, 126.66, 126.52, 125.24, 75.59, 

7.06, 5.14. 

 

 

(Z)-3,8-bis(4-chlorophenyl)-3,8-dimethoxy-1,2,4,7(1,4)-tetrabenzenacyclooctaphan-5-ene 

V.29e 

 

A similar procedure to synthesize V.29a was adapted. Bisboronate V.30e (1.09 g, 

1.22 mmol, 1 eq), PdCl2(PPh3)2 (171 mg, 0.024 mmol, 0.2 eq), B(OH)3 (377 mg, 6.10 

mmol, 5 eq), KF (71 mg, 1.22 mmol, 1 eq), THF (200 mL), H2O (20 mL). Product was 

purified by column chromatography (silica, 0% to 30% DCM in hexanes) as white 

powder (340 mg, 45%). 1H NMR (600 MHz, CDCl3): δ(ppm) trans 7.55 (dd, J = 8.5, 2.1 

Hz, 2H, Ar-H), 7.47-7.43 (overlap, 6H, Ar-H), 7.38 (d, J = 8.6 Hz, 4H, Ar-H), 7.30 (dd, J 

= 8.6, 2.1 Hz, 2H, Ar-H), 7.10 (dd, J = 8.6, 2.1 Hz, 2H, Ar-H), 6.72 (d, J = 8.6 Hz, 4H, 

Ar-H), 6.69 (d, J = 8.6 Hz, 4H, Ar-H), 6.51 (s, 2H, C=C-H), 3.31 (s, 6H, CH3); cis 7.56-

7.52 (overlap, 6H, Ar-H), 7.47 (dd, J = 8.6, 2.1 Hz, 2H, Ar-H), 7.41 (d, J = 8.6 Hz, 4H, 

Ar-H), 7.32 (dd, J = 8.6, 2.1 Hz, 2H, Ar-H), 6.98 (dd, J = 8.6, 2.1 Hz, 2H, Ar-H), 6.72 (d, 
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J = 8.6 Hz, 4H, Ar-H), 6.68 (d, J = 8.6 Hz, 4H, Ar-H), 6.53 (s, 2H, C=C-H), 3.26 (s, 6H, 

CH3);  
13C NMR (150 MHz, CDCl3): δ(ppm) trans 146.31, 142.94, 139.46, 137.05, 

135.37, 134.28, 132.51, 130.79, 129.73, 129.17, 129.14. 128.27, 127.96, 126.27, 124.30, 

88.06, 52.56; cis 145.82, 142.70, 139.33, 137.08, 135.46, 134.28, 132.57, 130.96, 129.72, 

128.32, 127.99, 127.87, 127.61, 126.66, 126.51, 88.17, 52.60. 

 

 

(Z)-1,2,4,7(1,4)-tetrabenzenacyclooctaphan-5-ene-3,8-diol V.29f 

 

V.29d (146 mg, 0.236 mmol, 1 eq) was dissolved in dry THF (10 mL) in a 25 

round bottom flask equipped with a stir bar. Tetrabutylammonium fluoride (0.71 mL, 1.0 

mol/L, 3 eq) was added to the solution. The reaction went to completion after stirring at 

room temperature for 1h, as monitored by TLC. Solvent was then removed under reduced 

pressure. Water (5 mL) was added to the resulting crude oil and white solid precipitated. 

The solid was collected via filtration, washed with water (5 mL), DCM (5 mL) and 

methanol (5 mL), and dried over high vacuum to yield product as white powder (85 mg, 

92%). 1H NMR (500 MHz, acetone-d6): δ(ppm) trans 7.51 (dd, J = 8.5, 1.8 Hz, 2H, Ar-

H), 7.48 (dd, J = 8.5, 1.8 Hz, 2H, Ar-H), 7.42 (dd, J = 8.2, 1.8 Hz, 2H, Ar-H), 7.09 (dd, J 

= 8.2, 1.8 Hz, 2H, Ar-H), 6.64 (d, J = 8.4 Hz, 4H, Ar-H), 6.60 (d, J = 8.4 Hz, 4H, Ar-H), 

6.48 (s, 2H, C=C-H), 5.73 (d, J = 3.1 Hz, 2H, CH), 4.98 (d, J = 3.1 Hz, 2H, OH); cis  

7.52 (dd, J = 8.5, 1.8 Hz, 2H, Ar-H), 7.49 (dd, J = 8.5, 1.8 Hz, 2H, Ar-H), 7.41 (dd, J = 

8.2, 1.8 Hz, 2H, Ar-H), 7.08 (dd, J = 8.2, 1.8 Hz, 2H, Ar-H), 6.64 (d, J = 8.4 Hz, 4H, Ar-

H), 6.60 (d, J = 8.4 Hz, 4H, Ar-H), 6.48 (s, 2H, C=C-H), 5.73 (d, J = 3.1 Hz, 2H, CH), 

4.98 (d, J = 3.1 Hz, 2H, OH); 13C NMR (150 MHz, acetone-d6): δ(ppm) 147.96, 147.92, 

145.43, 145.41, 141.39, 141.38, 136.27, 131.34, 128.71, 128.61, 128.60, 127.85, 127.84, 

127.73, 127.72, 126.86, 126.83, 126.16, 75.43, 75.32. 
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Polymer V.31b 

 
1H NMR (500 MHz, CDCl3): δ(ppm) 7.51 (d, J = 8.4 Hz, 4H, Ar-H), 7.46 (d, J = 

8.4 Hz, 4H, Ar-H), 7.38 (d, J = 8.4 Hz, 4H, Ar-H), 7.35 (d, J = 8.4 Hz, 4H, Ar-H), 7.05 

(s, 2H, C=C-H), 5.26 (s, 2H, CH), 3.40 (s, 6H, OCH3). 

 

 

Polymer V.31c 

 
1H NMR (500 MHz, CDCl3): δ(ppm) 7.51 (d, J = 8.4 Hz, 4H, Ar-H), 7.46 (d, J = 

8.4 Hz, 4H, Ar-H), 7.38 (d, J = 8.4 Hz, 4H, Ar-H), 7.35 (d, J = 8.4 Hz, 4H, Ar-H), 7.05 

(s, 2H, C=C-H), 5.26 (s, 2H, CH), 3.40 (s, 6H, OCH3). 

 

 

Figure 5.11. GPC trace (refractive index) of polymer V.31c. 

 

 

(Z)-4,4'-(ethene-1,2-diyl)bis(N-(4-bromophenyl)-N-(p-tolyl)aniline) V.33a 

 



140 

To a 20mL microwave reaction vial was charged with a stir bar, V.40a (2.08 g, 

7.94 mmol, 2.2 eq), V.41 (1.56 g, 3.61 mmol, 1 eq), Xantphos Pd G3 (0.17 g, 0.18 mmol, 

0.05 eq), NaOtBu (1.39 g, 14.4 mmol, 4 eq). This set-up was transferred to a glove box 

with N2 atmosphere and sealed with a septum cap. The sealed vial was then taken out of 

the glove box and degassed anhydrous toluene (15 mL) was added. The mixture was 

heated at 100 °C for 6h using a Biotage microwave reactor. When cooled to room 

temperature, the mixture was diluted with DCM (50 mL) and filtered through a plug of 

celite. Solvent was removed under reduced pressure and the residual solid was purified 

by column chromatography (silica, 0% to 20% DCM in hexanes) as yellow film (1.14 g, 

45%). 1H NMR (600 MHz, C6D6): δ(ppm) 7.26 (d, J = 8.8 Hz, 4H, Ar-H), 7.10 (d, J = 8.8 

Hz, 4H, Ar-H), 6.91 (d, J = 8.3 Hz, 4H, Ar-H), 6.89 (d, J = 8.5 Hz, 4H, Ar-H), 6.84 (d, J 

= 8.3 Hz, 4H, Ar-H), 6.74 (d, J = 8.8 Hz, 4H, Ar-H), 6.41 (s, 2H, C=C-H), 2.07 (s, 6H, 

CH3); 
13C NMR (125 MHz, C6D6): δ(ppm) 147.21, 146.95, 145.00, 133.65, 132.54, 

132.06, 130.48, 130.28, 129.08, 125.72, 125.59, 123.06, 115.26, 20.82. 

 

 

(Z)-N,N'-(ethene-1,2-diylbis(4,1-phenylene))bis(N-(4-bromophenyl)-2,4,6-

trimethylaniline) V.33b 

 

A similar procedure to synthesize V.33a was adapted. V.41 (0.77 g, 1.78 mmol, 1 

eq), V.40b (1.24 g, 4.27 mmol, 2.4 eq), Xantphos Pd G3 (84 mg, 0.09 mmol, 0.05 eq), 

NaOtBu (0.68 g, 7.12 mmol, 4 eq). Product was purified by column chromatography 

(silica, 0% - 15% DCM in hexanes) as yellow film (629 mg, 46 %). 1H NMR (500 MHz, 

CDCl3): δ(ppm) 7.34 (d, J = 8.7 Hz, 4H, Ar-H), 7.18 (d, J = 8.9 Hz, 4H, Ar-H), 6.89 (d, J 

= 8.7 Hz, 4H, Ar-H), 6.81 (s, 4H, Ar-H), 6.77 (d, J = 8.9 Hz, 4H, Ar-H), 6.51 (s, 2H, 

C=C-H), 2.24 (s, 6H, CH3), 1.98 (s, 12H, CH3). 
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(Z)-4,4'-(ethene-1,2-diyl)bis(N-(4-bromophenyl)-N-(4-chlorophenyl)aniline) V.33c 

 

A similar procedure to synthesize V.33a was adapted. V.41 (449 mg, 1.04 mmol, 

1 eq), V.44c (705 mg, 2.49 mmol, 2.4 eq), Xantphos Pd G3 (50 mg, 0.05 mmol, 0.05 eq), 

NaOtBu (400 mg, 4.16 mmol, 4 eq). Product was purified by column chromatography 

(silica, 0% to 20% DCM in hexanes) as yellow film (417 mg, 54 %).1H NMR (600 MHz, 

C6D6): δ(ppm) 7.24 (d, J = 8.6 Hz, 4H, Ar-H), 7.09 (d, J = 8.8 Hz, 4H, Ar-H), 6.94 (d, J 

= 8.8 Hz, 4H, Ar-H), 6.76 (d, J = 8.6 Hz, 4H, Ar-H), 6.64 (d, J = 8.8 Hz, 4H, Ar-H), 6.59 

(d, J = 8.8 Hz, 4H, Ar-H), 6.42 (s, 2H, C=C-H), 2.07 (s, 6H, CH3); 
13C NMR (125 MHz, 

C6D6): δ(ppm) 146.49, 146.38, 145.92, 132.76, 132.59, 130.37, 129.83, 129.20, 128.78, 

126.11, 125.94, 123.45, 116.27. 

 

 

(Z)-4-methyl-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-N-(4-(4-((4-

(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)(p-tolyl)amino)styryl)phenyl)aniline 

V.34a 

 

A similar procedure to synthesize V.30a was adapted. V.33a (1.13 g, 1.61 mmol, 

1.0 eq), nBuLi in n-hexane (1.56 mL, 2.3 mol/L, 2.2 eq), isopropyl pinacol borate (1.18 

mL, 5.80 mmol, 3.6 eq). After workup and removing solvent, the crude residue was used 

directly for homocoupling without purification. 1H NMR (500 MHz, C6D6): δ(ppm) 8.05 

(d, J = 8.6 Hz, 4H, Ar-H), 7.25 (d, J = 8.6 Hz, 4H, Ar-H), 7.17 (d, J = 8.2 Hz, 4H, Ar-H), 

7.00 (d, J = 8.2 Hz, 4H, Ar-H), 6.98 (d, J = 8.2 Hz, 4H, Ar-H), 6.82 (d, J = 8.2 Hz, 4H, 

Ar-H), 6.38 (s, 2H, C=C-H), 2.06 (s, 6H, CH3), 1.14 (s, 24H, CH3). 
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(Z)-N-(4-(4-(mesityl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)amino)-

styryl)phenyl)-2,4,6-trimethyl-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenyl)aniline V.34b 

 

A similar procedure to synthesize V.30a was adapted. V.33b (629 mg, 0.831 

mmol, 1.0 eq), nBuLi in n-hexane (1.10 mL, 2.3 mol/L, 3.0 eq), isopropyl pinacol borate 

(0.68 mL, 3.32 mmol, 4.0 eq). After workup and removing solvent, the crude residue was 

used directly for homocoupling without purification. 1H NMR (500 MHz, C6D6): δ(ppm) 

8.03 (d, J = 8.7 Hz, 4H, Ar-H), 7.20 (d, J = 8.7 Hz, 4H, Ar-H), 7.06 (d, J = 8.7 Hz, 4H, 

Ar-H), 6.90 (d, J = 8.7 Hz, 4H, Ar-H), 6.72 (s, 4H, Ar-H), 6.40 (s, 2H, C=C-H), 2.24 (s, 

6H, CH3), 1.93 (s, 12H, CH3), 1.14 (s, 24H, CH3). 

 

 

(Z)-4-chloro-N-(4-(4-((4-chlorophenyl)(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenyl)amino)styryl)phenyl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenyl)aniline V.34c 

 

A similar procedure to synthesize V.30a was adapted. V.33c (387 mg, 0.522 

mmol, 1.0 eq), nBuLi in n-hexane (0.52 mL, 2.3 mol/L, 2.3 eq), isopropyl pinacol borate 

(0.32 mL, 1.57 mmol, 3.0 eq). After workup and removing solvent, the crude residue was 

used directly for homocoupling without purification. 1H NMR (600 MHz, C6D6): δ(ppm) 

8.04 (d, J = 8.6 Hz, 4H, Ar-H), 7.21 (d, J = 8.6 Hz, 4H, Ar-H), 7.03 (d, J = 8.6 Hz, 4H, 

Ar-H), 6.92 (d, J = 8.8 Hz, 4H, Ar-H), 6.85 (d, J = 8.6 Hz, 4H, Ar-H), 6.74 (d, J = 8.8 

Hz, 4H, Ar-H), 6.39 (s, 2H, C=C-H), 1.14 (s, 24H, CH3). 
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(Z)-3,8-di-p-tolyl-3,8-diaza-1,2,4,7(1,4)-tetrabenzenacyclooctaphan-5-ene V.32a 

 

A similar procedure to synthesize V.29a was adapted. Crude bisboronate V.34a, 

PdCl2(PPh3)2 (226 mg, 0.322 mmol, 0.2 eq), B(OH)3 (538 mg, 8.05 mmol, 5 eq), KF (280 

mg, 4.83 mmol, 3 eq), THF (300 mL), H2O (30 mL). Product was purified by column 

chromatography (silica, 0% to 40% DCM in hexanes) as yellow powder (200 mg, 27% 

over two steps). 1H NMR (500 MHz, CDCl3): δ(ppm) 7.36 (d, J = 8.8 Hz, 4H, Ar-H), 

7.25 (d, J = 8.8 Hz, 4H, Ar-H), 7.05 (d, J = 7.9 Hz, 4H, Ar-H), 6.95 (d, J = 8.5 Hz, 4H, 

Ar-H), 6.80 (d, J = 8.6 Hz, 4H, Ar-H), 6.47 (d, J = 8.6 Hz, 4H, Ar-H), 6.39 (s, 2H, C=C-

H), 2.30 (s, 6H, CH3); 
13C NMR (125 MHz, CDCl3): δ(ppm) 150.03, 148.55, 144.30, 

141.53, 132.84, 130.97, 130.19, 129.78, 129.74, 129.64, 128.76, 125.85, 116.61, 20.63; 

 

 

(Z)-3,8-dimesityl-3,8-diaza-1,2,4,7(1,4)-tetrabenzenacyclooctaphan-5-ene V.32b 

 

A similar procedure to synthesize V.29a was adapted. Crude bisboronate V.34b, 

PdCl2(PPh3)2 (117 mg, 0.166 mmol, 0.2 eq), B(OH)3 (278 mg, 4.16 mmol, 5 eq), KF (145 

mg, 2.49 mmol, 3 eq), THF (250 mL), H2O (25 mL). Product was purified by column 

chromatography (silica, 0% to 50% DCM in hexanes) as yellow powder (17 mg, 3% over 

two steps). 1H NMR (500 MHz, CDCl3): δ(ppm) 7.48 (d, J = 8.7 Hz, 4H, Ar-H), 7.29 (d, 

J = 8.7 Hz, 4H, Ar-H), 7.06 (d, J = 8.7 Hz, 4H, Ar-H), 6.94 (s, 4H, Ar-H), 6.90 (d, J = 8.7 

Hz, 4H, Ar-H), 6.32 (s, 2H, C=C-H), 2.33 (s, 6H, CH3), 2.01 (s, 12H, CH3). 
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(Z)-3,8-bis(4-chlorophenyl)-3,8-diaza-1,2,4,7(1,4)-tetrabenzenacyclooctaphan-5-ene 

V.32c 

 

A similar procedure to synthesize V.29a was adapted. Crude bisboronate V.34c, 

PdCl2(PPh3)2 (74 mg, 0.104 mmol, 0.2 eq), B(OH)3 (161 mg, 2.61 mmol, 5 eq), KF (60 

mg, 1.04 mmol, 2 eq), THF (450 mL), H2O (45 mL). Product was purified by column 

chromatography (silica, 0% to 30% DCM in hexanes) as yellow powder (106 mg, 35% 

over two steps). 1H NMR (600 MHz, CDCl3): δ(ppm) 7.37 (d, J = 8.8 Hz, 4H, Ar-H), 

7.24 (d, J = 8.8 Hz, 4H, Ar-H), 7.18 (d, J = 8.9 Hz, 4H, Ar-H), 6.95 (d, J = 8.9 Hz, 4H, 

Ar-H), 6.80 (d, J = 8.6 Hz, 4H, Ar-H), 6.47 (d, J = 8.6 Hz, 4H, Ar-H), 6.41 (s, 2H, C=C-

H); 13C NMR (150 MHz, CDCl3): δ(ppm) 149.24, 147.80, 145.19, 141.75, 133.37, 

130.84, 130.32, 129.90, 129.80, 129.15, 125.94, 124.14, 117.45. 

 

 

5.4.3. X-Ray Crystallography Analysis 

Diffraction intensities for V.29a, trans-V.29e and V.32a were collected at 173 (2) 

on a Bruker Apex2 CCD diffractometer using an Incoatec IS micro-focus source with 

CuK radiation, = 1.54178 Å. Space groups were determined based on systematic 

absences and intensity statistics. Absorption corrections were applied by SADABS.29 

Structures were solved by direct methods and Fourier techniques and refined on F2 using 

full matrix least-squares procedures. All non-H atoms were refined with anisotropic 

thermal parameters. H atoms in both structures were refined in calculated positions in a 

rigid group model. All calculations were performed by the SHELXL-2014/7 packages.30 

All single crystals were grown from slow evaporation of a DCM solution. 
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Figure 5.12. ORTEP representation of the X-ray crystallographic structure of V29a. 

 

Crystallographic data for V.29a: C28H22, M = 358.45, Size = 0.17 x 0.16 x 0.12 

mm, T = 173(2) K, Monoclinic, space group P21/n, a = 10.2051(3) Å, b = 10.2600(3) Å, 

c = 18.2832(5) Å, α = 90°, β = 91.5460(10)°, γ = 90°, V = 1913.63(10) Å3, Z = 4, Dc = 

1.244 Mg/m3, µ(Mo) = 0.529 mm-1, F(000) = 760, CuK/α (λ = 1.54178),  θ = 4.84-

66.62°, 13132 reflections, 3375 independent reflections [Rint = 0.0432], R1 = 0.0347, 

wR2 = 0.0867 and GOF = 1.026 for 3375 reflections (342 parameters) with I>2σ(I), R1 = 

0.0396, wR2 = 0.0904 and GOF = 1.026 for all reflections, max/min residual electron 

density +0.184/-0.166 eÅ3.  

 

 

Figure 5.13. ORTEP representation of the X-ray crystallographic structure of trans-

V.29e. 
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In the unit cell, there is also a dichloromethane molecule which is disordered over 

two positions in a ratio of 50/50 and fills out the empty space in the crystal packing. 

Crystallographic data for trans-V.29e: C43H34Cl4O2,  M = 724.50, Size = 0.25 x 0.24 x 

0.05 mm, T = 173(2) K, Triclinic, space group P/1, a = 10.7391(15) Å, b = 12.3787(17) 

Å, c = 14.292(2) Å, α = 84.562(3)°, β = 76.015(3)°, γ = 80.032(3)°, V = 1805.0(4) Å3, Z 

= 2, Dc = 1.333 Mg/m3, µ(Mo) = 0.365 mm-1, F(000) = 752, MoK/α (λ=0.71073), θ = 

1.477-25.000°, 29666 reflections, 6364 independent reflections [Rint = 0.0630], R1 = 

0.0441, wR2 = 0.0947 and GOF = 1.015 for 6364 reflections (469 parameters) with 

I>2σ(I), R1 = 0.0774, wR2 = 0.1109 and GOF = 1.021 for all reflections, max/min 

residual electron density +0.255/-0.440 eÅ3.  

 

 

Figure 5.14. ORTEP representation of the X-ray crystallographic structure of V.32a. 

 

In the crystal, there is an additional dichloromethane molecule per molecule 

V.32a. This dichloromethane molecule is disordered over two positions in a ratio of 

50/50. Crystallographic data for V.32a: C41H34Cl2N2,  M = 625.60, Size = 0.13 x 0.09 x 

0.06 mm, T = 173(2) K, Trigonal, space group P32, a = 10.3752(3) Å, b = 10.3752(3) Å, 

c = 52.9434(15) Å, α = 90°, β = 90°, γ = 120°, V = 4935.5(3) Å3, Z = 6, Dc = 1.263 

Mg/m3, µ(Mo) = 2.010 mm-1, F(000) = 1968, CuK/α (λ=1.54178), θ = 2.504-66.689°, 

37986 reflections, 11368 independent reflections [Rint = 0.0408], R1 = 0.0463, wR2 = 

0.1183 and GOF = 1.046 for 11368 reflections (838 parameters) with I>2σ(I), R1 = 

0.0514, wR2 = 0.1229 and GOF = 1.046 for all reflections, max/min residual electron 

density +0.298/-0.408 eÅ3.  
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5.4.4. Thermogravimetric Analysis (TGA) 

The polymer from entry 8 in Table V.2 was analyzed using a heating rate of 

10 °C/min under a N2 stream. No substantial weight loss was observed up to 290 °C. The 

onset temperature of weight loss was determined to be 352 °C. When temperature 

reached 600 °C, about 25% of the original weight remained. 

 

 

Figure 5.15. TGA analysis of the polymeric sample from entry 8 in Table. V.2. 

 

 

5.4.5. Computational Studies 

All computations were carried out with Gaussian 09 package.31 Molecular 

geometry optimizations and optical transition predictions were computed utilizing DFT 

method at the B3LYP/6-31G* level of theory. The fully optimized structures were 

confirmed to be true minima by vibrational analysis. Strain energies were calculated 

using the homodesmotic reactions.   
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Figure 5.16. Homodesmotic reactions to estimate the strain energies (DFT at the 

B3LYP/6-31G* level of theory).  
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Table 5.3. Structural parameters from crystallographic analysis (exp.) and from DFT 

calculations (cal.). 

 
 

 V.29a V.29e V.32a 

exp. θ (°) 130.2, 128.7 129.4, 127.8 128.5, 129.4 

cal. θ (°) 128.7 129.0 128.8 

exp. δ (°) 107.4, 106.5 103.8, 103.3 110.8, 109.7 

cal. δ (°) 107.4 103.8 112.0 

exp. α1 (°) 11.8, 8.4 9.2, 8.0 11.0, 11.7 

cal. α1 (°) 10.5 9.2 11.8 

exp. α2 (°) 12.6, 8.2 9.9, 10.0 11.3, 10.8 

cal. α2 (°) 10.9 10.3 11.5 

exp. β1 (°) 17.1, 11.0 16.2, 14.5 14.8, 13.1 

cal. β1 (°) 13.2 14.7 12.1 

exp. β2 (°) 16.8, 16.6 15.6, 14.8 17.5, 16.0 

cal. β2 (°) 16.8 15.0 18.8 
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