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DISSERTATION ABSTRACT

Jonathan B. Mackrory

Doctor of Philosophy

Department of Physics

June 2017

Title: The Worldline Method for Electromagnetic Casimir Energies

The Casimir effect refers to the primarily attractive force between material bodies

due to quantum fluctuations in the electromagnetic field. The Casimir effect is difficult

to calculate in general, since it is sensitive to the exact shapes of the bodies and

involves contributions from all frequencies. As a result, calculating the Casimir effect

between general bodies usually requires a numerical approach. The worldline method

computes Casimir energies by creating an ensemble of space-time paths corresponding

to a virtual particle interacting with the bodies. This method was originally developed

for a scalar fields coupled to an idealized background potential, rather than the vector

electromagnetic field interacting with media.

This thesis presents work on extending the worldline method to account

for the material properties of the interacting bodies, and the polarizations of

electromagnetism. This thesis starts by covering background material on path

integrals, and quantizing the electromagnetic field in media. The electromagnetic

field is decomposed in terms of two scalar fields for planar bodies, where these scalar

fields correspond to the transverse-electric and transverse-magnetic polarizations

of the electromagnetic field. The worldline path integrals are developed for both

polarizations, and solved analytically. Next, numerical methods are developed and
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tested in the context of planar bodies. The starting positions, and scale of the paths,

and shape of the paths are sampled via Monte Carlo methods. The transverse-

magnetic path integral also requires specialized methods for estimating derivatives,

and path construction. The analytical and numerical results for both worldline path

integrals are in agreement with known solutions. Finally, specialized methods are

developed for computing derivatives of the worldline Casimir-energy path integrals,

allowing for efficient numerical computations of Casimir forces and torques.
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CHAPTER I

INTRODUCTION

The Casimir effect is one of the more surprising consequences of quantum

electrodynamics (QED), the quantum theory describing the interaction of matter and

photons. Casimir (1948) showed that according to QED a pair of electrically neutral,

conducting bodies will be attracted to one another due to their mutual interaction

with the quantized electromagnetic (EM) field, even if the EM field is in its vacuum

state. In brief, the total energy of in the field is the sum of the energies of each of the

field modes, where each mode has vacuum energy proportional to its frequency. The

presence of the conducting bodies restricts the electric field on the plates, as illustrated

in Figure 1.1. The allowed modes must have a half-integer number of wavelengths

fit between the plates. Changing the plates separation changes the allowed modes,

and thus the total energy. While the total vacuum energy is a divergent quantity,

the difference in energy for two configurations is well defined. The vacuum energy is

compared between the cases when the plates are a finite distance apart, and when

they are removed to arbitrarily far apart. As the plates are brought closer together,

this vacuum energy difference is reduced, leading to an attractive force between the

plates.

While the Casimir effect is a generic consequence of quantum field theory subject

to boundary conditions, the electromagnetic Casimir effect is the most important

example. This is because photons (the quanta of the EM field) are massless which

makes their interaction long-ranged, and the coupling of electromagnetism to matter

is much stronger than gravity, the only other long-ranged fundamental force. In the

electromagnetic Casimir effect, one can think of the electrons in a body emitting and

1



FIGURE 1.1. Sketch of allowed modes between perfectly conducting parallel plates.
Only waves with a half-integer number of wavelengths are allowed between the plates.
The blue modes are only allowed outside the plates, while green modes are allowed
inside and outside. The modes have been vertically offset for clarity.

absorbing virtual photons that can in turn interact with electrons in other bodies.

The interacting bodies can be pairs of atoms (Casimir and Polder, 1948), macroscopic

bodies such as metallic planes and dielectric slabs (Lifshitz, 1956), or any combination.

Alternatively, the Casimir effect can be attributed to the attraction between

instantaneous dipoles forming in the bodies. This interpretation is intimately related

to the van der Waals force, where molecules with fluctuating dipole moments are

attracted to one another (van der Waals, 1873). While the emphasis on fluctuating

EM fields or fluctuating dipoles may differ between Casimir and van der Waals forces,

they ultimately describe the same phenomenon.

Despite the prediction of the Casimir force in 1948, precise measurements of the

Casimir force were only carried out in the late 1990s (Lamoreaux, 1997; Mohideen

and Roy, 1998). These first modern experiments measured the Casimir force between

conducting spheres and plates, rather than between parallel conducting plates, since

a sphere and plate are easier to align and control. Experiments have also been carried

out to measure the forces between atoms and surfaces (Harber et al., 2005; Perreault

and Cronin, 2005; Sukenik et al., 1993).
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Beyond their importance as observable consequences of quantum field theory,

Casimir effects are also important to a range of modern experiments and developing

technologies. They are important for microelectromechanical systems (MEMS), where

the Casimir attraction between components leads to stiction, which causes the pieces

to be permanently stuck together (Buks and Roukes, 2001). Casimir forces are

also important for technologies using atoms near dielectric surfaces (Alton et al.,

2011; Folman et al., 2000; Hung et al., 2013). In these experiments, the attractive

Casimir potential sets a lower bound for how close the atoms can be brought to the

surface. Consequently, the Casimir effect must be considered in the engineering of

these devices.

The advent of these experiments in complicated arrangements of bodies, has

spurred the development of a number of theoretical and computational methods

for computing Casimir effects (Bordag et al., 2009; Dalvit et al., 2011). To model

these experiments, it is necessary to be able to compute the Casimir effect between

arbitrarily shaped bodies, with realistic material properties—which in general requires

a numerical approach (Johnson, 2011). The most important of these modern methods

are the so-called “scattering method” (Lambrecht et al., 2006; Rahi et al., 2009; Reid

et al., 2009) and “worldline methods” (Gies et al., 2003). To date, the scattering

method is the only general purpose numerical method available for computing Casimir

forces in arbitrary arrangements of bodies (Reid et al., 2009, 2011, 2013). This

method considers fluctuating currents confined to the surfaces of the interacting

bodies, where the currents at each patch of surface interact with one another by

emitting and reabsorbing photons. The Casimir energy is calculated by evaluating

the determinant of the (large) scattering matrix for all of these patches (Reid et al.,

2011). The worldline method is another promising method for calculating Casimir
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energies (Gies et al., 2003), which considers an ensemble of closed Brownian paths

propagating through space. These paths can be intuitively thought of as the space-

time trajectory of a virtual particle. As the paths propagate, they accumulate a weight

based on whether the path intersects any of the bodies. The Casimir energy is found

by summing up the contributions from paths at all starting points and sizes. The

worldline method has only been developed for scalar fields interacting with idealized

surfaces. In contrast to the scattering method, the worldline method is a Monte Carlo

method, which makes it easy to parallelize.

It is the goal of this thesis to extend the worldline method to computing

electromagnetic Casimir effects. This requires accounting for the vector nature of the

EM field, and including realistic coupling to material properties, while attempting

to retain as many of its appealing properties as possible. In Chapter II, we will

discuss quantization of the EM field, and introduce two versions of the worldline path

integral: one in terms of the vector and scalar potentials, and another in terms of

two scalar fields. The scalar field description is specialized for planar geometries, but

it does account for the magnetic and dielectric properties of the medium. We will

develop the necessary analytical methods for evaluating path integrals in Chapter III,

and apply them to Casimir worldline path integrals in Chapter IV. In Chapters V

and VI, we develop and test numerical methods for evaluating the electromagnetic

worldline method. In both analytical and numerical cases the results show agreement

with known electromagnetic Casimir results. (A longer outline of the thesis, and some

key analytical results is presented in Section 1.6.)

The rest of this chapter will cover simple examples of Casimir effects, and

expand on some necessary background material. In Section 1.1, we will introduce

some simple calculations for Casimir effects such as the Casimir–Polder potential

4



between an atom and a conducting wall, and the Lifshitz formula for the Casimir

effect between dielectric half-spaces (both of which we will use as checks on our later

work). In Section 1.2 we will briefly survey recent experiments on the Casimir effect.

In Section 1.3 we will cover the most prominent numerical methods for computing

the Casimir effect, such as the proximity force approximation, the scattering method

and the worldline method. In particular we will introduce the Feynman path integral

and the scalar worldline method at length. Finally, in Section 1.6 we will review the

rest of the thesis, and present some of the key equations.

1.1. Casimir Effect

Casimir and van der Waals forces are intimately related, and describe the same

basic quantum mechanical force. Van der Waals forces were first discovered as

deviations from ideal gas behavior, which can be attributed to the atoms possessing

a finite size and inter-atomic forces (Parsegian, 2006; van der Waals, 1873). London

(1930) gave these interatomic forces a theoretical underpinning in terms of fluctuating,

induced dipoles using quantum mechanical perturbation theory. This work leads to

an interatomic potential with a characteristic d−6 scaling. While this scaling is similar

to the other possible dipole-dipole interactions, these dispersion forces are often the

dominant contribution to inter-molecular forces (Israelachvili, 2011).

London’s perturbation theory assumes that the dipole interact with another

instantaneously, which ignores the finite speed of light. Casimir and Polder (1948)

extended this calculation to quantum electrodynamics, where they accounted for the

retardation due to the finite speed of light. The retardation causes the potential to

decay more quickly at larger distances.
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Casimir (1948) then showed that uncharged, conducting plates would be

attracted by their mutual interaction with the quantized EM field. This calculation

emphasizes the role played by the fields, and suggests a global interaction due to the

effective boundary conditions imposed by the plates. This interpretation stands in

contrast to the van der Waals picture which emphasizes the pair-wise interactions

between induced dipoles.

This was followed by later work by Lifshitz and co-workers on the Casimir

effect between dielectric bodies (Dzyaloshinskii et al., 1961; Lifshitz, 1956). This

is particularly relevant since some of their later work showed that the Casimir effect

can be derived from the pair-wise van der Waals interactions of all of the constituent

parts (Dzyaloshinskii et al., 1961).

In this thesis, we will follow the quantum optics convention and use “Casimir

effect” as an umbrella term for all of these vacuum fluctuation forces. Near-field forces

where the dipole interactions can be considered as instantaneous will be referred to

as “van der Waals forces”. The forces between atoms and microscopic bodies will be

referred to as “Casimir–Polder forces”, in distinction to the Casimir forces between

macroscopic bodies.

We will start our development from Casimir and Polder’s work, since that

was framed in the more modern language of quantum field theory, and naturally

encompasses all of the limiting cases.

1.1.1. Casimir–Polder Forces

Casimir and Polder (1948) computed the energy between pairs of atoms, and

for atoms and conducting walls using non-relativistic quantum electrodynamics to

account for the retardation due to the finite speed of light. They found that in
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the far-field (where the transition wavelengths λ = 2πc/ωA exceed the separation of

the atoms d, d � 2πc/ωA) the inter-atomic potential decays more rapidly as d−7,

instead of the typical d−6 scaling for London forces. The change in power law can be

attributed to the induced dipoles decorrelating over the time of flight of the virtual

photon, and thus having a weaker effective interaction.

They also found an attractive force between an atom and perfectly conducting

wall, with a d−3 scaling in the near field regime, that passes over to d−4 scaling in

the far field. In this case the atom can be thought of as interacting with its negative

image in the wall, which leads to an attractive potential for the atom,

VCP(d) = − 3~cα0

32π2ε0d4
, (1.1)

where ~ is the reduced Planck’s constant, c is the speed of light, α0 is the atom’s

static polarizability, and ε0 is the permittivity of free space.

1.1.1.1. Derivation of the Atom-Perfect Conductor Potential

The Casimir–Polder potential between an atom in its ground state and a surface

can be derived via perturbation theory in the coupling of the atom to the EM field.

We will consider the attraction between an atom and a perfectly conducting wall.1

The Hamiltonian for the whole atom-field system is

H = Hatom +Hfield +Hint (1.2)

1 This derivation is adapted from Chapter 13 and Section 14.3 of Steck (2015) and Section 3.12
of Milonni (1994).
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where we have split the energy into energy for atom, the EM field, and a term

describing their interaction. The atomic Hamiltonian is

Hatom =
p̂2

2m
+
∑
j

~ωjσ̂†j σ̂j (1.3)

where the first term is the kinetic energy, and the second term gives the atom’s

internal electronic energy. The atom’s quantized energy levels are given by Ej = ~ωj,

and σ̂j = |g〉〈ej| is the lowering operator for the atom’s internal state. The field

Hamiltonian is

Hfield =
∑
k,ζ

~ωk
(
â†k,ζ âk,ζ +

1

2

)
, (1.4)

where âk,ζ is the annihilation operator for the EM field mode with wavenumber k, and

polarization ζ, which has spatial mode function fk,ζ(x̂). This field energy also includes

the zero-point energy,
∑

k ~ωk/2, which will be important in the Casimir effect. For

the Casimir–Polder calculation, this zero-point-energy is a divergent constant which

drops out when considering the energy differences when the atom is moved close to

the surface from arbitrarily far away. Finally, the interaction Hamiltonian couples

the internal state of the atom to the quantized light field,

Hint = −d̂ · Ê =
∑
j

∑
k,ζ

√
~ωk
2ε0

(σ̂j + σ̂†j)dj · [âk,ζf
∗
k (x̂) + â†k,ζfk,ζ(x̂)], (1.5)

where dj = −e〈g|x̂|ej〉. The interaction Hamiltonian is written in the dipole

approximation, which assumes that the atom is much smaller than the relevant

wavelengths. In this case, the dominant wavelengths are typically on the order of the

separation between the atom and the wall. In this calculation the mode functions fk,ζ

must satisfy the EM boundary conditions on the surfaces of the bodies. The resulting
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EM mode functions (and thus the potential) are then sensitive to the arrangements

of the bodies.

Note that some of the terms in the interaction Hamiltonian violate energy

conservation, in the sense that [Hatom + Hfield, Hint] 6= 0, so Hint causes transitions

between the eigenstates of the non-interacting Hamiltonians Hatom + Hfield. For

example, σ̂†j â
†
k,ζ creates a photon with energy ~ωk and raises the atom from the

ground state to an excited state with energy ~ωj. These terms are normally dropped

in the rotating-wave-approximation, since they oscillate quickly in time as ei(ωj+ωk)t,

and average down to zero on typical atomic timescales. However, these energy non-

conserving terms lead to observable effects at higher order in perturbation theory.

The first order energy shift 〈En|Hint|En〉 = 0, since the mean value of the electric

field in vacuum is zero. The Casimir–Polder potential emerges when computing the

energy shift for the atom from Hint to second order. For an atom in its ground state,

the Casimir–Polder potential is given by

VCP = −
∑

n6=0,k,ζ

〈E0, 0|Hint|En, 1k,ζ〉〈En, 1k,ζ |Hint|E0, 0〉
~(ωk + ωn0)

, (1.6)

where |En, 1k,ζ〉 denotes the state with the atom in energy level n and one photon in

mode k, |0〉 denotes the vacuum state of the EM field, and the transition frequency

ωn0 = (En −E0)/~. The shift VCP can be understood as two virtual transitions—one

from the atomic ground state with no photons to an atomic excited state with one

photon, followed by a return transition. The total energy shift is found by summing

over all possible intermediate states. This process is represented schematically via the

Feynman diagram in Figure 1.2, where an atom in the ground-state emits a virtual

photon, and re-absorbs it. This transition is a “virtual” one, since these intermediate
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|ej〉|g〉 |g〉

|1k〉

FIGURE 1.2. Feynman diagram representing an atom interacting with EM field via
emitting and absorbing photons. The wavy line represents the EM Green function
in the presence of boundaries—as opposed to the usual plane waves exploited in field
theory computations. The atom is excited into intermediate states.

transitions violate energy conservation, and these intermediate states are not directly

physically observable on a detector.

After substituting in Hint, the Casimir–Polder energy can be written as

VCP(r) = −
∑

n6=0,k,ζ

~ωk
6ε0

|〈E0|d|En〉|2|fk,ζ,i(r)|2

~(ωk + ωn0)
, (1.7)

where we substituted the form of Hint and assumed a spherically symmetric atom,

|〈E0|di|En〉|2 = |〈E0|d|En〉|2/3, which corresponds to assuming that all components

of dipole matrix elements are equal.

The mode functions for the electric field near a perfectly conducting plane can

be substituted into the energy. Following Milonni (1994, Section 3.12), we assume

the atom is close to one wall of a perfectly conducting box, but far from all other

walls. The box is formed by conducting planes at x = 0, L, y = 0, L, and z = 0, L.

The EM mode functions for a perfectly conducting box are given by

fk,ζ(r) =

√
8

V

(
x̂(ε̂k,ζ · x̂) cos(kxx) sin(kyy) sin(kzz)

+ ŷ(ε̂k,ζ · ŷ) sin(kxx) cos(kyy) sin(kzz)

+ ẑ(ε̂k,ζ · ẑ) sin(kxx) sin(kyy) cos(kzz)

)
, (1.8)
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where ε̂k,ζ are the polarization unit vectors, and the wavenumbers are given by ki =

niπ/L, with ni integers (Steck, 2015, Section 8.4.1). The square-modulus |fk,ζ(r)|2

can be simplified under a couple limits. If the atom is close to the z = 0 plane,

but very far from the other walls, the squared-sinusoids in x and y can be replaced

by their average value of 1/2, since they will be quickly oscillating. In addition, the

polarization vectors form a resolution of the transverse identity (since Gauss’s law

implies that the electric field is transverse, ∇ · E = 0),

∑
ζ

ε̂ik,ζ ε̂
j
k,ζ = δij −

kikj
k2

. (1.9)

The sum over dipole matrix elements can also be rewritten in terms of the atom’s

ground-state polarizability,

αij(ω) =
∑
n

2ωn0〈E0|di|En〉〈En|dj|E0〉
~(ω2

n0 − ω2)
. (1.10)

If we assume the atom’s distance from the surface d is larger than the atom’s dominant

emission wavelength, ωn0 then the dominant contribution to the sum will come from

frequencies for which ωk ∼ c/d� ωn0. In that limit, the atomic polarizability can be

replaced by the atom’s static (zero frequency) polarizability

α0 = lim
ω→0

α(ω) =
∑
n

2|〈E0|d|En〉|2

3~ωn0

. (1.11)

In this far-field limit, the Casimir–Polder energy can be approximated as

VCP(r) = − ~
4ε0

α0

∑
k,ζ

ωk|fk,ζ(r)|2. (1.12)
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With these simplifications, and taking the limit of a large box to convert the sum

over wavevectors into an integral, the Casimir–Polder potential is given by

VCP(r) = − ~α0

8π3ε0

∫
kz>0

d3k ωk

[(
1− k2

x

k2

)
[1− cos(2kzz)] +

(
1−

k2
y

k2

)
[1− cos(2kzz)]

+

(
1− k2

z

k2

)
[1 + cos(2kzz)]

]
, (1.13)

where the sinusoids have been rewritten using double-angle formulae. The z-

independent parts lead to a constant, divergent contribution to the energy. In order

to extract a finite energy shift it is essential to renormalize the energy by subtracting

off this constant energy. This corresponds to considering the energy change as the

atom is brought close to the surface from arbitrarily far away. Throughout this thesis,

this simple energy subtraction is the only renormalization that will be required.

The renormalized Casimir–Polder energy between an atom and a conducting

plane can be evaluated in spherical coordinates, although some care is required to

regularize these oscillatory integrals—this can be done by introducing an exponential

convergence factor e−ak and taking the limit a→ 0 at the end of the computation:

VCP(r)− V (0) = lim
a→0

~α0

8π3ε0

∫
d3k ωk

2k2
z

k2
cos(2kzz)e−ka (1.14)

= lim
a→0

~cα0

4π2ε0

∫ ∞
0

dk

∫ π/2

0

dθ k3 sin θ cos2 θ cos(2kz cos θ)e−ka (1.15)

= − 3~cα0

32π2ε0z4
. (1.16)

While we have carried out the calculation for the case of perfectly-conducting planar

interfaces, similar computations can be carried out for dielectric interfaces and more

general shapes of macroscopic bodies. In the case of an atom near a planar, dielectric
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interface the Casimir–Polder potential is

VCP(r)− V (0) = − 3~cα0

32π2ε0z4
η(χ), (1.17)

where χ is the static susceptibility of the medium, and the efficiency factor η

approaches zero as χ → 0 and unity as χ → ∞. Note that this type of calculation

relies on having analytical expressions available for the mode functions, which limits

this approach to simple geometries.

1.1.2. Forces between Bodies: Casimir Energy

We now turn our attention to the Casimir effect where macroscopic bodies are

attracted to one another via their interaction with the quantized EM field (Casimir,

1948). The presence of the bodies restricts the allowed modes of the electric field,

which is illustrated for perfectly conducting planes in Figure 1.1. Each quantized

mode of the EM field contributes to the energy, even in the ground state with zero

photons. The total ground state energy in the EM field is

E =
∑
α

~ωα
2
, (1.18)

where α indexes all possible modes. While the total energy is divergent, a finite

answer can be found by considering the energy difference between two different

configurations of bodies. In this case, the energy is renormalized by subtracting

the energy when the bodies are moved arbitrarily far apart from one another. For

example, the renormalized energy between two perfectly conducting plates is

E − E0 = − π2~c
720d3

, (1.19)
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where d is the distance between the plates.

The theory was extended by Lifshitz and coworkers to describe forces between

dielectric half-spaces (Dzyaloshinskii et al., 1961; Dzyaloshinskii and Pitaevskii, 1959;

Lifshitz, 1956). The Lifshitz calculation can also recover the Casimir force between

perfect conductors, and Casimir–Polder forces between atom’s and dielectric surfaces.

We will sketch the derivation of the Lifshitz formula (which will be used later), since

this can naturally also compute the Casimir energy.

1.1.2.1. Derivation of Lifshitz Formula

The Lifshitz formula for the Casimir energy can be found with an argument due

to van Kampen et al. (1968). In its full generality, the Lifshitz formula gives the total

energy for two planar dielectric bodies with dielectric constants ε1 and ε2, separated

by a medium with dielectric constant ε3.2 This geometry is illustrated in Figure 1.3.

The energy for the EM field in its ground state is

E =
∑
ζ

∑
kx,ky ,ω

~ωk
2
, (1.20)

where the sum runs over all of the allowed modes for the particular arrangement

of bodies. In this case, the non-zero contribution to the Casimir effect comes from

surface plasmon modes, which propagate along the interfaces and decay exponentially

away from the bodies. The mode sum can be converted into an integral with respect

to the transverse wavenumber kT :=
√
k2
x + k2

y. The sum over frequencies can be

recast as a contour integral over complex frequency ξ, against a function ∆(ζ), whose

2This derivation parallels those in Milonni (1994, Section 7.2), and Bordag et al. (2009, Ch. 12).
A similar result emerges from the scattering approach as discussed by Lambrecht et al. (2011).
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FIGURE 1.3. Sketch of two planar dielectric slabs, with dielectrics ε1 and ε2, with
interfaces at x = d1 and x = d2. The slabs are separated by vacuum.

poles occur at the allowed frequencies, with residue ωk

E =
L2

(2π)2

∑
ζ

∫ ∞
0

dkT kT

∮
dξ

~ξ
2

1

(2πi)∆(ζ)(ξ)

d∆(ζ)(ξ)

dξ
. (1.21)

The function [2πi∆(ξ)]−1d∆(ξ)/dξ is designed to have unit residue at the zeroes of

∆(ξ). The factor of L2 is accounted for by considering the energy per unit area. The

energy can be simplified by integrating by parts, leading to

E

A
=

~
16π3i

∑
ζ

∫ ∞
0

dkTkT

∮
dξ ln ∆(ζ)(ξ). (1.22)

The most important modes are the surface modes, since these modes are sensitive to

the position of the other body, where these modes exponentially decay between the

bodies. The allowed frequencies for these modes must satisfy

r
(ζ)
13 r

(ζ)
23 e

−2kzd = 1, (1.23)
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where r
(ζ)
i are the reflection coefficients for surface i and polarization ζ, and the

wavenumber is given by kz =
√
k2
T − ε(ω)ω2/c2. The reflection coefficients are given

by

r(TE)

13 =
kz,1 − kz,3
kz,1 + kz,3

r(TM)

13 =
ε3kz,1 − ε1kz,3
ε3kz,1 + ε1kz,3

. (1.24)

The frequency condition is suggestive of the requirement that accumulated round-

trip phase including reflections from both walls, is unity for allowed modes

[this interpretation is bolstered by considering the Casimir force between realistic

mirrors (Genet et al., 2003)]. The condition (1.23) suggests choosing ∆(ξ) =

1−r(ζ)
13 r

(ζ)
23 e

−2kzd, where the wavenumber kz and the reflection coefficients are functions

of ξ.

The contour integral (1.22) can be split into two pieces. The integral over the

right semi-circle is independent of d, and decays to zero when the semicircular contour

is taken to infinity. This leaves the integral along the imaginary frequency axis, ξ = is

where s is real. Casimir effects are most naturally discussed along the imaginary

frequency axis. Due to the causal nature of the dielectric response functions, the

dielectric function is a smooth, real function on the imaginary axis. This also means

that the z-wavenumber is also real, with kz =
√
k2
T + ε(is)s2/c2, and that oscillatory

functions like plane wave factors are replaced with real, decaying exponentials. Both

of these features are extremely attractive for numerical methods, and so numerical

methods also work with imaginary frequency (Johnson, 2011).

The Casimir energy between two dielectric half-spaces of permittivities ε1 and ε2

separated by a gap of thickness filled with permittivity ε3 is given by

E

L2
=− ~

2π2c3

∫ ∞
0

ds s2ε3

∫ ∞
1

dp p
∑

ζ=TE, TM

log
(

1− r(ζ)
13 r

(ζ)
23 e

−2
√
ε3psd/c

)
, (1.25)
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where the EM reflection coefficients are given by

r(TE)

ij =
κi − κj
κi + κj

r(TM)

ij =
εjκi − εiκj
εjκi + εiκj

, (1.26)

and

κi =
√
p2 + εi/ε3 − 1, (1.27)

following Zhou and Spruch (1995). The variables have been adjusted to agree with

the Lifshitz calculation, by defining kT = s
√
ε3(p2 − 1)/c. In general, this integral

form (1.25) is the simplest expression for the Casimir energy between two dielectrics

planes. The perfect-conductor Casimir energy result (1.19) can be found by taking

the strong-coupling limit, r
(ζ)
i → 1, setting ε3 = 1, and evaluating the integrals using

∫ ∞
0

ds s2

∫ ∞
1

dp p log
(
1− e−2spd/c

)
= − c3π4

360d3
. (1.28)

The Casimir–Polder results for interacting atoms can be recovered from the Lifshitz

formula by taking the limit of dilute bodies, ε ≈ 1 +α0n, where n� 1 is the density,

and α0 is the static polarizability.

The Lifshitz theory can be extended to account for dispersion and finite

temperature. Some care is required in quantizing the EM field within dielectric media,

since according to the Kramers-Krönig relations, the presence of dispersion implies

dissipation. However, it has been observed that one gets the correct answers by

a direct substitution ε(x) → ε(ω,x). Barash and Ginzburg (1975) and Rosa et al.

(2010) investigated this more carefully by in terms of the total thermodynamic energy

and the work done on the microscopic details of the medium.
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At non-zero temperature it is necessary to also include the effects of real,

thermally excited photons. At inverse temperature β = (kBT )−1, for a frequency

ω, the mean number of photons is n̄(ω) = coth(β~ω/2). Note that coth(ix) has

simple poles at x = ±nπ for n integer. Exactly the same style of argument that

used to derive Eq. (1.25), can be used to find the thermal Casimir energy between

dielectrics. But due to the presence of coth(is), the integral over imaginary frequency

picks up the residues of the integrand at the Matsubara frequencies sn := 2πn/(β~).

The resulting free energy per unit area is

F
L2

=
kBT

2π

∞∑
n=0

′

s2
nε3

∫ ∞
1

dp p
∑

ζ=TE, TM

log
[
1− r(ζ)

13 (isn)r
(ζ)
23 (isn)e−2

√
ε3psnd/c

]
, (1.29)

where the primed sum weights the n = 0 term by 1/2, and all functions of frequency

are evaluated at sn. At zero temperature, this result passes over to the previous one,

by transforming the sum over frequencies into an integral. Eq. (1.1.2.3) is the most

general form of the Lifshitz formula, and can recover all of the limiting behaviors in

the near and far field, and perfect conducting media, and rarefied media.

1.1.2.2. Physical Interpretation

Casimir’s original calculation vividly shows the importance of vacuum fields,

and is said to show the reality of the vacuum field (Jaffe, 2005). This is due to the

emphasis given to the imposed boundary conditions, which are emphasized over the

matter that created the boundary conditions. The Casimir effect is best thought of as

a long-ranged interaction between dielectric bodies mediated via the EM field (Jaffe,

2005; Rahi et al., 2009). This picture is also analogous to the intuitive photon

exchange picture used to explain the Casimir–Polder potential. Figure 1.4 shows
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FIGURE 1.4. Casimir Energy in terms of fundamental QED processes. The electrons
are considered bound within their respective media, but still interact with electrons
on other bodies by exchanging photons. Any self-interactions are removed by
renormalization via considering energy differences. The effective interaction of the
electron current with the field is described by the dielectric constant.

a term contributing to the Casimir effect where electrons on different bodies interact

with one another via the EM field. The solid lines should be understood as the current

operators ĵµ for the electrons bound to a particular, separate media, while the wavy

lines are the EM Green functions describing the photon. In fact, if summed over all

such dipole “bubbles,” one can recover the full Casimir force results—as was done by

Dzyaloshinskii et al. (1961) in re-summing a field theoretic expansion. In that case the

closed electron loops should be understood as current-current correlation functions,

〈jµjν〉, where under linear response theory, this correlation function is related to the

conductivity tensor σµν (Altland and Simons, 2011; Kubo, 1957). The conductivity

tensor is in turn related to the dielectric tensor, εij via Ohm’s Law ji = σijEj, which

makes the connection between the underlying fundamental physics, and the material

functions used in the Casimir effect.3

1.1.2.3. Different Distance Scaling Regimes

The Casimir effect is important at distances around the resonant wavelengths

of the atom or medium, which are typically on the order of a micron for optical

3 This relationship was pointed out by Rahi et al. (2009), as a justification for their starting point
in quantizing the EM field in media.
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transitions. The Casimir effect is typically computed in a long-wavelength or low

energy limit where the constituents of the bodies can be treated as a continuum. This

approximation starts to break down when the distances between bodies approach an

angstrom. That is the separation of the constituent atoms of the bodies, the distance

scale where exchange effects and other quantum physics becomes important. At the

other extreme, for distances beyond a hundred microns, the Casimir effect becomes

too weak to detect.

The distance scaling of the Casimir energy for bodies separated by a distance

d, can be found by approximating the Lifshitz integral (1.1.2.3) in certain limits.

In particular, one must compare the separation of the bodies d to the resonant

wavelengths or frequencies of the interacting media. This requires some knowledge of

the peak frequencies ωA of the atomic polarizabilities α(ω) or the dielectric function

ε(ω). At nonzero temperature, there is another distance scale given by the thermal

wavelength, ωT = kBT/~. One can estimate the most important frequencies by

examining α(is), ε(is), e−2pdξ/c and approximating the integral () in various limits.

In the near field or van der Waals regime, the separation of the bodies is less

than any of the resonant wavelengths for the bodies d � ωA/c. In that limit all

of the frequencies contribute, weighted by α(iω) and ε(iω). The exponential factor

e−2pdξ/c is also constant for all relevant frequencies. In essence, the interaction is

an instantaneous dipole interaction between the bodies. For example the atom-wall

potential shows a d−3 scaling.

In the retarded or Casimir–Polder regime, the atoms are much further than a

resonant wavelength d � ωA/c. In that case the dominant contributions come at

zero frequency, and the functions can be approximated with their static limit. This

typically occurs for distances greater than a micron. In this far field regime, the
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potential typically decays more quickly. For example, the atom-wall potentials shows

a d−4 scaling in this limit.

At even greater separations between the bodies is the thermal regime d ∼ ωT/c,

where the real photons excited by the thermal field contribute significantly to

polarizing the atom. At room temperature, the thermal wavelength is λT ∼ 10µm. In

this regime the potential falls off more slowly as E ∼ d−3, the same as the near-field

van der Waals regime.

1.2. Overview of Casimir Experiments

The Casimir effect has been measured in experiments, both for macroscopic

bodies and atoms. This section provides a brief overview of the broad categories of

experiments where the Casimir effect is relevant, and the challenges these experiments

provide to theoretical and computational methods. The following is intended as a

broad survey, since the full literature on the Casimir and Casimir–Polder effects is

quite large.

1.2.1. Experiments on Casimir Forces

Despite its prediction in 1948, the Casimir effect proved quite difficult to directly

measure. Some early confirmations used the Casimir effect to explain the thickness

of liquid helium film on the wall of its container (Dzyaloshinskii et al., 1961; Sabisky

and Anderson, 1973). In that case, helium satisfies the repulsive Casimir criterion

and it is energetically favorable to have a thin film of helium between the vacuum

and the walls.

The first precise measurement of the Casimir effect was carried out by Lamoreaux

(1997). This experiment measured the Casimir force between a sphere above a metal
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plate via a torsion pendulum. This landmark experiment was closely followed by

Mohideen and Roy (1998), who used an atomic force microscope in a closer distance

regime to measure the force in a sphere-plate geometry. The Casimir force has also

been directly measured in a nanoelectromechanical (NEMS) system by Chan et al.

(2001). In this case, the Casimir force is detected by the modification it makes to

the frequency of a torsional oscillator suspended above a plate. The sphere-plate

and oscillator geometries have the experimental advantage of removing the need to

carefully align the parallel metal plates. Despite the aforementioned difficulties, the

Casimir force between parallel plates was measured precisely by Bressi et al. (2002).

The Casimir force is also important in applications of microelectromechanical

systems (MEMS), as a source of stiction (Buks and Roukes, 2001; Serry et al., 1998;

Tas et al., 1996). This is particularly important in free standing structures such as

nano-oscillators. Given that the Casimir force is an attractive potential, if parts of

the device get too close to the substrate they will permanently stick to one another,

leading to device failure.

Precisely measuring such a small force requires careful calibration of the

measurements and removing systematic effects. Reviews of these and other difficulties

are available (Bordag et al., 2009; Lamoreaux, 2011; van Zwol et al., 2011). Two of

the primary experimental errors are due to patch potentials, and surface roughness.

The patch potentials are randomly distributed, localized surface charge distributions

on the surface of a conductor. Their Coulombic interaction leads to a d−1 power law

contribution to the total force, which must be subtracted off to extract the weaker

Casimir force, which decays as d−3 or d−4 (Sushkov et al., 2011b).
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While these electrostatic forces can be mitigated and in principle removed, the

Casimir effect is a fundamental effect and must be taken into account in engineering

applications.

The fact that the thin metallic films and surfaces used in these experiments

are not perfectly smooth is referred to as surface roughness, and is one of the main

theoretical sources of error in these experiments. In addition, the optical properties

of the surface must also be carefully characterized, since the optical properties of

a coating can vary significantly. Another difficulty in predicting the size of the

Casimir effect is that the optical properties must be interpolated from data for other

experiments (van Zwol et al., 2011).

1.2.2. Experiments on Casimir–Polder Forces

Van der Waals and Casimir–Polder forces were first observed experimentally in

molecules, which prompted the further development of theory to explain the effects.

Beyond those early experiments, Casimir–Polder forces have also been measured

precisely in more modern experiments using isolated atoms in experiments using

atomic beams, cavity QED, and Bose-Einstein condensates.

The first modern attempts at directly measuring the Casimir–Polder force used

atomic beams near surfaces. Sukenik et al. (1993) made the first modern measurement

of the Casimir–Polder force. Their experiment passed a hot beam of atoms through

an optical cavity and detected the Casimir–Polder force by measuring the fraction of

the atoms that passed through the cavity undeflected. More recent experiments by

Perreault and Cronin (2005), and Lonij et al. (2009) measured the Casimir–Polder

force by passing an atomic beam through a grating and detecting the phase-shift via

atom interferometry.
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The Casimir–Polder effect has also been observed in the context of a Bose–

Einstein Condensate (BEC) of ultra-cold atoms (Harber et al., 2005; Obrecht et al.,

2007). The atoms are confined to a harmonic trap, and can be brought near to

a surface to probe the Casimir force, where the Casimir–Polder force shifts the

oscillation frequency of the harmonic trap.

The Casimir–Polder force is also important in developing atomic technologies.

Atoms are an attractive platform for a number of reasons: Each atom of the same

species is identical; atoms have readily accessible, well-defined transitions that can be

used to control their motion, internal state and interactions; and atoms have internal

states that are long-lived, which would be important in storing information.

In recent years there has been a concerted push to develop technology that retains

the appealing features of cold atoms in an architecture that can be scaled up to having

large numbers of addressable atoms (Kimble, 2008). The desire to get strong coupling

between the atom and light fields, addressable qubits, and a scalable architecture has

pushed groups towards developing traps that hold atoms close to dielectric surfaces.

In this regime, the Casimir–Polder force is the dominant force, which can only be

partially mitigated by using laser fields to generate repulsive potentials. In designing

these new devices it is essential to compute and account for the Casimir–Polder force

the atoms experience when brought close to the dielectric surface.

One direction that has been pursued is the atom chip (Folman et al., 2000; Salem

et al., 2010; Schneider et al., 2003), where atoms are trapped within a few microns of

the surface via a combination of lasers and magnetic fields from wires embedded in

the surface. In most applications the Casimir effect imposes a lower bound on how

close bodies can be brought to each other, which in turn limits the coupling strength,

as well as how small devices can be made. In the atom-chip example, bringing the

24



atoms closer than a micron lead to most of the atoms escaping the trap (Lin et al.,

2004).

Another direction that has been pursued is strong coupling of atoms to light

via cavity QED. Kimble’s group is developing microscopic dielectric waveguides to

allow trapping, addressing and strongly interacting with single atoms in a scalable

manner (Alton et al., 2011; Goban et al., 2014; Hung et al., 2013). In more recent

work, the Casimir–Polder potential is explicitly accounted for as part of the trapping

potential (Goban et al., 2014), and must be precisely computed.

1.2.3. Current Experimental Directions

Beyond directly detecting the Casimir effect, experiments are also moving in

some directions worth highlighting, since they are quite challenging for the theory

to handle. There is a continued effort to find repulsive Casimir effects, via material

properties or geometric efforts. In addition, some experiments search for new forces

on the micron scale, where any deviation from the predicted Casimir effect may be a

new force. In that case it is essential to be able to precisely calculate Casimir forces,

and carefully remove all known backgrounds.

1.2.3.1. Repulsive Casimir Effects

Given that Casimir effects tend to enforce lower bounds for how close bodies

can approach each other without stiction, there has been a search for repulsive

Casimir effects. This would open the possibility of trapping particles, and potentially

allow smaller devices to be constructed. Unfortunately, these prospects are

somewhat limited, due to requiring unusual material properties. From the Lifshitz

formula (1.1.2.3), the Casimir force is repulsive if r12r23 < 0. This implies Casimir
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repulsion should be possible if ε1 < ε3 < ε2 over a broad range of frequencies. This

was experimentally demonstrated for a gold sphere immersed in bromobenzene above

a silica plate by Munday et al. (2009). However, this is method is little help for

Casimir forces between identical materials or cold atoms in vacuum.

Alternatively, the Casimir force is also repulsive for combinations of dielectric

and magnetic materials (Boyer, 1974). Given the strength of electric interactions

over magnetic interactions in atoms, this spurred interest in exploiting materials with

strong magnetic responses (Kenneth et al., 2002). Since these material are relatively

rare, there was some interest in exploiting metamaterials [arrays of micropatterned

circuits with large effective magnetic response at certain wavelengths (Pendry et al.,

1999)]. However, this was shown to be ineffective for Casimir applications since

the underlying metallic dielectric response of the metamaterial dominates for the

most important long wavelengths. Since the metallic response implies an attractive

potential, the overall Casimir effect is attractive (Iannuzzi and Capasso, 2003;

Pirozhenko and Lambrecht, 2008; Rosa et al., 2008; Yannopapas and Vitanov, 2009).

While the preceding discussion emphasized varying materials for Casimir

applications, it may be possible to exploit similar ideas for repulsive Casimir–Polder

effects (Milton et al., 2011, 2012), since the atom responds to a narrower range of

frequencies. In the far field, the attractive dielectric response would dominate over

any repulsive response, so it might be possible to engineer a trap. These proposals

require an anisotropic response from the atom, which might be possible in the excited

state.

Another method of generating repulsive Casimir effects is by varying the

geometry of the bodies. For example, the Casimir effect is repulsive in certain

regimes for an elongated needle above a hole in a conducting plate (Levin et al.,
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2010; Rodriguez et al., 2013). However, in this example the repulsion is unstable. A

stability criterion can be derived for the Casimir energy from within the scattering

approach to Casimir theory (Rahi et al., 2011, 2010).4 Only bodies composed of

media for which the planar Casimir force is repulsive can be stably levitated (Rahi

et al., 2011).

Boyer (1968) found that the renormalized Casimir self-stress of a conducting

shell is repulsive. In this case, a great deal of care is required in isolating divergent

terms to find a finite result. This surprising result has been verified multiple times

[the issue of self-stresses is reviewed in Milton et al. (2011), and chapters 5 and 6 of

Milton (2001)]. There is also a similar repulsive Casimir effect for a dielectric sphere.

While the self stress on a spherical shell is repulsive, the force between two separated

halves of a sphere is attractive. Thus it is not clear how this self-stress could be

measured.

1.2.3.2. Searches for New Physics

The Casimir force is also important for speculative searches for new physics on the

millimeter to micron scale (Bezerra et al., 2011; Dimopoulos and Geraci, 2003). Since

the new physics must be relatively short-ranged, it is typically modeled with a Yukawa

potential, VYuk = αe−λr/r, which models the interaction with a new massive particle.

On the micron scale however, the Casimir effect is the dominant interaction between

neutral bodies, and must be carefully subtracted in any experimental procedure.

Experiments then look for deviations from the expected Casimir effect, which means

that the theory and experiment must be in good agreement with one another. This

approach has already been used to exclude regions of the parameter space for the

4The scattering approach which will be briefly discussed in Section 1.3.2.

27



hypothetical Yukawa interaction (Bezerra et al., 2011; Chen et al., 2016; Obrecht

et al., 2007; Sushkov et al., 2011a). Experiments searching for modifications of gravity

typically employ a thin gold layer over a density modulation. The gold layer provides

a common short-ranged Casimir interaction, while the a density modulation allows

measuring variations due to gravity (Geraci and Goldman, 2015; Sorrentino et al.,

2009). Given the difficulties in cleanly measuring the Casimir force, this even more

ambitious program has yet to yield results.

1.3. Computational Methods for Casimir Effects

Modern experiments require theoretical and computational methods for the

Casimir force that can account for a wide variety of material responses, anisotropies

and the ability to handle arbitrary shapes. For a simple, symmetric geometry (like

the perfectly conducting planes we used in Section 1.1.1.1) it is possible to write down

tractable analytical expressions for the Casimir energy based on expanding the field in

mode functions. However, for completely general geometries these requirements force

one to adopt a numerical approach to computing Casimir forces (Johnson, 2011). We

will discuss three of these methods: the proximity-force approximation (PFA), the

scattering or fluctuating surface current approach, and the worldline method.

1.3.1. Proximity Force Approximation

The proximity force approximation (PFA) or Derjaguin approximation, is

an uncontrolled approximation to the Casimir force between arbitrarily shaped

objects (Blocki et al., 1977; Derjaguin, 1934). The PFA treats each infinitesimal patch

of the surfaces as if they were planar bodies, and sums up the pairwise interactions

between different patches. The PFA is assumed to be valid if the radius of curvature
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of the bodies R is large relative to their separation d. For many years the PFA was the

only practical general method of estimating Casimir forces in arbitrary geometries.

The PFA has the advantage of being straightforward to implement, and functions as

an order of magnitude estimate for the Casimir force for arbitrary geometries.

However, it has some prominent limitations. First, it is only valid for vanishing

curvature. Second, the PFA assumes that the force can be found by integrating up

the pair-wise Casimir forces between each pair of surface patches. This ignores the

non-additivity of the Casimir force. Unlike the potential between electric charges

where the total potential is the sum of the pair wise potential energies, the Casimir

force for an arrangement of bodies is not just the sum of the pair wise energies.

[This is discussed further in Section 8.2 and Section 8.4 by Milonni (1994).] As a

crude justification, the Casimir energy involves a sum over the frequencies for mode

functions of the systems. Since the mode functions are changed in a global, nonlinear

fashion by introducing another body, the sum over frequencies also changes in a

nonlinear fashion as more bodies are added.

1.3.2. Scattering Approach

The scattering approach is currently the only general method of computing EM

Casimir forces between media.5 The scattering method is based on techniques from

classical EM theory and quantum mechanics. This method has been developed by a

number of groups as an analytical method for general geometries (Canaguier-Durand

et al., 2012; Emig and Büscher, 2004; Emig et al., 2007; Kenneth and Klich, 2006;

Lambrecht et al., 2006; Maia Neto et al., 2008; Rahi et al., 2009). The Casimir energy

5The following is an extremely short introduction to the scattering method. The book chapters
by Lambrecht et al. (2011), Rahi et al. (2011) and Johnson (2011) provide a varied introduction to
the topic from some of the main contributors.
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can be written as

E =
~c
2π

∫ ∞
0

dξ log det[MM−1
∞ ] (1.30)

where M is the scattering matrix describing scattering between the free modes of the

EM field induced by the presence of bodies, and ξ is the imaginary frequency (Rahi

et al., 2009). The energy is renormalized via M−1
∞ , which is the scattering matrix

as the bodies are moved arbitrarily far apart; this renormalization removes any self-

coupling of the bodies to themselves. The indices of these matrices run over the labels

of the possible modes (such as wavelength, polarization, mode origin for different

bodies). Derivations similar to the argument principle used in Section 1.1.2.1 can be

applied to describe the scattering between modes—instead of reflection coefficients

for a surface, one considers the full scattering matrix for each body. This version

of the scattering method has been applied to two-body systems such as realistic

mirrors (Lambrecht et al., 2006), and spheres and planes with investigations of surface

roughness (Canaguier-Durand et al., 2012). This subclass of these methods rely on

scattering between mode functions suited to analytical expansions, and while they

in principle offer a general purpose numerical method, the simulations may be slow

to converge if the choice of basis functions is poorly suited to the actual geometry

required.

The Johnson group at MIT has developed a formulation of the scattering method

that is better suited to numerical applications for piecewise constant media (Reid

et al., 2009, 2011, 2013; Rodriguez et al., 2007a,b, 2009). In particular, Reid et al.

(2009, 2011, 2013) developed the fluctuating-surface-current formulation as a general

method for computing Casimir energies for piecewise continuous linear dielectric

and magnetic media. In essence the method calculates the interaction between

electric and magnetic surface currents on different bodies, mediated by the EM
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field. Mathematically this is derived from a path integral for the EM field, where

the fields are restricted to obeying EM boundary conditions at the surfaces via

functional delta functions [simpler boundary conditions were handled in this fashion

by Bordag et al. (1985) and Li and Kardar (1991)]. The delta functions introduce

fields bound to the surfaces, which can be interpreted as surface currents flowing to

enforce boundary conditions. After integrating out the EM field in the interior and

exterior regions, these surface currents interact with one another via the EM Green

functions. Since the method assumes piecewise, homogeneous media and enforces EM

boundary conditions, it is the relatively simple homogeneous EM Green function that

appears in these expressions. These surface integrals are then discretized by splitting

the surface into a finite number of patches. All of the surface currents can then

be integrated over, leaving a functional determinant analogous to Eq. (1.30) where

now the matrix elements M describe the coupling between different surface-patches

induced by the EM Green functions.

Numerically, this method comes down to computing the determinant of a large

matrix, which is an intensive operation. If a matrix has N non-zero entries, the

determinant for a dense matrix requires O(N3) operations. While it is possible

to parallelize computing the determinant (Beliakov and Matiyasevich, 2013), this

is difficult. However, for a sparse matrix system, it may be possible to make this

relatively efficient and only require O(N logN) operations (Reid et al., 2009). Since

each frequency ξ contributes independently, the integral over ξ could be trivially

parallelized, but this may only offer relatively little parallelization for some problems.

The fluctuating-surface-current method has been used to describe the energy

dependence of tetrahedral nanoparticles, capsules, and other geometries (Reid et al.,

2009, 2011; Rodriguez et al., 2010). It has also been used to find cases where the
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Casimir force is repulsive due to geometric effects (Levin et al., 2010; Rodriguez

et al., 2013). The scattering method has also been used in the design of atomic traps

near dielectric waveguides, where the Casimir–Polder force is an essential component

of the trap (Hung et al., 2013).

As we noted, the scattering method is the only available general method

for computing Casimir effects. However, it is useful to have multiple methods

with different computational properties and biases, particularly when extending

calculations to unexplored domains. We now turn to the worldline method, which

offers a very different picture and numerical method.

1.4. Path Integrals

In order to discuss the modern methods of computing the Casimir effect it is

necessary to introduce the path integral. The path integral was originally developed

by Feynman (1948) as an alternative formulation of quantum mechanics (Feynman

and Hibbs, 1965). In the path integral, the probability amplitude for a particle to

propagate from one position to another, is given by the sum over all possible paths

between the points. [In fact the path integral can be derived as the propagator from

more traditional operator quantum mechanics (Sakurai, 1994).] Each path is weighted

with a phase eiS[x(t)]/~ where S[x(t)] is the classical action for the path.

Path integrals have been used extensively in a wide range of theoretical

physics (Kleinert, 2012). While offering an intuitive picture of quantum mechanics,

they are much harder to use than typical operator mechanics for anything other than

the simplest problems (Feynman and Hibbs, 1965). However, path integrals form a

natural basis for quantum field theories, where they offer a relativistically covariant
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quantization procedure that naturally accounts for the gauge symmetries that underlie

the Standard Model of particle physics (Brown, 1994; Srednicki, 2008).

Path integrals have also been used in mathematics and statistics to describe

stochastic processes (Durrett, 1996; Kac, 1949; Karatzas and Shreve, 1991). Rather

than solving the Schrödinger equation, this path integral solves a diffusion equation—

this effectively passes over to “imaginary time,” since after the Wick rotation t→ −iτ ,

the Schrödinger equation is a diffusion equation. This mathematical path integral

weights each path by e−SE [x], where SE is the real-valued, imaginary time action for

the path. In this form the path integral has clearer convergence properties, since

the paths are weighted by real, decaying exponentials, as opposed to the oscillatory

integrals in Feynman’s path integral.

Path integrals underlie most of the work carried out in this thesis: we will use

path integrals to quantize the EM field, and the worldline method relies heavily on

path integrals. In addition, we will use the connection between path integrals and

diffusion equations to verify analytically that the worldline path integral gives the

correct results, and enhance our numerical calculations. Considering their importance

to this thesis, we will now derive Feynman’s path integral, which will serve as a

prototype for all of the path integrals that follow. [Our derivation follows the simple

one given in Sakurai (1994).]

1.4.1. Derivation of Feynman’s Path Integral

Let us consider the quantum mechanical treatment of a particle moving in a

D-dimensional space time, in a time-independent potential V (x). The particle is
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described by the following Hamiltonian:

Ĥ =
p̂2

2m
+ V (x̂). (1.31)

The position and momentum operators obey the following commutation relations,

[x̂i, p̂j] = i~δij [x̂i, x̂j] = [p̂i, p̂j] = 0, (1.32)

and have the following resolutions of the identity,

I =

∫
dx|x〉〈x| =

∫
dp

(2π~)D
|p〉〈p|. (1.33)

The overlap between position and momentum eigenstates is

〈x|p〉 = eip·x/~. (1.34)

In quantum mechanics, the amplitude for a particle starting at x0 at time t0 = 0, and

propagating to xN at time t is given by

〈xN , t|x0, t0〉 = 〈xN |e−iĤt/~|x0〉. (1.35)

The amplitude to propagate from x0 to xN can be developed into a path integral in

a number of steps. First, the evolution operator is split into N pieces, and (N − 1)

resolutions of the x-identity and N resolutions of the p-identity are inserted between
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the pieces

〈xN , t|x0, t0〉 =

∫ N−1∏
k=1

dxk

N−1∏
j=1

dpj
(2π~)D

〈xN |pN〉〈pN |e−iĤ∆t/~|xN−1〉

× 〈xN−1|pN−1〉〈pN−1|e−iĤ∆t/~|xN−2〉 · · · 〈x1|p1〉〈p1|e−iĤ∆t/~|x0〉

(1.36)

where ∆t := t/N . At this point we can note the basic structure: The total amplitude

for the particle to propagate from x0 to xN is the product of the amplitudes to

propagate from one point xk to the next xk+1, with the total amplitude being the

sum over all such paths. Each infinitesimal time evolution operator can factored into

a kinetic and potential piece,

e−iĤ∆t/~ = exp

(
−i p̂2

2m~
∆t

)
exp

(
− i
~
V (x̂)∆t

)
+O(∆t2), (1.37)

where the corrections due to splitting and factorizing the exponential operator

contribute at O(∆t2). [In general, it is crucial to consistently carry out all expansions

in path integrals to O(∆t).] The position and momentum operators can then be

replaced by their eigenvalues, and the state-overlap can be used to write,

〈xN , t|xi, t0〉 =

∫ N−1∏
k=1

dxkdpk
(2π~)D

(N−1∏
n=0

e−ip
2
n+1∆t/(2m~)−iV (xn)∆t/~+i(xn+1−xn)·pn+1/~

)
.

(1.38)
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Since the momentum integrals are Gaussian, they can be straightforwardly evaluated,

with the result

〈xN , t|xi, t0〉 =

∫ N−1∏
k=1

dxk

N−1∏
n=0

[(
m

2πi~∆t

)D/2
eim(xn+1−xn)2/(2∆t)e−iV (xn)∆t/~

]
(1.39)

=

∫
Dx exp

[
i

~

∫ t

0

dt′
(m

2
ẋ2 − V [x(t′)]

)]
. (1.40)

In the final line we have taken the continuum limit, replacing (xn+1 − xn)/∆t→ ẋ,∑
n ∆tf(n∆t) →

∫
dtf(t), and introducing Dx =

∏N−1
k=1 dxk

[
m/(2πi~∆t)

]D/2
. The

phase in exponent is the classical action for a particle in a potential. Paths with the

same phase will add together constructively, while paths in regions where the phase is

quickly varying will cancel. This leads to a natural description for the classical limit

(~ → 0) where only the paths of stationary phase where δS[x(t)] = 0 contribute.

Quantizing field theories via the path integral is seen as a more relativistically

covariant process than the canonical quantization procedure, which must single out

a particular time. The symmetries of the field are also naturally taken into account

due to the presence of the action.

In this thesis, this simple type of derivation will be all that is required. We

will often work with the imaginary time version, which replaces the oscillating

exponentials with decaying exponentials. The extension to field path integrals over

fields is straightforward: the field φ(x) is described by its value at finitely many

points φ(xk), where the field at each point varies independently. The field path

integral involves an integral over the field values at all of these points. At the end

of the calculation, the spacing between grid points goes to zero, and the size of the

grid is taken to be arbitrarily large. We will also only need to consider Gaussian

36



path integrals, of the type considered here. This derivation will extended to include

sources in Chapter III.

1.5. Scalar Worldline Casimir Energies

The worldline method is an alternative method for computing Casimir

energies (Gies et al., 2003). The worldline method is a descendant of the scalar

electrodynamics discussed by Feynman (1950), where the dynamics of a scalar field is

described in terms of a particle propagating in an artificial proper-time through a fixed

background potential. The worldline method was later developed as an alternative

method for carrying out general quantum field theory calculations in terms of single

particle quantum mechanics (McKeon and Rebhan, 1993; Schubert, 2001; Strassler,

1992). The basic insight of the worldline method is that for one-loop effective actions6,

the field path integral calculation can be recast in terms of the path integral for

particles traveling in closed space-time paths. Higher order loop calculations can also

be carried out with more particles, and gauge fields can also be treated (Schubert,

2001). For example, the worldline method has been used to compute relativistic field

effects for QED such as the Lamb shift (Schmidt and Schubert, 1995). It has also been

used as a numerical algorithm for computing these relativistic QED effects (Mazur

and Heyl, 2014)—however, these methods were developed for free-space interactions

at high energy, rather than the low energy Casimir phenomena we seek to describe.

The worldline method is also closely related to the Heat Kernel [which is reviewed

6 One loop order in quantum field theory corresponds to processes such as the Casimir effect,
where the field emits and absorbs a virtual particle, such as in Figure 1.2. These are the first
correction from quantum effects. For example, the Lamb shift and Casimir–Polder effect involve one
loop, since the electron emits and reabsorbed a photon. Higher loop orders corresponds to more
virtual processes. The effective action, gives the equations of motion in the absence of any external
driving on the system (Weinberg, 1996, Ch. 16). The one-loop effective action then gives calculates
action accounting for the lowest order contributions from quantum fluctuations around the classical
solution.
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in Vassilevich (2003)]. The Heat Kernel examines the divergence structure of a field

theory by examining the short time behavior of the worldline.

The worldline method was first used to compute scalar Casimir energies by

Gies et. al (Gies and Klingmüller, 2006a,b; Gies et al., 2003). The scalar worldline

method has been extended to nonzero temperatures (Klingmüller and Gies, 2008),

used to study the torsion of inclined planes (Weber and Gies, 2009), and forces in

the sphere-plane and cylinder-plane geometries (Weber and Gies, 2010a,b). In these

nontrivial geometries the worldline method has also been used to examine the failure

of the proximity force approximation. More recent work has focused on computing

the stress-energy tensor (Schäfer et al., 2012, 2016), with a view to exploring how the

Casimir energy violates certain energy conditions (violations of which are required

for certain exotic physics).

The scalar worldline is also related to some semiclassical expansions for the

Casimir energy. In particular, it is a direct numerical method for computing the

so-called optical path integral discussed by Scardicchio and Jaffe (2005, 2006). The

sum over intersecting paths is also reminiscent of the semiclassical approach to the

Casimir force by Schaden and Spruch (1998), which evaluates the Casimir energy by

summing over all periodic orbits of light around the interacting bodies. This latter

work is particularly related to other work on the semiclassical limits of path integrals

involving chaos (Gutzwiller, 1990). Both of these approximate techniques rely on a

path integral expression for the Casimir energy that models electromagnetism as a

scalar field. The worldline provides a general way of evaluating those path integrals.

The worldline method has also been applied to the Casimir piston, where there

are interesting geometric effects based on the geometry of the piston (Schaden,

2009a,b). Most of this work is for idealized surfaces that imposed Dirichlet boundary
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conditions, but there has also been some effort to extend the worldline method to

account for Neumann boundary conditions (Fosco et al., 2010). To date there has only

been speculation on how to extend the worldline method to electromagnetism (Aehlig

et al., 2011), which only considered perfect conductors, and did not have concrete,

correct results.

1.5.1. Derivation of the Scalar Casimir Worldline Path Integral

We now introduce the basic scalar worldline method, to discuss its positive

features and limitations. We will use terminology and scaling of dimensions in

common with our later work, rather than the choices used in the original papers

by Gies et al. (2003). [See also chapter 20 of Steck’s Quantum Optics notes for an

alternative perspective on this work, including some of the analytical techniques will

be used in later chapters (Steck, 2015).]

Consider a scalar field φ(r, t), interacting with a background potential V (r). As

a matter of convention we will distinguish between r, which is a position label or

parameter, and the coordinate of a path integral x. The action for the field φ is given

by the time integral of the Lagrangian density L,

S =

∫ T

0

dt

∫
drL =

∫ T

0

dt

∫
dr

(
1

2c2
(∂tφ)2 − 1

2
|∇φ|2 − V (r)φ2

)
. (1.41)

The potential V (r) defines the surfaces of the interacting objects

V (r) := λ
∑
j

δ[σj(r−Rj)], (1.42)

where λ is the coupling constant, σj(r) = 0 defines the surfaces, and Rj marks the

center location of each body. In most work on scalar worldlines, the coupling constant
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λ is taken to infinity, which corresponds to imposing Dirichlet boundary conditions

on the surfaces. For planar geometries, this recovers electromagnetic Casimir results

for idealized perfect conductors.

From the Lagrangian, one can find the Hamiltonian and quantize the theory.

The momentum conjugate to φ is given by

Π(r, t) :=
∂L

∂(∂tφ)
=

1

c2
∂tφ(r, t). (1.43)

The Hamiltonian is then given by

H :=

∫
dr (Π∂tφ− L) =

∫
dr

(
Π2

2
+

1

2
(∇φ)2 + V (r)φ2

)
. (1.44)

The theory can now be quantized by promoting the classical fields to quantum

operators, φ→ φ̂, Π→ Π̂, with equal-time commutation relations

[φ̂(r, t), Π̂(r′, t)] = i~δ(r− r′). (1.45)

In exactly analogous fashion to quantum mechanics, the overlap between states is

given by

〈φ|Π〉 = exp

(
i

~

∫
drφ(r)Π(r)

)
. (1.46)

Physical quantities of interest such as Casimir energies and forces can be computed

by taking suitable derivatives of the field partition function. The quantum partition

function for the field is

Z = tr
(
e−βĤ

)
=

∫
dφ〈φ|e−βĤ |φ〉, (1.47)
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and the trace is evaluated over the complete set of field states. It is actually

more useful to carry out calculations with the free energy F = −kBT logZ. As

in Section 1.4, the exponential operator can be split into N pieces, and resolutions of

the identity in both fields and conjugate-momentum fields can be inserted between

each piece. After integrating out the momentum fields, the partition function can be

written as a Euclidean path integral

Z =

∫
Dφ exp

[
−
∫ ~βc

0

dτ

∫
dr

(
1

2
(∂τφ)2 +

1

2
(∇φ)2 + V (r)φ2

)]
, (1.48)

where τ = β~c. The partition function can be cast into a more suggestive form by

integrating by parts in the exponential integrand,

Z =

∫
Dφ exp

[
−
∫ ~βc

0

dτ

∫
drφ(r, τ)

(
−1

2
∂2
τ −

1

2
∇2 + V (r)

)
φ(r, τ)

]
. (1.49)

The surface terms from integrating by parts were discarded by assuming the fields

tend to zero at spatial (and temporal) infinity.

The functional integral over φ is Gaussian and can be formally evaluated as

a functional determinant, since the differential operator is positive operator. Some

care is required in regularizing such infinite determinants. This is done in analogy

with finite dimensional Gaussian integrals. The fields can be considered as only

being evaluated on a finite lattice of space-time points, with the lattice also having

a finite extent which bounds all bodies. The field φ at each point xk ,is treated as

an independent variable from the fields at other positions. The gradient operators

can be treated via their finite difference approximations, which can be thought of as

sparse matrices. For example, ∂2
xφ(xk) ≈ [φ(xk + ∆) − 2φ(xk) + φ(xk −∆)]/∆2. In
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that case the partition function is a large, finite Gaussian integral of the form,

Zreg =

∫
dφk exp

(
−
∑
j,k

∆τ(∆x)D−1φkAjkφj

)
. (1.50)

where the fields have been labeled with position indices and the matrix A represents

the differential operator. This regularized expression can be integrated, under the

assumption that the eigenvectors of A can be found, where
∑

k Ajkψ
(n)
k = λ(n)ψ

(n)
j .

In that case, each Gaussian integral decouples and the regularized partition function

can be written as

Zreg = C
∏
n

λ
−1/2
(n) = C det(A)−1/2, (1.51)

where the determinant is understood to be the product of the eigenvalues of the

operator A.7 The limit of an arbitrarily large volume, and lattice resolution can be

taken after integration.

In an analogous fashion, one can formally evaluate the partition function path

integral as a functional determinant,

Z ∝ det−1/2

(
−1

2
∂2
τ −

1

2
∇2 + V (r)

)
. (1.52)

The proportionality is due to an additional (infinite) normalization constant which

will be canceled in the renormalization process. The free energy for the interacting

7 In fact, there is an approach to computing van der Waals energies based on directly evaluating
a functional determinant for electric fields on a discrete spatial grid (Maggs and Everaers, 2006;
Pasquali et al., 2008). This approach omits any time evolution of the fields, but it does offer a direct
method of trying to evaluate the field path integral. That work relied on direct spatial discretization
to evaluate the functional determinants, which limits the size of medium that can be considered.
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field can be written as

F = −kBT logZ =
1

2
kBT log det

(
− 1

2
∂2
τ −

1

2
∇2 + V (r)

)
+ C, (1.53)

where C is a divergent constant. As it stands this functional determinant is divergent,

but finite results can be found by subtracting off the free energy F0 when the bodies

are removed arbitrarily far apart. The renormalized free energy can now be written in

terms of a single-particle path integral via some formal manipulations. First, we will

use the identity log detA = tr logA, which can be verified for positive finite matrices,

log detA = log
∏
j

αj =
∑
j

logαj = tr logA, (1.54)

where we used the facts that the trace and determinant of a matrix A are given by

the sum and product of its eigenvalues αj respectively. Second, the logarithm can be

rewritten in an integral representation,

logA− logB = −
∫ ∞

0

dT
T

(e−AT − e−BT ), (1.55)

where A and B are positive operators (i.e. A and B have strictly positive eigenvalues).

This expression also relies on a difference of terms to cancel out divergent terms at

T = 0. The earlier renormalization by subtracting off the vacuum energy when the

bodies are far apart provides exactly this subtraction.

By applying Eqs. (1.54) and (1.55) to the free energy (1.53), the renormalized

free energy can be rewritten as

F − F0 = −kBT

2

∫ ∞
0

dT
T

tr
(
e[(∂2

τ+∇2)/2−V (x)]T − e(∂2
τ+∇2)T /2

)
. (1.56)
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The trace can be evaluated by introducing a D-dimensional auxiliary Hilbert space,

where 〈x, xτ |p̂i|ψ〉 = −i∂i〈x, xτ |ψ〉, [x̂i, p̂j] = iδij. Note that ~ = 1 in this auxiliary

Hilbert space. The free energy is then

F − F0 = −kBT

2

∫ ∞
0

dT
T

∫
dx0dτ0 〈x0, τ0|e−(p̂2

τ+p̂2)T /2−V (x̂)T − e−(p̂2
τ+p̂2)T /2|x0, τ0〉.

(1.57)

The free energy is now in the form of the imaginary-time transition amplitude for a

quantum particle in D space-time dimensions, in a potential V . In the same fashion

as in Section 1.4, this can be converted into a single-particle path integral, although

there are some minor differences. First, the starting and ending points are the same,

so the paths form closed loops. Second, the parameter T has dimension of L2. It

governs the spatial extent of the path, rather than the proper time between events.

The resulting worldline path integral for the free energy at zero temperature is

F − F0 =− kBT

2

∫ ∞
0

dT
T

∫
dx0dτ0

∫ N∏
k=1

dxkdτk

×
N−1∏
k=0

(
1

(2π∆T )D/2
e−(xk+1−xk)2/(2∆T )e−(τk+1−τk)2/(2∆T )

)

×
( N∏

j=1

e−∆T V (xj) − 1

)
δ(xN − x0)δ(τN − τ0). (1.58)

The intermediate Gaussian integrals over τk can be carried out, since the potential is

independent of τ . The final integral over τ is
∫
dτ0 = β~c, since τ0 ∈ [0, β~c]. There is

also a normalization constant of (2πT )−1/2 for each dimension due to the loop closure

condition. This can be thought of as the total normalization for N Gaussian steps of

length ∆T = T /N , subject to the loop-closure requirement x0 = xN . The free energy

can be written in a more intuitive form, better suited to numerical calculations, if
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we consider the coupled Gaussians as the probability distribution for paths through

space-time. Each path increment ∆xk = xk+1 − xk is Gaussian with zero mean and

variance ∆T . In addition, the resulting paths must close on themselves.

The resulting paths are a specific form of Brownian motion. A Brownian

motion (or Wiener process) is a continuous random process W (t), that starts at

the origin W (t = 0) = 0, and has increments ∆W (t) := W (t + ∆t)−W (t), that are

Gaussian random variables with 〈〈∆W (t)〉〉 = 0, 〈〈∆W (t)∆W (t′)〉〉 = 0 for t 6= t′

and 〈〈[∆W (t)]2〉〉 = ∆t (Gardiner, 2009). (Note that we are using 〈〈· · ·〉〉 to denote

the ensemble average.) A Brownian bridge is a Brownian motion with fixed end

points at times t = 0 and t = T , where B(t = 0) = 0, and B(t = T ) = c, and

its increments obey the same statistics as the Wiener process (Karatzas and Shreve,

1991). Throughout this thesis, we will most often use the discrete form of these

processes where Wj = W (tj) = W (j∆t). Brownian motion can be straightforwardly

generalized to multiple-dimensions.

The result of these manipulations is

F − F0 =− ~c
2

∫
dT

(2πT )D/2T

∫
dx0

〈〈
e−T 〈V 〉 − 1

〉〉
x(t)

, (1.59)

where 〈〈· · ·〉〉x(t) denotes an ensemble average over closed Brownian bridges x(t)

starting at x0 and returning to xN = x0, and

〈V 〉 :=
1

T

∫ T
0

dt V [x(t)] =
1

N

N−1∑
k=0

V (xk) (1.60)

is the path-averaged value of the potential. The worldline method relies on generating

an ensemble of closed Brownian bridges, and evaluating the path-averaged potential

for each path. The total Casimir energy (1.59) then requires further integrals over
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the starting point x0 of the paths, and the total path time T . The path time T

governs the spatial extent of the paths, where the typical extent of a path is given

by x ∼
√
T . The renormalization against vacuum ensures that only paths that touch

one of the bodies contribute. In order to extract interaction energies between two

bodies (such as the two-body Casimir energy), the single body energies for each body

must also be subtracted from the total energy. As a result, only paths that touch

both bodies contribute. This is depicted in Figure 1.5, where the upper path would

contribute to the Casimir energy, while the lower path would not. At small times

T , both paths would shrink down around their starting points, and since the paths

would not touch both bodies, neither would contribute. This is a direct result of the

energy renormalization—subtracting off the vacuum energy cuts off the divergent T

integral as small T . At later times T , these paths would have larger extent, and both

would contribute, but due to the T −(1+D/2) dependence, the lower path would have

a smaller contribution.

1.5.2. Worldline Distance Dependence

The distance dependence can also be read off from Eq. (1.59). A typical path will

touch a surface a distance d away, at a path time T ∼ d2. Since the integrand (1.59) is

either zero or one, depending on whether any points on the path intersect the bodies,

the energy density at a point d from the surface is approximately
∫∞
d2 dT T 1+D/2 ∼

d−D. After integration over the starting point x0, the Casimir energy scales as d−3 in

four dimensions.

The worldline method has also been extended to nonzero temperatures

(Klingmüller and Gies, 2008). The generalization is straightforward—in essence the

fields must be periodic on τ ∈ [0, β~c], since φ(0) = φ(β~c) due to the nature of the
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FIGURE 1.5. Schematic of worldline paths interacting with a plane and a sphere.
Only paths which touch both bodies will contribute at a given path time T . The
upper path touches both objects and will contribute to Casimir energy, while the
lower path only touches one body, and does not contribute to Casimir energy.

trace in Eq. (1.47). This motivates expanding the fields in a Fourier series, with the

Matsubara frequencies sn = (2πn)/(β~), where each Fourier component contributes

independently of the others. The same sort of manipulations used to derive the zero

temperature worldline (1.59), can be extended to nonzero temperature with the result

F − F0 =− kBT

∞∑
n=0

′ ∫ ∞
0

dT
(2πT )(D−1)/2T

∫
dx0 e

−s2nT /(2c2)
〈〈
e−T 〈V 〉 − 1

〉〉
, (1.61)

where the prime on the sum means that the n = 0 term is multiplied by a 1/2.

Since the T dependence differs, there is also a different distance dependence. Since

the effective dimension has been reduced by one, the energy density now scales as

d−(D−1), which means the renormalized energy density scales as d−3, and the total

energy scales as d−2 in four dimensions.
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1.5.3. Numerical Method

In order to numerically evaluate the worldline Casimir energy, it is necessary

to generate an ensemble of closed, Brownian paths. Given the probability for a free

Brownian motion W (t) to close on itself after N steps is negligible, it is essential to

force the closure constraint when constructing the paths.

The simplest method generates a free Brownian motion, and then forces the

path to close by subtracting off a pro-rated fraction of the final position from each

increment. So if Wk is a random walk,

Wk =
k∑
j=1

∆Wk, (1.62)

where 〈〈∆Wk〉〉 = 0 and 〈〈∆Wk∆Wj〉〉 = δjk∆T , then a closed Brownian bridge can

be constructed as

Bk =
k∑
j=1

∆Wk −
k

N
WN . (1.63)

This algorithm has the virtue of simplicity, but it does require that knowledge the

whole Brownian path in order to construct the closed version. Gies et al. (2003)

developed an improved algorithm, the so-called “v-loop” algorithm for generating

Brownian paths. A Brownian bridge can be constructed as

Bk = ckBk−1 +
√
ck∆Wk, k = 1, . . . , N − 1, (1.64)

where B0 = 0 and

ck =
N − k

N − k + 1
, k = 1, . . . , N − 1. (1.65)
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Since we will use the v-loop algorithm in our own simulations, we will discuss this

algorithm further in Chapter V.

Having constructed a path, it is then necessary to compute the worldline

integrand e−T 〈V 〉 − 1 along that path. If any point along the path intersects one of

the surfaces, then in the strong coupling limit the potential V = λδ[σ(x)] is nonzero,

and in the λ→∞ limit, the worldline integrand goes to negative one. If however, no

points on the path intersect a surface, then the potential is zero, and the renormalized

worldline integrand is also zero.

Once a particular random path has been constructed, it is necessary to integrate

the contributions from each starting point x0, and path time T . Thus the worldline

algorithm relies on finding the times T when at least one path point intersects the

bodies, and integrating over those times. This must further be integrated over every

possible path starting point. For simple geometries, these touching times can be found

analytically for a particular random path, which simplifies the method further (Weber

and Gies, 2009, 2010b).

1.5.4. Advantages and Shortcomings of the Scalar Method

The worldline method has a number of attractive features. First, it offers

an intuitive picture of Casimir energies emerging from the spatial paths of virtual

particles. In this picture, the random paths explore all of space and accumulate a

contribution to the Casimir energy based on the potential V they encounter.

Second, it offers a geometry independent method of handling Casimir forces.

The paths are created without reference to the underlying body geometry or a

spatial discretization, so the method can be easily applied to arbitrarily complicated
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arrangements of bodies. The only requirement is that the paths are fine enough to

resolve the structure of the surfaces.

Third, since each path is independent, the algorithm is trivially parallelizable:

each path can be handled by a separate computing process, without any requirement

that the processes communicate with one another, except when accumulating results.

This has the advantage of exploiting the growth of computing clusters with many

nodes, where that power can be harnessed with minimal effort: once the algorithm

works on a single computer, it can be easily extended to arbitrarily many computers

to increase the size of the ensemble sampled from, or to reduce the time required to

reach a given accuracy.

However, the worldline method has some prominent shortcomings. First of all,

it only applies to scalar fields. The most important Casimir effects are due to EM

radiation field, which is a transverse vector field. Second, it has only been applied

for idealized potentials that effectively impose Dirichlet boundary conditions on the

surfaces. As a result it is missing any coupling of the fields to media with realistic

properties. Finally, the development has been focused on Casimir energies, with no

simple way to extract Casimir–Polder energies for atoms near surfaces (although it

may be possible to extract these from the stress-energy tensor). Thus far, there has

only been speculation on how to extend the worldline method to electromagnetism,

without any concrete results (Aehlig et al., 2011).

1.5.5. Motivation and Goal for Thesis Project

The goal of this thesis is to extend the scalar worldline method to vector

electromagnetism. Ideally we would retain the attractive features of the method,

such as geometry independence of the paths, and only needing Brownian sample
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paths. In addition, we aim to improve the method to account for the two physical

polarization states of the EM field, and properly account for the material properties of

the medium. Finally, the method must agree with known results in simple geometries.

As later chapters in this thesis will show, we have partially met those goals. We

have developed analytical and numerical techniques that can be applied to improving

existing worldline algorithms. This thesis focuses primarily on solving the planar

problem—although this is well-studied, it is a good platform for exploring and testing

worldline methods. The methods we develop here could be used as uncontrolled

approximations in general geometries, but with no guarantee of correctness.

1.6. Thesis outline

This section provides an overview of the thesis, and will also present some key

results, by referencing where the result appears later in the thesis. The rest of

this thesis is laid out as follows: Chapter II formally quantizes the EM field in

media characterized by their relative permeability εr and permittivity µr. There

are two approaches to developing the worldline expressions for the electromagnetic

Casimir energy. The first emphasizes a full vector path integral for the EM field

partition function (2.46), which can then be converted into a worldline path integral

expression (2.50). Unfortunately, it is not clear how to extract the two physical

degrees of freedom from that complicated expression, which involves the cancellation

of a number of degrees of freedom. Alternatively, the EM field can be split into

two noninteracting scalar polarizations: the transverse-electric (TE) and transverse-

magnetic (TM) polarizations. The worldline path integral for the free energy in the
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TE polarization at zero temperature in dispersion-free media is [Eq. (2.71)]

FTE −F (0) = −~c
2

∫ ∞
0

dT
(2πT )D/2T

∫
dx0

〈〈
e−〈VTE(z)〉T√
〈εr(z)µr(z)〉

− 1

〉〉
x(t)

, (1.66)

where

VTE(z) :=
1

2

[
(∂z log

√
µr)

2 − ∂2
z log

√
µr

]
. (1.67)

The equivalent TM polarization is recovered by exchanging εr and µr.

Chapter III discusses the analytical methods for solving single-particle path

integrals. The central expression underlying this analytical approach is the Feynman-

Kac formula, which states the path integral is the solution to a diffusion equation.

Section 3.1 considers a diffusion equation (3.1),

∂tf =
1

2
∇2f − [V (x) + λ]f + δ(x− c), (1.68)

for a probability distribution f(x, t), interacting with a space-dependent potential

V (x), and a source term δ(x− c). In the steady-state (t→∞) limit, the solution to

Eq. (3.1) can be simplified to the following path integral [Eq. (3.14)],

f(x) =

∫ ∞
0

ds

〈〈
δ[x + W(s)− c] exp

(
− λs−

∫ s

0

du V [x + W(s− u)]

)〉〉
,

(1.69)

In simple cases, the steady-state diffusion equation (3.1) can be solved directly to find

an analytical expression for the path integral. Most importantly, Section 3.4.1 shows

that the TM potential [Eq. (3.32)]

VTM(z) :=
1

2

[
(∂z log

√
εr)

2 − ∂2
z log

√
εr
]
, (1.70)
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can be regularized leading to an effective boundary condition in the diffusion equation.

For a dielectric step characterized by εr = 1 + χΘ(x− d), the corresponding effective

boundary condition from VTM is given by [Eq. (3.45)],

f(d+ 0+) =e−Ξf(d− 0+) ∂xf(d+ 0+) = eΞ∂xf(d− 0+), (1.71)

where eΞ =
√

1 + χ. Using that boundary condition, Section 3.4 shows that the path-

averaged analytical solution for paths from x = 0 to x = c in time t, interacting with

potential VTM is [Eq. 3.52]

〈〈
e−

∫ t
0 dt
′ VTM(x−d)

〉〉
=

 1 + sgn(d) tanh Ξ e−2d(d−c)/t d(d− c) > 0

sech Ξ d(d− c) < 0.
(1.72)

The analytical ensemble average over all paths interacting with VTM has even further

smoothed out the singular potential. This result is crucial to regularizing the

TM potential and allowing the numerical calculations with the TM polarization to

proceed. The path integral solutions for the step potentials V = χΘ(x − d) are

given in Eqs. (3.25) and (3.31), and are particularly relevant for TE calculations.

The analogous results that include TM boundary conditions in addition to the step

potential are given in Eqs. (3.56) and (3.60), and are required for analytical TM

calculations.

Chapter IV uses the results from the previous chapter to derive analytical

results showing agreement between the worldline method and other calculations. In

Section 4.1, the worldline Casimir–Polder energy is derived by treating the atom as

a small perturbation to the material functions, where the atom is located at rA, with

static polarizability α0. These expressions can be simplified by assuming that the
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media are non-magnetic (µr = 1), and the atom’s magnetic response can also be

neglected. In that case, the worldline expressions for the Casimir–Polder energy are

given by [Eqs. (4.14)–(4.15)]:

V (TE)

CP (rA) =
~cα0

4ε0(2π)D/2

∫ ∞
0

dT
T 1+D/2

〈〈
1

〈εr〉3/2
− 1

[εr(rA)]3/2

〉〉
x(t),x(0)=rA

(1.73)

V (TM)

CP (rA) =
~cα0

4ε0(2π)D/2

∫ ∞
0

dT
T 1+D/2

〈〈
e−〈VTM〉T

〈εr〉3/2
− 1

[εr(rA)]3/2

− T
2εr(rA)

∇2 e
−〈VTM〉T

〈εr〉1/2

〉〉
x(t),x(0)=rA

. (1.74)

Note that these Casimir–Polder worldline path integrals only involve paths emanating

from the atom’s position rA. The analytical results from Chapter III can used in the

worldline path integrals after transforming the solutions by using the Laplace–Mellin

theorem (4.18) and the inverse moment theorem (4.22). The worldline method then

recovers prior results such as the Casimir–Polder energy (1.17), and the Lifshitz

expression for the energy (1.25). The chapter ends by discussing the transition

between high and low temperature, and the near-field and far-field limits within the

worldline context.

Chapter V presents the numerical methods for evaluating worldline path

integrals. This involves using Monte Carlo sampling methods for generating paths.

The Monte Carlo sampling also extends to the starting positions of the paths x0, and

the size of the path, which is governed by path time T . These methods are discussed

for the TE polarization in Section 5.1. Section 5.1.3 presents the numerical results

for the TE polarization, and examines the convergence of the TE results as the path

resolution is increased. Numerical calculations involving the TM polarization are

more challenging than their TE counterparts, even after regularization and analytical

averaging. As discussed in Section 5.2.1, the numerically estimated TM path integral
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shows rapidly growing statistical errors as the number of steps N increases. The

“birth-death path swarm” is introduced in Section 5.2.1.2, and is essential for reducing

the statistical errors associated with accumulating the product of the path-averaged

potential along the path. The derivatives required for the TM Casimir–Polder energy

are estimated using a “partial-averaging method” discussed in Section 5.2.3.3. The

numerical results for the TM polarization are presented in Section 5.2.4, where they

show some agreement with the analytical results.

Chapter VI develops general expressions for the force, torque, and derivative

of the force for the TE worldline path integral. These expressions emphasize that

the Casimir force emerges from paths that start on the surfaces of the bodies.

For example, the “pinning” expression for the Casimir force on the second body

is [Eq. (6.8)]

F2 = − aχ2~c
2(2π)D/2

∞∫
0

dT
T 1+D/2

∮
σ2(x0−R2)=0

dS n̂2(x0)

〈〈
1

〈εr,12〉a+1
− 1

〈εr,2〉a+1

〉〉
x(t)

. (1.75)

Here σ2 = 0 defines the surface of the second body, n̂2 is the surface normal of the

body, while εr,12 and εr,2 are the dielectric functions involving both bodies, and only

the second body, respectively. Unfortunately, the pinning method fails to recover

the correct answer for strong-coupling cases where χ/N � 1, which prompts the

development of the “occupation” method in Section 6.2. Some care is still required

when using the occupation method numerically, since in the strong-coupling limit,

only rare paths that just touch the surfaces will contribute. A hybrid approach

designed to capture the weak coupling and strong-coupling cases is discussed further

in Sections 6.3.1 and 6.3.2.
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Finally, the findings and directions for future work are summarized in the

conclusion. In particular, the planar methods could be generalized to general

geometries by suitably coupling the two scalar polarizations together.
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CHAPTER II

ELECTROMAGNETIC FIELD QUANTIZATION AND ELECTROMAGNETIC

WORLDLINES

This chapter develops the worldline path integrals for electromagnetism with a

space-dependent dielectric function, paralleling the treatment of the Dirichlet scalar

worldline method in Section 1.5. First, Section 2.1 reviews the prior work on

quantizing the EM field inside media. Following that, Section 2.2 reviews classical

EM field theory, and Section 2.3 formally quantizes the EM field. The partition

function for the EM field follows from a gauge-fixed path integral in terms of the scalar

and vector potentials in Sections 2.4 and 2.5. However, the resulting worldline path

integrals (2.50) are unsatisfactory, since it is not clear how the contributions from the

two physical degrees of freedom emerge from these complicated expressions, nor how

to efficiently numerically evaluate the resulting expressions. In response, Section 2.6

develops scalar models that better capture the features of electromagnetism. In

planar geometries the scalar models correspond to the amplitudes of the TE and

TM polarizations. Sections 2.6.1 and 2.6.2 develop the worldline path integrals for

those scalar fields [the TE worldline path integral is presented in Eq. (2.71), and the

equivalent TM path integral follows from EM duality (2.4)]. Those path integrals

will form the basis for the analytical and numerical work in Chapters IV and V.

Finally, the extension to dispersive materials and nonzero temperature is considered

in Section 2.7.

[The decomposition of the EM field into two scalars, and the derivation of the

associated worldline path integrals was carried out in Mackrory et al. (2016).]

57



2.1. Approaches to Quantizing Electromagnetism in Media

The quantization of the EM field inside dielectric media provides a number of

challenges beyond quantization in vacuum (Bechler, 1999; Bordag et al., 1998; Dung

et al., 1998; Huttner and Barnett, 1992; Rahi et al., 2009; Reid et al., 2013). First, in

Casimir problems the dielectric varies spatially. The usual procedure for quantizing

the EM field decomposes the field into a set of normal modes, and quantizes their

amplitudes. While it is possible to write down the wave equations for the modes, and

quantize the amplitudes in analogy with free space (Glauber and Lewenstein, 1991),

a full development of this method still requires finding those mode functions. For our

purposed, an ideal procedure for quantizing the field would not require solving for

the mode functions in general geometries, nor would it be adapted to any particular

geometry.

Second, the dielectric complicates the choice of gauge-fixing. In brief, EM has a

gauge symmetry, or redundant degrees of freedom, which must be excluded from the

quantization procedure. The gauge symmetry can be removed by imposing a gauge

condition on the fields. In free space this is typically done by fixing Coulomb or

Lorenz gauge, which decouple the radiative and static electromagnetic problems, or

maintain relativistic invariance, respectively. However for macroscopic EM inside a

dielectric, the usual gauge-fixings lose these nice features, and must be replaced by a

dielectric-dependent condition. This issue will be discussed further in Section 2.4.1.

Third, since the dielectric has some frequency response or dispersion, the

Kramers-Krönig relations require that there is also loss or dissipation. In quantum

optics, dissipation is usually handled by coupling the system to a bath, and
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then integrating or tracing out the bath degrees of freedom.1 The light field is

linearly coupled to the dielectric medium, which is modeled as a bath of harmonic

oscillators (Bechler, 1999; Dung et al., 1998; Huttner and Barnett, 1992). The

dielectric medium is in turn coupled to a bath of harmonic oscillators, which provides

the damping. Integrating out the bath degrees of freedom yields the required

dispersion and dissipation for the medium, while integrating out the medium’s degrees

of freedom yields a frequency dependent dielectric constant ε(ω). Huttner and

Barnett (1992) were the first to use this harmonic model to quantize the EM field

in media. Their work directly diagonalized the whole system of fields and bath in

terms of the modes of a single combined harmonic oscillator. Another approach to

the same problem directly couples the medium to white noise sources to represent the

fluctuations inside the medium that lead to dissipation (Dung et al., 1998; Scheel et al.,

1998; Tip et al., 2001). Bechler (1999, 2006) carried out path integral quantization for

a harmonic medium including dispersion, and shown agreement with previous results

in terms of noise operators and commutators for the fields. It is not strictly necessary

to assume that the fields are directly coupled to harmonic oscillators. The dielectric

function can be understood in terms of the linear response of the underlying medium

(which might not be harmonic) to the EM field (Altland and Simons, 2011). This was

used by Rahi et al. (2009) to motivate the effective Lagrangian description in terms

of macroscopic field in their work on the scattering method. More recently Philbin

(2010) carried out a full canonical quantization of EM in media, without explicitly

assuming a harmonic medium.

1If damping is added to the system in an ad hoc manner, the canonical commutation relations
between operators would decay away. Adding the bath is necessary to preserve the commutation
relations for the system operators. As a result, dissipation in quantum systems is attended by noise,
either as decoherence terms in the master equation or as noise terms in the Langevin equations for
the operators (Gardiner and Zoller, 2004)
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Focusing on Casimir physics, in modern treatments the EM field has been

quantized via path integration. Reid et al. (2013) quantize the EM field, under the

assumption of piecewise constant dielectric media, where the EM boundary conditions

are explicitly enforced at the interfaces. Enforcing those boundary conditions allows

the remaining computations to proceed as if the media were homogeneous and filled

all of space, based on a version of Green’s theorem (Emig and Büscher, 2004). Fixing

the boundary conditions also simplifies the algebra, since derivatives and material

functions effectively commute with one another. Any commutator terms would arise

on the surface, but since the fields are restricted on the surface via functional delta

functions, those corrections can be ignored. The resulting derivations proceed in

analogy with the case of a homogeneous dielectric, but with the fields in different

regions coupled by the currents on the surfaces.

Bordag et al. (1998) also carried out path integral quantization of the EM field

inside a spatially varying dielectric neglecting dispersion, starting from the effective

Lagrangian description for the macroscopic fields. They fix a generalized Lorenz

gauge, and set about deriving the heat kernel, which is effectively a small-T expansion

of the worldline path integral. The primary focus here was to explore the divergence

structure of the theory (i.e, how does QED in media behave at high frequencies and

small wavelengths?). Unfortunately, their results are hard to interpret given that the

non-physical degrees of freedom do not cleanly cancel. In particular, the contributions

from the unphysical scalar and longitudinal photons do not cancel the gauge-fixing

or “ghost” determinant, as happens in vacuum. In later work Bordag et al. (1999)

considered the quantization for EM in a spherical dielectric ball and found better

results by exploiting the dual potentials. In this latter paper they split the EM field

into two scalar fields, corresponding to the TE and TM polarizations. Milton et al.
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(1978); Schwinger (1992); Schwinger et al. (1978) also split the EM field into two

non-interacting scalars in their works on the Casimir effect in planar and spherical

geometries.

Our work on the EM path integral will parallel Bordag et. al , with some

difference in aims. The primary goal of Bordag et. al was to examine the divergence

structure of QED in media via purely analytical calculations. Our goal is to develop

a numerical method for Casimir energies. Since we will explicitly renormalize the

Casimir energy against vacuum, we will have more freedom in rescaling the fields than

they did. Further, we will be interested in evaluating the worldline path integrals at

all path times T , rather than just making small-T expansions.

2.2. Classical Electromagnetic Field Theory

Maxwell’s equations govern the classical evolution for the electric and magnetic

fields E(r, t) and B(r, t). In a medium, with permeability ε(r) and permittivity µ(r),

but no external source charges or currents, Maxwell’s equations are

∇ ·B = 0 ∇× E = −∂tB (2.1)

∇ ·D = 0 ∇×H = ∂tD, (2.2)

where the electric displacement is D(r, t) := ε(r)E(r, t), and the magnetic field

strength is H(r, t) := µ(r)B(r, t). In this initial development, we will ignore any

frequency dependence in ε and µ. Later, we will extend this work to handle frequency

dependence in the medium. The relative permeability and permittivity are defined

by εr(r) := ε(r)/ε0, and µr(r) := µ(r)/µ0, where ε0 and µ0 are the permeability and
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permittivity of free space. In Casimir physics we will be interested in the energy of

the field alone, without any external free charges or currents.

The E and B fields can be rewritten in terms of the scalar φ(r, t) and vector

potential A(r, t) as

B = ∇×A E = −∇φ− ∂tA. (2.3)

These are constructed to automatically satisfy two of Maxwell’s equations. In the

absence of sources, Maxwell’s equations are invariant under the duality transformation

E↔ H B↔ −D µ↔ ε. (2.4)

This suggests that instead D and H can be written in terms of another set of

potentials. In these dual potentials the fields are given by

D = ∇×C H = −∇Λ− ∂tC. (2.5)

The gauge potentials and the dual potentials are connected via a duality

transformation on the field tensor Fµν . Note that the electric and magnetic fields

are unchanged under the following gauge transformation

A′ = A +∇g φ′ = φ− ∂tg, (2.6)

where g is an arbitrary function. Physical results do not depend on the gauge chosen

to carry out calculations. However in order to quantize the theory it is necessary to

fix this degree of freedom.
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The procedure for canonical quantization starts from the classical Lagrangian,

and finds the associated Hamiltonian. The theory is quantized by promoting

the classical Poisson brackets to quantum commutation relations. However, this

procedure must be modified for gauge theory, since there are redundant degrees of

freedom. In the Hamiltonian theory, the gauge degrees of freedom are non-dynamical,

so they imply constraints. There are a number of ways to confront this. The Gupta-

Bleuler formulation restricts the allowed states to obey a gauge condition (Mandl

and Shaw, 2010, Section 5.2). Dirac (1950, 1964, 1966) developed another method

that instead adjusts the classical bracket to account for the constraints. Some care is

required to ensure that the constraints are only enforced after deriving all relations

between variables. In the quantum theory, it is the Dirac bracket that is promoted

to the equal-time commutation relation. Finally in a path integral, it is necessary to

remove the gauge degree of freedom via Faddeev–Popov gauge fixing (Faddeev and

Slavnov, 1991).

The classical Lagrangian for EM in non-dispersive media is

LEM =
1

2

∫
dr
(
E ·D−B ·H

)
=
ε0
2

∫
dr

(
εr(r)(∇φ+ ∂tA)2 − c2

µr(r)
(∇×A)2

)
.

(2.7)

The first two Maxwell equations (2.1) are automatically satisfied by the definition of

the gauge fields, and the remaining Maxwell equations (2.2) can be derived from this

Lagrangian. The momentum fields conjugate to the potential fields Aµ = (φ,A) are

Π0 =
δLEM

δ(∂tφ)
= 0 (2.8)

Π =
δLEM

δ(∂tA)
= ε0εr(r)(∇φ+ ∂tA), (2.9)
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where δLEM/δf is the functional derivative of the Lagrangian with respect to the

function f . The functional derivative for a functional F [f(x)] is defined as

δF

δf(x′)
:= lim

a→0

F [f(x) + aδ(x− x′)]− F [f(x)]

a
. (2.10)

From Eq. (2.9), the momentum field Π conjugate to A is proportional the electric

displacement, D. Since Π0 = 0 for all times, there is a constraint on the system. Since

the constraint equation must also be preserved at all times, there will be a further

constraints imposed on the theory. That next constraint will turn out to be Gauss’s

law, which enforces conservation of electric charge.

The Hamiltonian for the potentials and their conjugate momenta is given by

HEM =

∫
dr (Π0∂tφ+ Π · ∂tA

)
− LEM (2.11)

=

∫
dr

(
Π2

2ε0εr(r)
+
ε0c

2

2
(∇×A)2 −Π · ∇φ

)
. (2.12)

The Poisson bracket in 4-vector notation follows from the choice that Aµ = (φ,A).

This implies that the momentum conjugate to Aµ is given by

Πµ =
δLEM

δ∂tAµ
. (2.13)

[Note that we are working in a flat spacetime where the metric is ηµν =

diag(−1, 1, 1, 1).] The Poisson bracket for fields is

{Fµ(r), Gν(r
′)}PB =

∑
σ

∫
dy

(
δFµ(r)

δAσ(y)

δGν(r
′)

δΠσ(y)
− δGµ(r′)

δAσ(y)

δFν(r)

δΠσ(y)

)
, (2.14)
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and the Poisson bracket between the fields and momenta is

{Aµ(r),Πν(r
′)}PB = ηµνδ(r− r′). (2.15)

The equations of motion can be derived from the Hamiltonian, since the time

evolution for a quantity is given by its Poisson bracket with the Hamiltonian. In

particular, the requirement that the first constraint (2.8) holds for all time implies

∂tΠ0 = {Π0, HEM}PB = −δHEM

δφ
= ∇ ·Π = 0. (2.16)

Since the momentum Π is proportional to the displacement, this is just Gauss’s law.

This constraint does not impose any further constraints, since {∇ ·Π, HEM}PB = 0.

Since the constraints vanish, they can be added in any amount to the Hamiltonian

without changing the dynamics. The Hamiltonian can equally well be written as

HEM =

∫
dr

(
Π2

2ε0εr(r)
+ φ(∇ ·Π) +

ε0c
2

2
(∇×A)2 + fΠ0 + g(∇ ·Π)

)
(2.17)

where f and g are arbitrary functions. In this case f and g serve as gauge degrees

of freedom, with Π0 and ∇ · Π generating the gauge transformations. [A parallel

treatment of the Hamiltonian treatment of EM is given by Steck (2015, Section 8.8).]

2.3. Quantum Theory

The Hamiltonian theory can be quantized by promoting the Poisson bracket to a

commutator between field operators. However, there is the matter of the constraints.

We will follow the Gupta-Bleuler prescription which restricts the allowed quantum

states to those that obey the constraints. In the Gupta-Bleuler formulation, the
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equal-time commutation relations are given by

[Âµ(r, t), Π̂ν(r
′, t)] = i~ηµνδ3(r− r′), (2.18)

and the allowed states |Ψ〉 must obey:

Π̂0|Ψ〉 = 0, ∇ · Π̂|Ψ〉 = 0. (2.19)

The resolutions of the identity for the fields are

1 =

∫
d3Adφ |φ,A〉〈φ,A| (2.20)

1 =

∫
d4Π |Π〉〈Π|δ(∇ ·Π)δ(Π0) =

∫
d3Π |Π〉〈Π|δ(∇ ·Π). (2.21)

(Strictly speaking, the identity for the potential states is proportional to the volume

of the gauge group because the integral runs over equivalent physical states that

are related by gauge transformations. Ultimately, this adds an additive constant

to the energy, but for EM this can be ignored.) The delta functions restrict the

momentum states to those that satisfy the constraints, and can be written in the

Fourier representation as

δ(∇ ·Π) =

∫
Dϕ exp

(
− i
~

∫
drϕ(r)∇ ·Π(r)

)
. (2.22)

Since the fields and momenta obey canonical commutation relations, the overlap

between field and momentum states is

〈φ,A|Π0,Π〉 = exp

(
− i
~

∫
dr A ·Π

)
, (2.23)
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where the term in φΠ0 has been dropped due to the Π0 = 0 constraint.

2.4. Electromagnetic Partition Function

In order to calculate the energy in the field at zero and nonzero temperature, we

will evaluate the partition function for the fields, and take the appropriate derivatives.

The EM partition function is defined as

ZEM = Tr
(
e−βĤEM

)
=

∫
dφ0dA0〈φ0,A0|e−βĤEM |φ0,A0〉. (2.24)

In analogy with the scalar field path integrals described in Section 1.4, this is can be

converted into a field path integral. (From here on, the subscript on the Hamiltonian

will be suppressed.) The path integral is given by

ZEM =

∫
dφ0dA0〈φ0,A0|

N∏
i=1

e−∆βĤ |φ0,A0〉, (2.25)

where ∆β = β/N . A factor of the gauge volume (2.20) can be inserted between each

factor of e−∆βĤ . Then, a complementary identity for the momentum fields (2.21) can

be inserted between each matrix element. Each field will be labeled by a subscript

with its “temperature” Aβ(r). All fields are functions of position r, so this label will be

suppressed for the moment. Since Π0 (the momentum conjugate to φ) is constrained

to vanish, the Π0 integrals can be carried out for every matrix element. In addition,

the φ integrals are independent of the other fields and lead to a (divergent) constant.

However, since the constant is the same for all configurations of bodies, it will cancel

out after renormalization.
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Using the Fourier representation of the delta function (2.22), the matrix elements

can be written as

〈φβ+∆β,Aβ+∆β|e−∆βĤ |φβ,Aβ〉 =

∫
dΠβ

∫
Dϕβ e

−∆β
∫
dr
[
Hβ−iΠβ ·(∂βAβ+∇ϕβ)/~

]
,

(2.26)

where the Hamiltonian density for a particular value of β is

Hβ =
Π2
β

2ε0εr(r)
+

ε0c
2

2µr(r)
(∇×Aβ)2. (2.27)

We have also integrated by parts on the term coming from the Fourier representation

of the delta function, and identified ∂βAβ := (Aβ+∆β −Aβ)/∆β. After the Gaussian

momentum integrals have been carried out, the matrix element is

〈φβ+∆βAβ+∆β|e−∆βĤ |φβ,Aβ〉

∝ det[εr]
3/2 exp

[
−ε0∆β

2

∫
dr

(
εr(r)

~2
(∂βAβ +∇ϕβ)2 +

c2

µr(r)
(∇×Aβ)2

)]
. (2.28)

When we consider the integrals over the products of all of these matrix elements it is

convenient to introduce a notation

∫
DADϕ det[εr]

3/2 :=
N∏
i=1

∏
rk

∫
dA(rk, βi)

∫
dϕ(rk, βi) ε

3/2(rk), (2.29)

where the product rk runs over all positions r ∈ R3 and inverse temperatures

of βj = j∆β. We can change variables to τ := β~c, A4(x, β) := ϕβ(x)/~c, and

A(x, β) = Aβ(x), and rescale all of the fields to eliminate the leading constants in

the exponential. The new parameter τ is proportional to the thermal de Broglie
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wavelength λdB = 2π~c/(kBT ). The resulting partition function is

ZEM =

∫
DADA4 det[εr]

3/2e−SE[A,A4], (2.30)

where the Euclidean action is

SE[A, A4] =
ε0
2

∫
dr

∫ β~c

0

dτ

(
εr(r) (∂τA +∇A4)2 +

1

µr(r)
(∇×A)2

)
. (2.31)

The action is the imaginary-time action corresponding to the EM Lagrangian (2.7).

We will compare this partition function to the case when the bodies are infinitely far

apart, which we will denote as Z0. In that case, the bodies are still present, but they

will are too far apart to interact significantly. If the bodies are rigidly translated,

then det[εr(r)]3/2 =
∏

rk
εr(rk)

3/2 is constant, since the amount of matter in εr(r) is

fixed. Since the determinants are the same in both cases, they will cancel out under

this renormalization, and we will ignore them.

2.4.1. Faddeev–Popov Gauge Fixing

The path integral (2.30) includes infinitely many physically equivalent fields that

are related by a gauge transformation (2.6). If that redundancy is not removed,

the path integral will yield nonsensical infinite results. The redundancy is lifted by

introducing a gauge-fixing condition so that only one gauge field corresponding to a

each physical field configuration in included in the path integral. This gauge fixing is

carried out by introducing a gauge fixing function G[A, A4] inside a functional delta

function. A further Jacobian determinant must be included to ensure each physically

distinct state also receives the same weight.
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In order to fix the gauge, and assign each state equal weight, the following

combination should be inserted into the path integral

δ[G(A, A4, )] det

(
δG

δg

)
, (2.32)

where the determinant is known as the Faddeev–Popov determinant (Faddeev and

Popov, 1967; Faddeev and Slavnov, 1991). The determinant ensures that after

integrating over out g, each physical state receives the same weight.2 This can

be understood in analogy with the change of variable for a double integral with a

redundant degree of freedom

I =

∫ ∞
−∞

dx

∫ ∞
−∞

dy h(x). (2.33)

This integral diverges due to the integral over the redundant variables y. A “gauge-

fixed” integral can be constructed if we insert a combination δ[G(x, y)]|∂yG|. If we

change integration variable to G, and integrate over G, the resulting integral is

I ′ =

∫ ∞
−∞
dx

∫ ∞
−∞
dy h(x)δ[G(x, y)] |∂yG|=

∫ ∞
−∞
dx

∫ ∞
−∞

dG

|∂yG|
h(x)δ(G)|∂yG|=

∫
dx h(x),

(2.34)

where the same physical result emerges, regardless of the choice of gauge fixing

function. In higher dimensional integrals, the derivative becomes the Jacobian

determinant, and in a path integral the Jacobian matrix of derivatives becomes the

functional derivative.

One further trick is often used in gauge-fixing the path integral. Instead of fixing

a gauge with G[A, A4] = 0, an alternative gauge G[A, A4] = γ can be used. Since γ

2 For example see Peskin and Schroeder (1995, Section 9.4), or Srednicki (2008, Chapter 71)
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is an arbitrary function, it can be integrated out, using a Gaussian with width ξFP,

const =

∫
Dγ exp

(
−
∫
drdτ

γ2(r, τ)

2ξFP

)
. (2.35)

Such factors are constant in the path integral sense that they will cancel out when

considering physical energies, which require renormalization. Finally, the gauge-fixed

partition function is

Z =

∫
DADA4Dγ δ[G[A]− γ] det

(
δG

δg

)
exp

(
−SE −

∫
drdτ

γ2

2ξFP

)
=

∫
DADA4 det

(
δG

δg

)
exp

(
−SE −

∫
drdτ

G2

2ξFP

)
, (2.36)

where the Gaussian integral over γ was evaluated in the second equality and SE

is given by Eq. (2.31). For EM, since the gauge transformation is independent of

the potentials Aµ, the gauge-fixing functional determinant is also independent of the

potentials. Nonetheless, this determinant is necessary to correctly count the degrees

of freedom, and it cannot be ignored since it depends on the material properties of

the interacting bodies. As the bodies are removed arbitrarily far apart, the value of

the gauge fixing determinant will vary, so it must be retained, unlike det[εr]
3/2, which

canceled out since it was constant.

2.4.2. Gauge Choices

There are a number of gauges available, only some of which are naturally suited

to the path integral. Overall, physical results should be independent of our choice

of gauge. Gauge invariance of the final results could be verified by carrying out the

calculation within two different gauges, and ensuring the results agree. In the path
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integral this can also be done by showing that the final results are independent of

the choice of ξFP, the width the Gaussian. Let us now review a number of the usual

gauge choices.

Coulomb gauge (∇ · A = 0) is the familiar choice in non-relativistic quantum

optics, since in free space it decouples the scalar potential A4 from the vector potential

A, which then only has two transverse degrees of freedom. However, in the presence of

a space-dependent dielectric εr(r), this is no longer true and there is still some residual

coupling between A and A4. Generalized Coulomb gauge (∇ · εA = 0) does remove

that coupling, and is in fact the choice used in other attempts to quantize the EM

field inside a dielectric (Glauber and Lewenstein, 1991; Knöll et al., 1987). However,

generalized Coulomb gauge not essential, since Philbin (2010) fixes Coulomb gauge

in his work on quantization within media. Unfortunately, this is not well suited to

the above gauge-fixing techniques within the path integral. Generalized Lorenz gauge

solves that issue, and is how we will proceed.

Another common choice of gauge is Weyl or temporal gauge where the scalar

potential vanishes, A4 = 0. This gauge simply removes the scalar field, and the

longitudinal part of A would be responsible for the electrostatic potential if any

charges were present. This condition does not completely fix the gauge, since

there are still gauge transformations from fields independent of τ : g(r, τ) = g(r).

Surprisingly, this does seem to be a common gauge for work involving path integrals

in dielectrics (Bechler, 1999; Rahi et al., 2009). But given those flaws, we will not

pursue Weyl gauge any further.

Finally, there is a generalized Lorenz gauge ε−1
r ∇ · εrA− εr∂τA4 = 0, introduced

by Bordag et al. (1998). This gauge allows path integral quantization to proceed
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in close parallel to the free space case.3 This gauge removes any coupling between

the scalar (A4) and vector (A) degrees of freedom. In addition, this choice makes

the worldline calculations simpler. After expanding out G2 and integrating by parts,

the quadratic term in the vector potential is
∑

ij Ai(−∂i∂j + Vij)Aj, where Vij is a

function of the derivative of log εr. If we had adopted ∇ · εrA + ∂τA4 = 0, then

the equivalent term would be
∑

ij Ai(−∂iεr∂j)Aj. In this case εr acts as a metric

in the worldline path integral, which is more complicated. Despite these appealing

features, Bordag et al. (1998) found the disquieting feature that the longitudinal

and scalar degrees of freedom do not cancel out the Faddeev–Popov determinant or

“ghost” degrees of freedom. In a later calculation adapted to spherical geometries,

Bordag et al. (1999) found that using the dual potentials (2.5) led to more physical

results where the ghost degrees of freedom canceled. However any attempt to move

away from spherical geometry spoiled that cancellation, and some degree of mixing is

expected in general (Bordag et al., 1999). Ultimately, the results will have essentially

the same form in terms of both the usual potentials and the dual potentials, so we

proceed with the regular potentials for now.

2.5. Gauge-Fixing: Generalized Lorenz Gauge

Of the gauges discussed in Section 2.4.2, the generalized Lorenz gauge is best

suited to the vector path integral (2.30). In this case the gauge function is

G[A, A4] =
1

εr(r)
√
µr(r)

∇ · εr(r)A(r, τ)− εr(r)
√
µr(r)∂τA4(r, τ), (2.37)

3A similar gauge condition was used by Reid et al. (2013) in their development of the numerical
scattering method. However, that work explicitly relied on fixing EM boundary conditions at
surfaces. The resulting computations proceeded using homogeneous formulae for all quantities and
ignoring any singularities arising at interfaces, or terms like A · ∇ log εr. In work on the worldline,
it is more natural to keep these terms, anticipating that they will enforce boundary conditions.
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which has also been scaled to include a permittivity. This gauge function eliminates

the cross coupling between the A4 and the vector potential A. It also eliminates

the longitudinal part of (∇ × A)2/µr, but does lead to some extra terms involving

derivatives of the permittivity.

To carry out the Faddeev–Popov gauge fixing, we need the functional derivative

of the gauge-fixing function with respect to the gauge parameter g. The functional

derivative appears as the linear term in g after making a gauge transformation on the

gauge-fixing condition,

G[A +∇g, A4 + ∂τg] =
1

εr
√
µr

∇ · [εr(A +∇g)]− εr
√
µr∂τ (A4 + ∂τg)

= G[A, A4] +

(
1

εr
√
µr

∇ · εr∇+ εr
√
µr∂

2
τ

)
g. (2.38)

The Euclidean action (2.31) after gauge-fixing, canceling terms, and integrating by

parts, becomes

SE =
1

2

∫
drdτ

(
A4L

(4)A4 + AiLijAj

)
, (2.39)

where we have started using the Einstein summation convention (where repeated

Latin and Greek indices are summed over). The operators L(4) and Lij are given by

L(4) = −ε2rµr∂
2
τ −∇ · εr∇ (2.40)

Lij = −
(
εr∂

2
τ +∇ · 1

µr

∇
)
δij + ∂j

1

µr

∂i − εr∂i
1

µrε2r
∂jεr. (2.41)

At this point, it is useful to rescale the fields,

A4 :=
1
√
εr
Ã4 A :=

√
µrÃ. (2.42)
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These field scalings are chosen to simplify the worldline path integrals, and for the

same reason as the gauge choice. This rescaling eliminates any combinations like

∂xε∂x, which in path integral terms should be interpreted as a metric. In this case,

ε(x) would also mean the diffusion constant of the paths vary throughout space,

which complicates path construction. The field rescaling also leads to functional

determinants det(µr) and det(εr), but these can be ignored since they disappear after

renormalization. After the rescaling (2.42), the differential operators in Eqs. (2.40)

and (2.44) become

L̃(4) = −εrµr∂
2
τ −

1
√
εr
∇ · εr∇

1
√
εr
. (2.43)

L̃ij = −
(
εrµr∂

2
τ +
√
µr∇ ·

1

µr

∇√µr

)
δij +

√
µr∂j

1

µr

∂i
√
µr − εr

√
µr∂i

1

µrε2r
∂jεr
√
µr.

(2.44)

The combination of derivatives and functions of the form f−1/2(x)∂if(x)∂jf
−1/2(x)

will recur multiple times in handling worldline path integrals. This can be written

out as a second derivative with an additional potential in terms of derivatives of

Fi := ∂i log
√
f . This derivative operator can be rewritten as

[f−1/2∂if∂jf
−1/2]ψ =

(
f−1/2∂if

1/2
)(
f 1/2∂jf

−1/2
)
ψ

= (Fi + ∂i)(−Fj + ∂j)ψ

= [−FiFj − (∂iFj)− Fj∂i + Fi∂j + ∂i∂j]ψ, (2.45)

for an unspecified function ψ. The ∂iFj term is understood as a function rather than

a differential operator, while the other derivatives are still operators acting to the

right. This result is needed in both the scalar and matrix differential operators.
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The Gaussian integrals can be formally carried out, with the result that

ZEM ∝ det

(
−1

2
(εrµr∂

2
4 +∇2) + V4

)−1/2

× det

(
−1

2
(εrµr∂

2
4 +∇2)δij − uij + Vij

)−1/2

× det

(
−1

2
(εrµr∂

2
4 +∇2)− ug + Vg

)
(2.46)

where the first determinant comes from the scalar potential path integral, the second

comes from the vector potential, and the final determinant comes is the Faddeev–

Popov gauge-fixing determinant. The Faddeev–Popov gauge-fixing determinant has

also been scaled symmetrically by µ1/4. The potentials V4, V
(A)
ij , Vg and the operators

uij, ug, are defined as

V4 =
1

2
(∇ log

√
εr)

2 +
1

2
∇2 log

√
εr (2.47a)

Vij =
1

2

[
(∇ log

√
µr)

2 −∇2 log
√
µr

]
δij

− 1

2
[∂i log

√
µr∂j log

√
µr − ∂i∂j log

√
µr]

+
1

2
[∂i log(εr

√
µr)∂j log(εr

√
µr)− ∂i∂j log(εr

√
µr)] (2.47b)

Vg = −∇ log εr · ∇ log µ1/4
r −∇2 log µ1/4

r − (∇ log µ1/4
r )2 (2.47c)

uij =
1

2
(∂i log εrµr)∂j −

1

2
(∂j log εrµr)∂i (2.47d)

ug = −1

2

[
∇ log(εrµ

1/2
r )
]
· ∇ (2.47e)

These potentials are highly singular for discontinuous media. If the permittivity or

permeability have a jump discontinuity represented by a step function Θ(x), then
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potentials have the form

[∂xΘ(x)]2 − ∂2
xΘ(x) ∼ δ2(x)− δ′(x), (2.48)

which is extremely singular. These expressions must be regularized by smoothing out

the step, and taking the limit of a sharp step at the end of the calculation. This

regularization allows finite results to be recovered from such singular potentials. This

will be discussed further in Chapter III.

We also assume that the functional determinant of a matrix operator does not

pose any problems. While det(AB) = det(A) det(B) for finite matrices, for infinite

matrices this is not strictly true. Instead, a regularization-dependent factor can

arise, known as the “multiplicative anomaly” (Elizalde et al., 1998). As discussed

by McKenzie-Smith and Toms (1998), the multiplicative anomaly is essential to

ensure agreement between formal path integral calculations and more straightforward

canonical methods. This is important for ζ-function regularization of functional

determinants, which is closely related to the worldline method (Elizalde, 2008).

The vector worldline path integral for the EM field can be computed

straightforwardly from the partition function (2.46). The relations from Eqs. (1.54)

and (1.55) can be used to convert the functional determinants into worldline path

integrals, where each functional determinant in Eq. (2.46) leads to an independent
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path integral. The renormalized free energy is given by

F − F (0) = − kBT (logZTE − logZ
(0)
TE ) (2.49)

= − kBT

2

∫ ∞
0

dT
T

tr

([
exp(−MijT )− δij exp(−M (0)T )

]
+
[

exp(−M4T )− exp(−M (0)T )
]
− 2
[

exp(−MgT )− exp(−M (0)T )
])

(2.50)

where now the trace runs over x and τ as well as any vector indices i, j. The

operators for the vector potential, scalar potential, gauge fixing, and vacuum terms

are respectively given by

Mij =
1

2
[εr(x̂)µr(x̂)p̂2

τ + p̂2]δij + Vij(x̂)

+
i

2
∂i log[εr(x̂)µr(x̂)]p̂j −

i

2
∂j log[εr(x̂)µr(x̂)]p̂i (2.51a)

M4 =
1

2
[εr(x̂)µr(x̂)p̂2

τ + p̂2] + V4(x̂) (2.51b)

Mg =
1

2
[εr(x̂)µr(x̂)p̂2

τ + p̂2]− i

2
∇ log[εr(x̂)

√
µr(x̂)] · p̂ + Vg(x̂) (2.51c)

M (0) =
1

2
(p̂2
τ + p̂2), (2.51d)

where the potentials V
(A)
ij and V4 were specified in Eq. (2.47). This expression for the

free energy is quite hard to evaluate, and it is not clear that the two physical degrees

of freedom emerge from that path integral in a general medium. This path integral

involves contributions from three interacting vector degrees of freedom, a scalar, and

a subtraction from gauge-fixing. Somehow all of these path integrals with different

potentials must conspire to give the energy of two physical polarizations.

It may be possible that we have not made an error, and this complicated set of

path integrals does yield the correct answer. Ultimately, a correct calculation should
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reproduce known answers, which in certain geometries only involve two physical

degrees of freedom. However, it may be that there were errors in the calculation

presented here. Potential areas for errors include incorrect gauge-fixing of an effective

theory, insufficient care in handling rescaling the fields and functional determinants,

and errors involving the multiplicative anomaly in a matrix path integral. Instead of

pursuing the matrix path integral further, we have developed an alternative method

explicitly focusing on the two physical degrees of freedom in a simple geometry. The

two scalar degrees of freedom that we introduce coincide with the scalars used by

Schwinger (1992), and Bordag et al. (1999). In fact, they also agree with the Hertz

potentials for a plane discussed by Nisbet (1955, 1957).

2.6. Scalar Decomposition for Planar Geometries

The EM field can be split into two non-interacting polarizations for media where

the material properties εr(z) and µr(z) only vary in one Cartesian direction. These

are the transverse-electric (TE) and transverse-magnetic (TM) polarizations. The

situation for plane waves scattering off a planar surface is illustrated in Figure 2.1. In

the TE polarization, the electric field is perpendicular to the plane of incidence, while

in the TM polarization the magnetic field is perpendicular to the plane of incidence.

In each case a scalar field theory can be developed. For the TE polarization the

electric field behaves as a scalar throughout the problem: while its magnitude may

vary, its direction does not. The same is true for the magnetic field in the TM

polarization. In this case, the two fields will turn out to mirror each other under

the duality transformation (2.4) exchanging electric and magnetic properties of both

fields and matter. [The following work is expanded from the presentation in Mackrory

et al. (2016).]
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FIGURE 2.1. Scalar polarizations for EM field at a planar dielectric interface.

2.6.1. Scalar-Polarization Partition Functions

In the TE polarization the electric field is described by a single scalar field,

E = ∂tφŷ, where φ := φ(r, t). In this case φ corresponds to the y-component of the

vector potential. The magnetic field can also be written in terms of this scalar. In

Coulomb gauge ∇·A = 0, and using Maxwell’s equations, the square of the magnetic

field is |B|2 = |∇φ|2. The action for the TE scalar φ is then given by

STE =
ε0
2

∫ T

0

dt

(
εr(r)(∂tφ)2 − c2

µr(r)
|∇φ|2

)
. (2.52)

The partition function can be found via the same procedure that was used for the

Dirichlet scalar, and full vector path integral. The resulting partition function is

ZTE =

∫
Dφ exp

[
−1

2

∫
dr

∫ β~c

0

dτ

(
εr(r)(∂τφ)2 +

1

µr(r)
|∇φ|2

)]
. (2.53)
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The field φ can be rescaled by redefining φ :=
√
µrφ̃ for the same reasons as in the

matrix path integral: The scaled field yields a Gaussian probability density in the

worldline formulation, and sidesteps any possible issues related to quantizing a field

on a curved manifold. The path integral can be rewritten in terms of these new

variables, and after an integration by parts is given by

ZTE =

∫
Dφ̃ exp

[
−1

2

∫
dr

∫ β~c

0

dτ φ̃

(
− εrµr∂

2
τ −
√
µr∇ ·

1

µr

∇√µr

)
φ̃

]
. (2.54)

The gradients can be expanded out in the same fashion as Eq. (2.45), which yields

the additional potential,

VTE(z) :=
1

2

[
(∂z log

√
µr)

2 − ∂2
z log

√
µr

]
. (2.55)

The Gaussian integral over φ can be carried out, with the result

ZTE = det

(
− 1

2
[εr(z)µr(z)∂2

τ +∇2] + VTE(z)

)−1/2

. (2.56)

A similar derivation is possible for fields where H := ∂tψŷ. In that case

electromagnetic duality (2.4) can be exploited to rewrite the results. As one

might expect, this field theory can be naturally formulated in terms of the dual

potentials (2.5), subject to “dual Coulomb gauge,” ∇ · C = 0. Exactly the same

manipulations as in the TE case lead to the TM partition function:

ZTM = det

(
− 1

2
[εr(z)µr(z)∂2

τ +∇2] + VTM(z)

)−1/2

, (2.57)
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where the potential is

VTM(z) :=
1

2

[
(∂z log

√
εr)

2 − ∂2
z log

√
εr
]
. (2.58)

Note that the TM potential depends on the dielectric function, and will play a

much larger role than the TE potential for typical media. The simplicity of this

derivation is one reason for working with both magnetic and dielectric media in this

geometry. However, we will often set µr = 1, since magnetic media are rare in

typical quantum optical situations. Since we have been working under the assumption

of electromagnetism in planar media, the functions are restricted to varying in z-

direction. We can also work with more general expressions for similar scalar fields

where the material functions vary in multiple dimensions: εr(x), µr(x). Throughout

the rest of this thesis we will work with these more general scalar field theories, but

remain cognizant of the fact that they only correspond to electromagnetism in a

planar geometry.

2.6.2. TE Polarization Worldline

It is a straightforward matter to develop the TE worldline path integral. In the

same fashion as the Dirichlet scalar method in Section 1.5, two formal identities can

be used to rewrite the free energy in exponential form. The renormalized TE free

energy is

FTE −F (0)
TE =

kBT

2
(log det D̂TE − log det D̂(0)), (2.59)
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where the partition functions ZTE has been written as the functional determinant of

a differential operator. The differential operators are

D̂TE := −1

2
[εr(x)µr(x)∂2

τ +∇2] + VTE(x) (2.60)

D̂(0) := −1

2
(∂2
τ +∇2). (2.61)

The vacuum operator D̂(0) is the same for both polarizations and is determined by

moving the dielectric bodies arbitrarily far apart (operationally, this can be done by

setting the εr = µr = 1 everywhere). The free energy can be rewritten using the

identities in Eqs. (1.54) and (1.55), with the result

FTE −F (0)
TE =

kBT

2
tr(log D̂TE − log D̂) (2.62)

= −kBT

2

∫ ∞
0

dT
T

tr
[

exp(−D̂TET )− exp(−D̂(0)T )
]
. (2.63)

For simplicity, we will suppress the renormalization term while developing the path

integral.

The worldline path integrals can be developed in the usual fashion, where

differential operators become momentum operators in the auxiliary Hilbert space.

There are no problems with operator ordering since εr(x)µr(x)∂2
τ is the only term

involving joint position and momentum operators, and these operators commute.

After converting the operators, the TE partition function is

FTE =
kBT

2

∫ ∞
0

dT
T

∫
dx0dτ0〈x0, τ0|e−[εr(x̂)µr(x̂)p̂2

τ+p̂2]T /2−VTE(x̂)T |x0, τ0〉. (2.64)

Note that although the potential only varies in one dimension, it is still necessary

to evaluate the trace and path integrals over all of the dimensions. There is one
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change from the normal path integral derivation. Since the exponential operator is

independent of τ , it is not necessary to develop the path integral in the τ -direction.

As a result, only single integrals over τ and pτ will be required. However, it is still

essential to develop the spatial path integral since εr(x)µr(x) and p̂2 do not commute.

After splitting the operator into a product of many terms and inserting the momentum

identities, the free energy is

FTE = −kBT

2

∫ ∞
0

dT
T

∫
dxN

dτ0dpτ
2π

∫ N−1∏
k=0

dxkdpk
(2π)D−1

δ(xN − x0)

×
(N−1∏

j=0

e−εr(xj)µr(xj)p
2
τ∆T /2−p2

j∆T /2+ipj ·(xj+1−xj)−VTE(xj)∆T
)
, (2.65)

where ∆T := T /N , and the delta functions ensure path closure. The pk integrals

can be evaluated since they are Gaussian, and the τ integrals can be evaluated at

zero temperature using

∫ β~c

0

dτ

∫ ∞
−∞

dpτ
2π

exp

(
−

N∑
j=0

εr(xj)µr(xj)p
2
τ

∆T
2

)
=

β~c√
2πT 〈εr(x)µr(x)〉

, (2.66)

where the path average is defined as

〈εr(x)µr(x)〉 =
1

N

N−1∑
j=0

εr(xj)µr(xj) =
1

T

∫ T
0

dt εr[x(t)]µr[x(t)]. (2.67)

The resulting free energy is

FTE = −kBT

2

∫ ∞
0

dT
T

∫
dxN

∫
dτ0

∫ N−1∏
k=0

dxkδ(xN − x0)
1√

2π〈εr(x)µr(x)〉T

×
[N−1∏
j=0

1

(2π∆T )(D−1)/2
exp

(
−(xj+1 − xj)

2

2∆T
− VTE(xj)∆T

)]
. (2.68)
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The coupled Gaussians will be used as the probability distribution for paths, where

x0 is the starting (and finishing) point. The normalized Gaussian probability density

for a random walk of N steps between x0 and xN is

P (x0,x1, . . . ,xN−1) :=N
∫ N−1∏

k=1

dxk

N−1∏
j=0

[
1

(2π∆T )(D−1)/2
exp

(
− (xj+1 − xj)

2

2∆T

)]
.

(2.69)

The normalization constant N is determined by requiring that the probability density

is normalized,

1 =

∫ N−1∏
k=1

dxkP =⇒ N =

[
1√

2πT
exp

(
−(xN − x0)2

2T

)]−1

. (2.70)

Like the Dirichlet scalar worldline path integral (1.59), the TE path integral can be

written as an ensemble average over closed Brownian bridges

FTE −F (0) = −~c
2

∫ ∞
0

dT
(2πT )D/2T

∫
dx0

〈〈
e−〈VTE(x)〉T√
〈εr(x)µr(x)〉

− 1

〉〉
x(t)

. (2.71)

For completeness we note that the corresponding TM worldline method is derived in

exactly the same way, with VTM replacing VTE. The main difference between the two

path integrals is that VTE depends on the magnetic response, while VTM depends on

the dielectric response.

Let us contrast the TE worldline (2.71) with the Dirichlet worldline path integral

(1.59). First, there is a factor 〈εrµr〉1/2 (corresponding to the square of the refractive

index) which arose from modifying the thermal direction, and an additional potential

VTE arising from the derivatives of the media. Both of these emerge from the

underlying material constants, rather than arising from imposed boundary conditions.
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Second, the TE path integral is related to one polarization of the EM field in a

planar geometry. While the TE path integral can be evaluated in arbitrary geometries

of bodies, its relation to the complete EM field in those cases is unclear. In contrast,

the Dirichlet path integral (1.59) is geometry independent, and is usually only used

to impose Dirichlet boundary conditions. But the Dirichlet worldline only recovers

half of the perfect conductor Casimir energy in planar geometries. In this sense the

TE path integral surpasses the Dirichlet worldline. We will test the TE path integral

in a planar geometry to verify that known electromagnetic results can be recovered

from this worldline formalism. In addition, we will develop techniques that may be

useful in a general geometry, and evaluate the path integrals in a manner that should

straightforwardly generalize. We will see that the TE path integral can recover the

Dirichlet results in the strong-coupling (χ → ∞) limit. So despite being adapted to

a particular geometry the TE path integral may suggest ways to develop a better

uncontrolled approximation to the full EM path integral.

2.7. Nonzero Temperature Worldline Path Integrals

The preceding derivation can be extended to finite temperature and dispersion by

making the substitution εr(r) → εr(r, iω). This substitution was carefully examined

and justified in the context of the Lifshitz theory by Barash and Ginzburg (1975), and

more recently Rosa et al. (2010). As noted earlier, Rahi et al. (2009) derived their

effective Lagrangian at finite temperature via linear-response theory. Presumably the

same arguments apply here, for the frequency-dependent, non-zero temperature path

integral.

The fields φ(r, τ) in the partition function path integral are periodic, since

Z = tr[e−βĤ ] =
∫
dφ〈φ|e−βĤ |φ〉, so that the starting and ending states are identical.
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The fields can then be expanded in a Fourier series,

φ(τ, r) =
∞∑

n=−∞

eisnτ/cφn(r), (2.72)

where the Matsubara frequencies are defined as sn := 2πn/(β~), and the φn are

complex fields. We will also need to use the orthogonality relation between different

Matsubara frequencies,

∫ β~c

0

dτ ei(sn+sm)τ/cφnφm = β~cδn,−mφnφm = β~cδnm|φn|2, (2.73)

where φ∗n = φ−n since the fields are real. The partition function can then be written

as

ZTE =
∞∏

n=−∞

∫
Dφn exp

[
−βε0c

2

2

∫
drφ∗n(r)

(
εr(r, isn)

s2
n

c2
−∇ · 1

µr(r, isn)
∇
)
φn(r)

]
.

(2.74)

The same field rescaling φn →
√
µrφn, can be carried out as for the frequency

independent case. At nonzero temperature, assuming that the system is in thermal

equilibrium, then the free energy F is of interest, rather than the mean energy E.4

The Gaussian integrals for each φn can be carried out, so that the free energy can be

written as

F = −kBT logZTE = −
∞∑
n=0

′

log det

(
εr(r, isn)µr(r, isn)

s2
n

2c2
− 1

2
∇2 + VTE(r, isn)

)
,

(2.75)

4 The free energy is defined as F = E − TS, where E is the mean energy, S is the entropy and
T is the temperature. From the fundamental thermodynamic relation, dE = TdS + δW , where δW
is the work done on the system, the differential for the free energy is dF = SdT + δW . Thus at
constant temperature, the work done on the system (such as by moving plates) changes the free
energy.
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where the prime on the sum indicates that the n = 0 term is multiplied by a 1/2 and

VTE(r, isn) :=
1

2

{[
∇ log

√
µr(r, isn)

]2 −∇2 log
√
µr(r, isn)

}
. (2.76)

The free energy is renormalized by subtracting off the vacuum energy where εr =

µr = 1 and V
(n)

TE is zero. Note that the zero frequency contribution vanishes if

limω→0 ω
2εr(ω) = 0, and µr = 1. This is related to the dispute over the role of

the zero frequency pole in the dielectric response of a metal.5

The nonzero-temperature TE worldline path integral can be developed as before.

The Hilbert space is only (D−1)-dimensional, since the thermal dimension has already

been treated with the Matsubara frequencies. The resulting worldline path integral

is

FTE −F0 =− kBT
∞∑
n=0

′ ∫ ∞
0

dT
T (2πT )(D−1)/2

∫
dx0

×
〈〈
e−s

2
nT /(2c2) − e−s2n〈εr(x,isn)µr(x,isn)〉T /(2c2)e−T 〈VTE(x,isn)〉

〉〉
x(t)

, (2.77)

where the paths are D−1 dimensional spatial paths. This T -dependence also reflects

the different d-dependent scaling behaviors in the near-field, thermal and far-field

regions, as these will each have different approximations to the Matsubara sum. This

will be discussed further in Section 4.7.

The zero-temperature, dispersion-free Casimir energy (2.71) can be recovered

from the free energy (2.77). In the limit T → 0, the spacing between frequencies

∆s = (2π)/β~ → 0, so sn can be approximated as a continuous variable, s = n∆s,

5One perspective on this dispute is given in Bordag et al. (2009, Chapter 14).
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and the sum can be approximated using

lim
n→∞

∑
n

f(n∆s) ≈ (∆s)−1

∫
ds f(s). (2.78)

In this limit the free energy is

FTE −F0 ≈− kBT
~β
2π

∫ ∞
0

ds

∫ ∞
0

dT
T (2πT )(D−1)/2

∫
dx0

×
〈〈
e−s

2T /(2c2) − e−s2〈εr(x,is)µr(x,is)〉T /(2c2)e−T 〈VTE(x,is)〉
〉〉

x(t)
, (2.79)

If we further approximate the material responses by their zero frequency values, then

the s integral is Gaussian and can be evaluated, with the result that

FTE −F0 ≈−
~c
2

∫ ∞
0

dT
T (2πT )D/2

∫
dx0

〈〈
1− e−T 〈VTE(x,0)〉√

〈εr(x, 0)µr(x, 0)〉

〉〉
x(t)

, (2.80)

which is the anticipated zero-temperature, dispersion-free TE worldline energy (2.71).

The next chapter develops analytical methods for evaluating the scalar worldline path

integrals that we have derived.
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CHAPTER III

PATH INTEGRALS AND FEYNMAN–KAC FORMULAE

The imaginary-time path integral is closely connected with other ways of

describing stochastic processes, such as stochastic differential equations and Fokker-

Planck equations. If stochastic paths are sampled from the path integral, then the

path’s evolution is governed by stochastic differential equations or Langevin equations,

where the noise is associated with the random sampling. The path integral is also

the solution to the diffusion or Fokker-Planck equation (Durrett, 1996; Karatzas and

Shreve, 1991). While stochastic differential equations describe single trajectories,

the Fokker-Planck equation gives the equation of motion for the ensemble-averaged

probability distribution for the paths (Gardiner, 2009). The path integral solution

to the diffusion equations is known as the Feynman–Kac formula, after the work by

Feynman (1948) describing the evolution of a quantum particle, and Kac (1949) where

analogous methods were applied to the diffusion equation.

Section 3.1 presents the path integral solution (3.13) to the diffusion

equation (3.1). Sections 3.2 and 3.3 then develop the analytical expressions relevant

for the TE worldline path integral in planar geometries. The sharp dielectric interfaces

are modeled by step functions, and the analytical solutions are given by Eqs. (3.25)

and (3.31), respectively. The worldline path integral also involves a highly singular

potential (2.58). In Section 3.4 this potential is regularized, and found to lead to an

effective boundary condition (3.45). The path integral solution corresponding to the

TM potential for open paths is given in Eq. (3.52). This result is essential for the

numerical methods involving the TM polarization. Sections 3.5 and 3.6, present the

analytical expressions for path integrals that include the TM potential, as well as a
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step potential. These results are given in Eqs. (3.56) and (3.60). These analytical

formulae will be used in Chapter IV to demonstrate agreement with known results

for both Casimir and Casimir–Polder energies.

3.1. Derivation of the Feynman–Kac formula

In this section, we will derive the path integral as the solution to a diffusion

equation, using techniques from quantum mechanics. The derivation will stay

close in spirit to the one presented by Sakurai (1994) and Section 1.4, but

it will be extended to include a source term. More formal derivations are

available from mathematical (Cartier and deWitte Morette, 2006), and probabilistic

perspectives (Durrett, 1996; Karatzas and Shreve, 1991). A detailed discussion of the

more formal probabilistic derivation is given by Steck (2015, Section 17.9).

The goal of this section is to find a solution f(x, t) to the driven diffusion equation

∂tf =
1

2
∇2f − [V (x) + λ]f + g, (3.1)

where the potential is given by V = V (x), λ is a constant, and the source term is

g = g(x, t). In this form f corresponds to the probability distribution for a diffusing

particle with a source of particles g, and the solution decays at a spatially dependent

rate V . The Schrödinger equation is recovered under the t → −it substitution.

The differential equation can be written in operator form using the same Hilbert

space (1.32)–(1.33) that was used for the worldline path integrals (with ~ = 1):

∂t〈x|f(t)〉 = −〈x|
(

1

2
p̂2 + V (x̂) + λ

)
|f(t)〉+ 〈x|g(t)〉. (3.2)
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This equation can be solved in analogy with solving the Schrödinger equation by

introducing the evolution operator:

U(t) := exp

[
−
(

1

2
p̂2 + V (x̂) + λ

)
t

]
. (3.3)

Eq. (3.2) is written in the Schrödinger picture, where the operators are time

independent, and the states |f(t)〉 carry all of the time dependence. After

transforming to the Heisenberg picture where |f(t)〉 → |f̃〉 := U−1(t)|f(t)〉, the

transformed vectors evolve in time according to

∂t|f̃〉 = U−1(t)|g〉. (3.4)

This equation can be formally integrated with respect to time, and after transforming

back to the Schrödinger picture, the result is

|f(t)〉 = U(t)|f(0)〉+ U(t)

∫ t

0

dsU(−s)|g(s)〉, (3.5)

where we used U−1(s) = U(−s). After combining the evolution operators, and

projecting onto a final position xN the solution is

f(xN , t) = 〈xN |U(t)|f(0)〉+

∫ t

0

ds 〈xN |U(t− s)|g(s)〉. (3.6)

The matrix elements in both terms have the same form M = 〈xN |U(t)|f〉, so we will

develop the path integral for just one such matrix element. For time-independent

Hamiltonians, the evolution operator can be split into a product of N identical

evolution operators U(∆t) where ∆t := t/N . Position and momentum identities
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can be inserted between each term, with the result that

M =

∫ N−1∏
k=0

dxkdpk
(2π)D/2

N∏
j=1

(
〈xj+1|e−Ĥ∆t|pj〉〈pj|xj〉

)
〈x0|f(0)〉. (3.7)

The exponential operator is split into position and momentum pieces using the Baker-

Campbell-Hausdorff theorem, e−∆t[p̂2+V (x̂)] = e−∆tV (x̂)e−∆tp̂2
+ O(∆t2). The position

and momentum operators then acquire the eigenvalues from operating to the left and

right respectively,

M =

∫ N−1∏
k=0

dxkdpk
(2π)D/2

N∏
j=1

(
e−p2

j∆t/2−[V (xj+1)+λ]∆t+ipj ·(xj+1−xj)
)
f(x0, 0). (3.8)

After carrying out the Gaussian momentum integrals, the matrix element is

M =

∫ N−1∏
k=0

dxk

N∏
j=1

e−(xj+1−xj)
2/(2∆t)

(2π∆t)D/2
e−[V (xj)+λ]∆tf(x0, 0). (3.9)

This is the traditional discrete form of the imaginary-time path integral. The

connection to Brownian motion can be made even clearer by changing integration

variables. The arguments of the Gaussians xj+1−xj, are zero mean random variables,

with variance ∆t. The Gaussians can be interpreted as the probability distributions

for the vector Wiener increments discussed in Section 1.5.1. In this particular case,

the vector Wiener increments are defined as ∆Wj := xN−j−1 − xN−j. Note that

this labeling is backwards in time from the usual convention, but it ensures that the

solutions are defined in reference to the final coordinate xN . A general point along

the path is given by

xj = xN +

N−j−1∑
k=0

∆Wk = xN + WN−j, (3.10)
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where the Wiener process is defined as Wj :=
∑j−1

k=0 ∆Wk. In terms of the Wiener

paths, the path integral is

M = e−λt
∫ N−1∏

k=0

d(∆Wk)
N∏
j=1

e−(∆Wj)
2/(2∆t)

(2π∆t)D/2
e−∆t V (xN+WN−j)f [xN + WN , 0]. (3.11)

After taking the continuum limit N → ∞, the Wiener path Wk = W(tk) becomes

a continuously varying stochastic process, and the sum over potentials
∑

j V (xj)∆t

can be written as an integral. The path integral can then be written as

M =

〈〈
exp

(
− λt−

∫ t

0

du V [x + W(t− u)]

)
f [x + W(t), 0]

〉〉
. (3.12)

The same style of reasoning can be used for both terms in Eq. (3.6). After substituting

this result in to Eq. (3.6), the solution to the diffusion equation is

f(x, t) =

〈〈
f [x + W(t), 0] exp

(
− λt−

∫ t

0

du V [x + W(t− u)]

)〉〉
+

∫ t

0

ds

〈〈
g[x + W(s), s] exp

(
− λs−

∫ s

0

du V [x + W(s− u)]

)〉〉
.

(3.13)

This agrees with the results of the more formal methods presented in Durrett (1996),

and Steck (2015). In this case the ensemble average is over free Brownian motions.

This result was derived under the assumption that the potential is independent of

time, since that is all that is required for this dissertation. This derivation can be

extended to a time-dependent potential V (x, t) by using the time-ordered evolution

operator, as used in the Dyson series (Sakurai, 1994, Section 6.6).
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3.1.1. Steady-State Brownian Bridge Path Integral

In worldline path integrals such as Eq. (2.71), the Brownian motions are

closed, with the same beginning and ending point. The solution to the diffusion

equation (3.13) can be converted into an ensemble average over pinned Brownian

bridges with some manipulation. We will follow a solution method used by

Hooghiemstra (2002) to compute the sojourn time. This solution method is explained

in detail by Steck (2015, Sections 17.9–17.11).

The path integral (3.13) can be converted into the same form as the TE worldline

path integrals (2.71) using two transformations. First, the path integral is written in

the steady-state limit where t → ∞. In this limit the initial condition f(x, t = 0)

is irrelevant so it can be set to zero. Second, the source function g can be used to

construct the path pinning by setting g(x) = δ(x − c). After those manipulations,

the general solution is

f(x) =

∫ ∞
0

ds

〈〈
δ[x + W(s)− c] exp

(
− λs−

∫ s

0

du V [x + W(s− u)]

)〉〉
,

(3.14)

which has the form of a Laplace transform in λ. The Laplace transform is defined as

L[f(t)](λ) :=

∫ ∞
0

dλ e−λtf(t). (3.15)

The delta function in Eq. (3.14) selects paths that satisfy W(s) = c− x. Since the

Brownian motion W(t) starts at the origin, and we want to select Brownian paths

starting from W = 0 and propagating to W = c, we should only consider the solution

at the origin f(x = 0). In that case, the path integral (3.14) satisfies the steady-state
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diffusion equation

1

2
∇2f − [V (x) + λ]f + δ(x− c) = 0, (3.16)

which can be solved analytically for simple potentials V (x). The closed form for

the path integral is then found by inverting the Laplace transform on the analytical

solution to Eq. (3.16). These path integral expressions will also be used to develop

analytical expressions for both open paths where c 6= 0, and closed paths c = 0.

The path integral results for open paths can be used to find the ensemble averaged

solution between two points x = 0 and c. The results can be applied to paths between

any pair of positions xk and xk+1, by translating all positions in the path integral

by xk so that that the starting point of the path coincides with the origin. This is

particularly useful in applying these results to accelerating numerical computations,

as will be discussed further in Chapter V.

It might seem circular having passed from wave equations that are too hard to

solve, to path integrals, and back to diffusion equations that can only be solved in

particular geometries. However, the path integral provides a way to join together

results from a simpler geometry to calculate results in a more complicated geometry.

For example, at each step of the path, planar results could be used to estimate

a potential, by treating the bodies in terms of their nearest tangent planes. This

is not the same approximation as the proximity force approximation discussed in

Section 1.3.1, which approximates the bodies globally by the tangent planes. This

is a local approximation based on a particular point in space. As the path steps

through space, the nearest tangent plane will vary, but assuming that each step is

small relative to the scale over which the potential changes, the contribution from

each step should be well approximated by the interaction with a single plane. These
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contributions could be accumulated along the path to develop the full path integral

solution, even in potentials that might not be directly solvable in a global sense.

The remainder of this chapter is devoted to solving the diffusion equation (3.16)

for some simple planar geometries. These geometries are important for analytically

calculating Casimir and Casimir–Polder energies from the worldline path integrals.

3.2. Single Step Potential

As a first example, consider a step potential V = χΘ(x − d). [As noted earlier,

this is closely related to the sojourn time for a Brownian bridge (Hooghiemstra, 2002).]

The step potential will be used to compute the Casimir–Polder energy for an atom

above a dielectric half-space. Throughout what follows, we will work in one spatial

dimension. In this case, f solves

1

2
∂2
xf − [χΘ(x− d) + λ]f + δ(x) = 0 (3.17)

In general the solutions are of the form,

f(x) = Aeκx +Be−κx, (3.18)

where κ will be determined by solving the differential equation in each region of

constant dielectric, and A and B will be determined by the boundary conditions at

the discontinuities. The boundary conditions follow from integrating the diffusion

equation across the relevant discontinuity. At finite step discontinuities (such as at

x = d), the solution and its derivative must be continuous across the surface,

∂xf(d+ 0+)− ∂xf(d− 0+) = 0 f(d+ 0+)− f(d− 0+) = 0, (3.19)
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where 0+ indicates the limit of approaching zero from above. At a delta function

singularity the derivative of the solution is discontinuous, but the function itself is

continuous,

∂xf(0+)− ∂xf(−0+) = −2 f(d+ 0+)− f(d− 0+) = 0. (3.20)

Then assuming d > 0 and taking the bounded solution in each region, the solution is

f(x) =


Ae
√

2λx x < 0

Be
√

2λx + Ce−
√

2λx 0 < x < d

De−
√

2(λ+χ)x x > d.

(3.21)

The coefficients are determined by applying the boundary conditions at the interfaces

at x = 0 and x = d. This was done using Mathematica to speed up the tedious

algebraic work. The worldline path integral solution only requires f(x = 0), so only

A needs to be found. The A coefficient is given by

A =
1√
2λ

+ r(TE) e−2
√

2λd, (3.22)

where

r(TE) =

√
λ−
√
λ+ χ√

λ+
√
λ+ χ

. (3.23)

The reflection coefficient r(TE) plays the same role as the TE-reflection coefficients

in the Lifshitz formula. A similar computation can be carried out for d < 0, which
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corresponds to finding the solution inside the medium. The solution for both cases is

fTE,1(x) =


1√
2λ

[
1 + r(TE) e−2

√
2λd
]

d > 0

1√
2(λ+ χ)

[
1− r(TE) e−2

√
2(λ+χ)d

]
d < 0.

(3.24)

The subscript denotes the relevance of this solution to a single body in the TE

polarization. This solution is explicitly related to the path integral via

fTE,1 =

∫ ∞
0

dT e−λT
〈〈
δ(x)e−χΘ[x(T )−d]

〉〉
=

∫ ∞
0

dT e−λT
〈〈
e−χ

∫ T
0 dtΘ[x(T )−d]

√
2πT

〉〉
x(T )

,

(3.25)

where the first ensemble average is over free, unconstrained Wiener paths, while the

second is over Brownian bridges that satisfy x(0) = x(T ) = 0. The factor of
√

2πT is

the normalization for using closed Brownian bridges. In this case, we will not invert

the Laplace transform, since in Chapter IV we will convert the relevant Casimir

energies to exploit these analytical expression.

It is possible to generalize this calculation to compute the equivalent formulae

for open Brownian bridges from 0 → c, as discussed in Appendix B of Mackrory

et al. (2016). These formulae may be useful in accelerating numerical techniques,

with relatively coarse bridges.

3.2.1. Planar Dirichlet Conditions

It is possible to take the strong-coupling limit where χ → ∞. In that Dirichlet

limit, r(TE) → −1, and the solution vanishes on the surface. The path integral solution

is

fD,1(x) =


1√
2λ

[
1− e−2

√
2λd
]

d > 0

0 d < 0

(3.26)
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The path integral can be converted back to the time domain by inverting the Laplace

transform using

L−1

(
1√
2λ
e−2
√

2λd

)
=

1√
2πt

e−d
2/(2t), (3.27)

with the result

fD,1(x) =


1√
2πt

(
1− e−d2/2t

)
x < d

0 x > d.

(3.28)

As paths get closer to the surface, or as the time increases, the probability of touching

the surface increases, so the solution approaches zero. The solution also vanishes for

points starting inside the surface.

Given the prevalence of the Dirichlet worldline path integral discussed in

Section 1.5, it would be useful to develop an analytical expression for open paths

from x = 0 to x = c, interacting with V (x) = κδ(x − d). In this case, the solution

is non-zero for x > d, but only vanishes for paths that touch the surface at x = d.

This result can straightforwardly be generalized to open Brownian bridges for paths

between x and y, and a surface at d, by taking c → x − y, d → d − x. The solution

can be derived, and after taking κ→∞, the solution is

fD,1(x, y) =


e−(x−y)2/2t

√
2πt

(
1− e−2(d−x)(d−y)/t

)
(d− x)(d− y) > 0

0 (d− x)(d− y) < 0.

(3.29)

The lower solution applies when x and y are on different sides of the surface and the

path must cross through. The upper solution applies when the points are both on the

same side. As the points x and y get closer to the surface, the probability of touching

the surface increases, and the amplitude of the solution decreases.
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3.3. Two Step Potentials

The next case of importance is for two step potentials with interfaces at x = d1

and x = d2, where the distance between them is d = d1−d2. The combined potential

is V = χ1Θ[d1− x] +χ2Θ[x− d2]. This potential is useful for analytically calculating

the Casimir energy between two dielectric half-spaces, or the Casimir–Polder energy

for an atom between two half-spaces. The same procedure as a single half-space can

be used, albeit with another set of boundary conditions to manage. The solution and

its derivative must be continuous at both surfaces.

Skipping what is some tedious algebra, the solution for closed Brownian paths

can be be written in each of three regions: Region I is inside the left hand body with

x0 < d1, Region II is between the bodies with d1 < x0 < d2, and Region III is inside

the right hand body with d2 < x0. The reflection coefficients for each body are given

by

r(TE)

i =

√
λ−
√
λ+ χi√

λ+
√
λ+ χi

. (3.30)

The solutions for each region are

f
(I)
TE,12(x0) =

1√
2(λ+ χ1)

+ e−2
√

2(λ+χ1)(d1−x0) r(TE)

2 e−2
√

2λd − r(TE)

1√
2(λ+ χ1)(1− r(TE)

1 r(TE)

2 e−2
√

2λd)

(3.31a)

f
(II)
TE,12(x0) =

1√
2λ

+
2r(TE)

1 r(TE)

2 e−2
√

2λd + r(TE)

1 e2
√

2λ(d1−x0) + r(TE)

2 e−2
√

2λ(d2−x0)

√
2λ(1− r(TE)

1 r(TE)

2 e−2
√

2λd)

(3.31b)

f
(III)
TE,12(x0) =

1√
2(λ+ χ2)

+ e2
√

2(λ+χ2)(d2−x0) (r(TE)

1 e−2
√

2λd − r(TE)

2 )√
2(λ+ χ2)(1− r(TE)

1 r(TE)

2 e−2
√

2λd)
.

(3.31c)

101



The “12” subscript indicates that both the first and second bodies are present. The

equivalent single body expressions can be derived from these. For example, the

solution for body 1 can be found by keeping d1 fixed, but taking the limit where

d and d2 approach positive infinity.

The solutions all involve 1 − r(TE)

1 r(TE)

2 e−2
√

2λd in the denominators. This factor

was previously encountered in deriving the Lifshitz formula in Section 1.1.2.1, so its

presence is perhaps not surprising. However, in this case there is no need to make

any conditions on which modes contribute. In addition, this derivation assumes there

is vacuum between the dielectrics, although it could be easily generalized.

We will not attempt to invert the Laplace transform to find the solution in the

time domain. Later we will transform the worldline energy into a suitable form to

use these results as written. However, in the strong coupling (r(TE)

i → −1) limit, the

Laplace transform can be inverted. In that case the denominator can be expanded by

using (1 − e−2
√

2λd)−1 =
∑∞

n=0(−1)ne−2n
√

2λd since e−2
√

2λd < 1. The nth order term

corresponds to the nth reflection from the far surface. After inverting the Laplace

transforms, each Gaussian in the sum would be of the form exp[−2(n + 1)2d2/t],

corresponding to the probability for a Brownian path to bounce n+ 1 times between

two surfaces a distance d apart. This naturally goes over to the reflection picture for

the Dirichlet scalar discussed by Steck (2015, Section 21.1.5.3 ).

3.4. Feynman–Kac Formula for Singular Potentials

The same methods can be used to yield sensible, finite results for worldline path

integrals involving singular potentials, such as VTE and VTM where

VTM(x− d) =
1

2

[
(∂x log

√
ε)2 − ∂2

x log
√
ε
]
. (3.32)
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(We will focus on VTM, since µr = 1 for almost all materials, so VTE = 0.)

For a dielectric-vacuum interface described by εr = 1 + χΘ(x− d), the resulting

potential is highly singular. The first derivative of a step function is a delta function,

and the second derivative is δ′, or the derivative of a delta function. We define a

parameter Ξ := log
√

1 + χ, which implies log
√
εr(x) = ΞΘ(x− d). If the derivatives

are taken directly then the potential is given by

VTM(x− d,Ξ) ∼ 1

2

[
Ξ2δ2(x− d)− Ξδ′(x− d)

]
, (3.33)

which involves the square of the delta function! The only way to make sense of this

is to regularize the singularity in the step function, and take the limit of vanishing

regularization at the end of the computation.

We will consider an exponential interpolation of the dielectric between the two

values 1 and 1 +χ, over a distance a, so that the logarithm of the dielectric can then

be written

log

√
ε

(a)
r (x) =


0 x < d

Ξ

a
(x− d) d < x < d+ a

Ξ x > d+ a

. (3.34)

The regularized TM potential is now given by

V
(a)

TM (x− d,Ξ) =
Ξ2

2a2
Θ(x− d)Θ(d+ a− x)− Ξ

2a
[δ(x− d)− δ(x− d− a)

]
, (3.35)

as sketched in Figure 3.1. The only singularities present are the delta functions from

the second derivative. The potential is still singular, and it is difficult reliably simulate

for a single path as a → 0. However, the ensemble averaged expression over many

such paths is well behaved.
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FIGURE 3.1. Schematic drawing of a regularized TM potential (3.35) at a regularized
dielectric surface. Vertical arrows denote delta functions with heights Ξ/a, and solid
rectangle marks the step function of height (Ξ/a)2.

3.4.1. Transfer Layer Boundary Conditions for the TM Potential

We will now show that the regularized TM potential (3.35) imposes an effective

boundary condition at the interface. The diffusion equation can be solved inside the

boundary layer x ∈ (d, d + a), and all references to the interior can be eliminated.

The result of this will be conditions relating the solution and its derivatives on either

side of the surface. Points starting inside the surface will not be considered, since the

surface is infinitesimally thin.

The analytical solutions for the path integral obey

1

2
∂2
xf =

(
λ+

Ξ2

2a2
Θ(x− d)Θ(d+ a− x)− Ξ

2a
[δ(x− d)− δ(x− d− a)]

)
f. (3.36)

Since a is small, Ξ/a is large relative to λ, so λ can be ignored in the thin-surface

limit. At x = d, and x = d+ a, the delta function boundary conditions (3.20) will be

enforced.

104



Let fmid be the solution in the middle region for x ∈ (d, d+ a),

fmid =BeΞx/a + Ce−Ξx/a, (3.37)

where B and C are constants to be determined. Let the solution from the left be

f1 := f(d − 0+), and the gradient ∂xf1 := ∂xf(d − 0+), with corresponding solution

on the right f2 := f(d + a + 0+), ∂xf2 := f(d + a + 0+). The external solutions are

assumed to be independent of a. The continuity conditions at x = d and x = d + a

require that

fmid(d)− f1 = 0 (3.38a)

f2 − fmid(d+ a) = 0 (3.38b)

∂xfmid(d)− ∂xf1 = −Ξ

a
f1 (3.38c)

∂xf2 − ∂xfmid(d+ a) = +
Ξ

a
f2. (3.38d)

These equations can be solved for the internal parameters B and C, as well as two of

the external parameters, f2 and ∂xf2 in terms of f1 and ∂xf1.

The continuity conditions in Eqs. (3.38a) and (3.38b) require that

f1 = BeΞd/a + Ce−Ξd/a (3.39)

f2 = BeΞd/a+Ξ + Ce−Ξd/a−Ξ. (3.40)
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The derivative conditions in Eqs. (3.38c) and (3.38d) then require that

∂xf1 = 2
Ξ

a
BeΞd/a (3.41)

∂xf2 = 2
Ξ

a
BeΞd/aeΞ, (3.42)

where the continuity conditions have been exploited. From the derivative

conditions (3.41) and (3.42), ∂xf1 and ∂xf2 can be related to one another:

∂xf2 = eΞ∂xf1. (3.43)

In addition, under the assumption that the external gradients ∂xf1 and ∂xf2 are

independent of a and of order one, then Eq. (3.41) implies that B ∼ O(a), since B/a

is proportional to ∂xf1. That implies that in the continuity conditions (3.39) and

(3.40), B is much smaller than C which must also be order one. On setting B = 0, it

is clear from Eqs. (3.39)-(3.40) that

f2 = e−Ξf1. (3.44)

At this point, the a → 0 limit can be taken, since the conditions between the

solutions outside the boundary layer have been derived. The regularized dielectric

step produces the following effective boundary boundary conditions at an interface:

f(d+ 0+) = e−Ξf(d− 0+) ∂xf(d+ 0+) = eΞ∂xf(d− 0+). (3.45)

These boundary conditions can then be used to find the ensemble averaged solution

for the regularized TM potential.
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3.4.2. Finding the Path Integral Solution for the TM Potential

We aim to find a closed form solution for the path integral over paths starting

at x = 0 and terminating at x = c after time t, and interacting with potential VTM:

fTM−BC =

∫ ∞
0

dt e−λt
e−c

2/(2t)

√
2πt

〈〈
e−

∫ T
0 dt VTM(x−d,Ξ)

〉〉
. (3.46)

The Gaussian factor is the probability density for a 1D Brownian bridge between

x = 0 and c in time t. This path integral is found by solving

0 =
1

2
∂2
xfTM−BC − [VTM(x− d,Ξ) + λ]fTM−BC + δ(x− c), (3.47)

where TM boundary conditions (3.45) are imposed at x = d, and delta function

boundary conditions (3.20) are imposed at x = c. The solutions naturally decompose

into two cases: one where the end points of the path are on the same side of the

surface, and another where the points are on different sides. When both points are

on the same side, or d(d− c) > 0, the solution at x = 0 is

fTM−BC =
e−
√

2λ|c|
√

2λ
+ sgn(d)

e−
√

2λ|2d−c|
√

2λ

e2Ξ − 1

e2Ξ + 1
, (3.48)

where sgn(x) is the signum function: sgn(0) = 0, sgn(x > 0) = 1, sgn(x < 0) = −1.

When the paths cross through the surface since x = 0 and x = c are on different sides

of the surface, the solution at x = 0 is

fTM−BC =
e−
√

2λ|c|
√

2λ

2eΞ

1 + e2Ξ
. (3.49)
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The material constants can be rewritten in terms of χ, by using Ξ = log
√

1 + χ, with

the result

tanh Ξ =
e2Ξ − 1

e2Ξ + 1
=

χ

2 + χ
=
εr − 1

εr + 1
(3.50)

sech Ξ =
2eΞ

1 + e2Ξ
=

2
√

1 + χ

2 + χ
. (3.51)

In both cases the Laplace transforms in λ can be inverted yielding Gaussians [following

from Eq. (3.27)]. After canceling out the Gaussian factor e−c
2/(2t)/

√
2πt, the analytical

expression for the path integral is

〈〈
e−

∫ t
0 dt
′ VTM(x−d,Ξ)

〉〉
=

 1 + sgn(d) tanh Ξ e−2d(d−c)/t d(d− c) > 0

sech Ξ d(d− c) < 0.
(3.52)

This result is absolutely crucial for developing numerical methods for the TM

polarization. Even the regularized potential is too unruly to handle on a single

path wise basis. The analytical solution smooths the result out by averaging over

all possible sub-paths. The result can be extended to include any starting point xi

by shifting d→ d− xi, and identifying c = xf − xi, where xf is the final point.

The potential has been plotted in Figure 3.2 as a function of ending point for

paths starting inside and outside the dielectric step. Note that the potential leads to

larger values on the vacuum side of the interface, and suppresses values for starting

points inside the surface or paths that must cross the surface.

In the strong-coupling limit tanh Ξ → 1, sech Ξ → 0, and the solution for paths

starting at the origin is

fN = Θ[d(d− c)]e
−c2/2t
√

2πt

(
1 + sgn(d)e−2d(d−c)/t

)
. (3.53)
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FIGURE 3.2. Plot of ensemble-averaged TM solution (3.52) outside dielectric step at
the origin εr = 1 + χΘ(x) for various various χ, as function of final position x. The
top plot considers paths starting outside medium at x0 = −1, while the lower plot
considers paths starting inside the medium at x0 = 1.
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This is in some sense dual to the solution for open paths in the Dirichlet limit (3.29).

In that case paths reflect off with the opposite phase, leading to a value of zero on

the boundary. Here, the paths reflecting off the surface add in phase, suggesting

a correspondence to Neumann boundary conditions. However, this does not hold

for paths starting inside the body, where the solution is the same as for Dirichlet

boundary conditions (3.29).

3.5. Single TM potential and Step

Next, we consider a dielectric step combined with a TM boundary condition.

This is required to analytically compute the TM component of the Casimir–Polder

energy for an atom near a dielectric half-space. We will only develop the solution for

closed paths. The path integral

fTM,1 =

∫ ∞
0

dt e−λt
1√
2πt

〈〈
e−

∫ t
0 dt
′ [VTM(x−d,Ξ)+χΘ(x−d)]

〉〉
, (3.54)

is the steady-state solution to

∂tfTM,1 =
1

2
∂2
xfTM,1 − [VTM(x− d,Ξ) + χΘ(x− d) + λ]fTM,1 + δ(x). (3.55)

The analytical expression is found by solving the diffusion equation directly, with TM

boundary conditions (3.45) at x = d and delta function boundary conditions (3.20)

at x = 0. The solution for a single TM body is

fTM,1(x) =


1√
2λ

(
1 + r(TM)e−2

√
2λd
)

d < 0

1√
2(λ+ χ)

(
1− r(TM)e−2

√
2(λ+χ)d

)
d > 0,

(3.56)
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where

r(TM) =

√
λe2Ξ −

√
λ+ χ√

λe2Ξ +
√
λ+ χ

. (3.57)

The reflection coefficient r(TM) corresponds to the TM reflection coefficient used in

Section 1.1.2.1, since e2Ξ = 1 + χ. This calculation can also be naturally extended to

include a magnetic response. The parameter Ξ is defined in relation to the potential

VTM, while χ relates to the step discontinuity. To include a magnetic response, one

could take χ → (εrµr − 1) and leave Ξ unchanged. Similar reasoning could apply

these results to the TE potential, after the εr ↔ µr duality transformation is carried

out.

3.6. Two TM Step Potentials

The preceding calculations can be extended to handle two planar dielectric half-

spaces subject to TM boundary conditions. This time, the solution is the path integral

for a potential

V = χ1Θ(d1 − x) + χ2Θ(x− d2) + VTM(d1 − x,Ξ1) + VTM(x− d2,Ξ2). (3.58)

In this case a little care is needed in defining the boundary conditions at the left hand

surface. Since the left body has the opposite orientation (the permittivity decreases

as x increases at x = d1), the correct TM potential for the left body has Ξ1 →

−Ξ1 replaced everywhere. This change reverses the nature of the effective boundary

conditions at the surface: if passing through the surface decreases the function, and

increases the gradient, then traversing the surface in the opposite direction should
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have the opposite effect. So at the left hand surface, the boundary conditions are

f(d1 + 0+) =eΞ1f(d1 − 0+) ∂xf(d1 + 0+) = e−Ξ1∂xf(d1 − 0+). (3.59)

The resulting solutions have the same form and structure as the TE solutions, but

with the TE reflection coefficients replaced by their TM counterparts. The two-body

TM solution can be written in the same three regions as two-body TE solution:

f
(I)
TM,12(x) =

1√
2(λ+ χ1)

+ e−2
√

2(λ+χ1)(d1−x0) r(TM)

2 e−2
√

2λd − r(TM)

1√
2(λ+ χ1)(1− r(TM)

1 r(TM)

2 e−2
√

2λd)

(3.60a)

f
(II)
TM,12(x) =

1√
2λ

+
2r(TM)

1 r(TM)

2 e−2
√

2λd + r(TM)

1 e2
√

2λ(d1−x0) + r(TM)

2 e−2
√

2λ(d2−x0)

√
2λ(1− r(TM)

1 r(TM)

2 e−2
√

2λd)

(3.60b)

f
(III)
TM,12(x) =

1√
2(λ+ χ2)

+ e2
√

2(λ+χ2)(d2−x0) (r(TM)

1 e−2
√

2λd − r(TM)

2 )√
2(λ+ χ2)(1− r(TM)

1 r(TM)

2 e−2
√

2λd)
,

(3.60c)

where the TM reflection coefficients for each body are given by

r(TM)

i =
e2Ξi
√
λ−
√
λ+ χi

e2Ξi
√
λ+
√
λ+ χi

. (3.61)

This result contains all of the previous results for closed paths. The TE results

are recovered by taking Ξ → 0. In taking χ → 0 while leaving Ξ fixed, only the

TM boundary conditions are present, and this is the solution for two TM boundary

conditions with opposite orientations. The equivalent single body results can be found

by moving the other body arbitrarily far away.
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These formulae are most useful for showing the analytical agreement with existing

Casimir energy results. The next chapter uses the results from this chapter to

derive known analytical results for Casimir and Casimir–Polder energies for both

polarizations from the worldline formalism.
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CHAPTER IV

ELECTROMAGNETIC WORLDLINES: ANALYTICAL RESULTS

This chapter shows that in planar media the worldline path integrals yield the

same results as the more direct calculations outlined in Chapter I. Section 4.1 extracts

the Casimir–Polder energy from the worldline expressions by treating the atom

as a localized perturbation. The resulting Casimir–Polder worldline path integrals

given for non-magnetic media by Eqs. (4.14) and (4.15). Section 4.2 then uses the

Laplace–Mellin transform (4.18) and the inverse moment theorem (4.22) to rewrite

the worldline expressions so that the analytical solutions from Chapter III can be

substituted into the worldline path integral. Sections 4.3–4.6 show that the worldline

expressions yield the correct Casimir and Casimir–Polder energies for the TE and TM

polarizations in planar geometries. Finally, Section 4.7 examines the behavior of the

worldline path integrals in the case of nonzero temperature, and shows that known

results for the near-field and high temperature results emerge from this formalism.

[The work presented on the TE polarization was published as Mackrory et al.

(2016), and the work on the TM polarization is being prepared for publication.]

4.1. Extracting Casimir–Polder Energies

The Casimir–Polder energy for an atom interacting with macroscopic bodies

can be derived by treating the atom as a perturbation to the permittivity and

permeability. The atom is located at rA, and has static polarizability α0 and

magnetizability β0. The atom perturbs the background permittivity εr(r) → εr(r) +
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δεr(r), and permeability µr(r)→ µr(r) + δµr(r), where

δεr(r) =
α0

ε0
δ(r− rA), δµr(r) = µ0β0δ(r− rA). (4.1)

Note that the delta functions physically represent a sharply localized atom.

All expansions involving these delta functions can be carried out with a finite

regularization of the delta function, and the limit of an arbitrarily small particle can

be taken at the end of the computations. We will initially carry out calculations

for dispersion-free media, at zero temperature. The generalization to nonzero

temperature will be considered in Section 4.7.

The Casimir energy for TE and TM polarizations was derived in Chapter II. In

the zero-temperature limit, the energy in the EM field in the TE polarization is

ETE − E(0) = −~c
2

∫ ∞
0

dT
(2πT )D/2T

∫
dx0

〈〈
e−〈VTE(x)〉T√
〈εr(x)µr(x)〉

− 1

〉〉
x(t)

. (4.2)

The Casimir–Polder energy comes from expanding the energy to linear order in

the α0/ε0 and µ0β0. The expansions must be carried out in both 〈εrµr〉, and the

potential VTE. Considering the similarities between the polarizations, we will carry

these expansions out for only the TE polarization, since the TM results follow by

duality (2.4).

The energy (4.2) can be written as a functional of the permittivity and

permeability, E[εr, µr]. The change in energy for adding an atom is then

δE[εr, µr] = E[εr + δεr, µr + δµr]− E[εr, µr]. (4.3)
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The Casimir–Polder energy can be found by expanding the change in energy to

linear order in α0/ε0 and µ0β0, which corresponds to taking the following functional

derivatives:

VCP(rA) =
α0

ε0

δ

δεr(rA)
E + µ0β0

δ

δµr(rA)
E, (4.4)

where rA is the atom’s location. The Casimir–Polder energy must then be

renormalized by considering the change in the energy as the atom is removed

arbitrarily from the dielectric objects.

The expansion for the path-averaged permittivity and permeability is

〈(εr + δεr)(µr + δµr)〉−1/2 = 〈εrµr〉−1/2 − 1

2
〈µrδεr + εrδµr〉〈εrµr〉−3/2

= 〈εrµr〉−1/2 − 1

2

α0

ε0
〈µr(x)δ(x− rA)〉〈εrµr〉−3/2

− 1

2
µ0β0〈εr(x)δ(x− rA)〉〈εrµr〉−3/2. (4.5)

The singular potentials VTE, VTM can be expanded in the same fashion,

〈VTE[µr + δµr]〉 =
1

2

〈
(∇ log

√
µr + δµr)

2 −∇2 log
√
µr + δµr

〉
=〈VTE[µr]〉+

〈
1

4
∇ log µr · ∇

δµr

µr

− 1

4
∇2 δµr

µr

〉
. (4.6)

It is straightforward to then expand the exponential using

e−T 〈VTE[µr+δµr]〉 = e−T 〈VTE[µr]〉(1− T 〈δVTE[µr]〉), (4.7)

where δVTE is the second term in Eq. (4.6). The terms involving ∇δµr will yield

derivatives (such as ∇2) acting on the path integral after an integration by parts.

In all of these expansions, the path-averaged delta functions restrict the path
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integrals to paths starting at the atom’s position rA. The path integral can be

written schematically as some path-averaged function Φ(x), and a path-averaged

delta function,

I =

∫
dx0

〈〈
〈Φ(x)〉〈g(x)δ(x− rA)〉

〉〉
x(t)

. (4.8)

In discrete notation this is

I =

∫ N−1∏
n=0

dxn P (x0, . . . ,xN−1)
1

N

N−1∑
k=0

Φ(xk)
1

N

N−1∑
j=0

δ(xj − rA)g(xj) (4.9)

where the delta function enforces path closure. All of the functions are invariant under

cyclic permutations of the path labels. This is true of the path-averaged functions

such as 〈εrµr〉 and 〈VTM〉, and the Gaussian probability for closed Brownian bridges.

Then for each term δ(xj − rA), the labels can be permuted j times so that in the

shifted coordinates xj → x0. Since there is now a sum of N identical terms, the path

integral can be written as

I =

∫ N−1∏
n=0

dxn P (x0, . . . ,xN−1)
N−1∑
k=0

Φ(xk)δ(x0 − rA)g(x0) =
〈〈
〈Φ〉g(rA)

〉〉
x(t),x(0)=rA

.

(4.10)

Since only paths the satisfy the delta function constraint will contribute to the path

integral, we are free to call the point at rA the path origin.

Using the results in Eqs. (4.5) and (4.6), the Casimir–Polder energy for the TE

polarization can be written

V (TE)

CP (rA) =
~c
4

∫ ∞
0

dT
(2πT )D/2T

∫
dx0

〈〈(
〈µrδεr + εrδµr〉
〈εrµr〉3/2

)
e−〈VTE〉T

+ e−〈VTE〉T T
2〈εrµr〉1/2

〈
(∇ log µr) · ∇

δµr

µr

−∇2 δµr

µr

〉〉〉
x(t)

. (4.11)
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Then after manipulating the path-averaged delta functions using Eq. (4.10), and

integrating by parts, the Casimir–Polder energy is

V (TE)

CP (rA) =
~c
4

∫ ∞
0

dT
(2πT )D/2T

〈〈(
α0µr(rA)

ε0〈εrµr〉3/2
+
β0µ0εr(rA)

〈εrµr〉3/2

)
e−〈VTE〉T

− T
2

β0µ0

µr(rA)

[
∇2 + (∇2 log µr) + (∇ log µr) · ∇

] e−〈VTE〉T

〈εrµr〉1/2

〉〉
x(t),x(0)=rA

.

(4.12)

Note that the gradients in parentheses such as (∇ log µr) should be interpreted as

functions, while the other gradient operators act on everything to their right. The

remaining gradients act with respect to the path origin x0 = rA. The corresponding

TM Casimir–Polder energy is given by

V (TM)

CP (rA) =
~c
4

∫ ∞
0

dT
(2πT )D/2T

〈〈(
α0µr(rA)

ε0〈εrµr〉3/2
+
β0µ0εr(rA)

〈εrµr〉3/2

)
e−〈VTM〉T

− T
2

α0

ε0εr(rA)

[
∇2 +∇2(log εr) +∇(log εr) · ∇

] e−〈VTM〉T

〈εrµr〉1/2

〉〉
x(t),x(0)=rA

.

(4.13)

These expressions can be further simplified if the atom is in a region where the

dielectric is not varying spatially [which implies that ∇ log
√
εr(rA) = 0], and we

consider non-magnetic atoms and media, so that β0 = 0 and µr = 1. In this case, the

TE and TM Casimir–Polder energies are given by

V (TE)

CP (rA) =
~cα0

4ε0(2π)D/2

∫ ∞
0

dT
T 1+D/2

〈〈
1

〈εr〉3/2
− 1

[εr(rA)]3/2

〉〉
x(t),x(0)=rA

(4.14)

V (TM)

CP (rA) =
~cα0

4ε0(2π)D/2

∫ ∞
0

dT
T 1+D/2

〈〈
e−〈VTM〉T

〈εr〉3/2
− 1

[εr(rA)]3/2

− T
2εr(rA)

∇2 e
−〈VTM〉T

〈εr〉1/2

〉〉
x(t),x(0)=rA

. (4.15)
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These expressions were renormalized by subtracting off the equivalent expressions

with a constant dielectric of permittivity εr(rA). This corresponds to finding the

change in energy for the atom when it is brought to a finite distance from the dielectric

interface, after starting arbitrarily far away. In non magnetic media, the TE Casimir–

Polder energy is the simpler case to evaluate since it only depends on 〈εr〉, which is

well behaved. By contrast, the TM Casimir–Polder energy involves the singular TM

potential, which implies the need for spatial derivatives. Both of those factors will

require some care in numerical methods involving stochastic paths interacting with

discontinuous or singular potentials.

4.2. Rearranging Worldline Casimir Energies

The TE and TM worldline energies can be some rewritten in a form better suited

to use the analytical results that were derived in Chapter III. This can be done with

two integral identities. The first identity converts the worldline path integral into a

form involving the Laplace transform of the path integral. The second identity puts

the prefactor 〈εr〉 in exponential form by means of the Gamma function.

4.2.1. Laplace–Mellin Transforms

The worldline path integral has the form of a Mellin transform. The Mellin

transform of a function f is defined as

M[f ](z) =

∫ ∞
0

dt tz−1f(t). (4.16)

The Mellin transform also appears in the context of ζ-function renormalization for

functional determinants (Elizalde, 2008), which is closely related to the worldline path
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integral. In the application to the worldline path integral, f will be the ensemble-

averaged path integral and z will be 1 +D/2.

There is a useful relationship between Laplace transforms and Mellin

transforms (Lew, 1975). The Laplace transform was defined in Eq. (3.15), and the Γ

function is defined as

Γ(z) =

∫ ∞
0

ds sz−1e−s =M[e−s](z). (4.17)

The Laplace–Mellin theorem (Lew, 1975) states that

Γ(1− z)M[f ](z) =M
[
L[f ]

]
(1− z). (4.18)

This relation is most easily motivated by starting with the right hand side:

M
[
L[f ]

]
(1− z) =

∫ ∞
0

ds s−z
∫ ∞

0

dt e−stf(t). (4.19)

The order of s and t integration can be swapped, and s→ t/u, with the result

M
[
L[f ]

]
(1− z) =

∫ ∞
0

dt

∫ ∞
0

du u−ze−u tz−1f(t) (4.20)

=Γ(1− z)M[f ](z). (4.21)

This result can be used to rewrite worldline path integrals in terms of their Laplace

transforms. This is useful since the solution method in Chapter III naturally yields

the Laplace transform of the path integral.
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4.2.2. Inverse Moment Theorem

One further step is required to put all of the material functions in the path

integral into exponential form. This is necessary since the solutions from the previous

chapter were for path integrals with exponential potentials. If positive powers were

required, then the usual moment generating tricks could be used such as 〈x〉n =

dn

dsn
e−s〈x〉

∣∣
s=0

. However, for the inverse moments required in the worldline method,

the following integral transformation involving the Gamma function can be used

1

Γ[a]

∫ ∞
0

ds sa−1
〈〈
e−s(x+β)

〉〉
=

〈〈
1

(x+ β)a

〉〉
. (4.22)

This is restricted to x+ β > 0 and a > 0. In the worldline calculations x+ β will be

〈εr(x)〉, where the dielectric function is real and positive. In addition, a will be 1/2

for Casimir energies, and 3/2 for Casimir–Polder energies, respectively.

4.2.3. Rewriting the Worldline in Analytical Form

As an example, consider the TE path integral, with dielectric function εr(x) =

1 + χ(x), where χ(x) is the space-dependent dielectric susceptibility. In both the

Casimir and Casimir–Polder cases, the energy involves the factor 〈εr〉−a, with a = 1/2

and a = 3/2 respectively. The energy density can be rewritten using the inverse

moment theorem (4.22):

∫ ∞
0

dT
T 1+D/2

〈〈
1

〈1 + χ(x)〉a

〉〉
x(t)

=

∫ ∞
0

ds
sa−1

Γ(a)

∫ ∞
0

dT
T 1+D/2−a

〈〈
e−sT −

∫ T
0 dt χ[x(t)]

〉〉
x(t)

.

(4.23)
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In the second equality the integration variable was rescaled to s → sT , and the

definition of the path average, 〈f〉 = T −1
∫ T

0
dt f(t) was used. The energy density

can be further transformed with the Laplace–Mellin theorem (4.18),

∫ ∞
0

dT
T 1+D/2

〈〈
1

〈1 + χ(x)〉a

〉〉
x(t)

=

∫ ∞
0

ds
sa−1

Γ(a)

∫ ∞
0

dλ
λ(D−n)/2−a

Γ[(D − n)/2− a+ 1]

×
∫ ∞

0

dT e−(λ+s)T

〈〈
e−s

∫ T
0 dt χ(x)

T n/2

〉〉
x(t)

.

(4.24)

In the last line T n/2 was factored out to act as the normalization for a n-dimensional

Brownian bridge, which assumes that the path integral solution was computed in n-

dimensions. We will typically work with planar media where n = 1. (Despite knowing

the specific values for a,D and n, it is useful to track them as algebraic variables

in calculations.) The Laplace transformed path integral can be computed as the

solution (3.14) to the relevant diffusion equation (3.16), as discussed in Chapter III.

4.3. Analytical TE Casimir–Polder Energy for an Atom and a Dielectric

Plane

The TE contribution to the Casimir–Polder energy for an atom interacting with

a dielectric body is given by combining these formal manipulations with the relevant

path integral solution. For an atom at the origin, interacting with a planar dielectric

interface εr(z) = 1 + χΘ(x − d), the path integral solution is given by Eq. (3.25).

After rescalings the path integral (3.25) with s → sχ, λ → λ + s, the renormalized
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TE Casimir–Polder potential can be written as

V (TE)

CP − V (0)
CP =− ~cα0

4ε0(2π)D/2

√
π

Γ[a]Γ [(D + 1)/2− a]

∫ ∞
0

ds sa−1

∫ ∞
0

dλ λ(D−1)/2−a

× e−2
√

2(λ+s)|d|
√
λ+ s

√
λ+ s(1 + χ)−

√
λ+ s√

λ+ s(1 + χ) +
√
λ+ s

. (4.25)

This can be put into the same form as the known results by changing integration

variables. The integral over s and λ have the form:

J =

∫ ∞
0

ds sa−1

∫ ∞
0

dλ λ(D−1)/2−a e
−2
√

2(λ+s)|d|
√
λ+ s

√
λ+ s(1 + χ)−

√
λ+ s√

λ+ s(1 + χ) +
√
λ+ s

. (4.26)

The integral can be transformed by changing variable from λ to p :=
√
λ/s+ 1,

J = 2

∫ ∞
0

ds sD/2−1

∫ ∞
1

dp (p2 − 1)(D−1)/2−ae−
√

8d2sp

√
p2 + χ− p√
p2 + χ+ p

. (4.27)

After changing variables from s to t :=
√

8d2s p, and swapping the t and p integrals,

the result is

J =
1

23D/2−2dD

∫ ∞
1

dp p−D(p2 − 1)(D−1)/2−a
√
p2 + χ− p√
p2 + χ+ p

∫ ∞
0

dt tD−1e−t. (4.28)

The t integral has the value Γ[D]. Substituting the transformed integral (4.28) back

into the Casimir–Polder energy (4.25), while setting D = 4 and a = 3/2 yields

V (TE)

CP − V (0)
CP = − 3~cα0

32ε0π2d4

∫ ∞
1

dp
1

2p4

√
p2 + χ− p√
p2 + χ+ p

. (4.29)

The prefactor is the Casimir–Polder energy for an atom above a perfect

conductor (1.16). This result agrees with the known result for the TE contribution
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to the Casimir–Polder energy [ see Eq. (14.210) in Section 14.3 of Steck (2015) ].

An “efficiency” ηTE can be defined by the ratio of the Casimir–Polder energy for an

atom and a dielectric to the Casimir–Polder energy between an atom and a perfect

conductor. The integral over p is the TE contribution to the efficiency, ηTE, and can

be evaluated in closed form:

ηTE(χ) =
1

2

∫ ∞
1

dp p−4p−
√
p2 + χ

p+
√
p2 + χ

=
1

3
+

2

χ
−
√
χ(χ+ 1)

χ3/2
− 1

4χ3/2
log
[
2χ+ 2

√
χ(χ+ 1) + 1

]
−

arcsinh
(√

χ
)

2χ3/2
.

(4.30)

The efficiency ηTE smoothly interpolates between 0 and 1/6 as χ varies from 0 to ∞.

In the strong-coupling limit, the TE polarization provides 1/6 of the Casimir–Polder

energy, and the remaining 5/6 is provided by the TM polarization.

4.4. Analytical TM Casimir–Polder Energy for an Atom and a Dielectric

Plane

The calculation for the TM Casimir–Polder energy proceeds in a similar fashion

to the TE case. The renormalized TM Casimir–Polder energy can be split into two

pieces

V (TM)

CP (rA)− V (0)
CP =

~cα0

4ε0(2π)D/2

(
VD,3/2 −

1

2
∇2V(D−2),1/2

)
, (4.31)

where

Vν,a :=

∫ ∞
0

dT
T 1+ν/2

〈〈
e−〈VTM〉T

〈εr〉a
− 1

〉〉
x(t),x(0)=rA

. (4.32)
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Each term Vν,a can in turn be transformed using the combination of the Laplace–

Mellin theorem and the inverse moment theorem:

Vν,a :=

√
π

Γ[a]Γ[(ν + 1)/2− a]

∫ ∞
0

dλ λ(ν−1)/2−a
∫ ∞

0

ds sa−1

×
∫ ∞

0

dT e
−(λ+s)T
√
T

〈〈
e−

∫ T
0 dt [VTM(x)+sχ(x)] − 1

〉〉
x(t),x(0)=rA

. (4.33)

Note that the TM potential is already in the exponential, so the TM potential and Ξ

does not need to be rescaled by s. The analytical result (3.56) can be substituted into

Eq. (4.33), and the integral can be transformed in the same manner as in Section 4.3,

with the result

Vν,a = −
√
πΓ[ν]

23ν/2−2dνΓ[a]Γ[(ν + 1)/2− a]

∫ ∞
1

dp
1

pν
(p2 − 1)(ν−1)/2−ape

2Ξ −
√
p2 + χ

pe2Ξ +
√
p2 + χ

.

(4.34)

The two cases of interest are for ν = 4, a = 3/2 and ν = 2, a = 1/2:

V4,3/2 = − 3

4d4

∫ ∞
1

dp
1

p4

pe2Ξ −
√
p2 + χ

pe2Ξ +
√
p2 + χ

(4.35)

V2,1/2 = − 1

2d2

∫ ∞
1

dp
1

p2

pe2Ξ −
√
p2 + χ

pe2Ξ +
√
p2 + χ

. (4.36)

In Eq. (4.31), the derivatives with respect to the starting position rA are equivalent to

derivatives with respect to the distance d. After substituting these expressions back

into the atom-surface energy (4.31), the TM Casimir–Polder energy is given by

V (TM)

CP (rA)− V (0)
CP = − 3~cα0

32π2ε0d4

∫ ∞
1

dp
1

2p4
(1− 2p2)

p(1 + χ)−
√
p2 + χ

p(1 + χ) +
√
p2 + χ

, (4.37)
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where we used e2Ξ = 1+χ. This agrees with the Lifshitz results for the TM Casimir–

Polder energy for an atom near a dielectric half-space [Eq. (14.205) in Steck (2015) ].

The TM efficiency ηTM also has a closed-form expression,

ηTM(χ) :=
1

2

∫ ∞
1

dp p−4(1− 2p2)
p(1 + χ)−

√
p2 + χ

p(1 + χ) +
√
p2 + χ

=
7

6
+ χ+

2− (1 + χ)3/2

2χ
−

arcsinh
√
χ

2χ3/2
[1 + χ+ 2χ2(1 + χ)]

+
(1 + χ)2

√
2 + χ

[
arcsinh

√
1 + χ− arcsinh

(
1√

1 + χ

)]
, (4.38)

which smoothly interpolates between 0 and 5/6 as χ increases from 0 to∞. The TM

polarization provides the majority of the Casimir–Polder energy for between an atom

and a dielectric plane. From the worldline point of view, most of the TM energy

comes from the term involving −∂2
dV2,1/2/2, which suggest it is essential to correctly

estimate the derivatives in a numerical procedure.

4.5. Analytical TE Casimir Energy between Two Dielectric Planes

The Casimir energy for two dielectric planes can also be calculated within this

formalism. The dielectric function is given by

εr,12(x) = 1 + χ1Θ(d1 − x) + χ2Θ(x− d2). (4.39)

The calculation proceeds in the same way, except for two changes. First, the Casimir

energy requires a further integral over the starting points of the paths. Second, the

two-body interaction energy is found by subtracting the one-body energies involving

εr,1 and εr,2 from the two-body expressions with εr,12. This subtraction renormalizes

the energy by considering the change in energy as the two dielectrics are moved from
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arbitrarily far apart to a finite distance from one another. The fully renormalized

Casimir energy between two planes is

ETE − E(0) = − ~c
2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dx0

〈〈(
1√
〈εr,12〉

− 1√
εr,12(x0)

)
−
(

1√
〈εr,1〉

− 1√
εr,1(x0)

)
−
(

1√
〈εr,2〉

− 1√
εr,2(x0)

)〉〉
x(t)

. (4.40)

Each term is renormalized by subtracting off the constant value of the dielectric

evaluated at the start of the paths. This is chosen to eliminate the T = 0 divergence

from each term individually. (In this case it is also possible to renormalize the energy

by instead subtracting off the value of the surrounding medium, which is vacuum in

this case.) Subtracting off the one-body energies then removes the divergences that

occur at the interfaces at x0 = d1 and x0 = d2, where at small T paths can enter a

region of different dielectric constant, leading to a non-zero integrand.

The Casimir energy can be recast using the inverse moment Laplace–Mellin

theorems as

ETE − E(0) = − ~c
2(2π)D/2

∫ ∞
0

ds
sa−1

Γ(a)

∫
dλ

λ(D−1)/2−a

Γ[(D + 1)/2− a]

×
∫
dx0

[(
f (TE)

12 (x0)− f (0)
12

)
−
(
f (TE)

1 (x0)− f (0)
1

)
−
(
f (TE)

2 (x0)− f (0)
1

)]
.

(4.41)

The values for a = 1/2 and D = 4 will be used at the end of the computation.

The solutions f (TE)

i are the path integral solutions derived in Eqs. (3.25) and (3.31)

for one and two dielectric steps respectively. These are renormalized by subtracting

f
(0)
i , the solution for a constant dielectric filling space. The spatial integral can

be carried out for each of the three regions: Region I where x0 < d1, Region II
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where d1 < x0 < d2, and Region III where d2 < x0. Fortunately, the solutions are

simple exponentials in x0, making these integrals straightforward. This calculation

is deferred to Appendix A, since simplifying the expressions is straightforward, but

messy. The integrated, renormalized solution can be written as

∫ ∞
−∞

dx0

([
f (TE)

12 (x0)− f (0)
12

]
−
[
f (TE)

1 (x0)− f (0)
1

]
−
[
f (TE)

2 (x0)− f (0)
2

])
=

A
√
πr(TE)

1 r(TE)

2 e−2
√

2(λ+s)d√
(λ+ s)(1− r(TE)

1 r(TE)

2 e−2
√

2(λ+s)d)

(
2d+

√
2√

λ+ s(1 + χ1)
+

√
2√

λ+ s(1 + χ2)

)
,

(4.42)

where A is the (infinite) transverse area of the dielectric planes, and the reflection

coefficients for each surface are

r(TE)

i =

√
λ+ s−

√
λ+ s(1 + χi)√

λ+ s+
√
λ+ s(1 + χi)

. (4.43)

In order to recover a finite quantity it is necessary to calculate the energy per unit

area. The integrals can be transformed into Lifshitz form via similar transformations

to those used previously. The integration variable λ is transformed to p :=
√
λ/s+ 1,

with the result

ETE − E(0)

A
= − ~c

(2π)D/2
√
π

∫ ∞
0

ds
s(D−2)/2

Γ(a)

∫ ∞
1

dp
(p2 − 1)(D−1)/2−a

Γ[(D + 1)/2− a]

× r(TE)

1 r(TE)

2 e−2
√

2spd

(1− r(TE)

1 r(TE)

2 e−2
√

2spd)

(
2d+

√
2√

s(p2 + χ1)
+

√
2√

s(p2 + χ2)

)
, (4.44)

where the reflection coefficients are now given by

r(TE)

i =
p−

√
p2 + χi

p+
√
p2 + χi

. (4.45)
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Next, the s integral is transformed s to t =
√

2s, then the t and p integrals are

swapped, and finally the values of a = 1/2 and D = 4 are used. The result of those

manipulations is

ETE − E(0)

A
= − ~c

8π2

∫ ∞
0

dt t3
∫ ∞

1

dp (p2 − 1)

× r(TE)

1 r(TE)

2 e−2tpd

(1− r(TE)

1 r(TE)

2 e−2tpd)

(
2d+

2

t
√
p2 + χ1

+
2

t
√
p2 + χ2

)
. (4.46)

Finally, the integral can be simplified by integrating by parts with respect to p. The

following derivatives will be of use:

dr(TE)

i

dp
=

d

dp

p−
√
p2 + χi

p+
√
p2 + χi

=
−2r(TE)

i√
p2 + χi

(4.47)

d

dp
log[1− r(TE)

1 r(TE)

2 e−2tpd] =
r(TE)

1 r(TE)

2 e−2tpd

1− r(TE)

1 r(TE)

2 e−2tpd

(
2td+

2√
p2 + χ1

+
2√

p2 + χ2

)
.

(4.48)

The TE Casimir energy between two half-spaces is then

ETE − E(0)

A
= − ~c

8π2

∫ ∞
0

dt t3
∫ ∞

1

dp (p2 − 1)
d

dp

[
1

t
log(1− r(TE)

1 r(TE)

2 e−2tpd)

]
=

~c
4π2

∫ ∞
0

dt t2
∫ ∞

1

dp p log(1− r(TE)

1 r(TE)

2 e−2tpd), (4.49)

since the boundary term from the integration by parts vanishes. This is exactly

the TE component of the Lifshitz energy that was derived by more straightforward

means in Section 1.1.2.1. In this derivation, the gap between the spaces was filled

with vacuum (ε3 = 1). The TE Casimir energy per unit area can be written as

ETE − E(0)

A
= − ~cπ2

720d3
γTE(χ1, χ2), (4.50)
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where the prefactor is the perfect conductor Casimir energy, and the efficiency γTE is

γTE(χ1, χ2) := − 180

π4d3

∫ ∞
0

dt t2
∫ ∞

1

dp log[1− r(TE)

1 r(TE)

2 e−2tpd]. (4.51)

The efficiency is the ratio of the TE Casimir energy between the dielectrics to the

total Casimir energy between perfectly-conducting plates at the same distance. In

this case, γTE increases monotonically between 0 and 1/2 as both χ1 and χ2 increase

from 0 to ∞. Note that both the TE and TM polarizations contribute equally to the

Casimir energy in the strong-coupling limit.

4.6. Analytical TM Casimir Energy between Two Dielectric Planes

The TM Casimir energy calculation is carried out in a similar manner to the

TE case. Despite the similarities between the two solutions, it is still necessary to

check that this calculation also works, since the differences in the reflection coefficients

may upset the cancellations that occurred. The renormalized two-body TM Casimir

interaction energy is

ETM − E(0) = − ~c
2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dx0

〈〈(
e−T 〈V

(1)
TM+V

(2)
TM〉√

〈εr,12〉
− 1√

εr,12(x0)

)
−
(
e−T 〈V

(1)
TM〉√
〈εr,1〉

− 1√
εr,1(x0)

)
−
(
e−T 〈V

(2)
TM〉√
〈εr,2〉

− 1√
εr,2(x0)

)〉〉
x(t)

.

(4.52)

In addition to the two-body dielectric function εr,12, the path integral is augmented

by the TM potentials at both surfaces V
(1)

TM and V
(2)

TM . The TM potentials all vanish in

the renormalization terms, which are evaluated for the case of a constant dielectric.
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After the Laplace–Mellin and inverse moment transforms, the TM Casimir energy is

ETM − E(0) = − ~c
2(2π)D/2

∫ ∞
0

ds
sa−1

Γ(a)

∫ ∞
0

dλ
λ(D−1)/2−a

Γ[(D + 1)/2− a]

×
∫
dx0

[(
f (TM)

12 (x0)− f (0)
12

)
−
(
f (TM)

1 (x0)− f (0)
1

)
−
(
f (TM)

2 (x0)− f (0)
1

)]
,

(4.53)

where the solutions fi are the path integrals in Eqs. (3.56) and (3.60). The solutions

must be rescaled using Ξi → Ξi, λ → λ + s, and χi → sχi. Evaluating the energy

requires integrating the solutions of x0 and combining the results. This algebra is

again deferred to Appendix A. In this case, the integrated solution is

∫
dx0

[(
f (TM)

12 (x0)− f (0)
12

)
−
(
f (TM)

1 (x0)− f (0)
1

)
−
(
f (TM)

2 (x0)− f (0)
1

)]
=

√
πA r(TM)

1 r(TM)

2 e−2
√

2(λ+s)d

√
λ+ s(1− r(TM)

1 r(TM)

2 e−2
√

2(λ+s)d)

×
(

2d−
2∑
i=1

√
2e2Ξisχi√

λ+ s(1 + χi)[(λ+ s) e4Ξi − λ− s(1 + χi)]

)
, (4.54)

where the integral over the transverse coordinates introduced the area A, and the

reflection coefficients are given by,

r(TM)

i =
e2Ξi
√
λ+ s−

√
λ+ s(1 + χi)

e2Ξi
√
λ+ s+

√
λ+ s(1 + χi)

. (4.55)
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The same transformations as in Section 4.2 can be employed to find the TM Casimir

energy. After changing integration variables from λ to p :=
√
λ/s+ 1, the result is

ETM − E(0) = − ~cA
(2π)D/2

∫ ∞
0

ds
s(D−2)/2

Γ(a)

∫ ∞
1

dp
(p2 − 1)(D−1)/2−a

Γ[(D + 1)/2− a]

×
√
π r(TM)

1 r(TM)

2 e−2
√

2spd

(1− r(TM)

1 r(TM)

2 e−2
√

2spd)

(
2d−

2∑
i=1

√
2e2Ξiχi√

s
√
p2 + χi[p2 e4Ξi − p2 − χi]

)
,

(4.56)

where the reflection coefficients are now given by

r(TM)

i =
e2Ξip−

√
p2 + χi

e2Ξip+
√
p2 + χi

. (4.57)

The s integral can be transformed using t =
√

2s, and the values for a = 1/2 and

D = 4 can be used, with the result

ETM − E(0) = −~cA
4π2

∫ ∞
0

dt t3
∫ ∞

1

dp (p2 − 1)

× r(TM)

1 r(TM)

2 e−2tpd

(1− r(TM)

1 r(TM)

2 e−2tpd)

[
2d−

2∑
i=1

2e2Ξiχi

t
√
p2 + χi[p2 e4Ξi − p2 − χi]

]
.

(4.58)

Once again, an integration by parts with respect to p will put the energy in standard

form. The following derivatives will be required:

d

dp
log[1− r(TM)

1 r(TM)

2 e−2ptd] =
r(TM)

1 r(TM)

2 e−2ptd

1− r(TM)

1 r(TM)

2 e−2ptd

(
2td−

2∑
i=1

d log r(TM)

i

dp

)
(4.59)

d

dp
log[r(TM)

i ] =
2χe2Ξi√

p2 + χi[e4Ξip2 − (p2 + χi)]
. (4.60)
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After integrating by parts, the TM Casimir energy is

ETM − E(0) =
~cA
4π2

∫ ∞
0

dt t2
∫ ∞

1

dp log[1− r(TM)

1 r(TM)

2 e−2tpd]. (4.61)

The TM Casimir energy per unit area can be written as

ETM − E(0)

A
= − π2~c

720d3
γTM(χ1, χ2), (4.62)

where the prefactor is the perfect-conductor Casimir energy, and the efficiency γTM is

γTM(χ1, χ2) := −180d3

π4

∫ ∞
0

dt t2
∫ ∞

1

dp log[1− r(TM)

1 r(TM)

2 e−2tpd]. (4.63)

This result has the same form as the corresponding TE result (4.51), but with the

TE reflection coefficients replaced by their TM counterparts. At the end of the

computation the relation e2Ξi = (1 + χi) can be used in the reflection coefficients.

Similarly to the TE case, γTM increases monotonically between 0 and 1/2 as both χ1

and χ2 increase from 0 to ∞. Despite the TE and TM polarizations having equal

contributions to the Casimir energy in the strong-coupling limit, the TM is typically

the larger of the two.

4.7. Nonzero Temperature and Dispersion

The preceding results were all derived for dispersion free media at zero

temperature. These calculations can be extended to nonzero temperature and to

account for dispersion, which is needed to describe the near-field and high temperature

limiting cases. For systems in thermal equilibrium at nonzero temperature, the free

energy F is used instead of the mean energy E. The free energy for the TE and TM
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polarizations (for non-magnetic media) is

F (TE) = kBT

∞∑
n=0

′ ∫ ∞
0

dT
T (2πT )(D−1)/2

∫
dx0

〈〈
e−s

2
n〈εr(x,isn)〉T /(2c2)

〉〉
x(t)

(4.64)

F (TM) = kBT

∞∑
n=0

′ ∫ ∞
0

dT
T (2πT )(D−1)/2

∫
dx0

〈〈
e−s

2
n〈εr(x,isn)〉T /(2c2)e−T 〈VTM(x,isn)〉

〉〉
x(t)

,

(4.65)

where we have suppressed renormalization terms. The Casimir–Polder energies can

be derived by the same reasoning used in Section 4.1, extending the energies (4.14)

and (4.15) to nonzero temperature. In this case, the results are

V (TE)

CP = kBT
∞∑
n=0

′
α(isn)

ε0

∫ ∞
0

dT
(2πT )(D−1)/2

∫
dx0

×
〈〈

s2
n

2c2
e−s

2
n〈εr(x,isn)〉T /(2c2)

〉〉
x(t),x(0)=rA

(4.66)

V (TE)

CP = kBT
∞∑
n=0

′
α(isn)

ε0

∫ ∞
0

dT
(2πT )(D−1)/2

∫
dx0

×
〈〈(

s2
n

2c2
− 1

4
∇2

)
e−s

2
n〈εr(x,isn)〉T /(2c2)e−T 〈VTM(x,isn)〉

〉〉
x(t),x(0)=rA

. (4.67)

There are some noteworthy features of the finite-temperature worldline expression.

First, all material functions are already in the exponent, so there is no need for the

inverse moment theorem when using results from Chapter III to analytically evaluate

the finite-temperature Casimir energy. In fact, at zero temperature the Matsubara

sum is replaced by an integral, which corresponds to the Gamma function used in the

inverse moment theorem.

Second, for the TE polarization the dielectric path average is proportional to

s2
n. In contrast, the TM polarization also has the TM potential. The TM potential

might depend on the frequency via εr(x, isn), but it is not multiplied by sn. This
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has important ramifications for the near-field and high temperature limits. In those

limits, the Casimir effect is dominated by the TM polarization.

The high temperature limit touches on one of the arguments in the literature.

There has been a dispute in the literature over the correct model for the frequency

dependence of a realistic metal, and the correct contribution from the TE mode at

zero frequency [a summary is given by Bordag et al. (2009, Chapter 14)]. This is

particularly relevant for describing metals with effective dielectric functions. The

Drude and plasma models of the dielectric function of a metal are given respectively

by

ε(Drude)
r (is) = 1 +

ω2
p

s(s+ iγ)
ε(plasma)

r (is) = 1 +
ω2
p

s2
, (4.68)

where ωp is the plasma frequency and γ is the dissipation rate of the metal. The Drude

model diverges as s−1 at zero frequency, whereas the plasma model diverges as s−2.

The faster divergence of the plasma model would lead to a nonzero contribution from

the TE polarization at zero frequency or high temperature. Early experiments were

unable to distinguish between the two models, although recent measurements have

claimed to eliminate the plasma model from consideration (Sushkov et al., 2011b).

We will assume that lims→0 s
2εr(is) = 0 in the remainder of this section.

At high temperature, β → 0, so the spacing between the Matsubara frequencies

sn = 2πn/(~β) diverges. As a result, only the first term significantly contributes. In

fact, the first mode is exponentially suppressed relative to the zero frequency mode.

Since the TE energy contribution vanishes at zero frequency, the leading order term

comes from the TM energy, with the result that

lim
β→0

(F (TM) −F (0)) =
kBT

4

∫ ∞
0

dT
T (2πT )(D−1)/2

∫
dx0

〈〈
1− e−T 〈VTM(x,0)〉〉〉 . (4.69)
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Similar considerations apply to both the Casimir and Casimir–Polder energy. The

TM polarization is similarly dominant at small distances at zero temperature. As

noted at the end of Section 2.7, the zero-temperature, far-field limit can be recovered

by replacing the Matsubara sum with a frequency integral. In a similar fashion,

Eqs. (4.14) and (4.15) can be recovered from Eqs. (4.66) and (4.66).

In general, the dominant frequencies can be estimated from the worldline

expression for the Casimir energy. Since the worldline path integral is an ensemble

average is over Gaussian random walks, the relevant range of T can estimated from

the distances of the problem. The paths will typically intersect all the surfaces when

T ∼ d2, where d is the distance from the source point x0 to the farthest surface.

Secondly, the frequency sum is dominated by the exponential factors with the form

e−s
2
nT /2c2 , which contribute most when T s2

n/c
2 ∼ 1. This suggests that frequencies

sn ∼ c/d will contribute most to the Casimir energy in general. However, this estimate

may be superseded by the frequency responses of the atom or medium, as indicated by

the polarizability α(isn) and the susceptibility χ(isn), which will dominate in certain

limits.

4.7.1. Thermal TE Casimir–Polder Energy

We will limit our discussion for checking the high temperature and near-field

limits to the Casimir–Polder case of an atom near a dielectric plane. The preceding

calculations are straightforwardly extended to dispersion and finite temperature. The

analytical solutions for the TE and TM path integrals for a single dielectric plane in

Eqs. (3.25) and (3.56) can be substituted into the appropriate path integrals. After

using the Laplace–Mellin theorem (4.18), the renormalized TE worldline path integral
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is

∫ ∞
0

dT 1

(2πT )(D−1)/2

〈〈
e−vT − e−vT 〈εr(isn)〉〉〉

=
1

2π

∫ ∞
0

dλ
e−2
√

2(λ+v)|d|√
2(λ+ v)

√
λ+ v[1 + χ(isn)]−

√
λ+ v√

λ+ v[1 + χ(isn)] +
√
λ+ v

. (4.70)

There are no extra λ terms from the Laplace–Mellin theorem since λ(D−3)/2−1/2 = 1

when D = 4. This result can be used in the TE Casimir free energy if v is transformed

according to v → s2
n/(2c

2). After changing integration variable to p =
√

1 + 2c2λ/s2
n,

the free energy is

V (TE)

CP − V0 = −kBT
∑
n

′ s3
nα(isn)

4πε0c3

∫ ∞
1

dp e−2snp|d|/c
√
p2 + χ(isn)− p√
p2 + χ(isn) + p

, (4.71)

This is the general result accounting for finite temperature and dispersion for the TE

polarization for an atom near a planar dielectric.

We will now show that the TE contribution is negligible in the near-field regime

at zero temperature. In the near field regime, the separation between the atom and

the wall is much smaller than the atom’s dominant wavelength, d� 2πc/ωj0. In the

zero temperature limit, the free energy (4.71) becomes

V (TE)

CP − V0 = − ~
8π2ε0c3

∫ ∞
0

dω ω3α(iω)

∫ ∞
1

dp e−2ωp|d|/c
√
p2 + χ(iω)− p√
p2 + χ(iω) + p

. (4.72)

The presence of the atom’s polarizability α(iω) means that frequencies around the

atom’s dominant transition frequency ωj0 will dominate the frequency integral. In

that case, since p ∼ c/(dωj0), the dominant values of p are much greater than one.
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The reflection coefficient can be approximated in this limit,

√
p2 + χ(iω)− p√
p2 + χ(iω) + p

≈ χ(iω)

4p2
. (4.73)

The p integral can be approximately evaluated as

∫ ∞
1

dp
1

4p2
e−2ωp|d|/c ≈1

4
. (4.74)

Substituting this into the energy (4.72), the result is

V (TE)

CP − V0 = − ~
32π2ε0c3

∫ ∞
0

dω ω3α(iω)χ(iω) (4.75)

= − ~
32π2ε0d3

∫ ∞
0

dω
ω3d3

c3
α(iω)χ(iω) ≈ 0. (4.76)

This is suppressed by O[(ωd/c)3] relative to the TM contributions and can be ignored.

4.7.2. Thermal TM Casimir-Polder Energy

The TM contribution to the Casimir–Polder free energy for an atom near a

dielectric plane proceeds in the same manner as in the TE case. This time, the

nonzero contribution comes from the presence of the TM potential, which is reflected

in the presence of Ξ in the TM reflection coefficients. The relevant analytical

expression (3.56) for the path integral can be substituted in, and the Laplace–Mellin

transform can be used to write

V (TM)

CP − V0 = − kBT
∑
n

′ snα(isn)

4πε0c

(
s2
n

c2
− 1

2
∂2
d

)∫ ∞
1

dp e−2psnd/c

√
p2 + χ− pe2Ξ√
p2 + χ+ pe2Ξ

.

(4.77)
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In this geometry the derivatives with respect to the atom’s starting position can

be evaluated as derivatives with respect to the surface’s distance. After taking the

derivatives with respect to distance, the free energy is

V (TM)

CP − V0 = − kBT
∑
n

′ s3
nα(isn)

4πε0c3

∫ ∞
1

dp
(
1− 2p2

)
e−2psnd/c

√
p2 + χ(isn)− pe2Ξ(isn)√
p2 + χ(isn) + pe2Ξ(isn)

.

(4.78)

This expression can then be evaluated approximately in the near-field and high-

temperature limits.

4.7.2.1. The Zero Temperature, Near-Field Limit

Let us consider the zero-temperature, near-field limit, in which case the TM

Casimir–Polder energy is

V (TM)

CP − V0 = − ~
8π2ε0c3

∫ ∞
0

dω ω3α(iω)

∫ ∞
1

dp
(
1− 2p2

)
e−2pωd/c

√
p2 + χ− pe2Ξ√
p2 + χ+ pe2Ξ

.

(4.79)

Once again, the atom’s polarizability dominates the frequency integral, so the

dominant frequencies occur for ω < ωj0. In the near-field limit, the distances are

much smaller than these wavelengths, so ωd/c� 1. Since the p integral is dominated

by the exponential, the relevant p are large. In this limit, the reflection coefficient

becomes √
p2 + χ− pe2Ξ√
p2 + χ+ pe2Ξ

≈ −εr(iω)− 1

εr(iω) + 1
, (4.80)
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where we used Ξ = log
√
εr. After substituting this in, and evaluating the p integral,

the energy becomes

V (TM)

CP − V0 ≈
~

8π2ε0c3

∫ ∞
0

dω ω3α(iω)
εr(iω)− 1

εr(iω) + 1

∫ ∞
1

dp (1− 2p2)e−2pωd/c (4.81)

=
~

8π2ε0c3

∫ ∞
0

dω ω3α(iω)
εr(iω)− 1

εr(iω) + 1

(
−c

3e−2ωd/c(1 + ωd/c)2

2d3ω3

)
(4.82)

≈ − ~
16π2ε0d3

∫ ∞
0

dω α(iω)
εr(iω)− 1

εr(iω) + 1
, (4.83)

which is the well known result for the van der Waals energy for an atom near a

dielectric wall [ see Eq. (14.199) of Steck (2015) ].

4.7.2.2. The High Temperature, Far Field Limit

In the high-temperature limit, only the zero-frequency term contributes, so the

TM Casimir–Polder energy is

V (TM)

CP − V0 = −1

2
kBT

α(0)

ε0

∫ ∞
0

dT 1

(2πT )3/2

〈〈
1

2
∂2
xe
−T 〈VTM〉

〉〉
x(t)

. (4.84)

In this case the solution can be directly integrated, without the need for Laplace

transforms. After substituting in the analytical solution (3.52), and differentiating,

the TM Casimir–Polder energy becomes

V (TM)

CP − V0 = − kBTα0

16πε0

εr(0)− 1

εr(0) + 1

∫ ∞
0

dT ∂2
d

1√
2πT 3/2

e−2d2/T (4.85)

= − kBTα0

16πε0d3

εr(0)− 1

εr(0) + 1
. (4.86)

This is the expected high temperature result for an atom and a dielectric wall [see

Eq. (14.324) of Steck (2015) ]. Although we have not examined the equivalent Casimir

140



expressions, they could be readily evaluated. As noted in Eq. (4.69), it is expected

that the dominant contribution comes from the TM polarization, due to the TM

potential. Since the TM potential also provides the majority of the Casimir energy

in these limiting cases and the majority of the Casimir–Polder energy, it is essential

to correctly account for it in a numerical method. Having shown that the worldline

expressions reproduce previously known analytical results, we now turn to developing

numerical methods for the worldline path integrals.
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CHAPTER V

ELECTROMAGNETIC WORLDLINES: NUMERICAL METHODS AND

RESULTS

The goal of this project is to build a general numerical method for computing

Casimir energies. As a first step, it is necessary to test the proposed methods in

well understood cases, such as planar media. We have developed numerical methods

that should allow efficient computations in the general case, despite emphasizing

planar media in these calculations. In a general geometry, these methods could still

be applied to describe scalar fields coupled to a dielectric, and could be used in an

uncontrolled approximation to the full EM field.

Even in a planar geometry a number of tools are required to make the

electromagnetic worldline methods tractable. The TM polarization is particularly

challenging, and has prompted most of these developments. The same developments

have been used to enhance the TE polarization methods, and could be applied to

improve existing Dirichlet worldline methods.

The basic approach of the worldline method relies on Monte Carlo calculation

of the worldline path integral. The numerical methods for the TE polarization

are presented in Section 5.1. Section 5.1.1.1 discusses the “v-loop” method for

constructing paths, and Sections 5.1.2.1 and 5.1.2.2 introduce the methods for Monte

Carlo sampling for the path time T , and the path starting points x0, respectively.

Then Section 5.1.2.3 discusses some approaches to computing the path-averaged

dielectric constant 〈εr〉, which is needed in the TE worldline integrand. Section 5.1.3

then presents the numerical results for the TE path integral, and briefly studies the

systematic error in the method.
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The numerics for the TM polarization are more complicated than in the TE case,

since there is an additional potential VTM, given by Eq. (3.32). Section 5.2 presents

our strategy for computing the accumulated potential exp{−
∫ T

0
dt VTM[x(t)]} along

the entire path. The total contribution from the TM potential by using Eq. (3.52)

to calculate the potential for a single step from xk to xk+1, and multiplying all of

those contributions along the entire path. Unfortunately, as shown in Section 5.2.1,

the simplest numerical estimates of the TM Casimir energy have a large variance

which grows as the path resolution N is increased. The growth of the variance is

reduced by introducing two different methods for constructing the paths. The first

is the “TM-Gaussian” approach is covered in Section 5.2.1.1 which includes the TM

potential in constructing the path increments. However, while this method has better

convergence, it still shows the problem of growing statistical errors. Section 5.2.1.2

develops the “birth-death” method, where paths branch, or are truncated based on

the accumulated potential along the path thus far. This effectively changes the path

creation to sample more from important regions of the integral. The birth-death

method reduces the statistical errors to manageable levels for both Gaussian and TM-

Gaussian methods for constructing the paths. In addition, the TM Casimir–Polder

energy involves spatial derivatives of the worldline path integral. Section 5.2.3.3,

introduces a “partial averaging” method for evaluating the derivatives that bypasses

some of the errors in even simpler approaches. Altogether, these methods reproduce

the TM Casimir–Polder energy, and partially reproduce the TM Casimir energy, as

shown by the numerical results presented in Section 5.2.4.

The numerical tests rely on comparing the numerically computed efficiency to the

known analytical value. The worldline method tends to straightforwardly reproduce

the expected distance dependence due to the integration over T , as was briefly
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discussed in Section 1.5.2. That is still true within the context of electromagnetic

worldlines. All of the calculations are carried out for non-dispersive media at zero

temperature. In Section 5.3, we will suggest how to generalize the calculations to

include dispersion and nonzero temperature.

[The numerical results on the TE Casimir energies were published as Mackrory

et al. (2016). A manuscript discussing the derivative estimation methods presented

here and in the next chapter is in preparation, and the TM results and methods will

also be published.]

5.1. TE Casimir Numerics

In this section we will discuss numerically calculating the TE Casimir and

Casimir–Polder energies from the worldline expressions in Eqs. (4.40) and (4.14).

We will first discuss generating the paths, sampling starting positions x0 and path

times T , and evaluating the dielectric path average 〈εr〉.

5.1.1. Path Generation

The principal element of the worldline method is evaluating a potential along an

ensemble of Gaussian paths. This allows the N -dimensional integral over positions

to be efficiently evaluated in a Monte Carlo fashion by generating an ensemble of

Brownian bridges. It is of primary importance to be able to efficiently generate these

Gaussian sample paths.

5.1.1.1. Open Brownian Bridges: v-loop Construction

Since the numerical methods will require open and closed Brownian bridges of

fixed length N , we will derive the “v-loop” algorithm for generating open paths (Gies
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et al., 2003). For open paths the starting and end points x0 and xN differ, while for

closed paths xN = x0. The Gaussian density of N steps in one dimension, where the

end points x0 and xN are fixed is:

P (x1, . . . , xN−1) = (2π∆T )−N/2 exp

[
−

N−1∑
j=0

(xj+1 − xj)2

2∆T

]
. (5.1)

It is convenient to define shifted, normalized variables yk = (xk − x0)/
√

∆T . The

exponent for the product of coupled Gaussians then involves the sum

y2
1

2
+

(y2 − y1)2

2
+ · · ·+ (yN−1 − yN−2)2

2
+

(∆y − yN−1)2

2
, (5.2)

where ∆y := (xN − x0)/
√

∆T . The exponent (5.2) can be decoupled by completing

the square repeatedly, starting at yN−1. The two terms of the sum involving yN−1

can be rewritten as

(yN−1 −∆y)2

2σ2
N−1

+
(yN−1 − yN−2)2

2

=
σ2
N−1 + 1

2σ2
N−1

(
yN−1 −

σ2
N−1yN−2 + ∆y

σ2
N−1 + 1

)2

+
(yN−2 −∆y)2

2(σ2
N−1 + 1)

, (5.3)

where σ2
N−1 := 1, σ2

N−2 := σN−1 +1. After each completion of the square, the variance

changes according to σ2
N−j → σ2

N−j−1+1 = j+1. With each completion of the square,

the algebra takes on the same form as Eq. (5.3), with the label indices decreased by

one. Once the process has been repeated N − 1 times the exponent becomes

∆x2

2N
+

N−1∑
j=1

z2
j

2
, (5.4)
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where

zj :=
1

cj

(
yj − cjyj−1 −

∆x

N − j + 1

)2

, (5.5)

and

cj =
N − j

N − j + 1
. (5.6)

The probability distribution (5.1) is then

P (z1, . . . zN−1) =
1√

2πT
e−(x0−xN )2/(2T )

N−1∏
k=1

e−z
2
k/2

√
2π

, (5.7)

which accounts for the Jacobian determinant
∏

j

√
cj = N−1/2 from changing

variables. The zj are independent, standard normal variables. Once the zj have

been sampled, Eq. (5.5) can be inverted to find the coordinates:

xk = x0 +
xN − x0

N − k + 1
+ ckxk−1 +

√
ck∆T zk. (5.8)

This recursion formula shows how to construct a discrete representation for a

Brownian bridge from x0 → xN in time T . An integral involving the probability

density (5.1), and another function of the path Φ, could be rewritten as

I =

∫ N−1∏
j=1

dxjP (x1, . . . , xN−1)Φ(x1, . . . , xN) =
e−(x0−xN )2/2T
√

2πT
〈〈Φ〉〉x(t) , (5.9)

where the ensemble average is taken over open Brownian bridges between x0 and xN .

The limit of closed paths can be taken by setting xN−x0 = 0. The v-loop construction

is also straightforwardly generalized to multi-dimensional Brownian bridges. This

recursion procedure (5.8) also allows the generation of a unit loop for T = 1, which

can then be integrated over multiple starting points x0 and total path times T . A
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closed unit Brownian bridge can be constructed via

Bk = ckBk−1 +

√
ck
N
zk, k = 1, . . . , N − 1, (5.10)

where B0 = 0. A shifted, scaled Brownian bridge can then be constructed as

xk = x0 +
√
T Bk, (5.11)

where x0 is the shifted starting position of the path, and T is the path time.

The v-loop constructed here has an advantage over other methods of generating

Brownian bridges, since it only needs to keep track of the current position xk and

index k to develop a Brownian bridge. Other methods such as pro-rated Brownian

motion (1.63) or “d-loops” [which starts with a coarse path, and then refines the path

by doubling the number of points (Gies et al., 2005)] require knowledge of the whole

Brownian motion.

The original v-loop algorithm used centered paths, where the average position

〈x〉 is subtracted from the path (Gies et al., 2003). This requires first constructing the

Brownian bridge, and then subtracting off the mean position. This is inconvenient

if the path is being generated on the fly without storage, or if there are stochastic

elements to path construction. In Casimir–Polder applications [or when computing

the stress-energy tensor Schäfer et al. (2016)], it is preferable to consider paths

emanating from a single point x0. The starting point corresponds to the atom’s

location, or the point where the stress-energy tensor is being computed.
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5.1.2. Monte Carlo Sampling

To evaluate the Casimir energy it is necessary to take an ensemble average over

many path realizations, at all starting positions x0 and path times T . The original

computations by Gies et al. (2003) emphasized computing the T and x0 integrals for

each path. For Dirichlet worldlines, the path integrand is either zero or one based on

whether the path intersects all of the bodies. This makes evaluating these integrals a

tractable problem, since it only requires finding the set of times {Tk} when paths enter

the body, and evaluating
∫
dT T −(1+D/2) during those times the integral is nonzero.

For example, in their paper computing forces in a sphere-plane geometry, Weber and

Gies (2010b) found analytical expressions in terms of x0 and T for when each random

path will intersect both bodies. The remaining integrals over x0 and T were then

evaluated on a path-wise basis.

However, for the dielectric integrands of the TE and TM path integrals, the

integrand varies based on the number of points that are inside the surface. For a

path of length N , this direct method would becomes impractical for large N , as a

large computational effort must be expended on even a single path.

Since theN -fold integral over positions is being handled in a Monte Carlo fashion,

it makes sense to treat the remaining integrals over the starting position x0 and path

times T in the same manner. Each path can be evaluated for a single pair of x0, T

picked from suitable distributions. This is a form of importance sampling, which

is a powerful tool for accelerating Monte Carlo numerical computations (Asmussen

and Glynn, 2007; Glasserman, 2004). This style of importance sampling goes beyond

just using the Gaussian probability density to evaluate the spatial integrals over the

intermediate positions xk. In this case, the importance sampling relies on estimating

which positions and times are likely to contribute the most to the integral. This
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Monte Carlo sampling of x0 and T extends the number of independent paths that

can be averaged in a given time, since effort is not wasted on multiple computations

on a single path.

5.1.2.1. Sampling Path-Times from a Power Law

The simplest method of sampling path times is to exploit the T −(1+D/2) factor in

the integral. For a particular path, the renormalized TE integrand is only non-zero

after the path touches all of the bodies, which occurs at some path time T0.1 For

T > T0, the extent of the path grows as
√
T , so the magnitude of the integrand

(〈εr〉−a− 1) increases as more points enter the bodies. However, the T −(1+D/2) factor

reduces the contributions from large T . These facts suggest sampling T from a

probability distribution

P (T ; T0,m) =
(m− 1)T m−1

0

T m
Θ(T − T0), (5.12)

where m > 1 and T0 > 0. Sampling from this distribution requires being able to

estimate the value of T0 for each path. The path time T0 is the minimum value of

T such that the path will touch the relevant bodies, as required to contribute to the

renormalized energy. In computing Casimir interaction energies, the path must touch

all of the bodies, while in Casimir–Polder calculations, the path must touch any of

the bodies (other than the atom) to contribute. For the example of paths starting

1For a Brownian motion x(t), the term “first-touching time” is reserved for the first time t0 along
a path that a Brownian bridge intersects a surface: x(t0) = d. This is distinct from the first path
time T when the scaled path intersects a surface.
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between parallel planes,

T0 = min

[(
d1 − x0

B−

)2

,

(
d2 − x0

B+

)2 ]
(5.13)

where d1 < x0 < d2, and B± are the maximum and minimum points of the unit

Brownian path.

Samples from the distribution (5.12) can be generated by inverting the

cumulative probability distribution. [Inversion is a general purpose method of

generating random deviates from a given distribution (Press et al., 1990, Section 7.2).]

In this case, the inversion requires solving

u = (m− 1)T m−1
0

∫ T
T0
dt t−m, (5.14)

where u ∈ [0, 1) is a uniform random number and T is the desired deviate. Eq. (5.14)

can be easily solved, with the result that

T =
T0

(1− u)1/(m−1)
. (5.15)

The lower-bound T0 can be easily found in simple geometries on a path-wise basis.

Random deviates T can then be generated for each path, and each path is then

guaranteed to contribute.

5.1.2.2. Sampling Starting Positions

The integral over the starting point x0 can also be evaluated in Monte Carlo

fashion by exploiting some knowledge about the form of the integrand. For points far

from all bodies, which are clustered around the origin, the expected minimum path
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time when the integrand is nonzero is T0 ∼ x2
0. In that case, and approximating the

integrand (〈εr〉−a − 1) by its strong-coupling limit, the path time integral is bounded

by ∫ ∞
T0

dT
T 1+D/2

∼ 1

xD0
(5.16)

This suggests that the contribution from points far from the bodies scales as x−D0 .

Between the bodies, the contribution from each starting position is roughly equal,

since each path must have sufficient extent to touch all bodies. This occurs for times

T ∼ d2
0, where d0 is the separation between bodies. In a one-dimensional geometry,

embedded in a four-dimensional space-time, these considerations suggest sampling

from

Px(x; d0) :=
3

8d0


1 |x| < d0

d4
0

|x|4
|x| > d0.

(5.17)

This reasoning can be easily extended to higher-dimensional problems, where a sphere

of radius d0 should bound all of the interfaces between the bodies. Outside of that

sphere, the sampling would again fall off as |x0|−D. While it may be possible to develop

sampling procedures better suited to a particular geometry, this method provides a

general purpose way of sampling x0.

5.1.2.3. Evaluating the Dielectric Path Average

Once a path is constructed, the rest of the path integrand can be computed along

that path. For example, the path average of the dielectric can be evaluated as

〈εr〉 =
1

N

N∑
k=1

εr(xk). (5.18)
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This corresponds to the trapezoidal rule for evaluating the path average,

〈εr〉 =
1

T

N−1∑
k=0

(k+1)∆T∫
k∆T

dt′ εr[x(t′)] ≈ ∆T
N

N−1∑
k=0

εr(xk) + εr(xk+1)

2
=

1

N

N∑
k=1

εr(xk), (5.19)

where the trapezoidal rule
∫ b
a
dx f(x) = (b − a)[f(a) + f(b)]/2 was used for each

time integral. As discussed in Mackrory et al. (2016, Section 5.C.3), the trapezoidal

rule outperforms some “improved” methods. One alternative is to approximate the

contribution from each path increment for a dielectric step as

1

T

∫ (k+1)∆T

k∆T
dtΘ[x(t)− d] ≈ 1

N(xk+1 − xk)

∫ xk+1

xk

dxΘ[x− d]. (5.20)

Then in cases where the path straddles a surface with points xk < d and xk+1 > d,

the contribution from that step would be (xk+1 − d)/(xk+1 − xk). This reduces

the contribution from path increments where one point just enters the surface.

Unfortunately, this does not correct an opposing error from paths that come close to

the surface but do not enter the surface, where xk, xk+1 < d but |d − xk| �
√

∆T .

There is some finite probability that a sub-path between xk and xk+1 would have

entered the body, and given a greater contribution to the integrand. Since the

reduction of the contribution to the path average is not offset, this method fares

worse than the straightforward trapezoidal method.

5.1.3. Results: TE Casimir and Casimir–Polder Energies for Planar

Geometries

Figure 5.1 shows the numerical results for evaluating the TE Casimir–Polder path

integral (4.14) at over a wide range of χ. The atom is located at the origin in the
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vacuum, with a dielectric half-space a distance d away with a constant susceptibility

χ. The TE Casimir–Polder energy is calculated numerically by evaluating

V (TE)

CP − V0 =
~cα0

8π2

〈〈
1

2T 2
0

(
1

〈εr(x)〉1/2
− 1

)〉〉
xk,T

, (5.21)

where 〈〈· · ·〉〉xk,T denotes an ensemble average over path times T , and one-dimensional

discrete Brownian bridges. The Brownian bridges are constructed using the v-loop

algorithm (5.10). The minimum path time T0 is determined on a path-wise basis

by the condition
√
T0 max(Bk) = d. The path time is sampled for each path from

Eq. (5.12), with m = 1 + D/2 = 3. The unit path is then scaled, xk =
√
T Bk, and

the trapezoidal method is used to evaluate 〈εr〉 around each path. The sojourn time

〈Θ(x− d)〉 can be estimated once per path, and then the integrand can be computed

using 〈εr〉 = 1 + χ〈Θ(x − d)〉. The same path and sojourn times can be reused

to compute the contribution for multiple values of χ at once. The results are then

accumulated over many paths and path times. The numerically calculated efficiency

η(χ) is found by dividing the numerical results by the perfect-conductor result (1.1),

which cancels out the leading constants and the d−4 distance dependence.

Figure 5.2 shows the numerically computed Casimir energy between two planar

dielectric interfaces a distance d apart, separated by vacuum, with dielectric function

εr(x) = 1+χΘ(−x+d/2)+χΘ(x−d/2). This is computed numerically by evaluating

E(TE) − E0 = −~cα0

8π2

〈〈
1

2T 2
0 Px(x0)

(
1 +

1

〈εr,12(x)〉1/2

− 1

〈εr,1(x)〉1/2
− 1

〈εr,2(x)〉1/2

)〉〉
xk,T ,x0

,

(5.22)
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FIGURE 5.1. Planar Casimir–Polder TE energy normalized to atom-conductor
Casimir–Polder energy, plotted as a function of susceptibility χ. The calculations
used 108 paths, with 104 points per path. The results for each χ were computed using
the same ensemble of paths. The solid black line is the analytical result (4.30), and
the points are the numerical values computed using Eq. (5.21). (The inset shows
same data on a linear vertical scale.)
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FIGURE 5.2. Numerically calculated TE Casimir energy for two planes, normalized
to Casimir energy between perfect-conducting plates, plotted as function of χ. The
black line shows the integral solution (4.51), and the points show the numerical
estimates computed using Eq. (5.22). The calculations used 108 paths, with 104

points per path. All values of χ were computed using the same ensemble of paths.
(Inset shows same data on a linear vertical scale.)
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where the ensemble average now also includes the sampled starting positions x0. The

starting positions are sampled from Eq. (5.17), with d0 = d, which is twice the size of

the region between the interfaces. The results are robust as this threshold is varied. In

this case, it is necessary to compute both 〈Θ(x−d2)〉 and 〈Θ(d1−x)〉. One upshot of

Monte Carlo sampling of x0 and T is that this is much faster than directly evaluating

the position and path time integrals on a path-wise basis. In fact, evaluating the

Casimir energy takes roughly the same amount of time as the Casimir–Polder energy.

However, it does give a larger sample variance.

5.1.3.1. Error Scaling with Path Length N

Some interesting scaling behavior was found by examining the relative error of

the numerical estimates. In this case the systematic error is due to the discretization

of the path. The path integral was derived under the assumption that N →∞, while

the numerical calculations use a discrete path with a finite N . There is an additional

statistical error associated with the finite number of paths. However, for Npath paths,

this error scales as N
−1/2
path , as is typical for Monte Carlo sampling error. This is what

determines the noise floor in Figures 5.3 and 5.4.

As the path length N increases for fixed χ, the systematic error shows two

different scaling behaviors. In the weak-coupling limit χ/N � 1, the error scales as

N−3/2, while in the strong-coupling limit χ/N � 1, the error scales N−1/2. These

behaviors are analyzed in Mackrory et al. (2016), but the basic reasoning will be

summarized here. The numerical computations use discrete paths, while the path

integral is only exact in the limit that N is arbitrarily large. The continuous paths

considered by the path integral have arbitrarily fine structure, and always have a
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FIGURE 5.3. Convergence of planar TE Casimir–Polder energy as a function of
N . Results plot the absolute relative error between the numerical estimates from
Eq. (5.21) and the analytical result (4.30). Different values of χ use the same ensemble
of paths. Calculations used 108 paths.
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FIGURE 5.4. Convergence of planar TE Casimir energy as function of N . Results
plot the absolute relative error between the numerical estimates from Eq. (5.22) and
the analytical result (4.51). Different values of χ use the same ensemble of paths.
Calculations used 108 paths.
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non-zero probability to touch the dielectric body. The discrete paths used in the

numerical method miss those contributions, leading to a systematic error.

In the weak-coupling limit χ/N � 1, the numerical estimate is dominated by

accurately estimating the sojourn time 〈Θ〉 for a given path. Further increasing N

increases the accuracy of this estimate and the renormalized integrand. The N−3/2

scaling can be deduced by integrating the probability for a nonzero sojourn time from

each increment.

In the strong-coupling limit χ/N � 1, as soon as a path touches the surface

the integrand immediately saturates to its extreme value of negative one. Thus the

dominant error comes from underestimating the path time that this occurs. The error

is estimated by integrating the probability that a continuous path touched the surface

prior to the estimated first contact time. This leads to a N−1/2 scaling.

For a fixed χ, the transition between both behaviors is observed at N ∼ χ. In

the strict χ→∞ Dirichlet limit, the numerical results and scaling arguments indicate

that there will always be a N−1/2 systematic error scaling.

5.2. TM Casimir Numerics

Numerically calculating Casimir energies due to the TM polarization is much

harder than the TE case. This is due to the singular nature of the TM potential.

Even after regularization, and analytical path averaging, is still challenging to handle

numerically. We will develop a number of techniques to temper these difficulties. As

a side effect, they should have applications for more general Casimir worldlines.

The most daunting feature of the TM Casimir worldline (4.52) is the singular

TM potential (3.32). A closed-form solution for the TM potential VTM at a single

planar boundary was found in Chapter III. The ensemble-averaged solution for all
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Brownian paths between points xk and xk+1 in time ∆T is

vk,k+1 :=
〈〈
e−

∫ ∆T
0 dt′ VTM(x−d)

〉〉
xk→xk+1

(5.23)

=

1 + sgn(d−xk) tanh Ξ e−2(d−xk)(d−xk+1)/∆T (d−xk)(d−xk+1)> 0

sech Ξ (d−xk)(d−xk+1) < 0.
(5.24)

This ensemble-averaged solution was plotted in Figure 3.1, for xk and xk+1 on either

side of the interface at various values of Ξ. The solution varies between zero and one

for paths that start inside a dielectric body, or path that cross a vacuum-dielectric

interface. For paths starting in vacuum outside a dielectric body, the solution varies

between one and two. The extreme values of zero and two only appear in the strong-

coupling limit close to the surface.

This solution can be used in the path integral by identifying averages of sub-paths

between discrete points with the analytical solutions. The path averaged exponential

potential can be refined into arbitrarily many steps between xk and xk+1 at times Tk

and Tk+1. Each exponential potential can be averaged over all possible continuous

sub-paths between xk and xk+1, with the result,

〈〈
e−T 〈VTM〉

〈εr〉1/2

〉〉
≈
〈〈

1

〈εr〉1/2
N∏
k=1

〈
−
〈

exp

(
−
∫ Tk+1

Tk
dt VTM[x(t)]

)〉
−
〉
xk→xk+1

〉〉
(5.25)

=

〈〈
1

〈εr〉1/2
N∏
k=1

vk,k+1

〉〉
, (5.26)

where 〈−〈 · · · 〉−〉 denotes an average over continuous sub-paths between xk and xk+1.
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5.2.1. Scaling of the Averaged TM Potential with Path Length N

The numerical properties of the solution can be examined by considering a

simplified path integral that only includes a single TM potential a distance d away,

I =
〈〈
e−

∫ T
0 dt VTM[x(t)]

〉〉
x(t)

=

〈〈
N−1∏
k=0

〈
−
〈
e−

∫ ∆T
0 dt VTM[x(t)]

〉
−
〉
xk→xk+1

〉〉
xk

(5.27)

=

〈〈
N−1∏
k=0

vk,k+1

〉〉
xk

. (5.28)

The left-hand ensemble average is over continuous Brownian bridges, whereas the

right-hand ensemble averages run over discrete Brownian bridges (and the solutions

have been analytically averaged over continuous sub-paths between points on the

discrete path, as indicated by 〈−〈 · · · 〉−〉). In this case, the exact value of the integral is

just the TM potential solution Eq. (5.24), for xk, xk+1 → x0. The right hand side can

be computed numerically to examine its scaling with N .

Figure 5.5 shows a histogram of numerically estimated values for closed Brownian

paths interacting with the TM potential. Each Brownian path is generated via the

v-loop algorithm (5.10), and scaled by
√
T . The total contribution from each path

is the product of the TM solutions (5.24) for every step along the path. The direct

estimate of the TM potential shows a wide spread of values over different paths. Most

paths return values close to zero, while a few rare paths return very large values. This

suggests that the plain Gaussian paths are poorly suited to this problem, and that

the path generation scheme should be modified. Given a large enough ensemble, this

method eventually converges to the right answer, but it displays unacceptably large

statistical errors.
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FIGURE 5.5. Histogram of accumulated numerical TM estimates, for Gaussian paths
(blue) and birth-death Gaussian paths (red). Calculations used 106 paths, with N =
200 points per path, χ = 100, d = 1, and T = 1. The correct value for the integral
at these parameters is (I = 1.595). The Gaussian estimate is (1.40 ± 0.14). The
birth-death estimate is (1.602 ± 0.006). (The birth-death method is discussed in
Section 5.2.1.2.) The Gaussian distribution extends off to zero, while the birth-death
distribution has truncated peak at zero.
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FIGURE 5.6. Combined TM-Gaussian probability distribution plotted for various
χ. Corresponds to a single term in the product in Eq. (5.29). Increment starting
position is x = −1, and T = 1. The boundary is at the origin.

5.2.1.1. TM-Gaussian Paths

One possible solution to the fluctuations is to sample from a combination of a

Gaussian and the path-averaged exponential (5.24) for the path increment. We will

refer to these paths as “TM-Gaussian” paths. Since the path-averaged exponential

is taken into account in the sampling, more representative values should be chosen,

which should reduce the number of extreme values of the estimates. In this case, the

total probability distribution for the paths is

P (x1, . . . , xN−1) =
N−1∏
k=0

e−(xk+1−xk)2/(2∆T )

√
2π∆T

〈
−
〈
e−

∫ ∆T
0 dt VTM

〉
−
〉
xk→xk+1

. (5.29)

In the same manner as the v-loops, the Gaussian probability distribution can be

decoupled into a set of independent Gaussians. As seen from Eq. (5.8), the argument

of each of those Gaussians involves zk = (xk − ckxk−1)/
√
ck∆T , where ck is defined
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in Eq. (5.6). After implementing the v-loop change of variables, the probability

distribution (5.29) can be written as

P (x1, . . . , xN−1) = vN,N−1

N−1∏
k=0

Nk+1P
(TM)

k+1 (xk+1), (5.30)

where the new probability distribution for xk+1 is

P (TM)

k+1 (xk+1) := N−1
k+1

e−(xk+1−ckxk)2/(2ck∆T )

√
2πck∆T

vk,k+1(xk, xk+1), (5.31)

with normalization constant

Nk =

∫
dy

e−(y−ckxk)2/(2ck∆T )

√
2πck∆T

vk,k+1(xk, y). (5.32)

The crucial point is that the P (TM)

k+1 can act as the probability distribution for xk+1,

accounting only for the present position xk. Although the next position xk+1 is still

coupled to future positions via vk+1,k+2, the sampling procedure ignores that and

samples xk+1 based solely on P (TM)

k+1 . The probability distribution can be put into

a convenient numerical form by completing the square to account for vk,k+1. The

resulting piecewise Gaussian probability distributions can be split into “no-crossing”

and “crossing” terms, where

P (TM)

k+1 (xk+1) = N−1
k+1

[
P (TM)

NC,k+1(xk+1) + P (TM)

C,k+1(xk+1)
]

(5.33)
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and

P (TM)

NC,k+1(xk+1) = Θ[(d− xk)(d− xk+1)]

(
e−(xk+1−ckxk)2/(2ck∆T )

√
2πck∆T

+
sgn(d− xk) tanh Ξ√

2πck∆T
e−2(1−ck)d(d−xk)/∆T e−[xk+1−ck(2d−xk)]2/(2ck∆T )

)
(5.34)

P (TM)

C,k+1(xk+1) = Θ[−(d− xk)(d− xk+1)]
sech Ξ√
2πck∆T

e−(xk+1−ckxk)2/(2ck∆T ). (5.35)

The normalization constant can be evaluated in two parts, Nk+1 = NC
k+1 + NNC

k+1,

where the parts are:

NC
k+1 =

1

2

[
1 + sgn(d− xk) erf

(
d− ckxk√

2ck∆T

)]
+ sgn(d− xk)

tanh Ξ

2

[
1 + sgn(d− xk) erf

(
d(1− 2ck) + ckxk√

2ck∆T

)]
× e−2(1−ck)d(d−xk)/∆T (5.36)

NNC
k+1 =

sech Ξ

2

[
1− sgn(d− xk)erf

(
d− ckxk√

2ck∆T

)]
. (5.37)

The probability distribution (5.33) can be sampled via the following procedure. First,

note that the probability distributions involve truncated Gaussians in xk+1. The

truncation occurs at the surface xk+1 = d, since the probability distribution was

split based on whether path increments cross through the surface or not. At each

step the computation picks the crossing or no-crossing branch of the probability

distribution. The branch is randomly chosen based on the relative probabilities for the

crossing and no-crossing branches which are given by (NC
k+1/Nk+1), and (NNC

k+1/Nn+1),

respectively. If the crossing branch is chosen [Eq. (5.35)], then a deviate is sampled

from the truncated Gaussian distribution. Otherwise, if the no-crossing branch is
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chosen [Eq. (5.34)], then depending on the sign of sgn(d − xk+1), there are another

two options. If sgn(d− xk+1) = 1, then one of the Gaussians is picked based on their

relative probability of occurring, and a deviate is sampled from that Gaussian. In

these cases, the truncated Gaussian distributions can be sampled relatively quickly

via the inverse error function. If however, sgn(d − xk+1) = −1, then the rejection

method is used to generate a deviate. In the rejection method, a deviate is sampled

from a “proposal” distribution P1(x) (such as the sum of the Gaussians), and accepted

with a probability P2(x)/P1(x), where P2 is the “target” distribution (Press et al.,

1990, Section 7.3).

While this method does improve performance, it still involves taking a product

of N − 1 normalization factors Nk+1, where 0 < Nk+1 < 2. This leads to the same

problems with large statistical errors as the plain Gaussians as the path length N

is increased. It is also much more involved to implement than the plain Gaussian

approach.

5.2.1.2. Birth-Death Path Swarm

Both the plain Gaussian and TM-Gaussian paths can be improved by further

adjusting the sampling procedure. In both cases, the path can accumulate a large

weight. After k steps, the weight is wk =
∏k

j=1 νj, where νj represents either vj,j+1

for Gaussian paths or Nj for TM-Gaussian paths. Most paths propagating close

to the surface will acquire a number of large weights with νj > 1 when they are

on the vacuum side of the interface, and small weights 0 < νj < 1 when they are

on the dielectric side of the interface. The logarithm of the accumulated weight is

logwk =
∑k

j=1 log νj. Since the νj are random variables (both vk,k+1 and Nk are

functions of an underlying random path), then from the central limit theorem, we
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would expect logwk to be normally distributed, with some standard deviation σ2.

(The central limit theorem applies to the sum of a large number of independent

random variables—it maybe that the independence assumption is violated in this

case, as the path position acts as a memory.) Nevertheless, this predicts that the

accumulated weight is expected to behave as a log-normal deviate, with variance

eσ
2
(eσ

2 − 1). Since σ2 grows linearly with N , the variance of the product wk would

grow exponentially with N . Note that the mean would still have the correct value,

but the variance, and the sampling error would grow unacceptably as N increases.

The path generation both Gaussian and TM-Gaussian methods can be modified

by introducing a “birth-death path swarm”. The weight wk is effectively treated

as the fitness function for the path. Paths with large weights will spawn further

paths (“birth”), while paths with small weights will be terminated and return zero

(“death”). At each step of the path, the accumulated weight must be checked. If

the weight is becoming small, wk < 0.5 then the weight should be compared with a

uniform random number u. If wk < u, then the path dies; alternatively, if wk > u,

then the path survives and the weight is reset wk = 1. This is the death process. In

an ensemble average, an average fraction of the paths u survive the death process,

which gives the correct average value. If the weight becomes large, wk > 2, then

the weight is split in two, and each half is assigned to one of two independent paths.

Altogether, this is called a “birth-death” process, and should be applied at every step

of the random path. If a path survives for N steps, then its contribution is added to

a running total for this swarm. Once all of the paths have either died, or reached the

end, the accumulated total for this swarm is then renormalized (by subtracting 1), and

added to the running totals used to estimate the mean and variance. Implementing

the deaths ensures that the number of computations does not grow exponentially as
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a function of path length, while the birth process ensures that successful trajectories

with a large weight have contribute more to the path integral. The death process

also speeds up the computation by not computing negligible corrections to the swarm

value.

The birth-death process is effectively a very simple Markov Chain Monte Carlo

method. The birth-death process modifies the preferred motions based on the

accumulated weight. Paths are likely to be born on the vacuum side of interfaces,

and they are likely to die on the dielectric side of the interface. Far away from the

interface on either side, the paths are unlikely to branch or terminate.

Similar terms are discussed throughout stochastic processes literature. As a

matter of nomenclature, it is worth distinguishing the birth-death process we are

using from the more popular birth-death process used in queuing theory. In queuing

theory, the number of objects in a queue randomly increases and decreases at a fixed

average rate. In our case, that rate depends on the past behavior of the system,

and where the path has gone. The process used here is closer to the genealogical

methods for evaluating path integrals (Del Moral, 2004). A similar genealogical idea

has been used in quantum trajectory simulations (Jacobs, 2010), which is a technique

for simulating open quantum systems. In that variant, each quantum state in an

ensemble carries a probability weight. If that weight becomes too small, then that

random trajectory is discarded, and another more successful trajectory is split in two,

and given half the weight. A similar method has been used to discuss simulating rare

events, such as the extreme tails of a Gaussian. In that case, one splits trajectories

based on whether they exceed a certain threshold criterion (Garvels, 2000; Glasserman

et al., 1999). These methods essentially reward the trajectories or paths of the system

that enter regions with a large contribution to the integral (or other figure of merit).
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FIGURE 5.7. (Preliminary data) Scaling of standard deviation for the accumulated
TM potential as function of N for four methods. Eq. (5.28) is evaluated for both
plain Gaussian steps, TM-Gaussian steps, and then for birth-death variants of both
methods. Calculations used 109 trials, with χ = 12, d = 1, and T = 2.

Thus more computational effort is spent in regions with significant contributions to

the final result.

Figure 5.7 shows how the plain Gaussian and TM-Gaussian estimates of the

simple path integral scale with the path resolution. This figure contains preliminary

data, since there are still very large statistical fluctuations on the Gaussian estimates,

and a very large number of samples is required to ensure decent convergence. The

birth-death process has been applied to both ways of generating paths. The birth-

death process reduces the variance, and makes both methods much more tractable.

The difference between Gaussian and TM-Gaussians is small under the birth-death

process. In addition, generating Gaussian paths is faster than generating TM-

Gaussians. Given that small difference, and the simplicity of the plain Gaussian paths,
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we have opted to use the birth-death process in conjunction with plain Gaussian paths

throughout the remainder.

5.2.2. Monte Carlo Sampling for the Path Time

When using the birth-death method for generating paths, the TM polarization

requires a slightly different sampling method for generating path times T . In some

limited cases it may be possible to estimate a minimum T0 where the integrand

is small for a given path, and a path is unlikely to have branched or birthed new

paths. For paths starting on the vacuum side near a dielectric, the accumulated

potential at small path times is approximately
∏

k(1 + tanh Ξ e−2(d−xk)(d−xk+1)/∆T ),

which increases smoothly with T . In that case, T0 can be estimated from the time an

initial, fiducial path would contact a surface and the integrand would be nonzero. The

path time can be sampled from the power law distribution (5.12). The birth-death

process then proceeds starting with a version of the initial path that is scaled by
√
T .

However, in a two-body geometry that estimate fails. The renormalized integrand

is only nonzero for paths that come close to both surfaces. Since the birth-death

method may split the trajectory, it is not always possible to reliably find a minimum

time T0 when the renormalized integrand turns on. (In principle, a small value of

T0 could be picked, where the path has no chance of touching the surface, but most

computations would return zero, since the most sampled values of T are close to T0.)

Once paths are large enough to contribute to the energy, they are guaranteed to

have intersected both bodies. As a result, the intersection path time of the fiducial

path with the surface has little bearing on when the resulting path swarm would

contribute. For example, the fiducial path might have started next to one surface, and

branched immediately. The fiducial path might extend further in one direction, and
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only intersect the second body at much later times than the branched path. Sampling

the path time based on when the fiducial path intersects the body would miss that

contribution. This suggests that the path time for the birth-death path swarm is best

sampled from the ensemble average estimate of when a path will contact the surface.

Since the birth-death method essentially enlarges the ensemble of paths selected,

the behavior of the integrand as a function of T mimics the probability for a Brownian

bridge to touch a surface. The probability for a Brownian bridge to touch a surface

a distance d away in path time T is

Ptouch(T ) = e−2d2/T . (5.38)

The combined potential term
∏

k vk,k+1, also has a similar dependence on the path

time. This could be combined with the T −(1+D/2) power law for a new probability

distribution.

P (T ; T0, s) =
T s−1

0

Γ[s− 1]T s
e−T0/T , (5.39)

where s > 1 and T0 > 0. The probability distribution (5.39) can be transformed by

setting u = T0/T , for which the probability distribution is

P (u; s) =
us−2

Γ[s− 1]
e−u. (5.40)

This distribution has the form of a Gamma distribution, which has probability density

f(x) =
xa−1e−x/b

Γ(a)ba
, (5.41)

where a > 0 and b > 0 are the shape and scale parameters respectively (Devroye,

2003). The shape parameter a changes the mean value of the distribution by changing
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the shape of the function close to x = 0, while the scale parameter b scales the

deviates. For small integer or half-integer powers a, there are some simple methods

for generating Gamma deviates gi. A sum of Gamma deviates gtot =
∑

i=1 gi with

shape parameters ai, is also a Gamma deviate with shape parameter
∑

i ai (Devroye,

2003, pg. 402). A Gamma deviate with shape parameter a = 1 is an exponential

deviate, which can be computed using ei = − log(u) where u is a uniform random

number. In particular, this means the sum of n exponential deviates yields a Gamma

deviate with shape parameter a = n. In addition, if z is a standard normal variable,

then z2/2 is Gamma distributed with a = 1/2. For small integer powers of s, T can

be efficiently generated using

T =
T0

−
∑s

i=1 log ui
, (5.42)

while for half-integer powers,

T =
T0

−
∑floor(s)

i=1 log ui + z2/2
. (5.43)

The integer powers are useful for estimating zero temperature Casimir energies. The

half-integer powers naturally emerge when considering the thermal Casimir energy,

or derivatives of the Casimir energy such as the force. This distribution can also be

used to sample times T even for TE integrands. In that case however, it is possible

the generated path will not touch all of the relevant bodies and merely return zero,

which will increase the variance of the numerical estimated energy.
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5.2.3. Gradient Estimation

Computing the TM Casimir–Polder energy (4.15) also requires taking two spatial

derivatives of the worldline path integral. Furthermore, in some experiments on the

Casimir–Polder effect such as BEC experiments (Harber et al., 2005), the Casimir–

Polder potential is estimated from how it shifts the frequency of the atom’s oscillations

in a harmonic potential. This frequency shift is calculated by taking two derivatives of

the Casimir–Polder potential, which corresponds to finding the potential curvature.

For the TM polarization within the worldline method, this would require a fourth

spatial derivative, so it is essential to be able to efficiently compute these derivatives

for worldline path integrals.

Let us consider a generic worldline path integral involving pinned Brownian

motions in path time T with starting point x0:

I(x0) = 〈〈Φ(x0,x1, . . . ,xN−1)〉〉x(t),x(0)=x0
. (5.44)

The function Φ depends on the whole path, and serves as a placeholder for the path

averaged dielectric or TM potentials. We will discuss how to evaluate these derivatives

with both the standard finite difference method and a new partial-averaging approach.

5.2.3.1. Finite Differences

The finite-difference method is straightforward method for numerically

evaluating derivatives. It has the great virtue of simplicity, since it only requires that

we evaluate the function multiple times. For smooth functions, the finite-difference

method works well, but it behaves poorly when applied to stochastic, discontinuous

functions such as the worldline path integral.
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For example, consider the first derivative of the TE Casimir–Polder worldline

integrand, at a dielectric step εr = 1 + χΘ(x− d). The finite difference integrand is

∂

∂x0

〈〈
〈εr[x(t)]〉−3/2−1

〉〉
Bk

=
1

∆s

〈〈
〈εr(x0+∆s+

√
T Bk)〉−3/2−〈εr(x0+

√
T Bk)〉−3/2

〉〉
Bk
,

(5.45)

where ∆s is the finite difference step size, Bk is a closed unit Brownian bridge.

This estimate can be evaluated on a pathwise basis, in keeping with the suggestion

that using common random numbers yields the best results for finite differences [as

discussed in Asmussen and Glynn (2007, Section 7.2A)]. In order to be accurate, the

step size ∆s must be small, since the error in this approximation to the derivative is

O(∆s). Unfortunately, that limit leads to large statistical uncertainty. If the finite

difference is much smaller than a typical path increment, ∆s�
√

∆T , the estimates

for path averaged dielectric 〈εr(x0)〉 for the two starting positions are likely to be

the same, so the estimate is zero. In rare circumstances, a point is within ∆s of the

surface, and the finite difference returns the large value of (∆s)−1. However, this

arguments neglects that as ∆s → 0, the probability for a point to be within ∆s of

the surface, also approaches zero. For the first order finite difference, the error is

constant as ∆s → 0. However, at higher derivatives this is no longer true and the

variance grows as ∆s→ 0.

The finite difference method is also problematic for the birth-death method

for TM potentials. In that case, as the starting position of the paths varies, a

different family of birth-death paths may be generated, which further compounds

the fluctuation problem.
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5.2.3.2. Malliavin Calculus

Similar derivatives are required in quantitative finance, where the sensitivity

of a financial product to variations its underlying parameters must be estimated

(Glasserman, 2004). Since financial simulations also typically involved averages over

stochastic processes, similar problems emerge when trying to estimate derivatives with

finite differences. One approach with a number of appealing properties is based on the

Malliavin calculus.2 In this approach, the derivative can be estimated by multiplying

the integrand by a suitably chosen weight function, which depends on the nature of

the derivative and the random path. The Malliavin calculus is essentially functional

differentiation with respect to the Brownian motion, and an associated integration

by parts formula. The weights can be derived by rewriting derivatives with respect

to a parameter as derivatives with respect to the Brownian motion, and integrating

by parts (Kohatsu-Higa and Montero, 2004). In effect, differentiation is replaced by

multiplication with a weighting function, where the form of the function depends on

the required derivatives. The advantage is the same sample paths can be used for

both the estimate and its derivative. In addition the derivative estimates are well

behaved, since the weight functions are typically simple, smooth functions of the

stochastic path. While the Malliavin approach to derivative estimation did not yield

better results for the worldline method, it did inspire the partial-averaging approach,

which has similar virtues.

2 The Malliavin calculus is formally discussed in Nualart (2006), Malliavin and Thalmaier (2006),
and DiNunno et al. (2009). Less formal (and far more understandable) discussions of the Malliavin
approach are presented in Chen and Glasserman (2007), and Kohatsu-Higa and Montero (2003,
2004).
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5.2.3.3. Partial Averaging Gaussian Paths

Let us consider directly evaluating the derivatives in one Cartesian direction on

a generic path integral (5.44), which can be written in discrete form as

∂n0 I(x0) =
∂n

∂xn0

∫ N∏
j=1

dxjδ(xN − x0)
N∏
k=1

e−(xk+1−xk)2/(2∆T )

(2π∆T )(D−1)/2
Φ(x0,x1, . . . ,xN−1).

(5.46)

Note there is some freedom in how the derivative is evaluated, which leads to slightly

different approaches. If the integration variables are shifted to yk = xk−x0, then the

derivatives only act on Φ. This is close to the approach used in the finite difference

approach where the whole path was translated by ∆s. If however, the original xk

variables are used and the derivatives are evaluated, the derivatives act on the coupled

Gaussian.

∂n0 I(x0) =

∫ N−1∏
j=1

dxj
∂n

∂xn0

N−1∏
k=0

e−(xk+1−xk)2/(2∆T )

(2π∆T )(D−1)/2
Φ(x0,x1, . . . ,xN−1). (5.47)

The derivatives acting on Φ have been neglected, which effectively assumes that

Φ does not vary significantly at the path origin. The derivatives of the Gaussian

distributions yield Hermite Polynomials, which are defined via

dn

dxn
e−(x−µ)2/a2

= (−a)−nHn

(
x− µ
a

)
e−(x−µ)2/a2

. (5.48)
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The Gaussian distributions for the first and last steps can be differentiated n times

with respect to x0, with the result

∂n0
∂xn0

e−(x0−x1)2/(2∆T )−(x0−x2)2/(2∆T )

(2π∆T )(D−1)

=

(
−1√
∆T

)n
Hn

(
x0 − x̄1√

∆T

)
e−(x0−x̄1)2/∆T −(∆x1)2/(4∆T )

[(π∆T )(4π∆T )](D−1)/2
. (5.49)

The following variables were defined,

∆xk := xN−k − xk x̄k := (xk + xN−k)/2, (5.50)

and used with k = 1. The differentiated path integral is then

∂n0 I(x0) =

〈〈(
−1√
∆T

)n
Hn

(
x0 − x̄1√

∆T

)
Φ(x0,x1, . . .xN−1)

〉〉
xk

, (5.51)

where the Gaussians have been restored to their usual form and the path integral has

been rewritten in ensemble average form. In principle this method would also work for

estimating the derivatives. However as written, this will have a large statistical error.

In particular, the estimates will be distributed around zero, with some reweighting

due to Φ, which preferentially weights certain values. However, the overall standard

deviation scales as (∆T )−n/2. As N increases, the fluctuations will scale as Nn/2

which is unacceptable.

This method can be improved by partial averaging over the path. In particular,

we assume that Φ =
∏N

k=1 φ(xk), and each φ(xk) only varies significantly for xk ∼ d,

and when xk � d, φ(xk) can be approximated as a constant. An example of this

geometry is illustrated in Figure 5.8, for an atom near a dielectric surface. For the

first and last m points along the path, the integrals can be carried out assuming
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FIGURE 5.8. Partial averaging along a path close to a surface. The extent of the
averaging m is chosen to be as large as possible, while ensuring that the likely paths
between xm and xN−m are unlikely to enter the dielectric.

that Φ is approximately independent of these coordinates. The resulting combined

steps from x0 to xm involve a path time Tm := m∆T . The result for integrating out

x1, . . . ,xm−1 and xN−m+1, . . . ,xN−1 in Eq. (5.49) is

∂n0 I(x0) ≈
∫ N−m∏

k=m

dxk

(
−1√
Tm

)n
Hn

(
x0 − x̄m√
Tm

)
e−(x0−x̄m)2/Tm−∆x2

m/(4Tm)

×
N−m+1∏
k=m

e−(xk+1−xk)2/(2∆T )

(2π∆T )(D−1)/2
Φ(xm, . . .xN−m) (5.52)

=

〈〈(
−1√
Tm

)n
Hn

(
x0 − x̄m√
Tm

)
Φ(xm, . . .xN−m)

〉〉
. (5.53)

The combination of the Hermite polynomial and (Tm)n/2 is effectively the desired

Malliavin weighting function in this case. The partial-averaging approach has replaced

differentiation with multiplication by a function whose variance does not increase as

the path length increases. The threshold m can be chosen based on how likely the

path of a given time step is to touch the surface. That threshold will depend on

the distances in the problem and the path-time, which determines a fraction of the

path that can be averaged over. The fraction becomes a constant as N increases, so

Tm = mT /N also becomes a constant for a particular T , and the variance no longer

grows as N increases.
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Each integration over an intermediate coordinate makes some small error in

approximating Φ as independent of that coordinate. The partial averaging should

only be carried out to the point where that error can no longer be ignored. If the

function Φ starts to vary when any of its arguments approach d, such as for the TE

Casimir worldline integrand, then the error can be estimated from the probability

that xm would enter the region xm > d. Although the paths are actually Brownian

bridges, for small times (Tm � T ) the paths can be approximated as Brownian walks

in order to estimate the touching probability. The probability that a Brownian walk

will touch a surface at x = d after starting at the origin, in time Tm is

Ptouch = erfc

(
d√
2Tm

)
. (5.54)

For small Tm, the error function is bounded by e−d
2/(2Tm). If the maximum acceptable

error is denoted ε, then this equation can be solved to estimate the maximum amount

of averaging allowed. Using Tm = mT /N , the maximum amount of averaging should

be

m

N
=

d2

2T log ε
. (5.55)

The most important feature of this estimate, is that it suggests m/N is a constant

fraction as N increases. As a consequence, the fluctuations in Eq. (5.53) scale as

[N/(mT )]n/2, but sincem/N is a constant, the scale of the fluctuations is also constant

as N increases. However, the size of that fraction will vary as a function of d/
√
T

and the desired tolerance ε. As a practical matter, m/N should not exceed 1/2, so

that there are at least two points in the path.

The partial averaging effectively constructs a path with a variable step size. At

points close to the path origin, the path steps can be large since these increments are

178



unlikely to intersect the surfaces. Since the length of the first and last increments

set the scale of the fluctuations by their presence in (N/mT )n/2, the steps should be

chosen to be as large as possible. However, once the path gets close to the interface,

it is necessary to accurately estimate quantities such as the touching time or sojourn

time. The accuracy of these estimates depends sensitively on the size of the steps,

and thus the path should have a finer resolution when it is close to the interface.

The path can be generated using the v-loop algorithm (5.10), and the larger steps

can be constructed by identifying them with the mth step on the initial path. Those

steps are used to evaluate the Hermite-Gaussian terms. The rest of the path between

xm and xN−m can then be used to evaluate any potentials or spatial functions in the

path integral. In the context of the birth-death algorithm, these gradients are only

evaluated on paths that survive to the end to contribute to the path swarm. This

method naturally generalizes to include multiple Cartesian derivatives.

5.2.3.4. General Method Near Surfaces

In some cases, it might be necessary to take derivatives of a two body energy for

paths that start much closer to one body than another. This could be necessary when

trying to calculate the two body energy shift for an atom, or when computing the

stress-tensor close to one surface (Schäfer et al., 2016). For a renormalized energy,

only paths that touch both surfaces will contribute. The preceding approach was

based on integrating out intermediate coordinates by approximating the integrals as

Gaussians [as used in Eq. (5.53)]. In this case however, that approach can only be

used to average out a very small number of steps.

This problem is illustrated in Figure 5.9, for the example of an atom near two

dielectric surfaces, in the case when the atom is much closer to one surface than the
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FIGURE 5.9. Thresholds for partial averaging for the case of an atom between
two dielectric bodies. The dashed circles show the typical scales of paths at some
important path times. The extent of the averaging is given by Tm. The first path
time when paths touch one body is T1. This is much smaller than T2, the path time
to touch both bodies. These considerations also apply to the calculating stress-energy
tensor close to one body.

other. The path time when a typical path will touch one body is denoted T1, and T2

is the typical path time to touch both bodies. If the two-body contribution to the

Casimir–Polder force is sought, then only paths that touch both bodies will contribute.

The partial averaging advocated in Section 5.2.3.3 is only valid so long as Φ is

approximately independent of the coordinates, and the probability of touching either

surface is small. In that case, the integrals are approximately Gaussian, provided

that Tm � T1, so that the first and last m path increments are not likely to intersect

or interact with either surface.

However, if there is an analytical expression for the path integral near one

surface, then further partial averaging is possible. In such a two-body geometry,

the renormalized interaction energy would lead to a function Φ of the form,

Φ[x(t)] =
(
e−

∫ T
0 dt {V1[x(t)]+V2[x(t)]} − e−

∫ T
0 dt {V1(x0)+V2(x0)}

)
−
(
e−

∫ T
0 dt V1[x(t)] − e−

∫ T
0 dt V1(x0)

)
−
(
e−

∫ T
0 dt V2[x(t)] − e−

∫ T
0 dt V2(x0)

)
, (5.56)
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where V1 and V2 describe the two surfaces. For points much closer to one body,

and for short times ∆T , then the dominant contribution to the potential can be

approximated based on the nearest body

〈
−
〈
e−

∫ ∆T
0 dt {V1[x(t)]+V2[x(t)]}

〉
−
〉
≈
〈
−
〈
e−

∫ ∆T
0 dt V2[x(t)]

〉
−
〉
, (5.57)

where the presence of the far body can be ignored for ∆T � d2. The partial averaging

can be carried out by using the fact that the path integral is a propagator for the

diffusion equation. The path integral between two points xj and xj+1, interacting

with a potential V (x), is

U(xj,xj+1, t) :=
e−(xj−xj+1)2/(2t)

√
2πt

〈
−
〈
e−

∫ t
0 dt
′V [x(t′)]

〉
−
〉

xj→xj+1

. (5.58)

The path integral expression for the propagator (5.58) obeys the composition law,

∫
dxj U(xj−1,xj, t1)U(xj,xj+1, t2) = U(xj−1,xj+1, t1 + t2). (5.59)

If the geometry can be described by some potential V , and if an analytical expression

for the path integral can be found, then the partial averaging can be carried out

to a threshold Tm where the analytical solution for the path integral is no longer an

acceptable approximation to the true solution for multiple bodies. This could happen

either due to the presence of multiple bodies, or the path exploring a region where

the geometry differs from the geometry assumed in the analytical expression. For

example, if a curved surface is approximated by its nearest tangent plane, then the

partial averaging is limited to regions smaller than the typical radius of curvature.

181



After the partial averaging, the derivatives can be carried out, with the result

∂n0 I(x0) =

〈〈
∂n0
[
U(x0,xm, Tm)U(x0,xN−m, Tm)

]N−m−1∏
j=m

U(xj+1,xj,∆T )

〉〉
. (5.60)

In this case, the derivatives act on the whole propagator (5.58), rather than just

the Gaussian parts. This could be applied using the Dirichlet solution to the path

integral (3.29) to evaluate the stress-energy tensor [as was studied by Schäfer et al.

(2016)]. The method suggested here applies to any potential V (assuming the solution

can be found), so it could also be applied to TE and TM potentials under similar

circumstances.

5.2.4. Results: TM Casimir and Casimir–Polder Energies for Planar

Geometries

Figure 5.10 shows the numerical results for the efficiency ηTM (4.38) and compares

it to the analytical expression (4.38). The numerical results were generated using the

preceding methods for birth-death path swarms. The path times were sampled from

Eq. (5.39), and the derivatives in Eq. (4.15) were evaluated using the Gaussian partial

averaging discussed in Section 5.2.3.3.

The statistical errors are obviously much larger than their TE counterparts. The

resolution of the path, N is also more coarse. Finer paths take more computation time,

since there is more opportunity for branching. Attempts to test these methods at

larger N have run into very large numerical fluctuations due to the increased variance.

In the TE case, the convergence was found to improve as N was increased, since the

systematic error decreased. In the TM case, the decreased systematic error from

larger N conflicts with the growing statistical fluctuations. Of course, the numerical
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FIGURE 5.10. Numerically computed TM Casimir–Polder efficiency between an atom
and a dielectric plane. Efficiency ηTM (4.38) is found by normalizing the numerical
energy to the energy between an atom and a perfect conductor (1.1). Calculations
used 109 initial paths, with N = 103 points per path. The birth-death method was
used for path generation, and partial averaging was used for derivatives.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

c

g 
o  

 (
c

)
T

M
  

 

0

0.25

.50

10
-2

10
0

10
2

c

FIGURE 5.11. Numerically computed TM Casimir efficiency for two planar
dielectrics. Efficiency γTM (4.63) is numerically calculated by finding the energy and
normalizing to the perfect conductor limit (1.19). for N = 200, with 4.8 × 108

trajectories.
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fluctuations can be mitigated by more averaging. In addition, each susceptibility χ is

calculated individually, since the branching in the birth-death depends on the value

of χ. Alternatively, this effort could be partially reduced by keeping track of the

weights associated with multiple susceptibilities on a single path. In that case, the

births take place when any of the weights for a given χ exceeds two. If a birth or

branching occurs, then the weights for all χ are split between the two new paths.

However, the death process occurs on an individual level for each χ. Only once the

path reaches the end, or all of the weights have died does the path stop. It seems

this approach roughly halves the computation time required to calculate the Casimir

energy for multiple susceptibilities, rather than providing an O(Nχ) speedup. This

perhaps reflects that different classes of paths contribute at different χ, and yoking

the calculations together does not offer a great speedup.

Figure 5.11 shows the numerically computed TM Casimir energy for two planar

dielectrics. The numerical efficiency is found by normalizing the calculated energy to

the perfect conductor result. This numerical calculated efficiency is compared with

the integral solution γTM (4.63).

The TM potential in the two body case is handled by splitting the two-body

potential into a product of single-body potentials:

〈
−
〈
e−

∫ ∆T
0 dt(V

(1)
TM+V

(2)
TM)

〉
−
〉
xk→xk+1

≈
〈
−
〈
e−

∫ ∆T
0 dt V

(1)
TM

〉
−
〉
xk→xk+1

〈
−
〈
e−

∫ ∆T
0 dt V

(2)
TM

〉
−
〉
xk→xk+1

.

(5.61)

This is only valid for
√

∆T � d, which given that T ∼ d2, implicitly requires that
√
N � 1. For typical calculations used in the TM case, N ∼ 100, so the calculations

do not strongly satisfy that criterion. Although we are employing analytical solutions,

they are the analytical solutions for single bodies, rather than two bodies. The good
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agreement suggests that the approach of using the solution for the nearest body

actually does manage to recover the correct two-body energy when the potential

employed varies across a path.

The birth-death method in the two body case is handled in a similar manner to

the method discussed for multiple χ. The accumulated two-body and respective one-

body potentials are tracked around a given path. If any of those exceeds two, the path

splits and all of the weights are shared evenly across the two new paths. However the

death-process occurs individually for the two-body and one-body potentials. Only at

the end of the path, or when all of the paths have died are the results accumulated,

or the dielectric path average used. Given that the dielectric average 〈εr〉−1/2 acts to

bring the answer closer to zero, this does not miss any contributions.

The agreement is not great in this case. At large χ, the error bars do not overlap

with the analytical solution. This is likely due to the very small N used in this

calculation (N = 200), which would lead to a large systematic error. In comparison

the TE calculations used N = 104. The TM Casimir results seem to be biased above

the expected result. The performance is still reasonably good. This might be due to

the fact that the TM energy uses an analytical solution to handle the TM potential.

In the strong-coupling limit, that potential provides most of the Casimir energy. The

analytical solutions capture more of the first-touching dependence than the simple

estimates used for 〈εr〉 discussed in Section 5.1.2.3. So the TM integrand performs

relatively well even for a small N . However, this is probably outweighed by the

increased statistical errors.

Sampling from the exponential path time distribution (5.39) is essential for the

renormalized two-body TM Casimir energy. As noted earlier, the paths must touch

both bodies to contribute. Given that branching is likely to occur near one surface,
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those new paths may start to contribute to the Casimir energy before the initial path

would.

The renormalized TM Casimir energy path integral has an additional problem.

As currently implemented, the starting position for paths is randomly sampled from

Eq. (5.17). The paths can start close to one surface, and spawn a number of child

paths immediately. However, these paths are not guaranteed to intersect both bodies,

and thus a large number of them contribute nothing to the path integral. This wastes

a lot of computational effort on unimportant paths. One possible improvement to

this method is to explicitly condition the path to touch both bodies. This would be

another form of importance sampling, since only paths that touch both bodies will

actually contribute to the path integral.

5.3. Frequency Sampling

Currently these numerical calculations ignore dispersion and nonzero temperatures,

such as occur in Eq. (2.77). Given that each frequency contributes independently to

the Casimir energy, the integral over frequencies could be handled in a similar fashion

to handling multiple constant χ. In the TE case, the sojourn time for each body 〈Θi〉

must be estimated on a pathwise basis, and then the results could be used to evaluate

multiple frequencies at once using 〈εr(iω)〉 = 1+
∑

j χj(iω)〈Θj〉. The T sampling can

be carried out using the procedure discussed in Section 5.2.2. Alternatively, further

Monte Carlo sampling could be used to randomly select a single frequency for each

path. We anticipate these methods would also work when applied to εr(iω) due to

the relative success of the worldline method at recovering the distance dependence

(which is mostly bound up in the T integral), and in capturing the efficiency at a

wide range of χ. Since εr is positive along the imaginary frequency axis, capturing
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the correct answer at all positive χ should translate to capturing the correct answers

once εr is allowed to be a function of frequency.
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CHAPTER VI

ELECTROMAGNETIC WORLDLINES: NUMERICAL FORCES AND

CURVATURES FOR THE TE POLARIZATION

The preceding work has focused on computing the Casimir energy between

dielectric bodies. However, a number of experiments directly measure the force,

or even the second spatial derivative of the energy. For example, Chan et al.

(2001) detected the Casimir force by measuring the shift in frequency of a

nanoelectromechanical oscillator, and that frequency shift is sensitive to the second

derivative (or curvature) of the Casimir energy.

As already noted in Section 5.2.3.1, the finite-difference method has some

drawbacks when applied to worldline path integrals. Derivatives of discontinuous

functions such as those required in worldline path integrals lead to large statistical

errors. Section 5.2.3.3 develops specialized techniques for handling derivatives of

Casimir–Polder energies. The current chapter develops a parallel discussion for

computing the force on macroscopic bodies.

Prior investigations by Weber and Gies (2009, 2010b) computed the Casimir

force in the worldline method for the Dirichlet boundary conditions. They computed

the force between a planar surface and a cylindrical or spherical body, and the torque

between inclined plates. Their methods typically rely on finding analytical expressions

for the path times T when a particular Brownian path will intersect the surfaces, and

analytically integrate over the path time T and path starting position x0.

In contrast, our approach to the worldline method has also emphasized Monte

Carlo integration over the path time and starting position. Section 6.1 derives

the “pinning” approach, where the forces emerge from paths that are pinned to
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start on the surfaces of the relevant bodies. This approach is used to derive

worldline expressions for the force (6.8), potential curvature (6.14) and torque (6.19).

Unfortunately, when χ/N � 1 the pinning expressions give too small an answer,

which prompts developing the “occupation” method in Section 6.2. The occupation

method leads to alternative expressions for the force (6.29), potential curvature (6.33)

and torque (6.32). These expressions also make contact with the approach used by

Weber and Gies (2009, 2010b). These occupation expressions still work at large

χ/N , but some care is needed to sample from all of the relevant classes of paths

at both weak (χ/N � 1) and strong (χ/N � 1) coupling. Section 6.3 discusses

the numerical simulations for planar media where the correspondence to the TE

polarization can be used to check the numerical results. We find that even the

occupation methods of Section 6.2 can fail at strong coupling. However, this is due to

the strong-coupling limit requiring a rare set of paths which just “graze” the bodies.

This can be confronted by either using a large ensemble of paths, or adjusting the

sampling procedure to explicitly capture the strong-coupling limit. In Section 6.3.1, a

“general-χ” approach is used for small χ, and in Section 6.3.2 one possible approach

to capturing the strong-coupling limit is presented.

The results in this chapter are explicitly derived for the TE worldline path

integral, although presumably these results can be generalized to the TM worldline

path integral. That could be done by exploiting the partial averaging methods

discussed in Section 5.2.3.3. The partial averaging is necessary since directly

evaluating the derivatives on the path-averaged TM potential (5.24) leads to terms like

(d− xk)/∆T . Those terms have large statistical fluctuations as ∆T → 0, but partial

averaging could mitigate those fluctuations. [The results presented here, along with

the material on partial averaging in Section 5.2.3.3 are in preparation for publication.]
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6.1. Surface Pinned Paths

The renormalized TE Casimir energy was given in Eq. (4.40). Although the

energy was derived under the assumptions of describing electromagnetism in planar

media, it can be studied in its own right as a scalar field theory in arbitrary geometries

of bodies. We will consider the following worldline path integral

E =
~c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

W, (6.1)

where the integrals over the spatial coordinates in the worldline path integral are

given by

W :=

∫
dx0

〈〈
1

〈εr〉a
− 1

[εr(x0)]a

〉〉
x(t)

, (6.2)

where a = 1/2 when applied to TE Casimir energies in planar geometries.

In the following treatment we will consider a general geometry for computing

Casimir forces between material bodies (Figure 6.1). For simplicity, we will assume

uniform dielectric bodies separated by vacuum. In this case, the relative dielectric

permittivity εr(r) is given by

εr(r) = 1 +
∑
j

χjΘ[σj(r−Rj)], (6.3)

where χj is the dielectric susceptibility of body j; σj(r) = 0 defines the surface of

the jth body, with σj > 0 and σj < 0 on the interior and exterior of the body,

respectively; and Rj is the center of the jth body.
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R1

c1

R2

c2

FIGURE 6.1. Sketch of the geometry for interacting dielectric bodies of susceptibility
χj, centered at Rj relative to the origin. The surface of the jth body is defined by
the condition σj = 0. The unit normal vectors n̂j to the surface of the jth body are
also shown.

6.1.1. Force

The force on a body follows from a gradient of the Casimir energy, where

the derivatives are taken with respect to the body’s position. For example, the

components of the force on body 2, expressed with Cartesian basis vectors r̂i, are

given by directional derivatives of the path integral in Eqs. (6.1) and (6.2) with

respect to the components of the body position R2. The resulting force is

F2,i := − ~c
2(2π)D/2

∫ ∞
0

dT
T 1+D/2

r̂i · ∇R2W

= − aχ2~c
2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dx0

〈〈
r̂i ·
〈
δ(σ2)∇σ2

〉
〈εr〉a+1

〉〉
x(t)

, (6.4)

where σ2 = σ2[x(t) − R2] in this expression, and ∇Ri
denotes the gradient with

respect Ri. The path-averaged delta function acts to pin the paths to the surface

where σ2 = 0. Writing out the relevant part of the path integral (6.4), the delta

function reduces the D− 1-dimensional integration over x0 to a (D− 2)-dimensional
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integration over the surface of the second body, with the result

∫
dx0

〈〈〈
δ
(
σ2[x(t)−R2]

)
∇σ2[x(t)−R2]

〉
〈εr〉a+1

〉〉
x(t)

=

∮
σ2(x0−R2)=0

dS

〈〈
∇σ2(x0 −R2)

〈εr〉a+1|∇σ2(x0 −R2)|

〉〉
x(t)

. (6.5)

This relation follows from simplifying the path-averaged delta function using

Eq. (4.10), and the result (Hörmander, 1983)

∫
dx δ[h(x)] f(x) =

∫
h−1(0)

dS
1

|∇h(x)|
f(x), (6.6)

where S is the surface defined by h(x) = 0, and

|∇h(x)| =

[∑
k

(
∂h

∂xk

)2
]1/2

. (6.7)

The renormalized force vector can be found by summing over all force components,

and subtracting the corresponding single-body force,

F2 = − aχ2~c
2(2π)D/2

∞∫
0

dT
T 1+D/2

∮
σ2(x0−R2)=0

dS n̂2(x0)

〈〈
1

〈εr,12〉a+1
− 1

〈εr,2〉a+1

〉〉
x(t)

, (6.8)

where the unit-normal vector for the surface of the second body is defined as

n̂2(x0) := − ∇σ2(x0 −R2)

|∇σ2(x0 −R2)|
. (6.9)

Qualitatively, the Casimir force on a body arises from paths that start on a body’s

surface. The direction of the force from a small patch of the surface is determined
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by the local surface normal. Since each patch is at different distances from the other

bodies, the paths from each patch contribute at different path times. Once the integral

over the surface is carried out, this results in a net force on the body.

6.1.2. Potential Curvature

This method can be easily extended to the second derivative of the worldline

energy (6.1), which computes the potential curvature,

Cij := (r̂i · ∇R2)(r̂j · ∇R2)E. (6.10)

For a dielectric describing two bodies, the gradients with respect to R2 can be

rewritten in terms of gradients with respect to the first body’s center R1, and the

path coordinates xk,

∇R2〈εr〉 =

( N∑
k=1

∇xk −∇R1

)[
〈ε1(x−R1)〉+ 〈ε2(x−R2)〉

]
, (6.11)

where ∇xk is the gradient of the path position xk. The first derivative can be carried

out as before:

Cij =
aχ1~c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dx0

〈〈
r̂i ·
(∑

k

∇xk −∇R1

)[
r̂j · 〈∇σ2δ(σ2)〉

]
〈εr〉a+1

〉〉
x(t)

.

(6.12)

It is possible to integrate by parts with respect to xk, so that the gradient ∇xk

then acts on the Gaussian probability density, which yields a term proportional to∑
k(xk − xk+1). This sum of path increments vanishes for closed paths, and thus

this term can be dropped. The remaining gradient ∇R1 can be straightforwardly
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evaluated, which yields a second independent path-averaged delta function:

Cij =
a(a+ 1)χ1χ2~c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dx0

〈〈[
r̂i · 〈δ(σ1)∇σ1〉

] [
〈δ(σ2)∇σ2〉 · r̂j

]
〈εr〉a+2

〉〉
x(t)

.

(6.13)

One delta function can be manipulated as in Eq. (6.5) to pin the paths to start on the

first body, while the second path-averaged delta function pins another point of the

path to the second body. There is then a further average over which point is pinned

to the second surface. The resulting expression for the potential curvature is

Cij =
a(a+ 1)χ1χ2~c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∮
σ1(x0−R1)=0

dS0
1

N

N−1∑
k=1

∮
σ2(xk−R2)=0

dSk

×
〈〈
G(x0 − xk, k(N − k)T /N2)

[r̂i · n̂1(x0)][r̂j · n̂2(xk)]

〈εr,12〉a+2

〉〉
σ2(xk−R2)=0

,

(6.14)

where 〈〈· · ·〉〉σ2(xk−R2)=0 is the ensemble average over discrete paths x(t) subject to

the constraint that σ2(xk − R2) = 0. The D − 1-dimensional Gaussian probability

density

G(x, σ2) =
e−(x)2/2σ2

[2πσ2](D−1)/2
, (6.15)

has been used to write the combined normalization factor for Brownian bridges

propagating from x0 to xk in k steps, and returning to x0 in N − k steps. There

is no need for any further renormalization, since this expression is only non-zero in

the presence of both bodies, and G exponentially cuts off the integral at small T .
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6.1.3. Torque

The torque on a body can be found from the first-order variation in the energy

as that body is rotated about some axis. For concreteness, consider perturbing the

dielectric function by rotating the second body about its center by angle φ about axis

m̂:

εr(x) = 1 + χ1Θ[σ1(x−R1)] + χ2Θ
{
σ2[R(φ)(x−R2)]

}
. (6.16)

The infinitesimal rotation matrix is

Rij(φ) = δij −mkεijkφ+O(φ2), (6.17)

where δij is the Kronecker delta, and εijk is the antisymmetric Levi-Civita tensor.

Throughout this section there are implicit sums over repeated indices. The torque

for a rotation about axis m̂ can be written as Km = −∂φE. The φ derivative only

acts on the path-averaged dielectric part of the energy integrand,

∂φ〈ε〉 = χ2〈∂φRij(φ)(x−R2)j[r̂i · ∇Θ(σ2)]〉

= χ2m̂ · 〈(x−R2) ∧∇Θ(σ2)〉, (6.18)

where we used Eq. (6.17) to write the result as a cross product1 via (a∧b)i = εijkajbk.

This derivative can be directly substituted into the torque path integral, and similar

manipulations to those in Eq. (6.5) can be carried out to pin the paths to the surface

of the second body. The total torque on the body can be found by adding up the

torques for infinitesimal rotations about each of the Cartesian axes (i.e. taking m̂ to

1 The wedge operator ∧ denotes the vector cross product to avoid confusion with the traditional
multiplication sign ×, which denotes multi-line multiplication throughout this thesis.
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be each Cartesian axis in turn, and summing the results). The renormalized torque

worldline path integral is

K =
a~cχ2

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∮
σ2(x0−R2)=0

dS0

[
(x0 −R2)∧n̂2(x0)

]〈〈 1

〈εr,12〉a+1
− 1

〈εr,2〉a+1

〉〉
x(t)

.

(6.19)

This has a similar form to the force path integral (6.8). Here the integrand is weighted

by the cross product of the vector from the body’s center the surface, and the surface

normal. If the spatial integrand in Eq. (6.8) is loosely interpreted as a force density,

then the torque integrand for each patch of the surface can interpreted as the local

torque density. This is in direct analogy with the expression for the torque K = r∧F

from classical mechanics.

6.1.4. Casimir–Polder Force

An alternative expression for the Casimir–Polder force on an atom near a surface

can be found in analogy to the potential curvature in Eq. (6.14). The force on the

atom due to the TE Casimir effect is F (TE)

CP,i = −r̂i · ∇rA
V (TE)

CP . In Section 5.2.3.3

the derivatives of the path integral were taken directly, and the only contribution to

the derivative came from the Gaussian probability distribution. Alternatively, one

can change the coordinates to x(t) = rA + y(t), where y(t) is a Brownian bridge

starting and returning to the origin, y(0) = y(T ) = 0. Then after taking the desired

derivatives with respect to the components of rA, the force is

F (TE)

i =− ~cα0

4(2π)D/2

∫ ∞
0

dT
T 1+D/2

〈〈
r̂i ·∇rA

〈εr〉−3/2

〉〉
y(t)

, (6.20)
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where r̂i is a Cartesian unit vector. This path integral considers the change in energy

as the whole path is rigidly translated, while the results in Section 5.2.3.3 correspond

to shifting only the origin of the path, while keeping the rest of the path fixed. The

derivatives create delta functions for piece-wise constant media. In analogy with

the potential curvature, since the starting point is fixed, it is necessary to average

over pinning other path points to the dielectric surface for each of the bodies. The

Casimir–Polder force, after summing over all force components, is

F(TE)

CP = − 3~cα0

8(2π)D/2

Nb∑
i=1

N−1∑
k=1

χi
N

∫ ∞
0

dT
T 1+D/2

∮
σi(xk−Ri)=0

dSk

×
〈〈
G
[
rA − xk, k(N − k)T /N2

] n̂i(xk)
〈εr〉5/2

〉〉
σi(xk−Ri)=0

, (6.21)

where we have reverted to using x(t), and G is given by Eq. (6.15). In this method

the paths are constrained to touch the bodies. This must be taken into account

numerically by averaging over which index along the paths is constrained. By

contrast, the Hermite-Gaussian method discussed in Section 5.2.3.3 can use the same

ensemble of paths regardless of the dielectric background. While the path-pinning

method requires more complicated methods for path generation, it does not suffer

from diverging fluctuations as the path resolution is increased. The Gaussian factor

G exponentially suppresses contributions from pinning small indices k, which would

be the problematic terms as ∆T → 0, and thus this method does not require careful

handling as N increases. This is in contrast to the Hermite-Gaussian method which

required partial averaging to avoid growing statistical errors as N increased. However,

any further derivatives would require the techniques used in Section 5.2.3.3.
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6.2. Occupation Number

The preceding methods offer an intuitive picture of the Casimir force, however

they are poorly behaved in the strong-coupling limit. For a typical discrete path of N

steps pinned to the surface, a substantial fraction of the path will lie inside the body.

For χ � N , the denominator 〈εr〉−(a+1) dominates the integrand, so the estimated

derivatives decay as χ−a for almost all paths, where a = 1/2 for Casimir energies.

Only rare paths that start on the surface, but do not enter the bulk of the body will

contribute substantially. As a result, the numerically estimated force will likewise

decay in the strong-coupling limit. In this section we develop alternative expressions

that behave better in the strong-coupling limit. This method also makes contact

with the work by Weber and Gies (2009, 2010b) on forces and torques for Dirichlet

worldlines.

The spatial path integral (6.2) can be written in exponential form via the inverse-

moment theorem (4.22),

W =
1

Γ[a]

∫
dx0

∫
ds sa−1e−s

〈〈
e−〈

∑
i χiΘi(x)〉 − e−

∑
i χiΘi(x0)

〉〉
x(t)

, (6.22)

where we have introduced the shorthand notation Θi(x) = Θ[σi(x − Ri)]. After

the single body energies e−〈χiΘi(x)〉 have been subtracted, the renormalized two body

energy can be factorized as

W =
1

Γ[a]

∫
dx0

∫
ds sa−1e−s

〈〈
(e−〈χ1Θ1(x)〉 − 1)(e−〈χ2Θ2(x)〉 − 1)

− (e−χ1Θ1(x0) − 1)(e−χ2Θ2(x0) − 1)
〉〉

x(t)
. (6.23)
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The exponentials can be simplified as

e−s〈χiΘi(x)〉 =
N−1∏
k=1

e−sχiΘi(xk)/N =
N−1∏
k=0

[
1 + Θi(xk)(e

−sχi/N − 1)
]
. (6.24)

(The results in Section 6.1 can be recovered when χ/N � 1.)

The force on the second body can be computed by differentiating the energy

with respect to the body position R2. The spatial part of the force integral can be

written

F2 :=−∇R2W

=− 1

Γ[a]

∫
dx0

∫
ds sa−1e−s

〈〈(
1−

N−1∏
k=0

[
1 + Θ1(xk)(e

−sχ1/N − 1)
])

×
N−1∑
j=0

{(
e−sχ2/N − 1

)
n2(xj)δ[σ2(xj −R2)]

∏
k 6=j

[
1 + Θ2(xk)(e

−sχ2/N − 1)
]}〉〉

x(t)

,

(6.25)

where the constant term from renormalization has zero derivative. The integral over s

can be carried out more easily if the integrand is rearranged into terms with a definite

number of points n inside each body i. We define the indicator functions as

1
(i)
0 :=

N−1∏
j=0

[
1−Θi(xj)

]
(6.26)

1
(i)
n :=

N−1∑
j1=1

∑
j2>j1

· · ·
∑

jn>jn−1

Θi(xj1)Θi(xj2) · · ·Θi(xjn) (n ≥ 1), (6.27)

where 1
(i)
n = 1 when there are exactly n points inside body i, and zero otherwise;

there are n sums over indices jn, each of which terminates at jn = N . There are

further restrictions on which of these terms contribute to the integrand. Due to the
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presence of the delta functions, only N − 1 points are free to enter the bodies. This

further implies that the number of points inside both bodies must be less than N −1.

Finally, due to the renormalization, only paths with at least one point inside the first

body contribute. Using the indicator functions, the rearranged spatial path integral

for the force is

F2 =−
∫
dx0

∫
ds sa−1e−s

〈〈N−1∑
j=0

n̂2(xj)δ[σ2(xj −R2)]

×
N−1∑
n=0

(
e−s(n+1)χ2/N − e−snχ2/N

)
1

(2)
n

N−n−1∑
m=1

(
1− e−smχ1/N

)
1

(1)
m

〉〉
x(t)

. (6.28)

The s integral can be carried out term by term, and the delta function can be used

to pin paths onto the surface. The cyclic-permutation invariance of the integrand

can be used to remove the path-average over pinning, as in Eq. (6.5). The force path

integral becomes

F2 = − ~cN
2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∮
σ2(x0−R2)=0

dS0 n̂2(x0)
N−1∑
m=0

N−m−1∑
n=1

〈〈
1

(1)
m 1

(2)
n fm,n

〉〉
x(t)

.

(6.29)

where the material dependence is carried by the factors

fm,n := cm,n − cm,n+1 − c0,n + c0,n+1, (6.30)

cm,n :=

(
1 +

mχ1 + nχ2

N

)−a
, (6.31)

which come from computing the change in the renormalized energy integrand as

another point enters the second body. When χ2/N � 1, an expansion of fm,n to

leading order in χ2/N , recovers the earlier result, Eq. (6.8) for the force.
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In this result, the indicator functions carry the geometry dependence of whether a

given number of points are within each body, while fn,m carries the dependence of the

material properties based on the number of points inside each body. This expression

is well-behaved in the strong-coupling χ → ∞ limit, where only the terms where

n = 0 and m > 0 contribute. In the strong-coupling limit, the main contribution to

the force comes from paths that “graze” the second surface, while also overlapping

the first body.

For completeness we note the analogous expressions for the torque and potential

curvature. The manipulations and reasoning used in Section 6.1 for the torque

and potential curvature apply here—the only difference is the form chosen for the

derivative, and the use of the indicator functions in the integrand. The torque path

integral is

K2 =− ~cN
2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∮
σ2(x0−R2)=0

dS0

N−1∑
m=0

N−m−1∑
n=1

×
〈〈

[(x0 −R2) ∧ n̂2(x0)]1(1)
m 1

(2)
n fm,n

〉〉
x(t)

. (6.32)

The potential curvature is given by

Cij =
~cN

2(2π)D/2

N−1∑
k=1

∫ ∞
0

dT
T 1+D/2

∮
σ1(x0−R1)=0

dS0 r̂i · n̂1(x0)

∮
σ2(xk−R2)=0

dSk r̂j · n̂2(xk)

×
N−2∑
m=0

N−m−2∑
n=0

〈〈
G(x0 − xk, k(N − k)T /N2)1(1)

m 1
(2)
n gm,n

〉〉
σ2(xk−R2)=0

, (6.33)

where

gm,n = cm+1,n+1 + cm,n − cm+1,n − cm,n+1, (6.34)
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accounts for the change in the energy integrand as the number of points in the first

and second bodies increase. In the strong-coupling limit, the potential curvature is

dominated by terms with n = m = 0, which correspond to paths that graze both

bodies.

The formulation for the Casimir force in Eq. (6.29) is analogous to the

construction of paths employed by Weber and Gies (2010b) for computing forces in

the sphere-plane and cylinder-plane geometries in the Dirichlet limit. In that work,

the paths are shifted so that they start on the plane, but do not pass through the

plane. The force on the planar surface is computed by integrating over the values of

T when the path intersects the other surface. The expressions presented here extend

their expressions by accounting for finite χ, and accounting for arbitrary geometries.

In general, different classes of paths are important in the finite-χ and strong-

coupling cases. At small χ, the most important path statistic is the sojourn time,

while in the strong-coupling regime, the first path time when the path intersects

the bodies is the most important statistic. This correspondence was used to discuss

the numerical convergence properties of the method as the path length was varied.

[There is a brief discussion on this point in Section 5.1.3.1, and an extended discussion

in Mackrory et al. (2016).] More practically, these different requirements make it

difficult to use a single class of path to efficiently evaluate the potential at all χ. In

weak coupling, the paths should enter all of the bodies, while in strong coupling the

most important paths are those that just touch the surfaces.

It is important to distinguish between two facets of the different methods. The

first is the choice of starting points for the paths, and the second is the form of the

integrand. In the path-pinning or occupation methods, we are free to consider a single

path {Bj} starting at x0: xj = x0 +
√
TBj. There is also an associated family of
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paths starting at x0 that translate the original Brownian path by −
√
TBk, such that

x
(k)
j = x0 +

√
T (Bj − Bk). This transformation effectively shifts the bridge so that

Bk is at the origin. This sampling is essential for strong-coupling limits where only

paths that graze the bodies contribute to the force or potential curvature. However,

the choice of how to shift that paths is distinct from the choice of the integrand. In

the strong-coupling limit, all of the path-pinning estimates are zero, regardless of the

ensemble of paths used. In the occupation methods that is not true, but some care

is required to ensure that both types of paths are used in the strong-coupling limit.

6.3. Force and Curvature Numerics

The numerical computations were carried out in planar media with the dielectric

function,

εr(x) = 1 + χΘ(−x+ d1) + χΘ(x− d2). (6.35)

This allows us to compare the numerical results to the TE Casimir force. For a

non-dispersive material the Casimir force is proportional to the energy, and thus

the same efficiency factor (4.51) is the appropriate normalized result. Figure 6.2

shows the numerically calculated force on two dielectric planes of equal dielectric

constant, normalized to the total EM force between perfect-conducting plates.

This computation was carried out for the pinning, occupation and finite-difference

methods. In all cases, the paths were generated using the v-loop algorithm (5.10), and

the dielectric path averages were calculated using the trapezoidal method (5.19). Note

that in computing path averages for the occupation method, only points inside the

body contribute—any points pinned to the surface do not contribute to the dielectric

path-average.
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FIGURE 6.2. (Preliminary data) Numerically computed TE force for pinning
(squares), occupation (diamonds), and finite difference (circles) methods. The finite
difference used a step-size δ = d/

√
N . The calculations used N = 104 points per

path, and 108 trajectories.

The pinning methods discussed in Section 6.1 start to fail for χ & N , as expected.

For χ � N , the estimate of the force shows the expected χ−1/2 decay. For a finite

susceptibility, it should be possible to carry out the calculation for large enough N ,

but if one is interested in the strong-coupling regime of this theory, then the pinning

method is unsuitable.

By contrast, the occupation method is better behaved in the strong-coupling

limit. The occupation-method estimate for the force is computed by generating an

initial path {yk}, and translating it via xk = yk−yj+d, so that that each point xj lies

on the surface. The results are then averaged over all such pinnings. However, naively

implementing this method leads to N evaluations of the path integral, which could be

inefficient. It may be possible to capture both strong-coupling and general-coupling

regimes with only two samples. First, in order to capture the strong-coupling limit

the path integral can be computed for a path where only one point is on the first
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surface, and no points are inside the first body. Second, to capture the remaining

χ-dependence, the integrand should be calculated again for a path where a randomly

selected point is pinned to the first surface, without any constraints on the other

occupation numbers. The strong coupling estimate for the force fs, and the general-

χ estimate fg, are combined with weights N−1 and (N − 1)/N respectively, which

account for enforcing the restrictions.

In the absence of that step to explicitly capture the strong-coupling limit, only

very rare paths will contribute, since most random paths starting on the surface are

equally like to explore both positive and negative regions. Most paths will intersect

both bodies, and contribute zero to the force. For small ensembles (Npath ≤ 107) this

causes similar convergence problems to the pinning methods at large χ. However, this

would be a statistical error due to insufficient sampling, as opposed to the intrinsic

problems in the pinning method. Similar methods will be discussed in more detail

regarding the potential curvature.

In fact, the general-χ samples were gathered using stratified sampling, where

the path index k was broken into uniform strata. This basically splits the sum into

multiple pieces and samples from each of those sub-pieces. For example,

N∑
k=1

ak =
Nstrata∑
j=1

Nsub∑
n=1

an+j Nsub
, (6.36)

where NsubNstrata = N . Each stratum was then sampled from uniformly. In the

calculations in Figure 6.2, ten strata were used.

Given the deficiencies of the pinning method for finite paths, we will compute

the potential curvature using the occupation method. Since the potential curvature

requires paths pinned on two different surfaces, and will exhibit similar convergence
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issues at strong coupling, we will develop two different approaches to generating paths

and sampling times.

6.3.1. Direct Path Construction for General-χ Coupling Method for

Potential Curvature

In a method suitable for general coupling, all of the paths start on the surface

of the first body, and are explicitly constructed to intersect the second body after

k steps, where the index k is also sampled randomly. The paths can be explicitly

constructed as Brownian bridges from x = 0 to xk = d, using Eq. (5.8). The Gaussian

factor G
[
d, k(N − k)T /N2

]
in Eq. (6.33) is used to sample path times by treating

it and T −(1+D/2) as the gamma distribution in T . Path times can be sampled from

Eq. (5.39), with T0 = N2d2/[2k(N − k)] and a = 1 + (D + 1)/2. The pinned point

k can be sampled from the combination of T 1−a
0 for normalization P (T ) and the

normalization constant from G[d, k(N − k)T /N2], with distribution

Ppin(k;N) = Npin

(
k(N − k)

N2

)D/2
, (6.37)

where Npin =
∑N

k=1 P (k;N) ≈ N/30 for large N . In addition for planar surfaces, the

integral over the transverse dimensions amounts to an area factor.

The expression for the potential curvature for general-χ coupling is

Cij =
~cN

2(2π)D/2

N−1∑
k=1

∮
σ1(x0−R1)=0

dS0

〈〈 ∮
σ2(xk−R2)=0

dSk
3Npin[r̂i · n̂1(x0)][r̂j · n̂2(xk)]

|x0 − xk|5

N−2∑
n=0

N−n−2∑
m=0

1
(1)
n 1

(2)
m gm,n

〉〉
k,T ,x0↔xk

, (6.38)
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where the ensemble average is over path times, pinning separations k, and Brownian

bridges from x0 to xk, where x0 is on the first surface, and xk is on the second surface.

In Figure 6.3, we have used this general-χ coupling method to compute the

potential curvature without special treatment for strong coupling, with two different

ensemble sizes to show the effect of additional averaging. The general-χ coupling

integrand does eventually lead to the correct answer in the strong-coupling limit once

enough averaging has taken place. However, achieving that convergence requires a

large ensemble to capture the relatively rare, but important, paths that just graze both

surfaces. Performance can be improved by introducing separate estimates adapted

for the strong-coupling limit.

This suggests a two-fold approach: First, paths should be generated under the

constraint that they touch both surfaces without regard for their occupation time

(which will capture general χ). Second, another set of paths should be generated

which just touch the bodies (which will capture large χ).

6.3.2. Softened Delta Function Pinning for Strong-Coupling Limit for

Potential Curvature

An alternative method to the one presented in Section (6.3.1), one more suited

to the strong-coupling limit, arises from a different treatment of the second delta

function δ[σ2(xk −R2)]. In this case, the first delta function δ[σ1(x0 −R1)], is still

used to pin the paths to start on the first body. Although the paths are assumed to

start on the surface of the first body, they do not enter the bulk of that body. In

order to contribute to the curvature path integral in the strong-coupling limit, the

paths should move towards the second body, and just graze its surface.

207



0

0.1

0.2

0.3

0.4

0.5

10
0

10
2

10
4

10
6

10
8

c

g
 o 

  
(c

)
T

E
  

 

109
paths

107
paths

FIGURE 6.3. Numerically computed second derivative of potential for two planar
surfaces as function of dielectric, for N = 105, each with 107 and 109 trajectories.
cd All results are computed using the “occupation” method with general-χ coupling
method presented in Eq. (6.33).

The goal of this method is to develop a way of handling delta function constraints

within a path integral without having to drastically change the way the paths are

generated. This would be particularly useful for handling pinning in an application

involving paths that are hard to construct, such as the TM-Gaussian paths discussed

in Section 5.2.1.1. In the resulting method, any path can in principle contribute, even

if only a few of them will give an important contribution.

6.3.2.1. Softened Delta Function Pinning

Let us consider the term involving δ[σ2(xk − R2)] from the curvature path

integral (6.33). After suppressing the integrals over S0 and T , as well as the leading
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constants, the remaining spatial path integral can be written in a schematic form as

I =
1

(2πT )(D−1)/2

〈〈
δ[f(xk)]Φ(x1, . . . ,xN−1)

〉〉
x(t)

(6.39)

=

∫ N−1∏
n=1

dxn

N−1∏
k=0

(
e−(xk+1−xk)2/(2∆T )

(2π∆T )(D−1)/2

)
δ[f(xk)]Φ(x1, . . . ,xN−1), (6.40)

where f(xk) and Φ are placeholders for the constraint σ2(xk − R2), and integrand∑
n

∑
m 1

(1)
m 1

(2)
n gm,n, respectively. There is no Gaussian term, since that only arises

after pinning the paths, and normalizing for pinned Brownian bridges.

Instead of just evaluating the integral over xk (which pins the paths), the integral

can be multiplied by a factor of unity of the form:

1 =
(2π∆T )−(D−1)

∫
dyk e

−(xk+1−yk)2/(2∆T )−(yk−xk−1)2/(2∆T )

(4π∆T )−(D−1)/2 e−(xk+1−xk−1)2/(4∆T )
. (6.41)

This involves multiplying and dividing by an unconstrained integral connecting

xk−1 and xk+1 via a new coordinate yk. The integral has been evaluated in the

denominator. Then the constrained integral (6.40) can now be written

I =

∫
dyk

∫ N−1∏
n=1

dxn

N−1∏
k=0

(
e−(xk+1−xk)2/(2∆T )

(2π∆T )(D−1)/2

)
e−(xk+1−yk)2/(2∆T )−(yk−xk−1)2/(2∆T )

(2π∆T )D−1

× (4π∆T )(D−1)/2 e(xk+1−xk−1)2/(4∆T )δ[f(xk)]Φ(x1, . . . ,xk, . . . ,xN−1). (6.42)

The label for the constrained coordinate xk and the unconstrained coordinate yk can

be swapped using xk ↔ yk. The unconstrained coordinates xk will then be used

with all of the other coordinates to create free Brownian bridges, and δ[f(yk)] is

now isolated in an auxiliary integral. The path integral can be written in ensemble-

209



averaged form,

I =
1

(2πT )(D−1)/2

〈〈∫
dyk

e−(yk−x̄k)2/∆T

(π∆T )(D−1)/2
δ[f(yk)]Φ(x1, . . . ,yk, . . . ,xN−1)

〉〉
, (6.43)

where x̄k := (xk−1 + xk+1)2, and the exponential terms were combined using

(xk+1 − yk)
2 + (yk − xk−1)2 − (xk+1 − xk−1)2

2
= 2(y − x̄k)

2. (6.44)

Now the delta function can be integrated over using Eq. (6.6), with the result

I =
1

(2πT )(D−1)/2

〈〈∮
f(y)=0

dS(y)
1

|∇yf(y)|
e−(y−x̄k)2/∆T

(π∆T )(D−1)/2
Φ(x1, . . . ,y, . . . ,xN−1)

〉〉
x(t)

.

(6.45)

There is an integral over the surface of constraint f(y), and the functional Φ is

constrained such that its kth coordinate is on the surface. The paths can be

constructed without any concern for the constraints, but they will be suppressed

by the Gaussian if they strongly violate the constraint that y ≈ x̄k. In effect, this

manipulation has “softened” the constraints. Previously, xk had to lie exactly on the

surface, whereas now x̄k should be within
√

∆T of the surface to contribute to the

path integral. Since a broader class of paths can be considered, it maybe easier to

find sample paths where that almost obey the constraint y ≈ x̄k. Those paths can

then contribute to the path integral in regions where Φ is nonzero.

6.3.2.2. Splitting the Potential Curvature

Since the strong-coupling limit in the curvature (6.33) comes from the terms

proportional to 1
(1)
0 1

(2)
0 , those terms can be separated out, and treated using the
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softened delta function approach. The remaining terms will be treated using the

generic coupling discussed in Section 6.3.1. The curvature can be split into a strong-

coupling and general-χ coupling term

Cij =C
(S)
ij + C

(g)
ij , (6.46)

where the strong-coupling term is

C
(S)
ij =

~cN
2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∮
σ1(x0−R1)=0

dS0 r̂i · n̂1(x0)

∮
σ2(y−R2)=0

dS(y) r̂j · n̂2(y)

×
〈〈N−1∑

k=1

e−(y−x̄k)2/∆T

(π∆T )D/2
1

(1)
0 1

(2)
0 g0,0

〉〉
x(t)

, (6.47)

and the general-χ coupling term C
(g)
ij is

C
(g)
ij =

~cN
2(2π)D/2

N−1∑
k=1

∫ ∞
0

dT
T 1+D/2

∮
σ1(x0−R1)=0

dS0 r̂i · n̂1(x0)

∮
σ2(xk−R2)=0

dSk r̂j · n̂2(xk)

×
∑
m,n 6=0

〈〈
G(x0 − xk, k(N − k)T /N2)1(1)

m 1
(2)
n gm,n

〉〉
σ2(xk−R2)=0

. (6.48)

The integral (6.47) is only substantially nonzero under two conditions. First, the

path must pass within a distance
√

∆T of the surface, and second the paths must

not enter either body. Note that due to the pinning, the indicator functions 1
(1)
0 1

(2)
0

are currently defined with y in the kth spot. This means that if xk lies inside either

body, that does not influence the integrand. The indicators only go to zero when one

of the other points on the path crosses into the bodies.

In a planar geometry, the (D−2)-dimensional surface integrals can be evaluated.

The integral over S(y) eliminates the transverse Gaussian integrals, and integral over
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the starting surface gives a factor of the transverse area. In D = 4 dimensions,

Eq. (6.47) then simplifies to

C
(S)
ij =

~cNA
2(2π)2

∫ ∞
0

dT
T 3

〈〈N−1∑
k=1

e−(d2−x̄k)2/∆T

(π∆T )1/2
1

(1)
0 1

(2)
0 g0,0

〉〉
x(t),x0=d1

, (6.49)

In order to capture the strong-coupling dependence it is necessary to sample from the

set of paths that do not enter either body. For two dielectric planes with dielectric

function (4.39) the paths can be constructed by shifting the paths so they start

on the first surface at x = d1. For paths constructed by scaling unit Brownian

bridges, xk = d1 +
√
T Bk, this can be done by translating the unit Brownian bridge

B(t)→ B(t)−Bmin, where Bmin is the minimum value of the path. This ensures that

the paths start at x = d1, but since
√
T B(t) > 0 for all points of the path, the paths

will not enter the first body. Then suppose that the maximum point of the bridge is

Bmax, and the maximum point of the path is xmax = d1 +
√
T Bmax. Only this point

will have an opportunity to contribute. Once it passes through the surface, 1
(1)
0 1

(2)
0

is zero, and so the integrand is also zero. Then the Gaussian e−(d2−x̄max)2/∆T can be

used to sample a path-time, while ensuring that the path does not actually enter the

surface. That crossing time Tmax definitely happens when
√
TmaxBmax = d, where

d = d2 − d1. The exponential factor in Eq. (6.49) can be written using the definition

of xmax as

exp

(
− 1

∆T
[d−

√
T B̄max]2

)
= exp

[
−Nd2

(
1√
T
− B̄max

d

)2]
, (6.50)

where B̄max := (Bm∗+1−Bm∗−1)/2, and m∗ is the index of the maximum value. This

can be regarded as the probability distribution for T . The normalized probability
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distribution for 1/
√
T is

PS(T ; B̄max, d,N) =

√
Nd2

πT 3
exp

[
−Nd2

(
1√
T
− B̄max

d

)2 ]
Θ

(
d2

B̄2
max

− T
)
. (6.51)

The probability distribution can simplified by defining

s =
√

2Nd2

(
1√
T
− B̄max

d

)
, (6.52)

where

PS(s) =

∣∣∣∣dTds
∣∣∣∣PS(T ) =

√
2

π
e−s

2/2Θ(s), (6.53)

is a one-sided normal distribution. In this case, s is the absolute value of a standard

normal deviate, and the path times can be written in terms of standard normal

deviates as

T =

(
|z|√
2Nd2

+
B̄max

d

)−2

. (6.54)

The T integral will be computed in Monte Carlo fashion after factoring out the

probability density (6.51), and using Eq. (6.54). The sum over k is assumed to be

dominated by the contribution at the maximum point,

C
(S)
ij =

~cNA
2(2π)2

〈〈
1

T 2d

(√
Nd2

πT 3
e−(d2−x̄max)2/∆T

)
1

(1)
0 1

(2)
0 g0,0

〉〉
x(T ),x0=d1

. (6.55)

Note that there is no explicit pinning on the paths, but this integrand is only non-zero

if the paths do not enter the bodies.

Figure 6.4 shows the effects of including the strong coupling term (6.55). The

strong-coupling term only becomes important for χ/N � 1, and there is a transition

between the generic coupling and strong-coupling regimes. The variance of the
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FIGURE 6.4. (Preliminary data) Numerically computed second derivative of TE
potential for two planar surfaces as function of dielectric, for N = 105, with 108

trajectories. Strong coupling results are shown as blue squares, generic coupling as
red diamonds, and their sum as green triangles. All calculations are carried out using
“occupation” method in Eq. (6.33), and both estimates use the same ensemble of
random numbers.
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total estimated potential is also increased in the cross-over region, dominated by the

statistical error from the generic coupling estimate. The method used here manages

to improve on the generic coupling results significantly, since it does not rely on

rare paths from a very large ensemble to capture the behavior in the strong-coupling

regime. However, the presented results have a larger statistical error than the simpler

generic coupling, but this is perhaps due to a slightly smaller ensemble of paths.

There are N = 108 sample paths in Figure 6.4, versus N = 109 sample paths in

Figure 6.3. This is still under study.

There is yet another way of treating the delta function in terms of restricting T . If

the paths are assumed to start on the surface of the first body, and not enter, then the

delta function can be interpreted as a delta function in the path time T . (Since there is

only one T integral in the path integral, only one of the delta functions can be handled

in this manner. The remainder should be accounted for in the spatial integrals.) For

a given Brownian bridge Bk, the times T∗ that it intersects the surfaces, or satisfies

σ2(x0 +
√
T∗Bk − R2) = 0 could be found. This has not yet been implemented,

but would be much simpler. However, the softened delta function approach may be

also be useful in handling other constraints. For example, it may be useful when

computing the potential in a complicated geometry. It might be hard to construct

paths that touch both surfaces, and yet enter neither from randomly constructing

Brownian bridges. This softened style of pinning could allow a broader class of paths

to contribute in that case.
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CHAPTER VII

CONCLUSION

The goal of this thesis was to develop a general purpose numerical method

employing the worldline method to calculate electromagnetic Casimir energies. We

have been partially successful in those aims.

Following Bordag et al. (1999, 1998), we developed a full vector path

integral (2.50) for the EM field. So far it has not be implemented as a numerical

method. Instead, we developed an approximate worldline description for the EM

field in terms of two independent scalar fields, corresponding to the TE and TM

polarizations. Although the decoupled scalars are adapted to a planar geometry,

they share some similarities with the potentials in the full vector path integral, and

are a useful test case in their own right.

We showed analytically and numerically that the polarization worldline path

integrals recover the known expressions for the Casimir–Polder and Casimir energies

in planar geometries, at zero and high temperature. Doing so involved regularizing

singular TM potentials, and finding analytical solutions to the path integral in certain

geometries. The analytical expressions for the path average of the TM potential are

essential for numerical computations with this method.

Even with regularized solutions, it was necessary to develop techniques to

efficiently sample the worldline path integral. The TE integrand was relatively simple

to evaluate, while the TM integrand is much more challenging and still under study.

The birth-death method for sampling paths was essential for bringing the statistical

errors under control, and the partial averaging method also allowed us to evaluate
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the derivatives required for the TM method. The numerical methods we developed

are in agreement with the expected analytical results.

The methods that were developed could be used as an (uncontrolled)

approximation to the Casimir effect in a general geometry. They will also probably

be useful in handling the vector path integral. In cases where path integrals can

be analytically solved for open Brownian bridges [such as Dirichlet (3.29) and TM

boundary conditions (3.52)], those expressions can be applied locally at each step

of the path. At each step, the potential could be computed using a local planar

approximation to the exact solution. The local solutions joined together along the

path, could form a basis for solving a path integral in general, based on the local

approximations throughout the path.

Another possible approach to leveraging the results contained here into a general

method is to consider how the two scalar polarizations are coupled. At each point

along the path, the EM field could be split into the TE and TM polarizations based

on the nearest surface normal. The weights for the polarizations are the components

of an auxiliary two component vector that travels along the path. At each step, the

terms acquire the appropriate TE or TM potential, and are then coupled together

via a rotation matrix where the rotation angle depends on the change in the surface

normal.

The worldline method has not yet been generalized to full electromagnetism.

However, the worldline has a number of attractive features such as its simple

parallelism, and the possibility for superior performance in very complicated

geometries. Given the progress thus far, I believe that this method is worth

developing further, where it could complement existing methods and may have uses

in electromagnetism beyond just Casimir physics.
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APPENDIX

DETAILED CALCULATIONS

This appendix collects a couple lengthy, but tedious calculations required in the

main text.

A.1. Integrated Renormalized Two-Body Feynman-Kac Formula

The following calculation is required for the renormalized two-body energies for

both TE and TM. Since TE and TM mimic each other in the form of their solutions,

most of this can proceed in parallel. Only at the end is the exact form of the solution

required. The form of the two-body solutions are given in Eqs. (3.31) and (3.60).

The spatial integral over the solution f12 in region I is

JI =

∫ d1

−∞
dx0

(
f12(x0)− f (0)

12

)
=

∫ d1

−∞
dx0 e

−2
√

2(λ+χ1)(d1−x0) r2e
−2
√

2λd − r1√
2(λ+ χ1)(1− r1r2e−2

√
2λd)

=
r2e
−2
√

2λd − r1

4(λ+ χ1)(1− r1r2e−2
√

2λd)
. (A.1)

The equivalent one-body expressions can be found by setting one of the susceptibilities

to zero. The spatial integrals over the other regions are

JII =

∫ d2

d1

dx0

[
f12(x0)− f (0)

12

]
=

∫ d2

d1

dx0

[
2r1r2e

−2
√

2λd + r1e
2
√

2λ(d1−x0) + r2e
−2
√

2λ(d2−x0)

√
2λ(1− r1r2e−2

√
2λd)

]
=

2d r1r2e
−2
√

2λd

√
2λ(1− r1r2e−2

√
2λd)

+
(r1 + r2)(1− e−2

√
2λd)

4λ(1− r1r2e−2
√

2λd)
, (A.2)
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and

JII =

∫ ∞
d2

dx0

(
f12(x0)− f (0)

12

)
=

∫ ∞
d2

dx0 e
2
√

2(λ+χ2)(d2−x0) (r1e
−2
√

2λd − r2)√
2(λ+ χ2)(1− r1r2e−2

√
2λd)

(A.3)

=
(r1e

−2
√

2λd − r2)

4(λ+ χ2)(1− r1r2e−2
√

2λd)
. (A.4)

The total spatial integral for the fully renormalized two-body solution is found by

adding together Eqs. (A.1)–(A.4), and subtracting off the one-body integrals. The

result is

∫ ∞
−∞

dx0

[(
f12(x0)− f (0)

12

)
−
(
f1(x0)− f (0)

1

)
−
(
f2(x0)− f (0)

2

)]
(A.5)

=
r2e
−2
√

2λd − r1

4(λ+ χ1)(1− r1r2e−2
√

2λd)
+

r1

4(λ+ χ1)
− r2e

−2
√

2λd

4λ

+
2d r1r2e

−2
√

2λd

√
2λ(1− r1r2e−2

√
2λd)

+
(r1 + r2)(1− e−2

√
2λd)

4λ(1− r1r2e−2
√

2λd)

− (r1 + r2)(1− e−2
√

2λd)

4λ

+
r1e
−2
√

2λd − r2

4(λ+ χ2)(1− r1r2e−2
√

2λd)
− r1e

−2
√

2λd

4λ
+

r2

4(λ+ χ2)
. (A.6)

Pairs of common terms can be simplified by using a/(1− x)− a = ax/(1− x), with

a = ri and x = r1r2e
−2
√

2λd.

J =
2d r1r2e

−2
√

2λd

√
2λ(1− r1r2e−2

√
2λd)

+
r2e
−2
√

2λd − r1

4(λ+ χ1)(1− r1r2e−2
√

2λd)
+

r1

4(λ+ χ1)

+
(r1 + r2)(1− e−2

√
2λd)

4λ(1− r1r2e−2
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2λd)
− (r1 + r2)

4λ
+

r1e
−2
√

2λd − r2

4(λ+ χ2)(1− r1r2e−2
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2λd)
+

r2

4(λ+ χ2)
.

(A.7)
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The exponential pieces are common to all terms and can be factored out. The terms

can be grouped by their denominators

J =
e−2
√

2λd

(1− r1r2e−2
√

2λd)

[
2d r1r2√

2λ
+
r2[1− (r1)2]

4(λ+ χ1)
+

(r1 + r2)[−1 + r1r2]

4λ
+
r1[1− (r2)2]

4(λ+ χ2)

]
.

(A.8)

The middle term with denominator λ can then paired with the terms in (λ + χ1)−1

and (λ+ χ2)−1,

J =
e−2
√

2λd

(1− r1r2e−2
√

2λd)

[
2d r1r2√

2λ
+ r2[1− (r1)2]

(
1

4(λ+ χ1)
− 1

4λ

)
+ r1[1− (r2)2]

(
1

4(λ+ χ2)
− 1

4λ

)]
(A.9)

After factoring out r1r2, the result is

J =
r1r2e

−2
√

2λd

(1− r1r2e−2
√

2λd)

[
2d√
2λ
− [r−1

1 − (r1)]
χ1

4λ(λ+ χ1)
− [r−1

2 − (r2)]
χ2

4λ(λ+ χ2)

]
.

(A.10)

At this point, the exact form of the reflection coefficients must be used to proceed

any further.
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A.1.1. TE Reflection Coefficients

For TE reflection coefficents (3.23), the integrated, renormalized two body

solution is

J (TE) =
r(TE)

1 r(TE)

2 e−2
√

2λd

(1− r(TE)

1 r(TE)

2 e−2
√

2λd)

[
2d√
2λ
−
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i=1

(
4
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λ
√
λ+ χi

λ− (λ+ χi)

)
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4λ(λ+ χi)

]
(A.11)

=
r(TE)

1 r(TE)

2 e−2
√

2λd
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2λ(1− r(TE)

1 r(TE)

2 e−2
√

2λd)

(
2d+

√
2√

λ+ χ1

+

√
2√

λ+ χ2

)
. (A.12)

This will be used to compute the Casimir energy between two dielectric half-spaces.

The extra terms will be allow an integration by parts to occur, that considerably

simplifies the expressions.

A.1.2. TM Reflection Coefficients

In contrast, for the TM polarization, the
√
λ→ e2Ξ

√
λ, but

√
λ+ χ is unchanged.

Note that the post-factor of χi/[4λ(λ+χi)] in Eq. (A.10) came from the integrating the

the exponentials, rather than the reflection coefficients. The TM reflection coefficients

are given by Eq. (3.57). After combining r(TM)

i − 1/r(TM)

i , the result is

J (TM) =
r(TM)

1 r(TM)

2 e−2
√

2λd

(1− r(TM)

1 r(TM)

2 e−2
√

2λd)

[
2d√
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4e2Ξi
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λ e4Ξi − (λ+ χi)
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4λ(λ+ χi)
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(A.13)

=
r(TM)

1 r(TM)

2 e−2
√

2λd

√
2λ(1− r(TM)

1 r(TM)

2 e−2
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2λd)

[
2d−

2∑
i=1

√
2e2Ξiχi√

λ+ χi[λ e4Ξi − (λ+ χi)]

]
(A.14)

Again, the extra terms allow an integration by parts to proceed, and for the Lifshitz

form of the energy to be recovered.

221



REFERENCES CITED

Aehlig, K., H. Dietart, T. Fischbacher, and J. Gerhard (2011), “Casimir forces via
worldline numerics: Method improvements and potential engineering
applications,” arxiv:1110.5936 [quant-ph] .

Altland, A., and B. Simons (2011), Condensed Matter Field Theory, 2nd ed.
(Cambridge University Press).

Alton, D. J., N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble
(2011), “Strong interactions of single atoms and photons near a dielectric
boundary,” Nat. Phys. 7, 159.

Asmussen, S., and P. W. Glynn (2007), Stochastic Simulation (Springer).

Barash, Y. U., and V. L. Ginzburg (1975), “Electromagnetic fluctuations in matter
and molecular (van-der-Waals) forces between them,” Sov. Phys. Usp. 18, 305.

Bechler, A. (1999), “Quantum electrodynamics of the dispersive dielectric medium -
a path integral approach,” J. Mod. Opt. 46, 901–921.

Bechler, A. (2006), “Path-integral quantization of the electromagnetic field in the
Hopfield dielectric beyond dipole approximation,” J. Phys. A: Math. Gen. 39,
13553.

Beliakov, G., and Y. Matiyasevich (2013), “A parallel algorithm for calculation of
large determinants with high accuracy for GPUs and MPI clusters,”
arxiv:1308.1536v2 [cs-DC] .

Bezerra, V. B., G. L. Klimchitskaya, V. M. Mostepanenko, and C. Romero (2011),
“Constraints on non-Newtonian gravity from measuring the Casimir force in a
configuration with nanoscale rectangular corrugations,” Phys. Rev. D 83,
075004.

Blocki, J., J. Randrup, W. J. Swiatecki, and C. F. Tsang (1977), “Proximity
forces,” Ann. Phys. (N. Y.) 105, 427.

Bordag, M., K. Kirsten, and D. Vassilevich (1999), “Ground state energy for a
penetrable sphere and for a dielectric ball,” Physical Review D 59, 085011.

Bordag, M., K. Kirsten, and D. V. Vassilevich (1998), “Path integral quantization of
eleoctrodynamics in dielectric media,” J. Phys. A: Math. Gen. 31, 2381.

Bordag, M., G. L. Klimchitskaya, U. Mohideen, and V. M. Mostapenenko (2009),
Advances in the Casimir Effect (Oxford).

222

http://arxiv.org/abs/1110.5936
http://arxiv.org/abs/1308.1536v2


Bordag, M., D. Robaschik, and E. Wieczorek (1985), “Quantum field theoretic
treatment of the Casimir effect,” Ann. Phys. 165, 192.

Boyer, T. H. (1968), “Quantum electromagnetic zero-point energy of a conducting
spherical shell and the Casimir model for a charged particle,” Phys. Rev. 174,
1765.

Boyer, T. H. (1974), “Van der Waals forces and zero-point energy for dielectric and
permeable materials,” Phys. Rev. A 9, 2078.

Bressi, G., G. Carugno, R. Onofrio, and G. Ruoso (2002), “Measurement of the
Casimir force between parallel metallic surfaces,” Phys. Rev. Lett. 88, 041804.

Brown, L. S. (1994), Quantum Field Theory (Cambridge University Press).

Buks, E., and M. L. Roukes (2001), “Stiction, adhesion energy, and the Casimir
effect in micromechanical systems,” Phys. Rev. B 63, 033402.

Canaguier-Durand, A., R. Gurout, P. A. Maia Neto, A. Lambrecht, and S. Reynaud
(2012), “The Casimir effect in the sphere-plane geometry,” Int. J. Mod. Phys.
Conf. Ser. 14, 250.

Cartier, P., and C. deWitte Morette (2006), Functional Integration: Actions and
Symmetries (Cambridge University Press).

Casimir, H. B. G. (1948), “On the attraction between two perfectly conducting
plates,” Proc. K. Ned. Akad. Wet. 51, 793.

Casimir, H. B. G., and D. Polder (1948), “The influence of retardation on the
London-van der Waals forces,” Phys. Rev. 73, 360.

Chan, H. B., V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso (2001),
“Nonlinear micromechanical Casimir oscillator,” Phys. Rev. Lett. 87, 211801.

Chen, N., and P. Glasserman (2007), “Malliavin greeks without Malliavin calculus,”
Stoch. Proc. and Appl. 117, 1689.

Chen, Y.-J., W. K. Tham, D. E. Krause, D. López, E. Fischbach, and R. S. Decca
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