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DISSERTATION ABSTRACT
Ariel Elise Royall
Doctor of Philosophy
Department of Biology
June 2017

Title: Next-generation Sequencing Methods for Complex Communities

Advances in sequencing technology have opened up the possibility of
investigating complex communities, but deviations from homogeneity in a sample create
challenges in generating and analyzing sequence data. There are two kinds of
heterogeneous populations that are addressed in this dissertation: low-frequency sequence
variants in a group of largely homogeneous cells and rare members in complex biological
communities. It is important to be able to fully characterize the heterogeneity of a sample,
as rare genetic variants may provide fuel for selection and rare members of a complex
community can play critical roles. Thus, heterogeneity can have important biological
roles in everything from ecological community structure to human disease development
and progression.

In order to assess low-frequency mutations, Paired-End Low Error Sequencing
(PELE-Seq) was used. With this method, mutations occurring at frequencies as low as 1
in 10,000 were identified, including some with transcriptional consequences.

To investigate rare members of a larger community, an enrichment method was

developed to sequence transcripts from host-associated bacteria. Rather than having to

v



sequence the abundant zebrafish host RNA, the enrichment protocol allowed even very
minor members of the community to be efficiently sequenced, enabling a first look at the
gene expression changes during colonization.

This dissertation includes previously published and unpublished material.



CURRICULUM VITAE

NAME OF AUTHOR: Ariel Elise Royall

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene
University of Texas, Austin

DEGREES AWARDED:
Doctor of Philosophy, Biology, 2017, University of Oregon
Bachelor of Science, Biochemistry, 2011, University of Texas
AREAS OF SPECIAL INTEREST:

Genomics
Bioinformatics

PROFESSIONAL EXPERIENCE:

Undergraduate Researcher, Marcotte Lab, University of Texas at Austin,
2009-2011

Undergraduate Researcher, Herzog Lab, University of Texas Medical Branch at
Galveston, 2009

GRANTS, AWARDS, AND HONORS:

META Center for Systems Biology grant (NIH), University of Oregon,
2015-2017

PUBLICATIONS:

Efficient transcriptome profiling of host-associated bacteria. Ariel Royall, Catherine Pohl
Robinson, Karen Guillemin, Eric Johnson. In Progress.

High-Specificity Detection of Rare Alleles with Paired-End Low Error Sequencing

(PELE-Seq) Jessica L. Preston; Ariel E. Royall; Melissa A Randel; Kristin L Sikkink;
Patrick C Phillips; Eric A Johnson. BMC Genomics. June 2016.

Vi



A proteomic survey of widespread protein aggregation in yeast. O'Connell JD,
Tsechansky M, Royall A, Boutz DR, Ellington AD, Marcotte EM. Mol Biosyst. 2014
Apr;10(4):851-61. doi: 10.1039/c3mb70508k. Epub 2014 Feb 3.

Monitoring bacterial resistance to chloramphenicol and other antibiotics by liquid
chromatography electrospray ionization tandem mass spectrometry using selected
reaction monitoring. Haag AM, Medina AM, Royall AE, Herzog NK, Niesel DW. J Mass
Spectrom. 2013 Jun;48(6):732-9. doi: 10.1002/jms.3220.

vil



ACKNOWLEDGMENTS

I want to express sincere appreciation to Eric Johnson for his mentorship and
assistance throughout my graduate career. Paul Etter’s guidance in all technical aspects of
library prep were invaluable. I also want to thank current and past members of the
Johnson lab, Jessica Preston, Nick Kamps-Hughes, Melissa Randel, and Jim Stapleton,
for their support and advice. | am grateful for the investments of my committee: Tory
Herman, John Postlethwait, Bill Cresko, Victoria DeRose, and Andy Berglund. Finally, I
would like to thank Doug Turnbull and Maggie Weitzman from the Genomics and Cell
Characterization Core Facility for their assistance with all my projects. The investigation

was supported in part by the META Center for Systems Biology grant (NIH).

viil



TABLE OF CONTENTS

Chapter Page
L. INTRODUCTION .....ootiiiieieeee ettt ettt sttt see e eneesneenneas 1
Rare Sequence Variants within a Population ...........cccccceevvviiniiiiiiiiinciecie e, 1
Rare Populations within a Larger CoOmmunity ...........ccceeevveereiieeniieeniieeeniee e 3
II. PAIRED-END LOW ERROR SEQUENCING .......cociiiiriinieniieieeiesieieeie e 4
Background..........oocuiiiiiiiiieee e 4
RESUILS ..ottt ettt 6
DISCUSSION ...ttt ettt ettt b et e bbb sbe e bt et e ebtenbe et 19
CONCIUSIONS ...ttt ettt sttt et et st sb ettt sbee b et 22
III. VARIANTS IN TUMOR MITOCHONDRIAL DNA .....cccociiiiiniinieienieneeene 23
INErOAUCTION ...ttt et e e et e e e ae e e ebaeeebeeessseeesaseeenseaens 23
Materials and MethodS...........oouiiiiiiiiciie e e 25
RESULLS ...ttt et 29
CONCIUSIONS ...ttt ettt ettt eb e sb e et e sateenbeesaeeeneens 39
IV. SOMATIC MUTATION IN FANCONIANEMIA .....ccccoiiiiiiiieieeeeeeeceee 40
INErOAUCTION ...t 40
IMETROMS. ...ttt ettt 41
RESUILS ..ottt ettt et ettt 45
CONCIUSIONS ..ttt ettt ettt be et st sbe et e sbeenbeeane e 49

X



Chapter Page

V. EFFICIENT TRANSCRIPTOME PROFILING OF HOST ASSOCIATED

BACTERIAL ...ttt sttt 50
INETOAUCTION .. ..ottt 50
Materials and Methods. .......cocueoriiiiiiiiie e 53
Results and DISCUSSION ......eevuuieriiiiiiiiieeiieie ettt 60
CONCIUSION ..ttt ettt et e e e et e sateebeesaaeenbeens 71

VI CONCLUSION.....ccttitietteiesteee ettt ettt sttt et st ste et eeseebeensesseeseenaesneenseas 74
REFERENCES CITED.....cctiiiiitiiiteiesee ettt 76



LIST OF FIGURES
Figure Page
2.1. The PELE-Seq method of rare variant calling...........ccccevervierieniriiniencnienceens 5

2.2. Detecting SNPs present at 0.3% frequency in E. coli control libraries with
PELE-Seq and standard DNA-Seq methods............ccoovveeiiieiniiieiiieeeieceee e 9

2.3. PELE-Seq has zero false positive SNPs and is more sensitive than standard
DNA-Seq MEthOdS. ....oouviiiiiiiiiiiciete e 10

2.4. PELE-Sequencing of SNPs in wild and lab adapted C. remanei populations. ..... 13

2.5. The allele frequencies of SNPs in the ancestral and lab adapted populations
OF C. FEMANET WOTTIIS .....evviiiiiiiiiiieete ettt ettt et 14

2.6. ARAD tag sequenced with PELE-Seq contains a SNP mapping to the promoter
TEEION OF TG-Sttt et 16

2.7. Allele frequencies and position of 49 mutations detected only in the lab adapted

C. remanei population With PELE-S€q........ccccceviiriiiiiiiiieieiecieeee e 17
3.1. Heteroplasmy in mitochondrial DNA. ...........cccciiiiiiiiiiiiiieeeeee e 22
3.2. Analysis pipeline for PELE-Seq data..........ccccoooieiiiiiieniiiiicicccee e 25
3.3. Sampling of glioblastoma for mitochondrial DNA extraction..............c.cccceeueenne. 27
3.4. Distribution of alleles in matched tumor and non-tumor samples...........c...cc.c..... 29
3.5. Changes in allele frequency of shared SNPS. .........cccceeiiiiiiiiiiiiieeceee 30
3.6. UCSC Genome view of sequenced region of the mitochondrial genome. ........... 31
3.7. Variants unique to tumor and non-tumor samples. ..........ceeceeveeriienieenieenieeniennn 32

3.8. SNPs found in each section and in the tumor as a whole plotted along the
mitochondrial AMPlICON. .......eeiiiiieiiieciie e eeree e 35

3.9. Variants are spatially distributed within the tumor. ..........ccccccoeeeiiiiiiiiniee 36

3.10. Variants are present at different frequencies in different sections of the tumor.. 37

X1



Figure Page

4.1. Sampling Scheme for fanconi anemia zebrafish...........ccocooiviiiiiiininnines 40
4.2.Experimental method for ddRAD PELE-Seq......cccceoeriiniriieniiiieienieiceiescees 41
4.3. Sampling scheme for mouse fanconi anemia samples..........cccceeeevierieneriieneennens 42
4.4. Principal component analysis and clustering of zebrafish tissue samples............ 44
4.5. Site length and GC content distribution across zebrafish tissue samples.............. 45

4.6. Variants per individual at different frequency cutoffs show significant differences

in number of variants in wild-type and fancD1 fish .........c..ccccoeeviiiiiiiiiniinieee. 45
4.7. Variants per tissue per individual do not show genotype dependent effect.......... 46
4.8. Ts/Tv ratio in all SNPs and low frequency (<10%) SNPS .......cccceovierviierienieennens 47
5.1. Experimental setup for validation samples and capture-hybridization method.... 51
5.2. Hybridization capture expression data is unbiased...........coceveeveriineencnieneenens 61
5.3. Expression changes iz vivo and if VItro ..........c..ccccevueveeviniinieniniinieeneseen 62

5.4. Distribution across ZWU0020 genome of 200 most highly differentially

expressed genes between i71 Vivo and i VItFo ..........c.cecveeeeeeeeeeciieiieeieeieeie e 63
5.5. Distribution of COG categories between in vivo and in Vitro ..............cccccveue... 64
5.6. Depth of coverage on chromosome II of ZWU0020 with intern region............... 66

5.7. Distribution across ZWU0020 genome of 200 most highly differentially expressed
genes in vivo between 24 and 27 hours post inoculation...........ccccceeeecvveeecieeennennns 67

Xii



LIST OF TABLES

Table Page
2.1. Allele frequencies for known rare SNPs in control E. coli DNA mixtures.......... 8
2.2. Rare SNPs detected with PELE-Seq, standard DNA-Seq, and ORP method....... 11
2.3. Rare SNPs in wild C. remanei that have increased after lab adaptation............... 15
3.1. Matched tumor and non-tumor sample iInformation............ccceeeevveevcvveercveeenneeenne. 26
3.2. Human embryonic kidney cell 1ine variants ...........ccccceeeeeeeeieeninieencieeniee e 28
3.3. Predicted impact of tUMOT VATIaNtS ..........ceevvieriieriieeieeieeeie et 33
5.1. Capture efficiency of defined mixtures of Vibrio and zebrafish RNA.................. 59
5.2. Capture efficiency of host-associated Vibrio RNA after 2 sequential captures.... 60
5.3. Strategies for enriching rare RNA..........ccccooiiiiiiiiiiiiiie e 71

Xiil



CHAPTER1

INTRODUCTION

Advances in sequencing technology have made possible once formidable tasks
such as whole genome sequencing (Mardis, 2016). However, even small deviations from
homogeneity create problems for the analysis of sequence data. For example,
heterozygous alleles in a diploid organism can be mistaken for sequence error and vice
versa (Wall, 2014). Advances in sequencing technology presented here have opened up
possibilities for investigating complex communities that would previously have been
obscured by errors and noise. There are two scenarios in which complex populations
provide significant sequencing challenges that are addressed in this dissertation: sequence
variants in a group of largely homogeneous cells and rare members in complex biological
associations. It is important to be able to characterize these communities, as they play
important biological roles in everything from ecological community structure to human
disease development and progression.

Rare sequence variant within a population

A population of otherwise heterogeneous cells may have low frequency
variation, as in tumors. Rare sequences within a population can be biologically relevant
as they may provide an advantage to certain cells and can be selected for in such disease
processes such as tumorigenesis and cancer progression. They are difficult to characterize
at a very low level, because they are often present at or below typical sequencing error

rates.



Two types of rare genetic variation were characterized. First, the presence of low-
frequency variants was assessed in mitochondrial genomes in a tumor sample. Many
copies of the mitochondrial genome are present within each cell, of which a few have a
different genotype from the dominant genotype (Payne, 2013). Because of this low level
but pervasive variation, there is a large pool of standing variation from which cancer cells
may draw advantageous mutations. Cancer risk and outcomes have been correlated with
mtDNA mutations (Chatterjee, 2006). Early assessment of these mutations could lead to
more tailored treatment plans, but the sequencing error rate limits their detection. Here, a
paired-end low error sequencing (PELE-Seq) is implemented to lower the error rate is
used to identify functionally relevant mtDNA mutations down to 1 in 10,000. PELE-Seq
is described in Chapter II, which has been published as Preston JL, Royall A, Randel
MA, Sikkink KL, Phillips PC, and Johnson EA, 2015 “High-Specificity Next-Generation
Sequencing of Minor Alleles with Paired-End Low Error Sequencing (PELE-Seq)”(BMC
Genomics).

The second situation in which low-frequency variants were sequenced was
assaying the generation of mutations in a zebrafish model of Fanconi Anemia. Fanconi
Anemia (FA) is an autosomal recessive inherited DNA damage disorder resulting from
the loss of one of the fanconi anemia proteins. These proteins are involved in two main
complexes that mediate DNA damage repair. Previous studies have found significantly
higher point mutation rated in cell line models of Fanconi Anemia (Araten, 2005).
Experimental limitations previously prevented studying variants aside from large

chromosomal rearrangements in patient samples or model organisms, leaving the



spectrum of somatic mutation in FA remains largely unexplored.By combining PELE-Seq
with a longitudinal sampling scheme in fanconi anemia model zebrafish and multiple

tissues from zebrafish and mice, new patterns of small scale mutation were uncovered.

Rare member of a larger, complex community

Rare members can play an important role in community health and
maintenance as they can create products which affect the entire community. Vertebrate
gut-associated bacteria have been shown to play essential roles in the health and
development of their animal hosts, including facilitating digestion and nutrient
acquisition, education and maturation of the immune system, and protection from
pathogens (reviewed in Neish, 2009). Our understanding of these roles has been
transformed by sequencing technologies that allow an unbiased look at the composition
and activity of bacterial communities and the development of model animal systems for
mechanistic studies into these intimate biological relationships. Traditional approaches to
understanding host-associated bacterial communities such as 16S sequencing provide
taxonomic data, but do not assess total gene content of the community or the genome-
wide expression data. Transcriptomics provides information about both gene content and
the relative activity of the genes within and across conditions. Previous work has shown
the intestinal environment to be highly dynamic and that the spatial structuring of
different bacterial species within the gut undergoes dynamic responses to the changing
environment (Wiles, 2016). Tying transcriptional changes to specific phenotypes enriches

our understanding of the genetic underpinnings of those phenotypes and gives new



insight on ways to manipulate host-associated microbes for specific goals. The large
amount of contaminating host RNA and the short bacterial RNA half-life has made the
transcriptome of host associated microbes inaccessible. This dissertation describes a

method for enriching for the transcriptome of host-associated bacteria in Chapter IV.



CHAPTER 11

PAIRED-END LOW ERROR SEQUENCING

This previously published co-authored material can be found here:
Preston JL, Royall AE, Randel MA, Sikkink KL, Phillips PC, Johnson EA. High-
specificity detection of rare alleles with Paired-End Low Error Sequencing (PELE-Seq).
BMC Genomics. 2016;17(1):1543-21. The material was co-authored by Jessica Preston,
Melissa Randel, Kristen Sikkink, Patrick Phillips, Eric Johnson and myself and published
in 2016 in BMC Genomics. This work is included in my thesis as I contributed to the
assay design and validation. I was also involved in designing and validating data analysis
pipelines. Additionally, this work is critical to understanding subsequent chapters (III and
V).

BACKGROUND

Populations with high levels of genetic heterogeneity are able to evolve rapidly
through natural selection, for example providing the basis for drug resistance in
populations of microbes, viruses, and tumor cells (Kaiser 2013, Bahtia 2012, Modi 2013).
In order to understand how these heterogeneous populations evolve in response to
selection, it is important to be able to characterize the full catalog of genetic variation

present in the population, including de novo mutations and minor alleles.

The reduced cost of DNA sequencing has powered the wide-scale discovery of

functional and disease-causing single nucleotide polymorphisms (SNPs) and genomic



regions under selection (Hohenlohe 2010). However, the current high error rate (~1%)
leads to the generation of millions of sequencing errors in a single experiment. Thus,
when attempting to sequence de novo mutations or genetically heterogeneous
populations, it is challenging to distinguish between sequencing errors and true rare

genetic variants (Nielsen 2011, Marcais 2015, Schlossnig 2013, Kircher 2010).

Sequencing error reduction through the use of overlapping read pairs (ORPs) has
been described previously by Chen-Hatrris ef al., who showed that the use of overlapping
paired-end reads dramatically reduces the occurrence of sequencing errors (Goto 2011).
PELE-Seq improves on the ORP method by incorporating dual-barcoding to filter out

many types of PCR errors and library preparation artifacts.

The PELE-Seq method is simple to use, compatible with most sequencing
libraries, and doesn’t require the use of special reagents. The PELE-Seq error-reduction
method is based on two principles. First, sequencing errors can be removed by
sequencing each DNA molecule twice with overlapping reads and merging the reads into
overlapping read pairs (ORPs). Any bases that are mismatched in the two sequences are
excluded from the final SNP calling analysis. Second, PCR errors and library preparation
artifacts are reduced through the use of a dual-barcoding system, which can be used to
generate information about the number of independent occurrences of a genetic variant in
a DNA sequencing library. The PELE-Seq variant calling analysis pipeline incorporates

information from the barcoding data as well as the overlapping read pair data, and is



customized to allow for highly sensitive detection of rare polymorphisms without the

losses in specificity compared to standard methods of DNA sequencing.

We applied the PELE-Seq method to sequence rare alleles in a wild population of
Caenorhabditis remanei nematode worms. C. remanei are highly heterogeneous, non-
hermaphroditic nematode worms that are amenable to studies investigating the genetic
basis of the response to natural selection (Osvaldo 2010). In this study, we sampled the
genome of an ancestral population originating from 26 wild mating pairs from Toronto,
Ontario that were lab-propagated for a total of 34 generations. We show that PELE-Seq
can detect changes in the rare allele frequencies between the genomes of the wild and
lab-adapted populations, and that PELE-Seq can detect putative low-frequency de novo

mutations that appear in the laboratory adapted population.



RESULTS
PELE-Seq Library Preparation and Data Analysis

PELE-Seq improves the specificity of standard SNP calling methods by reducing
the occurrence of false-positive sequencing errors in the data. An overview of the PELE-

Seq method is illustrated in Figure 2-1.

Total DNA

Prepare 100 bp libraries with a mix
of two barcodes, each on same end

I I
I I
I I
l Sequence 100 bp paired-end reads
- -
I I
— D —————————
I |
—— —eeeeeeeee
I =
1 Merge overlapping reads, call SNPs
A A A
[ [
T A A
A C A
I L L
C C A
Sequencing Error Possible PELE-Seq SNP
PCR Error

Figure 2-1. The PELE-Seq method of rare variant calling. DNA libraries with a 100bp insert size are paired-end
sequenced using 100bp reads, generating an overlap region of approximately 100bp. The overlapping reads are merged
into a consensus sequence and mismatching bases are discarded. A mixture of two separate barcodes is ligated to each
sample. In order to pass PELE-Seq quality filtering, SNPs must be present in both paired-end reads and with both
barcodes.



PELE-Seq library preparation and analysis involves two separate error filtering

steps which are combined during analysis:

1. Mlumina 100 bp paired-end sequencing of short 100 bp DNA inserts is used to generate
two completely overlapping paired-end reads from each DNA molecule. The overlapping
paired-end reads are then merged into one high-quality consensus sequence. After
trimming off the overhanging bases and filtering for high quality scores, the resulting
consensus sequence has a much lower incidence of false positive SNPs compared to the

non-overlapped reads.

2. PCR errors and library preparation artifacts are reduced through the use of a dual-
barcoding system, which requires the presence of two independent occurrences of a
variant. During library preparation, a two independent barcodes are ligated to the DNA
molecules to be sequenced. Then, during data analysis, SNPs that are present with only a
single barcode are excluded from the analysis, as they are potential PCR errors or library

preparation artifacts.

PELE-Seq data analysis uses a multi-step variant calling approach to incorporate
information from both the barcoding and the overlapping steps, without a large drop in
sensitivity. Rare alleles are evaluated with the program LoFreq, which calls somatic
variants using a Bonferroni-corrected P-value threshold of 0.05 (Chen-Harris 2011). Rare
nucleotides are included in the final variant calling only if they pass two separate quality

control steps: 1. The nucleotide is present in both overlapping sequence reads from a

9



single DNA molecule and is called as a SNP when variants are called from the merged
reads. 2. The nucleotide is called as a SNP in two separate instances of high-sensitivity
variant calling, once for each barcode file. The final outcome of the PELE-Seq analysis is
a set of very high quality SNPs that have passed numerous quality control tests and

filters.

PELE-Seq Specificity and Sensitivity

We first sought to empirically determine the specificity and sensitivity of the
PELE-Seq variant calling method. We sequenced control E. coli DNA mixtures
containing 64 known SNPs present at defined frequencies ranging from 0.1%-0.3%. The
E. coli control DNA mixtures were generated using DNA from E. coli K12 substrain
W3110 titrated into a much larger amount of DNA from E. coli B substrain Rel606. The
K12 W3110 substrain of E. coli contains a SNP every ~117 bp compared to E. coli B
substrain Rel606 (Costello 3012, Jeong 2009). The genome space sequenced was reduced
to 14 kilobases by using Restriction-site Associated DNA Sequencing (RAD-Seq) to
sequence only the 200 nucleotides flanking an Sbfl restriction enzyme cut site (Hayashi
2006). SbfI cuts the sequence CCTGCAGG, which occurs ~70 times in the E. coli
genome. We identified the control SNPs by sequencing the pure E. coli K12 substrain

W3110 and comparing it to pure E. coli B substrain Rel606.

The identity and allele frequency of the E. coli SNPs in the control libraries was
verified by sequencing to 25,000X average read depth (Table 2-1). The total read depth

listed is that of the processed bam file used for SNP calling; for PELE-Seq data the

10



number of raw reads used to generate the final bam file is roughly 2.3 times this amount
because of the overlapping stage of analysis. The rare alleles detected in the control

libraries had allele frequencies ranging from 0.141-0.464% (1/200-1/710).

Read Depth Allele Frequency
Library mean sd mean sd

1 26908 7357 0.003037 0.0007274
2 24182 9506 0.002284  0.0005316
3 33547 8079 0.002233  0.0005342
1 21631 3166 0.002128  0.0006200

Table 2-1. Allele frequencies for known rare SNPs in control E. coli DNA mixtures.
Synthetic control E. coli libraries, labelled 1-4, were sequenced to an average read depth of
25,000X. The rare alleles detected in the control libraries had average allele frequencies
ranging from 0.21-0.30% or 1/330-1/470 of total reads.

We found that PELE-Seq had high sensitivity with no false positive SNP calls
when detecting rare SNPs above 0.2% allele frequency and with read depths below
30,000X (Figures 2-2,2-3). When detecting rare alleles known to be present at 0.3%
frequency, PELE-Seq was able to correctly identify 22 out of the 64 total SNPs present
with no false positives, while standard DNA-Seq methods with high base-quality (~>Q30)

identified 17 true SNPs, and had a false positive rate of 30%.
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Figure 2-2. Detecting SNPs present at 0.3% frequency in E. coli control libraries with PELE-Seq and
standard DNA-Seq methods. . Rare alleles present at 0.3% frequency in synthetic E. coli libraries were sequenced
with PELE-Seq and standard DNA-Seq, at 20,000X average read depth. The read depths of the individual barcode
files are plotted in blue, and the total read depth is plotted in green. The SNPs detected with PELE-Seq are plotted
in the inner circle, and the Non-PELE SNPs are plotted in the next outer circle. False positive mutations are
designated with a red “X”. Of the 64 known SNPs present in the genome, PELE-Seq detected 22 mutations with
100% soecificitv. comnared to 17 mutations and 70% soecificitv achieved with non-PELE methods.
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Figure 2-3. PELE-Seq data has zero false positive SNPs and is more sensitive than standard DNA-
Seq data. Sequencing a control E. coli DNA library containing 64 rare SNPs present at 0.3% allele
frequency with PELE-Seq at 20,0000X read depth produces 100% specific data, compared to 71%
specificity achieved with traditional sequencing methods. Traditional Non-PELE sequencing of the
control libraries resulted in 7 false positive mutations, compared to zero with the PELE-Seq method.

We compared the specificity of the PELE-Seq method to that of the previously
developed “Overlapping Read Pair (ORP)” method of rare SNP detection in order to
determine the benefit of using multiple barcodes and a custom analysis pipeline. When
just overlapping read error correction was used, false positive SNP calls were made

compared to the no false positives seen with PELE-Seq (Table 2-2).
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Table 2 Rare SNPs identified using the PELE-Seq, ORP, and standard DNA-Seg methods, at various read depths

Average read depth PELE positives  PELE false positives ORP positives ORP false positives Standard positives Standard false positives

1000 13 0 6 0 6
5000 9 0 ‘;A 0 24

10000 42 0 37 0 36

Table 2-2. Rare SNPs detected with PELE-Seq, standard DNA-Seq, and the ORP method. Rare alleles
present at 0.3% frequency in synthetic E. coli libraries sequencing at 20,000X depth of coverage were sequenced
with PELE-Seq, standard DNA-Seq, and the ORP method. PELE-Seq is more specific than standard DNA-Seq and
the ORP method, with zero false positive SNPs detected.

Detection of rare and putative de novo mutations in wild and lab-adapted C. remanei
We applied PELE-Seq to track changes in the rare allele frequencies of a wild
population of C. remanei nematode worms that was subjected to laboratory-adaptation.
The ancestral (wild) C. remanei population originated from 26 mating pairs of nematodes
that were expanded to a population of 1000+ individuals and then frozen within three
generations [10]. A branch of this ancestral population was grown in the lab for 34
generations, during which time it was culled randomly to a population of 1000
individuals for each generation. The lab-adapted population was also subjected to
2 freezes and 9 bleach treatments (hatchoffs) during this time. The numerous selection
events endured by the lab-reared nematodes are expected to lower genetic diversity of
the population via drift and bottlenecking. Rare advantageous SNPs may also be selected

for during the process of lab-adaptation.

To assess the changes in genetic diversity of the nematode population before and
after lab-adaptation, DNA from the wild and laboratory-adapted populations of C.
remanei worms was PELE-sequenced using Pacl RAD-Seq. The Pacl restriction enzyme

cuts the sequence AATTAATT, which occurs 2044 times in the C. remanei caeRem3
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genome. In order to further decrease the complexity of the genome, we performed an
additional restriction enzyme digestion with Nlalll to destroy a portion of the RAD tags
in the library. Nlalll cuts the sequence CATG, which is present on approximately 30% of
the Pacl RAD tags. The resulting genome space covered was approximately 300 kb,

which was sequenced to an average of 2000X read depth.
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Figure 2-4. PELE-Sequencing of SNPs in wild and lab-adapted C. remanei populations. The inner
yellow circle lists SNPs present in the lab-adapted population; the wild SNPs are listed in the blue circle.
SNPs present in both the wild and lab-adapted populations are written with black letters. SNPs appearing

in only the wild or lab-adapted populations are written with red letters.
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We identified several differences between the SNPs present in the wild nematodes
compared to those found in the lab-adapted population (Figure 2-4). We found SNPs
present below 1% frequency that were unique to the wild or lab-adapted C. remanei
populations, and the frequencies of some of these rare alleles changed dramatically

during lab-adaptation.

o ]
> ©
2 o7
[}
=}
o
)
[
@
2
< «
o o |
zZ
n
ie)
=
2 o
o
© T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Lab SNP Allele Frequency
o
S o
g ® 8,.° °
o .5 oc;o %0 . ° o
O
> ) %bg *® o
ce| o ¥®°
8' g i 8000 o ° 00
9} ) © o
= o [e]
e o
<2 0© ® oo © o
© o o0 ©
R o
o o & o}
(% 08 o &
o 0% 9 °
z 8
S o
o ° o
° o
o o
T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25

Lab SNP Allele Frequency

Figure 2-5. The allele frequencies of SNPs in the ancestral and lab-adapted populations of
C. remanei worms. Each point represents a SNP in the genome. Top) Allele frequencies before
and after lab-adaptation for all SNPs detected that are present in both populations. SNPs in the
top left corner are less frequent in the lab-adapted worms; SNPs in the bottom right corner are
more frequent in the lab-adapted worms. The estimated 0.25 and 0.75 quantiles of the square
root of variance are shown for with the dashed red lines. Bottom) A zoom-in of allele
frequencies for SNPs present below 1% in the wild C. remanei population, before and after lab-
adaptation. Five minor alleles present below 1% in the wild population increased in frequency
fivefold after lab adaptation. Only SNPs present in both populations are plotted.
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By plotting the allele frequencies of each SNP before and after lab adaptation, it is
possible to visualize the changes in the allele frequencies of minor alleles in a population
undergoing a response to selection. The most dramatic changes in SNP allele frequencies

were observed in the rare SNPs (Figure 2-5).

We identified 4658 PELE-quality SNPs present below 1% frequency in the
ancestral C. remanei population, and 2541 PELE-quality SNPs present below 1%
frequency in the lab-adapted population. Of the 4658 SNPs that were present below 1%
the ancestral C. remanei population, 958 SNPs were still detected in the lab-adapted
population, including 534 SNPs below 1% in the lab-adapted population. There were 14
SNPs that were found to increase in frequency at least tenfold in the lab-adapted

population compared to the ancestral population (Table 2-3).

Position Ref Alt AF Wild Reads Wild AF Lab Reads Lab Fold Change AF
4938079 A C 0.0097 19 0.20 116 23
4938081 T C  0.0086 17 0.19 115 20
31252148 G A 0.0090 9 0.20 103 14
31487455 G A 0.0095 31 0.18 257 17
33492880 G A 0.0085 22 0.20 195 12
57798676 G C 0.0098 21 0.13 144 19
76928211 G C 0.0078 18 0.13 80 11
85765886 G A 0.0092 34 0.11 311 14
103193682 A G 0.0097 8 0.11 46 14
125627381 A G 0.0083 34 0.11 268 14
125627408 A G 0.0084 41 0.13 397 22
127488550 T C  0.0082 37 0.12 252 23
127488619 G A 0.0076 40 0.13 313 17
127723967 C G 0.0023 31 0.10 747 16

Table 2-3. Rare SNPs in wild C. remanei that have increased after lab adaptation. Five
SNPs present below 1% frequency in the wild C. remanei population increased in frequency at
least 5x in the lab-adapted population.
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A SNP was detected at position 127,723,967 of the caeRem3 (WUSTL) genome

that had increased in frequency by 45X in the lab-adapted population. The number of

reads containing this G>C transversion jumped from 31/13000 (0.2%) in the wild

population to 750/7000 (10.5%). This SNP is located upstream of the promoter region of

127,723,970 bp 127,723,980 bp

A 127,723,990 bp
1 | | | I

Ancestral
PELE-Seq Reads,
500X Read Depth

CTCCATAAATGGCAAATAATGCAA A/

Lab-adapted
PELE-Seq Reads,
500X Read Depth

0011 B [

Figure 2-6. A RAD tag sequenced with PELE-Seq contains a SNP mapping to the promoter
region of ugt-5. A rare SNP present at position 127,723,967 of the caeRem3 (WUSTL) genome
maps to the predicted C. elegans gene ugt-5. The SNP increased in frequency by 44X after 34

generations of lab-adaptation. The UGT pathway is a major pathway responsible for the removal of

drugs, toxins, and foreign substances. The top panel shows the reads from the ancestral (wild)

population mapping to the caerem3 genome; the bottom panel shows the reads from the lab-

adapted population. The non-reference SNP at position 127,723,967 is visible in orange.
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a gene predicted by UCSC to be homologous to the C. elegans gene ugt-5, a UDP-

Glucuronosyltransferase (Figure 2-6). The reads mapping to this SNP in IGV are shown.

The lab-adapted worms also contained rare SNP that were not detected in the wild
population, including putative de novo mutations. We identified 287 rare variants that
were present only in the lab-adapted C. remanei population. These rare alleles were
called with extremely high stringency by removing any SNPs that were called with either
barcode file in the wild population from the analysis. The rare alleles appearing only in
the lab-adapted population are all present below 0.8% allele frequency and are distributed

throughout the genome (Figure 2-7).

chrUn 50 100 Mb

Figure 2-7. Allele frequencies and position of 49 mutations detected only in the lab-
adapted C. remanei population with PELE-Seq. Each vertical line represents a single SNP;
the height of the line is proportional to the allele frequency. The detected SNPs had allele
frequencies ranging from 0.0021 to 0.0070. The UCSC caeRem3 genome from WUSTL is
composed of a single artificial chromosome named chrUn that is 146 megabases (Mb) long.

19



DISCUSSION

Current genomic studies of genetically heterogeneous samples, such as de novo
mutations in growing tumors or natural populations that are difficult to sequence as
individuals, are hampered by the difficulty in distinguishing alleles at low frequency from
the background of sequencing and PCR errors. We have developed a method of rare allele
detection that mitigates both sequence and PCR errors called PELE-Seq. PELE-Seq was
evaluated using synthetic E. coli populations and used to compare a wild C. remanei
population to a lab-adapted population. Our results demonstrate the utility of the method

and provide guidelines for optimal specificity and sensitivity when using PELE-Seq.

By using PELE-Seq, we increased the number of independent validations of a rare
SNP by sequencing each molecule twice with overlapping paired-end reads and by
calling each SNP twice through the use of multiple barcodes. The multiple PELE-Seq
quality control steps result in genotype calls of low-frequency alleles with a false positive
rate of zero, allowing for the specific detection of rare alleles in genetically

heterogeneous populations.

We found that there is a window of sequencing depth that is ideal for detecting

rare alleles when using PELE-Seq, and sequencing beyond this level will increase the

probability of introducing false positive mutations due to PCR error. The ideal amount of

coverage for a given library would depend on the specific PCR error rate of the method
used to make the library. For our libraries, with an estimated PCR error rate of 0.05%, we

found that the optimal level of read depth was around 25,000X coverage. Sequencing
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below this level reduced the sensitivity of the method, while sequencing above this level
lead to the appearance of PCR errors in the data that were present in both barcoded

libraries.

Sequencing error reduction through the use of overlapping read pairs (ORPs) has
been described previously by Chen-Harris ef al., who show that the use of overlapping
paired-end data dramatically reduces the occurrence of sequencing errors in NGS data
(Goto 2011). Their group concluded that PCR error is the dominant source of error for
sequencing data with an Illumina quality score above Q30, which they estimate to be
around 0.05%. PELE-Seq adds to the overlapping read pair method by incorporating dual
barcodes to filter out the PCR errors. We have shown that the PELE-Seq method has
fewer false positives than sequencing data generated with the ORP method alone in our

libraries.

We have used PELE-Seq to identify rare alleles in a wild C. remanei population
whose frequencies have increased dramatically as result of laboratory cultivation, and we
identify putative de novo mutations that have arisen during laboratory adaptation of a
wild nematode worm population. We identified a rare G > C transversion upstream of the
promoter of ugt-5 that was increased in frequency 45X in the lab-adapted strain
compared to the wild strain. UGT enzymes catalyze the addition of a glucuronic acid
moiety onto xenobiotics and drugs to enhance their elimination. The UGT pathway is a
major pathway responsible for the removal of most drugs, toxins, and foreign substances

(Sikkink 2014). The striking increase in the frequency of this rare mutation after lab
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adaptation suggests that the surrounding genomic region is under positive selection. One
possibility is that a change in ugt-5 expression may confer a growth advantage on the
laboratory-grown nematodes by increasing their ability to process and eliminate the
bleach ingested during the hatchoff procedures. With PELE-Seq, it is possible to know
that the ugt-5 SNP was present at a very low frequency in the wild population, and is not
a de novo mutation. The SNPs detected only in the lab-adapted population were present at
low frequencies, suggesting that pre-existing low-frequency minor alleles are the most
useful source of genetic material available for C. remanei to respond to changes in the
environment, as these alleles are readily available and don’t need to be spontaneously
generated. In general, this approach should be useful for detecting changes in rare allelic
variants in so-called “evolve and reseq” experiments. In this study, we sampled only a
very small fraction (~1/500) of the C. remanei genome with RAD-Seq, and discovered

multiple instances of apparent selection taking place.

22



CONCLUSIONS

We have demonstrated that the PELE-Seq method of variant calling is highly specific at
detecting rare SNPs found at below 1% of a population. There were zero instances of
false positive SNPs called from control sequenced E. coli library containing known rare
alleles present at known frequencies. Previously, the high error rate of NGS resulted in
thousands of false-positive SNPs that were indistinguishable from true minor alleles. The
PELE-Seq method makes it possible to know with certainty the identity of rare alleles in
a genetically heterogeneous population, and to detect ultra-rare and putative de novo
mutations that aren’t present in an ancestral population. As a proof of principle, we have
used PELE-Seq to identify rare mutations found in lab-adapted strains of C. remanei
nematode worms. We identified a SNP in the lab-adapted worms that was increased in
frequency more than 40X after 23 generations in the lab. This research demonstrates that
model organisms grown in a laboratory can become genetically distinct from wild
populations in a short period of time, and care must be taken when generalizing from

conclusions drawn from research involving lab-reared organisms.

BRIDGE

Once an experimental and computational pipeline for distinguishing rare variant
from sequencing error and noise was developed, we were interested in using this method
to investigate two highly heterogeneous communities: tumor mitochondria and somatic

cells in Fanconi Anemia.
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CHAPTER III

VARIANTS IN TUMOR MITOCHONDRIAL DNA

A. Introduction

Mitochondrial DNA is present in 1,000 to 10,000 copies per cell, depending on cell type.
The majority of these mitochondria will have identical, maternally inherited
mitochondrial genomes. A small fraction of the mitochondrial of that cell will have an
alternate genotype, which is called heteroplasty (Figure 3-1). In 2013, Payne et al

reported mtDNA heteroplasmy in all samples analyzed, but all were present below 0.2%.

Figure 3-1. Heteroplasmy in Mitochondri-
al DNA. Each cell contains many copies
of the mitochondrial genome, most of
which have a single genotyle (black).
However, a few mitochondria (usually
less than 0.2%), have an alternate geno-
type (pink and blue).

Because of this low level but pervasive variation, there is a large pool of standing
variation from which cancer cells may draw advantageous mutations. mtDNA mutations
have been associated with many types of cancer and correlated with cancer outcomes
(Chatterjee 2006). The mutations characterized thus far have typically been homoplasmic

in nature and specific to cancerous tissue, suggesting that they arise early in
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tumorigenesis or are selected for in early tumorigenesis from standing variation within
the precancerous cells. Identifying these mutations early in diagnosis and treatment could
lead to a better prognosis, however finding low level mutation is difficult with standard
sequencing techniques. Investigating the low level variation in mitochondrial DNA
becomes feasible with PELE-Seq. Here, PELE-Seq is employed to examine how

mutations arise and propagate in tumor mitochondrial DNA.
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B. Materials and Methods

Many techniques exist to examine polymorphisms between individuals, and within
populations of individuals, but it remains difficult to describe low-level variation that
arises during development, growth, tumorigenesis, etc. These ultra-rare alleles cannot be
detected reliably by standard sequencing techniques, as their incidence is often below the
sequencing error rate and thus they are indistinguishable from noise. Paired-End low

error sequencing (PELE-Seq) provides a tool to detect alleles present down to 0.01%

(Figure 2-1).

By incorporating short, 100bp inserts and multiple barcodes, PELE-Seq is able to detect
alleles in this low range. DNA is made into sequencing libraries with an insert size equal
to the read length. When these fragments are sequenced paired-end, the forward and
reverse read cover the same stretch of DNA and each base is read twice. The probability
of the same error occurring in both the forward and the reverse read becomes very low
(theoretically 0.000001% for positions with phred-scaled qualities of 40 on both forward
and reverse reads). PCR amplification steps in library preparation can create and amplify
errors that later sequence as high quality alleles. To correct for these, each sample is
given multiple barcodes. An allele must be present in both barcodes to be considered a
true alternate allele. This way the probability of PCR errors being falsely called SNPs
with PELE-Seq analysis becomes very low also (theoretically 0.0004% with HF Phusion
polymerase and 200bp fragments). This approach allows investigation of ultra-rare alleles

in a variety of systems.
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Sequencing reads do not typically fully overlap and individual samples generally have

only one barcode, so a new data analysis pipeline was required (Figure 3-2).

Raw Reads

usearch 1 Merge Reads

Merged Reads
BWA 1 Align Reads

Aligned Reads

lofreq / \ Call SNPs

Barcode SNP Combined SNP
calls calls
veftools \ / Remove PCR Error
PELE SNP
calls
1 Count SNPs
PELE SNP
counts

Figure 3-2. Analysis pipeline for PELE-Seq data.

To deal with overlapping reads, USEARCH was used (Edgar, 2010). It merges the
forward and reverse reads and can trim the overhang, resulting in high confidence base
calls. Reads are then aligned with BWA (L1, 2009) and SNPs are called with LoFreq
(Wilm, 2012). Unlike most available SNP callers, LoFreq is not haplotype based and can
call low frequency alleles with confidence. The barcode information was incorporated by
calling SNPs on both barcodes together with more stringent filters and separately with

more relaxed standards. All SNPs called in the combined sample were then verified in the

individual barcode SNP calls with VCFtools (Danecek, 2011). Any SNP called in the
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combined sample that was also present in both individual barcodes was considered a
high-confidence SNP. This allowed us to have the greatest sensitivity with the fewest

false positives.

To characterize mutations arising in tumorigenesis, tumor and non-tumor DNA from an
ovarian cancer patient was purchased from Origene (CD564858 and CD564866, Table
3-1). Mitochondrial DNA was amplified using two sets of primers that produced
fragments around 7500bp in length, which were then size selected to exclude remaining
genomic DNA and made into Nextera sequencing libraries. This process was repeated for

each region to control for PCR error.

Mathed Tumor and Wild-Type Samples

Tumor Wild-Type
Tissue of Origin Ovary / Omentum Tumor Myometrium
Pathology Adenocarcinoma of ovary, Within normal limits

clear cell, metastatic
Stage IIIC, moderately differentiated —

Table 3-1. Matched tumor and non-tumor sample information. Physical description and
pathology of tissue of matched tumor and non-tumor samples DNA obtained from Origene.

To look at the spatial distribution of mtDNA mutations, DNA from six sections of a
single human brain tumor (Figure 3-3) was prepared in the same manner. This allows for
detection of background mtDNA sequence (black circles), low level variants shared in all
sections (blue circles), low level variants shared by a few sections (pink circles), and low

level variants unique to a single section (green circle). Once sequencing was complete,
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reads were processed as described in Figure 3-2 and variants were compared between

tumor and non-tumor and among tumor sections to assess spatial distribution.

Figure 3-3. Sampling of Glioblastoma for Mitochondrial DNA Extraction. Solid tumor was sec-
tioned into 6 pieces as shown to determine the spatial distribution of mitochondrial variants. A
theorhetical pattern is shown for each of the sections. Blue circles represent ancestral mito-
chondrial haplotypes, pink represent new variants formed early in tumorigenesis and the
green circle represents a relatively new variants formed late in tumorigenesis.
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C. Results

SNP Detection in HEK cell line. We first wanted to test variant detection in a PCR
amplicon of mitochondrial DNA from total DNA isolate. We were able to create PELE-
Seq libraries from a mtDNA amplicon from total DNA isolated from a HEK293 cell line.
We found SNPs ranging in frequency from 0.07 to 100% in the mitochondrial population
(Table 3-2). SNPs covered the entire amplicon with at least 1000X coverage of most

genes.

Human Embryonic Kidney Cell Line Heteroplasmy

Position Alternate Allele Coverage Alternate Allele Percentage dbSNP? Genomic Region

750 G 1450 100 yes 12STRNA
908 T 2439 0.082 no 12S-TRNA
1123 T 1579 26.029 no 12S-TRNA
1236 T 2325 0.559 no 12S-TRNA
1590 G 2482 0.08 no 12S-rTRNA
1644 T 2297 4.266 no tRNA-val
2330 C 1081 0.185 yes 16S-TRNA
2645 T 1048 0.19 no 16S-TRNA
2706 G 654 99.84 yes 16S-TRNA
3107 T 1190 0.924 ves 16S-TRNA
3197 C 880 100 ves 16S-TRNA
3460 A 1187 0.168 ves ND1
3836 T 2006 0.099 no ND1
3955 A 1597 0.125 no ND1
4235 A 1062 4.519 no ND1
4464 T 1610 0.124 no tRNA-met
4769 G 244 100 yes ND2
5339 T 1739 100 ves ND2
5347 T 2148 0.093 no ND2
5982 T 2570 0.077 no COI
6224 A 1850 0.108 1o COI
6462 C 2779 0.071 no COI
7028 T 2011 100 ves Col
7896 T 1508 0.331 no COII

Table 3-2. Human Embryonic Kidney Cell Line Variants. For each allele at a given site, the total
coverage, percent alternate allele, previous detection, and affected genomic region are shown.
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SNP Detection in Paired Samples. Overlapping paired-end 150bp reads were down
sampled to obtain 2M reads per PCR per amplicon, which amounted to roughly 7500X
coverage. Many of the variants detected are shared between tumor and non-tumor

samples (Figure 3-4 A). All homoplasmic alleles are shared as they represent the major

haplotype of the individual from which both samples originated.
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Figure 3-4. Distribution of Alleles in Matched Tumor and Non-Tumor Samples. (A) Distribution of
indels (pink) and SNPs (blue) shared between tumor and non-tumor samples, across the mito-
chondrial genome. (B) Distribution of heteroplasmic sites across the mitochondrial genome, SNPs
and indels in non-tumor tissue are in pink, SNPs and indels from tumor tissue are in blue.
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There are more variants present in the 4-8kb region of the amplicon. Heteroplasmic sites

are present at very low frequencies in both samples (<0.3%) which is consistent with

previous work (Payne, 2013) (Figure 3-5 B). Non-tumor sample SNPa are at a higher

frequency in the 4-8kb region than tumor SNPs. This pattern suggests common low

frequency haplotypes in non-tumor tissue, from which a smaller pool formed the tumor

population.
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This pattern is reinforced by the fold changes of SNPs shared between tumor and non-
tumor tissue (Figure 3-5 A). All shared SNPs are at the same frequency in both tissues or
are lower in frequency in the non-tumor tissue and variants in the 4-8kb region are almost
all less frequent in tumor tissue. Shared indels do not follow the same trend and have a
roughly normal distribution of fold changes while SNPs are skewed towards a low fold
change (Figure 3-5 B). This implies either that the small population of progenitor cells to
the tumor cells had fewer rare mtDNA haplotypes to begin with or that the rare mtDNA
haplotypes confer some growth disadvantage and were selected against during

tumorigenesis.

Looking at low frequency variants across the amplicon, an interesting pattern emerged.
Those positions with shared low frequency alleles between the tumor and non-tumor
samples show a marked physical distribution, arising only from 4-8kb and mostly absent
from 0.75-4kb. Because there was a clear patter differentiating 0.75-4kb and 4-8kb, we
wanted to determine the gene content of these regions (Figure 3-6). The major difference
in these regions in the protein coding gene content. From 0.75-4kb, mtDNA primarily
codes for rRNA and tRNA. From 4-8kb, there are several important protein coding genes

(NDI,ND2, COl, and CO2) which are involved in cellular respiration.
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Figure 3-6. UCSC genome view of sequenced region of mitochondrial genome. Green
vertical line correlates with lines in SNP and indel frequency plots at 4kb.
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A similar pattern emerges when the variants unique to each sample are plotted along the

amplicon (Figure 3-7) . There are differences in the gene content of these regions could

account for the differences in variant distribution seen. The region from 750bp to 4kb

harbors very little protein coding sequence, and is mostly made up of rRNA genes, which

tend to be more permissive of variation, while the region from 4kb to 8kb contains much

more protein coding sequence, which could be more sensitive to indels causing
frameshift mutations.

Unique Alleles in Tumor and Non-tumor

Non-tumor
°
0.009 A
0.006 -
°
0.003 - ° o o o ® ¢’
' e o o & l 4 ® o
) o
S ° ° e o ¢
> 0.000 -
3
u’: Tumor
K
Q@
< 0.009-
0.006 -
® °
0.003 A
°®
o ®
, °
o o ‘ ¢
0.000 - | . | |
2000 4000 6000 8000

Genomic Position

Type
Indel
® SNP

Figure 3-7. Variants Unique to Tumor and Non-tumor Samples. SNPs (blue) and indels
(pink) unique to either non-tumor sample (top panel) or tumor sample (bottom panel).
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Overall, the tumor sample has many more unique indels than the non-tumor sample,
while the non-tumor sample has more unique SNPs. Fewer unique SNPs in the tumor
sample suggests the tumor cells arose more recently from a smaller subpopulation of the
non-tumor cells. The non-tumor sample has no indels in the 4kb to 8kb region which it
does not share with the tumor sample, suggesting an environment more permissive of

mutation or with different metabolic requirements.

We predicted the impact of the variants unique to the tumor sample using the Ensembl
variant effect predictor (McLaren, 2016) and summarized the results in Table 3-3. While
most are low impact, there are a few high impact frameshift variants in protein coding

regions which could have selective consequences for these haplotypes.

Predicted Impact of Tumor Variants

Location Allele Consequence IMPACT GENE
4136 C frameshift variant HIGH MT-ND1
4136-4137 - frameshift variant HIGH MT-ND1
4958 G Synonymous variant LOW MT-ND2
5147 A synonymous variant LOW MT-ND2
5147 A regulatory region variant MODIFIER -
5320 T missense variant MODERATE MT-ND2
5320 T regulatory region variant MODIFIER -
5351 G Synonymous variant LOW MT-ND2
5351 G regulatory region variant MODIFIER -
5742-5752 - TF binding site variant MODIFIER -
non coding transcript exon variant, non ~MODIFIER  MT-TC
5821 A . . .
coding transcript variant
regulatory region variant MODIFIER -
5840 T non coding transecript exon variant, non MODIFIER  MT-TY
coding transcript variant
regulatory region variant MODIFIER -
6168 C frameshift variant HIGH MT-CO1
' regulatory region variant MODIFIER -
6168 frameshift variant HIGH MT-CO1
B regulatory region variant MODIFIER -
6452 T Synonymous variant LOW MT-CO1
7663 T Synonymous variant LOW MT-CO2
8065 A Synonymous variant LOW MT-CO2

Table 3-3.Predicted Impact of Tumor Variants. Each variant given to Ensembl’s VEP is shown
with the type of variant it causes, the predicted level of impact, and the gene which it effects.
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Variant Detection in Tumor Sections. Sequencing of mtDNA libraries resulted in
~4000X coverage for most sites across the amplicon. Merging of forward and reverse
reads removed sequencing errors as expected. Analysis of SNPs yielded variants present
at high frequency and in all regions of the tumor as well as low frequency alleles, both

shared among and unique to samples (Figure 3-8).

A few interesting patterns emerged from this analysis. First, there were several consensus
variants shared between all sections as the dominant or only allele (large, red, outer
circles, Figure 3-8). This is to be expected since each region came from the same tumor,
whose starting mtDNA had a few differences from the reference mitochondrial genome.
Second, there were a few variants present at low levels in all tumor sections (large, red,
outer circles, Figure 3-8). These suggest that there is indeed some standing heteroplasmy
in the cells prior to tumorigenesis that is then carried on throughout the tumor as it
grows. Thirdly, there are SNPs present in 2 (large dark blue outer circles, Figure 3-8) or 3

tumor sections (large, light blue, outer circles, Figure 3-8).
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outside in purple.
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From this analysis, we were able to determine that variants are spatially distributed within
the tumor (Figure 3-9). This suggests that mutations arise as the tumor forms, and are
passed on to the progenitor tumor cells. The same mutations are not arising across the

tumor, and so certain variants are absent from particular regions.
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Figure 3-9. Variants are spatially distributed within the tumor. SNP frequency for each of
the four sections is mapped to its genome position. Blue ovals indicate SNPs shared
between two sections, but absent from the other two sections.

We also saw that the same variant was present in different sections at different
frequencies (Figure 3-10). This is consistent with mutations arising as the tumor
develops. Because each section is a large number of cells, different frequencies of the
same allele in different sections indicates a different proportion of cells arising from the
cell with the initial mutation.
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Figure 3-10. Variants are present at different frequencies in different sections of the
tumor. SNP frequency for each of the four sections is mapped to its genome position.
Blue oval indicates SNP shared among three sections, but present at different frequen-

cies within those sections.

These patterns show that mutation is occurring as the tumor grows, making spatial
patterns of mutations. Most mutations are unique to a single section of the tumor
suggesting that new mutations accumulate quickly and throughout the tumor growth

process.
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D. Conclusions

PELE-Seq has been applied to sequence rare mutations in tumor mitochondrial genomes
and matched tumor and wild-type DNA from an ovarian cancer mitochondria has been
analyzed. With our new, sensitive detection of rare variants we were able to see distinct
patterns of variation in different regions of the mitochondrial genome in tumor and non-
tumor cells from the same subject, potentially because of different selective pressures on
each region. We were also able to detect spatial organization in different regions of a
solid tumor. Because most of the variants in the tumor are unique to a specific section, it

appears that the overall mutation rate in the tumor is high.

BRIDGE

Once the experimental and computational pipeline for distinguishing rare variant
from sequencing error and noise was used to interrogate variation in tumor mitochondria,
we applied the PELE-Seq Approach to variation in somatic cells of zebrafish and mouse

models for the DNA damage repair disease, Fanconi Anemia.
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CHAPTER 1V

SOMATIC MUTATION IN FANCONI ANEMIA

A. Introduction

Fanconi Anemia (FA) is an autosomal recessive inherited DNA damage disorder resulting
from the loss of one of the fanconi anemia proteins. These proteins are involved in two
main complexes that mediate DNA damage repair. A 2005 study in human B-
lymphoblastoid cell lines used spontaneous mutation of a specific gene as a proxy for
overall mutation rate and found FA to have a 30-fold higher mutation rate than wild-type
(Araten 2005). They were unable to characterize specific mutation patterns and were
limited to cell culture studies due to the limitations of their technique. Aside from large
chromosomal rearrangements, the spectrum of somatic mutation in FA remains largely
unexplored.

The full gamut of fanconi proteins is conserved from zebrafish to humans, making
zebrafish an excellent model for this disease. By combining PELE-Seq with a
longitudinal sampling scheme in fanconi anemia model zebrafish and multiple tissues
from zebrafish and mice, it should be possible to elucidate the fine scale mutation
patterns resulting from this disease, in growth, regrowth, specific tissues, and across

species.
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B. Methods

To examine the mutation rate of fanconi anemia model zebrafish, a cross was set up as
shown in Figure 4-1. A male and female fish heterozygous for a fancdl mutation were
crossed and the offspring were raised to 2 months old, when their caudal fins could be
clipped. Six weeks later the dorsal fins were taken and six weeks after that the anal fins
were clipped. The fish were allowed to recover and all three fins were taken again. The

first 3 fin clips will allow for determination of mutation accumulation over time in non-

R

Cross heterozygous fish

Caudal fin from
6%‘ each fish
i 6 weeks
\ .
%@ —_— Dorsal fin from Mutation
- each fish accumulation

over time
i 6 weeks
% > Anal fin from
each fish
- Mutation
% » Caudal, dorsal, and anal following
fin from each fish proliferation

Gut, testis and kidney

@i‘ —>» marrow from 3 WT and Tissue-specific
3 mutant males mutation

Figure 4-1. Sampling scheme for Fanconi Anemia zebrafish and their heterozygous and
wild-type siblings. Offspring were obtained from a single heterozygote cross. Once the fish
reached adulthood, a different fin was clipped every six weeks to examine mutation accumu-
lation over time. Then all three main fins were clipped to look at mutation accumulation follow-
ing proliferation. Finally, the gut, testis, and kidney marrow was harvested from 3 mutatnt and
3 wild-type males to look at tissue specific muations.
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regenerating tissue. The final 3 clips will show mutations that arose following the
regeneration of each fin. Finally, the gut, testis, and kidney marrow were taken from 3
wild-type and 3 mutant male fish to investigate tissue specific mutation.

Because of the large number of samples in this experiment and the depth of
sequencing required for PELE-Seq, double-digest RADseq (ddRADseq) will be

employed to sample about 40,000 bases of the genome(Figure 4-2 A) (Petersen 20121).

RAD . X Rare cutsite == Genomic interval present in library
sequencing » Common cutsite == Sequence reads
Individual 1~ _ == - e —
Genomic DNA x:*ﬂ_ x— h::
Individual 2 == = = ==
double digest RADseq =
individual 1~ = @ = ) _-
Genomic DNA SEE——0¢ e OE = - s —
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B -
i Digest gDNA with Sbfl and EcoRl
. . — —
— = ' —
- - = -
= — - -
i Ligate adapters and select 150bp insert size
i Merge reads and call SNPs
A A A
—— — —
- - D —
T A A
T A
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D — - —
T T A
Sequencing Error PCR Error True SNP

Figure 4-2. Experimental Method for ddRAD PELE-Seq. (A) RAD-Seq vs ddRAD-Seq, adapt-
ed from Peterson, et al, 2012. Instead of a single restriction enzyme, two restictions enzymes
are used to digest DNA to allow for more specificity. (B) For this experiment, zebrafish gDNA
was digested with Sbfl and EcoRI and adapters were ligated. Inserts of 150bp were selected
and the library was sequenced on a paired-end 150 Illlumina HiSeq 2500 lane.
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ddRADseq works very similarly to RADseq, but uses 2 restriction enzymes and a size
selection step rather than one enzyme and random sampling. Because a consistent set of
fragments is generated between restriction sites, size selection can be used to
downsample the number of sites consistently between samples. An average Sbfl RADseq
library contains upwards of 100,000 RAD sites. By combining the restriction enzymes
Sbfl and EcoRI and size selecting fragments containing 150bp inserts (necessary for
PELE-Seq) this is reduced to <500 sites (Figure 4-2 B). For each sample, at each time
point, a set of ~200 one hundred base pair tags were be generated which will then be
compared for mutation occurrence. DNA samples from the fins of 8 wild-type, 8 mutant,
and 8 heterozygote fish were obtained as in Figure 4-1, as well as gut, testis, and kidney
marrow tissue from 3 wild-type and 3 mutant fish. The DNA was prepared into an Sbfl-
EcoRI ddRAD library and size selected for 100-150 bp inserts.

To look at mutation patterns induced by fanconi anemia mutants across species,

mouse samples were obtained according to Figure 4-3.

L3 Tissue- and defect-

T~ specific mutation
/i;‘T—:» B ™
Fm——ey o~ L
FancD2

Figure 4-3. Sampling scheme for mouse Fanconi
Anemia samples. DNA was extracted from liver and
spleen from wild-type, FancA mutants, and FancD2
mutants.

45



These samples allowed comparison of different fanconi mutants within a species (fancA
and fancD2 mutants), across different tissues of the same mutant (liver and spleen tissue).
Reads were generated for both barcodes of each of the samples outlined in Figures 4-1
and 4-3. Reads were processed as described in Figure 3-2. Aligned reads in combined
samples were used to define loci where all samples had at least 400X coverage. These
loci (about 150 for zebrafish) were used to restrict reads to only these regions and
downsample the high coverage bam files to even coverage across all samples.
Realignment and indel quality assignment were performed with LoFreq, which was then
also used to call SNPs and indels for each of the barcode sets and the combined read files.

Per sample frequency for these sites was taken from the combined read calls.
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C. Results

This analysis was first applied to the tissue samples from WT and Fancdl™ zebrafish, as

this subset had the best coverage and sample size to develop an analysis pipeline.
Principal component analysis using the frequency of each detected variant in each sample
was performed in R and samples were clustered (Figure 2-4). Samples group loosely by
genotype (Panel A) and tightly by fish (Panel B). This suggests there is a slight genotype-

dependent effect on the number or frequency of variants in each fish.
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Figure 4-4. Principal component analysis and clustering of zebrafish tissue samples. (A) PCA
plot grouped by genotype. Samples loosely group by genotype (B) Same PCA plot grouped
by fish. Samples group well by fish.

We next looked at site GC content and length to see if these were affecting variant
distribution (Figure 4-5). Sites were divided into four groups: sites containing no variants,
sites with equal numbers of variants in both genotypes, sites with more variants in
FancD1 mutants, and sites with more variants in wild-type fish. There was no difference
in distribution for site length or GC content for any of these groups.
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Figure 4-5. Site length and GC content distribution across zebrafish tissue samples. (A) Distri-
bution of site length centers tightly around 150bp for all types of site: those with equal number
of variants in FancD1 and WId-Type fish (pink), those with more variants in FancD1 fish
(green), those with more variants in Wild-Type fish (blue), and those with no variants in either
genotype (purple). (B) Distribution of GC content of sites, divided as in panel A. In all cases,
GC content centers around 0.5.

Next, the number of SNPs and indels per individual for each genotype was examined
(Figure 4-6). Wild-type and FancD]1 fish did not have any difference in the total number

of SNPs per individual, but there were slightly more indels per individual in FancD1 fish.
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Figure 4-6. Variants per individual at different frequency cutoffs show significant differences in number
of variants in wild-type and fandD1 fish. Average indel count per individual shown on left for all alleles,
alleles below 10%, and alleles below 1%. Average SNP count per individual for the same cutoffs is
shown on the right. Averages for FancD1 indi)@uals (pink) and wild-type individuals (blue) are shown
for each group. Stars indicate significance: * p < 0.1, ** p < 0.01.



Low frequency alleles (both SNPs and indels below 10% and below 1%) were
significantly less frequent in FancD1 fish. This could be explained by faulty error-prone
DNA repair pathways in FancD1 mutant fish. Without the ability to read through stable
replication forks, FancD1 mutant cells must either resort to more drastic repair measures
such as double stranded break repair or stall in growth and enter apoptosis. Perhaps due
to smaller sample sizes when considering tissue type, there were no significant

differences in or between tissue types for SNP or indel count per individual (Figure 4-7).
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Figure 4-7. Variants per tissue per individual do not show genotype dependent effect. Average
indel count per individual shown on left for all alleles, alleles below 10%, and alleles below 1%.
Average SNP count per individual for the same cutoffs is shown on the right. Averages for
FancD1 individuals (pink) and wild-type Hgividuals (blue) are shown for each group.



Next, we wanted to look more closely at the types of mutations occurring. The transition-
transvehrsion ration (Ts/Tv) was determined for all SNPs in each sample as well as low
frequency SNPs (Figure 4-8). As in the overall numbers of SNPS, the Ts/Tv is not
significantly different for all SNPs between WT and mutant tissues, but there is a

difference in the low frequency SNPs.
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Figure 4-8. Ts/Tv ratio in All SNPs and low frequency
(<10%) SNPs. FancD1 mutants (pink) have a significantly
(p < 0.1) lower Ts/Tv ratio in Low frequency SNPs than
wild-type (blue).
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D. Conclusions

We have been able to create a library prep and analysis method to look at rare variation
across many genomes. With this method, we have been able to determine that SNPs and
small (<30bp) indels are more frequent in WT than in fanconi mutant tissues, potentially
due to impaired error-prone polymerase recruitment in the mutant fish. Zebrafish fin
tissue data did not show any discernible patterns, perhaps because, even after
regeneration, too few cell division cycles had occurred to show a measurable effect.

In the future, larger structural variants will be investigated. It is known that FA affected
individuals exhibit more structural variants than non-affected. Linked read technologies
such at 10x genomic’s platform allow for easy determination and phasing of structural

variation and would be better suited to investigating variation in this system.

BRIDGE

We were able to use the experimental and computational pipeline for
distinguishing rare variants within populations from sequencing error and noise in two
heterogeneous populations. This still did not address sequencing rare members of
complex communities and so we developed a method for enriching rare members of a

complex biological association.
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CHAPTER V

EFFICIENT TRANSCRIPTOME PROFILING OF HOST-
ASSOCIATED BACTERIA

A. Introduction

Vertebrate gut-associated bacteria have been shown to play essential roles in the health
and development of their animal hosts, including facilitating digestion and nutrient
acquisition, education and maturation of the immune system, and protection from
pathogens (reviewed in Neish, 2009). Our understanding of these roles has been
transformed by sequencing technologies that allow an unbiased look at the composition
and activity of bacterial communities and the development of model animal systems for
mechanistic studies into these intimate biological relationships. Traditional approaches to
understanding bacterial communities such as 16S sequencing provide taxonomic data, but
do not assess total gene content of the community or the genome-wide expression data.
Transcriptomics provides information about both gene content and the relative activity of
the genes within and across conditions. Previous work has shown the intestinal
environment to be highly dynamic and that the spatial structuring of different bacterial
species within the gut undergoes dynamic responses to the changing environment (Wiles
2016). Tying transcriptional changes to specific phenotypes enriches out understanding of
the genetic underpinnings of those phenotypes and gives new insight on ways to
manipulate host-associated microbes for specific goals.

Transcriptomic data from many host-microbes system is often difficult to generate,

largely because bacterial transcripts are rare (<0.1% of total RNA in larval zebrafish
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guts). To make sequencing the bacterial transcriptome feasible, the proportion of bacterial
RNA in the sequencing library needs to be increased. Different approaches are used to
accomplish this, including host removal and hybridization capture methods. Host removal
techniques attempt to eliminate the dominant, non-target species by selective
hybridization and removal (Kumar 2016). However, host removal techniques are less
effective when the ratio of host:microbial RNA is too large. In contrast, hybridization
capture methods enrich for the minor species by binding the target RNA and removing
the unbound, non-target RNA (Carpenter 2013). Hybridization capture has been used to
effectively enrich very minor components within a mixed sample.

For this work, germ-free larval zebrafish were mono-associated with a bacterial strain,
which was isolated from adult zebrafish guts, and is closely related to Vibrio cholerae.
Zebrafish are an ideal system as they can be derived germ-free, then inoculated with a
defined community. Indeed, zebrafish is an established model for intestinal community
studies with a growing body of knowledge about the interactions between the host and
commensal microbes (Stephens 2015, Wiles 2016, Rolig 2015, Hill 2016). The Vibrio
isolate used in our study is a robust colonizer of larval zebrafish, providing a good target
bacterium for testing enrichment from whole gut samples.

Our method is adapted from the whole-genome capture method described by Carpenter
et.al.. who used extant human gDNA to create biotinylated RNA probes to enrich for
human DNA from ancient bones and teeth. Their pre-enrichment libraries consisted of
~1.2% human DNA; post-enrichment, the majority mapped to the human genome.

Because our system contained similar starting ratios (0.1% bacterial, 99.9% zebrafish),
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we tested if a similar approach would allow us to generate bacterial transcriptomes from
host-associated total RNA samples. Here, Vibrio gDNA was used as a template to generate
biotinylated RNA probes. Standard RNA-Seq libraries were made from our experimental
samples and then hybridized to the biotinylated RNA probes (Figure 5-1). We first used
biological replicates of in vitro cultures of Vibrio to assess the efficiency and bias of our
hybridization capture. We then compared transcription profiles of Vibrio associated with

larval zebrafish hosts at 24 and 72 hours post-inoculation.
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I Hybridize 2X
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Figure 5-1. Experimental setup for validation samples and capture-hybridization method (A)
For capture tests, biological replicate cultures of Vibrio were grown in TSB and RNA was
isolated during exponential growth. (B) Sampling scheme for larval zebrafish. Germ-free
embryos are derived and colonized 4 dpf with ZWU0020. Guts are dissected a 5dpf (24 hours
post-inoculation) and 7 dpf (72 hours post-inoculation). Each sample in A and B were taken in
triplicate. (C) Whole genome capture of bacterial transcriptomes. RNA-Seq libraries are made
from total RNA extracted from zebrafish guts and associated microbes, which are then hybrid-
ized to biotinylated probes and amplified f%r4sequencing.



B. Materials and Methods

Creation of biotinylated RNA probes. Probes were created from genomic DNA of the
microbe of interest (Vibrio cholera) by fragmenting the genome into 300-800bp
fragments, adding a T7 site, depleting rRNA sequences, and transcribing the library with
biotinylated UTP to create biotinylated RNA probe libraries that were then used to
capture bacteria RNA sequences. This allowed us to select for the bacterial RNA of our
species while excluding the more abundant eukaryotic RNA. This also minimized the
bias in selection of bacterial genes, since the entire genome was used to make the probe
set.

To fragment the DNA, 2uL of high quality genomic DNA at 2.5 ng/ul. was added to 2.5
uL TD Buffer and 0.5uL TD Enzyme from the Illumina Nextera kit (Illumina:
FC-121-1031, FC-121-1012). This was incubated at 55°C for 5 min, then cooled to
10°C. To 4uL of this reaction, 1 uL PCR Primer Cocktail, 1uL each of 2 index primers,
and 3uL Nextera PCR Master mix was added and the mix was amplified 10 cycles
according to the Nextera amplification parameters. Reactions were cleaned using 1.8X
MagBind Beads and eluted in TE. Ribosomal sequences were depleted using RiboMinus
(Life-tech: K1550-04). 25ulL Magnetic beads were washed twice in 25 uL RNase-free
water and once in 25 uL Hybridization buffer (B10), then resuspended in 10 uLL
Hybridization buffer. In a separate tube, 18uL of the DNA library was mixed with 1 uLL
each P1 and P2 blockers (10uM DNA oligos), 4uL 1:10 dilution of RioMinus Probe from
kit, and 25ulL Hybridization Buffer and the incubated at 37°C for 5 minutes. Sample was

immediately placed on ice for at least 30 seconds, then mixed with cleaned beads. This
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was incubated at 37°C for 5 minutes, mixing occasionally. Beads were placed on
magnetic stand and the ribo-depleted supernatant was collected and cleaned up with 1.8X
MagBind beads. The T7 site was added by amplifying the 1.5 ng of the ribo-depleted
DNA library with 1uL each of 10uM custom T7 site forward and reverse Nextera
primers, 12.5 uL 2X Phusion master mix, and water to 25uL total. This was amplified for
8 cycles of 98°C for 10 sec, 60°C for 30 sec, and 72°C for 3 min. This was cleaned up
with 1.8X MagBind beads. Finally, biotinylated RNA was synthesized from these
templates using MEGAscript (Life-Tech: AM1334). Water to 20 uL,, 10 uL DNA
template, 2 uLL 10X transcription buffer, 1 uL each 10 mM ATP, GTP, and UTP, 0.6 uL 10
mM CTP, 5 uL Biotin-16-dCTP (Life-tech: AM8452), and 2 uL T7 Enzyme mix were
incubated at 37°C overnight (~16hrs). To remove template, 2ul. Turbo DNase Buffer and
luL Turbo DNase (Thermo-Fisher: AM1907) were added and incubated at 37°C for
20-30 minutes. Biotinylated RNA was cleaned up with Qiagen RNeasy columns (Qiagen:

74104), quantified by Qubit and stored at -80°C until capture libraries were ready.

Isolation of Vibrio RNA from in vitro and in vivo (l1arval zebrafish) samples. The
bacterial strain used for this study was previously isolated from an adult wild type
zebrafish, and designated ZWU0020. To generate in vitro RNA for ZWU0020, it was
grown overnight in TSB (tryptic soy broth; BD worldwide, #211825), then back diluted
1:200 (10 ml total; three replicate cultures) into sterile TSB, and grown for 5 hrs at 30C,
with shaking, to approximately mid-log growth phase. Three milliliters of each culture

was mixed with an equal volume of ice cold methanol and iced for 15 min. Samples
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were centrifuged to pellet cells, the supernatant was removed, and the cell pellets were
resuspended in 200ul of RNAprotect (reagent (Qiagen), then placed at -80C until RNA
extraction. RNA was isolated using the Zymo Quick-RNA miniprep kit (Zymo Research,
#R1054), following product protocol, and eluting RNA in 30ul RNase-free water.
Zebrafish colonizations: Wild type zebrafish embryos were collected immediately after
laying and made germ-free following the previously described protocol (Bates, 2006),
and distributed into tissue culture flasks containing 15 ml embryo medium at a density of
15 embryos/flask. At 4 dpf (days post fertilization), 6 flasks were inoculated with 5ul of
an overnight culture of Vibrio ZWU0020 grown in TSB medium, and washed once with
embryo medium. At 5 dpf (24 hr colonization) and 7 dpf (72 hr colonization), 10 fish
guts from each of three of the flasks were dissected, and the guts combined into 200ul of
RNAprotect reagent, resulting in biological triplicate samples for each time point. For
two of the 24 hr flasks, a single fish gut was dissected and placed into 200ul of
RNAprotect reagent. 100ul of bullet blending beads (product) were added to each sample
and they were bullet blended (machine info) for 1 min at power 4 setting. Samples were
stored at -80 C until RNA extraction. RNA was extracted as described above for in vitro
RNA samples. A schematic of the sample collection process is described in Figure 3-1A
and 3-1B.

Synthesis of total RNA libraries. cDNA was reverse transcribed from the total RNA
extracted from Vibrio-colonized zebrafish guts and in vitro Vibrio samples. Nextera

libraries were made from the cDNA, pooled, and hybridized to the biotinylated RNA
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probe library. These RNA/DNA hybrids were isolated with magnetic streptavidin beads,
the RNA was destroyed, and the released enriched library was amplified and sequenced.
To obtain host-associated RNA, larval zebrafish were mono associated with Vibrio
cholera. Guts were dissected from the fish, pooled (~10 guts per pool), resuspended in
90uL TE and 10 uL Proteinase K and incubated at room temperature for 5 minutes. RNA
was isolated with Qiagen RNeasy column according to the blood and tissue protocol and
eluted in 30ul. RNase-free water. Samples were DNase treated with Turbo DNase as
before. After incubation, 4ul. DNase inactivation reagent was added and incubated at
room temperature for 5 minutes. Samples were centrifuged at 10,000xg for 1.5 minutes to
precipitate inactivation reagent and the supernatant containing DNA-free RNA was
saved. Using the Ribo-Minus kit, 125ulL of magnetic beads were washed twice in 125ulL
RNase-free water, and once in 125ul Hybridization buffer, then resuspended in 40ul.
Hybridization buffer. In a separate tube, 15ul. RNA, 2uL RiboMinus Probe, and 45ulL
Hybridization buffer were mixed and incubated at 37°C for 5 minutes, the remaining
RNA was stored at -80°C. Hybridization mixes were incubated at 37°C for 5 minutes,
then placed immediately on ice for at least one minute. Then the hybridized probes were
mixed with the beads and incubated at 37°C for 15 minutes, occasionally mixing. Beads
were placed on magnetic stand and the ribo-depleted supernatant was collected and
cleaned up with the Qiagen RNeasy columns.

The Ovation RNA-Seq System V2 (NuGEN: 7102-08) was used to reverse transcribe and
amplify cDNA using SuL of each sample and following the manufacturer’s protocol.

cDNA was quantified and diluted to 2.5ng/uL for use in Nextera library prep. For each

58



sample, 4uL of 2.5ng/uL. cDNA, 5uL Tagment DNA Buffer and 1uL Tagment DNA
Enzyme were used to tagment the cDNA for 5 minutes at 55°C. From this reaction, 8 uL
was combined with 2 uL PCR primer cocktail (PPC), 2 uL each one 50x and one 70x
index, and 6 uL Nextera PCR master mix (NPM). Samples were amplified 8 cycles
according to the Nextera amplification parameters. Samples were cleaned up using 1.8X
MagBind beads and quantified individually. They were then pooled in equal parts by

weight in preparation for hybridization and capture.

Enrichment of microbial RNA-Seq libraries. A schematic of the hybridization and
capture protocol is presented in Figure 1C. The capture protocol was adapted from
Carpenter, et al. Three mixes were prepared in PCR tubes for the hybridization: a DNA
pond mix containing cDNA library pools and blocking DNA, a hybridization mixture
containing the buffers and salts for the hybridization, and a bait mix containing the
biotinylated RNA baits and RNaseOUT. The DNA pond mix contained 2.5 uL Salmon
Sperm DNA (10mg/mL), 2.5 uL Cotl DNA (1mg/mL), 2 uL each P1, P2, P1 nextera, and
P2 nextera blockers (100uM each), 19 uL DNA library pool containing at least 300ng
total DNA. The hybridization mixture contained 0.2 uL Water, 20 uL Hyb1 (20X SSPE),
0.8 uL Hyb2 (500 mM EDTA), 8 uL Hyb3 (50 X Denhardt’s Solution), and 8 uL Hyb4
(1% Sodium Dodecyl Sulfate). The bait mix contained biotinylated probes, for 1.5x
weight with DNA library pool, RNase-free water to 12ul, and 1.5 uL RNaseOUT (40U/
uL). The DNA pond was heated in a thermal cycler to 95°C for 5 min, followed by 65°C

for 5 min. When the heat block reached 65°C, the hybridization mixture was added.
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When the DNA had been at 65°C for 2.5 min, the RNA bait mix was heated to 65°C for
2.5 min in a heat block. At this point, 26uL of the hybridization mix was added to the
DNA pond mix followed by 8uL of the bait mix. The reaction was incubated at 65°C for
12-16 hours.

Dynabeads® MyOne Streptavidin C1 (Thermo-Fisher: 650.01) were used to isolate DNA
hybridized to RNA baits. 50uL of streptavidin beads were transferred into a new 1.5mL
tube and pelleted with magnetic particle stand. Supernatant was discarded, and beads
were washed three times in Binding Buffer (1 M NaCl; 10 mM Tris—HCI, pH 7.5; 1 mM
EDTA), then resuspended in 200ul Binding Buffer. Hybridization solution was added to
the beads and incubated for 30 minutes at room temperature on a rotator. Beads were
pelleted and resuspended in 500ul Wash Buffer 1 (1X SSC, 0.1% SDS) and incubated at
room temperature for 15 minutes. Beads were pelleted and resuspended in 65°C Wash
Buffer 2 (0.1X SSC, 0.1% SDS) and incubated for 15 minutes at 65°C. The wash with
Wash Buffer 2 at 65°C was repeated twice for a total of 3 washes. Beads were pelleted
and resuspended in 50uL elution buffer (0.1M NaOH, prepared fresh) and incubated at
room temperature for 10 minutes. Beads were pelleted and the supernatant was
transferred into a new 1.5mL tube containing 70uL Neutralization Buffer (3.75 ml 1 M
Tris—HCI, pH 7). DNA was cleaned up using 1.8X MagBind Beads and eluted in 30uL.
Enriched bacterial DNA was amplified in two 50uL reactions containing 25ul 2X
Phusion Master Mix, 2ulLL P5,P7 primers, 10uL sample, and 13ul water. Reactions were
denatured at 98°C for 3 minutes and amplified for 16 cycles (98°C for 30 seconds, 65°C
for 15 seconds, 72°C for 30 seconds) with a final extension of 2 minutes at 72°C.
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Reactions were pooled, cleaned up with 1.8X MagBind Beads, eluted in 20uL. 1uL was
used to quantify DNA and remaining 19uL were used as input for a second hybridization
and capture, performed exactly like the first. After the second capture and amplification,

libraries were sequenced.

Data analysis of microbial RNA-Seq libraries. After sequencing and demultiplexing,
samples were aligned to an in-house ZWUO0020 reference genome (IMG ID 99400) using
BWA with default settings (Li 2013). The reference genome was generated from PacBio
long read sequences and comprised 4243396 bases in 6 contigs, 2 of which are known
plasmids. Genome annotation predicts 3805 protein coding genes, which were used as
genes for differential expression analysis. Gene counts were obtained using bedtools
(Quinlan 2010), and then passed to DESeq2 for differential expression analysis (Love
2014). Hierarchical clustering was performed in R as well to determine sample clusters.
Differential expression data was passed to Gage (Luo 2009) to determine significantly
enriched KEGG pathology clusters, and the results were visualized using Pathview (Luo
2013). COG categories and assignments were obtained from the Joint Genome Institute’s

Integrate Microbial Genomes database.
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C. Results and Discussion

Capture hybridization enrichment of Vibrio RNA. Capture hybridization baits were
prepared by fragmenting Vibrio genomic DNA and transcribing the rRNA-depleted
fragments into biotinylated RNA. We then made artificial mixtures of zebrafish and
Vibrio RNA in order to test the efficacy of the hybridization capture method. Mixtures of
1%, 0.1% and 0.01% Vibrio RNA were prepared, and each mixture was divided into three
parts and subjected to 0, 1, or 2 sequential pulldowns. Samples were pooled and
sequenced on a single-end 150bp run on an Illumina HiSeq 4000. For each sample, the
percent of the sequencing reads that aligned to the Vibrio reference genome and the fold-

change compared to the pre-capture samples were calculated (Table 5-1).

Capture efficiency of defined mixtures of Vibrio and Zebrafish RNA

Pre-Capture One Capture Two Capture

Starting Fraction Percent Aligned Percent Aligned Fold Change Percent Aligned Fold Change

1:100 0.80 29.8 38 69.7 88
1:1,000 0.07 6.0 89 38.3 568
1:10,000 0.01 0.9 110 10.0 1154

Table 5-1. Capture efficiency in defined ratios of Vibrio and zebrafish RNA. Percent Aligned is percentage
of all reads passing filters that align uniquely to the genome. Fold change for each pulldown is by percent
aligned and relative to pre-pulldown percent aligned for each sample.

In a 1:100 Vibrio:zebrafish mixture, Vibrio reads were enriched nearly 50-fold after two
sequential captures. In the 1:1,000 mixture, reads were enriched more than 500-fold,
making them the dominant type in the sequencing library. In the 1:10,000 mixture, Vibrio
reads were enriched more than a thousand-fold, and comprised just under 10% of the

final library.
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We next tested the capture method using in vivo samples. Total RNA extracted from pools
of larval zebrafish guts and a single gut was significantly enriched for Vibrio RNA, with
36-63% of reads aligning to the Vibrio genome after two rounds of capture hybridization
(Table 5-2). This read alignment rate after enrichment is similar to what was seen with
the artificial mixture of 0.1% Vibrio, consistent with the low Vibrio:host RNA ratio

expected from in vivo samples.

Capture efficiency of Vibrio from larval zebrafish association

Host Genotype Hours Post-Inoculation Sample Type Percent Aligned Standard Deviation

Wild-Type 24 Pool 37 16
Wild-Type 72 Pool 62 6
Wild-Type 24 Single Gut 36 10

Table 5-2. Capture efficiency of host-associated Vibrio RNA after 2 sequential captures. Percent Aligned
is percentage of all reads passing filters that align uniquely to the ZWU0020 genome. Sample type denotes

whether the sample was prepared from a pool (5-10) larval zebrafish guts and associated Vibrio or a single

larval zebrafish gut and associated Vibrio.
Hybridization capture does not bias expression data. Once the overall enrichment was
determined, we then assessed if the capture hybridization biased the relative abundance
of different transcripts. Variability in the capture efficiency for particular transcripts could
lead to artifacts in differential expression analyses, and artificially increase or decrease
the apparent expression of those genes within a particular condition. We compared RNA-
Seq data both pre- and post-capture for the 1:100 Vibrio:zebrafish RNA artificial mixture.
Raw counts of each gene pre- and post-capture correlate well (Figure 5-2 A). For most
genes, there is a nearly 1:1 ratio of read counts in pre- and post-capture libraries, with an
overall adjusted R? of 0.74. To further investigate potential bias, hierarchical clustering of
these samples shows that the samples cluster by replicate, independent of the capture.

This means that variation between biological replicates was greater than the variation pre-
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Figure 5-2. Hybridization capture expression data is unbiased. (A) Correlation of pre- and
post- two capture raw gene counts. Raw gene counts pre- and post-capture of all genes in
both conditions plotted on a log scale. (B) Hierarchical clustering of in vitro biological repli-

cates. All samples group by biological replicate rather than pre-/post-capture.

and post-capture, demonstrating that our method does not impart significant bias in the

data (Figure 5-2B).

In vivo and in vitro expression profiles differ significantly. We first wanted to compare in vivo
and in vitro Vibrio expression profiles. RNA-Seq libraries from 3 pools of larval zebrafish guts
extracted 24 or 72 hours post Vibrio inoculation were subjected to two sequential capture
hybridizations and sequenced. The resulting data was compared to Vibrio gene expression profiles
from the mid-log in vitro cultures (post-capture) described above. Using DESeq2, we found
vastly different Vibrio gene expression profiles between in vitro and in vivo RNA samples.
Hierarchical clustering grouped samples into 3 distinct categories: in vitro, in vivo 24 hours post-
inoculation, and in vivo 72 hours post-inoculation (Figure 5-3). Principal component analysis

showed the major difference (98%) to be between in vitro and in vivo samples (data not shown).
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Figure 5-3. Expression changes in vitro and in vivo. Hierarchical clustering and
expression of significantly differentially expressed genes in vivo. Blue indicates
higher expression. Samples cluster into three distinct groups: in vitro, 24 hours
post-inoculation, and 72 hours post-inoculation.

There were 1711 significantly differentially expressed genes (padj < 0.01), comprising ~50% of

the predicted genes in the Vibrio genome, demonstrating that Vibrio exhibit a dramatic
physiological shift in response to host colonization. The top 200 most differentially

expressed genes were mapped to the genome (Figure 5-4).
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Figure 5-4. Distribution across ZWU0020 genome of 200 most highly differentially expressed
genes between in vitro and in vivo. Log2 fold-change values are plotted along the length of
their respective genes. Red bars represent negative log2 fold-changes and genes that are
significantly downregulated in vivo. Green bars represent positive log2 fold-changes and
genes that are significantly upregulated in vivo. Three putative plasmids from the genome
assembly are not pictured.

In an effort to gain biological insight from the host-specific gene expression patterns, we
focused on the 200 most differentially expressed genes. Many of the genes with the

highest in vivo expression, relative to in vitro, are involved in functions anticipated to be
important in the in vivo environment. Thirteen of them, have functions known to play a

role in cellular stress. These include genes with roles in stress-induced cell envelope
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integrity (ZWU0020 00738, ZWU0020 01348, ZWU0020 01847, and

ZWU0020 02729), oxidative stress (ZWU0020 00268, ZWU0020 00532, and
ZWU0020 01691), and a general stress response (ZWU0020 00354, ZWU0020 00850,
ZWU0020 01072, ZWU0020 02829, ZWU0020 03453, and ZWU0020 03522). One
of these genes, ZWU0020 01847, is a predicted homolog of the yicB gene of Vibrio
fischeri, which was shown to be important for squid colonization of this closely related
bacterium (Brooks 2014). It is well known that host environments are depleted of
bioavailable iron; consistent with this, we saw significant upregulation of several genes
necessary for iron acquisition and utilization (ZWU0020 00475, ZWU0020 01677,
ZWU0020 01679, and ZWU0020 02040). COG category analysis of the gene sets from

the most highly differentially expressed genes and the whole genome shows enrichment

Translation, ribosomal structure and biogenesis -

Transcription 5

Signal transduction mechanisms -+

Secondary metabolites biosynthesis, transport and catabolism -
RNA processing and modification 5

Replication, recombination and repair -

Posttranslational modification, protein turnover, chaperones -
Nucleotide transport and metabolism -

Mobilome: prophages, transposons -

Lipid transport and metabolism - Gene Set
Intracellular trafficking, secretion, and vesicular transport - [ 100 most
Inorganic ion transport and metabolism 5 downregulated
General function prediction only - Total
Function unknown - 100 most

Extracellular structures 5

Energy production and conversion -

Defense mechanisms -

Coenzyme transport and metabolism 5

Chromatin structure and dynamics

Cell wall/membrane/envelope biogenesis -

Cell motility -

Cell cycle control, cell division, chromosome partitioning
Carbohydrate transport and metabolism 5

Amino acid transport and metabolism -

upregulated

I "U*r’!r'!rlru'q‘

10 20 30
Percent of total Gene Set

o -

Figure 5-5. Distribution of COG category representation between in vivo and in vitro expression
profiles. 100 most down regulated (pink) and upregulated genes (blue) in vivo compared to COG
distribution of all genes in the Vibrio genome.
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of specific COG categories in both the most unregulated and downregulated gene sets
(Figure 5-5).

Genes involved in transcription and translation were particularly enriched in the most
upregulated genes in vivo. Amino acid transport and metabolism genes were highly
downregulated in vivo, which may be explained by the excess of peptones in the in vitro
growth media. also mapped the , most of which mapped to Chromosome I. Based on the
genome assembly, it is predicted to carry three plasmids, one of which is depicted in
Figure 5-4. Interestingly, the majority of the genes on this plasmid are down regulated in
vivo. The significance of this is unknown; however, gene expression levels of plasmid-
encoded genes may be confounded by shifts in plasmid copy number. Vibrio genomes
commonly harbor a large genetic island termed the superintegron, often comprised of
hundreds of genes (Mazel 2006).

Our Vibrio isolate harbors a superintegron containing about 182 genes. By nature of how
genes within superintegrons are integrated and regulated, these regions are generally
transcriptionaly silent, as we see in our Vibrio RNA-seq data (Figure 5-6). This further

verifies the validity of our Vibrio expression data and method.
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Figure 5-6. Depth of coverage on chromosome Il of ZWU0020 with integron region. Integron
region is highlighted in light blue and 200 mast highly differentially expressed genes are
shown as red and green bars. Depth of coverage for each gene is plotted on the innermost
ring in grey. Red bars represent negative log2 fold-changes and genes that are significantly
downregulated in vivo. Green bars represent positive log2 fold-changes and genes that are
significantly upregulated in vivo.

Host-associated Vibrio exhibit temporal gene expression profile changes during host
colonization. We captured Vibrio RNA from larval zebrafish guts collected 24 and 72
hours post-inoculation. Comparison of the 24hr and 72hr expression profiles revealed
dramatic shifts in gene expression, including 311 significantly differentially expressed

genes (padj < 0.05). The top 200 most differentially expressed genes were mapped to the
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genome (Figure 5-7). Many more of the top most differentially expressed genes are

located on chromosome II compared to the in vitro to in vivo comparison.

Plasmid

Chromosome |

Chromosome I

Figure 5-7. Distribution across ZWU0020 genome of 200 most highly differentially expressed
genes in vivo between 24 and 72 hours post-inoculation. Log2 fold-change values are plotted
along the length of their respective genes. Red bars represent negative log2 fold-changes
and genes that are significantly downregulated 72 hours post-inoculation. Green bars repre-
sent positive log2 fold-changes and genes that are significantly upregulated 72 hours post-in-
oculation.
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A previous study comparing the gene expression of V. cholerae in a rabbit ileal loop
model to in vitro gene expression saw a shift to more small chromosome (II) genes
expressed in vivo (Xu 2003). Although we did not see this in our in vitro to in vivo
comparison, perhaps in these conditions there is a delay in this shift such that it is not
evident until longer in vivo colonization. Furthermore, in these data there were few
significantly differentially expressed genes on the plasmid for which we saw a dramatic
down regulation when comparing in vivo to in vitro expression data (Figure 5-4).
Signatures of specific physiological changes ascribed by the top differentially expressed
genes are unclear in these data. Included on the top upregulated gene list, however, are
genes that are expected to be induced in vivo, including collagenase (ZWU0020 00861),
hemolysin (ZWU0020 02874), and the transcriptional activator VirB

(ZWU0020 _02676). These temporal changes in gene expression could be the result of
the length of time of colonization independent of the state of host development; however,
it cannot be discounted that these changes may also be due to changes in the host
environment resulting from developmental changes in the fish larvae, regardless of the
duration of colonization. Indeed, the larval fish is experiencing rapid development during
these early days of life. Studies designed to disentangle the effects of these two factors is

warranted.

Differentially expressed genes agree with previous studies.
Stephens et. al (2015) used a transposon insertion knockout library of Vibrio ZWU0020

to investigate which genes are important for colonization of the zebrafish gut. They were
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able to assay 1930 genes (~50% of predicted genes) and found 278 high-confidence gene
candidates that potentially play a role in host colonization. In order to facilitate
comparison of the results of their study to ours, we ran their list of high-confidence
genes, and our list of significantly differentially expressed genes from this study, through
GAGE analysis. This KEGG-based analysis showed two KEGG orthology pathways to
be enriched in the Stephens e al. study for Vibrio mono-association, including flagellar
assembly, and two-component signal-transduction systems. In our study, two-component
signaling systems were also significantly enriched in expression profiles for in vivo
Vibrio, demonstrating that our results at least partially recapitulate the findings of the
previous stud. Indeed, comparison of these two different types of genetic screens is
difficult due to the inherent differences how they probe genetic functional importance.
RNA-Seq experiments allow for assessing the role of a larger portion of the genes in an
organism than transposon mutagenesis studies. It is also possible to assay the significance
of genes that are required for growth in both the in vitro and in vivo conditions being
compared (i.e. essential genes), as these would not be present in the pool of transposon
library mutants. Our study assayed all annotated genes and identified 1,711 significantly
differentially expressed genes, compared to 278 candidate genes in the Stephens et al
study. Previous work comparing transposon-insertion data to transcriptomic data found a
poor correlation (~3% of all genes) between the two data sets (Powell, 2016). We found
better overlap- about 7% of all genes were found to be important in host colonization in

both transposon sequencing and by RNA-Seq.
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D. Conculsion

Hybridization capture enriches for bacterial RNA-Seq libraries. The RNA capture
method presented here is highly efficient at enriching for bacterial RNA in host-
associated samples where the bacterial RNA is an extremely minor component of the
total RNA. This method is widely applicable for studying gene expression in other host-
microbe systems where microbial constituents are difficult to isolate from host tissues.
Moreover, this method could prove a powerful tool in other applications where the target
species is too closely associated with another more dominant species for separation, as
with intracellular parasites. Because total RNA-Seq libraries are made prior to capturing
the bacterial portion, it is possible to sequence the pre-capture libraries to obtain gene
expression data from the host tissue. Host and microbe gene expression data from the
same sample would give unique insights into host-microbe interactions. We were able to
generate reliable gene expression data from mono-associated larval zebrafish, but the
method could be expanded to isolate more complex communities. Bait libraries can be
generated from any culturable microbe and then combined to enrich for all microbial
RNA from samples isolated from a host inoculated with a defined community.
Combining this method with de novo transcriptome assembly could allow discovery of

novel transcripts in less well-characterized microbes.
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Table 5-3. Strategies for enriching rare RNA

Strategy Advantages Disadvantages Citations
Mechanical Separation (Size-based  Removes host RNA before bacterial lysis Too much sample handling Lim, et al 2012
Filtering, Selective Lysis) Unsuitable for intracellular targets
Host RNA Depletion (CpG Easy, commercially available kits Inefficient for rare targets Kumar, et al 2016
removal, Poly-A removal)
Hybridization capture-based targeted probe to specific region Too little information Faucher, et al 2005
methods (PCR-generated probes, Too laborious to reduce representation bias An, et al 2012
c¢DNA generated probes) Specific to entire genome of interest Need to have culturable bacteria Bent, et al 2013
Micro-fluidic capture of cDNA Complicated isolation

Only one sample at a time
Our Method Specific to entire genome of interest Need to have culturable bacteria

Previous efforts to sequence rare RNA are summarized in Table 5-6. They fall into
several broad categories: mechanical separation, host RNA depletion, microfluidic
capture, and hybridization-based capture. Mechanical separation involves size-based
filtration or differential lysis of prokaryotic and eukaryotic cells, but sample handling
time is significantly longer than bacterial mRNA turnover rates and transcriptome
profiles are influenced by the sample preparation. Host RNA depletion methods are
convenient as there are several commercially available kits for CpG island and Poly-A
depletion, but are less effective when target RNA is very rare. Kumar et. al. describe a
method for poly-A depletion of eukaryotic transcripts to enrich for Wolbachia transcripts
from Wolbachia-infected Drosophila. Poly-A depletion and bacterial rRNA depletion
increased bacterial mRNA 3-fold, but final libraries contained 1.0% bacterial mRNA,
which is not sufficient for transcriptomic analysis. Microfluidic capture of cDNA with
probes generated from genomic DNA was much more successful. Bent et. al. were able to
enrich several hundred fold for RNA from the intracellular parasite Francisella
Tularensis. However, their method involved specialized microfluidic equipment and is
not high throughput, as individual captures must be performed for each sample. Previous

hybridization-based capture methods have used PCR amplicons and cDNA as templates
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for bait library, which does not allow for interrogation of the entire transcriptome and
requires laborious steps to normalize counts across different genes. By using gDNA as
the bait library template, we were able to increase the ratio of microbial:host RNA by
more than one thousand-fold and obtain usable transcriptomic data for differential
expression analysis. By capturing pooled libraries with streptavidin beads, we were able
to create a relatively easy, scalable process for enriching bacterial trancsripts. We were
able to demonstrate that the capture method does not bias the transcriptome data, since
variation between biological replicate cultures was significantly greater than that between
pre- and post-capture replicates. Furthermore, this method enables preparing total RNA
from the samples immediately upon dissection, so that the potential for changes in gene

expression profiles during an otherwise needed bacterial isolation step is minimized.

75



CHAPTER VI
CONCLUSION

Highly heterogeneous populations are by nature particularly difficult to
characterize. Next-generation sequencing (NGS), is powerful tool to investigate
homogeneous populations, but is less useful in investigating complex populations. Rare
sequence variant identification is confounded by the error rate of sequencing instruments.
To address this issue, I have co-developed a method described in Chapter II to improve
the error rate of NGS. This method was used to characterize mutations arising during
tumorigenesis and the spatial distribution of mutations within a solid tumor in Chapter
III. With our new, sensitive detection of rare variants we were able to see distinct patterns
of variation in different regions of the mitochondrial genome in tumor and non-tumor
cells from the same subject, potentially because of different selective pressures on each
region. We were also able to detect spatial organization in different regions of a solid
tumor. Because most of the variants in the tumor are unique to a specific section, it
appears that the overall mutation rate within the tumor is high. PELE-Seq was also used
to investigate mutation accumulation in fanconi anemia in Chapter IV. We determined
that SNPs and small (<30bp) indels are more frequent in WT than in fanconi mutant
tissues, potentially due to impaired error-prone polymerase recruitment in the mutant fish.

Rare members in a complex biological community present a different
challenge, such as in characterizing host-microbe interactions. I co-developed a method
for enriching for bacterial transcripts from host-associated bacteria described in Chapter

V. This method increased the ratio of microbial:host RNA by more than one thousand-
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fold and produced usable transcriptomic data for differential expression analysis. By
capturing pooled libraries with streptavidin beads, we were able to create a relatively
easy, scalable process for enriching bacterial trancsripts. The capture method does not
bias the transcriptome data and it enables preparing total RNA from the samples
immediately upon dissection, so that the potential for changes in gene expression is
minimized.

Together, these methods allow for more thorough investigation of complex
communities. They create possibilities for investigating complex communities that would

previously have been obscured by errors and noise.
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