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 Approximately 25-40% of the general healthy population has a patent foramen 

ovale (PFO) (Woods et al., 2010; Marriott et al., 2013; Elliott et al., 2013). Previous 

work by our lab has shown that after 16 days of exposure to 5260 m, subjects with a 

PFO (PFO+) had blunted ventilatory acclimatization to high altitude compared to 

subjects without a PFO (PFO–), such that PFO+ subjects had a lower partial pressure of 

arterial O2, higher partial pressure of arterial CO2, and lower O2 saturation (Elliott et 

al., 2015).  However, in that study 7 / 11 PFO+ subjects were female, whereas only 2 / 

10 PFO- subjects were female and thus potential sex differences were not accounted for 

and it is known that sex hormones can affect ventilatory responses to O2 and CO2 

(Schoene et al., 1986; Slatkovska et al., 2006). Thus, it remains unknown if PFO+ 

subjects exhibit blunted acute ventilatory responses to hypoxia compared to PFO– 

subjects, independent of sex. Therefore, the purpose of this study was to determine if 

the presence of a PFO affects ventilatory responses during acute exposure to either 

poikilocapnic hypoxia or isocapnic hypoxia. 

 A total of 31 healthy, non-smoking subjects matched for height, weight, sex and 

age completed the entire study: 
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PFO+: age: 24 ± 5 yrs, height: 170 ± 11 cm, weight: 69 ± 14 kg, BSA: 1.8 ± 0.2 m2  

PFO-: age: 27 ± 9 yrs, height: 172 ± 10 cm, weight: 71 ± 16 kg, BSA: 1.8 ± 0.2 m2  

 

These 31 subjects included 15 PFO+ subjects (8 female) and 16 PFO – subjects (9 

female). Subjects came to the lab and participated in two trials: poikilocapnic hypoxia 

(PH) and isocapnic hypoxia (IH). These trials were administered using the Dynamic 

End-tidal Forcing (DEF) breathing response system in a randomized and balanced order. 

The subjects were given a 40 min break between hypoxia trials. Acute Hypoxic 

ventilatory response (AHVR), calculated as the change in VE divided by the change in 

SpO2 (∆VE/ ∆ SpO2), was done for both PH and IH trials. Hypoxic ventilatory decline 

(HVD), calculated as a percent decline with respect to the initial increase in VE, was 

performed for IH trials only. 

 Despite differences in ventilatory acclimatization to high altitude, there were no 

difference in AHVR between PFO+ and PFO- subjects. PFO+ and PFO- showed no 

significant differences in hypoxic ventilatory decline HVD. There were also no 

differences in AHVR and HVD between males and females. Thus, our findings suggest 

differences in ventilatory acclimatization with chronic exposure to high altitude are 

likely not due to baseline differences in hypoxic chemosensitivity. 
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Abbreviations and Terms 

AaDO2: alveolar-arterial oxygen gradient; difference between the alveolar and arterial 
concentrations of oxygen 
 
Acute Hypoxic Ventilatory Response (AHVR): initial, sharp increase in ventilation upon 
exposure to hypoxia 
 
Basal metabolic rate (BMR): rate of energy expenditure at rest 
 
Central chemoreceptors: areas of highly sensitive tissue located in the medulla 
(brainstem); primary sensors of PaCO2 

 
FICO2: fraction of inspired carbon dioxide 
 
FIO2: fraction of inspired oxygen 
 
Hypercapnia: condition marked by increased carbon dioxide in arterial blood 
 
Hypoxia: condition marked by decreased oxygen in arterial blood 
 
Hypoxic ventilatory decline (HVD): after 5-20 minutes of exposure to hypoxia, 
ventilation is expected to decrease and reach a plateau 
 
Hypoxic ventilatory response (HVR): ∆𝑉𝑉𝐸𝐸

∆𝑆𝑆𝑆𝑆𝑂𝑂2
 measures change in ventilation compared to 

change in arterial oxygen saturation to quantify an individual’s response to hypoxic 
conditions 
 
PACO2: alveolar partial pressure of carbon dioxide 
 
PAO2: alveolar partial pressure of oxygen 
 
PaCO2: arterial partial pressure of carbon dioxide 
 
PaO2: arterial partial pressure of oxygen 
 
Patent foramen ovale (PFO): intracardiac shunt pathway between right and left atria of 
heart  
 
Peripheral chemoreceptors: areas of highly sensitive tissue located in the carotid bodies 
and aortic arch; primary sensors of PaO2 

 

PETCO2: end-tidal (expired) partial pressure of carbon dioxide 
 
PETO2: end-tidal (expired) partial pressure of oxygen  

---
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SaO2: arterial oxygen saturation 
 
SpO2: peripheral capillary oxygen saturation 
 
Valsalva maneuver: technique utilized to increase right atrial pressure above left atrial 
pressure, causing shunting through a PFO if present 
 
Ventilatory acclimatization: increase in ventilation (VE) that occurs in response to 
extended exposure to high altitude 
 
Ventilatory depression: decrease in ventilation (VE) with months to years of exposure to 
hypoxia. Findings on ventilatory depression have not been universal, and is likely 
largely dependent on various environmental and genetic factors. 
 



 
 

 
 
 

 

Introduction 

 Since my second year at the University of Oregon, I have had the chance to 

work as an undergraduate research assistant in Dr. Andrew Lovering’s 

Cardiopulmonary and Respiratory Physiology Lab of the Department of Human 

Physiology. One of the primary research focuses of the laboratory is on the effects of 

the patent foramen ovale (PFO), an intra-cardiac shunt between the right and left atria 

that exists in 25-40% of the general population (Woods et. al., 2010; Marriott et al., 

2013; Elliott et al., 2013). Previous work by our lab has shown that: there is an 

increased gas exchange inefficiency at rest in PFO+ subjects likely due to the shunting 

(Lovering et al. 2011), individuals with a PFO (PFO+) have an ~0.4° C higher core 

body temperature when compared to those without a PFO (PFO-) (Davis et al., 2015), 

and after 16 days of exposure to 5260m, PFO+ subjects had a blunted ventilation 

compared to PFO- subjects (Elliot et al., 2015). Despite these existing studies, PFO 

research in healthy humans is still relatively new, and thus there is limited information 

and much more to be studied on the implications and clinical relevance of a PFO. 

 In contrast there has been significant investigation into the ventilatory response 

to hypercapnia and hypoxia across variety of conditions and populations. However, the 

effect of a PFO on these ventilatory responses have not been studied to date. Therefore, 

the primary focus of this thesis was the hypoxic ventilatory response (HVR), which 

compares the change in ventilation over the change in oxygen saturation in subjects 

with and without a PFO. 
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Purpose and Hypothesis 

 The purpose of this study was to determine if the presence of a PFO affects 

ventilatory responses during acute exposure to: 1) poikilocapnic hypoxia and 2) 

isocapnic hypoxia. Based on findings from the AltitudeOmics study (Elliot et al., 2015), 

the hypothesis of this study was that PFO+ individuals would have a blunted hypoxic 

ventilatory response breathing poikilocapnic and isocapnic hypoxia, compared to the 

PFO- individuals. 
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Background 

Cardiopulmonary Physiology & Path of Blood flow 

 The cardiopulmonary system’s primary function is the transport of oxygen (O2) 

and nutrients to peripheral tissues while at the same time removing carbon dioxide 

(CO2), a metabolic byproducts. Systemic venous, or deoxygenated blood enters the 

right atrium of the heart via the superior vena cava, inferior vena cava, and the coronary 

sinus. Through the right ventricle, deoxygenated blood travels to the lungs, where at the 

level of the alveoli, O2 and CO2 enter and exit the bloodstream, respectively. The 

oxygenated blood travels back to the left atrium of the heart, and to the rest of the body 

(Figure 1). The functions of the cardiopulmonary system are vital to cellular respiration 

and energy production, as O2 is required for cellular respiration and CO2 must be 

removed to maintain pH homeostasis. 

Patent Foramen Ovale 

The foramen ovale is a feature of the fetal heart. It is an interatrial opening that 

allows blood to flow directly from the right side of the heart to the left side of the heart, 

bypassing pulmonary circulation. The foramen ovale is vital to the fetus because in 

utero, a human embryo receives oxygenated blood from the mother and the developing 

lungs are not capable of gas exchange. Therefore, the foramen ovale allows the majority 

of blood flow to bypass pulmonary circulation during gestation and flow directly into 

the left heart for distribution to the body (Rasanen et al, 1998). When the baby is born, 

and starts to breath the atmospheric air, the increased left atrial pressure forcest the 

valve against the septal wall, which closes the foramen ovale. However, we and others 
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have observed that in 25-40% of the general population, a patent foramen ovale, or a 

PFO, exists (Woods et al., 2010; Marriott et al., 2013; Elliott et al., 2013).  

Functions of the Respiratory System  

 The primary function of the respiratory system is gas exchange. The lungs 

facilitate exchange of O2 and CO2 between the body’s external environment and the 

body’s internal environment to maintain constant and favorable O2 and CO2 partial 

pressures. The exchange of O2 and CO2 occurs according to the partial pressure 

gradient of these gases. In the venous blood traveling to the alveoli, the partial pressure 

of O2 (PO2) is 40 mmHg and the partial pressure of CO2 (PCO2) is 46 mmHg. The 

alveolar partial pressure of O2 (PAO2) is greater than the venous PO2 at 100 mmHg and 

the alveolar CO2 (PACO2) is lesser than the venous CO2 at 40 mmHg. Due to this 

pressure gradient, O2 and CO2 will move down their pressure gradients, into the blood 

stream and the alveoli, respectively. Similarly, as the oxygenated arterial blood travels 

to the tissues across the body, O2 will be transported and dropped off and CO2 will be 

picked up using the partial pressure gradient. Normal arterial PO2 (PaO2) is 100 mmHg 

and normal arterial PCO2 (PaCO2) is 40 mmHg, while the PO2 and PCO2 at the 

peripheral tissues would be 40 mmHg and 46 mmHg, respectively. 

 In the laboratory setting, gas exchange efficiency can be measured by 

calculating the alveolar-arterial oxygen difference, or AaDO2. Simply put, a smaller 

AaDO2 value, represents a minimal difference in oxygen content between the alveoli 

and arterial blood, would denote greater pulmonary gas exchange efficiency. As 

mentioned previously, Lovering et al. previously explored the effect of PFO on 

pulmonary gas exchange efficiency as measured by AaDO2. The study showed that the 
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degree of right-to-left shunting caused by the PFO led to significantly higher AaDO2 at 

rest, meaning that those with a PFO have decreased pulmonary gas exchange efficiency 

(Lovering et al., 2011)   

 One of the secondary functions of the respiratory system is respiratory cooling, 

which serves as a means for heat loss. It has been already established that ventilation 

increases significantly when core temperature reaches approximately 38.5°C (Cabanac 

& White, 1995). Though the mechanism behind this response is unclear, the increase in 

ventilation is thought to be the body’s response to increase the amount heat dissipation 

through respiratory cooling.  

Chemoreceptors and Chemical Control of Ventilation 

O2 and CO2 partial pressures in the blood are the primary contributors to 

changes in ventilatory drives. PaCO2 is sensed mainly by central chemoreceptors 

located on the ventrolateral portion of the medulla of the central nervous system (CNS). 

Central chemoreceptors indirectly monitor arterial PCO2 through changes in 

cerebrospinal fluid pH. The respiratory pattern generator within the medulla of the CNS 

is responsible for integrating the signals from central chemoreceptors and modulating a 

response based on indirect detection of PCO2. The signal is then relayed to the 

diaphragm and accessory respiratory muscles to stimulate a change in ventilation (West 

et al., 2013).  In conditions marked by high CO2, or, hypercapnia, the increased firing 

from the central chemoreceptors would ultimately increase one’s ventilation in efforts 

to bring the PaCO2 back down to within normal range. 

 Similarly, peripheral chemoreceptors sense PaO2 and respond to conditions of 

low oxygen, or, hypoxia. Glomus cells of the carotid bodies sense the level of oxygen 
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and release transmitters in response to hypoxia (Prabhakar et al., 2004). These 

chemoreceptors signal travels to the nucleus tractus solitarius (NTS) in the medulla, 

which relays information to the respiratory pattern generator, ultimately leading to the 

necessary change in ventilation. Thus, with decreased PaO2, peripheral chemoreceptor 

firing rate increases, resulting in increased ventilation to compensate for the body’s 

need for O2 (West et al., 2013).  

 It is important to note that, although we have identified hypoxia and hypercapnia 

as the two powerful drives to increased ventilation, what drives our ventilation at sea 

level is the rate of production of CO2, represented by basal metabolic rate (BMR). Since 

the partial pressure of O2 in atmospheric air at sea level is high, the need to exhale the 

CO2 produced as a result of cellular metabolism serves as the primary drive for 

ventilation. 

The Hypoxic Ventilatory Response 

In general, hypoxic ventilatory response (HVR) refers to the increased 

ventilation due to low oxygen saturation. HVR compares the change in VE to change in 

arterial oxygen saturation (SaO2), measuring the response to hypoxic conditions. A 

larger HVR signifies a greater change in ventilation in response to hypoxia, and HVR 

has been shown to increase with ventilatory acclimatization to altitude (West et al., 

2013).  

The time course of the HVR can be divided into four distinct phases (Figure 2.). 

First, the acute hypoxic response (AHVR) is expected occur and this refers to the initial, 

sharp increase in ventilation upon exposure to hypoxia due to rapid increase in 

peripheral chemoreceptor firing rate. After 5-20 minutes of exposure to hypoxia, 
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ventilation is expected to decrease and reach a plateau, and this phase is referred to as 

the hypoxic ventilatory decline (HVD). The exact mechanisms causing HVD are 

unclear; however, its occurrence could result from a decreased chemoreceptor 

sensitivity, elevations in cerebral blood flow and/or neural stimulus (Powell et al., 1998; 

Sato et al., 1994). Additionally, a study indicated that the development of HVD is 

caused, at least in part, by an increased peripheral chemoreflex threshold to the 

isocapnic hypoxic stimulus (Mahamed & Duffin, 2001). During the first month at 

altitude, ventilation is expected to increase steadily across time—a phase referred to as 

ventilatory acclimatization. Lastly, with months to years of exposure to hypoxia, there 

could be ventilatory depression (Ainslie et al. 2013). The ventilatory depression phase 

has been observed in some long-term residents of high altitude (Sato et al., 1994), but 

this finding has not been universal (Beall et al., 1997), and is likely largely dependent 

on various factors such as age, degree of altitude, along with environmental and genetic 

factors. 

The Effect of Sex on Ventilation 

In a study that explored the effects of the ovarian hormones progesterone and 

estrogen on effective alveolar ventilation and HVR, it was observed that subjects who 

had undergone an ovariectomy decreased ventilatory and carotid sinus nerve 

responsiveness to hypoxia, suggesting that the presence of physiological levels of 

ovarian hormones influences hypoxic chemosensitivity of peripheral chemoreceptors 

(Tatsumi et al., 1997; MacNutt et al., 2012). Furthermore, findings of a recent 

comprehensive study suggest that menstrual cycle phase may have an influence on VE, 

as the results showed increased VE at times of high progesterone and estrogen (MacNutt 
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et al., 2012). Although there is no clear consensus on the effect of biological sex on 

ventilation and ventilatory response, it was important to eliminate the sex affect to our 

best effort because we are interested in the possible effect of a PFO, alone, on 

ventilatory response.    

The Effect of a Patent Foramen Ovale on Ventilation  

 In 2012, the Cardiopulmonary and Respiratory Physiology lab conducted a 

study initially designed to explore the effect of PFO on gas exchange efficiency at 

altitude, and encountered surprising findings that led the laboratory to further 

investigate the PFO’s effect on ventilatory response and acclimatization to hypoxia. The 

AltitudeOmics expedition took place in Mt. Chacaltaya in Bolivia, ~5260 m (17,000 ft.) 

above sea level. The study population consisted of 21 healthy sea level residents. At day 

1 in altitude, the PFO+ and PFO- group showed no significant differences in HVR. 

However, at day 16, PFO+ group showed HVR that was significantly less than that of 

the PFO- group (Figure 3). Therefore, we determined that subjects with a PFO showed 

blunted ventilatory acclimatization to high altitude (Elliott et al. 2015). This was a 

completely unexpected finding, because, under normal conditions, ventilation should 

increase over the 16 days in altitude, due to increasing sensitivity of the peripheral 

chemoreceptors to partial restoration of PaO2 and concomitant fall in PaCO2. Because 

PFO+ subjects would have blood bypassing pulmonary circulation and therefore gas 

exchange at the lungs, it was expected that these subjects would have decreased gas 

exchange efficiency compared to PFO- subjects. And due to this decreased efficiency, 

we expected the PFO+ subjects to increase ventilation to a greater degree to meet the 
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body’s needs. Because the findings showed otherwise, the laboratory decided to further 

investigate the reasons for the blunted ventilatory acclimatization seen in PFO+ subjects.   

 Further investigation into the findings of the AltitudeOmics study was necessary 

due to several limitations in study design and sampling. Since the AltitudeOmics study 

was designed to explore questions regarding gas exchange, there existed some 

limitations that prevented us from drawing conclusions regarding the blunted HVR after 

16 days in altitude. As mentioned in the section above, female sex hormones can cause 

their ventilatory responses to differ from those of males (MacNutt et al., 2012). 

However, the AltitudeOmics study was not designed to account for those differences, 

due to unequal numbers of males and females, making it hard for us to conclude 

whether the effects observed were due to the presence of a PFO or due to biological sex 

fifferences.   
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Methods 

This study received approval from the University of Oregon's Office for 

Protection of Human Subjects. Each subject was given documents outlining the study 

and provided written approval prior to participating in the study. All experimental 

procedures were conducted in accordance of the Declaration of Helsinki. 

Participant Recruitment and Enrollment 

62 total subjects were recruited for participation. The members of the research 

team at the cardiopulmonary and respiratory physiology laboratory described the nature 

of the study to all of the subjects, both orally and in writing. Of the 62, a total of 31 

subjects (17 female) qualified and completed the entire study protocol. 15 subjects (8 

female) were identified as PFO+, and 16 subjects (9 female) were identified as PFO-. 

Of the remaining 31 subjects who were not able to complete the study, 5 had poor 

pulmonary function, 11 withdrew before completion of the protocol for reasons no 

associated with the study, 3 could not get an IV placed for the screening process, 7 had 

late appearing bubbles (4 or more) after more than 3 cardiac cycles, and 5 were 

excluded to have even numbers of subjects in each group. In total, the PFO prevalence 

of the study was 46%, which is greater than what has been previously reported in 

various studies. Ultimately, 31 (15 PFO+) healthy, non-smoking subjects, age 25 ± 8 

years, without history of cardiopulmonary pathology, completed the study.  

Study Protocol—Day 1 & Day 2 

The subjects were asked to visit the laboratory, located in the Center for Medical 

Education & Research at the University of Oregon, on two separate occasions. During 
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the first visit, subjects underwent ultrasound screening, pulmonary function and lung 

diffusion capacity testing, and the researchers took anthropometric measurements. 

During the second visit, subjects completed 2 separate hypoxia protocols: poikilocapnic 

hypoxia and isocapnic hypoxia, in a randomized order. Each trial was separated by a 

minimum of 40 minutes.  

Ultrasound Screening 

 The transthoracic saline contrast echocardiography (TTSCE) method the 

laboratory utilizes for screening process has previously received validation for its 

sensitivity to accurately detect PFO in the general healthy population (Elliott et al., 

2013). 

To screen for a presence of a PFO, the laboratory utilized TTSCE, and the 

procedure is thoroughly described by Lovering & Goodman (Lovering & Goodman, 

2012). Along with the ultrasound technician, a researcher of the laboratory injects an 

agitated mixture of saline solution and air into a peripheral antecubital vein via an IV 

catheter. The suspension saline-air microbubble allows for excellent right-sided contrast 

in the ultrasound image.   

In the absence of a PFO, there would be no immediate presence of the saline-air 

microbubble mixture crossing over from the right atrium into the left atrium. Thus, the 

criterion to identify a PFO is the appearance of 1 or more microbubble in the left heart 

in any frame during the subsequent 3 cardiac cycles (Freeman & Woods, 2008; Woods 

et al., 2010; Marriott et al., 2013; Elliott et al., 2013). This procedure is performed in 

two different ways—during normal breathing and immediately after the release of a 
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Valsalva maneuver, which elevates right atrial pressure to create a physiological setting 

optimal for the detection of a right-to-left shunt, such as a PFO.  

Pulmonary Function Test and Lung Diffusion Capacity 

After obtaining the subject’s height and weight (Ohaus Corporation, ES200L, 

Pinebrook, NJ), pulmonary function test, or PFT (Ultima PFX, MedGraphics, St. Paul, 

MN) was administered. PFTs were utilized to confirm normal lung function and screen 

for any signs of lung disease in our potential subjects.  

PFTs measure for: forced vital capacity (FVC), forced expiratory volume in 1 

second (FEV1), mid-expiratory flow rate (FEV25-75), and slow vital capacity (SVC). 

Measurements are obtained using a spirometry system (Ultima PFX, MedGraphics, St. 

Paul, MN), and according to the standards established by the American Thoracic 

Society/European Respiratory Society (Macintyre et al., 2015). Measures such as total 

lung capacity (TLC), functional residual capacity (FRC), and residual volume (RV), can 

be obtained using whole-body plethysmography (Wagner et al., 2005). Lastly, to 

measure lung diffusion capacity for carbon monoxide (DLCO), the single-breath, breath-

hold method (Knudson et al., 1987), along with the method for timing and alveolar 

sample collection (MedGraphics Ultima PFX, Breeze v.6.3.006) were utilized. 

Respiratory Measurements 

In this study, we collected respiratory measures at 200 Hz using an analog-to-

digital converter (Powerlab/16SP ML 880; ADInstruments, Colorado Springs, CO), and 

collected ventilatory and cardiovascular measures using commercially available 

software (LabChart V7.1, ADInstruments, Colorado Springs, CO). Subjects were 
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instrumented to breathe through an apparatus consisting of a mouthpiece, 

bacteriological filter, nose clip, and a two-way non-rebreathing valve (Hans Rudolph, 

Shawnee, KS), and this apparatus accounted for airflow resistance of 0.80 and 0.73 cm 

H2O· l-1·sec-1 at flow rates of 1.5 and 3.0 l/sec, respectively. End-tidal gases (O2 and 

CO2) were analyzed using a system (ML206; ADInstruments, Colorado Springs, CO) 

that sample end tidal gases using respired gas pressures. Lastly, the combination of a 

pneumotachograph (HR 800L, Hans Rudolph, Shawnee, KS) and a differential pressure 

amplifier (ML141, ADInstruments, Colorado Springs, CO) was utilized to measure the 

respiratory flow near the mouth of the subject. 

End-Tiding Forcing 

A dynamic end-tidal forcing system (DEF) designed by Foster et al., which has 

been used previously to control end-tidal gases during physiological stressors (Querido 

et al., 2013; Foster et al., 2009; Foster et al., 2014), was utilized in this study to control 

and estimate arterial blood gases in place of an arterial line. The DEF system has shown 

its ability to change PETO2 and PETCO2 and maintain desired end-tidal values (Figure 4, 

Foster et al., 2014).  

The DEF system utilized gas solenoid valves for O2, CO2, and N2, which serve 

to regulate the amount of each gas being delivered to the inspiratory reservoir through a 

mixing and humidification chamber. A software specifically designed to measure 

respiratory parameters (Labview 13.0, National Instruments, Austin TX) was utilized 

for determining PETO2, PETCO2, tidal volume (Vt), breathing frequency (f), and minute 

ventilation (VE) for each expired breath. Using this information from the subject’s 

expired breath, the DEF system adjusted the inspirate to clamp end-tidal O2 and CO2 at 
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desired levels.  End-tidal steady state was defined as the time point when PETO2 and 

PETCO2 values remained within 1 mmHg of the desired target for 3 consecutive breaths.  

Poikilocapnic Hypoxia (PH) 

Once baseline measures were obtained, the FIO2 was adjusted, such that PETO2 

was clamped at 45 mm Hg. After steady-state PETO2 was attained, subjects remained in 

this hypoxic condition for 20 minutes. Time points of interest were baseline and the 

time at which VE was greatest in the last 5 minutes of hypoxic exposure. 

Isocapnic Hypoxia (IH) 

After establishing and determining baseline PETO2 and PETCO2 values, the FIO2 

and FICO2 were adjusted, such that PETO2 and PETCO2 were clamped at 45 mm Hg 

and resting values, respectively. Subjects remained in the hypoxic condition for 20 

minutes after steady state in end-tidal gases was reached. Time points of interest were: 

baseline, the time at which VE was greatest after first 5 minutes of hypoxic exposure, 

and the time at which VE was the smallest in the last 5 minutes of hypoxic exposure. 

Calculations & Statistical Analyses 

In this study, we utilized the method of calculating AHVR and HVD previously 

used and outlined by Duffin (Duffin et al., 2007). In both PH and IH trials, AHVR 

values were calculated. To calculate for AHVR, we used: the one-minute average of 

baseline VE before hypoxic exposure and the one-minute average around the peak VE 

recorded in the first (IH) and last (PH) 5 minutes of hypoxic exposure, along with 

peripheral oxygen saturation values at those time points. Using these two points in the 
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subject’s ventilatory response, AHVR was calculated as the difference in VE of baseline 

and peak, divided by the difference in SpO2 of baseline and peak.  

 HVD was only calculated for the IH trial. To calculate for HVD, included 

another time point of interest: the time at which VE was smallest during the last 5 

minutes of exposure to isocapnic hypoxia. Therefore, in addition to the one-minute 

average values for baseline and peak VE used in the calculation of AHVR, we were 

concerned with the one-minute average VE around the time at which VE was smallest 

during the last 5 minutes of exposure to isocapnic hypoxia. Using those three time 

points, HVD was reported in terms of percent decline, using the equation: % HVD = 

100* (VE Peak – VE Final) / (VE Peak – VE Baseline). For all other variables, a two-

way mixed ANOVA (PFO x time point) with α = .05 was utilized. 

Data were analyzed using GraphPad Prism software (v 5.0b). Overall and group 

descriptive statistics (mean, standard deviation, and standard error of the mean) were 

calculated for all test variables. To determine significance between PFO+ and PFO− 

subjects, data were analyzed using a two-way mixed ANOVA with α = .05.  
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Results 

Anthropometrics and Lung Function 

 Anthropometric, pulmonary function, and DLCO data for PFO+ and PFO- 

subjects are presented in Table 1. There were no significant differences between the 

PFO+ and PFO- (p > .05). However, we observed differences in height, weight, FVC, 

FEV1, and DLCO between male and female subjects (Table 1). 

 

Cardiopulmonary measures 

 There were no differences in VE, Vt, RR, or PETO2 between PFO+ and PFO- 

subjects during both poikilocapnic and isocapnic hypoxia trials (p > .05, Table 2). 

Similarly, there was no effect of PFO on SpO2 and HR during either of the trials (p 

> .05, Table 2).  

 

Hypoxic Ventilatory Response 

Poikilocapnic Hypoxic 

 There was no effect of PFO on the AHVR during the PH trial (p >.05, Figure 5). 

There was no significant difference in AHVR (mean ± SD) between PFO+ (0.08 ± 0.15) 

and PFO- (0.10 ± 0.21), p >.05 unpaired t-test.  

 

Isocapnic Hypoxia 

 There was no effect of PFO on the Acute Hypoxic Ventilatory Response during 

the IH trial (p >.05, Figure 6). There was no significant difference in AHVR (mean ± 

SD) between PFO+ (0.85 ± 0.39) and PFO- (0.84 ± 0.41), p >.05 unpaired t-test. 
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Additionally, there was no effect of PFO on the Hypoxic Ventilatory Decline (HVD) 

during the IH trial between PFO+ (0.62 ± 0.22) and PFO- (0.68 ± 0.23) (p >.05, Figure 

7) .  

 

The Effect of Biological Sex on AHVR and HVD 

 We observed significant differences in Vt during the IH trial, along with Vt and 

VE, SpO2 during the PH trial. However, there were no significant differences in the ∆VE 

∆SpO2 between male and female subjects, and thus there was no effect of biological sex 

on AHVR and HVD to both PH and IH (p >.05, Figures 8 a,b and Figure 9). 
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Discussion 

 In this study, we observed no significant differences in acute hypoxic ventilatory 

response (AVHR) and hypoxic ventilatory decline (HVD) between PFO+ and PFO- 

subjects. Thus, we suggest the differences in ventilatory acclimatization with chronic 

exposure to high altitude are likely not due to baseline differences in hypoxic 

chemosensitivity.  

Presence of a PFO and the hypoxic ventilatory responses 

Under normal conditions at sea-level, PaO2 is 100 mmHg. As represented by the 

oxy-hemoglobin dissociation curve, peripheral chemoreceptor firing rate does not 

significantly increase until PaO2 drops below ~60 mmHg (Prabhakar & Semenza, 

2015). When PaO2 drops below 60 mmHg, small changes in PaO2 will cause drastic 

changes in SaO2. Thus, during the two hypoxia trials, PETO2 value was clamped at 45 

mmHg to increase the likelihood that significant differences in VE would occur if they 

were to exist. 

The poikilocapnic hypoxia (PH) trial is a theoretical representation of high 

altitude. During the PH trial, PETO2 was kept at 45 mmHg, and PETCO2 was not 

controlled, meaning that the subjects would expire as much CO2 as would result from 

simultaneous stimulation of the peripheral chemoreceptor and inhibition of the centeral 

chemoceptor. By decreasing the input from the central chemoreceptors, which is driven 

by increased PaCO2, the PH trial most closely stimulates acute high altitude conditions. 

This is evident in the results, as AHVR for both PFO+ and PFO- groups were 

significantly lower during the PH trial than the IH trial (PFO+: 0.08 ± 0.15 L min-1 
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SpO2-1, PFO-: 0.10 ± 0.21 L min-1 SpO2-1). The findings, which suggest that there are 

no differences in AHVR between PFO+ and PFO- during poikilocapnic hypoxia, extend 

the day 1 findings of AltitudeOmics study (Elliott et al. 2015), which suggested that 

there are no differences in HVR upon initial exposure to 5260 m. This extension and 

confirmation of the findings of the AltitudeOmics study is vital since it was possible 

that the lack of differences seen in that study was caused by uneven numbers of females 

in each group. By studying AHVR during PH conditions with equal representation of 

males and females in each of the groups, the current study aimed to better explore the 

effect of PFO on HVR during acute PH.  

During the isocapnic hypoxia (IH) trial, increase in ventilation is regulated by 

input from both the peripheral and central chemoreceptors. While reducing PETO2 value 

to 45 mmHg to increase input from peripheral chemoreceptors, PETCO2 value was also 

maintained at the subjects’ resting values so that input was help constant. By 

maintaining the input from the central chemoreceptors, the IH trial aimed to create a 

unique condition where only the peripheral chemoreceptors are activated—thus, in this 

condition the contribution of the peripheral chemoreceptor is isolated from the central 

chemoreceptor.  For the IH trial, we expected to see two distinct phases in the subjects’ 

ventilatory profile: the first phase (0-5 min) of immediate increase in ventilation, 

referred to as AHVR; followed by a second phase (5-20 min) of slow decline in 

ventilation (Duffin, 2007), referred to as HVD. 

We observed no significant differences in AHVR during the IH trial between the 

PFO+ and PFO- subjects. The AHVR observed in both groups (PFO+: 0.85 ± 0.39 L 

min-1 SpO2-1, PFO–: 0.84 ± 0.41 L min-1 SpO2-1) were similar to previous research of 
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similar design (Kolb et al., 2004), leading us to believe that there is no difference in 

baseline peripheral chemoreceptor sensitivity between PFO+ and PFO- subjects. 

Similarly, there were no differences in HVD during the IH trial between the two groups 

(PFO+: 62 ± 22 % decline, PFO-: 68 ± 23 % decline). 

 According to the findings of this study, it is likely the ventilatory profile to 

hypoxia could be redrawn for those with a PFO, where PFO- subjects represent the 

normal ventilatory profile to high altitude exposure. While PFO+ subjects appear to 

have a normal AHVR and HVD, as the ventilatory acclimatization process unfolds, 

their ventilation does not increase as much when compared to PFO- subjects. Based on 

the following findings, the differences in ventilatory acclimatization with chronic 

exposure to high altitude are likely not due to baseline differences in hypoxic 

chemosensitivity, but rather they are likely due to differences in the central 

chemoreceptor sensitivity.  

Clinical Relevance of PFO and Chemosensitivity to O2  

The goal of research in applied physiology is to add to the growing knowledge 

of the human body and how it could benefit human lives. Thus, it is important to 

conclude by discussing the clinical relevance of PFOs and altered chemosensitivity to 

O2. There have been observations regarding high prevalence of PFO in stroke patients 

(Bogousslavsky, et al. 1996). A PFO can allow for blood to bypass the pulmonary 

particulate filter, which could allow thromboemboli to enter arterial circulation, 

potentially leading to stroke. Additionally, a PFO could lead to impaired respiratory 

cooling system, as previous studies have reported PFO+ individuals to have ~0.4° 
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higher core temperature (Davis et al., 2015) but a blunted ventilatory response to 

passive heating (Davis et al., 2017 in review) when compared to PFO- individuals. 

These factors could potentially be linked with impaired tolerance for heat stress. 

Other studies have shown a possible relationship between PFO and increased 

risks for acute mountain sickness (AMS) (Elliott et al., 2014), and others have 

demonstrated a relationship between PFO  and high altitude pulmonary edema (HAPE), 

reporting a PFO frequency 4 times greater in HAPE-susceptible population due to 

severe hypoxemia and exaggerated pulmonary pressure (Allemann et al. 2006). Chronic 

hypoxia will lead to decreased PAO2, thus pulmonary vasoconstriction, which leads to 

exaggerated pulmonary arterial pressure, further increasing the potential for right to left 

shunt and worsening hypoxemia. This vicious cycle of hypoxemia could be the 

mechanism behind the more severe hypoxemia that PFO+ subjects experienced 

compared to PFO- subjects, ultimately leading to AMS and HAPE (Figure 10).  

There also exists potential association between blunted chemosensitivity to 

hypoxia and increased risks for sudden infant death syndrome (SIDS) (Kinney et al., 

2009). Thus, if there is a relationship between PFO and blunted chemosensitivity, a 

PFO could be associated with higher risks for SIDS. This is one of several possible 

areas for future research regarding the PFO. 

Limitations 

There are several limitations to this study. First, the study utilized end tidal 

gases as an estimate of arterial blood gas levels of O2 and CO2. Similarly, in calculating 

the AHVR values, the study utilized a finger pulse oximeter to measure for arterial 
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blood O2 saturation. Thus, the study used SpO2, an effective estimate of SaO2, to 

estimate the HVR. Additionally, although the study recruited similar number of males 

and females, it failed to completely account for all the different phases of the menstrual 

cycle. If not limited by financial resources, the current study could have better 

controlled for potential biological sex differences by further categorizing female 

subjects into their respective current menstrual cycle phases, since there is evidence 

linking high female ovarian hormone levels and increased ventilation (MacNutt et al., 

2012).  

Lastly, the study took place over two total visits to the cardiopulmonary and 

respiratory physiology lab. Because most of the subject population had not previously 

participated in a study of this nature, some subjects expressed mild apprehension when 

breathing on the end-tidal breathing response system, which would contribute to some 

variability in the baseline resting values. Since it is well established that increased 

sympathetic response can lead to hyperventilation, the mild apprehension could have 

contributed to this variability by resulting in higher than normal ventilation values. To 

eliminate many of the external and mental factors that could lead to variation in 

ventilation, one possible direction for future study would be to measure ventilatory 

responses in subjects who are in non-REM, slow-wave sleep, when ventilation is solely 

driven by basal metabolic rate. 
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Summary of Findings 

• Despite differences in ventilatory acclimatization to high altitude, there exists no 

difference in acute hypoxic ventilatory response (AHVR) between PFO+ and 

PFO- subjects. 

• PFO+ and PFO- showed no significant differences in hypoxic ventilatory 

decline (HVD). 

• There were no differences in AHVR and HVD between males and females. 

• Differences in ventilatory acclimatization with chronic exposure to high altitude 

are likely not due to baseline differences in hypoxic chemosensitivity. 
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Figure 1. Overview of the Cardiopulmonary Physiology: Pathway of blood 
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Figure 2. Changes in VE upon acute & prolonged exposure to hypoxia; AHVR  HVD 

 ventilatory acclimatization  Hypoxic ventilatory depression (Ainslie et al. 2013) 
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Figure 3. Observation of blunted HVR in those with PFO, when comparing day 1 HVR 

to day 16 HVR (Elliott et al., 2015) 
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Figure 4. Example VE Trace of a Subject (PFO-); Time points of interest (VE Baseline, 

VE Peak, VE Decline). 
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Figure 5. Effect of PFO on AHVR to Poikilocapnic Hypoxia. There was no significant 

difference in AHVR (mean ± SD) between PFO+ (0.08 ± 0.15) and PFO- (0.10 ± 0.21), 

p >.05 unpaired t-test.  
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Figure 6. Effect of PFO on AHVR to Isocapnic Hypoxia. There was no significant 

difference in AHVR (mean ± SD) between PFO+ (0.85 ± 0.39) and PFO- (0.84 ± 0.41), 

p >.05 unpaired t-test.  
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Figure 7. Effect of PFO on HVD during Isocapnic Hypoxia. There was no significant 

difference in HVD (mean± SD) between PFO+ (0.62 ± 0.22) and PFO- (0.68 ± 0.23), p 

>.05 unpaired t-test. 
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Figure 8. Effect of Biological Sex on AHVR to PH (8.a) and IH (8.b). There were no 

significant differences in AHVR to PH (mean± SD) between males (0.15 ± 0.21) and 

females (0.04 ± 0.14) nor to IH (mean± SD) between males (0.93 ± 0.45) and females 

(0.76 ± 0.35), p >.05 unpaired t-test.  
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Figure 9. Effect of Biological Sex on HVD. There was no significant difference in 

HVD (mean± SD) to IH between males (0.68 ± 0.23) and females (0.62 ± 0.23), p >.05 

unpaired t-test. 
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Figure 10. Mechanism behind PFO’s association to worsening hypoxemia in high 

altitude, leading to increased susceptibility to AMS and HAPE 
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Table 1. Anthro2ometric and 2ulmonary function data 
PFO+ PFO- Overall 

Females Males Overall Females Males Overall Females Males Overall 
n = 8 n=7 n = 15 n=9 n=7 n = 16 n = 17 n = 14 n = 31 

Age (years) 25 ± 10 28 ± 6 24 ± 5 21 ± 2 28 ± 9 27±9 23±7 27±9 25 ± 8 

Height (cm) 165 ± 6 180 ± 9 170 ± 12 162 ± 7 180 ± 6 172 ± 10 163± 7 172 ± 10 171 ± 11 

Weight (kg) 59 ± 5 82 ± 10 70 ± 15 59 ± 8 82 ± 15 71 ± 16 59 ± 7 71 ± 16 70 ± 15 

BSA (m2
) 1.6 ± 0.1 2.0 ± 0.2 1.8 ± 0.2 1.6 ± 0.1 2.0 ± 0.2 1.8 ± 0.2 1.6 ± 0.1 1.8 ± 0.2 1.8 ± 0.2 

FVC (L) 3.9 ± 0.5 5.6 ± 1.1 4.5 ± 1.3 3.6 ± 0.4 5.4 ± 0.5 4.6 ± 0.9 3.8 ± 0.5 5.5 ± 0.8 4.7 ± 1.1 

FEV1 (L) 3.3 ± 0.4 4.7 ± 0.4 4.0 ± 0.8 3.3 ± 0.3 4.6 ± 0.3 4.0 ± 0.7 3.3 ± 0.3 4.7 ± 0.4 4.0 ± 0.8 

DLco (ml•min·1•Torr·1) 32.1 ± 4.3 45.1 ± 7.9 37.3± 11.5 27.0 ± 4.4 39.5 ± 6.3 36.1 ± 6.5 29.5 ± 5.0 42.1 ± 7.4 36.6 ± 8.9 
DLcoN A(ml•min· 
1•Torr·1•L·1) 6.2 ± 0.5 6.1 ± 0.4 6.0 ± 0.5 6.0 ± 0.6 5.7 ± 0.8 5.9 ± 0.7 6.1±0.5 5.9 ± 0.6 6.0 ± 0.6 

Values are mean ± standard deviation. No significant differences between groups 
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Table 2. Ventilatory and metabolic measures during isocapnic and poikilocapnic hypoxia 

Isocapnic Hypoxia Poikilocapnic Hypoxia 

Rest Max VE Rest Max VE 

PFO- PFO+ PFO- PFO+ PFO- PFO+ PFO- PFO+ 

VE (L•min-1
) 12.7 ± 1.2 11.6 ± 1.2 35.9 ± 2.9 34.4 ± 3.0 12.5 ± 0.9 11.9 ± 1.1 23.3 ± 2.6 22.4 ± 2.4 

V, (L) 1.2 ±0.1 1.0 ± 0.1 2.2 ±0.2 2.1 ± 0.2 1.1 ± 0.1 1.0 ± 0.1 1.9 ± 0.2 1.6 ± 0.2 

RR (breaths• min-1
) 11.8±1.1 12.5 ± 0.7 17.7 ± 1.7 17.4 ± 1.1 12.4 ± 1.1 12.8 ± 0.8 13.4 ± 1.2 15.0 ± I.I 

PET02 (mmHg) 99.3 ± 1.2 99.4 ± 1.2 43.3 ± 1.1 44.1 ± 1.1 102 ± 1.5 101.9 ± 1.2 61.8 ± 10.6 51.5 ± 2 
PETC02 (mmHg) 37.8 ± 0.9 38.2 ± 0.7 40.6 ± 0.7 39.4 ± 1.0 36.0 ± 1.4 38.3 ± 0.8 29.7 ± 2.3 28.5 ± 2.6 

HR (bpm) 62.7 ± 3.3 60.7 ± 2.1 80.4 ± 3.9 82.9 ± 2.4 60.2 ± 3.3 67.4 ± 4.5 73.0 ± 4.2 76.9 ± 3.1 

Sp02 (%) 97.3 ± 0.4 97.4±0.4 78_6 ± 1.0 78.9 ± 1.2 97_8 ± 0.3 97_3 ± 0.3 79_6 ± 1.4 78_9 ± 1.2 -
Values are mean± standard deviation. No significant differences between groups. 
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