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Scanning Tunneling Microscopy (STM) is used to image, manipulate, and 

spectroscopically characterize individual atoms and molecules to further develop an 

understanding of materials that have application in the semiconductor industry.  The 

fabrication of sharp and smooth metallic tips plays an essential role in STM as the 

radius of curvature of tips used in STM directly influences resolution. The smaller the 

radius of curvature, the finer the resolution. We report a novel and reproducible 

fabrication procedure of silver STM tips. Silver wire is electrochemically etched using 

an environmentally benign electrolyte solution of volume ratio 1:8 glacial acetic acid: 

deionized water to form a tip radius of ~100 nm. Silver is used for its plasmonic 

enhancement of STM-luminescence and tip-enhanced Raman spectroscopy signals. The 

elemental purity and small radius of curvature (~100nm) of silver tips permits 

atomically resolved STM imaging, as well as photon emission and ultrafast electron 

emission measurements which will allow for better nano-scale understanding of a 

variety semiconductor materials. 
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Introduction   

My thesis primarily consists of the research project I conducted with the Nazin 

group on the fabrication of Scanning Tunneling Microscopy (STM) tips. The fabrication 

of sharp and smooth metallic tips plays an essential role in STM as the radius of 

curvature of tips used in STM directly influences resolution. The smaller the radius of 

curvature, the finer the resolution. In this endeavor, we report a reproducible fabrication 

method using an environmentally benign novel electrolytic solution. Tips were then 

characterized with scanning electron microscopy and novel elemental composition 

studies on the finished STM. Currently, we are developing an optics system to 

demonstrate the plasmonic enhancement of our STM tips.  

This Thesis will cover the underlying principles and history of STM, our method 

of STM tip fabrication, characterization and analysis of finished STM tips, current and 

future work on this tip project, and an example of the application of these STM tips in 

the study of materials, specifically [8]cycloparaphenylene ([8]CPP). 

 Personal Background in Research 

During my first year at the University of the Oregon, in February 2014, I started 

working the with Nazin group. The Nazin group performs atomically-resolved 

spectroscopic studies in the physical and chemical properties of molecular and 

nanoscale materials. In my work with the Nazin group I received funding from the 

Center of Sustainable Materials Chemistry to conduct an independent project on the 

fabrication of scanning and tunneling microscope probes in the summers of 2014 and 

2015. During these summers, I learned how to use instrumentation such as scanning 
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electron microscopes, and spectroscopic techniques like energy dispersive x-ray 

spectroscopy, giving me the expertise to develop and conduct my own experiments.  

Building on these experiences I continued to work in the Nazin group 

throughout the school year, and in the fall of 2016 I received a $1000 dollar mini-grant 

from the University Research Opportunity Program to continue my research and fund 

the development of optical components necessary to enable the STM-based optical 

spectroscopic studies.   
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In conducting research throughout the summers and academic years, I have 

learned that research is an intensive problem-solving process that relies greatly on 

collaboration and creativity. Working with a team towards a common goal was 

meaningful to me, as our group created a supportive space in which unfamiliar 

problems could be solved in innovative ways. I found that the extended time and 

collaborative effort allowed for various approaches and methods to be tested. Even 

though this often meant that the first approach was wrong, the process of problem 

solving was rewarding. I am motived by the possibility of developing novel techniques 

and look forward to applying the skills developed in the problem-solving process in my 

future academic career in medicine or research.   

 

Figure 1 Nazin group photo. From left to right: Back row: Dmitry Kislitsyn, William Crowley 

(undergrad), Ben Taber, Matt Robertson (undergrad), Jon Mills, George Nazin Front row: Jason Hackley, 

Josiah Makinster (undergrad), Christian Gervasi, Nima Dinyari*, Moto Honda (*Collaborator)  
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Figure 2 Undergraduate symposium poster session  
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Principles, History, and Applications of Scanning Tunneling 

Microscope 

An explanation of general theory and principles of chemistry and physics are 

necessary to describe the complex techniques and underlying principles used in 

scanning tunneling microscopy. This will involve an introduction to the technique of 

spectroscopy, followed by general concepts of quantum mechanics. These concepts are 

meant to provide readers with a general context and beginning point of inquiry to the 

complex principles applied in scanning tunneling microscopy. A glossary on page 49 

may be helpful in clarifying these concepts.  

Fundamental Principles of Standard Spectroscopy  

Spectroscopy is the study of the interaction of electromagnetic radiation and 

matter. Electromagnetic radiation consists oscillations in electric and magnetic fields 

that travel through space. Common examples of electromagnetic radiation are visible 

light, x rays, and radio waves. Electromagnetic radiation is characterized by wavelength 

and frequency. The range of wavelengths of electromagnetic radiation is called the 

electromagnetic spectrum.  (Silberberg) 

In spectroscopic analysis, the spectrum of electromagnetic radiation emitted or 

absorbed by the material of interest is recorded. The emission or absorption spectrum 

observed contains only wavelengths, which are specific to a given material. Each 

element has a unique spectrum like a fingerprint. Therefore, the recorded spectrum can 

then be used to identify and determine the properties of the material under investigation.  
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STM can 

also be 

used for 

spectrosc

opy this 

technique 

is referred 

to as Scanning tunneling spectroscopy (STS).  While most spectroscopy involves light 

and matter, STS is typically done in the absence of photons. Instead, electrons, or more 

specifically changes in conductance, are used to probe electronic properties of the 

material in question. Overall, STS is an extension of STM and provides localized 

information about the density of elections in a sample as a function of energy. Electron 

density data provides information on how electrons are arranged within a given 

material.  

Introduction to Quantum Mechanics  

Quantum mechanics is a fundamental theory describing the properties of matter 

at small scales (nanometer scale), when classical physics break down. See figure 4 for 

relative sizes of common objects to nanoscale objects. Key principles introduced in 

quantum mechanics which differ from classical physics are concepts of wave-particle 

duality, discrete energy levels, and probabilistic interpretation of phenomenon. The 

explanation of these unintuitive concepts serve to provide an entry point to 

understanding the key principles in quantum mechanics. 

Figure 3 Electromagnetic spectrum classified by wavelength and frequency. Adapted 

from Silerberg Chemistry 
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The phenomenon of 

discrete energy levels is analogous 

to a car only being able to drive at 

certain speeds. For example, this 

would mean when starting to 

accelerate your car, you would be 

at rest (0 mph), then 

instantaneously jump to moving at 

20 mph. Classically this would be 

quite strange, but in the quantum 

world, discrete quantities of 

energy are the rule. (Silberberg) 

At the quantum level, 

particles energies are quantized. Accordingly, only certain discrete values of energy can 

exist. For example, if a molecule is vibrating and the energy of the system increases, the 

molecule will only vibrate at specific energies. That is the vibration will not 

continuously increase in frequency, but rather jump from discrete frequency to discrete 

frequency as energy is increased continuously. This relationship is described by 

equation 1 below. Where n is a non-zero integer, h is Planck’s constant, ν is frequency, 

and E is Energy.  

(1) 𝐸𝐸 = 𝑛𝑛ℎν  n = 1, 2, 3, …  

Under the quantization of energy assumption, it was reasoned that if a vibrating 

atom’s energy changed, for example from 2hv to hv, the atoms energy would have 

Figure 4 How small is small? The relative size of common 

objects and electronic components. Photos and diagrams of 

electronic components (right side) are courtesy of Intel and 

IBM. 
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decreased by hv. The energy lost would be released as discrete bit (or quanta) of energy. 

From this theory, it was assumed that light energy consists of quanta. Light quanta are 

now referred to as photons. Photons are particles of electromagnetic energy, with 

energy proportional to frequency. This relationship, which highlights the quantized 

energy component of light is represented in equation 2. E is energy, h is Plank’s 

constant, and v is frequency associated with the wave.  

(2) 𝐸𝐸 = ℎ𝑣𝑣 

Einstein then used the idea of light quanta to describe the phenomenon known as 

the photoelectric effect. The photoelectric effect involves the ejection of electrons from 

the surface of a metal or conducting material when excited by light. Electrons were only 

ejected when light exceed a threshold energy value characteristic of the metal. No 

amount of lower-energy light could cause the ejection of electrons. To explain the 

dependence on energy which is proportional to frequency. It was assumed the light was 

acting as particle. Therefore, for single electron to be ejected a single photon of a high 

enough energy would have to be absorbed into the metal. (Silberberg) 

Wave-particle duality is the concept that elementary particles can be partly or 

entirely described in terms of waves in addition to as a particle. This meant that the 

wave and particle models of light were regarded as complementary views of the same 

entity. With light this helped explain light’s unique properties of refraction and 

diffusion.   

Wave-particle duality was characterized in the double slit experiment. In this 

experiment, a point source of light illuminated two narrow adjacent slits with the image 

produced by the light through the slits observed on a second screen see figure 5 for 
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diagram of this experiment. The pattern observed on the screen is called an inference 

pattern. The dark regions of the inference pattern are a result of destructive inference of 

light waves and the light regions are a result constructive inference. This wave pattern 

was experimental evidence that light can act as wave in addition to acting as particle.  

 

The concept of 

wave-particle duality was 

then expanded from just 

light to particles of matter 

by physicist de Broglie. 

The wave-particle duality 

relationship of particles is 

described in equation 3, 

which is known as the de 

Broglie relation. With λ as 

wavelength, as mass m, and v speed with associated wavelength. 

(3) λ =
h
𝑚𝑚𝑣𝑣

 

This means that matter has wave properties. For example, electrons have observable 

wave properties. The reason why we do not observe the wave properties of matter on a 

daily basis, as the wavelength of ordinarily encountered objects are too small to be 

detected. For example, using equation 3, a baseball moving at about 60 miles an hour 

would have a wavelength of about 10-34 m. (Ebbing) 

Figure 5 Double Slit Experiment Schematic. Dark bands represent 

points of negative interference, light bands represent points of positive 

interference. Adapted from Silberberg Chemistry  

 

Laser light Interference 
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In scanning tunneling microscopy, electrons, a particle, is used as a source of 

radiative energy. It is possible to use particles as a source of radiation energy due to 

their de Broglie wavelength. The interaction that takes place between a sample of 

material of interest and a focused beam of tunneling electrons yields fundamental 

electronic and chemical information of the sample. Primarily, this is useful in the 

atomically resolved relationship between structure and function.  

The mathematical description of the wave properties of submicroscopic 

particles, such as electrons is referred to as quantum mechanics.  Quantum mechanics 

allows scientists to make statistical statements about a system. For example, the 

probability of finding an electron at a certain point in an atom can be found. However, 

the definite position at a given time cannot be found with complete certainty as quantum 

mechanics provides probabilistic statements about a system. 

The wave function Ψ is a mathematical expression which provides information 

about a particle at a given energy level. The square of wavefunction Ψ* Ψ, gives the 

probability of finding a particle, such as an electron, in a given region of space.  

Quantum tunneling is a phenomenon in which an electron can tunnel through a 

potential barrier without the addition of energy to overcome the barrier. This is possible 

from a probabilistic description. Consider a hydrogen atom, proton A with an electron 

about proton A and a neighboring a second hydrogen atom, proton B. In classical terms, 

it would be impossible for the electron to escape the attractive region about proton A 

and move to the region of proton B without adding energy to the system. However, it 

quantum mechanics thought the probability of this happening is low there is a non-zero 

probability that this will occur. Therefore, the electron may find itself within the region 
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of B without the addition of energy. If this movement occurs the electron is said to have 

tunneled from on atom to another. More on quantum tunneling will be described in 

relation to STM in the “Mechanics of Scanning Tunneling Microscopy” section 

beginning on page 20. 

History of Scanning Tunneling Microscopy  

The scanning tunneling 

microscope was developed by 

Gerd Binning and Heinrich Rohrer 

in 1981. This microscope allowed 

researchers to see at the atomic 

scale. Gerd Binning and Heinrich 

Rohrer, scientists at IBM’s Zurich 

research lab originally planned on 

developing a method to perform 

spectroscopic measurements 

locally on an area of 10 nm in diameter. In this endeavor, these scientists realized that 

an appropriate tool to study material at this highly localized level was lacking. With 

knowledge of vacuum tunneling with a movable tip they began work on a new 

microscope that would deliver highly local spectroscopic and topographic images.  

On August 10, 1982, IBM was awarded US patent 4,343,993 for the invention 

of STM. Later, in 1986, inventors Gerd Binning and Heinrich Rohrer were awarded half 

the Noble Prize in physics along with Ernst Ruska (inventor of the electron 

Figure 6 Nobel laureates Gerd Binning and Heinrich Rohrer 

(left to right) of IBM research with STM. Photo courtesy of 

IBM 
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microscope). The development of the STM has helped shape and fuel studies in 

nanotechnology.  

The historical context in which the STM was invented is commonly reported 

with a narrative beginning with a nanotechnology a talk by Richard Feynman to the 

American Physical Society on December 29, 1959, ‘Plenty of room at the Bottom’. In 

which Feynman outlined how nano-scale science would become a rapidly growing 

field. He also emphasized that developing a microscope to image and characterize 

atoms would be the first step in developing this new field as well as lead to furthering 

understanding in other scientific fields. The development of the STM is widely viewed 

as this first step in the developing nanotechnology field outlined by Feynman. STM 

stands out from other forms of microscopy like scanning electron microscopy for its 

ability unique ability to manipulate and rearrange particles at the nanoscale. In a sense, 

it represented not just a new imaging technique but also a new prototype of atomic and 

molecular assembly. 

Twenty years after Feynman’s talk the development of nanotechnologies has 

progress rapidly. Though this progress has occurred in what has been considered to as a 

culture often referred to as ‘postacademic’. This term highlights the increased emphasis 

on aspects of commercialization and application to industry. Companies like Intel and 

IBM have driven the research and development this field. In particular, the development 

of STM in the corporate IBM setting has been described as an epistemological marker 

of the shift that is part of the postacademic science and nanotechnology policies. 

Nanotechnology and the instruments that make innovations in this field possible 

are developing in a more integrated academic/commercial environment. STM and other 
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off-shoot types of probe microscopes (SPM), like atomic force microscopy, were 

developed in a cooperate rather than academic setting. For example, the work perused at 

IBM’s Zurich, Switzerland research lab was essentially academic research done in an 

industrial setting. Neither Gerd Binning or Heinrich Rohrer came from the academic 

community. Because of their lack of ties to the academic community their claims 

related to STM were not immediacy accepted the surface science community at large. 

To gain acceptance in the scientific community there were methodological hurdles to 

overcome. The initial 1981 paper entitled “Tunneling through a controllable vacuum 

gap” which described the first STM study was initially declined for publication.  

In 1983 STM was more generally accepted after a study of the structure of 

Silicon (111) was published. The produced STM atomic scale images provided insight 

to the surface reconstruction of Si (111) in real space. At the time this was an intriguing 

and unknown phenomena in surface science community. Consequently, STM became a 

widely-accepted technique. Another, well known publication involved the image of 

manipulated xenon atoms to spell IBM’s initials. See figure 7 for this image of STM 

manipulated xenon atoms.  

 

  

  

Figure 7 STM manipulated arrangement of xenon atoms to form 

IBM’s initials. Photo courtesy of IBM 
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The issues of disciplinary insulation and ease of use created a multifaceted 

problem for the full commercialization and acceptance of STM. In commercialization, a 

wide consumer base was need to offset development cost and to appeal to a large 

market. To be fully commercialized several key factors are considered; robustness of 

instrument, ease of operation, through-put, versatile of use, and ease of reliable 

interpretation of results.  

STM needed be usable by researchers with limited knowledge of instrumental 

development.  Navigating these issues shaped the commercialization of STM and lead 

to the black boxing of most of the aspects of STM and SPM.  Black boxing is a concept 

which a system or instrument is viewed only in terms of its inputs and outputs without 

understanding the internal workings. The focus on user-friendly aspects of 

instrumentation furthered the shift in nanotechnology from an academic to a 

commercial, results orientated setting.  (Baird) 

 STM developed commercially at an astonishing speed. In 1991, over 30 

companies began manufacturing and marketing STMs and parts with the emergence of 

companies solely dedicated to marketing and selling STM and other SPM instruments. 

Today the field continues to grow some of these companies include: Digital Instrument, 

Park Scientific Instruments, WA Technology, Angstrom Technology, TopoMetrix, 

Nanoscience Instruments, and RHK Technology, to name a few.  (Chen) 

Additionally, the shift to commercialization of nanotechnology was pushed by 

the passing of the U.S. Bayh-Dole act of 1980. This act allowed Universities to patent 

and collect royalties from the results of research which was federally funded. This 

financial incentive pushed universities to patent professors’ research, incubate start-up 
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companies, and from substantial partnerships with the industrial corporations.  Part of 

this more extensive integration of universities and industry pushed universities to adopt 

a more cooperate profit centered style of operation and had led to earlier technology 

transfer. Accordingly, the emphasis on industrial style results in reflected field’s name 

as this field is referred to as nanotechnology rather than nanoscience. (Baird) 

Timeline of the Progression of Microscopy 

Moreover, outside the context of commercialization STM is part of a long 

progression of advancement in microscopy. Beginning in the 14th century the art of 

developing glass to form lens was established. This rudimentary practice helped 

develop spectacles to improve eye sight. Following in the lens gridding tradition, Dutch 

lens makers Hans and Zacharias Jansen made the first microscope like device by 

placing two lenses in a tube. The microscopes produced by Hans and Zacharias Jansen 

in the late 16th century yielded an approximate 9x magnification and were difficult to 

focus.  

In the late 17th century, 1665, Robert Hooke studied objects with his improved 

microscope of approximately 100x magnification. In his studies, he was the first to 

observed cells and microorganisms.  Later, Anton van Leeuwenhoek further improved 

on the Jansen microscope design by including more lenses within the microscope. This 

yielded a magnification of 270x on the micron scale. With this microscope, Van 

Leeuwenhoek made several biological discoveries, making the first observations of 

bacteria, yeast and blood cells.   

In the 18th and 19th century several technical innovations made microscopes 

better and easier to handle. In this time period, microscopy began to gain popularity 
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among scientists. In 1878 Ernst Abbe formulated a mathematical theory correlating the 

resolution possible with an optical microscope and wavelength of light. In the visible 

spectrum, the highest magnification of an optical microscope is 1500x magnification to 

a level of approximately 500 nm.  

In the early 19th century several innovations in improving microscopy were 

made. In 1925, the Nobel prize in chemistry was awarded to Richard Zsigmondy, for 

developing of the ultramicroscope in 1903. The ultramicroscope, which uses light 

scattering rather than light reflection, enabled the study of objects below the wavelength 

of light. In 1932, Frits Zernike developed the phase-contrast microscope allowed the 

study of colorless and transparent biological materials. Frits Zernike was awarded the 

1953 Nobel prize in Physics. Later, in 1938 Ernst Ruska developed the electron 

microscope. Using electrons in microscopy improved resolution greatly and expanded 

the realm of possible inquiry.  

In 1981, Gerd Binning and Heinrich Roher developed STM. Throughout history 

the improvement in the resolution of observation has progressed and lead to the 

broadening of the borders of possible exploration. With each progressive improvement 

to the microscope a new dimension in science is revealed. Improvement in microscopy 

is an important and fundamentally changes the scope in which science can be 

conducted.  

Applications  

The characterization of materials at the atomic and molecular scale has recently 

rapidly progressed and has contributed significantly to developments in fields related to 

electronics. Information at the molecular level has development in the electronic field 
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has been accelerated by miniaturization of semiconductor integrated circuits. (Morita, 

2007). Scanning tunneling microscopy has and continues to contribute to the rapid 

progress of material characterization at the atomic and molecular scale.  

The miniaturization of semiconductors has improved in line with the prediction 

of Gordon Moore, the co-founder of Intel. According to his prediction, known as 

Moore’s Law, “the number of transistors per square inch on integrated circuits will 

double roughly every two years” (The Future of Computing; after Moore's Law." 

Economist 2016).  

The miniaturization of semi-conductors has increased computing speeds and 

reduced the cost of producing microprocessors.  The history of Intel demonstrates 

Moore’s Law, where the cost of transistor dropped from more than one dollar in 1965 to 

one ten-thousandth of one cent in 2005. (The Future of Computing; after Moore's Law." 

Economist 2016) Accordingly to Intel, since the first mainframe computers in 1965 

processing power has increased 3,500 times and power efficiency increased 90,000 

times.  The impact of Moore’s Law is visible in today’s world: 3 billion people carry 

smartphones, each more powerful than a room-sized supercomputer from the 1980s. 

Figure 8 Visual representation of Moore’s Law. The changing size of transistors and density of transistors 

on an integrated circuit. Figure courtesy of intel 
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As renewable energy becomes a more significant issue there has been growing 

interest in understanding how surface morphology influences the efficiency of 

electronic devices. Scientists have utilized scanning tunneling microscopy (STM) 

ability to make atomic resolved measurements to isolate and correlate local surface 

artifacts with electronic characteristics to gain a better understanding of materials 

fundamental electronic properties.        

STM, can image a three-dimensional surface to the atomic scale, as well as 

manipulate and spectroscopically characterize individual surface atoms and molecules. 

The highly-localized measurements provide electronic characteristics of defect sites, 

local density of states, and conductance.   

The increased ability in characterization has application in the development of 

organic light emitting diodes (OLED). OLED are a promising material to reduce the 

amount of energy require for lighting. Author Thejo reports that over a third of the 

world’s electricity is used for lighting. OLED have the potential to reduce energy 

consumption, reports of up to 80% light extraction efficiencies have been reported.2 By 

replacing common inefficient incandescent sources of light with efficient OLED, 

electricity consumption could be greatly reduced. Solid-state lighting devices like 

OLED have the potential cut the electricity used for lighting by half. 

The materials chosen to be used in an OLED have a significant consequence on 

color and energy efficiency. The main requirement for OLED material are high 

luminescence quantum yield, good carrier mobility, and thermal stability. If a material 

has these properties it has the potential to be a good OLED. Luminescence quantum 

yield is a measure of the relative amount of energy emitted to amount of energy 
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absorbed. In an OLED this would be the energy of the photon released in the 

recombination of the excited electron and hole relative to measure of energy lost by an 

excited electron returning to a relaxed state. In an ideal material, the quantum yield 

would be a value of 1 which would represent that every quantity of energy used for 

excitation would spawn equal quantity of energy in the emission.  STM could play an 

essential role in characterize ideal materials for OLED. Other electronic applications 

could involve the development materials used in solar panels.   

 

 

Figure 9 Organic LED lighting. Photo courtesy of Arizona State University 
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Mechanics of Scanning Tunneling Microscopy     

STM is a non-optical microscope based on quantum tunneling which can image 

a three-dimensional surface to the atomic scale, as well as manipulate and 

spectroscopically characterize individual surface atoms and molecules. It is analogous 

to compare STM to Braille reading or the way in which a vinyl record players needle 

obtains information from grooves within the disc. The highly-localized measurements 

possible with STM provide electronic characteristics of defect sites, local density of 

states, and conductance.  

One of the fundamental problems in surface physics is the determination of 

surface structures; STM offers the possibility of direct real-space determination of 

surface structure in three dimensions. (Tersoff, 1985) Gerd Binning and Heinrich 

Rohrer developed the Scanning Tunneling Microscope at IBM Research in Zurich, 

Switzerland. The inventors were awarded half of the Noble Prize in Physics in 1986. 

(Binning and Rohrer 1986) When an atomically sharpened tip is brought near to a 

sample surface, typically ~1 nanometer, and a voltage difference between the tip and the 

sample is applied, a small electric current starts to pass between tip and sample before 

they are in contact. This current, the flow of electric charge, is the result of a 

phenomenon known as the quantum tunneling effect. This current is referred to as 

“tunneling current”.  

Quantum tunneling is a microscopic phenomenon where a particle can penetrate 

and pass through a potential barrier. Often this barrier is at a higher energy than the 

energy of the particle, and according to the laws of classical physics, such motion 

should not be allowed. Nevertheless, quantum mechanically theory is a probabilistic 
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description of phenomenon on the microscopic scales which takes into account dual 

wave-particle properties of matter and discrete energy levels in which energy has 

discrete values. Quantum mechanics unlike classical mechanics, considers the wave-

like aspects of particles, and accordingly can describe objects by means of a probability 

wave. (Razavy, 2003) The quantum mechanical phenomenon of tunneling is manifested 

in a measurable tunneling current induced by a voltage difference.  

A wave probability, also known as a wave function, is a description of the 

probability that a particle will be measured to have a given position. Therefore, when a 

particle is not being measured it takes the form of a wave of probable location, where 

some positions are more likely than others. The uncertainty of position is an intrinsic 

principle of quantum mechanics in which certain quantities such as position, energy, 

and time are unknown except by probabilities. (Silberberg, 2007) 

Quantum tunneling of an electron depends on the probabilistic interpretation in 

quantum mechanics. Tunneling occurs when electron is able to overcome a potential 

barrier without adding energy. This occurs because the electron which has a non-zero 

finite probability of crossing an energy barrier or transition through an energy state.  
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Consider a hydrogen atom, proton A with an electron about proton A and a 

neighboring a second hydrogen atom, proton B. In classical terms, it would be 

impossible for the electron to escape the attractive region about proton A and move to 

the region of proton B without adding energy to the system. However, it quantum 

mechanics thought the probability of this happening is low there is a non-zero 

probability that this will occur. Therefore, the electron may find itself within the region 

of B without the addition of energy. 

 In classical mechanics, this type of transition would be forbidden.  However, 

due to the wave-like properties of the electron. (Güntherodt, 1992) and quantum 

mechanical interpretation, the probability of an electron tunneling is greater than zero, 

Figure 10 Schematic of electron tunneling phenomenon. The green block represents an energy barrier 

like an electric field. In the classic physics, modeled on the left, the electron is repelled as long as the 

energy of the electron is below the energy of the barrier. In quantum physics, modeled on the right the 

wave function encounters the barrier but has a finite non-zero probability (represented by the blue 

portion of the wave function in scene 4) of tunneling through the barrier. This is the basis for electron 

tunneling. 

Phenomenon of Electron Tunneling 

Quantum Physics 

Classical Physics 3 

0 Elec- tr_o_n __ _ I 4 

2 

----E-lec- tron 0 I 5 
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Figure 11 STM tip-surface interaction 

thus there is a finite probability that the electron is located on the other side of the 

barrier. See Figure 11 for a schematic of electron tunneling.  

In STM, the tunneling current 

changes exponentially with increasing 

and decreasing distance between tip 

and sample. Thus, changes in 

separation can be precisely evaluated 

by measuring tunneling current. 

When one scans the tip over the sample surface while maintaining constant tunneling 

current, the tip will depict surface topography. This is the basic concept to develop 

imaging with STM. (Chen, 2008)  

The obtained resolution is high enough to resolve individual atoms when the tip 

being used has an atomically sharp apex with a sharp orbital protruding from the apex. 

Tunneling current varies exponentially with the separation distance. The tunneling 

current (I) is expressed in equation 4.  

(4) 𝐼𝐼 ∝ exp (−2𝑠𝑠�
2𝑚𝑚
ħ2

�〈ϕ〉 −
𝑒𝑒|𝑉𝑉|

2
� 

Where I is tunneling current, s is the distance between tip and sample, m is the 

electron mass, e the electron charge, ħ is Planck's constant, ϕ is the averaged work 

function of the tip and the sample, and V the bias voltage. Under common conditions, in 

which 〈ϕ〉 − 𝑒𝑒|𝑉𝑉|
2

 is 5 eV and s is 1 nm, a change in 0.1 nm of s changes I by one order 

of magnitude.  For this reason, STM can achieve atomic resolution in the vertical 

direction of better than 0.01 nm. STM can also achieve high resolution in the lateral 

STMTip 

Tip trajectory 

Sample 
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Figure 12 Topographic STM image 

of didodecylquaterthiophene. 

Adapted from Adsorption-Induced 

Conformational Isomerization of 

Alkyl Substituted Thiophene 

Oligomers on Au(111) B. Taber et 

al.  

direction of approximately 0.1 nm. Lateral resolution crucially depends on shape and 

sharpness of the tip being used. (Morita, 2007) 

It is worth noting explicitly that STM images of sample surfaces are not 

measured optically but rather by converting the spatial 

change of the tip in the response to tunneling current into a 

topographic image. Resolution at this scale would not be 

possible as these dimensions are much smaller than the 

wavelength of visible light (390-700 nm). See Figure 11 for 

example of STM tip and sample interaction. See Figure 12 

for an example topographic image of 

didodecylquaterthiophene, a semiconductor material, 

produced by STM, from a bird’s eye view with yellow 

representing higher elevation in the vertical direction and 

red representing lower elevation in the vertical direction. 

(Taber et al. 2015) 

A STM is composed of the following main components: an atomically sharped 

tip and sample to be faced to the tip apex, a positioning system to select an area on a 

sample surface to be observed in the range of mm, a current amplifier to measure 

tunneling current and a feedback circuit to maintain constant tunneling current, a 

computer system to generate x-y (lateral) signal to record the tips movement over the 

sample, a vibrational isolation system to prevent disturbances from being transmitted, 

and an environmental control system often this entails an ultrahigh vacuum chamber at 
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low temperatures to keep tip and sample clean. Figure 13 is a schematic diagram of the 

components of STM. (Morita, 2007) 

 

The tip is finely controlled by piezo ceramics (Pb(Zr,Ti)O3 (PZT). PZT can 

finely control movement as it elongates as increasing voltage is applied between two 

electrodes on its opposite longitudinal face. Typically, the rod will elongate 1-2 nm per 

1V. (Morita, 2007). In addition to producing topographical images in constant tunneling 

current mode, STM can also be used for spectroscopic studies. STM can be used with 

the tip being held at a constant height. When the tip is scanned at constant height, 

tunneling current varies with topographic and electronic characteristics of the sample. 

The second harmonic differential conductance can measure surface or presence of 

defects.  

Figure 13 Diagram of STM and STM electronic components 
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By varying the applied bias (V) when the tip is 

held at a constant height, changes in tunneling current 

becomes a measure of the electronic local density of 

states. Density of states is a description of the number 

of states per interval of energy at each energy level 

that are likely to be occupied and is important for 

obtaining information about the electronic properties 

of the sample such as the conducting, semiconducting, 

or insulating nature of the substrate. (Kano, 2015) As 

spectroscopic information is acquired from both tip 

and sample it becomes essential for the tip to have 

constant density of states; this means tips should ideally be free of impurities and 

elementally pure. For an example of a mapping of density of states see Figure 14 of the 

spatial mapping of electron 

states in individual lead 

sulfide (PbS) nanocrystals. 

(Gervasi et al. 2015) 

 

 

 

Figure 14 STM spatial mapping of 

electronic states in individual lead-

sulfide PbS nanocrystal. Adapted 

from Spatial Mapping of Sub-

Bandgap States Induced by Local 

Nonstoichiometry in Individual Lead 

Sulfide Nanocrystals D. Kislitsyn Et 

Al. 

 

Figure 15 Nazin group’s STM and vibrational isolation stage 
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Project Description and Purpose 

The purpose of my research is to produce atomically defined silver STM tips to 

enable precise measurements of electronic properties. The condition of the tip is a 

central experimental problem in STM. Having atomically defined tips is important to 

ensure that the STM is capable of making atomically resolved measurements. Even 

though tips play an essential role in capturing STM images there is no standardized 

method to produce STM tips.1 I have optimized and developed a novel fabrication 

procedure of STM silver tips using a series of electrochemical etches with a 1:8 volume 

ratio acetic acid: DI H2O electrolyte followed by a heat treatment at 300°C.  

Currently, a major problem with STM is the preparation of an atomically 

sharpened well-defined tip, and as mentioned previously the spatial resolution 

especially in the lateral plane is governed by the sharpness of the tip apex. Ideally, the 

tip has an apex of one atom. Additionally, the purity of the tip is important as tunneling 

current changes with the electron wave function of the tip. Because the preparation of 

tips is a crucial component of STM, I have focused my research on the optimization of a 

novel method of tip preparation. The preparation I have helped to optimize involves a 

multi-step electrochemical etching process of silver wire with 1:8 volume acetic acid: 

deionized water. After optimization of this electrochemical etching process, I 

characterize tips with scanning electron microscopy, energy dispersive x-ray 

spectroscopy, and emission measurements.  
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Current Knowledge in the Art of Making STM Tips   

Atomically sharp and smooth silver tips are used in various scanning probe 

microscope environments such as scanning tunneling microscopy and tip-enhanced 

Raman spectroscopy. (Hodgsen et al. 2013) (Zhang et al, 2013) Silver tips in STM can 

be utilized to image, manipulate, and spectroscopically characterize individual atoms 

and molecules. The shape of the tip is critical as the effective lateral resolution of STM 

imaging is proportional to the tip’s radius of curvature. (Tersoff, 1985) In particular, the 

resolution is roughly described by the equation 5 below:  

(5) [(0.2 𝑛𝑛𝑚𝑚)(𝑅𝑅 + 𝑑𝑑)]
1
2 

Figure 16 Overall visual schematic of silver STM tip fabrication project 
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Figure 17 Schematic of tip geometry 

Where R is the tip radius of curvature 

and d is the distance between tip and sample. 

See Figure 17 for schematic diagram of tip 

geometry. In addition, with silver tips STM 

can measure photon emission by using 

tunneling current to induce luminescence. This 

technique is commonly referred to as STM-

induced luminescence, or STML. (Zhang et al. 

2013)   

STML enables the characterization of individual atoms, molecules, and 

nanometer sized structures. STML also allows for the investigation of energy-band 

structures of materials. This ability enables STM to be used to evaluate the electronic 

and optical properties of samples.  
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Figure 18 Plasmonic enhancement at STM 
junction 

The use of silver tips in STM is 

critical for photon emission and ultrafast 

electron emission measurements. Silver is 

an ideal material for use in scanning probe 

microscopy because the plasmon 

propagation lengths of silver, in the 

relevant spectral range, are longer than 

other metals that exhibit plasmonic 

properties, such as gold. (Sasaki et al. 2013) 

(Gorbunov et al. 1993) Silver is responsible for 

plasmonic enchantments of at least 103 and up to107. (Hodgson et al. 2013) (Pettinger et 

al. 2002) (Berweger et al. 2010) These enhancements are needed for shortened 

acquisition times and more accurate measurements. See Figure 18 for example of 

plasmonic enhancement. Plasmons are the collective oscillations of free electron gas 

density. In addition to its plasmonic properties, silver is favorable for its low dielectric 

losses and its relative low cost. (Zhang et al. 2013) (Berweger et al. 2010) (Sasaki et al. 

2013 

Another application of silver tips is in Tip-Enhanced Raman Spectroscopy 

(TERS). This technique allows spectral signals of molecules at the nanoscale to be 

accessed and measured. These signals are amplified by the strong localized plasmonic 

field produced at the apex of the tip. The spatial resolution in TERS, like with STM, is 

proportional to the tip’s apex size and shape. Accordingly, producing quality tips is 

essential for multiple STM measurements. (Zhang et al. 2007) In practice, while silver 

SilverSTM 
Tip 
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tips are ideal for the aforesaid plasmonic properties and versatile applications, silver tips 

are more challenging to create than tungsten, platinum-iridium, or gold STM tips. 

(Oliva et al. 1996) (Kulakov et al. 2009) (Melmed, 1991) The latter tip materials have 

shortcomings; for example, tungsten tips prepared in aqueous solutions are typically 

covered in a thin layer of oxide which adversely effects the quality of STM images. 

(Iwami et al. 1998)  

In previously reported electro-etching and polishing procedures for silver STM 

tips, various electrolytes have been used such as ammonia (Sasaki et al. 2013) 

(Dickman et al. 1996), perchloric acid (Hodgson et al. 2013) (Zhang et al. 2007), 

concentrated citric acid, (Gorbunov et al. 1993) and concentrated sulfuric acid 

(Hodgsen et al. 2013).These electrolytes have various disadvantages. Perchloric acid is 

dangerous for its explosive properties. Ammonia evaporates quickly, causing the 

concentration in solution to vary, adversely affecting tip preparation, and fumes emitted 

from ammonia are toxic. (Hodgson et al. 2013) Acetic acid is favorable for its stability, 

environmentally innocuous properties, and low surface tension. (Chavez, 2011) The 

stability of concentration and low surface tension minimize changes in the 

electrochemical reaction, allowing for consistent removal of material resulting in a 

smooth tip. With a lower surface tension, the electrolyte-air interface makes more 

contact with the silver allowing for finer control of shaping and smoothing. Acetic acid 

is also advantageous because a majority of the etching is driven by electrical forces 

rather than chemical, thereby leading to greater control of the etching process. 

No previous study in the field of STM tip making has characterized the 

elemental composition and plasmonic enhancement of the tips, nor has any used acetic 
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acid as an electrolyte. With this study, I hope to contribute to the understanding of an 

essential component of STM. 
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Method of Tip Fabrication  

 We present a reproducible multi-step method for producing sharp and smooth 

silver tips. This method has been characterized with energy dispersive x-ray 

spectroscopy, scanning electron microscopy, and electroluminescence.  

Our fabrication of silver STM tips involves a multi-step electro-etching process. 

A 0.5 mm diameter silver wire ("silver blank") of 99.9985% purity is automatically 

rough etched. In this first stage, the silver 

blank is manually exfoliated at the ends 

to ensure uniformity and is then attached 

to a home built lift system. The silver 

blank is then vertically submerged 2 mm 

into a solution of volume ratio 1:8 

CH3COOH: DI H2O at 60°C. This 

solution is stirred to ensure regularity 

during the etching process. This first 

electrochemical etch is referred to as a 

primary etch. The electrolyte solution is 

contained in a cylindrical container that has a diameter of 60 mm and a 1 cm2 inert 

graphite counter-electrode is submerged vertically into the solution a few centimeters 

away from the silver blank.  

A ~3.75 V (DC) bias is applied between the electrodes and the lift system raises 

the silver wire blank up and out of the electrolyte solution at a rate of one millimeter per 

thirty-six minutes. It is necessary for the blank to be re-etched two to three times to 

Figure 19 Primary etch apparatus diagram 

-3.75 V DC 
CX: Power Supply 

Graphite 
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Figure 20 Secondary etching apparatus 

remove a sufficient amount of material, with each etch taking approximately 20 

minutes. To re-etch, the above process is repeated. After sufficient material is removed, 

forming a roughly conical shape, the silver blank is rinsed with deionized water and 

visualized under an optical microscope to check for a conical shape and defined apex. 

See figure 19 for primary etching apparatus.  

Next, a manual electrochemical 

polish is carried out. The silver blank, 

now a coarsely conical shaped tip, is 

attached to a home built zone dynamic 

electro-polishing apparatus. See Figure 

20 for schematic of Electro-polishing 

apparatus. The electro-polishing 

apparatus consists of an optical 

microscope, tip holder, and a 0.25 cm 

diameter loop of inert platinum wire. This 

loop is attached to a 1-dimensional 

micromanipulator. The platinum loop holds a drop of unheated volume ratio 1:8 

CH3COOH: DI H2O electrolyte. The micromanipulator is used to move the platinum 

loop containing the electrolyte solution back and forth along the length of the tip. While 

the electrolyte is being moved a 3-7 V (DC) bias is applied between the tip and 

platinum loop.  

During the electrochemical polishing process the electrolyte solution must be 

changed out frequently, as insoluble silver oxides build up quickly within loop. 
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Figure 21 Formation of neck and removal of excess wire 

Repetitive passes along the tip remove material, eventually forming a neck (Sasaki et al. 

2013) (Melmed, 1991) as observed in under an optical microscope. A lower bias is 

applied when the neck narrows, as less material is needed to be removed. After multiple 

passes, the neck becomes a breaking point on the wire. Continued removal of material 

at the neck allows the excess wire to be detached from the tip. See Figure 21 for 

formation of neck and removal of excess wire. Etching is terminated immediately after 

the excess 

wire is detached. The tip is then rinsed with acetone, followed by isopropyl alcohol.  

 To remove contaminants such as silver oxide, the tip is heated at 300°C for one 

hour after etching. Heat is an effective treatment because it becomes thermodynamically 

favorable to remove silver oxide at temperatures above 195°C. This relationship is 

represented below in equation 6 below.  

(6) 2𝐴𝐴𝐴𝐴𝑂𝑂2(𝑠𝑠) + 𝐻𝐻𝑒𝑒𝐻𝐻𝐻𝐻 ≥ 195℃ → 2Ag (s) + (𝑂𝑂2) (𝐴𝐴) 
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Analysis: Silver Tip Characterization  

After the multi-step fabrication process, tips were characterized with energy 

dispersive x-ray spectroscopy (EDX) and scanning electron microscopy (SEM). SEM is 

type of microscope that produces images from a focused beam of electrons. When the 

electrons interact with atoms of a conducting sample, various signals about the surface 

topography are emitted. These signals are translated into images on the micron and 

nanometer scale. EDX is an analytical technique used to determine the elemental 

composition. Samples excited with the electron beam in a SEM emit x-rays which, due 

to each elements' unique atomic structure, are used to characterize the elemental 

compositional. (Silberberg 2007) 

In this study, we also fabricated tips by replicating procedures developed by 

Sasaki and Ho (noted as method 2) to compare the quality of our method (noted as 

method 1). (Sasaki et al. 2013) See Figure 22 for representative comparison between the 

two tips.  

 In addition, we fabricated tips with and without heat treatment to determine its 

effectiveness on removing contaminants. In Figure 23, EDX point spectra of tips 

produced from the aforementioned methods are stacked for comparison. SEM images of 

these tips accompany the spectra to highlight the relationship between morphology and 

elemental composition.   
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Heat treatment of tips fabricated with 1:8 volume ratio CH3COOH: DI H2O had 

a distinct effect on surface morphology. The change in morphology can be attributed to 

the level of contamination. In unheated tips (Figure 23), there was an elevated number 

of carbon and oxygen counts relative to the silver Lα1 peak (2.98 KeV). The elevated 

level of contaminates contributed to the formation of a rough crystalline surface. 

Correspondingly, in heat treated tips (Figure 23) the surface smoothness indicated a 

lower level of contamination. Heat treatment on tips fabricated with the Sasaki-Ho 

method (method 2) had less of an effect on surface morphology than with the method 

presented in the early mentioned procedure, though heat treatment was effective at 

reducing oxygen and carbon in EDX spectra. The unheated tips fabricated with the 

Sasaki-Ho method, Figure 23, contained fewer carbon and oxygen counts relative to the 

silver Lα1 peak (2.98 KeV) than Sasaki-Ho tips with heat treatment. Heat treatment at 

300°C was effective at decreasing the level of oxygen and carbon contamination in 

Figure 22 Comparison of multiple silver STM tip fabrication methods. A Nazin method, B Saski and 

ho method 
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multiple methods of tip fabrication. Due to thermodynamics of silver, oxygen is 

removed at this temperature as mentioned previously. The reduction of carbon in the 

method presented in this paper may be attributed to the reduction of silver acetate which 

formed during etching, as the boiling point of silver acetate is 220°C.  

In Figure 23, the peak of magnesium (1.25 KeV) is due to an escape peak rather 

than the result of surface composition. Similarly, the peaks corresponding to aluminum 

(1.48 KeV) and silicon (1.74 KeV) are unrelated to the surface composition of the tips. 

The aluminum peak can be attributed to the aluminum SEM/EDX sample holder and 

the silicon peak can be attributed to an escape peak. An escape peak occurs when the 

lithium-silicon EDX detector is excited by an incoming x-ray which ejects of a silicon 

photoelectron. The photoelectron ejection is followed by a de-excitation process 

resulting in a silicon characteristic x-ray. Other common contaminates such as nitrogen 

(0.39 KeV) and sulfur (2.31 KeV) are not present.  

Figure 24 presents SEM images at various magnifications of a representative tip 

etched and heat treated as describe above. This process yielded a tip with an acceptable 

Figure 23 Elemental composition of STM tips. Method 1: Nazin method, method 2: Sasaki and Ho 
method. Energy dispersive x-ray data 
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Figure 24: SEM images of heat-treated tip method 1 
(Nazin method) 

radius of curvature (<~100 nm) and 

surface smoothness. Figure 25 

shows multiple EDX point spectra 

of the same tip. There is some 

variation in the elemental 

composition at the surface among 

individual point spectrum. There is a 

localization of L1 silver emissions 

(2.63 KeV) at points evenly scattered 

on the tip which correspond to 

crystalline facets. These facets can cause an increased output of secondary electrons, 

which are very sensitive to the topography of the surface.   

Figure 25 EDX point spectra of representative STM tip prepared via the Nazin Method  
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Figure 26 Diagram of parabolic mirror alignment of 
laser with tip-sample junction 

Development of the Optical Capabilities of the Scanning Tunneling 

Microscope 

Future work involves 

completing the set-up of an 

optical spectroscopy-enabled 

STM system, which includes a 

spectrometer that can collect 

photons emitted from the STM. 

After optimization, we will 

then take a series of emission 

measurements with silver STM tips to 

determine the magnitude of plasmonic enhancement. After these emission studies, we 

plan to publish our findings and the tip preparation process in the Review of Scientific 

Instrumentation. See optics table in Figure 26 and diagram in Figure 26 showing ideal 

parabolic mirror alignment for maximal collection of photons.  

Optics table set up has primarily involved alignment of a helium-neon with the 

STM-tip junction and alignment of the consequent collimated signal with a CCD 

camera and spectrometer. The path to the CCD and spectrometer are separated. A 

mirror on a removable kinetic stage is used to direct the beam path to the CCD. With 

the beam path is directed to the spectrometer.  

As the STM-head, as shown if figure 26, has needed repairs to its wiring and 

piezo components. Alignment has been conducted by stimulating the collimated beam 

path with an alignment laser. Alignment is achieved by slowly adjusting the height an 

J Sample 1 
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angle of the beam source and optical components. The beam path is ensured to be 

straight and collimated by placing several iris diaphragms. These diaphragms provide 

adjustable optical apertures from approximately 1.0 mm to 20 mm. The adjustable 

aperture allows for course and fine adjustment in alignment and attenuation.  

Thus, far the alignment of the CCD camera and spectrometer has been achieved 

with the alignment laser which provides proof of concept. See figure 27 for current 

optical set up. Upon repair to the STM alignment of the STM-tip junction take place 

beginning with a primary alignment of surface mounted LED at the expected tip 

junction. This coarse alignment of the LED will provide a starting point for a finer 

alignment to the actual tip sample junction. See figures 28 ,29 and 30 for various optics 

table components.  

  

Figure 27 Optics table: red line represents beam path of He-Ne 
laser to spectrometer 
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Once the optics table is set up and photon 

collection is optimized we will be able to perform a 

series of STM luminescence spectroscopic studies of 

thin films produced by the Boettcher lab at the 

University of Oregon. See optics table in figure 27.  

These spectroscopic studies will be used to analyze 

the how defects and other surface characteristics 

influences on crystalline structure and electronic 

properties. Our method investigation will follow a 

similar line of inquiry as presented in the article by 

Fernado Stavale et al. 2013 on the study of defect 

effects on zinc oxide crystallinity. Stavale et al to 

inferred from luminescence spectra data that the 

defects of zinc oxide were due to defects in the vacancies of oxygen and zinc rather than 

predicted oxygen and zinc atom.  

  

Figure 28 STM head: STM is housed 
in this unit 
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Studies such as these correlate the intensity of the induced cathodoluminescence 

with local sample surface features. Cathodoluminescence is a phenomenon in which 

light is emitted from the sample upon excitation via the injection of electron into the 

sample from the STM tip. Scientists then use the intensity of the generated 

luminescence vs wavelength. By analyzing the relative intensity of luminesces scientist 

can then infer the presence and composition of defects.  

 

 

Figure 29 Optics table: green dot shows that beam path is aligned to spectrometer 
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Figure 30 Image from CCD camera, proof of alignment concept 
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[8] Cycloparaphenylene ([8]CPP) Study: Quantum Confinement of 

Surface Electrons by Molecular Nanohoop Corrals 

With the Nazin group I have contributed to the study of confinement of 

electrons in [8]CPP molecules on coinage metals which resulted in the publication of a 

paper in the Journal of Physical Chemistry Letters an American Chemical Society 

Journal. The paper was titled Quantum Confinement of Surface Electrons by Molecular 

Nanohoop Corrals. (Taber et al. 2016) In this inquiry, the quantum confinement of two-

dimensional surface electronic states was studied. In particular, STM and STS studies 

were conducted on surface electrons of silver Au(111) and gold Ag(111) surfaces 

confined within an individual ring-shaped cycloparaphenylene [8]CPP molecule. 

[n]CPP is a ring-shaped molecule made up of n para-linked phenylenes, which 

make up the shortest-possible 

fragments of armchair configured 

carbon nanotubes – thus term 

describing them is coined “carbon 

nanohoops”. These nanohoops can be 

synthesized with angstrom level control 

over the diameter. In this study, we 

focused on the rings with 8 para-linked 

phenylenes [8]CPP, this molecule has a diameter of 10.891 angstroms. See figure   

STM imaging and STS mapping shows the presence of electronic states 

localized in the interiors of CPP rings. the presence of electronic states localized in the 

Figure 31 Carbon nanotube and carbon nanohoops.  
Figure adapted from Gram-scale synthesis and 
crystal structures of [8]- and [10]CPP, and the 
solid-state structure of C60[10]CPP (Jianlong et al.) 
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interiors of CPP rings were inconsistent with the expected localization of molecular 

electronic orbitals These difference in observation can be explained by the presence of 

localized states formed due to confinement of surface electrons by the CPP skeletal 

framework. The electronic states are caused by localized molecular interactions making 

them molecular interior states (MIS). 

In modeling the 2D Schrodinger equation of these states it was assumed that the 

confining potential produced by a [8]CPP molecule is infinitely high. This treatment is 

analogous to the particle in a box, however in this specific case the potential in the 

[8]CPP molecule can be reduced to that of a particle in an elliptical box. To characterize 

the elliptical shape of each studied molecule by calculating the corresponding 

eccentricities as follows in equation 7. With e representative of eccentricity, A as major 

axis, and B as minor axis of ellipse. Figure 32 represents the corresponding ellipsometry 

of 84 molecules on Au(111) and 81 molecules on Ag(111) both trends that quantities 

are correlated, with the observed MIS energies (EMIS)  increasing with the relatively 

isoenergetic MSS localized on the molecular rings. 

 

(7) 𝑒𝑒 = �1 −
𝐵𝐵2

𝐴𝐴2
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Figure 32 MIS peak voltages versus eccentricities of [8]CPP molecules on Au(111) [blue dots] and 
Ag(111) [red dots]. Also shown are corresponding theoretical curves calculated using the particle-in-
an elliptical-box model described in the text. Simulated MIS peak voltages for Au(111) are higher 
than those for Ag(111) due to the lower effective mass of surface electrons on Au(111). Figure 
adapted from Quantum Confinement of Surface Electrons by Molecular Nanohoop Corrals. (Taber et 
al.) 

Figure 33 STM imaging of [8]CPP 
molecules adsorbed on Au(111). (a) 
Model of a [8]CPP molecule. (b) 
High-resolution STM image 
(obtained using a functionalized 
STM tip) of a well-ordered, two 
dimensional crystal of [8]CPPs 
adsorbed on Au(111). Both 
individual molecules and the 
component benzene subunits of the 
[8]CPPs are discernible [set point 5 
pA, 1.0 V.] (c) Image from (b) with 
overlaid molecular structures. (d−k) 
Bias-dependent images of a two 
dimensional crystal of [8]CPPs 
adsorbed on Au(111) showing 
“eye”-like spatial features in 
molecular interiors at higher 
voltages, starting from 2.7 V. Figure 
adapted from Quantum Confinement 
of Surface Electrons by Molecular 
Nanohoop Corrals. (Taber et al.) 
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As a result, our work 

demonstrates electron confinement 

within individual [8]CPP molecules. The 

[8]CPP molecules transformed the 

relatively featureless LDOS of Au(111) 

and Ag(111) surfaces into a LDOS 

distribution dominated by a peak 

associated with the lowest-energy QCSS. 

Our experiments thus suggest an 

alternative approach for controlling the 

surface electronic structure. The present 

approach thus provides a pathway for 

controllable and scalable modification of 

surface electronic structure through judicial 

choice of molecular geometry. 

 

 

 

 

 

 

 

 

Figure 34 Two-dimensional spatial mapping of 
LDOS for a [8]CPP submonolayer on Ag(111). 
(a) STM image of the [8]CPP submonolayer 
[set point 5 pA, 2.0 V]. (b) LDOS spectra 
recorded in molecular interiors, with labels 
A−Q corresponding to respective locations in 
(a−f). (c) LDOS spectra recorded at the 
molecular backbones, with labels a to q 
corresponding to respective locations in (a). 
(d−h) 2D spatial LDOS maps of the area shown 
in (a), measured at bias voltages from 2.05 to 
2.80 V, as indicated in individual maps. Figure 
adapted from Quantum Confinement of Surface 
Electrons by Molecular Nanohoop Corrals. 
(Taber et al.) 
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Figure 30 Schematic of confined surface state in molecular corral. In this artistic 
rendition, the electron is modeled as a spherical cow.  

*A spherical cow is humorous metaphor among scientists for highly simplified models 
of complex systems. Thus, implying that scientists will often reduce problems to the 
simplest form possible that may hinder the model’s applications to reality.  
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Glossary  

Bias: establishing predetermined voltages or currents at various points of 
an electronic circuit for the purpose of establishing proper operating conditions 
in electronic components. Many electronic devices such as transistors and vacuum 
tubes, whose function is processing time-varying (AC) signals also require a steady 
(DC) current or voltage to operate correctly — a bias. 

 
Current: a flow of electric charge. In electric circuits this charge is often carried 

by moving electrons in a wire. It can also be carried by ions in an electrolyte, or by both 
ions and electrons such as in an ionized gas (plasma) 

 
Electroluminescence: an optical phenomenon and electrical phenomenon in 

which a material emits light in response to the passage of an electric current or to a 
strong electric field. 

 
Electrolyte: a liquid or gel that contains ions and can be decomposed by 

electrolysis, e.g., that present in a battery. 
 
Electromagnetic Radiation: a kind of radiation including visible light, radio 

waves, gamma rays, and X-rays, in which electric and magnetic fields vary 
simultaneously. 

 
Electron: a subatomic particle, symbol e− or β−, with a negative elementary 

electric charge 
 
Energy Dispersive X-ray Spectroscopy (EDX): EDX is an analytical 

technique used for the elemental analysis or chemical characterization of a sample. It 
relies on an interaction of some source of X-ray excitation and a sample 

 
Integrated Circuit: an electronic circuit formed on a small piece of 

semiconducting material, performing the same function as a larger circuit made from 
discrete components. 

 
Organic Light Emitting Diode (OLED):  a light-emitting diode (LED) in 

which the emissive electroluminescent layer is a film of organic compound that emits 
light in response to an electric current.  

 
Photon: an elementary particle, the quantum of the electromagnetic field 

including electromagnetic radiation such as light, and the force carrier for the 
electromagnetic force 

 
Piezo:  a material that exhibits the piezoelectric effect. The piezoelectric effect is 

a reversible process in that materials exhibiting the direct piezoelectric effect (the 
internal generation of electrical charge resulting from an applied mechanical force) also 

https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Electronic_component
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Vacuum_tube
https://en.wikipedia.org/wiki/Vacuum_tube
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Alternating_current
https://en.wikipedia.org/wiki/Signal_(electrical_engineering)
https://en.wikipedia.org/wiki/Electric_charge
https://en.wikipedia.org/wiki/Electron
https://en.wikipedia.org/wiki/Wire
https://en.wikipedia.org/wiki/Ion
https://en.wikipedia.org/wiki/Electrolyte#Electrochemistry
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https://en.wikipedia.org/wiki/Organic_compound
https://en.wikipedia.org/wiki/Reversible_process_(thermodynamics)
https://en.wikipedia.org/wiki/Force
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exhibit the reverse piezoelectric effect (the internal generation of a mechanical strain 
resulting from an applied electrical field). Commonly used  lead zirconate 
titanate crystals will change about 0.1% of their static dimension when an external 
electric field is applied to the material. 

 
Planck’s constant: is a physical constant that is the quantum of action, central 

in quantum mechanics. 6.62607004 × 10-34 m2 kg / s 
 
Scanning Electron Microscope (SEM):  is a type of electron microscope that 

produces images of a sample by scanning the surface with a focused beam of electrons. 
The electrons interact with atoms in the sample, producing various signals that contain 
information about the sample's surface topography and composition. The electron beam 
is scanned in a raster scan pattern, and the beam's position is combined with the 
detected signal to produce an image.  

 
Semi-conductor: a solid substance that has a conductivity between that of an 

insulator and that of most metals, either due to the addition of an impurity or because of 
temperature effects. Devices made of semiconductors, notably silicon, are essential 
components of most electronic circuits. 

 
Spectroscopy: the study of the interaction between matter and 

electromagnetic radiation 
 
Transistor: a semiconductor device used to amplify or switch electronic signals 

and electrical power. It is composed of semiconductor material usually with at least 
three terminals for connection to an external circuit. 

 
Voltage: an electromotive force or potential difference expressed in volts. 
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