Three-dimensional Fractals

By
Kenneth Baba Jacob
A THESIS

Presented to the Department of Physics
and the Honors College of the University of Oregon
in partial fulfillment of the requirements for the degree of
Bachelor of Arts

Summer 2001




APPROVED DATE: 23 &0( ¢

Dr. James Schombert

Physics Department




‘This paper is dedicated to my Lord and Master
My Beloved
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Thesis Statemen

To Plato, the five perfect solids represented archetypes or ideals of reality. People
and groups through the millennia have viewed these shapes with awe and wonder. They
have gone so far as to ascribe mystical and magical properties to thesc objects. 100 am
struck with wonder and a deep appreciation for these shapes because of their unique
properties of symmetry and form. Over the course of the last ten years I have entered
into thought experiments where I have applied fractal processes onto some these shapes.
As a result, T have come to believe that these solids are not just pure Euclidean volumes.
T think they contain the property of being not only fractal initiators but that they are
themselves complete fractals.

‘This paper is a treatment of three-dimensional fractals. I will begin by
introducing some basic concepts of fractals. Then I will introduce two three-dimensional
fractals, the tetrahedron fractal and the octahedron fractal, and analyze them in full detail
Both of these fractals have been studied in previous published articles. There are some
important new insights about these fractals that will be presented here. Other three
dimensional fractals will be presented. These will not be fully analyzed, but used mainly
to discuss techniques in construction of three-dimensional fractals. This is intended to
give ideas and methods of creating an infinite number of different three-dimensional

fractals.




Definitions:

Dodecahedron — A three-dimensional object with 20 vertex points, 30 edge lines, and 12
pentagonal surfaces. See Figure 5 next page.

Fractal — An object constructed after an infinite number of iterations containing the
property of self-similarity over an arbitrary magnification or scaling.

Fractal Dimension — A value assigned to a fractal that characterizes the fractal’s non-
integer dimensionality. This is determined by solving the fractal dimension equation.

Hexahedron - A three-dimensional object with 8 vertex points, 12 edge lines, and 6
square surfaces. See Figure 3 next page. Commonly known as a cube.

Generator - A geometric function that operates on the initiator and each successive
iteration level.

Lcosahedron — A three-dimensional object with 12 vertex points, 30 edge lines, and 20
triangular surfaces. See Figure 4 next page.

Initiator — The initial geometric input shape that is operated on by the generator resulting
in the first iteration. Also the zeroth iteration of a fractal process.

Iteration - Taking the result of a function that is operated on and feeding this result back
into the same function for the subsequent resul.

Octahedron — A three-dimensional object with 6 vertex points, 12 edge lines, and 8
triangular surfaces. See Figure 2 next page.

Self-similarity — An invariance of form with respect to scaling; in other words, an
invariance not with additive translations, but invariance with multiplicative changes of
scale.

Tetrahedron — A three-dimensional object with 4 vertex points, 6 edge lines, and 4
triangular surfaces. See Figure 1 next page.




Perfect Solids

Figure 1: Tetrahedron

Figure 2: Octahedron Figure 3: Hexahedron (Cube)

Figure 4: Icosahedron Figure 5: Dodecahedron




Introduction to Fractal

In recent years there has been a new development in math and science called
Chaos theory. This new way of looking at the world has generated interest in objects that
are defined as fractals. The word fractal derives its meaning from what are called fractal
dimensions. A fractal is therefore an object that has a fraction or non-integer number
corresponding to its dimensional value. For example, a circular shaped surface is an
object that requires two dimensions to be described and thus has a dimensional value of

two, whereas a fractal will usually have a value like 1.2578... or 2.3454.... with these

numbers being derived from a quotient of two numbers. There are a few fractals that do
have an integer dimension value.

Fractals have almost always shown themselves to be infinitely convoluted curved
lines or surfaces. Because of this convolution, fractal slopes defy the use of calculus on
them. A classic example is the Koch Curve. This fractal will be used as a basic example
for fractal ideas throughout the introduction. This fractal has a dimension of 1.26186
The method for calculating this number will be shown at the conclusion of this
introduction. The reason this curved line is a fractal is because its length is infinite, and
its degree of curvature is also infinite, yet it contains no surface area.

As in calculus, the idea of taking a limit is used to determine quantitative
characteristics of a fractal. A fractal is produced by first starting with an initial condition
like a given line or surface called the initiator. The initiator for the Koch Curve is a
straight line of arbitrary length. An iteration process is then implemented using what is

called a generator. Here, a given line with a unit length is changed into a line that is




broken into thirds. The middle third line segment is replaced with two sides of an

equilateral triangle as shown in figure 6.

Figure 6: Koch Curve Generator and First Iteration

“This shape s the generator shape and the process of creating it is called iteration. This
process is then repeated on all of the four new line segments and has now been iterated

twice as shown in figure 7.

Figure 7: Koch Curve Second Iteration

By iterating an infinite number of times a fractal is formed. The actual fractal curve
would be impossible to completely picture since there is a finite limit (0 the level of
resolution that humans can perceive. Still, the infinite iteration of the Koch Curve would

look something close to figure 8




Figure 8: Koch Curve Fractal

In math, a value produced from an infinite number of operations is called a limit.
Therefore the limit of the infinite iteration process or the sum of all the iterations s the
fractal itself. Often the whole process is called the fractal process and the limit is called
the fractal shape or just fractal. This type of fractal is called an exact or deterministic
fractal because its generator can be completely known by mathematics. Hence all
subsequent terations and the final limit are also completely determined. The other type
of fractal process where the generator is governed by probabilities or statistics and yields
what are aptly called statistical or random fractals. All fractals discussed in this paper
will be deterministic fractals

In almost all cases the final or limiting fractal shape looks infinitely complex.
Another “simple” example of a fractal and its first few iterations of the fractal process are

shown in figures 9 through2.

Figure 9: Bushy Shape Generator and First Iteration




Figure 10: Bushy Shape Second Iteration

Figure 11: Bushy Shape Third Iteration




Figure 12: Bushy Shape Fourth Iteration

The initiator of this fractal process is a straight-line segment. The generator and first
iteration is figure 9. At cach subsequent iteration, all straight-line segments are replaced
by the generator structure. As subsequent iterations develop a branching bush like
structure forms.

‘The most important quality of all fractals is self-similarity. This means that at an
arbitrary number of magnification levels o scalings there will be found exact replicas of
the whole fractal. Essentially a fractal is self-similar because it is composed of smaller
copies of itself. Each of these copies is in tum made up of copies of themselves. This
process goes on and on through an infinite number of scalings. There is one restriction
with this. Each scaling of the fractal must be done in relation to a particular iteration

level. The Koch curve, for example, has a self-similarity scaling level of three due to the




fact that at each subsequent iteration, line segments are one-third the length of the line
segments in the previous iteration.

Another interesting idea in creating fractals is to have a generator that does not
operate on the initiator as one unit, but on multiple similar picces of the initiator. A good
example of this would be to apply the Koch Curve generator to an object with multiple
straight-line segments. Take an equilateral triangle for instance, It contains three
straight-line segments of equal length. Applying the Koch Curve generator to this shape

would produce the first iteration of a fractal process as shown in figure 13.

Figure 13: Koch Snowflake First Iteration

Unlike the previous fractals, here the generator and the first iteration arc not the same.
‘The second iteration and third iteration again repeat the same process as before by
applying the generator shape to all the new straight line segments created by the previous

iteration as shown in figures 14 and 15
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Figure 14: Koch Snowflake Second Iteration

Figure 15: Koch Snowflake Third Iteration

‘When this process is taken to the infinite limit the fractal shape called the Koch

Snowflake Fractal is formed as shown in figure 16.




Figure 16: Koch Snowflake Fractal

The possibilities for different fractal shapes in the two-dimensional realm are literally
limitless. Any type of generator can be applied to any number of different nitiator
combinations. For anyone interested in more examples of fractals, in the bibliography
section of this paper is a listing of some good books on fractals and chaos theory for
further study. Of course, the best way to study them is simply to create and discover
them for one’s self.

Now with the understanding of what a fractal is and how it is formed, it is
important to conclude the introduction with a discussion of how to calculate the fractal
dimension of a fractal. The first thing to determine is what number of dimensions are the
parameters of an object changing. For a line, the change is one of length and therefore in
one dimension. For a surface, the change is one of arca and therefore in two dimensions.
‘The Koch Curve has a parameter that changes length and therefore has a parameter
dimension of one. Next, it is important to know the scaling factor of the fractal. This is

found by looking at the relative size or arca of similar segments in subsequent iterations.




As mentioned before, the Koch Curve has a scaling factor of three. The third and final
piece necded is the ratio of the number of similar segments in one iteration with the
number in the iteration previous to it. For some fractals this is a constant and therefore
casy to determine. The Koch Curve has a constant ratio of four because there is always
four times the number of line segments in an iteration when compared to the iteration
previous to it. For others this ratio can change from iteration to iteration. In this case the
thing to do is to take the ratio value at the limit as the number of iterations goes to
infinity. This will give a limit ratio and thus an overall fractal dimension. It is important
10 100k closely at the fractal process of these fractals with changing ratios. Even though

the overall fractal dimension is some particular number, as will be seen with the

octahedron fractal, there can exist parts of the fractal surface that have a distinctly
different fractal dimension to them when looked at i isolation.
With information on the dimension of the changing parameter, scaling factor, and

segment ratio, the fractal dimension can be determined using equation 1

SF = R?

Equation 1: Base Fractal Dimension Equation
In this equation R is defined as the segment ratio, D is defined as the changing parameter
dimension, § is defined as the scaling factor, and F is defined as the fractal dimension of

the object. What this equation says is that the segment ratio to the parameter dimension




power, in which it propagates, s equal to the scaling factor to the fractal dimension
power, in which it propagates. The motivation behind this equation is to relate the
dimension in which the segment ratio operates to the dimension in which the scaling
factor operates. To find the fractal dimension this equation is solved for F as shown here

with the solution as equation 2:

=10
Ln(s") = Ln(R")

F*Ln(S) = D*Ln(R)

F = D*Ln(R)/Ln(S)

Equation 2: Fractal Dimension Equation

Equation 2 is the Fractal Dimension Equation used in this paper to determine all fractal
dimensions. There are other methods to determine the fractal dimension of a fractal
shape. They all lead to the same answer and contain basically the same ingredients. This
one is preferred here because of the intuitive nature behind the original base equation.
Also, the concept of fractional dimension is well displayed in this equation. It is

primarily a quotient of two logarithmic numbers creating a fraction. Calculating the
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fractal dimension of the Koch Curve as good example of the use of the Fractal Dimension

Equation. This is shown in equation 3:

D=1,R=4,S=3
F = 1*Ln(4)/Ln(3)
=1.2618595071429...

Equation 3: Fractal dimension of the Koch Curve

The importance of fractal dimension is twofold. First it allows for two different

fractals to be compared in terms their respective scaling factors, segment ratios, and

parameter This gives a very quantitati to the fractal that will
differentiate different fractal processes from one another. Second it allows for a fractal to
be compared with non-fractal shapes with respect to their overall dimension. This gives a
very qualitative characteristic to the fractal, which can differentiate fractal processes from
non-fractal processes. As will be scen with both the tetrahedron fractal and the
octahedron fractal, the determination and value of a fractal dimension plays a very
important role in analyzing shape and structural aspects of a fractal.

Three-dimensional fractals can be constructed in the same way that two-
dimensional fractals are. The reason they are called three-dimensional fractals is not
because their fractal dimension is three. 1t is because the fractal shape is embedded in

three dimensions that they are called three-dimensional fractals. The fractal dimension is
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determined with the same formula. Tnstead of the parameter dimension (D) being one as
in most two-dimensional fractals, it is two with three-dimensional fractals. This means
that what is changing with cach iteration is a surface and not a line. When the segment
ratio (R) is determined, each segment is now a polygon shape like a triangle or a square.
The scaling factor (S) will now be a relation between the surface area of one segment to
the surface area of a similar segment in a successive iteration.

Two three-dimensional fractals of special interest are the tetrahedron fractal and
the octahedron fractal. Both of these fractals are interesting because unlike most fractals,
these two seem to form a very simple outer shape of a cube. Figure 17 shows the

relationship between a tetrahedron, an octahedron, and the cube they form as fractals.

Figure 17: Octahedron Inscribed in a Tetrahedron Inscribed in a Cube

It is this cube that is the same limiting shape for both of these fractals.




There are two published articles that have been found regarding the tetrahedron
and octahedron fractals. The first article, “A Fractal Excursion” by Dane R. Camp [1], is
a very nice introduction to what a fractal is and how a fractal is created. Camp goes into

a basic description of the tetrahedron fractal and briefly mentions the octahedron fractal.

His focus is on the ion of the and di f different properties
of a fractal. He shows that the tetrahedron fractal converges to a finite volume in threc
dimensions yet diverges to infinite surface area in two dimensions. He also shows that
the limiting volume of the tetrahedron fractal is cubic. Even though this article is
designed primarily for high school students to motivate interest in math, it serves as a
good beginning to the exploration of three-dimensional fractals.

The second article, “Tetrahedron and octahedron fractals” by Herbert Zeitler [2],
is more advanced and looks at both the tetrahedron fractal and the octahedron fractal.
Zeitler takes the next step and actually proves that the limiting shape of these fractals is
that of a cube. He does this by using geometry to analysis the different angles that are
formed from iteration. He uses the very important concept of symmetry to show that
these angles propagate throughout the entire iteration process. This proof shows that both
the tetrahedron and octahedron fractals do not grow outside of the limiting cube shape
and that they do converge to that exact outer shape. Although this article can be scen as
building on the first one, it is complete and restates the proofs of the first paper. Another
important thing that Zeitler shows is the fractal dimension of the fractals. He uses a
somewhat different method to do this, but as will be seen, the answer is the same.
Interestingly, he shows that both of these fractals have the same dimensional value of

2.58496...




Tetrahedron Fractal:

The tetrahedron fractal is a special fractal for me. About ten years ago I was first
beginning to study fractals. T had leaned about the Koch Curve and its application to a
triangle forming the Koch Snowflake. I thought it would be interesting to try this in a.
three-dimensional way. Instead of iterating a line, I would iterate a surface. Keeping with
the theme of triangles, I thought a good candidate initiator shape would be the

tetrahedron as shown in figure 18.

Figure 17: Iteration 0 (Tetrahedron)

I envisioned each triangular surface iterating to make a new tetrahedron shape at its

center as shown in figure 19 and 20.




Figure 19: Triangle Figure 20: Generator Shape

When this generator is applied to the initiator the resulting iteration is as shown in figure

21 and 22.

Figures 21 and 22: Tteration 1 (Star Octahedron)

i ey W
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This is the exact same shape as what is commonly called a star octahedron. The second
iteration of one triangle surface is shown in figures 23 and 24. The second iteration of

the tetrahedron is shown in figures 25 and 26. The third iteration of one triangle is shown

in figures 27 and 28. The third iteration of the tetrahedron is shown in figures 29 and 30.

Figures 23 and 24: Iteration 2 of Triangle

Figures 25 and 26: Iteration 2 of Tetrahedron




Figures 27 and 28: Iteration 3 of Triangle
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The first time I realized that the outer limiting shape was a cube was after I had
completed the second iteration of the fractal! This was an amazing epiphany for me and
that is how my interest in three-dimensional fractals started. Since then, I have created
several other three-dimensional fractals. The tetrahedron fractal will always be my
favorite though

The first item of interest about the tetrahedron fractal is to look at how the volume
contained by the surface changes over each iteration and what the volume is at the fractal

limit. Table 1 shows this analysis.

[Table 1: Analysis of the Volume Evolution for the Fractal
[eration (N)}AdGI T # (T)AddI Tetrahedron Volume (V)Total Structure Volume (X)
[ q 1 1 7
1 4
24
144
864
5184
5 31104
7 186624
E 1119744
9 6718464 ;
10 40310784 9.31323E-1 2.887372971
11 241864704 1.16415E-1 2.91552972%
12 1451188224 1.45519E-11 2.93664729
13 8707129344 1.81899E-12 2952485472
14 52242776064 2.27374E-13 2964364104
L 3.13457E+11 2.84217E-14 297327307
infinit Infinity] Zero) Three
[Formuias: T= 46N N-A V= (1/8)*N|_X = Sum of T°V overall N
Fractal volume converges to 3x the volume of the original
This is the same volume as a cube inscribed by the original

The analysis shows that the volume does converge to a finite limit of three times the

volume of the original tetrahedron. This is exactly the volume of a cube that has the




generator tetrahedron shape inscribed inside it (see back to figure 17). As has already

been mentioned, the actual outer shape limit of the tetrahedron fractal has been proven to

be a cube by Zeitler [2].

Another item of interest that can be learned about the tetrahedron fractal is what

the surface area of the fractal limit is. Table 2 shows an analysis of the surface arca.

[Table 2: Analysis of the Surface Area Evolution for the T

Fractal |

—

Iteration (N)|

[Triangle Surface # (T)|
4

[Triangle Area (A)[Total Structure Surface Area (X)
1 4

0
1 24|
2 144 9
864 13
4 5184 20.25
5 31104 0.000976563] 30.375
186624 0.000244141 455625
7 1119744 68.34375
g 6718464 102515625
[ 9 40310784 i 153.7734375
10| 241864704 9.53674E-0 230.6601563
11 1451188224 2.38419E-0 345.9902344)
12) 8707129344 5.96046E-0! 518.9853516
13 52242776064 1.49012E-08 7784780273
14 3.13457E+11] _3.72529E-09 1167.717041
iE 1.88074E+12_ 9.31323E-10) 1751575562
nfinit Tnfinity Zero| nfinit
[
Formulas: T=46"N___ A= (14PN X=TA
Fractal surface area diverges to infinity.

The analysis shows that the surface does go to infinity, as one would expect for this

fractal.

A third item of interest is the fractal dimension of the tetrahedron fractal. Table 3

shows an analysis of calculating the segment ratio for the tetrahedron fractal and the

subsequent value for the fractal dimension.
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Table 3: Analysis of the Fractal Dimension for the Tetrahedron | ]
Fractal |
Iteration}# of Initial Surface W of Surface
[ N/A| 4 NI
1 4 24
2 24 144%
3 144
[ 4 864
5 5184) 31104
6] 31104] 186624 6
7 186624 1119744
8 1119744 6718464
| 6718464 40310784 6
10 40310784 2418647046
nfinit Tnfinit Infinity| _Six
[Ratio of Edge Lengths: Initial to Generated = 2
[Fractal Dim.= 2°In (6) /In (4) =|2.584962501
[The tetrahedron fractal has a constant dimension on its entire surface.

All the information shown so far about the tetrahedron fractal has. already been

published. Unfortunately, none of this shows what the actual shape of the fractal surface.

Up until now there has been no analysis done on what the shape the fractal surface

actually has. After examining this fractal for many years now I have discovered

something very important and exciting about this fractal. The shape of a cube is indeed
the outer limit to the fractal surface. There is also, completely contained inside the cube,
another whole surface dynamic going on.

In order to completely understand the dynamics of a given three-dimensional
fractal, one has to be able to completely describe the changes that occur between each
successive iteration. To do this I use what I call the relational model. As the fractal
process moves from one iteration to the next, individual surface segments can be paired

up with other surface segments in reoccurring surface relations. Each distinct surface




relation always produces the same new set of relations after a single iteration. Ifall the
different surface relations and what they produc can be leamed for a particular fractal,
then the entire dynamic of that fractal surface can be known.

The initiator of the tetrahedron fractal has four similar equilateral surfaces. The
subsequent iterated tetrahderonal surface structures on cach of the original surfaces will
touch each other at only at shared vertex points. They do not share edges or surfaces as
can be seen in the previous figures 20 and 21. Because of this, the iteration of one
surface will develop in complete isolation to the other three surfaces. Since this is the
case, there is no surface relation other than a single surface relation for the generator of
the fractal. After the first iteration there are twenty-four new equilateral triangle surfaces
exactly one quarter the area of the four original triangular surfaces. Each surface is
paired up with another one to make twelve identical angular relationships called double

surface relations and one is shown in figure 31.

Figure 31: Double Surface Relation
Each of these paired surfaces will iterate in the exact same way as shown in figures 32

and 33




Figures 32 and 33: Double Surface Relation Iteration
After this second iteration, there are now two more double surface relations created for
cach original double relation and a new relation is created. Two quadruple surface

relations are formed as shown in figure 34.

Figure 34: Quad Surface Relation




It has the structure of a pyramidal indentation and is really two double relations paired
together. All subsequent terations of any double surface relation will create the same
structure as above with the only difference being the size of its surface area

The quadruple surface relation does something new when it iterates as shown in

figures 35 and 36.

Figures 35 and 36: Quad Surface Relation Iteration
It creates four new quadruple relations of one-quarter area and it creates a completely

enclosed octahedron. I call this an octuple surface relation and it is shown in figure 37.

Figure 37: Octuple Surface Relation (Inside Surface of Octahedron)

o ey W




The octuple surface relation is really two quadruple relations paired together. It is
important to keep in mind that this octahedron is really inside out. The inward side of the
octahedron surface s the actual “outer” iterating surface of the tetrahedron fractal. So the
next teration will be inward towards the octahedron’s center. All subsequent terations
of any quadruple surface relation creates the same structure as above with the only
difference being the size of its surface area.

The octuple surface relation does something new. It forms six enclosed octuple
surface relations with one-quarter the arca of the original, but it forms no new surface

relations. All subsequent iterations of an octuple surface relation will repeat this process

exactly as shown in figures 38 and 39.

ures 38 and 39: Octuple Surface Relation Iteration

After the third iteration, no new surface relations are created. The fractal
continues to form double, quadruple, and octuple surface relations. The evolution of the

tetrahedron surface can be scen to have stabilized after this point. By being stabilized I




mean that the limiting shape of the fractal surface can be completely determined. Since
the shape of the surface is nothing more than triangular areas connected to other
triangular arcas, the shape is completely determined by the angular relationship between
adjoining triangles. This is how the relational model works. Once the cycle of relation
creating ends, and all the possible relations and what they make are known,
understanding the surface dynamic of the fractal is done. Table 4 is an analysis of the

surface relations for tetrahedron fractal.

Analysis of the Evolution of Surface Relations for ibe
one Triangle on the Tetrahedron Fractal [
Initial Surface Area = 1 [Total # of: [Total # of | Total Surface Area Comprised by:
Iteration T ible [Quadruple Oct: [Triangles druple [Octupl

1

07 E|
378 2.2
188 2.62:
094 2812
047 _2.9062
| 0.023[ 2953125
012] 2976563
0.006] 2988281
0.003[ 2.994141] 54
0.001] 2.99707] 83499931
7E-04| 2.998535 1267471
4E-04 zssgzea 191619
2E-04] 2.999634] 288.9294)
OE-05[ 2999817 _434.894
Infinity| _Infinityl_Zero| Zerd| _ Threg _Infiniy

Infinity]_Zer

[The double relations evolve into the edges of the limiting cube.
[This conforms with them comprising none of the fractal surface area at infniy.
[The quadruple relations evolve into the finite surface area of the limiting cube.
[This conforms with them comprising a finite surface area at infinity. |
[The octuple relations contain the infinite surface area of the fractal. |




‘Three main qualities to the fractal surface can be seen. The double surface
relations are always created along an edge of the limiting cube shape. At infinity they
actually create this edge. The combined surface arca of all the double surface relations
goes to zero. This makes sense since the edges of the cube have no area. The quadruple
surface relations are always created along a surface of the limiting cube. At infinity they
actually make this surface. The combined area of all quadruple surface relations is a
finite value. This makes sense since it the surface of the cube has a finite area. The
octuple surface relation is always created within the general volume of the cube. There
are an infinite number of these enclosed octahedral shaped surface regions. Even though
the combined volume contained within all the octuple surface relations goes to zero as
iteration goes to infinity, their combined inward surface area docs not. The sum total of
the surface area of all these infinitely small surface nodes goes to infinity. This is where
the infinite surface area of the fractal is “hidden”. This inward iterating structure can be
seen as an entire fractal in itsclf. This inward iterating fractal has the same fractal
dimension as it’s parent, the tetrahedron fractal. With this information the surface of the
tetrahedron fractal is completely described and hence the fractal itself is completely

determined.




Octahedron Fract:

The octahedron fractal, not surprisingly, has an initiator shape of an octahedron as

shown in figure 40.

Figure 40: Iteration 0 (Octahedron)
The generator operates on triangular surfaces as before except that instead of tetrahedrons

being generated, octahedrons are generated as shown in figures 41 and 42.

Figure 41: Triangle Figure 42: Generator Shape
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When this generator is applied to the initiator the resulting iteration s as shown in figure

43 and 44.

Figures 43 and 44: Iteration 1

The second iteration of one triangle surface is shown in figures 45 and 46.

Figures 45 and 46: Iteration 2 of Triangle




Figures 47, 48, and 49: Iteration 2 of Octahedron
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After the second iteration it is easy to see why the limiting shape for this fractal process is
acube.

Again, the first item of interest about the octahedron fractal is to look at how the
volume contained by the surface changes over each iteration and what the volume is at

the fractal limit. Table 5 shows this analysis.

[Table 5: Analysis of the Volume Evolution for the O Fractal ]
Iteration (N)|Addl. O # (O)AddI. T Volume (V)[Total Structure Volume (X)
1 1
g 2
0.87: 2.875
0.7187! 3.59375
4 0.5703125| 4.1640625
5 0.443359375 4.607421875
6| 4.947753906
7| 5.20690918
8 0.19631958| 5.40322876
9 0.148216248] 5.551445007
1 0.111650467] 5.663095474
1 0.083981991 5.747077465
1 063108563 5.810186028
1 .047392458 5.857578486,
14| .035574861] 5.893153347
15| .026696404| 5.919849752
Infinit Infinity Zero| Six
Formulas:| 0 =2"6"N-4"N V= (1/8)"N| X = Sum of T*V over all N
Fractal volume converges to 6x the volume of the original
This is the same volume as a cube inscribed by the original

‘The analysis shows that the volume does converge to a finite limit of six times the
volume of the original octahedron. This is exactly the volume of a cube that has the
generator octahedron shape inscribed inside it (see back to figure 17). As has already
been mentioned, the actual outer shape limit of the octahedron fractal has been proven to

be a cube by Zeitler [2]




The next item of interest that can be learned about the octahedron fractal is what
the surface area of the fractal limit is. Table 6 shows an analysis of the surface area.

Table 6: Analysis of the Surface Area Evolution for the O\ Fractal

Iteration (N)[Triangle Surface # (T) [Triangle Area (A)[Total Structure Surface Area (X)
0 g 1 8

L T " - IS v+ W L

0.000244141)
6.10352E-0!

9 237670400 ‘3v8147E—
| 1434411008| .53674E-07|
11 8640020480| 38419E-07]

12| 51974340608| .96046E-08|

~|o| ol [ el o] o

i 3.12383E+11 49012E-0¢
14 1.87644E+12] __3.72529E-09
15 1.12673E+13 31323E-10)

nfinity| Infini Zero) infinity

TA

Formulas: [T = 4"(6A(N+1)-4AN+1) A= (1/4)'N
Fractal surface area diverges to infinity.

Like the tetrahedron fractal the analysis shows that the surface does go to infinity, as is
expected.

A third item of interest is the fractal dimension of the octahedron fractal. Table 7
shows an analysis of calculating the segment ratio for the octahedron fractal and the

subsequent value for the fractal dimension.




[Table 7: Analysis of the Fractal Dimension for the O on Fractal
Iteration{# of Initial Surface Segments _# of Surface Segments [Ratio
N/A NA
7 1
2
3
7
5
6
7
El
9
1
1

12
1 5197434060 3.12383E+
14 3.12383E+11) 1.87644E+
15 1.87644E+12| 1.12673E+
Tnfinity infini infinityl__ Six
[The ratio is not constant over a finite number of iterations.
[The ratio does converge at infinfty to 6.
[This is the same ratio as for the tetrahedron fractal,
therefore the overall Fractal Dim. = 2.584962501 }

‘The octahedron fractal is an example of a fractal that has a changing segment

ratio. The limiting value as iteration goes to infinity shows that this segment ratio does

converge to a finite value of six. This is the same ratio as with the tetrahedron fractal.

With the same segment ratio and same scaling factor of four, it is certain that the

octahedron fractal has the same overall fractal dimension as the tetrahedron fractal. But,

unlike the constant segment ratio of the tetrahedron fractal, the changing segment ratio of

the octahedron fractal does not certify that the fractal dimension is constant throughout

the entire

fractal surface.

It only shows that there is a particular overall fractal
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dimension. This is a very important distinction that will have an effect on what is leamed
through the relational model when it is applied to the octahedron fractal.

‘The initiator of the octahedron fractal has cight similar equilateral surfaces. Like
the tetrahedron fractal, the subsequent iterated octahedral surface structures on cach of
the original surfaces will touch each other at only at shared vertex points. They will
never share edges or surfaces. Because of this, the iteration of one surface will develop
in complete isolation to the other seven surfaces. Since, this is the case there is no
surface relation other than a single surface relation for the generator of the fractal.

After the first iteration, each original triangular surface of the original octahedron
has generated one new octahedron in its center. There are two types of surface relations
created here. There are four new non-paired or single surface relations and three double
surface relations. These double surface relations are not the same as for the tetrahedron
fractal. The angle between the surfaces is different. On subsequent iterations, the non-
paired surfaces will duplicate the result of the first iteration. This double surface relation

is shown in figure 50.

Figure 50: Double Surface Relation




After the second iteration, the double surface relations will share in creating one

new octahedron surface as in figure 51 and 52.

| Figures 51 and 52: Double Surface Relation Iteration
This is different than in the tetrahedron fractal where all triangular surfaces always create
their own new tetrahedron. As can be seen in the figure, iterating a double surface
relation, creates two single surface relations, creates two double surface relations, and

creates two of a new relation called the triple surface relation as shown in figure 53.

Figure 53: Triple Surface Relation




All subsequent double surface relations will create the exact same set of relations with
cach triangular surface being one quarter the area of the previous iteration.

After the third iteration, each triple surface relation will create exactly one new
octahedral surface similar to the double surface relation only there are three triangular

surfaces sharing an octahedron as shown in figure 54 and 55.

Figures 54 and 55: Triple Surface Relation Iteration

Again, some previous surface formations are created and a new one also. One
single surface relation is formed, three triple surface relations are formed, and one
completely enclosed tetrahedral surface is formed. Al subsequent triple surface relations
form the same number and type of structures s this original one. Like the enclosed
octahedron of the tetrahedron fractal, the inward surface of the enclosed tetrahedron is
really the “outer” evolving surface of the octahedron fractal. To distinguish this from the
quadruple surface relation, it will be called the tetra surface relation as shown in figure

56.




Figure 56: Tetra Surface Relation (Inside Surface of Tetrahedron)
After the fourth iteration, these four surfaces will all share in forming one new
octahedral surface enclosed with the tetrahedron shape. This forms four new enclosed

tetra surface relations as shown in figures 57 and 58.

Figures 57 and 58: Tetra Surface Relation Iteration




Like the tetrahedron fractal, there are no new surface relations created after the

third iteration. Again the surface structure of the octahedron fractal can be said to have

stabilized and the limiting shape of the fractal can be completely determined. Unlike the

tetrahedron fractal, the surface of the octahedron fractal cannot be easily divided into two

regions that of non-enclosed areas forming the outer cube and enclosed areas containing

the infinite fractal area. Table 8 shows an analysis of the surface relations of the

octahedron fractal.

Table 8: Analysis of the Evolution of Surface Relations for| ]
one Triangle of the Octahedron Fractal [ I [
[
Initial Surface Area = 1__[Total # of. [Total # of Total Surface Area Comprised by:
lteration[Single [Double [Triple _[Tetra__[Triangles|Single_|Double [Triple [Tetra
il 0| 0 1 1 q 0
1 E 0 1 I 0] [y
2 22 18| 6] 0 76 1.375 2.5 1.125 15
REEE 102] 54 6| 520/ 2.0313 3.1875 2.5313 _ 3.375
Z P 504 366 78 3376] 3.0391| 4.6406| 4.2891] 5.71875
5 4666 3522 2286 678 21280] 4.5566| 6.8789 6.6973 8.92969
27994 21042 13902 4998| 131776] 6.8345 10.274] 10.182 13.5762

167962 126066/ 83790 33894
1007770] 756018] 503502 219366
60466184535346/3022542[1380966]
3.6E+07|2.7E+07|1.8E+07|8546406|
2.2E+08[1.6E+08[1.1E+08|5.2E+07]
1.3E+09/9.8E+08)6.5E+08| 3.2E+08|
7.8E+09|5.9E+09]3.9E+09[ 1.9E+09|

© ‘

<]

807040] 10.25:

1.8E+08| 34.59
1.1E+09] 51.89

15.389 15.342] 20.4565
4907776| 15.377 23.072] 23.048] 30.7313

3E+07| 23.066) 34.602] 34.59 46.1203
51.9 51.894] 69.1922

77.849 77.846| 103]@

6.5E+09] 77.84
3.9E+10] 116.77|

14[4.7E+10[3.5E+10[2.4E+10] 1.2E+10]

2.3E+11| 175.16]

116.77] 116.77|
175.

262.74 262.74|

15[2.8E+11[2.1E+11|[1.4E+11] 7E+10)

1.4E+12] 262.74]

3941 394.1] 525472

Infinity] | tyl _Infinityl _Infinity] _Infinit

Infinity] Infinit,

Infinityl Infini

Tnfinity

JAll relations contain the infi

ite surface area of the frac

tal

All surface relations contain an infinite surface area at the fractal limit. Except for the

tetra surface relation, there is no way to isolate what type of relation is building what

particular part of the limiting cube shape.




Since the tetra surface relation is completely enclosed, it is not involved in
creating the outer shape of the fractal. This enclosed iterating region can be seen as a
fractal in itsclf. When looked as such the results are very surprising. The scaling factor
for this new fractal is the same as its parent at four. The segment ratio is different
though, with a value of four instead of six. This means the fractal dimension for this
object is two! This really does make sense on a second look. At each iteration four,
surface segments are being replaced with only four new surface segments. The valuc for
the total surface area stays the constant for cach iteration.

Question: Will the fractal dimension of the octahedron fractal change if none of

the tetra surface relations are included in the calculation? Table 9 shows this analysis.

Table 9: Analysis of Fractal Dimension for the O Fractal ]

not Including the Tetra Surface Relations |
Iteration # of Initial Surface E B of Surface atio

0 N/ NA

1 80 10

2 8 60t 76

3| 60 4136] 6.802632

4 713 26696] 6.454545

E| 2669 167528] 6.275397

6] 16752 1034216] 6.173392

7] 1034216) 6320744 6.111629

E) 6320744) 38384744| 6.072821

9 38384744 232146536 6.047885

10) 232146536 1400225384 6.031645

ik 1400 8430724712| 6.020977
2] 8430724712 50701813352 6.013933
1 50701813352 3.04681E+11
14 3.04681E+11 1.82096E+12)
15 1.82096E+12 1.09873E+13

infinit Infinit Tnfinity

[The ratio still converges to six at
infinity.




The answer s clearly no. The overall fractal dimension is ot affected by the removal of
the tetra surfacc relations. The fractal dimension of the octahedron fractal is the same
with or without them. This is a very interesting result. Apparently, a fractal like the
octahedron fractal can have regions where the fractal dimension is distinctly different
from the overall fractal. These regions are like pockets of two-dimensional reality
embedded within a higher fractal dimensional structure. These regions exist both at any
finite iteration above three and at the infinite iteration.

‘This fractal has shown itself to have quite different qualities from that of
the tetrahedron fractal. Without the use of the relational model, a complete
understanding of the fractal surface dynamic would not be obtained. With it, the tetra
surface relation is discovered and also a recognition that the single, double, and triple
surface relations collectively form the fractal dimension and outer cube shape of the
fractal. This information provides a complete description of the surface of the octahedron

fractal and hence the fractal itself is completely determined.




Constructing Three-di ional Fractals:

The tetrahedron fractal and the octahedron fractal are excellent examples of three-
dimensional fractals. They give two different cases of the fractal dimension calculation
process. They also are perfect candidates in showing how the relational model works
These two fractals, though, are only two of an infinitely large class called of fractals
three-dimensional fractals. Just like with two-dimensional fractals, their three-
dimensional cousins can be created by a limitless number of initiator shapes iterated on
by all different kinds of generators.

One way to make a new fractal is to take one that is already known and change
some aspect of its iteration process. This next fractal that I have discovered, I call the
octahedron half fractal. It has the same initiator shape and generator shape as the
octahedron fractal does. The difference is that at cach iteration, only half the surfaccs arc

iterated. The octahedron half fractal process is shown in figures 59, 60, and 61.

Figure 59: Iteration 0 (Generator Shape)







This fractal is great for the ease with which the development of the fractal process can
clearly be seen. Itis obvious that the outer limiting fractal shape is that of a tetrahedron.
‘This fractal has the same fractal dimension qualitics as that of the octahedron fractal as
well as the same surface relation qualities.

There is no requirement that the surface segment be triangular. Square surfaces
could be used and likely many others. Here is a fractal where the initiator shape is a cube
and the generator shape operates on each of the six square surfaces. T call this fractal the

cube 2x2 fractal and it is shown in figures 62 through 70.

Figure 63: Generator Shape




Figures 64 and 65: Iteration 1




Figures 66 and 67: Iteration 2
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Figures 68, 69, and 70: Iteration 3




This is the first fractal shown that doesn’t seem to have a simple outer limiting shape.
There are what appear to be four flat surfaces forming with a similar relationship to cach
other as the surfaces of a tetrahedron have to cach other. The difference is that the
“corners” of the tetrahedron are not only truncated, there is cavity like structure inside
them.

Another very interesting aspect of this fractal is the orientation options available
with the generator being applied to the initiator shape. When the generator is applied to a
square surface there are two possible ways it can do this. This means that the generator
has a degeneracy level of two. This brings a whole new dynamic to fractal construction.

First one has to decide whether to allow cach square surface on the cube to be
iterated with a random orientation or whether the orientation is determined within each
given orientation. Ifitis to be determined, then whether or not it is symmetric to overall
surface structure is another important consideration. Another degree of freedom this
degeneracy provides is what the orientation will be for each iteration.

Say that one decides to have the orientation determined and symmetric for the
overall surface structure. This overall symmetric orientation could be labeled with a “1".
Because of the degeneracy, there is another symmetric orientation and this could be
labeled with a “0”. Bach iteration could then use one or the other orientation. A code
could be created to identify how to construct the fractal. The fractal in the figures shown
above, the orientation code would be 11111111.... or 00000000.... since the orientation
has been kept the same with respect to the corers of the original initiator cube shape.
This produces literally an infinite number of different possible ways to construct a fractal

using this generator.




51

So far, all the fractals that have been looked at have generators that transform the
surface area by first dividing up a surface segment into four smaller similar surface
segments. The triangle was divided up into four similar triangles and the square was
divided up into four similar squares. There is nothing to say that these surfaces can’t be
divided up in different ways. The triangle and square could just as well be divided up
into 9 pieces, or 16, 25, 36, 49...N? pieces. Good examples of this are the next two
fractals. They both have the generator iterating on the square surfaces of a cube. This
time each square s divided up into 9 pieces. The first is called the cube 3x3 cross fractal

and the second is called the cube 3x3 x fractal and are shown in figures 71 through 82.

Figure 71: Iteration 0 (Initiator Shape)




Figure 72: Generator Shape

Figures 73 and 74: Iteration 1




Figures 75 and 76: Iteration 2

Tn =



Figure 77: Iteration 0 (Initiator Shape) Figure 78: Generator Shape

Figures 79 and 80: Iteration 1




Figures 81 and 82: Iteration 2




What the final shapes of these two fractal processes are is unknown. The best guess on
the cube 3x3 cross fractal s that it could very possibly form a limiting outer shape of a

cuboctahderon as shown in figure 83.

Figure 83: Cuboctahedron

‘There are all kinds of different ways to create fractals. Remember that the
initiator shape does not have to iterate on the outside surface. It could iterate inwardly as
it does for the octuple and tetra surface relations. There is nothing the say that it can’t
even iterate on both sides at once. Another idea is that the generator can apply any
patiern of surface transformations. The two 3x3 fractals are good examples of two
different patterns using the same 3x3 segment division. Also, there is no reason why
tetrahedrons can only iterate on a tetrahedron. One could take octahedron initiator shape
and use the tetrahedron generator shape on its outside surface or vice versus with the
tetrahedron initiator shape and the octahedron generator. One could limit the surface
which the generator iterates on the only the new surface segments formed by the previous
iteration. An even more wild is the idea of bringing the icosahedron and dodecahedron
into use for fractal construction. T personally suspect that if one took the icosahedron
shape and iterated icosahedrons on each of s triangular surfaces, they would begin to

form a fractal with an outer shape of a dodecahedron. Even the dodecahedron could be




iterated upon. There would be substantial challenges here though due to the fact it has
pentagonal surfaces and therefore it would be hard to keep a good symmetry

There are all kinds of ways to create an infinite number of different three-
dimensional fractal shapes. There are a few keys to understanding the dynamic of the
fractal surface. The most important one is being able to solve the fractal dimension
equation. In solving it one must be able to determine the scaling factor of the self-
similarity in the fractal. Another important key is having a good understanding of the
roles that the initiator shape and generator shape play in the construction of the fractal.
These two initial conditions alone determine what the fractal will become. Lastly, using
the relational model to investigate how the surface structure transforms from iteration o
iteration. Without this model only general values like volume and surface area can be

determined. With this model, a full picture of the evolving fractal process can be scen.




Conclusion:

There are a few important points about three-dimensional fractals that I wish to

reiterate. First, there is a significant difference between two-dimensional fractals and

th fractals. With two-di fractals, the generator operates on line

segments. Even though a two-dimensional fractal contains no area, it is still embedded in

atwo-di framework. With th fractals, the generator operates
on surface segments. Even though a three-dimensional fractal contains no volume, it is
still embedded in a three-dimensional framework. The impact of this is that two-
dimensional fractals can enclose an area and thus define a boundary line to the arca. In
contrast, three-dimensional fractals can enclose a volume and thus define a boundary
surface to the volume. This allows three-dimensional fractals to model the three
dimensional shapes of the human experience where two-dimensional fractals do not.

It important to keep in mind the difference between the surface arca of a three-
dimensional fractal and the surface growth of the three-dimensional fractal process. At
cach iteration, the fractal generator and the subsequent formation of surface relations
determine the surface growth. The surface area is simply the sum total of all the surface
segments of any given iteration level. If the surface growth is zero, as in the case of the
octuple surface relation and tetra surface relation when seen as fractals, the surface area
will be constant throughout the fractal process. If the surface growth is greater than zero,
the surface area will increase exponentially to infinity at the fractal limit. The surface

growth is what is used to determine the fractal dimension of a given fractal and not its
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surface area. Two fractals can have an infinite surface arca and have very distinct surface
growth rates.

‘The new method of investigating fractal shapes presented in this paper is the
relational model. It is a powerful tool in the study of fractals. When applied to three-
dimensional fractals, it discloses and sheds light on the dynamical nature of exactly how
the surface shape evolves in the fractal process. Once the cycle of creating new surface
relations is complete, all surface relations involved in forming the fractal shape are
known. This allows for the limit shape of the fractal to be completely determined.

Three-dimensional fractals like the tetrahedron fractal, the octahedron fractal, and
the octahedron half fractal are very exciting to study because they take the outer shape of
other simple solids. By using the relational model, these three-dimensional fractals like
expose their true fractal innards showing they are much more than their outer shape
would indicate. Whether there are more three-dimensional fractals that have outer
limiting shapes that are simple solids is not certain. One very likely candidate for this is
the cube 3x3 cross fractal which may form a cuboctahedron. Hopefully this paper will
spur further study into the fractal nature of the mystical and magical shapes that are the

perfect solids.
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