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Thesis Statement· 

ro Pla10, the five perfect solids represented archetypes or irleals of reality. People 

anrl group~ through the millennia have viewed these shapes with awe anrl wonder. They 

have gone so far as to ascribe mystical and magical prop,mies to these objects. I too am 

struck with wonder and a deep appreciation for these shapes because of their uni911e 

properties of symmetry am.I fonn. O,·er the course of the last ten years I have entered 

into thought experiments where I have appl ied fractal processes onto some these shapes. 

As a result, 1 have come to bclicvc 1ha1 these solids arc not just pure Euclidean volumes. 

I think they cont.Bin the property of being nol only fractal initiators but that lliey are 

themselves complete fractals. 

This paper is a treatment of three-dimensional fractals. I will begin by 

in troducing some basic concepL~ of fractals. Then I wil l in troduce lwo three-dimens ional 

fractals, the tetrahedron fractal and the octahedron fr-dCtal, and analy~e them in full detail. 

Both of these fractals huve been stuoli e<l in previous publishod articles. There are some 

important new insights about these fractals that will be presented here. Other three 

cl imcnsional fractals will be presented The51: will nol ~ fully analyz"'-1, h11t used mainly 

to discuss techniques in u.,nstruction ofthree- cl imensional fractals. Trus is intended to 

give ideas and methods of creating an infinite number of different three-dimensional 

fractals 



Dodecahedron - A three-Oimcnsional object with 20 vertex points, 30 edge lines, and 12 
pentagonal surfaces. Sec Figure 5 next page. 

Frnctal An object constructed after an infinite nnmbcr of iterations containing the 
property of self-similarity over an arbitrary magnification or scaling. 

Fractal Dimension - A value assigned to a fractal that characteriz.es the fractal'5 non­
imeger <limensionality. This is determined by solving the fractal dimension cqumion. 

Hexahedron - A three-dimensional object with 8 vertex points. 12 edge lines, and 6 
squan: surfaces. Sec Figure 3 next page. Commonly kOO'>l.11 as a cube. 

Generator - A geometric function that operates on the initiator an<l each successive 
itcranonlcvel. 

Icosahedron - A three-dimensional object with 12 vertex points, 30cdgc lines, and 20 
iriangular surfaces. See Figurl' 4 next page. 

Initiator - The initial geometric inplll shape that is op<..-ni~I on by the generator resulting 
in the first iteration. Also the zeroth iteration ofa fractal process. 

Iteration - Taking the result ofa function thal is operated on aml feeding this result back 
into the same function for the subsequent result 

O::tahcdron - A three-dimensional object with 6 vertex point,, 12 edge lines, and 8 
triangularsmfaces. SeeFigure2 next page. 

Self-similarity An invariance offonn with respect to scaling; in other words. an 
invariance no! with additive translatio11s, but i11variance with multiplicative changes of 
scale 

Tetrahedron - A three-dimensional object with 4 vertex points, 6 edge lines, and 4 
triangular surfaces. See Figure I next page 



Perfect Solids 

Figure I: Tctnhedron 

Figurc2:0ctahedron Figure 3: llexahedron (Cube) 

Figure 5: llodcc11hcdrnn 



Introduction to Fractals: 

In recent years there has been a new development in math and science called 

Chaos theory. This new way oflooking al the world has generated interest in objects that 

are ddincd as fractals. TI1c word fractal derh·cs its meaning from what an:, called fractal 

dimensions. A fractW is therefore an objo.:t lhal has a fraction or oon-integer number 

corrcspomling to its dimensional value. For example, a circular shaped surface is an 

ohjcct that requires two dimensions to be describod and thus has a dimensional value of 

two, whereas a fractal will usually have a value like 1.2578 ... or 2.3454 ... with these 

nwnbcrs being derived from a quotient of two nwnbers. There are a fow fractals that do 

have an integer dimension value. 

Fractals ha,·c almost always sho.,,,Tl themselves lo be infinitely convoluted curved 

lines or surfaces. Because of this convolution, fractal slopes defy the use of calculus on 

them. A classic example is the KO(:h Curve. This fractal will be used as a basic example 

for fractal ide!l!i throughout the introduction. This fractal has a dimension of 1.26186 ... 

l'he method for calculating this numhl'I' will ht: ~hown at the conclusion of thi~ 

introduction. The reason this curved line is a fractW is because its length is infinite, and 

its degree of curvature is also infinite, yet it contain£ no surface area 

As in calculus, the idea of taking a limit is used to dctenninc quantiiative 

characteristics of a fract.\l. A fractal is produced by first starting with an initial condition 

like a given line or surface called the initiator. The initiator for the KO(:h Curve is a 

straight line of arliitrary length. An iteration process is then implemented using what is 

called a generator. Here, a given line with a unit length is changed into a line that is 



broken lnto thirds. ']be middle third line segment is rcplac,:d with two sides of an 

cquilateTlll trianglea>shownin Jigure6 

Figure 6: Koch Cun-·e Generator and Firn Iteration 

This shape is the generator shape and the process of crcatmg it is called iterat ion. This 

process is then repeated on all of the four new line ,;cgmentsand has now l:,c,,n iterated 

twice a,;showninfigure7 

Figure 7: K~h Cu rve ~ond lleralion 

By iter.1.ting an infinite number of limes a fractal is fonned . The actual fraclal curve 

would be impossible to completely picture since there is a finite limit to the level of 

resolution that humans can pen::eive. Still, the infinite iteration of the Koch Curve would 

look something close to figure 8 



Flg11re8: Kocb C 11r\'e Fractal 

In math, a value produced Imm an infinite number of operations is called a limit 

Therefore the limit of the infinite iteration process or the sum of all the iterations is the 

fractal i15elf. Often the whole process is called the fractal process and the limit is cal!cd 

the fractal shape or just frnclal. This type of fractal is called an exact ur delmninistic 

fractal because its gcncnuor can be completely known by mathematics. Hcuce all 

subsequent itermiQns and the fina l limit arc also completely determined. The other type 

of fractal process where the generatcJr is governed by probabilities or statistics and yields 

what are aptly called statistical or random fractals. All frnctals discussed in this paper 

wi ll he deterministic fractals. 

In almost all cases the final or limiting fractal shape looks infini tely complex. 

Another "'simple"' example of a fractal and its first few iterations of the frncl.al process are 

showo in figures 9 throughl2 

Flgurt 9: Bushy Shape Gc11cra tor aud First Iteration 

. LI__-EIJ -. L 



Figure 10: Bushy Shape Seeood lleratiuo 

Figure 11: Ku,h}· Shapr Third Iteration 

. - - ~ 
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Figure 12: Busby Sh•pe Fourth ltcr•tio n 

The initiator of this fractal process is a straight-line segment. The generator and first 

iterat ion is figure 9, At each subsequent itcracion, all straight-line segments arc rgilaccd 

by the generator structure. As subsequent iterations de~·elop a branching h,rnh like 

structure forms 

The most important quality of all fractals is self-sim ilarity. Thi s means that at an 

arbitrary number of magnification levels or scalin gs then: will he found exact replicas of 

the whole fracta l. Essentially a fractal is self-similar because it is composed of smaller 

copies of itself. Each of these copies is in turn made up of copies of themselves. Tliis 

process goes on and on through an infinite number of scalings . TI1ere is one restriction 

with this. Each scaling of the fractal mnst he done in relation to a particular ilcrmion 

le,•e l. The Koch curve, for example, has a self-similarity scaling Je,•el ofthrcc due to the 

. ---~ 
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fact that at each subsequent iteration, line :;.cgmcms arc one-third the length of the line 

segments in the previous iteration. 

Another imrn:sting idea in ciuting froc1als is to have a generator tha( doeo not 

operate on the initiator as one unit, but on multiple similar pieces of(heinitiator. A good 

example of thi s would be to apply (he Koch Curve generator to an object with multiple 

straight-line segments. Take an equilateral triangle for instance. It contains three 

straight-line segments of equal len gth. Applying the Koch Curve generatur lo this shape 

would produce the first iteration ofa fractal process as shov.-n in figure 13. 

0 
Figur~ l 3: Koch Sno wDakc Firs, hention 

Unlike the previous fractals, here the generator and the first iteration arte not the same. 

The second iteration and third iteration again repeal the same procc:ss as before by 

applying the generator shape ltl all the new straight li ne segments created by the prc,·iou.s 

iteration as shown in figures 14 and 15 



Figure 14: Koch Snowflake Second Iteration 

Figore 15: Koch Snowflak e Third It eration 

When 1his process is taken to the infinite limit the fractal shape called the Koch 

Snowflake Fractal is formed~ shown in figure 16. 

. ----- - ----
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Fi gu re Hi: Koch Sno" ·flake Fractal 

The possihi litics for different fractal shapes in the two-dimeusional realm are literally 

limitless. Any type of generator can be applied to any number of difforcnt initiator 

combinations. For anyone interested in more examples of fractals. in the bibliob'Tllflhy 

section of this paper is a listing of some gornl lx>oks on fractals and chaos theory for 

fonhcr stlldy. Of course. the best way to study them is simply to create aml discover 

them for one's self. 

Now with the understanding of what a fractal is and how it 1s formed, it is 

important to conclude the introduction with a discussion of how to cakolate the fractal 

dimension ofa fractal. The first thiug to determine is what number of dimensions are the 

parameters of an object changing. For a line, the change is one of length and therefore iu 

one dimension. For a surface, the change is one of area and therefore in two dimension, 

The Koch Curve has a parameter that changes kngth and therefore has a par.imetcr 

dimension of one. Next. it is important to know the scaling factor of the fractal. This is 

found by looking at the relative size or area of similar segmeuts in subsequent iterations. 



As mentioned before. the Koch Curve has a scahng factor of three. The third and final 

piece needed is !he ratio of the number of similar segments in one itnation with the 

number in the iteration previous to it. For some fractals this is a constant and therefore 

easy to detem,ine. The Koch Curve has a constant ratio of four bocausc there is always 

four time£ the number of line segments in an iteration when compared to the iteration 

previous to ii, For others this ratio can change from iteration to iteration. In \his case the 

thing to do is to take the ratio value at the limit as the number of iterations goes to 

infinity. This w ill give a limit ratio and thus an overall fractal dimension. It is important 

to look closely at the fracta l process of these fractals with changing ratios. Even though 

the overall fr.ictal dimension is some rarticulu number, as will be seen with the 

octahedron fractal, there cau exist par1s of the fractal surface that have a distinctly 

different fractal dimension to them when looked at in isolation. 

With information on the dimension of the changing parameter, scaling factor, and 

segment ratio. the fractal dimension can be detenn ined using equation 1 

Equll tion 1: Bast Fract&I Dimension Equation 

In this equation R is defined as the segment ratio, Dis defined as the changing parameter 

dimension. S is defined as the scaling factor. and F is defined as the frnctal dimension of 

the obJcct. Wh&t this equation says is that the segme11t ratio to the parameter dimension 

. ------ ----~ --=---a • I 



power. in which it propagates, is equal to the scalin g factor w the fractal dimension 

power. in which it propagates. The motivation behirid 1his equation is to relate the 

dimension in which the segment ralio operates to the dimension in which the scaling 

factor operates. To fintl lhc fractal dimension this equation 1s solvetl for Fa.~ shown here 

with !he solution as equation 2: 

Lo(S') - Lo(R") 

F*Ln(S) - D*Lo(R) 

F = D*Ln(R)/Ln(S) 

Rqualion 2: Fnctal Dimension Equation 

Equation 2 is the Fractal Dimension Equation used in this paper to determine all fractal 

dimensions. There arc other methods to determine the fractal dimension of a fractal 

shape. Tilcy all lead to Uie same !lllSWer and contain basically the same ingredients. This 

one is preferred here bcx:ause oftlic intuitive nature behind the original base equation. 

Also. the concept of fractional dimension is well displayed in this equation. Tt is 

pnmarily a quotient of two logarithmic numb ers creating a fraction. Calculating the 

. --~ ----
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fractal dimension of the Koch Curve as good example of the useoftheFmctal Dimension 

Equation. This is shown in eq11ation 3 

D -1 , R - 4, S - 3 

F- l*Ln(4)/Ln(3) 

- l.2618595071429 ... 

Equation J: Fractal dimcnsion oflhe Koch C urve 

The importance of frnctal dimension is twofold. First it allows for two different 

fractals to be compared in terms their respective scaling factors, segment rnhos. W1d 

parameter dimensions. This gives a very quantilativc characteristic lo the fractal thm will 

differentiate different fractal processes from one another. Second it allows for a fractal \0 

be compared w ith non-fractal shapes w ith respect to their overall dimensi<.m. This gives a 

very quali1a1ive characteristic m the fractal, which can differentiate fractal processes from 

non-fractal processes. As will be seen with both the tetrahedron fractal and the 

octahedron fractal, the determination and value ofa fractal dimension plays a very 

important role in analyzing: shape and structural aspects ofa fractal 

Three-dimensional fractals can be constructed in the same way that two-

dimensional fractals an;. The reason they an: called thre<.:-dimensional fractals is not 

bccaL1sc their fractal dimension is three. It is because the fractal shape is embedded in 

three dimensions that they an; called three-dimensional fractals. The fractal dimension is 



determined with the same fom,ula. Instead of the parameter dimension (D) being one as 

in most two-dimensional fractals, it is two with three-dimensional fractals 'Ibis mcMS 

that what is changing with each iteration is a surface and not a line . W11en the segment 

ratio (R) is determined, each segmenl is now a polygon shape like a triangle or a square 

The scaling factor(S) wi ll now he a relation between the surface area of one segment to 

the surface area ofa simi lu segment in a successive iteration 

Two three-dimensional frnctals of special interest are the tetrahedron fractal and 

the octahedron fractal. Both of these fractals arc interesting because unlike most fractals, 

these two seem to form a very simpleoutershapcofa cube. Figure 17 shows the 

relationship between a tetrahedron, an octahedron, am:! the cube they form as fractals 

Figure 17: Octahedron In sc ribed in a T etrabcdron In sc ribed in a Cube 

It is this cube that is the same limiting shape for both of these frndals 



There are two published articles that have been found regarding the tetrahedron 

and octahedron fractals. The first article, ~A Fractal Excursion" by Dane R. Camp [1 ], is 

a very nice imroduction to what a fractal is and how a fractal is created. Camp goes into 

a basic description of the tctr.thedron fractal and briefly mentions the octahedron &act.al. 

His focus is on the observation of the convergence and divergence of diffr,rent properties 

ofa fractal. He shows that the tetrahedron fractal converges to a finite ,olume in three 

dimensions yet diverges to infinite surface area in two dimensions. He also shows tha1 

the limiting volume of the tetrahedron frnctal is cubic. Even though this article i~ 

designed primarily for high school students to motivate interest in math, it serves as a 

good beginning to the c~ploration ofthree--<limensional fractals 

The sc-.:ond article. "'Tetrahedron and octahedron fractals" by Herbert Zeitler [2], 

is more advanced and looks at both the tetrahedron fractal and the octahedron fractal 

Zcitlcrtakesthcncxtstcp:llldactuallypro,·esthatthe limitingshapeofthc.1 cfrac1 alsis 

1hat of a cube. Ile does this by using geometry to analysis the different angles that are 

fonncd from iteration. He uses the ,·ery imponant concept of symmetry to show that 

1hcse angles propagate throughout the entire iteration process. This proof shows that both 

the tetrahedron anti octahedron fractals do not grow outside of th e hmiting cube shape 

and that they do converge to th3t exact outer shape. Although this article can be seen as 

building on the fir:st one, it is complete and restates the proofs of the first paper. Another 

important thing that Zeitler shows is the fr.1ctal dimension of the fractals. Ile uses a 

somewhm different method to do this, but as will be seen, the answer is the same 

Interestingly, he shows that both of these fractals have the same dimensional va!ue of 

2.58496 ... 

. - -----~ - ----
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Tetrahedron Fractal· 

The tetrahedron fradal is a spocial fractal for me. Abo1.1t ten ycan; ago I was first 

beginning 10 study fractals. I had learned about the Koch Curve and its application to a 

triangle forming the Koch Snowflake. I thought it would be interesting to try this in a 

th ree-d imensional way. Instead of iterating a line. I wo1.1ld iterate a surface. Keeping with 

the theme of triangles, I thou!!hl a good candidate ini1iator shape would be the 

tetrahedron as shown in figure 18. 

Figure t 7: Iteration O (Tetrahedron) 

J envisioned each triangular surface iteratin g to make a new tetrahedron shape at its 

center as shown in figure 19 and 20 

------------- - . 
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Figure 19:Triaugk Figure 20; Genern1or ShMpc 

When this gencrator 1s applied to the initiator the resul ting iteration is as shown in fignrc 

21 and22 

F'lgures 21 and 22; Iteration I (St arOciahedroo) 



This is the exact same shape as ,vhat is commonly called a s!aroclllhcdron. The second 

iteration of one triangle surface is shown in figures 23 and 24. The second iteration of 

the tetrahedron is shown in figures 25 and 26. The third iterauon of one triangle is shown 

in figul"C.'! 27 and 28. The third iteration of the tetrahedron is shown in figures 2\1 and JO. 

Figures 23 and 24: lttra llon 2 of Triangle 

Figures 25 and 26: Iteration 2 of Tetrahedron 



Figures 27 and 28: Iteratio n J of Triangle 

- ----- ----
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Figures 29 and 30: Iteration 3 or Tetrahedron 

. ---------~ 
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The first time I realized that the outer limiting shape was a cub-e was after I had 

completed the second iteration of the fractal! This was an amazing epiphany for me and 

that is how my intere:st in three-dimensional fractals started . Since then, I have created 

sever,11 other thrce-dimcn~ional froctals. The tetrahedron fractal will always be my 

favoritethout,J, 

The firsl item of interest about the tetrahedron fractal is to look at how the volume 

contained by the sutfacc changes over each iteration and what the volume is a( the fracta l 

limit. Table 1 shows this analysis. 

ab le 1: Anal sis of the Volume Evolution for the Tetrahedron Fractal 

teration N [A,i"dl. Tetrahedron# (T Jlirldl. Tetrahedron Volume (V otal Structure Vo lume X 
1 1 

1 0.12 1. 
2 0.01562 1.87 

14 0.00195312 2.1562 
86 0.000244141 2.367187 

518 3.05176E-O 2.52539062 
3110 3.8 147E-0 2.64404296 

18662 4.76837E-0 2.73303222 
111974 5.96046E-0 2 .7997741 
671846< 7.45058E-O 2.84983062 

1 

1 4031078 9.31323E-1 2 .887372971 
11 24186470 1.16415E-1 2.91552972 
1 145118822 1.45519E-11 2.93664729 
1 870712934 1.81899E-1 2.95248547 
1 522427760A 2.27374E-1 2.9643641 
1 3.13457E+11 2.84217E-1 2.97327307 

lnfinit lnfini '" Thre 

Formulas: T = 4'6" N-1 V:(1/SY't X = SumofT'Voveralt 
Fractal volume conve es to 3x the volume of the o · inal tetrahedron. 
This is the same volume as a cube inscribed b the oil( inal tetrahedron. 

The analysis shows that the volume docs converge to a finite limit ofthn:e times the 

volume of the original tetrahedron. This 1s exactly the volume of a cub-e thal h~ the 

. --- - - ----~ --- , 
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generator tetrahedron srulP" inscribed inside it (see back to figure 17). As has already 

been mentioned, the actual Older shape limil of the tetrahedron fractal has been proven to 

bcacubcbyZeitler[2]. 

Another item ofintcres1 that can be leanml about the tetrahedron fractal is what 

the s1.1rface area of the fractal limit is. Table 2 shows an analysis of the surface area. 

ri'abie 2: Analvsis of the Surface Area Evolution for the Tetrahedron Fractal 

Iteration N rian le Surface# IT ) rian le Area A otal Structure Surface Area (X 
4 \ 4 

\ 24 0.2 
144 0.062 
864 0.01562 13.5, 

5184 0.0039062 20 .25' 
31104 0.00097656 30.375 

18662 0.000244141 45.5625 
111974 6.10352E--O 66.34375 
671846 1.52588E--O 102.515625, 

4031078 3.8147E- 153.7734375 
\ 24186470, 9.53674E--O 230.6601563! 
\\ 145118822 2.38419E--O 345.9902344 
\ 870712934 5.96046E-0 518.9853516 
\ 5224277606 1.49012E-0 778.4780273 
\4 3.13457E+1 1 3 .72529E-O 1167.717041 
\ 1.88074E+1 9.31323E- 1 1751.575562 

lnfin· lnfinit Ze lnfini 

Formulas T 4*6" A"(1/4p X-T" 
Fractal surface a rea diverges to infinit . 

The analysis shows that the surface does go to infinity, as one would expect for this 

fractal 

A th ird item of interest is the fractal dimension of the tetrahedron fractal. Table 3 

shows an analysis of calculating the segment ratio for the tetrahedron frnctal and the 

subsequent value for the fractal dimension. 

. --- ---------~ 
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Tabla 3: Analysls of the Fractal Dimension for the Tetrahedron -
Fractal 

Iteration of Initial Surface Segments of Generated Surface SP.<lments atio 
Ni. 4 Ni~ 

1 24 6 
2 14 6, 

14 86 6, 
86 518 6, 

510 3110 
31104 18662 

18662 111974 
1119744 67184fi 
671840< 403107tl 

1 403107tl' 24186470-
lnfinit lnfini lnfinit s; 

atio of Edae Lenaths: Initial to Generated "' 2 
ractal Dim."' 2•1n 6 / In 4 "'~.584962501 

11 he tetrahedron fractal has a constant dimension on its entire surface 

All the infonnation shown so far about the tetrahedron fractal has already been 

published. Unfo1tunatcly, none o f this shows what the actual shape of the fr<iet.al sur face. 

Up unt il now there has been no analysis done on what the shape the fractal ~urfacc 

actually has. After examining this fractal for many years now I have discovered 

something very important and exciting about this fractal. The shape of a cuhe is indeed 

the outer limit to the fractal surface . There is alw, completely contained inside the cube, 

anoth,:,-r whole surface dynamic going on. 

In order to comp letely un(lerstand the dynamics of a given thrcc--dimcnsional 

fracta l. one has to be able to completely describe the changes th at occur bctwcrn eac h 

successive iteration. To do this l use what 1 call the relational model. As the fracrnl 

process moves from one iteration to the next. individual surface segments can be paired 

up wi th other surface segments in reoccurring surface relations. Each distinct surface 



rela11on always produces the same new set of relat ions after a single iteration. If all the 

different surface relations and what they produce can be learned for a particular fractal, 

then the entire dynamic of that fi"actal surface can be known. 

The initiator of the lelr<lhedron fractal has four similru- equilateral surfaces. The 

suhsei:iuen t itemted tetrahdcronal surface structures on each of the original surfaces will 

touch each other at only at shared vertex points. They do not share edges or surfaces as 

,;an be seen in the prc~·ious figures 20 and 21. Because of this, the iteration of one 

surface will <levdop in complete isolation 10 the other three surfaces. Since this is the 

case, there is no surface relation other than a single surface relation for the generator of 

the fractal. After the first iteration there are twenty-four new equilateral triangle surfaces 

exactly one quarter the area of the four original triangular surfaces. Each surface is 

paired up with anochcr one to make twelve identical angular relationships called double 

surface relations and on~ is shoWTI in figure 31 

i/igurcJl;DoublcSurfMccRelMtlon 

Each of these paired surfaces will iterntc in the c~act same way as shown in figures 32 

and 33 . 

.----- - -----~- -~ 
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~·igure5 31 and 33: Double Su dace Relation lteratiun 

After this second iteration. there arc now two more double surface relations created for 

each original double relation ilJld a new relation is created. Two quadruple s urface 

relations are fanned as shown in figure 34 

Figure 34: Quad Surface Relation 

~--- ---- - -----
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Jt has the structure o f a pyramidal rndentation and is really two double relations paired 

together. All suhscquent iterations of any double surface relation will create the same 

structure as above wi th lhe only difference being the size of its surface area. 

The quadruple surface relation does something new when it Iterates as shown in 

figures 35 and 36 

Mguru 35 and 36; Quad Surrace Relation Iteration 

Jt creates four new quadruple relations of one-quancr area and it creates a com l)letcly 

enc losed octahodron. I call this anoctuple surface relation and it is shown in fi gure 37. 

Figure 37: Octuple Surface Relation (lm;ide SurfaeeofOet~bcdron) 

. ------- --- -
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The ocmplc surface relation is really t\\-·o quadruple relations paired 1011:elher. It 1s 

important to keep in mind thal this octahedron is really inside out. The inward side of the 

octahedron surface is the actual "outer"' iterating surface of the tetrahedron fractal. So the 

next iteration will be inward towards the octahedron's center. All subsequent iterations 

of any quadruple surface relation creates the same structure as above with the only 

differenceheing:thesiuofitssurfacearea 

The octuple Slltface relation docs somcthiug new . ll forms si:,;: enclosed octuple 

surface relations with one-quarter lhe area of the original, but it fonns no n~w surface 

relations. All subsC(juent iterations of an octuple surface relation wil l repeat this process 

exactly as shown in figures 38 and 39. 

Flgurts 38 and 39: Oc1uple Surface Relation lttralion 

After the third iterat ion, no new surface relations are created. The fi-actal 

continues to form double, quadruple, and octup k surface re lations. The evolution of the 

tetrahedron surface can he seen to have stabilized after this point. By being stabilized I 



mean that the limi ting shape of the fractal surface can be completely dclermirlNl.. Since 

!he shape of the surface is nothing more than triangu lar areas connected to other 

triangular arc:as, the shape is completely detennincd by the angular relationship between 

adjoining triangles. This is how the relational model works . Once the cycle of relation 

creating ends, and all the possible re lations and what they make are known, 

understanding the surface dynamic of the fractal is done. Table 4 is an IIIlalysis of the 

surface relations for tetrahedron fractal. 

able 4: Anal sis of Iha Evolution of Sur1ac• Relations for ~ 7 
ona Tri•~I• on 111• Ta1rahadron Fnietal 

nitilll Surface Area• 1 otal#of: otal#of Total Surface Area Comprisedbu•I 
.,;.:..·ation,;;:::;-111 ouble Np,lei-w"uple r~,~lel"loubleh ,adNnlen,,,.,ple 

297 43 466 

120 266 2799 

30 31426 4.4E•O 3.6E• 
61 1257676 2.7E• 

122 5031936 1.6E~ 1.JE•1 
2457 2.01E+O 9.7~ 7.8E•1 

2.25 
0."' 2.612 4.6875 
0.04 2.9052 0.437'= 

14_1093FI 
0-01 2.9 7656 22.6406i 
0.(lC 35.4492 ;,i 

0.001 2.9970 B3.41l90 ,; 
7E-" 2.99653 126.7471 
4E-" 2.999= 
2E-ll 2!16.9294, 

hedoublerela11onsevotve ln1otheedoMolthellmrtlnacube 
hisconforms wilhthemcom""'sln noneofthelractalsurface area atiof111 i"' 
he uadru-1erelationsevotvelnto1hefi nite surfece areaor lhel imiti""Cube 
hl1confom1swi1hthem~1in 11finite 1urfnceareaat infini"'. 
heociu le rolationscontainlheinlinrtesurfaceareaoftherractal. 



Thn:c main qualities to the fractal suTface can be sCl.ln. The double surface 

relatioru; arc always creakd along an edge of the limiting cube shape. At infinity they 

actually create this edge. The combined surface area of all the double surface relation, 

goes to zero. This makes sense since the edges of the cube have no area. The quadruple 

rnrface relations are always created along a suTfacc of the limiting cube. At infinity they 

actually make this surface. The combined Mea of all quatlruple surface relations is a 

finite ,·alue. This make, sense since it the surface of the cube has a finite area. The 

octupk >urfacc relation is always created within the general volume of the cube. There 

are an infinite number ofthcsc enclosed octahedral shaped surface regions. Even though 

the combined volume contained within all the octuplc surface relations goes to zero as 

i1cration goes to infinity, their combined inward surface area does not. The sum total of 

the surface area of all these infinitely small surface nodes goes to infinity. This is where 

the infinite surface area of the fractal is "hidden". This inward iterating s\ructure,;an be 

seen as an entire fractal in itself. This inward iterating fractal has the same fractal 

dimension a., it's parent, the tetrahedron fi-act.al. With this information the surface of the 

tetrahedron fractal is compklely described and hence the fractal itself is completely 

d~ccrmincd. 



Octahedron fractal· 

The octahedron fractal, not s11rprisingly. has an initiator shape of an octahedron as 

shown m figure 40, 

Figure 40: Iteration O (Cktabedron) 

The generator operates on triangu lar s11rfaces as before except that instead of tetrahedrons 

being generated, octahedrons are generated as sOOwn in figures 41 and 42 

Figure41: Triangle Figure 42: Generator Shipe 

. - --------- -----~.-..--al • I 



\Vhen this generator is applied 10 the mitiator 1he resulting itcrati(m is as shown in figure 

43 and 44 

Figures 43 and 44: Iteration I 

The second iteration of one triangle surface is shown in figures 45 and 46. 

Figures 45 and 46: Itern1ion 2 or Triangle 



The second iteration of the octahedron is shown in figures 47, 48, and 49. 

Figure~ 47, 48, and 49: Iteration 2 or Odabedron 

. ~--~ - - -~ 
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Aller the second iteration it is easy to= why the limiting shape for this fractal process is 

a cube. 

Again, the first itrm of interest aboul thlloctahedron fracllll isto look at how the: 

volume contained by the surface changes over each iterat ion and what the volume is al 

the fractal limit. Table 5 shows this analysis. 

~ Analysis of the Volume Evolution for the Octahedron~ --
teration NJ ddl. Octahedron# 0 ddL Tetrahedron Volume(\/ ) otal Structure Volume X 

1 1 1 
1 1 2 

5 0.87 2.875 
36 0.7187 3.59375 

233 0 .570312 4.1640625, 
1452 0 .44335937 4 .607421875 
8921 0.340332031 4.947753':.K.H:!i 

54348 0 .25915527 5 206909 Hli 
329369 0 .1 963195 5.4032287{S1 

1989324 !II 5.55144500 11 
1 11988377 5.663095474 
11 72139980 5.747077465 
1 433678745 5.810186028 
1 2605427916 0. 5.857578486, 
1 1.5646E+11 0 .035574861 5.89315334 
1 9.39296E+11 0.026696404 5.91984975 

lnfini lnfinin '" s; 

Formulas. o :2•eAN-4" V:: (1!8)"N X"' Sum of T"Vover all 
Fractal volume converoes to 6x the volume of the oriainal octahedron. 
This is the same volume as a cube ins cribed b the oricinal octahedron. 

TI1c analysis shows that the volume does converge to a finite limit of six times the: 

volume of th ~ origi,ml octahedron. This is exactly the volume ofa cube that has the 

generator octahedron shape ins cribed inside it (see back to figure 17). As has already 

been mentioned, the actual outer shape limit of the octahedron fractal has been proven to 

bcacubebyZcitlcr [2] 

. - ------ -----~ 
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TI1enext item of interest that can be kamcd about the octahedron fractal is what 

the surface area of the fractal limit is. Tab le6 shows an analysis of the surface area. 

!Table 6: Anal sis of the Surface Area Evolution for the Octahedron Fractal 

Iteration N rian le Surface# rT\ riangle Area (A ) otal Structure Surface Area X) 

I 

1 8 
1 8 0.2 20 

60 0.062 38 

""' 0.01562 65 
2700 0.0039062 105.5 

17024 0.00097656 166.25' 
10542 0.000244 141 257.375 
645632 6.10352E-0 394.0625 

3926220 1.52588E-0 599.09375 
2376704 3.8 147E-0 906.640625. 

1 143441100 9.53674E-0 1367.9609381 
11 864002048 2.38419E-0 2059.941400 
1 5197434060 5.96046E-0 • 1 3.12383E+11 1.49012E-0 
14 1.87644E+1 3.72529E-0 
1 1.12673E+1 9.31323E-1 

lnfin i lnfinit Ze 

Fonnulas: =4• 6" N+11-4" N+1) A= (114)" X-T'"Ai 
Fractal surface area divel"(les to infinit . 

Like the tetrahcdron frac tal tlic analysis shows that the surface docs go to infinity, as is 

expected 

A third item of interest is the fractal dimension of the octahedron fractal. Tahle 7 

shows an analysis of calculating the segment rat io for the octahedron fractal and the 

subsequent value for the fractal dimension . 

..---- - -----~-------
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able 7: Analysis of the Fractal Dimension for the Octahedron Fractal ,---, 
teration of Initial Surface Seaments of Generated Surface Segments atio 

NI NJ> 
1 8 10 

8 6 7.6 
60 41 6.8421 

41 '"' 6.4923 
2700 17024 6.3033 

17024 10542 6.1925 
10542 64563 6.1243 
64563 392622 6.0812 

392622 2376704 6.0534 
1 2376704 1434411 6.0353 
11 143441100 864002048 6.0234 
1 864002048 5197434060 6.0155 
1 5197434060 3.12383E+t 16.0103. 
1 3.12383E+t 1 1.87644E+1 6.0069i 
1 1.87644E+1 1.12673E+1 6.00461 

lnfinit lnfinit lnfinlt Si.-.:1 

he ratio is not constant over a finite number of iterations. 
he ratio does conver e al infinil to 6. 
his is the same ratio as for the tetrahedron fractal, 

~ 
herefore the overall Fractal Dim. " 2.584962501 

The octahedron fractal is an examp le of a frnctal that has a changing segmem 

nttio. Toe limiting value as iteration goes to infinity shows that this segment ratio docs 

converge to a finite value of six. This is the same ratio as with the tetrahedron fractal 

With the same segment ratio and same scaling factor of four, it iscenain that the 

octahedron fractal has the same overall fractal dimension as the te trahMron fractal. Bm, 

unlike the constant segms,nt ratio of the tetrahedron fractal, the changing segment ratio of 

the octahedron fractal ,Joes not certify that the fractal dimens ion is constant throughout 

the entin: fractal surface. It only shows that there is a patticular overall fractal 



dimension. This is a very important distinction that will ha\'e an effect on what is learned 

through the rclaliomal model when it is applied to the oclahedron fractal 

The initiator of the octahedron fi:actal has eight similar equilater-dl surfaces. Like 

the tetral1edron fractal, !ht, subsequent iterated octahedral surface structures on each of 

the original surfaces will touch each other at only at shared vertex points. They will 

never share edges or surfaces. Because of this, the iteration of one surface will develop 

in complete isolation to the other seven surfaces Since, this is the case there is no 

surface relation other than a single surface relation for the generator of the fractal 

After the fir.;t iteration, each original triangular surface of the original oo::tahedron 

has generated one new octahedron in its center. There arc two types of surface relations 

created here. There arc four new non-paired or single surface relations and three double 

surface relations. Thesc <loubk surface relations ari: not the same u for the tetrahedron 

fractal. The angle between the surfaces is different. On subsequent iterations, the 11011· 

paired surfaces will <luplicate lhe res uh of the first iteration. This <loubk surface relation 

is shown in figure 50. 

Figure SO: llouble Surface Relalion 



After the secoud i1cration. the double surface relation5 will share in crcaring one 

new octahedron surfac,, as in figure 51 and 52 

Fii:ures 51 ,md 52; Double Surface Relation Iteration 

This is different than in the tetrahedron fractal where all triangular surfaces always create 

their own new tctnlhcdron. As can be seen in the figure, iterating a double surface 

relation, creates two single surface relations, creates two double surface relations, and 

creates two of a new relation called the triple surface relation as shown in figure 53, 

figure 53: Triple Su rface Relation 



All subsequent double surface relations will create the exact same sc:tofrelatio11S with 

each triangular surface being: one quarter the area of the previous iteration. 

After the th ird iteration, each triple surface relation will create exactly one new 

octahedral surface similar to lhe double surface relation only there are three triangular 

surfaces sharing an octahedron a/; shown in figure 54 and 55 

FigurH 54 and SS: T r ip le Surf•~ Relation ltera1lon 

Again, some previous surface formations are created and a new one also. One 

single surface relation is fonned, three triple surface rclatio115 are formed, and one 

c,;;,mplctcly cocloscd tetrahedral surface is formed. All subsequent triple surface relations 

furn, the same nurnbe,- ,md type of structures as this original one. Like the enclosed 

octahedron of the tetrahedron fractal, the inward surface of the enclosed tetrahedron is 

really the "outer" evolving surfac e of the octahedron fractal. To distinguish this from the 

quadruple surface relation, it will he called the tetra surface relation as shown in figure 

56. 



Figure Sli: Tetra Surface Rdatlon (ln11ide Surrace ofTerrahedron) 

After the founh iteration, these four surfaces will all share in forming one new 

octahedral surface c:nclo~cd with the tetrahedron shape. This fom1s four new enclosed 

lctrn surfaccrclahon> as sho"'n in figUTCS 57 and 58. 

Figure~ 57 and S8: Tetra Surface Relation ltcrntinn 



Like the tetrahedmn fractal, there are no new surface relations created afler the 

third iteration. Again the surface structure of the octahedron fractal can be said 10 have 

stabi lized and the limiting shape of the fractal can be completc!y determined . Unlike the 

tetrahedron fractal, the surface of the octahedron fractal cannot be easily divided into two 

regions that of non-enclosed areas forming the outer cube and enclos ed areas containing 

the infinite fractal area. Table 8 shows an analysis of the surface relations of the 

octahedron fractal. 

Table 8: Analysis of the Evolution of Surface Relations for 
one Trlancile of the Octahedron Fractal 

Initial Surface Area = 1 otal#of: otal #01 otal Surface Area Comprised b : 
teration inqle ouble ri le etra rian les inqle Double riole , tra 

1 1 0 
1 1 1. 0 

1 7 1.37 2.2 1.12 1$ 
13 10 52 2.031 3. 187 2.531 3.37 
77 5 36 7 337 3.0391 4.64 4.2891 5.7187 

466 352 228 67 2128 4.558 6.878 6.697 8.9296 
2799 2104 1390 499 13177 6.834 10.27 10.18 13.576 

16796 12606 837 33894 80704 10.25 15.38 15.34 20.456 
100777 75601 50350 21936 490777 15.37 23.07 23.04 30.731 
604681 453534 302254 138096 3E+0 23.06 34.60 34.5 46.1 203! 

1 3.6E+0 2.7E+0 1.8E+0 654640 1.8E+O 34.59 51. 51.694 69.192..:1 
11 2.2E+0 1.6E+~ 1.1E+0 5.2E+0 1.1E+0 51 .69 77.84 77.64 103.7~ 
1 1.3E+0 98E+Oi 6.5E+0 3.2E+0 6.5E+0 77.64 116.7 116.7 155.694 
1 7.6E+0 5.9E+O' 3.9E+O 1.9E+0 3.9E+1 116.7 175.1 175.1 233.543 
14 4.7E+1 3.5E+ 1 2.4E+1 1.2E+1 2.3E+1 1 175.1 262.7 4 262.7 350.31s: 
1 2.8E+1 1 2.1E+1 1 1.4E+11 7E+1 1.4E+f 262.7 394.1 394. 1 525.4721 

lnfinit lnfini lnfinit lnfinit lnfin· lnfin· lnfinit lnfin it lnflnit lnfinil'.i 

II relations contain the infinite surface area of the fractal 
II surface rclatians contain an mfimtc surface an:a at the fr.1clal !imil. Except for the 

tetra surface relation, then: is no way to isolate what type of relation is building what 

particular part of the limiting cube shape. 



Since the tetra surface relation is completely enclosed, it is not involved in 

creating the outer shape of the fractal. This enclosed iterating region can be S<.'Cn as a 

fractal in i1self. '\\'h.,r, looked as such the results arc very surprising. The scaling factor 

for this new fractal is the same as its parent al four. The segment ratio i~ different 

though, with a value of four insteOO of six. This means the fractal dimension for this 

objed is 1wo! This really does make sense on a second look. At each i!Cration four, 

surface segments are being replaced with only four new surface segments. The value for 

the total surf~ area stays the constant for each iteration. 

Question: Will the fractal dimension of the octahedron fractal change if none of 

the tetra surface relations arc included in the calculation? Table 9 shows this analysis. 

fr able 9: Analysts of Fractal Dimension for the Octahedron Fractal -- -
not lncludin"' the Tetra Surface Relations 

Iteration of Initial Surtace Seaments of Generated Surtaoo Segments atio 
Ni Ni 

1 8 1 
8 60 '· 60 413 6.80263 

413 2669 6.454545; 
2669 16752 6.275397 

16752 103421 6.173392 
103421 -6320744 1 

38364744 5 
1 23214653 1 
11 1400225;= 7 
1 843072471 5070181335 6.013933 
1 5070161335 3.04681E+11 6.009266 
1 3.04681E+11 1.82996E+1 6.006166 
1 1.82996E+1 1.09873E+1 3 6.004107 

lnfini lnfinit lnfinit Six 

he ratio still converges to six at 

I nfinitv. -



lbc ansv,,er is clearly no Ilic overall fractal dimension is not affected by the removal of 

the tetra surface relations. The fractal dimension of the octahedron fractal is the same 

with or without them. This is a very interesting result. Apparently, a fractal like the 

octahedron fractal can have regions when, the fractal dimension is distinctly different 

from the overall fractal. These regions are like pockets of two-dimensional reality 

embetld~d within a higher fractal dimensional nnicturc. These regions exist both at any 

finite iteration above three and at the infinite iteration. 

This fractal has shown itself to have quite different quali1ies from lhal of 

the mrahcdron fractal. Without the use of the relational mo<lel, a comrletc 

understanding of the fractal ~urface dynamic would not be obtained . With it, the tetra 

surface relation is discovered and also a recognition lhat the single, double, and tripk 

surfocc relations collectively form the fractal dimc11Sion and outer cube shape of the 

fractal. This infonnation provides a complete description of the surface of the octahedron 

fractal and h~nce the froctal itself is completely dctcnniucd 

. - ---------~ :r.--s- _a__i_:_ 



Constructing Three-dimensional frac tals· 

The 1etrahedron fra<:tal and the octahedron fractal are excellent examples of three. 

dim~-nsional fractals. They give two different cases of the fractal dimension calculation 

process. They also ore perfect camlidates in showing how the relational model works 

These two fractals, though. are only two of an infinitely large class caUed of fractals 

three.dimensional frnctals . Ju51 like with rwo-dimeru,ional fractals, th cir three-

dimensional cousins can be creatOO by a limitless number of initiator shapes ilerated on 

by all different kinds of general on; 

One way to make a new fractal is to take one that is already known and change 

some aspect of its iteration process. This next fractal that I have discovered, I caU the 

octahedron half fractal. Tl has the same initiator shape and generator shape as the 

octahedron fractal docs, Th,;, difference is that at each iteration, only half the surfaces are 

iterated. The octahedron half fractal process is shown in figures 59, 60, and 61. 

Figure S9: Iteration O (Generator Shape) 



Figure 60: ltera1ion I 

Figure 61: ltera rlon 2 

---~ _ . .__, 



This fracta l is great for the ease with which the development of the fractal process CllJl 

clearly be seen. It is obvious that the outer limiting fractal shape is that ofa tetrahedron. 

This fracta l has the same fractal dimension qual ities as that of the octahedron fractal as 

wcll asthe samesurfacerelationqualitics. 

Thcrc is no requirement that the surface segment be triangular. Square surfaces 

could be used and li ke ly n1any others . Here is a fractal where the initiator shape is acuho, 

and the generator shape operates on each of the six square surfaces. I call this fractal the 

cube ZX2 fractal and it is shown in figures 62 through 70. 

Figure 62: Iteration O(lnitiatorShape) 

Figure 63: Genern.tor Sh1111e 

. ---- --- ---~ 
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~'igures 64 and 65: lterallon I 

. - -~---------
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Figurrs66and 67: Iteration 2 



Fig11rcs 68, 69, and 70: Iteration 3 
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This is the first fractal shown Ihm does11't seem to have a simple outer limiting shape. 

There are what appear to be four flat surfaces fonning with a similar relationship to each 

other as the surfaces of a tetrahedron have to each other. The difference is thu the 

··comers" of the tetnihcdron arc 1101 only truncated, there is cavity like structure imide 

iliem 

Another ,·cry intcresti11g aspect of this fractal is the 11rie11tation options available 

with the generator being applied to the initiator shape. When the generator is applied to a 

square surface there arc two possible ways it can do this. This means that the generator 

has a degenCTacy lt'·cl of two. This brings a whole new dynamic to fractal conslruction. 

First one has to decide whether to allow each square surface on the cube to be 

iterated with a random orientation or whether the orientation is determined within each 

given orientat ion. If it is to be determined, then whether or not it is symmetric 10 overall 

surface structure is anoth er important consideration. Another degree of ft-cedom this 

degeneracy provides is what the orientation will be for each iteration. 

Say that one d..cides to have the orientation determined and symmetric for the 

overall surface structure. This overall symmetric orientation could~ labeled with a ••1" 

Because of the 1kgeneracy, there is another symmetric orientation and this could be 

labeled with a "'O''. Each iteration could then use one or the other orientation. A code 

could be created to identify how IO construct the fractal The fractal in the figures shown 

al:>ove, the orientation code would he 11111111 .... or 00000000 ... . since the orientation 

has been kt:pt the same with respect to the comers of the original initiator cube shape 

This produces literally an infinite number of different possible ways to construct a fractal 

using this generator. 

~-------------, 
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So far, all the fractals that have been looked at have generators that transfom1 the 

surface area hy first dividing up a surface segment inlo four smaller similar 6Urface 

seg_mems. The triangle was divided up into four similar triangles and the square was 

divided up into four similar squares. There is nothing to say that these surfaces can' t be 

divided up in different ways. The triangle and square couldjll51 as well be di~·idod up 

into') pieces, or 16, 25, 36, 49 ... Ni pieces. Gootlexamplcs of this are the next two 

fractals. They both have the generator iterating_ on the square surfaces of a cube. This 

time each square is divided up into 9pieces. The fiT!II is called the cube 3x3 Cl"QSS fractal 

and the second is called the cube h3 x fractal and are shown in figures 71 through 82 

Figure 71: ltcntion O (Initiator Shape) 

~ . - - ------- -
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Figun 72: Guerator Shape 

Figures 73 Mnd 74: lter11ion I 

. ----~--- -- -
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Figures 75 and 76: Iteration 2 

~------------~ __.__.__ a - ~ 



Figure 77: Iteration O (Iniriator Shape) Figure 78: Generator Shape 

-•-· ., ... :-I 
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Figures 79 and 80: Iteration I 



Figure, 81 11nd 82: Iteration 2 
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What the final shapes ofthe:sc two frac1al processes arc is unknown. The best guess on 

the cube 3x3 cross fractal is that ii could ~uy possibly form a limiting outer shape of a 

cuboctahdcron as shown in figun: 83 

F'igure83:Cu boctabcdron 

Then: are all kinds of different ways to CTeate fractals. Remember 1hat the 

initiator shape does not have to iterate on the outside surface. It could iterate inwardly as 

it docs for the octuplc and tetra surface relations. Then: is nothing the say that it can't 

even iternte on both sides at once. Another idea is that the generator can apply any 

panem of surface transfon11a1ions. The two 3x3 fractals are good examples of two 

diffrrenl patterns w;ing the same 3x3 segment division. Also, there is no reason why 

tctrahodrons can only iterate on a tetrahedron. One could take octahedron initiator shape 

an<l use the tetrahednm generator shape on its outside surface or vice versus with the 

tetrahodron initiator shape and the octahetlron generator. One could limit the surface 

which the generawr iterates on the only the new surface segmenl.'l formed by the previous 

iternlion. An even more wild is the idea of bringing the icosahedron and dodecahedron 

into use for fractal constroction. l personally suspect thal if one took the icosahedron 

shape and iterated icosfilledrons on each of its triangular surfaces, they would begin to 

fonn a fractal with an outer shape of a dodecahedron. Even the <lode<:ahalron could be 

,- - - ------ ------
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iterated upon . There woul<l be suhstamial challenges here though due to the fact it has 

pentagonal surfaces and therefore it would be hard to keep a good symmetry. 

There arc all kinds of ways to create an infinite number of different three­

dimensional fractal shapes. There arc a few keys to understanding the dynamic of the 

fractal surface. The mo st important one is l>eing able to solve the fractal dimension 

cq1.mtion. In ooh-ing it one mlL~ be able to detennine the scaling factor of the self­

similarity in Uie fractal. Another important key is having a good uml.,,-,;tanrling of the 

ro les that the ini tiator shape and gcnerntor shape play in the construction of the fractal. 

These two initial conditions a lone determine what the fractal will become. Lastly, using 

the re lational model to investigate how the surface strocture transfonns from iteration 10 

iteration. Without this model only general values like volume and surface area can be 

dctcnnincd. With this model. a full picture of the evolving fractal proce~s can be seen. 



There are 11 few important points about thrce-dime1isional fractals that I wish to 

reiterate. First, there is a significant difference hetween two-dimensional fractals and 

three-dimensional fractals. With two-dimensional fractals, the generator oper.11es on line 

segments. Even though a two-dimensional fractal contains no area, it is still cmb-cddcd in 

a two-dimensional framework. With three-dimensional fractals, the generator operates 

on surface segments. Even though a three-dimensional fractal contains no volume, it i1 

still embedded in a three-dimensional framework. The impact of this is that two-

dimensional fractals can enclose an area and thu s define a boundary line to the area. In 

contrast, three-dimensional fractals can enclose a volume and thus define a b<Jundary 

surface to the volume. This allows three-dimensional fractals lo model lhc three 

dimensional shapes of the human experience where two-dimensional fractals do not. 

It important to keep in mind the difference between the surface area of a three­

dimensional fractal and the surface growth of the thrcl!-<limcnsional fractal process. At 

each iteration. the fractal generator and the subsequent fonnation of surface relations 

detenninc the surface growth . The surface area is simply the sum total of all the surface 

segments of any given iteration level. If the surface growth is zero. as in the case of the 

octuple surface relation and tetra surface n::lation when seen as fractals, the surface area 

will be constant throughout the frnctal pro,:,:ess. If the surface growth is greater than zero, 

the surface area will increai,e exponentially to infinity al the fractal limit. The surfac,:, 

growth is what is used to detenninc the fractal dimension of a given fractal an<l not its 



surface area. rwo fractals can have an infinite surface area an<l have very distinct surface 

grow1hrates 

The new method of investigating fractal shapes presented in this paper is the 

relational model. I! is a powerful tool in the study of fractals. When applied to three-. 

dimensional fractals, it discloses and sheds light on the dynamical nature of exactly how 

the surface shape eV11 lves in the fractal process. Once the cycle of creating new surface 

relations is complete, all surface relations involved in forming the fractal shape are 

known. This allows for the limit shape of the fractal to be completely detennined. 

lbrce-dimensional fractals like the tetrahedron fractal, the octahedron fractal, and 

the octahedron half fractal arc very exciting to study because they take lhe outer shape of 

other simple solids. By using lhe relational model, these thrtt-dimensional fi-actals like 

expose their true fractal innards showing they arc much more than their outer shape 

would indicate. \\'hctl1er there arc more three-dimensional fractalll that ha,·e outer 

llmiting shapes that arc simple solids i$ not ccnain. One very likely candidate for this is 

the cul:>e 3x3 cross frnc1al which may fonn a cuboctahedron. Hopefully chis paper will 

spur further study into the fractal nall,re of the mystical and magical shapes that are lhe 

perfect solids. 



Two published anic!es on the tetrahedron and ocrnhcdron fractals: 

[I ] Camp, Dane R. ''A Fractal Excursion." Mathcmahcr Teacher 84.3 (1991) 
256-274. 

[21 Zeitler, Herbert. ·~rctrahcdron and octahedron fractals." lnternatioool Journal of 

Malhematical t:ducation in Science and Teclrnology 29.) (1998) • 329-)41 

A few bCXJks on fractals for funhcr study: 

Barnsley, M. Fractals Everywhere. San Diego: Academic Press, 1988 

Feder. Jens. Fracta/.1 . New York Plenum f>ress, 1988 

Gl~ick, Jamc:s . Chaos: Making a New&,encc. New York: Viking, 1987. 

Mandelbrot. Benoit 8. 11Te Fracml Geometry of Nature. New York: W. H. Freeman & 
Co, 1977. 

Schroeder, Manfred. Frarrals, Chuos, Power laws: Minu/& from un lnfinire Paradise. 
New York: W.11. Freeman & Co, 1991. 
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