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DISSERTATION ABSTRACT 

 

Win Nadia Francis McLaughlin 

 

Doctor of Philosophy 

 

Department of Earth Sciences 

 

June 2018 

 

Title: Landscape and Biotic Evolution of the Kochkor Basin, Kyrgyzstan 

 

 

Kyrgyzstan is the single most seismically active country in the world. Accessing 

the past, and therefore future hazard of faults, necessitates a high-resolution 

understanding of the timing of different geologic events. With no radiometrically datable 

rocks from the Neogene of Kyrgyzstan, I herein present the first work formally 

describing Neogene vertebrate faunas from the Kochkor Basin of Kyrgyzstan. I utilize a 

combination of biostratigraphy and magnetostratigraphy to constrain the timing of when 

the vertebrate assemblages were emplaced, and have dated the three bone beds to all fall 

in the latest Miocene, spanning 9-5 million years ago. All four bone beds represent mass 

death assemblages, inferred to be from drought-caused mortality. The timing of the 

deposits corresponds to uplift in the Pamirs, Himalayan, and greater Tibetan Plateau, 

which would have blocked the Indian monsoon from reaching Central Asia, forever 

altering the climate and biota of the region. This change is reflected in the shifting 

mammals faunas, as evidenced by the novel rhinocerotid I describe in a phylogeographic 

context.  
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CHAPTER I 

INTRODUCTION 

Kyrgyzstan, located in the heart of Central Asia, lies in important geographical 

and biological crossroads. Kyrgyzstan is a small country of just shy of 200,000 km2 (CIA, 

2017) and a population around 6 million (Kyrgyz National Census, 2017). With a human 

history dating back to the dawn of pastoralism, and the likely site for several 

domestication events including dogs and sheep (Shannon et al., 2015, Tapio et al., 2006), 

Kyrgyzstan’s contribution to modern civilization is unquestionable; in the 20th century 

Kyrgyzstan shifted from Turkic control to being incorporated into the Soviet Union. Only 

then did Westernization and modern industrialization really come to the broader region. 

While cultural context may seem unrelated to the broader geology and biological 

evolution of the region, the two are intimately linked, with the geography, topography, 

and ecological setting controlled by uplift. 

 Famed for the Silk Road, linking the Far East to Europe, Kyrgyzstan’s historic 

trade route mirrors the much older paths ancient faunas took to disperse from their 

evolutionary cradles in the Tibetan Plateau (Deng et al., 2011) and beyond. Despite the 

evolutionary story told by such well known Neogene faunas as the Siwaliks, the 

Hipparion faunas of the Chinese red clays, and the Samos faunas, little paleontological 

work exists from Central Asia, the obvious geographic route of faunal exchange across 

Eurasia. Both the physical geography and the geopolitical history of the region prevented 

early exploratory work as early as Eurasia’s key Neogene localities were discovered.  

 This is not to say that no paleontological work was conducted in Kyrgyzstan and 

surrounding countries, only that said work is severely limited and often in need of 
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modern revision. In addition to a lack of modern work, the region also has a high degree 

of modern edemicity, which likely stems from the unique geologic history. The Soviet 

Union payed great geological attention to Central Asia in the 1950s through 1970s, 

mostly for the possibility of the region supplying the USSR with natural resources 

(Smith, 1995). When Kyrgyzstan failed to offer productive sources of oil or natural gas, 

like those discovered in Kazakhstan, little attention other than academic treatment of the 

incredible neotectonic record was taken (Tarosov, 1970), despite the later realization that 

Kyrgyzstan is the single most seismically active country in the world (Abdrakhmatov et 

al., 2001). The first published mention of Neogene fossil faunas from Kyrgyzstan came 

from an exploratory geologic mapping study, a 1970 Soviet dissertation published in 

Russian out of Bishkek Kyrgyzstan (Tarosov, 1970). Through the aim of mapping the 

high-angle thrust faults forming the Tien Shan, vertebrate fossils were discovered in the 

Kochkor basin of Kyrgyzstan (Figure 1).  
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Figure 1: Map of central and southern Asia, showing modern country boundaries for 

Kyrgyzstan. False color LANDSAT image of the central Tien Shan range imposed on 

map, with the location of the Kochkor Basin indicated with a black rectangle. The low, 

and geologically recent, boundary between the Issyk-Kul Basin and Kochkor Basin 

seperates what was once a larger basin during the Neogene. Southern Asia (Political) 

2004 map from UT Austin, and LANDSAT map modified from Paulson (2013). 

 

This work included rough reference to localities (“in an area West of the Bijerty River”, 

pp 60), identifications of taxa (though without description or justification of 

identifications), and some figured material in appendices (Figure 2).  
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Figure 2. Cervidae (deer family) and Bovidae (antelope family) mandibles figure in 

Tarosov 1970. While figured, the specimens were never formally described, nor are the 

specimens reposited in an extant museum collection. 

 

Little attention appears to have been paid to the fauna and the location or continued 

existence of the vertebrate material in question is now unknown, as it is not contained in 

the history museum in Bishkek, the paleontological collection in Almaty Kazakhstan, or 

in the Russian National collection in Moscow. In the 1960’s two Eocene fossil localities 

were discovered, Toru Agur on the Northwest margin of Issyk Kul and Andarak, on the 

southwest Kyrgyz edge of the Fergana Valley. Some of the material was described and 

published (Belyaeva, 1962, Erfurt et al., 1999), although the location and continued 

existence of the fossil material from Toru Agur is also questionable. Material from the 



 

 

 

5 

more distant (to sites included in this study) locality Andarak, is largely reposited at the 

Zoological Institute, St. Petersburg. Finally, the formation of Kyrgyzstan as an 

independent nation in the 1990’s resulted in increased Western collaboration and an 

attempt to synthesize some of the regional paleontological work (Averianov and Godinot, 

2005, 1999, Erfurt et al., 1999). Sotnikova (et al., 1997) produced the first 

paleontological work, aimed at constraining regional biostratigraphy, although the work 

did not figure or describe any of the fossils discussed therein. Additionally, several 

Mesozoic vertebrates and Paleozoic invertebrate fossils were described in the past 25 

years (Martin and Averianov, 2004, Gubanov et al., 1995, Averianov et al., 2007).  

 The increased post-Soviet Era Western attention, also led to extensive geologic 

mapping of Kyrgyzstan, with the aim of constraining uplift of the Tien Shan. Some of 

this data collection aims at constraining the large magnitude earthquakes driving the 

uplift. However, to predict initiation and modes of uplift, precise geochronology is vital. 

As the Tien Shan lie far from any volcanic center active the late Cenozoic, 

biostratigraphy offers one of the few geochronological options for temporally 

constraining the rest of the geological work. To the aim of providing a rough 

geochronological framework, American paleontologists were brought in on some of the 

larger-scale tectonics projects. Uplift also impacts regional climate, in turn impacting the 

deposition of sedimentary basin-filling sequences. Several large-scale gravel-

progradation events seen across the Tien Shan are currently debated as either tectonic or 

climatic in origin. While the answer likely involves some of both factors, improved 

geochronology is also necessary to distinguish between causes, as tectonic-driven 
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progradation events would have transgressive boundaries depending on the sequence 

stratigraphy.  

 The work contained herein is a preliminary attempt to describe and diagnose 

Neogene faunas of the Kochkor Basin (Figure 1). Furthermore, the taphonomic work 

aims to provide context for such concentrated fossil deposits, as well as examine causal 

factors for mortality and how mortality pertains to changing landscapes and ecosystems. 

This record of change I temporally constrain using the combined geologic treatment of 

magneotstratigraphy and the biological approach of biostratigraphy. Finally, I delve into 

the taxonomy, evolutionary history, and biogeography of the most common family of 

mammals in the Kyrgyz fossil sites, the rhinoceros family.  
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CHAPTER II 

TAPHONOMY OF FOUR MASS DEATH ASSEMBLEDGES IN THE KOCHKOR 

BASIN KYRGYZSTAN; TEASING APART LANDSCAPE AND CLIMATIC 

CHANGE 

 

Introduction 

Kyrgyzstan, in the heart of Central Asia, represents a transitional region from 

Asian ecosystems to European and Norther Asian steppe and woodland habitats not 

represented in the great Himalayan and Tibetan Plateaus. This frontier between markedly 

different climates, topographical settings, and biotic communities has existed back at 

least as far as the Miocene, and marks a narrow geographical area controlling the 

interchange of faunas between broad geographic areas. Vertebrate fossil assemblages 

therefore offer snapshots in time, illuminating the forces driving climate change, and 

biotic and landscape evolution. Taphonomic evaluation of these previously undescribed, 

or informally described, fossil assemblages showcases not only the rich Neogene faunas 

of Kyrgyzstan, but also the changing ecosystems driving many of the dispersal and 

turnover events within the region. 

 The Neogene vertebrate fossil assemblages of Kyrgyzstan have seen very little 

study since geologic survey work in the 1940-1960’s revealed the presence of 

fossiliferous material (Tarosov, 1970, Balyaeva, 1948). While taxonomic evaluation of 

these new localities is needed and ongoing, taphonomy addresses why large bone bed 

deposits are cropping up throughout the Neogene stratigraphy. Taphonomic evaluation 

also filters our interpretations as to how communities changed through time in response 
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to shifting climates and mountain building events. With little previous work to build on, a 

taphonomic study is preliminary to understanding where and why fossils were 

accumulated in Kyrgyzstan, and potentially Central Asia as a gateway to and from the 

Tibetan Plateau and Central China.  

 

Neogene Mass Death Assemblages of Kyrgyzstan: Previous publications on the 

Cenozoic paleontology of Kyrgyzstan is limited to descriptions of two Eocene localities 

(Averianov & Godinot, 1998, Erfurt et al., 1999), and some gray literature or unverified 

mentions of younger localities (Tarosov, 1970, Sotnikova et al., 2001, Balyaeva, 1948, 

Kuznetsov et al., 1964). While some preliminary fieldwork suggests most Kyrgyz basins 

produce Neogene vertebrate material, we have concentrated initial studies to the Kochkor 

Basin. Past work within this basin is limited to mentions of two Miocene localities in a 

Kyrgyz Soviet era PhD dissertation (Tarosov, 1970).  

We have located numerous productive vertebrate localities throughout the 

Neogene deposits of Kyrgyzstan, some of which may be the same sites as visited by 

Tarosov. However, this study focuses on four bone bed localities that are thus far the 

most productive. The primarily mammalian fossil assemblages are dominated by large 

ungulate taxa, with representatives from Rhinocerotidae, Equidae, Cervidae, Bovidae, 

and Giraffidae forming much of the diversity. These bone bed localities have produced 

hundreds of specimens, and are far from quarried out. 

 Many geologic processes accumulate bones. Cave deposits and fissure fills, 

geomorphic features offering only one way in and no path of escape, are common 

features resulting in accumulation reflected in the fossil record (Shipman, 1981). Fluvial 
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processes, such as meander bend deposits, gravel bar accumulation, or over-bank flood 

deposits emplace fossil material in addition to sorting material by size, shape, and density 

(Shipman, 1981). Even progradation of alluvial fans provides the rapid accumulation of 

sediments necessary for fossilization. Biological methods of accumulating vertebrate 

material alter representation of elements and taxa, like carnivore dens or raptor roosts, yet 

these agents also concentrate material in terrestrial environments in volumes equivalent 

to geologic processes alone. Deducing the geologic or biotic mode of accumulation is 

important for deducing both the temporal and geographic range reflected in the bone bed. 

Does a bone bed represent slow attrition and accumulation within an environment or a 

more catastrophic mass death assemblage (Behrensmeyer et al., 2000)? For a bone bed to 

represent a true mass death assemblage, the input of carcasses into the system must 

overwhelm the environment’s ability to process the carcasses (Behrensmeyer et al., 2000, 

Haynes, 1987), and “prime age”, rather than aged, are most common (Hunt, 1990, Valli, 

2005). Most of the modification and processing of bone is accomplished via carnivores 

and scavengers, with microorganisms and plants adding to alteration of bone surfaces. 

Evidence of scavenging, pre-fossilization weathering, degree of bone or skeletal 

completeness, age distributions, and several other factors are used to distinguish between 

accumulations of bones over great time and space and those from mass death 

assemblages. Different causes of death, such as drought (Haynes, 1987, Faith & 

Behrensmeyer, 2006), natural disasters (Haynes, 1987, Famoso & Pagnac, 2011), or 

carnivore accumulation (Haynes, 1987, Faith & Behrensmeyer, 2006, Maldonada et al., 

2016) leave different taxonomic signatures as well.  

 



 

 

 

10 

Geologic Setting: The formation and uplift of the Tien Shan is derived from the collision 

of the Indian sub-continent into Asia. While the Himalayan mountains accommodate 

most the shortening, the continued convergence of the two plates generates more stress 

than the Himalayan mountains alone can accommodate (Sobel and Dumitru, 1997). Thus, 

the Tien Shan, the youngest result of the collision, has some of the highest uplift and 

convergence rates in the world (Abdrakhmatov et al., 2001). This convergence is 

accommodated across huge thrust faults, additionally resulting in the highest seismic 

hazard of any country in the world for Kyrgyzstan (Abdrakhmatov et al., 2001). The 

rapid uplift drives the Paleozoic-Mesozoic basement up and over the erosional deposits of 

the Cenozoic, with the older basement later eroding and providing the source material for 

the Neogene sedimentary sequences. High-angle thrust faults propagate into the larger 

basins, tilting and deforming the Cenozoic record. The resulting high-elevation basins 

produce nearly continuous records of deposition from the Eocene through the present. 

The rate of deposition into the basins reflects the rate of uplift, resulting in many 

kilometer-thick sequences exposed in most basins across the North to South transect of 

the Tien Shan. Currently the mode of uplift across the Tien Shan is heavily debated in 

modern tectonics literature. Whether the Tien Shan have uplifted as a geologic unit 

(Abdrakhmatov, et al., 2001) or with deformation and rates of uplift initiating at the 

margins and propagating inwards (Wack et al., 2014) is highly debated. The initial uplift 

model suggests transitional boundaries between widespread geologic formations is 

climatically driven, with the age of the formation boundaries being the same across like 

strata, while the propagating deformation model would suggest tectonically driven 

changes and thus different ages for similar lithological changes. While the work 
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presented in this study is limited to a single basin, and thus will not fully resolve this 

debate, both tectonic uplift rates and climatic change heavily impact the taphonomic 

signature of a site. Therefore, the first taphonomic studies of Kyrgyz Neogene fossil 

localities may have broader implications for tectonic processes.  

 

Methods 

With such a limited history of vertebrate fossil collecting in Kyrgyzstan, the total number 

of localities and distribution of fossiliferous material is still expanding and concentrated 

around areas with the most intensive fieldwork in the 2014 and 2015 seasons. As such, 

this study concentrates on only the four most fossiliferous of the total localities. Sites are 

primarily located through surface prospecting of geologically mapped (Abdrakhmatov et 

al., 2001, Paulson, 2013) Neogene strata.  None of the localities discussed in this paper 

are “quarried out” and contain abundant material still in situ, and therefore the data 

presented herein should be considered preliminary and most importantly as a 

recommendation for continued collection in both the Kochkor basin and the Kyrgyz 

Neogene deposits. All five bone beds included in this study are within the Kochkor basin 

(Figure 3). 

 Most fossils included in this study are from large taxa, likely in part an artifact of our 

collecting techniques and the limited collection history in Kyrgyzstan. Small mammal 

taxa tend to be under sampled in sites that have not been screen washed, yet three of the 

four bone beds examined in this study do contain a few small mammal taxa. This 

difference in diversity is certainly not a reflection of paleoabundance, but a result of size-

biased sorting in the geologic processes that accumulated the bones. Preliminary 
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geochronology based on biostratigraphy, magnetostratigraphy, and sequence stratigraphy 

(Chapter 3) suggests the fossil deposits discussed herein occur during a period of high 

sedimentation rate, resulting from rapid uplift, spanning several million years from the 

late Miocene through the Pleistocene. This places the Kyrgyz fossil localities not only in 

a crucial time range for constraining the possible acceleration of uplift in the Tien Shan, 

but also at a period of drastic climate change and shifting ecosystems. The bone beds 

included herein contain one locality from the Shamsi Formation (Vodka) and three (Bone 

Hill, Damn Site, Ortok) from the stratigraphically younger Chu Formation (Figure 4).  

 

Figure 3. Google Earth imagery (accessed May 2018) of the Kochkor and Issyk Kul 

Basins. Likely, the Kochkor Basin was connected to the Issyk Kul Basin (the large lake 

in the figure) until geologically very recently, as shown by the low hills dividing the 

two basins. The Tien Shan mountains run roughly east-west, leaving high altitude 

basins infilled with Cenozoic sediments between each sub range. The Kochkor Basin is 

roughly 50 miles long and 15 miles wide.  
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Figure 4. Simplified composite stratigraphic column for Kyrgyz bone beds. Most 

basins, including the Kochkor Basin, span the late Eocene to Pleistocene, with nearly 

continuous deposition. Most individual sections do not span the whole time period, but 

sections exist spanning each transitional boundary. 

 

While the stratigraphic relationship of the three Chu Formation bone beds is also 

imperfectly constrained, previous geologic mapping in the basin (Paulson, 2013) and 
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ongoing paleomagnetic studies (Abdrakhmatov et al., 2001, Chapter 3) suggest a roughly 

contemporaneous age for Bone Hill and Dam Site, and a younger age for Ortok. As 

sampling at existing sites continues, and new localities are prospected, biostratigraphic 

resolution and therefore inferences into the paleoenvironment will improve.  

Ortok, the only previously named locality, is referred to in both Tarosov (1970) and 

Sotnikova (et al. 2001), but in both cases the actual geographic location is vague. 

Sotnikova’s map is on a regional scale, and Tarasov’s description of the locality of 

fossiliferous Neogene deposits is “...North side of the basin, westerly… (in Russian)” 

(1970, pg. 60), leaving something to be desired in spatial precision. Ortok was relocated 

in 2012 by driving to the small village of Ortok, and then driving along the basin’s 

northern margin westwards looking for outcrops of Neogene sediments. While the 

geographic extent and stratigraphic thickness of the locality is limited, Ortok represents 

the only outcropping Neogene stratigraphy on the Northern margin, thus we place 

reasonable certainty the locality is the same as referred to in Sotnikova and Tarosov. 

Tarosov further goes on to describe an additional fossiliferous outcrop “...West of the 

Bezjerty River…” (1970, pg. 60). Numerous days of fieldwork in 2014 yielded diffuse 

vertebrate material through much of the stratigraphy and one bone bed locality. The bone 

bed, Dam Site, was the only plentiful vertebrate material in the area, thus may represent 

the same locality as visited by Tarosov in the 1960’s. Bone Hill was located by 

preliminary reconnaissance near previously published (Abdrakhmatov et al., 2001) 

paleomagnetostratigraphy sections in 2012, although was not realized to be a bone bed at 

that time. Quarrying at the site was conducted in 2014, although more material remains in 

situ at the locality. An additional bone bed, Rhino Party, was discovered in 2014 by 
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tracing the stratum containing Bone Hill over two ridges to the south, however this site 

has fewer fossils and very poor fossil preservation, and thus is not included in this study. 

Vodka was discovered by two Russian geologists mapping in the area in 2012 

(E. S. Przhiyalgovsky, E. V. Lavrushina), when they discovered fragmented vertebrate 

material in a dry wash. The locality information, and fossiliferous material that had 

subsequently weathered into the wash facilitated locating the bone bed horizon in a cut 

bank in 2014, with excavations in both the 2014 and 2015 field seasons.  

    All bone beds were located or rediscovered via surface prospecting of Neogene 

deposits. Once the location of in situ material was determined, all bone beds referenced 

herein were quarried. The permitting and exportation requirements limited the field 

teams’ ability to jacket fossil material, and difficulties in obtaining acetone for making 

conventionally used consolidants made it difficult to remove fossils intact from outcrops. 

At each quarry, all material identifiable to element was collected. Fragmentary material 

in close proximity to identifiable material was also collected, and even if deemed not 

associated, is included in this study. While an ideal taphonomic study would also include 

all fragmentary material for use in sorting analyses and for estimating transport, the limits 

imposed from transporting material from field sites to Bishkek and shipping to the USA 

resulted in our minimum collectable specimen standards. Wet screening for vertebrate 

microfauna has not yet been implemented at any Kyrgyz localities, although some 

microfaunal material is produced through quarrying and through later preparation of 

larger material out of matrix. While this certainly biases the fauna through 

underrepresentation of the microfauna, the authors’ processing of matrix suggests 

microfauna are not a large percentage of any of the bone beds represented.  
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    With few described faunas from Central Asia and many of the existing faunas in need 

of taxonomic reevaluation, little comparative material exists to facilitate identification of 

species, or in some cases even genera within the Kyrgyz faunas. Taxonomic descriptions 

of individual faunal units are further complicated by a high degree of endemicity in the 

greater Tibetan Plateau. Therefore, while diagnosis and description of the Kyrgyz faunas 

is vital and ongoing, it is at this time beyond the scope of the preliminary work presented 

here. Preliminary work suggests at least three of the taxa represent new species, namely 

the smaller hyena and both the Chu and Shamsi rhinocerotids (Robson et al., in prep, 

McLaughlin, chapter 4). For the sake of taphonomic analyses, taxa are diagnosed as 

possible species units within a family. For example, the equid present in the Shamsi 

Formation is smaller in stature, with less complicated plications in the enamel than the 

equid found in all Chu Formation localities. As both size and enamel folding complexity 

are frequently used to describe and diagnose equid taxa, it can thus be assumed that these 

represent different species, and will be treated as “Equid A” and “Equid B” for the time 

being. Headgear-possessing artiodactyls present a particular problem, when headgear and 

dental material are not found directly associated. While some risk of misdiagnosis is 

possible or even probable, artiodactyl material is lumped into taxonomic units at first a 

family level and then a size class level. In defense of this consolidation, each bone bed 

has only produced headgear from a maximum of one bovid, cervid, and giraffid, 

suggesting the assignment of dental material to more than one species in each family is 

also unlikely. The one exception is the presence of two different size classes of bovid 

present at Ortok. The very small stature (muntjac-sized) bovid is less than half the size of 
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the larger bovid, making distinguishing between the two size classes of bovids possible 

with all skeletal elements.  

The diversity of taxa represented in a fauna is informative not only of 

paleoecological structure, but clues as to cause of death (Badgley, 1986). The makeup of 

faunas can be further broken down by guild, comparing ratios of carnivores to herbivores, 

a ratio useful for several paleoecological inferences (Van Valkenburgh, 1988). Body size 

of taxa represented are not a reflection of actual paleo community structure, but are 

informative of transport and depositional settings.  

 

Data and Analyses:  

Bone preservation illuminates both geologic and biologic processes related to the 

paleoecology of a site. Bone surface modification indicates how long individual elements 

weathered before final deposition, and therefore, taken across a bone bed, the length of 

time recorded in a single deposit. Weathering of bone pre-fossilization is characterized by 

cracking or spalling of bone, broken into five categories of weathering (see Table 1) 

(Shipman, 1981, Gifford, 1980).  
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 I II III IV V 

Description 
of 

weathering 
state 

Bone 

surface is 

smooth, 

lacks cracks, 

no sign of 

weathering 

Bone 

surface has 

small 

cracks, less 

than 5mm 

in length, 

root traces 

possible 

less than 

1mm in 

width 

Cracks over 

1 cm in 

length, root 

traces with a 

greater 

width or 

depth than 

1mm, some 

cracks may 

be 

beginning to 

spall and 

peel away 

Parallel 

cracks 

common, 

reaching 

length 

greater than 

10 mm, 

spalling 

common, 

where 

sections of 

the bone 

surface are 

missing  

Spalling is 

extensive, 

little of 

original 

bone surface 

remains, 

more 

interior 

levels of 

bone begin 

to develop a 

powdery 

texture 

Inferred 
time on 
surface 

0-6 months 6-12 

months 

1-2 years 2-3 years Greater than 

3 years 

 

Table 1. Five categories of bone surface weathering from Shipman, 1981 and Gifford, 

1980. All bones or bone fragments are assigned to one of the categories for each bone 

bed. Assessing the difference between stages I and II usually requires a hand lens or 

dissecting microscope to see depth and width of cracks and root traces. 

 

This is useful on a first order for helping to distinguish between a mass death assemblage 

and other modes of bone accumulation, but also useful when paired with 

sedimentological rates of deposition to constrain any depositional hiatuses. Total time 

over which bones accumulated can also rule out certain types of deposition or 

paleoenvironments. Also included within the bone preservation category is abrasion, or 

physical damage resulting from transportation, such as rounding or polishing. Degree of 

abrasion is an indicator of transport distance, especially when combined with some of the 

other factors discussed like cylindricity. Additionally, abrasion (or lack thereof) is needed 

to rule out the possibility of reworking older bone or fossil material. Bone preservation 

was determined using a hand lens or dissecting scope to distinguish between pre-

fossilization and post-fossilization bone wear, as root damage pre and post fossilization 
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leave different patterns on bone surfaces (Behrensmeyer, 1978, Cardoso et al., 2010), and 

many of the fossils displayed dendritic surface patterns resulting from plant roots 

exploiting the bones for phosphate. Only pre-fossilization bone-wear was considered for 

the weathering categorization. 

Completeness of bones constrains the amount of time sampled from death to 

burial of elements, but also relates to degree of scavenging, rate of deposition, mode of 

transport and deposition, and causes of death. Completeness was evaluated by comparing 

a particular element to the same element from a modern representative of the family. The 

degree of completeness was assigned to the nearest 10%, rather than the 5% scale used in 

other studies (Calede, 2016, Moore and Norman, 2009), as preservation of the fossil 

material was worse than the comparative assemblages in terms of clay-mineral 

replacement of fossil material, and completeness was frequently impacted by both 

excavation and shipment despite the author's best efforts to conserve fossil material or at 

least record original degree of completeness. Fossils were grouped into three 

completeness categories: fragmentary (less than 50% complete), partial (50-90% 

complete), and complete (greater than 90% complete). This roughly follows Coombs and 

Coombs (1997), to fully characterize the average completeness of each deposit and 

differences and among taxa and bone beds. The degree of completeness was evaluated on 

an element assignment level. For example, while a maxilla is part of the skull, a complete 

maxilla would be rated as 100%, whereas a skull with only one maxilla present, but also 

parts of the basacrania, might be rated as 50%, following the element assignments of 

Calede (2016) and Lloveras et al. (2012). Completeness was assessed on all fossil 
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material assignable to a family level, but excluded fragmentary material only assignable 

to order or element without taxonomic distinction. 

Finally, the shape and size of individual elements, when treated as particle or clast 

size, are important factors when determining mode of deposition, as well as climatic 

factors driving deposition. Shape and size were roughly, but uniformly, determined using 

three orthogonal measurements. The longest dimension became L1, a proxy for size, after 

work by Blob and Fiorillo (1996). While Blob and Fiorillo (1996) discussed element 

orientation in the context of microfaunal assemblages, Hanson’s (1980) flume work 

suggests the longest dimension is most likely to determine transport distance and resting 

orientation during deposition of skeletal material, during fluvial processes, regardless of 

overall size of taxa. Shape was approximated with two other linear measurements to 

determine columnarity and flatness (Moore and Norman, 2009, Calede, 2016). Shape, in 

the general categories of flat, columnar, or compact, influences transport distance and 

therefore also sorting of skeletal material in bone beds (Boaz and Behrensmeyer, 1976). 

L2 is the longest measurement perpendicular to L1, and L3 is the shortest axis 

perpendicular to L2. Columnarity is measured as a ratio of the shortest axis (L3) to the 

longest axis (L1), with smaller values corresponding to more column-shaped bones or 

bone fragments. Flatness is measured as the ratio of the shortest axis to the median axis, 

or L3/L2, with smaller values corresponding to flatter bones or bone fragments. 

Measurements were collected with Mitutoyo Digimatic CD-8” CX calipers for all 

measurements under 8” and were rounded to the nearest millimeter. Measurements 

greater than 8” were collected with a meter stick, rounding to the nearest millimeter. 

These shape ratios were used to categorize the fossils into flat (specimens that have a 
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depth less than or equal to half their width), columnar (specimens that have a length at 

least 1.5 times their width), or compact (fit neither of the previous categories). If a 

specimen fit both the columnar and flat categorical test, then the larger ratio value was 

used for the categorical assignment.  

The representation of different skeletal elements is important for determining both 

cause of mortality, but also mode of transport and deposition (Shotwell, 1955, 

Behrensmeyer, 1991). Elements were grouped into Cranial, Axial + Limb Girdles, 

Autopod, Zeugopod, and Stylopod categories. Therefore, data on distribution of skeletal 

elements was collected for each bone bed. Comparison to both modern and fossil large-

animal-dominated faunas is included (Faith & Behrensmeyer, 2006, Haynes, 1988), as 

well as one microfauna site (Calede, 2016) as comparisons. Screen washing has not yet 

been possible with the Kyrgyz deposits, so the percentage of microfauna may increase 

with time and additional sampling. Within the modern comparatives, large mammal 

communities impacted by a variety of mass mortality events (Haynes, 1988) are included 

in an attempt to distinguish between accumulation agents. While many studies use 

minimum number of individuals (MNI), the preliminary nature of this study precludes 

sufficient sample sizes for this method to yet be meaningful, so we instead utilize NISP, 

or number of individual specimens present. Therefore, numbers of individual elements, 

regardless of siding on elements, is used in this study. The number of each skeletal 

element for each bone bed was used to calculate the relative abundance of the respective 

elements.  

Skeletal elements were grouped by region of the body, following general 

categorization from other taphonomic studies (Haynes, 1988, Calede, 2016). Some 
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categories were further grouped for comparison, such as “long bones” after Faith & 

Behrensmeyer (2006) for comparison with large African drought killed faunas. 

Metacarpals and metatarsals were grouped together into metapodials, as incompleteness 

of the specimens frequently prevented an assignment to front or hind feet. Likewise, 

phalanges were grouped together. All carpals and tarsals, with the exclusion of the 

calcaneum and astragalus, were included in podials, with the addition of non-knee joint 

sesamoids for this study. While some of the comparative studies (Haynes, 1988) do not 

include sesamoids, they represented a relatively common skeletal element in the Kyrgyz 

material and thus were included in the podials category. All isolated sesmoids were 

compared to modern taxa, and if sesmoid position was not definitively from the distal 

portions of the limb, they were not included as an identified element. In keeping with 

other published studies (Haynes, 1988), maxillary fragments and horn cores were 

included in cranial elements, while mandibular fragments were counted individually. 

Isolated teeth or tooth fragments are treated as their own category, with no distinction 

made between upper and lower dentition, even when such a distinction was possible. As 

fragmentary remains of Rhinocerotidae teeth were so common in some of the Kyrgyz 

bone bed localities (Ortok especially) in the weathered surface material, the tooth 

fragments are grouped by field number rather than treating each fragment as an 

individual specimen. Lastly, the authors acknowledge the difficulty in assigning 

fragmentary ribs to taxon or even correctly placing the element, may have biased the 

selective sampling of the Kyrgyz bone beds away from this element. If elements were 

found in articulation, they have been given a single specimen number, yet for analysis of 

representation of different skeletal elements each individual element is counted even if 
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they belong to the same specimen number. Looking as representation of element or 

element categories does not necessitate assigning material to a taxon, thus it includes a 

higher total number of specimens than taxon based analyses.  

All elements were categorized by approximate age at time of death. The 

categories used were juvenile and adult, although additional information such as fetal or 

aged individuals were noted when possible to assess, such as in the case of dental 

material. We used modern representatives of each family to compare tooth eruption 

sequences and tooth eruption age and order and age of epiphyseal fusion. This somewhat 

arbitrary breakdown biases our ability to compare age categories for some elements. For 

example, as the astragalus lacks epiphyseal plates, we are unable to assign the element to 

the juvenile category unless the element is found in articulation with elements 

distinguishable by age, and therefore elements lacking epiphyseal plates or dental 

elements were not assigned an age category. In the case of arthritic development, the 

degree and cause of arthritis was assessed before assignment. As nearly all Rhinocerod 

taxa possesses arthritic development by 7 million years ago (Stilson et al., 2016), and the 

bone beds span an estimated 6.5-8.5Ma, arthritic development on Rhinocerotidae bones 

was not deemed grounds for assignment to the adult category in those taxa. While the 

ability to assess age does vary from taxon to taxon, generally we looked for unfused 

epiphyses in long bones, unworn or excessively worn dentition, juvenile dentition, and in 

the case of some of the Artiodactyla the stage of horn or antler development. While we 

used fewer age classes than Voorhies (1969) or Valli (2005), we found the distinction 

between juvenile and adult animals a useful comparison, as average age, or over 

representation of juveniles is characteristic of certain agents of mortality and 
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accumulation. However, few elements other than dentition can be assigned to “aged 

adult” verses “prime adult”, thus we did not distinguish this category. Additionally, 

modern studies (Haynes, 1988, Faith & Behrensmeyer, 2006) suggest that juvenile 

material is common in mass mortality events, and a higher percentage of elderly adults 

than prime adults does not distinguish attritional deposits driven by large carnivores from 

mass death deposits as postulated by Palmqvist et al. (1996) relating proportion of 

juveniles to estimated body mass of adults as a marker of large predator kills. Differences 

in age distributions are important in distinguishing between mass death assemblages and 

other modes of carcass accumulation (Haynes, 1988).  

While degree of completeness has already been discussed, the degree of 

articulation also matters in the Kyrgyz deposits. The presence (or absence) of articulated 

material offers information regarding rate of accumulation, degree of transport, mode of 

transport, and environmental conditions at time of deposition (Haynes, 1988, 

Behrensmeyer et al., 2000). Degree of articulation was assessed for each bone bed by 

specimen number to number of elements.  

 

Systematic paleontology  

Institutional Abbreviations: University of Oregon Museum of Natural and Cultural 

History, (UOMNH), Museum of Evolution Uppsala Universitet, Sweden (UUZM), 

University of California Berkeley, Museum of Paleontology (UCMP), Smithsonian 

Institute of Natural History, (NMNH), Texas Memorial Museum, and The University of 

Texas at Austin (TMM).  
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Faunal lists and count by site: 

Site Class  Order  Family   Genus  Spec. Count 

Vodka  

Mammalia Artiodactyla Bovidae  Gazella?  1 

     Cervidae     9 

     Indet.      3 

   Perissadactyla Equidae  Hipparion  4 

     Rhinocerotidae Chilotherium  47 

   Rodentia Cricetidae     1 

   Indet.        24 

 Reptilia Testudines Testudinidae      1 

Dam Site 

 Mammalia Artiodactyla Bovidae  Gazella  11 

     Giraffidae     1 

     Indet.      2 

   Lagomorpha Ochotonidae     2 

     Leporidae     4 

   Perissadactyla Equidae  Hipparion  2 

     Rhinocerotidae Chilotherium  13 

   Indet.        4 

Bone Hill 

 Mammalia Artiodactyla Bovidae     3 

     Cervidae     27 

     Indet.      3 

   Perissadactyla Equidae  Hipparion  14 

     Rhinocerotidae Chilotherium  21 

     Indet.      1 

   Indet.        25 

 Reptilia Squamata Varanidae  Varanus  2 

Ortok 

 Mammalia Artiodactyla Bovidae  Gazella  7 

        Indet.   5 

     Cervidae     6 

     Giraffidae  Samotherium?  5 

     Palaeomerycidae    1 

     Indet.      4 

   Perissadactyla 

     Equidae  Hipparion  12 

     Rhinocerotidae Chilotherium  49 

     Indet.      4 

   Carnivora       1 

   Indet.        40 
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Class MAMMALIA Linnaeus, 1758 

Order ARTIODACTYLA Owen, 1848 

Family BOVIDAE Gray, 1821 

Specimens: UOMNH F-70325 small distal metapodial, UOMNH F-70327 small right 

astragalus, UOMNH F-70328 small right astragalus, UOMNH F-70329 small distal 

phalanx, UOMNH F-70339 medium horn core, UOMNH F-70346 medium distal 

calcaneum, UOMNH F-71406 medium horn core, UOMNH F-71407 medium horn core, 

UOMNH F-71408 medium horn core, UOMNH F-71409 medium horn core, UOMNH F-

71410 medium horn core, UOMNH F-71411 medium horn core (from UO-4605 Ortok). 

UOMNH F-64560 medium mandible section with p2-p3 (from UO-4603 Vodka). 

UOMNH F-64509 medium horn core base, UOMNH F-64639 medium mandible 

fragment with m1, UOMNH F-65618 medium base of horn core, UOMNH F-64457 

medium horn core, UOMNH F-71402 medium horn core, UOMNH F-70340 medium 

horn core, UOMNH F-64539 medium horn core, UOMNH F-71404 medium horn core, 

UOMNH F-71403 medium horn core, UOMNH F-71405 medium horn core, UOMNH F-

64462 medium horn core, UOMNH F-64463 tooth fragment, UOMNH F-70326 medium 

mandible fragment with m1-3 (from UO-4604 Dam Site). UOMNH F-64449 medium 

horn core, UOMNH F-64495 medium proximal metapodial, UOMNH F-64376 tooth 

fragment, UOMNH F-64384 medium mandible fragment with m3, UOMNH F-64373 

medium mandible with p2-m1 (from UO-4601 Bone Hill). 

Localities: UO-4605 Ortok, UO-4603 Vodka, UO-4604 Dam Site, UO-4601 Bone Hill. 

Description: Fossil material represents two size classes of bovids, one being very small 

(muntjak-sized) and the other medium (gazelle-sized). The smaller post crania, the only 



 

 

 

27 

material currently assignable to the very small size-class bovid, is only found at Ortok, 

whereas the gazelle-sized material is produced at Ortok and The Dam Site primarily, with 

two partial horn cores from Bone Hill, and a mandibular section with two premolars from 

Vodka in the same size class, if not the same taxon. The horn cores are all roughly 

uniform in size and are ovate in cross section at the base. Each horn core curves slightly 

and uniformly tapers from the base to tip. The horn cores are covered in ridges running 

from the base to the tip, with each ridge remaining separate from neighboring ridges until 

at least half the total length of the horn core (as compared to the sole complete horn core), 

with the depth of individual ridges ranging from 1-2 millimeters at the base of the horn 

core and shallowing towards the tip. One specimen, UOMNH F-71410, preserves the 

complete horn core length and is the also the sole example to preserve attached cranial 

material. Part of the orbit is preserved, displaying the relationship of the horn cores to the 

orbits. The horn core is positioned dorsal to the orbit, with the anterior edge growing 

from the frontal bone after the anterior-most third of the orbit. The base of the horn cores 

is smooth, with the ridges beginning within 1 cm of the orbit and ending all along the 

same point on the horn core circumference. The rugose portion of the horn core does not 

project proximally, with no incision under the boss of the horn core as is seen in some 

bovids. 

The astragali exhibit two keeled trochleae, parallel with the dorsal-ventral 

orientation for the bone. The trochlear keels are strongly pronounced, and the whole bone 

is rectangular. The two complete astragali are very small, with lengths of 22.4 and 20.2 

mm. The metapodials are roughly “D-shaped” in cross section, with paired spools on the 

distal end. The distal spools have a strongly pronounced medial trochlea, each of which is 
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oriented parallel to the other, with uniform spacing between. The preserved portion of the 

phalanx (distal) is elongate and relatively gracile. It most likely represents a 1st phalanx, 

although without the proximal portion, this is difficult to positively establish. The dental 

material from Vodka preserves one mandibular section (UOMNH F-64560) with the p2-

p3, as well as a small portion of the diastema. The premolars are small, lack rugosity in 

the enamel texture, and are mesodont. Dam Site dental material is limited to molars, and 

thus is difficult to compare to the premolars from other sites. Molars are hypsodont, lack 

rugosity, and are mediolateraly compressed.  

Discussion: Even fragmentary horn cores could be assigned to Bovidae, as the ridges are 

far more linear and more deeply incised than those seen in cervid antler material, and the 

headgear of Giraffidae and Palaeomerycidae have a smooth surface texture lacking any 

ridges. The more complete horn cores also lack the pedicle seen in cervid antlers. The 

astragali were not only much smaller in size than any cervid material collected from 

Kyrgyzstan, the medial trochlea possesses a sharper edge than seen in even 

comparatively small cervids. The distal metapodial lacks the strong groove in the center 

of the anterior edge of the shaft seen in cervids, as well as being from a far smaller taxon 

than any of the cervid cranial or dental material. Because the smallest giraffid taxon in 

the family’s evolutionary history is orders of magnitude larger than the largest material 

discussed in this section, that artiodactyl family can also seems highly unlikely.  

Comparison to both modern and fossil material precludes the possibility of all 

bovid material belonging to a single taxon. The size differences between the horn cores 

and postcranial material is too great of a difference. The limited previous paleontological 

work in Kyrgyzstan notes the occurrence of Gazella dorcadoides, however this 
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assignment is given without description or justification. The horn cores are consistent in 

rough size class and curvature with the figured Gazella dorcadoides material figured in 

Tarosov (1970), but are larger than the type specimen’s horn cores (Schlosser, 1903) and 

are more ovate in cross section (Zhang & Yang, 2016). The lack of associated dental and 

cranial material makes positive diagnoses difficult, as few quantitative approaches to 

categorizing or diagnosing interspecifc and intraspecfic variation currently exist (Chainey 

et al., in prep, Zhang & Yang, 2016). More complete material will be necessary for a 

conclusive assignment beyond Gazella, especially as the genus is one of the most diverse 

in Hipparion faunas (Zhang & Yang, 2016), and needs associated dental and horn core 

material. 

 No bovid material of a size class smaller than Gazella was previously reported 

from Ortok (Sotnikova et al., 2001), nor any of the Southern Kazakh localities (Sotnikova 

et al., 2001). Thus, the lack of cranial or dental material associated or even occurring at 

the site precludes even a generic level discussion at this point. 

 

Family CERVIDAE Goldfuss, 1820 

Specimens: UOMNH F-70333 two antler fragments, UOMNH F-70334 antler pedicle, 

UOMNH F-70356 antler fragment, UOMNH F-70380 antler fragment, UOMNH F-

70390 antler fragment, UOMNH F-70423 radius (from UO-4605 Ortok). UOMNH F-

64520 maxillary fragment with P4-M1, UOMNH F-64532 mandible fragment with 

fragments of two molars, UOMNH F-64533 mandible with p3-m3, UOMNH F-64534 

scapula, UOMNH F-64535 metapodial, UOMNH F-64536 phalanx, UOMNH F-64537 

proximal scapula, UOMNH F-64538 proximal femur and articulated acetabulum, 
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UOMNH F-64539 distal tibia (from UO-4603 Vodka). UOMNH F-70451 carpal, 

UOMNH F-64565 mandible fragment with p2-3, UOMNH F-70458 astragalus, UOMNH 

F-64443 proximal phalanx, UOMNH F-70456 antler fragment, UOMNH F-70471 two 

proximal phalanges, UOMNH F-64353 mandible with p2-m3, UOMNH F-64445 podial, 

UOMNH F-64402 antler fragment, UOMNH F-70446 mandible fragment with m3, 

UOMNH F-64372 phalanx, UOMNH F-64441 maxilla with P4-M2, UOMNH F-70452 

antler fragment, UOMNH F-70463 mandible with m1-3, UOMNH F-70439 metapodial, 

phalanges, sesamoids, UOMNH F-70457 mandible with p2-m3, UOMNH F-64392 antler 

fragment, UOMNH F-64375 antler pedicle, UOMNH F-64346 phalanges, UOMNH F-

64484 maxilla mold with M1-3, UOMNH F-64488 maxilla with P2-M3, UOMNH F-

64545 mandible with m1-2, UOMNH F-70454 distal metapodial, UOMNH F-79443 

distal humerus, radius, carpals, UOMNH F-64638 mandible with p2-m3, UOMNH F-

64348 partial metapodial and phalanges, UOMNH F-70432 metapodial, phalanges, 

sesamoids (from UO-4601 Bone Hill). 

Localities: UO-4605 Ortok, UO-4603 Vodka, UO-4601 Bone Hill. 

Description: Material positively assignable to Cervidae at Ortok was primarily composed 

of antler fragments. One sample, UOMNH F-70334, preserves the entire pedicle, with no 

bone extending ventrally from the pedicle base. This implies the antler was shed, rather 

than representing the death of the animal. The pedicle extends approximately 5mm out 

from the antler base circumference, and has a very rounded surface texture across the 

relatively broad antler base. While all fragmentary, two antler fragments preserve tine-

branches off the main shaft of the antler. Assuming similarities to modern cervids, this 

implies individuals were fully adult in age. Each antler fragment preserves a textured 
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outer surface, with low ridges across the surface. These ridges are not parallel to each 

other or the direction of growth, and frequently merge and divide. Antler material 

preserved at Bone Hill that contained pedicle also projected into the frontal bone, 

suggesting all proximal antler material at least was from mortality events. The frontal 

bone extends approximately 4 cm below the pedicle before broadening out to form the 

brain case.  

 The radius (UOMNH F-70423) is nearly complete, although heavily eroded, as it 

was found in-situ in a channel base. Diagnosis as cervid was facilitated via comparison to 

UOMNH B-21672, a modern black-tailed deer (Odecoileus hemionus). The proximal 

humeral head is fully fused, and as this is the last epiphysis to fuse in modern cervids 

(Purdue, 1983), it can be assumed the fossil material also represents an adult individual. 

The fossil radius is 3/4 of the length of the O. hemionus radius and proportionately 

smaller in diameter. The postcranial material from Vodka was also primarily identified 

via comparison to UOMNH B-21672 (Odecoileus hemionous) and to UOMNH B-21672 

(Ovis aries). The morphology of the articular surfaces was most similar to the Odecoileus 

hemionous, yet had very little similarity to the modern bovid, thus this postcranial 

material was assigned to Cervidae. All postcranial material was of a consistent size class 

and was consistent with dental and antler material. 

 The metapodials possessed a roughly D-shaped cross section with a deep trough 

in the posterior side. The anterior distal portions have a strongly pronounced groove 

ending in a fenestra, about ½ cm from the distal medial portion of the bone. The trochlea 

are strongly keeled and parallel to each other. Phalanges taper distally and are 

mediolaterally compressed.  
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 Dental material uniformly contains rugose enamel, with greater rugosity labially 

than lingually (Figure 5). Molars have a cervine fold, where a complete conulid of 

enamel, separate from either tooth loph, is situated labially. Dentition is brachyodont and 

selenodont. P4 is molariform, while p4 is not. Lower premolars are “W” shaped.  

 

Figure 5. Examples of cervid dental material. Top and middle are left mandible 

UOMNH F-64520 from UO-4603 Vodka, bottom is left mandible UOMNH F-64533 

from UO-4601 Bone Hill. Note the differences in the labial profile of the premolars, 

the labial groove present in the premolars of the Bone Hill specimen. Both taxa do 

however have a “cervine fold” in the molars, most visible on the m2. 
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Discussion: Antler fragments were distinguished from other bone fragments or horn core 

material in two ways: the smaller portion of the total diameter occupied by cortical bone 

on the interior, including a more gradual transition with progressive fining of the vesicle 

size towards the exterior of the bone cross section, and the irregular ridges on the exterior 

of the bony material, as opposed to the smooth surface seen in the giraffid ossicones or 

the parallel lineations seen in the bovid horn cores. This facilitated the diagnosis of even 

very fragmentary material as belonging to Cervidae.  

 Several candidate taxa exist for the Kyrgyz cervid material, which represents at 

least two species (or genera), with the dental material from Bone Hill having significantly 

different morphology in the premolars than the mandible from Vodka (Figure 5). The 

Miocene represents a crucial period in cervid evolution, with morphological transitions 

from more archaic lineages to the more modern cervine type deer, the Pliocervinae, with 

complete antler pedicles and three-tined antlers (Dong, 1993). The completely formed 

pedicles imply that at least the deer present at Ortok and Bone Hill were true cervines, as 

opposed to earlier such lineages as “crown of thorns” Lagomerycinae clade (Dong, 

1993). However, despite the importance of the Miocene in cervid evolution and 

biogeography, cervids are poorly studied and in need of dramatic taxonomic revisions 

(Pitra et al., 2004, Azanza et al., 2013). This makes diagnosis of a taxon extremely 

difficult. While the antler, postcranial, and dental material is found in the same bone 

beds, none has been found in articulation. Thus, positively associating cervid material is 

currently impossible, although the fact that each bone bed possesses cervid material from 

only one size class implies that the localities each contain only one cervid taxon. The 

Kyrgyz faunas superficially seem to have the most faunal similarities with the 
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“Hipparion Faunas” of the Chinese red clays. However, the very morphologically similar 

fossil material from those sites is described by Zdansky (1925) as Pliocervus, which may 

no longer be considered a valid taxon (Petronio et al., 2007). While this material 

(UUZM-M868, UUZM-M991, UUZM-M992, UUZM-M993, UUZM-M886-891) seems 

to be the same taxon represented in the younger Kyrgyz bone beds, the original Chinese 

material has not been redescribed or assigned to a new taxon besides “Pliocervus”. The 

few specimens assignable to Cervidae from Vodka, the older Kyrgyz bone bed, are not 

enough material to speculate on its identity, other than that the dental morphology is 

different enough from both the other Kyrgyz material and the Chinese Hipparion Fauna 

“Pliocervus” material as to represent different species and possibly a different genus. The 

p4 is less molariform than the p4 in the Chu Formation cervids.  

 All cervid material from Bone Hill, Rhino Party, and Ortok were consistent in 

morphology of the dental and cranial material; however the Vodka material differed 

signifficantly in morphology of the premolars. While belonging to the same size class, 

the Vodka material had premolars with greater folding of the lateral cusps changing the 

shape from the “E shape” seen in the other material, to a premolar with the paraloph 

folded so that the axis of the loaf is parallel to the axis of the jaw and the paraconid is 

posterior to the protoconid. The hypoconulid and entoconid are reduced, when compared 

to both Odocoileus hemionus and the Chu Formation cervid taxon. As Vodka is 

stratigraphically lower than other bone beds, this finding is not particularly surprising and 

is reflected across a variety of other taxa.  

 

Family GIRAFFIDAE Gray, 1821 
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Specimens: UOMNH F-64478 left p2, p3, and m3, UOMNH F-64481 metapodial, 

cubonavicular, carpal, UOMNH F-67907 ossicone fragment, UOMNH F-70341 tooth 

fragment, UOMNH F-70382 distal metapodial (from UO-4605 Ortok). UOMNH F-

64541 upper molar and associated tooth fragments (from UO-4604 Dam Site). 

Localities: UO-4605 Ortok, UO-4604 Dam Site 

Description: The dental material all possesses clearly defined selenes, is of a large 

artiodactyl, and is overall robust in morphology. The p3 and p2 is not molariform (Figure 

6).  

 

Figure 6. Three teeth, the p2, p3, and m3, of a Samothere giraffe. While the teeth were 

found in close association with each other, they are missing several teeth in between 

the premolars and molars. The teeth are consistent with Samotherium in morphology, 

however are smaller than all comparative specimens of the genus. Likely the Kyrgyz 

specimens represent an endemic species of Samotherium, however most material is 

needed to facilitate a positive diagnosis.  

 

The exterior enamel is slightly rugose in texture. All teeth are relatively wide compared 

to their length, with m1-m2 being almost square in shape and the p3 being wider that it is 

long. The selenes have very rounded ends and have a wider space between the medial and 

lateral enamel bands in the center than at the anterior and posterior ends of the selene. 

The metapodial and articulated tarsals are large but relatively gracile. The posterior 
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groove is quite deep and the proximal end of the metatarsal lacks a foramen (Ríos et al., 

2016). All epiphyses are fused, representing adult individuals. Diagnosis as giraffid 

material was facilitated via comparison to fossil material from Uppsala (UUZM-M3869, 

mandible of Palaeotragus decipiens, UUZM-M10786, cubonavicular of Samotherium c.f. 

mumayri, UUZM-M10814-10815, p3-4 of Samotherium sp., UUZM-M1157, metatarsal, 

cubonavicular, astragalus of Palaeotragus microdon) as well as comparison to modern 

giraffid material from University of California Berkeley (MVZ-M-216048, partial 

skeleton of Giraffa camelopardalis).   

Discussion: While the metapodial is closer in length to Palaeotragus than other fossil 

giraffid (Table 2) (Ríos et al., 2016, 2017), the material is distinctly more robust in cross-

section than any described taxa of Palaeotragus (Ríos et al., 2016, 2017).  

TAXON TOTAL 

LENGT

H 

ANTERIOPOSTERIO

R WIDTH 

MEDIOLATERA

L WIDTH 

KYRGYZ GIRAFFID ~400mm 47.19mm 37.08mm 

SAMOTHERIUM 

MAJOR 

400mm - 47.45mm 

PALAEOTRAGUS 

ROUENII 

400mm - 26.7smm 

DECENNATHERIU

M REX 

405mm 42.06mm 46.03mm 

DECENNATHERIU

M PACHECOI 

375mm - 31.47mm 

BIRGERBOHLINIA 

SCHAUBI 

390mm - 50.33mm 

BOHLINIA ATTICA 580mm - 43.33mm 

OKAPIA 

JOHNSTONI 

310mm - 27.70mm 

GIRAFFA 

CAMELOPARDALIS 

575mm - 43.31mm 

Table 2. Metatarsal measurements for the giraffid from Ortok, with comparisons against 

several candidate fossil taxa and two modern taxa (Okapia and Giraffa). Standardized 

measurements taken from Ríos et al., 2016, with measurements taken from Ríos et al., 

2016, 2017. 
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When scaled to a smaller overall size, the morphology of the proximal articular surface 

and the morphology of the cubonavicular bone are extremely like comparative examples 

of Samotherium (UUZM-M10786, cubonavicular of Samotherium c.f. mumayri, UUZM-

M764, metapodial of Samotherium sp., UUZM-M773, cubonavicular of Samotherium 

sp., UUZM-M659 metapodial Samotherium sinense) and are more boxy in the proximal 

surface and with a deeper and wider groove to the posterior side of the shaft than all 

compared metapodials of the similarly sized Palaeotragus (UUZM-M1158 distal 

metapodial Palaeotragus microdon, UUZM-M1157 metatarsal, cubonavicular 

Palaeotragus microdon). Thus, it is likely, given the geographic extent and isolation of 

Central Asia, that the Kyrgyz giraffid material represents a new species of Samotherium; 

however, the material is too fragmentary at this point to describe a new taxon.  

 

Family PALAEOMERYCIDAE Lydekker, 1883 

Specimens: UOMNH F-70400 palate with L and R P2-M3 (from UO-4605 Ortok). 

Localities: UO-4605 Ortok.  

Description: Complete palate preserving the P2-M3 on both sides, broken ~1-1.5 cm 

dorsally to the enamel dentine junction, and broken ~2cm anteriorly to the P2s, lacking 

the toothless premaxillae (Figure 7). Specimen also includes the palatine bones, and 

shape of the anterior portion of the opening to the sinuses in the palatine and vomer. 

Teeth are in a moderate stage of wear, representing an adult individual. Teeth are rugose 

on exterior enamel margins, with greater rugosity on the lingual side of the teeth. The P4 

is molariform, while the P3-P2 are not. The M1-M3 contain palaeomerycid folds, 

forming a complete tubule between the primary lophs of the molars. The molars also 
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contain enamel lakes between the clearly developed selenes in the M1-M3. Each tooth is 

robust, with a greater width than length in the P4-M2. The tooth row is curved, narrowing 

towards the anterior portion considerably.  

 

Figure 7. Palate of F-70400, a palaeomerycid. The medial edge of the molars, between 

the lophs, has the palaeomerycid fold, and while a similar feature is seen in cervids, it 

is not couples with the enamel lakes in between the selenes. The premolars are all 

molariform, another feature differing from cervids.  
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Selenes are angled lingual, and narrow from the medial portion to almost a point on both 

the anterior and posterior sides. The P3 make a distinct “E” shape, where the limbs are 

roughly parallel to each other, even in wear.  

Discussion: Few artiodactyls possess the conule of enamel between loaphs of the molars. 

Notably, the Cervidae and Palaeomercidae do possess this feature. However, the internal 

enamel lakes seen in this specimen are rarely (but occasionally) seen in bovids, and are 

not seen in giraffids or cervids. The rugosity seen in the external surfaces of the enamel is 

also present in cervids, but not in bovids. While a moderately-sized artiodactyl, this 

specimen is still smaller that all but one giraffe taxon: Palaeotragus microdon. However, 

P. microdon lacks both the palaeomerycid fold between the lophs and lacks the internal 

enamel lakes seen in the Kyrgyz specimen. In addition to morphological differences in 

the tooth structure, the Kyrgyz specimen is also significantly larger in size than 

contemporarily aged cervids. Contemporary deposits in the Siwaliks produce 

palaoemerycids, indicating the presence of this family in the region both temporally and 

geographically, yet this material is morphologically quite distinct (Sánchez et al., 2015). 

This family is uncommon in Eurasian deposits of any age, particularly by the late 

Miocene. 

 

ARTIODACTYLA indet. 

Specimens: UOMNH F-70343 tooth fragments, UOMNH F-70364 calcaneum fragment, 

UOMNH F-70372 distal phalanx, UOMNH F-70384 astragalus fragment (from UO-4605 

Ortok). UOMNH F-64517 distal radioulna, UOMNH F-64524 frontal with base of head-

gear, UOMNH F-64553 sesamoid (from UO-4603 Vodka). UOMNH F-70474 tooth 
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fragments, UOMNH F-70482 metapodial fragment, UOMNH F-64350 headgear 

fragment (from UO-4601 Bone Hill). 

Localities: UO-4605 Ortok, UO-4603 Vodka, UO-4601 Bone Hill. 

Description: The tooth fragments contained selenes, characteristic of artiodactyls. The 

enamel was relatively thin, and the labial profile had high medial points to each loph. The 

calcaneum fragment, the posterior portion, was bulbous in shape at the far most posterior 

portion, and tapered to a narrow ovate cross-section for the shaft portion. The distal 

phalanx has a greater dorsoventral length than width and is asymmetrical. The trochlea 

are well developed, with pronounced keels on the ventral surface, and a strong groove 

between the two halves. The astragalus preserves only half of the bone, but would fit a 

roughly rectangular bone if whole. The skull fragment with the base of headgear 

preserved only preserved the basal most outward projection of the headgear. Therefore, it 

was impossible to distinguish if the material was horn core or antler, especially given the 

extension of the frontal bone ventral to the pedicle seen in some of the cervid antlers. The 

headgear has undergone significant diagenic alteration, removing any surface texture to 

the bone. The smoothness of the surface would be consistent with ossicones, however the 

degradation made bovid horn cores also a possibility.  

Discussion: As the cervid and larger bovid material are of comparable size, some of the 

postcranial material is not diagnostic for differentiating between the two families. Likely 

the material belongs to one of these two taxa, however not all elements are easily 

distinguished between bovids and cervids.  
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Order CARNIVORA Bowdich, 1821  

Family HYENIDAE Gray, 1821 

Specimens: UOMNH F-64466 p4 (from UO-4601 Bone Hill). 

Localities: UO-4601 Bone Hill. 

Discussion: See Robson et al. in prep for taxonomic discussion.  

 

Family MUSTELIDAE Fischer von Waldheim, 1817 

Specimens: UOMNH F-70506 m1 (from UO-4601 Bone Hill). 

Localities: UO-4601 Bone Hill. 

Description: Mustelid material is limited to a single lower carnassial tooth. The tooth 

represents a small carnivoran. The talonid has a well-developed basin. Shearing blades 

are very pronounced across the tooth, suggesting hypercarnivory. While broken, the bases 

of two roots are preserved. Little wear is evident on the tooth. 

Discussion: The well-developed talonid basin precludes feliforms, such as Herpestidae 

and Viveravidae, and the small size precludes Hyenidae and Felidae. However, the length 

of the talonid is slightly less than one quarter of the total tooth length, a degree of 

reduction typically not seen in even small canids. In both gross morphology and size, the 

tooth is consistent with Martes, however this generic level assignment is tentative with 

only one tooth. Additionally, Martes is currently a very broadly defined genus, 

containing a large temporal range and degree of morphological diversity, although it is 

known from Eurasian faunas of the late Miocene (Nakaya, 1994).  
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CARNIVORA indet. 

Specimens: UOMNH F-67906 canine tooth (from UO-4605 Ortok). 

Localities: UO-4605 Ortok. 

Description: Unidentified carnivore material from Ortok is limited to a single worn 

canine. Specimen UOMNH F-67906 is a very weathered canine tooth, preserving all but 

the base of the tooth root. The tooth is triangular in lateral view, with a thick base quickly 

tapering to a worn surface. At the base the cross section is slightly ovate, but not 

significantly mediolateraly compressed. Dorsal to the enamel-dentine junction, the 

posterior edge of the tooth is straight, while the anterior margin curves posteriorly. The 

tip of the tooth exhibits grinding wear, exposing the internal dentine. In addition to this 

lifetime wear, the tooth displays evidence of fluvial transport, with extensive pitting and 

abrasion of the enamel. Where the base of the root is broken off, the edges are rounded 

slightly, suggesting fluvial transport.  

Discussion: Because canine teeth are simple and single-cusped, this tooth is similar in 

gross morphology across a wide range of taxa. This factor, exacerbated by the fluvial 

modification to the tooth surface, precludes positively assigning the tooth to family level. 

The lack of mediolateral compression makes Felidae, or barberofelids, unlikely 

candidates. Hyenidae material is known from two other localities in the Kyrgyz Neogene 

sequences, and comparison to modern examples suggests this would be a plausible 

assignment; however, the morphology of canid canines is too like late Miocene hyenids 

to preclude this possibility as well. The high degree of lifetime wear is consistent with a 

carnivoran processing some amount of bone along with softer tissues.  
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Order LAGOMORPHA Brandt, 1855 

Family LEPORIDAE Fischer von Waldheim, 1817 

Specimens: UOMNH F-64542 tooth fragments, UOMNH F-70321 incisor, UOMNH F-

64363 mandible with p3-m2, UOMNH F-64460 left and right humeri, left calcaneus, left 

tibia, left femur UOMNH F-64452 distal humerus (from UO-4604 Dam Site). 

Localities: UO-4604 Dam Site. 

Discussion: Taxonomic discussion in Flora et al. in prep.  

 

Family OCHOTONIDAE Thomas, 1897 

Specimens: UOMNH F-70320 left upper incisors, nasal bone, premaxillary bone (from 

UO-4604 Dam Site). 

Localities: UO-4604 Dam Site. 

Discussion: Specimen described in Flora et al. in prep. 

 

Order PERISSODACTYLA Owen, 1848 

Family EQUIDAE Gray, 1821 

Genus HIPPARION de Christol, 1832 

Specimens: UOMNH F-64481 tooth fragment, UOMNH F-64482 upper cheek tooth 

fragment, UOMNH F-65583 partial astragalus, UOMNH F-70323 distal metapodial 

fragment, UOMNH F-70334 distal metapodial fragment, UOMNH F-70338 tooth 

fragment, UOMNH F-70355 distal femur fragment, UOMNH F-70373 tooth fragments, 

UOMNH F-70381 upper cheek tooth fragment, UOMNH F-70396 upper left deciduous 

tooth row, UOMNH F-70398 incisor and associated incisor fragments, UOMNH F-70424 
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tooth fragment, UOMNH F-70431 mandible with left and right di1-dp4 (from UO-4605 

Ortok). UO-64492 R upper cheek tooth, UOMNH F-64493 mandible with i1-m2, 

UOMNH F-64521 carpal sesamoid, UOMNH F-70316 tooth fragment (from UO-4603 

Vodka). UOMNH F-64453 mandible with four cheek teeth, UOMNH F-64501 mandible 

with two cheek teeth, UOMNH F-64502 tooth fragment, UOMNH F-64504 distal tibia 

(from UO-4604 Dam Site). UOMNH F-70472 tooth fragments, UOMNH F-64548 

incisor, UOMNH F-64438 two deciduous incisors and deciduous cheek tooth, UOMNH 

F-64608 upper cheek tooth, UOMNH F-64609 partial mandible with remains of several 

cheek teeth, UOMNH F-70460 mandible with left and right p2-m3, UOMNH F-64463 

lateral metapodial, UOMNH F-64393 tooth fragment, UOMNH F-70467 distal 

metapodial, UOMNH F-64379 podial, UOMNH F-70495 upper cheek tooth, UOMNH F-

70465 calcaneum, UOMNH F-70492 distal tibia, UOMNH F-70444 calcaneum (from 

UO-4601 Bone Hill). 

Localities: UO-4605 Ortok, UO-4603 Vodka, UO-4604 Dam Site, UO-4601 Bone Hill. 

Description: Teeth and tooth fragments contained weak perikymata in the cross sections 

of the enamel. Tooth exteriors also contained significant deposits of cementum. More 

complete dental material contained complicated infolding of the enamel, with a protocone 

forming a distinct loop of enamel, separate from the two primary lophs of the teeth. 

Incisors were ovate in cross section, narrowing towards the roots. Complete incisors were 

strongly curved and generally contained enamel lakes. Astragali were roughly equant in 

height and width, with slanted trochlear keels. Phalanges had strong bilateral symmetry 

and were robust in nature.  
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Discussion: While perikymata were more weakly developed than in the Rhinocerotidae 

fragments, it was present in all dental material, distinguishing the equid material from 

artiodactyl material. The incisors from Ortok did not contain internal enamel lakes, but 

the only associated with cheek teeth were deciduous, and deciduous incisors lack enamel 

lakes (Silver, 1963). Distinguishing adult and deciduous incisors is possible, but must be 

established at a species level with associated material (Silver, 1963). The incisors in the 

partial jaw from Vodka do contain enamel lakes. The complete mandible from Ortok 

(UOMNH F-70431) belongs to a juvenile individual. No adult teeth are erupted, but adult 

teeth are visible in the interior of the mandible. The mandible is very narrow through the 

diastema. As the protocone is separated from the primary lophs, these specimens can be 

confidently assigned to the genus Hipparion. A species-level diagnosis is more difficult, 

however. The genus needs taxonomic revisions, with potential consolidation of some 

species. Comparative material from the Chinese Hipparion fauna possesses at least 15 

species (Qui et al., 1987, Bernor et al., 1990). As important taxonomic information comes 

from the depressions anterior to the orbits, but this feature is only poorly preserved in one 

specimen from Bone Hill. The overall size of material, as well as degree of complexity in 

lower tooth enamel infolding implies the smaller and less complicated enamel material 

from Vodka is likely a different species of Hipparion that the material present at all other 

bone beds. As all dental material is assignable to Hipparion, with no evidence of other 

genera at any site, postcranial material from Equidae was also assigned to Hipparion. 
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Family RHINOCEROTIDAE Gray, 1821 

Specimens: UOMNH F-64479 astragalus fragment, UOMNH F-64480 podial, UOMNH 

F-64481 tooth fragments, UOMNH F-64482 astragalus fragment, UOMNH F-64483 

carpal, UOMNH F-64484 tooth fragment, UOMNH F-64485 partial astragalus, UOMNH 

F-64486 tooth fragment, UOMNH F-64487 unworn tooth fragments, UOMNH F-64488 

distal tibia fragment, UOMNH F-64489 tooth fragments, UOMNH F-70324 tooth 

fragment, UOMNH F-70335 humerus, UOMNH F-70337 tooth fragment, UOMNH F-

70342 tooth fragments, UOMNH F-70345 tooth fragments, UOMNH F-70347 tooth 

fragments, UOMNH F-70348 astragalus fragment, UOMNH F-70349 distal femur 

fragment, UOMNH F-70350 distal metapodial, UOMNH F-70351 carpal, UOMNH F-

70354 astragalus fragment, UOMNH F-70357 proximal humerus fragment, UOMNH F-

70359 tooth fragments, UOMNH F-70360 radius, UOMNH F-70362 tooth fragment, 

UOMNH F-70363 tooth fragment, UOMNH F-70365 tooth fragments, UOMNH F-70374 

astragalus fragment, UOMNH F-70375 tooth fragments, UOMNH F-70385 tooth 

fragments, UOMNH F-70386 tooth fragments, UOMNH F-70387 podial fragment, 

UOMNH F-70388 distal femur fragment, UOMNH F-70389 tooth fragment, UOMNH F- 

70391 tooth fragments, UOMNH F-70394 tooth fragments, UOMNH F-70395 radius, 

UOMNH F-70397 tooth fragments, UOMNH F-70399 tooth fragments, UOMNH F- 

70401 tooth fragment, UOMNH F-70402 distal femur fragment, UOMNH F-70403 

proximal femur fragment, UOMNH F-70404 patella, UOMNH F-70405 calcaneum, 

UOMNH F-70406 podial, UOMNH F-70407 podial, UOMNH F-70425 tooth fragments, 

UOMNH F-70427 tooth fragment (from UO-4605 Ortok). UOMNH F-64514 distal 

radius, UOMNH F-64515 distal radius, UOMNH F-64522 distal metapodial, UOMNH F-
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64523 tibia, UOMNH F-64527 carpal, UOMNH F-64529 partial tibia, UOMNH F-64530 

partial calcaneum, UOMNH F-64534 podial, UOMNH F-64537 astragalus, UOMNH F-

64551 tarsal, UOMNH F-64552 distal humerus, UOMNH F-64553 partial pelvis, 

UOMNH F-64554 occipital, UOMNH F-64555 radius, UOMNH F-64556 proximal tibia, 

UOMNH F-64557 skull, UOMNH F-64558 acetabulum, UOMNH F-64559 distal 

metapodial, UOMNH F-64560 carpal, UOMNH F-65461 carpal, UOMNH F-64562 

tarsal, UOMNH F-64563 tarsal sesamoid, UOMNH F-64564 sesamoid, UOMNH F-

64566 mid-shaft tibia, UOMNH F-64567 distal metapodial, UOMNH F-64568 carpal, 

UOMNH F-64569 vertebra fragment, UOMNH F-64570 humerus fragment, UOMNH F-

64572 ungal phalanx, UOMNH F-64573 metapodial fragment, UOMNH F-64575 tibia, 

UOMNH F-64576 tarsal, UOMNH F-64577 fibula, UOMNH F-64578 atlas fragment, 

UOMNH F-64579 sesamoid, UOMNH F-64580 tooth fragments, UOMNH F-64581 

thoracic vertebra fragment, UOMNH F-70303 carpal, UOMNH F-70304 podial, 

UOMNH F-70305 calcaneum, UOMNH F-70306 calcaneum, UOMNH F-70307 podial 

fragments, UOMNH F-70312 carpal, UOMNH F-70314 metapodial (from UO-4603 

Vodka). UOMNH F-64423 tooth fragment, UOMNH F-64540 metacarpal fragment, 

UOMNH F-64544 distal metapodial, UOMNH F-70462 patella, UOMNH F-64617 ulna 

fragment, UOMNH F-70461 proximal radius, UOMNH F-64637 proximal tibia, 

UOMNH F-64489 distal radius, UOMNH F-64624 distal tibia and astragalus fragment, 

UOMNH F-64526 radius, UOMNH F-64638 proximal radius, UOMNH F-64490 several 

fragmentary carpals, UOMNH F-64491 proximal humerus, UOMNH F-64500 right 

astragalus and right calcaneum, UOMNH F-64505 distal radius, UOMNH F-64506 left 

astragalus, UOMNH F-64626 mandibles with c1-m3, UOMNH F-70301 mandibles with 
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c1-m3, UOMNH F-70501 astragalus, UOMNH F-70502 proximal radius (from UO-4604 

Dam Site). UOMNH F-64425 tooth fragments, UOMNH F-64428 proximal radius, 

UOMNH F-64493 femoral head, UOMNH F-70503 distal femur, UOMNH F-70500 

scapula, UOMNH F-64614 distal radius, UOMNH F-64554 articulated distal femur and 

proximal tibia, UOMNH F-64371 tooth fragments, UOMNH F-64397 tooth fragments, 

UOMNH F-70447 tooth fragments, UOMNH F-70499 tooth fragments, UOMNH F-

70469 sesamoid, UOMNH F-70466 vertebral zygapophesis, UOMNH F-70478 tooth 

fragments, UOMNH F-70438 deciduous lower molar, UOMNH F-70433 proximal 

metapodial, UOMNH F-64499 navicular, UOMNH F-70437 distal metapodial, UOMNH 

F-70464 carpal, UOMNH F-70468 podial, UOMNH F-70502 pelvis (from UO-4601 

Bone Hill). 

Localities: UO-4605 Ortok, UO-4603 Vodka, UO-4604 Dam Site, UO-4601 Bone Hill.  

Description: Teeth and tooth fragments all possess thick enamel with well-developed 

parallel banding (perikymata). Podial elements were robust and exhibited extensive 

pathology, with subchondral cysting and remodeling of the surfaces adjacent to the joint 

surfaces. Astragali are roughly box-shaped, with slanted trochlea forming two keels. The 

patella is large, with two deeply-developed grooves parallel to each other. Metapodials 

have an asymmetrical proximal end, a thick shaft, ovate in cross section with an 

anterior/posterior plane of compression, and a symmetrical distal end with a small keel 

developed in the center of the articular surface. The skull has an un-ossified nasal septum, 

with a retracted and elevated nasal bone. The premaxilla and the front the maxillary 

bones are missing. The M3s are both present and one side has a partial M2 preserved. 

(see chapter 4 for additional description)  
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Discussion: Dental material was diagnosed both by the thickness of the enamel, which is 

thicker than anything except proboscideans present in the Eurasian Miocene, and by the 

very strongly developed perikymata. Labial enamel surfaces also had a corrugated 

texture. The banding in the enamel, while seen in equids, is much more pronounced in 

rhinocerotids (Prothero, 2005). Most postcrania were identified via the large size, 

extreme robusticity (Prothero, 2005), and by the presence of extensive pathology in distal 

limb elements, which is widespread across rhinocerotids in the late Miocene (Stilson et 

al., 2016). Distal tibiae and astragali had robust but slanted trochlea characteristic of 

perissodactyls, yet with broader trochlea than equids. The skull represents a large 

rhinocerotid, lacking horns, and with two protruding tusks from the lower jaw. While this 

description is like Chilotherium, one of the more common late Miocene taxa regionally, 

the skull profile and shape of the nasals and basacrania are markedly different than any 

previously described species. Taxonomic diagnosis and description of this skull is the 

subject of a later publication (McLaughlin, chapter 4). The rhinocerotid present at Vodka 

is of different size and proportions than the rhinocerotid present in all Chu Formation 

localities. The Vodka taxon is larger, but of more gracile proportions overall, as 

evidenced by a comparison of the complete radii (see chapter 4). The radii from Vodka 

and Dam Site have the same midshaft diameter, yet the Vodka radius is 25% longer in 

total length. Differences also exist in the shape of the distal articular surfaces, confirming 

the assignment to two different taxa (Prothero, 2005).   
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Order PERISSODACTYLA indet. 

Specimens: UOMNH F-70344 tooth fragments, UOMNH F-70353 distal tibia fragments, 

F-70368 sesamoid, UOMNH F-70377 tooth fragment (from UO-4605 Ortok). UOMNH 

F-70442 radius fragment (from UO-4601 Bone Hill).  

Localities: UO-4605 Ortok, UO-4601 Bone Hill. 

Description: Tooth fragments possessed moderately thick enamel with weakly developed 

perikymata. Distal tibia fragment preserved a small portion of the joint surface, but 

enough to distinguish a slanted slot for the trochlear keel of the astragalus. The sesamoid 

was similar in shape to a sesamoid from UOMNH F B-8701, Ceratotherium simum, but 

smaller in size.  

Discussion: The sesamoid likely belongs to a rhinocerotid because of gross 

morphological similarities, however the small size precludes positive diagnosis. It could 

therefore belong to a juvenile rhinocerotid or an equid. The dental fragments likewise 

could exhibit thinner enamel than typically seen in rhinocerotid because they are juvenile 

material, or could represent very fragmentary material from an equid.  

 

Order RODENTIA Bowdich, 1821 

Specimens: UOMNH F-70318 incisor (from UO-4603 Vodka). 

Localities: UO-4603 Vodka.  

Description: Small curved incisor with open roots. Single groove along anterior surface.  

Discussion: The size, shape, and single groove are consistent with Cricetidae, however as 

other less common candidate families are known from other Asian faunas, the specimen 

is currently assigned only to Rodentia.  
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Class MAMMALIA indet. 

Specimens: UOMNH F-64482 bone fragments, UOMNH F-64483 bone fragment, 

UOMNH F-64484 mandibular fragment, UOMNH F-70330 carpal fragment, UOMNH F-

70331 periotic capsule, UOMNH F-70332 bone fragment, UOMNH F-70336 bone 

fragment, UOMNH F-70352 bone fragment, UOMNH F-70358 bone fragment, UOMNH 

F-70361 tooth fragment, UOMNH F-70366 bone fragment, UOMNH F-70367 bone 

fragment, UOMNH F-70369 bone fragment, UOMNH F-70370 bone fragment, UOMNH 

F-70371 bone fragment, UOMNH F-70376 proximal metapodial fragment, UOMNH F-

70378 proximal metapodial fragment, UOMNH F-70379 podial fragment, UOMNH F-

70383 podial fragment, UOMNH F-70392 periotic capsule fragment, UOMNH F-70393 

bone fragment, UOMNH F-70408 bone fragment, UOMNH F-70409 bone fragment, 

UOMNH F-70410 bone fragment, UOMNH F-70411 bone fragment, UOMNH F-70412 

bone fragment, UOMNH F-70413 bone fragment, UOMNH F-70414 bone fragment, 

UOMNH F-70415 bone fragment, UOMNH F-70416 bone fragment, UOMNH F-70417 

bone fragment, UOMNH F-70418, UOMNH F-70419 bone fragment, UOMNH F-70420 

bone fragment, UOMNH F-70422 bone fragment, UOMNH F-70426 bone fragment, 

UOMNH F-70428 bone fragment, UOMNH F-70429 bone fragment, UOMNH F-70430 

bone fragment (from UO-4605 Ortok). UOMNH F-64518 pelvis fragment, UOMNH F-

64519 carpal fragment, UOMNH F-64557 articulated ribs, UOMNH F-64558 bone 

fragment, UOMNH F-64559 bone fragment, UOMNH F-64560 bone fragments, 

UOMNH F-64561 bone fragments, UOMNH F-64562 pelvis fragment, UOMNH F-

64563 proximal phalanx, UOMNH F-64564 two associated podials, UOMNH F-64566 
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rib fragment, UOMNH F-64567 carpal fragment, UOMNH F-64568 rib fragment, 

UOMNH F-64569 rib fragment, UOMNH F-64570 sesamoid, UOMNH F-64571 bone 

fragments, UOMNH F-64572 bone fragment, UOMNH F- 70308 bone fragment, 

UOMNH F-70309 scapula fragment, UOMNH F-70310 pelvis fragment, UOMNH F-

70311 bone fragments, UOMNH F-70313 fragment, UOMNH F-70315 bone fragments, 

UOMNH F-70317 bone fragment (from UO-4603 Vodka). UOMNH F-64557 bone 

fragment, UOMNH F-64620 bone fragment, UOMNH F-64619 proximal metapodial 

fragment (from UO-4604 Dam Site). UOMNH F-64439 caudal vertebra, UOMNH F-

70448 proximal ulna fragment, UOMNH F-70487 tooth root, UOMNH F-70484 bone 

fragment, UOMNH F-70470 epiphyseal plate, UOMNH F-70480 bone fragment, 

UOMNH F-70479 bone fragment, UOMNH F-70475 phalanx fragment, UOMNH F-

70493 bone fragment, UOMNH F-64349 proximal scapula, UOMNH F-70496 periotic, 

UOMNH F-70473 bone fragment, UOMNH F-70445 bone fragment, UOMNH F-70494 

bone fragment, UOMNH F-70436 vertebra fragment, UOMNH F-70477 bone fragment, 

UOMNH F-70434 podial, UOMNH F-70491 bone fragment, UOMNH F-70489 bone 

fragment, UOMNH F-70435 podial fragment, UOMNH F-70490 bone fragment, 

UOMNH F-70497 bone fragment, UOMNH F-70476 bone fragment, UOMNH F-70440 

bone fragment, UOMNH F-70441 scapula fragment (from UO-4601 Bone Hill).  

Localities: UO-4605 Ortok, UO-4603 Vodka, UO-4604 Dam Site, UO-4601 Bone Hill. 

Description: Material is all highly fragmentary. Material has a clearly developed cortical 

bone, with a gradual transition to the exterior portion of the bone in cross-section.  

Discussion: Material was assigned to Mammalia based on the surface structure of the 

bone and the cross-sectional gradient from the cortical bone. Reptilian bone has a more 
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fibrous surface texture and different cross sectional relationship of the porous and dense 

bone (Chinsamy, 1997). Bone that was assignable to element could not be definitively 

assigned to an order.  

 

Class REPTILIA Laurenti, 1768 

Order SQUAMATA Oppel, 1811 

Family VARANIDAE Merrem, 1820 

Specimens: UOMNH F-64341 posterior portion of mandible, UOMNH F-70505 tooth 

(from UO-4601 Bone Hill).  

Localities: UO-4601 Bone Hill.  

Description: The isolated tooth was found in close proximity to the posterior portion of 

the jaw, and therefore may belong to the same specimen. They were not however found 

in direct association. The mandible fragment has a very low coronoid process, and a 

medial groove with the mandibular foramen far towards the anterior of the element. The 

tooth is a single cusp, of very simple morphology, and it lacks serration. The tooth is 

concave lingualy and convex labially. 

Discussion: The texture of the bone was more fibrous than that seen in Mammalia. 

Additionally, the highly reduced articular morphology was consistent with squamates. 

Identification was largely made via comparison to a Varanus gouldii specimen (TMM M-

1295) on Digimorph. Several members of the genus are found in modern Central Asian 

assemblages (Böhme, 2003), and fossil representatives are found in the broader region 

dating back to the early Miocene (Rage & Bailon, 2005). Many comparably large 
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squamates have serrations on the teeth, and of non-serrated groups, most have conical 

teeth without the lingual concavity (Rage & Bailon, 2005).  

 

Order TESTUDINES Batsch, 1788 

Family TESTUDINIDAE Batsch, 1788 

Specimens: UOMNH F-70319 carapace fragment (from UO-4603 Vodka). 

Localities: UO-4603 Vodka. 

Description: Carapace fragment, with some suture lines preserved.  

Discussion: General shape coupled with fiberous exterior bone texture and different cross 

sectional density of this bone fragment led to the assignment to testudines. The further 

assignment to tortoises was because of the overall size and thickness of the fragment. 

Fragment was assigned to carapace based on the degree of curvature of the sample, rather 

than plastron comparative material. The edges of the specimen evidenced fluvial wear 

unlike most specimens throughout all bone beds.  

 

 

Results 

All localities are mammal-dominated assemblages, with only three specimens of reptiles 

(two lizards and one tortoise) out of the 500+ included specimens. Additionally, 

ungulates compose most of each fauna (Figure 8). While ungulates dominating a fauna in 

part reflects a typical trophic structure, the Kyrgyz bone beds represent an even more 

extreme overrepresentation of ungulates and other herbivores to carnivores or omnivores 

than typical fossil mammal assemblages (Behrensmeyer, 1991). Despite spanning an  
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Figure 8. Proportions of vertebrate guilds represented at each site. While carnivores 

are rarely common, the relative percentage to more abundant ungulates is still 

informative, as it differs between agents of fossil accumulation and causes of mass 

mortality events. 

 

estimated five million years, and variation between each of the faunas, each bone bed is 

rhinoceros dominated. Percentage of the fauna occupied by rhinoceros range from 31% to 

74%, with Vodka bone bed having the highest percentage (Figure 9).  This  
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Figure 9. Faunal representatives at a family level for each locality. Vodka and Ortok 

are rhinocerotid dominated, while rhinocerotids tie for most common with bovids at the 

Dam Site. Only Bone Hill has rhinocerotids as not the most common family, with 

cervid material being the most common.   

 

overrepresentation suggests differences in either mode of accumulation, in cause of 

death, or differences in behavior or social structure of fossil taxa.  
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 Differences in bone preservation were present at each of the five bone beds. 

Weathering categories (Shipman, 1981, Gifford, 1980) were generally low, with little to 

no pre-fossilization surface wear (Table 3). While some bones were broken pre-

deposition (Figure 10), no bones showed evidence of abrasion or polishing at any 

locality.  

  

Bone Bed I II III IV V 

Vodka 49 28 6 0 0 

Ortok 80 41 8 0 0 

Bone Hill 89 10 3 0 0 

Dam Site 34 4 0 0 0 

 

Table 3. Degree of weathering for elements at each site, using the categories of Shipman, 

1981 and Gifford, 1980 explained in Table 1. Most elements showed no surface 

weathering, implying carcasses spent less than 6 months from death to burial. 

 

Degree of bone completeness and presence of articulation also varied between 

sites. Articulation was most common at Bone Hill, and less common, but present at 

Ortok, Vodka, and Dam Site.  Degree of element completeness for each bone bed is listed 

in Figure 11. All sites were biased towards large elements, with greater size bias towards 

large material seen at Rhino Party than at other sites, although this could be in part a 

factor of sample size (smallest sample size) and preservation (objectively worst bone 

quality, limiting what could be identified or collected). The preservation of articulated 

rhinoceros material at Bone Hill and Ortok increases the maximum size of transported 

material.  
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Figure 10. Hipparion mandible and Chilotherium tibia as discovered in situ at the 

Vodka locality. This illustrates the mixed completeness, with the equid mandible 

broken and the rhinocerotid tibia complete, neither in articulation, and clearly 

deposited together. In the upper right portion of the photo large angular rock clasts can 

also be seen, characteristic of a poorly sorted, short transport distance with quick 

deposition deposit derived from a fanglomerate. This rapid deposition and short 

transport distance, combined with the lack of surface weathering, is consistent with 

fluvial deposition after a period of drought. 

 

 The bone beds varied both in the range of L1 and the median values for L1. As 

length is the greatest factor in total transport distance, these differences do imply some 

difference in transport distance. The largest length value for any site was that of the 

articulated partial rhinoceros skeleton present at Bone Hill. Articulation increases total 

length of transportable units, therefore articulation is not only a sign of quicker burial, but 
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also of less transport of elements (Table 4). Microvertebrates were only present at Ortok, 

Vodka, Dam Site, and Bone Hill, although never in great concentrations.  

 

Figure 11. Plot of element completeness, as completeness is an indicator or 

weathering, transport distance, and degree of carcass processing. Individual elements 

were categorized on completeness when compared to a whole element from a related 

modern taxon. Completeness was assigned to a 10% standard to account for difficulty 

in accessing initial completeness resulting in poor fossilization or transportation and 

excavation wear. Vodka and Bone Hill had the most complete elements, while Ortok 

and Bone Hill had the most incomplete elements. The Dam Site has the most even 

distribution of individual element completeness. 

 

Length values for all individual specimens, differentiated by locality, reported in Figure 

12. Shape also varied slightly, with more compact or cylindrical elements than flat 

elements. No notable differences in shape existed between bone bed localities (Figure 

13). Distribution of skeletal elements is more variable between localities. Ortok has 

cranio-dental material as the most common elements, whereas mid limb bone like the 

radius and tibia were most common at the Dam Site (Figure 14) (Table 5). Overall, the 
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total length and non-flat shapes imply little to no transport occurred before deposition. 

We infer this to be carcasses on the surface being transported very short distances in a 

fanglomerate setting before rapid burial.  

 

 
Locality Articulated Disarticulated % Articulated % Disarticulated 

Vodka 4 78 4.87 95.12 

Ortok 2 124 1.58 98.41 

Bone Hill 10 92 9.80 90.19 

Dam Site 5 30 14.28 85.71 

 

 

Table 4. Relative proportions of articulated to disarticulated material. While most 

material was disarticulated, all localities possessed some articulated material, a feature 

missing in modern sites with significant transportation or with greater than 1 year of 

surface weathering (Faith & Behrensmeyer et al., 2006). Thus, the presence of 

articulation implies rapid accumulation of material and quick burial with little to no 

transportation. 
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Table 5. Distribution of elements between the four bone beds in this study (1) and several micro and marcro fauna comparatives. 

Assemblages beginning with C (2) are microvertebrate faunal from the Cabbage Patch from Calede (2016). Siwalik (3) assemblages 

are from four stratigraphic layers, with I and II inferred as attritional assemblages and III and IV as mass death assemblages from 

Badgley (1986). The modern fluvial (4) assemblage is an attritional grouping of modern bones via fluvial transport from Aslan & 

Behrensmeyer (1996). Finally, the Amboseli assemblages (5) are modern African drought killed mass mortality faunas from Faith & 

Behrensmeyer (2006).

Assemblage 
phalange
s 

dentarie
s head gear 

podial
s 

skull
s teeth 

humer
i 

metapodia
l 

scapul
a 

femor
a 

radii/ulna
e 

vertebr
a 

tibia/fibul
a 

pelvi
s rib 

Sourc
e 

 

Vodka 2.8 6.9 1.4 31.9 2.8 6.9 2.8 9.7 4.2 1.4 5.6 4.2 9.7 5.6 4.2 1 
 

Ortok 1.9 1.0 13.6 23.3 2.9 36.9 2.9 7.8 0.0 4.9 2.9 0.0 1.9 0.0 0.0 1 
 

Bone Hill 11.0 9.9 5.5 19.8 4.4 20.9 0.0 11.0 3.3 3.3 4.4 3.3 2.2 1.1 0.0 1 
 

Dam Site 0.0 9.8 24.4 14.6 2.4 12.2 4.9 7.3 0.0 0.0 17.1 0.0 7.3 0.0 0.0 1 
 

C0173 13.2 9.1 0 6.7 4.3 25 5.8 10.4 1.3 3 5.5 7.7 5 3 0.3 2 
 

C0174 17 8.7 0 1 5.8 28.6 2.4 8.3 1.0 3.9 4.4 13.6 3.4 1.5 0.5 2 
 

C1704 8.5 5.1 0 3.4 3.4 60.8 1.7 4.4 0.7 0.7 1 8.9 0.3 0.7 0.3 2 
 

C1707 16.7 6.1 0 4.5 1.5 28.8 1.5 12.1 0.0 7.6 4.5 10.6 3.0 1.5 1.5 2 
 

C1721 13.5 9.6 0 5.8 0.5 50 2.9 3.8 1.0 2.9 1.9 6.2 1.0 0.0 1.0 2 
 

C1708 7.6 12.1 0 2.7 3.3 61.5 1.5 2.4 0.0 1.5 0.9 4.5 0.9 0.6 0.3 2 
 

Siwalik I 9.1 4.2 

inc. w/ 

skull 6.9 6.2 27.9 2.7 10.1 1.6 2.9 5 7.7 3.9 2.4 9.4 3 

 

Siwalik II 2.9 4.4 

inc. w/ 

skull 2.7 5.8 31.3 2.2 8.7 2.0 4.2 2.2 9.6 3.6 2.2 8.2 3 

 

Siwalik III 3.9 2.9 
inc. w/ 
skull 3.5 7.6 21.4 2.5 5.9 1.1 3.9 3.5 13.5 2.8 2.8 

24.
7 3 

 

Siwalik IV 5.0 6.8 

inc. w/ 

skull 3.3 6.8 36.2 3.0 4.7 2.7 3.0 5.3 11.6 2.7 1.2 7.7 3 

 

Modern fluvial 5.0 5 

inc. w/ 

skull 3.7 7.4 5.4 8.4 7.7 4.0 6.7 9.1 13.8 9.4 4.7 9.7 4 

 

Amboseli 1975 not inc 3.9 not inc not inc 2.2 

not 

inc 3.7 6.2 3.1 3.0 3.5 40.9 3.1 13.3 7.5 5 

 

Amboseli 02-

04 not inc 10.3 not inc not inc 8.7 

not 

inc 8.2 7.4 7.6 5.6 9.5 20.3 6.1 5.6 

10.

8 5 
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Site Adult NISP 

Juvenile 

NISP % juvenile % adult 

Mass 

mortality or 

attritional 

Study 

source  

Vodka 27 3 10.00 90.00 Attritional? 1 

Ortok 34 9 20.93 79.07 

mass 

mortality 1 

Bone Hill 47 13 21.67 78.33 

mass 

mortality 1 

Dam Site 30 1 3.23 96.77 attritional? 1 

Siwalik I                -                - 1 99 attritional 2 

Siwalik II                -                - 1 99 attritional 2 

Siwalik III                -                - 12 88 

mass 

mortality 2 

Siwalik IV                -                - 16 84 

mass 

mortality 2 

Akkasdagi Protoryx laticeps                -                - 12 88 

mass 

mortality 3 

Akkasdagi Microstonyx 

major                -                - 22 78 

mass 

mortality 3 

Akkasdagi Hipparion 35 16 31.37 68.63 

mass 

mortality 3 

Valley of Shavart 

 

27 

 

13 

 

32.5 

 

67.5 

 

mass 

mortality 

 

4 

 

Brazil cave deposit  - - 0 100 attritional 5 

 

Table 6. Percent of age-identifiable material assigned to juvenile verses adult age classes 

for the four bone beds from this study (1) and compared to several other modern and 

fossil assemblages. Other studies include Neogene fossil assemblages from the Siwalik 

hills (2, Badgley, 1986), Turkish Neogene fossil assemblages (3, Valli, 2005), modern 

death assemblage from a mud pit forming over one drought season in Mongolia (4, 

Berger et al., 2001), and a Quaternary cave deposit where all bones were deposited from 

fluvial transport (5, Maldonado et al., 2016). 
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Figure 12. Length measurements (L1) for all elements. Maximum length is the single 

greatest predictor of total transport distance, with long elements being the least likely 

to be transported. Therefore, the longer the total length of the longest elements in each 

assemblage, the less likely transport of any noticeable distance. 

 

 Age distribution was varied between the four sites, ranging from 10-21% of the 

assemblages. While Palmqvist (et al., 1996) suggests the presence of any juveniles in a 

fossil assemblages makes mass mortality unlikely, none of the studies of modern mass 

death assemblages support this claim, with known mass mortality events producing high 

numbers of juveniles (Badgley, 1986, Aslan & Behrensmeyer, 1996, Faith & 
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Behrensmeyer, 2006, Valli, 2005, Berger et al., 2001) and attritional events producing 

low percentages of juveniles (Badgley, 1986, Maldonado et al., 2016). The high  

percentage of juveniles is in keeping with other mass mortality events, rather than 

attritional sites (Table 6) (Figure 15). Paired with the lack of any carnivore tooth marks, 

or breakage consistent with scavenging on any bones in all four assemblages, the 

presence of juveniles is instead attributed to young animals being less likely to survive 

environmental perturbations.  

 

 

Figure 13. Plots of flatness (L3/L2) to columnarity (L3/L1) after methods of Calede 

(2016). Ortok had the most “box shaped” elements, while flatter elements were 

common in the other three sites. As flatness is a predictor of transport, after total 

length, this may imply that elements at Ortok were not transported as far as other sites.  
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Figure 14. Grouping the distribution of elements into rough body position categories 

more clearly illuminates gross trends in element distribution. Ortok has the highest 

representation of cranial material by percent of total material. Vodka, Ortok, and Bone 

Hill were all highly represented in distal limb elements (autopod). This could represent 

local deposition or transport taken alone, however the lack of evidence of transport 

suggests little total transport distance driving the abundance of many small hand and 

foot elements. 

 

 

Conclusion 

Bone beds in the Kochkor basin uniformly represent mass death assemblages, despite 

spanning approximately five million years (McLaughlin, chapter 3). The relatively quick 

accumulation of vertebrate material, the very high density of material, general lack of 

bone surface weathering, lack of evidence of carnivore processing, high percentage of 

juveniles (at two localities), and mix of bone and skeleton completeness are indicative of 

assemblages where the prevalence of dead vertebrates overwhelms the ability of  
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Figure 15: Juvenile Hipparion mandible from Ortok. Given tooth eruption rate in 

modern horses, the individual was likely 1-2 years old. The image on the left was taken 

during preparation of the specimen and gives a cross sectional view through the tooth 

row. Adult dentition is seen in the jaw just below the shallow caps of the juvenile 

dentition. The erupting adult dentition clearly contains a distinct protocone, facilitating 

the diagnosis as a hipparonine equid. 

 

carnivores or scavengers to process the corpses (Behrensmeyer & Hill, 1980). As the 

bone beds uniformly show low levels of physical transport, minimal to no bone surface 

weathering, no processing by carnivores or rodents, and sedimentary indicators of rapid 

deposition, it can therefore be assumed that mode of accumulation is not to blame for the 

lack of carnivore or omnivore material. We propose that the large-vertebrate death 

assemblages most consistent as an analogue, are those resulting from large drought 

events (Haynes, 1988). 

 Low levels of surface weathering at all bone beds ((Shipman, 1981, Gifford, 

1980) (Table 3) indicate quick accumulation of bones, likely on the weeks to months 

timescale. Additionally, the mix of element completeness and articulation is consistent 
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with accumulated corpses being transported short distances fluvialy and quickly 

deposited in flashflood onto proximal flood plains or fanglomerate type events, as 

opposed to attritional events or long periods of weathering (Faith & Behrensmeyer, 

2006). Sediments associated with the bone beds are also fluvialy derived. The transition 

from the braided stream deposition of course materials in the Shamsi Formation, to the 

finer grained fluvial channel and overbank deposits is consistent with a drier climate in 

the younger formation. Additionally, the dense red paleosols of the Shamsi, characterized 

elsewhere as weathered soils in a monsoonal climate (Ding et al., 1999), disappear 

continuing up section into the Chu Formation. All Chu Formation localities are siltstone, 

with some clastic material, consistent with sudden deposition in an over bank or fan type 

sudden deposition of suspended material. The lack of articulation at Vodka implies that 

skeletal elements at Vodka may have spent longer between time of death and time of 

accumulation than other localities. The higher, but still low overall, degree of surface 

weathering present at Vodka corroborates this, as additional time allows for degradation 

of connective tissues and more chances for biological or mechanical disarticulation. The 

complete lower rhino dentition from Vodka is however one of the best examples of 

“drought wear” (Kaiser et al., 2013) seen at any locality, although equid dental material 

from Bone Hill also displays macro wear associated with browsing rather than grazing. 

Quick deposition of minimally transported corpses of varyingly disarticulated 

skeletons is consistent with a large-scale drought event. In a drought to fluvial 

depositional event, we would expect corpses to accumulate on a landscape over weeks to 

months as individuals died and desiccated. When precipitation events eventually 

occurred, desiccated and partially disarticulated vertebrate material would quickly wash 
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downgradient until deposited. Therefore, L1, being the factor most related to transport 

distance, also ends up being a measure of articulation, and how long material stayed at 

the surface to weather and disarticulate. Longest elements were always articulated 

material, if articulated material was present. Vodka had little articulated material (one 

ribcage of a rabbit-sized animal), thus the rhinoceros skull was the largest single element 

at the site. Distribution of skeletal elements corroborates the previously mentioned 

hypothesis of more weathering time and greater transport at Vodka, with mid limb 

elements, and not fragile distal elements or cranio-dental elements, being the most 

commonly represented at Vodka. Along this reasoning, Ortok likely represents the lowest 

degree of transport, as evidenced by the most common skeletal element being cranio-

dental material. Despite proboscidean material as a common part of nearly all 

comparative late Miocene Eurasian faunas (Koufos, 2003, Barry et al., 2001, Deng, 

2006B), proboscidean material is lacking form all Kyrgyz mass death assemblages. In the 

case of proboscideans, this absence may derive from their documented ability to survive 

droughts in significantly higher rates relative to other fauna (Dudley et al., 2001, Haynes, 

1988).  

Overall the faunas contained similar taxa between localities, yet several 

potentially environmentally informative differences in both taxa richness and evenness 

exist. While a notable proportion of the ungulate faunas of Bone Hill, Ortok, and Vodka, 

no cervid material is currently produced by the Dam Site or Rhino Party. Rhino Party has 

the lowest number of specimens, and the least work conducted at the locality, so this may 

reflect a sampling bias rather than actual prevalence. The Dam Site, however, is well 
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sampled, with a greater total number of samples than Vodka, yet still does not produce 

cervid material.  

With the most evidence of transport, and the lowest percentage of juveniles, 

Vodka may represent an attritional event, rather than a classic mass death assemblage. 

However, at 13% juveniles, Vodka still contains more juveniles than typically seen in 

purely attritional assemblages (Badgley, 1986, Maldonado, 2016, Calede, 2016). 

However, other factors, such as the still very low degree of surface weathering and 

“drought wear” on the rhinocerotid dentition, coupled with the fanglomerate deposit, still 

suggest drought as a possible cause of mortality. The uniformly high percentage of 

juveniles, wide distribution of elements, element completeness, presence of articulated 

elements, and over representation of herbivores in the three Chu Formation bone beds is 

consistent with other fossil mass mortality deposits (Badgley, 1986, Coombs & Coombs, 

1997, Hunt, 1990, Valli, 2005, Voorhies, 1969) and modern drought-killed bone 

assemblages (Dudley et al., 2001, Haynes, 1988, Behrensmeyer, 1978, Faith & 

Behrensmeyer, 2006).  
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Transition 

Central Asia in the Miocene was a period of rapid landscape, climate, and biotic 

change. Dating the onset and rate of these changes is crucial not only for constraining 

seismic hazard, but also to understand how shifting biomes impact a much broader 

region. As the Silk Road acted as a geographic filter for human civilization, so to have 

the Tien Shan acted as a filter for Eurasian faunas. Work from Kazakhstan, Inner 

Mongolia, and the Siwaliks of India and Pakistan hold similar records of climate change 

in the late Miocene. In the following chapter I aim to temporally constrain the timing of 

uplift and related climate change in the central Tien Shan utilizing a combination of 

vertebrate biostratigraphy and magnetostratigraphy. While these techniques are used in 

concert elsewhere across the globe, combining them in Kyrgyzstan is a novel approach. 

Previous paleontological work in the country is limited, and existing 

magnetostratigraphic work has largely lacked temporal constraints beyond sequence 

stratigraphy and some thermochronology.  

Without a taxonomic examination of the fauna, as in the last chapter, the fauna 

cannot be used for geochronology. The lower the taxonomic level taxa are diagnosed to, 

generally the shorter the temporal range occupied. Therefore, the taxonomy is constantly 

being refined and updated as new material increases the faunal list or facilitates 

identification of key taxa to lower taxonomic levels. This is not to say broadly identified 

taxa cannot still be of great biostratigraphic utility, as will be discussed in Chapter 3.  

Taphonomy, as examined in the last chapter also neatly integrated into the 

geologic and geochronological work presented in the next chapter. As outlined in the 

conclusions, the best hypothesis for cause of mortality in the bone beds is drought. This 
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local to regional scale climate change is driven and controlled by the tectonics examined 

in the next chapter. Without the tectonically active setting, dating back throughout much 

of the Neogene, Kyrgyzstan’s biota would likely not have changed as quickly or as 

totally. The shifting environments in turn inform geologic discussions, where geologists 

debate if climate or pure tectonics drive the lithologic differences between formations.  
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CHAPTER III 

BIOSTRATIGRAPHY AND MAGNETOSTRATIGRAPHY OF THE KOCHKOR 

BASIN KYRGYZSTAN; INSIGHTS INTO UPLIFT OF THE TIEN SHAN 

 

Introduction 

Kyrgyzstan, a country rapidly developing, is now facing the challenges posed by intense 

seismic hazard across the country, and notably proximal to population centers. 

Kyrgyzstan, in fact, has the highest seismic hazard of any country (Figure 16) 

(Abdrakhmatov et al., 2001). Seismic hazard impacts the populace not only directly, in a 

country with very limited building codes (Halvorson and Hamilton, 2007) and largely 

Soviet era buildings, but also indirectly by increasing landslide risk (Kirschbaum et al., 

2010), the second largest geologic hazard in the country (Abdrakhmatov et al., 2003).  

 Properly accessing seismic risk necessitates a deep understanding of geologic 

processes driving regional seismicity. On a broad scale, seismicity in Kyrgyzstan is 

driven by the collision of the Indian subcontinent into Asia. The Himalayas are the 

primary result of this collision, initiating ~50 million years ago (Rowley, 1996), but the 

Tien Shan and Pamir are younger records of the regional impacts of crustal collision 

(Burbank et al., 1999). As the total amount of shortening across the Tien Shan is known, 

the relative rate of uplift over time comes into question. Dating this initiation of uplift, 

and rate of early uplift, is usually a matter of radiometric assessment of sytectonic 

sediments or primary volcanic material. However, the youngest radiometrically datable 

rocks in the country date from the Paleocene, possibly relating to crustal delamination 

events in the Himalayas (Zabelina et al., 2013).  
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Figure 16: Global seismic hazard map of Asia, showing peak ground acceleration 

probability. Location of Kyrgyzstan shown with black box, exhibiting the uniformly 

highest seismic hazard in the region. Map annotated from the Global Seismic Hazard 

Assessment Program (1999). Seismic hazard is derived from the Indian subcontinent’s 

collision with the Asian continent. Most of the current rate of convergence is accounted 

for in shortening in the Tien Shan, as shown in modern GPS rates (Abdrakhmatov et 

al., 1999).  

 

 

 The work contained herein concentrates on a single basin, Kochkor (Figure 17), 

that was likely connected to the greater Issyk Kul basin in the recent geologic past 

(Macaulay et al., 2016, Burgette et al., 2017).  
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Figure 17: Google Earth imagery of the Kochkor Basin, Kyrgyzstan, with the Paulson 

(2013) map overlaid. Fossil localities, also sampled for magnetostratigraphy in this 

study, are shown with stars on the lower image. From left to right localities are Ortok, 

the Dam Site, Bone Hill (at the base of the previous Kochkor East section), and the 

Vodka fossil locality in the Kara Suu Valley. 
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While further interpretation of the data is needed to determine if uplift patterns in 

Kochkor Basin are representative of the Tien Shan, the location one basin to the south of 

the Ala Too range places the study sites in the central portion of uplift and deformation. 

Despite over two decades of fieldwork in the Kochkor, Naryn, and Issyk Kul basins 

(Abdrakhmatov et al., 1996, 2001), no rocks or sediments yielding radiomentrically 

datable minerals from the Cenozoic have been located. Previous geochronology 

attempting to date uplift has either been thermochronology or palaeomagnetostratigraphy 

(Abdrakhmatov et al., 1996, 2001, Wack et al., 2014, Sobel at al., 2006). Unfortunately, 

these methods largely do not seem to agree with each other. Without absolute dates to pin 

the stratigraphy on, magnetostratigraphy produces multiple possible correlations.  

The initiation of uplift has major implications for the severity of continued 

seismicity (Burbank et al., 1999). If the Tien Shan began uplifting in only the last 10-12 

million years, deformation would be relatively consistent throughout uplift, and with 

strain accumulation and uplift rates like those seem today (Makarov, 1990, Goryachev, 

1959, Makarov, 1977, Sadybakasov, 1990, Abdrakhmatov, 1988, 1996, 2001, Chediya, 

1986). If instead uplift initiated earlier, in the Oligocene to early Miocene, uplift rates 

would need to increase through time to match the slip and GPS rates seen today (Wack et 

al, 2014, Macaulay et al., 2016, Sobel & Dumitru, 1997, Burbank et al., 1999). This 

difference in mode of uplift is addressable via determining if boundaries between 

formations are coeval (climate driven) or occurred at different times (local scale 

tectonics), as well as determining absolute dates. If the Tien Shan uplifted rapidly in the 

last 10-12 Ma, that uplift would have to occur across the range, necessitating the 

formation boundaries being synchronous (Abdrakhmatov, 1996). If the Formation 
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boundaries are not synchronous, then the Tien Shan could have conceivably began uplift 

at the margin in the more distant past, with deformation propagating inwards through 

time. Additionally, absolute dating of the syntectonic strata, and comparing temporal 

ranges to sedimentation rates and current rates of uplift, slip, and GPS rates of 

deformation, illuminates if current rates of deformation are sufficient to explain the 

amount of uplift seen today (Thompson et al., 2002, Abdrakhmatov et al., 1996). GPS 

rate give the overall amount of convergence, but not the rate on individual faults. 

Therefore, to determine slip rates on individual faults, a longer time interval must be 

examined. 

Biostratigraphy offers a yet unutilized method of dating the Neogene strata. 

However, little previous paleontological work in Central Asia, much less within the 

boundaries of Kyrgyzstan currently exists. A small amount of work exists from the Soviet 

era, including the recognition and description of a few taxa from the Eocene of the 

Fergana Valley region (Belyaeva, 1962). The Eocene of Kyrgyzstan has received 

continued attention, primarily centered in the Fergana Valley (Averianov and Godinot, 

1998 & 2005), but with one site redescribed in the Issyk Kul Basin (Erfurt et al., 1999), 

representing the only formally described Cenozoic sites in the greater Issyk Kul/Kochkor 

basin. Several Paleozoic (Geyer et al., 2014) and Mesozoic (Averianov et al., 2007) fossil 

localities have also been described in the last thirty years, but no formal description of 

Cenozoic fossils younger than the Eocene exists. (Figure 18)  
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Figure 18: A. Map of all documented occurrences of fossil localities in Kyrgyzstan 

and surrounding areas reported in the Paleobiology Database (PBDB), B. Cenozoic 

fossil localities in Kyrgyzstan and surrounding areas, C. fossil localities in or near the 

Kochkor Basin. Light orange and yellow denote the Paleogene and Neogene 

respectively. All other colors are Paleozoic to Mesozoic localities. Size of circles 

denotes number of specimens or taxa. Localities include sites not formerly described, 

or most commonly listed in Belyaeva, 1948. All maps and data retrieved from the 

PBDB. Scale bar approximately 100 miles.   
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However, fossils from the later portion of the Cenozoic are widely present in 

Kyrgyzstan, as evidenced by undescribed fossils figured in the appendices of Tarosov’s 

1970 dissertation (shown as the two marked yellow circles in Figure 18C), mapping the 

faults of the Kochkor Basin, and several gray literature localities included in the 

biostratigraphic work of Sotnikova et al. (2001). As the rapid uplift of the Tien Shan 

provides a nearly continuous record of syntectonic sediments, fossils contained herein 

provide a novel method in Kyrgyzstan for calibration of other geochronological models.  

 

Methods 

Geology: Fossil-bearing localities were located via surface prospecting of previously 

geologically mapped Neogene stratigraphy in the Kochkor Basin for the Bone Hill and 

Dam Site assemblages (Figure 17). Once fragmentary vertebrate material is produced, 

further prospecting has yielded rich bone-bed deposits in five cases in the Kochkor basin 

thus far. Stratigraphic sections were measured using a Jacob’s staff, Abney Level, and 

Brunton compass through all fossil bearing strata. Sections were measured to either 

connect to previously paleomagnetically sampled stratigraphy, or to collect new 

paleomagnetic samples included in this study. Lithostratigraphic data was collected from 

each stratum, such as grain size, sorting, composition, roundness, and test pits were dug 

to a depth of 20-30cm to produce unweathered material. A Munsell soil color chart was 

used to access color of strata and substrata. Paleosol structure was also noted when 

present, such as ped structure, presence of cutans (ped surface), and pedological 

structures such as root traces, gley, and slickensides (Retallack, 2008). Grain size was 

assessed with a hand lens and comparison to a mm scale card.  
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Magnetostratigraphy: Palaeomagnetic samples were collected with an impact sampler 

(see Figure 19) only, as sediments were either too poorly consolidated or vulnerable to 

disaggregation when wet, which prohibited drilling oriented samples. Instead the loose 

weathered material was cleared from the surface of each sampling site (see part A in 

Figure 19), and the impact sampler (technique and instrumentation modified from 

Weldon, 1986) was hammered into the outcrop 1-4 inches, or until stable, using a hand 

sledge. The concussive cap to the sampler is then removed, and a plastic and aluminum 

or brass (non-magnetic) platform is inserted into the now-open top of the impact sampler. 

The platform is grooved, so as the align a Brunton Compass or Sun Compass (see part C 

of Figure 19). Strike and dip is then recorded, with the Brunton compass placed on the 

rear of the sampler in the groove, while still in-situ in the outcrop to record orientation of 

the core. Rotation off the vertical orientation mark (see part B of Figure 19) is checked 

via the built-in level and noted for later correction of the sample. If weather and angle of 

the sample permitted it, a Solar Compass (see part C of Figure 19) was also used to check 

in-situ orientation of the core, with reading later converted using the SunAzm program 

(see APPENDIX E). The sampler, and internally contained oriented core, is then broken 

off the outcrop and the sample is extruded into a quartz glass sample holder using a 

“pusher” rod, or a steel rod slightly smaller than the internal diameter of the impact 

sampler, marked to preserve the known orientation from collection. Alternatively, 

samples were collected with a different impact sampler, with an internal plastic cartridge 

(see Figure 19).  
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Figure 19: Sampling methodology for collecting paleomagnetic samples in soft 

sediments. (A) Once weathered surface material is cleared, the impact sampler is 

positioned with the orientation line vertical, and hammered into the outcrop at an angle 

via direct blows with a hand sledge to the concussive cap. (B) Cross sectional diagram 

of the impact sampler, concussive cap, and plastic sample cartridge. Material shown in 

grey is steel, cream is clear plastic 2mm thick. (C) Two students from the Kyrgyz 

Institute of Seismology collecting core orientation data using a Sun Compass. The Sun 

Compass is fitted into a brass core inserted into the top of the impact sampler. On the 

ground in the right of the image is the concussive cap, plastic orientation cartridge for 

inserting the plastic sample cartridge, metal “pusher” for extruding the sample, and 

Brunton Compass. (D) Quartz glass sample cup in cross sectional view. Impact sample 

for quartz glass cups is same as figured, with the subtraction of the internal notch. 

Sample is in direct contact with internal diameter of the sampler tube and is extruded 

with the “pusher” rod. Orientation mark on the quartz glass cup is held lined up with 

orientation mark on sampler. 

 

This cartridge, fitted into a notch on the upwards internal surface of the sampler chamber, 

also preserves the orientation of the sample, but holds enough core to load several quartz 

glass samples at a later date back in the lab. Samples, either in quartz glass cups or in 

plastic cartridges, were then labeled with a unique set of initials (see part C of Figure 19 

for example) for each section and an individual number relating to stratigraphic position. 

Samples were sealed into cups with Parafilm. From the time of sample collection sample 

collection, the samples were shipped to the University of Oregon and immediately 

transferred to a µ-metal hutch. Samples spent three to four weeks in transit between 

collection and being placed into a fieldless environment.  

 In the lab at University of Oregon, specimens were stored in a fieldless 

environment, other than when samples were loaded into quartz glass from plastic 

cartridges or prepared for analysis. Poorly consolidated or broken samples were 

strengthened with a solution of sodium silicate. Sodium silicate was diluted with 

deionized water, as undiluted samples experienced crystal growth during the higher 

temperature thermal demagnetization steps (generally above 400 C. The sample surface 
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exposed at the open end of the sample cups was leveled with a hacksaw blade and course 

grit sandpaper if the sample height extended above the level of the sample holder. Space 

below the sample holder rim was infilled with Zircar Alumina Cement Type AL-CEM 

and cured under a heat lap within a µ-metal hutch. Most samples took two to three 

applications of Zircar cement to fill space, leaving 3-4 openings to allow for degassing 

and expansion of material. Course-grit sandpaper was again used to level the surface of 

the samples on the Zircar extending above the quartz glass sample holder. A White-Out 

pen was used to label the specimen numbers and redraw the orientation line on the quartz 

glass cups, as Sharpie marker (used in the field) burns off at approximately 300 C in the 

thermal demagnetization process.  

 Samples were run at the Occidental Paleomagnatism Laboratory in California. 

Samples are analyzed and stored in a fieldless environment. Transportation to the 

laboratory was also done in a µ metal hutch. Samples were divided into four sets for 

analysis, so that samples could be alternatingly analyzed while another set received 

thermal treatment, and limited by the 44 samples that would fit into the oven at one time. 

For all samples the Natural Remnant Magnetization (NRM) was measured first, to make 

sure samples recorded a magnetic signature and to measure a baseline to compare 

demagnetization paths against. All samples underwent four step-wise alternating field 

demagnetization (25 Oe, 50 Oe, 75 Oe, 100 Oe) followed by thermal demagnetization 

steps starting at 150°C up to 650°C, by 50° to 100° increments depending on volume of 

magnetization remaining in samples. We used a computer controlled superconducting 

moment magnetometer, with a conveyor sampling. The program Cithead was used to 

create “SAM” files, while PaleoMag 3.1 was used to conduct least-squares regression  



 

 

 

83 

models (Kirschvink, 1980) with most samples being fit to a line with variation in the  

 

Table 7: Rating system for accessing quality of samples 

 

measured angle below 10°. Some samples were fit with a plane, but again, resulting 

polarity and directions were only included if the variation in angles was less than 15°. 

Samples fit with a plane were then fit with a line from the first and last points included in 

the plane to the origin, to determine the vector direction of demagnetization. Samples  

RATING DESCRIPTION OF ASSIGNMENT BASIS 

A1 At least 2 distinct lines formed in de-mag path. Primary inclination and declination within 

30° of North and 60° for “normal” or South and 60° for “reversed” respectively. 

A2 At least 2 distinct lines formed in de-mag path. Primary inclination and declination within 

60° of North and 60° for “normal” or South and 60° for “reversed” respectively. 

A3 At least 2 distinct lines formed in de-mag path. Primary inclination and declination within 

90° of North and 60° for “normal” or South and 60° for “reversed” respectively. 

B1 Only 1 line or there is more than 1 statistically significant component, but the last 

component removed is a plane. Primary inclination and declination within 30° of North 

and 60° for “normal” or South and 60° for “reversed” respectively. 

B2 Only 1 line or there is more than 1 statistically significant component, but the last 

component removed is a plane. Primary inclination and declination within 60° of North 

and 60° for “normal” or South and 60° for “reversed” respectively. 

B3 Only 1 line or there is more than 1 statistically significant component, but the last 

component removed is a plane. Primary inclination and declination within 90° of North 

and 60° for “normal” or South and 60° for “reversed” respectively. 
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with a variation of 10-15° were included as possible interpretations, but were not taken as 

sole indicators of polarity. To this end, a rating system of A1, A2, A3, and B1, B2, B3 

was applied to each sample as an indication of quality (see Table 1). 

A minimum of two samples from each strata and sampling site, with three run 

from some strata. While three samples were collected at each site, the third sample has 

only been run time permitting, and thus many strata currently contained unanalyzed 

samples. Lines or planes were fit for all components removed in a sample.  

 

Biostratigraphy: Fossil material was quarried out of outcrop, with taphonomic data and 

sedimentary transport data also collected. Material underwent laboratory preparation to 

facilitate taxonomic identification. All vertebrate material is identified to the lowest 

taxonomic level possible, however in many cases this is still limited to subfamilies or 

genera. With little Neogene comparative material from Central Asia, and a high degree of 

endemicity, much of the Kyrgyz fauna represent novel species still in need of taxonomic 

description. While this will improve future biostratigraphic studies, it does limit the 

geochronological usefulness of some taxa.  

 Estimates of biostratigraphic range were generated from both the Palaeobiology 

Database (PBDB) (PBDB, 2017) and the New and Old Worlds Database of Fossil 

Mammals (NOW) (NOW, 2017). Temporal ranges were then verified, and in some cases 

modified, by referencing source literature from both databases. Taxa occurrences outside 

of Eurasia were not included, as biotic interchange at a continent level is relatively 

limited. When occurrences were questionable, the maximum temporal range verified by  



 

 

 

85 

at least two localities was taken. Age estimates for each site used only the taxa found in 

concurrence in each bone bed, to negate time averaging.  

 

Results 

Geology: Three full stratigraphic sections were measured, at the Kara Suu valley (KSU), 

Ortok fossil locality (KO), and west of the Chu River across the Dam Site fossil locality 

(KDS), with three from the Chu Formation (Figure 20) and one from the Shamsi 

Formation (Figure 20).  

 

Figure 20. Schematic and generalized stratigraphic column for the Cenozoic 

formations outcropping in the Kochkor Basin. Relative average grainsize is indicated 

by the X axis, while stratigraphic position is related on the Y axis. Herein I use the 

figured names for formations, although other published works refer to some formations 

as “groups” and some formations by completely different names, as is discussed in the 

text. As this study concentrates on the Kochkor Basin, I use the nomenclature 

previously applied to sediment packages in the basin.   
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Although the sections are short, they stratigraphically correlate with much thicker 

sections from previous works (Abdrakhmatov et al., 2001, Weldon unpublished data). 

Additionally, they all also contain bone bed fossil localities, which narrows the age range 

possible, and the polarity of each bone bed facilitates correlating the fauna. A thinner 

section was measured as the base of the previous Kochkor P-mag East Section (KSS) 

(Abdrakhmatov et al., 2001), to extend the section down stratigraphy to include the Bone 

Hill fossil locality. Sedimentological evaluation, as well as comparison to previous 

geologic maps, places the Kara Suu section in the upper portion of the Shamsi Formation 

(Figure 20), possibly extending into the gradational zone connecting the older and 

stratigraphically lower Shamsi Formation into the finer-grained Chu Formation. This 

section is dominated by potassium feldspar-rich granite clasts, in sandstone to 

conglomerates (Mikolaichuk et al., 2008). The Chu Formation sections are more variable 

in parent material and color, but are averaged out as much smaller grain sizes, with 

primarily siltstones (Mikolaichuk et al., 2008). It is worth noting that existing literature 

variably refer to both the Chu and Shamsi formations as either formations or “Groups” 

(Mikolaichuk et al., 2008). 

Exposure in the Kara Suu valley is limited to dry washes and gullies. Most of the 

exposure is sandstone to conglomerates, with a potassium feldspar-rich granite as the 

primary source rock, likely from the Paleozoic basement rock thrust over the Neogene 

sequences (see Thompson et al., 2002, Paulson, 2013, Mikolaichuk et al., 2008). Grains 

and clasts are rounded to sub-rounded, suggesting a degree of fluvial transport. Several 

exposures contain abundant imbrication of pebble to cobble sized clasts, pointing towards 

the center of the existing Kochkor basin, suggesting the current areas of topographic 
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highs as higher elevation dating back to at least deposition of the Shamsi Formation in 

the Miocene.  

 Lithostratigraphically, the largely finer-grained material of tan to reddish and 

greenish silts (Mikolaichuk et al., 2008) present at Ortok and the Dam Site confirm their 

affinity with the Chu Formation. Ortok is the smallest extent of exposure in terms of 

stratigraphic thickness, but is also the most consistently fine-grained. The entire sequence 

is siltstone to claystone and additionally is uniformly tan to cream in color (Figure 21).  

 

Figure 21. Google Earth imagery of the Ortok. Base of measured stratigraphic and 

paleomagnetostratigraphy section marked with “pin”. Fossiliferous outcrop extends to 

east and north of the “pin” in the pale tan exposure. To the east, a gorge cut into 

reddish Paleozoic granite with the thin layer of Chu unconformably resting on it. Strata 

at Ortok are dipping very gently to the north and are the least deformed structurally of 

any site included in this study. Additionally, the fossils are the least diagenically 

altered, indicating little to no diagenic alteration to the site as well. 

 

Ortok is also the only exposure of the Chu Formation on the Northern edge of the 

Kochkor Basin (Figure 22). 
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Figure 22. Geologic map of the Kochkor Basin. Major faults shown in red, very pale 

blue is water such as the lakes Son-Kul and Issyk-Kul. Light tan colored areas are 

Cenozoic sediments. Four fossil/paleomagnetic sites shown with black circles. Map 

highlights the narrow area of deformation separating the Kochkor Basin from the 

Issyk-Kul Basin (area of water on far east of map). Map annotated from Nikonorov (et 

al., 2000). 

 

 As the mountain range to the south provides the primary source (as evidenced by 

paleocurrent directional indicators in courser grained material), the formations are 

inferred to thin northwards as they onlap with the exposed Paleozoic to Mesozoic 

basement rocks.  

 Bone Hill fossil bed in the KSS section is continuing the Kochkor P-Mag East 

section stratigraphically lower, and thus is also part of the Chu Formation. Given the 

possible correlations of the section previously published (Abdrakhmatov et al., 2001), the 
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section lies in the lower extent of the Chu Formation, but above the gradational zone 

between the Shamsi and Chu Formations. Lithostratigraphic similarities, geologic 

mapping (Paulson, 2013), and the same magnetostratigraphic polarities between the 

fossiliferous strata of Bone Hill and Dam Site suggest these two localities are correlates 

of each other, despite several km separation and significant geologic structure separating 

the two sections.  

 While a fault clearly runs along the path of the Chu River, separating the 

stratigraphy to the east and west (Thompson et al., 2002, Paulson, 2013), we interpret 

little horizontal offset across the fault. 

 

Magnetostratigraphy: Samples underwent Natural Remnant Magnatization (NRM) 

measurements, four steps of alternating frequency (AF) current, and thermal 

demagnetization. Thermal demagnetization was initiated at 150˚C and were heated by 

50˚C increments to either 600˚ or 650˚C, depending on how much magnetic signal 

remained. Inclination and declination, in both geographic and tilt corrected values, is 

reported in the supplementary SQR files for each of the four sections (see appendix G-K). 

An example of a typical demagnetization path from the progressive AF and thermal 

demagnetization resulting in a strong overprint and primary path is shown in Figure 9. 

Some samples had an intermediate demagnetization pathway, primary from the Kara Suu 

(KSU) section, and an example from the Dam Site (KDS) is shown in Figure 10. These  
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Figure 23: Example demagnetization pathways for four samples of varying quality. 

All plots shown are hyperbolic views of the Zeigerfield plot shown in geographic 

orientation. Red/pink points are inclination and blue points are declination of the 

sample at each progressive demagnetization step, with approximations of linear fit 

shown in red or blue lines. The points farthest from the origin are the NRM, the 

subsequent four points are the AF steps, and the remaining points are thermal steps. A 

demonstrates a typical sample with a clear overprint (ovr) and primary (pri) 

demagnetization pathway. B has a viscus remnant magnetization visible in the step 

from the NRM measurement to the first AF point. Then in addition to the ovr and pri, 

there is also an intermediate step, where more than one vector is being removed at once 

potentially. C is an example of a sample I was unable to extract any meaningful data 

from. D has a clear overprint (ovr), but lacks a clear signal for the primary component. 
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 intermediate pathways may be additional overprints that occurred during deformation of 

the beds post the diagenic development of the primary magnetic signature and before the 

modern orientation and magnetic overprint. Other samples, within the “B” grades, 

displayed a clear overprint signal, but lost clarity in the primary pathway (Figure 23). 

 Finally, some samples lacked any clear signal, and therefore couldn’t be accurately 

analyzed, or received the lowest of the possible grades (B3) (sample figure of 

demagnetization pathway shown in Figure 23).  

As samples uniformly turned red at high temperatures, and retained significant 

amount of magnetization above 500°C (Levy et al., 2012), magnetization is inferred to 

come from hydrated iron oxides produced diagenically shortly after deposition. The 

hydrated iron oxides appear to be primarily forming the cement between grains. While 

chemical analyses were not performed to precisely determine mineral identity, likely 

candidates include hematite (Fe2O3) or maghemite (-Fe2O3). Magnetic components are 

primarily contained in the cement, and not the original detrital clasts themselves. While 

Curie temperatures are often a range of temperatures for complete remagnetization, the 

lowest temperature end of Curie temperature for hematite is 500°C (Levy et al., 2012), 

implying the host rocks would have to have undergone a greater depth of burial or 

significantly more hydrothermal alteration than any of the Kyrgyz samples underwent to 

fully demagnetize the primary magnetic signal.  

The detailed stratigraphic columns, paleomagnetic sampling sites, and inferred 

polarities for each measured stratigraphic column are presented in the following figures 

and the ratings for each sample, the SQR file values, and collection orientation data are 



 

 

 

92 

presented in appendices. Both the overprint and the primary demagnetization pathway -

95 values are presented after the stratigraphic columns. 

 

Figure 24. Stratigraphic section for the KSS section including the bone bed Bone Hill. 

This section is overlapping with the lowermost portion of the Abdrakhmatov (et al., 

2001) Kochkor East section. Lithology is more varied in this section, ranging from 

siltstone to conglomerates. Paleomagnetostratigraphy sampling locations are denoted 

with black arrows, and three samples were collected at each location. Inferred primary 

polarity for each locality is shown to the right, with black bars representing normal 

polarity and white bars representing reversed polarity. If samples from the same strata 

were not in agreement, the polarity is shown as gray. When polarity changed, the 

change was inferred to occur at a stratigraphic level halfway in-between sample 
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localities. As samples were collected in a high density, actual boundaries could only 

move 1-2 meters in stratigraphic placement. 

 

Measured stratigraphic section, with paleomagnetic sampling and reversals noted, 

for the Bone Hill fossil locality and Kochkor East section (KSS) is presented in Figure 

24. This section overlaps with the previous Kochkor East section of Abdrakhmatov (et 

al., 2001), extending the section downwards to include the stratum bearing the bone bed. 

The lower percentage of “A” grade samples from this site is likely owning to the site 

being the first sampled, and thus the site with the greatest variation in sampling 

technique. Overprint and primary demagnetization pathway -95 values are presented in 

Figure 25. SQR Files for all fits are reported in the Appendices G-K, with rating values of 

each samples also reported. 

The Vodka fossil site, in the Kara Suu Valley (KSU) is the thickest stratigraphic 

section measured and sampled in this study. It is also the only section beginning in the 

stratigraphically lower Shamsi Formation, and extending to either the upper portion of 

the formation, or even the gradational zone between the Shamsi and Chu formations. A 

stratigraphic section, with paleomagnetic sample sites and inferred polarity is shown in 

Figure 26. The overprint and primary demagnetization pathway -95 plots are presented 

in the following figure (Figure 27). The SQR File, with geographic and tilt-corrected 

demagnetization pathways is presented in appendix H, with A/B grade rating also 

reported.  
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Figure 25: 

Alpha 95 plots 

of the overprint 

(bottom) and 

primary (top) for 

the Kochkor East 

extension (KSS). 

Each point is the 

average line for a 

demagnetization 

pathway plotted 

on a stereonet. 

The ovr plot is in 

geographic view, 

and the pri plot 

is in tilt 

corrected view.  
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Figure 26: Stratigraphic section for the Kara Suu (KSU) section containing the Vodka 

bone bed locality. Palaeomagnetostratigraphy sampling locations shown with black 

arrows, and three samples were collected at each sampling locality. Lithology ranged 

from silty sandstone to conglomerate. Black bars denote normal polarity, white is 

reversed polarity, and gray is when samples were not in agreement as to the polarity. 

 

Finally, the Dam Site (KDS) is the second thickest stratigraphic section presented 

herein. Located in the Chu formation, it is inferred to be correlative with the Bone Hill 

(KSS) section to the East, across the Chu River. This is also the section where we 

measured a fold test, on a highly-folded layer at the base of the stratigraphic section 

(Figure 28). The fold test was measured on two distinct strata, a grey shale layer, and a 

red paleosol, separated by course sandstone layer. The -95 plot for the fold test is  
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presented in Figure  

 

 

Figure 27. Stereonet 

plots of Kara Suu 

(KSU) showing the 

primary and 

overprint polarities. 

Blue circles show the 

95% cone of 

confidence from the 

alpha 95 mean values 

(blue dots). Primary 

values are tilt 

corrected. 
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29, while the stratigraphic column, paleomagnetic sampling sites, and inferred polarities  

 Figure 28: Fold 

test conducted at 

the base of the 

Dam Site (KDS) 

section. Two 

beds less than 1m 

apart 

stratigraphically 

were both 

sampled for the 

fold test. The 

upper plot is site 

averages of both 

analyzed samples 

in each site, 

plotted against 

other samples 

from the same 

bed. Both beds fit 

similar great 

circles. 

Individual values 

were tilt 

corrected prior to 

averaging. The 

lower plot is 

primary values 

for all sample 

from the fold 

test, prior to tilt 

correction. The 

alpha 95 median 

value is shown 

with a blue 

diamond, with an 

arrow denoting 

how the overly 

steep value is 

corrected for tilt.  
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are presented in Figure 30. The SQR files for all samples are reported in Appendix K. 

Figurers for Ortok (Figure 31 and Figure 32) follow. As Ortok is almost flat lying, the 

 

Figure 29: Alpha 95 

plots of the overprint 

(top) and primary 

(bottom) for the Dam 

Site (KDS). Each 

point is the average 

line for a 

demagnetization 

pathway plotted on a 

stereonet. Both plots 

are in geographic 

view, with the blue 

arrows showing the 

tilt corrected data. 

While the overprint is 

North and Down, it is 

quite steep before 

correction. The 

Pleistocene-Holocene 

river terraces are also 

tilted, and indicate 

the site continues to 

undergo structural 

deformation in 

modern times. The 

primary pathways are 

all normal polarity in 

this section, as shown 

by the upper and 

lower hemisphere 

alpha 95 value 

circles. The number 

of samples varies, as 

only samples with a 

clear demagnetization 

pathway were 

included, thus not all 

analyzed samples can 

be included.  
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plots are not tilt corrected. Ortok is the thinnest section, but also the most fine grained 

and the only section on the northern boundary.  

 

 

Figure 30. Stratigraphic 

section for the Dam Site 

fossil site. Paleomag 

sampling sites noted with 

arrows. The whole section is 

normal polarity.  

 



 

 

 

100 

 

Figure 31: 

Stereonet plots of 

Ortok (KO) 

showing the 

primary and 

overprint 

polarities. Blue 

circles show the 

95% cone of 

confidence from 

the alpha 95 mean 

values (blue dots). 

Primary values 

are tilt corrected. 

Because the 

tilting is so 

minimal (less than 

15%), plots are 

geographic and 

not tilt corrected.  
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Figure 32: Stratigraphic section 

for Ortok. Magnetostratigraphy 

sampling locations shown with 

arrows. Three samples were 

collected at each site.  

 

Biostratigraphy: Vodka, the oldest fossil locality, is within the age range of 5.3 to 9.6 

Ma (Figure 33). Primarily constraining this site is the genus Chilotherium and the clade 

Cervinae, or modern-type deer. The Chilotherium is unfortunately material from a new 

species, and thus a species age range is not known (see chapter 4). This new species is 

however phylogenetically nested well within the genus, thus the taxon is unlikely to have 

evolved prior to previously published member of the genus. Regionally, one of the 

phylogenetically closest relatives Chilotherium kowalevskii, appears in Greece, Moldova, 

and Turkey from 9.5 to 7.3 Ma (NOW, 2017, Heissig, 1996, Güleç et al., 2007). True 

cervine deer, as evidenced by the complete formation of the antler pedicle and 
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development of the cervine fold in molars, are not seen till 9.6 Ma (Breda, 2001, Pitra et 

al., 2004, Azanza et al., 2013, Vislobokova et al., 2003), adding a more concrete lower 

limit on the age estimates. The oldest Hipparion horses in Asia do not appear before 12 

Ma (Sen, 1990), with most invasions closer to 10 Ma (Vilobokova et al., 2003), providing 

a hard lower-limit to corroborate the slightly younger range of the cervine deer.  

 Bone Hill fossil bed generates a possible age range of 5.3-7.3 Ma for the stratum 

(Figure 33). The lower age limit is constrained by the presence of a premolar from the 

genus Hyenaictitherium, and while it is not enough material to assign to a species, the 

lower limits of the genus lie at 8.2 Ma (Ginsburg, 1999), with most representatives of the 

genus, and possibly more reliable geochronology, younger than 7.1 Ma (Andersson & 

Werdelin, 2005, Zhu et al., 2008). The upper age limit is again confined by the genus 

Chilotherium, which only regionally makes it to 5.3 Ma (Heissig, 1996, Zhu et al., 2008, 

Deng, 2002), before being replaced by more modern-type rhinocerotids, as evidenced by 

fossil Coelodonta material on display, but unpublished, in the Karakol Museum in 

Karakol Kyrgyzstan.  

 The Dam Site has a lower age limit of 7 Ma, as constrained by the presence of a 

modern-form leporid, or rabbit. While the order Lagomorpha dates back considerably 

earlier, true rabbits do not appear in Asia until 7 Ma at the oldest localities (Flynn et al., 

2013). Again, the presence of Chilotherium offers an upper constraint of 5.3 Ma (Heissig, 

1996, Zhu et al., 2008, Deng, 2002). These leaves one of the narrowest possible age 

ranges for the Dam Site (Figure 33). Other taxa present include an ochotonid (pika), 

gazelle, equid, and giraffe.   
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Figure 33. Biostratigraphic ranges for each of the four bone beds. Genus or clade 

ranges shown in purple bars, relative to the absolute time scale. Possible age range 

given only the fauna for each bone bed shown in gray bar.  
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Finally, the stratigraphically youngest bone bed, Ortok has a possible age of 4.9 to 7.7 

Ma (Figure 33). Temporal constraint at this site rest on a single well-known species, 

Adcrocuta eximia, a large hyenid (Turner et al., 2008). This also demonstrates the 

improved utility of vertebrates as biostratigraphic indicators, if a species level assignment 

is possible. Corroborating the age estimate, although with known older age ranges, are 

the true cervine deer (Azanza et al., 2013) and the giraffe Samotherium (Kostopoulos, 

2009). 

 

 

Discussion and Conclusion 

With three sections containing bone beds within the Chu Formation, and one within the 

Shamsi section, the relative age of Vodka is older, but relating the three Chu sites is more 

difficult (Figure 34). The Bone beds at the Dam Site and Bone Hill seem to be 

correlatives, or at least the fossils beds both lie in a band of normal polarity, with a 

younger fauna at Ortok. Ortok is also the finest grained, and in general the Chu formation 

seems to fine upwards until interfingering with the Sharplydak (Figure 35). Given the 

youngest biostratigraphic age of 5.3 Ma for all three Chu localities, and the extent of the 

Chu formation exposed up section from our measured sections, we place all three 

measured Chu sections in the lower portion of the Chu Formation. While the boundary 

between the Chu and Shamsi Formations is certainly transitional and may span some 

thickness, we place the entire Kara Suu section within the Shamsi Formation, given our 

preferred match with the global time scale and biostratigraphic constraints.  
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Figure 34: Fence diagram of the four measured stratigraphic sections. A-D is Vodka 

(KSU), Bone Hill (KSS), Dam Site (KDS), and Ortok (KO). Grain size is shown in 

thickness on the x axis, vertical thickness is scaled relative to one another, with true 

thickness shown in meters for Vodka. Vertical bands as fill denotes colluvium. 

 

Given the possible temporal ranges of each fossil bone bed in the context of the 

magnetostratigraphy, we present the following as our preferred interpretation for each 

section (Figure 36). The additional section at the Kochkor East section, with the addition 

of biochronological constraints, causes us to select an interpretation of the Kochkor East 

section differing from the published Abdrakhmatov et al., (2001), placing the base of the 

section about one and a half million years younger than the authors’ previously preferred 

interpretation. While previous work in the Kochkor Basin is limited, the Issyk Kul and 

Kochkor Basins were likely connected until geologically recently, as shown by the low 

topography of late Neogene sediments separating the two basins (Nikonorov et al., 2000).  
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Figure 35: One of the few outcrops with a clear relationship between the Chu 

Formation and the Sharplydak Formation. Red lines denote the contact between the 

two formations and illustrate that while the contact it sharp, the two formations do 

interfinger, and thus were presumably conformable. The pictured outcrop lies to the 

south of Ortok, but farther west than the Dam Site. 

 

We therefore find direct comparisons to magnetostratigraphy studies from the 

Issyk Kul Basin to be useful. Most recently is the Wack et al. (2016) study, examining 

two sections on the southern shore of Issyk Kul. These sections sample primarily the 

Kyrgyz Group, which is equivalent to the Shamsi Formation (Wack et al., 2014, 

Nikonorov et al., 2000).  
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Figure 36: Temporal relationship of the four novel paleomagnetostratigraphic sections 

from this study and the two previously existing sections from the Kochkor Basin. 

Absolute time scale taken from Cande and Kent (1995). Formation boundaries placed 

relative to the sections measured. 

 

After ground checking the same sections as sampled in the Wack et al. (2014) 

study, we suggest a reinterpretation of both the temporal match and some of the 

underlying geology. One of the main geochronological constraints on the study was two 

vertebrate fossils of a single taxon, however the biostratigraphic and paleontological 
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conclusions based on the fossils are questionable for several reasons. The fossils are 

testudine, or tortoise, with the only from within the sampled stratigraphy from 

approximately one quarter of the way up section in the JO section (Wack et al., 2014, 

Figure 10). The presence of Stulemys karaklensis supposedly constrains that portion of 

the section as Oligocene to Early Miocene, as published in Ryabinin (1927). Whereas the 

second testudine, Testudo djetyogus was found “above [the] JO section”, and is dated to 

the Middle Pliocene (Kuznetsov et al., 1964). Notably, neither fossil is reposited in an 

existing collection, and thus neither can be diagnosed to any currently accepted 

nomenclature. Owing to the poor description of S. karaklensis in the initial publication, 

lack of other referred material, lack of geochronology in the original work, and lack of 

images of the original publication, subsequent testudine taxonomic studies do not 

recognize the species, nor place any confidence in the temporal assignment as Oliocene-

Early Miocene (Danilov et al., 2006). Furthermore, while Testudo is still a genus in use, 

no subsequent use of the species name can be found beyond the original publication, 

calling any temporal range into doubt.  

Given this lack of a calibration point, we reexamined best fits for the 

magnetostraigraphy presented in the two Wack et al., (2014) sections. We find one 

section to miss a significant portion of stratigraphy in the Shamsi equivalent Kyrgyz 

Group, and the other section actually begins in the Kokturpak Formation, without 

accounting for a hiatus in deposition (Figure 37). Additionally, given the absolute time 

match presented in the study, the rates of deposition vary widely between reversed and 

normal polarities (Figure 37, upper right portion). Given the mix of normal and reversed 

polarities in some sampled strata, we also interpret some portions of the  
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Figure 37: Reinterpretations of both the geology in map view as it relates to Wack et 

al., 2014 samples and the interpretation of both magnetochron and sedimentation rate. 
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magnetostratigraphy as “mixed polarity”, or gray bar for uncertainty. Given these 

differences, we find a preferred match for the sections with a much younger age range 

(7.5-11Ma), not including the lower portion possibly from the Kokturpak Formation 

(Figure 38). This differs from the preferred match in Wack et al. (2014) of ~10-25Ma. 

Not only do we find the section to be much younger, we also find it to span a shorter 

time, alleviating some of the issues with the sedimentation rate discrepancies.  

 

Figure 38: Composite column as this study reinterprets the Wack (et al., 2014) data, 

presenting a new and younger range for sections. Note the divided 

paleomagnetostratigraphy column for the Wack et al. study, recognizing the 

unconformable relationship between the samples in the Kokturpak and the rest of the 

section in the Shamsi Formation or Kyrgyz Group. 
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Our preferred match of both our data and the Wack et al., (2014) with the global 

time scale places the transitional boundary between the Shamsi and Chu Formations 

around 7-7.5 Ma. As this temporally matches changes in monsoonal climate patterns seen 

in both the Siwaliks (Quade et al., 1989) at 7-7.4Ma, the Tibetan Plateau (Wang et al., 

2006, Molnar, 2005) 7-8Ma, and the Kazakh Shield (Abrajevitch, 2008, Miao et al., 

2012) at 7-8Ma, we further suggest the boundary between the two formations is climatic 

in origin, and not tectonic as some authors have previously proposed (Wack et al., 2014, 

Macaulay et al., 2016). However, it should be noted, that tectonic change, namely uplift 

in the Himalayas, Tibetan Plateau, and Pamirs, drives much of the broader regional 

climatic change. While we did not extend our sections into the Sharpyldak Formation in 

this study, upwards extrapolation of our sections and correlation with the existing 

sections spanning that boundary in the Kochkor Basin place the boundary around 2.2 Ma, 

or consistent with the onset of Pleistocene glaciation. Furthermore, this implies rapid and 

recent uplift of the Tien Shan, consistent with modern rates of uplift and deformation 

(Abdrakhmatov et al., 1996, Abdrakhmatov et al., 2001, Thompson et al., 2002).  
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Transition 

 

Studying the taphonomy of the Kyrgyz bone beds highlighted one family of taxa 

above all others: the rhinocerotids. This megafauna family is represented by two species, 

one from the older Shamsi Formation and one from the younger Chu Formation. 

Sotnikova et al., (2001) attributed the previously collected material from Ortok to the 

genus Chilotherium. Initially I assumed this previous diagnosis to be correct, however 

further examination calls the assigned species into question. In the following chapter I set 

out to describe the rhinocerotid material and diagnosis the taxonomic identity of the 

Kyrgyz taxa. As comparative material is generally from outside of Central Asia, 

preliminary work made it clear a phylogenetic analysis is necessary to properly access the 

identify and familial placement of the Kyrgyz taxa. The findings of my phylogeny also 

have major impacts on the presumed biogeography of the family. I present ideas as to the 

relationships between Eurasian and North American rhinocerotids, highlighting that 

similarities in body shape may be from relatedness rather than convergence.  
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CHAPTER IV 

A NEW CHILOTHERE (MAMMALIA, RHINOCEROTIDAE) FROM THE 

NEOGENE OF KYRGYZSTAN, WITH IMPLICATIONS FOR PHYLOGENY AND 

BIOGEOGRAPHY OF THE RHINOCEROTID FAMILY 

 

Introduction 

While today herd behavior in rhinoceroses is limited, rhinoceros are presumed to 

exhibit herd behavior far back into the fossil record (Prothero, 2005, Milhbachler, 2005). 

Modern white rhinoceros (Ceratotherium simum) travel in mixed sex herds of up to 14 

individuals (Shrader & Owen-Smith, 2002), while modern Indian rhinoceros (Rhinoceros 

unicornis) form female herds and sub-adult male herds (Laurie, 1982), although some 

historical accounts suggests most modern species were more gregarious before crippling 

population declines (Hutchins & Kreger, 2006). Fossil rhinocerotids are conclusively 

shown to travel in even larger herds, thanks to catastrophic mass death assemblages such 

as the Teleoceras herds of Ash Fall Fossil Beds National Monument (Prothero, 2005).  

While behavior can be hard to establish in the fossil record, the overabundance of 

rhinocerotids in all Kyrgyz bone beds examined in this study at least suggests that these 

large-bodied ungulates were both one of the more common organisms and were likely 

traveling in large groups. Additionally, rhinoceros’ material comes from a wide age range 

of individuals, and tusks suggest the presence of both male and females, further 

indicating the presence of some sort of social structure.  

The Kyrgyz rhinocerotid material is produced from two Neogene formations, the 

Chu and Shamsi groups, spanning the latest Miocene into the Pliocene (Figure 39). Both  
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Figure 39: Composite stratigraphic column of Neogene sediments in the Kochkor 

Basin, Kyrgyzstan, showing the stratigraphic ranges of rhinocerotid fossils. The 

Kokturpak contains one dated basalt, placing the formation across the Eocene. The 

Shamsi and Chu formations are syntectonic, and generally finning upwards with a 

gradational contact. Capping the Neogene section is the Sharpyldak, a thick 

conglomerate presumed to be Pleistocene in origin. Rhinoceros included in this study 

span the upper Shamsi and throughout the Chu, although only the Shamsi rhinocerotid 

is described in detail. 

 

formations are syntectonic basin filling sequences, primarily composed of fluvial and 

alluvial sediments, with a general fining upwards. Regional geologic and paleoclimatic 

data suggests Central Asia underwent uplift and climatic shifts in the late Miocene-

Pleistocene to reach the semi-arid steppe ecosystems of today. Climate became both drier 
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and colder as the monsoon effect ceased to reach Central Asia (Wang et al., 2006). As 

topography and climate remodeled, corresponding faunal turnovers resulted in the 

evolution of both ice age and modern cold-adapted faunas (Deng et al., 2011).  

 

Figure 40: Google Earth imagery (accessed January 2018) of the Kochkor Basin 

Kyrgyzstan, with an overlay of some geologic mapping (Paulson, 2013). Pin represent 

bone bed localities, all of which produce rhinocerotid material. The novel taxon 

described in this work is from the KSU section on the far east of the map. Rhinocerotid 

material is produced throughout the section and is not confined to the bone beds, 

although all of the specimens included in coding characters for the phylogenetic 

analysis are from the four labeled bone beds. 

 

Located in the heart of Central Asia (Figure 40), Kyrgyz fossil deposits therefore 

offer a unique opportunity to observe rhinoceros evolution over not only several million 

years, but at a key location for geographically and temporally understanding the 

paleobiogeography and phylogeny of this family (Figure 41). While the family evolved in 
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North America, previous authors suggest significant faunal interchange between North 

America and Eurasia, throughout the Cenozoic history of the family (Prothero, 2005, Lu, 

2012). While this study concentrates on two species from Kyrgyzstan, the inclusion of 

North American Neogene taxa suggests strong phylogeographic connections between 

Asia and North America in the Miocene. 

 

 

Figure 41: Distribution, both temporally and geographically, of Rhinocerotidae fossils. 

Data and graphic taken from the Paleobiology Database, search <Rhinocerotidae> on 

January 6th, 2018. Peach colors are Paleogene fossil localities publishing the 

occurrences of rhinocerotids, while the Neogene localities are shown in yellows. 

Rhinocerotids are first found in the Eocene of North America, but appear to have 

quickly spread to Asia, as evidenced my numerous Eocene localities in China. The 

PBDB search returns 2,347 localities with rhinocerotids, illustrating the wide-spread 

nature of this family throughout the Cenozoic. 

 

Materials and Methods 

Paleontology: The rhinoceros fossils described herein are all from a single bone bed 

outcrop, Vodka UO-4603, located along the southeastern margin of the Kochkor Basin, 
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Kyrgyzstan (Figure 42). Locally, the larger drainage containing the fossil locality is 

called the Kara Suu valley, as the closest village draws the name (meaning “black water” 

in Kyrgyz) from the numerous springs along the fault scarp. South of the South Kochkor 

Fault trace, the sediment packages are Neogene sequences in turn underlying the over-

thrust Mesozoic basement rocks.  

 

Figure 42: Google Earth view of the Kara Suu Valley denoting where the stratigraphic 

section was measured as well as the location of the Vodka bone bed. Inset image is 

looking south, from just north of the bone bed. The fossil bearing stratum outcrops in 

the dry wash. 

 

The locality was discovered in 2012 by E.S. Przhiyalgovskiy and E.V. Laurushina 

of the Geological Institute of the Russian Academy of Sciences, two structural geologists 

who were conducting geologic mapping of the area. Initial collection was limited to 

fragmentary material weathered into the dry wash below the cut bank exposing the 
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fossiliferous stratum. In 2014, the outcrop was excavated by a field crew from the 

University of Oregon, producing most of the postcranial material. Again in 2015 the 

outcrop was quarried by a joint expedition from University of Oregon and the Kyrgyz 

Institute of Seismology, this time producing both the skull and complete mandibles 

(Figure 43).  

 

Figure 43: Top, dorsal view of the Vodka taxon skull in situ, after the projecting nasals 

had been removed (far right of image). Bottom, Left mandible exposed after the 

removal of the right mandible, in situ. Less than 1.5 meters separates the two 

specimens, and they lie at the same stratigraphic level. 
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 A stratigraphic section and palaeomagnetic samples were also collected at the 

locality; however, stratigraphic and geochronologic placement will be discussed in 

another work (Chapter 3). Most of the exposure in the Kara Suu valley appears to belong 

to the Shamsi Group, and gradationally changes to the younger and finer grained Chu 

Group. This geologic assignment places the locality in the mid to late Miocene. The 

aforementioned work currently estimates the Vodka bone bed to be 8.6 Ma (although 

biostratigraphically it could range from 9.6-5.3 Ma).  

 The specimens were compared with the only previously attributed rhinocerotid 

species in Kyrgyzstan, Chilotherium cf. chabereri (Sotnikova, 1997), although the 

previous material is attributed to the presumably younger locality of Ortok, and is not 

reposited in an extant collection for comparison. Complicating comparisons is the high 

diversity of rhinocerotids in the late Miocene. Thus far, the Kyrgyz faunas share the most 

faunal similarities with the Hipparion faunas of China, which have the highest diversity 

of rhinocerotids in the Late Miocene (MN 9-12) over any other time period (Deng, 2006), 

with over two dozen species. In the Chinese to Mongolian Late Miocene, Chilotherium 

wimani is the dominant species (Deng, 2006).  

Phylogenetic Analysis: I performed a cladistic analysis to evaluate the phylogenetic 

placement of the Kyrgyz rhinocerotid craniodental material. Taxa included in the analysis 

followed the published matrix of Pandolfi et al. (2015), which is based on characters 

developed in Lu (2013) and Antoine (2002, 2003, 2010). Pandolfi (2015) significantly 

expanded the number of included taxa, although narrowed the taxonomic breadth as 

compared to Antoine (2010). I include all taxa used in the Pandolfi (2015) analysis, as 

well as incorporate several novel taxa. I also recoded the basal North American 



 

 

 

120 

rhinocerotid Subhyracodon occidentalis, as a check on coding the characters. This taxon 

is already included in the Pandolfi (2015) phylogeny, and my recoding serves to check 

my interpretation of characters as similar to the previously published matrix. I also used 

different, more complete, specimens to code the species than those used by Pandolfi 

(2015), with both a male and female skull from the NMNH. The basal North American 

rhinocerotid Trigonias osborni was retained as the outgroup in the study. New taxa added 

to the analysis included both rhinoceros taxa from Kyrgyz Neogene fossil deposits, three 

additional species of Chilotherium, and several more North American rhinocerotids, 

notably three species of Aphelops and two of Teleoceras from the Neogene. Previous 

work suggests significant dispersal events in the history of the family, yet little work 

addresses the timing and exact nature of these relationships (Prothero, 2005). We 

therefore included North American rhinocerotids, North American temporal 

contemporaries of the Kyrgyz rhinos with similar “barrel bodied” morphologies, as a test 

if the morphology in the overall body shape is derived from relatedness or convergence. 

New taxa (see SI T1 for full list of taxa and morphological sources) were primarily coded 

from museum-reposited specimens at University of Oregon, Uppsala University, and the 

Smithsonian National Museum of Natural History, although some morphological data, 

including all juvenile dentition except for the Chu rhino, were coded from the literature 

(also in Apendix K).  

 Characters were coded into Mesquite (http://mesquiteproject.org/ ), and the full 

character matrix is available in the Apendix L. Detailed descriptions of each character are 

also available in the Apendix L. Trees were generated using “Tree analysis using New 

Tecnology” (TNT) (Goloboff &Catalano, 2016) using a normal run, although other run 

http://mesquiteproject.org/
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types were tested and did not yield reduced numbers of trees or improved resolution. We 

completed 10,000 runs of the matrix, generating 5 most parsimonious trees using the 

entire character list of Pandolfi (2015), which is primarily taken from the character list of 

Lu (2013) and Antoine (2002). Characters were not weighted, but were designated as 

single vs. multistate, and ordered and non-ordered multistate. There were 53 ordered 

multistate characters, and an additional ten multistate, but not ordered, characters. Owing 

to poor resolution in some aspects of the tree, possibly derived from uninformative 

characters, we propose conducting future analyses with a pruned set of characters, as well 

as the future inclusion of postcranial characters.  

 

Systematic Paleontology 

 

Order PERISSODACTYLA Owen, 1848 

FAMILY RHINOCEROTIDAE Owen, 1845 

Tribe ACERATHERIINI Dollo, 1885 

CHILOTHERIUM Ringström, 1924 

CHILOTHERIUM sp. nov.  

 

Holotype—UOMNH F-64557 skull, missing premaxillary bones and part of the 

maxillary bones.  

Paratypes—UOMNH F-70507 mandible with m3-i2 both left and right, UOMNH F-

64522 distal lateral metapodial, UOMNH F-64523 tibia, UOMNH F-64527 carpal, 

UOMNH F-64537 astragalus, UOMNH F-64552 distal humerus, UOMNH F-64555 
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radius, UOMNH F-64577 fibula, UOMNH F-70305 calcaneum, UOMNH F-70314 

metapodial. 

Referred material— UOMNCH-64514 distal radius, UOMNCH-64515 distal radius, 

UOMNCH-64554 bascranium, UOMNCH-64575 tibia. 

Type locality—UO-4603 Vodka. 

Diagnosis—Chilotherium sp. nov. is a medium sized, barrel-bodied rhinocerotid, but with 

more gracile limb proportions than other members of the genus. Like other members of 

the genus, it possesses a concave ventral surface in the mandibular symphysis, an 

anteroposterior widened symphysis, and two large lower tusks projecting laterally and 

formed from the i2. The nasal notch is broad, with horizontally projecting blunt-tipped 

nasals and lacking a nasal horn. The skull profile is slightly concave in the posterior 

portion of the skull. The posttympanic process and postglenoid process are in contact, but 

not fully fused into a pseudomeatus, although are separated ventrally, with the 

postglenoid process curving anteriorly. The teeth lack cementum, and the occlusal shape 

of the M3 is trapezoidal.  

Description  

Skull 

 The skull is largely complete (Figure 44), although lacking the premaxilla and 

much of the maxilla. Only the left and right M3 and partial left M2 are present for the 

upper dentition (See Figure 45). The nasals are widest posterior and narrow anteriorly, 

ending in a blunt tip. The ventral surface of the nasals is flat rather than vaulted. The 

anterior portion of the nasal bones is not notched and is fully sutured. The entire dorsal 

surface of the nasal bone and into the frontal bones is smooth, with no surface 
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roughening, indicating a lack of any horns. The nasal septum is not ossified and the 

dorsal profile is slightly very slightly curved downwards, with the anterior portion of the 

nasals almost parallel to the plane of the upper dentition. This profile continues back into 

the unvaulted frontal bones, which are nearly flat in profile until extending dorsally into 

the parietals. The posterior-most portion of the nasal notch opening is broad and U-

shaped, with the nasal notch relatively posterior, leaving a small distance from the 

posterior-most portion of the opening to the orbits. The nasal notch is dorsal to the M2, 

making the nasal notch set relatively posterior in the skull and the unattached portion of 

the nasals moderately long as compared to other rhinocerotids.  

 

Figure 44: Skull of the Shamsi taxon, left lateral view. Note the missing premaxillary 

bone and most of the upper dentition. 
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The skull narrows gradually posterior to the orbits, which are somewhat 

projecting with dorsal boney “hoods” over the orbits. When viewed dorsally, the 

zygomatic arches project directly posteriorly until the anteroposterior midpoint where 

they extend slightly laterally in a gently convex shape while also increasing in thickness 

and height. The parietal crests do not connect, but converge briefly before immediately 

diverging again, forming a split “X”, and failing to make a distinct sagittal crest. 

Throughout the extent of the parietal crests they are low in profile. Viewed dorsally 

(Figure 46), the occipital crest makes a gentle “M” shape, with the parietal crests 

connecting into the lateral limbs of the “M”. Viewed from the posterior, the occipital 

crest and the occipital surface are trapezoidal. The occipital surface forms a plane roughly 

vertically, with the surface inclined posteriorly through the occipital crest, which forms a 

rounded knob shape in profile, where the posterior edge of the occipital crest overhangs 

the occipital condyles. 

 

Figure 45: Ventral view of the dentition, showing the upper M3s and partial left M2. 

Major dental features visible in the Vodka taxon labeled. 
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Figure 46: Dorsal view of the skull with character 48 highlighted. The skull is widest 

across the posterior portion of the zygomatic arches, and the brain box is relatively 

narrow. Also note the gentle “M” shape of the paraoccipitals. Additionally, the nasals 

are fully fused and lacking any rugosity. 

 

The posttympanic and postglenoid processes are in contact but not fused, before 

separating again ventrally, but form a pseudomeatus (Figure 47).  The posttympanic 

process is enlarged and is of equal length as the postglenoid process, and as in other 

tapirids and all rhinocerotids, the paraoccital process and posttympanic process are 

completely and fully fused (Parker & Haswell, 1910).  The postglenoid process is ovate 

in cross section and hooks anteriorly. Both the posttympanic and the postglenoid 

processes terminate ventrally before becoming even with the most ventral extent of the 

occipital condyles. On the ventral side of the skull, the anterior border of the choanae is 

rounded, but much more laterally constricted than other aceratheres. While the palatine 

spine is not well preserved, it also appears to be a weakly developed feature and does not 
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continue significantly posterior in the palate. The pterygoids are also damaged, but 

appear to project horizontally, or at least nearly horizontally.  

 

Figure 47: Lateral views of the posterior-most portion of the skull highlighting several 

important features. Because of diagenic deformation, combined with structural damage 

that occurred during excavation, the degree of closure on the pseudomeatus is variable 

between sides. Clearly there was not a complete suture, although contact can be clearly 

seen on the left side, and alteration of the surface of the postglenoid where contact 

previously occurred can be seen just to the right of arrow head on the right side. This 

character is touted as a defining character of Chilotherium, although is not coded on 

many species, including the several most basal. Note that in rhinocerotid and tapirids, 

the posttympanic process and paraoccipital process are completely fused together 

(Parker & Haswell, 1910). 

 

The orbits are placed high in the skull, directly posterior to the posterior of the nasal 

notch. Both the supraorbital tubercle and postorbital tubercles are present and robust, 

with the surpraorbital process being slightly rugose. The orbits themselves are circular 

and slightly forward facing. Compared to other rhinocerotids, the orbits are moderate in 

size. The infraorbital foramina are not visible with the degree of damage and bone 

alteration displayed in the specimen.  
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 Little remains of the upper dentition, other than the M3 on both sides and the 

posterior portion of the M2 on the left side (see Figure 45 for occlusal view of dentition). 

The teeth are very worn, indicating an old individual and an abrasive diet. The labial edge 

of the molars is wavy and complicated, even worn to less than one centimeter of enamel. 

No evidence of cementum is present in preserved teeth. In occlusal view, the shape of the 

M3 is trapezoidal. The M3 retains a paracone rib and parastyle fold (see Figure 45) on the 

labial surface. The protocone is strongly restricted, and a medifossette is present. There is 

also a strong antecrochet on both M3. Interestingly, the paracone rib and parastyle fold 

are characters considered basal in Chilotherium, while the restricted protocone, 

midifossette, and antecrochet are all considered derived characteristics in the genus. The 

M3, where not worn below the enamel-dentine junction, also have a strong lingual 

cingulum, although no labial cingulum is present.  

Mandibles 

 The mandibles are robust and connected via a stout symphysis. The symphysis is 

anteroposteriorly thickened, with the dorsoposterior surface angling upwards at an 

intermediate angle. Anteriorly to the premolars, the mandibles constrict and have 

indented dimples on the ventral most portion of the lateral surface directly posterior to the 

base of the tusks. The tusks project laterally on an angle not in line with the tooth row. 

They are quite circular in cross section, with wear facets spanning the exposed length of 

the tusk. While worn, the tusks do not show evidence of a medial flange at the base. The 

smaller size in length and diameter, as well as the cross-sectional shape implies the 

preserved individual to be female (Mihlbachler, 2005, Chen et al., 2010), a character 

noted in another Chilotherium species, Chilotherium wimani. All species of Chilotherium 
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with sufficient sample size are sexually dimorphic in tusk cross-sectional shape, and no 

other taxa have circular cross sections (Chen et al., 2010). 

 The ventral surface of the mandibles is relatively flat, and only projects upwards 

immediately posterior to the base of the tusks. The mandible is robust both in thickness 

and in height. Within the mandible, the tooth row is offset on an angle compared to the 

axis of the mandible. Despite some diagenic deformation to the fossil, the ascending rami 

are both vertical, and therefore it looks to be a true character of the specimen.   

 The teeth are extremely worn and exhibit wear commonly associated with drought 

(Kaiser et al., 2013). While premolars wear before molars, from a combination of the 

chewing pattern and eruption pattern (Prothero, 2009, Kaiser et al., 2013), the molars are 

typically worn more progressively from the m3 forward. Other than fragmentary labial 

scraps of enamel, all premolars are worn below the enamel dentine junction.  All 

remaining enamel lacks cementum on any surface. As the bone is somewhat eroded 

perimortem around the roots of the teeth, splaying double roots are visible for all teeth, 

except for the possibly single rooted p2. While the mandible does not appear to have an 

alveolus anterior to the remaining portion of the p2, the bone is worn, and this 

disappearance of presumably previously occupied alveola is present in several of the 

Teleoceras mandibles examined in this study. The degree of root formation and splay 

angle of the roots suggests that while an aged individual, the teeth were likely never 

approaching hypsodont. In the molars, particularly the m3 as it is least worn, the 

ectoconid and metaconid are well developed, with the m3 metaconid larger and extending 

lingually more than the metaconid (Figure 48). Only the m3 preserved the talonid basin, 

and therefore gives an accurate estimate of relative cusp extent internal to the tooth 
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margin. The p3-m1 are wider than they are long, indicating some degree of shortening in 

the tooth row.  

 

Figure 48: Occlusal view of the better preserved right lower dentition. While 

extremely worn, the chewing surface is not broken or otherwise diagenically altered. 

The m3 is least worn and preserves the best estimate of the relationship of interior 

cusps. Internal part of each tooth is dentine, while cross-sections of enamel are shown 

with a dashed line. 

 

Radius 

 The radius is relatively elongate compared to other Chilotherium (see Figure 49), 

although limb length may respond more plastically than many other features. Some 

previous studies have associated more gracile distal limb elements with adaptation to 

open steppe environment (Deng, 2006, Guérin, 1980, Ringström, 1924). There is some 

dorsoventral flattening, with an ovate cross-section. Still robust compared to a modern 
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white rhinoceros (UOMNH B-8701), the radius is also more curved, another feature seen 

in “barrel-bodied” rhinocerotids (Prothero, 2009). 

 

Figure 49: Side by side comparison of the radia from the Vodka taxon (top in both 

images) and the Chu taxon (lower in both images). Both are robust; however the older 

Vodka taxon is proportionately longer. 
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Astragalus 

 The astragalus is more strongly keeled than either Teleoceras or Aphelops. Wider 

than long, the astragalus also has a pronounced medial bulge. The articular surface 

constricts around the groove between trochlea, although the groove itself is shallow. 

Some of the head is damaged, but the head overall projects out from the trochlea more 

than modern white rhinoceros (UOMNH B-8701).   

Metacarpal III 

 While the majority of the third metacarpal is preserved, the proximal surface is 

broken and missing. The bone exhibits good symmetry across a central axis, and is 

slightly curved dorsally at the distal-most end. Ovate in cross section, the metapodial is 

quite compressed dorsoventrally. The distal end is robust, with a very pronounced 

trochlear keel that is also narrow in lateral extent. The dorsal surface has a thin ridge 

projecting towards the proximal end of the bone and extending from the trochlear keel. 

Limited cysting (Stilson, 2017) is present just proximal to the joint surface. 

Tibia and fibula 

 The tibia is shortened and robust compared to a modern white rhinoceros 

(UOMNH B-8701). The proximal end is mediolaterally wider than it is antioposteriorly, 

with 0.5 centimeter depression in each articular surface for the distal condyles of the 

femur. The articular surface is heart shaped, with a medial projection. Some evidence of 

“lipping” (Stilson, 2017) is shown on the lateral and posterior edges of the proximal 

articular surface. The distal end is strongly keeled, with deeper keels than seen in 

comparatives. The cross section is slightly tear-drop shaped, with a pronounced ridge 
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forming the anterior edge. The radius only preserves the distal end, but it is also quite 

robust in form.  

 

Discussion 

Assignment to Chilotherium 

 In the skull, the fused posttympanic and postglenoid processes are seen in all 

other species of Chilotherium, but are lacking in more basal aceratheres (Deng, 2006). 

While this character is unfortunately on a gradient (Fortelius et al., 2003), the Shamsi 

specimen has closure of the opening, although the sutured fusion between the 

posttympanic process and postglenoid process is lacking. This could place the Shamsi 

taxon just outside of Chilotherium, or as a more basal member of the taxon. However, the 

nasals project outwards, rather than curving ventrally, and there is no evidence of a horn 

on the nasals or frontal (Ringström, 1924). In the mandibles, the ventral surface of the 

symphysis is concave, and the symphysis in general is robust and thickened 

anteroposterior (Deng, 2006). The limb length, while longer than some Chilotherium 

species, is still proportionately short and robust compared to the overall body size. The 

metapodials are also dorsoventrally flattened (Prothero, 2009).  

Comparison to other Chilotherium species 

 Chilotherium wimani is a similarly medium-sized rhinoceros, with a trapezoidal 

occipital; however, the occipital ridge possesses a prominent notch unlike the Shamsi 

taxon. Additionally, the dorsal profile of the frontal and parietal is almost perfectly 

horizontal, with only a slightly concave profile in C. wimani, whereas the Shamsi taxon is 

upturned sharply through the posterior portion of the parietal. Chilotherium wimani is one 
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of the only Chilotherium species with a prominent supraorbital tubercle (Deng, 2006); 

however, this does illustrate the possible presence of this feature in the genus, as it is also 

seen the Shamsi taxon. This taxon also shows sexual dimorphism in both size and cross-

sectional shape of the i2 tusks (Chen et al., 2010), which we believe the Shamsi taxon 

shows, as no non-sexually dimorphic rhinocerotids have circular cross-sections to the 

tusks (Chen et al., 2010)\.  

 Chilotherium anderssoni was originally diagnosed largely by the broadly 

separated parietal crests (Ringström, 1924), however Deng (2001) showed this character 

is variable in several Chilotherium species and can also be impacted by ontogenetic 

development, with older individuals displaying greater distance between the parietal 

crests. The Shamsi specimen has widely separated parietal crests, but is also clearly an 

old individual given the wear stage on the teeth, so if that character is impacted by 

ontogenetic development it may be a poor method for comparison. Chilotherium 

anderssoni also has a nearly flat labial surface to the molars and lacks a lingual cingulum 

in the molars (Deng, 2006), while the Shamsi skull has a complicated labial profile on the 

M3 and partial M2 and a strong lingual cingulum.  

 Chilotherium persiae has a well-developed antecrochet on the upper molars 

(Pandolfi, 2015), like that seen in the Shamsi taxon. However, the nasals on C. persiae 

are quite short. Chilotherium killasi, a taxon not included in the phylogenetic analysis at 

this time, has a far more refined mandible where the ventral surface curves upwards and 

lacks the robusticity seen in the Shamsi taxon, or any other Chilotherium species 

(Fortelius et al., 2003). 
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 Not included in previous discussion or phylogenies is Chilotherium orlovi. While 

an extremely limited number of specimens are attributed to this species, a comparison is 

needed, as the taxon is known from and described from southeast Kazakhstan 

(Bayshashov, 1982). The dorsal profile of the skull is quite different, with a more gradual 

slope angled anteriorly from the elevated paraoccipital ridge and a slightly ventrally 

projecting nasal (Bayshashov, 1982). Additionally, the nasals are quite short, similar to 

C. persiae.   

Chilotherium habereri, the only rhinocerotid previously attributed to the Kyrgyz 

Neogene (Sotnikova, 2001) has a more level profile to the skull, with less dorsoposterior 

extension to the occipital crest. This taxon also has very short nasals compared to the 

Shamsi taxon or any other species of Chilotherium examined. While Sotnikova (2001) 

lists C. chabereri instead of C. habereri, this difference is presumed to be a translation 

error, as no other record of C. chabereri exists. If the nasals are indeed the most 

differentiating feature, the misattribution could have resulted from the sole figured skull 

in Tarosov (1970) lacking any of the dorsal portion of the skull. While the Shamsi 

specimen has extremely worn dentition, the degree of root formation and angle of the 

roots suggests the taxon was not particularly hyposodont, while C. habereri is reported to 

be one of the most hypsodont species of Chilotherium (Fortelius et al., 2003). The lower 

dentition also differs in the p4-m1 being much longer than they are wide (Fortelius et al., 

2003), a character lacking in the Shamsi taxon.  
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Comparisons to other rhinocerotids  

 Within the previously proposed tribe or subtribe “Chilotheriini” (Qiu, Xie & Yan, 

1987), although more appropriately assigned to Acerarthiini, Acerorhinus hezhengensis is 

another common large-bodied Asian rhinoceros present in Hipparion faunas (Deng, 

2006). However, unlike the Shamsi taxon, A. hezhengensis has a posttympanic process 

projecting ventrally to the condyles. Another species in the Late Miocene of China is 

Acerorhinus yuanmousensis from the Yuanmou Basin, although the genus is known 

across Eurasia in the Late Miocene (Lu, 2013). Acerorhinus yuanmousensis has a nasal 

notch only extending to the M1, and has an undulating profile to the extremely short 

nasals (Lu, 2013).  All Acerorhinus species have a prominent supraorbital tubercle like 

the Shamsi taxon and unlike most Chilotherium species, and the feature is considered 

more primitive (Deng, 2006). Additionally, Acerorhinus has vaulted ventral surfaces to 

the nasals with drooping lateral margins. Acerorhinus is also typically larger than the 

medium-sized Shamsi taxon, and the outline of the skull quickly constricts posterior to 

the orbits, unlike the more gradual narrowing seen in most Chilotherium species and the 

Shamsi taxon. 

 One of the more basal members of the Aceratheriini, Persiatherium rodleri, is 

also a medium-sized rhinocerotid from the edges of Central Asia (Iran). Like the Shamsi 

taxon, it also lacks a labial cingulum on the upper molars, but contrasting in the absence 

of cristae and absence of the antecrochet on the upper molars (Pandolfi, 2015). The 

lingual cingula are only present on the M1-M2 in P. rodleri, whereas it continues to the 

M3 in the Shamsi taxon. Lastly, the M3 on P. rodleri is triangular is shape (Pandolfi, 

2015), unlike the trapezoidal form in the Shamsi taxon.  
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 Within the Elasmotheriini, Hispanotherium matritense is another middle to late 

Miocene rhinocerotid known from Chinese Hipparion faunas, although more common in 

Iberian Peninsula sites. However, H. matritense is a small-bodied rhinocerotid with a 

nasal horn and significant amounts of cement in the upper molars (Deng, 2006). Like the 

Shamsi rhinocerotid, the limb proportions are more gracile, and the protocone of the 

upper molars is highly constricted (Deng, 2006). Parelasmotherium simplum and 

Parelasmotherium schansiense are additional Miocene rhinocerotids documented in 

correlative sites in China. Both taxa have only rudimentary crista in the upper molars, 

unlike the well-developed crista remaining even in advanced wear in the Shamsi taxon. 

Parelasmotherium simplum is also a small rhinocerotid, while P. schansiense is closer in 

size to the Shamsi taxon. Parelasmotherium (including Paralasmotherium linxiaense, 

another Chinese species of the genus) also have strong anterior and posterior cingula on 

the lower molars, a feature lacking in the Shamsi mandibles. An additional related 

candidate is Sinotherium; however, this taxon has lower molars angled anteriorly, and 

premolars angled posteriorly, so that the teeth wear in a bevel (Deng, 2006). Sinotherium 

also has a large frontal horn.  

 Also within the Elasmotheriini is Iranotherium morgani. Initial runs of the 

phylogeny, before cleaning and checking some of the character coding, placed the 

Shamsi taxon as sister to I. morgani in two out of 12 returned trees. However, this is 

more of an argument for reanalyzing the characters, as we have done, than actual 

phylogenetic affiliation, as the two taxa are quite different in gross morphology. 

Iranotherium morgani is quite large bodied, although body size is a potentially quickly 

evolving character, and hardly grounds for exclusion. Notably, I. morgani has a huge 
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nasal horn, and presence/absence of horns and relative position of horns is a more 

constrained feature within lineages (Prothero, 2005). The skull is also a very different 

shape in dorsal profile, with much of the skull forming a significantly convex profile and 

the nasals dipping ventrally sharply (Deng, 2006, Deng, 2005). The occipital crest, when 

viewed dorsally, is strongly “V” shaped, with the notch pointing anteriorly and is 

indented along the axis when viewing the occipital surface (Deng, 2005). Male I. 

morgani have roughened posterolateral zygomatic arches, indicating a degree of sexual 

dimorphism. The orbits are placed far posterior relative to the posterior portion of the 

nasal notch. In the mandible, I. morgani has a narrow mandibular symphysis. All teeth, 

both lowers and uppers, have significant amounts of cement (Deng, 2005, Pandolfi, 

2015), a trait lacking in the Shamsi rhinocerotid. In the upper M3 the crochet is still 

strong on the Shamsi taxon, while weak on I. morgani, and the occlusal surface of the M3 

is triangular-shaped (Deng, 2005). In the lower dentition, the premolars are more reduced 

in total tooth row portion in I. morgani and are overlapping in the p2-p4, and there are no 

enlarged tusks, as are prominently featured in the robust symphysis of the Shamsi taxon. 

Iranotherium morgani is also inferred to have evolved in Northwest China and dispersed 

through what would now be Kyrgyzstan to get to western Central Asia (Deng, 2005, 

2006).  

 Within the Rhinocerotini, Dicerorhinus is one of the most frequent Asian genera 

from the Miocene. The nasal bones are much longer and wider than the Shamsi taxon, 

and contain a well-developed horn boss. The nasal notch extends only as far as the P3-4 

making the distance from the orbit to the nasal notch also much greater than seen in the 

Shamsi taxon. The skull roof is concave, with a barely raised occipital, and the frontal is 
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quite concave, differing from the level to slightly concave surface of the Shamsi taxon. In 

the occipital, Dicerorhinus has an anteriorly inclined occipital surface, as opposed to the 

upright surface in the Shamsi skull, and the occipital crest has a strong notch at the 

median point. The M3 occlusal surface in Dicerorhinus is triangular, as opposed to the 

trapezoidal shape seen in the Shamsi taxon’s M3s. Dicerorhinus ringstromi is very large 

in body size, far larger than the Shamsi taxon, but is notable in that it had cursorial limb 

bones, similar in degree of gracility, to those seen in the Vodka bone bed. Ringström 

(1924), Guérin (1980), and Deng (2006) propose a correlation between open steppe 

habitat and these more gracile limb proportions. All members of Rhinocerotini are 

characterized by the presence of at least one horn, nasal or frontal (Antoine, 2002, 

Pandolfi, 2015), ruling out less common members of this tribe as well.  

 All European members of Teleoceratini included in this study (the genus 

Brachypotherium) lack lingual cingula on the upper molars and have a pronounced labial 

cingulum on the upper molars (Pandolfi, 2015). The Shamsi taxon is the opposite of this, 

with lingual, but not labial cingula on the M2-M3.  

 

Phylogenetic Analysis: Our analysis in TNT returned 5 most parsimonious trees from 

the cladistic analysis. Our preferred tree, the consensus tree, is shown in Figure 49. We 

retain the same definitions and included taxa for Aceratheriini as Pandolfi (2015), 

although we find a more complicated and possibly nested relationship between 

Chilotherium and Acerorhinus than Pandolfi (2015). In all trees returned, not just the 

consensus tree, Chilotherium is not returned as a monophyletic genus. Several authors, 

notably Fortelius (et al., 2003), imply many of the characteristics used to unite  
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Chilotherium may be pleisiomorphic traits. Not only were both new Kyrgyz taxa 

included within the Chilotherium clade, but also Teleoceras, Aphelops, and consistently 

Aceratherium porpani. While the preserved material for the Chu rhinocerotid was 

limited, and therefore limited the characters that could be coded, the taxon still 

consistently nested with C. kowalevskii and C. schlosseri. Likely, the entire tribe 

Aceratheriini is in need of taxonomic revision, although future alalyses should include 

postcranial characters and a revised set of craniodental characters.  

Our inclusion of Neogene North American rhinocerotids is novel compared to 

previous studies. As proposed in Prothero (2005), both Teleoceras and Aphelops are 

supported in having an Asian origin. We retain Prothero’s (2005) assignment of Aphelops 

to Aceratheriini, as the taxon nests well within the clade. Against the Prothero (2005) 

assignment however, we also find Teleoceras to nest well within the Aceratheriini in all 

trees, and not with the tribe Teleocerini, despite that tribe being named for the North 

American genus. This suggests some of the gross morphological similarities used for the 

inclusion of Eurasian taxa are more likely to be environmentally plastic characters, rather 

than phylogenetically informative characters. Teleoceratini (as used in Pandolfi, 2015), or 

Teleoceratina in Antoine (2002), are characterized by a shortening of the skull and distal 

leg segments (Heissig, 1999, Prothero, 2005). However, this shortening of distal limb 

elements is also strongly shown in Chilotherium, as well as several other members of the 

Aceratheriini. Prothero (2005) further describes the metapodials as flattened, but as no 

postcranial elements were included in this study, this character is harder to discuss in the 

context of the Asian rhinocerotids. This character was also present in the Asian Shamsi 

taxon, and several species of Chilotherium. Prothero (2005) also lists a “U-shaped” nasal  



 

 

 

140 

 

Figure 50: 

Consensus 

tree, of five 

returned 

trees. 

Numerical 

values on 

nodes are 

values that 

split was 

returned in 

the analysis. 

Note the non-

monophyletic 

nature of 

both 

Acerorhinus 

and 

Chilotherium. 
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notch as a synapamorphy of the Teleoceratini, however this character is extremely 

common in Eurasian Aceratheres, yet again highlighting the need to examine 

rhinocerotids on a broader scale than single continents. Limb proportions change within 

genera, and thus may be more indicative of ecology than phylogeny as a result. The 

degree of skull shortening is also not more than seen Chilotherium habereri, and thus 

again may not be a synapamorphy.  

I found the new Shamsi taxon distinct in enough characters to justify the 

description of a new taxon, although as this is a dissertation, designation of novel 

nomenclature will be left for the subsequent publication stemming from this work. The 

Shamsi taxon consistently nested with the genus Chilotherium, although the validity or 

organization of this genus is now questionable. Some previous authors (Qiu, Xie & Yan, 

1987) have proposed the tribe Chilotheriini, with others following this assignment (Deng, 

2006). However, the inclusion of Acerorhinus in any monophyletic group containing 

Chilotherium leads us to reject Chilotheriini as a tribe within Rhinocerotidae, and retain 

the assignment of Chilotherium to the tribe Aceratheriini as done by Pandolfi (2015). Our 

new taxon from the Vodka locality is therefore assigned to the tribe Aceratheriini, as it is 

included within the genus Chilotherium as it currently stands.  

Despite incomplete character coding for the Chu Formation Kyrgyz rhinoceros 

(see Chapter 2 for description of material), the Chu taxon consistently nests near or with 

the Shamsi taxon within our analysis, although closer to two species of Chilotherium, C. 

kowalevskii and C. schlosseri. As the Chu Formation overlies the Shamsi Formation, the 

Chu taxon is undoubtedly younger, and therefore may represent a descendant of the 

Shamsi taxon. It is possible the Chu taxon may also represent a new species given its 
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placement in many of the analyses; however, the craniodental material is too incomplete 

and therefore prohibits a definitive assessment of the taxon. The Chu rhinoceros does not 

nest outside of Chilotherium, and therefore is retained as Chilotherium sp. in our 

phylogeny.  

 

Paleoecology: The Shamsi taxon is a medium sized rhinocerotid, making the species 

certainly one of the larger taxa present in the Kyrgyz Miocene. While larger giraffids and 

pachyderms are possible, none have thus far been produced by the Vodka bone bed. By 

element representation (see McLaughlin Chapter 2) the Shamsi Chilotherium is the 

dominant taxon, represented by a MNI of three individuals. While this is not a sufficient 

sample to make substantial claims about behavior, the relative elemental abundance of 

the rhinocerotid taxon at least opens the possibility of herd behavior, as demonstrated in 

fossil rhinocerotids like Teleoceras (Prothero, 2005). Fossil rhinocerotids were likely 

more social than modern rhinocerotids, even exhibiting behaviors with no modern 

analogue (Milhbachler, 2005), although habitat fragmentation and decimated populations 

in modern rhinoceros make establishing possible ancestral behavioral traits more 

difficult. Tusked modern rhinoceros, like Rhinoceros unicornis, use their sexually 

dimorphic tusks in male-male displays (Laurie, 1982), which may have also been part of 

the function of tusks in the fossil taxa. The combination of the large body size and 

possible herding behavior made the Shamsi taxon potentially one of the dominant 

organisms in its ancient ecosystem (Figure 51).  

 While the dental material present at Vodka belonged to a presumably quite elderly 

individual, and therefore crown height could not be assessed, the teeth lack cementum, a 
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dental characteristic more commonly associated with grazing rhinoceros (Prothero, 

2005). The wear pattern on the lower teeth is also very uneven, consistent with browsing 

or at least mixed-feeding. This jagged macrowear indicative of browsing was also present 

in the associated Hipparion horse teeth and the unidentified cervid. While the Kochkor 

Basin was lower elevation 8-9 million years ago than today, the initiation of uplift in the 

Oligocene-Miocene (Abdrakhmatov et al., 2001) implies the region was already quite 

mountainous by the late Miocene. Even in the intermontane basins, the habitat was likely 

lacking in dense vegetation and semi-open, consistent with browsing taxa as the 

predominant ungulates.  

 

Figure 51: Life reconstruction of the Shamsi Chilotherium. Note the lack of horn, 

tusks, large body, and relatively gracile limbs. 

 

 The Shamsi rhinocerotid is produced from a fluvial sandstone to conglomerate. 

The clasts are subangular to subrounded, and frequently imbricate, with extensive cross 

bedding. Those sedimentary characteristics are consistent with braided river channels 
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emptying out of the uplifting mountain range to the south. The basin floor may have been 

wider in the past (Sobel et al., 2006), with high energy material being deposited in the 

valley floor, resulting in quick burial of carcasses. The rhinocerotids could have inhabited 

ranges throughout of the river profile, as discussed in the transport section of Chapter 2, 

ranging from the valley floors to foothills and even sub-alpine habitats. While significant 

uplift occurs from aproxematly 7 Ma to modern times, the Tien Shan were already at 

moderate elevations, with the Kochkor Basin likely greater than 700 m by the late 

Miocene (Chapter 3). 

 

Conclusions 

The Shamsi taxon is herein assigned to the genus Chilotherium, and represents a new 

species. This moderate sized, hornless and tusked rhinocerotid may have lived in 

moderately open habitats and been an abundant member of Late Miocene Central Asian 

endemic faunas. As the Greater Tibetan Plateau was already an area of moderately high 

elevation by 9 Ma (Sobel et al., 2006), this endemic taxon could reflect early sub-alpine 

to steppe habitats. Central Asia represents the obvious corridor for biotic interchange 

between much of Europe and Asia, yet transitional endemic faunas have received little 

attention previously. The new taxon, and its placement in a novel phylogenetic analysis, 

highlight the importance of Central Asia in both biogeographic and phylogenetic studies. 

While Chilotherium was previously reported from younger fossil beds (the Chu 

Formation) in Kyrgyzstan, we find the older Shamsi taxon to be distinctly different than 

the Chu Formation rhinocerotid. 
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The inclusion of North American taxa in the phylogenetic analysis displays the 

need for careful evaluation of what characters are taxonomically informative, rather than 

environmentally driven phenotypic response. Additionally, characters (like the shape of 

the nasal notch) may be consistent on a continent level, but not at an intercontinental 

level. Teleoceras and Aphelops are clearly derived from Asian taxa, as previously 

proposed, and further drive home the need to address taxonomic assignments and 

phylogenetic analyses on an intercontinental scale to truly sample biotic interchange and 

relatedness. Additional older North American and Eurasian taxa should be included in 

future analyses to establish the degree of interchange between North American 

rhinocerotids and Eurasian and African taxa, as well as examining the timing of 

intercontinental biotic interchange. 
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CHAPTER V 

CONCLUSION 

 

The fossils of Kyrgyzstan offer a wealth of information about changing 

landscapes, climate, and the biota inhabiting Central Asia. From ancient bones alone I 

can reconstruct an ancient ecosystem, full of a diversity of megafauna. This fauna 

changes through time in response to changing climate, much as the organisms of 

Kyrgyzstan are responding to modern climate change today.  The climate change was 

driven by uplift, both locally in the Tien Shan, but also in the broader region in the Pamir, 

Himalayas, and the Greater Tibetan Plateau. Rapid uplift changed global atmospheric 

circulation, and regionally blocked the Indian monsoon from reaching Central Asia. 

Without the monsoonal signal, Kyrgyzstan became drier, forcing changes in the fauna.  

Via magnetostratigraphy and biostratigraphy I have dated this tectonically driven 

climatic change to have occurred between 9-7 million years ago. This aligns with similar 

data from China, Pakistan, India, and Kazakhstan, suggesting uplift in the region reached 

a level sufficient to block the monsoon by the latest Miocene. In contrast to some other 

geologic work, I find that the modern uplift and shortening rates seem to be consistent 

throughout the history of Neogene uplift of the Tien Shan. The Tien Shan, and many of 

the specific geologic formations, are younger than some studies suggested.  

 On an evolutionary perspective, Central Asia lies at an important 

boundary between Europe and Asia, yet despite the importance to dispersal events, or the 

evolution of endemic faunas, little paleontological work in the region concentrates on the 

Neogene. I begin to tackle this issue by investigating the taxonomy, phylogeny, and 



 

 

 

147 

biogeography of the most common fossil animal of Kyrgyzstan’s Neogene: a rhinoceros. 

I find there to be two species in the two different age formations included in this work, 

both of which are likely new species. The older species I find to be a new member of the 

genus Chilotherium, a barrel-bodied, hornless, tusked rhinocerotid. Importantly, this 

taxon shares phylogenetic similarities with several North American rhinocerotids, 

suggesting significant biotic interchange in the late Miocene.  

Together the faunas and their geochronologic placement illustrate a time of rapid 

change, both biologically and physically, to the ecosystems of ancient Kyrgyzstan. As the 

geologic processes remain the same today, Kochkor Basin’s ancient past can be an 

analogue for the future, both in terms of changing landscapes, but also the changes faced 

by a biota we are now part of.
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APPENDIX A 

VODKA BONE BED (UO-4603)  

Specimen # Locality 

# 

Order Family Genus element L1 L2 L3 

64560 UO-4603 Artiodactyla Bovidae Gazella? mandible fragment with first two premolars 

(p2-3?) 

22.62 14.99 5.82 

64520 UO-4603 Artiodactyla Cervidae   P4-M1 22.51 21.99 12.97 

64532 UO-4603 Artiodactyla Cervidae   1.5 teeth in jaw fragment of unknown 

cervid, m1-m2 or m2-m3 

36.43 23.4 9.47 

64533 UO-4603 Artiodactyla Cervidae   mandible, p3-m3 80.49 36.4 13.5 

64534 UO-4603 Artiodactyla Cervidae   scapula  89.78 24.7 11.02 

64535 UO-4603 Artiodactyla Cervidae   metapodial 128.77 20.99 12.46 

64536 UO-4603 Artiodactyla Cervidae   phalanx 25.15 14.3 8.91 

64537 UO-4603 Artiodactyla Cervidae   proximal scapula 47.37 24.11 14 

64538 UO-4603 Artiodactyla Cervidae   proximal femur and partially articulated 

pelvis 

46.93 23.87 21.57 

64539 UO-4603 Artiodactyla Cervidae   distal tibia 58.78 27.61 19.4 

64517 UO-4603 Artiodactyla     distal radio/ulna 110.56 47.15 19.94 

64524 UO-4603 Artiodactyla     skull bit, horn core 72.68 69.05 49.86 

64553 UO-4603 Artiodactyla     sesamoid 16.69 10.35 5.69 

64492 UO-4603 Perissodactyla Equidae Hipparion R upper cheek tooth 46.37 22.97 20.55 

64493 UO-4603 Perissodactyla Equidae Hipparion mandible, w/ incisors and 6 cheek teeth 235 66.34 59.82 

64521 UO-4603 Perissodactyla Equidae   carpal sesamoid 40.81 27.08 10.79 

70316 UO-4603 Perissodactyla Equidae   tooth frag 11.71 10.8 1.19 

64514 UO-4603 Perissodactyla Rhinoceratidae distal radius   111.77 82.55 30.9 

64515 UO-4603 Perissodactyla Rhinoceratidae distal radius   105.76 80.54 38.39 

64522 UO-4603 Perissodactyla Rhinoceratidae distal lateral metapodial 55.05 34.77 28.44 

64523 UO-4603 Perissodactyla Rhinoceratidae tibia (whole) 282 103.09 40.45 

64527 UO-4603 Perissodactyla Rhinoceratidae carpal  44 34.24 23.45 

64529 UO-4603 Perissodactyla Rhinoceratidae tibia mid shaft 65.31 41 30.82 

64530 UO-4603 Perissodactyla Rhinoceratidae calc frag 68.77 44.85 29.12 



 

 

 

149 

64534 UO-4603 Perissodactyla Rhinoceratidae thing  94.17 49.18 41.78 

64537 UO-4603 Perissodactyla Rhinoceratidae astragalus 80.66 70.09 40.32 

64551 UO-4603 Perissodactyla Rhinoceratidae tarsal 42.58 37.02 19.22 

64552 UO-4603 Perissodactyla Rhinoceratidae distal humerus 146.18 124.08 55.31 

64553 UO-4603 Perissodactyla Rhinoceratidae partial pelvis 152.86 84.41 37.83 

64554 UO-4603 Perissodactyla Rhinoceratidae basacranium 101.57 65.4 16.74 

64555 UO-4603 Perissodactyla Rhinocerati

dae 

Chilotheri

um 

complete radius, plus some little bits and 

pieces. 

322 87.75 56.26 

64556 UO-4603 Perissodactyla Rhinoceratidae proximal left tibia and associated frag 101.21 100.44 45.97 

64557 UO-4603 Perissodactyla Rhinocerati

dae 

Chilotheri

um 

skull 
   

64558 UO-4603 Perissodactyla Rhinoceratidae acetabulum 83.29 60.6 27.91 

64559 UO-4603 Perissodactyla Rhinocerati

dae 

Chilotheri

um 

distal lateral metapodial 54.05 33.09 27.19 

64560 UO-4603 Perissodactyla Rhinoceratidae carpal  31.66 21.09 15.38 

64561 UO-4603 Perissodactyla Rhinoceratidae carpal         

64562 UO-4603 Perissodactyla Rhinoceratidae tarsal, 1/2 38.04 25.68 24.87 

64563 UO-4603 Perissodactyla Rhinoceratidae tarsal sesamoid 37.29 28.56 19.5 

64564 UO-4603 Perissodactyla Rhinoceratidae sesamoid 29.57 26 23 

64565 UO-4603 Perissodactyla Rhinoceratidae proximal meta tarsal 
  

64566 UO-4603 Perissodactyla Rhinoceratidae mid shaft of tibia 67.95 51 40.87 

64567 UO-4603 Perissodactyla Rhinoceratidae distal metapodial 42.78 28.12 26.58 

64568 UO-4603 Perissodactyla Rhinoceratidae carpal 69.63 55.14 34.64 

64569 UO-4603 Perissodactyla Rhinoceratidae vertebra fragment 52.5 30.74 21.33 

64570 UO-4603 Perissodactyla Rhinoceratidae fragment of humerus mid shaft, other 

fragment (?) 

53.99 37.57 28.45 

64571 UO-4603 Perissodactyla Rhinoceratidae pelvis fragments 
  

64572 UO-4603 Perissodactyla Rhinoceratidae ungal  42.51 38.81 19.07 

64573 UO-4603 Perissodactyla Rhinoceratidae metapodial fragments 24.11 24.1 10.42 

64574 UO-4603 Perissodactyla Rhinoceratidae metapodial, 3rd 
  

64575 UO-4603 Perissodactyla Rhinoceratidae tibia (whole) 275 119.59 44.1 

64576 UO-4603 Perissodactyla Rhinoceratidae complete tarsal 47.46 46.61 17.52 

64577 UO-4603 Perissodactyla Rhinoceratidae left fibula 148.89 34.68 19.42 

64578 UO-4603 Perissodactyla Rhinoceratidae atlas fragment 60.04 47.07 28.88 
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64579 UO-4603 Perissodactyla Rhinoceratidae sesamoid 37.21 18.87 16.9 

64580 UO-4603 Perissodactyla Rhinoceratidae tooth fragments 26.35 22.04 17.17 

64581 UO-4603 Perissodactyla Rhinoceratidae thoracic vertebra process 65.75 34.85 32.77 

70303 UO-4603 Perissodactyla Rhinoceratidae carpal  35.08 25.48 20.71 

70304 UO-4603 Perissodactyla Rhinoceratidae   86.91 38.05 36.26 

70305 UO-4603 Perissodactyla Rhinoceratidae calcaneum  56.92 42.52 26.88 

70306 UO-4603 Perissodactyla Rhinoceratidae calcaneum and other stuff 69.35 29.88 8.35 

70307 UO-4603 Perissodactyla Rhinoceratidae 5 bone scraps 20.87 12.02 7.25 

70312 UO-4603 Perissodactyla Rhinoceratidae carpal 60.42 39.37 17.91 

70314 UO-4603 Perissodactyla Rhinoceratidae whole metapodial 108.99 46.94 20.53 

70318 UO-4603 Rodentia Cricetidae   incisor 7.21 1.95 1.49 

70319 UO-4603 Testudines     shell frag 30.19 16.43 8.46 

64518 UO-4603       pelvis thing? 152.25 51.99 18.67 

64519 UO-4603       small carpal fragment 31.5 16.47 8.16 

64557 UO-4603       little rib bits, smaller animal 35.32 15.31 14.46 

64558 UO-4603       crap 60.36 48.63 22.29 

64559 UO-4603       bone frag 58.01 25.76 13.58 

64560 UO-4603       bone frags 33.34 23.45 20.96 

64561 UO-4603       frags of God only knows what 40.31 20.2 16.38 

64562 UO-4603       pelvis frag? Maybe? 73.14 32.92 17.37 

64563 UO-4603       proximal toe 14.77 12.92 10.95 

64564 UO-4603       two complete podials, NOT rhino, smaller, 

shape doesn't seem to match 

28.72 22.15 19.95 

64565 UO-4603 
   

rib fragment, not rhino, medium animal size 

64566 UO-4603       rib 77.28 15.55 14.97 

64567 UO-4603       carpal? 30.9 29 20.73 

64568 UO-4603       ribs? 54 8.12 4.19 

64569 UO-4603       rib 85.25 36.47 32.55 

64570 UO-4603       sesamoid? 28.75 20.06 19.62 

64571 UO-4603       bone frags 15.05 11.94 9.04 

64572 UO-4603       smallish animal bone bit? 20.43 17.44 11.47 

70308 UO-4603       bone frag 17.96 10.03 7.37 

70309 UO-4603       scapula 71.95 63.86 16.57 



 

 

 

151 

70310 UO-4603       pelvis 102.62 67.78 20.44 

70311 UO-4603       bits 44.28 24.76 8.98 

70313 UO-4603       frag 42.72 24.69 20.55 

70315 UO-4603       frags   41.6 29.96 17.78 

70317 UO-4603       indet 62.47 29.54 14.01 

70319 UO-4603       frag 21.31 4.74 0.9 
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APPENDIX B 

ORTOK BONE BED (UO-4605) 

Specimen 

# 

Locality 

# 

Order Family Genus element L1 L2 L3 

70325 UO-4605 Artiodactyla Bovidae   distal metapodial 23.53 15.05 7.72 

70327 UO-4605 Artiodactyla Bovidae   right astragalus, 

small bovid 

munjack sized 

22.42 12.03 11 

70328 UO-4605 Artiodactyla Bovidae   right astragalus, 

small bovid 

munjack sized 

20.23 12.56 11.35 

70329 UO-4605 Artiodactyla Bovidae   distal 1st phalanx 20.45 8.51 6 

70339 UO-4605 Artiodactyla Bovidae Gazella horn core 50.79 24.7 20.45 

70346 UO-4605 Artiodactyla Bovidae   distal calcaneum, 

from very small 

bovid, muntjac in 

size 

17.26 10.4 8.63 

71406 UO-4605 Artiodactyla Bovidae Gazella horn core 72.48 24.9 18.58 

71407 UO-4605 Artiodactyla Bovidae Gazella horn core 42.21 24.66 22.73 

71408 UO-4605 Artiodactyla Bovidae Gazella horn core 24.48 19.17 12.84 

71409 UO-4605 Artiodactyla Bovidae Gazella horn core 52.19 23.31 18.69 

71410 UO-4605 Artiodactyla Bovidae Gazella horn core 107.23 27.03 17.83 

71411 UO-4605 Artiodactyla Bovidae Gazella horn core 37.16 21.02 18.77 

70333 UO-4605 Artiodactyla Cervidae   two antler 

fragments 

40.04 27.72 16.38 

70334 UO-4605 Artiodactyla Cervidae   antler pedicle 63.54 36.43 21.61 

70356 UO-4605 Artiodactyla Cervidae   antler fragment, 

base of branching 

tine 

26.88 23.48 14.53 

70380 UO-4605 Artiodactyla Cervidae   antler fragments 62 22.67 16.68 

70390 UO-4605 Artiodactyla Cervidae   antler fragment 33.26 22.23 17.61 

70423 UO-4605 Artiodactyla Cervidae   radius  92 37.39 25.48 
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64478 UO-4605 Artiodactyla Giraffidae Samotherium 3 teeth 31.41 18.99 7.74 

64481 UO-4605 Artiodactyla Giraffidae Samotherium metapodial, 

articulating 

cubonavicular and 

other podial, 

associated distal 

tibia, other podial 

bits 

366 62.29 35.33 

67907 UO-4605 Artiodactyla Giraffidae   ossicone frag 38.53 19.17 18.16 

70341 UO-4605 Artiodactyla Giraffidae   celene on tooth 12.03 9.97 7.84 

70382 UO-4605 Artiodactyla Giraffidae   distal metapodial 

frag 

35.77 30.3 19.37 

70400 UO-4605 Artiodactyla Palaeomerycidae palate 137.87 99.91 35.73 

70343 UO-4605 Artiodactyla     tooth frags 13.16 8.9 2.22 

70364 UO-4605 Artiodactyla     calcaneum 

fragment 

14.76 12.53 8.92 

70372 UO-4605 Artiodactyla     distal toe frag 16.47 11.39 5.68 

70384 UO-4605 Artiodactyla     astragalus 

fragment 

24.43 17.49 16.29 

  UO-4605 Perissodactyla Equidae Hipparion complete mandible     

64481 UO-4605 Perissodactyla Equidae Hipparion tooth frag 47.12 14.4 8.92 

64482 UO-4605 Perissodactyla Equidae Hipparion partial upper molar 29.2 19.91 9.27 

64483 UO-4605 Perissodactyla Equidae Hipparion 1/2 astragalus 59.65 41.42 24.71 

70323 UO-4605 Perissodactyla Equidae   distal metapodial 

frag 

33.3 18.46 13.72 

70334 UO-4605 Perissodactyla Equidae Hipparion distal metapodial 

frag 

26.1 19.72 16.69 

70338 UO-4605 Perissodactyla Equidae Hipparion tooth frag 21.85 16.91 8.04 

70355 UO-4605 Perissodactyla Equidae   distal femur 

fragment 

40.73 31.1 23.12 

70373 UO-4605 Perissodactyla Equidae   tooth frags 28.85 10.73 4.61 

70381 UO-4605 Perissodactyla Equidae Hipparion upper cheek tooth 

fragment 

39.62 12.58 11.94 

70396 UO-4605 Perissodactyla Equidae Hipparion upper tooth row 90 25.16 17.59 

70398 UO-4605 Perissodactyla Equidae   incissors and frags 21.81 14.48 6.37 
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70424 UO-4605 Perissodactyla Equidae   tooth frag 23.74 10.27 5.69 

64479 UO-4605 Perissodactyla Rhinoceratidae Chilotherium 1 astragalus 

fragment 

36.25 31.65 13.44 

64480 UO-4605 Perissodactyla Rhinoceratidae Chilotherium podial  75.61 38.59 21.77 

64481 UO-4605 Perissodactyla Rhinoceratidae Chilotherium tooth fragments 33.2 9.4 3.57 

64482 UO-4605 Perissodactyla Rhinoceratidae Chilotherium astragalus 

fragment 

44.45 38.45 32.86 

64483 UO-4605 Perissodactyla Rhinoceratidae Chilotherium carpal? 46.6 35.95 32 

64484 UO-4605 Perissodactyla Rhinoceratidae Chilotherium tooth frag 34.82 20.18 4.75 

64485 UO-4605 Perissodactyla Rhinoceratidae Chilotherium 1/2 astragalus 79.7 42.58 29.15 

64486 UO-4605 Perissodactyla Rhinoceratidae Chilotherium tooth bit 31.39 17.14 4.01 

64487 UO-4605 Perissodactyla Rhinoceratidae Chilotherium unworn tooth 

fragments 

36.72 17.8 12.23 

64488 UO-4605 Perissodactyla Rhinoceratidae Chilotherium distal tibia 

fragment 

37.5 23.06 13.06 

64489 UO-4605 Perissodactyla Rhinoceratidae Chilotherium tooth frags 21.29 9.56 1.98 

70324 UO-4605 Perissodactyla Rhinoceratidae tooth frag 36.63 12.91 5.7 

70335 UO-4605 Perissodactyla Rhinoceratidae Chilotherium humerus   281 101.0

3 

64.85 

70337 UO-4605 Perissodactyla Rhinoceratidae tooth frag 18.73 9.37 2.33 

70342 UO-4605 Perissodactyla Rhinoceratidae tooth frags 23.16 14.86 2.14 

70345 UO-4605 Perissodactyla Rhinoceratidae tooth frags 18.47 16.97 7.88 

70347 UO-4605 Perissodactyla Rhinoceratidae tooth frags 26.3 12.8 7.07 

70348 UO-4605 Perissodactyla Rhinoceratidae astragalus 

fragment 

59.08 40.11 29.8 

70349 UO-4605 Perissodactyla Rhinoceratidae distal femur 

fragment 

42.44 24.08 20.63 

70350 UO-4605 Perissodactyla Rhinoceratidae distal 

metapodial 

frag 

34.26 27.2 19.83 

70351 UO-4605 Perissodactyla Rhinoceratidae carpal 39.75 27.18 15.31 

70354 UO-4605 Perissodactyla Rhinoceratidae astragalus 

fragment 

31.22 29.78 22.53 
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70357 UO-4605 Perissodactyla Rhinoceratidae proximal 

humerus 

fragent 

44.08 27.67 22.73 

70359 UO-4605 Perissodactyla Rhinoceratidae tooth 

fragments 

43.62 19.8 7.65 

70360 UO-4605 Perissodactyla Rhinoceratidae Chilotherium radius  70.09 68.93 42.4 

70362 UO-4605 Perissodactyla Rhinoceratidae ooth fragment 9.22 4.09 2.2 

70363 UO-4605 Perissodactyla Rhinoceratidae tooth frag 27.69 11.84 3.47 

70365 UO-4605 Perissodactyla Rhinoceratidae tooth frags 20.07 9.99 3.68 

70374 UO-4605 Perissodactyla Rhinoceratidae astragalus 

fragment 

58.42 49.46 26.7 

70375 UO-4605 Perissodactyla Rhinoceratidae tooth frags 26.73 15.1 5.15 

70385 UO-4605 Perissodactyla Rhinoceratidae tooth 

fragments 

34.23 13.58 4.69 

70386 UO-4605 Perissodactyla Rhinoceratidae proximal 

humerus 

fragent 

60.54 42 38.31 

70387 UO-4605 Perissodactyla Rhinoceratidae bone frag 49.36 40.68 30.83 

70388 UO-4605 Perissodactyla Rhinoceratidae distal femur 

fragment 

50.19 35.57 23.14 

70389 UO-4605 Perissodactyla Rhinoceratidae tooth frag 42.65 15.51 3.16 

70391 UO-4605 Perissodactyla Rhinoceratidae tooth frags 23.05 13.6 6.6 

70394 UO-4605 Perissodactyla Rhinoceratidae tooth 

fragments 

30.37 13.78 6.84 

70395 UO-4605 Perissodactyla Rhinoceratidae radius  70.01 66.9 26.89 

70397 UO-4605 Perissodactyla Rhinoceratidae tooth frags 21.71 8.68 3.27 

70399 UO-4605 Perissodactyla Rhinoceratidae tooth 

fragments 

16 6.4 2.96 

70401 UO-4605 Perissodactyla Rhinoceratidae tooth frag 23.54 9.41 4.59 

70402 UO-4605 Perissodactyla Rhinoceratidae distal femur 

frag 

49.86 41.27 22.62 

70403 UO-4605 Perissodactyla Rhinoceratidae proximal 

femur frag 

46.5 28.68 24.93 

70404 UO-4605 Perissodactyla Rhinoceratidae patella 68.89 46.86 29.89 

70405 UO-4605 Perissodactyla Rhinoceratidae calcaneum 81.74 55.66 36.89 
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70406 UO-4605 Perissodactyla Rhinoceratidae podial 37.68 23.55 19.98 

70407 UO-4605 Perissodactyla Rhinoceratidae podial 70.55 48.82 34.25 

70425 UO-4605 Perissodactyla Rhinoceratidae tooth frags   22.06 10.3 3.18 

70427 UO-4605 Perissodactyla Rhinoceratidae tooth frag 42.99 23.39 8.08 

70344 UO-4605 Perissodactyla   tooth scraps 11.67 10.16 5.49 

70353 UO-4605 Perissodactyla   distal tibia 

fragment 

30.23 22.45 18.22 

70368 UO-4605 Perissodactyla   carpal 31.55 21.06 10.78 

70377 UO-4605 Perissodactyla   tooth frag 23.24 5.96 2.33 

64482 UO-4605       bone frags       

64483 UO-4605       unidentified piece 46.87 46.26 21.41 

64484 UO-4605       small mandible 

fragment 

23.21 12.51 4.74 

70330 UO-4605       carpal fragment 27.81 16.76 10.72 

70331 UO-4605       periotic capsul 

fragment 

20.68 17.03 9.8 

70332 UO-4605       fragment   35.13 30.57 22.49 

70336 UO-4605         62.29 31.45 14.03 

70352 UO-4605       bone 33.32 20.75 12.7 

70358 UO-4605       bone frag 50.57 30.23 17.51 

70361 UO-4605       tooth scraps 18.18 14.61 6.7 

70366 UO-4605       frag 29.35 22.52 12.18 

70367 UO-4605       frag 35.54 27.62 7.31 

70369 UO-4605       frag 31.95 17.24 17.01 

70370 UO-4605       frag 28.74 23.12 15.49 

70371 UO-4605       frag 31.49 22.86 11.96 

70376 UO-4605       proximal 

metapodial 

28.62 18.89 11.05 

70378 UO-4605       proximal 

metapodial frag 

21.6 14.04 9.22 

70379 UO-4605       carpal fragment 19.44 13.39 12.34 

70383 UO-4605       podial frag 24.9 22.92 19.42 

70392 UO-4605       periotic capsul 

fragment 

20.08 12.42 9.54 
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70393 UO-4605         43.18 31.93 21.71 

70408 UO-4605       frag 38.61 30.39 18.51 

70409 UO-4605       frag 55.54 38.88 30.93 

70410 UO-4605       frag 38.24 25.37 15.63 

70411 UO-4605       frag 51.48 38.6 26.17 

70412 UO-4605       frag 39.75 38.81 17.25 

70413 UO-4605       frag 65.17 52.44 27.14 

70414 UO-4605       frag 38.88 33.84 24.33 

70415 UO-4605       frag 34.61 27 17.25 

70416 UO-4605       frag 53.97 29.43 19.79 

70417 UO-4605       frag 28.25 19.25 10.25 

70418 UO-4605       frag 49.42 28.18 17.65 

70419 UO-4605       frag 36.75 21.08 12.38 

70420 UO-4605       frag 46.05 38.67 27.85 

70421 UO-4605       frag 51.61 22.02 8.65 

70422 UO-4605       frag 20.09 16.76 13.96 

70426 UO-4605       frag 61.71 24.62 13.9 

70428 UO-4605       frag 48.82 40.34 31.28 

70429 UO-4605       frag 46.37 28.57 16.44 

70430 UO-4605       frag 31.3 21.54 17.83 

67906 UO-4605 Carnivora     canine tooth 28.16 13.58 8.76 
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APPENDIX C 

BONE HILL BONE BED (UO-4601) 

Specimen 
# 

Locality 
# 

Order Family Genus element L1 L2 L3 

64376 UO-
4601 

Artiodactyla Bovidae     10.41 6.41 3.75 

64384 UO-
4601 

Artiodactyla Bovidae   "Ryan's area" 39.97 31.75 6.05 

64373 UO-
4601 

Artiodactyla Bovidae     48.02 25.99 6.54 

70451 UO-
4601 

Artiodactyla Cervidae   was with F-64372, but bone 
not near each other, so 
association unknown 

17.61 14.89 9.16 

64565 UO-
4601 

Artiodactyla Cervidae     18.32 7.18 5.38 

70458 UO-
4601 

Artiodactyla Cervidae   was with 64484, no direct 
evidence of association 

18.89 16.96 14.92 

64443 UO-
4601 

Artiodactyla Cervidae     20.86 20.36 8.53 

70456 UO-
4601 

Artiodactyla Cervidae     20.97 9.89 8.63 

70471 UO-
4601 

Artiodactyla Cervidae     25 16.77 14.13 

64353 UO-
4601 

Artiodactyla Cervidae     25.84 18.54 8.56 

64445 UO-
4601 

Artiodactyla Cervidae   "ankle Logan"  31 25.08 18.26 

64402 UO-
4601 

Artiodactyla Cervidae     32.09 16.86 12.2 

70446 UO-
4601 

Artiodactyla Cervidae   "toes from Ryan 9/18/14" 34.97 23.51 12.82 

64372 UO-
4601 

Artiodactyla Cervidae     35.33 14.66 8.54 
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64441 UO-
4601 

Artiodactyla Cervidae   "Meaghan's tooth row" 35.72 32.33 20.29 

70452 UO-
4601 

Artiodactyla Cervidae   was with 64392, split because 
not associated 

37.77 30.89 17.34 

70463 UO-
4601 

Artiodactyla Cervidae   "Ryan's gazelle jaw :( 9/18/14" 39 23.28 9.6 

70439 UO-
4601 

Artiodactyla Cervidae   "box 2 of 3" 39.04 30.99 12.04 

70457 UO-
4601 

Artiodactyla Cervidae   was with 64484, no direct 
evidence of association 

42.15 32.05 10.7 

64392 UO-
4601 

Artiodactyla Cervidae     44.08 24.67 16.47 

64375 UO-
4601 

Artiodactyla Cervidae   base of cervid antler 44.9 38.52 28.52 

64346 UO-
4601 

Artiodactyla Cervidae     49.7 14.17 8.63 

64484 UO-
4601 

Artiodactyla Cervidae   tooth impression Ryan's area 55.67 53.45 5 

64488 UO-
4601 

Artiodactyla Cervidae     61.16 19.18 16.08 

64545 UO-
4601 

Artiodactyla Cervidae     61.7 25.6 10.91 

70454 UO-
4601 

Artiodactyla Cervidae   artiodactyl metapodial 69.44 20.19 10.91 

70443 UO-
4601 

Artiodactyla Cervidae   "Logan sept 11" 76.76 24.93 12.28 

64368 UO-
4601 

Artiodactyla Cervidae   "Ryan's jaw 3" 90.31 30.09 9.73 

64348 UO-
4601 

Artiodactyla Cervidae     134 23.16 13.18 

70432 UO-
4601 

Artiodactyla Cervidae   "WNFM-K-o814-08 Box 3 of 
3" 

153 20.45 16.46 

70474 UO-
4601 

Artiodactyla     same batch as X1 below 14.24 8.23 2.58 

70482 UO-
4601 

Artiodactyla     X1 15.77 9.09 8.58 
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64350 UO-
4601 

Artiodactyla     Kyle bovid horn 136 22.07 17.27 

70472 UO-
4601 

Perissodactyla Equidae Hipparion kyles horse tooth bits 9/18/19 19 16.77 13.89 

64548 UO-
4601 

Perissodactyla Equidae Hipparion   24.57 16.35 10.92 

64538 UO-
4601 

Perissodactyla Equidae Hipparion   36.49 16.86 10.05 

64608 UO-
4601 

Perissodactyla Equidae Hipparion   37.43 21.18 15.57 

64609 UO-
4601 

Perissodactyla Equidae Hipparion "horse jaw" from Bone Hill 93.73 45.15 17.82 

70460 UO-
4601 

Perissodactyla Equidae Hipparion all teeth by m3 erupted and in 
wear 

190 73.87 63.75 

64463 UO-
4601 

Perissodactyla Equidae Hipparion   238 21.82 6.21 

64393 UO-
4601 

Perissodactyla Equidae     18.05 7.23 4.46 

70467 UO-
4601 

Perissodactyla Equidae     19.41 18.43 9.22 

64379 UO-
4601 

Perissodactyla Equidae   "Ryan's podials" 31.72 23.58 16.08 

70495 UO-
4601 

Perissodactyla Equidae   "Kyle's pawny toof" 9/18/11 32.01 22.88 21.29 

70465 UO-
4601 

Perissodactyla Equidae     46.94 37.89 21.84 

70492 UO-
4601 

Perissodactyla Equidae     68.13 49.75 33.52 

70444 UO-
4601 

Perissodactyla Equidae   "Logan sept 11" 82.07 48.67 39.17 

64425 UO-
4601 

Perissodactyla Rhinoceratidae Chilotherium   23.29 9.58 8.13 

64428 UO-
4601 

Perissodactyla Rhinoceratidae Chilotherium   38.62 37.05 19.03 

64493 UO-
4601 

Perissodactyla Rhinoceratidae Chilotherium   73.44 62.02 35.73 
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70503 UO-
4601 

Perissodactyla Rhinoceratidae Chilotherium split off of 64554 79.28 58.86 52.59 

70500 UO-
4601 

Perissodactyla Rhinoceratidae Chilotherium split off of 64554 105.09 54.9 32.42 

64614 UO-
4601 

Perissodactyla Rhinoceratidae Chilotherium   109.36 88.07 38.29 

64554 UO-
4601 

Perissodactyla Rhinoceratidae Chilotherium   195 130.7 110.98 

64371 UO-
4601 

Perissodactyla Rhinoceratidae   13.8 12.26 7.1 

64397 UO-
4601 

Perissodactyla Rhinoceratidae   19.56 10.29 7.44 

70447 UO-
4601 

Perissodactyla Rhinoceratidae "toes from 
Ryan 
9/18/14" 

22.4 8.32 4.4 

70499 UO-
4601 

Perissodactyla Rhinoceratidae   23.29 16.26 8.41 

70469 UO-
4601 

Perissodactyla Rhinoceratidae   29.02 19.92 13.66 

70466 UO-
4601 

Perissodactyla Rhinoceratidae   29.16 17.43 15.77 

70478 UO-
4601 

Perissodactyla Rhinoceratidae X1 29.19 16.32 7.42 

70438 UO-
4601 

Perissodactyla Rhinoceratidae "Zack=h's 
rhino tooth 
w/ horse 
tooth" 

36.89 31.99 27.37 

70433 UO-
4601 

Perissodactyla Rhinoceratidae "WNFM-K-
o814-08 
Box 3 of 3" 

38.93 37.31 25.35 

64499 UO-
4601 

Perissodactyla Rhinoceratidae   54.17 44.28 21.38 

70437 UO-
4601 

Perissodactyla Rhinoceratidae " o814-08 
Box 3 of 3" 

55.05 33.09 20.26 

70464 UO-
4601 

Perissodactyla Rhinoceratidae "9/18/14" 69.52 39.95 39.83 
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70468 UO-
4601 

Perissodactyla Rhinoceratidae   74.81 46.7 39.17 

70502 UO-
4601 

Perissodactyla Rhinoceratidae "tibia in five 
pieces" 

153.53 70.42 45.96 

70442 UO-
4601 

Perissodactyla   "Logan sept 
11" 

280 55.57 25.52 

70498 UO-
4601 

        2.74 2.59 0.2 

70449 UO-
4601 

      "toes from Ryan 9/18/14" 8.75 6.76 3.91 

64439 UO-
4601 

        9.52 5.8 3.94 

70448 UO-
4601 

      "toes from Ryan 9/18/14" 10.64 8.56 7.37 

70487 UO-
4601 

      X1 10.79 10.18 5.21 

70485 UO-
4601 

      X1 11.16 9.03 2 

70486 UO-
4601 

      X1 11.55 7.69 7.32 

70481 UO-
4601 

      X1 11.93 7.09 3.97 

70488 UO-
4601 

      X1 13.13 9.73 4.77 

70483 UO-
4601 

      X1 14.03 11.54 9.78 

70484 UO-
4601 

      X1 16.26 10.96 6.16 

70470 UO-
4601 

        18.21 15.31 7.24 

70455 UO-
4601 

      was with F-64402 20.86 13.69 8.16 

70480 UO-
4601 

      X1 21.13 16 14.12 

70479 UO-
4601 

      X1 22.01 20.7 12.93 
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70475 UO-
4601 

      X1 22.2 14.24 11.36 

70453 UO-
4601 

      was with F-64350 24.12 9.3 3.92 

70450 UO-
4601 

      "toes from Ryan 9/18/14" 24.21 11.48 9.95 

70493 UO-
4601 

        25.57 24.3 11.54 

64349 UO-
4601 

        25.96 20.46 8.73 

70496 UO-
4601 

        29.57 18.35 8.67 

70473 UO-
4601 

      was with F-70472, not 
associated 

30.07 17.82 8.13 

70445 UO-
4601 

      "Logan sept 11" 33.37 32.07 25.47 

70494 UO-
4601 

        33.91 24.68 23.64 

70436 UO-
4601 

      "WNFM-K-o814-08 Box 3 of 
3" 

35.06 23.43 13.07 

70477 UO-
4601 

      X1 35.55 31.04 9.16 

70434 UO-
4601 

      "WNFM-K-o814-08 Box 3 of 
3" 

35.65 26.53 17.88 

70491 UO-
4601 

      with last F# 39.01 38.67 17.34 

70489 UO-
4601 

      new batch 42.43 34.42 24.95 

70435 UO-
4601 

      "WNFM-K-o814-08 Box 3 of 
3" 

46.11 33.11 19.48 

70490 UO-
4601 

      with last F# 47.75 27.59 22.74 

70497 UO-
4601 

        55.36 40.12 19.51 

70476 UO-
4601 

      X1 60.97 46.52 26.94 
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70440 UO-
4601 

      "box 2 of 3" 67.15 35.77 31.89 

70441 UO-
4601 

        142.59 69.65 17.5 

64341 UO-
4601 

Squamata Varanidae Varanus mandible 30.7 6.28 5.38 
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APPENDIX D 

DAM SITE BONE BED (UO-4604) 

Specimen 
# 

Locality 
# 

Order Family Genus element L1 L2 L3 

64509 UO-
4604 

Artiodactyla Bovidae Gazella base of horn core 31.88 24.71 21.33 

64639 UO-
4604 

Artiodactyla Bovidae Gazella partial jaw with 1 partial 
tooth 

34.93 25.06 10.24 

64618 UO-
4604 

Artiodactyla Bovidae Gazella basal horn core 36.3 24.76 18.2 

64457 UO-
4604 

Artiodactyla Bovidae Gazella horn core 67.08 25.96 19.75 

71402 UO-
4604 

Artiodactyla Bovidae Gazella horn core 68.01 25.89 21.28 

70340 UO-
4604 

Artiodactyla Bovidae Gazella two horn cores and 
associated imprint. From 
bag “rhino radius and 
stuff” 

69.8 24.01 20.5 

64539 UO-
4604 

Artiodactyla Bovidae Gazella two horn cores and 
associated imprint. From 
bag “rhino radius and 
stuff” 

102.25 25.03 18.61 

71404 UO-
4604 

Artiodactyla Bovidae Gazella horn core 102.28 25.58 18.25 

71403 UO-
4604 

Artiodactyla Bovidae Gazella horn core 104.07 23.89 19.2 

71405 UO-
4604 

Artiodactyla Bovidae Gazella horn core 119.79 21.28 18.85 

64462 UO-
4604 

Artiodactyla Bovidae Gazella horn core 127.08 26.65 17.81 

64463 UO-
4604 

Artiodactyla Bovidae   tooth frag  8.52 6.93 3.58 

70326 UO-
4604 

Artiodactyla Bovidae   partial jaw w/ m3-m1 44.98 23.51 8.46 
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64542 UO-
4604 

Lagomorpha   tooth frag  5.49 3.03 2.01 

70321 UO-
4604 

Lagomorpha   incissors 10.93 3.2 2.67 

70320 UO-
4604 

Lagomorpha   partial skull, 
front 
w/incissors. 
Pika. 

14.6 7.2 2.38 

64363 UO-
4604 

Lagomorpha   bunny jaw 16.99 15.43 5.31 

64460 UO-
4604 

Lagomorpha   two distal 
humeri, 
calcaneous, 
other bone 
bits  

20.83 10.63 5.04 

64452 UO-
4604 

Lagomorpha   small bones, 
mostly 
rabbit, but I 
think there 
is some 
rodent 
mixed in 

77.12 14.28 4.36 

64453 UO-
4604 

Perissodactyla Equidae Hipparion jaw fragment with 4 teeth 99.98 56.92 13.48 

64504 UO-
4604 

Perissodactyla Equidae   distal tibia 59.39 36.87 28.44 

64423 UO-
4604 

Perissodactyla Rhinoceratidae Chilotherium rhino tooth bit 38.68 19.5 14.91 

64540 UO-
4604 

Perissodactyla Rhinoceratidae Chilotherium metacarpal bit and other 
bit 

39.49 33.71 30.04 

64544 UO-
4604 

Perissodactyla Rhinoceratidae Chilotherium distal metapodial from 
bag “rhino radius and shit” 

53.98 41.77 31.32 

70462 UO-
4604 

Perissodactyla Rhinoceratidae Chilotherium patella 93.12 81.24 19.8 

64617 UO-
4604 

Perissodactyla Rhinoceratidae Chilotherium ulna thing? 95.68 75.9 71.38 
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70461 UO-
4604 

Perissodactyla Rhinoceratidae Chilotherium proximal radius   99.77 81.56 38.18 

64637 UO-
4604 

Perissodactyla Rhinoceratidae Chilotherium proximal tibia 115.24 106.35 85.29 

64489 UO-
4604 

Perissodactyla Rhinoceratidae Chilotherium distal radius with 
articulated carpals  

149.44 79.85 48.82 

64624 UO-
4604 

Perissodactyla Rhinoceratidae Chilotherium distal tibia and tiny bit of 
astragalus 

170 88.06 45.45 

64526 UO-
4604 

Perissodactyla Rhinoceratidae Chilotherium whole radius 253 88.03 30.99 

64638 UO-
4604 

Perissodactyla Rhinoceratidae Chilotherium proximal radius and ulna   262 89.37 36.13 

70501 UO-
4604 

Perissodactyla Rhinoceratidae astragalus 62.21 42.12 32.71 

70502 UO-
4604 

Perissodactyla Rhinoceratidae proximal 
radius 

96.41 83.7 32.08 

64557 UO-
4604 

      small thing… rodent? 10.12 6.54 5.69 

64620 UO-
4604 

      composite of a lot of crap 40.79 34.53 31.52 

64619 UO-
4604 

      proximal metapodial 55.19 27.36 19.28 

70322 UO-
4604 

      little things, will be sorted 
more…. 
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APPENDIX E 

UNCORRECTED STRIKE AND SUN COMPASS READINGS 

Sample # Azimuth Sun 

compass 

Difference Average 

error by 

section 

KSS-001 no 

Brunton 

139.3     

KSS-002 no 

Brunton 

157.6 
 

  

KSS-003 no 

Brunton 

113.6 
 

  

KSS-011 160 89.4 70.6   

KSS-022 194 136.8 57.2   

KSS-023 181 135.6 45.4   

KSS-024 219 108 111   

KSS-025 168 178.5 10.5   

KSS-026 186 152.2 33.8   

KSS-028 181 178.9 2.1   

KSS-029 159 198.9 39.9   

KSS-030 178 201.6 23.6   

KSS-032 177 189.6 12.6   

KSS-033 249 141.6 107.4   

KSS-034 264 125.7 138.3   

        54.36666667 

KDS-001 238 239.3 1.3   

KDS-002 240 242.4 2.4   

KDS-003 285 208 77   

KDS-004 252 240.3 11.7   

KDS-005 274 226.1 47.9   

KDS-006 242 261.3 19.3   

KDS-007 200 314 114   

KDS-008 180 324.8 144.8   

KDS-009 218 295.8 77.8   

KDS-010 254 242.9 11.1   

KDS-011 213 269.3 56.3   

KDS-012 256 270.7 14.7   

KDS-013 255 287.4 32.4   
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KDS-014 258 286.4 28.4   

KDS-015 277 275.7 1.3   

KDS-016 9 4.1 4.9   

KDS-017 21 341.1 39.9   

KDS-018 21 21.1 0.1   

KDS-019 356 17.6 21.6   

KDS-020 354 24 28   

KDS-021 9 17.3 8.3   

KDS-044 144 229.8 85.8   

KDS-045 165 248.6 83.6   

KDS-046 213 245.4 32.4   

KDS-047 182 239 57   

KDS-048 210 218.8 8.8   

KDS-049 174 260 86   

KDS-050 155 274.2 119.2   

KDS-051 156 276.1 120.1   

KDS-052 110 14.4 95.6   

KDS-054 111 10.2 100.8   

        49.43548387 

KO-009 100 102.9 2.9   

KO-010 101 105 4   

KO-011 112 95.5 16.5   

KO-012 102 109.5 7.5   

KO-013 131 82.8 48.2   

KO-014 110 108.3 1.7   

        13.46666667 

KSU-011 207 169.7 37.3   

KSU-012 187 182 5   

KSU-013 190 182.3 7.7   

KSU-100 140 87.8 52.2   

KSU-101 137 87.7 49.3   

KSU-102 164 74.3 89.7   

KSU-103 155 79.5 75.5   

KSU-104 160 78.4 81.6   

KSU-105 128 99 29   

KSU-106 155 87.9 67.1   

KSU-107 157 95.7 61.3   

KSU-108 25 328 57   

KSU-109 10 75.2 65.2   
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KSU-110 20 77.4 57.4   

KSU-020 135 148.8 13.8   

KSU-021 140 84.7 55.3   

KSU-022 139 86.9 52.1   

KSU-026 351 -35.6 44.6   

KSU-027 355 331.5 23.5   

KSU-028 0 -37.6 37.6   

KSU-029 129 181.6 52.6   

KSU-030 134 175 41   

KSU-031 136 185.8 49.8   

KSU-111 91 61.2 29.8   

KSU-112 111 35.7 75.3   

KSU-113 135 199.5 64.5   

KSU-114 166 172.8 6.8   

KSU-115 156 186.5 30.5   

KSU-116 173 171.9 1.1   

KSU-050 32 327.1 64.9   

KSU-051 35 95 60   

KSU-052 49 125.6 76.6   

KSU-053 64 132.2 68.2   

KSU-054 64 127.2 63.2   

KSU-055 79 123.4 44.4   

KSU-056 74 144.1 70.1   

KSU-057 74 126.1 52.1   

KSU-058 79 127.5 48.5   

KSU-059 96 107.8 11.8   

KSU-060 125 78.4 46.6   

KSU-061 122 79.5 42.5   

KSU-062 42 356.7 45.3   

KSU-063 53 345.6 67.4   

KSU-064 89 130.6 41.6   

KSU-065 19 106.2 87.2   

KSU-066 33 21.6 11.4   

KSU-067 41 25.4 15.6   

        48.5 
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APPENDIX F 

P-MAG SAMPLE COLLECTION FIELD DATA 

LOCATION SAMPLE 

# 

ROTATION STIKE DIP LITHOLOGY 

KSS KSS-001 +1     siltstone below red layer 
 

  
    

 
KSS-002 +5 

  
siltstone below red layer 

 
KSS-003 +3     siltstone below red layer 

 
KSS004 -5 S51E 50° reddish siltstone 

 
KSS005 +3 S65E 35° reddish siltstone 

 
KSS006 0 S47E 36° reddish siltstone 

 
KSS007 +4 S57.5E 40° 2m up from red 

 
KSS008 -3 S71E 42.5° 2m up from red 

 
KSS009 +12 S48E 43.5° 2m up from red 

 
KSS010 -1 S19E 46° mud stone with yellow altered material 

 
KSS011 +2 S20E 51° mud stone with yellow altered material 

 
KSS012 +2 S24E 53° mud stone with yellow altered material 

 
KSS013 +14 S15E 43.5° slightly sand grey siltstone 

 
KSS014 -3 S64E 45° slightly sand grey siltstone 

 
KSS015 -3 N75E 39° slightly sand grey siltstone 

 
KSS016 +11 S24E 56.5° red claystone thin band 

 
KSS017 -7 S22W 46.5° grey claystone 

 
KSS018 -4 S34E 50° grey claystone 

 
KSS019 0 S38W 67.5° brick red paleosol 

 
KSS020 +6 S1E 49° brick red paleosol 

 
KSS021 -5 S62W 45° brick red paleosol 

 
KSS022 +8 S14W 50° tannish grey siltstone 

 
KSS023 +17 S1W 48° tannish grey siltstone 

 
KSS024 +3 S39W 55° tannish grey siltstone 

 
KSS025 +2 S12E 57.5° sandy siltstone 

 
KSS026 +25 S6W 47° sandy siltstone 

 
KSS027 +10 S8E 44° sandy siltstone 

 
KSS028 +23 S1W 45° greyish greenish siltstone 

 
KSS029 +7 S21E 35° greyish greenish siltstone 

 
KSS030A +20 S30E 35° greyish greenish siltstone 

 
KSS030 -10 S2E 52.5° red sandy claystone 

 
KSS031 -5 240E 53° red sandy claystone 

 
KSS032 +3 S3E 47° red sandy claystone 

 
KSS033 +5 S69W 44° dark red siltstone 
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KSS034 -7 S84W 55° dark red siltstone 

 
KSS035 0 N58W 47° dark red siltstone 

 
KSS036 +17 S18W 58.5 sandy greyish tan layer 

 
KSS037 -3 S42W 65° sandy greyish tan layer 

 
KSS038 -2 S54W 65° sandy greyish tan layer 

KDS KDS-001 -17 S58W 36° brown shaley layer below sandstone 
 

KDS-002 -20 S60W 52° brown shaley layer below sandstone 
 

KDS-003 -13 N75W 45° brown shaley layer below sandstone 
 

KDS-004 -9 S72W 30° brown shaley layer below sandstone 
 

KDS-005 -15 N86W 38° brown shaley layer below sandstone 
 

KDS-006 -18 S62W 63° brown shaley layer below sandstone 
 

KDS-007 +3 S20W 54° brown shaley layer below sandstone 
 

KDS-008 +5 S0 44° brown shaley layer below sandstone 
 

KDS-009 +6 S38W 38° brown shaley layer below sandstone 
 

KDS-010 -32 S74W 40° brown shaley layer below sandstone 
 

KDS-011 -6 S33W 46.5° brown shaley layer below sandstone 
 

KDS-012 -10 S76W 50° brown shaley layer below sandstone 
 

KDS-013 +5 S75W 44° brown shaley layer below sandstone 
 

KDS-014 -8 S78W 44° brown shaley layer below sandstone 
 

KDS-015 0 N83W 39° brown shaley layer below sandstone 
 

KDS016 +14 S9W 55° red paleosol 
 

KDS017 +10 S21W 49° red paleosol 
 

KDS018 +4 S21W 45° red paleosol 
 

KDS-019 +1 S4E 43° red paleosol 
 

KDS-020 +3 S6E 28° red paleosol 
 

KDS-021 -4 S9W 30° red paleosol 
 

KDS-022 +7 S60W 47° red paleosol 
 

KDS-023 +1 S68W 34° red paleosol 
 

KDS-024 +1 S50W 43° red paleosol 
 

KDS-025 +13 S60W 37° red paleosol 
 

KDS-026 +8 S47W 42° red paleosol 
 

KDS-027 +8 S65W 35° red paleosol 
 

KDS-028 +5 S0 64° grey paleosol below a thick sandstone 
 

KDS-029 +3 S11E 62° grey paleosol below a thick sandstone 
 

KDS-030 0 S24W 70° grey paleosol below a thick sandstone 
 

KDS-031 +10 S86W 52° reddish brown paleosol 
 

KDS-032 0 S62W 63° reddish brown paleosol 
 

KDS-033 +10 N64W 46° reddish brown paleosol 
 

KDS-034 -18 S9W 51° greenish siltstone, fossil bed layer 
 

KDS-035 -20 S12E 49° greenish siltstone, fossil bed layer 
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KDS-036 -20 S2W 50° greenish siltstone, fossil bed layer 

 
KDS-037 -4 S25W 62° reddish clayey siltstone 

 
KDS-038 -9 S15W 60° reddish clayey siltstone 

 
KDS-039 -6 S39W 52° reddish clayey siltstone 

 
KDS-040 +18 N73W 45° silty sandstone 

 
KDS-041 -11 N43W 46° silty sandstone 

 
KDS-042 -3 N44W 62° silty sandstone 

 
KDS-043 -11 S12E 56° dark brown clayey paleosol 

 
KDS-044 -3 S6E 64° dark brown clayey paleosol 

 
KDS-045 +5 S15E 68° dark brown clayey paleosol 

 
KDS-046 -8 S33W 59° brown paleosol 

 
KDS-047 +5 S2W 65° brown paleosol 

 
KDS-048 0 S30W 60° brown paleosol 

 
KDS-049 -4 S6E 47° red brown blocky paleosol 

 
KDS-050 -1 S25E 59° red brown blocky paleosol 

 
KDS-051 0 S24E 60° red brown blocky paleosol 

 
KDS-052 -12 S70E 35° red brown blocky paleosol 

 
KDS-053 +1 S68E 38° red brown blocky paleosol 

 
KDS-054 +3 S69E 29° red brown blocky paleosol 

 
KDS-055 -15 S12W 33° reddish paleosol 

 
KDS-056 -4 S8W 44° reddish paleosol 

 
KDS-057 -3 S44W 43° reddish paleosol 

 
KDS-058 -9 S17E 29° sandy silt layer 

 
KDS-059 0 S17W 30° sandy silt layer 

 
KDS-060 0 S13W 44° sandstone 

 
KDS-061 -3 S25W 34° sandstone 

 
KDS-062 +1 S27W 39° sandstone 

 
KDS-063 0 N1W 39° reddish brown paleosol above sandstone 

 
KDS-064 -5 N3W 35° reddish brown paleosol above sandstone 

 
KDS-065 +9 N4E 29° reddish brown paleosol above sandstone 

 
KDS-066 0 N55E 29° brownish tan paleosol 

 
KDS-067 -3 S60W 27° brownish tan paleosol 

 
KDS-068 0 S70W 22° brownish tan paleosol 

 
KDS-

068A 

-5 S41W 45° sandy silt layer 

KO KO-001 +9 N34E 24° tan siltstone 
 

KO-002 -3 N60E 29° tan siltstone 
 

KO-003 -4 N67E 17° tan siltstone 
 

KO-004 +15 S75E 48° siltstone with some bands of oxidized material 
 

KO-005 +4 S83E 54° siltstone with some bands of oxidized material 
 

KO-006 +3 279E 46° siltstone with some bands of oxidized material 
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KO-007 +4 S75E 57° tan siltstone 

 
KO-007A +4 S75E 57° tan siltstone 

 
KO-008 -15 S88E 41° tan siltstone 

 
KO-009 +8 S80E 58° tan/grey siltstone with oxidized bands 

 
KO-010 -15 S79E 53° tan/grey siltstone with oxidized bands 

 
KO-010A -15 S79E 53° tan/grey siltstone with oxidized bands 

 
KO-011 +10 S68E 51° tan/grey siltstone with oxidized bands 

 
KO-011A +10 S68E 51° tan/grey siltstone with oxidized bands 

 
KO-012 +4 S78E 43° tan/grey siltstone with oxidized bands 

 
KO-013 -18 S49E 49° tan/grey siltstone with oxidized bands 

 
KO-014 0 S70E 48° tan/grey siltstone with oxidized bands 

 
KO-015 -10 S74E 53° tan/grey siltstone with oxidized bands 

 
KO-16 -10 S67E 49° tan/grey siltstone with oxidized bands 

 
KO-17 -10 S76E 40° tan/grey siltstone with oxidized bands 

 
KO-18 -20 S71E 44° tan/grey siltstone with oxidized bands 

 
KO-19 -5 S68E 59° tan/grey siltstone with oxidized bands 

 
KO-19A -5 S68E 59° tan/grey siltstone with oxidized bands 

 
KO-20 0 S72E 50° tan/grey siltstone with oxidized bands 

 
KO-21 +17 S66E 53° tan/grey siltstone with oxidized bands 

 
KO-22 -10 S74E 44° tan/grey siltstone with oxidized bands 

 
KO-23 -8 S62E 41° tan/grey siltstone with oxidized bands 

 
KO-24 -5 S69E 63° tan siltstone with orange oxidized banding, 

platier peds  
KO-25 -10 S74E 50° tan siltstone with orange oxidized banding, 

platier peds  
KO-26 +4 S70E 49° tan siltstone with orange oxidized banding, 

platier peds  
KO-27 -16 S55E 45° tan siltstone with some clastic material present 

 
KO-28 +5 S67E 29° tan siltstone with some clastic material present 

 
KO-29 0 S70E 48° tan siltstone with some clastic material present 

 
KO-30 +5 S81E 58° tan siltstone, platy peds 

 
KO-31 -3 S72E 54° tan siltstone, platy peds 

 
KO-32 0 S68E 38° tan siltstone, platy peds 

 
KO-33 -12 S62E 64° yellowish tan siltstone 

 
KO-34 -10 S54E 32° yellowish tan siltstone 

 
KO-35 -4 S65E 47° yellowish tan siltstone 

 
KO-36 +3 S66E 61° yellowish silts with oxidized bands 

 
KO-37 0 S65E 54° yellowish silts with oxidized bands 

 
KO-38 -15 S64E 45° yellowish silts with oxidized bands 

 
KO-39 -9 S65E 48° light brown siltstone 

 
KO-40 +5 S46E 40° light brown siltstone 

 
KO-41 -10 S45E 46° light brown siltstone 
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KO-42 -6 S58E 44° grey/tan/orange banded silts 

 
KO-43 -3 S69E 43° grey/tan/orange banded silts 

 
KO-44 -4 S64E 68° grey/tan/orange banded silts 

 
KO-45 -8 S51E 43° grey/tan/orange banded silts 

 
KO-46 -5 S80E 44° grey/tan/orange banded silts 

 
KO-47 -5 S81E 68° grey/tan/orange banded silts 

KU KU-115 -2 S24E 38° reddish siltstone 
 

KU-116 -2 S7E 37° reddish siltstone 
 

KU-113 +13 S45E 37° reddish siltstone 
 

KU-114 +1 S14E 33° reddish siltstone 
 

KU-111 +10 S89E 39° siltstone 
 

KU-112 -3 S69E 43° siltstone 
 

KU-108 -3 N25E 56° silt with granule sized clastic component 
 

KU-109 -5 N10E 54° silt with granule sized clastic component 
 

KU-110 -10 N20E 45° silt with granule sized clastic component 
 

KU-105 0 S52E 47° sandy silt layer 
 

KU-106 +20 S25E 34° sandy silt layer 
 

KU-107 0 S23E 36° sandy silt layer 
 

KU-102 -8 S16E 48° sandy silt layer 
 

KU-103 +8 S25E 50° sandy silt layer 
 

KU-104 -10 S20E 42° sandy silt layer 
 

KU-100 +9 S40E 41° reddish sandy silt 
 

KU-101 0 S43E 40° reddish sandy silt 
 

KU-101A 0 S43E 40° reddish sandy silt 
 

KU-01 -10 N70W 58° tan silt with abundant granule sized clastic 

material  
KU-02 -20 N43W 46° tan silt with abundant granule sized clastic 

material  
KU-03 +8 N25W 48° tan silt with abundant granule sized clastic 

material  
KU-04 -5 N29W 42° tan silt with abundant granule sized clastic 

material  
KU-5 +5 S36W 48° sandy silt inbetween two gravel layers 

 
KU-6 0 S6E 43° sandy silt inbetween two gravel layers 

 
KU-7 -15 S16W 36° sandy silt inbetween two gravel layers 

 
KU-8 +5 S12W 46° sandy silt 1m above gravel layer 

 
KU-9 +10 S0 44° sandy silt 1m above gravel layer 

 
KU-10 -15 S13W 47° sandy silt 1m above gravel layer 

 
KU-11 +5 S27W 45° sandy siltstone 

 
KU-12 -10 S7W 34° sandy siltstone 

 
KU-13 +8 S10W 49° sandy siltstone 

 
KU-14 +6 S24E 45° sandy siltstone with some sand layers 
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KU-15 -10 S10E 52° sandy siltstone with some sand layers 

 
KU-16 -15 S25E 48° sandy siltstone with some sand layers 

 
KU-20 0 S45E 36° reddish sandy siltstone 

 
KU-21 -14 S40E 43° reddish sandy siltstone 

 
KU-22 0 S41E 45° reddish sandy siltstone 

 
KU-23 -18 N51E 55° reddish paleosol 

 
KU-24 -10 N61E 50° reddish paleosol 

 
KU-25 -20 N57E 45° reddish paleosol 

 
KU-26 -20 N9W 57° reddish paleosol 

 
KU-27 +8 N5W 49° reddish paleosol 

 
KU-28 0 N 48° reddish paleosol 

 
KU-29 +16 S51E 35° siltstone at base of gravel 

 
KU-30 +6 S46E 34° siltstone at base of gravel 

 
KU-31 0 S44E 28° siltstone at base of gravel 

 
KU-50 +10 N32E 43° reddish sandy siltstone 

 
KU-51 +8 N35E 57° reddish sandy siltstone 

 
KU-52 0 N49E 78° reddish sandy siltstone 

 
KU-53 -5 N64E 56° brownish paleosol interbed 

 
KU-54 +3 N64E 57° brownish paleosol interbed 

 
KU-55 +3 N74E 41° brownish paleosol interbed 

 
KU-56 -2 N54E 41° clayey silt, brown with green gley 

 
KU-57 +20 N74E 37° clayey silt, brown with green gley 

 
KU-58 +3 N79E 48° clayey silt, brown with green gley 

 
KU-59 +15 S84E 36° sandy silts with carbonate nodules 

 
KU-60 -9 S55E 50° sandy silts with carbonate nodules 

 
KU-61 +3 S58E 51° sandy silts with carbonate nodules 

 
KU-62 +10 N42E 28° poorly sorted orangish tan material with clay to 

sand  
KU-63 +25 N53E 31° poorly sorted orangish tan material with clay to 

sand  
KU-64 +10 N89E 27° poorly sorted orangish tan material with clay to 

sand  
KU-65 +17 N19E 39° sandstone 

 
KU-66 +3 N33E 28° sandstone 

 
KU-67 0 N41E 21° sandstone 

 
KU-68 +2 N42E 46° redish brown clay with metavolcanic 

components (Chu Like)  
KU-69 -3 N44E 50° redish brown clay with metavolcanic 

components (Chu Like)  
KU-70 -5 N41E 58° redish brown clay with metavolcanic 

components (Chu Like)  
KU-71 -13 N34E 48° sandy siltstone 

 
KU-72 -30 N26E 40° sandy siltstone 
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KU-73 -15 N31E 42° sandy siltstone 

 
KU-74 -1 N3E 34° siltstone with clastic material 

 
KU-75 +15 N24E 29° siltstone with clastic material 

 
KU-76 10 N52E 31° siltstone with clastic material 

 
KU-77 +8 N40E 32° siltstone with clastic material 

 
KU-78 +11 N34E 39° siltstone with clastic material 

 
KU-79 0 N30E 38° siltstone with clastic material 

 
KU-150 +20 S33W? 

9wrong side) 

42° tan siltstone 

 
KU-151 +15 N62E 37° tan siltstone 

 
KU-152 +6 N70E 38° tan siltstone 

 
KU-153 +15 N77E 30° sandy siltstone 

 
KU-154 +24 N84E 62° sandy siltstone 

 
KU-155 +15 N74E 33° sandy siltstone 

 
KU-156 +13 N40E 46° red paleosol 

 
KU-157 +17 N57E 34° red paleosol 

 
KU-158 +6 N73E 34° red paleosol 

 
KU-159 +15 N61E 32° reddish sandy siltstone 

 
KU-160 +8 N70E 48° reddish sandy siltstone 

 
KU-161 -10 N86E 31° reddish sandy siltstone 

 
KU-162 +30 N13E 22° siltstone 

 
KU-163 -13 N66E 26° siltstone 

 
KU-164 +15 N36E 33° siltstone 

 
KU-165 +17 N26W 39° reddish brown paleosol 

 
KU-166 +13 N9W 30° reddish brown paleosol 

 
KU-167 -11 N44E 30° brown siltstone 

 
KU-168 +13 N27E 29° brown siltstone 

 
KU-169 +20 N32E 31° brown siltstone 
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APPENDIX G 

SQR FILE FOR ORTOK WITH RATINGS 

# Sample  

pat

h   

degre

e 

18

0 Geo 

RATIN

G 

N/

R 

37 KO-001 L int  189.8 -48.3 202.8 -41.0 D-I     6 14 X 9.8    

38 KO-001 L pri  167.7 -82.6 230.5 -73.3 I-N     6 14.3 X 

347.

7 A2 R 

39 KO-001 L ovr  187.4 -44.1 199.1 -37.3 B-I     8 13.8 X 7.4    

40 KO-002 L int  356.4  49.3  11.9  44.7 B-H     7 10.6       

41 KO-002 L ovr 

 357.4  49.6  12.9  44.8 

BCE-H   6 10.6       

42 KO-002 L vrm  180.4 -56.5 199.3 -50.6 AB      2 0       

43 KO-002 L pri   18.1  66.4  38.9  56.3 H-N     7 9.1    A1 N 

44 KO-001 L vrm  343.5  59.6   7.9  57.3 AB      2 0       

45 KO-003 L vrm  152.1 -72.6 197.8 -70.3 AB      2 0       

46 KO-003 L ovr    2.8  71.0  33.7  63.1 B-H     7 11.3       

47 KO-003 L pri 

 318.6  70.1   3.2  71.8 H-

MN    7 7.5    A1 N 

48 KO-004 L vrm  344.4  37.7 356.0  36.8 AB      2 0 X 

164.

4    

49 KO-004 L ovr  207.5   5.4 205.5  14.1 B-F     5 7.1 X 27.5    

50 KO-004 L pri  174.8  -7.8 176.5  -5.6 G-N     8 4.8 X 

354.

8 A2 N 

51 KO-005 L vrm  176.9 -35.5 186.6 -31.6 AB      2 0       

52 KO-005 P ovr   61.8  27.3  63.3  12.4 B-F     5 7.5        

53 KO-005 L pri  350.5  66.5  20.3  61.6 G-N     8 3.1     A1 N 

54 KO-006 L vrm  187.2 -44.1 198.9 -37.5 AB      2 0       

55 KO-006 L ovr   10.2  48.6  22.9  40.6 B-G     6 10.6        

56 KO-006 L pri    5.3  55.4  22.6  48.5 G-N     8 4.5     A1 N 

57 KO-008 L vrm  168.2 -48.2 184.2 -45.7 AB      2 0        

58 KO-008 P ovr  175.4  48.8 157.8  48.8 B-H     7 15.7        

59 KO-008 L pri    0.2  57.0  19.4  51.1 I-N     6 11.1     A1 N 

60 KO-010 L vrm  174.5 -37.8 185.3 -34.5 AB      2 0        

61 KO-010 P ovr 

  87.0 -17.4  88.2 -32.5 B-

GN    7 15.8        

62 KO-010 L pri    3.2  21.8   8.2  17.0 G-N     8 6     A2 N 

63 

KO-

010A L vrm  187.8 -37.0 196.9 -30.5 AB      2 0       

64 

KO-

010A L ovr   43.6  17.6  45.2   5.6 B-G     6 12.8        

65 

KO-

010A P pri  181.0  67.2 145.5  66.0 H-N     7 10        

66 

KO-

011A L vrm  236.8 -31.3 239.0 -17.1 AB      2 0        

67 

KO-

011A P ovr  352.2  48.2   8.0  45.1 B-F     5 9.6        
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68 

KO-

011A P pri  318.5  20.8 324.6  27.2 I-N     6 11.7     B2 N 

69 

KO-

011A L int   18.5  21.7  22.4  13.3 F-I     4 6.6       

70 KO-012 L vrm  177.7 -45.9 191.4 -41.3 AB      2 0       

71 KO-012 P ovr  170.8  47.2 155.8  46.9 B-G     6 9.8        

72 KO-012 P int   59.2 -20.1 236.8  34.2 G-K     5 10.4       

73 KO-012 P pri  356.5  -8.2 353.9 -10.4 K-N     4 18.2     B2 N 

74 KO-014 L vrm  241.8 -32.0 243.5 -17.5 AB      2 0        

75 KO-014 L ovr   74.7  25.6  74.9  10.6 B-I     8 7        

76 KO-014 L pri   72.7  39.6  73.3  24.7 G-N     8 15     A2 N 

77 KO-015 L vrm  179.5 -36.0 189.2 -31.5 AB      2 0       

78 KO-015 P ovr  128.8  14.1 127.0   4.2 B-G     6 19.4        

79 KO-015 L pri  347.6  41.5   0.3  39.7 G-N     8 10.1     A1 N 

80 KO-017 L vrm  141.0 -34.3 151.6 -39.6 AB      2 0        

81 KO-017 L ovr   11.8  42.2  21.5  34.7 B-E     4 10.6        

82 KO-017 L pri 

 305.0  51.2 323.5  59.5 FGI-

N   8 8.8     A2 N 

83 KO-018 L vrm  173.2 -42.4 185.9 -39.1 AB      2 0       

84 KO-018 P ovr   50.6 -30.3  47.2 -43.8 B-F     5 16.5        

85 KO-018 L pri  352.2  36.9   2.8  34.2 G-N     8 4.8     A1 N 

86 KO-19A L vrm  206.3 -30.4 211.6 -20.3 AB      2 0      

87 KO-19A L ovr  325.9  67.7   3.9  68.4 B-F     5 9.1      

88 KO-19A L pri   45.5  36.1  49.7  23.0 G-M     7 10.6   A2 N 

89 KO-020 L vrm  172.4 -35.8 182.6 -33.0 AB      2 0      

90 KO-020 L ovr  358.1  39.3   9.2  35.1 B-H     7 10      

91 KO-020 L pri  344.8  39.6 357.0  38.5 H-N     7 10   A1 N 

92 KO-021 L vrm    4.4  32.8  12.5  27.3 AB      2 0 X 

184.

4    

93 KO-021 L ovr  222.3  25.0 216.6  37.0 B-G     6 11.1 X 42.3    

94 KO-021 L pri  184.5 -24.4 190.1 -19.2 H-N     7 13 X 4.5 A3 N 

95 KO-022 L vrm  183.0 -45.5 195.8 -39.7 AB      2 0      

96 KO-022 L ovr  183.6 -45.9 196.6 -40.0 A-F     6 2.7      

97 KO-022 L pri    7.9  52.5  23.2  45.3 G-N     8 14.5   A1 N 

98 KO-023 L vrm  190.1 -50.2 203.9 -42.5 AB      2 0      

99 KO-023 L ovr    8.3  60.1  27.7  52.3 B-GN    7 8.2      

10

0 KO-023 L pri 

   2.2  56.3  20.6  49.9 G-

KMN   7 8.4   A1 N 

10

1 KO-024 L nrm   18.2  27.7  23.6  19.3 AB      2 0 x x    

10

2 KO-024 P ovr   41.1  78.6  61.9  65.3 B-F     5 10.4 x x    

10

3 KO-024 L pri  185.8   6.5 183.6  11.1 H-N     7 14.5 x 5.8 A2 N 

10

4 KO-025 L vrm  184.5 -40.2 195.1 -34.3 AB      2 0       
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10

5 KO-025 P ovr  335.5 -16.1 331.3 -13.5 B-F     5 9        

10

6 KO-025 L pri    2.5  37.6  12.4  32.3 G-N     8 4.7     A1 N 

10

7 KO-026 L vrm  202.0 -40.7 210.5 -31.2 AB      2 0       

10

8 KO-026 P ovr  134.3   6.3 132.9  -5.2 B-F     5 15.6        

10

9 KO-026 L pri   21.0  35.1  28.1  25.9 G-N     8 3.9     A2 N 

11

0 KO-028 L vrm  167.9 -56.2 188.8 -53.1 AB      2 0        

11

1 KO-028 P ovr  296.0  49.9 311.6  60.4 B-E     4 8.4        

11

2 KO-028 L pri  341.6  50.9 359.9  49.9 F-N     9 7     A1 N 

11

3 KO-029 L vrm  173.8 -37.4 184.5 -34.2 AB      2 0       

11

4 KO-029 P ovr   97.1   2.7  98.9 -11.9 B-E     4 17.3        

11

5 KO-029 L pri  353.4  38.0   4.3  35.0 F-N     9 10.9     A1 N 

11

6 KO-031 L vrm  173.6 -31.0 182.0 -28.2 AB      2 0        

11

7 KO-031 P ovr  116.8  73.6  98.3  60.2 B-F     5 18        

11

8 KO-031 L pri  342.9  50.3   0.6  49.0 G-N     8 6.7     A1 N 

11

9 KO-032 L vrm  195.0 -50.6 208.0 -41.9 AB      2 0       

12

0 KO-032 P ovr    4.6 -23.4 357.7 -28.5 B-E     4 15.4        

12

1 KO-032 L pri   13.2  56.5  29.3  48.0 F-N     9 6.4     A1 N 

12

2 KO-035 L vrm  151.0 -22.0 157.5 -25.3 AB      2 0        

12

3 KO-035 P ovr 

  91.5 -42.5 276.7  56.8 B-

DF    4 3.7        

12

4 KO-037 L vrm  179.5 -31.5 187.6 -27.1 AB      2 0        

12

5 KO-037 P ovr 

 115.9  54.7 106.5  43.0 B-

FN    6 14.6        

12

6 KO-037 L pri    1.5  15.9   5.1  11.7 G-N     8 7.9     A2 N 

12

7 KO-040 L vrm  188.6 -42.1 199.4 -35.3 AB      2 0        

12

8 KO-040 L pri   14.8  41.3  24.4  33.2 G-N     8 12     A1 N 

12

9 KO-041 L vrm  195.2 -34.2 202.7 -26.1 AB      2 0       

13

0 KO-041 L ovr   88.7 -32.2  91.5 -47.0 B-F     5 9.6        

13

1 KO-041 P pri 

  72.0 -25.1  71.2 -40.0 H-

LN    6 15.8     B2 N 
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13

2 KO-043 L vrm  347.1  38.1 358.5  36.6 AB      2 0        

13

3 KO-043 L ovr  193.5 -18.1 196.9 -11.1 B-F     5 11.3        

13

4 KO-043 P pri   95.8 -16.2  97.9 -30.2 G-N     8 21     B2 N 

13

5 KO-044 L vrm  245.9 -17.8 246.4  -3.0 AB      2 0       

13

6 KO-044 L ovr   83.2  -6.5  83.7 -21.5 B-F     5 8        

13

7 KO-044 L pri   42.6  44.4  48.6  31.5 F-J     5 11.1     A2 N 

13

8 KO-045 L vrm  258.9 -40.0 258.7 -24.9 AB      2 0        

13

9 KO-046 P ovr    4.0 -41.5 170.2  44.2 B-G     6 14.4        

14

0 KO-046 L vrm  215.8 -42.4 222.6 -30.5 AB      2 0       

14

1 KO-047 L vrm  227.0 -12.8 227.8   0.2 AB      2 0       

14

2 KO-047 L ovr  340.9  20.2 346.5  21.2 B-G     6 13.1        

14

3 KO-047 P int  128.8  -3.5 130.6 -12.7 G-J     4 4.5       

14

4 KO-047 L pri  139.2  39.2 130.3  31.2 J-N     5 18.4 x 

319.

2 A2 N 
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APPENDIX H 

SQR FILE FOR KOCHKOR EAST (KSS) WITH RATINGS 

# Sample      180? 

33 KSS-003 L vrm  251.1  45.5 214.1  52.4 AB      2 0   

34 KSS-003 L ovr  307.7  53.7 286.7  85.3 B-H     7 4   

35 KSS-003 P pri  350.1   7.7 358.1  31.4 H-NP    8 13.1   

36 KSS-004 L ovr  211.8 -13.3 220.4 -16.1 C-H     6 9.4 X 

37 KSS-004 P pri  276.2  64.0 186.5  72.3 I-O     7 17.2 X 

38 KSS-005 L vrm  258.4  70.1 171.1  64.9 AB      2 0  

39 KSS-005 L ovr   29.4  62.3  81.4  53.2 B-G     6 7.9   

40 KSS-005 P int   46.1  -4.4  43.0  -6.4 H-K     4 12 

41 KSS-005 P pri  312.4  28.5 313.6  60.4 L-P     5 14.7 

42 KSS-006 L ovr   73.1  65.0 102.9  40.7 A-F     6 7.6   

43 KSS-006 P pri  135.4  44.9 134.2  12.9 G-KP    6 13.6 

44 KSS-007 L ovr  199.3 -64.1 261.0 -58.0 B-G     6 8.7 X 

45 KSS-007 P pri   20.5 -24.3  11.0 -10.4 I-KMP   5 17.2 X 

46 KSS-008 L vrm  309.6  31.7 308.0  63.9 AB      2 0  

47 KSS-008 P ovr   12.6 -33.7   0.4 -15.1 B-GP    7 17.1 

48 KSS-008 P pri   71.5  20.1  76.9   2.2 KLNO    4 13.7 

49 KSS-009 L pri   40.1  28.9  56.6  24.6 F-LQ    8 12.3  

50 KSS-009 P ovr  204.7  55.3 174.7  37.8 BD-GS   6 26.4 

51 KSS-009 L vrm  332.8   1.0 336.0  31.0 AB      2 0   

52 KSS-010 P ovr  350.5  34.2  16.3  54.7 A-F     6 16.3 X 

53 KSS-010 P pri  251.5  48.0 210.8  54.1 H-L     5 5.2 X 

54 KSS-011 L vrm  354.0 -28.2 348.1  -2.3 AB      2 0  

55 KSS-011 L ovr  178.4  80.2 142.4  50.8 B-G     6 4.8   

56 KSS-011 L int  154.6  -8.1 160.7 -36.9 G-K     5 9.4  

57 KSS-011 L pri  155.6 -17.0 165.4 -45.1 G-KP    6 9.9  

58 KSS-012 L nrm   98.0  -9.0  90.2 -35.5 AB      2 0  

59 KSS-012 L ovr  101.8  73.1 120.1  42.7 B-F     5 7.9   

60 KSS-012 L pri  151.0  28.0 148.6  -2.5 G-P     10 17.5   

61 KSS-014 L vrm  103.2  13.7 102.9 -15.0 AB      2 0   

62 KSS-014 L ovr  351.4  67.9  86.3  69.6 B-F     5 4.6   

63 KSS-014 L pri   76.3  64.3 103.8  39.2 F-IK    5 11.6  

64 KSS-015 L ovr  304.2  54.4 261.2  84.8 A-H     8 11.4   

65 KSS-015 L int  211.5  65.4 168.3  47.3 H-LQ    6 15.7  

66 KSS-015 P pri  333.9  35.0 354.6  62.4 M-Q     5 11.7   

67 KSS-017 P ovr   97.1 -17.0  85.4 -41.9 B-J     9 14.4 

68 KSS-017 L vrm  213.5  36.0 194.6  26.3 AB      2 0  

69 KSS-017 L pri   75.6  83.3 121.6  53.7 J-LOP   5 9.7  
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70 KSS-018 P ovr   43.8 -29.5  26.5 -26.1 A-I     9 15.8 

71 KSS-018 L pri  137.9  52.1 135.5  20.3 I-MOP   7 12.1   

72 KSS-020 L ovr  335.5  30.4 353.0  57.6 B-G     6 5.7   

73 KSS-020 L vrm  296.4 -25.6 297.0   5.4 AB      2 0  

74 KSS-020 L pri  274.8  50.2 225.6  67.8 H-Q     10 13.6  

75 KSS-021 L vrm  199.0   9.0 199.0  -2.7 AB      2 0  

76 KSS-021 L ovr   69.2  78.8 115.0  51.6 BCE-L   10 5.5   

77 KSS-021 L pri    0.3  58.2  62.8  64.5 L-P     5 5.1   

78 KSS-022 L ovr  324.5  39.9 342.3  70.0 A-E     5 9.1 X 

79 KSS-022 L pri  322.8  34.1 334.4  64.8 F-P     11 9.5 X 

80 KSS-024 L vrm  198.6  -0.9 202.5 -12.5 AB      2 0  

81 KSS-024 L ovr  299.5  59.7 201.8  83.8 B-G     6 5.9   

82 KSS-024 L pri  281.6  38.6 253.8  62.9 H-P     9 5.1   

83 KSS-026 P ovr   63.4 -15.5  52.0 -25.0 A-D     4 1.2 

84 KSS-026 P pri  334.3  34.1 354.2  61.5 D-GKMNP 8 15.2 

85 KSS-027 P ovr   94.4 -22.5 258.9  45.8 A-F     6 9.3 

86 KSS-029 L ovr   23.5  67.6  88.5  57.8 A-G     7 13.9   

87 KSS-029 P pri   25.1 -23.0  15.6 -11.4 G-P     10 16.3 

88 KSS-030A L vrm   27.6  -7.9  25.5   0.2 AB      2 0  

89 KSS-030A L ovr  271.8  62.7 190.4  70.2 B-F     5 3.9   

90 KSS-030A L pri  322.9  44.6 345.0  74.7 F-OP    11 3.9   

91 KSS-031 L vrm   63.1   1.1  61.6  -9.9 AB      2 0   

92 KSS-031 P ovr   50.2 -44.0  20.1 -40.5 B-I     8 13.7 

93 KSS-031 P pri   32.1 -36.3  13.2 -25.8 H-P     9 22.5 

94 KSS-032 L vrm  338.1  32.0 357.7  58.2 AB      2 0  

95 KSS-032 L ovr   92.2  62.9 110.6  34.5 B-H     7 7.9   

96 KSS-032 P pri   59.0  -0.5  56.2  -9.8 I-O     7 8.3 

97 KSS-034 L ovr   49.8  60.9  88.7  44.9 A-F     6 3.5   

98 KSS-034 L pri  338.9  48.4  23.1  71.0 F-P     11 7.7  

99 KSS-035 L vrm  268.7 -17.0 271.0   7.3 AB      2 0  

100 KSS-035 P ovr   88.1  14.8  88.7  -9.5 B-EG    5 4.8 

101 KSS-035 P pri   60.5   4.2  59.9  -6.5 FH-P    10 13.5 

102 KSS-037 L ovr  241.6  79.6 150.8  60.2 A-H     8 12.6   

103 KSS-038 L ovr   68.4  74.9 110.3  48.9 A-E     5 4.3   

104 KSS-038 L pri  347.2  31.5   9.7  53.8 F-Q     12 7.7   
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APPENDIX I 

DAM SITE (KDS) FIELD DATA AND RATINGS WITH FOLD TEST 

# Sample      

plast

ic 

Geo 

Correct 

RATIN

G 

N/

R 

41 

KDS-

029 L 

ov

r   22.6  74.9 169.8  41.5 B-F     5 8.2     

42 

KDS-

029 L pri 

   5.9  30.2 107.7  82.7 G-

MN    8 2.9   A2 N 

43 

KDS-

030 L pri   13.9   8.0  37.9  65.0 F-N     9 9.3   A2 N 

44 

KDS-

030 L 

ov

r 

 112.1  59.3 149.5  12.7 A-

E     5 3.6     

45 

KDS-

032 L 

ov

r 

 300.9  74.8 193.6  35.4 B-

G     6 5     

46 

KDS-

032 L pri 

 348.3  33.3 233.1  80.1 G-

N     8 4.3   A2 N 

47 

KDS-

032 L 

vr

m   92.1  23.0 110.4   6.9 AB      2 0     

48 

KDS-

033 L 

ov

r 

 315.5  45.4 228.8  52.3 A-

G     7 6.2     

49 

KDS-

033 L pri 

 333.2  11.5 298.4  61.5 G-

N     8 2.4   A3 N 

50 

KDS-

035 L 

vr

m   62.8 -27.8  58.5   9.1 AB      2 0     

51 

KDS-

035 L 

ov

r 

 354.9  39.1 190.8  78.7 B-

F     5 6     

52 

KDS-

035 L pri   15.9   9.6  43.8  65.0 F-N     9 4.2   A2 N 

53 

KDS-

036 L 

vr

m 

 321.1  64.1 199.0  46.9 

AB      2 0     

54 

KDS-

036 L 

ov

r   43.7   4.0  67.6  40.4 B-G     6 10     

55 

KDS-

036 L pri   19.6  -7.4  31.6  48.9 G-N     8 5   A3 N 

56 

KDS-

038 L 

ov

r   34.2  25.8  92.5  57.7 A-G     7 7.9     

57 

KDS-

038 L pri    8.1 -26.7   8.9  34.5 G-N     8 6.6   A3 N 

58 

KDS-

039 L 

vr

m   79.8  -0.4  82.9   6.4 AB      2 0     

59 

KDS-

039 L 

ov

r   48.9  13.7  82.0  40.7 B-G     6 7     

60 

KDS-

039 L pri   12.0  -6.0  21.8  53.4 G-N     8 5.8   A3 N 

61 

KDS-

041 L 

vr

m  162.7  53.0 170.5  -8.1 AB      2 0     

62 

KDS-

041 L 

ov

r 

 299.5  75.6 192.9  34.7 B-

G     6 5.3     

63 

KDS-

041 L int    3.8  45.8 164.9  71.7 G-J     4 5.3     

64 

KDS-

041 L pri    5.8   1.3  15.0  62.3 J-N     5 4.9   A2 N 
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65 

KDS-

042 L 

vr

m 

 152.5  35.6 155.3 -22.1 

AB      2 0     

66 

KDS-

042 L 

ov

r 

 349.0  79.4 180.1  38.4 B-

G     6 2.9     

67 

KDS-

042 L int 

 337.1  22.2 280.7  70.3 G-

J     4 9.3     

68 

KDS-

042 L pri 

 359.6 -21.2 360.0  40.8 J-

N     5 8.7   A3 N 

69 

KDS-

043 L 

ov

r 

 221.3 -13.3 257.0 -47.2 A-

E     5 4.8 X 41.3   

70 

KDS-

043 L int 

 211.9 -13.1 249.7 -55.1 E-

I     5 11 X 31.9   

71 

KDS-

043 L pri 

 180.5  -7.3 185.1 -69.3 

JKMN    4 

13.

2 X 0.5 A3 N 

72 

KDS-

044 L 

ov

r 

  30.2  62.6 155.7  49.4 A-

E     5 

11.

4     

73 

KDS-

044 L pri 

 350.0  52.3 189.6  65.0 

FH-M    7 9.1   A1 N 

74 

KDS-

045 P 

ov

r 

 319.9 -37.8 328.3  14.7 A-

E     5 

12.

7     

75 

KDS-

045 L pri   18.7  14.7  57.7  66.7 G-N     8 

11.

4   A2 N 

76 

KDS-

047 L 

ov

r 

  32.0  48.1 134.6  56.9 B-

G     6 

10.

7     

77 

KDS-

047 L pri 

 354.9 -12.5 353.2  49.3 G-

N     8 4.3   A3 N 

78 

KDS-

048 L 

vr

m   80.7 -37.7  50.2 -11.6 AB      2 0     

79 

KDS-

048 L 

ov

r 

  15.8  66.5 167.0  49.9 B-

G     6 4.3     

80 

KDS-

048 L pri    1.4  -9.5   3.5  52.3 G-N     8 6.7   A3 N 

81 

KDS-

049 L 

vr

m  129.2 -13.0  95.9 -42.2 AB      2 0 X 309.2   

82 

KDS-

049 L 

ov

r 

 206.7  -2.2 229.0 -52.4 B-

E     4 7.5 X 206.7   

83 

KDS-

049 L int  239.2  -4.8 258.2 -27.6 E-I     5 

13.

9 X 239.2   

84 

KDS-

049 L pri 

 154.6  30.1 155.3 -27.8 I-

N     6 

15.

1 X 334.6 A2 N 

85 

KDS-

050 L 

vr

m  188.5  53.0 184.4  -8.5 AB      2 0     

86 

KDS-

050 L 

ov

r    1.2  52.0 173.2  66.0 B-G     6 2.2     

87 

KDS-

050 L pri 

 338.4  19.8 288.4  70.4 G-

LN    7 6.1   A2 N 

88 

KDS-

051 L 

ov

r 

  29.2  70.4 164.1  44.1 A-

G     7 4.4     

89 

KDS-

051 L pri    2.7  28.5  96.4  85.8 G-N     8 6.5   A2 N 

90 

KDS-

053 L 

ov

r    3.6  51.3 169.4  66.3 A-E     5 3.9     

91 

KDS-

053 L int  355.6  14.7 348.2  76.5 E-I     5 

22.

5     

92 

KDS-

053 L pri 

 352.5 -19.9 351.0  41.8 

IK-N    5 8.6   A3 N 
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93 

KDS-

054 L 

ov

r 

  26.9  61.0 155.7  51.7 A-

H     8 4     

94 

KDS-

054 L pri   44.2  27.7  98.8  49.4 F-N     9 

11.

5   A2 N 

95 

KDS-

055 L pri 

 168.2 -30.7  68.1 -81.1 H-

O     8 

10.

3 X 348.2 A3 N 

96 

KDS-

055 L 

vr

m  114.6 -28.4  70.6 -34.2 BC      2 0 X 294.6   

97 

KDS-

055 L 

ov

r 

 257.6 -37.9 299.5 -24.5 C-

H     6 5.2 X 77.6   

98 

KDS-

056 L 

ov

r 

  19.3  54.5 153.9  59.4 B-

G     6 8.5     

99 

KDS-

056 L pri    7.4   9.7  25.6  69.6 G-O     9 3.2   A2 N 

10

0 

KDS-

057 L 

vr

m   97.2 -18.5  76.5 -16.8 AB      2 0     
10

1 

KDS-

057 L 

ov

r 

  56.1  60.9 145.6  39.7 B-

G     6 7.3     
10

2 

KDS-

057 L pri   28.8  14.1  68.5  58.2 G-N     8 3.9   A3 N 

10

3 

KDS-

059 L 

vr

m 

 130.2  75.7 167.4  17.9 

AB      2 0     
10

4 

KDS-

059 L 

ov

r 

  26.0  65.8 161.1  48.4 B-

G     6 7.8     
10

5 

KDS-

059 P pri 

 326.4 -32.2 329.2  22.7 

GI-N    7 

16.

6   B1 N 

  

KDS-

059 L ps 348.9 55.8 188.8 61.5 2 0     

  

KDS-

059 L pf 303.8 35.1 244.9 43.9 2 0     

10 

KDS-

058 L 

vr

m   96.4  19.8 110.1   1.6 AB      2 0     

11 

KDS-

058 L 

ov

r    2.8  64.0 174.4  53.9 B-H     7 

16.

1     

12 

KDS-

058 L pri 

 195.2  37.6 192.6 -22.4 H-

JLN-P 7 

31.

5   A3 N 

21 

KDS-

068A P 

ov

r 

 329.0  -1.7 310.2  49.2 A-

F     6 4.2 X    

22 

KDS-

068A P int   55.9  15.5  88.0  35.3 F-J     5 7.6 X    

23 

KDS-

068A L pri 

 309.3  56.7 214.0  45.5 I-

N     6 

10.

4 X 129.3 A2 N 

13 

KDS-

060 L 

ov

r 

  23.4  66.1 162.6  48.9 A-

E     5 6.9     

14 

KDS-

060 L int   68.0 -21.9  59.2   6.0 E-G     3 5.5     

15 

KDS-

060 L pri 

 350.3  24.5 292.7  82.3 G-

O     9 

10.

1   A2 N 

10

6 

KDS-

061 L 

ov

r 

  67.9  69.1 154.3  33.1 A-

E     5 3     
10

7 

KDS-

061 L pri   15.6  20.4  66.4  72.3 E-N     

1

0 6.6   A2 N 

10

8 

KDS-

062 L 

ov

r 

 329.0  68.1 193.1  46.4 A-

G     7 6.2 X    
10

9 

KDS-

062 L pri 

 327.7  20.1 277.2  61.4 G-

M     7 8.8 X 147.7 A3 R 



 

 

 

187 

16 

KDS-

063 L 

ov

r 

  42.7  82.6 171.9  33.2 A-

E     5 7.1     

17 

KDS-

063 L int 

 357.4  69.0 178.2  49.1 E-

H     4 

11.

3     

18 

KDS-

063 L pri 

  19.9  45.0 138.2  65.6 G-

Q     

1

1 

10.

8   A1 N 

11

0 

KDS-

064 L 

ov

r 

  87.4  60.4 145.1  24.2 A-

E     5 6.9     
11

1 

KDS-

064 L pri 

  47.2  31.7 105.4  47.5 F-

N     9 

10.

2   A2 N 

11

2 

KDS-

065 L 

ov

r 

  12.7  48.7 153.7  66.4 A-

F     6 8.2     
11

3 

KDS-

065 L int   33.7   8.5  65.1  51.0 G-J     4 9     
11

4 

KDS-

065 L pri   27.9 -29.6  26.7  25.8 I-N     6 

17.

4   A3 N 

19 

KDS-

066 P 

ov

r 

  28.6  41.7 124.7  61.9 A-

F     6 6     

20 

KDS-

066 L pri 

 220.4  30.4 216.0 -19.0 

FGI-Q   

1

1 8.4   A3 N 

more fold test samples below       

1 

KDS-

006 L 

vr

m 

 256.3  66.3 201.8  20.6 

AB      2 0     

2 

KDS-

006 L 

ov

r 

  46.9  49.4 131.8  47.3 B-

H     7 5.9     

3 

KDS-

006 L pri 

  17.7 -21.4  21.2  37.0 IJL-

P   7 

11.

6     

4 

KDS-

008 L 

vr

m   36.0 -19.0  40.3  30.3 AB      2 0     

5 

KDS-

008 L 

ov

r 

 285.1  65.5 206.0  32.3 B-

G     6 

10.

7     

6 

KDS-

008 L pri 

 343.6  39.6 220.3  73.4 F-

O     

1

0 

14.

3     

7 

KDS-

012 L 

vr

m  261.1  29.7 238.5   8.1 AB      2 0     

8 

KDS-

012 L 

ov

r 

  19.8  68.1 166.1  47.8 B-

H     7 4.4     

9 

KDS-

012 L pri   18.8   5.2  42.7  59.8 I-O     7 13     
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APPENDIX J 

KARA SUU (KSU) FIELD DATA AND RATINGS 

# Sample     

18

0? 

Corrected 

geographic 

RATI

NG 

N/

R  
10

5 

KU-

116 L 

ov

r 

 213.4  -1.4 214.1 -20.1 

A-H     8 6.4 X 33.4    1 

10

6 

KU-

116 L pri 

  61.7 -39.4  54.9 -23.8 I-

P     8 

10.

2 X 241.7 A2 R  
10

7 

KU-

115 L 

vr

m 

 123.2 -20.8 115.7 -22.9 

BC      2 0 X 303.2     
10

8 

KU-

115 L 

ov

r 

 228.7 -13.6 232.3 -30.5 

C-I     7 

10.

1 X 48.7     
10

9 

KU-

115 L pri 

  19.8  -5.7  19.7  13.3 

IKMNP   5 

12.

9 X 199.8 A2 R  
11

0 

KU-

114 L 

vr

m 

 139.6 -13.5 134.0 -21.4 

AB      2 0 X 319.6    2 

11

1 

KU-

114 L pri 

  27.6  -6.3  27.7  12.6 L-

P     5 4.3 X 207.6 A2 R  
11

2 

KU-

113 L pri 

  28.8  -1.1  29.2  17.8 K-

P     6 8.6 X 208.8 A3 R  
11

3 

KU-

113 P 

ov

r 

 311.6  50.5 287.1  53.0 

A-EHP   7 

17.

1 X 131.6     
11

4 

KU-

112 L 

ov

r 

 327.9  53.3 300.5  60.6 

B-F     5 

10.

8 X 147.9    3 

11

5 

KU-

112 L pri 

 262.5  65.0 239.2  51.8 

F-HJ-P  

1

0 

11.

4 X 82.5 A2 N  
11

6 

KU-

111 L 

vr

m 

 266.7 -14.2 272.0 -21.9 

AB      2 0 X 86.7     
11

7 

KU-

111 P 

ov

r 

  12.9 -11.5  13.1   7.4 B-

H     7 5.8 X 192.9     
11

8 

KU-

111 L pri 

 137.6 -75.2  70.5 -71.5 

I-P     8 7.1 X 317.6 A1 R  
11

9 

KU-

110 P 

ov

r 

  22.5 -21.4  22.3  -2.5 A-

G     7 

12.

9        4 

12

0 

KU-

110 P pri 

  66.6 -18.0  64.1  -3.9 

HJ-P    8 14    B3 R   

  

KU-

110 L pf 344.6 15.1 339.4 29.5 2 0         

  

KU-

110 L pl 103.7 -41.7 88.8 -36.1 2 0         

12

1 

KU-

109 L 

vr

m 

 195.9  56.8 199.1  37.9 

AB      2 0         

12

2 

KU-

109 L 

ov

r 

 349.3  62.3 309.7  74.3 

B-L     

1

1 7.6         

12

3 

KU-

109 P pri 

 242.7  42.9  54.6 -27.6 

L-P     5 5.9    B2 N   

  

KU-

109 L pri 355.4 22.6 349.6 39 5 

11.

7    A2 N   

  

KU-

109 L                 

12

4 

KU-

108 L 

vr

m 

 238.7 -49.5 259.3 -63.4 

AB      2 0 X 58.7      
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12

5 

KU-

108 L 

ov

r 

 149.2  14.0 151.4   2.3 

B-G     6 4.3 X 329.2      

12

6 

KU-

108 L pri 

 185.7 -21.4 182.0 -39.4 

I-P     8 6.8 X 5.7 A3 N   

12

7 

KU-

107 L 

vr

m 

 293.3  56.6 266.9  52.7 

AB      2 0        5 

12

8 

KU-

107 L 

ov

r 

  26.8  29.1  28.0  48.0 B-

J     9 8         

12

9 

KU-

107 L pri 

  15.4  23.1  13.6  41.9 J-

P     7 7.4    A2 N   

13

0 

KU-

106 L 

vr

m 

 186.3 -21.0 183.5 -37.9 

AB      2 0         

13

1 

KU-

106 P 

ov

r 

 117.9  25.6 126.1  22.6 

B-K     

1

0 

11.

2          

13

2 

KU-

106 L pri 

 339.0  43.3 321.3  55.0 

K-P     6 9.3     A2 N    

13

3 

KU-

104 P 

ov

r 

 312.1 -41.7 325.9 -33.2 

A-H     8 

12.

2        6 

13

4 

KU-

104 L pri 

 327.3  30.3 315.5  39.4 

I-P     8 

10.

5    A2 N   

13

5 

KU-

103 L 

ov

r 

 358.0  74.1 258.8  81.9 

A-H     8 6.6          

13

6 

KU-

101A L 

vr

m 

 190.8  66.0 196.2  47.5 

AB      2 0      7 

13

7 

KU-

101A L 

ov

r 

   6.0  53.8 350.3  71.3 B-

H     7 6.2        

13

8 

KU-

101A L pri 

 338.4  43.2 320.7  54.7 

I-P     8 6.5   A2 N   

13

9 

KU-

101 L 

vr

m 

 266.8  19.2 267.1   7.5 

AB      2 0        

14

0 

KU-

101 L 

ov

r 

 339.2  60.2 302.2  69.7 

B-J     9 8.6        

14

1 

KU-

101 L pri 

 340.7  43.2 323.3  55.3 

J-P     7 7.6   A1 N    

41 

KU-

009 L 

vr

m 

 200.7  42.9 199.8  24.2 

AB      2 0        8 

42 

KU-

009 L 

ov

r 

 341.1  57.3 309.4  67.7 

B-G     6 

11.

4         

43 

KU-

009 L pri 

 333.4  60.6 295.6  68.0 

H-Q     

1

0 4.4    A1 N   

44 

KU-

010 L 

vr

m 

 237.8  35.3 232.1  19.5 

AB      2 0         

45 

KU-

010 P 

ov

r 

 118.8  39.3 133.0  35.1 

B-L     

1

1 6.8          

46 

KU-

010 L pri 

 348.0  32.9 337.6  47.5 

J-Q     8 5.5     A2 N    

47 KU-12 L 

ov

r 

 324.5  69.2 269.7  70.8 

A-F     6 6.8      9 

48 KU-12 L pri 

 350.1  51.2 328.6  65.2 

C-Q     

1

5 

11.

7   A1 N   

49 

KU-

013 L 

ov

r 

 356.7  83.7 215.1  76.3 

A-F     6 6.9        

50 

KU-

013 L pri 

   8.5  55.0 354.1  72.8 F-

KM-P  

1

0 

11.

2   A1 N    
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51 KU-15 P 

ov

r 

 311.9 -25.0 319.0 -17.6 

A-F     6 

10.

5        

1

0 

52 KU-15 L pri 

 347.7  17.5 342.2  32.5 

F-Q     

1

2 6.5    A2 N   

53 KU-16 L 

ov

r 

  21.7  53.4  20.5  72.3 

A-G     7 

13.

7         

54 KU-16 P pri 

 258.6  75.3 227.6  60.1 

G-KM-OQ 9 21     B3 N   

55 KU-20 P 

ov

r 

 324.7 -13.9 326.9  -3.5 

A-G     7 

13.

1        

1

1 

56 KU-20 L pri 

 249.1 -33.5 261.5 -45.3 

G-Q     

1

1 3    A2 R  

57 KU-22 L 

ov

r 

 138.5  38.3 149.3  28.4 

A-G     7 

13.

7        

58 KU-22 L pri 

 265.3 -10.0 269.6 -18.2 

G-Q     

1

1 6.8     A3 R   

59 KU-24 L 

ov

r 

 212.2 -28.6 215.1 -47.7 

B-F     5 

10.

8      

1

2 

60 KU-24 L pri 

 192.7 -56.8 180.6 -75.1 

G-Q     

1

1 5.1   A1 R  

61 KU-25 L 

ov

r 

 353.4  36.6 342.9  52.3 

A-E     5 7       

62 KU-25 L pri 

 321.4  17.1 314.7  25.1 

M-Q     5 6   A3 N   

63 KU-27 L 

ov

r 

 349.2  52.1 326.8  65.8 

A-E     5 7.2      

1

3 

64 KU-27 L pri 

 352.3  46.7 335.5  61.6 

L-Q     6 

11.

1   A1 N   

65 KU-28 L 

ov

r 

 354.3  64.1 311.2  77.2 

AF-M    9 9.4        

66 KU-28 L pri 

   7.2  56.4 350.1  74.0 

M-OSTV- 8 5.8   A1 N   

67 KU-30 P 

ov

r 

  69.2  -1.5  70.2  11.9 A-

F     6 

14.

7        

1

4 

68 KU-30 L pri 

 123.3 -50.4 100.1 -50.0 

F-Q     

1

2 

11.

4    A2 R  

69 KU-31 L 

ov

r 

  56.3  75.1 151.6  79.7 

A-G     7 6        

70 KU-31 L pri 

 149.4 -36.4 134.7 -45.8 

G-LN    7 7.3     A2 R   

71 KU-50 L 

ov

r 

 102.1   4.9 104.1   8.1 

A-H     8 

19.

7 X 282.1    

1

5 

72 KU-50 L int 

  27.9  45.6  30.8  64.5 

H-L     5 

12.

3 X 207.9     

73 KU-50 L pri 

 265.0  36.4 255.2  26.0 

M-Q     5 4.4 X 85 A3 N   

74 KU-52 P 

ov

r 

 131.1  49.8 328.5 -40.8 

A-EH    6 

11.

6         

75 KU-52 L int 

 176.1 -38.7 165.2 -54.8 

H-L     5 3.9        

76 KU-52 L pri 

 185.4 -34.6 179.0 -52.5 

M-Q     5 7.4     A1 R  

77 KU-54 L 

vr

m 

 146.9  26.6 152.7  15.2 

AB      2 0 X 326.9    

1

6 
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78 KU-54 L 

ov

r 

  52.7  73.2 140.7  80.7 

B-EGH   6 

14.

2 X 232.7     

79 KU-54 P pri 

  92.5  -8.8  90.8  -1.9 H-

MO-Q  9 

13.

4 X 272.5 B3 R   

80 KU-55 P 

ov

r 

 312.8 -15.7 316.7  -9.1 

C-H     6 

13.

6         

81 KU-55 L pri 

 191.9 -11.7 190.3 -30.4 

H-Q     

1

0 9.1     A2 R  

82 KU-57 L 

ov

r 

 276.9  73.3 238.9  61.4 

B-H     7 

10.

3 X 96.9    

1

7 

83 KU-57 L pri 

 344.4  72.5 267.7  78.0 

H-Q     

1

0 5.1 X 164.4 A2 N   

84 KU-58 L 

ov

r 

 177.3  39.6 181.9  22.2 

A-EG    6 6.5       

85 KU-58 L pri 

 183.1 -25.8 178.0 -43.4 

F-Q     

1

2 6.2   A2 R   

86 KU-60 L pri 

  96.5  35.4 110.8  38.6 

N-R     5 4.6 X 276.5 A3 N 

1

8 

87 KU-60 L 

ov

r 

   5.1  38.6 357.3  56.3 

A-K     

1

1 

12.

6 X 185.1     

88 KU-61 L 

ov

r 

  42.9  64.0  80.5  79.9 

A-G     7 12       

89 KU-61 L pri 

 178.5 -54.4 157.5 -70.3 

H-JM-Q  8 9.9   A1 R   

90 KU-62 P 

ov

r 

  66.9 -21.4  63.8  -7.3 A-

F     6 9.6 X 246.9    

1

9 

91 KU-62 L pri 

   2.9  57.1 341.1  73.7 F-

Q     

1

2 4.2 X 182.9 A3 N  

92 KU-64 P 

ov

r 

 219.2  39.6  36.3 -21.4 

B-H     7 

17.

8         

93 KU-64 L pri 

 155.5 -36.9 141.2 -48.0 

H-Q     

1

0 7.3     A2 R   

94 KU-66 P 

ov

r 

 174.0  41.6 359.4 -24.7 

A-F     6 

14.

5 X 354  ? 

2

0 

95 KU-69 L 

ov

r 

 139.8  17.2 143.5   8.0 

A-F     6 8.6 X 319.8    

2

1 

96 KU-69 L pri 

 336.2  81.2 229.7  75.5 

G-N     8 

18.

9 X 156.2 A2 N    

97 KU-70 P 

ov

r 

  66.9  -6.2  67.0   7.5 A-

F     6 

17.

8          

98 KU-71 L 

ov

r 

 326.4  26.8 316.0  36.0 

C-J     8 

13.

7 X 146.4    

2

1 

99 KU-71 L pri 

 325.2  28.3 314.3  37.0 

J-Q     8 6.7 X 145.2 A3 N  
10

0 KU-73 P 

ov

r 

 314.4 -35.2 325.9 -26.3 

C-G     5 

21.

4         
10

1 KU-73 L pri 

 162.0 -67.5 106.7 -75.4 

H-NP-R  

1

0 3.7     A1 R  
10

2 KU-74 L 

ov

r 

 290.0  15.0 285.3  13.3 

B-EGH   6 18 X 110    

2

3 

10

3 KU-74 L pri 

 317.3  38.1 301.4  43.5 

JKM-OQ  6 

19.

7 X 137.3 A3 N  
10

4 KU-76 P 

ov

r 

 338.3 -32.7 344.5 -18.4 

A-F     6 14         
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10

5 KU-76 P pri 

  63.3 -11.3  62.5   3.3 G-

IL-NQ 7 

17.

8     A3 R  
10

6 KU-77 L 

vr

m 

 174.7  63.0 185.5  44.4 

AB      2 0 X 354.7    

2

4 

10

7 KU-77 L 

ov

r 

 180.1 -49.9 164.0 -66.3 

B-F     5 6 X 0.1      

10

8 KU-77 L pri 

 191.8 -65.0 162.6 -82.8 

G-Q     

1

1 3.8 X 11.8 A2 R   

10

9 KU-79 L 

ov

r 

 348.9  51.8 326.4  65.3 

B-DFH   5 

16.

3        

11

0 KU-79 L pri 

 346.2  41.1 331.3  54.9 

H-OQ    9 

11.

1   A2 N   

11

1 

KU-

150 L 

ov

r 

 180.0 -58.3 154.2 -74.2 

B-G     6 7.4 X 0    

2

5 

11

2 

KU-

150 L pri 

 128.8 -69.9  79.7 -66.7 

I-NQ    7 

13.

6 X 308.8 A2 R   

11

3 

KU-

152 L 

ov

r 

  19.5  28.1  18.5  47.1 B-

F     5 6.5        

11

4 

KU-

152 L pri 

   3.6 -15.4   4.3   2.6 G-

Q     

1

1 8.3   A2 N   

11

5 

KU-

153 P 

ov

r 

 253.2  56.7 237.9  42.6 

A-F     6 13 X 73.2      

11

6 

KU-

155 L 

ov

r 

   1.3  40.5 351.4  57.7 

A-F     6 7.5         

11

7 

KU-

155 L pri 

 343.2  30.6 332.8  44.2 

F-NPQ   

1

1 8.8     A2 N   

11

8 

KU-

156 L 

vr

m 

 154.9  20.6 158.9   6.8 

AB      2 0 X 334.9      

11

9 

KU-

156 L 

ov

r 

 186.3 -41.0 178.3 -58.9 

B-G     6 5.4 X 6.3      

12

0 

KU-

156 L pri 

 179.3 -50.6 162.5 -67.0 

G-Q     

1

1 5.1 X 359.3 A3 R   

12

1 

KU-

158 L 

ov

r 

   6.1  50.0 353.7  67.6 

A-E     5 9.1        

12

2 

KU-

158 L pri 

 355.4  37.4 344.9  53.5 

M-Q     5 8.5   A2 N   

12

3 

KU-

160 L 

ov

r 

 173.8 -19.4 168.8 -35.6 

A-E     5 5.3 X 353.8     
12

4 

KU-

160 L pri 

 171.7 -52.4 149.7 -66.8 

M-Q     5 6 X 351.7 A3 R  
12

5 

KU-

162 P 

ov

r 

 236.5  44.1  49.6 -27.7 

A-F     6 

13.

6 X 56.5      

12

6 

KU-

162 P pri 

 262.2  74.9 229.8  60.5 

L-Q     6 

17.

8 X 82.2 A2 N   

12

7 

KU-

164 L 

vr

m 

 274.6  34.5 263.9  26.4 

AB      2 0         

12

8 

KU-

164 L 

ov

r 

   8.1  33.6   2.7  51.8 B-

G     6 8.2         

12

9 

KU-

164 L pri 

 335.8  33.3 323.3  44.7 

G-Q     

1

1 

10.

2     A2 N   

13

0 

KU-

165 L 

vr

m 

  71.8  44.8  92.3  55.3 

AB      2 0 X 251.8      

13

1 

KU-

165 L 

ov

r 

 118.5   7.1 120.5   4.8 B-

F     5 9.7 X 298.5      
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13

2 

KU-

165 L pri 

 137.8  -7.5 134.2 -15.0 

G-Q     

1

1 6.9 X 317.8 A3 N   
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APPENDIX K 

SOURCES FOR MATERIAL INCLUDED IN COMPARISONS AND 

PHYLOGENETIC ANALYSIS 

 

Institutional Abbreviations—NMNH, Smithsonian Natural History Museum, Washington 

D.C., U.S.A.; UONMCH, University of Oregon Museum of Natural and Cultural History, 

Eugene, Oregon, U.S.A., MGUH, Uppsala Museum, Uppsala Sweden.  

 

Sources for the taxa used in morphological comparisons and the phylogenetic analysis. 

Underlined taxa included in the phylogenetic analysis. If bold, data taken directly from 

reference and not the fossil material 

 

Taxon     Collection/Institution  Reference 

Persiatherium huadeensis  Pandolfi, 2015, Lu, 2013 

Aceratherium depereti  Pandolfi, 2015 

Aceratherium incisivum  Pandolfi, 2015 

Aceratherium porpani  Pandolfi, 2015 

Acerorhinus fugensis  Pandolfi, 2005 

Acerorhinus hezhengensis  Pandolfi, 2015, Lu, 2013 

Acerorhinus lufengensis  Pandolfi, 2015 

Acerorhinus 

palaeosinensis 

 Pandolfi, 2015, 

Ringström, 1924, Lu, 

2013 

Acerorhinus tsaidamensis  Pandolfi, 2015, Lu, 2013 

Acerorhinus 

yuanmouensis 

 Pandolfi, 2015, Lu, 2013 

Acerorhinus zernowi  Pandolfi, 2015, Antoine 

et al., 2003 

Alicornops complanatum  Pandolfi, 2015, Antoine 

et al., 2003 

Alicornops laogouense  Pandolfi, 2015 

Alicornops simorrense  Pandolfi, 2015 

Aphelops malacorhinus NMNH Prothero, 2009 

Aphelops megalodus NMNH Prothero, 2009 

Aphelops mutilus NMNH Prothero, 2009 

Brachypotherium 

brachypus 

 Pandolfi, 2015, Guérin, 

1980 

Brachypotherium 

goldfussi 

 Pandolfi, 2015, Guérin, 

1980 

Bugtirhinus praecursor  Pandolfi, 2015, Antoine 

et al., 2010 

Ceratotherium simum MNCH Pandolfi, 2015, Guérin, 

1966 

Ceratotherium neumayri  Pandolfi, 2015 
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Chilotherium anderssoni MGUH Pandolfi, 2015, Ringström, 

1924, Deng, 2006 

Chilotherium habereri MGUH Pandolfi, 2015, Schlosser, 

1903, Ringström, 1924 

Chilotherium kiliasi  Pandolfi, 2015 

Chilotherium kowalevskii  Pandolfi, 2015 

Chilotherium licenti   

Chilotherium persiae  Pandolfi, 2015 

Chilotherium 

primigenium 

 Deng, 2006 

Chilotherium samium  Pandolfi, 2015 

Chilotherium schlosseri MGUH Pandolfi, 2015 

Chilotherium wimani MGUH Pandolfi, 2015, Deng, 

2006, Ringström, 1924 

Diceratherium aginense  Pandolfi, 2015, Antoine 

et al., 2010 

Diceratherium armatum  Pandolfi, 2015, Antoine 

et al., 2010, Prothero, 

2009 

Dicerorhinus sumatrensis  Pandolfi, 2015, Guérin, 

1980, Antoine et al., 2010 

Diceros bicornis  Pandolfi, 2015, Guérin, 

1980, Antoine et al., 2010 

Dihoplus pikermiensis  Pandolfi, 2015 

Dihoplus schleirmacheri  Pandolfi, 2015, Guérin, 

1980 

Gaindatherium browni  Pandolfi, 2015, Antoine 

et al., 2010 

Hispanotherium beonense  Pandolfi, 2015, Antione, 

2002, Antoine et al., 2010 

Hispanotherium 

matritense 

 Pandolfi, 2015 

Hoploaceratherium 

tetradactylum 

 Pandolfi, 2015, Guérin, 

1980 

Iranotherium morgani  Pandolfi, 2015, Antoine, 

2002 

Lartetotherium 

sansaniense 

 Pandolfi, 2015, Guérin, 

1980, Antoine, 2002 

Menoceras arikarense NMNH Pandolfi, 2015, Prothero, 

2009, Antoine et al., 2010 

Plesiaceratherium gracile  Pandolfi, 2015, Lu, 2013 

Plesiaceratherium 

mirallesi 

 Pandolfi, 2015, Antoine 

et al., 2010 

Protoceratherium 

minutum 

 Pandolfi, 2015, Antoine 

et al., 2010 
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Rhinoceros sondaicus  Pandolfi, 2015, Guérin, 

1980, Antoine et al., 2010 

Rhinoceros unicornis  Pandolfi, 2015, Guérin, 

1980, Antoine et al., 2010 

Ronzotherium filholi  Pandolfi, 2015, Antoine 

et al., 2010 

Shansirhinus ringstroemi  Pandolfi, 2015, Deng, 

2005, 2006 

Subchilotherium 

intermedium 

 Pandolfi, 2015 

Subhyracodon occidentalis NMNH Pandolfi, 2015, Prothero, 

2009, Antoine et al., 2010 

Trigonias osborni NMNH Pandolfi, 2015, Prothero, 

2009, Antoine et al., 2010 

Teleoceras fossiger NMNH Prothero, 2009 

Teleoceras major NMNH, MNCH Prothero, 2009 
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APPENDIX L 

 

PHYLOGENETIC CHARACTERS AND DESCRIPTIONS 

 

List and description of the 214 characters included in the phylogenetic analysis as used in 

by Pandolfi (2015), with characters modified in most cases from Lu (2012) and Antoine 

(2002) 

 

Skull 

1. Nasal: lateral apophysis = 0, absent; 1, present 

-Posterior end of the nasal is significantly wider that anterior end, on the order of 

twice as broad. Nasal constricts suddenly, leaving the nasals with two lateral 

bulges.   

2. Nasal: dorsal profile: 0, straight; 1, undulated; 2, dorsally arched; 3, upturn   

-Profile of the nasal bone is primarily referring to the anterior portion of the nasal 

bone where it is not in contact with other facial bones. Starting just behind the 

nasal opening, the dorsal most profile of the nasal bone is (0) roughly straight, (1) 

dished before turning ventrally in the anterior most portion, (2) a smooth curve, 

with the highest point mid nasal bone, or (3) dished with the anterior most portion 

pointing dorsally.  

3. Nasal: anterior end: 0, at the level of DP1 or after DP1: 1, before the DP1 without over 

the premaxillae; 2, before premaxillae   

-Anterior most tip of nasal bone, when viewed laterally, is (0) even or posterior to 

the first deciduous premolar, (1) anterior to the first deciduous premolar but 

posterior to the anterior most projection of the premaxillae, or (2) projects anterior 

to the anterior most projection of the premaxillae.  

4.  Maxillary: foramen infraorbitalis = 0 above premolars; 1, above molars 

-  When viewed laterally, the entirety to majority of the infraorbital foramen is 

situated above the premolars (0), or the entirety or majority of the infraorbital 

foramen is dorsal to the molar teeth (1), if the occlusal surface of the upper 

dentition is aligned flat as a plane.  

5. Infraorbital foramen: 0, behind the nasal notch; 1, below the nasal notch  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 -When viewed laterally, the posterior most opening of the external naras opening, 

ventral to the projecting portion of the nasal bones. The infraorbital foramen is 

situated ventral to the afore described feature (1), or with the anterior most edge 

of the infraorbital foramen situated posterior to the posterior most edge of the 

nasal notch opening.  

6. Infraorbital foramen: 0, one; 1, two‒three   

 -Generally clumped closely together is there are more than one (1), otherwise, the 

single standard infraorbital foramen.  

7.  Nasal notch = 0, above P1‒3; 1, above P4‒M1   

 The posterior most portion of the nasal notch, when the skull is leveled so that the 

upper tooth row forms a plane, is dorsal to the P1-3 (0) or is dorsal to the P4-M1 

(1) 

8. Nasal notch: 0, U‒shaped; 1, V‒shaped   

 The posterior portion of the nasal notch, as is “pointing” posteriorly, forms a broad U-

shape (0), or narrows to more of a point in a V-shape (1) 

9. Nasal notch: distance to the orbit/length of the skull: 0, long (>17%); 1, short (≤17%)   

 -From the most posterior point of the nasal notch opening measured directly posterior 

(with the upper tooth row flat for a plane) measured to the most anterior portion 

of the opening of the orbit. This first measurement is then compared to the length 

of the skull, with the skull again leveled so that the upper tooth row is flat. The 

anterior most portion may be the nasals or the premaxilla.  

10. Nasal septum = 0, never ossified; 1, ossified (even sometimes)   

 -This feature is most typified in woolly rhinos, in the broad ossification of the nasal 

septum extending from the posterior of the nasal notch, far anterior, leaving 

opening on either side with a boney median.  

11. Nasal septum: ossified = 0, partially; 1, totally 

 -ossification extends to some median point between the most posterior opening of the 
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nasal notch to the anterior tip of the nasal bone (0), or extends fully to the anterior 

tip of the nasal bone (1).  If character 10 was a 0 than this character is a -.   

12. Nasal/lacrymal: contact = 0, long; 1, punctual or absent   

 -The contact between the lacrimal bone and the posterior portion of the nasal bone 

connects unevenly or over a very short distance of roughly ~1cm (1), or the 

contact between the two bones is longer and continuous, and is greater than 1cm 

of contact. 

13. Orbit: anterior border = 0, above P4‒M2; 1, above M3; 2, behind M3   

 -With the skull aligned with the upper dentition as a plane, the anterior most border of 

the orbit is directly dorsal to the P4-M2 (0), M3 (1), or posterior to the M3 (2). 

14. Lacrymal: processus lacrymalis = 0, present; 1, absent  

 -The lacrimal process in rhinos is anterior in the orbit, just above the median anterior-

posterior division of the orbit to slightly more dorsal. The process usually projects 

posterior-laterally. If the process is present (0), if process is absent (1).   

15. Frontal: processus postorbitalis = 0, present; 1, absent   

-The post orbital process projects ventrally from the frontal bone forming the rear 

of the orbit. No rhinocerotid taxa form a complete post orbital bar, however some 

taxa pocess a significant process. Any degree of process is coded as the process 

being present (0) in this case, while a total absence is (1). 

16. Maxillary: anterior base of the processus zygomaticus maxillari = 0, high; 1, low  

-Where the zygomatic arch joins into the maxillary bone, does the suture extend 

the connection of the maxillary bone all the way to the orbit (0) or terminate 

before reaching the orbit (1).  

17. Zygomatic arch = 0, low; 1, high; 2, very high   

-The median portion of the Zygomatic arch dips ventrally towards the tooth row 

(0), is relatively flat lying, without any portion extending ventrally (1), or extends 

dorsally in the medial most portion (2).  
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18. Zygomatic arches: dorsoventral depth: 0, shallow (<75mm); 1, deep (≥75mm)  

 -in the median to anterior portion of the zygomatic arch, when viewed laterally, 

the dorsoventral depth is shallow(1) or deep(1). 

19. Zygomatic arches: depression at the external surface of the anterior part: 0, absent; 1, 

present  

 -A concave portion of the anterior most edge of the zygomatic arch is present (0) 

as compared to the entire anterior portion of the arch structure is convex (1).  

20. Zygomatic ach: constriction of the ventral edge anterior to the temporal condyle: 0, 

present; 1, absent  

 -The anterior most portion of the zygomatic arch, where it curves medially, 

constricts on the ventral edge where the edge moves dorsally (0). If no constriction is 

present (1). 

21. Zygomatic arches: process on the posterior end of the dorsal edge: 0, present; 1, 

absent  

 -When present (0) this is generally a small cone-shaped protrusion on the 

posterior most dorsal surface of the zygomatic arch. If not present (1) the dorsal margin 

of the zygomatic arch maintains a smooth profile. See supplemental figure Character 21.  

22. Zygomatic arch: processus postorbitalis = 0, present; 1, absent  

 -Again, while no included taxa form a post orbital bar, the post orbital process is 

the ventral portion, where part of the zygomatic bone extends dorsally. This is most 

commonly in the form of a small cone shaped structure in the medial most portion of the 

zygomatic arch (0). If not present (1) the medial portion of the zygomatic arch maintains 

a smooth dorsal profile. See also supplementary figure Character 23 for an example from 

Chilotherium licenti. 

23. Zygomatic arch: processus postorbitalis = 0, on jugal; 1, on squamosal  

 -If a post orbital process is present (0 on character 22), it is more anterior and 

forms on the jugal (zygomatic) bone (0) or is more posterior and forms on the squamosal 

bone (1). See supplemental figure Character 23. 

24. Jugal/squamosal: suture = 0, smooth; 1, rough 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 -In the portion of the zygomatic arch where the jugal and squamosal bone suture, 

does the suture form a smooth extended “S” shape (0), or does it have a rougher, more 

goniatic, suture (1). 

25. Skull: dorsal profile = 0, flat; 1, concave; 2, very concave  

 -If the skull is viewed laterally, the profile from the posterior most portion of the 

occipital bone to the anterior most portion of the nasal bone forms roughly a straight line 

(0), is concave with the nasals and occipital slightly more dorsal than the median portion 

of the skull (1), or the nasals and occipital are so raised compared to the median portion 

of the profile that the skull is dish shaped (2). See supplemental figure for an example of 

Character 24 in state 2. 

26. Sphenoid: foramen sphenorbitale and f. rotundum = 0, distinct; 1, fused  

 -When viewed looking at the ventral surface of the skull, the sphenoid bone has 1-

2 foramen. If these foramen merge across the median axis on the palate, then the 

character state is (1), whereas if two distinct foramen persist then (0). As this bone is 

extremely thin, this feature is not preserved in most specimens to an extent that allows the 

character to be coded.  

27. Squamosal: area between temporal and nuchal crests = 0, flat; 1, depression  

 -When viewing the skull laterally, the nuchal crest connects to the temporal crest 

at the posteriodorsal most point. If this area outlines by the afore mentioned features form 

a depression than (1), whereas if the crest rise above an area that is flat in the central 

portion and then steeply rises into the crests (0).  

28. External auditory pseudo‒meatus = 0, open; 1, partially closed; 2, closed  

 -The external auditory meatus is formed from two bones closing to form a tube 

shape. In many rhinos this is still two separate bones, with each bone forming a lunate 

shape when viewed laterally, connected on the dorsal side (0). If the ventral opening, 

when viewed laterally, is showing contact between the two bones, it is considered 

partially closed (1). Both sides must be fused forming a tube (2) to be considered closed. 

See Supplementary figure Character 28 for an example of character state 2 from 

Chilotherium habereri.  

29. Occipital side = 0, inclined forward; 1, vertical; 2, inclined backward  

 -When viewed laterally, with the molar portion of the tooth row leveled, the 
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posterior most visible portion of the occipital bone is inclined forward (0), vertical (1), or 

backwards (2). For an example of character state 2 see Chilotherium primigens in the 

Supplemental Figures Character 29.  

*This character was removed for later analyses. This character seems to variable within 

species, when larger sample sizes are examined (such as Subhyracodon and Teleoceras) 

and can also be hard to separate from diagenic alteration. 

30. Occipital: ventral end of the paraoccipital process relative to the postglenoid process: 

0,  

under; 1, above; 2, nearly equal  

 -The paraoccipital process and the post glenoid process together form two finger-

like projections ventrally, when viewed laterally. When the skull is leveled relative to the 

molar portion of the tooth row, the two processes may be level in maximum extent (2), or 

have the posterior of the two processes, the paraoccipital extend farther ventrally than the 

post glenoid process (0), or the postglenoid process extend ventrally to the paraoccipital 

process (1).  

31. Occipital: ventral end of the paraoccipital processes: 0, inclined anteriorly; 1, inclined 

posteriorly; 2, straight  

 -The paraoccipital process, the posterior of the two ventrally projecting processes, 

when the skull is leveled relative to the molar portion of the tooth row, projects forward 

(0), is vertical (1), or projects posteriorly (2).  

32. 20 Occipital: nuchal tubercle = 0, little developed; 1, developed; 2, very developed 

-A projecting tubercle off of the nuchal crest on the occipital bone when viewed 

from the posterior. If absent (0), or a slight thickening of the profile of the crest (1), if a 

pronounced cone-shaped protrusion (2). See Supplemental Figure Character 32 for an 

example of a state 2 as shown in Chilotherium primigens.   

33. Skull: back of teeth row = 0, in the posterior half; 1, restricted to the anterior half  

 -If the skull, viewed in lateral view, is leveled given the occlusal surface of the 

molars, the posterior edge of M3 is before the anteroposterior midpoint of the skull (1), or 

is posterior to the midpoint of the skull (0).  

34. Pterygoid: posterior margin = 0 nearly horizontal; 1, nearly vertical 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 -The pterygoid bone, where it projects posterior to the M3, points out posteriorly 

when viewed laterally (0), or curves upwards sharply posterior to the M3 (1).  

35. Skull = 0, dolichocephalic; 1, brachycephalic  

 -Brachycephalic, defined as a foreshortened skull compared to the norm, is herein 

defines as a skull that is broad compared to the overall length, when comparing the 

maximum width across the posterior edge of the zygomatic arches. Teleoceras fossiger 

would be an example of a brachycephalic skull, whereas Subhyracodon copei would be 

an example of dolichocephalic. 

36. Skull: narrowing of dorsal surface anterior the orbit: 0, gradual; 1, abrupt  

 -The skull narrows, angled at roughly around 45 degrees, in toward the median 

line when viewed from above (1), as compared to the skull continuing posteriorly at 

roughly the same thickness to a slight narrowing (0). See the two supplemental figures, 

Character 36A is Chilotherium primigens (state 1) and Character 36B Chilotherium 

licenti (state 0).  

37. Skull: widest part of the dorsal surface: 0, at level of postorbital process area; 1, at 

level of supraorbital process  

 -The postorbital process area sits just posterior to the orbit, regardless of is the 

taxon possesses postorbital processes or not. The supraorbital process sits in the front 

third of the orbit region. The skull of Chilotherium primigens has red bars drawn on both 

sites, with the supraorbital process site being the widest (1) (Supplemental Figure 

Character 37). 

38. Nasal bones: rostral end = 0, narrow; 1, broad; 2, very broad  

 -The rostral, or anterior, end of the nasal bones end in a narrow point (0), is 

relatively blunt and rounded on the anterior end (1), or is thickened and almost hammer-

like (2).  

39. Nasal bones = 0, totally separated; 1, anteriorly separated; 2, fused  

 -At the anterior portion of the nasal bones are the separate (0), touching but with a 

distinct separation at the anterior tip (1), or fully fused together (2). 

40. Nasal bones = 0, long; 1, short; 2, very long 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 -Long nasals are generally also narrow. Short nasals tend to form more a 

triangular shape than the long or very long nasals, which poses roughly parallel lateral 

outlines.  

41. Median nasal horn = 0, absent; 1, present  

 -While the horn is not preserved, the rugose texture of the nasal bone indicates 

presence of a horn. A median nasal horn span the suture in the nasal bone. 

42. Median nasal horn = 0, small; 1, developed  

 -Developed refers to the diameter of the rugose area relative to the size of the 

skull. 

43. Paired nasal horns = 0, absent; 1, present  

 -As seen in Menoceras, two distinct areas of rugosity on either side of the suture 

in the median of the nasal bone. 

44. Paired nasal horns = 0, terminal bumps; 1, lateral crests  

45. Frontal horn = 0, absent; 1, present  

 -A more posterior horn, in contact with the frontal bone and not just the nasal 

bones. 

46. Frontal horn = 0, small; 1, huge  

47. Orbit: lateral projection = 0, absent; 1, present  

 -When viewed from dorsally, the orbits project out laterally noticeably away from 

the skull (1). In taxa lacking this trait, the exact position of the orbits is not visible from a 

dorsal view. (0) 

48. Zygomatic width/frontal width = 0, less than 1.5; 1, more than 1.5  

 -When measured from a dorsal view, the width across the widest portion of the 

zygomatic arches is 1.5 times or less the width of the frontal bone at the same position 

(0). Shown in Supplemental Figure Character 48 on Chilotherium sp. nov. character state 

1. 

49. Frontal‒parietal = 0, sagittal crest; 1, close frontoparietal crests; 2, distant crests 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 -A sagittal crest (0) in a single structural feature running along the median of the 

skull. Close frontoparietal crests are nearly fused into one structure, but have a crack or 

slot between the two parallel ridges (1). Distinct crest have a flattened area between the 

distinct crests, which may or may not be directly parallel to each other or slightly concave 

towards the median line (2).  

50. Occipital crest: transverse expansion: 0, narrow; 1, wide  

 -The occipital crest, Or the most central portion of the nuchal crest connecting the 

sagittal crest may narrowly connect to the posterior most portion of the sagittal crest (0) 

or have a broad connection (1).   

51. Parietal crest: dorsal surface: 0, concave; 1, prominent  

 -The parietal crest, or posterior portion of the sagittal crest, when viewed in 

profile is slightly curved downwards (0) or is strongly pronounced and either level or 

projecting slightly upwards (1). The structure most form a notable crest, and not just be 

an upturning of the entire posterior of the skull.  

52. Occipital crest = 0, concave; 1, straight; 2, forked  

 -When viewed from the posterior, the occipital crest forms the dorsal most outline 

of the skull. If this is shallowly concave, with a general U-shaped curve, then (0). If the 

profile is straight across (1), and if it forms a steeply sided fork ending in a V-shape as 

the base, then (2).  

53. Maxillary: processus zygomaticus maxillari, anterior tip = 0, progressive; 1, brutal  

 -Where the zygomatic arch connects into the maxillary bone is a small cone-

shaped bump. If this process is smooth and angled somewhat anteriorly, it is progressive 

(0), whereas is its roughened and almost rugose in texture, while projecting primarily 

laterally, it is brutal (1).  

54. Vomer = 0, acute; 1, rounded  

 -If the vomer projects as a very thin ridge and narrows quickly, it is acute (0), if it 

tapers more gradually into the palate, than it is rounded (1). 

55. Squamosal: articular tubercle = 0, smooth; 1 high  

 -The articular tubercle, on the posterior ventral most surface of the zygomatic 
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arch, may either be low in profile and smooth (0), or project out noticeably from the rest 

of the zygomatic (1).  

56. Squamosal: transversal profile of articular tubercle = 0, straight; 1, concave  

 -When viewed from the ventral surface, the articular tubercle is deeply grooved 

with a concave surface (1), or presents more as a flat shelf, with no internal groove (0).  

57. Squamosal: foramen postglenoideum = 0, distant from the processus postglenoidalis; 

1, close to it  

 -When viewing the skull from the ventral surface, the postglenoid foramen is 

situated posterior to the glenoid fossa. It can either be relatively lateral near the 

postglenoid process (1), or displaced more medially, away from the postglenoid process 

(0).  

58. Squamosal: processus postglenoidalis = 0, flat; 1, convex; 2, dihedron  

 -When viewing the anterior and ventral surfaces of the postglenoid process, it can 

form a small plateau, with a level ventral surface (0), a small hook shape with the hook 

opening towards the anterior (1), Or have steeply sloping sides with distinct ridges 

making a dihedron shape when viewed ventrally (2).  

59. Basioccipital: foramen nervi hypoglossi = 0, in the middle of the fossa; 1 shift antero-

externally  

 -The hypoglossal canal sits just inside or just externally of the foramen magnum. 

60. Basioccipital: sagittal crest on the basilar process = 0, absent; 1, present  

 -Looking directly at the foramen magnum, the basilar process sits directly ventral 

to the opening. A sagittal crest is usually a small ridge initiating within a centimeter of 

the foramen magnum and extending anteriorly along the basilar process when present (1). 

When absent, the whole basilar process is smooth and convex in profile (0).  

61. Squamosal: posterior groove on the processus zygomaticus = 0, absent; 1, present  

 -The posterior edge of the zygomatic process has a mediolateral groove (1), or 

presents are a straight vertical surface to a convex surface when viewed laterally (0).  

62. Squamosal‒occipital: processus posttympanicus and processus paraoccipitalis = 0, 
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fused; 1, distant  

 -The post tympanic process is present in basal rhinocerotids, as well as the 

teleoceracid lineages. It forms a thin wing-like projection when not connected to the 

paraoccipital process (1). 

63. Squamosal: processus posttympanicus = 0, well developed; 1, little developed; 2, 

huge  

 -only if present in the last character can this character be well developed or huge.  

64. Occipital: processus paraoccipitalis = 0, well developed; 1, little developed  

 -The process just anterior to the lateral margin of the occipital condyles. Well 

developed (0) it is very robust, as opposed to the more finger-like nature of a little 

developed paraoccipital process (1). 

65. Nuchal face: outline: 0, bell‒shaped; 1, trapezoidal; 2, square  

 -Viewing the skull from the posterior, the main face of the back of the skull, 

outlines by the nuchal crests, form a bell shape (0), a trapezoid with the smaller limb 

across the top (1), or a square (2). 

66. Magnum foramen: dorsal incision: 0, absent; 1, present  

 -The dorsal incision, when present, is a small notch extending dorsally from the 

otherwise ovate foramen magnum. In some literature, this is referred to as being “onion 

shaped”.  

67. Occipital: foramen magnum = 0, circular; 1, subtriangular  

 -The foramen magnum can be either circular (0) or somewhat triangular, with 

rounded edges and the ventral portion being wider that the narrow dorsal portion (1).  

68. Basioccipital: median ridge on the condyle = 0, absent; 1, present  

 -the most median edge of the occipital condyle forms a ridge before opening to 

the foramen magnum.  

69. Basioccipital: medial truncation on the condyle = 0, absent; 1, present  

 -The condyle truncates abruptly before the opening to the foramen magnum (1), 
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or the surface of the condyle smoothly wraps anteriorly into the foramen magnum (0).  

70. Basioccipital: medial truncation on the condyle = 0, present at juvenile stage; 1, still 

present at adult stage  

 -If last character was a 1, then character 70 can be coded as a (1) even without 

juvenile material available. If no juvenile material is available, and last character was a 

(0), then this character is left (?) 

Mandible  

71. Symphysis = 0, very upraised; 1, upraised; 2, nearly horizontal  

 -Very upraised, is when the posterior/dorsal surface of the symphysis is almost 

facing directly posterior (0), upraised is when the posterior/dorsal surface forms a distinct 

slope, increasing in height anteriorly (1), and nearly horizontal is when the symphysis 

projects anteriorly almost as a shelf (2). 

72. Symphysis = 0, spindly; 1, massive; 2, very massive  

 -Spindly is a very narrow anteroposterior connection (0), whereas massive is a 

much thicker connection, and very massive is a symphysis that extends far beyond the 

tooth row and is around 50% of tooth row length or greater. 

73. Symphysis: ventral surface: 0, flat; 1, concave  

74. Symphysis: constriction before the lower cheek teeth row: 0, absent; 1, present  

 -When viewed from above, the bone of the mandible forms a “chromosome 

shaped” X, with the limbs of the X being the tooth row and then extending out on the 

mandibular symphysis to tusks.  

75. Symphysis: crest along the diastema: 0, slender; 1, stout  

 -stout is defined as both vertical and horizontal robustisity.  

76. Symphysis: posterior margin = 0, in front of p2; 1, level of p2‒4  

 - When viewed from above, the posterior most edge of the symphysis is either in 

front of the teeth of behind the teeth.  

77. Foramen mentale = 0, in front of p2; 1, level of p2-4 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78. Corpus mandibulae: lingual groove = 0, present; 1, absent  

79. Corpus mandibulae: lingual groove = 0, still present at adult stage; 1, present at 

juvenile stage only  

80. Corpus mandibulae: base = 0, straight; 1, convex; 2, very convex  

 -Basically, how strongly curved is the base of the jaw? An example of character 

state 2 would be Aphelops megalodus 

81. Mandible: orientation of row of lower cheek teeth: 0, not parallel to long axis of 

mandible; 1, parallel to long axis of mandible  

 -When viewed from dorsally, does the tooth row follow the line of the mandible 

or not?  

82. Ramus = 0, vertical; 1, inclined forward; 2, inclined backward  

 -Is the anterior most edge of the ascending ramus, when viewed laterally, vertical 

(0), or inclined in either direction?  

83. Ramus: processus coronoideus = 0, well developed; 1, little developed  

 -When little developed, the dorsal most portion of the coronoid process comes to 

a sharp tip, rather than a blunt and rounded feature in (0) 

84. Foramen mandibulare = 0, below the teeth neck; 1, above the teeth neck  

Teeth  

85. Compared length of the premolars/molars rows = 0, (100 x LP3‒4/LM1‒3) > 50; 1, 

42 < (100 x LP3‒4/LM1‒3) < 50; 2, (100 x LP3‒4/LM1‒3) < 42  

86. Cheekteeth: enamel foldings = 0, absent; 1, weak; 2, developed; 3, intense  

87. Cheekteeth: cement = 0, absent; 1, present  

88. Cheekteeth: cement = 0, weak or variable; 1, abundant  

89. Cheekteeth: shape of enamel = 0, wrinkled; 1, wrinkled and corrugated; 2, corrugated 

and arborescent  

 -Corrugated is the extention of “wrinkles” most of the crown height of the tooth. 
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Arborescent is complicated branching patterns in the textured enamel of the crowns. 

Most apparent on the labial surface typically.  

90. Cheekteeth: crown = 0, low; 1, high  

91. Cheekteeth: crown = 0, high; 1, partial hypsodonty; 2, subhypsodonty; 3, hypsodonty  

92. Cheekteeth: roots = 0, distinct; 1, joined; 2, fused  

 -Often related to the degree of hypsodonty, more hypsodont teeth form less 

distinct roots. Roots that are distinct also typically angle out from the enamel dentine 

juncture to an extent.  

93. I1 = 0, present; 1, absent  

94. I1: shape of the crown (cross section) = 0, almond; 1, oval; 2, half moon  

95. I2 = 0, present; 1, absent  

96. I3 = 0, present; 1, absent  

97. C1 = 0, present; 1, absent  

98. i1 = 0, present; 1, absent  

99. i1: crown = 0, developed, with a pronounced neck; 1, reduced  

100. i2 = 0, present; 1, absent   

 -If present, usually the protruding tusk in the lower dentition.  

101. i2: shape = 0, incisor‒like; 1, tusk‒like   

 -Earlier rhinos retained more incisors, and were more likely to have canines present. In 

most of the “tusked” rhinocerotids, the tusks are formed by the i2. If the i2 is 

greatly enlarged AND projects at a different angle than i1, it would be considered 

tusk-like (1).  

102. i2: orientation = 0, parallel; 1, divergent   

 -If tusks are present, do they project forwards in a continuation of the tooth row angle 

(0), or do they angle laterally (1).  
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103. i2: upturning of the internal edge: 0, absent; 1, present   

 -Forms a flange on the median edge of the tusk (1), or tusk is ovate or conical in cross 

section (0). 

104. i3 = 0, present; 1, absent   

105. c1 = 0, present; 1, absent   

106. Upper cheek teeth: lingual rim of row of cheek teeth: 0, arched; 1, always straight 

  

107. Upper cheek teeth: branch of the crochet and crista: 0, always absent; 1, 

occasionally  present; 2, always present  

108. Upper cheek teeth: protocone constricted: 0, anteroposteriorly; 1, just anteriorly   

109. Upper cheek teeth: expansion of the lingual cusps: 0, absent; 1, present   

110. Upper cheek teeth: crista: 0, one; 1, always doubled   

111. Upper premolars: V-shaped incision on the lingual cingulum around the entrance 

of  the median valley: 0, absent; 1, present  

112. Upper premolars: labial cingulum = 0, always present; 1, usually present; 2, 

usually absent; 3, always absent  

113. P2‒4: crochet = 0, always absent; 1, usually present; 2, always present   

114.  P2-4: crochet = 0, always simple; 1, usually simple; 2, usually multiple   

115. P2‒4: metaloph constriction = 0, absent; 1, present   

116. P2‒4: lingual cingulum = 0, always present; 1, usually present; 2, usually absent; 3,  

always absent  

117. P2‒4: lingual cingulum = 0, continuous; 1, reduced   

118. P2-4: postfossette = 0, narrow; 1, wide; 2, posterior wall  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119. P2-3: antecrochet = 0, always absent; 1, usually absent; 2, usually present; 3, 

always present  

120. P1 (in adults) = 0, always present; 1, usually present; 2, always absent   

121. P1: antero‒lingual cingulum = 0, present; 1, absent   

122. P2 = 0, present; 1, absent   

123. P2: protocone and hypocone = 0, fused; 1, lingual bridge; 2, separated; 3, lingual 

 wall  

124.  P2: metaloph = 0, hypocone posterior to metacone; 1, transverse; hypocone 

anterior to metacone  

125.  P2: lingual groove = 0, present; 1, absent   

126.  P2: protocone = 0, equal or stronger than the hypocone; 1, less strong than the 

 hypocone  

127.  P2: protoloph = 0, present; 1, absent   

128.  P2: protoloph = 0, joined to the ectoloph; 1, interrupted   

129. P3‒4: medifossette = 0, always absent; 1, usually absent; 2, usually present; 3, 

 always present  

130. P3‒4: constriction of the protocone = 0, always absent; 1, usually absent; 2, 

usually present; 3, always present  

131. P3‒4: protocone and hypocone = 0, fused; 1, lingual bridge; 2, separated; 3, 

lingual wall  

132.  P3‒4: metaloph = 0, transverse; 1, hypocone posterior to metacone; 2, hypocone 

anterior to metacone  

133. P3: protoloph = 0, joined to the ectoloph; 1, interrupted   

134. P3: crista = 0, always absent; 1, usually absent; 2, usually present; 3, always 

 present  
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135.  P3: pseudometaloph = 0, always absent; 1, sometimes present   

136.  P4: antecrochet = 0, always absent; 1, usually absent; 2, usually present; 3, 

always present  

137. P4: hypocone and metacone = 0, joined; 1, separated   

138.  Upper molars: labial cingulum = 0, always present; 1, usually present; 2, usually 

 absent; 3, always absent  

139. Upper molars: antecrochet = 0, always absent; 1, usually absent; 2, usually 

present; 3, always present  

140. Upper molars: base of the antecrochet spread toward the entrance of the median 

valley: 0, absent; 1, present  

141. Upper molars: crochet = 0, always absent; 1, usually absent; 2, usually present; 3, 

always present  

142.  Upper molars: crista = 0, always absent; 1, usually absent; 2, usually present; 3, 

always present  

143.  Upper molars: medifossette = 0, always absent; 1, usually absent; 2, usually 

present  

144.  Upper molars: lingual cingulum = 0, always present; 1, usually present; 2, 

usually absent; 3, always absent  

145. M1‒2: constriction of the protocone = 0, always absent; 1, usually absent; 2, 

usually present; 3, always present  

146. M1‒2: constriction of the protocone = 0, weak; 1, strong   

147. M1‒2: paracone fold = 0, present; 1, absent   

148. M1‒2: paracone fold = 0, strong; 1, weak   

149. M1‒2: metacone fold = 0, present; 1, absent   

150. M1‒2: metastyle = 0, short; 1, long  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151. M1‒2: metaloph = 0, long; 1, short   

152. M1‒2: posterior part of the ectoloph = 0, straight; 1, concave   

153. M1‒2: cristella = 0, always absent; 1, usually present; 2, always present   

154. M1‒2: posterior cingulum = 0, continuous; 1, low and reduced   

155. M1: metaloph = 0, continuous; 1, hypocone isolated   

156. M1: antecrochet-hypocone = 0, always separated; 1, sometimes joined; 2, always 

 joined  

157. M1: postfossette = 0, present; 1, usually absent   

158. M2: protocone, lingual groove = 0, always absent; 1, usually absent; 2, always 

 present  

159. M2: metaloph = 0, continuous; 1, hypocone isolated   

160. M2: mesostyle = 0, absent; 1, present   

161. M2: mesostyle = 0, weak; 2, strong   

162. M2: antecrochet and hypocone = 0, separated; 1, joined   

163. M3: ectoloph and metaloph = 0, distinct; 1, fused (ectometaloph)   

164. M3: shape = 0, quadrangular; 1, triangular   

165. M3: constriction of the protocone = 0, always absent; 1, usually absent; 2, always 

present  

166. M3: protocone = 0, trefoil‒shape; 1, indented   

167. M3: protoloph = 0, transverse; 1, lingually elongated   

168. M3: posterior groove on the ectometaloph = 0, present; 1, absent   

169. p2-3: vertical external rugosities = 0, absent; 1, present   



 

 

 

215 

170.  Lower cheekteeth: external groove = 0, developed; 1, smooth, U-shaped; 2, 

 angular, V-shaped  

171.  Lower cheekteeth: external groove = 0, vanishing before the neck; 1, developed 

until the neck  

172. Lower cheekteeth: paralophid: 0, nearly reach the lingual rim; 1, away from the 

lingual rim  

173. Lower cheekteeth: occlusal outline of the trigonid basin: 0, U-shaped; 1, V-

shaped   

174.  Lower cheekteeth: trigonid = 0, angular; 1, rounded   

175.  Lower cheekteeth: trigonid = 0, obtuse or right dihedron; 1, acute dihedron   

176.  Lower cheekteeth: metaconid = 0, joined to the metalophid; 1, constricted   

177.  Lower cheekteeth: entoconid = 0, joined to the hypolophid; 1, constricted   

178.  Lower premolars: lingual opening of the posterior valley = 0, U-shape; 1, narrow, 

V-shape  

179.  Lower premolars: lingual cingulum = 0, always present; 1, usually present; 2, 

usually absent; 3, always absent  

180. Lower premolars: lingual cingulum = 0, reduced; 1, continuous   

181.  Lower premolars: labial cingulum = 0, present; 1, absent   

182.  Lower premolars: labial cingulum = 0, continuous; 1, reduced   

183.  d1/p1 (in adults) = 0, always present; 1, usually present; 2, usually absent; 3, 

always absent  

184.  d1: 0, always two-rooted; 1, usually two-rooted; 2, always one-rooted   

185.  p2 = 0, always present; 1, usually present; 2, always absent   

186.  p2: paralophid = 0, isolated, spur-like; 1, curved, without constriction  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187. p2: paraconid = 0, developed; 1, reduced   

188. p2: posterior valley = 0, lingually open; 1, usually closed; 2, always closed   

189. Lower molars: lingual cingulum = 0, always present; 1, usually present; 2, usually 

absent; 3, always absent  

190. Lower molars: lingual cingulum = 0, reduced; 1, continuous   

191. Lower molars: labial cingulum = 0, always present; 1, usually present; 2, usually 

 absent; 3, always absent  

192. Lower molars: labial cingulum = 0, continuous; 1, reduced   

193. Lower molars: hypolophid = 0, transverse; 1, oblique; 2, almost sagittal   

194. m2-3: lingual groove of the entoconid = 0, absent; 1, present   

195. dI1 = 0, present; 1, absent   

196. dI2 = 0, present; 1, absent   

197. D2: mesostyle = 0, present; 1, absent   

198. D3-4: mesostyle = 0, absent; 1, present   

199. D2: lingual wall = 0, absent; 1, present   

200. D2: secondary folds = 0, absent; 1, present   

201. D2: mesoloph = 0, absent; 1, present   

202. di1 = 0, present; 1, absent   

203. di2 = 0, present; 1, absent   

204. Lower milk teeth: constriction of the metaconid = 0, present; 1, absent   

205. Lower milk teeth: constriction of the entoconid = 0, absent; 1, present  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206. Lower milk teeth: protoconid fold = 0, present; 1, absent   

207. d1 (in juveniles) = 0, present; 1, absent   

208. d2-3: vertical external roughnesses = 0, absent; 1, present   

209. d2-3: ectolophid fold = 0, present; 1, absent   

210. d2: anterior groove on the ectolophid = 0, absent; 1, present   

211. d2: paralophid = 0, simple; 1, double   

212. d2: posterior valley = 0, always open; 1, usually open; 2, usually closed; 3, always 

closed  

213. d3: paralophid = 0, double; 1, simple   

214. d3: lingual groove on the entoconid = 0, always absent; 1, usually absent; 2, 

always present  
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