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Title: A Paleoethnobotanical Approach to 14,000 years of Great Basin Prehistory: 

Assessing Human-Environmental Interactions through the Analysis of 

Archaeological Plant Data at Two Oregon Rockshelters 

 

 

Well-preserved plant remains recovered from archaeological deposits at the 

Paisley Five-Mile Point Caves and Little Steamboat Point-1 Rockshelter in southcentral 

Oregon provided a rare opportunity to study ancient plant resources used by northern 

Great Basin indigenous groups and their ancestors with Western Stemmed technologies. 

Macrobotanical analysis of cultural features and vertical columns spanning the Terminal 

Pleistocene and Holocene epochs in the rockshelter repositories yielded thousands of 

seeds and charcoal fragments that can be attributed to human activities. Data generated in 

this analysis have provided evidence of paleoenvironments along with the diets and social 

behaviors of people visiting northern Great Basin rockshelters as a stopover on their 

seasonal subsistence rounds. 

The preponderance of upland shrubs and herbs in the assemblages at both 

archaeological sites indicates vegetation in the immediate vicinity of the rockshelters was 

fairly stable over the past 14,000 years. The macrobotanical data complemented local and 

regional pollen analyses to refine the paleoecological proxy data and address 

uncertainties regarding the proximity of wetland plants and pine (Pinus sp.) to the 

rockshelters in the past. 
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Samples originating from Younger Dryas deposits at the Paisley Caves and Late 

Holocene deposits at the Paisley Caves and LSP-1 Rockshelter suggest increased 

visitation frequency in these periods. The diverse assemblage of cultural plant remains 

during these times also indicate a broad diet breadth for Great Basin foragers, which 

included small seeds, nuts and berries, and root vegetables. The presence of an earth oven 

feature dating to the Terminal Pleistocene/Early Holocene (TP/EH) in Paisley Cave 5 

further demonstrates sophisticated traditional knowledge of plant foods and cooking 

techniques as early as 12,000 cal BP. This study also generated data chronicling the deep 

historical roots of traditionally valued economic plant foods. Cheno-ams, grasses 

(Poaceae), and tansymustards (Descurainia sp.) are well-represented in fire hearths at the 

Paisley Caves and LSP-1 Rockshelter through time.  

Analysis of a bushytailed woodrat (Neotoma cinerea) nest in deposits dating to 

the TP/EH demonstrates rodents living in the Paisley Caves routinely scavenged 

resources from cultural activity areas, and raised questions about whether people 

recognized the woodrats’ nests as a reliable resource of cached edible seeds.  
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CHAPTER I 

INTRODUCTION 

 

1.1. Project Introduction 

 

Human-environmental interactions have far-reaching, significant effects on 

current biogeographic conditions as well as on the manifestation of culture and the 

inherited landscapes of our ancestors. For this reason, archaeological inquiry necessitates 

investigations that consider not only the human-crafted material traces of past cultures, 

but also the flora and fauna associated with archaeological contexts. Archaeological 

studies have shed light on several issues connected to people, plants, and animals. Some 

studies focus on the predator-prey relationships inherent in subsistence economies (e.g., 

human behavioral ecology), others on the genetic manipulation of plant and animal 

species (e.g., the use of fire in landscape management or domestication and agriculture), 

and still others on inherited ecologies (e.g., the onset of the Anthropocene or cultural 

niche construction theory). In the Great Basin desert of western North America, 

archaeological plant studies in cave and rockshelter settings can illuminate a broad 

understanding of long-term landscape adaptations practiced by anatomically modern 

humans.  

Knowledge acquisition pertaining to prehistoric subsistence strategies has been an 

overarching goal of archaeological research in the Great Basin (Cressman 1940; 

Cressman et al. 1942; Helzer 2001; Prouty 2004; Stenholm 2004; Wingard 2001). My 

dissertation research follows in the tradition of scholarly works investigating the 

reciprocity of human-environmental interactions in the northern Great Basin (e.g., Aikens 
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and Jenkins 1994; Aikens et al. 1977; Grayson 2011; Helzer 2001; Jenkins et al. 2004; 

Sanford 1983) by identifying and analyzing macroscopic plant remains found in 

archaeological contexts. Building on previous research conducted in North America’s 

arid intermountain west, this project provides an independent avenue of investigation for 

detecting and interpreting the role of plant exploitation in the subsistence economies of 

the northern Great Basin throughout the terminal Pleistocene and Holocene epochs.  

The current investigation focuses on paleoethnobotanical remains from dry 

rockshelter sites in southcentral Oregon’s northern Great Basin (Figure 1.1). Dry cave 

sites are especially conducive to archaeological plant studies because delicate ecofacts 

preserve in arid conditions. This dissertation will make key contributions to 

understanding hunter-gatherer subsistence patterns by providing culturally-mediated 

paleovegetation data for the northern Great Basin. The study of macrobotanical ecofacts 

is essential to understanding evolutionarily reciprocal relationships between culture and 

environment, even though these data are not always available due to taphonomic 

considerations (Gallagher 2014). Superior preservation conditions in the rockshelters 

examined in this research permit the study of archaeological plant macrobotanical 

remains. Globally, rockshelter archaeology has provided insights into notable milestones 

of humanity since our ancient relatives immigrated out of Africa. Cultural deposits in 

rockshelters have revealed the independent origins of agriculture (e.g., Jones and Liu 

2009; Piperno and Flannery 2001; Zeder 2011), provided the earliest evidence of art and 

symbolism (e.g., Aubert et al. 2014), and illuminated aspects of early ritual behaviors 

(e.g., Solecki 1977). 
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Plant materials recovered from two rockshelter sites with well-documented 

episodes of human residency in the northern Great Basin provide the basis for this study: 

the Paisley Five Mile Point Caves (Paisley Caves), located along the margin of Summer 

Lake in Lake County, Oregon, and Little Steamboat Point-1 Rockshelter (LSP-1 

Rockshelter) in the Northern Warner Valley, Harney County, Oregon (Figure 1.2). The 

Paisley Caves are situated along a remnant shoreline of pluvial Lake Chewaucan and 

LSP-1 Rockshelter lies north of pluvial Lake Warner.  

  

Figure 1.1. Location of study area in western North America. 
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The Paisley caves were utilized as short-term campsites as early as 14,500 cal BP 

(Gilbert et al. 2008a, 2008b), with megafaunal remains documented as much as 14,600 

cal BP (Jenkins 2007; Jenkins et al. 2012a, 2012b, 2013). The LSP-1 Rockshelter site 

displays evidence of intermittent human habitation beginning at 9700 cal BP. The well-

defined stratigraphy of these two sites encompasses human occupations extending over 

the past 12,000-plus radiocarbon years. The protracted time depth of the research 

contributes to current knowledge of long-term cultural patterns in the Desert West, as it 

provides an exemplary study on human adaptation in changing climatic conditions.  

Figure 1.2. Mapped location of study sites in southcentral Oregon. 
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The plant data are analyzed to address three lines of inquiry (see Chapter three for 

specific research hypotheses). The first set of questions relates to plant use among 

Paleoindians, the earliest hunting and gathering groups in the Americas at the boundary 

of the Late Pleistocene/Early Holocene and Younger Dryas periods. Presently, little is 

known of Paleoindian lifeways and subsistence in the Great Basin because most ancient 

sites occur in open settings with poor organic preservation (Smith and Kielhofer 2011). 

Rockshelters in the Great Basin were frequently used as temporary camp sites and thus 

have the potential to contain deposits reflecting the earliest traces of human culture and 

foraging behaviors in the Western Hemisphere.  

The second set of questions considers whether cultural-environmental interactions 

identified in ancient times persisted into the Late Holocene and even to the non-

indigenous contact period. Rockshelter utilization spans several millennia at some 

Oregon sites (Minor et al. 1979:7). Previous research has corroborated the premise that 

small bands of highly mobile foragers in the Great Basin repeatedly visited key sites 

(Minor et al. 1979; Jenkins et al. 2000; Smith and Kielhofer 2011), thereby amassing a 

diachronic record of individual site use.  

Finally, I attempt to detect paleoenvironmental signatures by interpreting patterns 

of taxonomic diversity at each site. Recent studies have shown that rockshelter and cave 

deposits can be used to reconstruct local anthropogenic environments (de Porras et al. 

2011). Paleoenvironmental data generated in this dissertation are evaluated in reference 

to regional paleoclimate data. Recently, scholars have called for a reorientation of 

cultural and environmental correlates in archaeological research that consider the 

intersectionality of multi-scalar data (Contreras 2017). By comparing the macroscopic 
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plant remains to paleoclimate data from the northern Great Basin (e.g., Cohen et al. 2000; 

Davis 1985; Hansen 1947; Licciardi 2001; Minckley et al. 2007; Orme 2008), this work 

will evaluate variations in local plant taxa with respect to cultural practices and plant use.  

This project also provides a foundation for future research that can begin to 

address larger landscape-scale questions related to the historical ecology of the region. 

The historical ecological approach provides a deeper understanding of biological and 

cultural evolution in its acknowledgement of the role of human agency. Using this 

approach, we can develop hermeneutic interpretations of hunter-gatherer lifeways in the 

Great Basin as they are shaped by the physical and biotic landscape.  

 

1.2. Project Setting  

 

1.2.1. The Physical Great Basin 

During his explorations in 1844, John Fremont recognized that a vast portion of 

the intermountain west consists of hydrologically closed systems with interior drainage 

(Wharton et al. 1990; Grayson 2011; Orr and Orr 2002). He named the region the Great 

Basin. Although the size and extent of the Great Basin varies depending on whether it is 

defined hydrologically, physiographically, or floristically, the Great Basin covers 

hundreds of millions of acres of western North America including most of Nevada and 

portions of California, Idaho, Nevada, Oregon, and Utah (Grayson 2011; Figure 1.3).  

Flanked by the Cascade and Sierra Nevada mountain ranges to the west, by the 

Columbia Plateau to the north, and on the east by the Rocky Mountains, the Basin and 

Range Province is a large depression characterized by north-south trending fault blocks 
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interspersed with wide desert valleys. Geology in the region is characterized by a mantle 

of Tertiary sediments and volcanic deposits stemming from the clockwise rotation of 

coastal mountains (Orr and Orr 2012:78-79). The thick deposits of lava and ash are 

underlain by Late Paleozoic and Mesozoic rock slabs. Extension, faulting, and volcanism 

in the Cenozoic resulted in the formation of the parallel, north-south trending uplifted 

fault blocks, and grabens (basins). The alternating basin and range topography is 

especially evident in the northern Great Basin (see Figure 1.4), which extends through 

Oregon east of the Cascade Range from its southern terminus northward to the Columbia 

Figure 1.3. The Great Basin of western North America. 

http://ww.nps.gov 
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Plateau. The northern Great Basin also includes parts of western Idaho, northeastern 

California, and northwestern Nevada.  

The hydrographic Great Basin is so defined by the fact that it is an internally-

draining basin, with no outlets to the ocean. Rivers originating in the mountains terminate 

in the basin lakes or sinks, and the geography and nature of lakes, marshes, or playas is a 

function of changing rates of precipitation and evapotranspiration. Physiographic 

characteristics including aspect, slope, elevation, and mountain range orientation exert 

influence on delivery and cycling of water in the Great Basin (Dobrowolski et al. 1990; 

Wigand 1987). Topographic diversity affects orographic rainfall and results in several 

unique ecological communities across an elevation gradient (Wharton et al. 1990). 

Figure 1.4. Basin and Range block faulting in the northern Great Basin, 

with north-south trending blocks resulting from tectonic uplift and 

crustal spreading accented in red box. 
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Precipitation in the northern Great Basin currently does not generally exceed 300 mm 

annually.   

Although southcentral Oregon is currently characterized by a cool and dry 

climate, the relative water budgets of the lakes dictate the position of wetland ecological 

communities at any given time. Several of the Great Basin’s mountains were glaciated 

during the Pleistocene. Storm tracks likely trended farther south during interglacial 

episodes, leading to a wetter and warmer climatic regime (Scott 1988). As deglaciation 

began, rainfall and mountain runoff resulted in the formation of large pluvial lakes in the 

basins. Lake Chewaucan and Warner Lake were among the largest during the Pliocene 

and Pleistocene (Figure 1.5; Meyers et al. 2015:43).  

Figure 1.5. Pluvial lake extent of Lake Chewaucan and Lake Warner as 

mapped by Grayson (2011). 
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1.2.1.1. The Chewaucan Basin 

Pluvial Lake Chewaucan reached depths of 114 m and covered 1243 km
2
 at its 

high stand (Allison 1982:11). It encompassed the basins now holding Summer Lake, 

Upper and Lower Chewaucan Marshes, and Lake Abert (Figure 1.6; Licciardi 2001). A 

wide alluvial fan has been deposited by the Chewacuan River near the present-day town 

of Paisley. The fan featured prominently in the development of the hydrologic system in 

the basin during the terminal Pleistocene. Approximately 18,000 to 17,000 years ago, 

during the Last Glacial Maximum (LGM) when Lake Chewaucan receded, the river 

channel diverted to the south of the fan into Upper Chewaucan Marsh, dividing present 

day Summer Lake (pluvial Winter Lake) from Lake Chewaucan (Friedel 1993, 2001). 

During the period between 13,850 and 11,000 cal BP, higher lake levels overflowed the 

sub-basin threshholds before receding again  (Friedel 1993, 2001; Licciardi 2001). Today 

the Chewaucan River drains 1606 km
2
 in the basin (Orr and Orr 2012: 78). 

Figure 1.6. Pluvial Lake Chewaucan’s extent (stippled 

fill) in relation to the Paisley Caves and modern day lake 

and marsh locations (Licciardi 2001:546).  
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1.2.1.2. The Warner Valley 

The Warner Valley consists of a series of eight shallow lakes surrounded by tilted 

blocks of Tertiary volcanics (Figure 1.7). These lakes represent remnant portions of 

pluvial Lake Warner. Runoff from the Warner Mountains to the west provides water to 

the valley. To the east, Hart Mountain rises abruptly. The west-facing fault scarps have 

caused an eastward displacement of the long axis of the valley (Weide 1974:6).  

Elevations in the Warner Valley range from 1359 m AMSL on the valley floor to 

2453 m AMSL on Hart Mountain. During the LGM, pluvial Lake Warner reached depths 

of 93 m (1466 m AMSL; Weide 1974:69). It receded from this high stand around 17,000 

Figure 1.7. The Warner Valley, southcentral Oregon. 
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cal BP, continuing to decline throughout the terminal Pleistocene and early Holocene. At 

nearby Hart Lake and at Crump Lake in the southern Warner Valley, near modern 

paludal conditions prevailed before ca. 7700 cal BP (Smith et al. 2014:363).  

 

1.2.2. Flora and Fauna  

Today, the northern Great Basin is characterized by high-desert adapted species of 

grasses and shrubs dependent on precipitation and soil moisture (Franklin and Dyrness 

1988). Native vegetation varies from bluegrasses, sedges, and rushes on drier areas to 

cattails and bulrushes around pond margins (some of which were constructed and 

maintained for wildlife management). Natural stands of western juniper (Juniperus 

occidentalis) are associated with rocky or very stony uplands, lava flows, and ridges 

where understory vegetation is insufficient to help create crown fires during burns 

(Anderson et al. 1998). 

The project area lies in the Shrub-Steppe vegetation zone (Franklin and Dyrness 

1988). The Shrub-Steppe environment contains several opportunistic species that respond 

to increases in precipitation through rapid vegetative growth and pollen and seed 

production (Wigand and Rhode 2002:311). Steep topographic gradients in the Great 

Basin permit plant taxa to relocate to higher or lower elevations to adjust to changing 

climate conditions with relatively little longitudinal movement.  

The region is dominated by sagebrush (Artemisia sp.) and grass species including 

bluebunch wheatgrass (Pseudoroegneria spicata) in nearly every vegetational mosaic 

(Franklin and Dyrness 1988:234; Meyers et al. 2015:27). Several varieties of shrubs, 

including big sagebrush (A. tridentata), rabbitbrush (Ericameria nauseosa), and 
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greasewood (Sarcobatus vermiculatus) are intermixed with grass taxa including Sandberg 

bluegrass (Poa secunda), Idaho fescue (Festuca idahoensis), Great Basin wildrye 

(Leymus cinereus) and squirreltail grass (E. elymoides). Western junipers are found on 

rocky outcrops, escarpments, and mesic northerly slopes (Franklin and Dyrness 

1988:247). 

The Summer Lake Basin lies on the boundary of the eastern Cascade pine 

woodlands and the sagebrush steppe. Associations of Artemisia tridentata-Ericameria 

nauseosa-Festuca idahoensis are very common in the lowlands (Franklin and Dyrness 

1988:238). In the Warner Valley, desiccated lakebeds encourage the growth of salt desert 

shrubs including saltbush (Atriplex spinescens and A. canescens), shadscale (A. 

confertifolia), and spiny hopsage (Grayia spinosa), intermixed with the sagebrush and 

native grasses like Indian ricegrass (Achnatherum hymenoides), desert saltgrass 

(Distichilis spicata), and Sandberg bluegrass (P. secunda) (Meyers et al. 2015:43). 

Above the mid-elevations, increased moisture creates habitat for open ponderosa pine 

(Pinus ponderosa) and lodgepole pine (P. contorta) woodlands. Quaking aspen (Populus 

tremuloides) and mountain mahogany (Cercocarpus ledifolius) communities are located 

in the ecotone between upper elevation pine forests and lower elevation sagebrush zones 

(Franklin and Dyrness 1988:243).  

Within the seasonally rejuvenated marshes, biotic productivity maintains refugia 

for several wet-adapted plant, bird, and fish taxa. Cattails (Typha latifolia), tules 

(Schoenoplectus spp.), rushes (Juncus spp.), sedges (Carex spp.), and grasses including 

wildrye (Leymus triticoides) and tufted hairgrass (Deschampsia cespitosa) proliferate in 

and around perennial paludal environments (Meyers et al. 2015:43). The shallow waters 
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of remnant lakes attract ducks and geese (Anatidae), coots (Fulica americana), and other 

waterfowl. In years with wetland system overflow, populations of tui chubs (Gila 

bicolor) and suckers (Cyprinidae) can increase dramatically (Greenspan 1994).  

Away from the wetlands, the northern Great Basin environment supports diverse 

species of mammals in the Arid Transition Life Zone (Bailey 1936:23). Verts and 

Carraway (1998:31) discuss 87 native mammalian species and identify eight that 

characterize the Basin and Range Province. These include Merriam’s shrew (Sorex 

merriami), Preble’s shrew (S. prebei), white-tailed antelope squirrel (Ammospermophilus 

leucursus), dark kangaroo mouse (Microdipodops megacephalus), California kangaroo 

rat (Dipodomys californicus), chisel-toothed kangaroo rat (D. microps), canyon mouse 

(Peromyscus crinitus), and desert woodrat (Neotoma lepida). Black-tailed jackrabbits 

(Lepus californicus) and cottontails (Sylvilagus spp.) are endemic, and mule deer 

(Odocoileus hemionus), bighorn mountain sheep (Ovis canadensis), and pronghorn 

(Antillocapra americana) are the most prevalent large game animals in the region.  

Due to its heterogeneous topography, several researchers have proposed that the 

uplands in the Great Basin ecosystem strongly resemble a montane island (Brown 1971; 

Grayson and Livingston 1993; Lomolino and Davis 1997; Wells 1983). It is generally 

accepted that past climate change has affected the diversity of species in the area, as well 

as habitat fragmentation, and dispersal rates. Others have argued for tectonic activity as a 

biogeographic control (Davis 2005).  

South central Oregon has been affected by land management practices 

implemented since the time of Euro-American settlement. Land use changes, marsh 

drainage, fire suppression, and non-native species invasion have altered local landscapes 
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dramatically over the past few centuries (Franklin and Dyrness 1988:210). A large 

percentage of land cover has been converted for agriculture and grazing. Cattle ranching 

in the area began in the 1860s and remained virtually uncontrolled in the mountains until 

1897, and on lower elevation public lands until 1934 (Wagner 2003).    

 

1.3. Ethnographic Record 

 

At the time of Euro-American contact, the Great Basin was home to tens of 

thousands of people (Leland 1986). Both study sites are situated in liminal zones with 

fluid territoriality reported by early ethnographers. The Northern Paiute, Klamath, and 

Modoc lived, with fluctuating boundaries, along the western margin of the northern Great 

Basin (Figure 1.8). Bands of Northern Paiute occupied most of the northern Great Basin, 

including Warner Valley, and the Klamath and Modoc territories were primarily focused 

on the marshes associated with the Klamath River and its tributaries on the southern 

Columbia Plateau and in northern California (Colville 1897; Gatschet 1891; Powers 

1877; Ray 1963; Spier 1930; Stern 1966). Boundaries between the groups fluctuated, and 

treaty documents show neutral resource procurement areas and travel corridors north of 

Goose Lake (Wheeler Voegelin 1955). Archaeological data suggest the Klamath and 

Modoc may have had more pronounced geographic presence in earlier times (Connolly 

and Jenkins 1997; Oetting 1989).  

The Surprise Valley Paiute’s range extended northward from California into 

Oregon’s Warner Valley and Warner Mountains at contact (Kelly 1932:72, 76). The 

Chewaucan Basin is located within a 22 million acre territory ceded by the Klamath, 



16 

 

Modoc, and Yahuskin, or Göyatoka (crawfish eaters,) as per the 1864 Klamath Treaty. 

Historically, the Northern Paiute Yahuskin group lived in a 5000 mile area between the 

eastern Klamath Basin and the margin of the northwestern Great Basin. Conflicting 

ethnographic accounts identify the Yahuskin as Northern Paiute (Wheeler Voegelin 

1955), or a shared name for Northern Paiute from Silver-Summer-Abert lake region 

bands with affinal ties to upland Klamath village groups (Stern 1966). According to 

Kelly’s (1932) Paiute informants, “Göyatoka” was a post-reservation era designation; 

people living in the vicinity of Summer Lake and Silver Lake were traditionally known as 

Dühü'teyatika (deer eaters), and Ray (1938) indicates people living around Paisley were 

known as Yapa’tika (epos, yampa (Perideridia oregana)) eaters. Other ethnographers 

also reported the Yahuskin name was a historically recent designation rather than an 

ancient one (Gatschet 1891; Stewart 1939).  

 

Figure 1.8. Historic tribal distribution in southern and eastern 

Oregon as depicted by Ray (1938:396). 
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1.3.1. Klamath and Modoc 

Strong linguistic and cultural similarities exist between the Klamath and Modoc. 

Both groups speak a Penutian dialect, and share similar political organization. Settlement 

and subsistence varied between the two groups; the Klamath relied more heavily on fish 

and wokas (Nuphar sp.), and were therefore tied to the lakes and marshes, while the 

Modocs relied more on seeds and roots (Kroeber 1925). It is likely that the divergence of 

the two groups was relatively recent (Stern 1966:4). Traditionally, Klamath dwellings 

centered on Upper Klamath Lake and Klamath Marsh, and the Modoc traditionally 

resided on Lower Klamath Lake in the Lost River Valley (Figure 1.9). 

Typically, winters were spent in permanent house pit villages near lakes, rivers, 

and marshes (Stern 1966). Winter earth lodges faced the east, and consisted of semi-

Figure 1.9. Historic tribal distribution in 

southern Oregon and northern California 

as depicted by Stern (1966:280). 
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subterranean circular pits ranging in diameter from 12 to 35 ft. Central posts and split log 

beams were covered with layers of matting, grass, and dirt. An opening in the top of the 

house provided both an entrance and a smoke hole for the central fire hearth (Stern 

1966:7). As winter snows subsided, the winter village was deconstructed and people 

moved to the surrounding valleys to fish suckers in the early spring (Ray 1963; Stern 

1966).  

Plants with nutritious underground storage organs, especially epos, were 

important dietary staples (Colville 1897; Ray 1963). After the spring fish run ended, 

semi-permanent villages were established in the root digging grounds located near 

streams and wetlands to fish trout and gather waterfowl eggs. Throughout the year, 

villages were relocated based on resource availability (Figure 1.10).  

The months of June and July were spent harvesting camas, while the fall months 

saw the ripening of nutritious seeds (e.g., wokas). Fall fish runs were also accompanied 

by the hunting season, which persisted through December. In late fall, groups would 

return to the winter villages they had left behind months before, and houses were 

Figure 1.10. Subsistence rounds of the Klamath (top) and Modoc (bottom), after 

Masten (1985:316) and Eiselt (1997:22). 
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reconstructed, mainly using the materials they had carefully dismantled and stored the 

prior year.  

 

1.3.2. Northern Paiute 

Northern Paiute groups in Oregon shared several cultural attributes, but were 

geographically, socially, and ecologically distinct from one another (Steward 1933, 1938; 

Train 1941). Most Northern Paiute groups were organized into simple, egalitarian, and 

bilateral nuclear families (Fowler and Liljeblad 1986; Steward 1955; Stewart 1939). 

Small, self-sustained family groups formed the basis of political and socioeconomic 

units, although membership in the unit was relatively fluid. Groups were organized 

loosely into foraging districts named for food types. While the aforementioned Göyatoka 

hunted, gathered, and fished in and around the Summer Lake basin (Stewart 1939), the 

Kidütöka or Gidi'tika (groundhog eaters) historically occupied the Warner Valley in the 

vicinity of LSP-1 Rockshelter (Figure 1.11; Kelly 1932).  

Among the Northern Paiute, these designations were largely bestowed by 

neighboring people rather than representing self-identifying monikers and no formal 

leaders led the foraging districts. Membership in each district varied annually depending 

on availability and predictability of food resources, with individuals and family units 

shifting affiliation between districts. Accordingly, band sizes varied and territorial 

boundaries remained flexible (Fowler 1982; Fowler and Liljeblad 1986:437; Whiting 

1950:19). 

Winter camps represented the most sedentary, longest recurring, and frequently 

renovated settlements. Winter encampments were present near the modern towns of 



20 

 

Plush, Adel, and Cedarville during the historic period, and various locations along the 

base of the Warner Mountains (Kelly 1932). Generally, camps consisted of one or two 

families, but camp size and composition varied depending on the supply of stored foods  

and availability of locally collectible resources (Steward 1938). Houses, or wikiups, had 

circular floors and a conical roof constructed of bark, grass, brush, and woven mats 

(Lowie 1909). Winter camps were occupied through the early spring, when roots, bulbs, 

Figure 1.11. Gidi’tika territory as 

illustrated by Kelly (1932:71). 
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and tubers were available for harvest on stony slopes and across the tops of rocky buttes 

(Fowler 1982:122, 133). The most important and abundant carbohydrate-rich roots 

included biscuitroot (Lomatium spp.), camas (Camassia quamash), yampah, bitterroot 

(Lewisia rediviva), wild onion (Allium spp.), and sego lilies (Calochortus nuttallii).  

Seasonal movements were frequent and flexible. Availability of spring roots, late 

summer seeds, and summer and winter game dictated the pattern of seasonal rounds; fish, 

berries, greens, nuts, and crickets added variety to the Northern Paiute diet (Figure 1.12; 

Couture et al. 1986; Masten 1985). In the late summer, seeds were intensively harvested 

in the lower elevations. Chenopods (Chenopodium sp.), Indian ricegrass, Great Basin 

wild rye, saltbush, and waada (Suaeda depressa) seeds constituted dietary staples 

(Couture 1978).  

Paiute language is a division of the Numic (Plateau-Shoshonean) language family. 

Northern Paiute languages include Bannock, Mono, and Paviotso. The rapid expansion of 

Numic-speaking peoples from their homeland in California into the Great Basin about 

1000 years ago also may be of interest in the discussion of mobility and sedentism, 

though the uncertainty of the magnitude and timing of this migration is still debated (e.g., 

Aikens and Witherspoon 1986; Bettinger and Baumhoff 1982; Eiselt 2011; Madsen and 

Rhode 1994).  

Figure 1.12. Subsistence rounds of the Surprise Valley Paiute, after Masten 

(1985:316). 
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1.3.3. Ethnobotany of the Warner Valley and Chewaucan Basin 

In the project area, both the tribal territories and use of economically important 

resources overlapped historically (Barrett 1910; Colville 1897; Fowler and Liljeblad 

1986; Gatschet 1891; Kelly 1932; Ray 1938, 1963; Spier 1930; Stern 1966, 1998; 

Stewart 1939). Paleoethnobotanist Guy Prouty (1995) compiled a list of locally available 

food plants consumed by the Klamath, Modoc, and Surprise Valley Paiute tribal members 

(Prouty 2000:286-287). A summary of these plant types demonstrate not only the 

culturally-shared plant foods, but the broad spectrum of taxa targeted for resource 

acquisition (Table 1.1).  

 

  

Table 1.1. Ethnographicaly reported plant foods for Northern Great Basin Native 

groups (after Prouty 2000: Table 16.1). 

  
Taxon (Common Name) 

Klamath 

and Modoc 

Surprise 

Valley Paiute 

Fruits 

  

 

Amelanchier alnifolia (serviceberry) X X 

 

Arctostaphylos patula (manzanita) X 

 

 

Crataegus douglasii (hawthorn) 

 

X 

 

Fragaria virginiana (western strawberry) X X 

 

Juniperus occidentalis (western juniper) X X 

 

Prunus emarginata (bittercherry) X 

 

 

Prunus subcordata (Klamath plum) X X 

 

Prunus virginiana (chokecherry) X X 

 

Ribes aureum (golden currant) X X 

 

Ribes cereum (squaw currant) X X 

 

Rosa woodsii (rosehips) X X 

 

Rubus spp. (blackberry) X X 

 

Shepherdia argentea (buffaloberry) 

 

X 

 

Vaccinium membranaceum (mountain huckleberry) X X 
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Table 1.1. Continued. 

  
Taxon (Common Name) 

Klamath 

and Modoc 

Surprise 

Valley Paiute 

Roots/Tubers 

  

 

Allium spp. (wild onions) 

 

X 

 

Balsamorhiza terebinthacea (balsamroot) 

 

X 

 

Calochortus macrocarpus (sego lily) X 

 

 

Camassia quamash (camas) X 

 

 

Lewisia rediviva (bitterroot) 

 

X 

 

Lomatium canbyi (canby's biscuitroot) X 

 

 

Lomatium leptocarpum (bicolor biscuitroot) 

 

X 

 

Lomatium macrocarpum (large fruited biscuitroot) 

 

X 

 

Perideridia spp. (epos, yampah) X 

 

 

Sagittaria latifolia (wapato) X 

 

 

Scirpus spp. (bulrush, tule) X 

 

 

Typha latifolia (cattail) X 

 Seeds 

  

 

Achnatherum hymenoides (Indian ricegrass) 

 

X 

 

Agrostis exorata (spike bent grass) X 

 

 

Amaranthus spp. (amaranth) X 

 

 

Atriplex spp. (saltbush) X X 

 

Balsamorhiza sagittata (balsamroot) X X 

 

Carex spp. (sedge) X 

 

 

Chenopodium spp. (goosefoot) X X 

 

Descurainia sp. (tansy mustard) X X 

 

Elymus elymoides (squirreltail grass) 

 

X 

 

Eriogonum spp. (buckwheat) X X 

 

Glyceria occidentalis (manna grass) X X 

 

Helianthus cusickii (sunflower) X X 

 

Leymus cinereus (Great Basin wildrye) X X 

 

Lomatium canbyi (canby's biscuitroot) X X 

 

Mentzelia albicaulis (blazing star) X X 

 

Nuphar polysepalum (water lily, wokas) X 

 

 

Pinus ponderosa (ponderosa pine) X X 

 

Poa nevadensis (Nevada bluegrass) 

 

X 

 

Polygonum douglasii (knotweed) X X 

 

Suaeda depressa (waada) X X 

 

Typha latifolia (cattail) X 

 

 

Wyethia amplexicaulis (mule-ears) X X 
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 The intimate tie between people with subsistence economies and the landscapes 

they inhabit affects all aspects culture. In this study, I draw on environmental and 

ethnographic data to inform and support the original archaeobotanical data. 

 

1.4. Dissertation Outline  

 

This dissertation is organized into ten chapters. Chapter II situates regional 

cultural chronologies and historical trajectories of economic plant use in southcentral 

Oregon within a broad context of western North American archaeology and 

paleoecology. Chapter III presents the theoretical framework of this study, focusing on 

current discourse of cultural ecology and paleoethnobotany as they relate to specific 

research questions. Chapter IV enumerates the materials employed to address questions 

and hypotheses. Chapter V outlines the methods used in this study. Chapter VI provides a 

list of species identified in the macrobotanical assemblage and describes ecological 

characteristics for each taxon. Chapters VII and VIII report the results of the 

macrobotanical analyses at Paisley Caves and LSP-1 Rockshelter and discuss 

interpretations based on intrasite analysis at each site. Chapter IX provides cultural 

interpretations of this dissertation’s original data within the context of regional 

paleoclimate data and archaeological data. The final chapter addresses concluding 

arguments on findings and future research directions. 
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CHAPTER II 

RESEARCH HISTORY 

 

 The timespan covered in this research project necessitates a broad understanding 

of archaeological findings and global climate oscillations over many millennia. This 

chapter serves as a literature review of the current scholarship of anatomically modern 

human dispersals into the western hemisphere, colonization of the western North 

American landscape, trajectories of cultural change in the Great Basin over the past 

14,000 years, previous Great Basin paleoethnobotanical studies, and known paleoclimate 

data for the northern Great Basin.  

 

2.1. Peopling of North America  

 

The colonization of the western hemisphere reflects a large-scale continental 

migration, and archaeologists are eager to uncover traces of America’s first settlers while 

distinguishing and identifying their dispersal routes. The dominant explanatory paradigm 

of the 20
th

 century held that Paleoindian groups with Clovis stone toolkits entered 

America through an ice-free corridor sometime after the Last Glacial Maximum (LGM). 

Even before any Late Pleistocene sites were identified in the Americas, archaeologists 

expected to find them. When such an occupation was found in Clovis, New Mexico, in 

the early 20
th

 century, the large bifaces associated with megafaunal remains fit the picture 

of what archaeologists thought ice-aged tool kits should resemble. Haynes (1969) 

suggested the originators of Clovis toolkits charted a mid-continental migration route 
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through Canada and onto the United States Plains following Late Pleistocene mammoths 

and mastodons in a rapid colonization event. The term “Clovis-First” suggests Clovis 

peoples were the first to colonize large areas of the continent (Waguespack 2007:72).  

Clovis tools have been identified through most of southern Canada, the 

continental United States, Mexico, and northern South America in varied settings from 

arctic tundra to the lowland tropics (Bradley et al. 2010; Ives et al. 2013). The rapid 

transmission of Clovis fluted point technology between either 13,400 and 12,700 cal BP 

(Ferring 2001; Haynes 2015; Sanchez et al. 2014)  or between 12,900 to 12,600 cal BP 

(Waters and Stafford 2007) led researchers to believe that Clovis hunters populated an 

empty landscape after the last Ice Age. Alaska’s Nenana tool complex was proposed as a 

potential precursor to Clovis fluted point technology (Powers and Hoffecker 1989). The 

story of Clovis hunters spreading rapidly through the landscape as they followed big 

game from the Siberian tundra south through the Americas was a widely accepted theory 

for several decades (Hamilton and Buchanan 2007). 

Alternatively, Fladmark (1979) proposed that people colonized America via a 

coastal migration route provided by a chain of sea-level refugia during, or shortly after, 

the LGM. Archaeologists have now embraced the explanation that the first colonists 

followed marine resources, namely a productive kelp ecosystem, along the Pacific Rim 

and coast of Alaska 16,000 to 15,000 years ago to colonize the Americas from the west 

coast (Erlandson et al. 2007). Isotopic analysis of human bones at On Your Knees Cave 

in Alaska confirmed that the individual (Shuká Kaa) subsisted off a diet extremely high 

in marine resources by 10,200 cal BP, suggesting that people living in the Pacific 

Northwest were well-adapted to marine environments by the end of the Pleistocene 
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(Dixon 2012). Although a coastal migration as at least part of the initial colonization of 

the Americas has been disputed for years (see Easton 1992), it is currently supported by a 

majority of Paleoindian scholars (Wheat 2012). This, in large part, is due to mounting 

paleoclimate and archaeological evidence revealing human presence on the landscape 

prior to a time when the Ice Free Corridor was accessible (Clague et al. 2004; Clark et al. 

2009; Hoffecker et al. 2016; Misarti et al. 2012; Pedersen et al. 2016). The presence of 

mixed marine-terrestrial fauna here could have supported people along the coastline 

when uninhabitable conditions prevailed inland. Glacial refugia appeared along the coast 

of British Columbia as early as 17,000 cal BP (Misarti et al. 2012), and new, yet 

unvetted, archaeological research may indicate the presence of a 14,000 year old hearth 

in association with stone tools on Triquet Island, British Columbia (Wade 2017).  

 

2.1.1. Western Stemmed Tradition 

Mounting evidence supports the idea that people were in the Americas as early as 

15,500 cal BP (Dillehay et al. 2008; Gilbert et al. 2008a; Halligan et al. 2016). Although 

rare, archaeological sites located south of the Cordilleran ice sheet that predate the Clovis 

horizon have been identified. The Debra L. Friedkin site (Texas), Huaca Prieta (Peru, 

South America), Manis Mastodon (Washington), Monte Verde (Chile, South America), 

Page-Ladson (Florida), and Paisley Caves (Oregon) all are widely accepted as 

representative of hunting and gathering groups in the Americas prior to 13,400 cal BP 

(Figure 2.1; Dillehay 1997; Dillehay et al. 2008, 2015, 2017; Gilbert et al. 2008a, 2008b; 

Halligan et al. 2016; Waters et al. 2011a, 2011b). At these sites, archaeologists have 
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demonstrated secure stratigraphic associations between lithic tools and extinct mammal 

remains dating earlier than 12,900 cal BP. 

Often, early sites contain Western Stemmed point technologies rather than fluted 

points (Davis and Schweger 2004; Davis et al. 2014; Dillehay et al. 2008, 2017; 

Erlandson et al. 2011; Goebel et al. 2010; Haynes 2015; Jenkins et al. 2012a, 2013, 2016, 

2017; Waters et al. 2011a) indicating the Western Stemmed tradition may have greater 

antiquity than the Clovis tradition in Western North America (Beck and Jones 2010, 

Figure 2.1. Map of well-established pre-Clovis sites in 

the Americas. 
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2012; Davis et al. 2012). As opposed to the ubiquitous nature of Clovis, Western 

Stemmed points appear to have restricted distribution in western North and South 

America. They differ significantly from Clovis morphologically. Typically, Western 

Stemmed points are large lanceolate tools with proximal stems and weak shoulders that 

differentiate the base from the blade (Beck and Jones 2010). In the far western United 

States, Western Stemmed points were first associated with the Western Pluvial Lakes 

Tradition (WPLT), a term originally coined by Stephen Bedwell (1973) who noted the 

occurrence of these points around pluvial lakes and marshes. The WPLT concept has 

since been reconfigured as the Western Stemmed Tradition (WST) to avoid biases related 

to ecological conditions. The WST persists until ca. 9000 to 8500 cal BP (Willig and 

Aikens 1988). 

 

2.1.2. Coastal Migration and Archaeological Antecedents 

If the earliest colonists of North America did travel along a coastal corridor, then 

an existing cultural antecedent should be traceable to the northern maritime regions of the 

Far East rather than the Siberian interior. Hoffecker et al. (2016) demonstrated that 

Beringia was populated prior to 30,000 cal BP in the same colonization wave that 

populated Eurasia. Powers and Hoffecker (1989:284-5) speculated that “the deterioration 

of Pleniglacial environments after 15 ka triggered a complex series of population 

movements and technological changes in northeast Asia that affected central Siberia, 

Japan, Beringia, and ultimately the entire New World.” Stemmed points found at Ushki-1 

on the Kamchatka Peninsula between the Sea of Okhotsk and the Pacific Ocean prompted 

Russian archaeologist N.N. Dikov (1993:30) to speculate that Ushki culture represented a 
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potential source for the first archaeological complexes in western North America. 

Although the AMS dates associated with the stemmed points at Ushki-1 were later 

reassigned to 13,000 cal BP (Goebel et al. 2010), their presence in Eastern Siberia does 

intimate a connection between the two geographic regions. 

Erlandson and Braje (2011:34; 2012) considered the implications of a greater 

Pacific Rim interaction sphere based on the similarity of stemmed and leaf-shaped 

bifaces present in Late Pleistocene technological traditions from Japan, Kamchatka 

(Siberia), the Pacific Northwest, California, and South America. A strong cultural 

presence is suspected in the Sea of Japan prior to population dispersals to the Americas. 

Aikens et al. (2009) referred to this distinctive ecological and cultural interaction sphere 

as the “Japan Sea Oikumene.” They reported a lithic technology incorporating blade and 

elongate flake production, microblades, and bifacial blades and points. The large blades, 

elongate flakes, and leaf-shaped bifaces appear ca. 24,000 to 20,000 cal BP (Aikens et al. 

2009:238). Stemmed (tanged) points have been identified in Northeastern Asia and Japan 

as early as 15,500 cal BP (Nagai 2007). Whether direct antecedents to the first inhabitants 

of the Americas can be identified in the Sea of Japan region still remains to be 

determined (Aikens et al. 2009).  

 

2.2. Glacial Environments in North America 

 

A suite of paleoclimate data exist from sediment records, speleothems, ice cores, 

loess records and the relative quantities of ice-rafted detritus present in marine sediment 

cores (Bartlein et al. 2011). Germane to the current project, the Wisconsin Glacial stage 
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(75 ka to 11,000 cal BP) is typically divided into three sub-stages: Early, Middle, and 

Late which correspond to marine isotope stages 4, 3, and 2 respectively. Massive ice 

sheets, the Laurentide and the Cordilleran, covered North America during the Wisconsin 

and influenced rapid and large climate changes in the Northern Hemisphere (Hemmings 

2004). Glaciation periods in the Early Wisconsin and Late Wisconsin were interspersed 

by the Middle Wisconsin interglacial (65 ka to 29 ka; Clague et al. 2004). The marine 

oxygen isotope (δ
18

O) record of temperature change reveals repeated rapid cycles of 

climate change – Dansgaard-Oeschger (D-O) cycles – during the Middle and Late 

Wisconsin that are indicative of large-scale ocean-atmosphere coupling (Benson et al. 

2003; Brigham-Grette et al. 2004).  

Growth and decay of ice sheets and associated terrestrial isostatic rebound caused 

sea levels to rise and fall rapidly during this period, which resulted in the repeated 

submergence of portions of the continent near the ice sheets (Brigham-Grette et al. 2004; 

Clague et al. 2004). These records correlate with abrupt Heinrich warm/cold events 

resulting from massive discharge of Laurentide icebergs. Heinrich cold events, or glacial 

maximums, are recorded at 65 ka, 45 ka, 38ka, 30 ka, and 21 ka. Bassis et al. (2017) 

hypothesize that massive glacial discharge occurred in response to subsurface ocean 

warming, thereby initiating isostatic rebound that quickly triggered Heinrich events 

during D-O cycles when large scale ice shelves were minimized. The implication of these 

paleo-oceanographic findings for the terrestrial climate of the western United States is not 

known.  
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2.3. Northern Great Basin Climate and Cultures after the LGM 

 

Prior to the advent of absolute radiocarbon dating methods, Antevs compiled a 

Holocene chronology of Great Basin climate regimes based on pioneering palynologist 

Henry Hansen’s volcanic ash correlations and published Finno-Swedish climate 

sequences (referenced in Madsen 2002; Wigand and Rhode 2002). Antevs (1955) 

inferred a cold and wet environment during the LGM followed by the Anathermal Period 

(11,000 to 8000 cal BP), represented by rising temperatures in the Early Holocene. In the 

Middle Holocene Altithermal Period (8000 to 5000 cal BP), climate was marked by 

increased aridity and rising temperatures, which he interpreted as a period of 

“abandonment” in the Great Basin (Antevs 1948). Finally, during the Late Holocene, 

mean annual temperatures stabilized at near current conditions in the Medithermal Period 

(5000 cal BP to present). In the northern Great Basin, pollen cores extracted from 

numerous study sites chronicle regional vegetation change spanning the last 10,000 to 

14,000 years (Figure 2.2; Beck et al. 2017; Hansen 1947; Mehringer 1985; Minckley et 

al. 2007; Saban 2015; Wigand 1987, 1989; Wigand and Rhode 2002).  

Pollen studies in Upper Chewaucan Marsh at the Paisley Caves (Beck et al. 2017; 

Saban 2015) and in the Warner Basin (Hansen 1947) are especially pertinent to the 

current study because the vegetation proxy data relate directly to the geographic location 

of my dissertation study sites. Two independently conducted pollen analyses of Cave 2 

sediments at the Paisley Caves have recently been reported (Beck et al. 2017; Saban 

2015). Both studies focus on the Terminal Pleistocene/Early Holocene transition. Beck et 

al.’s (2017) paleoclimate study included analysis of 38 samples collected in a continuous 
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column from the southeast corner of the Unit 2/4C profile in Paisley Cave 2 and Saban’s 

(2015) study included 21 pollen samples from Unit 2/6B. These pollen analyses are 

limited by low taxonomic resolution of dominant types (Pinus, Chenopodiaceae, and 

Artemisia), the high pollen productivity of and dispersal of these taxa, and the broad 

ecological amplitude of these taxa. Nuances in vegetation dynamics are obscured in the 

records due to a lack of emphasis on changing ratios of pollen types and on the presence 

of rare types representing taxa with low pollen productivity and dispersal (see Wigand 

1987; Wigand and Rhode 2002).  

Archaeological palynology involves identification and analysis of fossil-pollen 

taxa in cultural deposits. Paleoclimate reconstructions based on archaeological deposits 

are inherently limited by site formation processes occurring in aerobic conditions that can 

result in extreme variability in soil pH, oxidation, microbial activity, and the proliferation 

of fungal spores—all of which are deleterious to pollen (Bryant and Holloway 1983). In 

Figure 2.2. Locations of select pollen records in the northern Great Basin. 

Paisley Caves 
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addition to corrosion of pollen grains caused by taphonomic effects, interpretation of 

pollen in archaeological settings is further complicated because the presence of pollen 

grains can never be disentangled from anthropogenic selection (Sandweiss 2003).  

Although pollen analysis can only provide information on vegetation types, when 

the identified plant taxa are considered in light of cultural features and contexts, 

archaeologists can draw inferences about both climate and human disturbances 

(Bradshaw 1994; Bryant and Holloway 1983; Faegri and Iversen 1989; Weinstein-Evron 

1994). Moreover, in archaeological sites, the climate signals obtained via palynological 

analysis are available in well-defined, discrete, and datable contexts directly linked to 

specific moments in the past (Sandweiss and Kelley 2012:372).  

Several archaeologists have suggested cultural changes are intimately tied with 

environmental fluctuations in the Great Basin (Elston 1982; Grayson 2011). The northern 

Great Basin has been the subject of numerous long-term archaeological research projects 

investigating these linkages beginning with Luther Cressman’s excavations in the 1930s 

(Aikens and Jenkins 1994; Bedwell 1970, 1973; Connolly; Cressman 1940, 1942; Fowler; 

Jenkins 2004; Jenkins et al. 2012, 2014; Oetting; Pinson 2014; Smith et al. 2014; Willig 

1989; Willig and Aikens 1988). Data generated from decades of archaeological research 

informs our current understandings of chronological phases of northern Great Basin 

archaeology (Aikens et al. 2011; Jenkins 2004). These chronologies provide useful analogs 

for interpreting indigenous behaviors at the Paisley Caves and LSP-1 Rockshelter and are 

summarized with respect to environmental trends in the following sections (Figure 2.3).  
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Figure 2.3. Cultural chronology in the northern Great Basin (adapted from Jenkins et 

al. 2004:8). 

13,000 cal BP 
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2.3.1. The Paisley Period (>15,700 to 12,900 cal BP) 

The first evidence of humans in the Great Basin occurs by 14,300 cal BP (Gilbert 

2008; Jenkins et al. 2012a, 2012b) when expansive pluvial lakes and wetlands 

characterized the ecozone (Grayson 2011). The earliest archaeological sites in the Great 

Basin clustered on lake and wetland margins during the Bolling-Allerød interstadial 

(Beck and Jones 2010; Jenkins et al. 2012a). The beginning of this interstadial warming 

trend correlates with the ages of cirque lakes throughout the Pacific Northwest and 

increases in pluvial lake levels in the northern Great Basin (Allison 1979, 1982; Weide 

1974), demonstrating the significance of this warming event. Warmer temperatures 

during the Bolling-Allerød succeeded the LGM and prevailed until the onset of Younger 

Dryas cooling around 12,900 cal BP (Steffensen et al. 2008).  

Following the LGM, increased runoff and precipitation coupled with reduced 

evaporation rates (Freidel 1993, 1994, 2001) caused the northern basins to fill to their 

highest lake stands at ca. 19,000 cal BP (Allison 1979, 1982; Freidel 1993, 1994, 2001; 

Licciardi 2001; Weide 1974). In the northern Great Basin, cooler (than present) 

temperatures are indicated by the expansion of sagebrush pollen and macrofossil 

evidence of mountain mahogany (Wigand and Rhode 2002:320). Pollen data from the 

Chewaucan and Warner basins also indicate significant shifts in climatic conditions 

during this period. Hansen (1947) reported a conifer (lodgepole and yellow pine) 

dominated post-glacial record and suggested the northern Great Basin was forested 

during the Terminal Pleistocene. He suggested pine forests grew in lower elevations 

above Great Basin lakes, but migrated upslope as temperature cooled (Hansen 1947:167). 

At the Paisley Caves, relative pollen percentages demonstrate the prevalence of cool and 
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arid conditions with conifer trees dominating the record (Beck et al. 2017; Saban 

2015:41). Based on the lack of modern pollen proxy analogs (see Minckley et al. 2008) 

resembling the Paisley Caves assemblages, Beck et al. (2017:10) determined vegetation 

in the immediate vicinity of the Paisley Caves resembled a sagebrush shrub-steppe 

environment in the Terminal Pleistocene and suggested pine forests never retreated below 

their current altitude. They suggested the preponderance of Pinus pollen resulted from 

long-distance transport; if pine grew near the caves, the pollen spectra would have 

accounted for a larger percentage of fossil pollen grains. The presence of or absence of 

pine macrofossils in the record will further resolve this issue as described in Chapter IX. 

Archaeologically, the eponymous Paisley Period coincided with post-LGM 

warming and was defined by Jenkins (2007) as the first occurrence of Paleoindian 

artifacts in the northern Great Basin. The Terminal Pleistocene was thought to 

encapsulate a time when people generally relied on hunting large game animals with 

spear points in the 20
th

 century. Currently, archaeologists understand that the period 

accounts for a wide variety of technological and adaptive variation (Jones and Beck 

2012:108). Though occupations were ephemeral, subsistence evidence suggests Terminal 

Pleistocene foragers exploited a diverse array of flora and fauna, including megafauna 

(Grayson 2011). Diagnostic artifacts of this period include edge-ground fluted points 

associated with the Clovis toolkit, and lanceolate points and edge-ground stemmed points 

associated with the WST. Although fluted points have been found on the surface at 

northern Great Basin locations including the Dietz site (Willig 1989), Sagehen Gap 

(O’Grady et al. 2008), Sheep Mountain (O’Grady et al. 2009), and the Sunshine Locality 
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(Beck and Jones 2009) among others, no accounts of these tools in buried contexts have 

been published to date. 

 

2.3.2. The Fort Rock Period (12,900 to 9000 cal BP) 

Evidence of Paleoindian sites is widespread across the Great Basin at the advent 

of the Younger Dryas cooling event (12,900 to 11,600 cal BP), which also marks the 

beginning of the Fort Rock Period in the archaeological record. Globally, the Younger 

Dryas climate event is characterized by an abrupt temperature drop (recorded in the 

Greenland Ice Cores) accompanied by increased winds and storminess across the 

northern hemisphere, and a 1200 year cessation of North Atlantic glacial retreat 

(Steffensen et al. 2008). Regional responses to the Younger Dryas varied depending on 

other environmental parameters. Speleothem records indicate conditions gradually 

became cooler and wetter in  nearby southwestern Oregon (Vacco et al. 2005:253). Lake 

levels fell, creating more biotically diverse shallow lakes and marshes (Wigand and 

Rhode 2002:321).  

Regionally, increases in the relative abundance of grass and sagebrush pollen, 

along with the presence of juniper and buffaloberry pollen and cold-adapted spores in the 

northern Great Basin indicate a cool, moist steppe environment (Mehringer 1985; 

Wigand and Rhode 2002:321). Beck et al. (2017:9) also found evidence of buckthorns, 

antelope bitterbrush, and willow at the Paisley Caves at this time. Increases in the 

representation of herbaceous pollen taxa in the Younger Dryas deposits at the Paisley 

Caves suggested a shift to marsh-like conditions near the site, when moisture-loving 
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plants thrived (Saban 2015:41). Saban (2015:50) also noted that increases in mesic-

adapted plants correlate with increases in formed tools at the Paisley Caves.  

Goebel et al. (2011) describe ten archaeological sites with components dated to 

the Younger Dryas chronozone for the Lahontan and Bonneville Basins combined. In the 

northwestern Great Basin, Connley Caves, Paisley Caves, sites associated with the 

Buffalo Flats Bunny Pits, Tule Lake Rockshelter, and Pyramid Lake all have Younger 

Dryas components (Aikens et al. 2011; Dansie and Jerrems 2005; Erlandson et al. 2014; 

Oetting 1993). The sites in southcentral Oregon are located within approximately 60 km 

of one another, and all are situated along the margins of pluvial lakes (Figure 2.4).  

Figure 2.4. Map of northern Great Basin archaeological sites with confidently-

dated Younger Dryas cultural components in southcentral Oregon.  
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Archaeological settlements distributed along lacustrine margins and associated 

wetland-adapted faunal assemblages in TP/EH sites prompted Bedwell (1973) to propose 

the aforementioned WPLT theory. He suggested that Paleoindian cultures in the Great 

Basin developed a specialized subsistence economy focused on wetland environments to 

exploit marsh and lake resources, especially waterfowl (Moss and Erlandson 2013; 

Sanchez et al. 2017). Although some researchers have implied the observed WPLT 

pattern reflects sampling bias rather than legitimate clustering of archaeological sites 

around pluvial lake margins (e.g., Felling 2015), correlations between the distribution of 

Paleoindian points and pluvial lake basins demonstrate that pluvial lake shorelines are the 

best predictors of terminal Pleistocene archaeological sites (Duke and King 2015; 

Mathews 2013).  

Evidence for broad spectrum foraging and the continued manufacture of stemmed 

and lanceolate stone tools suggests the people occupying sites during this period 

represent a perpetuation of Paleoindian cultures with a Western Stemmed toolkit. 

Toolkits also expanded to include fine needles, bone awls, and chipped stone crescents in 

the Great Basin and on the southern California coast around 12,000 cal BP (Aikens et al. 

2011; Erlandson et al. 2011). Moss and Erlandson (2013) argued that the crescents, which 

persisted in the archaeological record until ca. 8000 cal BP, represent a technology 

associated with the hunting of large waterfowl (specifically geese and swans) that bred in 

the Great Basin before the complete retreat of the Laurentide ice sheet. Textiles, 

including basketry, nets, sandals, and bags, are prevalent in Fort Rock period 

archaeological sites (Connolly 2013; Connolly and Barker; Connolly et al. 2016; Jones 

and Beck 2012).  
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Faunal and macrofloral evidence suggests Paleoindian groups continued broad 

spectrum foraging of a variety of prey species including megafauna until the Younger 

Dryas/Early Holocene transition. Large scale extinction of North American megafauna 

occurred during the terminal Pleistocene. By ca. 11,500 cal BP, mammoth (Mammuthus), 

mastodon (Mammut), camel (Camelops), horse (Equus), and ground sloth 

(Nothrotheriops) had all disappeared from the paleontological record (Faith and Surovell 

2009; Grayson 2011). It is unclear whether the extinctions were in response to climate 

change (e.g., Faith and Surovell 2009), mounting human hunting pressures (Martin 1967; 

Mosimann and Martin 1975; Wolverton et al. 2009), niche construction processes 

triggered by disturbances associated with human colonization of North America 

(Doughty et al. 2010), or a combination of such factors. 

The onset of the Early Holocene at the end of the Fort Rock Period was 

characterized by warmer and drier conditions in the Great Basin. At Patterson Lake (2743 

m AMSL), Minckley et al. (2007:2175) documented decreases in pine and grass pollen 

and increases in sagebrush pollen. Beginning about 11,000 cal BP, increased aridity 

permitted the expansion of open forests and sagebrush steppe in higher elevations 

(Mehringer 1986:44). Juniper likely also expanded its range in Oregon at this time 

(Wigand and Rhode 2002:322).  

At the Paisley Caves, the pollen record representing the beginning of the Early 

Holocene is less clear. Saban (2015:42) suggested increases in conifer pollen indicated a 

decrease in herbaceous groundcover after the Younger Dryas. Beck et al. (2017:10) 

recorded an increase in high-spine Asteraceae and decrease in amaranths/chenopods. 

They also noted pine once again became the dominant taxa in the pollen record after 
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9800 cal BP. The macrobotanical record could clarify these ambiguities and will be 

discussed in Chapter IX. 

  

2.3.3. The Lunette Lake Period (9000 to 6000 cal BP) 

Warmer and drier conditions persisted into the Lunette Lake Period of the Early 

Holocene. Relative abundances of drought-tolerant species continued to increase as 

desertification of the Basin commenced approximately 8500 cal BP. Water energy 

dissipated as the storms of the earlier period waned. Late Early Holocene vegetation was 

characterized by sagebrush, saltbush, and rabbitbrush scrub steppe (Hansen 1947; 

Minckley et al. 2007; Wigand and Rhode 2002). Woodlands in higher elevations 

declined, but juniper persisted in south-central Oregon (Wigand and Rhode 2002:323). 

Decreases in grass pollen reflect the continuation of drought-induced conditions. 

Paleoecological studies throughout the Great Basin indicate contraction, or 

disappearance, of lakes and wetlands by ca. 8300 cal BP (Grayson 2011). However, 

Saban (2015:42) reported increased relative abundances of grasses and decreased relative 

abundances of chenopods in the Paisley Caves pollen record after 8000 cal BP.  

During the Holocene, a protracted warm period known as the Mid-Holocene 

Climate Optimum occurred from ca. 8000 to ca. 6000-5000 cal BP (with local 

fluctuations). This climate trend is well documented in Europe, Eurasia, and Africa, but 

the data are more variable for North America (Bartlein et al. 2011). Paleoclimate records 

for the Great Basin all indicate a 3000 year period of marked aridity with high 

temperature and precipitation variability through space and time (Grayson 2011:253). 
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Hansen’s generalized interpretation of pollen data suggests the northern Great Basin 

began warming prior to the eruption of Mt. Mazama (~7600 cal BP).  

Beginning at 8000 cal BP, patterning in the Great Basin archaeological record 

shifts (Aikens and Jenkins 1994; Antevs 1948; Beck and Jones 2008; Grayson 2011; 

Jenkins et al. 2004; Smith et al. 2014). Reduced precipitation and lower overall 

biodiversity due to the desiccation of pluvial lakes resulted in abrupt changes in the 

archaeological record. Sites with extended habitation records in the terminal 

Pleistocene/Early Holocene are not visited as frequently (if at all), and occupation 

commences in previously unvisited sites. Evidence for specialized hunting and foraging 

camps are found in northern Great Basin sandy dunes rather than in caves during this 

time (Aikens et al. 2011). Cascade and Northern Side-notched projectile points 

characterize the lithic technology, although Northern side-notched points appear only 

after the Mt. Mazama eruption when increased moisture is noted before 6000 cal BP 

(Jenkins et al. 2004). Decorated twined basketry and multiple warp and spiral weft 

sandals are common.  

Small seed processing seems to have taken on a greater role in forager subsistence 

practices after ca. 8900 cal BP (Louderback 2014; Rhode and Louderback 2007; Rhode 

2008; Yoder et al. 2010), prompting some archaeologists to suggest Great Basin foragers 

struggled with resource depression through the early Middle Holocene (Grayson 2011). 

In the northern Great Basin, groundstone is present, but expediently made (Aikens et al. 

2011); in the eastern Basin, intensive use of groundstone technology to process small 

seeds appears to have become normalized by ca. 9000 cal BP (Yoder et al. 2011). 
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2.3.4. The Bergen Period (6000 to 3000 cal BP) 

According to Hansen, the Middle Holocene warming trend continued until about 

4000 years ago. Although this period generally coincides with Antevs’ Altithermal 

Period, subsequent research has demonstrated local climate fluctuations affected the 

hydrology of sub-basins differentially in the northern Great Basin (Jenkins et al. 2004). 

Generally, the climate became warmer and wetter after about 5400 cal BP, reviving the 

Great Basin wetlands (Wigand and Rhode 2002:325). Alternating wet/warm, cool/dry 

cycles persisted over the next three millennia (Wigand 1987). As a result, lakes and 

marshes expanded, contracted, and expanded again. Juniper woodlands expanded into 

lower elevation sagebrush approximately 4500 cal BP at Craddock Meadow, and 

Mehringer (1985) noted three respective episodes of fir expansion at Diamond Pond 

beginning around 3700 cal BP. This cooler/wetter episode is parallel with the regional 

neoglacial period documented in glacial advances and pollen records throughout the 

Pacific Northwest (Menounos et al. 2009; Porter and Denton 1967). 

The number of archaeological sites dated to the Bergen Period increased 

dramatically from the Lunette Lake Period, suggesting the persistence of higher 

population levels. Sites are well distributed across the landscape, but far more frequently 

recorded in open contexts than in dry caves. The Bergen site is the largest Middle 

Holocene archaeological site in the northern Great Basin and is located along the shores 

of pluvial Lake Beasley in the Fort Rock Basin (Helzer 2004). Increased sedentism, 

decreased mobility, and larger assemblages of groundstone are all hallmarks of the 

Bergen Period (Aikens et al. 2011). Along with the Bergen site, the DJ Ranch and 

Bowling Dune open sites typify the residential sites of this period (Jenkins et al. 2004). 



45 

 

Dart points continued to decrease in size, with Northern-side notched and Elko points 

characterizing the period.  

The predominance of large bodied mammals at the Dunn site diverged from the 

diversified diet breadth observed in older sites, where lacustrine resources were more 

prevalent (Aikens et al. 2011). Roots, collected in the uplands, took on more importance 

and rivaled the contribution of lacustrine resources in the diet (Aikens et al. 2011). 

During times of wetland expansion, marshy conditions permitted population explosions 

of small minnows, known as tui chubs. Tui chubs could be collected en masse as the 

marshes subsided seasonally (O’Grady 2004). 

 

2.3.5. The Boulder Village Period (3,000 cal BP to historic contact)  

Improved preservation of more recent geologic deposits permits higher resolution 

paleoclimate data for the Late Holocene. At Diamond Pond/Malheur Maar (1265 m 

AMSL) in Diamond Craters, Wigand (1987) describes quickly shifting vegetation 

regimes over the past few millennia (Table 2.1). In the western Great Basin, the Medieval 

Climate Anomaly (ca. 1100 to 600 cal BP) is marked by increased aridity (Bettinger 

1999:68), but in the northern Great Basin, more mesic conditions prevailed (Wigand and 

Rhode 2002). The Little Ice Age (ca. 500 to 150 cal BP) is also not well represented in 

northern Great Basin paleoclimate records.  
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Overall, winter precipitation increased relative to summer rains during the late 

Holocene (Wigand 1987; Wigand and Rhode 2002). Unpredictable and fluctuating lake 

levels driven by wet/dry climate oscillations exerted push/pull controls on people living 

in the northern Great Basin. Settlement and mobility during this period represents an 

extension of earlier terminal Middle Holocene patterns with larger and more densely 

concentrated populations. Prior to 3500 cal BP, identified sites in the Warner Valley were 

limited to upland locations and consisted primarily of lithic scatters (Weide 1967). After 

3500 cal BP, several winter village sites are documented around low-lying wetlands 

(Connolly et al. 2015, 2016; Eiselt 1997; Oetting 1989; O’Neill et al 2006; Pettigrew 

1984; Weide 1968, etc.).  

Diagnostic artifacts of this period reflect a transition to bow and arrow 

technology. Projectile points, typically classified as Rosespring or Eastgate in the 

northern Great Basin, are smaller than points recovered from Middle Holocene 

occupations (Aikens et al. 2011; Oetting 1989). Vast quantities of groundstone indicate a 

Table 2.1. Pollen proxy data for environmental moisture 

cycling at Diamond Pond (adapted from Wigand 1987). 
 

 

 Date  Representative Vegetation Moisture Regime 

 Before 5400 BP Shadscale desert Drier 

 5400-4000 BP Sagebrush steppe Drier 

 4000-2000 BP Juniper grasslands Wetter 

 2000-1400 BP Sagebrush steppe Drier 

 1400-900 BP Grass Wetter 

 500-300 BP Shadscale desert Drier 

 300-150 BP Juniper grasslands Wetter 
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heavy reliance on small seed and root processing (Dexter 2010), and basketry types 

proliferated (Connolly 2013). Toolkits also included nets, digging sticks, snares, bone 

and horn tools, piercing tools, and duck decoys. 

 

2.4. Great Basin Archaeological Plant Studies 

 

Fowler and Rhode (2007:336-337) noted that although seed collecting practices 

varied across the Great Basin culture area, according to ethnographic informants, the taxa 

targeted for food include 16 key plants: Indian ricegrass, Great Basin wildrye, dropseed 

(Sporobolus sp.), biscuitroot, sunflower (Helianthus sp.), saltbush, goosefoot, waada, 

blazing star, evening primrose (Oenothera sp.), barnyard grass (Echinochloa sp.), 

wheatgrass (Agropyron sp.), bluegrass, cattail, bulrush, and amaranth. In the northern 

Great Basin this list can be expanded to include fiddleneck (Amsinckia sp.) and stickseed 

(Lappula sp.; Kelly 1932; Steward 1938). These 18 taxa are often mirrored in the 

archaeological record where botanical remains have been analyzed. Over the past 40 

years, paleoethnobotanical research at sites in the northern Great Basin has provided a 

window onto economically important plants (Figure 2.4; Table 2.3). These analyses are 

summarized below, loosely grouped by site antiquity. 
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Figure 2.5. Paleoethnobotany research map: 1) Bezukewas Village; 2) Swan Lake 

house pits; 3) Williamson River fishing camp; 4) Beatty Curve; 5) Fort Rock Cave; 6) 

Connley Caves; 7) Bergen; 8) Bowling Dune; 9) DJ Ranch; 10) Locality III; 11) Big 

M; 12) Carlon Village; 13) Boulder Village; 14) Paisley Caves; 15) Rimrock Draw 

Rockshelter; 16) Burns; 17) Dunn; 18) Erin’s Cave; 19) Skull Creek Dunes; 20) Dirty 

Shame Rockshelter; 21) Paulina Lake. 
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Table 2.2. Macrobotanical remains recovered in northern Great Basin archaeological sites. 

Identified Taxon Late Pleistocene/Early Holocene Middle Holocene Late Holocene  

Economically-important taxa mentioned in Fowler and Rhode (2007): 

APIACEAE 

 Apiaceae Locality III (Prouty 2004)   Erin's Cave (Dexter 2010) 

 Lomatium  Paisley Caves (Jenkins 2007); Paulina Lake 

(Connolly and Jenkins 1999) 

  Boulder Village (Prouty 1994); Dirty 

Shame Rockshelter (Puseman and Yost 

2011; Sanford 1983) 

ASTERACEAE 

 Helianthus Dirty Shame Rockshelter (Sanford 1983)     

BORAGINACEAE 

 Boraginaceae     Beatty Curve East (Connolly et al. 2015) 

 Amsinckia Dirty Shame Rockshelter (Sanford 1983) Dirty Shame Rockshelter (Sanford 

1983) 

Dirty Shame Rockshelter (Puseman and 

Yost 2011; Sanford 1983) 

 Lappula Connley Caves (Appendix A); Dirty Shame 

Rockshelter (Sanford 1983) 

  Dirty Shame Rockshelter (Sanford 1983) 

CHENO-AMS 

 cheno-ams Burns (Gilmour et al. 2015) Bowling Dune (Prouty 1994) Beatty Curve East and Beatty Curve West 

(Connolly et al. 2015); Dirty Shame 

Rockshelter (Puseman and Yost 2011); 

Skull Creek Dunes Locality 10 (Thomas et 

al. 2015) 

 Amaranthus Dirty Shame Rockshelter (Sanford 1983)   Carlon Village  (Wingard 2001) 

 Atriplex Connley Caves (Appendix A); Dirty Shame 

Rockshelter (Sanford 1983)  

Bergen (Helzer 2001); Dirty Shame 

Rockshelter (Sanford 1983) 

Connley Caves (McDonough 2018); Dirty 

Shame Rockshelter (Sanford 1983); Skull 

Creek Dunes Locality 10 (Thomas et al. 

2015) 
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Table 2.2. Macrobotanical remains recovered in northern Great Basin archaeological sites. 

Identified Taxon Late Pleistocene/Early Holocene Middle Holocene Late Holocene  

 Chenopodium  Connley Caves (Appendix A); Dirty Shame 

Rockshelter (Sanford 1983); Locality III (Prouty 

2004) 

Bergen (Helzer 2001); Dirty Shame 

Rockshelter (Sanford 1983); Dunn 

(Musil 1990); Locality III (Prouty 

2004) 

Boulder Village (Prouty 1994); Carlon 

Village  (Wingard 2001); Dirty Shame 

Rockshelter (Puseman and Yost 2011; 

Sanford 1983); Erin's Cave (Dexter 2010); 

Skull Creek Dunes Locality 10 (Thomas et 

al. 2015); Swan Lake house pit (Kennedy 

2017); Williamson River fishing village 

(Cheatham 1991) 

 Suaeda  Locality III (Prouty 2004) Bergen (Helzer 2001); Locality III 

(Prouty 2004) 

Boulder Village (Prouty 1994); Skull Creek 

Dunes Locality 10 (Thomas et al. 2015); 

Swan Lake house pit (Kennedy 2017) 

CYPERACEAE 

 Scirpus/ Schoenoplectus Dirty Shame Rockshelter (Sanford 1983); 

Locality III; Paulina Lake (Connolly and 

Jenkins 1999); Rimrock Draw Rockshelter 

(Helzer and Kennedy 2016) 

Bergen (Helzer 2001); Locality III 

(Prouty 2004) 

Beatty Curve East and West (Connolly et 

al. 2015); Connley Caves (McDonough 

2018); Dirty Shame Rockshelter (Puseman 

and Yost 2011); Skull Creek Dunes 

Locality 10 (Thomas et al. 2015); Swan 

Lake house pit (Kennedy 2017) 

LOASACEAE 

 Mentzelia  Connley Caves (Appendix A)   Connley Caves (McDonough 2018) 

ONAGRACEAE 

 Oenothera Dirty Shame Rockshelter (Sanford 1983)     

POACEAE 

 Poaceae Dirty Shame Rockshelter (Sanford 1983); 

Locality III (Jenkins 1999) 

Bowling Dune (Prouty 1994); 

Locality III (Prouty 2004) 

Beatty Curve West (Connolly et al. 2015); 

Bezuksewas Village (Cheatham et al. 

1995); Boulder Village (Prouty 1994); 

Connley Caves (McDonough 2018); Dirty 

Shame Rockshelter (Puseman and Yost 

2011; Sanford 1983); Erin's Cave (Dexter 

2010); Skull Creek Dunes Locality 10 

(Thomas et al. 2015)  

 

TYPHACEAE 
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Table 2.2. Macrobotanical remains recovered in northern Great Basin archaeological sites. 

Identified Taxon Late Pleistocene/Early Holocene Middle Holocene Late Holocene  

 Typha Dirty Shame Rockshelter (Sanford 1983); 

Rimrock Draw Rockshelter (Helzer and 

Kennedy 2016) 

Dirty Shame Rockshelter (Sanford 

1983) 

Beatty Curve East (Connolly et al. 2015); 

Dirty Shame Rockshelter (Sanford 1983) 

Other plant taxa identified in northern Great Basin sites: 

ADOXACEAE 

 Sambucus     Beatty Curve East (Connolly et al. 2015) 

AIZOACEAE 

 Sesuvium Rimrock Draw Rockshelter (Helzer and 

Kennedy 2016) 

    

ALISMATACEAE 

 Sagittaria Burns (Gilmour et al. 2015); Rimrock Draw 

Rockshelter (Helzer and Kennedy 2016) 

  Beatty Curve East (Connolly et al. 2015) 

APOCYNACEAE 

 Apocynum   Dirty Shame Rockshelter (Sanford 

1983) 

Beatty Curve West (Connolly et al. 2015); 

Dirty Shame Rockshelter (Sanford 1983) 

ASTERACEAE 

 Asteraceae     Dirty Shame Rockshelter (Puseman and 

Yost 2011) 

 Artemisia     Dirty Shame Rockshelter (Puseman and 

Yost 2011; Sanford 1983); Erin's Cave 

(Dexter 2010) 

 Brickellia   Dirty Shame Rockshelter (Sanford 

1983) 

  

 Chrysothamnus   Bergen (Helzer 2001)   

HYDROPHYLLACEAE 

 Phacelia     Dirty Shame Rockshelter (Puseman and 

Yost 2011; Sanford 1983) 

BRASSICACEAE 

 Brassicaceae   Dunn (Musil 1990) Beatty Curve East (Connolly et al. 2015) 
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Table 2.2. Macrobotanical remains recovered in northern Great Basin archaeological sites. 

Identified Taxon Late Pleistocene/Early Holocene Middle Holocene Late Holocene  

 Descurainia Dirty Shame Rockshelter (Sanford 1983) Dirty Shame Rockshelter (Sanford 

1983) 

Dirty Shame Rockshelter (Puseman and 

Yost 2011; Sanford 1983); Erin's Cave 

(Dexter 2010); Skull Creek Dunes Locality 

10 (Thomas et al. 2015) 

 Sysimbrium     Beatty Curve West (Connolly et al. 2015) 

CAPRIFOLIACEAE 

 Plectritis Dirty Shame Rockshelter (Sanford 1983) Dirty Shame Rockshelter (Sanford 

1983) 

Dirty Shame Rockshelter (Sanford 1983) 

CORNACEAE 

 Cornus Dirty Shame Rockshelter (Sanford 1983) Dirty Shame Rockshelter (Sanford 

1983) 

Dirty Shame Rockshelter (Puseman and 

Yost 2011; Sanford 1983) 

CUPRESSACEAE 

 Juniperus  Locality III (Prouty 2004) Big M (Stenholm 1994); Bowling 

Dune (Prouty 1994); Dirty Shame 

Rockshelter (Sanford 1983); Dunn 

(Musil 1990) 

Connley Caves (McDonough 2018.); Erin's 

Cave (Dexter 2010); Swan Lake house pit 

(Kennedy 2017) 

CYPERACEAE 

 Cyperaceae     Carlon Village  (Wingard 2001); Skull 

Creek Dunes Locality 10 (Thomas et al. 

2015) 

 Carex Paulina Lake (Connolly and Jenkins 1999)   Erin's Cave (Dexter 2010) 

 Cyperus   Bergen (Helzer 2001)   

ELAEAGNACEAE 

     Erin's Cave (Dexter 2010) 

ERICACEAE 

 Vaccinium     Beatty Curve East (Connolly et al. 2015) 

FABACEAE 

 Fabaceae     Carlon Village (Stenholm 1994); Dirty 

Shame Rockshelter (Puseman and Yost 

2011) 

 Lupinus     Beatty Curve West (Connolly et al. 2015) 
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Table 2.2. Macrobotanical remains recovered in northern Great Basin archaeological sites. 

Identified Taxon Late Pleistocene/Early Holocene Middle Holocene Late Holocene  

 Trifolium     Dirty Shame Rockshelter (Puseman and 

Yost 2011) 

 Salvia     Dirty Shame Rockshelter (Puseman and 

Yost 2011) 

JUNCACEAE 

 Juncus Rimrock Draw Rockshelter (Helzer and 

Kennedy 2016) 

Dirty Shame Rockshelter (Sanford 

1983) 

Beatty Curve East (Connolly et al. 2015); 

Connley Caves (McDonough 2018); Erin's 

Cave (Dexter 2010) 

LAMIACEAE 

 Mentha     Beatty Curve East (Connolly et al. 2015) 

LILIACEAE s.l. 

 Allium   Dirty Shame Rockshelter (Sanford 

1983) 

Carlon Village  (Wingard 2001); Dirty 

Shame Rockshelter (Puseman and Yost 

2011; Sanford 1983); Erin's Cave (Dexter 

2010) 

 Camassia quamash Locality III (Jenkins 1999)   Bezuksewas Village (Cheatham et al. 1995) 

MALVACEAE 

 Sphaeralcea     Dirty Shame Rockshelter (Puseman and 

Yost 2011) 

NYMPHACEAE 

 cf. Nuphar lutea     Beatty Curve West (Connolly et al. 2015)  

PINACEAE 

 Pinus   Dunn (Musil 1990) Beatty Curve East (Connolly et al. 2015) 

POLEMONIACEAE 

 Gilia     Beatty Curve East (Connolly et al. 2015) 

 Polemonium     Dirty Shame Rockshelter (Sanford 1983) 

POLYGONACEAE 

 Polygonum Locality III (Prouty 2004) Locality III (Prouty 2004) Bezuksewas Village (Cheatham et al. 

1995); Carlon Village (Stenholm 1994); 

Connley Caves (McDonough 2018) 

 

RANUNCULACEAE 
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Table 2.2. Macrobotanical remains recovered in northern Great Basin archaeological sites. 

Identified Taxon Late Pleistocene/Early Holocene Middle Holocene Late Holocene  

        Ranunculus aquailis     Beatty Curve West (Connolly et al. 2015) 

ROSACEAE 

 Crataegus     Erin's Cave (Dexter 2010) 

 Prunus subcordata     Beatty Curve East (Connolly et al. 2015); 

Bezuksewas Village (Cheatham et al. 1995) 

 Prunus virginiana Dirty Shame Rockshelter (Sanford 1983); 

Paulina Lake (Connolly and Jenkins 1999) 

  Beatty Curve East and West (Connolly et 

al. 2015); Carlon Village (Wingard 2001); 

Dirty Shame Rockshelter (Sanford 1983) 

 Rosa Paisley Caves (Cummings and Puseman 2003); 

Dirty Shame Rockshelter (Sanford 1983) 

Dirty Shame Rockshelter (Sanford 

1983) 

Carlon Village (Wingard 2001); Dirty 

Shame Rockshelter (Puseman and Yost 

2011; Sanford 1983); Swan Lake house pit 

(Kennedy 2017) 

 Rubus Paulina Lake (Connolly and Jenkins 1999)   Beatty Curve East (Connolly et al. 2015); 

Carlon Village (Wingard 2001)   

RUBIACEAE 

 Galium     Carlon Village  (Wingard 2001); Dirty 

Shame Rockshelter (Puseman and Yost 

2011; Sanford 1983)   

SANTALACEAE 

 Comandra     Bezuksewas Village (Cheatham et al. 1995) 

SARCOBATACEAE 

 Sarcobatus   Bergen (Helzer 2001)   

SCROPHULARIACEAE 

 Collinsia     Dirty Shame Rockshelter (Puseman and 

Yost 2011) 

SOLANACEAE 

 Nicotiana     Beatty Curve West (Connolly et al. 2015); 

Bezuksewas Village (Cheatham et al. 1995) 

URTICACEAE 
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Table 2.2. Macrobotanical remains recovered in northern Great Basin archaeological sites. 

Identified Taxon Late Pleistocene/Early Holocene Middle Holocene Late Holocene  

 Urtica dioica     Beatty Curve East and West (Connolly et 

al. 2015) 

VIOLACEAE 

 Viola     Beatty Curve East (Connolly et al. 2015) 

Processed edible tissue 

 PET  Locality III (Prouty 2004)   Beatty Curve West (Connolly et al. 2015); 

Williamson River fishing camp (Cheatham 

1991) 

Introduced taxa 

 Malus     Beatty Curve East (Connolly et al. 2015) 

 Prunus armeniaca     Beatty Curve East (Connolly et al. 2015) 

 Prunus avium     Beatty Curve East (Connolly et al. 2015) 

 Prunus domestica     Beatty Curve East (Connolly et al. 2015); 

Bezuksewas Village (Cheatham et al. 1995) 

 Prunus persica     Beatty Curve East (Connolly et al. 2015) 

 Phaseolus vulgaris     Bezuksewas Village (Cheatham et al. 1995) 

 Triticum aestivum     Beatty Curve East (Connolly et al. 2015) 

 Vitis     Beatty Curve East (Connolly et al. 2015) 
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2.4.1. Terminal Pleistocene/Early Holocene Paleoethnobotany 

Due to the paucity of Terminal Pleistocene and Early Holocene sites with 

residential occupations, our current understanding of Paleoindian plant food exploitation 

is limited. Paleoethnobotany at a handful of temporary campsites provide some data on 

economically important plants, revealing evidence for a diversified diet that included 

roots and small seeds. Previous studies at the Paisley Caves identified a Rosa (wild rose) 

seed embedded in a coprolite and Lomatium starch on a ground hand stone found in 

association with an extinct Pleistocene horse bone (Cummings and Puseman 2003; 

Jenkins 2007).  

In a preliminary macrobotanical analysis of Younger Dryas deposits at the 

Connley Caves (35LK50), I identified Mentzelia albicaulis, Atriplex, Lappula, and 

Chenopodium seeds (Appendix A). Ongoing macrobotanical research at Rimrock Draw 

Rockshelter also has the potential to yield interesting and significant finds pertinent to 

Paleoindian occupations. Charred Sagittaria, Schoenoplectus, Typha, Sesuvium, and 

Juncus seeds have been recovered from several Early Holocene hearth features (9500 cal 

BP) at or below a depth of 200 cm (Helzer and Kennedy 2014). Remarkably, carbonized 

Sagittaria and cheno-am (cf. Chenopodium sp. or Suaeda depressa) seeds were also 

found in a component associated with a Western Stemmed point at an open site near the 

city of Burns (Gilmour et al. 2015). Cultural deposits from the stratum produced two 

radiocarbon dates of 10,400 to 10,200 cal BP.  

At Dirty Shame Rockshelter (35ML65), Sanford (1983) reported Amsinckia, 

Atriplex, Chenopodium, Amaranthus, Cornus (dogwood), Rosa, Helianthus, and Typha 

seeds from deposits dating between 10,800 and 10,030 cal BP (Zone VI). In Zone V 
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sediments dating between 8700 and 7900 cal BP, the number and variety of seed types 

increased dramatically. Rosa, Amsinckia, Plectritis (sea blush), Lappula, Poaceae, 

Helianthus, Chenopodium, Descurainia (tansy mustard), Typha, Oenothera, Scirpus, and 

Prunus were all identified.  

Remnants of Prunus virginiana, Scirpus, Carex, Corylus (hazelnut), Lomatium, 

and Rubus (brambles) were recovered from a 9500 cal BP hearth at Paulina Lake 

(Connolly and Jenkins 1999). Macrobotanical soil flotation at Locality III identified 

charred vegetative tissues along with Artemisia, Chenopodium, and Juniperus in 

Component I, dated to about 10,000 cal BP (Prouty 2004). Component II deposits, dated 

between 8580 and 7000 cal BP, yielded Artemisia, Polygonum (knotweed), Suaeda 

depressa (wada), Chenopodium, and charred processed edible tissue (PET). Pollen and 

starch analysis of a grinding slab revealed preserved Poaceae and possibly Camassia 

quamash microbotanical remains (Jenkins 1999). 

 

2.4.2. Middle Holocene Paleoethnobotany 

Increases in population density and sedentism during the Middle Holocene permit 

the study of anthropogenic plant use in habitation sites. Archaeobotanical remains from 

Middle Holocene components at Bergen, Locality III, Bowling Dune, DJ Ranch, Big M, 

and the Dunn sites suggest a focus on lowland marsh plants. Macrobotanical analysis 

conducted by Helzer (2001) at the Bergen site yielded information about plants 

associated with daily household life, providing a more complete understanding of 

settlement and subsistence in the Fort Rock Valley. Plant remains sampled from two 

house floors were examined. Helzer (2001) reports Scirpus and Chenopodium seeds 
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dominated the assemblage along with numerous tui chub vertebrae. Other identified seed 

taxa included Chrysothamnus, Cyperus, Scirpus, Suaeda, and Sarcobatus. Very little 

evidence of upland root processing was noted indicating the people living at Bergen 

intensively used local wetland resources. 

Sites located near Silver Lake yielded similar results. The Middle Holocene 

component at Locality III produced charred Scirpus, Suaeda depressa, Chenopodium, 

Polygonum, and Poaceae seeds as well as Artemisia and Juniperus charcoal (Prouty 

2004). At Bowling Dune and DJ Ranch, Prouty (1994) found low taxonomic diversity in 

his analysis of cultural features. Artemisia charcoal was the solitary botanical type 

recovered from samples at DJ Ranch, while only Artemisia, Juniperus, Poaceae and 

cheno-ams were identified from house floors and hearths at Bowling Dune. Bulk soils 

processed for macrobotanical identification at Big M also produced little in the way of 

carbonized plant matter; Poaceae stems and minute fragments of Juniperus, Artemisia, 

and Philadelphus lewisii (mock orange) charcoal were the only flora identified (Stenholm 

1994). Though no roots were found, all four of these sites contained groundstone 

artifacts.  

A hearth at the Dunn site in the Harney Basin yielded a more diverse plant 

assemblage dating to the Middle Holocene, including charred Pinus, Chenopodium, 

Juniperus, Brassicaceae and Poaceae seeds, as well as conifer charcoal (Musil 1990). 

Nancy Stenholm, who conducted the investigation, interpreted the presence of these taxa 

as evidence of utilization of the higher elevation juniper woodlands in eastern Oregon 

toward the end of the Middle Holocene. 
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At Dirty Shame Rockshelter, Middle Holocene-aged seeds date from 7640 to 

7410 cal BP in Zone IV (Sanford 1983:80-85). Analysis identified Typha, Descurainia, 

Atriplex, Poaceae, Rosa, Chenopodium, Brickellia (brickelbush), Allium, Apocynum 

(Indian hemp), Juniperus, and Juncus seeds. Equisetum (horsetail fern) fragments were 

also recovered. The seed spectra in Zone III, representing 7220 to 6600 cal BP, included 

Typha, Atriplex, Chenopodium, Amsinckia, Descurainia, Scirpus, Poaceae, Plectritis, 

Prunus, Rosa, and Cornus (Sanford 1983:85-87). Overall, the Middle Holocene 

macrobotanical array at Dirty Shame Rockshelter does not appear to differ greatly from 

the Early Holocene seed assemblage. 

 

2.4.3. Late Holocene Paleoethnobotany 

Intensive occupation episodes are reflected in the archaeobotanical record as well 

as the archaeological record during the Late Holocene. Extensive research at sites like 

Carlon Village and Boulder Village demonstrates an intensification of roots (geophytes) 

and small seed processing by inhabitants of the northern Great Basin (Jenkins and 

Brashear 1994). Late Holocene sites are located in both lowland and upland settings, and 

the botanical assemblages suggest plant resources collected from various elevations were 

important dietary staples. Carlon Village, situated on the edge of Silver Lake in the Fort 

Rock Basin, was occupied between 2300 and 600 BP (Wingard 2001). Archaeological 

seeds identified at Carlon Village include Allium, Chenopodium, Amaranthus, Galium 

(bedstraw), Cyperaceae, Fabaceae, Prunus virginiana, Polygonum, and Rosa types 

(Stenholm 1994; Wingard 2001). Close by, the Boulder Village upland habitation site 

yielded similar results. Although Lomatium species accounted for a large portion of the 
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botanical assemblage, Suaeda depressa, Chenopodium, Poaceae and Atriplex are also 

highly represented (Prouty 1994).  

Late Holocene occupations at Dirty Shame Rockshelter were analyzed by Sanford 

(1983) and Puseman and Yost (2011). Sanford (1983:87-94) reported the presence of 

Amsinckia, Lappula, Plectritis, Poaceae, Rosa, Polemonium (Jacob’s ladder), Phacelia 

(tansy), Artemisia, Typha, Cornus, and Apocynum in Zone II (2850 to 1020 cal BP), and 

Descurainia, Chenopodium, Poaceae, Rosa, Amsinckia, Cornus, Typha, Atriplex, 

Plectritis, Allium, and Prunus in Zone I (1000 to 450 cal BP). Puseman and Yost 

analyzed Late Holocene plant remains associated with a wikiup feature demonstrating 

multiple habitation events between 1200 and 850 cal BP (Jenkins and Kennedy 2016). 

Charred seeds identified in their analysis included Chenopodium, Descurainia, Poaceae, 

Rosa, cheno-ams, Amsinckia, Artemisia, Asteraceae, Collinsia (blue eyed Mary), Cornus, 

Fabaceae, Trifolium (clover), Galium, Salvia (sage), Mentzelia, Phacelia, Scirpus, 

Sphaeralcea (mallow), and Allium (bulbs). As with the Early and Middle Holocene 

components at the site, Sanford’s analysis does not discriminate between charred and 

uncharred seed/bulb types. Although Puseman and Yost did make the distinction, the two 

assemblages are quite similar. The exceptional botanical preservation at Dirty Shame 

Rockshelter is evidenced by the extensive assemblage of well-preserved cordage, 

basketry, and other botanical artifacts. In this context, uncharred remains are less likely to 

indicate intrusions than they do at other sites exposed to weathering (Aikens et al. 1977).  

Preliminary analysis of coprolites from a Connley Caves (35LK50) latrine feature 

dated to ca. 3500 to 3300 cal BP  revealed people were ingesting Juniperus berries along 

with Mentzelia albicaulis, Schoenoplectus, Polygonum (smartweed), Atriplex, and 
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Juncus, and Poaceae members as well as fish, including tui chubs, and mammals  

(McDonough 2018). 

Paleoethnobotanical remains from a Late Holocene (ca. 500 cal BP) hearth at 

Erin’s Cave Rockshelter, a short-term summer campsite in the Catlow Valley, contained 

several carbonized Suaeda depressa, Chenopodium, and Poaceae seeds, along with 

charred Allium, Artemisia, Carex, Crataegus (hawthorn), Descurainia, Juncus, 

Juniperus, Polygonum, and Shepherdia (buffaloberry) seeds (Dexter 2010). Starch grains 

recovered from the use-wear surfaces of groundstone artifacts reflected the processing of 

roots and tubers in the Apiaceae family (Dexter 2013).  

Close by, a hearth associated with probable Shoshone Ware pottery excavated at 

Skull Creek Dunes Locality 10 (35HA496) yielded numerous cheno-ams including 

Chenopodium, Suaeda, and Atriplex seeds. Several Poaceae taxa (Agrostis, Alopecurus, 

Hordeum, Leymus, and Poa) were also identified along with Descurainia, Cyperaceae, 

and Scirpus seeds. Radiocarbon assays date the hearth to 900 cal BP (Helzer, personal 

communication, October 24, 2017; Thomas et al. 2015). 

Macrobotanical research conducted by Stenholm at a Williamson River fishing 

camp in the Klamath Basin, Site 35KL667, yielded evidence of conifer and hardwood 

charcoal, an unidentified starchy edible tissue fragment, and Chenopodium seeds 

(Cheatham 1991). At the Bezuksewas Village Site (35KL778), Stenholm analyzed eight 

flotation samples and 16 individual botanic specimens (Cheatham et al. 1995). Site 

35KL778 represents a major habitation site located near Chiloquin, Oregon, with 

residency extending from the Late Holocene into the Historic Era. Stenholm identified 

conifer charcoal, seeds, and edible tissues in the samples. Identified seeds included the 
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Eurasian imports Phaseolus vulgaris (green bean) and Prunus domestica (plum) along 

with native species including P. subcordata (Klamath plum), Polygonum, Comandra 

(toadflax), and Poaceae. A starchy liliaceous bulb, probably representing Camassia was 

also present in the assemblage. Additionally, residue recovered from the stem of a pipe 

was interpreted to represent Nicotiana (tobacco). 

A large scale macrobotanical investigation I conducted at the Beatty Curve 

archaeological site (35KL95) included the processing and analysis of 48 bulk sediment 

samples and 137 individual botanic specimens (Connolly et al. 2015). Located along the 

Sprague River in the Klamath Basin, the site consists of two loci: the west locus reflects 

human residency in the Late Holocene (ca. 2500 cal BP) and the east locus represents the 

remains of a Klamath homestead occupied between AD 1864 and 1905. The 

macrobotanical assemblage consisted of seeds, charcoal, PET starchy tissues, and PET 

fruity tissues. The charred tissues represent taxonomically unidentifiable charred berry 

and tuber materials. The west locus assemblage consisted of only 38 charred seeds 

representing Apocynum, cheno-ams, Lupinus (lupine), Nicotiana attenuata (Indian 

tobacco), Nuphar lutea spp. polysepala (wokas), Poaceae, Ranunculus aquatilis (aquatic 

buttercup), Prunus virginiana, Schoenoplectus, Sysimbrium (hedgemustard), and Urtica 

dioica (stinging nettle). These taxa largely represent economically important flora 

utilized for food and fiber crafts (basketry, mats, etc.).  

Macrobotanical studies at the East Locus were initiated to gain a better 

understanding of the association between Klamath tribal members and United States 

governmental policies as they related to diet, culture, and assimilation during the pre-

Allotment period. Numerous seeds (n=1351) were present in bulk soil samples from the 
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East Locus. Twenty-eight identifiable taxa were observed: cheno-ams, a member of the 

Lamiaceae family including Mentha (mint), Polygonum, a member of the Boraginaceae 

family, members of the Rosaceae family including Malus domestica (apple), Prunus 

armeniaca (apricot), P. avium (cherry), P. domestica (plum), P. persica (peach), P. 

subcordata, P. virginiana, and Rubus, Scirpus, Viola (violet), cf. Nuphar lutea ssp. 

polysepala, Juncus, Urtica dioica, Pinus, Sambucus, Typha, Vaccinium (huckleberry), 

Vitis (grape), a member of the Brassicaceae family, Gilia (gilia), Sagittaria, and Triticum 

aestivum (wheat). Identified species included plants traditionally valued for food, 

medicine, and construction, as well as introduced Eurasian domesticates, demonstrating 

the persistence of traditional cultural practices even as federally imposed policies 

mandated assimilation of Klamath tribal members.  

At a pit house village site in Klamath County (35KL2088), Kennedy (2017) 

analyzed sediments from within and outside the perimeter of a house pit feature. 

Radiocarbon dates from the house pit place residency at approximately 200 cal BP. 

Along with charcoal specimens, the center of the house pit yielded economically valued 

seeds, including Chenopodium, Schoenoplectus, Juniperus, Poa, Rosa, and Suaeda. The 

presence of Suaeda seeds in the Upper Klamath Basin is unusual, as this food source is 

typically associated with Northern Paiute populations in eastern Oregon. However, seeds 

have been found in other historically-documented Klamath resource areas. Suaeda seeds 

were recovered at Bergen in the Fort Rock Basin in Early, Middle, and Late Holocene 

deposits (Helzer 2001; Prouty 1994, 2004). Seeds identified in the house pit feature 

would have been available to harvest in the autumn. No introduced plant taxa were 

recovered in the house pit samples. If residency in these houses extended into the post-



64 

 

contact era, people were not consuming Eurasian domesticates here as they were at 

Beatty Curve and Bezuksewas Village.  

 

2.5. Paleoecology and Archaeology Overview 

 

In the northern Great Basin, WST sites pre-date the Clovis horizon, prompting 

archaeologists to question the nature and timing of human dispersals into North America. 

Significant environmental changes since the LGM have affected the demographic trends 

in North America generally, and in the Great Basin, specifically. The post-glacial climate 

history of the northern Great Basin has been historically mediated by local orographic 

and hydrographic fluctuations.  

Persistence of upland forests, shrub-steppe, and marshy wetland resources may 

account for continued reliance on a core group of wild plants that supplemented diets of 

northern Great Basin residents. The survey of cultural plant remains discussed here 

reflects nearly 12,000 years of plant use in the northern Great Basin. Emerging patterns 

demonstrate the persistent use of culturally-important taxa through time, as Fowler and 

Rhode (2007) suggested for the Basin as a whole. Here, economically-important taxa 

include members of the Chenopodiaceae, Asteraceae, Apiaceae, Brassicaceae, 

Cyperaceae, Poaceae, Rosaceae, Polygonaceae, Loasaceae, and Juncaceae families. 

Diachronic trends hint at continued usage of resources across generations. The following 

chapters will compare the results from two sites, the Paisley Caves and LSP-1 

Rockshelter, to determine how the archaeobotanical data reported here correspond with 

previously observed trends.   
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CHAPTER III 

RESEARCH FRAMEWORK 

 

Human-environmental interactions figure prominently in the study of Great 

Basin archaeology. Here, indigenous populations with varying levels of mobility 

practiced subsistence foraging over millennia. Hunting, gathering, and fishing 

activities were intermittently supplemented by small-scale cultivation conditioned by 

the historical period and regional environmental constraints. Historically, Great 

Basin archaeological research has been deeply entrenched in evolutionary ecology. 

Although the specific theoretical frameworks and research paradigms have vacillated 

over the past century, a core underlying idea about hunter-gatherer subsistence 

persists: people practicing foraging modes of subsistence are especially sensitive to 

ecosystem perturbations. As a result, cultural and behavioral adaptations – even 

those reflective of niche construction processes – are closely related to 

environmental factors (Aikens and Jenkins 1994; Bettinger 1991a; Jennings 1957, 

1964).  

Addressing perceived linkages between archaeological and 

paleoenvironmental datasets requires better understanding of connections between 

the data. As Contreras (2017:14) elegantly observes, interactions between people and 

environments occur at multiple spatial and temporal scales. The resolution of 

regional paleoclimate data does not necessarily correspond to the resolution of 

archaeological data in individual sites. Although difficult, especially in 

archaeological contexts with ephemeral footprints, identifying how, when, and where 
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these processes articulate can be accomplished by working across scales to 

incorporate paleoecological and archaeological datasets, and by working between 

scales to explore the mechanisms through which articulation occurs. Historical 

ecology, in general, and paleoethnobotanical data, in particular, can fulfill the call 

for “an iterative process of tacking between local and regional, and perhaps also etic 

and emic, in exploring past human-environment interactions,” (Contreras 2017:14) 

because those data represent locally and regionally available taxonomic types in 

well-stratified and dated archaeological contexts.  

Perspectives grounded in historical ecology value the importance of human 

dynamism, human agency, communication, cognition, and historical antecedents 

(Crumley 1994). The methods of historical ecology are multi-disciplinary, 

incorporating cultural, historical, biological, and geological lines of evidence (Egan 

and Howell 2001). Through this lens, I explore the interpretations of archaeological 

and paleoecological records and demonstrate how a historical ecology perspective 

can reshape our understanding of hunter-gatherer populations in the Great Basin and 

beyond. 

 

3.1. Historical Foundations of Hunter-Gatherer Anthropology  

 

The trajectory of research on hunter-gatherers emanates from two theoretical 

frameworks: the developmental model and the ecological model (Bettinger 1991a; 

Trigger 2006). The developmental model, which views hunter-gatherers as a 

primitive societal form, originated in 19
th

 century British theory, although 
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conceptions of “primitives” had developed as early as the 17
th

 century, well before 

any notion of hunter-gatherer entered the British consciousness (Barnard 1999). 

Social Darwinists like Herbert Spencer viewed hunter-gatherers as the ontogenic 

precursors to modern British society. This attitude enforced a unilinear and 

teleological approach to anthropology common to the era (Spencer and Carneiro 

1967; Trigger 2006). The perception that indigenous societies had no capacity for 

change transferred human inequality from the political realm to the natural realm 

(Trigger 2006:177). Cross-continental colonial anthropology also fostered racism, 

promoting the notion that because indigenous peoples were incapable of creating 

“civilized” culture, the establishment of colonial rule was beneficial to the ultimately 

doomed indigenous cultures (Trigger 2006:194).  

The colonial attitude toward hunter-gatherer societies was also pervasive in 

North American schools where the ecological model developed in tandem with the 

Euro-American ideal/identity of discovery and mastery of “wild” landscapes. Euro-

American anthropologists saw hunter-gatherers as existing in harmony with nature, 

albeit in a more simple (primitive) stage of cultural evolution (Bettinger 1991b; 

Morgan 1976; Trigger 2006). Anthropological research in the United States was 

predicated upon museum-affiliated field studies; therefore, hunter-gatherer 

populations observed in North America were conceived as being a part of the natural 

history of the continent. An environmental-materialist perspective dominated the 

hunter-gatherer discussion, validating the explanatory discourse that identified 

subsistence practice as a stage of cultural evolution.  
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These ideas are embodied in the work of Lewis Henry Morgan. Morgan 

(1976:18) focused on tracing evolution and concluded that material culture 

accumulated incrementally in seven principal stages of human development, but 

failed to explain the process itself. He attributed cultural progression through theses 

stages to both technological achievements and naturally unfolding institutional 

correlates. These institutions fell into seven connected categories: subsistence, 

government, language, the family, religion, house life and architecture, and property 

(Morgan 1976:12). Morgan understood cultural evolution as a unilinear evolutionary 

sequence involving an organic burgeoning of ideas. Because the subsistence mode is 

the first of these institutions, hunter-gatherers are viewed as occupying a lower stage 

of cultural evolution in his sequence.  

In the 20
th

 century, anthropologists increasingly adopted an environmentally-

grounded model on hunter-gatherer societies. Cultural ecologists, particularly Julian 

Steward – a proponent of neoevolutionism – believed that given similar 

environments and resource availability, cultural forms and developmental trajectories 

would be similar among different groups of people (Steward 1968; Trigger 

2006:389). Leslie White (1943) proposed that as a branch of natural science, 

anthropological research methods should be empirical and could reveal universal 

laws of culture. He attempted to resolve human-environmental relationships through 

nomothetic means. White suggested that both the human organism and the 

environmental habitat represented constants. He further assumed that race and 

ethnicity did not affect decision-making, and therefore contended that the efficiency 

of tools represented the expenditure of energy in evolving culture. Through a series 
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of economically-rational formulas, he demonstrated that efficiency corresponded to 

advancement. The amount of energy available for culture-building in the hunter-

gatherer stage was finite, whereas in agrarian systems, energy derived from 

domesticated plants and animals provided a potentially infinitely-increasing return 

on investment of human expenditure (White 1943:235). These two paradigms heavily 

influenced the research program of Great Basin archaeology in the western United 

States (Fowler 1972).  

Nomothetic theories pertaining to North American desert hunter-gatherers 

waned in the mid-20
th

 century as archaeologists recognized the shortcomings of 

ethnographic analogy in the Great Basin (Widlok 2005:20). The scope and depth of 

Great Basin ethnographic literature pales in comparison to Northwest Coast 

accounts, primarily because the latter studies provide a more theoretically productive 

baseline for anthropological inquiry. Decimation of desert hunter-gatherer 

populations driven by disease and Euro-American aggression limit the utility of 

ethnographic analogy so that hunter-gatherer data are primarily extrapolated from 

archaeological data itself.  

 

3.1.1. Great Basin Research Paradigms 

Archaeologists in the Great Basin have traditionally emphasized the Culture-

Historical approach. The Culture-Historical approach traces chronologies based on 

changes in the material culture found in archaeological sites. In this approach, 

specific periods are defined by common artifact assemblages across wider swaths of 
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geographic area rather than evaluating each archaeological site independently 

(Willey and Phillips 1958).  

Although this tradition has been largely superseded by more scientific and 

nuanced approaches around the world, the practice of identifying cultural periods 

provides a baseline for understanding localized behavioral practices in the past. This 

is especially true in the Great Basin where Jesse Jennings devised the Desert Culture 

Hypothesis that posited cultures in the Great Basin had remained in a relatively 

stable state of “Archaic” (or Desert Archaic) development over the course of several 

millennia beginning with the recession of pluvial lakes around 8900 cal BP (Grayson 

2011; Jennings 1957; Jennings and Norbeck 1955; Jones et al. 2003). Once the 

environment stabilized, so did the subsistence practices of Great Basin Natives.  

Jennings deduced that small bands of hunter-gatherers followed seasonal 

rounds hunting, gathering and fishing, living in family bands, adhering to loosely 

affiliated political structures, and subscribing to similar cosmological beliefs across 

the Basin throughout the Holocene. In Jennings’ view, people lived exclusively off 

the land and were at the mercy of the environment, forced to migrate across sub-

basins when conditions became unfavorable in particular locations. Culture change 

over time was considered negligible and related to climatically-mediated changes in 

resource availability (Jennings 1957, 1964). Not surprisingly, Steward’s Cultural 

Ecology model figured prominently in the scholarly works of Jennings and his 

colleagues. While archaeologists have since abandoned the notion that people 

persisted in a stagnant cultural system, the practice of developing cultural histories 



71 

 

for Great Basin people remains an integral component of the archaeological 

literature.  

Variations on the Desert Culture Hypothesis have been proposed by several 

archaeologists working regionally in the Great Basin. Willig (1989), for example, 

suggested Paleoindians shared similar cultural traits with later Desert Archaic 

populations that flexibly practiced broad spectrum foraging across a myriad array of 

environments, but remained tethered to mesic resources. The most generalized 

culture chronology was proposed by Willig and Aikens (1988) and is still widely 

used across much of the Basin today.  

 

3.2. Historical Ecology  

  

Theories of historical ecology (HE) view environments not as mere physical 

or biological units, but as contexts where human populations reside and shape their 

cultures. Historical ecology stems from two premises. First, space itself is considered 

a contingent product of human practice (Biersack 1999). This perspective, in line 

with a hermeneutic epistemology, provides a useful framework for viewing 

landscapes both as standpoints (Hicks and McAtackney 2007), and as encompassing 

the lives and times of predecessors who have moved around in them and participated 

in their formation through deep time (Ingold 2000). Second, the HE approach focuses 

on the “interpenetration of culture and the environment, rather than on the adaptation 

of human beings to the environment” (Balée 1998:14). In archaeological research, 

historical ecology approaches emphasize the dialectical relationships between people 
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and their biotic and abiotic surroundings through time, and thus provide a 

methodologically explicit means of understanding the linking of ecosystem dynamics 

and human agency (Ellen 2006:S14). 

HE approaches fundamentally dispute the concept of a “pristine” ecological 

condition in the age of anatomically modern humans. People affect and are affected 

by changes in landscapes (Balée 2006). Humans, especially in small-scale 

economies, episodically and cyclically induce intermediate disturbances through 

actions such as broadcast fires, tree cultivation, settlement, and soil enrichment. HE 

perspectives permit researchers to trace the vestiges of human behaviors to recognize 

persistent long-term relationships with the landscape and the inheritance of 

ecological knowledge pertaining to those relationships in diachronic studies. 

Traditional Ecological Knowledge (TEK) is defined as the knowledge and insights 

acquired through extensive observation of a particular landscape, including all taxa 

residing in that space. TEK may include knowledge passed down in an oral tradition 

or shared among users of a resource (Huntington 2000). TEK plays an important role 

in influencing how people react to and initiate environmental perturbations. This  

view can be applied to studies of small-scale subsistence economies despite the 

limited archaeological footprint left by hunter-gatherers. The legacy of human 

decisions and actions across landscapes is integral to ecological evolution itself and 

not merely a consequence of natural selection as has been historically portrayed for 

hunter-gatherer societies in North America. 

The HE framework is particularly appropriate in research employing 

Paleoethnobotanical and zooarchaeological data because it connects ethnography 
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with archaeology. Paleoethnobotany can reflect worldviews as it studies the practice 

of communing with food, drink, medicinal, stimulant, and depressant plants 

(Clément 1998). This also pertains to Paleoindian cultures that colonized the Great 

Basin and descendent populations that dwelled there for millennia. 

Paleoethnobotany (or archaeobotany) refers to the study of the connection 

between ancient humans and ancient plants through analyzing and interpreting 

archaeological remains (Hastorf 1999; Vanderwarker et al. 2016). Macrobotanical 

analysis indicates the recovery and identification of seeds, bulbs, tissues, charcoal, 

and other macroscopic plant elements as opposed to microscopic elements like 

pollen, phytoliths, and starches. The extraordinary preservation environment in the 

arid Great Basin is ideal for archaeological research employing macrobotanical 

analyses. In contrast, microscopic plant data often compensate in mesic climate 

reconstructions in the absence of macroscopic data. Even though multiple lines of 

paleoethnobotanical evidence lend stronger support to building holistic subsistence 

models (Adams and Smith 2011), macrobotanical remains such as seeds and charcoal 

can offer direct information on anthropogenic use of plants, while starch,  pollen, and 

phytoliths may merely offer proxy data of human involvement. Hence, when 

available, macrobotanical data can provide indispensable records.  

Understanding human subsistence strategies is an overarching biological 

paradigm in anthropological research (Ellen 2006:S4). Paleoethnobotanical analyses 

can provide a wealth of information about local subsistence and the history of 

human-environment interactions. Wild plant foods have long been recognized as 

important components of human diet in hunter-gatherer lifeways. Even so, studies of 
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subsistence economies tend to focus on the analysis of associated faunal taxa, 

whereas plant-based resources are more heavily weighted in studies of agricultural 

societies. To recognize and understand the whole picture of human-plant 

interactions, archaeologists need to incorporate more paleoethnobotanical analyses of 

subsistence systems (Hather and Mason 2002). 

 

3.3. Research Questions 

 

My dissertation research aims to examine the interconnectedness among 

hunter-gatherers’ subsistence activities, settlement patterns, TEK, and changing 

climate conditions. In examining the linking mechanisms involved in human-

environmental interactions, this project builds on previous archaeological research in 

the northern Great Basin, while also providing an independent dataset for detecting 

and interpreting human-environmental interactions in Oregon for the past 14,000 

years. The key data of this research derive from macrobotanical datasets from the 

Paisley Caves and LSP-1 Rockshelter. Previously analyzed palynological data (Beck 

et al. 2017; Saban 2015) complements the original macrobotanical data reported 

here.  

 

What plant taxa are represented in northern Great Basin Rockshelter deposits?  

Plant macrofossils preserved in arid rockshelters provide local vegetation 

records spanning thousands of years (Wigand and Rhode 2002:312). Seeds deposited 

by both cultural and natural agents dispersed in archaeological sediments offer 
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taxonomic data that can be interpreted in light of known environmental and 

ethnographic parameters. As a baseline, macrobotanical studies offer 

presence/absence observations for local plant taxa that can be used to calculate 

ubiquity and abundance measures. Moreover, macrobotanical counts form the basis 

of data analysis that can quantify relative contributions of specific taxa to the 

assemblage through time. 

 

Is the plant macrofossil assemblage representative of collecting and processing 

efforts conducted by the site residents? Are seeds and charcoal deposited by non-

human agents distinguishable from those deposited as a result of 

purposeful/intentional economic activity? 

 

Direct and indirect resource utilization account for the majority of 

macrobotanical remains in archaeological sites (Minnis 1981). Accidental charring of 

seeds during the processing and use and/or consumption of plant resources preserve 

carbonized materials. Charred seeds resulting from other, natural sources (e.g., 

wildfire) are highly unlikely to be incorporated into archaeological contexts (Minnis 

1981:147). In addition to charring, indicators of cultural involvement in seed 

deposition can include morphological traits. Breakage patterns in seeds can reveal 

whether the plant resource was subjected to threshing or grinding. Sanford (1983) 

describes three fracture types on grasses that indicate they represent waste products 

from grinding: 

…the archaeological specimens are empty florets with 1) the lemma variously 

longitudinally split, and either separate or still attached to the rest of the floret 

structure; 2) lemma still attached, but gaping open or twisted into one plane 

and spread out fanwise; or 3) floret crushed at the base (Sanford 1983:55). 
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Macrobotanical analyses are typically limited to the identification of 

carbonized materials because uncharred seeds rarely preserve for more than 100 

years (Minnis 1981), but enhanced preservation conditions in the current study sites 

preclude making assumptions about the antiquity of plant remains based on 

carbonization. Therefore, uncharred seeds must be evaluated under additional criteria 

to determine modes of introduction. Factors other than human agency can contribute 

to the faunal and floral assemblages present in archaeological sites (Lyman 2004; 

Schiffer 1972). Any interpretations must consider ethnographic analogy, site 

formation processes and non-human environmental inputs (Ascher 1961; Binford 

1980; Schiffer 1972).  

Natural seed dispersal, bioturbation, and animal activities may all introduce 

seeds inside the dripline of caves and rockshelters. While the diversity of represented 

plant taxa and the morphological attributes of the seeds themselves are not adequate 

indicators of cultural activity, interpreting the presence of economically important 

plants in relation to regional paleoclimate records permits explanations for the plant 

remains in light of the broader environmental signature. To differentiate culturally-

introduced macrobotanical remains from non-cultural remains, I consider both the 

effects of seed dispersal syndromes and residual contaminants on seed morphology, 

and the taxonomic diversity of seeds, fruits, and charcoal found in archaeological 

contexts at the Paisley Caves and LSP-1 Rockshelter.  

Gravity (autochory), animals (zoochory), wind (anemochory), and water 

(hydrochory) all provide mechanisms by which plants spread their genetic material. 

Buoyancy, explosive dehiscence, and physical structures on seeds themselves (e.g., 
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pappi, wings, plumes, and barbs) facilitate increased long-distance transport of some 

species of plants (Ellner and Shmida 1981; Howe and Smallwood 1982; Simpson 

2006). Ecological adaptations for fleshy fruits also attract animals to aide in the 

broadcasting of propagules across long distances. Statistically, small-seeded species 

disperse across greater distances than large-seeded species, and tall species disperse 

farther than short species (Thomson et al. 2011).  

In a global survey of dispersal syndromes, Flores-Moreno et al. (2013) found 

that the maximum dispersal distances varied by dispersal syndrome, but did not 

exceed 51.5 m for zoochorous seeds, 22.04 m for aneomchorous/hydrochorous seeds, 

and 2.5 m for autochorous seeds. The average mean dispersal distance for all plants 

ranged from 0.7 m to 33.4 m. Thus, if seeds are broadcast without the assistance of 

human intervention, then taxonomic diversity should be lower than in contexts where 

people are responsible for the introduction of seeds. Knowledge of plant habit and 

propagation syndromes of the identified plant taxa in this study will help inform 

whether seeds in the archaeological deposits were introduced by human activities or 

resulted from other processes.  

Residual contaminants in archaeological contexts result when modern seeds 

filter downward through the site matrix from the surface due to plowing, trampling, 

root holes, drying cracks, downwashing, earthworms, ants, or burrowing animals 

(Keepax 1977:225-226). The protection of rock overhangs at the Paisley Caves and 

LSP-1 reduces the probability of freeze/thaw events that could result in 

downwashing and fluvial cracks. Evidence of bioturbation can be gleaned by the 
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presence of rootlets and insects in the soil samples, and the occurrence of krotovina, 

and rodent dens in the archaeological deposits.  

Bushytailed woodrats (Neotoma cinerea) have been observed in the vicinity 

of the Paisley Caves, and their nests reported in the caves. They typically inhabit 

boulder outcrops, vertical crevices, clefts or caves in cliffs, or talus slopes (Smith 

1997). Middens usually contain hoarded plant materials and feces, with increasing 

caching behaviors occurring between late August and September. Foliage, rather 

than, seeds, fruits, and bark are preferred food items, and forbs are selected over 

grasses, although coprophagy is common and when consumed, fecal matter is 

swallowed whole (Verts and Carraway 1998:283). Plants targeted for food are 

contingent on locally available genera; but Juniperus, Cercocarpus, Atriplex, 

Purshia, Pinus, Chrysothamnus, Descurainia, Sphaeralcea, Erigeron, Astragalus, 

and Vicia have been recovered from the stomachs and feces of woodrats (Smith 

1997:5-6; Verts and Carraway 1998:281). Artemisia foliage and seeds are generally 

avoided. Females seldom forage at distances greater than 50 to60 m from the den, 

but the home range is limited to 500 m (Frase and Sera 1993; Trapani 2003; Topping 

and Millar 1996). If seeds in archaeological deposits in the rockshelters are attributed 

to woodrat den-building, then species recovered from the midden should be locally 

available with preferential caching of the taxa listed above.  

 

Can the macrobotanical constituents identified at the archaeological sites provide  

clarification regarding feature function and/or specific activity areas at the Paisley 

Caves and LSP-1 Rockshelter?  
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A benefit of analyzing archaeological plant remains is that the analysis can 

aid in determining feature function (Hastorf 1999; Pearsall 2016). The presence and 

abundance of charcoal and charred plant remains can indicate whether a feature was 

used to cook food, while the presence of a cache of seeds can indicate if the feature 

represents a storage pit. At the Bergen Site in the neighboring Fort Rock Valley, 

Helzer (2001) collected samples in a horizontal and vertical grid from the floor of a 

house. Based on the identification of macrobotanical remains, she was able to 

distinguish the location of the kitchen, a secondary outside hearth, and the sleeping 

area.  

Questions related to feature function have arisen at both the Paisley Caves 

and LSP-1 Rockshelter. In Paisley Cave 5, a bowl-shaped probable cooking feature 

was identified in the basal deposits. It is unclear whether the feature is a fi re hearth, 

earth oven, or related to a natural burn recorded in an adjacent unit. The feature has 

not been dated due to these ambiguities. Macrobotanical analysis may elucidate the 

function of the feature and guide future research in this portion of the si te. At LSP-1 

Rockshelter, the amorphous nature of some organic concentrations has led to 

skepticism regarding their cultural attribution. 

 

Is the resolution of the macrobotanical assemblage detailed enough to identify 

seasonality of episodic residency?  

 

Archaeobotanical data can enhance the resolution of the archaeological record 

because the presence of specific plants with known flowering and harvest times can 

indicate the seasonality of site occupation. If specific habitation events are well -
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documented, then the assemblage of plant taxa may offer clues to the timing of their 

collection and/or caching. 

 

Do the culturally-introduced plant taxa identified in the study area indicate that the 

earliest settlers of North America were generalists in terms of the plant resources 

they exploited?  

 

A useful result of paleoethnobotanical studies is the ability to place 

archaeological sites within a model of foraging behavior, which provides a 

framework for understanding prehistoric subsistence strategies. Previous research in 

the northern Great Basin proposed Paleoindian subsistence was highly adaptable at 

the TP/EH boundary. According to (Willig 1989:285), “the recognition of broad 

spectrum adaptations in the Far West as early as 11,500 B.P. extends the notions of 

cultural continuity and adaptability so essential to the Desert Culture concept. It 

means that the foundations of the Western Archaic were already in place at a time 

when the "desert" as we know it now was just coming into being.”  

Paleoethnobotanical analyses at Monte Verde, Bonneville Estates 

Rockshelter, and Danger Cave have established broad dietary breadth among TP/EH 

populations (Dillehay et al. 2008; Rhode and Louderback 2007). I reconstruct a 

record of anthropogenic plant use and ecological interactions in the northern Great 

Basin during the terminal Pleistocene and early Holocene (ca. 14,000 to 7600 years 

cal BP) through the identification of plant taxa and artifact-feature associations and 

application of quantitative analyses. Plant data from hearths and cultural deposits 

will help reconstruct diet breadth, and quantification of botanical remains will 

demonstrate the importance of various plants.  
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Does the plant assemblage associated with the Western Stemmed Tradition reflect a 

distinctive subsistence pattern or is it similar to other Paleoindian traditions? Does 

the assemblage at Paisley Caves resemble any other assemblages in Paleoindian 

contexts in North America or along the Pacific Rim? 

 

 Although Willig (1989) suggested the broad spectrum utilization of resources 

for people with WST and Clovis toolkits, subsequent research appears to demonstrate 

otherwise. Where Clovis technology has been identified, it is typically associated 

with big-game hunting (Surovell and Waguespack 2009). Although Grayson and 

Meltzer (2015) describe only 15 well-defined Clovis sites found in direct association 

with extinct Pleistocene mammal kill sites, Haynes and Hutson (2013:304-5) assert 

that big game hunting comprised a majority of subsistence activities (but see Cannon 

and Meltzer 2008 for an alternative interpretation). Hemmings (2004) compiled a list 

of Clovis-era sites with plant remains assumed to represent food items, which 

included seven sites in the continental United States (Shawnee-Minisink, PA, 

Lubbock Lake, TX, Austin Cave, TN, Gault, TX, Lewisville, TX, Levi Rockshelter, 

TX, and Israel River, NH).  

As opposed to the narrow diet breadth described for Clovis hunters, Western 

Stemmed points have been found in direct association with evidence of diversified 

floral and faunal remains indicative of a generalist diet (Erlandson et al. 2011, 2015; 

Hockett et al. 2017; Jenkins 2007; Jenkins et al. 2012a). On the Channel Islands, 

Erlandson et al. (2011) report a marine-based economy associated with Western 

Stemmed points dating to 12,200 cal BP. According to Lupo and Schmitt’s (2016) 

economic analysis of megafauna hunting, quantitative and qualitative data 

demonstrate that larger-sized prey has higher handling costs than smaller-sized game 

(Lupo and Schmitt 2016). If Pleistocene hunters associated with the WST did not 
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focus on large game, then their diversified diets should include broad spectrum 

resources such as fruits, seeds, vegetables, and roots. Comparisons of TP/EH 

occupations at the Paisley Caves and other sites allow me to investigate linkages 

between Paleoindian macrobotanical assemblages in sites with different toolkits. I 

also explore the potential for the Paisley Caves and LSP-1 Rockshelter 

macrobotanical assemblages to provide insights about how Paleoindians learned 

landscapes (McGuire and Stevens 2016). 

 

Do changes in the quantity and relative abundance of taxonomic types in the 

macrofossil assemblage reflect adaptive responses constrained by large scale 

climate fluctuations during the Alleröd (14,500 to 13,000 cal BP), Younger Dryas 

(12,900 to 11,600 cal BP), or the Mid Holocene Climate Optimum (7000 to 5000 cal 

BP)? 

 

Correlations between climate amelioration and the emergence of cultural 

patterns associated with Jennings’ Desert Culture concept have been proposed in the 

Great Basin (e.g., Grayson 2011; Weide 1968). While diversifying diet breadth is 

one logical response to environmental hardships, it is not the only employable 

rationale. Zeder (2012:259) argued that generalist diets associated with the 

Pleistocene Broad Spectrum Revolution were not predicated upon adaptation to 

marginalized ecosystems, but rather occurred “within a context of environmental 

opportunity where people were able to use their singular knowledge of the 

environment and their ingenuity in manipulating that environment to their benefit.”   

The antiquity of cultural deposits and the resolution of the micro-stratigraphy 

at the Paisley Caves and LSP-1 Rockshelter provide a unique opportunity to study 

changes in seed frequency over time. Because I focus on diachronic data sets, my 
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research provides information about a high-resolution sequence of human-

environmental interactions. I analyze botanical remains within a framework of 

known global climate oscillations, along with local and regional paleoecological 

records to test whether changes in the taxonomic assemblage of macrobotanical 

remains (or diet breadth) are related to environmental degradation or enhancements.  

 

What are the traditional uses of each identified taxon? Are the traditional foodways 

of descendent Great Basin populations related to archaeological evidence of plant  

use in antiquity? If so, can we use ethnographic analogy to understand past people -

plant relationships and behaviors?  

 

I compare archaeological seed assemblages at the Paisley Caves, LSP-1 

Rockshelter, and sites with previously reported archaeobotanical data to historic and 

contemporary ethnographic information. If the culturally-deposited taxa are 

statistically similar to the ethnographic data, then we may be able to extrapolate 

procurement and processing strategies from contact-era and post-contact 

descriptions. If the distribution of available plant resources in the immediate site 

vicinity and surrounding region changed over time, it could influence the behavior of 

people utilizing those resources. Those changes could be associated with variations 

in the material culture identified at the Paisley Caves, LSP-1, and at other 

archaeological sites in the area.  

Another benefit of using analogy to interpret the archaeological record 

derives from the ability to trace TEK. The vegetation communities of the northern 

Great Basin contain several economically important plant taxa (see chapters I and II). 

TEK documented in the ethnohistoric record has implications for understanding 

behavior and material function in the past. Huntington (2000:1273) noted that quality 
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research necessitates “…a broader willingness to consider [TEK’s] relevance, to 

attend to the information it offers, and to incorporate the expertise that is available.” 

Food-processing, including pre- and post-harvest knowledge and technology, is a 

tradition passed down to the present generation from ancient ancestors 

(Wollstonecraft 2011).  

Repeated camping and habitation episodes at the sites may have affected 

vegetation communities in the immediate vicinity of cultural activity. High 

ecological biodiversity has been associated with the presence of Native populations 

(Hames 2007). Intermediate ecosystem disturbances initiated by foraging populations 

can induce edge effects and create habitat fragmentation, which can lead to net 

increases of biodiversity (Redman 2005). Camp followers, ruderal, and commensal 

plants thrive in disturbed habitats and often accompany habitation and camp sites ; 

they are also usually highly represented in the archaeological record (Yarnell 1982).  

Deur (2009) argued that Klamath and Modoc subsistence practices fall 

outside traditionally-defined hunter-gatherer activities, as they have actively 

managed plant communities across multiple scales. His observations are rooted in 

contemporary ethnographic interviews, but to evaluate the time depth of management 

strategies, archaeological plant data must be consulted. In the current study, I attempt 

to identify patterns of human-plant interactions that can aid in elucidating these 

strategies.  
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3.4. Research Overview 

 

I analyze archaeological plant remains to learn about environmental 

conditions in the past and to make interpretations about the economic uses of plant 

remains as they relate to other aspects of material culture in the archaeological 

records (Hockett et al. 2017; Jenkins 2007; Jenkins et al. 2012a, 2013, 2016; 

Pelligrini 2014; Smith et al. 2014, 2015, 2016). I also investigate the exploratory 

potential of analogies to enhance the productivity of my study on desert hunter-

gatherer populations. This dissertation utilizes an historical ecology approach to 

studying paleoethnobotanical data from arid cave sites in the northern Great Basin. 

Interpretation of macrobotanical remains with reference to local and regional pollen 

data provide a multi-scalar view of human-environmental interactions of Great Basin 

foragers over the past 14,000 years. I consult palynological studies of the Paisley 

Caves sediments (Beck et al. 2017; Saban 2015) to complement the macrobotanical 

data. Additionally, pollen data obtained from northern Great Basin lakes are used to 

contextualize regional paleoclimate data.  
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CHAPTER IV 

MATERIALS 

4.1. The Paisley Five-Mile Point Caves (35LK3400) 

 

4.1.1. Site Setting and Formation 

The Paisley Caves are a series of wave-cut rockshelters that formed during the 

Pleistocene at the highest stand of pluvial Lake Chewaucan approximately 19,000 to 

18,000 years ago. The caves are located at 1377 m AMSL on the far southeastern edge of 

the Summer Lake Basin, a north-south trending valley flanked by Winter Ridge to the 

west and Diablo Rim to the east and watered by the Chewaucan River (Figure 4.1).  

Figure 4.1. The Paisley Caves geographic setting. 
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As the lakebed was exposed, the silty-sand overlaying gravel substrates were 

transported by southwesterly winds. These sediments accumulated in the caves, forming 

basal lenses of organic sand and silt atop wave-rounded boulders and sandy gravels by 

approximately 14,700 years ago. Increasing local precipitation and reduced evaporation 

regimes beginning 14,500 years ago caused lake levels to increase and water once again 

inundated the fan (Jenkins et al. 2016:132). A stream formed that flowed north into the 

Summer Lake basin and cut a channel across the plain approximately 1.6 km southwest 

of the caves (Jenkins et al. 2016:132). 

Although the Paisley Caves are currently situated far above the valley floor, 

during the terminal Pleistocene they would have provided ample access to nearby 

lacustrine resources when the revitalized lake, delta river marsh, and associated 

grasslands supported habitat for fish and waterfowl, and forage vegetation for large 

migratory mammals (Jenkins et al. 2013). The location of the caves at the confluence of 

local marshy resources and nearby upland root grounds to the east provided access to a 

variety of plants and animals, making it an ideal campsite.  

Historic vegetation modeling shows the proximity of desert scrub, alkaline 

grasslands flats, ponderosa pine forest, aspen groves, montane meadows, and seasonal 

wetlands within 20 km of the Paisley Caves (Tobalske 2002). Today, ponderosa pine 

grows on the upper eastern slopes of Winter Rim, 10 km west of the site. The Pinus 

Ponderosa Zone near the site is characterized by a Pinus ponderosa overstory, with P. 

contorta and Abies concolor more common at higher elevations. Arctostaphylos, 

Ceanothus, and Purshia tridentata comprise much of the understory vegetation (Franklin 

and Dyrness 1988).  
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4.1.2. Previous Research 

The Paisley Caves are located along a south cliff face above Summer Lake. Seven 

west-facing rock overhangs and the downslope cave apron exhibit evidence of human 

habitation (Figure 4.2). The site extends 144 m x 20 m, covering an area of 

approximately 3035 m
2
. Three grottos, Caves 1, 2, and 5, were systematically 

investigated for archaeological materials (Figure 4.3). The site was listed on the National 

Register of Historic Places under Criterion D in 2014 (Dexter and Jenkins 2014). 

  

Figure 4.2. The Paisley Caves (35LK3400), view north (photo: D. Jenkins) 
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The southern-most grotto, Paisley Cave 1, measures 14 m long and is 7 m deep 

from the drip line to the rear wall. Roof fall blocks a substantial area at the mouth of the 

cave (Figure 4.4). Cave l excavations covered 16 m
2
 and removed 29.2 m

3 
of sediments 

to depths up to 245 cm. Large roof fall debris (ca. 2000 cal BP) also blocks the primary 

access to the central and southern portions of Paisley Cave 2 (Figure 4.5). Jenkins (2007) 

noted prior to the collapse, the overhang would have provided additional covered 

habitable area within the cave. Cave 2 now measures 7 m long and 6 m from the entrance

Figure 4.3. Paisley Caves site planview (Kennedy and Jenkins 

2014). 
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Figure 4.4. Map of Paisley Cave 1 excavation 

(Jenkins et al. 2016:185). 

Figure 4.5. Map of Paisley Cave 2 excavation (Jenkins et al. 

2016:135). 
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to the back of the cave. Excavations in Cave 2 removed 30.3 m
3
 of sediments across 22 

m
2
. Bedrock was encountered at a maximum depth of 230 cm. Cave 5 is open to direct 

entry and measures 11 m across and 6 m deep (Figure 4.6). Systematic excavations 

covered 45 m
2 

and removed 75.6 m
3
 of sediments in the north and south blocks (Jenkins 

et al. 2013). 

Before the advent of systematic archaeological analysis Luther Cressman (1940) 

excavated trenches in caves 1, 2, and 3 in 1938 (Cave 3 was later renumbered as Cave 4; 

Jenkins 2007). Cressman’s investigations began only after the site was brought to his 

attention by locals who had previously vandalized the caves. Cressman discovered a 

Figure 4.6. Map of Paisley Cave 5 excavation (Jenkins et 

al. 2012b: no page). 
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boulder-outlined pre-Mazama living floor with associated artifacts and extinct 

megafaunal remains when he excavated the main rockshelter deposits in caves 1 and 3(4) 

the following year. The faunal elements were located primarily along the rear wall and 

included camel, bison, horse, and waterfowl, some of which exhibited charring. Although 

few artifacts were discovered in situ, obsidian biface fragments, scrapers, edge-modified 

flakes, and lithic waste flakes were also identified. Cressman contended that the extinct 

faunal remains represented food scraps discarded by hunters during the terminal 

Pleistocene (Cressman 1940, 1966; Cressman et al. 1942). This interpretation was 

questioned by his contemporaries who argued that the lack of provenience data 

introduced ambiguity and compromised the association between the megafaunal remains 

and the artifacts (Heizer and Baumhoff 1970; Jennings 1986; Krieger 1944). For six 

summers between the years of 2002 and 2011 crews from the University of Oregon 

systematically excavated deposits in caves 1, 2, and 5 to more adequately address 

questions raised by Cressman’s work.  

Jenkins’ investigations confirmed Cressman’s assessment and established 

horizontal, vertical, and stratigraphic association of cultural remains and megafaunal 

elements. Human coprolites were cotemporaneous with camel and horse remains between 

14,300 and 13,255 cal BP (Gilbert et al. 2008a, Gilbert 2008b; Jenkins 2007; Jenkins et 

al. 2012). The integrity of the coprolites raised questions for some scholars (see Fiedel 

2014; Goldberg et al. 2009; Poinar et al. 2009; Sistiaga et al. 2014), but the research team 

working at Paisley quelled most doubts in the archaeological community by carefully 

documenting stratigraphy, demonstrating reliable artifact associations, and reporting a 

suite of 241 well-ordered radiocarbon dates (Table 4.1) and 487 obsidian hydration dates. 
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Table 4.1. AMS radiocarbon dates for the Paisley Caves. 
14

C Lab 

Number 

FS 

Number Cave/Unit Elevation LU 

Dated 

Material 14C Age 1σ cal BP Range Reference 

AA-19151 100BP-1-5345 NP NP NP 
Scirpus 

basketry 
145±50 300 (270-0) 0 

Connolly et al. 

1999 

Beta-195907 l294PC-1/4-C-19-1 1/4C 1366.98 4 Cotton cloth 1060±40 950 (990) 1040 
Jenkins et al. 

2013 

Beta-249762 60-1-9035 NP NP NP 
Multiple 

warp sandal 
1590±40 1410 (1520) 1530 

Jenkins et al. 

2013 

Beta-249767 60-1-9017 NP NP NP 
Multiple 

warp sandal 
1610±40 1400 (1520) 1570 

Jenkins et al. 

2013 

UCIAMS-98926 2011PC-248 1/7A 1366.17 4 
Artemisia 

charcoal 
4290±15 4848 (4852) 4857 

Jenkins et al. 

2013 

AA-19153 NP NP NP NP 
Scirpus 

basketry 
6560±70 

7560 (7460-7430) 

7420 

Connolly et al. 

1999 

OxA-16496 100BP-1-5344 1/2A 1366.33 Mazama 
Human 

coprolite 
6608±35 7469 (7510) 7551 

Jenkins et al. 

2013 

Beta-213428 
1374-PC-1/2A-28-

2 
1/2A 1366.33 Mazama Coprolite 6640±40 7580 (7540) 7440 

Jenkins et al. 

2012 

Beta-191540 1374-PC-12A-28-2 1/5A 1365.28 2 
Charcoal, 

hearth 
7600±70 8510 (8390) 8220 

Jenkins et al. 

2013 

UCIAMS-98927 
1294-PC-1/5A-23-

F1 
1/7C 1365.66 2 

Artemisia 

charcoal 
7680±20 8434 (8469) 8504 

Jenkins et al. 

2013 

UCIAMS-98928 2011PC-249 1/7C 1365.07 2 
Carnivore 

coprolite 
8575±30 9534 (9542) 9549 

Jenkins et al. 

2013 

UCIAMS-98930 2011PC-251 1/9B 1364.50 1 

Pinus 

ponderosa 

nutshell 

10,010±30 11,371 (11,508) 11,644 
Jenkins et al. 

2013 

UCIAMS-98929 2011PC-254 1/7A 1364.88 1 
Artemisia 

charcoal 
10,095±30 11,502 (11,675) 11,847 

Jenkins et al. 

2013 

UCIAMS-98930 2011PC-252 1/9B 1364.50 1 

Pinus 

ponderosa 

nutshell 

10,165±25 11,719 (11,844) 11,968 
Jenkins et al. 

2013 

Beta-239084 2011PC-254 1/6A 1365.06 1 

Cut 

artiodactyl 

bone 

10,180±60 11,675 (11,844) 12,013 
Jenkins et al. 

2013 
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Table 4.1. AMS radiocarbon dates for the Paisley Caves. 

14
C Lab Number 

FS 

Number 

Cave/ 

Unit Elevation LU 

Dated 

Material 14C Age 1σ cal BP Range Reference 

AA-96488 1294-PC-1/6A-7 1/9B 1364.65 1 

2 strand 'S-

Twist' 

cordage 

10,476±56 12,231 (12,408) 12,584 Jenkins et al. 2013 

UCIAMS-90578 1961-1/9B-49-12 1/7C 
1364.72-

1364.78 
1 

Artemisia 

charcoal 
10,540±25 12,393 (12,521) 12,648 Jenkins et al. 2013 

Beta-226554 1896-PC-1/7C-42-66 1/4A 1364.68 1 Rabbit bone 11,870±50 13,631 (13,772) 13,912 Jenkins et al. 2013 

Beta-228916 l294-PC-2/3A-25 2/3A 1366.10 3 Rabbit bone 340±40 331 (400) 461 Jenkins et al. 2013 

Beta-249763 61-1-10023 NP NP NP 
Multiple 

warp sandal 
1130±40 950 (1050) 1070 Jenkins et al. 2013 

UCIAMS-

111795 
l961-PC-2/7D-19-61 2/7D 1365.77 2 

Leather 

fringe 
2040±20 1966 (2000) 2034 Jenkins et al. 2016 

D-AMS1217407 1961-PC-2/7A-31-6 2/7A 
1365.33-

1365.39 
1 

S-Twist' 

basketry 
2107±26 2041 (2081) 2121 Jenkins et al. 2016 

AA-18990 1896-PC-2-LSC-14 NP NP NP 

Human 

coprolite 

with 

hookworm 

2124±25 2064 (2102) 2139 Jenkins et al. 2016 

AA-18987 1896-PC-2-LSC-1 l NP NP NP 

Human 

coprolite 

with 

hookworm 

2225±25 2185 (2246) 2307 Jenkins et al. 2016 

AA-18988 1896-PC-2-LSC-12 NP NP NP 

Human 

coprolite 

with 

hookworm 

2230±25 2187 (2249) 2311 Jenkins et al. 2016 

Beta-147424 100BP-1-5431 NP NP NP 
Scirpus 

sandal 
2270±50 2340 (2330) 2310 

Connolly and 

Barker 2004 

 

 

 



95 
 

Table 4.1. AMS radiocarbon dates for the Paisley Caves. 

14
C Lab Number 

FS* 

Number 

Cave/ 

Unit Elevation LU 

Dated 

Material 14C Age 1σ cal BP Range Reference 

AA-96489 l961-PC-2/7A-31-6 2/7A 
1365.33-

1365.39 
1 

Scirpus 'S-

Twist' 

fragment 

2285±37 2206 (2274) 2341 Jenkins et al. 2013 

UCIAMS-79714 l829-PC-2/6A-16-1 2/6A 1366.50 7 
Human 

coprolite  
2295±15 2335 (2340) 2345 Jenkins et al. 2013 

AA-18989 1896-PC-2-LSC-13 NP NP NP 

Human 

coprolite 

with 

hookworm 

2425±25 2388 (2497) 2605 Jenkins et al. 2016 

Beta-249765 61-1-10057 NP NP NP 
Multiple 

warp sandal 
2830±50 2870 (2940) 2990 Jenkins et al. 2013 

UCIAMS-68046 2009PC-162 2/4C 1366.48 3 Bat guano 6790±15 7621 (7640) 7658 Jenkins et al. 2013 

UCIAMS-

761889 
1830-PC-2/4A-35 2/4A 1366.32 3 

Human 

coprolite 
7000±15 7822 (7866) 7909 Jenkins et al. 2013 

UCIAMS-79711 1830-PC-2/4A-35 2/4A 1366.32 3 
Human 

coprolite 
7020±15 7852 (7886) 7920 Jenkins et al. 2013 

UCIAMS-79713 1830-PC-2/4D-33-2 2/4D 1366.38 3 
Human 

coprolite 
7025±15 7856 (7889) 7921 Jenkins et al. 2013 

UCIAMS-79704 
1830-PC-2/4C-34-

101 
2/4C 1366.35 3 

Human 

coprolite 
7490±20 8313 (8338) 8360 Jenkins et al. 2013 

UCIAMS-76188 1830-PC-2/4D-33-1 2/4D 1366.39 3 
Human 

coprolite 
7595±15 8395 (8402) 8409 Jenkins et al. 2013 

UCIAMS-79705 
1830-PC-2/4C-34-

101 
2/4C 1366.35 3 

Human 

coprolite 
7605±20 8397 (8406) 8414 Jenkins et al. 2013 

UCIAMS-79712 1830-PC-2/4D-33 2/4D 1366.39 3 
Human 

coprolite 
7645±20 8414 (8426) 8438 Jenkins et al. 2013 

Beta-240513 1294-PC-2/3A-31-1 2/3A 1365.80 3 
Scirpus 

basketry 
7680±50 8430 (8480) 8530 Jenkins et al. 2013 
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Table 4.1. AMS radiocarbon dates for the Paisley Caves. 

14
C Lab Number 

FS 

Number 

Cave/ 

Unit Elevation LU 

Dated 

Material 14C Age 1σ cal BP Range Reference 

Beta-213429 1294-PC-2/3C-19-6 2/3C 1366.4 3 Coprolite 7860±40 8610 (8667) 8723 Jenkins et al. 2013 

UCIAMS-76192 2009PC-169 2/4C 1366.19 3 Coprolite 8180±15 9056 (9094) 9131 Jenkins et al. 2013 

UCIAMS-14472 PC2/6B-1366.15 2/6B 1366.15 3 
Artemisia 

twig 
8740±20 9672 (9710) 9747 Jenkins et al. 2016 

AAR-9687 1961-PC-2/7A-18-36 2/7A 1365.77 3 

3-strand 

hemp 

cordage 

9078±52 10,212 (10,246) 10,279 Jenkins et al. 2013 

UCIAMS-68045 2009PC-166 2/4C 1365.85 3 
Atriplex 

twig 
9480±20 10,706 (10,725) 10,744 Jenkins et al. 2013 

UCIAMS-68044 2009PC-165 2/4C 1365.85 3 
Insoluble 

residue 
9565±20 10,806 (10,922) 11,038 Jenkins et al. 2013 

Beta-341731 
1961-PC-2/7C-16-

131  
2/7C 1365.87 3 

Human 

coprolite 

with 

hookworm 

9620±30 10,862 (10,984) 11,106 Jenkins et al. 2016 

UCIAMS-14474 PC2/6B-1365.9 2/6B 1365.9 3 
Artemisia 

twig 
9630±20 10,894 (11,006) 11,118 Jenkins et al. 2013 

D-AMS1217410 1896-PC-2/6B-59-13 2/6B 1365.4 3 Cordage 9774±46 11,186 (11,209) 11,232 Jenkins et al. 2016 

UCIAMS-85337 1896-PC-2/6B-59-13 2/6B 1365.4 3 Cordage 9995±25 11,370 (11,473) 11,575 Jenkins et al. 2013 

UCIAMS-98931 1896-PC-2/6B-57-13 2/6B 1365.48 3 

Hearth, 

Artemisia 

charcoal 

10,020±30 11,387 (11,528) 11,669 Jenkins et al. 2013 

UCIAMS-80385 1896-PC-2/6B-59-13 2/6B 1365.67 3 
Artemisia 

twig 
10,090±20 11,499 (11,658) 11,816 Jenkins et al. 2013 

Beta-182920 l896-PC-2/6B-57-13 2/6B 1365.7 3 
Processed 

tissues 
10,160±60 12,320 (11,860) 11,440 Jenkins 2005 

UCIAMS-80386 l896PC-2/6A-52-101 2/6A 1365.48 3 
Artemisia 

twig 
10,260±25 11,869 (12,008) 12,147 Jenkins et al. 2013 
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Table 4.1. AMS radiocarbon dates for the Paisley Caves. 

14
C Lab Number 

FS 

Number 

Cave/ 

Unit Elevation LU 

Dated 

Material 14C Age 1σ cal BP Range Reference 

Beta-239083 l294-PC-2/3A-33-7a 2/3A 1365.95 3 

Cut 

artiodactyl 

bone 

10,260±60 11,849 (12,048) 12,247 Jenkins et al. 2013 

UCIAMS-

103089 
l896-PC-2/6B-60-1 l 2/6B 1365.35 2 

Periosteum 

tissue on 

bone 

10,290±30 11,976 (12,140) 12,304 Jenkins et al. 2013 

UCIAMS-87420 l896-PC-2/6B-59-14 2/6B 1366.40 2 Cordage 10,290±35 11,970 (12,141) 12,311 Jenkins et al. 2013 

Beta-195908 1294-PC-2/3C-31 2/3C 1365.80 3 
Artemisia 

rope 
10,290±40 12,360 (12,000) 11,870 Jenkins 2005 

UCIAMS-14473 PC2/6B-1366.00 2/6B 1366.00 3 
Artemisia 

bark 
10,310±20 12,030 (12,187) 12,343 Jenkins et al. 2016 

AA-96490 1961-PC-2/7D-18-2 2/7D 1365.83 2 

Braided 

Artemisia 

cordage 

10,319±56 12,016 (12,207) 12,398 Jenkins et al. 2013 

UCIAMS-98933 2011PC-244b 2/7A 
1365.73-

1365.68 
3 

Cervid 

(pronghorn) 

hair 

10,330±30 12,067 (12,230) 12,392 Jenkins et al. 2013 

D-AMS-1217411 1829-PC-2/4D-48-1 2/4D 1365.65 3 
Artemisia 

cordage 
10,356±44 12,101 (12,284) 12,466 Jenkins et al. 2013 

UCIAMS-

103086 
1896-PC-2/6B-60-11 2/6B 1365.35 2 

Unidentified 

bone 
10,365±30 12,123 (12,297) 12,471 Jenkins et al. 2013 

UCIAMS-79680 1829-PC-2/4d-48-1 2/4D 1365.65 3 
Artemisia 

cordage 
10,365±30 12,123 (12,297) 12,471 Jenkins et al. 2013 

UCIAMS-

102112 
1961-PC-2/7A-18-54 2/7A 1365.75 3 Human hair 10,585±35 12,457 (12,569) 12,680 Jenkins et al. 2013 

UCIAMS-76191 1829-PC-2/4C-49 2/4C 1365.60 2 
Human 

coprolite 
10,980±20 12,803 (12,896) 12,989 Jenkins et al. 2013 

UCIAMS-90577 1896-PC-2/6B-59-29 2/6B 1365.40 2 

Hearth, 

Artemisia 

charcoal 

11,005±30 12,816 (12,914) 13,012 Jenkins et al. 2013 
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Table 4.1. AMS radiocarbon dates for the Paisley Caves. 

14
C Lab Number 

FS 

Number 

Cave/ 

Unit Elevation LU 

Dated 

Material 14C Age 1σ cal BP Range Reference 

UCIAMS-

102110 
1896-PC-2/6B-60-37 2/6B 

1365.35-

1365.30 
2 

Hearth, 

Artemisia 

charcoal 

11,055±35 12,848 (12,947) 13,046 Jenkins et al. 2013 

UCIAMS-77100 1829-PC-2/4C-49 2/4C 1365.60 2 

Human 

coprolite, 

water 

soluble 

11,090±30 12,880 (12,977) 13,073 Jenkins et al. 2013 

D-AMS1217406 1896-PC-2/6B-60-37 2/6B 
1365.35-

1365.30 
2 

Hearth, 

Artemisia 

charcoal 

11,098±45 12,882 (12,988) 13,093 Jenkins et al. 2013 

UCIAMS-77103 
1830-PC-2/4C-51-

101 
2/4C 1365.53 2 

Human 

coprolite, 

macrobot. 

11,270±30 13,085 (13,174) 13,262 Jenkins et al. 2013 

UCIAMS-68047 2009PC-167 2/4C 1365.53 2 
Insoluble 

residue 
11,560±40 13,339 (13,448) 13,557 Jenkins et al. 2013 

D-AMS1217409 1961-PC-2/7D-21-4 2/7D 
1365.63-

1365.70 
2 

Artemisia 

branch 
11,623±51 13,381 (13,510) 13,638 Jenkins et al. 2013 

UCIAMS-77104 
1830-PC-2/4C-51-

102 
2/4C 1365.52 2 

Human 

coprolite, 

macrobot. 

11,625±35 13,386 (13,510) 13,633 Jenkins et al. 2013 

UCIAMS-86251 
1896-PC-2/6B-62-

3A 
2/6B 1365.31 2 

Horse 

maxilla 
11,740±25 13,502 (13,624) 13,745 Jenkins et al. 2013 

UCIAMS-79658 1829-PC-2/4C-51-11 2/4C 1365.50 2 

Large 

mammal 

bone 

11,790±35 13,582 (13,689) 13,795 Jenkins et al. 2013 

UCIAMS-

112742 
1961-PC-2/7D-21-4 2/7D 

1365.63-

1365.70 
2 

Artemisia 

branch 
11,810±50 13,595 (13,720) 13,844 Jenkins et al. 2013 

UCIAMS-68018 2099PC-168 2/4C 1365.48 2 
Rodent 

bone 
11,830±25 13,613 (13,735) 13,857 Jenkins et al. 2013 
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Table 4.1. AMS radiocarbon dates for the Paisley Caves. 

14
C Lab Number 

FS 

Number 

Cave/ 

Unit Elevation LU 

Dated 

Material 14C Age 1σ cal BP Range Reference 

UCIAMS-90593 1896-PC-2/6B-62-16 2/6B 1365.25 2 

Cut 

artiodactyl 

bone 

11,930±25 13,688 (13,828) 13,968 
Hockett and Jenkins 

2013 

UCIAMS-

103085 
1896-PC-2/6B-61-11 2/6B 1365.34 2 Horse bone 11,980±35 13,753 (13,945) 14,136 Jenkins et al. 2013 

Beta-228917 1294-PC-2/3A-38 2/3A 1365.45 1 
Sagegrouse 

bone 
11,980±40 13,752 (13,946) 14,140 Jenkins et al. 2013 

UCIAMS-79659 1829-PC-2/4C-52a 2/4C 1365.48 2 

Large 

mammal 

bone (light) 

12,025±30 13,806 (14,003) 14,200 Jenkins et al. 2013 

UCIAMS-68016 2009PC-168 2/4C 1365.48 2 
Rodent 

bone 
12,190±30 14,001 (14,222) 14,442 Jenkins et al. 2013 

UCIAMS-79660 1829-PC-2/4C-52b 2/4C 1365.48 2 

Large 

mammal 

bone (dark) 

12,275±30 14,087 (14,360) 14,633 Jenkins et al. 2013 

UCIAMS-79663 
1829-PC-2/4C-54-

101 
2/4C 1365.40 2 

Rodent 

ramus 
12,320±35 14,136 (14,469) 14,801 Jenkins et al. 2013 

UCIAMS-

103084 
1896-PC-2/4A-55-15 2/4A 1365.49 2 Horse bone 12,340±35 14,180 (14,513) 14,845 Jenkins et al. 2013 

UCIAMS-90594 1896-PC-2/6D-61-4 2/6D 1365.30 1 Bone 12,425±30 14,356 (14,671) 14,986 Jenkins et al. 2013 

Y-109 NP NP NP NP 

Rodent 

droppings 7610±1201 8630 (8390) 8180 Preston et al. 1955 

AA-19685 A-39-29 NP NP NP 

Camel 

bone, 

accepted) 9790±130 10,929 (11,170) 11,411 Jenkins et al. 2016 

UCIAMS-

142830 P5P-38-2 NP NP NP 

Camel 

bone, not 

accepted 10,600±3025 12,528 (12,618) 12,688 Jenkins et al. 2016 
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Table 4.1. AMS radiocarbon dates for the Paisley Caves. 

14
C Lab Number 

FS 

Number 

Cave/ 

Unit Elevation LU 

Dated 

Material 14C Age 1σ cal BP Range Reference 

AA-19682 P5P-38-2 3 NP NP NP 

Camel bone, 

not accepted 10,640±5525 12,571 (12,641) 12,711 Jenkins et al. 2016 

UCIAMS-

142851 A-39-29 3 NP NP NP 

Camelid 

bone 11,825±3026 13,609 (13,731) 13,853 Jenkins et al. 2016 

AA-19684 A-39-36 3 NP NP NP Horse bone 11,895±65 13,645 (13,797) 13,948 Jenkins et al. 2016 

Beta-221344 1374-PC-5/2B-28-1 5/2B 1366.56 1 Cotton string 139.1 Modern Jenkins et al. 2013 

UCIAMS-79679 1374-PC-5/5D-30-1b 5/5D 1366.56 1b Fabric 275±25 305 (362) 418 Jenkins et al. 2013 

OxA-16377 1294-PC-5/7D-4 5/7D 1368.16 8 
Human 

coprolite 
1308±28 1203 (1242) 1282 Jenkins et al. 2013 

GaK-1756 NP NP NP NP Tule matting 2480±100 2416 (2553) 2690 Jenkins et al. 2013 

Beta-213427 1294-PC-5/10D-8-5 5/10D 1367.71 6 Coprolite 4130±40 4830 (4770) 4520 Gilbert et al. 2008 

UCIAMS-79710 1704-PC-5/12C-13-6 5/12C 1367.36 5 
Human 

coprolite 
4950±15 5655 (5681) 5707 Jenkins et al. 2013 

UCIAMS-79715 1704-PC-5/12C-13-4 5/12C 1367.36 5 
Human 

coprolite 
5380±15 6197 (6229) 6261 Jenkins et al. 2013 

UCIAMS-79708 1704-PC-5/12C-13-5 5/12C 1367.36 5 
Human 

coprolite 
5545±20 6312 (6349) 6385 Jenkins et al. 2013 

UCIAMS-79702 1704-PC-5/12C-12-6 5/12C 1367.41 5 
Human 

coprolite 
5595±15 6335 (6367) 6399 Jenkins et al. 2013 

UCIAMS-79703 1704-PC-5/12C-12-6 5/12C 1367.41 5 

human 

coprolite, 

sol. urine 

5655±15 6421 (6439) 6457 Jenkins et al. 2013 

UCIAMS-76186 1704-PC-5/12C-14-6 5/12C 1367.35 5 
Human 

coprolite  
5715±15 6479 (6502) 6525 Jenkins et al. 2013 

Beta-226557 1374-PC-5/5B-23 5/5B 1367.21 5 Rabbit bone 5720±40 6460 (6527) 6588 Jenkins et al. 2013 

UCIAMS-76184 1704-PC-5/12C-15-4 5/12C 1367.29 5 
Human 

coprolite 
5740±15 6507 (6532) 6557 Jenkins et al. 2013 
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Table 4.1. AMS radiocarbon dates for the Paisley Caves. 
 

14
C Lab Number 

FS 

Number 

Cave/ 

Unit Elevation LU 

Dated 

Material 14C Age 1σ cal BP Range Reference 

UCIAMS-76182 1704-PC-5/12C-15-6 5/12C 1367.26 5 Human 

coprolite 

5750±15 6515 (6557) 6599 Jenkins et al. 2013 

UCIAMS-76187 1704-PC-5/12A-10-

11 

5/12A 1367.55 5 Human 

coprolite 

5770±15 6546 (6584) 6622 Jenkins et al. 2013 

Beta-226559 1374-PC-5/5D-22 5/5D 1367.31 2 Rabbit bone 5810±40 6560 (6612) 6663 Jenkins et al. 2013 

UCIAMS-76185 1704-PC-5/12C-15-5 5/12C 1367.26 5 Human 

coprolite 

6115±15 6966 (6986) 7006 Jenkins et al. 2013 

UCIAMS-79709 1704-PC-5/12A-12-5 5/12A 1367.41 3 Human 

coprolite 

6155±15 7019 (7080) 7141 Jenkins et al. 2013 

Beta-226558 1374-PC-5/5C-23 5/5C 1367.26 2 Rabbit bone 6470±40 7340 (7382) 7424 Jenkins et al. 2013 

UCIAMS-76180 1704-PC-5/12C-14-9 5/12C 1367.31 5 Human 

coprolite 

6970±15 7792 (7813) 7833 Jenkins et al. 2013 

UCIAMS-75109 2009PC-128 5/12C 1367.11 3 Macroflora 6980±15 7803 (7822) 7840 Jenkins et al. 2013 

UCIAMS-75107 2009PC-214 5/12A 1367.46 3 Coprolite 7195±15 7986 (8000) 8014 Jenkins et al. 2013 

UCIAMS-79673 1830-PC-5/12A-21 5/12A 1367.01 2 Human 

coprolite 

7260±30 8036 (8090) 8143 Jenkins et al. 2013 

Beta-191539 1374-PC-5/3B-21-

F53 

5/3B 1366.86 2 Charcoal, 

hearth 

7640±50 8540 (8410) 8360 Jenkins et al. 2013 

UCIAMS-79699 2009PC-151 5/11B 1366.49 3 Charcoal  7700±20 8450 (8485) 8520 Jenkins et al. 2013 

UCIAMS-68022 2009PC-129 5/12C 1367.11 3 Insoluble 

residue 

7805±20 8568 (8586) 8603 Jenkins et al. 2013 

UCIAMS-76178 2009PC-110 5/12A 1367.45 3 Uriniferous 

sand, urine 

8105±20 9015 (9040) 9064 Jenkins et al. 2013 

UCIAMS-76177 2009PC-110 5/12A 1367.45 3 Uriniferous 

sand, 

macrofossil 

8285±15 9283 (9330) 9377 Jenkins et al. 2013 
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Table 4.1. AMS radiocarbon dates for the Paisley Caves. 

14
C Lab Number 

FS 

Number 

Cave/ 

Unit Elevation LU 

Dated 

Material 14C Age 1σ cal BP Range Reference 

UCIAMS-76179 2009PC-152 5/11B 1366.37 3 Uriniferous 

sand, 

charcoal 

8355±20 9336 (9385) 9433 Jenkins et al. 2013 

UCIAMS-75108 2009PC-130 5/12C 1367.08 11 Uriniferous 

sand 

8510±20 9503 (9517) 9530 Jenkins et al. 2013 

UCIAMS-79675 2009PC-112 5/12A 1367.41 3 Uriniferous 

sand, 

macroflora 

8650±30 9561 (9601) 9641 Jenkins et al. 2013 

UCIAMS-79700 2009PC-154 5/11B 1366.29 3 Atriplex twig 8935±20 9973 (10,074) 10,175 Jenkins et al. 2013 

UCIAMS-79674 2009PC-111 5/12A 1367.43 3 Uriniferous 

sand, 

macroflora 

8945±35 9973 (10,077) 10,180 Jenkins et al. 2013 

UCIAMS-76183 1704-PC-5/12A-16-9 5/12A 1367.24 2 Human 

coprolite 

9170±20 10,269 (10,318) 10,367 Jenkins et al. 2013 

UCIAMS-79698 2009PC-156a 5/11B 1366.19 2 Atriplex twig 9410±20 10,606 (10,641) 10,676 Jenkins et al. 2013 

UCIAMS-76193 2009PC-144 5/12A 1367.42 3 Atriplex twig 9470±20 10,696 (10,715) 10,734 Jenkins et al. 2013 

UCIAMS-79696 2009PC-156b 5/11B 1366.19 2 Coprolite 9475±20 10,701 (10,720) 10,739 Jenkins et al. 2013 

UCIAMS-76181 1704-PC-5/12A-16-10 5/12A 1367.24 2 Human 

coprolite 

9585±20 10,823 (10,928) 11,032 Jenkins et al. 2013 

UCIAMS-75104 1829-PC-5/11A-37-2 5/11A 1365.57 2 Cordage 9625±20 11,120 (11,146) 11,171 Jenkins et al. 2013 

UCIAMS-79697 2009PC-145 5/12A 1367.36 3 Twig 9700±25 11,141 (11,165) 11,188 Jenkins et al. 2013 

UCIAMS-68024 2009PC-132 5/12C 1367.04 3 Insoluble 

residue 

9805±25 11,216 (11,227) 11,237 Jenkins et al. 2013 

UCIAMS-90580 1895-PC-5/15A-29-8a 5/15A 1365.86 1 Soluble 

residue 

9825±25 11,224 (11,235) 11,245 Jenkins et al. 2013 

UCIAMS-79701 2009PC-145 5/12A 1367.36 3 Achnatherum 9850±25 11,235 (11,246) 11,257 Jenkins et al. 2013 

UCIAMS-68048 2009PC-132 5/12C 1367.04 3 Urine extract 9860±25 11,240 (11,252) 11,263 Jenkins et al. 2013 

UCIAMS-90579 1895-PC-5/15A-29-8a 5/15A 1365.86 1 Coprolite 

macrofossil 

9895±25 11,256 (11,281) 11,306 Jenkins et al. 2013 

UCIAMS-68023 2009PC-132 5/12C 1367.04 3 Urine extract 9945±25 11,290 (11,335) 11,379 Jenkins et al. 2013 
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Table 4.1. AMS radiocarbon dates for the Paisley Caves. 

14
C Lab Number 

FS 

Number 

Cave/ 

Unit Elevation LU 

Dated 

Material 14C Age 1σ cal BP Range Reference 

UCIAMS-

103090 

2010PC-243 5/16A 1365.84 1 Carbonized 

uriniferous 

sands 

9965±30 11,315 (11,399) 11,482 Jenkins et al. 2013 

UCIAMS-68041 2009PC-157 5/11B 1366.16 2 Insoluble 

residue 

10,000±25 11,358 (11,487) 11,615 Jenkins et al. 2013 

UCIAMS-68020 1830-PC-5/11B-30-17 5/11B 1365.79 1 Salix dart 

shaft butt 

10,030±25 11,406 (11,544) 11,682 Jenkins et al. 2013 

UCIAMS-79678 1294-PC-5/6A-44-1 5/6A 1366.26 1a Poaceae 

thread 

10,030±90 11,375 (11,581) 11,787 Jenkins et al. 2013 

Beta-213423 1294-PC-5/6B-40 5/6B 1366.36 1A Coprolite 10,050±50 11,950 (11,560) 11,280 Jenkins et al. 2013 

UCIAMS-87421 1896-PC-5/16A-25-5 5/16A 1365.86 2 Cordage 10,070±30 11,455 (11,611) 11,767 Jenkins et al. 2013 

UCIAMS-68035 2009PC-136 5/12C 1367.02 2 Deer 

coprolite 

10,135±25 11,639 (11,787) 11,934 Jenkins et al. 2013 

UCIAMS-75106 2009PC-115 5/12A 1367.31 2 Macroflora 10,140±20 11,654 (11,797) 11,939 Jenkins et al. 2013 

UCIAMS-79677 2009PC-158b 5/11B 1366.09 2 Artemisia 

twig 

10,145±30 11,654 (11,800) 11,946 Jenkins et al. 2013 

UCIAMS-68025 2009PC-133 5/12C 1367.00 2 Atriplex 

twig 

10,195±25 11,781 (11,897) 12,012 Jenkins et al. 2013 

UCIAMS-

102111 

1961-PC-5/17A-8-4 5/17A 1366.01-

1365.96 

2 Pinus 

ponderosa 

cone scale 

10,195±30 11,776 (11,895) 12,014 Jenkins et al. 2013 

UCIAMS-79676 2009PC-158a 5/11B 1366.09 2 Artemisia 

twig 

10,200±35 11,778 (11,901) 12,024 Jenkins et al. 2013 

UCIAMS-68027 2009PC-135 5/12C 1366.93 2 Atriplex 

twig 

10,215±25 11,811 (11,926) 12,040 Jenkins et al. 2013 

UCIAMS-85336 1896-PC-5/16A-25-5 5/16A 1365.86 2 Cordage 10,250±25 11,856 (11,985) 12,114 Jenkins et al. 2013 

UCIAMS-68026 2009PC-134 5/12C 1366.97 2 Atriplex 

twig 

10,270±25 11,893 (12,048) 12,203 Jenkins et al. 2013 

UCIAMS-68028 2009PC-137 5/12C 1366.90 2 Rodent 

droppings  

10,295±25 11,994 (12,154) 12,313 Jenkins et al. 2013 

UCIAMS-

115897 

1294-PC-5/6B-40 5/6B 1366.36 1a Human 

coprolite 

10,305±30 12,012 (12,177) 12,341 Jenkins et al. 2016 
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Table 4.1. AMS radiocarbon dates for the Paisley Caves. 

14
C Lab Number 

FS 

Number 

Cave/ 

Unit Elevation LU 

Dated 

Material 14C Age 1σ cal BP Range Reference 

UCIAMS-75105 2009PC-102 5/12A 1366.98 2 Mummified 

lizard 

10,320±20 12,053 (12,208) 12,362 Jenkins et al. 2013 

UCIAMS-68043 2009PC-160 5/11B 1365.99 2 Charcoal 10,360±25 12,118 (12,291) 12,463 Jenkins et al. 2013 

UCIAMS-

115892 

1294-PC-5/6B-40 5/6B 1366.36 1a Human 

coprolite 

10,505±25 12,298 (12,457) 12,616 Jenkins et al. 2016 

UCIAMS-

115896 

1294-PC-5/6B-40 5/6B 1366.36 1a Human 

coprolite 

10,540±30 12,386 (12,517) 12,648 Jenkins et al. 2016 

Beta-171938 1374-PC-5/5A-30-1 5/5A 1366.51 1b Twisted 

grass threads 

10,550±40 12,880 (12,750) 12,330 Jenkins 2005 

UCIAMS-68042 2009PC-160 5/11B 1365.99 2 Insoluble 

residue 

10,580±25 12,465 (12,572) 12,678 Jenkins et al. 2013 

UCIAMS-

115893 

1294-PC-5/6B-40 5/6B 1366.36 1a Human 

coprolite 

10,585±30 12,468 (12,575) 12,681 Jenkins et al. 2016 

Beta-213425 1374-PC-5/5D-28 5/5D 1366.71 1b Coprolite 10,690±60 12,960 (12,830) 12,380 Jenkins et al. 2012 

UCIAMS-

115894 

1294-PC-5/6B-40 5/6B 1366.36 1a Human 

coprolite 

10,750±30 12,690 (12,723) 12,755 Jenkins et al. 2016 

UCIAMS-98932 2011PC-258 5/18A 1366.06-

1366.01 

2 Unid. 

Macroflora 

in sediment 

10,855±30 12,748 (12,821) 12,893 Jenkins et al. 2013 

UCIAMS-

115901 

1294-PC-5/6B-40 5/6B 1366.36 1a Human 

coprolite 

10,860±50 12,749 (12,831) 12,913 Jenkins et al. 2016 

UCIAMS-

115900 

1294-PC-5/6B-40 5/6B 1366.36 1a Human 

coprolite 

10,925±35 12,781 (12,862) 12,943 Jenkins et al. 2016 

UCIAMS-

115898 

1294-PC-5/6B-40 5/6B 1366.36 1a Human 

coprolite 

10,965±30 12,796 (12,888) 12,980 Jenkins et al. 2016 

OxA-16376 1294-PC-5/6B-40 5/6B 1366.36 1a Human 

coprolite 

10,965±50 12,795 (12,891) 12,987 Jenkins et al. 2013 

UCIAMS-

115895 

1294-PC-5/6B-40 5/6B 1366.36 1a Human 

coprolite 

10,970±30 12,798 (12,891) 12,984 Jenkins et al. 2013 

UCIAMS-

103091 

2010PC-243 5/16A 1365.84 2 Humic acids 10,995±30 12,811 (12,908) 13,005 Jenkins et al. 2013 
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Table 4.1. AMS radiocarbon dates for the Paisley Caves. 

14
C Lab Number 

FS 

Number 

Cave/ 

Unit Elevation LU 

Dated 

Material 14C Age 1σ cal BP Range Reference 

UCIAMS-

115899 

1294-PC-5/6B-40 5/6B 1366.36 1a Human 

coprolite 

10,995±30 12,811 (12,908) 13,005 Jenkins et al. 2013 

UCIAMS-80378 2010PC-223 5/16A 1365.97 2 Artemisia 

twig 

11,070±25 12,864 (12,959) 13,054 Jenkins et al. 2013 

Beta-185942 1374-PC-5/5B-27a 5/5B 1366.81 1b Horse bone 11,130±40 13,190 (13,140) 12,990 Jenkins 2005 

UCIAMS-80380 2010PC-223 5/16A 1365.97 2 Salts, water 

soluble 

11,165±25 12,963 (13,076) 13,188 Jenkins et al. 2013 

UCIAMS-77102 1830-PC-5/12A-23-

101 

5/12A 1366.89 2 Human 

coprolite, 

macro 

11,190±30 12,992 (13,098) 13,203 Jenkins et al. 2013 

UCIAMS-90583 1895-PC-5/16A-24-7 5/16A 1365.91-

1365.96 

2 Human 

coprolite, 

macro 

11,205±25 13,010 (13,110) 13,210 Jenkins et al. 2013 

UCIAMS-90584 1895-PC-5/16A-24-7 5/16A 1365.91-

1365.96 

2 Human 

coprolite, 

water 

soluble 

11,250±25 13,072 (13,155) 13,237 Jenkins et al. 2013 

UCIAMS-80379 2010PC-223 5/16A 1365.97 2 Water 

soluble 

proteins 

11,295±25 13,100 (13,192) 13,284 Jenkins et al. 2013 

UCIAMS-90586 1895-PC-5/16A-25-12 5/16A 1365.85 2 Camelid 

coprolite, 

water 

soluble 

11,315±25 13,111 (13,206) 13,301 Jenkins et al. 2013 

UCIAMS-90581 1895-PC-5/16A-25-12 5/16A 1365.88 2 Human 

coprolite, 

macro 

11,340±30 13,124 (13,228) 13,331 Jenkins et al. 2013 

UCIAMS-79665 1374-PC-5/5B-27a 5/5B 1366.71 1a Horse bone 11,365±35 13,141 (13,255) 13,369 Jenkins et al. 2013 

UCIAMS-68021 2009PC-175 5/12A 1366.89 1b Bulb or 

growth 

11,370±25 13,145 (13,259) 13,372 Jenkins et al. 2013 

UCIAMS-78159 1374-PC-5/5B-27a 5/5B 1366.71 1a Horse bone, 

ultrafiltration 

11,420±35 13,204 (13,326) 13,447 Jenkins et al. 2013 
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Table 4.1. AMS radiocarbon dates for the Paisley Caves. 
14

C Lab 

Number 

FS 

Number 

Cave/ 

Unit Elevation LU 

Dated 

Material 14C Age 1σ cal BP Range Reference 

UCIAMS-78117 1374-PC-5/5B-27a 5/5B 1366.71 1a Horse bone, 

XAD 

11,435±35 13,233 (13,350) 13,467 Jenkins et al. 2013 

UCIAMS-80381 2010PC-224 5/16A 1365.93 2 Ericaceae twig 11,500±30 13,293 (13,406) 13,519 Jenkins et al. 2013 

UCIAMS-90582 1895-PC-5/16A-25-

16 

5/16A 1365.88 2 Human 

coprolite, 

water soluble 

11,505±30 13,298 (13,410) 13,522 Jenkins et al. 2013 

UCIAMS-68029 2009PC-138 5/12C 1366.78 1b Rodent 

droppings  

11,565±25 13,345 (13,451) 13,557 Jenkins et al. 2013 

UCIAMS-68040 2009PC-146 5/12C 1366.80 1b Midden 

macrobotanical 

11,770±25 13,559 (13,666) 13,772 Jenkins et al. 2013 

UCIAMS-79657 1830-PC-5/12A-23-8 5/12A 1366.89 1b Camelops 

bone 

11,795±30 13,588 (13,694) 13,799 Jenkins et al. 2013 

UCIAMS-

103088 

1895-PC-5/16A-24-4 5/16A 1365.92 2 Horse bone 11,810±40 13,599 (13,717) 13,834 Jenkins et al. 2013 

UCIAMS-80382 2010PC-225 5/16A 1365.89 2 Artemisia twig 11,815±25 13,604 (13,722) 13,839 Jenkins et al. 2013 

UCIAMS-

103087 

1896-PC-5/14A-27-2 5/14A 1365.91 2 Horse bone 11,820±40 13,605 (13,728) 13,851 Jenkins et al. 2013 

AA-18971 1294-PC-5/6B-43-2 5/6B 1366.24 1a Horse bone 11,924±40 13,680 (13,824) 13,968 Jenkins et al. 2016 

UCIAMS-79707 1830-PC-5/11B-33-

101 

5/11B 1365.61 1 Human 

coprolite, sol. 

Urine 

12,050±25 13,828 (14,033) 14,238 Jenkins et al. 2013 

UCIAMS-90585 1895-PC-5/16A-25-

12 

5/16A 1365.85 2 Camelid 

coprolite, 

macro 

12,125±30 13,918 (14,146) 14,378 Jenkins et al. 2013 

OxA-16495 1294-PC-5/6B-50 5/6B 1365.86 1a Human 

coprolite 

12,140±70 13,928 (14,171)14,414 Jenkins et al. 2013 

UCIAMS-79706 1830-PC-5/11B-33-

101 

5/11B 1365.61 1 Human 

coprolite, 

macro 

12,165±25 13,974 (14,196) 14,418 Jenkins et al. 2013 

D-AMS-1217408 1961-PC-5/17B-2-11 5/17B 1365.77 2 Driftwood 

ecofact 

12,170±44 13,976 (14,202) 14,428 Jenkins et al. 2013 

AA-18972 1294-PC-5/10D-9-2 5/10D 1367.80 1a Horse bone 12,175±40 13,984 (14,207) 14,432 Jenkins et al. 2013 
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Table 4.1. AMS radiocarbon dates for the Paisley Caves. 

14
C Lab Number 

FS 

Number 

Cave/ 

Unit Elevation LU 

Dated 

Material 14C Age 1σ cal BP Range Reference 

UCIAMS-68017 1830-PC-5/12C-24-1 5/12C 1366.84 1b Saw-tooth 

bear bone 

artifact 

12,195±30 14,007 (14,228) 14,448 Jenkins et al. 2013 

UCIAMS-77099 1830-PC-5/11B-31-2 5/11B 1365.70 1 Human 

coprolite, 

water 

soluble 

12,260±30 14,073 (14,329) 14,586 Jenkins et al. 2013 

Beta-216474 1294-PC-5/6B-50 5/6B 1365.86 1b Coprolite 12,260±60 15,340 (14,260) 13,880 Jenkins et al. 2013 

UCIAMS-76190 1830-PC-5/11B-31-2 5/11B 1365.70 1 Human 

coprolite 

12,265±25 14,079 (14,337) 14,595 Jenkins et al. 2013 

OxA-16498 1374-PC-5/5D-31 5/5D 1366.41 1b Human 

coprolite 

12,275±55 14,084 (14,377) 14,670 Jenkins et al. 2013 

BETA-213426 1294-PC-5/7C-31 5/7C 1366.81 1b Coprolite 12,290±60 15360 (14,280) 14,100 Jenkins et al. 2013 

UCI-78159 1294-PC-5/9A-28 5/9A 1365.48 1 Large 

mammal 

bone 

12,290±40 14,100 (14,404) 14,708 Jenkins et al. 2013 

Beta-239086 1294-PC-5/9A-28 5/9A 1365.48 1 Large 

mammal 

bone 

12,290±70 14,095 (14,424) 14,753 Jenkins et al. 2013 

Beta-172663 1374-PC-5/5B-30-2 5/5B 1366.51 1b Camelid 

bone 

12,300±40 15,340 (14,290) 12,170 Jenkins 2005 

UCIAMS-68031 2009PC-140 5/12C 1366.60 1b Atriplex 

twig 

12,305±30 14,116 (14,435) 14,754 Jenkins et al. 2013 

UCIAMS-90591 1896-PC-5/16A-CU-

2a 

5/16A 1365.96-

1365.91 

2 Horse bone 12,340±25 14,184 (14,513) 14,841 Jenkins et al. 2013 

OxA-16497 1294-PC-5/7C-31 5/7C 1366.81 1b Human 

coprolite 

12,345±55 14,185 (14,525) 14,865 Jenkins et al. 2013 

UCIAMS-68030 2009PC-139 5/12C 1366.70 1b Rodent 

droppings  

12,350±30 14,208 (14,535) 14862 Jenkins et al. 2013 

UCIAMS-

103081 

1961-PC-5/17A-15-5 5/17A 1365.60 2 Camelid 

bone 

12,360±35 14,229 (14,556) 14882 Jenkins et al. 2013 

UCIAMS-68034 2009PC-143 5/12C 1366.46 1b Atriplex 

twig 

12,380±30 14,261 (14,587) 14,913 Jenkins et al. 2013 
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Table 4.1. AMS radiocarbon dates for the Paisley Caves. 

14
C Lab Number 

FS 

Number 

Cave/ 

Unit Elevation LU 

Dated 

Material 14C Age 1σ cal BP Range Reference 

Beta-239087 1374-PC-5/5D-30 5/5D 1366.56 1b Cut 

mountain 

sheep bone 

12,380±70 14,248 (14,591) 14,933 Hockett and Jenkins 

2013 

UCIAMS-90592 1896-PC-5/16A-CU-

2b 

5/16A 1365.96-

1365.91 

2 Horse tooth 12,385±30 14,268 (14,595) 14,921 Jenkins et al. 2013 

UCIAMS-

104663 

1961-PC-5/17B-2-11 5/17B 1365.77 2 Driftwood 

ecofact 

12,400±35
21

 14,289 (14,618) 14,947 Jenkins et al. 2013 

Beta-213424 1374-PC-5/5D-31 5/5D 1366.41 1b Human 

coprolite 

12,400±60 15,430 (14,340) 14,130 Jenkins et al. 2013 

UCIAMS-80377 2010PC-227 5/16A 1365.76 1 Artemisia 

twig 

12,405±25 14,301 (14,627) 14,952 Jenkins et al. 2013 

UCIAMS-80383 2010PC-226 5/16A 1365.83 2 Ericaceae 

twig 

12,405±25 14,301 (14,627) 14,952 Jenkins et al. 2013 

UCIAMS-80384 2010PC-233 5/16A 1365.74 1 Artemisia 

twig 

12,410±25 14,312 (14,636) 14,960 Jenkins et al. 2013 

UCIAMS-79656 1829-PC-5/11B-37-9 5/11B 1365.39 1 Horse tooth 12,410±35 14,308 (14,636) 14,963 Jenkins et al. 2013 

UCIAMS-68032 2009PC-141 5/12C 1366.55 1b Atriplex 

twig 

12,430±30 14,368 (14,681) 14,994 Jenkins et al. 2013 

UCIAMS-68033 2009PC-142 5/12C 1366.49 1b Atriplex 

twig 

12,450±30 14,423 (14,725) 15,027 Jenkins et al. 2013 

Beta-239085 1294-PC-5/7C-19 5/7C 1367.41 4 Camelops 

bone 

12,460±70 14,407 (14,734) 15,060 Jenkins et al. 2013 

Beta-229783 1374-PC-5/5B-27b 5/5B 1366.81 1b Pika bone 12,690±90 14,744 (15,070) 15,395 Jenkins et al. 2013 

Beta-229782 1374-PC-5/5B-29 5/5B 1366.61 1b Duck bone 13,260±60 15,780 (16,190) 16,600 Jenkins et al. 2013 

 

FS=Field Sample 
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 Deposits at the Paisley Caves are generally polygenetic and derive from aeolian, 

alluvial, biogenic, and colluvial processes (Jenkins et al. 2012b:10). Sediments in the 

caves are assigned to more than 20 lithostratigraphic units. Lithostratigraphic units (LUs) 

are not defined by the age of deposition, but rather sediment types and their associated 

characteristics (Stein 1987). The primary focus of the current research project centers on 

LUs 1, 2, and 3: the Late Pleistocene and Early Holocene strata. Due to lack of 

stratigraphic uniformity across the site, the LUs for Caves 1, 2, and 5 are discussed 

individually. 

4.1.2.1. Cave 1 

 In Cave 1, LU 1 is characterized by water-rounded cobbles and boulders 

surrounded by medium brown, fine sandy silt (Jenkins et al. 2016:184). The deposits 

contain organic debris, fish, snail, waterfowl, microfauna and large mammal bone, along 

with obsidian debitage. Obsidian sourcing indicates most (~75%) of the lithic artifacts in 

LU 1 originated at Tucker Hill, located approximately 20 km south of the Paisley Caves. 

Ponderosa pine seed shells recovered from LU 1 returned radiocarbon dates of 10,010 ± 

30 (UCIAMS-99462; 11,370-11,645 cal BP) and 10,165 ± 25 BP (UCIAMS-98930; 

11,720-11,970 cal BP). Above LU 1, complex stratigraphy represents dramatically varied 

site formation processes. In the southern portion of the shelter, light gray to tan sand, 

gravel and cobbles are interspersed with thin alluvial silt lenses. The upper two meters of 

deposits were generally sterile, with artifact concentrations occurring between 195 and 

200 cm below the surface.  

 In Unit 1/7A, two well-preserved, small hearth features were identified in LU 1. 

Feature 1/7-4a measured 85 x 47 cm and consisted of soft silt with charcoal flecking and 
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surrounded by the remnants of a rock ring. The center of the hearth appeared dark brown 

to black, with burned reddish soil along the margins. Excavator notes indicate the fuel 

Feature 1/7-4a appeared to have been nearly completely consumed by fire; however, 

animal bones and obsidian flakes were mixed in the feature sediments. Feature 1/7-4b is 

described as dark, compact soil with charcoal flecks and staining that measured 60 cm x 

55 cm. A fragment of Artemisia charcoal from the feature was dated to 10,540 ± 25 BP 

(UCIAMS-90578; 12,390-12,650 cal BP). Stratigraphic provenience suggests the two 

hearths are the same age (D. Jenkins, January 2016, personal communication). Cultural 

materials associated with the hearth included S-twist cordage and a few scrapers and edge 

modified flakes.  

 No diagnostic or formed tools were recovered during the University of Oregon 

excavations in Cave 1 pre-Mazama deposits, although several poorly-provenienced 

Western Stemmed points were collected by Cressman (Aikens et al. 2011; Jenkins et al. 

2016:187). Natural deposits composed of roof spalls, gravels, sand, silts, bird and rodent 

nest materials, bone, rat pellets, and bat guano extend to 270 cm at the south end of the 

cave (Jenkins et al. 2016:184).  

4.1.2.2. Cave 2 

 Stratum LU 1 in Cave 2, which accumulated on the floor of the cave prior to 

18,000 year ago, is culturally sterile and not pertinent to the current study (Figure 4.x). 

LU 1 is overlain by LU 2, brown, gravelly sands 15-30 cm thick representing Younger 

Dryas deposits (Jenkins et al. 2016:135; Hockett et al. 2017). Above LU 2, two thin 

alluvial silt lenses (the Lower Mud and Upper Mud) are separated by a cultural deposit 

termed the Botanical Lens (Figure 4.8). The Botanical Lens represents “…an unusually 
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detailed record of Western Stemmed Tradition cultural remains dating between ca. 

12,600 and 11,500 cal BP” (Jenkins et al. 2016:128). The Upper Mud lens is overlain by 

LU 3, which is characterized by a sparse lithic assemblage, aeolian transported sand and 

silt, macrobotanical remains, Neotoma pellets, and abundant Chiroptera guano (Jenkins 

et al. 2013:495, 2016:137). Stratum LU 3 is 90 cm thick and spans from 10,000 ± 25 BP 

(11,500 cal BP) to 6790 ± 15 BP (UCIAMS-68046; 7660-7620 cal BP) at the base of a 

thick, laminated Mazama tephra layer. 

 The Lower Mud marks the start of the Younger Dryas chronozone. A human 

coprolite recovered in the Lower Mud lens returned a radiocarbon date of 10,980 ± 20 BP 

(UCIAMS-76191; 12,990-12,800). A hearth feature was identified north of the Lower 

Mud lens in Unit 2/6B. Feature 2/6-4 is a crescent shaped ash and charcoal deposit 

measuring 40 cm x 70 cm. Artemisia twigs from the hearth were dated to 11,005 ± 30 

(UCIAMS-90577; 13,010-12,815 cal BP) and 11,055 ± 35 BP (UCIAMS-102110; 

13,045-12,850 cal BP). 

 The Botanical Lens, 5-8 cm thick, consists mainly of sagebrush twigs and 

shredded bark, but dense clumps of cut pronghorn underbelly hair, culturally modified 

pronghorn bones, jackrabbit bones, hair and hides, charcoal fragments, and cordage are 

incorporated throughout (Figure 4.7; Hockett et al. 2017). Obsidian debitage, 

disaggregated coprolites, crystallized urine, bones, feathers, mummified flesh, claws, 

woodrat and bat feces, and hair and hides of marmot, hare, and vole were also commonly 

encountered (Jenkins et al. 2016:176). Dates obtained from the Botanical Lens suggest 

organic remains associated with the feature are in situ (Hockett et al. 2017:568). 
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Two small unlined hearths (Features 2/3A-1 and 2/4C-4) were identified within 

the Botanical Lens. Feature 2/3A-1 measured 20 cm x 30 cm and was 11 cm thick. The 

loose feature matrix included charcoal, charred botanic macroremains, and calcined bone. 

Charred PET from Feature 2/3A-1 returned a radiocarbon date of 10,160 ± 60 BP (Beta-

182920; 11,980-11,630 cal BP). Feature 2/4C-4 is an oval-shaped hearth with a 30-35 cm 

diameter that contained charcoal and sagebrush twigs. It was identified at the same 

elevation as Feature 2/3A-1 with a nearly identical distribution of similar cultural 

materials.  

 

 

Figure 4.7. Excavating the Botanical Lens in Cave 2 at the Paisley Caves 

(photo: D. Jenkins). 
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4.1.2.3. Cave 5 

Excavation units were placed in two blocks in Cave 5, but only the north block 

bears on this dissertation. The north block excavation units were placed in a small interior 

alcove located between the east wall and a large boulder at the northwest end of the cave. 

Complex stratigraphy characterizes the deposits below the Mazama tephra, but the upper 

deposits are “loose, poorly sorted…comprised of sand, gravel, macrobotanical remains, 

fecal materials, [and] prehistoric and historic artifacts” (Jenkins et al. 2012b: 9). All Cave 

5 LUs are described in detail elsewhere (Gilbert et al. 2008b:21-25; Jenkins 2007:63-65; 

Jenkins et al. 2012b:47). 

In the north excavation block, the basal deposits, LU 1b, are generally 

characterized as poorly sorted, fine to loamy gray sands with subangular to angular 

pebbles and cobbles surrounding water-rounded boulders on the floor of the cave (Figure 

4.x). Macrobotanical remains and Neotoma fecal pellets are common. These deposits are 

overlain by LU 2, composed of friable to hard fine sediments with varying amounts of 

macrobotanical remains and abundant Neotoma fecal material (Jenkins et al. 2012a:225). 

Both LU 1 and LU 2 are associated with human coprolites, cultural artifacts, and animal 

bone including megafauna in Cave 5. Identified macrobotanical specimens include 

ponderosa pine cone scales, willow twigs, and cactus (specifically, Opuntia sp.) needles 

suggesting a highly diverse local vegetation community in the Late Pleistocene. Densities 

of lithic waste flakes were low, but increased in the deposits dating to the Younger Dryas 

and earlier (Jenkins et al. 2016:190). Though infrequent, diagnostic tools are present in 

Cave 5 Younger Dryas-aged sediments, and include Western Stemmed and Foliate types. 
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Very tiny twisted threads composed of grass, sinew, and other fibers, are dated as early as 

10,550 ± 40 BP (Beta-171938; 12,655-12,390 cal BP).  

Feature 5/5-3 (also referred to as Feature 5/3 in published manuscripts; see 

Jenkins 2007) is a small, stratified hearth or earth oven located within the LU 1 deposits. 

When bisected the charcoal-rich feature appeared bowl-shaped with a 60 cm diameter 

and a depth of 30 cm. Charred rocks lined the bottom of the depression and it was 

surrounded by large mammal bones, including a horse phalanx (Jenkins 2007:71). Other 

cultural materials found in the vicinity of the feature include an obsidian flake and 

cordage of hair and fiber (Jenkins et al. 2013:502). The feature itself has not been directly 

dated because of its vertical proximity to a charcoal mat (LU 9) presumed to represent a 

natural burn. Dates on faunal material associated with the feature include a leporid 

humerus at 11,437 ± 63 (D-AMS-24769; 13,480-13,215 cal BP), and the aforementioned 

horse phalanx at 11,365 ± 35 (UCIAMS-79665; 13,370-13,140 cal BP). 

Several Neotoma nests can be found throughout the Paisley Caves, but they are 

especially prevalent in the Younger Dryas deposits in the north block of Paisley Cave 5. 

Units 5/5, 5/7, and 5/12 contained light gray powdery ash representing the in-place 

burning of woodrat nests. According to Jenkins et al. (2013:501, 2016:194), fires were 

likely intentionally set by people for use as hearths or to drive out the woodrats. Ash from 

the fires eventually spread downslope and became incorporated with uncharred 

reconstructed nest materials. Extensive radiocarbon analysis on burned and unburned 

organics in Unit 5/12 establishes good chronological and stratigraphic ordering. An 

Atriplex twig from the base of a woodrat midden in Unit 5/12A&C returned a 

radiocarbon date of 12,380 ± 30 (UCIAMS-68034; 14,910-14,260). 
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4.1.3. Macrobotanical Sample Descriptions 

Thirty-five bulk soil samples from the Paisley Caves site (35LK3400) were 

analyzed to provide a better understanding of the plant resources associated with the 

human residents of the site. The bulk samples represent cultural features in caves 1, 2, 

and 5, as well as stratigraphic samples from the north profile of excavation Unit 5/5 and 

5-cm interval column samples collected in the west profile of Unit 2/6B (Table 4.2). 

Additionally, a single bulk soil sample was recovered from a TP/EH Neotoma midden in 

Unit 5/12 and analyzed to assess differences in taxonomic diversity in cultural and non-

cultural features. 

Cave 5 stratigraphic samples were collected from the west wall of Unit 5/5 during 

the 2002 field season and are represented in this study by strata I, II, III, IV, and VI. 

Stratum V consists of a sterile Mazama tephra layer. The strata designations were 

developed prior to the LU delineation, but likely represent some or all of the following: 

LU 2, and LU 5-10. The 22 bulk sediment samples from the Unit 2/6B column represent 

pre-Mazama deposits spanning 13,700 to 7640 cal BP. The column location was 

strategically selected as it incorporates elements from LU 3, the Upper Mud Lens, the 

Botanical Lens, the Lower Mud Lens, and LU 2 (Figures 4.8 and 4.9).  

Bulk sediments from five hearths dating to the Terminal Pleistocene were 

analyzed. In Cave 1, Features 1/7-4a and 1/7-4b are each represented by a single bulk 

sediment sample. One bulk sediment sample was also processed from each of the Cave 2 

hearths – Features 2/3A-1, 2/4C-4, and 2/6-4. Due to uncertainty regarding the cultural 

attribution of Feature 5/5-3 in Cave 5, two sediment samples were analyzed from the 

upper and lower extent of the feature
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Table 4.2. Provenience information for the bulk soil samples at the Paisley Caves. 

Sample No. Sample Volume (L) LU Cave/Unit Feature Elevation Description 

CS-2 0.50 LU3 2/6B 

 

1366.45 Column sample 

CS-3 0.50 LU3 2/6B 

 

1366.40 Column sample 

CS-4 0.50 LU3 2/6B 

 

1366.35 Column sample 

CS-5 0.50 LU3 2/6B 

 

1366.30 Column sample 

CS-6 0.50 LU3 2/6B 

 

1366.25 Column sample 

CS-7 0.50 LU3 2/6B 

 

1366.20 Column sample 

CS-8 0.50 LU3 2/6B 

 

1366.15 Column sample 

CS-9 0.50 LU3 2/6B 

 

1366.10 Column sample 

CS-10 0.50 LU3 2/6B 

 

1366.05 Column sample 

CS-11 0.50 LU3 2/6B 

 

1366.00 Column sample 

CS-12 0.75 LU3 2/6B 

 

1365.95 Column sample 

CS-13 0.75 LU3 2/6B 

 

1365.90 Column sample 

CS-14 0.90 LU3 2/6B 

 

1365.85 Column sample 

CS-15 1.00 LU3 2/6B 

 

1365.80 Column sample 

CS-16 0.20 LU3 2/6B 

 

1365.75 Column sample 

CS-17 1.00 LU3 2/6B 

 

1365.70 Column sample 

CS-18a 0.35 LU3 2/6B 

 

1365.68 Column sample 

CS-18b 0.55 Botanical Lens 2/6B Botanical Lens 1365.65 Column sample 

CS-19a 0.30 Botanical Lens  2/6B Botanical Lens 1365.62 Column sample 

CS-19b 0.50 Lower Mud Lens 2/6B 

 

1365.60 Column sample 

CS-20 0.50 LU2 2/6B 

 

1365.55 Column sample 

CS-21 0.40 LU2 2/6B 

 

1365.50 Column sample 

       5/5-Str. I 0.50 

 

5/5 

  

Strata sample 

5/5-Str. II 0.25 

 

5/5 

  

Strata sample 

5/5-Str. III 0.25 

 

5/5 

  

Strata sample 

5/5-Str. IV 0.25 

 

5/5 

  

Strata sample 

5/5-Str. VI 0.25 

 

5/5 

  

Strata sample 
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Table 4.2. Provenience information for the bulk soil samples at the Paisley Caves. 

Sample No. Sample Volume (L) LU Cave/Unit Feature Elevation Description 

       F 5/5-3 0.50 LU1 5/5A Hearth/Earth Oven Charcoal 1366.96 Feature sample 

5/5A-26-8 0.50 LU1 5/5A Hearth/Earth Oven Ash 1366.96 Feature sample 

F 2/6-4 0.50 Lower Mud Lens 2/6B Hearth 1365.45 Feature sample 

2/3A-32-46 0.50 Botanical Lens 2/3A Hearth 

 

Feature sample 

2/4C-4 0.50 Botanical Lens 2/4C Hearth 1365.60 Feature sample 

F 1/7-4a 0.50 LU1 1/7A&C Hearth 

 

Feature sample 

F 1/7-4b 0.50 LU1 1/7A&C Hearth 

 

Feature sample 

       5/12A-34-19 0.40   5/12A Woodrat Nest 1366.36 Nest sample  
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Figure 4.8. Lithostratigraphic profile of Unit 2/6B (Jenkins et 

al. 2013). 

Figure 4.9. Location of Unit 2/6B column 

samples analyzed. 
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4.2. Little Steamboat Point-1 Rockshelter (35HA3735) 

 

4.2.1. Site Setting 

LSP-1 is the largest of several south-facing rockshelters along Little Steamboat 

Point, an escarpment located on the northern edge of the Warner Valley in Harney 

County, Oregon (Figure 4.10). It formed when Pleistocene Lake Warner was at or near its 

high stand (1417 m AMSL) approximately 17,000 years ago, and subsequently infilled 

with alluvial and aeolian sediment intermixed with roof fall (Smith et al. 2014).  

Figure 4.10. LSP-1 Rockshelter geographic setting. 



120 
 

A single fault-bounded block separates the Northern Warner Valley, including 

Hart Lake, North Warner swamp, and a series of smaller lakes connected by ephemeral 

stream channels and a network of sloughs (Smith et al. 2014:17), from the Southern 

Warner Valley. Local vegetation is dominated by various sagebrush taxa (Figure 4.11).  

 

4.2.2. Previous Research 

Under the direction of Geoffrey Smith, the University of Nevada, Reno Great 

Basin Paleoindian Research Unit (GBPRU) field school excavated at the cave and 

surveyed the surrounding paleoshorelines during the summers of 2010 through 2015. As 

a result, crews excavated approximately 25 m
2
 of deposits to depths of 1.5 to 2 m at the 

Figure 4.11. Example of sagebrush vegetation at LSP-1 Rockshelter. 
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site (Figure 4.12; Kennedy and Smith 2016). The cave contains approximately 50 m
2
 of 

habitable space from the dripline to its rear. Several of Smith’s graduate students have 

produced master’s theses reporting on the lithic tools and faunal assemblages from LSP-1 

(e.g., Pattee 2014; Pellegrini 2014; Ware Van der Voort 2016). Together with research 

published by Smith (Smith et al. 2014), these studies provide critical data for evaluating 

the cultural significance of plant remains at the site.  

Prior to this investigation, 21 radiocarbon dates were obtained for the site (Table 

4.3). A dearth of radiocarbon samples from the Middle Holocene reflect the absence of 

cultural materials in these deposits, and are not a consequence of sampling bias at this 

particular site (Figure 4.13).

Figure 4.12. Planview of LSP-1 Rockshelter with feature 

locations (35HA3735) excavations. 
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Table 4.3. AMS radiocarbon dates for LSP-1 Rockshelter. 

Sample ID 

FS 

Number 

Excavation 

Unit Cmbd Stratum 

Dated 

Material 
14

C Age 

2σ cal BP 

Range Comments Reference(s) 

Beta-

283901 

45 N105E99 62 IV Unidentified 

charcoal 

880±40 915-706  Smith et al. 2014 

UGA-

16860 

427 N103E102 82 V Catlow Twine 

textile 

1160±20 1,175-989 Woodrat nest Smith et al. 2016 

UGA-

16859 

426 N103E101 81 V Catlow Twine 

textile 

1200±20 1,180-

1,063 

Woodrat nest Smith et al. 2016 

AA-

103861 

n/a n/a n/a n/a Textile 

fragment 

1230±36 1,264-

1,065 

Woodrat nest Kennedy and Smith 

2016 

UGA-

18238 

1302 N102E103 66 n/a sagebrush 

sandal 

1300±20 1,287-

1,183 

Feature 14-10 

(storage pit) 

Smith et al. 2016 

UGA-

18237 

1298 N102E103 59 n/a sagebrush bark 

bundle 

1340±20 1,302-

1,190 

Feature 14-10 

(storage pit) 

Smith et al. 2016 

UGA-

18239 

1309 N102E103 62 n/a sagebrush 

sandal 

1760±20 1,721-

1,610 

Feature 14-10 

(storage pit) 

Smith et al. 2016 

UGA-

18235 

1293 N101E103 52 n/a Catlow Twine 

textile 

1790±20 1,813-

1,625 

Feature 14-10 

(storage pit) 

Smith et al. 2016 

UGA-

16803 

712 N102E99 33 IV Unidentified 

charcoal 

1850±25 1,865-

1,716 

 Kennedy and Smith 

2016 

UGA-

18236 

1297 N102E103 62 n/a sagebrush 

sandal 

1860±20 1,865-

1,729 

Feature 14-10 

(storage pit) 

Smith et al. 2016 

UGA-

18240 

1311 N102E103 76 n/a sagebrush 

sandal 

1880±20 1,879-

1,737 

Feature 14-10 

(storage pit) 

Smith et al. 2016 

UGA-

15596 

715 N105E99 123 VII Artemisia 

charcoal 

2070±25 2,122-

1,951 

 Kennedy and Smith 

2016 
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Table 4.3. AMS radiocarbon dates for LSP-1 Rockshelter. 

Sample ID 

FS 

Number 

Excavation 

Unit Cmbd Stratum 

Dated 

Material 
14

C Age 

2σ cal BP 

Range Comments Reference(s) 

Beta-

317155 

n/a N104E99 72 IV Unidentified 

charcoal 

2910±30 3,158-

2,960 

Feature 11-19 

(hearth) 

Smith et al. 2012 

UGA-

15593 

706 N105E99 67 IV/V cf. Rhus 

charcoal 

3140±25 3,444-

3,257 

 Kennedy and Smith 

2016 

Beta-

406150 

1251 N102E102 72 IV Salix charcoal 3160±30 3,450-

3,272 

Feature 14-06 

(hearth) 

Smith et al, 2016 

UGA-

14917 

476 N103E101 96 V Artemisia 

charcoal 

4000±25 4,522-

4,420 

 Smith et al. 2014 

UGA-

15260 

409 N104E101 82 V Bison femur 4010±25 4,525-

4,422 

 Smith et al. 2014 

UGA-

15595 

714 N105E99 45 III/IV Unidentified 

charcoal 

6550±20 7,490-

7,425 

 Kennedy and Smith 

2016 

Beta-

306418 

38 N105E99 142 VII Unidentified 

charcoal 

7310±40 8,186-

8,021 

 Smith et al. 2012 

Beta-

282809 

46 N105E99 120 VI Unidentified 

charcoal 

8290±40 9,427-

9,137 

 Smith et al. 2012 

UGA-

18011 

1129 N107E99 131 VIII Lepus ulna 8290±25 9,420-

9,143 

Presumably  

non-cultural 

Kennedy and Smith 

2016 

UGA-

15594 

707 N105E99 106 V/VII cf. Rhus 

charcoal 

8300±20 9,422-

9,252 

 Kennedy and Smith 

2016 

Beta-

287251 

48 N105E99 103 V Unidentified 

charcoal 

8340±40 9,470-

9,261 

 Smith et al. 2012 

PRI-14-

069 

1130 N107E99 124 VI/VII Artemisia 

charcoal 

8341±27 9,449-

9,289 

 Kennedy and Smith 

2016 
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Table 4.3. AMS radiocarbon dates for LSP-1 Rockshelter. 

Sample ID 

FS 

Number 

Excavation 

Unit Cmbd Stratum 

Dated 

Material 
14

C Age 

2σ cal BP 

Range Comments Reference(s) 

UGA-

14916 

431 N103E101 86 V Artemisia 

charcoal 

8350±30 9,462-

9,296 

 Smith et al. 2014 

Beta-

297186 

47 N105E99 131 VI/VII Unidentified 

charcoal 

8400±50 9,520-

9,301 

 Smith et al. 2012 

Beta-

306419 

158 N102E99 97 V Unidentified 

charcoal 

8670±40 9,731-

9,540 

 Smith et al. 2012 

UGA-

15142 

n/a N103E100 125 V Artemisia 

charcoal 

8700±30 9,735-

9,550 

Feature 13-01 

(hearth) 

Smith et al. 2014 

UGA-

15259 

716 N105E99 141 VIII/IX Sylvilagus 

humerus 

9100±30 10,293-

10,200 

Presumably non-

cultural 

Smith et al. 2014 

 

Note. All dates were calibrated using OxCal 4.2 (Ramsey, 2009) and the IntCal 13 Curve (Reimer et al., 2013). 
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Ten distinct strata were identified and described in detail by Smith et al. (2014). 

The ten strata were consolidated into three major sediment packages, and interpreted as 

reflecting three separate depositional periods (Smith et al. 2014; Table 2.4). The upper 

package consists of Strata II and IV, inter-fingering coarse and fine-grained facies of the 

alluvial fan that formed adjacent to the rockshelter during the Late Holocene. The upper 

package is overlain by Stratum I, a layer of cow manure. Strata II and IV are separated by 

Stratum III, a thin layer of aeolian sand. The middle package comprises Strata V and VI. 

Stratum V is a massive unit of poorly-sorted alluvial fan gravels mixed with fine to very 

Figure 4.13. Vertical distribution of AMS radiocarbon dates at LSP-1 Rockshelter 

(Kennedy and Smith 2016). 
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fine sand, and Stratum VI is a distinct layer of silty, very fine aeolian sand. In some 

locations, Stratum V is bisected by small pockets of Mazama tephra. Most of the middle 

package accumulated as sediments were blown into the rockshelter as a result of climate 

aridification during the Early and Middle Holocene (Wriston and Smith 2012). Finally, 

the lower package consists of alternating coarse gravel units (Strata VII and IX) and 

black sand (Strata VIII and X).  

The small rockshelter in the northern Warner Valley provided episodic habitation 

throughout much of the Holocene (Kennedy and Smith 2016; Smith et al. 2014, 2016). 

Previous faunal analysis suggests that groups processed large quantities of leporids, 

which were probably mass harvested nearby during the fall or winter seasons (Pellegrini 

2014). The artifact assemblage also suggests a hiatus in rockshelter usage from 

approximately 9000 to 4000 cal BP.  

 

4.2.3. Macrobotanical Sample Descriptions 

Thirty-nine bulk soil samples were analyzed to better understand the plant 

resources associated with the human activity at LSP-1 Rockshelter (35HA3735) in pre-

contact times. The soil samples selected for analysis were recovered in plant-processing 

features as well as individual strata in excavation unit (EU) 105N99E (Figure 4.14). The 

39 bulk soil samples represent eleven cultural features, including hearths (n=9), an 

organic concentration (n=1), and a small carbon stain (n=1), as well as vertical, 

contiguous column sampling of the strata identified in the Upper, Middle, and Lower soil 

packages in EU 105N99E (Table 4.4).  
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Generally, one sample from each feature was selected for analysis, unless the 

feature appeared stratified or demonstrated distinct loci. Feature 12-01/02, the organic 

concentration, is characterized by a southern locus (field designation Feature 12-01) 

represented by sample 1667, and a northern locus (field designation Feature 12-02) 

represented by sample 1666. Feature 11-05/15, a large hearth with ashy layers extending 

1 m north-south, is also represented by multiple samples. Sample 1654 reflects its 

northern extension (field designation “Feature 11-15”) while sample 1658 reflects the 

densest carbonized organic remains in the southern terminus and sample 11-05-3 reflects 

the ashy gray sediments overlying the charcoal concentration (both attributed to field 

designation “Feature 11-05”). Hearth features 11-07, 11-14, 11-19, 13-01, 13-02, 14-02, 

and 14-04, and a carbon stain – Feature 14-01, are each represented by a single bulk 

sample. The series of column samples collected in 5-cm vertical increments from the 

eastern profile of the excavation block represent Strata II – IX. 

 

  

Figure 4.14. Position of the bulk sediment column along the east profile of Unit 

105N99E (Kennedy and Smith 2016). 
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Table 4.4. Provenience information for bulk soil samples recovered at LSP-1 Rockshelter for 

macrobotanical analysis. 

Sample 

No. 

Sample 

Volume 

(L) 

Sediment 

Package 

Excavation 

Unit Stratum  Feature Depth (cmbd) Description 

  
 

     5b 0.90 Upper N105E99 

 

- 28-31 Column Sample 

6 1.00 Upper N105E99 

 

- 31-36 Column Sample 

7 1.00 Upper N105E99 

 

- 36-41 Column Sample 

8a 1.00 Upper N105E99 

 

- 41-44 Column Sample 

8b 1.00 Upper N105E99 

 

- 44-46 Column Sample 

9 1.00 Upper N105E99 

 

- 46-51 Column Sample 

10 1.00 Upper N105E99 

 

- 51-56 Column Sample 

11 1.00 Upper N105E99 

 

- 56-61 Column Sample 

12 1.00 Upper N105E99 

 

- 61-66 Column Sample 

13 1.00 Upper N105E99 

 

- 66-71 Column Sample 

14 1.00 Middle N105E99 

 

- 71-76 Column Sample 

15 1.00 Middle N105E99 

 

- 76-81 Column Sample 

16 1.00 Middle N105E99 

 

- 81-86 Column Sample 

17 1.00 Middle N105E99 

 

- 86-91 Column Sample 

18 1.00 Middle N105E99 

 

- 91-96 Column Sample 

19 1.00 Middle N105E99 

 

- 96-101 Column Sample 

20 1.00 Middle N105E99 

 

- 101-106 Column Sample 

21 1.00 Middle N105E99 

 

- 106-111 Column Sample 

22 1.00 Middle N105E99 

 

- 111-116 Column Sample 

23 1.00 Lower N105E99 

 

- 116-121 Column Sample 

24 1.00 Lower N105E99 VII - 121-126 Column Sample 

25a 0.20 Lower N105E99 VII - 126-128 Column Sample 

25b 0.80 Lower N105E99 VIII - 128-131 Column Sample 

26 0.75 Lower N105E99 VIII - 131-136 Column Sample 

27 0.60 Lower N105E99 IX - 136-141 Column Sample 

        1653 0.90 Upper N104E99/100 II/III 11-14 50 Hearth 

2437 0.50 Upper N102E101 III 14-03 58 Hearth 

11-5-3 0.45 Upper N104E99 IV 11-05/15 

 

Hearth 

1658 1.00 Upper N104E99 IV 11-05/15 64 Hearth 

1654 0.65 Upper N104E99 IV 11-05/15 58 Hearth 

2432 0.25 Upper N102E100/101 IV 14-02 66 Hearth 

2429 0.25 Middle N102E99/100 IV 14-04 75 Hearth 

1649 0.60 Middle N104E99 IV 11-19 72 Hearth 

2430 0.50 Middle N102E100  V 14-01 81-86 Small carbon stain 

1270 0.40 Middle N103E102 V 13-02 122 Hearth 

1657 0.70 Middle N102E99 V 11-07 69 Hearth 

1031 0.60 Lower N103E100 V 13-01 125 Hearth 

1667 0.65 Lower N104E100 VII 12-01/02 122 Organic concentration 

1666 0.70 Lower N104E100 VII 12-01/02 123 Organic concentration 
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4.3. Bulk Soil Samples Overview 

 

 Bulk soil samples (n=74) collected at the Paisley Caves and LSP-1 Rockshelter 

chronicle several thousand years of continued use at each of these sites. The samples 

analyzed in this study were recovered from a variety of contexts to investigate plant use 

in ancient times. The detailed record of artifacts and well-anchored radiocarbon dates 

contextualize the macrobotanical remains in a secure chronological frame. 
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CHAPTER V 

METHODS 

 

By definition macrobotanical remains represent intact or more often plant 

fragments that can be identified using light microscopy with 10-40x magnification 

(Miller 1997; Pearsall 2016). This study focuses only on macrobotanical remains 

recovered from archaeological contexts at the Paisley Caves and LSP-1 Rockshelter. 

Microscopic remains reported elsewhere will be compared to the macroscpic data of this 

research in the discussion and conclusions (e.g., Beck et al. 2017; Cummings and 

Puseman 2003, Cummings et al. 2007; Saban 2015). The paleoethnobotanical terms used 

throughout this manuscript are loosely adapted from Lee (2003), and defined in Table 

5.1. 

 

Table 5.1. Macrobotanical analysis definitions and terms. 
 

Bulk sediment sample A single sediment unit of varying volume floated from a specific 

feature, column, point, and stratum sample 

 

Feature sample All sediment recovered from a single feature  

 

Feature class All features of similar use/function (e.g. hearths) 

 

Column sample Sediment representing a unique x, y, z location collected in a 

vertical column  

 

Point sample All sediment recovered from a single provenience 

 

Strata sample Grab sample of sediment representing a particular stratigraphic unit 

identified at the site(s) 

 

Assemblage All macrobotanical remains identified to a particular category (e.g., 

site assemblage, component assemblage, feature assemblage, etc.) 

 

Element   Individual macrobotanical specimen, whole or fragmented 
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5.1. Sampling Strategies 

 

Fieldwork was conducted in Lake and Harney counties, southcentral Oregon 

intermittently from  the summer of 2012 through summer 2015.Samples were collected in 

August, 2012, at the Paisley Caves and in June, 2013, at LSP-1 Rockshelter. All 

additional fieldwork concerned vegetation surveys and herbarium visits.  

 

5.1.1. Bulk Soil Collection 

The main data of this study include three types of bulk soil samples: feature 

samples, column samples, and strata samples. All column samples were collected by the 

author during various field seasons. Locations of bulk samples were mapped based on 

permanent site datums. Feature samples were collected by archaeological field crews. 

Macrobotanical remains from hearth features can provide information on foods, or to a 

lesser extent, fuels collected by the site inhabitants. Furthermore, macrobotanical remains 

contained in the stratigraphic samples facilitate our understanding of local vegetation 

regimes and paleoenvironmental conditions in the northern Great Basin during the 

terminal Pleistocene and throughout the Holocene (Hastorf and Popper 1988; Miller 

2014). Together, these two datasets may provide the best possible understanding of 

human-environmental relationships at the Paisley Caves and LSP-1 Rockshelter. 

Stratigraphic samples, the third sample type, were also recovered by field workers during 

site excavation. 
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5.1.1.1. Feature Samples 

Feature samples were collected from both in and around cultural deposits, 

including hearths, charcoal stains, and organic concentrations. Sampling of cultural 

features may reflect human behaviors and the ability to identify economically important 

plant and animal taxa targeted for use. Hearths may provide a glimpse of food processing, 

where plant remains were charred and preserved. Ethnoarchaeological studies 

demonstrate that while samples recovered from the base of a hearth may produce plant 

remains, intense heat produced by the fire may result in highly fragmented remains 

impeding identification (Walsh 2017). Although Pearsall (2016) recommended collecting 

hearth samples adjacent to the area where the fire burned the hottest to recover the 

highest quantities of carbonized seed, plant tissue, and fruit remains, charred seeds can 

also be recovered from fuel wood concentrations. At the Erin’s Cave archaeological site 

in the Catlow Valley, I demonstrated the utility of recovering macrobotanical samples 

from within hearths by individually processing separate hearth areas as stratified deposits 

(Dexter 2010). However, when multiple samples were collected from a single feature in 

similar contexts, only the sample(s) conforming to Pearsall’s recommended methods 

were analyzed.   

5.1.1.2. Column Samples 

Column sample elements were collected from intact profiles exposed in 

excavation blocks. Bulk soil samples were extracted from the lowermost deposits in 

contiguous, 5-cm intervals from the uppermost undisturbed cultural strata through the 

basal Rockshelter deposits. To minimize contamination, samples were collected directly 

into sterile plastic bags. Sampling from side walls of previously excavated units is 
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desirable because the strata are clearly delineated and mapped prior to sampling. Where 

stratum breaks occurred, the 5 cm bulk sample was bisected to reflect the natural 

stratigraphy and to avoid strata mixing. The column locations were selected based on the 

relative cohesion of soils and lack of observable disturbance (i.e., bioturbation, 

krotovinas, or other modern intrusions and soil perturbation) in the soil profiles.  

Column samples, although potentially unrelated to specific cultural activities in 

the archaeological past, may still offer critical data. First, collecting column samples 

limits sampling bias. Pearsall (2016) noted that restricting sampling to hearths and ashy 

features results in a non-representative sample of plant remains. Second, column samples 

provide longitudinal data. Whereas processing soils from cultural features provides data 

specific to a particular event, the plant remains in column samples can offer a time-lapse 

picture of how both environmental conditions and cultural behaviors change over time. 

Analyzing contiguous samples from a single exposure allows for comparisons of weights 

and counts of cultural materials across time. By quantifying relative amounts of cultural 

remains, it is possible to pinpoint periods of intensified occupation and/or site 

abandonment. Third, by randomizing sampling locations within sites the analyst increases 

the potential for recovering plant remains associated with medicines, handicrafts, and 

household goods. While plants in hearths are representative of fuelwood and dietary 

scraps, food is only one possible use for plants. Finally, random sampling can provide 

information related to intrasite spatial patterning (e.g., Hastorf 1999; Helzer 2001; Lee 

2003). 
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5.1.1.3. Stratigraphic Samples 

The ongoing project at the Paisley Caves began well before I implemented 

paleoethnobotanical research. Soil samples recovered in the early 2000s, therefore, did 

not necessarily follow the rigorous collection methods outlined here. In particular, “Strata 

Samples” were collected from Paisley Cave 5, Unit 5. They represent grab samples from 

strata identified at the end of the 2002 field season. These samples were not subject to 

tight vertical-horizontal control, nor were volumes standardized. Despite these 

shortcomings, the samples still contain useful data. Technically, the strata samples can be 

considered museum collections, although they have not yet been curated with the Oregon 

State Museum of Anthropology repository in Eugene, Oregon. At the Paisley Caves, 

strata samples provide a window onto the post-Mazama local vegetation. 

One of the drawbacks inherent in utilizing previously collected soil samples is 

that sample sizes are not typically standardized. To address this problem in the current 

study, all bulk samples were agitated to ensure mixing of sediments and botanical 

constituents before sub-samples were obtained. Initially, one liter (1.0 L) sub-samples 

were collected. However, after processing that volume of sediment, it became clear that 

0.5 L samples were preferable due to the copious amounts of macrobotanical remains in 

the samples.  

 

5.1.2. Plant Reference Material Collection 

To aid taxonomic identification of archaeological plant remains, fruits, seeds, and 

vegetative material were collected from a variety of habitats at elevations in the vicinity 

of the Paisley Caves and LSP-1 Rockshelter. A conventional systematic grid system was 
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not implemented, but I recorded a detailed inventory of the vegetation communities 

present in each specific ecological setting collected and labeled the reference plants. 

Rather than rely on personal encounter rates with plants to determine the taxonomic 

makeup of modern vegetation communities, the National Resources Conservation Service 

(NRCS) Soils Ecological Site Inventory database was consulted to ensure an accurate 

description of current vegetative conditions (NRCS 2014).  

At the Paisley Caves, multiple plant surveys occurred intermittently from 2012 to 

2015, primarily during the spring, summer, and fall months. Collection locales included 

the margins and marshes of Summer Lake, desert shrub communities adjacent to the 

Paisley Caves, various spots along the Chewaucan River, Ana Reservoir, and the pine 

forests along the top of Winter Rim (Figure 5.1).  

I conducted a day-long field investigation in the vicinity of LSP-1 Rockshelter 

with Desert Research Institute archaeobotanist David Rhode. The field trip included visits 

to saline marsh flats near Bluejoint Lake, the margins of a marsh associated with Hart 

Lake, and high elevation meadows, alpine forests, and rimrock escarpments on Hart 

Mountain in July 2013 (Figure 5.2).  

An additional field trip to the Malheur National Wildlife Refuge to collect 

reference specimens was made in July 2014. Although the Refuge is located in Harney 

County, approximately 40 km from either of the study sites, the perpetuity of lake 

conditions here may reflect past historic lacustrine conditions experienced at Summer 

Lake and/or Lake Warner. While a direct correlation between modern plant communities 

in Harney County and historic plant communities in Lake County is unlikely, the  
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Figure 5.1. Mapped locations of plant reference collection in the Summer Lake sub-

basin, Oregon. 
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Figure 5.2. Mapped locations of plant reference collection in the Warner Valley, 

Oregon. 



138 
 

vegetation growing around Malheur Lake provided additional taxonomic diversity to the 

reference collection for this project. 

In several instances, the plants recorded and collected were not fruiting, and thus 

no reference seeds were recovered. To circumvent this deficiency, I consulted herbarium 

data housed at Oregon State University, Corvallis. Seeds were collected from individual  

herbarium references there on two occasions in 2013 and 2014. Additionally, a field trip 

to the Malheur National Wildlife Refuge Headquarters herbarium in July 2015 provided 

seed references for plants previously collected on the Refuge. Additional reference 

specimens were acquired from the USDA seed repository in Sacramento, California. 

 

5.2. Laboratory Methods  

 

5.2.1. Bulk Soil Processing 

Two types of separation methods, water flotation and dry sieving, were applied to 

the samples or subsamples selected for macrobotanical analysis. Flotation through wet 

screening is the preferred method of soil processing for macrobotanical analysis (Hastorf 

1999; Pearsall 2016; VanDerwarker et al. 2016). In the manual extraction flotation 

process, a controlled volume of dry sediment was poured into a bucket. After water was 

added, the sediment was agitated and a vortex formed, causing light fraction materials to 

float to the surface of the water where they were either skimmed off or isolated by 

pouring the matrix through a 250 μm mesh sieve. The heavier constituents sank to the 

bottom of the bucket and were collected separately. All materials recovered from the 

flotation were passed through a set of nested screens to separate the constituents into size 
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classes. In the dry sieving method, the entire sample volume, including the soil matrix, is 

passed through the screens without attempting to isolate the plant remains by introducing 

water beforehand. In dry sieving, the likelihood of damaging macrobotanical constituents 

through mechanical weathering is reduced. 

5.2.1.1. Flotation – LSP-1 Rockshelter 

 

For the current study, basic procedures for macrobotanical analysis were adopted 

from Paleo Research Institute, Inc. (Cummings 1989) and represent a modification of 

procedures outlined by Matthews (1979). Bulk soil samples analyzed for macrobotanical 

remains are processed by wash-over flotation procedures in which light fraction remains 

(such as seeds/fruits/nuts, charcoal, and other plant material) are recovered, along with 

heavy fraction remains, including small fragments of bone, shell, and lithic materials 

(White and Shelton 2014:100-101). Adams and Smith (2011:152) enumerate three 

benefits to using a good flotation system: it minimizes cross-contamination between 

samples, it is gentle enough to ensure fragile specimens are not exposed to undue stress, 

and because the plant parts are only briefly introduced to water, it prevents them from 

becoming waterlogged.  

Soil from each bulk soil sample was added to approximately three gallons of 

water in a clean five-gallon bucket. The water was stirred manually and vigorously until a 

strong vortex was formed and botanical remains floated to the surface. Whenever 

possible, standardized one liter samples were processed, although the volume of sediment 

used in this analysis varied for two reasons. First, feature size restricted the available 

volume of sediment matrix in some instances. Second, permitting the use of varying 

volume sizes for column samples ensured that all natural strata were processed 
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independently. To overcome any discrepancies stemming from the comparison of 

constituents recovered from samples of differing sizes, density calculations were made 

for each sample (see Section 5.3.2.1.). 

The material that floats to the surface is called the light fraction. The light fraction 

was poured out of the bucket through a 250 µm mesh sieve. More water was then added 

to the bucket and mixing continued. This process was repeated as many times as 

necessary to ensure the entire light fraction was successfully transferred to the sieve. 

Typically, flotation continued until no visible light fraction was floating on the surface 

and the water turned relatively clear (i.e., clays and silts were washed through the screen).  

The remaining sediment – the portion that sinks to the bottom of the bucket – is 

called the heavy fraction. After the light fraction was caught in the 250 µm screen, the 

heavy fraction was poured through a 500 µm mesh sieve. Any remaining clays, silts or 

sands were rinsed through the screen. Sediments and artifacts larger than 500 µm were 

captured in the screen and set aside for further study. 

The light and heavy fractions from each sample were transferred to racks to be 

air-dried. Care was taken in this step to ensure that the entire remaining residue captured 

in the screens was effectively transferred. To avoid contamination risks, all potentially-

datable material (i.e., the light fraction) was dried in aluminum containers, while the 

heavy fraction was dried on paper. Although drying occurs more quickly on paper, the 

carbon content of paper can potentially affect the results of radiocarbon analysis.  

Drying of the samples usually took between 24 and 60 hours. After the light 

fractions were dried, they were weighed and passed through a series of graduated dry 

sieves with openings of 4 mm, 2 mm, 1 mm, 500 µm, and 250 µm, respectively. This step 
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was important because it sorted dried samples into size categories, which eased the task 

of separating botanical contents from the remaining sediment. Heavy fractions were 

passed through the 4 mm, 2 mm, and 1 mm screens. Once the samples were mechanically 

separated, macrobotanical materials, such as seeds, seed fragments, charred tissues, and 

charcoal were removed from the sample to be identified.  

5.2.1.2. Dry Sieving – Paisley Caves 

 

The antiquity of sediments from the early Holocene and late Pleistocene epochs at 

the Paisley Caves resulted in highly fragile, desiccated remains. Although they appear 

intact, introducing them to water could cause the constituents to break down at an 

accelerated rate. To combat this potential decomposition, the Paisley Caves samples were 

dry-sieved rather than being subjected to a water flotation procedure. In dry sieving, a 

known sample volume is passed through a set of nested screens of varying mesh sizes 

and then inspected under a microscope (White and Shelton 2014:97). Here, the light 

fraction, the heavy fraction, and the associated soil matrix are combined so that it is 

impossible to determine a light fraction weight. Instead, the weight of each sieved size 

class (4 mm, 2 mm, 1 mm, 500 µm, 250 µm, and pan) was recorded prior to removing 

any constituents. Combined weights from each size class reflect the total sample weight, 

which can then be compared to the volumetric sample size. As with the samples 

subjected to flotation procedures, all macrobotanical materials, such as seeds, seed 

fragments, and charcoal were removed from the sample to be identified.  
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5.2.2. Plant Macrofossil Identification 

All identifiable seeds and fruits were individually recovered and identified with 

the aid of a Nikon binocular stereo zoom microscope with10x-70x zoom optics. In this 

study, both carbonized and uncarbonized remains are analyzed. The preservation 

conditions at dry cave sites promote the survival of ancient perishable artifacts (Miksicek 

1987). Typically, archaeobotanical analyses are limited to charred remains because, 

under normal circumstances (e.g., open sites), seeds do not generally preserve for more 

than 100 years (Minnis 1981). Incorporating the uncharred seeds into the botanical 

assemblage requires a secondary level of analysis to determine whether the botanical 

remains are of cultural origin or whether they are related to non-cultural agents that were 

incorporated into the assemblage via wind dispersal or carried in by nesting animals. In 

this study, only seeds recovered from securely identified cultural features are interpreted 

as anthropogenic. 

Analysis of charcoal leads to the identification of wood used for fuel, tools, and 

shelter, and also provides regional vegetation data. Charred wood remains reflect arboreal 

species from nearby local forests (Behre and Jacomet 1991:82). Additionally, it has 

become standard practice to identify charcoal before it is submitted for radiocarbon 

analysis to determine whether old wood could be a problem for the resulting dates. The 

steps for flotation and separation of bulk soil sample constituents are outlined below. 

As is standard archaeobotanical practice in North America, charcoal larger than 2 

mm was weighed and a sub-sample of up to 20 fragments per sample was identified 

(Adams 2004). Analysis of charcoal was conducted by examining the tangential, 

transverse, and radial surfaces of each wood fragment (greater than or equal to 2 mm in 
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diameter) using a binocular microscope. Identification of wood requires magnification up 

to at least 70x and is aided by the use of a fluorescent light ring attached to the 

microscope. To properly identify diagnostic charcoal attributes, some charcoal fragments 

were examined with a Nikon AZ 100 microscope with 200x zoom optics. Wood 

identification manuals (Adams and Murray 2004; Friedman 1978; Hoadley 1990; Minnis 

1987; Sharp 1990) and a modern charcoal collection were used as references in making 

identifications to the most specific taxonomic level possible.  

Identification of seeds was conducted with reference to seed manuals (Davis 

1993; Cappers and Bekker 2013; Delorit 1970; Martin and Barkley 1973; Schopmeyer 

1974) and modern reference collections described in the preceding section. Identification 

criteria include size, shape, surface texture, and points of attachment (Adams 2004:10). 

Ideally, all seeds were identified to species or genus, but in some cases broader 

categorizations were applied because a more precise determination was not possible. 

 

5.3. Data Analysis  

 

5.3.1. AMS Radiocarbon Dating 

 Although researchers at Paisley Caves had previously obtained numerous 

accelerator mass spectrometry (AMS) radiocarbon dates, additional dates were obtained 

at LSP-1 Rockshelter to anchor the column samples and to provide direct dates for 

cultural features. In total, eleven dates were obtained at LSP-1 Rockshelter for the 

purpose of this study. These data were previously published in the Journal of 
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Archaeological Science: Reports in tandem with my dissertation project (Kennedy and 

Smith 2016; Appendix B).  

 Ideally, charred organic materials submitted for AMS radiocarbon dating should 

originate from a local rather than foreign species, and from a short-lived plant type 

(Puseman and Klinger 2001; Schiffer 1986). Carbon was selected for AMS dating based 

on three criteria: cultural association, the potential lifespan of the species, and 

stratigraphic relevance. When possible, textile artifacts were dated, otherwise seeds and 

charcoal fragments were selected. All samples were processed and analyzed by Direct 

AMS in Bothell, Washington.  

 

5.3.2. Quantitative Analyses 

Documenting the presence of macrobotanical remains allows archaeologists to 

extrapolate data about past ecology and vegetation, diet, subsistence practices, trade, 

management practices, and seasonality of site habitation (Pearsall 2016:147). These 

observations are often descriptive rather than quantitative, but at minimum, descriptions 

can facilitate interpretation based on inferential statistics. 

Quantification of presence/absence, abundance, counts, minimum number of 

individuals (MNI), density ratios, and other numerical approaches may not appropriately 

assess meaningful dietary contribution or economic importance of plant taxa (Jones 

1991). For example, it is impossible to calculate MNI for botanical specimens because 

varying fruiting and pollination syndromes prohibit researchers from knowing how many 

seeds are produced by any single plant. Additionally, the nature of archaeobotanical 

samples themselves can complicate and misconstrue quantification of macrobotanical 
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remains. The ambiguous origins of the Paisley Caves 5/5 strata samples (likely disturbed 

by looting and rodent activity), limit any interpretations beyond presence/absence and 

general ecological attributes. However, quantitative analysis of those macrobotanical 

remains recovered from unambiguous, primary contexts at the Paisley Caves and LSP-1 

Rockshelter can provide additional data interpretation that facilitates better understanding 

of archaeological contexts and site formation processes (Pearsall 2016:148).  

Multivariate statistics are best suited to archaeobotanical data because they are 

especially useful for detecting patterns after the data have been distilled for analysis. 

Rather than evaluating dependent and independent variables, multivariate methods 

compare data to recognize similarities and differences between the archaeological 

contexts from which they originated (Shennan 1988:216). All quantitative data were 

analyzed and graphed using Microsoft Excel and JMP software programs. 

5.3.2.1. Inferential Statistics 

Inferential statistics including ubiquity, density, and diversity measures are 

calculated for the macrobotanical data reported here. Taxon ubiquity is determined by 

dividing the number of samples in which the taxon occurs by the total number of samples 

analyzed (Adams 2004; Hastorf and Popper 1988:60-64). Taxon ubiquity is presented for 

each archaeological site and categorized using criteria such as time of deposition and 

cultural context. Results of both intrasite and intersite macrobotanical analyses are 

presented. As a baseline, these data can be integrated into a regional database that can 

provide more analytical power in interpretations of the archaeobotanical record for the 

northern Great Basin.  
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Density ratios are employed to compare taxonomic diversity across samples of 

varying volumes (Miller 1988). These measurements provide a greater understanding of 

intensification of particular resources as they are distributed in archaeological contexts. 

Additionally, when combined with ecological attributes of the represented taxa (e.g., 

USDA 2015; Weber and Hanks 2008), I use these data to assess seasonal patterns of site 

use and historic environmental trends.   

 I calculate diversity and richness indices to compare species diversity within and 

between samples and sample elements. Taxonomic diversity is presented as a Shannon-

Wiener variability index of equitability: 

 H
1
 = - Σ (pi)(logepi), V

1
=H

1
/logeS, 

where pi is the fraction of individuals belonging to the i-th species and S is the number of 

species in the community. These data are not indicative of the number of plant species 

introduced to cultural contexts; rather, they graphically demonstrate the taxonomic 

diversity for the archaeological context sampled.  

5.3.2.2. Cluster Analysis 

 Cluster analysis allows large multivariate datasets to be summarized in terms of a 

“typical” member of each cluster (Gnanadesikan and National Research Council 1988). 

Values for all variables are unknown in cluster scenarios (Andrews and McNicholas 

2014:143). Here, I use clustering to assess the similarities between samples based on the 

occurrence or non-occurrence of specific element types contained in a given sample and 

the attributes of those types (e.g., charcoal density, charred v. uncharred seeds, flower 

times, etc.). 

 



147 
 

5.3.2.3. Dissimilarity Indices  

The populations of charred and uncharred seeds were compared to evaluate 

whether uncarbonized seeds in the rockshelter deposits likely reflect cultural activity. If 

the charred and uncharred seeds were deposited at the same time by the same agents, then 

the taxonomic makeup of both populations should be consistent for a given sample. Tests 

for heteroscedasticity determine chi square values to compare whether the two 

populations are statistically similar. 

Analysis of variance (ANOVA) calculations can determine whether the 

populations of charred and uncharred seed assemblages originate from the same 

distribution. However, the non-normal distribution of dependent variables in 

macrobotanical datasets necessitates the use of a non-parametric analysis. A Kruskal-

Wallis test was employed to assess for significant differences. 

 

5.4. Methodological Limitations and Sampling Bias 

 

5.4.1. Taphonomic Considerations 

Several factors may contribute to the types and quantities of charred remains 

recovered from macrobotanical analyses of prehistoric archaeological deposits. 

Archaeologists attempt to understand target populations through identification of 

constituents present in sampled populations. Both natural and cultural transformations 

affect the population originally exploited in the living (or systemic) context.  

An inherent bias results from the plants’ structure and dispersal strategies. 

Because of variable seed production for each plant species, the number of seeds should 
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not be interpreted as a strict indicator of individual consumption/disposal. While some 

plants produce several seeds per fruit, the fruits of other plants produce only a single 

seed. Likewise, seeds with soft coats are likely to decay and decompose, while seeds with 

hard seed coats allow for better preservation. Weed seeds also enjoy a higher preservation 

rate due to the fact that they are mature at the time of dispersal, as opposed to plants 

selected for their nutritional value, which are often picked before they are ripe.  

Additionally, not all plants exploited in prehistoric systemic contexts are necessarily 

incorporated into the archaeological context. For example, following Ringrose (1993), 

Lee (2003) defines those plants purposely harvested and processed at the campsite and 

those introduced accidentally to the campsite (both by people and commensal animals) as 

the ‘death assemblage.’ Under this premise, foods consumed en route to the campsite 

would not have the opportunity for incorporation into the death assemblage. Additionally, 

if non-diagnostic plant materials (bulbs, roots, tubers, etc.) are specifically harvested in 

the field, their incorporation into the death assemblage may not be recognized in the 

archaeological context. 

Once remains are introduced to a campsite, several processes affect their survival 

from the death assemblage to the ‘deposited assemblage’ (Lee 2003). Inedible, discarded 

plant parts like nutshells and drupes are more likely to preserve than edible parts, because 

ostensibly the edible parts are eaten in camp. Those plants accidentally spilled during 

preparation may be incorporated into the deposited assemblage. Carbonization of plant 

remains increases the potential for survival over extended periods of time. Plants stored 

in campsites might also have a greater survival potential if storage vessels containing 

botanical remains are left behind at the campsite.  
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Finally, mechanical and chemical processes such as bioturbation and freeze/thaw 

cycles can reduce the number and types of plants that survive as the ‘fossil assemblage’ 

(Lee 2003). The fossil assemblage is the population which endures in the archaeological 

record, and thus a target population in this study. 

Diet reconstructions that rely on ecofacts like macrobotanical remains and faunal 

assemblages suffer from three principal limitations: differential discard behaviors, 

quantification issues related to bioturbation and non-cultural site formation processes, 

and destructive processing techniques used by site residents to enhance the digestibility, 

nutritional value, or flavor of the resource (Pavesic et al. 2016:214). 

Because the Paisley Caves and LSP-1 Rockshelter were inhabited intermittently, 

the irregular resolution of data diminishes intensive analyses of certain occupation events. 

For example, the detailed archaeological data at the Paisley Caves during the Younger 

Dryas allow me to pose specific questions related to the Terminal Pleistocene Paleoindian 

occupations, but limited archaeological data in Late Holocene components preclude such 

inquiries. Several pointed questions are raised to assist in the interpretation of 

paleoethnobotanical data.  

 

5.4.2. Sample Size 

Sample size bias may affect the ability to accurately compare constituents among 

samples. In this study, standardized volumes of sediments (1 L) were floated whenever 

possible, but in the case of feature samples, this quantity was not available, resulting in 

flotation of limited volumes of sediment. To eliminate a sample-size effect, I assigned 

volume-mediated density values to the raw frequency of charred seeds. Density was 
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calculated by dividing the total number of charred seeds by the volume of sediment 

floated.  

Soil volumes, rather than weights, are used to quantitatively compare the samples 

from the Paisley Caves and LSP-1 Rockshelter. Samples from LSP-1 Rockshelter were 

processed via standard flotation procedures (see 4.2.3), thus introducing a potential bias 

in recovery rates between the Paisley and LSP-1 assemblages. At the outset, I intended to 

dry sieve the Paisley samples and then subject them to flotation in order to maintain 

control over the methods. However, when I attempted to wet screen one half of a 

previously sorted column sample, the added moisture facilitated the growth of fungal 

spores and the sample took an excessive amount of time (nearly two weeks) to 

completely dry. Experimental flotation studies by Wright (2005:25) demonstrated that 

increased processing time directly correlates with greater potential for damage or loss to 

the botanical constituents. Additionally, the copious amounts of animal waste in the 

Paisley samples (especially owl pellets and large mammal coprolites) have the potential 

to introduce plant remains that represent neither cultural activities nor local vegetation. 

Wetting the sample dislodged seeds from the fecal matrix. Due to these limitations, the 

double processing method is not feasible, so direct intersite comparisons based on 

weighted samples between the Paisley Caves and LSP-1 Rockshelter are problematic. 

Macrobotanical assemblages from both sites, therefore, are discussed independently and 

any quantitative comparisons and observations are constricted by these data limitations.  
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5.4.3. Exploratory Nature of Research Objectives 

 Archaeobotanical analysis is a labor-intensive specialized field of study. 

Identification of constituents in individual samples often requires several days of effort. 

As a result, the number of samples analyzed for this project is limited, and not 

representative of every identified archaeological component. Consequently, only one 

non-cultural feature, the bushytailed woodrat nest, was included in the analysis. Data 

deriving from analysis of this feature is exploratory, and will not be compared to 

additional original data.  
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CHAPTER VI 

SPECIES DESCRIPTIONS 

 

Archaeological botanical remains recovered from northern Great Basin 

rockshelters reported here represent 35 plant families (Table 6.1). This chapter describes 

the seeds and charcoal recovered from the Paisley Caves and LSP-1 Rockshelter samples 

and summarizes the natural and cultural ecologies for each taxon. Following the 

Linnaean classification system, genera and species accounts are organized alphabetically 

by family. Nomenclature generally follows Meyers et al. (2015) and/or Hitchcock and 

Cronquist (1973). The use of a specific epithet indicates a confident species-level 

attribution; the use of genus name alone specifies certainty in genus-level attribution, but 

species-level attribution is undetermined or indeterminable. The moniker “cheno-am” 

refers to plants in either the genus Amaranthus or Chenopodium (Adams 2004). The two 

genera have been recently split into separate families: Amaranthaceae and 

Chenopodiaceae, respectively. Accordingly, the category of “cheno-am” encompasses 

both families in this analysis. The abbreviation “cf.” is a taxonomic qualifier denoting 

uncertainty of identification. In this analysis, it means “similar to” and is derived from the 

Latin conformis (Lucas 1986). Qualifications of family or genus names with “-type” 

indicate more than one taxon exhibits the characteristics used for identification and no 

more specific identification could be made. 
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Table 6.1. Plants identified in the Paisley Caves and LSP-1 Rockshelter macrobotanical samples.  

Family Genus/species Common Name Klamath name Modoc name Numu (Northern Paiute) name Traditional Economic Uses Available for Harvest Specialized 

Ecological 

Attributes 

Adoxaceae Sambucus elderberry slō'-lös cluʼlusαm; 

sapaʼwal? 

hubuiha; konugibɨ food; drug fall - 

Aizoaceae Sesuvium sea purslane - - - - ? halophyte 

Amaranthaceae Amaranthus pigweed bä-lō'-ōch baʼkai? ɨapi food; drug fall drought-resistant 

Anacardiaceae Rhus sumac - - - - fall - 

Apiaceae   umbel family             

Asparagaceae Camassia camas pû'ks; pâks boʼkc passikoˀo food; drug summer facultative 

wetland 

Asteraceae   sunflower family           - 

Artemsia sagebrush ghät, or bōl'-

whē 

cqoʼt; 

buʼlxwɩ 
sawabi fuel; textile; tools; drug fall drought resistant  

Chrysothamnus rabbitbrush       drug  fall - 

Boraginaceae   borage family             

Amsinckia fiddleneck - - - food  summer/fall - 

Cryptantha  cat's eye - - - - summer - 

Hackelia stickseed - - - -   facultative 

upland 

Plagiobothyrus popcorn flower - - - - summer facultative 

wetland 

Brassicaceae    mustard family   -         

Descurainia tansymustard - tciʼpas yɨnnaka food summer - 

Cannabaceae Celtis hackberry - - - - - - 

Chenopodiaceae   cheno-am - - apuza food fall halophyte 

Atriplex  saltbush/shadscale - - kangibbɨ; yɨnnaka food fall/winter halophyte; 

drought-resistant 

Chenopodium goosefoot kōts-on'-iks kotcaʼnɩks ɨˀapɨ food fall halophyte; 

drought resistant; 
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Table 6.1. Plants identified in the Paisley Caves and LSP-1 Rockshelter macrobotanical samples.  

Family Genus/species Common Name Klamath name Modoc name Numu (Northern Paiute) name Traditional Economic Uses Available for Harvest Specialized 

Ecological 

Attributes 

facultative 

upland 

Monolepis blitum  - - - -   halophyte 

Suaeda seepweed - - wada food fall halophyte; 

facultative 

wetland 

Cupressaceae Juniperus juniper - qaʼlu  wahapi food; fuel; drug; textile; dye fall drought-resistant 

Cyperaceae   sedge family             

Carex sedge bha'-nē, or 

wich'pī 
bϵʼϵni - textile; food summer obligate wetland 

Eleocharis spikerush - - pamahabɨ food summer-fall obligate wetland 

Scirpus bulrush; tule mä-i maʼi; klaʼna sai-; abibɨbui textile summer obligate wetland 

Fabaceae    legume family             

Trifolium clover - - - food summer facultative 

Vicia vetch - - - -  summer drought-resistant 

Geraniaceae   geranium family             

Grossulariaceae Ribes currant; 

gooseberry 

chmâr'-läk - ohapogopissa; pogopisapui food; drug summer drought-resistant 

Hydrophyllaceae Phacelia phacelia - - - ? summer/fall - 

Juncaceae Juncus rush tsin'ä'-ō - pamahabɨ food; textile summer halophyte; 

facultative 

wetland 

Lamiaceae   mint family             

Liliaceae s.l. cf. Allium wild onion pâks - padɨssi food; drug summer/fall drought resistant; 

facultative 

upland 
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Table 6.1. Plants identified in the Paisley Caves and LSP-1 Rockshelter macrobotanical samples.  

Family Genus/species Common Name Klamath name Modoc name Numu (Northern Paiute) name Traditional Economic Uses Available for Harvest Specialized 

Ecological 

Attributes 

cf. Calochortus  sego lily yänch  yαʼnc kogi food  summer - 

Loasaceae Mentzelia blazing star lō'-läs loʼlas kuha food  fall - 

Malvaceae   mallow family             

Sphaeralcea globemallow - - - ?  summer drought-

resistant; cold-

adapted 

Montiaceae Claytonia/Montia montia family -  - nɨmɨzizinnayaˀa - summer/fall facultative 

Onagraceae Chamerion fireweed -  - - - summer/fall   

Oenothera evening primrose wä'-säm chōn'-

wäs 

- - food; repellent  summer/fall drought-adapted 

Pinaceae Pinus pine kō'sh  waʼqu wogo- building material; drug; 

food; fuel; tool; adhesive 

late summer - 

Plantaginaceae Plantago plantain - - papaya (?) - summer/fall - 

Poaceae   grass family             

Achnatherum 

hymenoides 

Indian ricegrass  - - wai; waipui food summer drought-adapted; 

upland obligate 

Agrostis Bentgrass nō'-täk  noʼtaq wasa (?) food summer/fall drought-adapted; 

facultative 

wetland 

Hesperostipa needle and thread 

grass 
-  - - - summer - 

Leymus cinereus Great Basin 

wildrye 
gla'-i pi  glaʼpi wayabɨ food; drug; fiber summer drought adapted 

Polygonaceae   knotweed family             

Eriogonum buckwheat ba-bäk''--bak-

lha'-näm 
qaʼlupka tazawazubɨ food; drug summer drought-adapted 

Rumex dock gō-klaks goʼkca pawiapɨ food; drug  summer/fall facultative 

wetland 
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Table 6.1. Plants identified in the Paisley Caves and LSP-1 Rockshelter macrobotanical samples.  

Family Genus/species Common Name Klamath name Modoc name Numu (Northern Paiute) name Traditional Economic Uses Available for Harvest Specialized 

Ecological 

Attributes 

Rhamnaceae Ceanothus buckbrush ga-ga'-e-säm 

sä'-wäls; 

lúiluish 

dzaʼkulu wɨyɨpɨ food; drug; fiber summer drought-adapted 

Rosaceae   rose family             

Prunus chokecherry or 

Klamath plum  
tuítchχash  dαwɩtcqaʼs; 

tumαʼlo 

toishabui food; drug summer drought-adapted 

Rosa wild rose chō-it'-i-äm  tcuwɩʼdi tsiabui food; drug; tool fall - 

Rubiaceae Galium bedstraw; cleaver - - - - late summer facultative 

upland 

Salicaceae Salix willow yäs yaʼc singaabi drug; textile; building 

material 

spring facultative 

wetland 

Solanaceae   nightshade family             

Nicotiana Indian tobacco käch'kul qatklαʼm puibahmu drug  summer - 

Typhaceae Typha  cattail pō'-päs puʼpαsαm tahuunatsɨ; toiˀi; toibɨ textile; food; building 

material; tool 

summer halophyte; 

obligate wetland 

Urticaceae Urtica stinging nettle sleds  - kwiibaanupɨ- textile fall facultative 

wetland 
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Descriptions for each taxon derive from botany manuals (Blackwell 2006; 

Hickman 1993; Hitchcock and Cronquist 1973; Meyers et al. 2015; Oregon Native Plant 

Society 2007; Simpson 2006; USDA 2017), seed identification guides (Davis 1993; 

Martin and Barkley 1961), queries of U.S. government-administered online databases 

(https://www.feis-crs.org/feis/; https://plants.usda.gov/core/wetlandSearch), and scholarly 

articles on plant adaptive strategies (e.g., Weber and Hanks 2008). Ecological data 

(habitat, seasonality, growing habit, etc.) for each identified taxon aid environmental 

interpretations presented in the results and discussion sections of this dissertation.  

All identified taxa were cross-referenced against historic plant usage by Native 

groups living in the northern Great Basin at the time of Euro-American contact. The 

study area encompasses the traditional territories of the Klamath, Modoc, and Northern 

Paiute peoples, and the abstracts draw from ethnographies of these groups. The following 

abstracts provide a brief description of plant taxa identified in the Paisley Caves and LSP-

1 macrobotanical assemblages, and list the possible uses of the plant remains in antiquity. 

Klamath plant name translations follow Colville (1897) and Gatschet (1891) and Modoc 

names appear in Ray (1963); Northern Paiute plant names are referenced in Liljeblad et 

al. (2012). As this project does not include original ethnographic research, the names 

transcribed in Table 6.1 are undoubtedly incomplete and/or misspelled.  

Morphological attributes of the macrobotanical remains are presented in 

Appendix C along with representative images of each taxon. Invasive and non-native taxa 

identified in the samples are considered modern intrusions and not discussed. 

 

https://www.feis-crs.org/feis/
https://plants.usda.gov/core/wetlandSearch
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6.1. Adoxaceae – The Moschatel Family 

 

6.1.1. Sambucus sp. (elderberry) 

Elderberry (Sambucus) seeds were recovered as charred and uncharred specimens 

from the Paisley Caves, but were not identified at LSP-1 Rockshelter. Red elderberry (S. 

racemosa) and blue elderberry (S. mexicana) are both large shrubs (2-6 m) common in 

the Great Basin. Found along streambanks in open forest, they prefer moist and bright 

conditions below ~3300 m AMSL. Both species exhibit 5-petaled whitish flowers in late 

spring through the early summer, but are distinguished by the color of the berry (red and 

blue) in late summer.  

Elderberries were consumed raw, boiled, or dried by the Paiute (Kelly 1932:100; 

Mahar 1953:111; Park and Fowler 1989:50) while only blue elderberry is listed as a food 

source for the Klamath (Colville 1897:104; Spier 1930:165) and Modoc (Ray 1963:215). 

Reportedly, Bannock groups that historically lived to the east of the current study area 

would remove the pith from fresh stems, stuff them with crickets, and plug the ends to 

store the insects for winter food (Colville 1897:104). The blue elderberry plant’s 

medicinal properties were also exploited by the Northern Paiute. Infusions of dried 

flowers and root scrapings provided gastrointestinal relief, and poultices of heated stems 

were applied topically as an antirheumatic treatment (Kelly 1932:100; Mahar 1953:111; 

Train 1941:138).  
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6.2. Aizoaceae – The Fig-Marigold Family 

 

6.2.1. Sesuvium sp. (sea purslane) 

 A single uncharred Sesuvium seed was recovered in a feature sample at the 

Paisley Caves. In the Great Basin, sea purslane is a perennial herb that grows mainly in 

alkali flats. Fruits and flowers appear anytime from April to November.  

 There are no reported uses of sea purslane in the ethnographic literature of the 

Great Basin. 

 

6.3. Amaranthaceae – The Amaranth Family 

 

6.3.1. Amaranthus sp. (pigweed) 

Amaranthus seeds were recovered from hearth features at the Paisley Caves and 

LSP-1 Rockshelter. The perennial herb grows in disturbed soils, and is usually found 

below 800 m AMSL. Its flowers bloom in dense, spike-like clusters in late summer and 

early autumn. Most species found in southcentral Oregon today are native imports from 

tropical latitudes, but A. powellii is native to Lake County.  

Ethnographers report the Klamath and Modoc ate the seeds of pigweed (Colville 

1897:96; Ray 1968:218), but the species harvested at that time were introduced weeds. 

Spier (1930:163) mentions Amaranth seeds were used sporadically, although he may 

have been referring to Chenopodium (Spier:166). In the economy of the Surprise Valley 

Paiute, Amaranth was classified as a moderately-important plant (Masten 1985:310). 
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6. 4. Anacardiaceae – The Sumac Family 

 

6.4.1. Rhus sp. (sumac) 

 In the current analysis, a single fragment of Rhus charcoal was recovered from a 

non-feature sample at LSP-1 rockshelter. Rhus (sumac) shrubs grow in association with 

grass communities and desert shrubland in northern California and the Great Basin, 

generally above 1200 m AMSL.  

In the traditional economy of Northern Paiute peoples, the fruits were recognized 

for their astringent qualities, and dried, powdered berries were applied to smallpox sores 

(Train et al. 1941:129). In California, its berries provided food as well as serving 

medicinal purposes (Moerman 2009:413).  

 

6.5. Apiaceae – The Umbel Family 

 

 A single uncharred Apiaceae-type schizocarp was recovered from Stratum I in 

Paisley Cave 5. Members of the umbel family number in the thousands, and several 

genera, including Lomatium and Perideridia, were traditionally harvested by indigenous 

groups in the Great Basin (Moerman 1998). The schizocarp recovered at the Paisley 

Caves did not resemble any of these types.  
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6.6. Asparagaceae – The Asparagus Family 

 

6.6.1. Camassia quamash. (camas) 

 In this study, camas (C. quamash) is represented by two charred seeds in a feature 

sample at the Paisley Caves. Although camas has been reclassified to the Asparagus 

family (Asparagaceae), in this Camas is a perennial herb with basal leaves that range in 

height from 10-80 cm. Three subspecies of camas grow in vicinity of the Summer Lake 

basin and Warner Valley including small camas C. quamash (Pursh) Greene ssp. 

brevifolia Gould, C. quamash (Pursh) Greene ssp. quamash, and C. quamash (Pursh) 

Greene spp. walpolei. Camas can be propagated from seed or from its starchy bulbs. It is 

distributed through several ecoregions in the Pacific Northwest, but in the current study 

area, it generally grows in sunny, moist meadows of ponderosa pine woodlands below 

3300 m AMSL. Distinctive bluish-purple flowers bloom on a raceme in the spring, but 

bulbs are typically harvested in early summer through mid-fall. 

Camas is perhaps the most important traditional plant food identified by extant 

tribes in Oregon. Bulbs were dug, dried, and steamed in pits by the Klamath (Colville 

1897:93). Although by most accounts, the camas bulbs would have been collected in the 

summer, Colville reported the Klamath began gathering as early as April 1
st
. Ray 

(1963:218) mentioned the role of camas as a food plant among the Modoc, but provided 

no details. The Paiute also valued camas bulbs as a food item. Bulbs were cooked in pits 

overnight and then eaten, or dried for winter consumption (Kelly 1932:102). The dried 

bulbs were also ground and made into a pudding (Mahar 1953:56). 
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6.7. Asteraceae – The Sunflower Family 

 

Members of the sunflower family were commonly utilized by Great Basin Indian 

tribes; many genera were prized for their medicinal properties. Four genera belonging to 

this group were identified in the current study, along with Asteraceae seeds unidentifiable 

to species. 

 

6.7.1. Artemisia sp. (sagebrush)  

Sagebrush (Artemisia sp.) was primarily represented by charcoal in both the 

Paisley Caves and LSP-1 Rockshelter feature samples, but charcoal and uncharred seeds 

were also identified outside of cultural features at the Paisley Caves (additionally, a 

single charred seed specimen was recovered in the uppermost stratigraphic layer of Cave 

5). The fragrant shrub is currently the dominant vegetation type in a majority of the Great 

Basin, and local paleoclimate records demonstrate that sagebrush has been ubiquitous on 

the northern Great Basin landscape throughout the Holocene (Minckley et al. 2007; 

Saban 2015). The Artemisia genus displays considerable morphological variation in size, 

but leaves are typically greyish green with dense hairs. Big sagebrush (A. tridentata), low 

sagebrush (A. rigida), gray sagewort (A. ludoviciana var. latiloba), silver wormwood (A. 

ludoviciana var. ludoviciana), and bud sage (A. spinescens) are the most frequently 

encountered species in the project area. Flowering time is dependent on the species, but 

they generally bloom from late spring through fall. Their vegetative growth provides 

forage and cover for several Great Basin animals. 
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Several ethnobotanical accounts suggest big sagebrush was burned for fuel by 

various Great Basin and Columbia Plateau groups (Colville 1897:105; Mahar 1953:119; 

Turner et al. 1980:78). Mahar noted Artemisia commonly acted as both tinder and 

primary fuel in Paiute hearths. Tightly wound dry Artemisia bark acted as a torch for 

Klamath and Modoc people living on the Yainax Agency (Barrett 1910:257). The wood 

also could be fashioned into drills and the bark was commonly woven into sandals and 

cloth. A. tridentata, the most widely distributed species, has been identified as an 

essential medicinal plant by the Klamath, Modoc and Paiute tribes. Klamath uses for 

sagebrush involved making decoctions that were ingested to treat diarrhea and applied 

externally as an eye wash (Colville 1897:105). Ray (1963:219) indicated that sagebrush 

leaves were used by the Modoc to treat aches, pains, fevers, and gastrointestinal 

problems. The Warm Springs Paiute made poultices of the leaves to treat burns and sores. 

The poultices were also applied to the scalp as a hair tonic. Both the Warm Springs and 

Owens Valley Paiute commonly chewed leaves or ingested decoctions of leaves to break 

fevers (Mahar 1953:119; Steward 1933:317). 

 

6.7.2. Chrysothamnus sp. (rabbitbrush) 

 Rabbitbrush (Chrysothamnus) is present in these samples in the form of a single 

charcoal fragment and multiple uncharred leaves at the Paisley Caves. No rabbitbrush 

macrobotanical remains were identified in the LSP-1 samples. In the Shrub Steppe 

environment, Chrysothamnus bushes are commonly found in association with sagebrush 
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at elevations up to 3350 m AMSL. The plant’s bright yellow flowers bloom from July to 

November.  

Chrysothamnus served diverse purposes among the Paiute during the historic era 

(Stewart 1941:375). Mahar (1953:115) reported the stems were peeled and used to pierce 

ears in preparation for wearing earrings, and that the roots were chewed as gum or candy. 

Regionally, infusions and decoctions of the plants were used to relieve a variety of 

ailments including gastrointestinal problems, dermatitis, chest colds, and venereal 

diseases (Moerman 1998:159-161). 

 

6.8. Boraginaceae – The Borage or Forget-Me-Not Family 

 

6.8.1. Amsinckia sp. (fiddleneck) 

 In this study fiddleneck seeds were numerous in samples collected at the Paisley 

Caves and LSP-1 Rockshelter. Charred and uncharred seeds were both noted. At the 

Paisley Caves, Amsinckia was identified outside cultural features, but at LSP-1 its 

presence was noted in hearths as well and was ubiquitous in Early Holocene samples. 

Fiddlenecks are branched to erect annual herbs with bristly hairs that thrive in dry and 

open disturbed locations. Two species are native to the northern Great Basin: bristly 

fiddleneck (A. tessellata) and common fiddleneck (A. menziesii). Both types have yellow 

flowers arranged in helicoid form, which are visible in late spring through early summer. 

High levels of nitrates and alkaloids in the plant cause toxicity in grazing animals, 

especially cattle. 
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Amsinckia is not discussed in ethnographic literature pertaining to the northern 

Great Basin, but the leaves, seeds, and shoots are edible. They were traditionally 

consumed by Native American groups in California and the Southwest United States 

(Anderson 2012:10; Moerman 1998:70-71). 

 

6.8.2. Cryptantha s.l.
 1
 (cat’s eye) 

 Cat’s eye (Cryptantha) was represented by charred and uncharred seeds in various 

contexts at the Paisley Caves. Cryptantha is an annual herb that attains heights of 10-50 

cm. There are several native species of Cryptantha in the Great Basin. Most species are 

common in upland environments on gravelly and rocky flats and on slopes in the 

sagebrush steppe. Usually white, but occasionally yellow, pinwheel-like flowers bloom in 

the spring.  

 No economic uses for Cryptantha are documented for tribes of the Great Basin, 

California, or the Pacific Northwest. 

 

6.8.3. Hackelia sp. (stickseed) 

 Hackelia seeds are present in stratigraphic (column; non-feature) samples at the 

Paisley Caves site. Stickseed plants are annual or perennial herbs with mostly basal 

leaves that are common to dry slopes in the sagebrush steppe at elevations between 1800 

                                                 

1
 Recently, the genus Cryptantha s.l. has been divided into five separate genera: Cryptantha s.s., 

Eremocarya, Greeneocharis, Johnstonella, and Oreocarya (Hasenstab-Lehman and Simpson 2012). 

However, the taxa are differentiated by flower characteristics, not seeds. 
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m and 3100 m AMSL. Its pinwheel-shaped, white flowers bloom all summer (June 

through August).  

 No evidence of indigenous use of Hackelia exists in the region’s ethnobotanical 

literature. 

 

6.8.4. Plagiobothrys sp. (popcorn flower) 

 Uncharred Plagiobothrys seeds were identified in non-feature samples at the 

Paisley Caves and charred seeds were recovered from feature samples at LSP-1 

Rockshelter. A single uncharred seed was also identified in a Late Holocene hearth at 

LSP-1 Rockshelter. Great Basin species of Plagiobothrys are herbs or forbs that thrive on 

dry, open slopes 1200-1300 m AMSL. Flowers are in bloom from May to July.   

No cultural use has been recorded for this plant among the Klamath, Modoc, or 

Paiute, but the Mendocino peoples who traditionally lived south of the current study area 

ate the seeds as well as the crisp, tender shoots and flowers (Moerman 1998:415). Alfred 

Kroeber also reported Plagiobothrys seeds as a foodstuff among the Chukchansi 

(Anderson 2012:188). 
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6.9. Brassicaceae – The Mustard Family 

 

6.9.1. Descurainia sp. (tansymustard) 

Descurainia seeds were commonly observed in the LSP-1 Rockshelter samples. 

Tansymustards are native winter annuals with yellow flowers commonly found in open 

areas with little to no overstory vegetation and growing in association with 

sagebrush.Several corroborative reports for the use of tansymustard seeds exist in the 

ethnographic literature for the Northern Paiute. Seeds could be parched, ground and eaten 

as meal (Colville 1897). They could also be roasted, cooled, ground and mixed with 

water to create a cooling summertime beverage. The Northern Paiute used D. pinnata to 

brew such a beverage (Park and Fowler 1989). In the winter, stored seeds were mixed 

with snow to make ice cream. Additionally, tansymustard possesses medicinal properties 

and a poultice of ground seeds could be applied to sores on the skin (Kelly 1932:98; 

Mahar 1953:74; Park and Fowler 1989:47).  

 

6.10. Cannabaceae – The Cannabis Family 

 

6.10.1. Celtis sp. (hackberry) 

 Charred and uncharred cf. hackberry seeds were recovered from the Paisley Cave 

5 upper strata samples and in a single column sample (CS-4) in Unit 2/6B. Hackberry 

trees do not currently grow in southcentral Oregon.  
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 No ethnobotanic usage of hackberry has been reported for the Klamath, Modoc, 

or Northern Paiute.  

 

6.11. Chenopodiaceae – The Goosefoot Family 

 

Several seeds and seed perisperms belonging to the Chenopodiaceae family were 

present in the macrobotanical assemblages at both archaeological sites in the current 

investigation. Chenopodiaceae is represented by five identified genera and seeds 

categorized as cheno-ams. Each of these plants produces mostly starchy-perispermous 

seeds with curved embryos that are edible. These plants are related to the pseudo-grain 

crop quinoa (Chenopodium spp.), a popular alternative grain to wheat and rice in the 

contemporary American diet. 

 

6.11.1. Atriplex spp. (saltbush), A. confertifolia, A. palustris, A. rosea 

Several uncharred and charred Atriplex seeds and fruits were recovered at the 

Paisley Caves, while uncharred Atriplex seeds alone were present in the LSP-1 

Rockshelter samples. Seemingly all Northern Paiute ethnographic sources mention 

Atriplex as an economically important plant taxon (e.g., de Angulo and Freeland 1929; 

Fowler 1982; Kelly 1932; Steward 1933; Stewart 1941). Saltbush plants were valuable 

both as a component of Paiute diet and for their medicinal properties. Fowler (1982:132-

133) reported saltbush roots could be boiled with salt and water and taken as a cathartic. 

As a cold remedy or antirheumatic, a poultice of mashed leaves was applied to the chest 
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or other affected areas of the body. Seeds were commonly parched and ground into a 

flour to be eaten in bread or mush (Park and Fowler 1989:47; Steward 1933:244). 

 

6.11.2. Chenopodium sp. (goosefoot)  

Chenopodium seeds were recovered as charred and uncharred specimens in the 

Paisley Caves and LSP-1 Rockshelter. Their distributions were not temporally 

constrained, but spikes in seed abundances were noted in cultural features. The genus is 

nearly ubiquitous across northern and temperate climates on Earth, as is its consumption 

among groups that live where it grows. The greens are high in calcium, and the fruits 

generate several seeds per plant that are high in protein (USDA 2015). 

According to Ray’s (1963:199) Modoc informants, chenopods were an extremely 

important seed plant. Seeds of goosefoot were also valued by the Klamath (Spier 

1930:162) and Paiute (Kelly 1932:98; Park and Fowler 1989:48; Steward 1933:244). 

Seeds were parched, ground and eaten as meal. The leaves were also chewed to induce 

vomiting (Steward 1933:317).  

 

6.11.3. Monolepis sp. (blitum) 

 Uncharred Monolepis seeds were recovered in Cave 5, Stratum I at the Paisley 

Caves. Monolepis are herbs that can commonly be found in disturbed places from 70-

3580 m AMSL.  

Monolepis use is not documented in the ethnographic literature for the Great 

Basin. 
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6.11.4. Suaeda sp. (seepweed; wada) 

In this study, a single charred Suaeda seed was present in a non-feature column 

sample at the Paisley Caves site. Suaeda plants grow in xeric habitats and are adapted to 

high levels of salinity. They can be found in playas, salt flats, marshes and in wetland 

locations. Flowers and seeds ripen in the fall.  

Historically, members of the Burns-Paiute tribe referred to themselves as 

Wadatika, which translates in English to “wada eaters.” Wada is the Paiute name for the 

seepweed plant (Suaeda). Seeds were collected, parched, ground into flour and eaten as 

meal (Kelly 1932:98; Park and Fowler 1989:47). Additionally, Suaeda calceoliformis 

was recognized for both its medicinal benefits as a dermatological aid and urinary tract 

cleanser. Crushed fresh leaves were applied to skin as an anti-inflammatory and itch-

reliever, while a decoction of the plant was imbibed to treat bladder infections (Train et 

al. 1941:143). 

 

6.12. Cupressaceae – The Cypress Family 

 

6.12.1. Juniperus sp. (juniper) 

 At the Paisley Caves Juniperus seeds were present in features as well as non-

feature column and strata samples, but they were absent in the LSP-1 Rockshelter 

samples. Two species of juniper are native to the northern Great Basin. Western junipers 

(Juniperus occidentalis) are dioecious evergreen trees with scaly leaves that commonly 
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dot dry foothills and lower mountain slopes. The distribution of common juniper (J. 

communis), a low-growing shrub, is limited to upper elevations.  

Juniper berries are edible, and were used as a flavoring by inhabitants of the Great 

Basin (Mahar 1953:47). Berries could be roasted for consumption, and Juniperus wood 

was an important fuel source (Mahar 1954:47; Moerman 1998:286-287; Murphey 

1959:43). The plant served as an important medicinal resource for the Northern Paiute, 

Modoc, and Shoshone tribes during the historic era. The Modoc inhaled smoke from 

burned leaf infusions to combat colds, coughs, and pulmonary congestion, and took 

infusions of leaves and berries for urinary tract infections (Ray 1963:219).The Paiute also 

used the bark to fashion clothing and sandals. Bows and other tools were carved from 

Juniperus wood. Colville (1897:88) indicated that juniper wood was fashioned into bows 

only for younger Klamath boys—yew wood was preferred over juniper for making men’s 

hunting bows. Elsewhere in the Great Basin, green juniper needles, bark and berries were 

used to create brown-tan dyes (Murphey 1959:53). 

 

6.13. Cyperaceae – The Sedge Family 

 

6.13.1. Carex sp. (sedge) 

At Paisley Caves, Carex seeds were found in the Cave 5 Strata samples and in the 

woodrat nest. No Carex seeds were present in the LSP-1 Rockshelter samples. Sedges are 

grass-like plants common to both sagebrush shrub lands and ponderosa pine 
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communities. Its small flowers bloom in the summer. Numerous Carex species can be 

found in association with wetlands in central and eastern Oregon.  

Several species of sedges were used for food by tribes of the Pacific Northwest. 

The Klamath ate sedge stems and produced a juice from the stems’ pith. The bulbous 

roots also provided a food source (Colville 1897:92). 

 

6.13.2. Eleocharis sp. (spikerush) 

 Uncharred Eleocharis seeds were recovered only in non-feature column samples 

at the Paisley Caves. Spikerushes are grass-like, perennials found in fresh and saline 

marshes below 2100 m AMSL. Species of this taxon are obligate wetland plants. E. 

palustris grows throughout the Klamath Basin and flowers June through September.  

 Paiute informants informed early 20
th

 century ethnographers that the sap and 

bulbs of spikerush were consumed (Park and Fowler 1989:49; Steward 1933:245). No 

ethnobotanic uses of the plant are reported for the Klamath and Modoc tribes. 

 

6.13.3. Scirpus/Schoenoplectus sp. (bulrush; tule) 

Uncharred Scirpus/Schoenoplectus seeds were present in Early Holocene column 

samples at Paisley Caves, while both charred and uncharred specimens were recovered 

from features at LSP-1 Rockshelter. Schoenoplectus is a rhizomatous perennial with 

round stems and is the common tule of marshes, lake borders, and wet ditches in 

southcentral Oregon. Its impressive height (up to 10 feet) provides nesting habitat for 

local waterfowl. Ethnographically, bulrush plants provided fibers for basketry. Mahar 
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(1953:52) reported the Paiutes of the Warm Springs reservation used bulrush stems to 

construct mats. Similarly, the Klamath and Modoc Indians harvested mä’i (bulrush) and 

wove thin strips of the stem into baskets, hats and mats (Colville 1897:92; Ray 

1963:218). Tule also provided foundational construction material for houses and baby 

cradles (Barrett 1910:258).  

 

6.14. Fabaceae – The Legume Family 

 

 Charred seeds with characteristic pea family attributes were observed in the 

Paisley Caves’ Unit 5/5 upper stratum samples. Uncharred seeds were recovered from the 

Unit 5/5, Stratum III sample and from the Unit 2/6B column samples. Legumes native to 

the project area include hundreds of species of herbs and wildflowers.  

 

6.14.1. Trifolium sp. (clover) 

 Uncharred Trifolium seeds were recovered in the woodrat nest at the Paisley 

Caves. In the Great Basin, clovers typically grow in open, grassy locations or sandy talus 

slopes. Flowers appear from May to July.  

 In the traditional economy of Paiute tribes, clover seeds and greens were 

identified as food (Steward 1933:243-244). 
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6.14.2. Vicia sp. (vetch) 

 A single charred Vicia seed was observed in Feature 5/5-3 at the Paisley Caves. 

Vetches are forbs growing in a wide variety of habitats across North America. Their 

deeply entrenched taproots facilitate drought-tolerance. Vetches flower from May to 

August with seed ripening approximately one month after flowering begins.  

No uses of vetch are reported for Northern Great Basin tribes. 

 

6.153. Geraniaceae – The Geranium Family 

  

Six charred seeds resembling Geraniaceae family members were recovered in 

Feature 5/5-3at the Paisley Caves. Members of the Geraniaceae family native to the 

northern Great Basin are limited to Geranium sp., but no specific identification could be 

determined. Oregon geranium (G. oreganum) and sticky purple geranium (G. 

viscossimum) are both native to the Klamath Basin, although the habitat attributes of 

sticky purple geranium (ponderosa pine woodlands and dry slopes) are more commonly 

found in the project area (ONPS 2007:129-130). Geraniums are perennial wildflowers 

that bloom in the summer from June to July. 

The ethnographic literature for Great Basin groups does not specifically mention 

geraniums, but they were used medicinally by indigenous tribes throughout the American 

West (Moerman 2009:214-216).  
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6.16. Grossulariaceae – The Gooseberry Family 

 

6.16.1. Ribes sp. (gooseberry; wax currant) 

 Uncharred Ribes seeds were identified at the Paisley Caves in a non-feature 

column sample and at LSP-1 Rockshelter in feature samples. Although several species of 

currant and gooseberry are classified as Ribes, in the Great Basin wax currant (R. cereum) 

is the most widely distributed taxon. These bushes and shrubs often grow at high 

elevations in the mountains above the basin floors. Flowers are visible April through June 

and the berries ripen in the summer.  

 Among the Paiute, fresh and dried currants were consumed (Kelly 1932:100; 

Mahar 1953:78; Park and Fowler 1989:50; Steward 1933:245). The inner bark also had 

medicinal value (Train et al. 1941:129). Klamath people commonly collected Ribes 

berries, a principal fruit food, in upper elevations and ate them fresh or dried them for 

future consumption (Spier 1930:165).   

 

 

6.17. Hydrophyllaceae – The Waterleaf Family 

 

6.175.1. Phacelia sp. (phacelia) 

 Charred Phacelia seeds were recovered in both feature and non-feature contexts 

at LSP-1 Rockshelter. Phacelia is an annual herb with purplish-blue flowers that bloom 
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in the late summer into the fall. It is common on sandy and rocky slopes and dry 

lakebeds.  

No uses of this plant are reported in the ethnographic literature of northern Great 

Basin peoples.  

 

6.18. Juncaceae – The Rush Family 

 

6.18.1. Juncus sp. (rush) 

Several Juncus seeds were identified in samples analyzed at the Paisley Caves. 

Rushes are water-adapted graminoid species. They can often be found growing in 

marshes and seeps.  

The seeds and stems of Juncus provided another traditional food source for Paiute 

people. No specific account of how seeds were prepared is available in the ethnographic 

literature, but stems were made into a fermented beverage and sugars, which form along 

the top of the plants, were collected and eaten as candy (Park and Fowler 1989:53; 

Steward 1933:246). Mahar (1953:53) notes that during modern times rushes were 

commonly used as food for livestock. Twisted rush fibers were also used to create textiles 

(Fowler and Liljeblad 1986:444). 
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6.19. Lamiaceae – The Mint Family 

 

 In this analysis, a single, charred Lamiaceae seed resembling mint (Mentha) was 

observed in the Feature 11-05/15 hearth at LSP-1 Rockshelter. Plants in the mint family 

native to the Great Basin include field mint (M. arvensis), horsemint (Agastache sp.), 

pennyroyal (Monardella sp.), selfheal (Prunella sp.), sage (Salvia sp.), and skullcap 

(Scutellaria sp.). Mint family members generally grow in meadows, stream sides, ditches, 

and pond margins.  

Spier (1930:166) listed mint as an herb utilized by the Klamath. The leaves were 

steeped to make tea (Colville 1897:104). Paiute informants report the use of mint to treat 

headaches, colds, fevers, and indigestion (Mahar 1953:107; Steward 1933:317; Train et 

al. 1941:104-105). Couture et al. (1986) also listed field mint among the plants utilized 

by contemporary Burns-Paiute tribal members.  

 

6.20. Liliaceae (s.l.)
2
 – The Lily-Amaryllis Family 

 

Charred Liliaceae seeds were identified at the Paisley Caves in a Younger Dryas-

aged hearth feature in Cave 2 and in the Stratum III sample in Cave 5. The seeds 

resemble wild onion (Allium sp.) or possibly sego lily (Calochortus nutallii). Several 

species of wild onion, including two-edged onion (A. anceps), taper-tip or Hooker’s 

                                                 

2
 Although Allium technically now belongs to the Amaryllidaceae family, it is discussed 

here as a sensu lato lily family member because the seeds encountered in this 

investigation were not distinguishable to genus. 
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onion (A. acuminatum), Sierra onion (A. campulatum), Lemmon’s onion (A. lemmonii), 

dwarf onion (A. parvum), flat-stem onion (A. platycaule), and punctate onion (A. 

punctum), grow in the study area. The fragrant perennial herb thrives in sandy or gravelly 

flats and slopes in the sagebrush steppe at a variety of elevations. Its showy pink to 

purple flowers bloom in umbels from spring through late summer depending on the 

species. Onions reproduce through diving rhizomes. Although the seeds in this genus are 

not distinguishable, plants may be identified to species based on reticulation of the bulb 

surface.  

 Sego lilies are commonly found on sandy slopes below 2100 m AMSL in the 

northern Great Basin. Their distinctive white flowers blossom in May and June.  

Wild onions are a common food source among Northern Paiute groups. They 

roasted its bulbs, parched its seeds, and made a relish of its leaves and stems (Kelly 

1932:102; Park and Fowler 1989:44). The bulbs were also eaten fresh. Sego lilies were 

also reportedly an important resource in the subsistence of Northern Paiute people during 

the post-EuroAmerican contact era (Stewart 1941:375).  

 

6.21. Loasaceae – The Loasa Family 

 

6.21.1. Mentzelia albicaulis (white-stemmed blazing star) 

 Several charred and uncharred Mentzelia seeds were identified in samples from 

the Paisley Caves and LSP-1 Rockshelter. M. albicaulis is a lobed-leaved, annual with 

erect to decumbent stems that attains heights of 5-42 cm. Blazingstar is a low elevation 
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forb/herb (<2300 m AMSL) common to sand dunes, gravel fans, washes, scrub, and 

pinyon/juniper woodlands. It flowers March-July with yellow petals, which are orange at 

the base.  

Among the Klamath, Mentzelia seeds are gathered with a seed beater in the 

summer, ground into a meal and either consumed dry or mixed with boiling water (Spier 

1930:163). Seeds were widely reported to have been harvested by Northern Paiutes 

residing in and around the Warner Mountains (Stewart 1941:375) and by Modoc peoples 

(Ray 1963:199, 218). 

 

6.22. Malvaceae – The Mallow Family 

 

6.22.1. Sphaeralcea sp. (globemallow/desert mallow) 

 Charred Sphaeralcea seeds were present in the Cave 5 hearths at the Paisley 

Caves. Mallows are warm season herbs common to both sandy slopes and flats, and 

meadows, bogs and seeps in the sagebrush steppe at elevations between 800 and 2300 m 

AMSL. The purple flowers begin blooming in late spring and continue through the 

summer.  

 No uses of globemallow or desert mallow are cited in the ethnobotanic literature 

of the northern Great Basin. 
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6.23. Montiacae – The Montia Family 

 

 Montiaceae seeds (likely miner’s lettuce) were identified only in the woodrat 

midden at the Paisley Caves in the form of uncharred seeds, but several charred seeds 

were recovered from features at LSP-1 Rockshelter. Miner’s lettuce (Claytonia sp.) is a 

native annual commonly found in wet meadows with numerous flowers that bloom from 

June to August and tiny fruit capsules that ripen in the summer and fall.  

Leaves of miner’s lettuce were eaten raw by Paiute groups in Nevada (Park and 

Fowler 1989:49). 

 

6.24. Onagraceae – The Evening Primrose Family 

 

6.24.1. Chamerion sp. (fireweed) 

 Spent, uncharred Chamerion capsules were identified in Cave 5 Stratum samples 

as well as in the rat midden at the Paisley Caves. Fireweed grows nearly everywhere in 

the Great Basin, but is most commonly encountered in disturbed soils; its ecological 

distribution is generally species-dependent. Its vibrant, pink flowers, which grow on 

stalks, are visible July through September. 

 Although Chamerion is acknowledged as an economically important taxon along 

the west coast of Northern America (Moerman 1998:212-13, discussed under the 

synonym Epilobium), Northern Paiute, Klamath, and Modoc informants do not 

specifically name the plant in ethnographic interviews.  
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6.24.2. Oenothera sp. (evening primrose) 

 At the Paisley Caves, a single uncharred Oenothera seed was present in Feature 

1/7-4b, and four uncharred seeds were recovered in the Cave 5 woodrat nest. The genus 

consists of several species of wildflowers with showy, white blooms common to sandy or 

gravelly flats and dunes. Flowers blossom in spring or summer dependent on the species.  

 Seeds of evening primrose were consumed by the Owen’s Valley Paiute in the 

southern Great Basin (Steward 1933:243). The plant’s fragrant roots were rubbed onto 

hunter’s moccasins both to repel snakes and to attract deer (Murphey 1990:50).  

 

6.25. Pinaceae – The Pine Family 

 

6.25.1. Pinus ponderosa (ponderosa pine) 

Pine seeds were recovered in numerous contexts at the Paisley Caves, especially 

in Late Pleistocene contexts. P. ponderosa, a yellow pine, is an evergreen softwood tree 

that is widespread in the higher elevations of southcentral Oregon. Ponderosa pine is 

identifiable by its bark, which resembles puzzle pieces, and its needles, which grow in 

bundles of three.  

Ethnographic reports indicate that every part of pine trees was traditionally used. 

The Klamath relied on ponderosa pine for their staple construction and timber materials. 

Dugout canoes were fashioned from single logs that were hollowed out by fire (Colville 

1897:89). Aside from construction material, ponderosa pine seeds, bark and pitch 

provided a multitude of uses for Oregon tribes. The inner bark (cambium) was commonly 
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peeled and eaten fresh or dried and stored for later consumption. Seeds were also 

occasionally eaten. The Klamath consumed pine gum in the spring (Spier 1930:165). The 

Paiute also chewed dried pitch as a type of gum and applied a poultice of dried pitch over 

boils and other wounds to promote healing. Fresh pitch was used as glue in the 

manufacture of arrows and other tools, and it could also be used as a preservation agent. 

Fresh pitch was smeared on woven baskets to prevent leaks and applied over rock art to 

preserve the painting (Colville 1897:89; Mahar 1953:40; Ray 1963:219). 

 

6.26. Plantaginaceae – The Plantain Family 

 

6.26.1. Plantago sp. (plantain) 

 Charred Plantago seeds were recovered from Cave 5 hearths at the Paisley Caves. 

No native Plantago species are listed for Oregon’s Great Basin province, but native taxa 

are reported for western Oregon, northern California and Nevada.  

Although the seeds in the current study were not identified to species, roots and 

leaves of the non-native plant common plantain (P. major) were used to treat colds and 

pneumonia among the modern Paiute tribes of central Oregon (Train et al. 1941:119-

120). 

 

  



183 

 

6.27. Poaceae – The Grass Family 

Poaceae members are cereals that produce small, edible grains. Most major plant 

foods domesticated globally belong to the grass family (i.e., wheat, rye, barley, and corn). 

Several species of grasses in the northern Great Basin are recognized for their economic 

value. The seeds of some local grass species are reported as common Modoc foods, 

including wild rye (Elymus triticoides) and spike bentgrass (Agrostis sp.). Large 

quantities of grass seeds were also eaten by Klamath and Paiute people (Colville 

1897:91; Gatschet 1891; Mahar 1953:41; Spier 1930:166). Colville (1897) reported 

numerous Klamath words indicating the recognition of at least five edible grasses. 

Traditionally, the Paiute routinely harvested Great Basin wildrye (Leymus cinereus) and 

Indian ricegrass (Achnatherum hymenoides) for consumption (Fowler and Liljeblad 

1986:441). 

 

6.27.1. Achnatherum hymenoides (Indian ricegrass)  

Several feature and non-feature samples at both archaeological sites contained 

Indian ricegrass seeds. Although it thrives on well-drained, dry, sandy soils, Indian 

ricegrass is well adapted to several ecozones ranging from 50 to 1800 m AMSL. The 

spreading panicle inflorescences grow on diverging branches. Each plant produces 

several seeds available to harvest in the mid-summer months.  

Historically, ricegrasses provided a staple food for Paiute tribes. The seeds were 

dried, roasted, and ground into flour to be made into a mush, or stored for winter use 

(Park and Fowler 1989:46; Steward 1933:243). 
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6.27.2. Agrostis sp. (bentgrass) 

 Bentgrass seeds were the predominant grass-type taxon identified in the LSP-1 

seed assemblage. They were not identified in the Paisley Caves samples. Bentgrass is a 

perennial grass associated with pinyon-juniper and ponderosa pine woodlands in the 

Great Basin. It especially flourishes in disturbed habitats. Seeds ripen in the summer and 

fall. Introduced species are more common now, but native grasses are present in 

southcentral Oregon. 

 Spier (1930:163) and Colville (1897:91) listed Agrostis as a staple seed plant 

gathered by Klamath tribal members. 

 

6.27.3. Hesperostipa sp. (needle-and-thread grass; needlegrass) 

 Needle-and-thread grass is represented by uncharred awns in non-feature samples 

at the Paisley Caves. Perennial needlegrass is common to shrub steppe environments, and 

grows at altitudes ranging from 50 to 1700 m AMSL. 

No specific uses of needle-and-thread grass are documented in the ethnographies 

of the Klamath, Modoc, or Northern Paiute.  

 

6.27.4. Leymus cinereus (Great Basin wildrye) 

Great Basin wildrye seeds were recovered in the woodrat midden at Paisley 

Caves. At LSP-1 Rockshelter, Leymus caryopses and florets were present in both feature 

and non-feature samples. Great Basin wildrye is a large, cool-season perennial 

bunchgrass common to juniper woodlands and the sagebrush steppe at elevations up to 
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2300 m AMSL in southcentral Oregon. Flowers and fruits are available for harvest during 

the summer months. 

Several sources cite northern Great Basin groups that rely on Great Basin wildrye 

grains for food. Rye grasses traditionally provided important seed foods to the Modoc 

(Ray 1963:199) and Klamath (Colville 1897:91). Seeds were parched or could be 

pulverized and mixed with water to form a mush (Spier 1930:162). Paiute groups in the 

northern Great Basin used the plant medicinally as well as a food source. Infusions of 

grass acted as a wash for sore eyes, and the blades of grass themselves were used to 

scrape sties and pimples (Mahar 1953:51; Train et al. 1941:67).  

 

6.28. Polygonacaeae – The Knotweed Family 

  

6.28.1. Eriogonum sp. (buckwheat) 

 Charred and uncharred Eriogonum seeds were noted in column samples at the 

Paisley Caves. At least 13 buckwheat species are known in the Great Basin. They are 

typically found in juniper woodlands, the sagebrush steppe, or on sandy or rocky talus 

slopes at elevations to 3000 m AMSL. The perennial plants have flowers ranging in color 

from purple to yellow. Flowering season is species dependent, but generally ranges from 

May to October.  

In the traditional economies of Paiute groups, stems, leaves, and roots were made 

into a decoction to treat various ailments, including tuberculosis and urinary tract 
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ailments (Train et al. 1941:72). Ray (1963:199) identified buckwheat as one of the more 

important seed plants among the Modoc. 

 

6.28.2. Rumex sp. (dock) 

 Appearing only in the woodrat midden at the Paisley Caves, Rumex is represented 

by two uncharred seeds. Rumex plants are generally found in disturbed contexts at 

elevations below 1200 m AMSL. They are often located in locations with high moisture 

content, like seeps and wet meadows. 

 In the economy of the Klamath, Rumex seeds were not a dietary staple, but 

infrequently consumed (Spier 1930:163). When harvested, the fresh leaves and stems 

were also eaten. The Modoc considered dock to be one of the more important seed plants 

(Ray 1963:199). The Paiute made decoctions of roots and externally-applied root 

poultices to treatcolds, coughs, gastrointestinal imbalances, and rheumatism among other 

illnesses (Mahar 1953:67; Murphey 1959:44; Steward 1933:317; Train et al. 1941:131-

132). 

 

6.29. Rhamnaceae – The Buckthorn Family 

 

6.29.1. Ceanothus sp. (ceanothus) 

 Uncharred Ceanothus seeds were present in column and hearth samples at Paisley 

Caves. Buckthorns are bushes or shrubs found on dry, open slopes at elevations between 
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1525 and 3350 m AMSL in the northern Great Basin. The shrub has whitish flowers that 

bloom in the summer in June and July. 

 Among the Modoc, buckbrush infusions provided relief for colds and coughs. 

Buckbrush seeds were ingested to induce vomiting. Its leaves were macerated and 

applied to open wounds and sores, as well as sore joints and muscles (Ray 1963:219). 

The Paiute fashioned digging sticks from the branches (Steward 1933:244) and mixed 

dried, mashed leaves with tobacco for smoking (Mahar 1953:89). 

 

6.30. Rosaceae – The Rose Family 

 

6.30.1. Prunus sp. (Klamath plum, chokecherry, etc.) 

 A single charred Prunus seed was present at the LSP-1 Rockshelter site. Native 

Prunus species in the vicinity of the project area include Klamath plum (P. subcordata), 

chokecherry (P. virginiana), and bitter cherry (P. emarginata). Plants are shrubs or small 

trees that grow in open, disturbed areas 1500-2500 m AMSL. Fruits are drupes that are 

available to harvest in the summer.  

 Both Klamath plum and chokecherry were reported as principal fruit foods of the 

Klamath (Colville 1897:99; Spier 1930:165) and Modoc (Ray 1963:200). Chokecherries 

were gathered en masse during September and dried. Paiute tribal members also ate 

chokecherry berries – fresh, dried, baked into cakes, or brewed as a tea (Park and Fowler 

1989:49; Kelly 1932:99; Mahar 1953:84). 
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6.30.2. Rosa sp. (wild rose) 

Charred Rosa seeds were recovered in Paisley Cave 5 hearth samples and 

uncharred Rosaceae cf. Rosa seeds were present in a Paisley Cave 1 hearth sample. Great 

Basin Rosa taxa, including R. woodsii, are common to riparian uplands but can also be 

found in open areas of the sagebrush steppe at elevations up to 2750 m AMSL. Wild 

roses are shrubs with dark green compound leaves, branches with thorns and 5-petaled 

pale pink to dark rose-colored flowers that bloom in the summer. The plant’s anterior 

ovary produces an engorged “fruit” known as rosehips. These fruits ripen in the fall. 

Rosehips were dried and pounded by the Modoc and Klamath, who gathered them 

as they ripened in September (Colville 1897:99; Ray 1963:214, 217; Spier 1930:165). 

Wood provided construction material for arrow shafts and pipe stems (Colville 1897:99).  

 

6.31. Rubiaceae – The Coffee Family 

 

6.31.1. Galium sp. (bedstraw) 

 Charred Galium seeds were present in features, but only in late Holocene contexts 

at LSP-1 Rockshelter. In the Great Basin, bedstraw species grow along the edges of lakes 

and meadows in subalpine riparian habitats with adequate shade. Bedstraw is an annual 

forb with characteristic hooked hairs covering its seeds that promote clinging and 

climbing. Leaves are arranged in whorls and it displays white-greenish flowers in June 

and July.  
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 Bedstraw is not listed among the economic plants in the ethnographic texts of 

indigenous Great Basin groups. 

 

6.32. Salicaceae – The Willow Family 

 

6.32.1. Salix sp. (willow)  

Salix charcoal was present in the Botanical Lens and Mud Lens represented by the 

Paisley Cave 2, Unit 2/6B column samples. Willows in the Great Basin predominantly 

grow as shrubs, and are found along streams, in wetlands, and in wet meadows. They 

have tall, slender branches and can reach heights of more than 4 m. Although they 

typically flower around May to June, the wood of the shrub is best harvested in the fall, 

when it can be easily worked into baskets (Kelly 1932:120).  

 Willows were used extensively in the economies of Great Basin groups, not only 

as a textile for baskets (Colville 1987:94; Fowler 1990:75; Kelly 1932:120-121; Mahar 

1953:61 , but also as building materials, hunting and fishing implements, household 

goods, and for medicinal purposes (Kelly 1932). Various uses of willow by the Northern 

Paiute include sagehen traps, baskets, wood for smoking meats, fish harpoons, fish weir 

latticing, trays for winnowing and parching seeds, bowls and other containers, and winter 

house construction, among others (Kelly 1932; Mahar 1953). Medicinally, decoctions of 

dried roots treated venereal disease (Park and Fowler 1989:128) and an infusion of 

burned stems provided a diuretic (Train et al. 1941:133-136). The limbs of willows were 

fashioned into poles and used in various construction pursuits by the Modoc (Ray 1963), 
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but Colville (1897:94) does not report any uses for willow among the Klamath, save for 

using the wood to make snowshoe frames. 

 

6.33. Solanaceae – The Nightshade Family 

 

6.33.1. Nicotiana attenuata (Indian tobacco) 

 Uncharred Nicotiana seeds were identified in a feature at LSP-1 Rockshelter. 

Indian tobacco propagates most readily in disturbed areas under dry and hot conditions. It 

is recognizable by its white, trumpet-shaped flowers with lanceolate to elliptic leaves. 

Each plant produces numerous seeds in the summer. 

Nicotiana seeds and leaves were valued by the Surprise Valley Paiute (Kelly 

1932:181) and were found growing throughout the region. Aside from smoking tobacco, 

leaves and seeds were known to have medicinal properties. Decoctions and infusions of 

the plant provided pain relief, while poultices applied to the skin reduced swelling and 

calmed inflammations (Train et al. 1941:106-107). Tobacco was also smoked by the 

Modoc (Ray 1963:218)  

 

6.34. Typhaceae – The Cattail Family 

 

 6.34.1. Typha latifolia (cattail) 

 At the Paisley Caves, a single uncharred Typha seed was identified in a feature 

sample, while at LSP-1 Rockshelter, charred seeds were found in features as well as basal 
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deposits at the site. Cattails are emergent wetland species, and can thrive in both fresh 

water and salt marshes, typically at elevations less than 2000 m AMSL. The plants are 

perennial herbs with long stalks and fluffy, oblong flowering heads. Numerous, tiny 

flowers produce abundant pollen in the summer.  

 Typha roots were commonly gathered by the Klamath and constituted an 

important dietary element and were eaten late in the season (Spier 1930:163-164). Leaves 

and flowers were woven into mats and provided pillow stuffing (Colville 1897:90). The 

plant was also important in the traditional economy of the Northern Paiute, who ate the 

roots, seeds and pollen, and used the fiber in creating mats, clothing, duck decoys, 

basketry, and house construction (Fowler 1990:69, 1992; Park and Fowler 1989:48-49). 

 

6.35. Urticaceae – The Nettle Family 

 

6.35.1. Urtica dioica (stinging nettle) 

Several Urtica (stinging nettle) seeds were recovered in samples at the Paisley 

Caves, though most were uncharred specimens located in the woodrat midden. A few 

uncharred Urtica seeds were also present in non-feature samples at LSP-1 Rockshelter. 

Stinging nettle is a perennial, rhizomatous forb that grows in riparian areas, marshes, and 

meadows at or below 3000 m AMSL. Each plant is characterized by stout stems and 

abundant seed production, especially when grown in full sunlight.  

Colville’s (1897:95) Klamath informants reported the use of stinging nettle stems 

in the manufacture of cords, nets, and snowshoes. Nettles were also woven into hats, 
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mats, ropes, and burden baskets by the Klamath (Spier 1930:174-175, 182).Paiute 

ethnographies suggest stinging nettles were used medicinally rather than as a fiber. 

Decoctions of roots and leaves provided relief from itching and pain and the plant was 

inhaled in sweatbaths to treat pneumonia (Park and Fowler 1989:126; Train et al. 

1941:146). Although the ethnographic literature of the region does not indicate Great 

Basin indigenous people ate the stems or leaves of stinging nettles, they were consumed 

by groups living on the Northwest Coast (Turner and Bell 1971:90). 
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CHAPTER VII 

PAISLEY CAVES MACROBOTANICAL ANALYSES  

 

At the Paisley Caves, ten classes of botanic remains were noted in the 35 bulk 

samples analyzed: seeds/fruits, charcoal, herbaceous stems, processed edible tissues 

(fruity and starchy), nutshells, wood, leaves, spines, and buds. At least 46 different taxa 

representing 24 plant families were identified. In some cases only the seed endosperm 

(perisperm) survived, necessitating broad identification categories. As anticipated, 

environmental conditions in the caves preserved uncarbonized ancient plants and fibers 

as well as charred specimens. The carbonized and uncarbonized plant parts represent both 

edible and non-edible tissues (Table 7.1).  

Heavy fraction materials include obsidian waste flakes, fish, mammal, and snake 

bones, enamel/tooth fragments, fish scales, eggshell, and snail shell. Additionally, rabbit 

and pronghorn hair, bird feathers, fur, insects, fine threads, and cordage fibers were 

present. These items are not considered in the following analysis, but may be germane to 

future research. 

Rodent droppings and bat guano comprised a significant portion of the soil 

matrices in caves 5 and 2, respectively. Leporidae, artiodactyl, and raptor pellets were 

also encountered, but with less frequency. Samples associated with features contained 

markedly less evidence of bioturbation in the form of insect chitin and fecal matter. A full 

accounting of the constiuents recovered in the Paisley Caves bulk soil samples is 

presented in Appendix D. 
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Table 7.1. Taxa identified at the Paisley Caves, Site 

35LK3400, Lake County, Oregon. 

Edible tissues   

Fruits   

Ceanothus sp. buckbrush; snowbrush 

Prunus sp. native/wild cherries 

Ribes sp.
1
 currant; gooseberry 

Rosa sp. rosehips 

Sambucus sp.
3
 elderberry 

PET fruity X 

PET starchy X 

Nuts/Berries   

Juniperus sp.
1
 juniper 

Pinus ponderosa
1
 ponderosa pine 

Seeds of Root Edibles   

Apiaceae
1,3

 carrot family 

Camassia sp. camas 

Liliaceae-Amaryllidaceae lily family s.l. 

Typha latifolia
1
 cattail 

Seeds   

Achnatherum hymenoides Indian ricegrass 

Amsinckia sp. fiddleneck 

Cheno-ams goosefoot/amaranth families 

  Amaranthus sp. amaranth 

  Atriplex confertifolia scadshale saltbush 

  Atriplex palustris
1
 saltbush 

  Atriplex rosea
1
 tumbling saltbush 

  Chenopodium sp. goosefoot 

  Suaeda sp. wada 

Descurainia sp. tansymustard 

Eleocharis sp.
1
 spikerush 

Juncus sp. rush 

Leymus cinereus Great Basin wildrye 

Mentzelia albicaulis white-stemmed blazing star 

Oenothera sp.
1
 evening primrose 

Scirpus/Schoenoplectus sp.
1
 bulrush 
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Table 7.1. Taxa identified at the Paisley Caves, Site 35LK3400, Lake County, Oregon. 

Non-edible tissues   

   
Seeds   

 
Other tissues   

Asteraceae
1
 sunflower family 

 
Herbaceous stems X 

  Tetradymia sp.
1,3

 horsebrush 

 
Leaves X 

Brassicaceae
1
 mustard family 

 
Spines X 

Boraginaceae borage family 

 
Unidentified buds X 

  Cryptantha sp. catseye 

 
Wood X 

  Hackelia sp.
1
 stickseed 

 
Charcoal   

  Plagiobothrys sp.
1
 popcorn flower 

 
Artemisia sp. sagebrush 

Cyperaceae
3
 sedge family 

 
Atriplex sp. saltbush 

  Carex sp.
1
 sedge 

   
Chamerion sp.

1
 fireweed 

   Fabaceae
1,3

 pea family 

   
  Trifolium sp.

1,2
 clover 

     Vicia sp. vetch 

   
cf. Geraniaceae geranium family 

   Malvaceae
1
 mallow family 

   
  Sphaeralcea globemallow 

   Montiaceae
1
 miner's lettuce family 

   
Monolepis sp.

3
 poverty weed 

   Phacelia sp. tansy 

   
Plantago sp. plantain 

   Poaceae grass family 

   
  Hesperostipa sp. needle and thread grass 

  Polygonaceae
1
 knotweed family 

   
  Eriogonum sp.

1
 buckwheat 

     Rumex sp.
1,2

 dock 

   
Rosaceae rose family 

   Sesuvium sp. sea purslane 

   
Solanceae

1,3
 nightshade family 

   Urtica dioica stinging nettle 

    

1
 Only uncharred specimens observed 

2
 Only occurring in the Neotoma nest 

3 
Only occurring in the Cave 5 strata samples above the Mazama tephra 
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7.1. Unit 2/6B Stratigraphic Column Samples 

  

In Cave 2, bulk samples collected in a continuous column from the base of 

Mazama tephra to the top of LU1 provide well-controlled stratigraphic data spanning 

13,700 to 7640 cal BP. Seed, charcoal, and charred tissue distribution in these samples 

varied with depth. Increases in the density of macrobotanical remains were evident in 

samples CS-6 through CS-10 in LU3, samples CS-18b and CS-19a in the Botanical Lens, 

and sample CS-20 in LU2.  

 

7.1.1. Charcoal and Charred Tissues in Cave 2 Column Samples 

Charcoal taxa identified in the column samples were limited to Artemisia, 

Atriplex, and Salix types (Table 7.2). In some cases, I was unable to identify smaller 

pieces of charcoal and pith fragments to a specific taxon. Charcoal was absent in several 

samples, but spikes in charcoal densities are noted in LU3 in sample CS-7, and in those 

samples (CS-18b, CS-19a, CS-19b, CS-20, and CS-21) representing the Younger Dryas 

period (Figure 7.1). Atriplex charcoal was identified only in the LU3 samples, and did not 

occur in the Terminal Pleistocene samples. Salix charcoal was only identified in 

Younger-Dryas-aged samples.  

Charred tissues in the column samples are represented by starchy (parenchymous) 

fragments and vitrified fragments. Parenchymous tissues contain starchy storage cells, 

likely from edible geophytes. Without chemical analysis, charred vegetative tissues 

cannot be identified to a specific taxonomic type. Charred starchy tissues are present in  
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Table 7.2. Distribution of identified charcoal taxa* and charred plant tissues in the Unit 2/6B column. 

Dates cal 

BP Sample Provenience 

Depth       

(m AMSL) 

Charcoal Taxa (wt.) Charred Plant Tissues (wt.) 

Artemisia 

sp. 

Atriplex 

sp. 

Salix   

sp. Pith Unid. Starchy Vitirified 

7640 CS-02 LU3 1366.45 - - - - - - - 

  CS-03 LU3 1366.40 - - - - - 0.02 g - 

  CS-04 LU3 1366.35 - - - - - - <0.01 g 

8338 CS-05 LU3 1366.30 0.01 g - - - - 0.01 g - 

  CS-06 LU3 1366.25 0.07 g 0.01 g - - <0.01 g 0.01 g - 

  CS-07 LU3 1366.20 0.08 g 0.19 g - <0.01 g <0.01 g 0.01 g - 

9094 CS-08 LU3 1366.15 0.07 g 0.01 g - <0.01 g - <0.01 g - 

9700 CS-09 LU3 1366.10 - - - - - <0.01 g - 

  CS-10 LU3 1366.05 - - - - - - - 

  CS-11 LU3 1366.00 - - - - - - - 

  CS-12 LU3 1365.95 0.01 g - - - - - - 

  CS-13 LU3 1365.90 - - - - - - - 

11,095 CS-14 LU3 1365.85 0.03 g - - - - - - 

  CS-15 LU3 1365.80 0.09 g - - - 0.01 g - - 

  CS-16 LU3 1365.75 0.01 g - - - - - - 

12,569 CS-17 LU3 1365.70 0.06 g - - - - - - 

  CS-18a LU3 1365.68 0.07 g - - - - - - 

  CS-18b Botanical Lens 1365.65 0.31 g - - - - 0.01 g - 

  CS-19a Botanical Lens 1365.62 0.32 g - 0.01 g - - - - 

  CS-19b Mud Lens 1365.60 0.24 g - 0.01 g - - 0.01 g - 

12,896 CS-20 LU2 1365.55 1.35 g -   - 0.01 g - - 

13,689 CS-21 LU2 1365.50 0.13 g - - - - - - 

* Includes identified charcoal in the 20-fragment subsample analyzed 
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LU3 samples CS-03, and CS-05 – CS-09 representing ca. 9700 to 8300 cal BP. 

Starchy fragments were also present in the Botanical Lens, and in the Lower Mud Lens.  

Vitrified tissues are identified by their melted, bubbly, and glassy, appearance. 

They may represent intentional burning of green plant materials to generate smoke for 

cooking and/or tanning (but see McParland et al.2010 for a refutation of this claim). A 

single fragment of vitrified tissue was observed sample CS-04.  

 

Figure 7.1. Distribution of charcoal density (g) in the column samples recovered 

from Unit 2/6B at the Paisley Caves. 
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7.1.2. Seeds in Cave 2 Column Samples 

Uncharred seeds vastly outnumbered charred seeds in the Unit 2/6B column 

samples. The LU3 samples (CS-2 through CS-17) yielded the most abundant number of 

uncharred seeds (n=1929). Identified taxa include Chenopodium, Achnatherum 

hymenoides, Atriplex, Amsinckia, Artemisia, Amaranthus, Poaceae-type, cheno-am 

perisperms, Cryptantha, Asteraceae-type, Descurainia, Ceanothus, Hackelia, 

Brassicaceae-type, Hesperostipa, Mentzelia albicaulis, Pinus ponderosa, cf. Celtis, 

Fabaceae-type, Malvaceae-type, Phacelia, Plagiobothrys, Polygonaceae-type, 

Eleocharis, Eriogonum, Ribes, Rosaceae-type, Sambucus, Scirpus/Schoenoplectus, and 

Urtica dioica (Table 7.3). Less than 3% of the assemblage (n=50) were not identified to 

at least family-level classification. Uncharred Achnatherum and Chenopodium were 

present in more than 80% of all column samples analyzed. 

 Two samples (CS-18 and CS-19a) represent the Botanical Lens, a culturally-

introduced layer of sagebrush matting, pronghorn fur, and other organic materials. Here, 

uncharred seed types were dominated by Achnatherum hymenoides and other Poaceae 

members. Chenopodium, Cryptantha, Atriplex, Asteraceae-type, Pinus ponderosa, 

Juniperus, and Phacelia also were noted. Seven uncharred seeds in the Botanical Lens 

were unidentifiable. 

Represented by sample CS-19B, the Lower Mud Lens is a thin silt layer 

underlying the Botanical Lens. Uncharred seeds were limited to Achnatherum 

hymenoides, other Poaceae, and cheno-am perisperms. Seeds in the LU2 samples (CS-20 

and CS-21) were also dominated by Achnatherum hymenoides. Uncharred Urtica dioica 

seeds, which do not appear in any other Unit 2/6B samples accounted for nearly 20% of  
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Table 7.3. Uncharred seeds in the Paisley Caves column samples, Unit 2/6B. 

Provenience Sample Elev. m AMSL Volume (L) 
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Ubiquity of uncharred seed taxa 55% 32% 27% 14% 18% 5% 5% 45% 36% 64% 86% 45% 5% 27% 5% 5% 5% 14% 9% 18% 5% 59% 91% 18% 5% 9% 9% 5% 9% 5% 5% 9% n/a 

LU3 

CS-2 1366.45 0.50 
5 1 - - - - - - - 4 3 1 - - - - - - - - - 6 7 1 - - - - - - - - - 

CS-3 1366.40 0.50 
2 - - - - - - - - - 1 - - - - - - - - - - 3 12 - - - - - - - - - - 

CS-4 1366.35 0.50 
12 - 1 2 - - 1 1 - 14 2 - - - - - 1 - - - - - - - 1 - - - - - 1 - - 

CS-5 1366.30 0.50 
2 1 2 - - - - - - 9 8 1 - - - - - - - - - 10 13 - - - - - - - - - - 

CS-6 1366.25 0.50 
27 4 29 3 - - - - 2 80 299 6 - 1 - - - - - - 2 25 34 2 - - - - - - - - 4 

CS-7 1366.20 0.50 
28 - 72 - - - - 23 6 36 7 7 - 2 - - - - - - - 11 19 2 - - - - - - - - 9 

CS-8 1366.15 0.50 
22 7 31 - - - - 7 12 15 24 - - 1 - - - - - - - 17 18 1 - - - - - - - - 5 

CS-9 1366.10 0.50 
9 7 5 1 - - - 13 25 7 32 - - - - - - - - - - 6 3 - - - - - - - - - 5 

CS-10 1366.05 0.50 
2 2 - - 3 - - 8 31 1 21 1 - 2 - - - - - - - - 4 - - - - - - - - - 10 

CS-11 1366.00 0.50 
1 - - - - - - 2 16 - 17 - - 2 - - - - - - - - - - - - - - - - - - 3 

CS-12 1365.95 0.75 
18 - - - - - - 1 - - 2 - - - - - - - - - - - 2 - - - - - - - - - 2 

CS-13 1365.90 0.75 
26 - - - 1 - - 2 18 9 27 4 - 1 - - - - - 3 - 1 39 - - - 1 - 1   - - 5 

CS-14 1365.85 0.90 
- - - - - - - - - 15 7 - - - - - - - - - - 1 13 - - 1 - - - 1 - - 2 

CS-15 1365.80 1.00 
- - - - - - - - - 12 2 - - - - - - - - - - - 36 - - 1 - - - - - - 5 

CS-16 1365.75 0.20 
- - - - 1 - - 8 1 - 13 - - - - - - 2 - - - - 16 - - - - - - - - - - 

CS-17 1365.70 1.00 
- - - - 14 9 - - - 32 100 5 2 - - - - 2 1 - - X 193 - - - 1 1 - - - 1 - 

CS-18a 1365.68 0.35 
- - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - 

Total contribution of uncharred seed taxa 8.0% 1.1% 7.3% 0.3% 1.0% 0.5% 0.1% 3.4% 5.8% 12.1% 29.3% 1.3% 0.1% 0.5% 
- - 

0.1% 0.2% 0.1% 0.2% 0.1% 4.1% 21.3% 0.3% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 2.6% 

Botanical Lens 
CS-18b 1365.65 0.55 - - - - - - - - - 1 7 3 - - - - - - - 1 - - 42 - - - - - - - - - - 

CS-19a 1365.62 0.30 - 3 - - - - - - - 4 5 3 - - - 1 - - 1 1 - 13 25 - - - - - - - - - 7 

Total contribution of uncharred seed taxa - 
2.6% 

- - - - - - - 
4.3% 10.3% 5.1% 

- - - 
0.9% 

- - 
0.9% 1.7% 

- 
11.1% 57.3% 

- - - - - - - - - 
6.0% 

Mud Lens CS-19b 1365.60 0.50 
- - - - - - - 1 - - - - - - - - - - - - - 5 11 - - - - - - - - - - 

Total contribution of uncharred seed taxa 
- - - - - - - 5.9% - - - - - - - - - - - - - 29.4% 64.7% - - - - - - - - - - 

LU2 

CS-20 1365.55 0.50 
- - - - - - - - - - 1 - - - 1 - - 2 - - - - 11 - - - - - - - - - - 

CS-21 1365.50 0.40 
- - - - - - - - - - - 1 - - - - - - - 1 - 2 8 - - - - - 1 - - 7 6 

Total contribution of uncharred seed taxa 
- - - - - - - - - - 2.4% 2.4% - - 2.4% - - 4.9% - 2.4% - 4.9% 46.3% - - - - - 2.4% - - 17.1% 14.6% 
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the seeds identified in LU2. Other identified uncharred seeds include Poaceae, Mentzelia 

albicaulis, Chenopodium, Cryptantha, Juncus, Pinus ponderosa, and Rosaceae-type.  

The charred seed assemblage yielded a much narrower range of seed types (Table 

7.4). Generally, charred seeds in LU3 were composed of cheno-ams and Poaceae family 

members, although sample CS-10 also yielded two charred Amsinckia seeds. With the 

exception of one charred Mentzelia seed in the Lower Mud Lens (sample CS-19b), no  

other charred seeds were present in the Unit 2/6B column. Intensification in cultural 

activity is evidenced by increased quantities of charred seeds in samples CS-6 through 

CS-10; otherwise samples in LU3 yielded no charred seeds or fruits. This spike roughly 

mirrors the occurrence of charred starchy tissues recovered from the samples representing 

the same proveniences. No single taxon was represented in more than 18% (Poaceae) of 

the samples analyzed. 

When the seed data are standardized to account for variations in sample volume, 

the density of charred and uncharred seeds is highest in samples CS-6 through CS-9 in 

LU3, which represent cave deposits dating between ca. 9700 and 8400 cal BP (Figure 

7.2). Uncharred seed densities also increase during the Younger Dryas. No groundstone 

or formed lithic tools are reported for the excavated levels in Unit 2/6 associated with 

these column samples. 
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Table 7.4. Charred seeds in the Paisley Caves column samples,* Unit 2/6B. 

Provenience Sample 
Elev. m 

(AMSL) 

Volume 

(L) 
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Ubiquity of charred seed taxa 5% 9% 5% 5% 5% 5% 5% 18% 9% n/a 

LU3 

CS-2 1366.45 0.50 - - - - - - - - - - 

CS-3 1366.40 0.50 - - - - - - - - - - 

CS-4 1366.35 0.50 - - - - - - - - - - 

CS-5 1366.30 0.50 - - - - 1 - - - - - 

CS-6 1366.25 0.50 - 3 1 46 - - - 4 4 1 

CS-7 1366.20 0.50 - 5 - - - - - 1 - - 

CS-8 1366.15 0.50 - - - - - 1 - 11 - - 

CS-9 1366.10 0.50 - - - - - - - 19 - - 

CS-10 1366.05 0.50 2 - - - - - - - - - 

CS-11 1366.00 0.50 - - - - - - - - - - 

CS-12 1365.95 0.75 - - - - - - - - - - 

CS-13 1365.90 0.75 - - - - - - - - - - 

CS-14 1365.85 0.90 - - - - - - - - - - 

CS-15 1365.80 1.00 - - - - - - - - - - 

CS-16 1365.75 0.20 - - - - - - - - - - 

CS-17 1365.70 1.00 - - - - - - - - 3 - 

CS-18a 1365.68 0.35 - - - - - - - - - - 

Total contribution of charred seed taxa 2.0% 7.8% 1.0% 45.1% 1.0% 1.0% - 34.3% 6.9% 1.0% 

Mud Lens CS-19b 1365.60 0.50 - - - - - - 1 - - - 

Total contribution of charred seed taxa - - - - - - 100.0% - - - 

*Botanical Lens and LU2 samples omitted from this table because they contained no charred seeds. 
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7.2. Cave 5 Stratigraphic Grab Samples 

 

Bulk grab samples representing pre- and post-Mazama deposits in Cave 5 provide 

low-resolution data pertaining to early, middle, and late Holocene human-environmental 

interactions at the Paisley Caves. These samples yielded several seeds representing 29 

taxa. 

 

Figure 7.2. Density of charred and uncharred seed abundances in the Unit 2/6B 

column samples at the Paisley Caves. 



204 

 

7.2.1. Charcoal and Charred Tissues in Cave 5 Strata Samples 

Of the 20-fragment subsample selected for identification, only Artemisia was 

represented. No charcoal was present in the Stratum VI sample that denotes pre-Mazama 

deposits (Figure 7.3). Minute fragments of cf. fruity tissues were present in Stratum II, 

Stratum III, Stratum IV, and Stratum VI. 

7.2.2. Seeds in Cave 5 Stata Samples 

The seed assemblage from Cave 5 strata was dominated by uncharred types. 

Overall uncharred seeds comprised 89% of all seeds in the strata samples (Table 7.5). 

Nearly half of the uncharred seeds represent Atriplex taxa (44%; Figure 7.4). Other 

uncharred seed types include Amsinckia sp. (14%), Achnatherum hymenoides (10%) and 

other grasses identified as Poaceae (9%), Mentzelia albicaulis (5%), Cryptantha (4%),

Figure 7.3. Charcoal abundance in Cave 5 strata samples at the 

Paisley Caves. 
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Table 7.5. Uncharred seeds in the Paisley Cave 5 strata samples.  

Family Taxa  Ubiquity 

Stratum 

I II III IV VI 

0.50 L 0.25 L 0.25 L 0.25 L 0.25 L 

Adoxaceae Sambucus 20% 1 - - - - 

Apiaceae-type 20% 2 - - - - 

Asteraceae 

Asteraceae-type 100% 5 2 3 4 6 

Artemisia 40% 21 17 - - - 

Tetradymia 20% 12 - - - - 

Boraginaceae   

Boraginaceae perisperm 20% - 2 - - - 

Amsinckia 100% 37 49 72 108 15 

Cryptantha 100% 44 14 9 5 1 

Plagiobothrys 80% - 3 10 1 1 

Brassicaceae 
Brassicaceae-type 20% - - - 1 - 

Descurainia 100% 30 13 15 14 1 

Cannabaceae cf. Celtis 100% 1 2 10 2 1 

Chenopodiaceae 

Cheno-am perisperm 60% 24 33 2 - - 

Atriplex  80% 3 4 5 8 - 

A. confertifolia 100% 21 42 294 302 183 

A. rosea 80% - 3 20 3 1 

Cupressaceae Juniperus 8% 1 13 2 - 1 

Cyperaceae Carex 40% - 1 - 1 - 

Fabaceae-type 20% - - 1 - - 

Hydrophyllaceae Phacelia 40% 1 2 - - - 

Juncaceae Juncus 40% 4 1 - - - 

Loasaceae Mentzelia albciaulis 80% 46 23 6 21 - 

Onagraceae Chamerion 40% 1 - - - 1 

Pinaceae Pinus 20% 1 - - - - 

Poaceae 

Poaceae-type 100% 44 27 35 32 39 

Achnatherum hymenoides 100% 36 28 34 49 46 

Hesperostipa 60% 3 1 - - 1 

Rosaceae-type 20% - - 1 - - 

Solanaceae-type 40% 4 1 - - - 

Unidentified 60% 9 - - 1 1 
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Figure 7.4. Relative abundance of uncharred seed taxa in the Cave 5 strata samples at the Paisley Caves. 
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Descurainia (4%), cheno-am perisperms (3%), Artemisia (2%), unidentified Asteraceae 

members (1%), cf. Celtis (1%), Juniperus (1%), and Plagiobothrys (1%). Juncus, 

Hesperostipa, Solanaceae-type, Apiaceae-type, Boraginaceae perisperm, Carex, 

Chamerion, and Phacelia each represent less than 1% of the assemblage. A Fabaceae-

type seed, a Pinus seed, a Rosaceae seed, and a Sambucus sp. seed were also noted, but 

these taxa contributed less than 0.1% to the total uncharred seed assemblage. 

Charred seeds in the strata samples were noticeably fragmented. A majority of the 

charred seed assemblage lacked seed coats necessitating more generalized taxonomic 

descriptors. Cheno-am perisperms (14%), Achnatherum hymenoides (12%), and 

Boraginaceae perisperms (12%) were the most commonly-identified types (Table 7.6). 

Other contributing taxa included Descurainia (9%), Mentzelia albicaulis (8%), Juncus 

(7%), Atriplex cf. confertifolia (5%), Phacelia (4%), Poaceae florets (3%), Amsinckia 

(3%), Cryptantha (3%), Monolepis (3%), Hesperostipa (2%), cf. Celtis (1%), Sambucus 

(1%), Rosaceae-type (1%), Asteraceae-type (1%), Cyperaceae-type (1%), Polygonaceae-

type (1%). Amaryllidaceae-Liliaceae-type, Artemisia, Juniperus, Fabaceae-type, and 

Pinus each contributed less than 1% to the charred assemblage. Virtually all of the seeds 

were recovered in strata I and II. Approximately 7% of charred seeds were not 

identifiable to taxon (Figure 7.5). 

The ratio of uncharred to charred seeds appears increasingly uneven with depth, 

so that there are significantly fewer charred seeds in the earlier deposits. No charred 

seeds at all were recovered from the pre-Mazama Stratum VI sample. Conversely, in 

Stratum I, which represents Late Holocene deposits in Cave 5, several thousand charred 

seeds were counted (Figure 7.6). 
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Table 7.6. Charred seeds in the Paisley Cave 5 strata samples.  

Family Taxa Ubiquity 

Stratum 

I II III IV VI 

0.50 L 0.25 L 0.25 L 0.25 L 0.25 L 

Adoxaceae Sambucus 20% 3 - - - - 

Amaranthaceae Monolepis 20% 6 - - - - 

Amaryllidaceae/Liliaceae-type 20% - - 1 - - 

Asteraceae 
Asteraceae-type 20% - 2 - - - 

Artemisia 20% 1 - - - - 

Boraginaceae   

Boraginaceae perisperm 40% 22 7 - - - 

Amsinckia 40% 4 3 - - - 

Cryptantha 20% - 7 - - - 

Brassicaceae Descurainia 60% 16 4 1 - - 

Cannabaceae cf. Celtis 40% 2 1 - - - 

Chenopodiaceae 

Cheno-am perisperm 60% 22 9 4 - - 

Atriplex  60% 1 2 1 - - 

A. confertifolia 60% - 3 2 3 - 

Cupressaceae Juniperus 20% - 1 - - - 

Cyperaceae-type 20% 2 - - - - 

Fabaceae-type 20% 1 - - - - 

Hydrophyllaceae Phacelia 40% 4 6 - - - 

Juncaceae Juncus 20% 16 - - - - 

Loasaceae Mentzelia albicaulis 60% 14 5 1 - - 

Pinaceae Pinus 20% 1 - - - - 

Poaceae 

Poaceae-type 40% 1 7 - - - 

Achnatherum hymenoides 40% 26 4 - - - 

Hesperostipa 40% 2 3 - - - 

Polygonaceae-type 20% 2 - - - - 

Rosaceae-type 20% 3 - - - - 

Unidentified n/a 10 5 2 1 - 
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Figure 7.5. Relative abundance of charred seed taxa in the Cave 5 strata samples at the Paisley Caves. 
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7.3. Feature Samples 

 

 Younger Dryas-aged hearths and charcoal concentrations were analyzed to 

identify plant foods collected and processed by site inhabitants. These samples represent 

features in caves 1, 2, and 5.  

   

7.3.1. Charcoal and Charred Tissues in Features 

 Charcoal is well represented in the Paisley Cave feature samples. The fragments 

of charcoal randomly selected for identification were all Artemisia. The preponderance of 

Artemisia charcoal in these contexts suggests that sagebrush was the preferred fuel source 

for people visiting the Paisley Caves during the Younger Dryas. Feature 1/7-4b displayed 

the highest charcoal density, while the possible hearth features/charcoal stains 

represented by 5/5A-26-8 and Feature 5/5-3 yielded the lowest charcoal abundance 

Figure 7.6. Density of charred and uncharred seeds in the Cave 5 strata samples. 
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(Figure 7.8). The presence of charred plant tissues in features was generally scant, but the 

Cave 5 hearth/oven feature  5/5A-26-8 and Cave 2 Botanical Lens hearth 2/3-32-46 

contained relatively high abundances of charred starchy tissues (0.05 g and 0.03 g, 

respectively) representing the burning of geophytic roots (Table 7.7). 

  

Figure 7.7. Charcoal density abundance in the Paisley Caves feature 

samples. 

Table 7.7. Distribution of charred tissue fragments in the Paisley Caves feature 

samples.  

Charred Tissues 

Feature 

F 1/7-4a F 1/7-4b 2/3A-32-46 2/4C-4 F 2/6-4 F 5/5-3 5/5A-26-8 

Cave 1 Hearths Botanical Lens Hearths Lower Mud 

Lens Hearth 

Cave 5 Hearth/Earth Oven 

 

CH Fruity Tissue <0.01 g - - - - - - 

CH Starchy Tissue - - 0.03 g <0.01 g <0.01 g - 0.05 g 

Vitrified Tissue - <0.01 g - - - - - 
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7.3.2. Seeds in Features 

Analysis of feature samples yielded uncharred (n=183) and charred (n=340) 

seeds. Uncharred seed types in features were highly represented by Achnatherum (59%) 

and other Poaceae (17%) seed types (Table 7.8). The remainder of the uncharred 

assemblage included Atriplex (8%), Cryptantha (3%), unidentified Liliaceae-

Amaryllidaceae (2%), Asteraceae-type (1%), Boraginaceae perisperms (1%), Amsinckia 

(1%), Atriplex confertifolia (1%), Juniperus (1%), Mentzelia albicaulis (1%), Oenothera 

sp. (1%), Pinus (1%), Rosaceae-type (1%), Rosa (1%), and Typha (1%). Unidentified 

seeds accounted for 2% of all uncharred seeds recovered in feature samples. 

Taxonomic diversity among charred seeds exceeded the diversity of uncharred 

seed types identified. The charred assemblage included Achnatherum hymenoides (23%), 

Atriplex (19%), cheno-am perisperms (17%), Boraginaceae perisperms (10%), Poaceae-

type (7%), Amaranthus (3%), Hesperostipa (2%), Geraniaceae-type (2%), Rosaceae-type 

(2%), Descurainia (2%), Phacelia (2%), Cryptantha (1%), Urtica dioica (1%), Camassia 

(1%), Sphaeralcea (1%), and Plantago (1%). Other identified taxa contributing less than 

1% to the uncharred assemblage include Liliaceae-Amaryllidaceae-type, Atriplex 

confertifolia, Chenopodium, Ceanothus, Juncus, Sesuvium, and Vicia. Unidentified seeds 

constituted 5% of the charred assemblage.  

When considered individually, feature macrobotanical assemblages varied 

greatly. The two samples representing hearths in the Botanical Lens (features 2/3A and 

2/4C-4) contained very few charred seeds in comparison to the uncharred seeds. Charred 

seed types were limited to Atriplex, cheno-am perisperms, and Descurainia
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Table 7.8. Abundance of uncharred seed taxa in the Paisley Caves feature samples. 

Family Taxa Ubiquity 

Feature 

F 1/7-4a F 1/7-4b 2/3A-32-46 2/4C-4 F 2/6-4 F 5/5-3 5/5A-26-8 

0.5 L 0.5 L 0.5 L 0.5 L 0.5 L 0.5 L 0.5 L 

Liliaceae-Amaryllidaceae-type 14% - - - 4 - - - 

Asteraceae-type 29% - - - - 1 1 - 

Boraginaceae   

Boraginaceae 

perisperm 
14% - - - - - 1 - 

Amsinckia 14% - - - - - 1 - 

Cryptantha 29% - - - - 4 2 - 

Chenopodiaceae 

s.l. 

Amaranthus 29% - - 1 - - 1 - 

Atriplex   57% - - 4 1 3 6 - 

Atriplex confertifolia 14% - - - - - 1 - 

Chenopodium 14% - - - - 2 - - 

Cupressaceae Juniperus 14% - - - 1 - - - 

Loasaceae Mentzelia 14% - - - - 1 - - 

Onagraceae Oenothera 14% - 1 - - - - - 

Pinaceae Pinus 14% - 1 - - - - - 

Poaceae 
Poaceae-type 57% - - 4 10 9 8 - 

Achnatherum 57% - - 20 40 21 27 - 

Rosaceae Rosaceae 14% - 1 - - - - - 

Typhaceae Typha   14% - - 1 - - - - 

Urticaceae Urtica dioica 14% - - - - - 2 - 

Unidentified n/a - - - 1 2 - - 
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Table 7.9 Abundance of charred seed taxa in the Paisley Caves feature samples. 

Family Taxa Ubiquity 

Feature 

F 1/7-4a F 1/7-4b 2/3A-32-46 2/4C-4 F 2/6-4 F 5/5-3 5/5A-26-8 

0.5 L 0.5 L 0.5 L 0.5 L 0.5 L 0.5 L 0.5 L 

Asparagaceae Camassia 14% - - - - - - 2 

Boraginaceae 
Boraginaceae perisperms 43% - - - - 12 18 5 

Cryptantha 14% - - - - - 4 - 

Brassicaceae Descurainia 43% - - 1 - 1 3 - 

Chenopodiaceae s.l. 

Cheno-am perisperms 71% 1 - 1 - 6 21 30 

Amaranthus 14% - - - - - - 10 

Atriplex 71% - - 5 2 14 36 8 

Atriplex confertifolia 14% - - - - - 1 - 

Chenopodium 14% - - - - 1 - - 

Fabaceae Vicia 14% - - - - - 1 - 

Gereniaceae-type 14% - - - - - 6 - 

Hydrophyllaceae Phacelia 29% - - - - 4 1 - 

Juncaceae Juncus 14% - - - - - - 1 

Liliaceae-Amaryllidaceae Liliaceae-Amyrillidaceae-type 14% - - - - - 1 - 

Malvaceae Sphaeralcea 14% - - - - - 2 - 

Plantaginaceae Plantago 29% - - - - - 1 1 

Poaceae 

Poaceae-type 57% - 1 - - 4 14 4 

Achnatherum hymenoides 43% - - - - 4 43 31 

Hesperostipa 14% - - - - - 8 - 

Portulaceae Sesuvium 14% - - - - 1 - - 

Rhamnaceae Ceanothus 14% - - - - - - 1 

Rosaceae 
Rosaceae-type 29% - - - - - 4 2 

Rosa sp. 14% - - - - - - 2 

Urticaceae Urtica dioica 14% - - - - - 4 - 

Unidentified n/a - 1 - 1 4 11 - 
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(Figure 7.8). In both hearths, Atriplex contributed ~70% to the charred assemblages. 

Achnatherum hymenoides dominated the uncharred seed assemblage in both features. 

Feature 2/6, the Cave 2 Lower Mud Lens hearth dated to 11,387 cal BP, yielded a 

more diverse array of charred (n=51) and uncharred (n=38) seeds (Figure 7.9). However, 

the dominant charred and uncharred seed types are similar to those identified in the 

Botanical Lens hearths. 

Macrobotanical remains in the Cave 1 hearths, features 1/7-4a and 1/7-4b, bear 

little resemblance to the Cave 2 hearths. In Feature 1/7-4a, only a single charred cheno-

am perisperm was present. No uncharred seeds were recovered from this hearth. Feature 

1/7-4b yielded a single charred Poaceae seed and a single unidentified charred seed; 

uncharred seeds included a single Oenothera sp. seed, a single Pinus sp. seed, and a 

single Rosaceae-type seed. 

The majority of seeds recovered in feature samples originated in the Cave 

hearth/earth oven feature represented by Feature 5/5-3 (charcoal lens) and Feature 5/5A-

26-8 (ash lens). In these samples, Achnatherum hymenoides was the dominant charred  

 

Figure 7.8. Relative abundance of charred seed taxa identified in Botanical Lens 

hearth Feature 2/3A (left) and Botanical Lens hearth Feature 2/4C-4 (right) in 

Paisley Cave 2. 
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Figure 7.9 Relative abundance of charred (upper) and uncharred (lower) seed taxa 

identified in the Feature 2/6-4 hearth at Paisley Caves. 
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Figure 7.10. Relative abundance of charred seed taxa represented in the Cave 5 Hearth/Earth oven features. 
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seed type, although Atriplex sp. and other Chenopodiaceae members were also very well 

represented (Figure 7.10; previous page). Feature 5/5-26-8A contained no uncharred 

seeds. In contrast,  

Feature 5/5-3 yielded several uncharred Achnatherum hymenoides, and Atriplex 

sp., in addition to a few other taxa (refer back to Table 7.8). 

 

7.4. Woodrat (Neotoma) Midden 

 

Uncharred seeds (n=615) were the only botanic material observed in sample 

1829-PC-5/12A-34-19, the non-cultural Neotoma nest from a Younger Dryas-aged 

component of Paisley Cave 5 (Figure 7.11). The assemblage was dominated by Urtica 

dioica (47%), Achnatherum hymenoides (19%), and unidentified Poaceae members (9%) 

 

Figure 7.11. Macrobotanical remains recovered from the Younger Dryas Neotoma nest 

identified in Cave 5 at the Paisley Caves, Site 35LK3400. 
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not identified to genus. The rodent nest also contained scant amounts of Scirpus (5%), 

Boraginaceae (3%), Atriplex (2%), Montiaceae-type (1%), Asteraceae (1%), Phacelia 

(1%), Cryptantha (1%), Carex (1%), Oenothera (1%), Descurainia (1%), and Trifolium 

(1%). Mentzelia albicaulis, Leymus cinereus, and Hesperostipa were also noted, but 

contributed less than 1% to the seed assemblage. Additionally, 46 seeds (8%) remain 

unidentified.  

 

7.5. Data Analysis and Interpretations 

 

7.5.1. Richness and Diversity 

 Taxonomic richness and diversity fluctuate in the Paisley Caves bulk soil 

samples, but exhibit the highest levels in Feature 5/5-3, column samples CS-8, CS-9 

and CS-10 (ca. 10,000 to 9000 cal BP), the Neotoma nest, and Cave 5 strata samples 

I and II (Figure 7.12). Differences in Shannon-Wiener diversity index rankings are 

not statistically significant between samples (chi square=9.1045, df =5, p=0.105). 

 

7.5.2. Cluster Analysis 

Cluster analysis, constructed using the density of charcoal, charred seeds, and 

uncharred seeds in each individual sample as variables, demonstrates clear patterning in 

the macrobotanical record. The first cluster (n=20) includes nearly all of the Unit 2/6B 

column samples, except for CS-6 in LU3 and CS-20 in LU2 (Figure 7.13). The second 

cluster (n=6) consists of the Cave 1 and Cave 2 hearths and column sample CS-20, 

representing the upper extent of LU2 below the Lower Mud Lens. The third cluster (n=5)  
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Figure 7.12. Species richness and evenness. 
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Figure 7.13. Dendrogram depicting clustering of Paisley Caves 

macrobotanical samples based on the density of charcoal, charred 

seeds, and uncharred seeds in each sample. 



222 

 

includes CS-6 from the Unit 2/6B column, the woodrat nest, and Cave 5 strata samples 

III, IV, and VI. Finally, Cave 5 strata samples I and II, and the Cave 5 hearth/earth oven 

features 5/5-3 and 5/5A comprise the fourth cluster (n=4). 

The hearth/earth oven features do not cluster with the other hearths analyzed 

at the site, probably because they contain less charcoal and more charred seeds than 

the Cave 1 and Cave 2 hearths. This pattern could be reflective of differences in 

burning intensity and/or duration and may indicate they represent an oven feature 

rather than a fire hearth.   

The inclusion of sample CS-6 with the woodrat midden sample and Cave 5 

lower strata samples likely derives from the combined dearth of charcoal (0.16 

g/liter) and relatively high uncharred seed count (n=1036/liter). When density-

dependent data transformations are made for the Cave 5 strata III, IV, and VI 

samples, uncharred seed abundances are high (n=2208/liter, n=1192/liter, and 

n=8004/liter, respectively) and make up 68% of the uncharred seed assemblage in the 

Cave 5 samples. The uncharred seeds in sample CS-6 account for 27% of all 

uncharred seeds recovered in the Unit 2/6B column samples. Conversely, sample CS-

20 almost certainly clusters with the hearth features due to its high charcoal content 

(7.70 g/liter), which contributes 47% to the total charcoal present in the Unit 2/6B 

column samples.  

Results of the cluster analysis provide the basis for the establishment of six 

meaningful categories with which to analyze the seed data in the Paisley Caves bulk 

soil samples: 

  



223 

 

 Cave 2 column samples (2C), 

 Younger Dryas hearths (YDH), 

 Cave 5 hearths (5H), 

 Cave 5 upper strata samples and possible hearths (5U), 

 Cave 5 lower strata samples (5L), and 

 Neotoma woodrat nest (N) 

Even though sample CS-6 does not appear to fit the parameters for grouping the Unit 

2/6B column samples together, it is not excluded from these analyses.  These groups 

were selected as sample types to examine the spatial patterning of seed distribution.   

 

7.5.3. Cultural vs. Non-human Seed Deposition 

Uncharred seeds in the column and strata samples are assumed to represent 

inadvertent introduction into the sampled contexts because the taxonomic makeup of 

charred seeds differs significantly from uncharred seeds. A taxonomic 

heteroscedasticity test comparing uncharred and charred seed assemblages for each 

sample type demonstrates the two populations are different (Table 7.9). This 

assumption is in part supported by the recognition that charring is the primary 

indicator of culturally-mediated macrobotanical deposition (Micelisk 1987) and by 

Table 7.10. Heteroscedasticity results for charred 

versus uncharred taxa* in Paisley Caves sample types. 

Sample Type Chi Square Value df p-Value 

2C 210.92578 38 <0.00001 

YDH 113.09942 16 <0.00001 

5H 48.14293 23 0.00160 

5U 253.32364 30 <0.00001 

5L 366.88385 20 <0.00001 

N No charred seeds present 

*Unidentified seeds excluded from calculations  
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the fact that charred seeds are absent in the rodent nest and in sterile cave deposits 

representing habitation hiatuses. This assumption cannot as easily be construed for 

uncharred macrobotanical remains in the features samples. For example, the 

statistical difference between charred and uncharred populations in the Botanical 

Lens may be indicative of distinct activity areas associated with habitation during the 

Younger Dryas (hearth vs. pronghorn processing area). 

As noted above, charred seeds are absent in the woodrat nest, but relative 

abundances are also surprisingly low in the YDH sample type. Unique taxon ubiquity 

measures demonstrate only charred cheno-ams and charred Atriplex are represented 

in every sample type in the Paisley Caves macrobotanical analysis (Table 7.11).  

 

Table 7.11. Ubiquity of individual charred taxon by sample type. 
         Sample Type       Sample Type 

Charred 

Taxon 

Ubiquit

y 

2

C 

5

U 

5

L 

5

H 

YD

H   Charred Taxon 

Ubiquit

y 

2

C 

5

U 

5

L 

5

H 

YD

H 

Asteraceae 20%   X         Gereniaceae 20%       X   

Artemisia 20%   X         Juncus 40%   X   X   

Boraginaceae 60% X X   X     Juniperus 20%   X       

Amsinckia 40% X X         Liliaceae s.l. 40%     X X   

Camassia 20%       X   
  

Mentzelia 
albicaulis 

60% X X X 
    

Cryptantha 40%   X   X     Monolepis 20%   X       

Ceanothus 20%       X     Phacelia 40%   X   X   

cf. Celtis 40%   X X       Pinus 20%   X       

Cheno-am 100% X X X X X   Plantago 20%       X   

Amaranthus 20%       X     Poaceae 80% X X   X X 

Atriplex 100% X X X X X   Achnatherum 60% X X   X   

Chenopodium 20% X           Polygonaceae 20%   X       

Suaeda 20% X           Rosaceae 40%   X   X   

Cyperaceae 20%   X         Rosa  20%       X   

Descurainia 80%   X X X X   Sambucus 20%   X       

Fabaceae 20%   X         Sphaeralcea 20%       X   

Vicia 20%       X     Urtica dioica 20%       X   
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Table 7.12. Charred plant taxa and counts identified for each sample type. 

Sample Type Column 2/6B 
Cave 5 

Upper Strata 

Cave 5 

Lower 

Strata 

Cave 5 

Hearths  

Younger 

Dryas 

Hearths 

Sum 

 

N of samples 17 2 3 2 5 19 

Soil volume (L) 12.20 0.75 0.75 1.00 2.00 16.7 

       Asteraceae 

 

2 

   
2 

Artemisia 

 

1 

   
1 

Boraginaceae 1 29 

 

23 

 
53 

Amsinckia 2 7 

   
9 

Camassia    2  2 

Cryptantha 

 

7 

 

4 

 
11 

Ceanothus 

   

1 

 
1 

cf. Celtis 

 

3 2 

  
5 

Cheno-am 8 31 4 51 2 96 

Amaranthus 

   

10 

 
10 

Atriplex1 1 6 6 45 7 65 

Chenopodium 46 

    
46 

Suaeda 1 

    
1 

Cyperaceae 

 

2 

   
2 

Descurainia 

 

20 1 3 1 25 

Fabaceae 

 

1 

   
1 

Vicia 

   

1 

 
1 

Gereniaceae 

   

6 

 
6 

Juncus 

 

16 

 

1 

 
17 

Juniperus 

 

1 

   
1 

Liliaceae s.l. 

  

1 1 

 
2 

Mentzelia albicaulis 1 19 1 

  
21 

Monolepis 

 

6 

   
6 

Phacelia 

 

10 

 

1 

 
11 

Pinus 

 

1 

   
1 

Plantago 

   

2 

 
2 

Poaceae2 35 13 

 

26 1 75 

Achnatherum 7 30 

 

74 

 
111 

Polygonaceae 

 

2 

   
2 

Rosaceae 

 

3 

 

6 

 
9 

Rosa  

   

2 

 
2 

Sambucus 

 

3 

   
3 

Sphaeralcea 

   

2 

 
2 

Urtica dioica 

   

4 

 
4 

Unidentified 1 15 1 11 2 30 

 
Total seed N 103 228 16 276 13 636 

Seed density 8.4 304.0 21.3 276.0 6.5 38.1 

 
1 including all Atriplex species 
2 all Poaceae except A. hymenoides 
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When seed types are assigned to broad family categories, charred seeds of 

cheno-ams, Poaceae, and Boraginaceae account for 75% of the total number of seeds 

and represented in all five sample types (Table 7.12; previous page). Charred seed 

densities are highest in the 5H and 5U sample types in Cave 5 (Figure 7.14). 

 

7.5.4. Paleoenvironmental Trends 

Ecological characteristics for plant taxa identified at the Paisley Caves, including 

drought and alkalinity tolerances and wetland obligation, were evaluated to assess broad, 

Figure 7.14. Box plot of total charred seed density by sample type. 
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diachronic paleoenvironmental patterns. Both drought tolerant plants and halophytes gain 

prominence in the Paisley Caves archaeobotanical record during the Middle Holocene  

(Figure 7.15). A comparison of obligate wetland plants, which almost always occur in 

wetlands, and facultative wetland plants, which are usually found in wetlands, 

demonstrates higher instances of moisture-loving plants in Younger Dryas hearths 

(Figure 7.16; Table 7.13).   

  

Figure 7.15. Temporal distribution of drought and alkaline adapted 

plant taxa represented in the Paisley Caves macrobotanical 

samples. 
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Figure 7.17. Temporal distribution of wetland adapted plant taxa 

represented in the Paisley Caves macrobotanical samples. 

Table 7.13. Wetland plant indicator status (USDA 2014). 

Indicator Code Indicator Status Comment 

   

OBL Obligate Wetland Almost always occur in wetlands 

FACW Facultative Wetland Usually occur in wetlands, but may occur in non-wetlands 

FAC Facultative Occur in wetlands and non-wetlands 

FACU Facultative Upland Usually occur in non-wetlands, but may occur in wetlands 

UPL Obligate Upland Almost never occur in wetlands 
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Elevated occurrences of wetland plants in the Younger Dryas are represented in 

the charcoal and seed assemblages. Though the relative abundances are meager, Salix 

charcoal in the Younger Dryas Botanical Lens and Mud Lens suggest willow would have 

been growing near the site at that time. The uptick in wetland-adapted species primarily 

reflects the presence of Urtica dioica, Scirpus/Schoenoplectus, Carex, Rumex, and Typha 

latifolia seeds.  

The increase in wetland-adapted taxa is driven not only by hearth and Botanical 

Lens constituents, but also the Neotoma nest materials. The seeds recovered from the nest 

are categorized as Facultative Wetland (64%), Upland (27%), Obligate Wetland (9%), 

and Facultative (1%) plants (Figure 7.17). The unusually diverse array of habitat 

characteristics in the plants represented suggests the woodrats scavenged seeds from 

cultural deposits in the caves. 

If the overflow channel between Summer and ZX Lakes, which is situated at 1338 

m AMSL (Allison 1982:52), was breached during the Younger Dryas (Friedel 1993), 

then wetland plants most likely grew more than 500 m (maximum bushytailed woodrat 

foraging distance) from the caves. It is even more unlikely that these taxa were available 

within the typical foraging range of 50-60 m (Topping and Millar 1995). Historically, 

woodrats have been reported to collect cultural materials from other archaeological sites 

(Smith 1997). 
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7.5.5. Seasonality of Habitation 

If charred seeds can be assumed to represent cultural deposition (see section 

7.5.3), then comparing the charred and uncharred seed assemblages in the macrobotanical 

samples based on seed ripening times can provide a useful means for determining 

seasonal visitation. The clearest data patterns derive from the Middle Holocene-aged 

samples when charred seeds representation was limited to plants available for harvest in 

the late fall and winter (Figure 7.18). Likely, increased temperatures and aridity at this 

time compromised the bioproductivity of the lake margins and marshes surrounding the 

Paisley Caves. Although the Cave 5 strata samples cannot provide high-resolution data 

Figure 7.17. Ecological attributes of plants identified in the Cave 5, 

Younger Dryas-aged Neotoma nest. 
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concerning habitation frequency, the data still strongly suggest Paisley Cave 5 was rarely 

visited in the Early and Middle Holocene.  

Figure 7.18. Seasonal availability of plant taxa represented 

in the Paisley Caves macrobotanical samples, presented as 

mean density of uncharred (upper) and charred seeds 

(lower). 
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The Early and Middle Holocene patterns of seasonal use differ from Late 

Holocene and Younger Dryas habitation events, which, at face value, appear to have 

intensified during the summer and fall months. Resources would have been more 

abundant near the Paisley Caves in the late summer and fall (Jenkins 2016:132), which 

may have prompted people to visit at this time of year during their seasonal rounds. 

Higher abundances of summer and fall-ripening seeds are also observed in the Neotoma 

nest (Figure 7.19). As discussed in Chapter III, woodrats also increase caching activities 

in late August and September (Smith 1997).  

  

 

Figure 7.19. Seasonal availability of plant taxa represented in the 

Neotoma nest in Paisley Cave 5. 
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7.5.6. Taxon Ubiquity 

 Several taxa appear to have been targeted for processing by the visitors to the 

Paisley Caves, but the patterning of the data suggests people placed elevated importance 

on particular resources depending on the timing of the visit. No charred seeds are present 

in the LU 2 component representing the Terminal Pleistocene in Cave 2 (Table 7.14). 

Charcoal was observed in this context, though, and Western Stemmed artifacts have been 

found in association with human coprolites and megafauna remains (Jenkins et al. 2012a, 

2012b; McDonough et al. 2012). While it is clear that people camped at the caves during 

this time, no strong evidence of plant food processing was detected in this study.  

Several cooking features and the Botanical Lens feature provide detailed data 

regarding plant resources during the Younger Dryas. In the features, uncharred seeds may 

signal cultural deposition, and accordingly, ubiquity measures include both charred and 

uncharred seeds. While some taxa are represented solely by charred seeds – Plantago, 

Cryptantha, Camassia, Vicia, Geraniaceae, Juncus, Hesperostipa, Rosa, Sesuvium, and 

Sphaeralcea – others occur only as uncharred specimens, including Asteraceae, Pinus, 

Juniperus, Oenothera, and Typha. Taxa represented by both charred and uncharred seeds 

occurred in in greater abundance and with higher levels of ubiquity. They include 

Achnatherum, Atriplex, Poaceae, cheno-ams, Chenopodium, Descurainia, Amaranthus, 

Boraginaceae, Mentzelia, Phacelia, Ceanothus, Liliaceae-Amaryllidaceae, and Urtica. 

Seeds of plants with geophytic roots are only present in the Cave 5 hearth/earth oven 

sample, which also produced the highest weights of PET starchy tissues.  
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Table 7.14. Taxon ubiquity measures by period of habitation. Taxa represented by 

charred seeds are  represented by black, taxa represented by charred and uncharred seeds 

represented by red, and taxa represented only by uncharred seeds represented by blue. 

Period 
Late 

Holocene 

Middle 

Holocene 

Early 

Holocene 

Younger 

Dryas 

Terminal 

Pleistocene 

Number of Samples n=3 n=1 n=15 n=13 n=2 

Amaranthus       31%   

Asteraceae 33%     23%   

  Artemisia 33%         

Boraginaceae 33%   7% 31%   

Amsinckia     7%     

Cryptantha 33%     8%   

Camassia       8%   

Ceanothus       15%   

cf. Celtis 100%         

Cheno-am 100%   13% 54%   

  Atriplex 100% 100% 7% 62%   

  Chenopodium     7% 38%   

  Suaeda     7%     

Cyperaceae 33%         

  Descurainia 100%     38%   

Fabaceae 33%         

Vicia       8%   

Geraniaceae       8%   

Juncus 33%     8%   

Juniperus 33%     15%   

Liliaceae-

Amaryllidaceae 
33%     15%   

Mentzelia 100%     31%   

Monolepis 33%         

Oenothera       8%   

Phacelia 67%     31%   

Pinus 33%     23%   

Plantago       15%   

Poaceae 67%   20% 62%   

  Achnatherum 67%   7% 85%   

  Hesperostipa 67%     8%   

Polygonaceae 33%         

Rosaceae 33%         

  Rosa        8%   

Sambucus 33%         

Sesuvium       8%   

Sphaeralcea       8%   

Typha       8%   

Urtica       15%   
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The Early Holocene samples at the Paisley Caves contain fewer macrobotanical 

remains. Charred taxa identified from this context include Poaceae, cheno-ams, 

Achnatherum, Atriplex, Amsinckia, Boraginaceae, Chenopodium, and Suaeda. Poaceae 

were identified in three out of the fifteen Early Holocene-aged samples, and cheno-ams 

were identified in two samples. Each of the other taxa appears only in a single sample. 

No cooking features have been encountered in the Early Holocene deposits, and the 

artifact record is sparse (Jenkins 2007).  Only one sample in this study represents the 

Middle Holocene, and Atriplex was the only charred seed type recovered.  

Taxonomic diversity of plants remains recovered in the bulk soil samples 

increased again by the Late Holocene. Although fewer types are represented in the Late 

Holocene than in the Younger Dryas, the taxa represented appear to have been targeted 

more intensely. Charred Atriplex, cf. Celtis, Cheno-ams, Descurainia, and Mentzelia 

were recovered in all three Cave 5 strata samples representing the Late Holocene. With 

the exception of the tenuous identification of Celtis, each of these taxa reflects the 

presence of plants Great Basin people traditionally harvested for food. Additionally, 

except for Celtis, each taxa produces numerous small seeds that could be mass harvested 

and are highly nutritious (USDA 2015). 

 

7.5.7. Ethnobotany and Traditional Ecological Knowledge  

Archaeobotanical data and ethnographic documentation provide hypothetical 

economic plant use information for each identified taxa represented by charred seeds 

(i.e., food, fuel, medicine, crafts). The majority of charred edible plant macrobotanical 

remains were recovered from the Cave 5 hearth/earth oven features and the Cave 5 upper 
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strata samples, though they were also found in the Younger Dryas hearths, the Cave 5 

lower strata samples, and column samples CS-6, CS-7, CS-17, and CS-19b (Figure 7.20). 

Among the charred seeds, six taxa identified by Fowler and Rhode (2007) as 

economically important plant foods in the traditional economies of Great Basin people 

show up in the Paisley Caves bulk soil samples: Achnatherum, Amaranthus, Atriplex, 

Chenopodium, Mentzelia, and Suaeda.  

The antiquity of foraging practices of Great Basin people is well represented in 

this study. As opposed to other taxa Fowler and Rhode highlight as having elevated 

importance in the subsistence economies of Great Basin indigenous populations, cheno-

ams appear to have been targeted as food resource consistently over the past 12,000 years 

Figure 7.20. Frequency of seeds representing charred edible taxa in the Paisley 

Caves sample types. 
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at the Paisley Caves (Figure 7.21). Although cheno-ams are well represented in both the 

Cave 5 hearths and the Cave 5 upper strata samples, the relative abundance of these 

taxonomic types is much greater in the Late Holocene, represented by the Cave 5 upper 

strata samples (Figure 7.22). Cheno-ams are present in the Botanical Lens hearths, but 

not in the Botanical Lens itself, suggesting the use of Chenopodium and Atriplex seeds 

are explicitly tied to cooking activities. Plants valued for attributes other than food were 

not well represented, appearing only in the Cave 5 upper strata samples and the Cave 5 

hearth samples (Figure 7.23). 

Figure 7.21. Distribution of charred cheno-ams (combined cheno-am, 

Chenopodium, and Suaeda) by sample type. 
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Figure 7.22. Distribution of charred cheno-ams (combined 

cheno-am, Chenopodium, and Suaeda) by period. 

Figure 7.23. Frequency of charred seeds representing plants valued for 

medicinal properties and materials for handicrafts in the traditional 

economies of Great Basin tribes. 
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The ethnographic record both informs and complicates interpretations of 

macrobotanical data. Park and Fowler (1989) note that many edible seeds recovered in 

this investigation were often dried and stored for winter use. This observation may limit 

the reliability of the seasonality data presented in section 7.5.5. Another complicating 

factor involves the Neotoma nests in the caves. Many of the seeds recovered from the 

woodrat nest analyzed in this study also represent edible types, and many taxa identified 

in the nest were also identified in cooking features. These include Achnatherum, 

Boraginaceae, Mentzelia, and Phacelia. It is possible that visitors to the Paisley Caves 

plundered the nests to recover valuable plant materials. To date, there is no explicit 

evidence for the reappropriation of woodrat nest materials for food, fiber, medicine, or 

handicrafts in the northern Great Basin, but the behavior has been chronicled for several 

indigenous groups in Siberia and North America (Nabhan 2009; Lewis and Clark 2002; 

Moerman 1998; Ståhlberg and Svanberg 2010).  

 

7.6. Paisley Caves Macrobotanical Overview  

 

Macrobotanical analysis of 35 bulk soil samples from the Paisley Caves identified 

over 40 plant taxa. The majority of all identified charcoal in the Paisley Caves bulk soil 

samples represents Artemisia, although Atriplex and Salix are also present; Salix charcoal 

was only identified in the Younger Dryas-aged Botanical Lens and Lower Mud Lens 

samples. The ubiquity of Artemisia in the samples containing charcoal indicates 

sagebrush wood was intentionally burned during all human stopovers at the caves, and its 

presence in the Younger Dryas component suggests it was utilized discriminately as 
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tinder and fuel for hearths as early as 12,380 cal BP. Unidentified charcoal accounted for 

less than 2% of the assemblage. Charcoal densities are more pronounced in Cave 1 and 

Cave 2 hearth features and Unit 2/6B column samples representing habitation episodes 

(Figure 7.24). The scant amount of charcoal in the Botanical Lens outside hearths 

suggests the sagebrush matting may have provided floor covering, perhaps to enhance the 

comfort of the campsite by providing padding and insulation.  

Seeds and fruits were the most commonly identified plant remains in the analysis 

of soil from the Paisley Caves (n=5595). The taxonomic diversity of plant types 

identified at the Paisley Caves varies for each sample, but not in a statistically-significant 

manner. Statistical populations of charred seeds and uncharred seeds in the samples are 

differentially distributed, indicating charred seeds are more likely to represent cultural 

deposition than uncharred seeds outside of features. The majority of charred seeds were 

identified in cultural features and strata associated with a greater intensity of habitation. 

Seeds in the Chenopodiaceae, Boraginaceae, and Poaceae families occurred with the 

greatest frequency indicating processing and consumption of cheno-ams, fiddlenecks and 

other members of the borage family, and grasses, especially Indian ricegrass.  

Uncharred seeds were encountered more frequently than charred seeds. Under 

non-exceptional circumstances (i.e., open archaeological sites), uncharred seeds always 

represent recently modern (less than 100 year old) intrusions. However, conditions at the 

Paisley Caves are exceptional, as evidenced by the preservation of delicate textiles and 

ecofacts. Radiocarbon dates from the site suggest the uncharred materials are 

stratigraphically well-ordered and cotemporaneous. This indicates site formation
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Figure 7.24. Charcoal and charred seed densities (coded by color map) across all bulk soil samples analyzed at the 

Paisley Caves. 
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processes included the introduction and incorporation of macrobotanical remains, either 

intentionally by human agents, or by wind or wave action, animal foraging, the 

“hitchhiking” qualities of seeds (as the result of an autochorous plant reproduction 

syndrome), or any combination of these factors. 

The macrobotanical assemblage also provides data for interpretation of long-term 

trends at the Paisley Caves. Younger Dryas cooking features indicate visitors to the site at 

the TP/EH boundary consumed a diverse diet of plant foods. Hockett et al. (2017) also 

report a varied assemblage of faunal remains associated with Younger Dryas deposits. 

Together, these data indicate people were generalists in terms of foraging behaviors. The 

macrobotanical record is sparse in the Early and Middle Holocene, suggesting people did 

not visit the site as frequently as they did in the Terminal Pleistocene and Late Holocene. 

These data are consistent with the current understanding of the Paisley Caves 

archaeological site. In the Late Holocene, focus appears to have shifted toward a greater 

reliance on small-seed processing.  

Ecological attributes of the plant taxa identified indicate Younger Dryas climatic 

conditions favored moisture-loving plants, while arid conditions associated with the 

Middle Holocene Climate Optimum in the northern Great Basin favored the growth of 

halophytes and drought-adapted plants. Plants represented in Late Holocene contexts 

seem to suggest climate amelioration to modern-day levels, but low data resolution for 

the associated samples reduces my confidence in this interpretation. In the Early 

Holocene, an abundance of Atriplex seeds suggest conditions became warmer and drier.  

When controlled for sample volume differences, approximately 11% of all seeds 

identified at Paisley Caves were located in the woodrat nest. The nest contained no 
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charred macrobotanical remains. Plant taxa identified in the nest suggest the woodrats 

foraged and scavenged plant parts from both inside and outside the cave. The abundance 

of Urtica seeds in the woodrat nest, along with habitat data demonstrating the 

representation of diverse environments, suggest the woodrats pilfered resources from 

people inhabiting the caves. During the Younger Dryas, when the nest was constructed, 

stinging nettles were not likely growing within the foraging territory of the Paisley Caves 

woodrats. Likely, the nettles were collected during the course of annual seasonal rounds 

and introduced to the caves by its human inhabitants.  

To address the function of the hearth/earth oven cooking feature in Cave 5 

(represented by a charcoal concentration, Feature 5/5-3, and an ash lens, Feature 5/5A-

26-8), the distribution of charred economically-important plant taxa was evaluated. 

Quantile outliers demonstrate the samples representing features 5/5-3 and 5/5A-26-8 

yielded significantly higher densities of seeds of plants valued for their edible, medicinal, 

and handicraft values. Coupled with the relatively lower abundance of charcoal, presence 

of starchy plant tissues, and presence of Camassia and Liliaceae-Amaryllidaceae seeds 

suggest the feature may represent an earth oven rather than a fire hearth.  

Although the feature itself is discrete and small (ca. 60 cm x 15 cm) unlike typical 

ovens found elsewhere in North America (Black and Thoms 2014),  it was bowl-shaped, 

the fill contained charred plants materials, and it was lined with fire altered rock amid an 

ash layer with hardened earth below.  According to Black and Thoms (2014:205), earth 

ovens are composed of several layers with the intention of roasting or steaming foods: a 

prepared surface, a smoldering fire reduced to ash and coals, a layer of rocks acting as the 
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heating element, a packing layer of green vegetation, a food layer, an upper packing 

layer, and an earthen cap.    

Finally, analyses aimed at determining whether people preferred to camp at the 

Paisley Caves during particular times of the year provided more ambiguous data. Late 

Early Holocene and Middle Holocene visits appear to have happened during the late fall 

and winter months. During other periods, most of the seeds considered to have resulted 

from cultural deposition would have been available during the fall and summer months. 

However, if people had knowledge of rodent-cached food stores in the caves, they likely 

would have considered the woodrat nest as a valuable resource and may have collected 

seeds, which also predominantly featured plant materials available in the summer and 

fall, from the cache. Also, if, as the ethnographic record indicates, people often stored 

seeds harvested in the summer and fall for use in the winter, the presence of those seeds 

in cultural deposits may not be indicative of the timing of camping trips.  
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CHAPTER XIII 

LSP-1 ROCKSHELTER MACROBOTANICAL ANALYSES 

 

Seven classes of botanic remains were noted in the LSP-1 Rockshelter bulk 

soil samples, including wood, charcoal, seeds, processed edible tissues, nutshell s, 

herbaceous stems, and leaves. Thirteen radiocarbon dates were obtained for LSP-1 

features and stratigraphic samples to anchor the age of macrobotanical remains 

analyzed in this study (Appendix B). Identified remains represent both edible and 

non-edible tissues (Table 8.1).  

Table 8.1. Taxa identified by macrobotanical analysis at LSP-1 Rockshelter  
Non-edible tissues   

 
Edible tissues   

Charcoal   

 
Fruits   

Artemisia sp. sagebrush 

 
Prunus sp. native/wild cherries 

Atriplex sp. saltbush 

 
Ribes sp. currant; gooseberry 

Rhus sp. wild sumac 

 
PET fruity X 

Seeds   

 
PET starchy X 

Brassicaceae mustard family 

 
Roots   

Eriogonum sp. buckwheat 

 
Typha latifolia cattail 

Galium  sp. cleavers 

 
Nuts/Berries   

Lamiaceae mint family 

 
Juniperus sp.* juniper 

Montiaceae 
miner's lettuce 

family 

 

Unidentified berry X 

Nicotiana attenuata* tobacco 

 
Unidentified nutmeat X 

Phacelia sp. tansy 

 
Seeds   

Plagiobothrys starwort 

 
Achnatherum hymenoides* Indian ricegrass 

Poaceae grass family 

 
Leymus cinereus Great Basin wildrye 

Urtica dioica* stinging nettle 

 
Cheno-ams 

goosefoot/amaranth 

families 

Other tissues   

 
  Amaranthus sp.* amaranth 

Conifer needle X 

 
  Atriplex confertifolia scadshale saltbush 

Dicotyledon stem X 

 
  Chenopodium sp. goosefoot 

Monocotyledon stem X 

 
  Suaeda sp. wada 

Unidentified buds X 

 
Mentzelia albicaulis white-stemmed blazingstar 

   
Amsinckia sp. fiddleneck 

   
Agrostis sp. bentgrass 

   
Descurainia sp. tansymustard 

   
Scirpus/Schoenoplectus sp. bulrush 

X = Taxon unknown 

* = Represented by uncharred specimens only 
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Heavy fraction materials include fish and mammal bones and obsidian waste 

flakes. Additionally, cordage, bird feathers, and rabbit fur were observed. Nearly half 

of the samples yielded evidence of bioturbation in the form of rodent droppings and 

insect remains. A full description of LSP-1 Rockshelter macrobotanical remains 

identified in this analysis is presented in Appendix E. 

 

8.1. Stratigraphic (Column) Samples N105E99 

 

 The macrobotancial remains present in the Unit N105E99 profile samples 

provide chronostratigraphic archaeological plant data throughout the history of site 

habitation. Charcoal, wood, seeds, starchy and fruity tissues, herbaceous stems, and 

nutshells represent evidence of human-plant interactions throughout the Holocene. 

Eight AMS radiocarbon dates were obtained on individual charred Artemisia twigs to 

directly verify the age of column sample sediments (Table 8.2). Some dates are not 

consistently ordered (Figure 8.1), but still fit into the general site chronology. 

Table 8.2. AMS Dates, LSP-1 Rockshelter Column Samples, N105E99. 
14

C Lab Number FS Number Unit Cmbd Stratum 
14

C Age 2σ cal BP  
       

D-AMS-10596 CS25B N105 E99 128-131 VIII 1173±25 1,179-1,000 

D-AMS-10590 CS8A N105 E99 41-44 III 1255±24 1,277-1,088 

D-AMS-10591 CS12 N105 E99 61-66 IV 3038±26 3,343-3,166 

D-AMS-10593 CS16 N105 E99 81-86 V 3046±31 3,350-3,170 

D-AMS-10592 CS13 N105 E99 66-71 IV 3090±26 3,371-3,231 

D-AMS-10595 CS22 N105 E99 111-116 VII 5238±26 6,174-5,921 

D-AMS-10597 CS26 N105 E99 131-136 VIII 7944±35 8,980-8,644 

D-AMS-10594 CS20 N105 E99 101-106 V 8263±38 9,408-9,124 

 

Note. Dates calibrated using OxCal 4.2 (Ramsey 2009) and IntCal 13 Curve (Reimer et al. 2013). 
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8.1.1. N105E99 Charcoal and Charred Tissues 

 Charcoal density fluctuated depending on the stratum represented by each 

sample (Figure 8.2). Although charcoal was ubiquitous throughout the vertical 

column, every bulk sample represented in this analysis contained charcoal weighing 

Figure 8.1. Depth and provenience information for radiocarbon 

dated samples (suspect dates shown in red; Kennedy and Smith 

2016: Figure 3). 
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less than 0.5 g. The peaks in Stratum IV and Stratum VIII do not signal a significant 

increase in overall charcoal weight when regarded independently.  Artemisia was the 

most commonly identified charcoal type identified in the column samples (Table  

8.3). A cursory examination of the wood and charcoal revealed that on average, 

sagebrush comprises more than 99% of the total woody material in the samples. 

Sample 8a (41-44 cmbd) in Stratum III contained fragments of Atriplex and Rhus cf. 

trilobata charcoal in addition to Artemisia types.  

Fragments of softer charred plant tissues were also present in stratigraphic 

column samples. Fruity edible tissues (likely representing berries or other sugar-

laden vegetative material) were observed in Stratum IV at a depth of 61-66 cmbd and 

Stratum XIII at a depth of 128-131 cmbd. A single, relatively large, piece of starchy  
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Figure 8.2. Charcoal density in stratigraphic column samples at LSP-1 

Rockshelter. 
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Table 8.3. Distribution of identified charcoal types and charred plant tissues in 

N105E99 column. 

Provenience     Charcoal Taxa (wt.) Charred Plant Tissues (wt.) 

Stratum 
Sample 

No. 

Depth 

(cmbd) 

Artemisia 

sp. 

Atriplex 

sp. 
Rhus sp. 

Fruity 

Tissue 

Starchy 

Tissue 

Vitrified 

Tissue 

II  

CS-5b 31 0.07 g - - - - - 

CS-6 36 0.05 g - - - - - 

CS-7 41 <0.01 g - - - - - 

III  CS-8a 44 0.07 g 0.01 g 0.01 g - - - 

IV 

CS-8b 46 0.08 g - - - 0.04 g <0.01 g 

CS-9 51 0.11 g - - - - - 

CS-10 56 0.07 g - - - - - 

CS-11 61 0.11 g - - - - - 

CS-12 66 0.13 g - - - - - 

CS-13 71 0.15 g - - - - - 

post- Mazama 

V 

CS-14 76 0.05 g - - - - - 

CS-15 81 0.01 g - - - - - 

CS-16 86 0.06 g - - - - - 

CS-17 91 0.05 g - - - - - 

Mazama 
CS-18 96 0.02 g - - - - - 

CS-19 101 0.06 g - - - - - 

pre-Mazama V  

CS-20 106 0.05 g - - - - - 

CS-21 111 0.05 g - - - - <0.01 g 

CS-22 116 0.07 g - - - - <0.01 g 

VII 

CS-23 121 0.05 g - - - - - 

CS-24 126 0.01 g - - - - - 

CS-25a 128 <0.01 g - - - - - 

VIII 
CS-25b 131 0.08 g - - <0.01 g - - 

CS-26 136 0.09 g - - - - - 

IX CS-27 141 0.01 g - - - - - 
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tissue representing an unknown geophyte was present in the column at 44-46 cmbd 

in Stratum IV. 

 

8.1.2. N105E99 Seeds 

Seeds identified in the column samples represent ten taxa belonging to eight 

plant families. The seed assemblage was dominated by uncharred seeds, with 

relatively few charred specimens (roughly 17%). The assemblage was dominated by 

Atriplex (41%), cheno-am perisperms (28%), and Chenopodium (20%). The 

remaining seed types identified include Amsinckia (5%), Agrostis (2%), and 

Descurainia (2%; Table 8.4). Another member of the Brassicaceae family, 

Eriogonum, Mentzelia albicaulis, Leymus cinereus, Urtica dioica, Phacelia, a 

Poaceae family member, and Typha latifolia each contributed less than 1% to the 

assemblage, while unidentified seeds accounted for 1% of the assemblage. 

Among the charred seeds in LSP-1 stratigraphic column samples, 

Chenopodium (64%) dominated the identified taxa. Other identified types include 

Descurainia (12%), Agrostis (9%) and cheno-am perisperms (6%). Eriogonum, 

Atriplex, Leymus cinereus, Mentzelia albicaulis, Typha latifolia, Phacelia, and 

another Poaceae member each contributed less than 1% to the total charred seed 

assemblage. Additionally, 8% of the charred seeds could not be identified to species. 

When the seed data are normalized to account for volumetric differences in 

sample size, 88% of the total seed assemblage was recovered from samples in the 

upper sediment package, which postdates 3000 cal BP (Table 8.5). Samples from the  
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Table 8.4. Density-dependent occurrence of charred seeds in the N105E99 column 

samples. 

Sediment 

Package 
Stratum 

Sample 

No. 

C
h

e
n

o
-a

m
 

C
h

e
n

o
p

o
d

iu
m

 

D
e
sc

u
ra

in
ia

 

E
ri

o
g

o
n

u
m

 

M
e
n

tz
e
li

a
 

P
h

a
c
e
li

a
 

P
o

a
c
e
a
e
 

  
A

g
ro

st
is
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Upper 

(80.9%)* 

II (0.2%)* 

CS-5b - - - - - - - - - - - 

CS-6 - - - - - - - - - - - 

CS-7 - 1 - - - - - - - - - 

III (10.0%)* CS-8a - 56 3 - - - - - - - 3 

IV (70.8%)* 

CS-8b 23 73 - 2 1 1 1 32 - - 5 

CS-9 - 51 7 - - - - 3 - - 4 

CS-10 - 58 12 - - - - - - - 1 

CS-11 - 43 16 - - - - 4 - - 5 

CS-12 - 37 14 - - - - 3 - - 5 

CS-13 - 20 11 - - - - 2 - - 4 

Middle 

(7.1%)* 

V (5.7%)* 

CS-14 - 19 7 - - - - 3 - - - 

CS-15 - 2 - - - - - 1 - - - 

CS-16 - - - - - - - - - - - 

CS-17 - 1 - - - - - 1 - - 1 

Mazama   
CS-18 - - - - - - - - - - - 

CS-19 - - - - - - - - - - - 

V (1.5%)* 

CS-20 - 1 - - - - - - - - - 

CS-21 1 3 - - - - - - - - - 

CS-22 - - - - - - - 1 - - 3 

Lower 

(12.0%)* 

VII (0.6%)* 

CS-23 1 - - - - - - - - - - 

CS-24 - 3 - - - - - - - - - 

CS-25a - - - - - - - - - - - 

VIII (10.8%)* 
CS-25b 10 6 - - - - - 5 1 1 5 

CS-26 - 11 - - - - - - 1 - 12 

IX (0.5%)* CS-27 - - - - - - - 1 - - 1 

Ubiquity  16% 64% 28% 4% 4% 4% 4% 44% 8% 4% n/a 

 * indicates density dependent transformations were applied to determine the contribution of charred seeds 

from each provenience 
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Table 8.5. All identified seed macrobotanical remains recovered from the stratigraphic column sample grouped by 

sediment package and normalized to account for volumetric differences.  

Taxa 

Sediment Package 

Total 

Upper Middle Lower 

Uncharred Charred Uncharred Charred Uncharred Charred 

Boraginaceae 1 (0.0%) 2 (0.4%) 1 (0.8%) - - - 4 

Amsinckia 39 (1.5%) - 92 (76.0%) - 65 (32.0%) - 196 

Cheno-am 849 (32.0%) 23 (4.6%) 2 (1.7%) - 128 (63.0%) 14 (18.4%) 1016 

Atriplex 1429 (53.8%) - 4 (3.3%) 1 (2.3%) - 1 (1.3%) 1435 

Chenopodium 317 (11.9%) 339 (67.5%) 15 (12.4%) 26 (59.1%) 7 (3.5%) 25 (32.9%) 730 

Poaceae - 1 (0.2%) - - - - 1 

Agrostis - 44 (8.8%) - 5 (11.3%) - 8 (10.5%) 57 

Leymus - - - - - 3 (3.9%) 3 

Brassicaceae - - 2 (1.7%) - - - 2 

Descurainia - 63 (12.5%) - 8 (18.2%) - - 71 

Mentzelia 16 (0.6%) 2 (0.4%) 5 (4.1%) - 3 (1.5%) - 26 

Typha - - - - - 1 (1.3%) 1 

Urtica 4 (0.2%) - - - - - 4 

Phacelia - 1 (0.2%) - - - - 1 

Unidentified - 27 (5.4%) - 4 (9.1%) - 24 (31.7%) 55 

Total 2655 (100.0%) 502 (100.0%) 121 (100.0%) 44 (100.0%) 203 (100.0%) 76 (100.0%) 3601 

Numbers in parentheses represent percent of seeds within each column 
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artifact-rich middle sediment package, which dates to ca. 9650 to 3000 cal BP, 

produced only 4.6% of the total seed assemblage. The primary taxa associated with 

the upper package samples are uncharred cheno-ams including Chenopodium and 

Atriplex seeds. Uncharred Amsinckia seeds are the dominant taxon identified in the 

middle package samples. The lower package samples primarily contained uncharred 

cheno-ams and Amsinckia seeds. Although relatively less abundant in the column 

samples, charred seeds represented unique taxonomic types, including Poaceae 

members and Descurainia. No single taxon was ubiquitous across all column 

samples. 

 

8.2. Feature Samples 

 

In total, 14 bulk soil samples representing 12 features were analyzed, 

including ten hearths, a carbon stain, and an organic concentration. Seeds/fruits, 

charcoal and wood, leaves, stems, and charred plant tissues were recovered from the 

feature samples. Five features analyzed here were previously undated. Carbon from 

these contexts was submitted for AMS dating as part of this study (Table 8.6, next 

page).  

 

8.2.1. Feature Charcoal and Charred Tissues 

Charcoal was recovered from all analyzed feature samples, although its 

density was highly dependent on the individual feature from which it was recovered 
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Table 8.6. AMS Dates, LSP-1 Rockshelter Features. 
14

C Lab Number Excavation Unit Cmbd Stratum Feature Dated Material 
14

C Age 2σ cal BP Range 

        

D-AMS-10587 N104E99/100 50 II/III 11-14 Juniperus seeds 1013±29 976-803 

UGA-16800 N104E99 57 IV 11-05/15 Unidentified charcoal 2490±25 2,723-2,473 

D-AMS-10588 N102E100/101 66 IV 14-02 Cordage 3987±26 4,522-4,415 

D-AMS-10589 N102E99/100 74-75 IV 14-04 Artemisia charcoal 3990±26 4,522-4,416 

 

All dates calibrated using OxCal 4.2 (Ramsey 2009) and the IntCal 13 Curve (Reimer et al . 2013). 

 
Figure 8.3. Density of charcoal in features (left axis) compared to the weight of the 

light fraction (right axis) of each processed feature.  
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 (Figure 8.3; previous page). Patterns in the distribution of charcoal varied through 

time. The majority of charcoal was found in features excavated in strata II/III and IV. 

Because only a subsample of ~20 charcoal fragments was identified for each bulk 

sample, the relative weight of the analyzed charcoal is also presented as a percentage 

of the total charcoal weight for each bulk sample (Table 8.7). Several features also 

contained fragments of fruity PET and starchy PET fragment 

8.2.1.1. Charcoal and Charred Tissues in Hearths  

Feature 14-03, an undated Late Holocene hearth, contained the most abundant 

charcoal. The 1253 fragments of charcoal accounted for 57% of the total weight of 

all charcoal observed in features. Several fragments were larger than 4 mm. 

Artemisia was the only charcoal taxon identified in Feature 14-03 (Table 8.8). Only 

hearth features 11-14 and 14-02 contained charcoal types other than Artemisia. 

Table 8.7. Total charcoal weight vs. weight of 20-fragment 

subsample analyzed for each feature. 

 

 

Total charcoal weight (g) 

% Charcoal 

analyzed 

Upper Sediment Package 

  F. 11-14 1.30 28% 

F. 14-03 19.97 33% 

F. 11-05/15 2.48 37% 

F. 14-02 3.68 11% 

F. 14-04 3.94 14% 

F. 11-19 1.04 18% 

   Middle Sediment Package 

  F. 14-01 0.83 40% 

F. 13-02 0.07 57% 

F. 11-07 0.98 42% 

F. 13-01 0.10 80% 

   Lower Sediment Package 

  F. 12-01/02 0.46 35% 
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Fruity tissues were present in features 11-14, 11-05/15, 14-02, 11-07, 14-03, and 13-

02. PET starchy tissue fragments appeared in features 11-14, 11-05/15, 14-02, and 

14-03. 

 

8.2.1.2. Charcoal and Charred Tissues in Other Features 

 

 Feature 14-01 – the small carbon stain – contained 0.83 g of charcoal. The 

subset of analyzed charcoal was limited to Artemisia. Identified charcoal in the 

organic concentration, Feature 12-01/02, was also represented solely by Artemisia. 

No processed edible tissues were present in either of these features.  The dearth of 

charcoal in these features suggests they do not represent cooking hearths. 

Table 8.8. Distribution of identified charcoal types and charred plant tissues in 

feature samples at LSP-1 Rockshelter. 

Provenience Charcoal Taxa (wt.) Charred Plant Tissues (wt.) 

  
Feature 

Samples 

(n) 

Artemisia 

sp. 

Atriplex 

sp. 

Fruity 

Tissue 

Starchy 

Tissue 

Vitrified 

Tissue 

Upper 

Sediment 

Package 

F. 11-14 1 0.35 g 0.01 g <0.01 g <0.01 g - 

F. 14-03 1 6.67 g - 0.02 g <0.01 g - 

F. 11-05/15 3 0.91 g - <0.01 g <0.01 g - 

F. 14-02 1 0.36 g 0.06 g <0.01 g <0.01 g - 

F. 14-04 1 0.55 g - - - - 

F. 11-19 1 0.19 g - - - - 

Middle 

Sediment 

Package 

F. 14-01 1 0.33 g - - - <0.01 g 

F. 13-02 1 0.04 g - - - - 

F. 11-07 1 0.41 g - <0.01 g - - 

F. 13-01 1 0.08 g - <0.01 g - - 

Lower 

Sediment 

Package 

F. 12-01/02 2 0.16 g - - - <0.01 g 
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8.2.2. Feature Seeds 

Identified taxa in LSP-1 features include Atriplex (25%), Chenopodium 

(23%), Amsinckia (18%,) Agrostis (11%), cheno-ams (6%), Brassicaceae family 

members (6%) including Descurainia (4%), Poaceae members (3%), Mentzelia 

albicaulis (2%), and  Leymus cinereus (1%). Eriogonum, Nicotiana attenuata, 

Scirpus/Schoenoplectus, Achnatherum hymenoides, Montiaceae members, Phacelia, 

Plagiobothrys, Juniperus, Ribes, Galium, and Typha latifolia contributed less than 

1% to the assemblage. Other observed seed types – Amaranthus, Lamiaceae, and 

Prunus – accounted for less than 0.1% each. Unidentified seeds also accounted for 

1% of the feature assemblage. 

Charred seeds were generally more abundant in the feature samples than the 

column samples, and comprised approximately 27% of the overall assemblage. 

Although there is some overlap in the charred taxa identified in features and column 

samples, the botanical remains observed in the feature samples represent a wider 

range of plant types (Figures 8.4 and 8.5).  

8.2.2.1. Seeds in Hearths  

The hearth samples contained 98% of all feature seeds (charred, n=935; 

uncharred, n=3441). Plants exposed to charring in the fire hearths were dominated by 

Agrostis (41%) and Chenopodium (34%) (Table 8.9). Density calculations indicate 

the Feature 14-04 hearth contained the largest abundance of charred seeds (Figure 

8.6). 
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Figure 8.4. Relative abundance of charred seeds in LSP-1 Rockshelter feature samples. 
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Figure 8.5. Relative abundance of uncharred seeds in LSP-1 Rockshelter feature samples. 
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Table 8.9. Charred seeds in hearths at LSP-1 Rockshelter. 
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2σ cal BP 

Range 
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F. 11-14 1013 ± 29 976-803 - 2 73 - - 136 1 2 - - - 1   4 - 7 1 1 2 - 9 239 

F. 11-05/15 2490 ± 25 2723-2473 2 - 12 - - 48 2 5 1 1 - - 1 2 26 3 - 1 - 2 6 110 

F. 11-19 2910 ± 30 3158-2960 - 2 2 - - 48 2 - - - - 1 1 - 1 1 - - - - - 58 

F. 14-02 3987 ± 26 4522-4415 - - - - - 4 - - 1 - - - - - 24 2 - - - - - 31 

F. 14-04 3990 ± 26 4522-4416 - - - - - 1 - 2 - - 1 - - - 327 - - - - - - 331 

F. 11-07 4010 ± 20 4522-4425 - - 19 1 3 66 - - - - - - - 6 - 13 - - - - - 108 

F. 14-03 Undated1 6 - 9 3 - 9 - - - - 1 - - 15 - - - - - - 1 38 

F. 13-01 8700 ± 30 9735-9550 - - - 3 - 3 - - - - - - - - - - - - - - - 6 

F. 13-02 Undated2 - - 1 - - - 1 2 1 - - - - - 1 - - - - - - 6 

Ubiquity 22% 22% 67% 33% 11% 89% 44% 44% 33% 11% 22% 22% 22% 44% 56% 56% 11% 22% 11% 11% 33% n/a 
1 Feature 14-03 is currently undated but is likely late Holocene in age.  
2 Feature 13-02 is currently undated but is likely early Holocene in age.  
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Feature 13-01 yielded very few plant remains. The charred assemblage 

included Chenopodium seeds (50%) and cheno-am perisperms (50%). Uncharred 

seeds including Amsinckia (n=64; 99%) and cheno-am perisperms (n=1; 1%) were 

also present. Feature 13-02 also returned a lower seed count than expected in a fire 

hearth. No single taxon was ubiquitous in the hearth samples, but Chenopodium was 

identified in every sample except Feature 13-02. 

8.2.1.2. Seeds in Other Features 

 Seeds were rarely encountered in Feature 12-01/02, and the entire assemblage 

consisted of only four uncharred Amsinckia seeds, two uncharred cheno-am 

perisperms, and four charred Chenopodium seeds. The 47 seeds present in Feature 

14-01 were limited to uncharred Chenopodium (55%), uncharred Poaceae (32%), and 

uncharred Achnatherum hymenoides (13%) types. The lack of charred seeds also 

supports the position that these features were not utilized as cooking hearths.  

Figure 8.6. Charred seed density in LSP-1 Rockshelter feature 

samples. 
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8.3. Data Analysis and Interpretations 

 

8.3.1. Richness and Diversity 

 At LSP-1 Rockshelter, taxonomic diversity and richness are highest in the 

hearth samples (Figure 8.7). However, a non-parametric Kruskall-Wallace rank sum 

test shows that the Shannon-Wiener indices are not statistically different between 

samples (chi square=11.9475, df=11, p-Value=0.3676). 

8.3.2. Cluster Analysis 

 Cluster analysis based on the densities of charcoal, charred seeds, and 

uncharred seeds yielded very weak results. All but three samples (Feature 14-03, 

Feature 14-04, and CS-8b) grouped together under the same cluster (Figure 8.8). 

 
Figure 8.7. Shannon-Wiener Index and taxonomic richness at LSP-1 

Rockshelter. 
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When the contributing variables are reduced to include only charcoal density and 

charred seed density, the analysis produced similar results; only samples representing 

Feature 14-02, Feature 14-03, and Feature 14-04 were isolated from all other 

samples.  

 

It appears that charcoal density is the only single variable that delineates 

categories of groupings. The first group includes all column samples and features 12-

01/02, 13-01, and 13-02. In the second group, features 11-05/15, 11-07, 11-14, 11-

19, and 14-01 cluster together. The third group contains features 14-02 and 14-04, 

while in the fourth group Feature 14-03 is isolated. However, because the cluster 

analysis relies only on a single variable, I cannot confidently rely on these groupings 

Figure 8.8. Results of cluster analysis of LSP-1 Rockshelter bulk sediment 

samples using charcoal density, charred seed density, and uncharred seed density 

(left), charcoal density and charred seed density (middle), and charcoal density 

alone (right). 
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to act as a basis for further analyses. Instead, sample types and provenience data are 

used to define meaningful categories for data analysis.  

 

8.3.3. Cultural vs. Non-cultural Seed Deposition 

Six categories of samples are used to compare seed data in the LSP-1 

Rockshelter deposits:  

 strata II, III, and IV in the N105E99 upper package column (UC),  

 stratum V in the N105E99 middle package column (MC),  

 strata VII and IX in the N105E99 lower package column (LC),  

 hearth features (H),  

 non-cultural feature samples (F. 12-01/02 and 14-01) (NCF), and  

 Mazama tephra (Mz).  

Statistically, the populations of charred and uncharred seed assemblages are 

differentially distributed in all but the NCF samples (Table 8.10). These results 

diminish the likelihood that uncharred seeds outside of feature contexts at the LSP-1 

Rockshelter can confidently be considered the sole result of cultural deposition. The 

charred seeds, however, are considered to be indicative of cultural activity at this site 

both inside and outside of discrete cultural features.  

Charred seed densities are highest in the hearths and in the UC samples 

representing strata III and IV. Chenopodium, Descurainia, and Agrostis taxa 

dominate the charred assemblages of both sample types (Table 8.11). These seeds 

account for more than 80% of all charred seeds identified in the LSP-1 Rockshelter 

samples. Cheno-am periosperms and Agrostis were ubiquitous in every sample type. 
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Table 8.10. Heteroscedasticity results for charred versus 

uncharred seed taxa* in the LSP-1 Rockshelter sample types. 

Sample Type Chi Square Value df p-Value 

UC 1660.4265 10 <0.00001 

MC 72.8529 6 <0.00001 

LC 104.3626411 6 <0.00001 

H 905.3512893 20 <0.00001 

NCF 3.8717 4 0.42365 

Mz No charred seeds present 

*unidentified seeds excluded from this analysis 

Table 8.11. Density, distribution, and ubiquity of charred seeds by sample type.  

Feature types UC MC LC Mz H NCF Sum Ubiquity* 

         Samples (n) 10 7 6 2 9 5 39 
 

Soil vol (L) 9.9 7 4.35 2 5.3 2.85 31.4 
 

                  

         CHARRED SEEDS 

       Amsinckia 0 0 0 0 8 0 8 20% 

Brassicaceae 0 0 0 0 4 0 4 20% 

  Descurainia 63 7 0 0 115 1 186 80% 

Cheno-ams 23 1 11 0 4 3 42 100% 

  Atriplex 0 0 0 0 3 0 3 20% 

Eriogonum 2 0 0 0 9 2 13 60% 

Galium 0 0 0 0 2 1 3 40% 

Lamiaceae 0 0 0 0 1 0 1 20% 

Mentzelia 1 0 0 0 2 0 3 40% 

Montiaceae 0 0 0 0 5 1 6 40% 

Phacelia 1 0 0 0 2 0 3 40% 

Plagiobothrys 0 0 0 0 2 0 2 20% 

Poaceae 1 0 0 0 27 0 28 40% 

  Agrostis 44 6 6 0 378 1 435 100% 

  Leymus 0 0 2 0 26 0 28 20% 

Prunus 0 0 0 0 1 0 1 20% 

Ribes 0 0 0 0 2 0 2 20% 

Scirpus 0 0 0 0 2 0 2 20% 

Typha   0 0 1 0 2 0 3 40% 

Unidentified 27 4 18 0 16 0 65 n/a 

         Total seed N 501 44 58 0 923 16 1542 

 Seed density 50.6 6.3 13.3 0 174.2 5.6 49.1   
*Excluding sample type representing sterile Mazama tephra 
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Figure 8.9. Temporal distribution of all drought and alkaline 

adapted plants in the LSP-1 Rockshelter macrobotanical 

samples. 

8.3.4. Paleoenvironmental Trends 

 Evaluations of ecological habitat characteristics demonstrate warmer, drier 

conditions in the Middle Holocene based on the distribution and frequency of 

drought and salt tolerant plant taxa (Figure 8.9). This is the only clear trend in the 

seed data, as the frequency and distribution of plant taxa indicating wetland habitats 

change very little over time (Figure 8.10). Very few wetland plants are represented in 

the LSP-1 Rockshelter charred macrobotanical assemblage. The presence of these 

seeds may suggest the marshes associated with Bluejoint Lake seasonally 

rejuvenated during particularly wet years. 
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A few uncharred Achnatherum hymenoides seeds were recovered in feature 

samples. According to the USDA (2014) wetland indicator status database, 

Achnatherum hymenoides is the only obligate upland plant that appears in the LSP-1 

samples. Given the location of the site in upland habitat, it is likely that the 

uncharred Achnatherum seeds represent grasses growing in close proximity to the 

rockshelter. These seeds are cotemporaneous with the charred seeds in the same 

features. They represent contributions to the site formation process, regardless of 

whether their introduction was the product of purposeful resource targeting by 

human visitors.  

 

Figure 8.10. Temporal distribution of all obligate wetland and 

facultative wetland plants in the LSP-1 Rockshelter macrobotanical 

samples (note the largest contribution is four seeds in Stratum III).  
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 8.3.5. Seasonality of Habitation 

 The known fruiting time of plant taxa represented by charred seeds in the 

macrobotanical assemblage indicates the seeds in cultural contexts were available for 

harvest in the summer and fall months at LSP-1 Rockshelter (Figure 8.11). In the  

hearths, the frequency of charred seeds available for harvest in the summer and fall 

mirrors the frequency of uncharred seeds that would have been available in the fall 

and winter months (Figure 8.12). Atriplex is the only taxon with seeds that ripen in  

late fall/early winter. For the most part, Atriplex seeds are uncharred in the samples; 

charred seeds (n=3) only appear in the Feature 11-07 hearth. 

Figure 8.11. Seasonal availability of charred seeds in the LSP-1 

Rockshelter bulk soil samples. 
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Figure 8.12. Seasonal availability of plant taxa represented in 

the LSP-1 macrobotanical samples, presented as mean density 

of uncharred seeds (upper) and charred seeds (lower).  
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The high incidence of charred plant remains with summer and fall harvest 

schedules recovered in hearths deviates from the faunal record at LSP-1, which 

suggests habitation centered around fall/winter leporid harvesting (Pellegrini 

2014:118). As noted in the analysis of the Paisley Caves macrobotanical remains, the 

ethnographic record suggests seeds were collected in the summer and fall and then 

stored for winter use (Fowler and Rhode 2007:337; Kelly 1932:88). Although the 

supposition that communal rabbit drives and processing occurred in the fall and 

winter (when hare pelts were thickest) also partially rests on extrapolation from the 

post-contact period ethnographic record (Steward 1938), the faunal assemblage at 

LSP-1 Rockshelter record provides an additional line of evidence supporting the 

interpretation that people camped here during the fall and winter The assemblage of 

leporid (primarily Lepus sp.) bones consists mainly of adult specimens, which 

Pelligrini (2014:49-50) attributes to processing activities following communal rabbit 

drives. This assumption is based on the knowledge that leporid offspring are born 

from early spring to early September and juvenile mortality rates are high (Hockett 

1991:668). If people were visiting the rockshelter in the late summer or early fall, 

more juveniles would be expected in the faunal assemblage. 

If the ethnobotanical record holds true, then it is likely that the 

macrobotanical assemblage supports a fall/early winter habitation associated with the 

documented jackrabbit processing – the seeds in the fire hearth may have been 

harvested and stored prior to being prepared at the site.  
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8.3.6. Taxon Ubiquity 

 Throughout the Holocene, inhabitants of LSP-1 Rockshelter targeted a 

handful of economically important resources while visiting the site. As discussed in 

section 8.3.3., the unique distributions of charred and uncharred seed taxa suggest 

that uncharred seeds outside of distinguishable cultural features may reflect natural 

deposition rather than intentional introduction by human agents.  Consequently, 

uncharred seeds from the column samples are not considered in the following survey 

of the distribution of economically important taxa through time.  

 The archaeological record from the Early Holocene at LSP-1 Rockshelter is 

meager, yet significant to understanding regional population demographics and 

people with Western Stemmed toolkits at this time (Smith and Barker 2017). The 

presence of a CCS flaked stone lunate crescent (Smith et al. 2014) and five Callianax 

(formerly Olivella) shell beads directly dated to the Early Holocene between 9650 

and 8115 cal BP demonstrate an early connection between Great Basin people and 

people living along the coast. Macrobotanical data generated in this study also 

suggest the people utilizing the Warner Valley had an equally long relationship with 

plants. Fire hearth feature 13-01 yielded cheno-am and Chenopodium seeds, though 

their abundance was very low. Charred cheno-am, Chenopodium, were also 

identified along Agrostis and Leymus caryopses and Typha seeds in column samples 

representing Early Holocene deposits (Table 8.12). 

 Smith et al. (2014) documented a habitation hiatus at LSP-1 Rockshelter 

during most of the Middle Holocene. The macrobotanical record supports this 

observation with a break in heath features and charred remains from  ca. 9125 to  
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Table 8.12. Taxon ubiquity by period of habitation at LSP-1 Rockshelter. Taxa 

represented by charred seeds are represented by black, taxa represented by charred 

and uncharred seeds represented by red, and taxa represented only by uncharred 

seeds represented by blue.  

Period Late Holocene (Late) Middle Holocene Early Holocene 

Number of Samples 

n=14 

4 Hearths, 10 Column 

Samples 

n=8 

4 Hearths, 4 Column 

Samples 

n=12 

3 Hearths, 9 Column 

Samples 

Amaranthus   13%   

Amsinckia 14% 50% 17% 

Brassicaceae 21%     

  Descurainia 71% 38%   

Cheno-am 43% 13% 42% 

  Atriplex sp.   13%   

  A. confertifolia 29% 25%   

  Chenopodium 86% 75% 58% 

Claytonia 21% 13%   

Eriogonum 21% 25%   

Galium 7% 25%   

Juniperus 7%     

Lamiaceae 7%     

Mentzelia 29% 25%   

Nicotiana 7%     

Phacelia 21%     

Plagiobothrys 7%     

Poaceae 36% 25% 8% 

  Achnatherum 14%   8% 

  Agrostis 50% 88% 25% 

  Leymus 21% 25% 17% 

Prunus 7%     

Ribes 14%     

Scirpus 29% 13%   

Typha   7%   8% 

 

4500 cal BP. Charred seeds in late Middle Holocene hearths and column samples 

include Chenopodium, Descurainia, Atriplex, Eriogonum, Galium, Mentzelia, cheno-

am perisperms, and Claytonia. Uncharred seeds in late Middle Holocene hearths also 

included Amsinckia, Amaranthus, and Scirpus seeds.  
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Together, the Early Holocene and late Middle Holocene are represented by 

the artifact-rich middle package, where the majority of artifacts and faunal remains 

were recovered. Charred seeds, however, were most abundant in the hearths and in 

the upper package column samples representing the Late Holocene. The taxonomic 

diversity of seed types expands to include plants growing in upland forested habitat, 

such as Prunus and Ribes. More wetland-adapted plants, including Typha and 

Scirpus are also incorporated into the assemblage in the Late Holocene. 

Overall, the temporal distribution of culturally deposited seeds indicate that 

visitors to LSP-1 Rockshelter collected and processed plants with small seeds that 

were likely locally available. In the Late Holocene, the breadth of dietary 

constituents increased to include plants from a diversity of ecological niches  .  

 

8.3.7. Ethnobotany and Traditional Ecological Knowledge 

Charred seeds of edible taxa also occurred with the greatest frequency in the 

upper package hearths and column samples (Figures 8.13 and 8.14). Taxonomic 

types in the LSP-1 Rockshelter charred macrobotanical assemblage that are deemed 

important in the traditional economies of Great Basin peoples (Fowler and Rhode 

2007) include Amsinckia, Atriplex, Chenopodium, Mentzelia, and Elymus (Leymus). 

Plants valued for their medicinal attributes and those used in the production of 

handicrafts were not well represented in the assemblage.  

In comparison, seeds of plants valued for nutrition and edibility were well 

represented. Charred specimens of edible seeds represented by Agrostis and 

Descurainia figure prominently in the samples. Cheno-ams (including Atriplex and  
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Figure 8.14. Frequency of seeds representing charred edible 

taxa in the LSP-1 Rockshelter sample types.  

  

Figure 8.13. Frequency of seeds representing charred edible taxa in the 

LSP-1 Rockshelter sample types.  
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*Data log-transformed to account for skewed distribution.  

 

 
Figure 8.15. Distribution of cheno-ams (upper), Agrostis (middle), and Descurainia 

(lower) charred seed types by strata. 
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Chenopodium), Agrostis, and Descurainia occur more frequently in the upper strata 

representing the Late Holocene than during any other period represented by samples 

in this analysis (Figure 8.15; previous page). The ubiquity and abundances of charred 

cheno-ams and Descurainia across all sample types, and cheno-ams throughout the 

Holocene, illustrates the continued importance of these taxa to visitors at LSP-1 

Rockshelter through time. 

 

8.4. LSP-1 Rockshelter Macrobotanical Overview 

 

 Thirty-nine bulk sediment samples analyzed for macrobotanical remains at the 

LSP-1 Rockshelter identified at least 28 plant taxa. Charcoal was the primary 

botanical material identified at LSP-1 Rockshelter, with over 4911 fragments (37.92 

g) observed in the samples. Of the pieces identified in this analysis, only Artemisia 

(99%), Atriplex (1%), and Rhus (< 1%) types were noted. All three shrubs were 

noted growing in the immediate vicinity of the site in 2013. Nearly all the charcoal 

(92%) was recovered from features (Figure 8.16). Amorphous charred tissues 

representing fruits and geophytes were not well represented, but were most 

commonly identified in the upper package hearth features.  

Overall, 7024 seeds and seed fragments were present in the 39 samples 

processed for macrobtanical analysis. Both charred (n=1542) and uncharred 

(n=5482) seeds occurred in the column and feature samples. Although both seed 

assemblages accrued simultaneously and contributed to the archaeological site 

formation, the distribution and taxonomic makeup of the uncharred assemblage 
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suggest differential deposition vectors. Outside of cultural features, only the charred 

seeds are considered to have been targeted, harvested, and processed by site 

inhabitants. 

The seeds identified at 35HA3735 include 26 taxa in 17 families. Atriplex 

(33%) and Chenopodium (22%) occurred with the greatest frequency. Other 

identified seed taxa included cheno-ams (17%), Amsinckia (11%), Agrostis (6%), 

Descurainia (3%) and other Brassicaceae members (3%), Poaceae members not 

identified to species (2%), Mentzelia albicaulis (1%), Leymus cinererus (<1%), 

Nicotiana attenuata (<1%), Eriogonum sp. (<1%), Achnatherum hymenoides (<1%), 

Montiaceae (<1%), Juniperus sp. (<1%), Scirpus/Schoenoplectus sp. (<1%), and 

Urtica dioica (<1%). Galium, Juncus, Prunus, Typha latifolia, Lamiaceae, Ribes, 

Phacelia, Plagiobothrys, and Amaranthus each account for less than 0.1%. The 

Atriplex likely all represent A. confertifolia. In less than 1% of the specimens only 

the endosperm of the seed was present, preventing a confident identification to 

species. Unidentified types an additional 1% of the seed assemblage. 

Long term trends identified in the data indicate the Middle Holocene climate 

favored plants with aridity and salinity tolerances. Both charred and uncharred seeds 

identified in the Middle Holocene samples reflect a higher number of drought -

adapted and halophytic taxa at this time. Increased occurrences of carbonized plant 

remains in the Late Holocene indicate people visited the cave more frequently before 

the onset of the Middle Holocene Climate Optimum, and again after climatic 

conditions stabilized.  

,
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Figure 8.16. Charcoal and charred seed densities (coded by color map) across all bulk soil 

samples analyzed at LSP-1 Rockshelter. 
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The most commonly identified charred seeds include cheno-ams, 

tansymustard, and bentgrass. Each of these taxa is reported as food items in 

ethnographic literature of northern Great Basin tribes (Moerman 1998). The 

overwhelming majority of plants represented in the charred assemblage would have 

been available to harvest in the summer or fall. This pattern differs from the pattern 

established by the distribution of artifacts and faunal remains previously reported, 

which suggest people visited the site in the fall and winter months to process rabbits 

(Pelligrini 2014; Ware van der Voort 2016). If behaviors reported in the 

ethnographic literature of the Great Basin were also true of pre-contact cultural 

activities, then the charred seeds in LSP-1 Rockshelter hearths may have been 

harvested and stored weeks or months prior to their processing here (Fowler and 

Rhode 2007; Kelly 1932). 
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CHAPTER IX 

NORTHERN GREAT BASIN ROCKSHELTER ARCHAEOBOTANY IN 

REGIONAL PERSPECTIVE 

 

In total, 74 bulk soil samples from the Paisley Caves (35LK3400) and LSP-1 

Rockshelter (35HA3735) were analyzed to identify macrofossil remains including 

seeds, fruits, and charcoal. Intersite variability between the macrobotanical 

assemblages described in chapters VII and VIII provide an additional level of data 

analysis that addresses the research questions contemplated in this dissertation. 

Briefly, these questions include: 

 What plant taxa are represented in northern Great Basin rockshelters? 

 Do the macrobotanical data reflect the intentional introduction of plants by 

people visiting the rockshelters? 

 What does the macrobotanical record demonstrate about diet breadth in the 

Terminal Pleistocene/Early Holocene (TP/EH)? 

 Does the patterning of macrobotanical data in features inform feature 

function?  

 Can seasonal visitation patterns to northern Great Basin rockshelters be 

established? 

 Does the macrobotanical assemblage reflect foraging behaviors representing 

adaptive responses to large scale climate constraints? 

 How do the macrobotanical data relate to the ethnographic record? 

  

9.1. Taxonomic Representation 

  

Numerous plant taxa are represented in the northern Great Basin rockshelters 

evaluated in this analysis. Charcoal fragments of Artemisia are well represented in 

the macrobotanical assemblages at both the Paisley Caves and LSP-1 Rockshelter 
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sites (over 90% of total weight of identified charcoal). Other charcoal types are 

limited to Atriplex and Salix at the Paisley Caves, and Atriplex and Rhus at LSP-1 

Rockshelter. The data suggest sagebrush is the preferred fuel source in northern 

Great Basin rockshelters for the entirety of human presence in the area. Sagebrush 

ubiquity and availability likely drove this trend. Salix charcoal in Younger Dryas-

aged deposits at the Paisley Caves indicate wetter conditions during this period; 

today, the closest willows grow more than 50 km southeast of the site.  

At the Paisley Caves, the dominant seed taxa include Atriplex (21%), 

Achnatherum (19%), Chenopodium (11%), Amsinckia (8%), and Poaceae (8%). 

Atriplex (33%), Chenopodium (22%), cheno-ams (17%), Amsinckia (11%), and 

Agrostis (6%) seed taxa dominated the assemblage from LSP-1 Rockshelter. The 

taxa represent both charred and uncharred seeds, and the similarity in the two 

assemblages likely reflects comparable ecosystem constraints.  

Other plants contributing to the seed assemblages at both sites demonstrate 

more taxonomic variation. Charred seeds at the Paisley Caves include Boraginaceae, 

Amaranthus, Hesperostipa, Geraniaceae, Rosaceae, Descurainia, Phacelia, 

Cryptantha, Urtica dioica, Camassia, Sphaeralcea, Plantago, Liliaceae-

Amaryllidaceae, Ceanothus, Juncus, Sesuvium, and Vicia in addition to the types 

listed in the preceding paragraph. Charred seeds at LSP-1 Rockshelter also include 

Brassicaceae, Descurainia, Poaceae, cheno-ams, Montiaceae, Galium, Lamiaceae, 

Mentzelia, Phacelia, Plagiobothrys, Leymus, Prunus, Ribes, Scirpus, Polygonaceae, 

and Typha. Taxa that occur at both sites are limited to Poaceae, Achnatherum, cheno-

ams, Atriplex, Chenopodium, Amsinckia, Descurainia, and Phacelia. The taxonomic 
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diversity of charred seeds and charcoal identified in this research is comparable to 

that of previous archaeobotanical studies in the northern Great Basin (see Table 2.3).  

The majority of seeds identified in stratigraphic columns collected at LSP-1 

Rockshelter and the Paisley Caves originate from upland herbs and shrubs (Figure 

9.1). Seeds outside of cultural features are less likely to have culturally-mediated 

distributions, and therefore are more likely to reflect ecological conditions in the 

immediate vicinity of the site. The overall pattern suggests the modern day desert 

scrub vegetation characterizing both sites has persisted through time, with minor 

variations. Seeds representing wetland and upland plants in cultural features exhibit 

similar distributions. Higher abundances of wetland-adapted plants in Younger Dryas 

features may signal a cultural signature (Figure 9.2). It appears that foragers living in 

the northern Great Basin at the TP/EH boundary were harvesting flora from nearby 

marshes and lakes, and transporting these plants to the rockshelters.  

Figure 9.1. Contribution of plant taxa outside cultural features 

representing different ecological zones. 
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9.2. Culturally-Deposited Seeds 

 

As discussed in Chapter V, seeds in archaeological contexts represent 

secondary deposition (that is, either the seeds themselves or the plants bearing those 

seeds were moved from the location where the plant was rooted in the ground to the 

rockshelters). The crucial question lies in whether the secondary deposition resulted 

from cultural agents or other sources (i.e., animal waste, rodent-caching, zoochory). 

Pointedly, interpretations about the origins of uncharred, organic remains in arid 

rockshelters are complex because uncarbonized remains can preserve for thousands 

of years. 

Figure 9.2. Contribution of plant taxa in cultural features 

representing different ecological zones. 
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As reported in chapters VII and VIII, Kruskall-Wallace non-parametric tests 

resulted in the rejection of the null hypothesis that the statistical populations of 

charred and uncharred seeds at both the Paisley Caves and LSP-1 Rockshelter were 

distributed the same way. Because uncharred and charred seed assemblages 

demonstrate significant differences in their taxonomic compositions, unless seeds 

were charred and/or exhibited evidence of processing (see discussion in Sanford 

1983), or were recovered in a cultural feature, they were not considered a product of 

cultural deposition in this study. Charred seeds and seeds exhibiting breakage and/or 

shattered seed coats were the most abundant among taxa of the Chenopodiaceae, 

Boraginaceae, Brassicaceae, and Poaceae families, many of which have 

economically important taxa. 

This interpretation does not question the antiquity of the uncharred seeds. The 

sampling strategies employed in this study carefully avoided bulk soil collection in 

disturbed deposits. Even the less-rigorously selected Paisley Cave 5 strata samples 

were collected from an excavation profile with good stratigraphic context. Uncharred 

seeds may have been brought into the rockshelters by people living there, but without 

the benefit of contextualizing discrete cultural features, it is problematic to assign 

human agency to their provenience. The introduction and incorporation of uncharred 

seeds into the archaeological context could also stem from alluvial or aeolian 

transport, animal foraging, burrowing, or excrement, insect bioturbation, or represent 

unintentional deposition by people. The latter path of de facto introduction may 

include seeds picked up on an individual’s clothing or seeds incidentally 

incorporated when harvesting other plant materials, among other scenarios.  
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This caveat may also extend to charred and uncharred seeds in features. 

Uncharred plant remains in cultural features could reflect post-depositional fill, just 

as charred seeds in cooking feature fill may represent plant remains on the ground 

surface incidentally incorporated when the fire was ignited. However, associated 

archaeological evidence (formed tools, debitage, cut bones, etc.) and the taxonomic 

makeup of the seed assemblages corroborate the interpretation that charred seeds, in 

general, and uncharred seeds in features, can be attributed to the activities of people 

visiting the rockshelters. 

 

9.3. Paleoindian Plant Use in the Younger Dryas 

 

The Botanical Lens and hearth features at the Paisley Caves offer a rare 

opportunity to study the diet and behaviors of Paleoindians in North America during 

the Younger Dryas (Jenkins et al. 2012a, 2014, 2016; Hockett et al. 2017). The 

strategic placement of the Unit 2/6B macrobotanical column at the Paisley Caves 

comprised deposits spanning the Early Holocene and Terminal Pleistocene, including 

the Younger Dryas Botanical Lens feature. Column samples representing the 

Botanical Lens did not contain any charred seeds. In contrast, hearth features from 

the Botanical Lens did yield charred seeds. In Feature 2/4C-4, 67% of the total 

charred seeds represent edible taxa, and in Feature 2/3A-2-46, 100% of the charred 

seed assemblage represents edible taxa. The identified charred taxa in these features 

include cheno-ams, Atriplex, and Descurainia.  
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The Younger Dryas hearths in Paisley Cave 1 (features 1/7-4a and 1/7-4b) 

contained charred cheno-ams and Poaceae seeds. Feature 2/6-4 in Cave 2 yielded a 

more diverse assemblage of charred seeds, including Boraginaceae, cheno-ams, 

Atriplex, Chenopodium, Poaceae, Achnatherum, and Sesuvium. Each of the seed taxa 

present in the definitive Younger Dryas fire hearths are classified as upland plants 

and several possess documented drought and salinity tolerances. The presence of 

these types reflects the harvesting and processing of upland plants common to the 

vicinity of the Paisley Caves. 

These findings support previous studies indicating diversified diet breadth 

among inhabitants of the Paisley Caves (Hockett et al. 2017:574). Visitors to the 

Paisley Caves during the Younger Dryas consumed small seeds of grasses, cheno-

ams, mustards, and borages along with artiodactyl, rabbit, fish, sage grouse, and 

insects. Plant foods tend to be represented by upland seed extraction in the 

macrobotanical record. Utilization of marsh plant resources seems to be focused on 

collection of fibers for mats and basketry rather than on food acquisition during the 

Younger Dryas.   

 

9.4. Interpreting Cooking Features 

 

Feature samples at both sites were collected during the course of excavations 

spanning several years. In some cases, soil samples were recovered from charcoal 

stains or ash lenses that were assumed to represent fire hearths or earth ovens. 

Analysis of macrobotanical remains from perceived cooking features were compared 
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to determine feature function. At LSP-1 Rockshelter, charcoal and charred seed 

abundances were significantly higher in nine out of eleven features, indicating their 

use as fire hearths. A dearth of charcoal and charred seeds in Feature 12-01/02 and 

Feature 14-01 indicate they are probably not cultural. The Paisley Caves cooking 

features were all identified as fire hearths with the exception of a stratified feature in 

Cave 5 represented by Feature 5/5A and Feature 5/5A-26-8. The bowl-shaped feature 

with stratified charcoal and ash lenses was lined with fire altered rocks, and differed 

from other TP/EH hearths identified at the site. These observations suggested the 

feature may represent an oven (see Black and Thoms 2014; Thoms 2009).  

Analysis of macrobotanical remains in the cooking features by sample type 

illustrates differences between the density of charcoal, charred seeds, and charred 

plant tissues (Figure 9.3). The fire hearths contained abundant charcoal, moderate 

densities of charred seeds, and small amounts of charred fruity and starchy tissue. 

The Cave 5 earth oven features contained less charcoal, more charred seeds, and 

greater amounts of charred starchy tissue. The features deemed non-cultural 

contained scant amounts of charcoal and charred seeds, and no charred plant tissue.  

Both features representing the earth oven contained several charred edible 

seeds, comprising 61% and 88% of the total number of charred seeds respectively. 

However, the Cave 5 earth ovens contain a wider array of charred seeds representing 

targeting of more diverse ecological settings than the Cave 1 and Cave 2 Younger 

Dryas hearths. The charred seed assemblage in Feature 5/5-3 included Boraginaceae, 

Cryptantha, Phacelia, Descurainia, cheno-ams, Atriplex, Vicia, Geraniaceae, 

Liliaceae, Sphaeralcea, Plantago, Poaceae, Achnatherum, and Urtica types.  
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In Feature 5/5A-26-8, Amaranthus, Camas, Boraginaceae, cheno-ams, 

Atriplex, and Juncus were identified. Some of these taxa are classified as facultative 

wetland plants, which suggest they were foraged from a different ecological zone 

than the charred seeds in the Cave 1 and Cave 2 Younger Dryas hearths. Moreover, 

Camassia and Liliaceae seeds and the presence of charred parenchymous tissue 

representing geophytic underground storage units (e.g., bulbs, corms, and roots) may 

represent the purposeful collection of upland roots to augment dietary intake. These 

behaviors are not without precedent in Terminal Pleistocene contexts at the Paisley 

Caves; a mano/handstone analyzed for protein residues and plant microremains 

yielded evidence of Apiaceae starches in association with horse proteins (Cummings 

and Puseman 2003).  

 

9.5. The Role of Rockshelters in Northern Great Basin Seasonal Rounds 

 

Rather than indicate a strict pattern of seasonal use, the macrobotanical 

records at the Paisley Caves and LSP-1 Rockshelter reflect flexible reactions to 

contemporaneous environmental conditions and changing cultural needs. Over the 

course of time, people with high residential and territorial mobility used the 

rockshelters during different seasons. Jenkins et al. (2016:132) speculated that the 

Paisley Caves represented just one stop in the seasonal rounds of Younger Dryas 

populations, most commonly visited during times of the year when resources were 

abundant, either in the spring or the late summer/fall. When non-culturally deposited 

seeds are omitted from the analysis, the Younger Dryas and Early Holocene 
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macrobotanical record at the Paisley Caves demonstrates a focus on harvesting plants 

in the summer and fall (see Figures 7.21 and 7.22). Regardless of whether visitors to 

the caves scavenged seeds from the woodrat nests they encountered (as discussed in 

Chapter VII), the ripening times of seed taxa in cultural features that were not 

represented in the nest (especially cheno-ams) indicate summer and fall visitation 

during this period. Archaeological investigations have provided corroborating data 

suggesting that groups of 20-30 people camped at the rockshelters and processed 

pronghorn hides to make blankets for winter (Jenkins et al. 2013, 2016).  

People visited the Paisley Caves less frequently and later in the year (during 

the fall and winter months) during the Altithermal when conditions would have been 

hotter and drier. Charred seeds recovered from hearths at LSP-1 Rockshelter and the 

Paisley Caves suggest the timing of rockshelter habitation vacillated over the past 

14,000 years (Figure 9.3).  

The data show increases in the abundance of seeds that would have been 

available to harvest in the summer during the early Middle Holocene. These data 

conflict with faunal and artifact records at LSP-1 Rockshelter which indicated the 

site was primarily visited in the late fall and early winter months when people 

conducted rabbit drives (Pelligrini 2014). The higher instance of plant taxa with 

summer-ripening times could reflect increased use of the site for upland plant 

processing independent of winter animal processing, but may suggest that seeds were 

harvested and stored prior to being cooked at the rockshelter as indicated in 

ethnographic accounts (Fowler and Rhode 2007:337; Kelly 1932:98).  
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Alternatively, shifting environmental parameters arising from the Middle 

Holocene Climate Optimum (Altithermal) could also affect the ripening times of 

seeds. Phenotypic plasticity and adaptive evolution among flora often results in  

plants adjusting flowering and ripening times based on short-term environmental 

conditions (Anderson et al. 2012; Nicotra et al. 2010). Warm and dry conditions in 

the Altithermal may have prolonged the duration of reproductive activity in plants, 

thereby extending the flowering phase into the fall.  

Comparisons of macrobotanical to faunal datasets indicate the possibility that 

people visited LSP-1 Rockshelter during the fall months. As discussed in Chapter 

VIII, the leporid assemblage at the site contained very few juveniles, which indicates 

Figure 9.3. Seasonal availability of charred seeds in cultural 

features (log transformed for improved visualization). 
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that offspring born that year had already reached maturity (Hockett 1991; Pelligrini 

2014).   

At LSP-1 people in the early Late Holocene used the site at different times 

and for different resources than those by people in the late Late Holocene. The 

preponderance of butchered faunal remains and diagnostic, formed tools recovered at 

LSP-1 are associated with strata IV and V in the middle sediment package (ca. 9650 

to 3000 cal BP). Pelligrini (2014:80, 98) reports no faunal elements from deposits 

above 60 cmbd (ca. 3000 cal BP). In contrast, when the charred seed data are 

normalized to account for volumetric differences in sample size, 87.7% of the total 

seed assemblage for the column sample was recovered from samples in the upper 

sediment package, which postdates 3000 cal BP. Samples from the artifact-rich 

middle sediment package produced only 4.6% of the total seed assemblage. Finally, 

samples from the lower sediment package, which predates 9650 cal BP, produced 

7.7% of all identified seeds. This pattern indicates more recent site use (after ca. 

3000 cal BP) reflects cultural engagement in different activities at LSP-1 in the late 

Late Holocene than the behaviors represented when strata IV and V accumulated.  

Charred macrobotanical remains in features 11-05/19 (ca. 2600 cal BP) and 

11-14 (ca. 900 cal BP) included more abundant cheno-ams and Descurainia than the 

early Late Holocene hearths. Ribes and Prunus seeds also reflect the presence of 

upland berries in Feature 11-14, which do not appear in older features. It appears that 

the rockshelter may have been visited as a brief stopover in the late Late Holocene 

during the summer and fall in trips that were not related to communal rabbit drives.  
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9.6. The Role of Plants in Diet Breadth 

 

As early as 12,500 cal BP, seeds of Poaceae including Achnatherum 

hymenoides, cheno-ams including Amaranthus, Atriplex, and Chenopodium, 

Mentzelia albicaulis, Boraginaceae, Descurainia, and Phacelia are all represented in 

the charred macrobotanical assemblage at the Paisley Caves, suggesting people were 

collecting and processing grasses including Indian ricegrass, cheno-ams including 

pigweed, saltbush, and goosefoot, whitestem blazingstar, members of the borage 

family, tansymustard, and tansy for consumption at this time.  

The artifact and ecofact record left by inhabitants of the Paisley Caves 

suggest less frequent visitation after the onset of the Early Holocene, but charred 

seeds do occur in association with increases in the number of formed tools and 

charcoal densities between 9000 and 8000 cal BP. At this point in the Early 

Holocene, the charred seed assemblage is dominated by Poaceae and Chenopodium, 

but also includes cheno-ams, Achnatherum, Amsinckia, Atriplex, Suaeda, and 

Eriogonum. Their presence indicates the processing of small seeds including grasses, 

goosefoot, cheno-ams, Indian ricegrass, fiddlenecks, saltbush, wada, and buckwheat. 

At Paisley Caves, the taxonomic diversity of charred seeds is different in the 

strata samples than in the column or feature samples. Seed types, including 

Amsinckia and Mentzelia, are significantly more abundant in the Late Holocene 

strata samples than in any other period at the Paisley Caves (Figure 9.4). The 

presence of charred Sambucus seeds in the Cave 5 Stratum I sample also suggests 

foraging territories expanded to include upland forests in the Late Holocene. This 
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pattern could indicate a more diversified suite of plants targeted for consumption by 

people visiting the caves in the Late Holocene, or could stem from the poorly-

provenienced nature of the samples themselves. A notable exception is 

Chenopodium, which seems to have been an important plant food for the duration of 

habitation events at the Paisley Caves.  

Figure 9.4. Oneway analysis of charred Amsinckia seed density (R-

square = 0.568282, df = 34, p-value = <0.0001) by sample age 

(above) and oneway analysis of charred Mentzelia seed density (R-

square = 0.730182, df = 34, p-value = <0.0001) by sample age 

(below) at the Paisley Caves. 
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The analysis of the LSP-1 Rockshelter hearths’ contents indicates that the 

plant resources people consumed varied through time. In the terminal Early Holocene 

features (13-01 and 13-02), carbonized plant remains are limited to Poaceae 

members, cheno-ams, and Brassicaceae members. Conversely, the Late Holocene 

features (11-05/15, 11-07, 11-14, 11-19, 14-02, 14-03, and 14-04) contain hundreds 

of charred seeds indicating an elevated reliance on plant foods. These results also 

suggest increasingly diverse diet breadth during the Late Holocene. In addition to 

locally available Poaceae, cheno-ams, and Brassiccaceae, Scirpus/Schoenoplectus 

and Typha reflect the exploitation of nearby wetland resources, and Ribes and Prunus 

seed fragments suggest that groups foraged in upland contexts. A higher frequency of 

ground stone artifacts throughout the upper package deposits also signifies the 

increased importance of plant foods at this time (Geoff Smith, 2014, personal 

communication). The abundance of Chenopodium in the Late Holocene samples is 

also significantly greater than in any other period (Figure 9.5).  

Figure 9.5. Oneway analysis of all charred 

Chenopodiaceae-Amaranthaceae (R-square = 0.305595, 

df = 33, p-value = 0.0035) by sample age at LSP-1 

Rockshelter. 
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9.7. Paleoclimate and the Macrobotanical Record 

 

Previous studies have demonstrated the utility in comparing macrobotanical 

data to local and regional pollen records (Jacomet 2013; Wigand and Mehringer 

1985). Here, the macrobotanical remains are presented as percentage values to 

facilitate comparisons between the datasets (Birks 2014:313). One to one 

correlations between macrofossils and pollen grains lack real quantitative value due 

differences in the temporal and spatial scales each dataset represents; however, 

macobotanical data can validate climate reconstructions made from pollen data 

(Birks 2003). While both datasets can suffer from zero values representing false 

absences, when plant macrofossils are present, they do not signal the false presence 

of represented taxa (Birks 2014:312).  

The Paisley Caves Unit 2/6B column samples provide plant macrofossil 

records documenting taxonomic change through time. The Paisley Caves 

macrobotanical column complements and enhances palynological records obtained 

from the profiles of Unit 2/6B and Unit 2/4C (Beck et al. 2017; Saban 2015) and 

pertains to the Late Pleistocene and Early Holocene epochs (ca. 13,700 to 7600 cal 

BP). The LSP-1 Unit N105E99 macrobotanical column provides paleoclimate data 

spanning the Holocene (ca. 10,200 to 1100 cal BP). 

Pollen records from the Paisley Caves show conifer-dominated pollen assemblages 

prior to the Younger Dryas, with herbaceous plants increasing after its onset (Beck 

2017:9; Saban 2015:41). Though regional post-glacial Pinus-dominated pollen 

assemblages suggested pine forests were present in lower altitudes (Hansen 1947), 
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the relatively low Pinus pollen ratios at the Paisley Caves prompted Beck et al. 

(2017) to speculate pine trees never grew near the site. The macrobotanical record 

for pre-Younger Dryas deposits, represented by sample CS-21, included primarily 

Poaceae and Urtica seeds, reflecting mesic environmental conditions prior to 12,900 

cal BP, but very few Pinus plant macrofossils (Figures 9.6 and 9.7). The dearth of 

Pinus in the macrobotanical column samples supports the assertion that the limited 

Pinus pollen spectra indicate pine trees did not grow locally. If pine trees had been 

growing above the caves, their needles, which shed copiously, should be 

incorporated into the Paisley Caves assemblages. The few Pinus seeds recovered in 

this study, and seeds and cone scales recovered in situ by excavators, were probably 

brought to the site from another location, possibly atop Winter Rim to the west, 

where pine trees are currently distributed. 

During the Younger Dryas, low floristic diversity was reported in the Paisley 

Caves pollen records, which are dominated by Pinus and other conifers, Artemisia, 

Asteraceae, and Chenopodiaceae-Amaranathaceae (Beck et al. 2017:9; Saban 

2015:38-39). Scattered shrubs and forbs are also noted, which support previous 

regional paleoclimate reconstructions suggesting cool and moist steppe-environment 

characterized the northern Great Basin (Mehringer 1985; Wigand and Rhode 2002). 

Saban (2015) did not report the occurrence of juniper, but Beck et al. (2017: Figure 

6) noted the limited presence of Cupressaceae pollen throughout their samples,  

including the Late Pleistocene and Younger Dryas periods. Saban (2015:41) 

proposed marsh-like conditions prevailed near the site due to an increase in 

moisture-loving taxa in the pollen record. 
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Figure 9.6. Relative abundances of uncharred seeds recovered from Unit 2/6B column samples, Site 35LK3400. The x-axis reflects 

percentages. Herbs/forbs graphed in blue, trees/shrubs graphed in green, and aquatic plants graphed in aqua. Red line designates the 

approximate Pleistocene-Holocene boundary. 
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Figure 9.7. Relative abundances of charred seeds recovered from Unit 2/6B column samples, Site 35LK3400.The x-axis 

reflects percentages. All represented charred taxa consist of herbs and forbs. No arboreal or aquatic plants are 

represented in the charred macrobotanical assemblage. The red line approximates the timing of the Pleistocene -

Holocene boundary. 
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This time span is represented by column samples CS-16 to CS-20 in the 

macrobotanical analysis. Here, Pinus seeds, but not Pinus needles, are noted in the 

Botanical Lens, along with Juniperus (Cupressaceae) seeds. Poaceae seeds dominate 

the macrobotanical record. Asteraceae seeds are not well represented during the 

Younger Dryas. Ribes and Ceanothus seeds are also present in the Younger Dryas 

macrobotanical assemblage. The presence of Salix charcoal and other wetland plants 

in the Younger-Dryas macrobotanical record specifically support Saban’s suggestion 

people accessed nearby lacustrine and marsh resources at this time and generally 

support regional paleoclimate data indicating a cooler, wetter period. Toward the end 

of the Younger Dryas, increases in the number of cheno-am seeds are noted. Charred 

seeds are limited to Achnatherum and Mentzelia. Mentzelia (Loasaceae) is not 

represented in either pollen study, which could be due to the fact that Mentzelia is 

insect pollinated. It is also possible that blazingstar seeds were preferentially 

harvested and processed by people camping at the Paisley Caves and did not grow in 

the immediate vicinity of the site. 

The Paisley Cave pollen records indicated the onset of the Early Holocene 

was marked by decreases in Chenopodiaceae-Amaranthaceae pollen and increases in 

conifer and Asteraceae pollen, while Poaceae and Artemisia pollen abundances 

remained stable (Beck et al. 2017). This period is represented by macrobotanical 

samples CS-10 to CS-15, which demonstrate increased abundances of 

Chenopodiaceae-Amaranthaceae and decreasing Poaceae seed abundances (from 54-

100% in the Younger Dryas to 0-34% in the Early Holocene).  
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The diverging patterns of the macrobotanical to pollen records may result 

from dataset differences. Both pollen studies at the Paisley Caves demonstrate 

elevated abundances of Pinus, Artemisia, and Chenopodiaceae-Amaranathaceae 

types, and relatively few Poaceae types throughout the samples (Beck et al. 2017:8, 

9; Saban 2015:36). These results are likely skewed due to the high pollen production 

of pine, sagebrush, and cheno-ams, and the low pollen production of grasses. The 

macrobotanical record more clearly depicts the local relative abundances of these 

taxa through time. 

As the Early Holocene continued, records from the Paisley Caves identified 

palynomorphs include Ceanothus, Shepherdia, and Cactaceae (Saban 2015:42) and 

Phacelia, Fabaceae, Eriogonum, Rosaceae, Apiaceae, Polemoniaceae, Rumex, Phlox, 

Corylus, and Dalea (Beck et al. 2017:10). A higher diversity of herbs and forbs is 

also noted in the macrobotanical record. Macrobotanical column samples CS-5 to 

CS-9 coincide with this period. Seeds of Boraginaceae family members (especially 

Amsinckia) and Artemisia increase sharply at about 9700 cal BP. This increase is 

consistent with regional paleoclimate and GIS-modeled data that suggest the ecology 

of the Great Basin stabilized around 9800 years ago (Duke and King 2014). 

Boraginaceae pollen accounts for less than 1% of the pollen assemblages at the 

Paisley Caves. Amsinckia and other Boraginaceae members have high pollen-ovule 

ratios (Cruden 2000), but they are insect pollinated. Unless whole flowers were 

transported into the caves, Boraginaceae pollen would not likely be introduced to site 

deposits. 
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Saban (2015:42-43) reported another change in pollen abundances at the 

Paisley Caves just before the eruption of Mt. Mazama (7990 to7600 cal BP), when 

the relative contributions of Poaceae and Pinus increase. Macrobotanical samples 

CS-2 to CS-4 mirror the increase in the abundance of grass seeds accompanied by a 

decrease in Chenopodiaceae-Amaranthaceae seeds. However, no conifer seeds are 

present in the macroremains after ca. 11,000 cal BP. Lack of a detailed stratigraphic 

record post-dating the Mazama eruption ca. 7600 cal BP at the Paisley Caves …   

At LSP-1 Rockshelter, very low taxonomic diversity is noted during the 

Holocene. The Early Holocene seed assemblage (represented by column samples CS-

20 to CS-27) is dominated by Amsinckia at 10,200 cal BP. Over the next 1000 years, 

Amsinckia dominance alternates with Chenopodiaceae-Amaranathaceae seed 

dominance (Figures 9.8 and 9.9). Mentzelia seeds are the only other taxon observed 

in the uncharred seed assemblage during the Early Holocene. Charred seed types 

include Agrostis and Typha at this time. Following the eruption of Mt. Mazama (ca. 

7600 cal BP), the column samples are sterile, indicating a period of low biodiversity 

in the vicinity of LSP-1 Rockshelter in the northern Warner Valley.  

Towards the end of the Middle Holocene, Amsinckia, Chenopodium, and 

Brassicaceae seeds appear in column samples CS-14 and CS-15. The onset of the 

Late Holocene marks the return of flora dominated by Amsinckia and 

Chenopodiaceae-Amaranathaceae types. The distribution of charred seeds in the 

column sample also includes Agrosits and Descurainia seeds. These types probably 

represent the intentional harvesting and processing of spike bentgrass and 

tansymustard at LSP-1 Rockshelter.  
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Figure 9.8. Relative abundances of charred seed taxa in N105E99 column, Site 35HA3735. The x-axis 

reflects percentages. 
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Figure 9.9. Relative abundances of uncharred seed taxa in N105E99 column, Site 35HA3735. 

The x-axis reflects percentages. Early Holocene-Middle Holocene boundary marked by eruption 

of Mt. Mazama, approximately 7600 cal BP. 
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Based on the relatively higher contribution of grass seeds and virtual absence 

of saltbush seeds in the Lower Package deposits, the Early Holocene at LSP-1 

represented a period of increased moisture when compared to the Middle and Late 

Holocene. Wigand and Rhode’s (2002) analysis of pollen from Bicycle Pond, located 

300+ m above the valley floor in the southern Warner Valley, indicated grasses were 

more common during the Early Holocene while the Middle Holocene was marked by 

a retreat of juniper woodland and expansion of sagebrush.  

In the southern Warner Valley, Hansen’s (1947) analysis of pollen cores 

indicated saltbush peaked during the Middle Holocene, suggesting warmer and drier 

conditions at that time. The spike in saltbush seeds in the Late Holocene suggests 

that drier conditions in the immediate vicinity of the LSP-1 Rockshelter were not 

established until after ca. 3000 cal BP when the upper package deposits  began 

accumulating.  

When placed within the larger context of regional paleoclimate studies, these 

results demonstrate a record of fluctuations in local environmental conditions in the 

northern Warner Valley during the Holocene. Both Wriston and Smith (2012) and 

Weide (1974) suggested pluvial Lake Warner had retreated from the valley floor 

below LSP-1 by ca. 9650 cal BP, around the time the site was first occupied, but it is 

likely that the smaller lakes found in northern Warner Valley today (e.g., Bluejoint, 

Campbell) periodically rose and fell during the Holocene in a manner similar to that 

observed during historic times (Cannon et al. 1990). 

Reviewed together, the pollen and macrobotanical records provide a holistic 

understanding of paleoclimate regimes. Although the charred seeds and charcoal 
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recovered represent intentional harvesting from a variety of ecological niches, the 

assemblage of macroremains generally supports previous data relating to 

paleoclimate and micro-climate shifts in the northern Great Basin during the 

Younger Dryas and Early Holocene. Conditions were generally wetter after the Last 

Glacial Maximum, with increasing moisture and colder temperatures characterizing 

the Younger Dryas chronozone in the northern Great Basin. The Early Holocene 

ushered in a period of aridification, but local fluctuations in lake levels varied and 

the positions and sizes of marshes shifted differentially. Regionally, warmer and 

drier conditions intensified in the Middle Holocene, before ameliorating sometime 

between 6000 and 5000 cal BP. Local controls on vegetation varied from sub-basin 

to sub-basin throughout the Holocene, as evidenced by the macrobotanical records at 

LSP-1 Rockshelter and the Paisley Caves.  

 

9.8. The Macrobotancial Record and Traditional Foodways 

 

9.8.1. Traditional Ecological Knowledge in Novel Environments 

Successful colonization of novel environments requires learning processes 

that can be long and slow (Meltzer 2009); however, the spread of the Western 

Stemmed Tradition (WST) and Clovis toolkits across western North and South 

America occurred relatively quickly (Dillehay et al. 2008, 2015; Ferring 2001; 

Gilbert et al. 2008a, 2008b; Halligan et al. 2016; Haynes 2015; Sanchez et al. 2014; 

Waters and Stafford 2007; Waters et al. 2010a, 2011b). Erlandson et al. (2011) 

linked Channel Island assemblages of Western Stemmed to those found in the 
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interior sites around many lakes and marshes in North America’s Far West, including 

the Paisley Caves. “Such …assemblages may provide a logical technological link 

among Terminal Pleistocene stemmed point traditions of Northeast Asia, the Pacific 

Northwest, and possibly early stemmed point traditions widely distributed in South 

America” (Erlandson et al. 2011:1184).  

Logical technological links, when understood through the lens of historical 

ecology, are not limited to the spread of formed tool types alone. Understanding the 

role of society-level and individual practice among Paleoindians in the Terminal 

Pleistocene facilitates more nuanced interpretations of the archaeological record 

because cultural, biological, and geological lines of evidence are incorporated in the 

analysis (Egan and Howell 2001).  

Just as technological antecedents existed in the migratory landscapes of 

Paleoindians, so did biotic resources, and rapid cultural transmission through the 

Americas always included traditional ecological knowledge (TEK); environmental 

and cultural antecedents existed in migratory landscapes of Paleoindians. In a recent 

publication highlighting the importance of cattail in the diet of early North American 

inhabitants, McGuire and Stevens (2017:16) posed the question: “…what if one of 

the most important subsistence resources was the same species from Siberia to 

Mexico?” Though their hypothesis focuses on one specific resource, several plants 

and animals have extensive geographic distributions and would have been widely 

available in the Northern Hemisphere.  

TEK pertaining to the ecology of rockshelters and their surrounding 

environments could potentially have aided visitors to the Paisley Caves during the 
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Late Pleistocene and Younger Dryas. Almost all (97.5%) of the seeds present in the 

woodrat nest ripen in the summer and fall months when bushytailed woodrats are 

known to increase caching behaviors. In addition to access to marsh and upland 

resources, the Paisley Caves may have offered an attractive location of known 

cached food stores. Early visitors to caves may have collected food and other items 

from the rodent stores. During times when high quality plant food items are scarce, 

people turned to rodent food stores to supplement their diets: “Today, we have 

evidence of indigenous peoples robbing the nests of food-hoarding rodents from 

Alaska and Canada down through the Rockies, Great Plains and Great Lakes regions, 

clear to the Sonoran and Chihuahuan Desert” (Nabhan 2009:5).  

Upon arrival to the caves, humans evicted other animals living in the shelters. 

Evidence of smoldering fires representing the in-place burning of woodrat materials 

was documented in Paisley Cave 5 (Jenkins et al. 2016:194). Woodrat nests are also 

often scattered by predators, both human and non-human, which likely trap and eat 

the animals. Once the human occupants vacate the site, woodrats begin the 

reconstruction process, often collecting non-plant items along with vegetation (Smith 

1997:564). 

The contents of the woodrat nest analyzed for this project likely represent 

such a reconstruction episode. Of the 19 plant taxa identified in the rodent nest at the 

Paisley Caves, 11 represent food resources. These include Achnatherum, Poaceae, 

Schoenoplectus/Scirpus, Atriplex, Oenothera, Descurainia, Trifolium, Rumex, 

Mentzelia, Leymus, and Carex. Several uncharred Urtica dioica seeds in the woodrat 

nest represent the collection of stinging nettles. The paleoecological data generated 
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in this analysis and in previous palynological studies (Beck et al. 2017; Saban 2015) 

suggest that although the proximity of marshy conditions to the caves was closer at 

the end of the Pleistocene than now, stinging nettles would have grown outside the 

foraging range of Paisley Caves woodrats. Those resources were likely foraged from 

culturally-deposited plant remains elsewhere in the caves. The macrobotanical data 

generated from the woodrat nest analysis suggests people’s relationship with the 

rodents, and shared home in the caves may have provided mutualistic benefits (food 

caching, nesting material etc.) and disadvantages (competition for shelter, disease 

vectors, etc.) for both rodents and people. 

At this time, there is no explicit evidence to determine whether people 

collected from the woodrat nests, but there is evidence suggesting the woodrats 

cached cultural materials. Threads and cordage fragments were recovered from the 

nest, and the presence of stinging nettles and bulrush seeds in the nest might reflect 

the collection of sleeping mat fragments, as well. 

 

9.8.2. Traditionally Economically Important Plants 

This analysis identified several seed and charcoal types that were important in 

the traditional economies of northern Great Basin tribes. In the Paisley Caves and 

LSP-1 Rockshelter assemblages, Achnatherum, Amaranthus, Amsinckia, Atriplex, 

Chenopodium, Mentzelia, and Suaeda charred seeds represent economically 

important plant taxa as defined by Fowler and Rhode (2007). Cheno-ams, in 

particular, appear to have been consistently collected and processed by Great Basin 

foragers over the past 12,000 years. Seeds of plants collected expressly for their 
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roots and tubers included Camassia and Liliaceae-Amaryllidaceae types, reflecting 

the procurement of camas, wild onion, and other lilies. Juncus, Urtica, and 

Scirpus/Schoenoplectus seeds were likely collected for their fibers. 

Hearths at LSP-1 Rockshelter demonstrate an elevated abundance of charred 

Agrostis and Descurainia seeds, reflecting an increased reliance on bentgrass and 

tansymustard seeds in the diet of LSP-1 inhabitants after 9650 cal BP. Neither 

bentgrass nor tansymustard are listed among the important subsistence foods in the 

Great Basin, but perhaps they should be added to the list compiled by Fowler and 

Rhode (2007). Ethnographic research in the late 18
th

 and early 20
th

 centuries 

indicates both plants were harvested and consumed by members of the Klamath and 

Modoc tribes (Colville 1897; Gatschet 1891; Jenkins 2000; Spier 1930). The 

documentation of the above-listed plants in ancient archaeological contexts 

demonstrates their sustained importance in the economies of Great Basin foragers 

throughout the Holocene and to present. 
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CHAPTER X 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

10.1. Research Conclusions 

 

Among the foraging societies of the Great Basin, environmental constraints have 

always figured prominently in settlement, subsistence, technological change, and cultural 

practices. Archaeologists often investigate the relationship between human behavior and 

environmental permutations. Analysis of archaeobotanical assemblages provides a direct 

linkage to explore these interactions. The study of macrobotanical remains in 

archaeological contexts is especially useful because seeds, charcoal, roots, and vegetative 

tissues provide direct evidence of plant use and paleoenvironmental records. Arid 

conditions unique to rockshelters in the northern Great Basin are particularly valuable in 

reconstructing cultural and environmental sequences, because macrobotanical ecofacts 

are more likely to survive under these circumstances.  

Rockshelters in the Great Basin were frequently visited by foragers throughout 

the Holocene, and even as early as the Terminal Pleistocene. Human coprolites at the 

Paisley Caves indicate people inhabited the northern Great Basin, and visited local 

rockshelters, as early as 14,300 years ago. These locations store thousands of years of 

material culture and paleoenvironmental indicators, including macrobotanical remains. 

This dissertation addressed questions related to hunter-gatherer subsistence and local 

permutations in the paleoecological record. Regional paleoecological data provided 

context for understanding not only fluctuations in local climate, but also a baseline for 

interpreting human foraging strategies and movement through the landscape. My 
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investigation relied on a historical ecological approach to understand how traditional 

ecological knowledge may have structured foraging decisions and behaviors. 

 

10.1.1. Northern Great Basin Plant Use  

 The macrobotanical data generated in this dissertation addressed several questions 

related to foraging behaviors and plant usage. When reviewed in tandem with regional 

data from the northern Great Basin, these data provide answers to the research questions 

raised in Chapter III.  

 The primary constituents of macrobotanical assemblages in this project were 

seeds. Both charred and uncharred seeds were present in and outside of cultural features 

at the Paisley Caves and LSP-1 Rockshelter. Because the rockshelters investigated here 

support exceptional preservation conditions, uncarbonized seeds may have substantial 

antiquity. Statistical tests demonstrated that the population of carbonized seeds differed 

significantly from the population of uncarbonized seeds, and therefore, only charred plant 

remains were considered part of the cultural assemblages. Although several charred seed 

taxa were identified, the assemblages at both sites were dominated by cheno-ams, 

including saltbush and goosefoot, grasses, and fiddleneck. Spike bentgrass was the most 

common grass seed in LSP-1 deposits, and Indian ricegrass was more common in the 

Paisley Caves samples. Grasses and cheno-ams are the primary seeds found in other 

investigations of archaeological plant remains, as well (see Table 2.3). Aside from this 

investigation, fiddleneck has only been documented at the Dirty Shame Rockshelter in 

southeast Oregon (Puseman and Yost 2011; Sanford 1983), and has not been recorded in 

archaeobotanical assemblages in the Fort Rock, Summer Lake, or Warner basins. The 
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relative diversity of seed types in the Paisley Caves samples is higher than for any other 

archaeological site in the northern Great Basin except for Dirty Shame Rockshelter 

(Puseman and Yost 2011; Sanford 1983).  

 Remnant charcoal from campfires at both the Paisley Caves and LSP-1 

Rockshelter was predominantly sagebrush fragments. This finding illustrates a heavy 

reliance on sagebrush for fuel by residents of both sites through every habitation episode 

documented here. This pattern is consistent with archaeobotanical records for the Great 

Basin, where sagebrush is ubiquitous on the landscape. Other common fuel types in the 

northern Great Basin, including juniper,  pine, serviceberry, and mountain mahogany 

(e.g., Connolly et al. 2015; Helzer 2001; Prouty 2001), were not identified in this study.  

 The abundance of charred plant types fluctuates through time at the Paisley Caves 

and LSP-1 Rockshelter. In the Younger Dryas, people preferentially harvested cheno-ams 

including saltbush and goosefoot, along with grasses, especially Indian ricegrass, white-

stem blazingstar, and tansymustard. Other identified types dating to Late Pleistocene 

contexts include pigweed, camas, purple tansy, vetch, lily, plantain, borages, geraniums, 

rushes, and desert mallow. The presence of liliaceous seeds (possibly wild onion or sego 

lily) and camas seeds, and charred parenchymous tissues representing geophytes, 

suggests roots also contributed to Paleoindian diet. No camas bulbs or onions were found 

in this study and it is possible that other parts of the plants were consumed 12,000 years 

ago. Northern Paiute informants in western Nevada report eating the raw stems and bulbs 

of wild onions (Park and Fowler 1989:44).  

Starchy geophytic tissues, although present in cooking features, especially the 

Cave 5 earth oven, were not abundant in this study. Previous paleoethnobotanical 
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research has demonstrated roots did not comprise a significant portion of hunter-gatherer 

diet in the northern Great Basin until after 6000 cal BP (Aikens et al. 2011). The presence 

of an earth oven at the Paisley Caves demonstrates a sophisticated understanding of 

ecological and cultural knowledge thousands of years prior to the Basin-wide 

intensification of root processing.   

Macrobotanical remains from the Botanical Lens, a cultural deposit consisting 

mostly of sagebrush matting and pronghorn hair that dates to the Younger Dryas, also 

included uncharred stinging nettle seeds outside of hearths associated with the feature. 

Stinging nettles were probably collected for fiber in order to weave mats and other 

textiles. Stinging nettle seeds were also recovered in the Paisley Cave 5 earth oven. The 

greens may have been used as a vegetation layer in the cooking feature, or the seeds may 

have been inadvertently introduced from a nearby matting material. Juniper and pine 

seeds were also recovered in association with Younger Dryas deposits.  

The varied ecologies of the taxa represented indicate visitors to the Paisley Caves 

with Western Stemmed toolkits foraged in multiple habitats near their campsite. Protein 

residue and Fourier-transform infrared spectroscopy (FTIR) analyses conducted on 

coprolites provide evidence for a varied diet that included large, medium, and small 

mammals, bird, and plant resources. Ongoing faunal research also demonstrated the 

incorporation of insects, especially Jerusalem crickets, into the diet, and has provided 

evidence for the consumption of fish (Hockett et al. 2017).  

 Early Holocene plant assemblages at both sites are dominated by cheno-ams, 

mustards, and grasses, but also included wada and buckwheat at the Paisley Caves 

between 9000 and 8000 cal BP. These data are consistent with macrobotanical records 
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from other archaeological sites in the northern Great Basin (Gilmour et al. 2015; Prouty 

2004; Sanford 1983). Seeds would have been available to harvest predominantly in the 

summer and fall during the Younger Dryas and Early Holocene. Because people may 

have scavenged seeds from existing woodrat nests upon arrival at the site, the seasonal 

data may only reflect the timing of woodrat foraging. Interpretations directly equating 

seed ripening times with habitation events are problematic without incorporating 

corroborating archaeological data. 

 A dearth of macrobotanical remains in the Middle Holocene at the Paisley Caves 

and LSP-1 Rockshelter beginning at approximately 8000 cal BP is consistent with 

observed patterns in the temporal distribution of artifacts and radiocarbon dates, as 

proxies for population demographics in northern Great Basin rockshelters during the 

Altithermal period (Aikens et al. 2011). During this time, residences and campsites were 

focused on lowland dune and marsh sites rather than upland rockshelters (Aikens et al. 

2011; Jenkins et al. 1994, 2004). Intermittent visits to the Paisley Caves at this time 

appear to have occurred later in the autumn based on the known flowering times of the 

plant taxa represented. The presence of economically valuable plant taxa present in 

cultural contexts and absent in the woodrat nest demonstrate reliable seasonality data 

were generated in this study.  

 In the Late Holocene, seed consumption appears to have diversified at both sites. 

The presence of elderberry, pine, cherry, and wild rose seeds in Late Holocene contexts 

suggests the foraging ranges of visitors to the rockshelters expanded to include upland 

forests. Seeds of fiddlenecks and white-stemmed blazingstar were incorporated into the 

diet at a significantly higher rate. Although white-stemmed blazing star was considered 
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an important food source in the traditional economies of Great Basin tribes (Colville 

1897; Fowler and Rhode 2007; Kelly 1932; Park and Fowler 1989), it had not been 

identified in archaeological assemblages of the northern Great Bain until now. Ongoing 

research at the Connley Caves in the neighboring Fort Rock Valley has also detected the 

presence of this plant in human coprolites (McDonough 2018). The collection of this seed 

type may represent a local foraging behavior in southcentral Oregon.  

 The assemblage of culturally-deposited seeds at the Paisley Caves and LSP-1 

Rockshelter reflect prolonged use of traditionally important plants by the indigenous 

communities of the northern Great Basin, but also contributes new observations related to 

pre-contact hunter-gatherer diets. Cheno-ams figure prominently in the diets of several 

Great Basin tribes, including the Northern Paiute and Modoc (Fowler and Rhode 2007; 

Park and Fowler 1989; Ray 1963). Although charred goosefoot seeds have been 

documented previously in Early Holocene macrobotanical assemblages at Dirty Shame 

Rockshelter (Sanford 1983) and Locality III in the Fort Rock Basin (Prouty 2004), their 

presence in Younger Dryas-aged hearths at the Paisley Caves illustrate the deep antiquity 

of cheno-am importance in the northern Great Basin.  

Other taxa identified in this study, including bentgrass and tansymustard, are not 

mentioned in post-contact ethnographic accounts (but see Park and Fowler 1989:47 for an 

exception to this statement). Tansymustard has been identified in southeastern Oregon 

archaeological sites including Dirty Shame Rockshelter, Erin’s Cave, and Skull Creek 

Dunes Locality 10 (Dexter 2010; Puseman and Yost 2011; Thomas et al. 2015, Sanford 

1983). These cases illustrate the value of incorporating indigenous perspectives and 
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ethnographic analogy into interpretation of the archaeological record, but also highlight 

the need for rigorous archaeological research independent of such inductive premises. 

 

10.1.2. Paleoecology of the Summer Lake Basin and Northern Warner Valley 

 Paleoecological investigations in the northern Great Basin demonstrate 

general climatic trends associated with the Alleröd (14,500 to 13,000 cal BP), the 

Younger Dryas (12,900 to 11,600 cal BP), and the Middle Holocene Climate 

Optimum (7000 to 5000 cal BP). Macrobotancial data from the Paisley Caves and 

LSP-1 Rockshelter were compared to local and regional pollen studies to refine 

existing paleoecological interpretations. At the Paisley Caves, the microbotanical and 

macrobotanical datasets indicate mesic conditions prior to the onset of the Younger 

Dryas as evidenced by copious conifer pollen and the presence of grass and stinging 

nettle macrofossils.  

During the Younger Dryas, conditions cooled and the sagebrush steppe 

expanded (Beck et al. 2017; Saban 2015). Pine trees likely grew in closer proximity 

to the Paisley Caves than their current distribution on Winter Rim, although the lack 

of pine needles in the macrobotanical assemblage reported here suggests that the 

trees were not located in the immediate vicinity of the site. Increases in moisture-

adapted plants are noted in the macrobotanical record and in the pollen record (Saban 

2015). Although the presence of water-loving plants is seemingly counterintuitive to 

the expansion of the steppe environment, they probably represent increasing marsh 

habitat as the pluvial lakes receded.   
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 Regional paleoecological records for the Early Holocene show a return to 

more mesic conditions after the Younger Dryas (Wigand and Rhode 2002). Elevated 

abundances of grass seeds at the Paisley Caves and LSP-1 Rockshelter after ca. 9000 

cal BP support this interpretation. The archaeological pollen data at Paisley Caves 

indicate a decrease in grass during the same period, but the grass signature in the 

pollen record is likely drowned out by the abundance of sagebrush pollen grains 

(Beck et al. 2017).  

 Increases in saltbush and other drought-adapted plants in the Middle 

Holocene suggest that warmer and drier conditions prevailed in the project area. This 

observation is also noted in the paleoecological record of the Warner Valley and 

Summer Lake Basin, where Hansen (1947) reported similar spikes in saltbush pollen. 

Local fluctuations in ecological conditions probably varied from location to location 

within basins. At LSP-1 Rockshelter, the presence of saltbush seeds continued to 

increase into the Late Holocene, while at the Paisley Caves, the abundance of 

saltbush seeds dramatically decreased.  

 

10.2. Future Directions 

 

10.2.1. Future Research Avenues 

While the research conducted in this dissertation answers several questions on 

paleoclimate and the role of plant foods in the lives of northern Great Basin 

indigenous peoples, the study is largely exploratory in nature. As such, the answers 

generated a novel set of research questions that should be addressed in future 
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research endeavors. Future research will help clarify uncertainties in the 

archaeobotanical and archaeological record. 

Quite a few identifications in this analysis were made only to the family level. 

Grasses, in particular, were only identified to genus when the taxa were encountered 

numerous times. Those specimens representing unique or infrequent types were not 

identified to genus or species. Additionally, incomplete grass floret fragments and 

rachis were identified only as Poaceae. Several uncharred grass specimens in Paisley 

Cave 5/5 remain unidentified. Future investigations that can make specific 

identifications may provide more detailed paleoclimate data for the Younger Dryas 

and Early Holocene components of the site. Forthcoming research in Cave 5, Unit 

5/12 will include a multi-disciplinary analysis of micromorphology, faunal and 

botanical remains. 

As a corollary to the research on cultural plant use at the Paisley Caves, I 

analyzed the constituents of a TP/EH Neotoma cinerea nest to investigate its 

paleoecological signature. The recovery of several edible seeds from the nest, and 

research on rodent caching behaviors and the mutualistic relationship between people 

and bushy-tailed woodrats, facilitated an original research question: were rodent 

nests and other animal middens explicitly scavenged to recover predictably reliable 

resources to supplement active foraging? Another significant question raised was 

whether woodrats scavenged from human foodstores, which could introduce 

botanical remains from distant habitats into woodrat middens. A more refined course 

of archaeobotanical research specifically targeting intact nests in Great Basin 

rockshelters is necessary to address these questions. Additionally, isotopic analyses 
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may provide insights. The single sample analyzed in this dissertation certainly 

instigated the inquiry, but lacks the statistical power to test the hypothesis due to 

sample size constraints. 

The presence of camas and other liliaceous seeds at the Paisley Caves, cattail 

at LSP-1 Rockshelter, and charred starchy plant tissues at both sites, suggest 

residents of the northern Great Basin may have consumed roots and tubers in the 

Terminal Pleistocene and Early Holocene – yet macrobotanical analysis does not 

adequately detect this signature. More microbotanical research including coprolite 

analysis and starch analysis on groundstone use surfaces could elucidate the 

importance of these resources in the diet. Cummings and Puseman (2003) 

successfully extracted Apiaceae (likely biscuitroot) starch on a handstone associated 

with megafaunal remains at the Paisley Caves, demonstrating a long history of Great 

Basin foragers harvesting roots. Palynologists at the University of Oregon and Texas 

A & M University are currently analyzing coprolites from Paleoindian archaeological 

sites in the northern Great Basin. Forthcoming publications will provide additional 

information on plant taxa consumed by site residents.  

The detail and scale of the enormous dataset generated in this study needs to 

be replicated at other archaeological sites in order to answer some questions posited 

in Chapter III. For example, to fully investigate whether plant assemblages 

associated with the Western Stemmed Tradition reflect a distinctive subsistence 

pattern, archaeobotanical analysis at a number of sites should be conducted to 

address such a large-scale question. Refining regional and global archaeobotanical 

databases will provide the foundation necessary to addressing comprehensive 
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archaeological inquiries. Additionally, the reliability of data from the Cave 5 strata 

samples at the Paisley Caves remains questionable due to poor stratigraphic 

association with artifacts and radiocarbon dates. 

 

10.2.2. General Considerations 

The ephemeral footprint of hunter-gatherer populations in western North 

America during the Late Pleistocene and Early Holocene epochs generates limited 

archaeological evidence, and even less archaeobotanical data, accentuating the 

importance of the archaeobotanical materials analyzed in this study. More 

investigations directed at understanding the role of plants in human-environmental 

relationships should be pursued when such signatures are detected. In the Great 

Basin, in particular, there is a need for more attention to the role of plants in 

subsistence economies throughout the Holocene.  

Ecological studies in non-agrarian societies tend to focus more on the 

importance of animals than plants in considering subsistence and settlement patterns. 

Largely, this is due to taphonomic considerations and the sheer size of 

zooarchaeological elements compared to macrobotanical remains. Historically, in the 

Great Basin, plants contributed equally, if not more, to the diets of foraging 

populations. Fowler (1986) reports Great Basin foragers consumed taxa from over 50 

families of plants. Several ethnographers note the importance of plants in studies of 

Great Basin people at contact:   

The search for vegetal foods occupied a large part of the Modoc woman’s days, 

spring through autumn. Many of the movements of families and groups during the 

growing and ripening seasons were dictated by the succession of crops and the wide 

geographic spread of the many plants which had to be gathered of economic 
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necessity…[M]any kinds of plants were found only in limited numbers and in widely 

distributed patches. (Ray 1963:197) 

 

And: 

…the Paiutes ate everything they could find in their arid habitat, including 

grasshoppers, crickets, caterpillars, and dogs, but not snakes…They also ate fish, 

especially trout and salmon…Rabbits were a much more important article of diet 

than deer or antelope, for obvious reasons. They of course ate many water fowls, 

such as ducks, geese, swans, and so on, which visited in countless numbers of the 

lakes of that region. But the main food supply was undoubtedly wild roots and 

seeds…so much so that in this respect at least they belong in Wisler’s [sic] “Area of 

wild seeds." (de Angulo and Freeland 1929:321) 

 

Plants are integral to subsistence and settlement choice made by any foraging 

population following seasonally-available resources. In the Great Basin, plants in 

large part determined the cycle of the seasonal round.   

Facilitating a broader understanding of plant resources through time requires 

a synthesis of regional paleoethnobotanical data to expand our understanding of plant 

exploitation in a larger perspective. Paleoethnobotanists must continue to expand 

archaeological inquiry to incorporate several datasets regionally, especially sites with 

ancient deposits such as Connley Caves in the Fort Rock Basin, Rimrock Draw 

Rockshelter in eastern Oregon, and Cooper’s Ferry on the Snake River Plain (among 

others). To assess whether increased diet breadth in the Early Holocene influenced 

the territorial and population expansion of people using Western Stemmed 

technologies, future research should explicitly model the contributions of plant and 

animal resources documented in the archaeological record. Work at these sites is 

ongoing and will undoubtedly contribute data that will build upon the work reported 

in this dissertation. This can provide insights as to how the First Americans relied on 

their institutional knowledge of experienced landscapes to successfully settle in 

novel environments. 
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 Traditional ecological knowledge is the accumulation of generational 

awareness and learning. This understanding is a process that necessitates the 

retention of existing inputs (indigenous knowledge of landscape) as well as the 

incorporation of new inputs (changing environmental conditions, cataclysmic events, 

colonization of new places). Understanding Great Basin archaeology from a 

landscape perspective requires collaboration across disciplines. We must incorporate 

not only paleoecological information, but also biological and biogeographic data to 

make more holistic assessments of the distribution and origins of plant remains.  

Moreover, archaeological subsistence studies should aim to identify niche 

construction practices in foraging societies (Boivin et al. 2016; Smith 2007). Human 

behavioral ecologists create robust and elegant models for understanding foragers’ 

decision-making in the past and how those decisions affect the distribution of 

archaeological materials on the landscape. As discussed in Chapter II, the 

intensification of small seed processing around 8000 cal BP is often cited as 

evidence for resource depression in the Great Basin. However, increased 

consumption rates of these resources alone are not sufficient evidence to demonstrate 

the scarcity of other resources. Adoption of niche constructing behaviors into these 

models can facilitate research in the Great Basin that moves beyond prey models that 

overemphasize net caloric gains as the primary motivator for subsistence decisions, 

to demonstrate how the whole landscape was utilized, pressured, and enhanced in the 

past. Like niche construction theory, historical ecology also envisions humans as 

dynamic participants in local ecosystems for millennia, responding to changes in 
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natural systems while also managing and modifying biodiversity and biological 

productivity. 
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APPENDIX A 

CONNLEY CAVES (35LK50) MACROBOTANICAL DATA 

PILOT STUDY 
 

Sample Identification Part/Type Charred Uncharred Weight 

      WH FR WH FR   

1693 FLORAL REMAINS             

  Atriplex Leaf       1   

Unit 4/3 Chenopod Seed 1   9 3   

Level 53 Lappula Seed       1   

Feature 3-3D floor 
sample CHARCOAL Total charcoal > 1 mm   2       

1355.27 masl Artemisia sp. Charcoal   2       

Floated volume: 1.0 L NON-FLORAL REMAINS             

Light fraction: 3.70 g Flake > 2 mm Basalt       4 0.636 g 

  Flake < 2 mm Basalt       4 0.004 g 

  Flake > 2 mm Obsidian       2 0.135 g 

  Flake < 2 mm CCS       2 <0.000 g 

  Insect body       1   <0.000 g 
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APPENDIX B 

LSP-1 ROCKSHELTER RADIOCARBON ASSAYS 

 

                       RADIOCARBON CALIBRATION PROGRAM* 

                                 CALIB REV7.1.0 

                  Copyright 1986-2015 M Stuiver and PJ Reimer 

          *To be used in conjunction with: 

          Stuiver, M., and Reimer, P.J., 1993, Radiocarbon, 35, 215-230. 

  

 CS 8A                                                                           

 D-AMS 0105                                                                      

 35HA3735                                                                        

 Radiocarbon Age BP   1255 +/-   24                                              

 Calibration data set: intcal13.14c                # Reimer et al. 2013          

   % area enclosed       cal BP age ranges             relative area under       

                                                   probability distribution      

   68.3 (1 sigma)     cal BP 1179 - 1188                    0.128                

                             1202 - 1257                    0.872                

   95.4 (2 sigma)     cal BP 1088 - 1110                    0.030                

                             1125 - 1138                    0.016                

                             1146 - 1159                    0.021                

                             1172 - 1276                    0.933                

   Median Probability:  1219                                                     

                                                                                 

 CS 12                                                                           

 D-AMS 0105                                                                      

 35HA3735                                                                        

 Radiocarbon Age BP   3038 +/-   26                                              

 Calibration data set: intcal13.14c                # Reimer et al. 2013          

   % area enclosed       cal BP age ranges             relative area under       

                                                   probability distribution      

   68.3 (1 sigma)     cal BP 3183 - 3194                    0.097                

                             3207 - 3253                    0.571                

                             3294 - 3326                    0.331                

   95.4 (2 sigma)     cal BP 3166 - 3273                    0.668                

                             3284 - 3342                    0.332                

   Median Probability:  3242                                                     

                                                                                 

 CS 13                                                                           

 D-AMS 0105                                                                      

 35HA3735                                                                        

 Radiocarbon Age BP   3090 +/-   26                                              

 Calibration data set: intcal13.14c                # Reimer et al. 2013          

   % area enclosed       cal BP age ranges             relative area under       

                                                   probability distribution      

   68.3 (1 sigma)     cal BP 3252 - 3297                    0.588                

                             3325 - 3358                    0.412                

   95.4 (2 sigma)     cal BP 3231 - 3369                    1.000                

   Median Probability:  3296                                                     
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CS 16                                                                           

 D-AMS 0105                                                                      

 35HA3735                                                                        

 Radiocarbon Age BP   3046 +/-   31                                              

 Calibration data set: intcal13.14c                # Reimer et al. 2013          

   % area enclosed       cal BP age ranges             relative area under       

                                                   probability distribution      

   68.3 (1 sigma)     cal BP 3209 - 3260                    0.542                

                             3289 - 3334                    0.458                

   95.4 (2 sigma)     cal BP 3170 - 3349                    1.000                

   Median Probability:  3255                                                     

                                                                                 

 CS 20                                                                           

 D-AMS 0105                                                                      

 35HA3735                                                                        

 Radiocarbon Age BP   8263 +/-   38                                              

 Calibration data set: intcal13.14c                # Reimer et al. 2013          

   % area enclosed       cal BP age ranges             relative area under       

                                                   probability distribution      

   68.3 (1 sigma)     cal BP 9136 - 9183                    0.290                

                             9194 - 9305                    0.696                

                             9364 - 9368                    0.014                

   95.4 (2 sigma)     cal BP 9124 - 9408                    1.000                

   Median Probability:  9253                                                     

                                                                                 

 CS 22                                                                           

 D-AMS 0105                                                                      

 35HA3735                                                                        

 Radiocarbon Age BP   5238 +/-   26                                              

 Calibration data set: intcal13.14c                # Reimer et al. 2013          

   % area enclosed       cal BP age ranges             relative area under       

                                                   probability distribution      

   68.3 (1 sigma)     cal BP 5939 - 5996                    1.000                

   95.4 (2 sigma)     cal BP 5921 - 6022                    0.872                

                             6079 - 6112                    0.087                

                             6155 - 6174                    0.041                

   Median Probability:  5973                                                     

                                                                                 

 CS 25B                                                                          

 D-AMS 0105                                                                      

 35HA3735                                                                        

 Radiocarbon Age BP   1173 +/-   25                                              

 Calibration data set: intcal13.14c                # Reimer et al. 2013          

   % area enclosed       cal BP age ranges             relative area under       

                                                   probability distribution      

   68.3 (1 sigma)     cal BP 1060 - 1093                    0.389                

                             1106 - 1147                    0.426                

                             1158 - 1173                    0.185                

   95.4 (2 sigma)     cal BP 1002 - 1027                    0.082                

                             1051 - 1178                    0.918                

   Median Probability:  1108                                                     

                                                                                 

 CS 26                                                                           

 D-AMS 0105                                                                      

 35HA3735                                                                        
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 Radiocarbon Age BP   7944 +/-   35                                              

 Calibration data set: intcal13.14c                # Reimer et al. 2013          

   % area enclosed       cal BP age ranges             relative area under       

                                                   probability distribution      

   68.3 (1 sigma)     cal BP 8656 - 8670                    0.060                

                             8699 - 8789                    0.447                

                             8829 - 8865                    0.176                

                             8884 - 8896                    0.051                

                             8915 - 8972                    0.266                

   95.4 (2 sigma)     cal BP 8644 - 8816                    0.525                

                             8823 - 8979                    0.475                

   Median Probability:  8806                                                     

                                                                                 

  References for calibration datasets:                                           

 Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE    

 Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H,      

 Hajdas I, HattÃ© C, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B,         

 Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM,    

 van der Plicht J.                                                               

 IntCal13 and MARINE13 radiocarbon age calibration curves 0-50000 years calBP    

 Radiocarbon 55(4). DOI: 10.2458/azu_js_rc.55.16947                              

  

 Comments:                                                                       

 * This standard deviation (error) includes a lab error multiplier.              

 ** 1 sigma = square root of (sample std. dev.^2 + curve std. dev.^2)            

 ** 2 sigma = 2 x square root of (sample std. dev.^2 + curve std. dev.^2)        

 where ^2 = quantity squared.                                                    

 [ ] = calibrated range impinges on end of calibration data set                  

 0* represents a "negative" age BP                                               

 1955* or 1960* denote influence of nuclear testing C-14                         

                                                                                 

 NOTE:  Cal ages and ranges are rounded to the nearest year which                

        may be too precise in many instances.  Users are advised to              

        round results to the nearest 10 yr for samples with standard             

        deviation in the radiocarbon age greater than 50 yr.                     
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RADIOCARBON CALIBRATION PROGRAM* 

                                 CALIB REV7.1.0 

                  Copyright 1986-2015 M Stuiver and PJ Reimer 

          *To be used in conjunction with: 

          Stuiver, M., and Reimer, P.J., 1993, Radiocarbon, 35, 215-230. 

  

 FS 1653                                                                         

 D-AMS 0105                                                                      

 35HA3735 F. 11-14                                                               

 Radiocarbon Age BP   1013 +/-   29                                              

 Calibration data set: intcal13.14c                # Reimer et al. 2013          

   % area enclosed       cal BP age ranges             relative area under       

                                                   probability distribution      

   68.3 (1 sigma)     cal BP 922 - 957                      1.000                

   95.4 (2 sigma)     cal BP 803 - 810                      0.014                

                             829 - 859                      0.072                

                             904 - 976                      0.914                

   Median Probability:   935                                                     

                                                                                 

 FS 2432                                                                         

 D-AMS 0105                                                                      

 35HA3735 F. 14-02                                                               

 Radiocarbon Age BP   3987 +/-   26                                              

 Calibration data set: intcal13.14c                # Reimer et al. 2013          

   % area enclosed       cal BP age ranges             relative area under       

                                                   probability distribution      

   68.3 (1 sigma)     cal BP 4421 - 4444                    0.419                

                             4481 - 4513                    0.581                

   95.4 (2 sigma)     cal BP 4416 - 4453                    0.398                

                             4461 - 4520                    0.602                

   Median Probability:  4476                                                     

                                                                                 

 FS 2429                                                                         

 D-AMS 0105                                                                      

 35HA3735 F. 14-04                                                               

 Radiocarbon Age BP   3990 +/-   26                                              

 Calibration data set: intcal13.14c                # Reimer et al. 2013          

   % area enclosed       cal BP age ranges             relative area under       

                                                   probability distribution      

   68.3 (1 sigma)     cal BP 4422 - 4444                    0.402                

                             4481 - 4514                    0.598                

   95.4 (2 sigma)     cal BP 4417 - 4454                    0.381                

                             4461 - 4521                    0.619                

   Median Probability:  4477                                                     

                                                                                 

  References for calibration datasets:                                           

 Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE    

 Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H,      

 Hajdas I, HattÃ© C, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B,         

 Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM,    

 van der Plicht J.                                                               

 IntCal13 and MARINE13 radiocarbon age calibration curves 0-50000 years calBP    

 Radiocarbon 55(4). DOI: 10.2458/azu_js_rc.55.16947                              

  

 Comments:                                                                       

 * This standard deviation (error) includes a lab error multiplier.              
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 ** 1 sigma = square root of (sample std. dev.^2 + curve std. dev.^2)            

 ** 2 sigma = 2 x square root of (sample std. dev.^2 + curve std. dev.^2)        

 where ^2 = quantity squared.                                                    

 [ ] = calibrated range impinges on end of calibration data set                  

 0* represents a "negative" age BP                                               

 1955* or 1960* denote influence of nuclear testing C-14                         

                                                                                 

 NOTE:  Cal ages and ranges are rounded to the nearest year which                

        may be too precise in many instances.  Users are advised to              

        round results to the nearest 10 yr for samples with standard             

        deviation in the radiocarbon age greater than 50 yr.                     

  

PREVIOUS DATES:  

  4 

                       RADIOCARBON CALIBRATION PROGRAM* 

                                 CALIB REV7.1.0 

                  Copyright 1986-2015 M Stuiver and PJ Reimer 

          *To be used in conjunction with: 

          Stuiver, M., and Reimer, P.J., 1993, Radiocarbon, 35, 215-230. 

  

 F. 11-05                                                                        

 Lab Code                                                                        

 35HA3735 FS 1658                                                                

 Radiocarbon Age BP   2490 +/-   25                                              

 Calibration data set: intcal13.14c                # Reimer et al. 2013          

   % area enclosed       cal BP age ranges             relative area under       

                                                   probability distribution      

   68.3 (1 sigma)     cal BP 2497 - 2596                    0.714                

                             2612 - 2621                    0.070                

                             2627 - 2637                    0.070                

                             2686 - 2706                    0.146                

   95.4 (2 sigma)     cal BP 2473 - 2475                    0.002                

                             2485 - 2722                    0.998                

   Median Probability:  2585                                                     

                                                                                 

 F. 11-19                                                                        

 Lab Code                                                                        

 35HA3735 FS 1649                                                                

 Radiocarbon Age BP   2910 +/-   30                                              

 Calibration data set: intcal13.14c                # Reimer et al. 2013          

   % area enclosed       cal BP age ranges             relative area under       

                                                   probability distribution      

   68.3 (1 sigma)     cal BP 2992 - 3078                    0.850                

                             3094 - 3107                    0.090                

                             3129 - 3138                    0.060                

   95.4 (2 sigma)     cal BP 2961 - 3084                    0.744                

                             3087 - 3157                    0.256                

   Median Probability:  3048                                                     

                                                                                 

 F. 11-07                                                                        

 Lab Code                                                                        

 35HA3735 FS 1657                                                                

 Radiocarbon Age BP   4010 +/-   20                                              

 Calibration data set: intcal13.14c                # Reimer et al. 2013          

   % area enclosed       cal BP age ranges             relative area under       



331 
 

                                                   probability distribution      

   68.3 (1 sigma)     cal BP 4437 - 4448                    0.188                

                             4467 - 4492                    0.434                

                             4495 - 4517                    0.378                

   95.4 (2 sigma)     cal BP 4425 - 4521                    1.000                

   Median Probability:  4479                                                     

                                                                                 

 F. 13-01                                                                        

 Lab Code                                                                        

 35HA3735 FS 1031                                                                

 Radiocarbon Age BP   8700 +/-   30                                              

 Calibration data set: intcal13.14c                # Reimer et al. 2013          

   % area enclosed       cal BP age ranges             relative area under       

                                                   probability distribution      

   68.3 (1 sigma)     cal BP 9563 - 9571                    0.071                

                             9584 - 9588                    0.026                

                             9593 - 9682                    0.904                

   95.4 (2 sigma)     cal BP 9550 - 9708                    0.971                

                             9717 - 9734                    0.029                

   Median Probability:  9635                                                     

                                                                                 

  References for calibration datasets:                                           

 Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE    

 Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H,      

 Hajdas I, HattÃ© C, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B,         

 Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM,    

 van der Plicht J.                                                               

 IntCal13 and MARINE13 radiocarbon age calibration curves 0-50000 years calBP    

 Radiocarbon 55(4). DOI: 10.2458/azu_js_rc.55.16947                              

  

 Comments:                                                                       

 * This standard deviation (error) includes a lab error multiplier.              

 ** 1 sigma = square root of (sample std. dev.^2 + curve std. dev.^2)            

 ** 2 sigma = 2 x square root of (sample std. dev.^2 + curve std. dev.^2)        

 where ^2 = quantity squared.                                                    

 [ ] = calibrated range impinges on end of calibration data set                  

 0* represents a "negative" age BP                                               

 1955* or 1960* denote influence of nuclear testing C-14                         

                                                                                 

 NOTE:  Cal ages and ranges are rounded to the nearest year which                

        may be too precise in many instances.  Users are advised to              

        round results to the nearest 10 yr for samples with standard             

        deviation in the radiocarbon age greater than 50 yr.                     
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APPENDIX C 

SEED IMAGES 
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APPENDIX D 

PAISLEY CAVES DATA TABLES 

 
Sample Sample Type Sample Description Bottom Depth Volume Charcoal (g) Ch Sambucus Ch Amarnathus Sample CH Monolepis CH Camas 

CS-02 Cave 2 Column Sample 1) LU3 1366.45 0.5 0 0 0 CS-02 0 0 

CS-03 Cave 2 Column Sample 1) LU3 1366.4 0.5 0 0 0 CS-03 0 0 

CS-04 Cave 2 Column Sample 1) LU3 1366.35 0.5 0 0 0 CS-04 0 0 

CS-05 Cave 2 Column Sample 1) LU3 1366.3 0.5 0.02 0 0 CS-05 0 0 

CS-06 Cave 2 Column Sample 1) LU3 1366.25 0.5 0.16 0 0 CS-06 0 0 

CS-07 Cave 2 Column Sample 1) LU3 1366.2 0.5 0.56 0 0 CS-07 0 0 

CS-08 Cave 2 Column Sample 1) LU3 1366.15 0.5 0.18 0 0 CS-08 0 0 

CS-09 Cave 2 Column Sample 1) LU3 1366.1 0.5 0 0 0 CS-09 0 0 

CS-10 Cave 2 Column Sample 1) LU3 1366.05 0.5 0 0 0 CS-10 0 0 

CS-11 Cave 2 Column Sample 1) LU3 1366 0.5 0 0 0 CS-11 0 0 

CS-12 Cave 2 Column Sample 1) LU3 1365.95 0.75 0.0133333 0 0 CS-12 0 0 

CS-13 Cave 2 Column Sample 1) LU3 1365.9 0.75 0 0 0 CS-13 0 0 

CS-14 Cave 2 Column Sample 1) LU3 1365.85 0.9 0.0333333 0 0 CS-14 0 0 

CS-15 Cave 2 Column Sample 1) LU3 1365.8 1 0.09 0 0 CS-15 0 0 

CS-16 Cave 2 Column Sample 1) LU3 1365.75 0.2 0.1 0 0 CS-16 0 0 

CS-17 Cave 2 Column Sample 1) LU3 1365.7 1 0.06 0 0 CS-17 0 0 

CS-18a Cave 2 Column Sample 1) LU3 1365.68 0.35 0.5428571 0 0 CS-18a 0 0 

CS-18b Cave 2 Column Sample Botanical Lens column sample 1365.65 0.55 1.0727273 0 0 CS-18b 0 0 

CS-19a Cave 2 Column Sample Botanical Lens column sample 1365.62 0.3 2.6666667 0 0 CS-19a 0 0 

CS-19b Cave 2 Column Sample 3) Mud lens 1365.6 0.5 1.64 0 0 CS-19b 0 0 

CS-20 Cave 2 Column Sample 4) LU2 1365.55 0.5 7.7 0 0 CS-20 0 0 

CS-21 Cave 2 Column Sample 4) LU2 1365.5 0.4 1.45 0 0 CS-21 0 0 

5/5-Str. I Cave 5 Upper Strata Cave 5 Stratum 1 0.5 1.26 6 0 5/5-Str. I 12 0 

5/5-Str. II Cave 5 Upper Strata Cave 5 Stratum 2 0.25 1.68 0 0 5/5-Str. II 0 0 

5/5-Str. III Cave 5 Lower Strata Cave 5 Stratum 3 0.25 0.88 0 0 5/5-Str. III 0 0 

5/5-Str. IV Cave 5 Lower Strata Cave 5 Stratum 4 0.25 0.4 0 0 5/5-Str. IV 0 0 

5/5-Str. VI Cave 5 Lower Strata Cave 5 Stratum 6 0.25 0 0 0 5/5-Str. VI 0 0 

F 1/7-4a YD Hearth Cave 1 Hearth 0.5 7.78 0 0 F 1/7-4a 0 0 

F 1/7-4b YD Hearth Cave 1 Hearth 0.5 9.42 0 0 F 1/7-4b 0 0 

F 2/4C-4 YD Hearth Botanical Lens Hearth 0.5 6.9 0 0 F 2/4C-4 0 0 

F 2/3A-32-46 YD Hearth Botanical Lens Hearth 0.5 5.28 0 0 F 2/3A-32-46 0 0 

F 2/6-4 YD Hearth Lower Mud Lens Hearth 0.5 7.84 0 0 F 2/6-4 0 0 

F 5/5-3 Cave 5 Hearth Hearth/Earth Oven 0.5 1.26 0 0 F 5/5-3 0 0 

F 5/5A-26-8 Cave 5 Hearth Hearth/Earth Oven 0.5 2.58 0 20 F 5/5A-26-8 0 4 

5/12A-34-19 Nest Woodrat Nest 1366.36 0.4 0 0 0 5/12A-34-19 0 0 
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Sample CH Asteraceae CH Artemisia CH Boraginaceae Ch Amsinckia CH Cryptantha winged CH Cryptantha small Ch Phacelia CH Descurainia CH cf. Celtis CH Cheno-am 

CS-02 0 0 0 0 0 0 0 0 0 0 

CS-03 0 0 0 0 0 0 0 0 0 0 

CS-04 0 0 0 0 0 0 0 0 0 0 

CS-05 0 0 0 0 0 0 0 0 0 0 

CS-06 0 0 0 0 0 0 0 0 0 6 

CS-07 0 0 0 0 0 0 0 0 0 10 

CS-08 0 0 2 0 0 0 0 0 0 0 

CS-09 0 0 0 0 0 0 0 0 0 0 

CS-10 0 0 0 4 0 0 0 0 0 0 

CS-11 0 0 0 0 0 0 0 0 0 0 

CS-12 0 0 0 0 0 0 0 0 0 0 

CS-13 0 0 0 0 0 0 0 0 0 0 

CS-14 0 0 0 0 0 0 0 0 0 0 

CS-15 0 0 0 0 0 0 0 0 0 0 

CS-16 0 0 0 0 0 0 0 0 0 0 

CS-17 0 0 0 0 0 0 0 0 0 0 

CS-18a 0 0 0 0 0 0 0 0 0 0 

CS-18b 0 0 0 0 0 0 0 0 0 0 

CS-19a 0 0 0 0 0 0 0 0 0 0 

CS-19b 0 0 0 0 0 0 0 0 0 0 

CS-20 0 0 0 0 0 0 0 0 0 0 

CS-21 0 0 0 0 0 0 0 0 0 0 

5/5-Str. I 0 2 44 8 0 0 8 32 4 44 

5/5-Str. II 8 0 28 12 8 20 24 16 4 36 

5/5-Str. III 0 0 0 0 0 0 0 4 8 16 

5/5-Str. IV 0 0 0 0 0 0 0 0 0 0 

5/5-Str. VI 0 0 0 0 0 0 0 0 0 0 

F 1/7-4a 0 0 0 0 0 0 0 0 0 2 

F 1/7-4b 0 0 0 0 0 0 0 0 0 0 

F 2/4C-4 0 0 0 0 0 0 0 0 0 0 

F 2/3A-32-46 0 0 0 0 0 0 0 2 0 2 

F 2/6-4 0 0 24 0 0 0 8 2 0 12 

F 5/5-3 0 0 36 0 0 8 2 6 0 42 

F 5/5A-26-8 0 0 10 0 0 0 0 0 0 60 

5/12A-34-19 0 0 0 0 0 0 0 0 0 0 
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Sample CH Atriplex CH A. confertifolia Ch Chenopod Ch Suaeda CH Juniperus Ch Cyperaceae Ch Fabaceae CH Vicia CH Geraniaceae CH Juncus 

CS-02 0 0 0 0 0 0 0 0 0 0 

CS-03 0 0 0 0 0 0 0 0 0 0 

CS-04 0 0 0 0 0 0 0 0 0 0 

CS-05 0 0 0 2 0 0 0 0 0 0 

CS-06 0 2 92 0 0 0 0 0 0 0 

CS-07 0 0 0 0 0 0 0 0 0 0 

CS-08 0 0 0 0 0 0 0 0 0 0 

CS-09 0 0 0 0 0 0 0 0 0 0 

CS-10 0 0 0 0 0 0 0 0 0 0 

CS-11 0 0 0 0 0 0 0 0 0 0 

CS-12 0 0 0 0 0 0 0 0 0 0 

CS-13 0 0 0 0 0 0 0 0 0 0 

CS-14 0 0 0 0 0 0 0 0 0 0 

CS-15 0 0 0 0 0 0 0 0 0 0 

CS-16 0 0 0 0 0 0 0 0 0 0 

CS-17 0 0 0 0 0 0 0 0 0 0 

CS-18a 0 0 0 0 0 0 0 0 0 0 

CS-18b 0 0 0 0 0 0 0 0 0 0 

CS-19a 0 0 0 0 0 0 0 0 0 0 

CS-19b 0 0 0 0 0 0 0 0 0 0 

CS-20 0 0 0 0 0 0 0 0 0 0 

CS-21 0 0 0 0 0 0 0 0 0 0 

5/5-Str. I 2 0 0 0 0 4 2 0 0 32 

5/5-Str. II 8 12 0 0 4 0 0 0 0 0 

5/5-Str. III 4 8 0 0 0 0 0 0 0 0 

5/5-Str. IV 0 12 0 0 0 0 0 0 0 0 

5/5-Str. VI 0 0 0 0 0 0 0 0 0 0 

F 1/7-4a 0 0 0 0 0 0 0 0 0 0 

F 1/7-4b 0 0 0 0 0 0 0 0 0 0 

F 2/4C-4 4 0 0 0 0 0 0 0 0 0 

F 2/3A-32-46 10 0 0 0 0 0 0 0 0 0 

F 2/6-4 28 0 2 0 0 0 0 0 0 0 

F 5/5-3 72 2 0 0 0 0 0 2 12 0 

F 5/5A-26-8 16 0 0 0 0 0 0 0 0 2 

5/12A-34-19 0 0 0 0 0 0 0 0 0 0 
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Sample CH Liliaceae CH Mentzelia CH Sphaeralcea CH Pinus CH Plantago CH Poaceae CH Achnathnatherum CH Hesperostipa CH Polygonaceae CH Sesuvium 

CS-02 0 0 0 0 0 0 0 0 0 0 

CS-03 0 0 0 0 0 0 0 0 0 0 

CS-04 0 0 0 0 0 0 0 0 0 0 

CS-05 0 0 0 0 0 0 0 0 0 0 

CS-06 0 0 0 0 0 8 8 0 0 0 

CS-07 0 0 0 0 0 2 0 0 0 0 

CS-08 0 0 0 0 0 22 0 0 0 0 

CS-09 0 0 0 0 0 38 0 0 0 0 

CS-10 0 0 0 0 0 0 0 0 0 0 

CS-11 0 0 0 0 0 0 0 0 0 0 

CS-12 0 0 0 0 0 0 0 0 0 0 

CS-13 0 0 0 0 0 0 0 0 0 0 

CS-14 0 0 0 0 0 0 0 0 0 0 

CS-15 0 0 0 0 0 0 0 0 0 0 

CS-16 0 0 0 0 0 0 0 0 0 0 

CS-17 0 0 0 0 0 0 3 0 0 0 

CS-18a 0 0 0 0 0 0 0 0 0 0 

CS-18b 0 0 0 0 0 0 0 0 0 0 

CS-19a 0 0 0 0 0 0 0 0 0 0 

CS-19b 0 2 0 0 0 0 0 0 0 0 

CS-20 0 0 0 0 0 0 0 0 0 0 

CS-21 0 0 0 0 0 0 0 0 0 0 

5/5-Str. I 0 28 0 2 0 2 52 4 4 0 

5/5-Str. II 0 20 0 0 0 28 16 12 0 0 

5/5-Str. III 4 4 0 0 0 0 0 0 0 0 

5/5-Str. IV 0 0 0 0 0 0 0 0 0 0 

5/5-Str. VI 0 0 0 0 0 0 0 0 0 0 

F 1/7-4a 0 0 0 0 0 0 0 0 0 0 

F 1/7-4b 0 0 0 0 0 2 0 0 0 0 

F 2/4C-4 0 0 0 0 0 0 0 0 0 0 

F 2/3A-32-46 0 0 0 0 0 0 0 0 0 0 

F 2/6-4 0 0 0 0 0 8 8 0 0 2 

F 5/5-3 2 0 4 0 2 28 86 16 0 0 

F 5/5A-26-8 0 0 0 0 2 8 62 0 0 0 

5/12A-34-19 0 0 0 0 0 0 0 0 0 0 
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Sample Ch Ceanothus CH Rosaceae Ch Rosa CH Urtica CH Unid Sum charred cheno-ams Charred Seed Density Sambucus Amaranthus Asteraceae 

CS-02 0 0 0 0 0 0 0 0 0 2 

CS-03 0 0 0 0 0 0 0 0 0 0 

CS-04 0 0 0 0 0 0 0 0 0 0 

CS-05 0 0 0 0 0 2 2 0 0 2 

CS-06 0 0 0 0 2 100 118 0 4 8 

CS-07 0 0 0 0 0 10 12 0 12 0 

CS-08 0 0 0 0 0 0 24 0 24 14 

CS-09 0 0 0 0 0 0 38 0 50 14 

CS-10 0 0 0 0 0 0 4 0 62 0 

CS-11 0 0 0 0 0 0 0 0 32 0 

CS-12 0 0 0 0 0 0 0 0 0 0 

CS-13 0 0 0 0 0 0 0 0 24 0 

CS-14 0 0 0 0 0 0 0 1.1111111 0 0 

CS-15 0 0 0 0 0 0 0 0 0 0 

CS-16 0 0 0 0 0 0 0 0 5 0 

CS-17 0 0 0 0 0 0 3 0 0 0 

CS-18a 0 0 0 0 0 0 0 0 0 0 

CS-18b 0 0 0 0 0 0 0 0 0 0 

CS-19a 0 0 0 0 0 0 0 0 0 10 

CS-19b 0 0 0 0 0 0 2 0 0 0 

CS-20 0 0 0 0 0 0 0 0 0 0 

CS-21 0 0 0 0 0 0 0 0 0 0 

5/5-Str. I 0 6 0 0 20 46 318 2 0 10 

5/5-Str. II 0 0 0 0 20 56 276 0 0 8 

5/5-Str. III 0 0 0 0 0 28 48 0 0 12 

5/5-Str. IV 0 0 0 0 4 12 16 0 0 16 

5/5-Str. VI 0 0 0 0 0 0 0 0 0 24 

F 1/7-4a 0 0 0 0 0 2 2 0 0 0 

F 1/7-4b 0 0 0 0 2 0 4 0 0 0 

F 2/4C-4 0 0 0 0 2 4 6 0 0 0 

F 2/3A-32-46 0 0 0 0 0 12 14 0 2 0 

F 2/6-4 0 0 0 0 8 42 102 0 0 2 

F 5/5-3 0 8 0 8 22 116 358 0 2 2 

F 5/5A-26-8 2 4 4 0 0 96 194 0 0 0 

5/12A-34-19 0 0 0 0 0 0 0 0 0 12.5 
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Sample Artemsia Tetradymia Boraginaceae perisperm Amsinckia Cryptantha winged Cryptantha small Hackelia Other Cryptantha Phacelia Plagiobothyrus 

CS-02 0 0 0 10 2 0 0 0 0 0 

CS-03 0 0 0 4 0 0 0 0 0 0 

CS-04 2 0 0 24 0 0 0 0 0 0 

CS-05 4 0 0 4 0 2 0 0 0 0 

CS-06 58 0 0 54 10 2 2 0 0 4 

CS-07 144 0 0 56 6 4 4 4 0 0 

CS-08 62 0 0 44 0 0 2 0 0 0 

CS-09 10 0 0 18 0 0 0 0 0 0 

CS-10 0 0 0 4 0 2 4 0 0 0 

CS-11 0 0 0 2 0 0 4 0 0 0 

CS-12 0 0 0 24 0 0 0 0 0 0 

CS-13 0 0 0 34.666667 0 5.3333333 1.3333333 0 0 0 

CS-14 0 0 0 0 0 0 0 0 0 0 

CS-15 0 0 0 0 0 0 0 0 0 0 

CS-16 0 0 0 0 0 0 0 0 0 0 

CS-17 0 0 1 0 0 5 0 0 1 0 

CS-18a 0 0 0 0 0 0 0 0 0 0 

CS-18b 0 0 0 0 0 5.4545455 0 0 0 0 

CS-19a 0 0 0 0 0 10 0 0 3.3333333 0 

CS-19b 0 0 0 0 0 0 0 0 0 0 

CS-20 0 0 0 0 0 0 0 0 0 0 

CS-21 0 0 0 0 0 2.5 0 0 0 0 

5/5-Str. I 42 24 0 74 24 64 0 0 2 0 

5/5-Str. II 68 0 8 196 0 56 0 0 8 12 

5/5-Str. III 0 0 0 288 24 12 0 0 0 40 

5/5-Str. IV 0 0 0 432 4 16 0 0 0 4 

5/5-Str. VI 0 0 0 60 4 0 0 0 0 4 

F 1/7-4a 0 0 0 0 0 0 0 0 0 0 

F 1/7-4b 0 0 0 0 0 0 0 0 0 0 

F 2/4C-4 0 0 0 0 0 0 0 0 0 0 

F 2/3A-32-46 0 0 0 0 0 0 0 0 0 0 

F 2/6-4 0 0 0 0 0 8 0 0 0 0 

F 5/5-3 0 0 2 2 0 4 0 0 0 0 

F 5/5A-26-8 0 0 0 0 0 0 0 0 0 0 

5/12A-34-19 0 0 42.5 0 0 12.5 0 0 12.5 0 
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Sample Brassicaceae Descurainia Cannabis Cheno-Am Atriplex sp.endosperm A. confertifolia A. palustris A. rosea Chenopodium Juniperus 

CS-02 0 0 0 0 0 8 0 0 6 0 

CS-03 0 0 0 0 0 0 0 0 2 0 

CS-04 4 0 2 2 0 28 0 0 4 0 

CS-05 0 0 0 0 0 14 0 4 16 0 

CS-06 6 0 0 0 0 140 0 20 598 0 

CS-07 0 0 0 46 0 52 0 20 14 0 

CS-08 0 0 0 14 0 30 0 0 48 0 

CS-09 2 0 0 26 0 12 0 2 64 0 

CS-10 0 6 0 16 0 2 0 0 42 0 

CS-11 0 0 0 4 0 0 0 0 34 0 

CS-12 0 0 0 1.3333333 0 0 0 0 2.6666667 0 

CS-13 0 1.3333333 0 2.6666667 0 10.666667 0 1.3333333 36 0 

CS-14 0 0 0 0 1.1111111 15.555556 0 0 7.7777778 0 

CS-15 0 0 0 0 5 6 0 1 2 0 

CS-16 0 5 0 40 0 0 0 0 65 0 

CS-17 0 14 0 0 4 25 3 0 100 0 

CS-18a 0 0 0 0 0 0 0 0 0 0 

CS-18b 0 0 0 0 1.8181818 0 0 0 12.727273 0 

CS-19a 0 0 0 0 13.333333 0 0 0 16.666667 3.3333333 

CS-19b 0 0 0 2 0 0 0 0 0 0 

CS-20 0 0 0 0 0 0 0 0 2 0 

CS-21 0 0 0 0 0 0 0 0 0 0 

5/5-Str. I 0 60 2 48 6 42 0 0 0 0 

5/5-Str. II 0 52 8 132 16 168 0 12 0 52 

5/5-Str. III 0 60 40 8 20 1176 0 80 0 8 

5/5-Str. IV 4 56 8 0 32 1208 0 12 0 0 

5/5-Str. VI 0 4 4 0 0 732 0 4 0 4 

F 1/7-4a 0 0 0 0 0 0 0 0 0 0 

F 1/7-4b 0 0 0 0 0 0 0 0 0 0 

F 2/4C-4 0 0 0 0 2 0 0 0 0 2 

F 2/3A-32-46 0 0 0 0 8 0 0 0 0 0 

F 2/6-4 0 0 0 0 6 0 0 0 4 0 

F 5/5-3 0 0 0 0 12 2 0 0 0 0 

F 5/5A-26-8 0 0 0 0 0 0 0 0 0 0 

5/12A-34-19 0 7.5 0 0 30 0 0 0 0 0 
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Sample Carex Eleocharis Scirpus Trifolium Ribes Juncus Lili-Amaryll Mentzelia Malvaceae Montia 

CS-02 0 0 0 0 0 0 0 0 0 0 

CS-03 0 0 0 0 0 0 0 0 0 0 

CS-04 0 0 2 0 0 0 0 0 2 0 

CS-05 0 0 0 0 0 0 0 0 0 0 

CS-06 0 0 0 0 0 0 0 0 0 0 

CS-07 0 0 0 0 0 0 0 0 0 0 

CS-08 0 0 0 0 0 0 0 0 0 0 

CS-09 0 0 0 0 0 0 0 0 0 0 

CS-10 0 0 0 0 0 0 0 0 0 0 

CS-11 0 0 0 0 0 0 0 0 0 0 

CS-12 0 0 0 0 0 0 0 0 0 0 

CS-13 0 0 0 0 0 0 0 0 0 0 

CS-14 0 1.1111111 0 0 0 0 0 0 0 0 

CS-15 0 1 0 0 0 0 0 0 0 0 

CS-16 0 0 0 0 0 0 0 10 0 0 

CS-17 0 0 0 1 1 0 0 2 0 0 

CS-18a 0 0 0 0 0 0 0 0 0 0 

CS-18b 0 0 0 0 0 0 0 0 0 0 

CS-19a 0 0 0 0 0 0 0 0 0 0 

CS-19b 0 0 0 0 0 0 0 0 0 0 

CS-20 0 0 0 0 0 2 0 4 0 0 

CS-21 0 0 0 0 0 0 0 0 0 0 

5/5-Str. I 0 0 0 0 0 8 0 92 0 0 

5/5-Str. II 4 0 0 0 0 4 0 92 0 0 

5/5-Str. III 0 0 0 0 0 0 0 24 0 0 

5/5-Str. IV 4 0 0 0 0 0 0 84 0 0 

5/5-Str. VI 0 0 0 0 0 0 0 0 0 0 

F 1/7-4a 0 0 0 0 0 0 0 0 0 0 

F 1/7-4b 0 0 0 0 0 0 0 0 0 0 

F 2/4C-4 0 0 0 0 0 0 8 0 0 0 

F 2/3A-32-46 0 0 0 0 0 0 0 0 0 0 

F 2/6-4 0 0 0 0 0 0 0 2 0 0 

F 5/5-3 0 0 0 0 0 0 0 0 0 0 

F 5/5A-26-8 0 0 0 0 0 0 0 0 0 0 

5/12A-34-19 12.5 0 82.5 7.5 0 0 0 5 0 17.5 
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Sample Chamerion Oenothera Pinus Poaceae Achnatherum Heterostipa Leymus Eriogonum Polygonaceae Rumex 

CS-02 0 0 0 12 14 2 0 0 0 0 

CS-03 0 0 0 6 24 0 0 0 0 0 

CS-04 0 0 0 0 0 0 0 0 2 0 

CS-05 0 0 0 20 26 0 0 0 0 0 

CS-06 0 0 0 50 68 4 0 0 0 0 

CS-07 0 0 0 22 38 4 0 0 0 0 

CS-08 0 0 0 34 36 2 0 0 0 0 

CS-09 0 0 0 12 6 0 0 0 0 0 

CS-10 0 0 0 0 8 0 0 0 0 0 

CS-11 0 0 0 0 0 0 0 0 0 0 

CS-12 0 0 0 0 2.6666667 0 0 0 0 0 

CS-13 0 0 4 1.3333333 52 0 0 1.3333333 0 0 

CS-14 0 0 0 1.1111111 14.444444 0 0 0 0 0 

CS-15 0 0 0 0 36 0 0 0 0 0 

CS-16 0 0 0 0 80 0 0 0 0 0 

CS-17 0 0 0 12 193 0 0 0 0 0 

CS-18a 0 0 0 0 2.8571429 0 0 0 0 0 

CS-18b 0 0 1.8181818 0 76.363636 0 0 0 0 0 

CS-19a 0 0 3.3333333 43.333333 83.333333 0 0 0 0 0 

CS-19b 0 0 0 10 22 0 0 0 0 0 

CS-20 0 0 0 0 22 0 0 0 0 0 

CS-21 0 0 2.5 5 20 0 0 0 0 0 

5/5-Str. I 2 0 2 88 72 6 0 0 0 0 

5/5-Str. II 0 0 0 108 112 4 0 0 0 0 

5/5-Str. III 0 0 0 140 136 0 0 0 0 0 

5/5-Str. IV 0 0 0 128 196 0 0 0 0 0 

5/5-Str. VI 4 0 0 156 184 4 0 0 0 0 

F 1/7-4a 0 0 0 0 0 0 0 0 0 0 

F 1/7-4b 0 2 2 0 0 0 0 0 0 0 

F 2/4C-4 0 0 0 20 80 0 0 0 0 0 

F 2/3A-32-46 0 0 0 8 40 0 0 0 0 0 

F 2/6-4 0 0 0 18 42 0 0 0 0 0 

F 5/5-3 0 0 0 16 54 0 0 0 0 0 

F 5/5A-26-8 0 0 0 0 0 0 0 0 0 0 

5/12A-34-19 2.5 10 0 142.5 297.5 2.5 2.5 0 0 5 
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Sample Ceanothus Rosaceae Solanaceae Typha Urtica Unid Uncharred Seed Density Shannon-Wiener Charred Edible Taxa Unch Food 

CS-02 0 0 0 0 0 0 56 1.8586284 0 28 

CS-03 0 0 0 0 0 0 36 0.9736489 0 26 

CS-04 0 0 0 0 0 0 72 1.6519003 0 34 

CS-05 0 0 0 0 0 0 92 1.918531 2 60 

CS-06 0 0 0 0 0 8 1036 1.5110345 108 830 

CS-07 0 0 0 0 0 18 444 2.1792976 10 182 

CS-08 0 0 0 0 0 10 320 2.2301235 0 152 

CS-09 0 0 0 0 0 10 226 2.0894016 0 160 

CS-10 0 0 0 0 0 20 166 1.7859166 0 136 

CS-11 0 0 0 0 0 6 82 1.3088288 0 70 

CS-12 0 0 0 0 0 2.6666667 33.333333 0.9714528 0 6.6666667 

CS-13 0 1.3333333 0 0 0 6.6666667 184 2.0032411 0 128 

CS-14 0 0 0 0 0 2.2222222 44.444444 1.5564092 0 41.111111 

CS-15 0 0 0 0 0 5 56 1.2175318 0 51 

CS-16 0 0 0 0 0 0 205 1.3787529 0 205 

CS-17 9 0 0 0 1 0 372 1.4460871 3 343 

CS-18a 0 0 0 0 0 0 2.8571429 0 0 2.8571429 

CS-18b 0 0 0 0 0 0 98.181818 0.768626 0 90.909091 

CS-19a 0 0 0 0 0 23.333333 210 1.7999339 0 113.33333 

CS-19b 0 0 0 0 0 0 34 0.9779252 2 24 

CS-20 0 0 0 0 0 0 30 0.857174 0 28 

CS-21 0 2.5 0 0 17.5 15 65 1.6275675 0 20 

5/5-Str. I 0 0 8 0 0 18 696 2.8242632 164 322 

5/5-Str. II 0 0 4 0 0 0 1124 2.6446732 108 588 

5/5-Str. III 0 4 0 0 0 0 2072 1.6548174 36 1504 

5/5-Str. IV 0 0 0 0 0 4 2208 1.4886746 12 1592 

5/5-Str. VI 0 0 0 0 0 4 1192 1.2551348 0 924 

F 1/7-4a 0 0 0 0 0 0 0 0 2 0 

F 1/7-4b 0 2 0 0 0 0 6 1.6094379 0 2 

F 2/4C-4 0 0 0 0 0 2 114 1.0808723 4 82 

F 2/3A-32-46 0 0 0 2 0 0 60 1.3072735 14 52 

F 2/6-4 0 0 0 0 0 4 86 2.1210921 52 54 

F 5/5-3 0 0 0 0 4 0 100 2.249719 208 70 

F 5/5A-26-8 0 0 0 0 0 0 0 1.8334516 166 0 

5/12A-34-19 0 0 0 0 717.5 115 1537.5 1.7815469 0 377.5 
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Sample CH Medicinal Unch Med CH Handicraft Unch Handi ShannonWiener Richness Cluster Shannon-Wiener  Index Charred Seeds Period 2 Ch Edible Plants (including family-level IDs) 

CS-02 0 0 0 0 1.8586284 8 1 0 Early Holocene 0 

CS-03 0 0 0 0 0.9736489 4 1 0 Early Holocene 0 

CS-04 0 2 0 2 1.6519003 10 1 0 Early Holocene 0 

CS-05 0 4 0 0 1.918531 10 1 0 Early Holocene 2 

CS-06 0 58 0 0 1.5110345 17 3 0.7758965 Early Holocene 108 

CS-07 0 144 0 0 2.1792976 15 1 0.4505612 Early Holocene 10 

CS-08 0 62 0 0 2.2301235 13 1 0.286836 Early Holocene 0 

CS-09 0 10 0 0 2.0894016 12 1 0 Early Holocene 0 

CS-10 0 0 0 0 1.7859166 10 1 0 Early Holocene 4 

CS-11 0 0 0 0 1.3088288 6 1 0 Early Holocene 0 

CS-12 0 0 0 0 0.9714528 5 1 0 Early Holocene 0 

CS-13 0 4 0 0 2.0032411 15 1 0 Early Holocene 0 

CS-14 0 1.1111111 0 0 1.5564092 8 1 0 Early Holocene 0 

CS-15 0 0 0 0 1.2175318 7 1 0 Early Holocene 0 

CS-16 0 0 0 0 1.3787529 6 1 0 Younger Dryas 0 

CS-17 0 10 0 1 1.4460871 15 1 0 Younger Dryas 3 

CS-18a 0 0 0 0 0 1 1 0 Younger Dryas 0 

CS-18b 0 1.8181818 0 0 0.768626 5 1 0 Younger Dryas 0 

CS-19a 0 3.3333333 0 3.3333333 1.7999339 10 1 0 Younger Dryas 0 

CS-19b 0 0 0 0 0.9779252 4 1 0 Younger Dryas 2 

CS-20 0 0 0 2 0.857174 4 2 0 Late Pleistocene 0 

CS-21 0 20 0 17.5 1.6275675 7 1 0 Late Pleistocene 0 

5/5-Str. I 10 70 32 8 2.8242632 28 4 2.4511692 Late Holocene 188 

5/5-Str. II 4 68 4 60 2.6446732 23 4 2.6120167 Late Holocene 120 

5/5-Str. III 0 0 0 8 1.6548174 17 3 1.7917595 Late Holocene 40 

5/5-Str. IV 0 0 0 4 1.4886746 16 3 0 Middle Holocene 12 

5/5-Str. VI 0 0 0 4 1.2551348 14 3 0 Early Holocene 0 

F 1/7-4a 0 0 0 0 0 1 2 0 Younger Dryas 2 

F 1/7-4b 0 2 0 0 1.6094379 5 2 0 Younger Dryas 0 

F 2/4C-4 0 0 0 2 1.0808723 6 2 0 Younger Dryas 4 

F 2/3A-32-46 0 0 0 2 1.3072735 7 2 0.7963116 Younger Dryas 14 

F 2/6-4 0 0 0 0 2.1210921 13 2 1.8469184 Younger Dryas 52 

F 5/5-3 10 4 8 4 2.249719 21 4 2.1933062 Younger Dryas 218 

F 5/5A-26-8 8 0 2 0 1.8334516 12 4 1.8334516 Younger Dryas 170 

5/12A-34-19 0 722.5 0 812.5 1.7815469 20 3 0 Younger Dryas 0 
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Sample Ch Edible Seeds/Total Ch Seeds Sum uncharred edible seeds Edible uncharred seeds/total uncharred seeds 

CS-02 

 

38 0.6785714 

CS-03 

 

30 0.8333333 

CS-04 

 

60 0.8333333 

CS-05 1 64 0.6956522 

CS-06 0.9152542 884 0.8532819 

CS-07 0.8333333 238 0.536036 

CS-08 0 196 0.6125 

CS-09 0 178 0.7876106 

CS-10 1 140 0.8433735 

CS-11 

 

72 0.8780488 

CS-12 

 

30.666667 0.92 

CS-13 

 

168 0.9130435 

CS-14 

 

40 0.9 

CS-15 

 

50 0.8928571 

CS-16 

 

205 1 

CS-17 1 343 0.922043 

CS-18a 

 

2.8571429 1 

CS-18b 

 

92.727273 0.9444444 

CS-19a 

 

116.66667 0.5555556 

CS-19b 1 24 0.7058824 

CS-20 

 

28 0.9333333 

CS-21 

 

22.5 0.3461538 

5/5-Str. I 0.591195 398 0.5718391 

5/5-Str. II 0.4347826 792 0.7046263 

5/5-Str. III 0.8333333 1792 0.8648649 

5/5-Str. IV 0.75 2024 0.9166667 

5/5-Str. VI 

 

984 0.8255034 

F 1/7-4a 1 0 

 F 1/7-4b 0 4 0.6666667 

F 2/4C-4 0.6666667 90 0.7894737 

F 2/3A-32-46 1 52 0.8666667 

F 2/6-4 0.5098039 54 0.627907 

F 5/5-3 0.6089385 74 0.74 

F 5/5A-26-8 0.8762887 0 

 5/12A-34-19 495 0.3219512 
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 Density Density Density Density UNCH Density Density Density Density CH Density Density Density 

Sample Carex Eleocharis Scirpus Typha OBL CH Camas CH Juncus Ch Suaeda CH Urtica FACW Plagiobothyru Juncus Rumex 

CS-02 0 0 0 0 0 0 0 0 0 0 0 0 0 

CS-03 0 0 0 0 0 0 0 0 0 0 0 0 0 

CS-04 0 0 2 0 2 0 0 0 0 0 0 0 0 

CS0-5 0 0 0 0 0 0 0 2 0 2 0 0 0 

CS-06 0 0 0 0 0 0 0 0 0 0 4 0 0 

CS-07 0 0 0 0 0 0 0 0 0 0 0 0 0 

CS-08 0 0 0 0 0 0 0 0 0 0 0 0 0 

CS-09 0 0 0 0 0 0 0 0 0 0 0 0 0 

CS-10 0 0 0 0 0 0 0 0 0 0 0 0 0 

CS-11 0 0 0 0 0 0 0 0 0 0 0 0 0 

CS-12 0 0 0 0 0 0 0 0 0 0 0 0 0 

CS-13 0 0 0 0 0 0 0 0 0 0 0 0 0 

CS-14 0 1.11111111 0 0 1.11111111 0 0 0 0 0 0 0 0 

CS-15 0 1 0 0 1 0 0 0 0 0 0 0 0 

CS-16 0 0 0 0 0 0 0 0 0 0 0 0 0 

CS-17 0 0 0 0 0 0 0 0 0 0 0 0 0 

CS-18a 0 0 0 0 0 0 0 0 0 0 0 0 0 

CS-18b 0 0 0 0 0 0 0 0 0 0 0 0 0 

CS-19a 0 0 0 0 0 0 0 0 0 0 0 0 0 

CS-19b 0 0 0 0 0 0 0 0 0 0 0 0 0 

CS-20 0 0 0 0 0 0 0 0 0 0 0 2 0 

CS-21 0 0 0 0 0 0 0 0 0 0 0 0 0 

5/5-Str. I 0 0 0 0 0 0 32 0 0 32 0 8 0 

5/5-Str. II 4 0 0 0 4 0 0 0 0 0 12 4 0 

5/5-Str. III 0 0 0 0 0 0 0 0 0 0 40 0 0 

5/5-Str. IV 4 0 0 0 4 0 0 0 0 0 4 0 0 

5/5-Str. VI 0 0 0 0 0 0 0 0 0 0 4 0 0 

F 5/5-3 0 0 0 0 0 0 0 0 8 8 0 0 0 

F 2/6-4 0 0 0 0 0 0 0 0 0 0 0 0 0 

2/4C-4 0 0 0 0 0 0 0 0 0 0 0 0 0 

5/5A-26-8 0 0 0 0 0 4 2 0 0 6 0 0 0 

F 1/7-4a 0 0 0 0 0 0 0 0 0 0 0 0 0 

F 1/7-4b 0 0 0 0 0 0 0 0 0 0 0 0 0 

2/3A-32-46 0 0 0 2 2 0 0 0 0 0 0 0 0 

5/12A-34-19 12.5 0 82.5 0 95 0 0 0 0 0 0 0 5 

 obl     facw        
           64 14 5 

  



3 6 0  

 

 

D e n s i t y  UNCH D e n s i t y  CH D e n s i t y  D e n s i t y  CH D e n s i t y  D e n s i t y  FAC Upl FACW FACU 

U r t i c a  FACW C h  C h e n o p o d  FACU H a c k e l i a  C h e n o p o d i u m  FACU C H  A c h n a t h  A c h n a t h e r u m  RI RI RI RI 

0 0 0 0 0 6 6 0 14 0 14 0 6 

0 0 0 0 0 2 2 0 24 0 24 0 2 

0 0 0 0 0 4 4 0 0 0 0 0 4 

0 0 0 0 0 16 16 0 26 0 26 2 16 

0 4 92 92 2 598 600 8 68 0 76 4 692 

0 0 0 0 4 14 18 0 38 0 38 0 18 

0 0 0 0 2 48 50 0 36 0 36 0 50 

0 0 0 0 0 64 64 0 6 0 6 0 64 

0 0 0 0 4 42 46 0 8 0 8 0 46 

0 0 0 0 4 34 38 0 0 0 0 0 38 

0 0 0 0 0 2 . 6 6 6 6 6 6 6 7  2.66666667 0 2 . 6 6 6 6 6 6 6 7  0 2.66666667 0 2.66666667 

0 0 0 0 1 . 3 3 3 3 3 3 3 3  36 37.3333333 0 52 0 52 0 37.3333333 

0 0 0 0 0 7 . 7 7 7 7 7 7 7 8  7.77777778 0 1 4 . 4 4 4 4 4 4 4  0 14.4444444 0 7.77777778 

0 0 0 0 0 2 2 0 36 0 36 0 2 

0 0 0 0 0 65 65 0 80 0 80 0 65 

1 1 0 0 0 100 100 3 193 1 196 1 100 

0 0 0 0 0 0 0 0 2 . 8 5 7 1 4 2 8 6  0 2.85714286 0 0 

0 0 0 0 0 1 2 . 7 2 7 2 7 2 7  12.7272727 0 7 6 . 3 6 3 6 3 6 4  0 76.3636364 0 12.7272727 

0 0 0 0 0 1 6 . 6 6 6 6 6 6 7  16.6666667 0 8 3 . 3 3 3 3 3 3 3  0 83.3333333 0 16.6666667 

0 0 0 0 0 0 0 0 22 0 22 0 0 

0 2 0 0 0 2 2 0 22 0 22 2 2 

17.5 17.5 0 0 0 0 0 0 20 0 20 17.5 0 

0 8 0 0 0 0 0 52 72 0 124 40 0 

0 16 0 0 0 0 0 16 112 0 128 16 0 

0 40 0 0 0 0 0 0 136 0 136 40 0 

0 4 0 0 0 0 0 0 196 0 196 4 0 

0 4 0 0 0 0 0 0 184 0 184 4 0 

4 4 0 0 0 0 0 86 54 0 140 12 0 

0 0 2 2 0 4 4 8 42 0 50 0 6 

0 0 0 0 0 0 0 0 80 0 80 0 0 

0 0 0 0 0 0 0 62 0 0 62 6 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 40 0 40 0 0 

7 1 7 . 5  722.5 0 0 0 0 0 0 2 9 7 . 5  7.5 297.5 722.5 0 

f a c u  

740 
      

235 2 0 3 8 . 1 6 5 2 2  8.5 
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A P P E N D I X  E  

 

L S P - 1  R O C K S H E L T E R  D A T A  T A B L E S  

 

Sample 

No. 

Bottom 

depth 

Sample 

Category Provenience Period Sample Type Strata and Feature Strata 

Sediment 

Package 

Volume 

(L) 

LF 

Weight 

LSP-005b 28-31 Column Column Upper Late Holocene Column Upper II II Upper 0.9 10.87 

LSP-006 31-36 Column Column Upper Late Holocene Column Upper II II Upper 1 6.3 

LSP-007 36-41 Column Column Upper Late Holocene Column Upper II II Upper 1 1.59 

LSP-008a 41-44 Column Column Upper Late Holocene Column Upper III III Upper 1 8.99 

LSP-008b 44-46 Column Column Upper Late Holocene Column Upper IV IV Upper 1 6.03 

LSP-009 46-51 Column Column Upper Late Holocene Column Upper IV IV Upper 1 8.35 

LSP-010 51-56 Column Column Upper Late Holocene Column Upper IV IV Upper 1 7.85 

LSP-011 56-61 Column Column Upper Late Holocene Column Upper IV IV Upper 1 9.58 

LSP-012 61-66 Column Column Upper Late Holocene Column Upper IV IV Upper 1 14.5 

LSP-013 66-71 Column Column Upper Late Holocene Column Upper IV IV Upper 1 21.04 

LSP-014 71-76 Column Column Middle 

Middle 

Holocene Column Middle V post Mz V Middle 1 20.09 

LSP-015 76-81 Column Column Middle 

Middle 

Holocene Column Middle V post Mz V Middle 1 18.19 

LSP-016 81-86 Column Column Middle 

Middle 

Holocene Column Middle V post Mz V Middle 1 7.35 

LSP-017 86-91 Column Column Middle 

Middle 

Holocene Column Middle V post Mz V Middle 1 13.04 

LSP-018 91-96 Column Column Middle 

Mazama 

Tephra Mazama Mz Mz Middle 1 15.92 

LSP-019 96-101 Column Column Middle 

Mazama 

Tephra Mazama Mz Mz Middle 1 15.42 

LSP-020 101-106 Column Column Middle 

Early 

Holocene Column Middle V pre Mz V Middle 1 6.9 

LSP-021 106-111 Column Column Middle 

Early 

Holocene Column Middle V pre Mz V Middle 1 6.44 

LSP-022 111-116 Column Column Middle 

Early 

Holocene Column Middle V pre Mz V Middle 1 7.39 

LSP-023 116-121 Column Column Lower 

Early 

Holocene Column Lower VII VII Lower 1 3.76 

LSP-024 121-126 Column Column Lower 

Early 

Holocene Column Lower VII VII Lower 1 1.94 

LSP-025a 126-128 Column Column Lower 

Early 

Holocene Column Lower VII VII Lower 0.2 0.59 

LSP-025b 128-131 Column Column Lower Early Column Lower VIII VIII Lower 0.8 4.1 
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Sample 

No. 

Bottom 

depth 

Sample 

Category Provenience Period Sample Type Strata and Feature Strata 

Sediment 

Package 

Volume 

(L) 

LF 

Weight 

Holocene 

LSP-026 131-136 Column Column Lower 

Early 

Holocene Column Lower VII VII Lower 0.75 4.45 

LSP-027 136-141 Column Column Lower 

Early 

Holocene Column Lower IX IX Lower 0.6 1.78 

F. 11-19 

 

Feature Hearth Upper Late Holocene Hearth Hearth IV Upper 0.6 16 

F. 11-

05/15 

 

Feature Hearth Upper Late Holocene Hearth Hearth IV Upper 2.1 51 

F. 14-01 

 

Feature Carbon stain 

Early 

Holocene 

Non Cultural 

Feature 

Non Cultural 

Feature V Middle 0.5 35.66 

F. 12-

01/02 

 

Feature 

Organic 

concentration 

Early 

Holocene 

Non Cultural 

Feature 

Non Cultural 

Feature VII Lower 1.35 11.15 

F. 14-04 

 

Feature Hearth Upper 

Middle 

Holocene Hearth Hearth IV Upper 0.25 12.31 

F. 14-02 

 

Feature Hearth Upper 

Middle 

Holocene Hearth Hearth IV Upper 0.25 30.5 

F. 13-01 

 

Feature Hearth Middle 

Early 

Holocene Hearth Hearth V Middle 0.6 8.56 

F. 13-02 

 

Feature Hearth Middle 

Early 

Holocene Hearth Hearth V Middle 0.4 5.27 

F. 11-14 

 

Feature Hearth Upper Late Holocene Hearth Hearth II/III Upper 0.9 24.7 

F. 11-07 

 

Feature Hearth Middle 

Middle 

Holocene Hearth Hearth V Middle 0.7 109.3 

 

  



3 6 3  

 

Sample No. Charcoal Density CH Eriogonum CH Amsinckia CH Phacelia CH Plagio CH BRASS CH Descurainia CH Cheno-Am CH A confert CH Chenopod 

LSP-005b 0.0777778 0 0 0 0 0 0 0 0 0 

LSP-006 0.06 0 0 0 0 0 0 0 0 0 

LSP-007 0.005 0 0 0 0 0 0 0 0 1 

LSP-008a 0.19 0 0 0 0 0 3 0 0 56 

LSP-008b 0.29 2 0 1 0 0 0 23 0 73 

LSP-009 0.22 0 0 0 0 0 7 0 0 51 

LSP-010 0.35 0 0 0 0 0 12 0 0 58 

LSP-011 0.31 0 0 0 0 0 16 0 0 43 

LSP-012 0.38 0 0 0 0 0 14 0 0 37 

LSP-013 0.35 0 0 0 0 0 11 0 0 20 

LSP-014 0.11 0 0 0 0 0 7 0 0 19 

LSP-015 0.01 0 0 0 0 0 0 0 0 2 

LSP-016 0.06 0 0 0 0 0 0 0 0 0 

LSP-017 0.05 0 0 0 0 0 0 0 0 1 

LSP-018 0.02 0 0 0 0 0 0 0 0 0 

LSP-019 0.06 0 0 0 0 0 0 0 0 0 

LSP-020 0.05 0 0 0 0 0 0 0 0 1 

LSP-021 0.06 0 0 0 0 0 0 1 0 3 

LSP-022 0.13 0 0 0 0 0 0 0 0 0 

LSP-023 0.05 0 0 0 0 0 0 1 0 0 

LSP-024 0.01 0 0 0 0 0 0 0 0 3 

LSP-025a 0.025 0 0 0 0 0 0 0 0 0 

LSP-025b 0.1625 0 0 0 0 0 0 12.5 0 7.5 

LSP-026 0.12 0 0 0 0 0 0 0 0 14.666667 

LSP-027 0.0166667 0 0 0 0 0 0 0 0 0 

F. 11-19 1.7333333 0 0 1.6666667 1.6666667 3.3333333 3.3333333 0 0 80 

F. 11-05/15 1.180952 2.380952 0.952381 0 0.47619 0 5.714286 0 0 22.85714 

F. 14-01 1.66 0 0 0 0 0 0 0 0 0 

F. 12-01/02 0.340741 0 0 0 0 0 0 0 0 2.962963 

F. 14-04 15.76 8 0 0 0 0 0 0 0 4 

F. 14-02 14.72 0 0 0 0 0 0 0 0 16 

F. 13-01 0.1666667 0 0 0 0 0 0 5 0 5 

F. 13-02 0.175 5 0 0 0 0 2.5 0 0 0 

F. 11-14 1.4444444 2.2222222 0 1.1111111 0 2.2222222 81.111111 0 0 151.11111 

F. 11-07 1.4 0 0 0 0 0 27.142857 1.4285714 4.2857143 94.285714 

F. 14-03 39.94 0 12 0 0 0 18 6 0 18 
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Sample No. CH Scirpus CH Ribes CH LAMIA CH Mentzelia CH Montia CH POA CH Agrostis CH Leymus CH Prunus CH Galium 

LSP-005b 0 0 0 0 0 0 0 0 0 0 

LSP-006 0 0 0 0 0 0 0 0 0 0 

LSP-007 0 0 0 0 0 0 0 0 0 0 

LSP-008a 0 0 0 0 0 0 0 0 0 0 

LSP-008b 0 0 0 1 0 1 32 0 0 0 

LSP-009 0 0 0 0 0 0 3 0 0 0 

LSP-010 0 0 0 0 0 0 0 0 0 0 

LSP-011 0 0 0 0 0 0 4 0 0 0 

LSP-012 0 0 0 0 0 0 3 0 0 0 

LSP-013 0 0 0 0 0 0 2 0 0 0 

LSP-014 0 0 0 0 0 0 3 0 0 0 

LSP-015 0 0 0 0 0 0 1 0 0 0 

LSP-016 0 0 0 0 0 0 0 0 0 0 

LSP-017 0 0 0 0 0 0 1 0 0 0 

LSP-018 0 0 0 0 0 0 0 0 0 0 

LSP-019 0 0 0 0 0 0 0 0 0 0 

LSP-020 0 0 0 0 0 0 0 0 0 0 

LSP-021 0 0 0 0 0 0 0 0 0 0 

LSP-022 0 0 0 0 0 0 1 0 0 0 

LSP-023 0 0 0 0 0 0 0 0 0 0 

LSP-024 0 0 0 0 0 0 0 0 0 0 

LSP-025a 0 0 0 0 0 0 0 0 0 0 

LSP-025b 0 0 0 0 0 0 6.25 1.25 0 0 

LSP-026 0 0 0 0 0 0 0 1.3333333 0 0 

LSP-027 0 0 0 0 0 0 1.6666667 0 0 0 

F. 11-19 0 0 0 0 3.3333333 0 1.6666667 1.6666667 0 0 

F. 11-05/15 0 0.47619 0.47619 0 0.952381 0.952381 12.38095 1.428571 0 0.47619 

F. 14-01 0 0 0 0 0 0 0 0 0 0 

F. 12-01/02 0 0 0 0 0 0 0 0 0 0 

F. 14-04 0 0 0 4 0 0 1308 0 0 0 

F. 14-02 0 0 0 0 0 0 96 8 0 4 

F. 13-01 0 0 0 0 0 0 0 0 0 0 

F. 13-02 0 0 0 0 2.5 0 2.5 0 0 2.5 

F. 11-14 2.2222222 1.1111111 0 0 1.1111111 4.4444444 0 7.7777778 1.1111111 0 

F. 11-07 0 0 0 0 0 8.5714286 0 18.571429 0 0 

F. 14-03 0 0 0 2 0 30 0 0 0 0 
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Sample No. CH Typha CH Unid Unch Eriogonum UNCH Amsinckia UNCH BRASS UNCH Descurania UNCH Cheno-Am UNCH Amaranthus UNCH Atriplex UNCH A confert 

LSP-005b 0 0 0 0 0 0 0 0 0 0 

LSP-006 0 0 0 0 0 0 0 0 0 0 

LSP-007 0 0 0 1 0 0 0 0 0 0 

LSP-008a 0 3 0 2 0 0 39 0 0 5 

LSP-008b 0 5 1 0 0 0 810 0 0 1424 

LSP-009 0 4 0 0 0 0 0 0 0 0 

LSP-010 0 1 0 0 0 0 0 0 0 0 

LSP-011 0 5 0 8 0 0 0 0 0 0 

LSP-012 0 5 0 10 0 0 0 0 0 0 

LSP-013 0 4 0 6 0 0 0 0 0 0 

LSP-014 0 0 0 5 2 0 0 0 0 0 

LSP-015 0 0 0 1 0 0 0 0 0 0 

LSP-016 0 0 0 0 0 0 0 0 0 0 

LSP-017 0 1 0 0 0 0 0 0 0 0 

LSP-018 0 0 0 12 0 0 0 0 0 0 

LSP-019 0 0 1 18 0 0 0 0 0 0 

LSP-020 0 0 0 16 0 0 0 0 0 0 

LSP-021 0 0 0 26 0 0 2 0 0 2 

LSP-022 0 3 0 14 0 0 0 0 0 2 

LSP-023 0 0 0 17 0 0 1 0 0 0 

LSP-024 0 0 0 4 0 0 3 0 0 0 

LSP-025a 0 0 0 10 0 0 0 0 0 0 

LSP-025b 1.25 6.25 0 22.5 0 0 60 0 0 0 

LSP-026 0 16 0 6.6666667 0 0 64 0 0 0 

LSP-027 0 1.6666667 0 5 0 0 0 0 0 0 

F. 11-19 0 0 0 26.666667 1.6666667 1.6666667 3.3333333 0 0 6.6666667 

F. 11-05/15 0.952381 2.857143 0.952381 92.85714 0 0 2.857143 0 0 97.61905 

F. 14-01 0 0 0 0 0 0 0 0 0 0 

F. 12-01/02 0 0 0 2.962963 0 0 1.481481 0 0 0 

F. 14-04 0 0 0 64 0 0 0 4 0 52 

F. 14-02 0 0 0 56 0 0 0 0 220 0 

F. 13-01 0 0 0 106.66667 0 0 1.6666667 0 0 0 

F. 13-02 0 0 0 120 0 0 0 0 0 0 

F. 11-14 0 10 0 230 196.66667 0 172.22222 0 0 61.111111 

F. 11-07 0 0 0 25.714286 0 0 8.5714286 0 0 744.28571 

F. 14-03 0 2 0 42 58 10 68 0 0 14 
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Sample No. UNCH Chenopo UNCH Juniper UNCH Scirpus UNCH Mentzelia UNCH POA Unch Achnather UNCH Agrostis UNCH Nicotiana UNCH Unid Total Ch Seed Density 

LSP-005b 0 0 0 0 0 0 0 0 0 0 

LSP-006 0 0 0 0 0 0 0 0 0 0 

LSP-007 0 0 0 0 0 0 0 0 0 1 

LSP-008a 206 0 0 0 0 0 0 0 0 62 

LSP-008b 97 0 0 16 0 0 0 0 0 138 

LSP-009 0 0 0 0 0 0 0 0 0 65 

LSP-010 0 0 0 0 0 0 0 0 0 71 

LSP-011 0 0 0 0 0 0 0 0 0 68 

LSP-012 9 0 0 0 0 0 0 0 0 59 

LSP-013 5 0 0 0 0 0 0 0 0 37 

LSP-014 12 0 0 2 0 0 0 0 0 29 

LSP-015 0 0 0 1 0 0 0 0 0 3 

LSP-016 0 0 0 0 0 0 0 0 0 0 

LSP-017 0 0 0 0 0 0 0 0 0 3 

LSP-018 0 0 0 0 0 0 0 0 0 0 

LSP-019 0 0 0 0 0 0 0 0 0 0 

LSP-020 0 0 0 0 0 0 0 0 0 1 

LSP-021 3 0 0 1 0 0 0 0 0 4 

LSP-022 0 0 0 1 0 0 0 0 0 4 

LSP-023 2 0 0 0 0 0 0 0 0 1 

LSP-024 0 0 0 0 0 0 0 0 0 3 

LSP-025a 0 0 0 0 0 0 0 0 0 0 

LSP-025b 0 0 0 2.5 0 0 0 0 0 35 

LSP-026 6.6666667 0 0 0 0 0 0 0 0 32 

LSP-027 0 0 0 0 0 0 0 0 0 3.3333333 

F. 11-19 0 0 0 0 0 0 0 0 0 96.666667 

F. 11-05/15 34.28571 0 0.47619 5.238095 5.238095 0.47619 0 0 1.428571 53.333326 

F. 14-01 52 0 0 0 30 12 0 0 2 0 

F. 12-01/02 0 0 0 0 0 0 0 0 0 2.962963 

F. 14-04 32 0 0 8 4 0 0 0 0 1324 

F. 14-02 4 0 0 0 0 0 0 0 0 124 

F. 13-01 0 0 0 0 0 0 0 0 0 10 

F. 13-02 0 0 0 0 0 0 0 0 0 15 

F. 11-14 381.11111 4.4444444 3.3333333 30 43.333333 1.1111111 0 12.222222 13.333333 265.55556 

F. 11-07 4.2857143 0 1.4285714 1.4285714 1.4285714 0 1.4285714 0 0 154.28571 
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F. 14-03 72 0 6 24 18 0 0 0 18 88 

 

 

Sample No. Richness Shannon-Wiener Uncharred Seed Density Shannon-Wiener Charred Seeds 

LSP-005b 0 0 0 0 

LSP-006 0 0 0 0 

LSP-007 2 0.6931472 1 0 

LSP-008a 6 0.5835809 254 0.201003 

LSP-008b 9 0.9792149 2350 1.1489224 

LSP-009 3 0.5462785 0 0.5462785 

LSP-010 2 0.4581442 0 0.4581442 

LSP-011 4 1.0475569 8 0.7837982 

LSP-012 4 1.0111992 19 0.7696025 

LSP-013 4 1.0799716 11 0.8396049 

LSP-014 6 1.2282112 21 0.8548286 

LSP-015 4 1.332179 2 0.6365142 

LSP-016 0 0 0 0 

LSP-017 2 0.6931472 0 0.6931472 

LSP-018 1 0 12 0 

LSP-019 2 0.2061921 19 0 

LSP-020 2 0.2237181 16 0 

LSP-021 5 1.0022388 34 0.5623351 

LSP-022 4 0.7607553 17 0 

LSP-023 3 0.6189407 20 0 

LSP-024 3 1.0889 7 0 

LSP-025a 1 0 10 0 

LSP-025b 7 1.1293603 85 1.3170769 

LSP-026 4 0.845263 77.333333 0.286836 

LSP-027 2 0.5623351 5 0 

F. 11-19 11 1.417835 40 0.7849856 

F. 11-05/15 18 1.641003 241 1.6706537 

F. 14-01 3 0.9547897 96 0 

F. 12-01/02 3 1.0549202 4.44 0 

F. 14-04 8 0.5547006 164 0.0779393 

F. 14-02 6 1.2185175 280 0.7499626 

F. 13-01 3 0.3893062 108 0.6931472 
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F. 13-02 6 0.5222444 120 1.5607104 

F. 11-14 18 1.8531898 1149 1.0700357 

F. 11-07 10 0.8229472 789 1.1649804 

F. 14-03 9 2.001724 165 1.5701027 
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LSP-1 Rockshelter (35HA3735) Column Samples, n = 25 
     

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-5b CHARCOAL 
Total charcoal 
> 2 mm   19     0.07 g 

  Artemisia sp. Charcoal   19     0.07 g 

Unit N 105/E 99               

West Profile               

28-31 cmbd               

Stratum II               

                

Sample Volume: 0.9 L               

Light Fraction (wt): 10.87 g               

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-6 CHARCOAL 
Total charcoal 
> 2 mm   26     0.06 g 

  Artemisia sp. Charcoal   20     0.05 g 

Unit N 105/E 99               

West Profile               

31-36 cmbd               

Stratum II               

                

Sample Volume: 1.0 L               

Light Fraction (wt): 6.30 g               

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-7 SEEDS             

  Amsinckia sp. Seed     1     

Unit N 105/E 99 
Chenopodium 
sp. Seed 1         

West Profile CHARCOAL 
Total charcoal 
> 2 mm   2     

<0.01 
g 

36-41 cmbd Artemisia sp. Charcoal   2     
<0.01 

g 

Stratum II               

                

Sample Volume: 1.0 L               

Light Fraction (wt): 1.59 g               

                

                

                

Sample Identification Part/Type Charred Uncharred Weig
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ht 

      
W
H FR WH FR   

CS-8a SEEDS             

  Amsinckia sp. Seed       2   

Unit N 105/E 99 Cheno-Am  Perisperm     39     

West Profile 
  Atriplex 
confertifolia Seed     5     

41-44 cmbd 
  Chenopodium 
sp. Seed 18 38 160 46   

Stratum III Descurania sp. Seed 3         

  Uritca dioica Seed     2     

Sample Volume: 1.0 L Unidentified Seed   3       

Light Fraction (wt): 8.99 g CHARCOAL 
Total charcoal 
> 2 mm   58     0.19 g 

                

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-8b SEEDS             

  Boraginaceae Perisperm 2   1     

Unit N 105/E 99   Amsinckia sp. Seed     3 9   

West Profile Cheno-Am Perisperm 23     810   

44-46 cmbd 
  Atriplex 
confertifolia Seed     1424     

Stratum IV 
  Chenopodium 
sp. Seed 68 5 90 7   

  
Mentzelia 
albicaulis Seed 2   15 1   

  Phacelia sp. Seed   1       

Sample Volume: 1.0 L Poaceae Floret   1       

Light Fraction (wt): 6.03 g   cf. Agrostissp. Caryopsis 32         

  Urtica dioica Seed     2     

  Unidentified Seed   5       

  CHARCOAL 
Total charcoal 
> 2 mm   86     0.29 g 

                

  
OTHER FLORAL 
REMAINS             

  Parenchyma Tissue   3     0.04 g 

  Vitirified tissue Tissue   X     Few 

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-9 SEEDS             

  cf. Agrostis sp. Caryopsis 3         

Unit N 105/E 99 Chenopodium Seed 51         
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sp. 

West Profile Descurania sp. Seed 7         

46-51 cmbd Unidentified Seed   4       

Stratum IV CHARCOAL 
Total charcoal 
> 2 mm   45     0.22 g 

                

Sample Volume: 1.0 L               

Light Fraction (wt): 8.35 g               

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-10 SEEDS             

  
Chenopodium 
sp. Seed 58         

Unit N 105/E 99 Descurania sp. Seed 12         

West Profile Unidentified SEed 1         

51-56 cmbd CHARCOAL 
Total charcoal 
> 2 mm   91     0.35 g 

Stratum IV               

                

Sample Volume: 1.0 L               

Light Fraction (wt): 7.85 g               

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-11 SEEDS             

  cf. Agrostissp. Caryopsis 4         

Unit N 105/E 99 Amsinckia sp. Seed     8     

West Profile 
Chenopodium 
sp. Seed 43         

56-61 cmbd Descurania sp. Seed 16         

Stratum IV Unidentified Seed 1 4       

                

Sample Volume: 1.0 L CHARCOAL 
Total charcoal 
> 2 mm   78     0.31 g 

Light Fraction (wt): 9.58 g               

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-12 SEEDS             

  cf. Agrostissp. Caryopsis 3         

Unit N 105/E 99 Amsinckia sp. Seed     10     

West Profile 
Chenopodium 
sp. Seed 37   9     

61-66 cmbd Descurania sp. Seed 14         

Stratum IV Unidentified Seed   5       
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  CHARCOAL 
Total charcoal 
> 2 mm   

11
0     0.38 g 

Sample Volume: 1.0 L               

Light Fraction (wt): 14.50 g               

  
OTHER FLORAL 
REMAINS             

  PET Fruity Tissue   8     ? 

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-13 SEEDS             

  cf. Agrostis sp. Caryopsis 2         

Unit N 105/E 99 Amsinckia sp. Seed     6     

West Profile 
Chenopodium 
sp. Seed 20   5     

66-71 cmbd Descurania sp. Seed 11         

Stratum IV Unidentified Seed 2 2       

  CHARCOAL 
Total charcoal 
> 2 mm   94     0.35 g 

Sample Volume: 1.0 L               

Light Fraction (wt): 21.04 g               

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-14 SEEDS             

  cf. Agrostis sp. Caryopsis 3         

Unit N 105/E 99 Amsinckia sp. Seed     5     

West Profile Brassicaceae Seed       2   

71-76 cmbd 
  Descurania 
sp. Seed 7         

Stratum IV 
Chenopodium 
sp. Seed 19   12     

  
Mentzelia 
albicaulis Seed     2     

Sample Volume: 1.0 L CHARCOAL 
Total charcoal 
> 2 mm   37     0.11 g 

Light Fraction (wt): 20.09 g               

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-15 SEEDS             

  cf. Agrostis sp. Caryopsis 1         

Unit N 105/E 99 Amsinckia sp. Seed     1     

West Profile 
Chenopodium 
sp. Seed 2         

76-81 cmbd Mentzelia Seed     1     
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albicaulis 

Stratum V CHARCOAL 
Total charcoal 
> 2 mm   5     0.01 g 

                

Sample Volume: 1.0 L               

Light Fraction (wt): 18.19 g               

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-16 CHARCOAL 
Total charcoal 
> 2 mm   10     0.06 g 

                

Unit N 105/E 99               

West Profile               

81-86 cmbd               

Stratum V               

                

Sample Volume: 1.0 L               

Light Fraction (wt): 7.35 g               

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-17 SEEDS             

  cf. Agrostis sp. Caryopsis 1         

Unit N 105/E 99 
Chenopodium 
sp. Seed 1         

West Profile Unidentified Seed 1         

86-91 cmbd CHARCOAL 
Total charcoal 
> 2 mm   11     0.05 g 

Stratum V               

                

Sample Volume: 1.0 L               

Light Fraction (wt): 13.04 g               

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-18 SEEDS             

  Amsinckia sp. Seed       12   

Unit N 105/E 99 CHARCOAL 
Total charcoal 
> 2 mm   4     0.02 g 

West Profile Artemisia sp. Charcoal   4     0.02 g 

91-96 cmbd 
OTHER FLORAL 
REMAINS             

Mazama tephra               

                

Sample Volume: 1.0 L               
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Light Fraction (wt): 15.92 g               

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-19 SEEDS             

  Boraginaceae Perisperm     1     

Unit N 105/E 99   Amsinckia sp. Seed       18   

West Profile CHARCOAL 
Total charcoal 
> 2 mm   10     0.06 g 

96-101 cmbd Artemisia sp. Charcoal   10     0.06 g 

Mazama tephra               

                

Sample Volume: 1.0 L               

Light Fraction (wt): 15.42 g               

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-20 SEEDS             

  Amsinckia sp. Seed     1 15   

Unit N 105/E 99 
Chenopodium 
sp. Seed 1         

West Profile CHARCOAL 
Total charcoal 
> 2 mm   14     0.05 g 

101-106 cmbd Artemisia sp. Charcoal   14     0.05 g 

Stratum V               

                

Sample Volume: 1.0 L               

Light Fraction (wt): 6.90 g               

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-21 SEEDS             

  Amsinckia sp. Seed     2 24   

Unit N 105/E 99 Cheno-Am Perisperm     2     

West Profile 
  Atriplex 
confertifolia Seed 1   2     

106-111 cmbd 
  Chenopodium 
sp. Seed 2 1   3   

Stratum V 
Mentzelia 
albicaulis Seed     1     

  CHARCOAL 
Total charcoal 
> 2 mm   24     0.06 g 

Sample Volume: 1.0 L               

Light Fraction (wt): 6.44 g 
OTHER FLORAL 
REMAINS             

  Dicotyledon Stem   1       
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Monocotyledo
n Stem   1       

  Vitrified tissue Tissue   X     Few 

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-22 SEEDS             

  cf. Agrostis sp. Seed 1         

Unit N 105/E 99 Amsinckia sp. Seed       14   

West Profile 
Atriplex 
confertifolia Seed     2     

111-116 cmbd 
Mentzelia 
albicaulis Seed     1     

Stratum V Unidentified Seed   3       

  CHARCOAL 
Total charcoal 
> 2 mm   39     0.13 g 

Sample Volume: 1.0 L               

Light Fraction (wt): 7.39 g 
OTHER FLORAL 
REMAINS             

  Vitrified tissue Tissue   X     Few 

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-23 SEEDS             

  Amsinckia sp. Seed     2 15   

Unit N 105/E 99 Cheno-Am Perisperm 1   1     

West Profile 
  Chenopodium 
sp. Seed     2     

116-121 cmbd CHARCOAL 
Total charcoal 
> 2 mm   17     0.05 g 

Stratum VII Artemisia sp. Charcoal   17     0.05 g 

  
OTHER FLORAL 
REMAINS             

Sample Volume: 1.0 L Artemisia sp. Leaf   1       

Light Fraction (wt): 3.76 g 
Monocotyledo
n Stem   1       

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-24 SEEDS             

  Amsinckia sp. Seed     1 3   

Unit N 105/E 99 Cheno-Am Perisperm     3     

West Profile 
  Chenopodium 
sp. Seed   3       

121-126 cmbd CHARCOAL 
Total charcoal 
> 2 mm   3     0.01 g 

Stratum VII Artemisia sp. Charcoal   3     0.01 g 
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Sample Volume: 1.0 L               

Light Fraction (wt): 1.94 g               

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-25a SEEDS             

  Amsinckia sp. Seed       2   

Unit N 105/E 99 CHARCOAL 
Total charcoal 
> 2 mm   1     

<0.01 
g 

West Profile Artemisia sp. Charcoal   1     
<0.01 

g 

126-128 cmbd               

Stratum VII               

                

Sample Volume: 0.2 L               

Light Fraction (wt): 0.59 g               

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-25b SEEDS             

  cf. Agrostis sp. Caryopsis 4 1       

Unit N 105/E 99 Amsinckia sp. Seed       18   

West Profile Cheno-Am Perisperm 9   48     

128-131 cmbd 
  Atriplex 
confertifolia Seed   1       

Stratum VIII 
  Chenopodium 
sp.  Seed 4 2       

  Leymus cinerus Caryopsis 1         

Sample Volume: 0.8 L 
Mentzelia 
albicaulis Seed     1 1   

Light Fraction (wt): 4.10 g Typha sp. Seed 1         

  Unidentified Nutshell   1       

  Unidentified Seed   5       

  CHARCOAL 
Total charcoal 
> 2 mm   37     0.13 g 

  Artemisia sp. Charcoal   20     0.08 g 

  
OTHER FLORAL 
REMAINS             

  PET Fruity  Tissue   5     
<0.01 

g 

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-26 SEEDS             

  Amsinckia sp. Seed       5   
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Unit N 105/E 99 Cheno-Am Perisperm     48     

West Profile 
  Chenopodium 
sp.  Seed 4 7   4 1 

131-136 cmbd Leymus cinerus Caryopsis 1         

Stratum VIII Unidentified Seed 12         

  CHARCOAL 
Total charcoal 
> 2 mm   18     0.09 g 

Sample Volume: 0.75 L Artemisia sp. Charcoal   18     0.09 g 

Light Fraction (wt): 4.45 g               

Sample Identification Part/Type Charred Uncharred 
Weig

ht 

      
W
H FR WH FR   

CS-27 SEEDS             

  cf. Agrostis sp. Caryopsis 1         

Unit N 105/E 99 Amsinckia sp. Seed     3     

West Profile Cheno-Am Perisperm   1       

136-141 cmbd Unidentified Seed 1         

Stratum IX CHARCOAL 
Total charcoal 
> 2 mm   5     0.01 g 

  Artemisia sp. Charcoal   5     0.01 g 

Sample Volume: 0.6 L               

Light Fraction (wt): 1.78 g               

LSP-1 Rockshelter (35HA3735) Feature Samples, n = 14 
      

Sample Identification Part/Type 
Charre

d 
Uncharr

ed 
Wei
ght 

      
W
H FR 

W
H FR   

Feature 11-05 SEEDS             

  
Atriplex 
confertifolia Seed     12     

# 010-39-1658 Boraginaceae Perisperm     1     

Unit N 103/E 99   Amsinckia sp. Seed     10 66   

~64 cmbd 
Chenopodium 
sp. Seed 7 7 12     

Stratum IV 
Mentzelia 
albicaulis Seed     4     

  Poaceae Floret     3     

Sample Volume: 0.9 L 
  cf. Agrostis 
sp. Caryopsis 

1
8         

Light Fraction (wt): 18.03 g  Scirpus sp. Seed       1   

  Typha sp. Seed 1         

  Unidentified Seed   3       

  CHARCOAL 

Total 
charcoal > 2 
mm   

18
8     

0.86 
g 

  Artemisia sp.  Charcoal   20     
0.24 

g 

  
OTHER FLORAL 
REMAINS             
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  Juniperus Leaf   2   1   

Sample Identification Part/Type 
Charre

d 
Uncharr

ed 
Wei
ght 

      
W
H FR 

W
H FR   

Feature 11-05-3 SEEDS             

  
Atriplex 
confertifolia Seed     

12
4     

# JD excavation Boraginaceae Perisperm 1         

Unit N 103/E 99   Amsinckia sp. Seed 1   18 17   

X cmbd 

  cf. 
Plagiobothrys 
sp. Seed 1         

Stratum IV Claytonia sp. Seed   2       

  
Chenopodium 
sp. Seed 8 11 15     

Sample Volume: 0.45 L Galium sp. Seed 1         

Light Fraction (wt): 23.64 g 
Mentzelia 
albicaulis Seed     7     

  Lamiaceae Seed 1         

  Poaceae Floret       1   

  
  Achnatherum 
hymenoides Caryopsis     1     

  
  cf. Agrostis 
sp. Caryopsis 8         

  
Ribes 
sanguineum  Seed 1         

  Typha sp. Seed 1         

  Unidentified Seed 1 2       

  CHARCOAL 

Total 
charcoal > 2 
mm   

17
2     

0.82 
g 

  Artemisia sp.  Charcoal   20     
0.28 

g 

  
OTHER FLORAL 
REMAINS             

  
Parenchymous 
tissue Tissue   1     

<0.0
1 g 

  PET Fruity Tissue   3     
<0.0

1 g 

Sample Identification Part/Type 
Charre

d 
Uncharr

ed 
Wei
ght 

      
W
H FR 

W
H FR   

Feature 11-07 SEEDS             

  Amsinckia sp. Seed     2 16   

# 010-39-1657 Cheno-Am Perisperm 1   6     

Unit N 102/E 99 
  Atriplex 
confertifolia Fruit   3       

~69 cmbd   Atriplex Seed     52     
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confertifolia 1 

Stratum V 
  Chenopodium 
sp. Seed 

4
9 17 3     

  Descurania sp. Seed 
1
9         

Sample Volume: 0.7 L 
Mentzelia 
albicaulis Seed     1     

Light Fraction (wt): 109.30 g Poaceae Floret   5   1   

  Poaceae Caryopsis 1         

  
  cf. Agrostis 
sp. Caryopsis     1     

  
  Leymus 
cinereus Caryopsis   13       

  Scirpus sp. Seed     1     

  CHARCOAL 

Total 
charcoal > 2 
mm   

17
8     

0.98 
g 

  Artemisia sp.  Charcoal   20     
0.41 

g 

  
OTHER FLORAL 
REMAINS             

  
Monocotyledo
n  Stem   1       

  PET Fruity Tissue   2     
<0.0

1 g 

  Unidentified Bud       3   

Sample Identification Part/Type 
Charre

d 
Uncharr

ed 
Wei
ght 

      
W
H FR 

W
H FR   

Feature 11-14 SEEDS             

  Boraginaceae Perisperm 2         

# 010-39-1653   Amsinckia sp. Seed     
10
0 

10
7   

Unit N 104/E 99 Brassicaceae Seed   2       

50 cmbd 
  Descurania 
sp. Seed 

6
4 9 

11
1 66   

Stratum II/III Claytonia sp. Seed   1       

  Cheno-Am Perisperm     
14
5 10   

Sample Volume: 0.9 L 
  Atriplex 
confertifolia Seed     54 1   

Light Fraction (wt): 24.70 g 
  Chenopodium 
sp. Seed 

8
2 54 

25
5 88   

  Juniperus sp. Seed       4   

  
Mentzelia 
albicaulis Seed     25 2   

  
Nicotiana 
attenuata Seed     11     

  Phacelia sp. Seed 1         

  Poaceae Floret   4   39   
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  Achnatherum 
hymenoides Caryopsis       1   

  
  Leymus 
cinereus Caryopsis 2         

  
  Leymus 
cinereus Floret   5       

  Prunus sp. Seed 1         

  cf. Ribes sp. Berry   1       

  Scirpus sp. Seed 1 1 1 2   

  Unidentified Nutshell   8       

  Unidentified Seeds 8 1 12     

  CHARCOAL 

Total 
charcoal > 2 
mm   

28
4     

1.30 
g 

  Artemisia sp.  Charcoal   19     
0.35 

g 

  Atriplex sp. Charcoal   1     
0.01 

g 

  
OTHER FLORAL 
REMAINS             

  Artemisia sp.  Leaf   3       

  
Parenchymous 
tissue Tissue   40     

0.02 
g 

  PET Fruity Tissue   
17
3     

0.02 
g 

Sample Identification Part/Type 
Charre

d 
Uncharr

ed 
Wei
ght 

      
W
H FR 

W
H FR   

Feature 11-15 SEEDS             

  Boraginaceae Perisperm 4   1     

# 010-39-1654   Amsinckia sp. Seed 1   28 56   

Unit N 103/E 99 Cheno-Am Perisperm     6     

58 cmbd 
  Atriplex 
confertifolia Seed     66 3   

Stratum IV 
  Chenopodium 
sp. Seed 8 7 17 28   

  Descurania sp. Seed 
1
2         

Sample Volume: 0.65 L Poaceae 
Caryopsis 
w/glume 1         

Light Fraction (wt): 9.33 g Poaceae Floret   1   7   

  
  Leymus 
cinereus Caryopsis   3       

  Unidentified Seed     3     

  CHARCOAL 

Total 
charcoal > 2 
mm   

12
8     

0.80 
g 

  Artemisia sp.  Charcoal   20     
0.39 

g 

  OTHER FLORAL             
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REMAINS 

  Artemisia sp.  Leaf   15       

  Dicotyledon Stem   10       

  
Monocotyledo
n  Stem   5       

Sample Identification Part/Type 
Charre

d 
Uncharr

ed 
Wei
ght 

      
W
H FR 

W
H FR   

Feature 11-19 SEEDS             

  cf. Agrostis sp. Caryopsis 1         

# 010-39-1649 Amsinckia sp. Seed     1 15   

Unit N 104/E 99 Brassicaceae Seed 2   1     

72 cmbd 
  Descurania 
sp. Seed 2   1     

Stratum IV Claytonia sp. Seed   2       

  Cheno-Am Perisperm     2     

Sample Volume: 0.6 L 
  Atriplex 
confertifolia Seed     4     

Light Fraction (wt): 16.00 g 
  Chenopodium 
sp. Seed 4 44       

  
Leymus 
cinereus Caryopsis 1         

  Phacelia sp. Seed 1         

  

cf. 
Plagiobothrys 
sp. Seed 1         

  CHARCOAL 

Total 
charcoal > 2 
mm   

37
4     

1.04 
g 

  Artemisia sp.  Charcoal   20     
0.19 

g 

Sample Identification Part/Type 
Charre

d 
Uncharr

ed 
Wei
ght 

      
W
H FR 

W
H FR   

Feature 12-01 SEEDS             

  
Amaranthus 
sp. Seed       2   

# 010-39-1667 Amsinckia sp. Seed       1   

Unit N 104/E 100 
Chenopodium 
sp.  Seed   4       

122 cmbd CHARCOAL 

Total 
charcoal > 2 
mm   15     

0.04 
g 

Stratum V/VII Artemisia sp.  Charcoal   15     
0.04 

g 

                

Sample Volume: 0.65 L               

Light Fraction (wt): 3.38 g               
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Sample Identification Part/Type 
Charre

d 
Uncharr

ed 
Wei
ght 

      
W
H FR 

W
H FR   

Feature 12-02 SEEDS             

  Amsinckia sp. Seed     1 2   

# 010-39-1666 CHARCOAL 

Total 
charcoal > 2 
mm   

12
7     

0.42 
g 

Unit N 104/E 100 Artemisia sp. Charcoal   20     
0.12 

g 

123 cmbd               

Stratum V/VII               

                

Sample Volume: 0.7 L               

Light Fraction (wt): 7.77 g               

Feature 13-01 SEEDS             

  Amsinckia sp. Seed     8 58   

# 010-39-1031 Cheno-Am Perisperm 3   1     

Unit N 103/E 100 
  Chenopodium 
sp. Seed 1 2       

125 cmbd CHARCOAL 

Total 
charcoal > 2 
mm   28     

0.10 
g 

Stratum V Artemisia sp.  Charcoal   20       

  
OTHER FLORAL 
REMAINS             

Sample Volume: 0.6 L Artemisia sp.  Leaf   4       

Light Fraction (wt): 8.56 g Dicotyledon Stem   3       

  
Monocotyledo
n Stem   2       

Feature 13-02 SEEDS             

  cf. Agrostis sp. Caryopsis 1         

# 010-39-1270 Boraginaceae Perisperm 2         

Unit N 103/E 102   Amsinckia sp. Seed     5 43   

N 103.47/E 102.69 Claytonia sp. Seed   1       

122 cmbd Descurania sp. Seed 1         

Stratum V Galium sp. Seed   1       

  CHARCOAL 

Total 
charcoal > 2 
mm   36     

0.07 
g 

Sample Volume: 0.4 L Artemisia sp.  Charcoal   20     
0.04 

g 

Light Fraction (wt): 5.27 g 
OTHER FLORAL 
REMAINS             

  Artemisia sp.  Leaf   21       

  Dicotyledon Stem   7       

  
Monocotyledo
n Stem   8       

  PET Fruity Tissue   11     <0.0
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1 g 

  Vitrified tissue Tissue   X     Few 

Feature 14-01 SEEDS             

  Poaceae Floret     15     

# 010-39-2430 
  Achnatherum 
hymenoides Caryopsis       6   

Unit N 102/E 100 
Chenopodium 
sp. Seed     26     

N 102.99/E 100.50 Unidentified Seed     1     

81-86 cmbd CHARCOAL 

Total 
charcoal > 2 
mm   76     

0.83 
g 

Stratum V Artemisia sp.  Charcoal   20     
0.33 

g 

  
OTHER FLORAL 
REMAINS             

Sample Volume: 0.5 L Vitrified tissue Tissue   X     Few 

Light Fraction (wt): 35.66 g               

Feature 14-02 SEEDS             

  cf. Agrostis sp. Caryopsis           

# 010-39-2432 Amsinckia sp. Seed     2 12   

Unit N 102/E 100 Atriplex sp. Seed     55     

~66 cmbd 
Chenopodium 
sp. Seed 3 1 1     

Stratum IV Galium sp. Seed 1         

  
Leymus 
cinereus Floret   2 2     

Sample Volume: 0.25 L CHARCOAL 

Total 
charcoal > 2 
mm   

73
5     

3.68 
g 

Light Fraction (wt): 30.50 g Artemisia sp.  Charcoal   18     
0.36 

g 

  Atriplex sp. Charcoal   2     
0.06 

g 

  
OTHER FLORAL 
REMAINS             

  Artemisia sp.  Leaf   
10
0       

  Hordeum sp. Pedicel   3       

  Cordage  Fibers   21     
0.24 

g 

  Dicotyledon Stem   3       

  
Monocotyledo
n Stem   3       

  
Parenchymous 
tissue Tissue   1     

<0.0
1 g 

  PET Fruity Tissue   2     
<0.0

1 g 

Feature 14-03 SEEDS             

  Amsinckia sp. Seed 5 1 2 19   
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# 010-39-2437 Brassciaceae Seed     28 1   

Unit N 102/E 101 
  Descurania 
sp. Seed 9   4 1   

58 cmbd Cheno-Am Seed     25 1   

Stratum IV Cheno-Am Perisperm 3   8     

  
  Atriplex 
confertifolia Seed     4 3   

Sample Volume: 0.5 L 
  Chenopodium 
sp. Seed 9   36     

Light Fraction (wt): 34.72 g 
Mentzelia 
albicaulis Seed 1   10 2   

  Poaceae Caryopsis 1 4       

  Poaceae Floret   10   9   

  Scirpus sp. Seed     1 2   

  Unidentified Seed 1   8 1   

  CHARCOAL 

Total 
charcoal > 2 
mm   

12
53     

19.9
7 g 

  Artemisia sp.  Charcoal   20     
6.67 

g 

  
OTHER FLORAL 
REMAINS             

  Artemisia sp.  Leaf   23 1     

  Atriplex sp.  Leaf       1   

  Cordage  Fibers   1     
<0.0

1 g 

  Dicotyledon Stem   3       

  
Monocotyledo
n Stem   3       

  
Parenchymous 
tissue Tissue   26     

<0.0
1 g 

  PET Fruity Tissue/Cake   34     
0.02 

g 

Feature 14-04 SEEDS             

  
Amaranthus 
sp. Seed     1     

# 010-39-2429 Boraginaceae Perisperm 2         

Unit N 102/E 100 Amsinckia sp.  Seed       16   

74-75 cmbd 
Atriplex 
confertifolia Seed     13     

Stratum IV 
Chenopodium 
sp. Seed   1 4 4   

  
Mentzelia 
albicaulis Seed   1 2     

Sample Volume: 0.25 L Poaceae Floret       1   

Light Fraction (wt): 12.31 g 
  cf. Agrostis 
sp. Caryopsis   

32
7       

  CHARCOAL 

Total 
charcoal > 2 
mm   

47
3     

3.94 
g 

  Artemisia sp.  Charcoal   20     0.55 
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g 

  
OTHER FLORAL 
REMAINS             

  Artemisia sp.  Leaf   29       

  Juniperus sp. Leaf   1       

  Dicotyledon Stem   1       

  
Monocotyledo
n Stem   4       
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