University Housing Thermal Testing Report

Center for Housing Innovation University of Oregon

University Housing Thermal Testing Report

Energy Studies in Buildings Laboratory Center for Housing Innovation University of Oregon Eugene, OR 97403, U.S.A.

September 1995

U.S. Department of Energy Contract No. DE-FC51-94R020277

Research Team

G.Z. Brown P. Kumar P. Larocque

-

.

CONTENTS

1.0	Executive Summary	Page 1
2.0	Introduction	5
3.0	Methodology	13
	3.1 Air Infiltration	14
	Fan De-Pressurization Testing	
	Smoke Testing	
	3.2 Thermal Transmittance (UA)	15
	Thermographic Imaging	
	Coheating Tests	
	3.3 Short-Term Monitoring	16
	3.4 Weather Monitoring	20
4.0	Results	23
	4.1 Air Infiltration	23
	Fan De-Pressurization Testing	
	Smoke Testing	
	4.2 Thermal Transmittance (UA)	34
	Thermographic Imaging	
	Coheating Tests	
	Theoretical Thermal Transmittance (UA)	
	4.3 Short-Term Monitoring	44
	4.4 Summary of Results	45
5.0	References	49
6.0	Acknowledgements	51

7.0 Appendices

.

7.1 Plans, Sections, Elevations

..

- 7.2 Instrumentation
- 7.3 Infrared Scans
- 7.4 Short-Term Monitoring
- 7.5 Blower Door Data
- 7.6 Coheating Data
- 7.7 Theoretical UA Calculations

1.0 EXECUTIVE SUMMARY

The Energy Studies in Buildings Laboratory performed thermal diagnostic tests between November 1993 and January 1994 on six apartments in three duplexes utilizing panelized wall strategies. The objective of the testing was to assess the thermal performance of each of the six apartments and its respective panelized system. The panelized wall strategies included open panels, closed panels, and Stressed Skin Insulating Core (SSIC) panels. The building diagnostic tests included fan de-pressurization tests, smoke leakage testing, thermographic imaging, and coheating tests to determine overall thermal transmittance (UA). Short-term monitoring of the six units was performed for a period of 13 days to measure electrical consumption, comfort criteria, and weather data. Energy monitoring of three units is ongoing.

Figure 1-1. Site Plan University Housing Units

The three duplexes were constructed in the fall of 1993 by the University of Oregon to provide student family housing. The duplexes were designed by the Center for Housing Innovation to investigate the architectural implications of the three panelized strategies of open panels, closed panels and SSIC panels. Open panels

are shipped to the site sheathed on the exterior and with windows and siding installed. Insulation and the interior finish are installed on the site. Closed panels are shipped to the site with siding, sheathing, windows, insulation, vapor barriers, gypsum board and electrical chases installed. SSIC panels are shipped to the site as a sandwich of oriented strand board (OSB) on the interior and exterior with a core of expanded polystyrene (EPS); interior and exterior finishes are applied in the field. The six units of housing varied in size, configuration and orientation.

Results of the fan de-pressurization tests indicate that the 1 1/2 story open panel units were the least airtight followed by the 2 story closed panel units, the 1 story SSIC panel unit, and the 1 story closed panel unit, respectively. (See Figure 4-1 for a comparison of air changes per hour.) The average air changes per hour at 50 pascals (ACH₅₀) for the open panel units was 76% higher than the average ACH₅₀ of the SSIC unit and the three closed panel units. In addition, the average specific leakage area (SLA) of the open panel units (see Figure 4-3). Neither ACH₅₀ or SLA measurements account for differences in design, such as the window crack length. To account for differences in design, the effective leakage area (ELA) was normalized to account for differences in window and door crack length as well as for differences in configuration. Normalized ELA results (see Figure 4-4 and Figure 4-5) support results of ACH₅₀ and SLA indicating the open panel units were the least airtight.

Fan de-pressurization results suggest that a higher level of airtightness is more easily achieved in actual construction with closed panels and SSIC panels. However, because this study involved the use of three duplexes of different size and configuration further study must be performed to verify this conclusion. Despite normalization of results for configuration and design differences, the differences in airtightness may remain a reflection of differences in size and complexity of the units.

The results obtained by the thermographic imaging showed that Units 3 and 4 had the most significant problems with insulation in the walls and ceiling. Units 3 and 4 were constructed of open panel walls with insulation installed on site. 8326/R95-2:TB Page 2 Both Units 1 and 2 had significant areas of missing or improperly installed insulation at the transition of vaulted insulation to flat roof insulation over the bathroom. This transition occurred within the overall roof envelope, so workers may have been more careless in installing this insulation. For the most part, thermal defects relating to missing or improperly installed insulation correspond to installation at the site whether in Units 1,2,3 or 4. These results suggest that a higher level of quality control is achievable in the factory when installing insulation. In addition, these results also suggest that roof panels with factory installed insulation would have resulted in fewer thermal defects in the overall envelope.

Coheating tests to establish an overall thermal transmittance value (UA) indicated the 2 story closed panel units had the lowest overall conductance, followed by the 1 story SSIC unit, the 1 story closed panel unit, and the 1 1/2 story open panel units respectively, (see Figure 4-10). When the coheating results were adjusted to account for heat loss due to infiltration and normalized by theoretical UA to account for differences in design, the 1 story SSIC unit, the 1 story closed panel unit, and the 1 1/2 story open panel units did not perform as well as predicted by theoretical UA values. The problems associated with insulation detected in the thermographic imaging may be the cause of the poorer performance of Units 1, 2, 3, and 4.

The results of short-term monitoring energy consumption indicate that the 2 story closed panel units consumed the least amount of energy as can be expected from coheating results. After the 2 story units, the 1 story closed panel unit consumed the least amount of energy followed by the west 1 1/2 story open panel unit, the 1 story SSIC unit, and the east $1 \frac{1}{2}$ story open panel unit. The performance of Unit 3 is better than would be anticipated from coheating results. However, the short-term monitoring also measures effects of orientation to wind and sun, which is different from unit to unit.

Overall, the results of this study indicate that the units constructed of closed panels and SSIC panels were more airtight and had fewer thermal defects in wall insulation. These results suggest a link between airtightness and thermal integrity of insulation to panel type. In comparing the results of the six housing 8326/R95-2:TB

units, it is important to remember that the units are of different size, configuration and design and that the experience of the construction crews also differed. The building diagnostic tests and short-term monitoring measure the combined interaction of many building systems. Consequently, comparing the performance of one specific system is difficult. Despite efforts to normalize results for differences in design, uncertainty relating to the differences in design remains a factor.

2.0 INTRODUCTION

The University of Oregon constructed six units of student housing in three duplexes in Eugene, OR. utilizing three industrialized construction techniques: SSIC (Stressed Skin Insulating Core) panels, open panel wood frame construction, and closed panel wood frame construction. The duplexes infilled an existing residential neighborhood. The housing was designed by Don Corner at the Center for Housing Innovation at the University of Oregon. The housing units were constructed in the fall of 1993, and a series of building diagnostic tests and short-term monitoring were performed by the Energy Studies in Buildings Laboratory between November 1993 to January 1994.

Figure 2-1 Neighborhood Plan

					Crack Length of Doors and
Unit	Construction	Floor Area	Surface Area	Volume	Windows
		(sq. ft.)	(sq. ft.)	(cu. ft.)	(ft)
1	1 story SSIC	674	2392	6086	146
2	1 story Closed Panel	674	2392	6086	146
3	1 1/2 story Open Panel	800	1965	5981	140
4	1 1/2 story Open Panel	868	2182	6424	188
5	2 story Closed Panel	713	1721	5552	185
6	2 story Closed Panel	713	1721	5552	185

Table 2-1 Geometric Comparison of Six Units

The building diagnostic tests included fan de-pressurization tests to determine airtightness, smoke leakage testing to identify areas of leakage, coheating tests to determine the building thermal transmittance value (UA), and thermographic imaging to identify areas of heat loss due to conductance and infiltration.

In addition to the series of building diagnostics, all the units underwent a 13 day period of short-term monitoring. Along with electrical meter readings, each unit was instrumented with sensors to measure the humidity, dry bulb temperature, and mean radiant temperature. A weather station was installed at the site on top of Unit 5 which collected data for ambient dry bulb temperature, relative humidity, mean radiant temperature, wind speed and direction and vertical and horizontal radiation.

Figure 2-2 Site Plan and Section

Description of Units

The duplex units differ in size and configuration, as indicated in Figure 2.2 and Table 2-1. However, each unit has been designed to meet Bonneville Power Administration's Super Good Cents energy performance levels. All units feature R5 insulation under the slab, R15 insulation around the slab perimeter, R38 insulation in the vaulted ceiling and R49 insulation in the flat ceiling, vinyl U -.34 (R -2.94) low-e argon-filled windows, U-.19 (R5.26) doors, R4 insulation around the pipes, bimetallic controls for stack ventilation, and insulated headers. Each unit does differ in the ratio of window aperture to floor area and the amount of thermal mass. In addition, the manufactured walls all have an insulation value of R26 except for the 1 story SSIC unit which has an insulation value of R23. Heat is provided through electric resistance baseboard heaters.

		Insulation R Value					
Unit	Construction	Wall	Slab on Grade	Slab Perimeter	Roof		
	1 story		R5 under				
1	SSIC	23	4"concrete slab	R15	R38 Vaulted / R49 Flat		
	1 story		R5 under				
2	Closed Panel	26	4"concrete slab	R15	R38 Vaulted / R49 Flat		
	1 1/2 story		R5 under				
3	Open Panel	26	4"concrete slab	R15	R38 Vaulted / R49 Flat		
	1 1/2 story		R5 under				
4	Open Panel	26	4"concrete slab	R15	R38 Vaulted / R49 Flat		
	2 story		R5 under				
5	Closed Panel	26	4"concrete slab	R15	R49 Flat		
	2 story		R5 under				
6	Closed Panel	26	4"concrete slab	R15	R49 Flat		

Table 2-2 Component R Values

Unit Construction

Unit 1

Unit 1 is the west unit of the 1 story duplex. The construction of Unit 1 features SSIC wall panels with R23 insulation. The SSIC panels included an interior and exterior skin of oriented strand board (OSB). Wiring chases were predrilled in the factory. Exterior siding and 15# asphalt felt were installed on site. Gypsum

wall board was also installed on site. In addition, the interior was finished with a layer of vapor barrier paint. The roof, a 6:12 pitch, is primarily formed of manufactured parallel chord trusses with R38 batt insulation. The roof area over the bathroom and hallway, 24% of the total roof area, was constructed as a flat roof with R49 insulation. R49 batt insulation was lapped from the flat roof to the vaulted roof. The slab-on-grade foundation is 4" of concrete over 2" of sand resting on R5 extruded polystyrene and a 6 mil vapor barrier above a sub grade of 4" of minus 3/4" crushed gravel. At the slab's edge, R15 extruded polystyrene insulates the slab to its depth of 28 inches. At the bottom of the slab edge, the extruded polystyrene is turned outward at a right angle from the slab for 4 inches. In addition, the party wall between Unit 1 and Unit 2 is constructed of an 8" thick, grout-filled concrete masonry unit (CMU) to a height of 8 feet. The party wall is traditionally framed above the CMU.

Unit2

Unit 2 is the east unit of the 1 story duplex and is identical in size and configuration to Unit 1. However, the walls are constructed of manufactured closed panels with R26 insulation instead of SSIC panels with R23 insulation. The closed panel walls are composed of an exterior skin of 5/8" T-11 siding with 1"x 2" battens at 24" o.c., 5/8" celotex blackcore polyisocyanurate foil face, 15# asphalt felt 2x6 stud framing at 24" o.c., with high-density fiberglass batt insulation, 5/8" gypsum board applied in the factory and a vapor barrier paint. The closed panel units also featured a gasket similar to a sill barrier at the panel-to-panel joints; however, often these "gaskets" were removed to facilitate connection of panels. The wire chases are predrilled in the factory. The roof insulation and foundation construction are identical to Unit 1.

Unit 3

Unit 3 is the west unit of the 1 1/2 story duplex. The walls consist of manufactured open panels. The open panels are identical in construction to the closed panels. However, all the wiring, installation of high-density batt insulation, and hanging of gypsum board is performed in the field. The foundation is of the same construction as for Units 1 and 2. The roof is formed of manufactured trusses with panelized dormer panels framed and sheathed in the factory. Unit 3 also has a combination of vaulted R 38 roof insulation (42%) and 8326/R95-2:TB Page 9 flat R 49 roof insulation (58%). The second floor is formed by the bottom chord of the manufactured trusses and 2 x 8 framing at 24" o.c. under the dormers. The truss system is secured to the top of the open panels as in platform construction. Unit 3 also has two doors instead of one as in Units 1 and 2.

Unit4

Unit 4 is the east unit of the $1 \frac{1}{2}$ story open panel duplex. Unit 4 is identical in construction to Unit 3. However, Unit 3 differs in geometry and size due to the addition of a south facing bay which acts as a breakfast nook. The breakfast nook increases the amount of surface area and window area as compared to Unit 3.

Units 5 and 6

Units 5 and 6 are identical in construction and geometry. Unit 5 is the east side of the duplex and Unit 6 is the west. The walls are manufactured closed panels identical to the closed panels of Unit 2. The foundations are also identical in construction as all the other units. The roof is constructed of manufactured trusses, and the insulation is entirely of R49 batt insulation for flat roof construction. The second floor is constructed of prefabricated floor cassettes which act as a platform for the second floor walls. Units 5 and 6 share an 8-inch, grout-filled CMU party wall on the ground floor for thermal mass. The party wall on the second floor is traditionally framed.

Ventilation Devices

All six units have features to allow ventilation. These features include user controlled slotted vents in designated windows, referred to as BPA vents. Ventilation is also provided through ceiling vents operated by bimetallic controls for stack ventilation and bathroom vents operated by timers. All of the ceiling vents, BPA vents and bathroom vents were closed and taped for fan depressurization and coheating tests.

Field Construction

As in all construction, field work always presents unforeseen variables. These variables include changes in construction crews and changes to wiring. Erection of the manufactured panels in the field was not performed by the same construction crew. The closed panels were erected by the general contractor 8326/R95-2:TB Page 10

supervised by a representative of the panel manufacturer, whereas the open panels were erected by a crew from the panel manufacture and supervised by the general contractor. Erection of the different panel systems by crews of varying experience adds another variable in the comparison of panel performance. In addition, the gypsum board on some closed panels had to be removed to make field modifications. Furthermore, one SSIC panel was not delivered and was replaced with traditional framing. These variables must be considered when comparing the performance of the panel systems.

3.0 METHODOLOGY

A series of building diagnostics and building monitoring tests was performed to establish the energy and comfort performance of the six units. The objective of the testing was to assess the thermal performance of each of the six apartments and its respective panelized system.

Properties of air infiltration and thermal transmittance were established for each of the six units with testing in two different modes: with the passive vents covered and uncovered. The results in this report correspond to taped conditions in order to provide a more direct assessment of the performance of the building construction.

In addition, the units were instrumented to measure total electrical consumption and electrical consumption for space heating. Comfort criteria were measured with ambient air temperature probes, mean radiant temperature probes, and a relative humidity meter. In order to correctly predict the thermal performance, a weather station was installed on top of Unit 5, measuring the ambient weather condition at the site.

Figure 3-1 Photograph of Ambient Temperature, MRT and RH Instrumentation

3.1 AIR INFILTRATION

Fan De-Pressurization Testing

Infiltration testing was performed by fan de-pressurization (Blower Door Testing). A Minneapolis Blower Door Model 3 was used to obtain airflow rates at negative house pressure differentials. A log- log plot of multipoint test data was created, and a line of best fit was drawn. From the line of best fit data, the airflow rate at 50 pascals, CFM_{50} and the airflow rate at 4 pascals, CFM_4 , were determined to establish air changes per hour at 50 pascals (ACH_{50}) and effective leakage area (ELA). In order to provide a more direct comparison of the performance of the panel systems, the effective leakage areas were normalized to account for differences in building geometries and design.

Smoke Testing

In addition to fan pressurization tests, air leakage was visually inspected by smoke testing. Smoke tests were performed by pressurizing the house to +20 Pa relative to the outside pressure using the fan pressurization equipment. Leakage paths were then established using a titanium tetrachloride smoke pencil. Major and minor leakage areas of infiltration were noted based on visual examination of the speed and quantity of escaping smoke.

3.2 THERMAL TRANSMITTANCE (UA)

Thermographic Imaging

Thermal insulation quality and air leakage pathways were evaluated using the Inframetrics 600L IR system. The model 600L IR does real-time analysis of static or dynamic thermal patterns. The scanner includes an electronic control module which can be used to interface with the scanner to adjust variables such as surface emittance. The system features an infrared camera with closed circuit cooling, a VCR and a 4" color monitor. One thorough scan of the thermal envelope was performed from the inside for each unit. The scans were done with the house in a thermally undisturbed state, i.e., the heating system had been at the same setpoint for at least 24 hours and the house was operated normally. The resulting images for all the units were recorded on 3.5 hours of videotape for later analysis.

Coheating Tests

Overall thermal transmittance (UA) was determined for each unit with a coheating test. The test uses five electrical resistance heaters controlled and monitored by a CR 21X data logger and IBM 386 to maintain the house at a constant temperature for a period of 24 hours. Electrical energy consumption is monitored using infrared optical meter sensors for the duration of the test.

The units were divided into five thermal zones, each controlled by a copperconstantan thermocouple. These thermocouples were connected to the CR-21X and IBM 386 which in turn controlled a relay that switched the heaters on or off depending upon whether the temperature in the zone drifted below or above the control point of 75°F. Interior temperatures at five locations as well as the 8326/R95-2:TB Page 15 ambient outdoor air temperature were monitored constantly. The monitoring was done for a period of 24 hours, but the data for analysis was taken from 3:00 am to 5:30 am. Data was recorded every 6 seconds and then either averaged or totaled for 6-minute intervals.

The coheating data was also normalized to account for differences in building geometry and design. The contribution due to infiltration, estimated using fan pressurization results, was deducted from the total UA. Next, theoretical UA values were calculated using ASHRAE Fundamentals. The resultant UA was divided by the theoretical UA values to normalize the data.

3.3 SHORT-TERM MONITORING

Energy consumption was monitored for a 13-day period between December 20, 1993, and January 2, 1994, while the units were unoccupied. Data was collected on site with two sets of the following data acquisition equipment: A Campbell Scientific CR10 datalogger, an AM416 Relay Multiplexer, and a SDM-SW8A Switch Closure Input Module. A rechargeable battery pack was also included to provide power in the case of an electrical power failure. One datalogger was dedicated to Units 1-3, and the second datalogger was dedicated to Units 4-6. Table 3-1 describes the measurements, sensor type and sensor location for all six units. A channel schedule for the instrumentation is provided in Appendix A.2. The CR10's were programmed and accessed using an IBM 386. Data was downloaded from the Energy Studies in Buildings Laboratory using the IBM PC via a Campbell Scientific DC 112 Modem. Dedicated phone lines were ordered from the local carrier to ensure data transfer. Figure 3-2 describes the data acquisition system.

Figure 3-2 Data Acquisition

Figure 3-3 Dedicated KW-hr Meters for Total Energy Consumption and Hot Water Heating

No.	Measurement Type	Number & Location	Sensor Type			
Unit 1	Air temperature	ONE, located 1'0" below vaulted	T thermocouple			
		ceiling in living room				
	M.R.T	ONE, located 1'0" below vaulted	T thermocouple			
		ceiling in living room				
	Relative humidity	ONE, located 1'0" below vaulted ceiling in living room	Bulk polymer resist			
	Wall surface temp	ONE, located 4'0" above the floor	T thermocouple			
	-	on the south wall of south bedrm				
	Electric energy use	TWO, one for total electric load	Infrared sensor			
		of the unit and the other for space	e heating			
Unit 2	Air temperature	ONE, located 1'0" below vaulted	T thermocouple			
		celing in living room				
	M.R.T	ONE, located 1'0" below vaulted	T thermocouple			
		ceiling in living room				
	Relative humidity	ONE, located 1'0" below vaulted	Bulk polymer resist			
		ceiling in living room				
	Wall surface temp	ONE, located 4'0" above the floor	T thermocouple			
		on the south wall of south bedrm				
	Electric energy use	TWO, one for total electric load	Infrared sensor			
		of the unit and the other for space	e heating			
Unit 3	Air temperature	TWO, one located 1'0" below	T thermocouple			
		ceiling in living rm and other				
		2'0" below ceiling in second floor landing.				
	M.R.T	ONE, located 1'0" below ceiling	T thermocouple			
		in living room.				
	Relative humidity	ONE, located 1'0" below ceiling	Bulk polymer resist			
		in living room.				
	Wall surface temp	ONE, located 4'0" above the floor	T thermocouple			
		on the south wall of living room				
	Electric energy use	TWO, one for total electric load	Infrared sensor			
		of the unit and other for space he	eating.			
	Table 3-1, Sensor Types and Locations					

No.	Measurement Type	Number & Location	Sensor Type			
Unit 4	Air temperature	TWO, one located 1'0" below	T thermocouple			
		ceiling in living rm and other				
		2'0" below ceiling in second floor	r landing			
	M.R.T	ONE, located 1'0" below ceiling	T thermocouple			
		in living room				
	Relative humidity	ONE, located 1'0" below ceiling	Bulk polymer resist			
		in living room				
	Wall surface temp	ONE, located 4'0" above the floor	T thermocouple			
		on the south wall of living room				
	Electric energy use	TWO, one for total electric load	Infrared sensor			
		of the unit and other for space he	eating			
Unit 5	Air temperature	TWO, one located 1'0" below	T thermocouple			
		ceiling in living rm and other				
		2'0" below ceiling in second floor landing				
	M.R.T	ONE, located 1'0" below ceiling	T thermocouple			
		in living room				
	Relative humidity	ONE, located 1'0" below ceiling	Bulk Polymer resist			
		in living room				
	Wall surface temp	ONE, located 4'0" above the floor	T thermocouple			
		on the south wall of dining room	l			
	Electric energy use†	TWO, one for total electric load	Infrared sensor			
		of the unit and other for space he	eating			
Unit 6	Air temperature	TWO, one located 1'0" below	T thermocouple			
		ceiling in living rm and other				
		2'0" below ceiling in second floor	r landing.			
	M.R.T	ONE, located 1'0" below ceiling	T thermocouple			
		in living room				
	Relative humidity	ONE, located 1'0" below ceiling	Bulk polymer resist			
		in living room				
	Wall surface temp	ONE, located 4'0" above the floor	T thermocouple			
		on the south wall of dining room	L			
	Electric energy use†	TWO, one for total electric load of	f Infrared sensor			
		the unit and other for space heat	ing			
	Table 3-1, Se	ensor Types and Locations (contin	ued)			

No.	Measurement Type	Number & Location	Sensor Type		
Wthr	Radiation sensors	TWO, one for measuring the	Silicon photo diode		
Sta.		vertical and other for			
		horizontal radiation			
	Wind speed ONE, measures wind speed (m/s) Helicoid propell				
	Wind direction	ONE, measures wind direction	Balanced vane		
		in degrees from 0° to 355°			
	Relative humidity	ONE Ambient RH	Bulk polymer resist		
	Dry bulb temp	ONE Ambient DBT	T thermocouple		
	M.R.T.	ONE Ambient MRT	T thermocouple		

[†] For measuring the electric energy usage, a total of three sensors were planned in the data logger program, but only two sensors were installed. The third one to be used for measuring the electricity consumption for domestic hot water consumption was not installed.

 TABLE 3-1, Sensor Types and Locations (continued)

The data acquisition equipment had a storage capacity allowing 48 hours of data storage for the university site. Hence, data was downloaded from the site every 24 hours. The data was collected from the sensors every 6 seconds and then either averaged or added every 6 minutes for final output from the data logger. The final output was further reduced to 1-hour intervals. After careful analysis of the data, graphs were plotted reflecting the performance of the apartments. The variation of relative humidity, dry bulb temperature, south wall temperature and energy consumption was recorded and analyzed.

3.4 WEATHER MONITORING

A weather station was installed on top of Unit 5, the east unit of the 2 story closed panel. Weather data collected includes ambient temperature, relative humidity, mean radiant temperature, vertical irradiance, horizontal irradiance, wind speed and wind direction.

Figure 3-4 Photograph of Weather Station Mounted on Unit 5

4.0 RESULTS

The results of the building diagnostic tests and short-term monitoring of the six university housing units are presented in this section. The building diagnostic tests evaluated infiltration and thermal transmittance. The infiltration evaluation includes both fan de-pressurization and smoke leakage testing results. The thermal transmittance evaluation includes thermographic imaging and coheating results. Short term monitoring comprised 13 days of continuous monitoring of energy consumption, ambient temperature, mean radiant temperature, south wall temperature, and relative humidity as well as outside weather data.

4.1 AIR INFILTRATION

Fan De-Pressurization Testing

Fan de-pressurization tests were performed on the six units, which vary both in geometry and the number of penetrations through the envelope. Building characteristics are presented in Table 4-1. Based on the crack length of windows and doors and joint length (determinants of infiltration), one would expect Unit 1 to have the highest infiltration followed by Unit 4, Unit 2, Unit 3, and the two-story units, 5 and 6. However, air changes per hour at a house pressure of 50 pascals (ACH₅₀) determined from the fan de-pressurization tests, Figure 4-1, indicate that the 1 1/2 story open panel units (3 and 4) had the highest infiltration followed by the 2 story units (5 and 6), 1 story SSIC unit (1) and 1 story closed panel unit (2). The air changes per hour at 50 pascals (ACH₅₀) reflects the relative airtightness of each housing unit. ACH₅₀ is calculated by dividing the flow rate of air per hour through the fan at a pressure differential of 50 pascals by the volume of the apartment. The test uncertainty was estimated to be 5% based on the use of digital pressure gauges and correlation of curve fit data.

Test	Surface Area	Volume	Crack Length	Joint	Total Crack
			of Windows	Length	and Joint
			and Doors		Length
	(sq. ft.)	(cu. ft.)	(ft)	(ft)	(ft)
Unit 1 SSIC Panel	2392	6086	146	642	788
Unit 2 Closed Panel	2392	6086	146	458	604
Unit 3 Open Panel	1965	5981	140	453	593
Unit 4 Open Panel	2182	6424	188	529	717
Unit 5 Closed Panel	1721	5552	185	289	474
Unit 6 Closed Panel	1721	5552	185	289	474

Notes:

Crack length – Joint length –

- Perimeter, feet, of window and door openings

Perimeter feet of panel to slab, panel to ceiling, panel to panel joints

Table 4-1Building Characteristics

The effective leakage (ELA) was also calculated area at 4 pascals, using the Lawrence Berkeley Laboratory (LBL) model (see Figure 4-2). Again, the 1 story SSIC panel unit and closed panel unit are more airtight than the open panel units. The ELA is more prone to error as the value is based on data derived at low fan pressures when measurements are more susceptible to wind and gauge error. A margin of error of 10% for ELA was estimated based on the curve fit data.

The specific leakage area (SLA) was also calculated. The SLA normalizes the ELA by floor area by multiplying the ELA in square feet by 10,000 and dividing by the floor area in square feet. A plot of the SLA, Figure 4-3, again indicates that the open panel units were the least airtight.

Unit	CFM50	ACH50	ELA	Wind	SLA	Natural
				Speed		Infiltration
						(LBL)
	(cfm)	(house	(sq. in)	(mph)		(air change
		vol. / hr)				/ hr)
Unit 1 SSIC Panel	491	4.8	24	3.0	2.45	0.16
Unit 2 Closed Panel	433	4.3	21	1.9	2.19	0.15
Unit 3 Open Panel	907	9.1	39	3.4	3.38	0.34
Unit 4 Open Panel	1116	10.4	52	2.7	4.16	0.39
Unit 5 Closed Panel	616	6.7	25	2.7	2.41	0.28
Unit 6 Closed Panel	579	6.3	26	1.9	2.56	0.27

Notes:

Test conditions: All window vents (BPA vents), passive vents, and bathroom vents were taped

- cfm Cubic feet per minute
- ELA Effective leakage area at a specific pressure
- SLA Specific leakage area, ELA (ft) *10,000/House (ft²)
- Wind Speed represents average wind speed between 9AM and 7PM on day of test recorded at the Solar Monitoring center at the University of Oregon. .5 miles from test site. Wind measurements were taken at a height of ≈45 ft.

Table 4-2Fan De-Pressurization Results

Note: dashes represent margin of error

Figure 4-1 Air Changes per Hour at a House Pressure of 50 Pascals

Note: dashes represent margin of error

The ELA and SLA results reinforce the ACH_{50} data indicating performance of the closed panel Units 2, 5 and 6 and the SSIC panel unit 1 to be substantially better than the open panel Units 3 and 4. However, ACH_{50} , ELA and SLA results do not reflect differences in design, such as window and door openings and roof

configuration. In order to account for differences in design, effective leakages of windows, doors, ceiling-to-ceiling joints, and penetrations through the ceiling were calculated using estimates of component leakage (ASHRAE, 23.15). Estimated leakage values for the specific components as well as joints are presented in Table 4-3. The estimated leakage areas of components were used to normalize measured ELA's. The ASHRAE data provides values only for wood windows, whereas the windows in the apartment are vinyl. Consequently, a level of uncertainty is introduced into the normalization.

Unit	Estimated	Estimated	Estimated	Estimated	Estimated
	Effective	Effective	Effective	Effective	Effective
	Leakage	Leakage	Leakage	Leakage of	Leakage
	Area of	Area of	Area of	Windows	Area of
	Panel-to-	Panel-to-	Panel-to-		Doors
	Panel Joints	Slab Joints	Ceiling		
			Joints		
	(sq. in)	(sq. in)	(sq. in)	(sq. in)	(sq. in)
Unit 1,					
SSIC Panel	9.92	4.73	18.93	10.51	0.62
Unit 2,					
Closed Panel	2.56	4.73	18.93	10.51	0.62
Unit 3,					
Open Panel	4.24	5.5	12.86	7.28	1.24
Unit 4,					
Open Panel	4.88	6.26	16.23	11.45	1.24
Unit 5.					
Closed Panel	2.48	4.53	9.18	11.97	1.24
Unit 6,					
Closed Panel	2.48	4.53	9.18	11.97	1.24

Table 4-3 Estimated Effective Leakage Area (continued on next page)

Unit	Estimated	Estimated	Estimated	Total
	Effective	Effective	Effective	Estimated
	Leakage Area	Leakage Area	Leakage Area	Effective
	of Wall	of Ceiling	of Ceiling to	Leakage Area
	Penetrations	Penetrations	Ceiling Joint	
			_	
	(sq. in)	(sq. in)	(sq. in)	(sq. in)
Unit 1,				
SSIC Panel	1.29	2.01	3.36	51
Unit 2,				
Closed Panel	1.45	2.01	3.36	44
Unit 3,				
Open Panel	1.29	2.40	4.08	39
Unit 4.				
Open Panel	1.13	2.40	4.08	48
Unit 5.				
Closed Panel	0.97	2.27	0.00	33
Unit 6,				
Closed Panel	0.81	2.27	0.00	32

Table 4-3 continued Estimated Effective Leakage Area

The building components having the largest effect on the estimated leakage area were windows and doors, which are dependent upon crack length. The crack length of windows and doors varied between the units and was greatest for the 2 story units even though the 2 story units have the least surface area. The estimated leakage of windows, doors and ceiling penetrations and ceiling joints was subtracted from the measured ELA. The remaining leakage area, Figure 4-4, more closely reflects the leakage area related to the panel type and its installation in the field. Figure 4-4 indicates that the open panels were the least airtight. The factors related to panel type and installation in the field were assumed to be the following: overall panel construction, panel-to-slab joints, panel-to-ceiling joints, panel-to-panel joints, and penetrations through the panels.

The estimated leakage area shown in Figure 4-4 reflects the leakage area associated with panel type and panel installation. However, Figure 4-4 does not reflect differences in the size of panels and their configuration. Consequently, the estimated panel leakage area was normalized by joint length of the panels for each unit to account for differences in design. Joint length included panel-to-slab joints, panel-to-ceiling joints and panel-to-panel joints. As can be seen in Figure 4-5, even when the estimated leakage area attributable to the panel is normalized by the joint length, the 1 1/2 story open panels are still the least airtight.

Overall, the fan pressurization results suggest that the SSIC panels and the closed panels may contribute to the more airtight envelopes. Analysis of the fan de-pressurization results was adjusted to account for differences in building geometry and design. However, other variables which affect the airtightness of the panel systems include the experience of the construction workers and the complexity of the design of each unit.

Smoke Testing

Smoke leakage testing using titanium tetrachloride smoke under pressurized conditions of 20 pascals was performed to identify significant areas of leakage in the University Housing units. Common leakage areas in all units include the bathroom and kitchen vents, the tops and bottoms of sliding windows, the vents on windows, and leakage into the attic space. Junction boxes and other punctures of the envelope for plumbing and electrical systems were also common areas of leakage. Units 1 and 6 exhibited leakage between the slab and wall joints. Leakage was also detected at the concrete masonry unit (CMU) party wall in Units 1 and 2 and Units 5 and 6; however, leakage was probably between units rather than to the exterior.

Unit	Room	Severe Leakage	Moderate Leakage
TT 14 1	T. D.		
Unit 1	Living Room	Conduit Southeast corner on	Electrical outlet not flush with
		Botwoon baseboard and slab	Wall, South Wall
		Southoast corner	Certing junction box, minor
		Between slab drywall and cmu	All sliding windows near the
		nartition wall to unit 2	ton and bottom and of the sliding
		Northeast corner	name some flow along the
			slotted trickle vents (BPA vents)
<u> </u>	Kitchen	Stove vent cabinet, leakage at	Next to counter, between
		ceiling joint	baseboard and slab. North wall
		· · · · · ·	Between baseboard and slab,
			North wall
			Outlet, not flush with wall,
			minor leakage
	Bathroom	Vent	Between baseboard and wall,
			West wall below heater
	South	Junction box	Between baseboard and wall,
	Bedroom		West wall, large cracks
		2 holes in ceiling, around edges	All sliding windows, near top
	North	01 b0x #1	and bottom of sliding pane
	North Rotsom		Northeast corner small chin
	Deuroom		Northeast corner, small chip
			Ceiling and light fixture joint
			very minor leakage
			All sliding windows, near top
			and bottom of sliding pane
	Hall	Between slab and baseboard,	
		along East wall near bedroom	
		Leakage into attic, at corner of	
		attic door	
Unit 2	Living Room		Top and bottom joint of all
			sliding windows, BPA vents
	Kitchen	Vent	
	Bathroom	Vent	Top and bottom joint of all
			sliding windows
	South		Top and bottom joint of all
<u> </u>	Bedroom		sliding windows
	North		Top and bottom joint of all
Į	Bedroom		sliding windows
	General		All electrical plug joints leak
	11-11		Around alet for detalage
	nall		
L			Into Attic vent

Table 4-4Smoke Leakage Testing Results

Unit	Room	Severe Leakage	Moderate Leakage
TT-14.9	Ti	All oliding mindoms at middle	Minor lookers around deer
Unit 3	Living Room	All sliding windows at middle	minor leakage around door
<u>}</u>	Vitahan	01 Joint	Tunction of stove box and soiling
	Ritchen	Blove vent	Between basebeard and aleb on
	Daur	Dawi vent	East well
	West		Around wall sconce west wall
	Bedroom		mound wan beenee, webt wan
			Around ceiling light
	Center	Attic door leakage in covers	Bottom corners of both skylights
	Bedroom	C	
		Around ceiling Light	****
Í	Stair	Along North wall where riser	
		meets stair, on first stair at	
		platforms	
	Upstairs	Leakage into unit 4 around	
	Closet	water pipes where they enter	
		wall	
	Additional	Hole through drywall at	Leakage between sliding plane
	Comments	baseboard heater	and window frame
TT	T · · · · D		
Unit 4	Living Room		Flow around junction box in
			Southeast corner of the celling
			Top joint of window 2 lacing
			All sliding windows near the
			ton and hottom and of the sliding
[nane some flow along BPA
			vents when tightly closed
	Kitchen	Vent	
i i	1st floor	Ventilation fan	Moderate flow along electrical
	Bathroom		inlets
		Electrical heater inlet	
	2ndfloor	Ventilation fan	
	Bathroom		
	First Floor	Moderate flow along electrical	Top and Bottom of sliding
	Deuroom	Infets	Window All electrical entlets
<u> }</u>	South	Attic access hatch primarily in	Top and bottom of sliding
	Betroom	corners	window
<u> 3</u> §		Inlet for Electrical heater	Southeast corner at baseboard
			Around pipe for hot water
			heater
1	East Bedroom	into the inlet for electrical	Top and bottom of sliding
		heaters	window
			Northeast corner at bedroom

Table 4-4 ,	Smoke l	Leakage	Testing Re	sults	(continued)
--------------------	---------	---------	------------	-------	-------------

Unit	Room	Severe Leakage	Moderate Leakage
Unit 4	Hall		Electrical inlets and phone jack
(cont.)			
	General	Electrical heater inlets on	
		second floor has large hole	
		through which a lot of air is	
		escaping	
Unit 5		NOT TESTED	
Unit 6	Living Room	Between door and frame, lower	NE corner of CMU wall
		right corner	
			Conduit into drywall, minor
			leak
	Kitchen	Vent	
		Above stove hood	
		Holes around conduit, above	
		stove hood	
	Bath	Vent	Between linoleum and
			baseboard, North wall
	East Bedroom		Between Baseboard and carpet
			Southwest and Southeast
			corners
			Between ceiling and light
			fixtures, minor
	West Bedroom		Junction of baseboard and
			carpet, Southwest corner and
			Northwest corner of closet
	Stair/Hall	Attic hatch	
		Junction box and phone box	
		Junction of CMU wall and	
		drywall, considerable flow	
		All corners of CMU and stair	
		platform, big holes	

Note: BPA vents refer to slotted vents in windows provided to allow air exchange CMU refers to concrete masonry units

Table 4-4 Smoke Leakage Testing Results (continued)

4.2 THERMAL TRANSMITTANCE (UA)

The thermal transmittance section includes results from thermographic imaging and coheating tests. The thermographic imaging, or infrared scanning, provides a qualitative assessment of heat loss through conduction and infiltration through the envelope. The coheating test provides a quantitative assessment of building conductance and heat loss due to infiltration. Theoretical UA values were also calculated as a bases to assess actual performance.

Thermographic Imaging

The results of the thermographic imaging showed that Units 3 and 4 had the most significant thermal weak spots caused by missing or poorly installed insulation in the walls and ceiling. Units 3 and 4 are open panel construction, which means that all of the insulation was installed on site. Units 1 and 2 also had substantial amounts of missing or improperly installed insulation at the interior gable wall, the transition of the flat ceiling insulation above the bathroom to the vaulted ceiling insulation. For the most part, problems related to missing or improperly installed insulation correspond to installation on site whether it was Units 1, 2, 3 or 4.

Other common problems detected by the infrared imaging include conductive and infiltration losses along panel-to-slab joints, and infiltration through the slotted vents (BPA window vents), passive vents, and electrical outlets. Thermal bridging due to studs was often detected; however, the thermally broken splines of the SSIC panel house were only detectable at building corners.

Tape	Time	Comment
Unit-	1	
1	0:05:23	Missing and/or poorly installed insulation along the rafters in the
		northwest corner of the living room where wall and roof meets
1	0:05:50	Infiltration through electrical outlets on north wall above
		kitchen counters
1	0:07:41	Missing and/or poorly installed insulation at the west gable end of
		the living room above the kitchen
1	0:12:43	Infiltration along the frame of the entrance door to the unit.
1	0:19:29	Conductive loss through electrical outlet, north wall of northwest
		bedroom
1	0:22:00	Missing and/or poorly installed insulation at the south gable end
		of the north bedroom
1	0:27:00	Missing and/or poorly installed insulation at the north gable end
		of the south bedroom
1	0:31:01	Conductive/infiltration loss along all exterior corners between
		wall and slab on grade floor

Unit-2

2	1:00:41	Infiltration along the frame of the entrance door to the unit
2	1:02:00	Conductive/infiltration loss through BPA trickle vents in windows
2	1:04:32	Missing and/or poorly installed insulation at the rafter and joint
		between north wall and roof above kitchen
2	1:08:09	Room air escaping through the electrical outlets
2	1:17:45	Conductive/infiltration loss through passive vent in bathroom
2	1:20:09	Missing and/or poorly installed insulation on the north gable
		end of the south bedroom
2	1:24:00	Conductive loss through passive vent
2	1:26:33	Poorly installed insulation at north gable of south bedroom

Table 4.4 Infrared Testing Results

Tape	Time	Comment
Unit	3	
2	0:01:09	Missing and/or poorly installed insulation at the northwest
		corner of the west bedroom near wall and ceiling joint
2	0:05:19	Missing insulation above bathtub, north wall of 1st floor bedroom
2	0:08:43	Infiltration along the frame of the entrance door next to the
		kitchen
2	0:12:03	Missing and/or poorly installed insulation at the top of the
		east skylight on the second floor.
2	0:14:02	Poorly installed insulation at the roof above the second floor
		landing area
2	0:16:13	Missing/ improperly installed insulation above top of west
		skylight
2	0:16:40	Missing insulation/infiltration south wall at knee wall and
		common wall
2	0:19:40	Vent pipe creates cold spot at the southwest corner of the south
		wall of the bedroom on the second floor
2	0:22:05	Infiltration/poorly installed insulation around electrical
		receptacle
2	0:24:19	Missing and/or poorly installed insulation at the north wall of
_		storage area
2	0:25:44	Missing insulation behind water heater, 2nd floor
IInit	-1	
ОШ/ 1	1.15.96	Missing and/or poorly installed insulation at the well to early
•	1.10.00	joint of southeast corner of the living room
1	1:18:24	Missing and/or poorly installed insulation at the wall-to-floor joint

on the east side of the bay window in dining area

- 1 1:28:01 Missing and/or poorly installed insulation at the wall-to-ceiling joint of the northeast corner of the east bedroom
- 1 1:46:24 Missing and/or poorly installed insulation along the north side of the sloping roof of the second floor bathroom

Table 4.4 Infrared Testing Results (continued)

Tape Time Comment

Unit-4 (continued)

المتاريبيو باليبوينيا الرزام ومتحجوب محججا

1	1:52:18	Infiltration and conduction loss occurring at the wall-to-wall
		connection of the northeast corner of the east bedroom on second
		floor

1 1:59:17 Missing and/or poorly installed insulation at the southeast corner of the south bedroom on second floor

Unit-5

2	0:27:41	Infiltration around bottom of door, south wall of living area
2	0:30:36	Poor wall-to-wall connection leading to heat loss due to
		infiltration and conduction
2	0:44:56	Missing and/or poorly installed insulation at the ceiling of the
		second floor bathroom

Unit-6

1	0:39:10	Poor wall-to-wall connection at the southwest corner of the dining
		area leading to heat loss due to infiltration and conduction
1	0:40:41	Infiltration/conductive loss at top of kitchen vent
1	0:40:45	Missing and/or poorly installed insulation at the wall-to-ceiling
		joint of the south wall of living area
1	0:41:00	Poor wall-to-wall connection at the northwest corner of the
		building leading to heat loss due to infiltration and conduction
1	0:47:16	Infiltration/conduction around north panel to 2nd floor joint
1	0:48:10	Infiltration/conduction around door frame
1	0:55:45	Missing and/or poorly installed insulation at the wall-to-ceiling
		joint of the west wall in second floor bathroom (above bathtub)

Note: BPA vents and passive vents contribute to heat loss due to conduction and infiltration. Conductive losses along all exterior corner between walls and floor.

Table 4.4 Infrared Testing Results (continued)

Coheating Tests

Results of the coheating tests, Table 4-5, provide an estimate of heat loss due to overall thermal transmittance (UA), which includes infiltration. We would expect, based on theoretical UA, Figure 4-6, that the 1 story units would have the highest UA followed by the 1 1/2 story and the 2 story units, respectively.

tration Theoretical Infiltratior
UA /
Theoretica
UA
u\hF) (Btu\hF)
156 136 1.15
164 134 1.23
161 113 1.42
100 100 1.00
140 129 1.09
101 119 0.00
101 112 0.90
110 119 0.08
110 112 0.58

Note: Infiltration loss was estimated by multiplying the Lawrence Berkeley Laboratories estimate of natural infiltration times the volume of each unit and by 1 hour to establish an air volume. The air volume was then multiplied by the specific heat of air and the density of air to establish the heat capacity of the air lost due to infiltration in each unit.

Table 4-5 Coheating Results

Measured results indicate the 2 story closed panel units display the lowest UA followed by the 1 story SSIC, 1 story closed panel and finally the 1 1/2 story panel

units.

Figure 4-6 Theoretical UA Values Reflecting Differences in Design of Units.

LBL Natural Infiltration from Fan Pressurization Results

8326/R95-2:TB

Notes: dashes represent the margin of error

Figure 4-8 (UA as Measured) Including Infiltration Estimation

Many factors account for the difference in UA performance, including building design, orientation, geometry and construction method. In order to provide a better comparison of the actual building conductance, estimated infiltration losses using fan pressurization test data were calculated, Figure 4-7. The estimated losses due to infiltration are reflected in the unshaded portions of the "UA as measured values" of Figure 4-8. These estimated infiltration losses were subtracted from the measured UA values. In addition, the theoretical UA values, Figure 4-6, were calculated from data in ASHRAE 93 Fundamentals. Theoretical UA values were used to normalize the "UA as measured values" less the estimated infiltration losses.

Because each coheating test was performed on six different nights with different wind conditions and temperature conditions, error was estimated to be within 20%. The range of ΔT indoor to outdoor was from 20.3 °F to 51.3 °F and wind varied from 1.4 mph to 7.6 mph. Temperature data was measured from on site; whereas wind data was from the Solar Monitoring Lab located approximately .5

miles away at the University of Oregon. The measurements of wind data are taken at an approximate height of 45 feet. The different wind and temperature conditions have a large effect on heat loss due to infiltration. In a report by the Florida Solar Energy Center (FSEC), "Side-by-Side Evaluation of a Stressed-Skin Insulated-Core Panel House and a Conventional Stud Frame House," a plot of 17 nights of energy consumption versus temperature indicated energy consumption, a reflection of heat loss due to conductive and infiltration losses, varied by as much as 15% under the same ΔT . Consequently, error associated with the coheating tests was estimated to be 20%.

The normalized UA values, Figure 4-9, account for design differences such as window and door area, surface area, different roof construction, and losses due to infiltration. Ideally, the normalized values should all equal 1; however, the testing conditions for the coheating test vary from the testing conditions ASHRAE values were determined under. In addition, the F value for calculating heat loss to the perimeter was based on a value of .400 (Wattsun 5). The F value may vary for different soil types and soil temperature and moisture conditions.

The normalized results in Figure 4-9 reflect the relative performance of each unit as seen in the initial "as measured results." Unit 1 SSIC panel, Unit 2 closed panel unit, Unit 3 open pane, I and Unit 4 open panel all have as measured performance greater than theoretical UA values, suggesting problems with the thermal envelope. Infrared scanning of Units 1 and 2 revealed significant problems related to the placement of insulation around the transition from a vaulted roof to a flat roof over the bathroom. Thermographic imaging also revealed deficiencies in insulation in both the wall panels and roof areas of Units 3 and 4. Unit 3 also had the most significant instances of poorly installed insulation of all the units.

Figure 4-9 (UA as Measured) - (Infiltration) Normalized by Theoretical UA Values

Theoretical Thermal Transmittance (UA)

Pie charts reflecting theoretical UA values and the distribution of heat loss to building component are presented in Figures 4-10, 4-11, 4-12, 4-13, and 4-14. These figures reflect design differences between units due to different percentages of window area, door area, roof area, foundation slab perimeter.

Figure 4-10

Theoretical Distribution of Heat Loss for 1 Story SSIC Unit-1.

Figure 4-11 Theoretical Distribution of Heat Loss for 1 Story closed panel Unit-2.

Figure 4-12

Theoretical Distribution of Heat Loss for 1 1/2 Story Open Panel Unit-3.

Figure 4-13

ي يومو المعدينين في مرتبط الم

Theoretical Distribution of Heat Loss for 1 1/2 Story Open Panel Unit-4.

Theoretical Distribution of Heat Loss for 2 Story Closed Panel Units-5 and-6.

4.3 SHORT-TERM MONITORING

The results of energy consumption testing presented in Figure 4-15, indicate that the 2 story units had the lowest energy consumption per ΔT (Tin-Tout) followed by the 1 story closed panel, west 1 1/2 story open panel, 1 story SSIC panel and east 1 1/2 story open panel unit, respectively. The average ΔT of indoor to outdoor temperature varied from 36.9 °F (20.5°) to 42.12 °F (23.4°). The short-term monitoring energy consumption results differ slightly from the coheating results. The difference in performance may be attributed to different orientations, which affect collection of solar irradiance and infiltration caused by wind. In addition, the short-term monitoring results are affected by varying levels of mass within the units. In addition, coheating data is taken at night when the effect of solar irradiance is zero and thermal conditions are most stable.

Data presented in Appendix A.4 explain the performance of the units with respect to energy consumption, relative humidity, temperature, and south wall temperature.

4.4 SUMMARY OF RESULTS

Results of the infiltration tests indicate that the open panel units were the least airtight. ACH_{50} results, Figure 4-1, indicate that the 1 1/2 story open panel units were the least airtight followed by the 2 story closed panel units, the 1 story SSIC panel unit, and the 1 story closed panel unit, respectively. A plot of ELA, Figure 4-2, and SLA, Figure 4-3, also indicated that the 1 1/2 story open panel units were the least airtight. When the ELA's were adjusted to account for leakage due to windows and doors and leakage through the ceiling, Figure 4-4, the 1 1/2 story open panel units were again the least airtight. Furthermore, the ELA minus estimated ELA of windows, doors and ceiling joints and penetrations was divided by joint length of panel-to-panel joints, panel-to-slab joints and panel-to-ceiling joints to account for difference in size and configuration of the units, as shown in Figure 4-5. The open panel units are again the least airtight. Figures 4-4 and Figure 4-5 suggest that the high ELA for the open panel units is linked to the

8326/R95-2:TB

panel type.

Smoke leakage testing using titanium tetrachloride smoke under pressurized conditions of 20 pascals identified areas of leakage in the University Housing units. Common leakage areas in all units include the bathroom and kitchen vents, the tops and bottoms of sliding windows, the BPA vents on windows, and leakage into the attic space. Junction boxes and other punctures of the envelope for plumbing and electrical systems were also common areas of leakage. Units 1 and 6 exhibited leakage between the slab and wall joints. Leakage was also detected at the concrete masonry unit, party wall in Units 1 and 2 and Units 5 and 6; however, leakage was probably between units rather than to the exterior.

The results obtained by the thermographic imaging showed that Units 3 and 4 had the most significant number of problems with insulation in the walls and ceiling. Units 3 and 4 are open panel construction, which means that all of the insulation was installed on site. Both Units 1 and 2 had significant areas of missing or improperly installed insulation at the transition of vaulted insulation to flat roof insulation over the bathroom. This transition occurred within the overall roof envelope, so workers may have been more careless in installing this insulation. For the most part, the missing or improperly installed insulation corresponds to installation at the site, whether it was Units 1, 2, 3 or 4.

Other common problems detected by the thermographic imaging include conductive and infiltration losses along panel-to-slab joints, and infiltration through the BPA window vents, passive vents and electrical outlets. Thermal bridging due to studs was often detected; however, the thermally broken splines of the SSIC panel house were detectable only at the corner joints.

Coheating tests indicated the 2 story closed panel units had the lowest overall thermal transmittance (UA), followed by the 1 story SSIC unit, the 1 story closed panel unit, and the 1 1/2 story open panel units respectively, Figure 4-8. When the coheating results were adjusted to account for heat loss due to infiltration and normalized by theoretical UA to account for differences in design, the 1 story SSIC unit, 1 story closed panel unit, and the 1 1/2 story open panel units did not perform as well as predicted by theoretical UA values. The significant problems 8326/R95-2:TB Page 46 associated with insulation detected in the infrared scans may have contributed to the difference between as-measured to predicted UA values.

The results of short-term monitoring energy consumption indicate the 2 story closed panel units consume the least amount of energy as can be expected from coheating results. After the 2 story units, the 1 story closed panel unit consumed the least amount of energy followed by the 1 1/2 story west unit, 1 story SSIC unit and the 1 1/2 story east unit. The performance of Unit 3 is better than would be anticipated from coheating results. However, the short-term monitoring also measures effects of orientation to wind and irradiance.

8326/R95-2:TB

5.0 **REFERENCES**

ASHRAE Handbook, Fundamentals, American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc. Atlanta, 1993.

Minneapolis Blower Door Operation Manual. Energy Conservatory, May 1994.

- Rudd, Armin and Chandra Subrato, Side-by-Side Evaluation of a Stressed-Skin Insulated-Core Panel House and a Conventional Stud-Frame House, Florida Solar Energy Center. Cape Canaveral Florida, January 14, 1994.
- Wattsun 5 Reference Manual. Washington State Energy Office. Olympia WA. 1991.

.

6.0 ACKNOWLEDGEMENTS

This project was funded by the U.S. Department of Energy contract #DE-FC51-94R020277. The University Housing units were designed by Don Corner and Will Sturges of the Center for Housing Innovation, University of Oregon. George Lei played an important role in the instrumentation and data collection for the University Housing project and conducted preliminary analysis of blower door and coheating data. Armin Rudd and David Beal of the Florida Solar Energy Center provided assistance in installing monitoring equipment, developing testing protocol and training Energy Studies in Buildings Laboratory staff in testing methods. - --

7.0 APPENDICES

7.1 PLANS, SECTIONS, ELEVATIONS

0200

Floor Plan

East-West Section of 1 Story Duplex

South Elevation of 1 Story Duplex

Figure 7.1-1 1 Story SSIC and Closed Panel Duplex

South Elevation

Figure 7.1-2 1 1/2 Story Duplex Plans, Sections and Elevations

Figure 7.1-3 2 Story Closed Panel Duplex

7.2 INSTRUMENTATION

.

		DATALOGUEI		
No	. SENSOR TYPE	LOCATION	CHANNEL No.	OUTPUT LOC
1	Thermocouple	Unit-1, South Wall	Multiplexer 1.1	1
2	Thermocouple	Unit-1, Living rm.	Multiplexer 1.2	2
3	Thermocouple (MRT)	Unit-1, Living rm.	Multiplexer 2.1	3
4	Humidity Senor	Unit-1, Living rm.	Multiplexer 2.2	4
5	Meter Sensor (Main)	Unit-1, Meter	SDM 1	5
6	Meter Sensor (Heat)	Unit-1, Meter	SDM 2	6
7	Meter Sens (H water)	Unit-1, Meter	SDM 3	7
8	Meter Sensor (Main)	Unit-2, Meter	SDM 4	8
9	Meter Sensor (Heat)	Unit-2, Meter	SDM 5	9
10	Meter Sens (H water)	Unit-2, Meter	SDM 6	10
11	Thermocouple	Unit-2, Living rm.	Multiplexer 3.1	11
12	Thermocouple (MRT)	Unit-2, Living rm.	Multiplexer 3.2	12
13	Humidity Senor	Unit-2, Living rm.	Multiplexer 4.1	13
14	Thermocouple	Unit-2,South Wall	Multiplexer 4.2	14
15	Thermocouple	Unit-3,South Wall	Multiplexer 5.1	15
16	Thermocouple	Unit-3, Living rm.	Multiplexer 5.2	16
17	Thermocouple(MRT)	Unit-3, Living rm.	Multiplexer 6.1	17
18	Humidity Senor	Unit-3, Living rm.	Multiplexer 6.2	18
19	Thermocouple	Unit-3, Second Floor	Multiplexer 7.1	19
20	Meter Sensor (Main)	Unit-3, Meter	SDM 7	20
21	Meter Sensor (Heat)	Unit-3, Meter	SDM8	21
22	Meter Sens (H water)	Unit-3, Meter	CR10 Pulse 2	22
47	Wind Direction	Weather Station	CR10 Ch 2	26
48	Wind Speed	Weather Station	CR10 Pulse 1	27
49	Pyranometer (H Rad)	Weather Station	Multiplexer 7.2	28
50	Pyranometer (V Rad)	Weather Station	Multiplexer 8.1	29
51	Humidity sensor	Exterior wall Unit-1	Multiplexer 8.2	30
52	Thermocouple	Weather Station	Multiplexer 8.2	31
53	Mean Radiant Temp	Weather Station	Multiplexer 8.2	32
	Thermistor	Inside Data logger	CR 10 Ex 1	25

DATA LOGGER 1

Table 7.2-1Instrumentation Schedule

.

~

••

DATA LOGGER 2

No	SENSOR TYPE	LOCATION	CHANNEL No.	OUTPUT LOC
23	Thermocouple	Unit-4, South Wall	Multiplexer 1.1	1
24	Thermocouple	Unit-4, Living rm.	Multiplexer 1.2	2
25	Thermocouple (MRT)	Unit-4, Living rm.	Multiplexer 2.1	3
26	Humidity Senor	Unit-4, Living rm.	Multiplexer 2.2	4
27	Thermocouple	Unit-4, Second Floor	Multiplexer 3.1	5
28	Meter Sensor (Main)	Unit-4, Meter	SDM 1	6
29	Meter Sensor (Heat)	Unit-4, Meter	SDM 2	7
30	Meter Sens (H water)	Unit-4, Meter	SDM 3	8
31	Thermocouple	Unit-5,South Wall	Multiplexer 3.2	9
32	Thermocouple	Unit-5, Living rm.	Multiplexer 4.1	10
33	Thermocouple (MRT)	Unit-5, Living rm.	Multiplexer 4.2	11
34	Humidity Senor	Unit-5, Living rm.	Multiplexer 5.1	12
35	Thermocouple	Unit-5, Second Floor	Multiplexer 5.2	13
36	Meter Sensor (Main)	Unit-5, Meter	SDM 4	14
37	Meter Sensor (Heat)	Unit-5, Meter	SDM 5	15
38	Meter Sens (H water)	Unit-5, Meter	SDM 6	16
39	Thermocouple	Unit-6,South Wall	Multiplexer 5.1	17
40	Thermocouple	Unit-6, Living rm.	Multiplexer 5.2	18
41	Thermocouple(MRT)	Unit-6, Living rm.	Multiplexer 6.1	19
42	Humidity Senor	Unit-6, Living rm.	Multiplexer 6.2	20
43	Thermocouple	Unit-6, Second Floor	Multiplexer 7.1	21
44	Meter Sensor (Main)	Unit-6, Meter	SDM 7	22
45	Meter Sensor (Heat)	Unit-6, Meter	SDM8	23
46	Meter Sens (H water)	Unit-6, Meter	CR10 Pulse 2	24
47	Thermistor	Inside Data logger	CR 10 Ex 1	25

Table 7.2-1 Instrumentation Schedule (continued)

4

INFRARED SCANS

Figure 7.3-1, Missing or improperly installed insulation at the transition from a vaulted roof to a flat roof, Unit 1, 1 story SSIC Unit

Figure 7.3-2, Heat loss at joint of wall to roof, around fresh air vent, and around window Unit 4, 1 1/2 Story Open Panel Unit

8326/R95-2:TB

Page 61

Figure 7.3-3

Heat loss at intersection of panels and wall slab at building corner typical of all Units, heat loss through electrical outlet also visible in upper left corner

Figure 7.3-4 Heat loss at joint of wall and vaulted ceiling and at window. Heat loss at wall framing and roof truss framing more pronounced.

8326/R95-2:TB
7.4 SHORT-TERM MONITORING

Energy Consumption pattern for Unit-1

Testing time in Hours

Energy Consumption pattern for unit-2

Testing time in Hours

Energy Consumption Pattern for Unit-3

Testing time in hours

Energy Consumption pattern for Unit-4

Testing time in Hours

Energy Consumption pattern for Unit-5

Testing time in Hours

Energy Consumption Patttern for Unit-6

Testing time in hours

Variation of inside temperature compared to the outside temperature

Testing Time in Hours

Variation of South Wall Temperature with Incident Vertical Radiation

Variation of Relative Humudity (%)

7.5 BLOWER DOOR DATA

1

BLOWER DOOR TEST RESULTS: AIR LEAKAGE THROUGH BUILDING ENVELOPE

Passive Vent:	Taped		BPA Vents:	Closed			
Home:	U of O, Unit 1		Address:	Eugen	e, OR	C=	21
Date:	22 Nov 93					H=	1
House Floor A	rea:	674 sq. ft	Indoor Air Ten	np (F):	72	S=	1
House Volume	e:	6086 cu.ft.	Outdoor Air Te	emp (F):	44	L=	1.4
House Surface	e Area:	2392 sq.ft.	Air density fac	tor:	0.97	N=	29.4
Special Note: 1	No Forced Air	-					

Rings	House	Log	Fan	Calc Flow	Log	Regression Ou	itput
	Pressure	House	Pressure		Flow		
		Pressure					
O, A, B	(Pa)	log 10	(Pa)	(cfm)	log 10	X Coefficient	0.7
В	10.00	1.00	-7.90	158.55	2.20	Constant:	1.5
В	20.10	1.30	-21.40	262.64	2.42	r:	1.0
В	30.60	1.49	-36.60	344.68	2.54	r squared:	1.0
В	40.80	1.61	-56.90	431.00	2.63	2.8	
В	50.20	1.70	-73.50	490.66	2.69	y = 0.700	x + 1.5
В	60.30	1.78	-94.90	558.46	2.75	2.7 -	
						£ 26-	
CFM4 =	83.84	cfm - from	curve fit				
CFM10 =	159.22	cfm - from	curve fit			ूख 2.5 -	
ELA =	23.77	sq. in @ 4	Pa				7
EqLA =	46.80	sq. in @ 10	Pa			<u></u>	
CFM50 =	491.22	cfm - from	curve fit				
ACH50 =	4.84	air change	s per hour	at 50 Pasca	al	2.2.	
ACH50/20 =	0.24	estimate o	f natural A	ACH by Pers	sily	2.2 7	
A OTTEO/NT	0.16	antimata a	f matural /	OU L. CL.		01	

0.16 estimate of natural ACH by Sherman ACH50/N =SLA =

2.45 dimensionless specific leakage area

BLOWER DOOR TEST RESULTS: AIR LEAKAGE THROUGH BUILDING ENVELOPE

433.30 cfm - from curve fit

4.27 air changes per hour at 50 Pascal

0.21 estimate of natural ACH by Persily

0.15 estimate of natural ACH by Sherman

2.19 dimensionless specific leakage area

CFM =

ACH50 =ACH50/20 =

ACH50/N

SLA =

Passive Vent:	Taped				BPA Vent	s: Closed	1		
Home:	U of O, Un	it 2			Address:	Eugen	ie, OR		
Date: 20 Nov 93	}					-	-		
House Floor Are	a:	674	sq. ft		Indoor Air	Temp (F)): 76	C=	21
House Volume:		6086	cu.ft.		Outdoor A	ir Temp (]	F): 40	H=	1
House Surface A	rea:	2392	sq.ft.		Air density	y factor:	0.97	S=	1
Special Note: No	Forced Air		-		-	-		L=	1.4
-								N=	29.4
	Uanaa	Log	For	Cala	Log				
	Dressure	House	ran Dressure		Flow				
Rings	Pressure	Pressure	Fressure	FIOW			Regression	o Output	
O, A, B	(Pa)	log 10	(Pa)	(cfm)	log 10		X Coefficie	nt: 0.7	
В	10.20	1.01	-6.60	143.71	2.16		Constant :	1.46	
В	20.00	1.30	-16.50	228.58	2.36		r:	1.0	
В	30.10	1.48	-29.50	306.79	2.49		r squared:	1.0	
В	40.80	1.61	-45.10	380.38	2.58	2.7			24
В	49.80	1.70	-56.60	426.75	2.63	y :	= 0.695 x + 1.456	i ² ≟ 1.000	7
В	60.30	1.78	-75.50	493.80	2.69	2.6-			
						£			
CFM4 =	74.89	cfm - from	curve fit			2.5			
CFM10 =	141.58	cfm - from	curve fit			3 24			
ELA =	21.23	sq. in @ 4	Pa			Ŭ ¹	×		
EqLA =	41.61	sq. in @ 10	Pa			<u>∞</u> 2.3			
ODA	400.00								1

2.2-

2.15

5

1.6

50.

4

log 10(House P)

BLOWER DOOR	TEST RES	ULTS: AIR	LEAKAGE	THROU	GH BUILDI	NG ENVELO	OPE		
Passive Vent:	Taped				BPA Vents:	Closed			
Home:	U of O, Uni	i t 3			Address:	Eugene,	OR		
Date: 15 Nov 93									
House Floor Are	a:	800	sq. ft		Indoor Air 7	Cemp (F):	71.4	C=	21
House Volume:		5981	cu.ft.		Outdoor Air	Temp (F):	57.1	H=	0.9
House Surface A	rea:	1965	sq.ft.		Air density :	factor:	0.99	S=	1
Special Note: No	Forced Air							L=	1.4
								N=	26.46
	House	Log	Fan	Calc	Log				
	Pressure	House	Pressure	Flow	Flow				
Rings		Pressure			. .	Regres	ssion (Dutput	
O, A, B	(Pa)	log 10	(Pa)	(cfm)	log 10	X Coeffic	cient:	0.748	
В	10.30	1.01	-21.60	267.41	2.43	Constan	t:	1.687	
В	20.60	1.31	-70.40	486.48	2.69	r:		0.998	
В	30.60	1.49	-121.20	640.57	2.81	r square	d:	0.996	
В	39.90	1.60	-169.00	758.05	2.88				
В	50.80	1.71	-242.00	909.23	2.96	3.0			24
В	58.30	1.77	-291.00	998.24	3.00	y = 0.7	48x + 1.6	$87 r^2 = 0.996$	
		_	_			2.9 -		×	
CFM4 =	137.20	cfm - from	curve fit			E			
CFM10 =	272.27	cfm - from	curve fit			्य ⁴⁰			
ELA =	38.90	sq. in @ 4	Pa			27-			
EqLA =	80.02	sq. in @ 10	Pa				7		
CFM =	907.46	cfm - from	curve fit			[∞] 2.6 -			
ACH50 =	9.10	air change	es per hour	at 50 Pa	scal				
ACH50/20 =	0.46	estimate o	f natural A	CH by Pe	ersily	2.5-			
ACH50/N	0.34	estimate o	f natural A	CH by Sl	nerman				
SLA =	3.38	dimension	less specifi	c leakage	e area	<u>44</u> 0		6 6	
							÷,	r ri	

log 10(House P)

BLOWER DOOR	TEST RESUL	LTS: AIR L	EAKAGE T	HROUG	H BUILDI	NG E	ENVELO)PE			
Passive Vent:	Taped				BPA Vents	3:	Closed				
Home:	U of O, Unit	4			Address:		Eugene	, OR			
Date: 19 Nov 93							U	•			
House Floor Area	a:	868	sq. ft		Indoor Air	Tem	p (F):	63		C=	21
House Volume:		6424	cu.ft.		Outdoor Ai	r Te	mp (F):	37		H=	0.9
House Surface An	rea:	2182	sq.ft.		Air density	[,] fact	tor:	0.9748		S=	1
Special Note: No	Forced Air		-		-					L=	1.4
										N=	26.46
	House	Log	Fan	Calc	Log						
	Pressure	House	Pressure	Flow	Flow						
Rings		Pressure					Regr	ession O	utput		
O, A, B	(Pa)	log 10	(Pa)	(cfm)	log 10		X Coeff	icient:	0.715		
Α	10.00	1.000	-4.00	349.83	2.54		Consta	nt:	1.833		
Α	20.50	1.312	-12.00	602.48	2.78		r:		0.999		
Α	30.30	1.481	-20.50	785.27	2.90		r squar	ed:	0.998		
Α	40.30	1.605	-31.80	975.81	2.99			······			<u> </u>
Α	50.10	1.700	-41.00	1106.54	3.04		3.2 y=	0. 715x + 1.8 3	$r^2 = 0.1$	998	
Α	60.10	1.779	-54.20	1270.42	3.10		3.1 -				
							30-				
	100.40	C C .				હિ	5.07				
CFM4 = CFM10	183.43	cim - from	curve nt			B.C.	2.9-		×		
CF MIIU =	303.18	cim - irom				No.	2.8				
ELA =	52.00 102.90	sq. in @ 4	ra Do			81		7			
CEN =	103.00	sq. me n				~	2.7 -				
OF M =	1110.20	cim - from		at 50 Da			2.6-				
ACHEO/90	10.43	air change	s per nour								
A C H 50/20 =	0.02	estimate of	f natural A		Shormon		2.5 +		<u> </u>	<u> </u>	[_]
	0.39	dimonsion					1.0	1.2	1.4	1.6	178
	4.10		iess specifi	c leakag	se alea			log 10	(House P))	

BLOWER DOOR	TEST RES	ULTS: AIR	LEAKAGI	E THRO	OUGH BUILDING	ENVI	ELOPE		
Passive Vent:	Taped				BPA Vents:	Close	d		
Home:	U of O, Un	it 5			Address:	Euger	ne, OR		
Date: 19 Nov 93						C	·		
House Floor Area	a:	713	sq. ft		Indoor Air Temp	(F):	68	C=	21
House Volume:		5552	cu.ft.		Outdoor Air Tem	p (F):	37	H=	0.8
House Surface A	rea:	1721	sq.ft.		Air density facto	r:	0.9702	S=	1
			-					L=	1.4
Special Note: No	Forced Air							N=	23.52
	House	Log	Fan	Calc	Log Flow				
	Pressure	House	Pressure	Flow					
Rings		Pressure				Reg	ression O	utput	
O, A, B	(Pa)	(log 10)	(Pa)	(cfm)	(log 10)	X Coe	efficient:	0.773	
В	10.30	1.01	-9.80	176.29	2.25	Const	ant:	1.476	
В	20.00	1.30	-31.00	315.89	2.50	r:		0.999	
В	30.50	1.48	-56.00	426.21	2.63	r squ	ared:	0.997	
В	40.50	1.61	-85.00	526.52	2.72	2.9)		
В	50.30	1.70	-114.80	613.10	2.79		y = 0.773x	$+ 1.476 r^{2} = 0.997$	A
В	60.50	1.78	-150.00	702.03	2.85	2.8	57		
						2.7	7-	×	
CFM4 =	87.38	cfm - from	curve fit					x	
CFM10 =	177.42	cfm - from	curve fit				°7		
ELA =	24.77	sq. in @ 4	Pa			2.5	5-		
EqLA =	52.14	sq. in @ 10	Pa			80			
CFM =	615.61	cfm - from	curve fit			2.4	1 /		
ACH50 =	6.65	air change	es per hour	at 50]	Pascal	2.3	3-		
ACH50/20 =	0.33	estimate o	f natural A	CH by	Persily		۲ ۲		
ACH50/N	0.28	estimate o	f natural A	ACH by	Sherman	2.2		<u></u>	ť
SLA =	2.41	dimension	less specif	ic leak	age area			ਜ ਮੈਂ	1
						1	l	og 10(House P)	

DLOWER DOOR TEDT REBOLTS. AIR LEARAGE THROUGH DUILDING ENVELOTE	BLOWER DOOR TEST RESULTS	: AIR LEAKAGE THROU	GH BUILDING ENVELOPE
---	---------------------------------	---------------------	----------------------

Passive Vent:	Taped		BPA Vents:	Closed		
Home:	U of O, Unit 6		Address:	Eugene, OR		
Date: 20 Nov 9	3					
House Floor Ar	ea:	713 sq. ft	Indoor Air Temp (F):	70	C=	21
House Volume:		5552 cu.ft.	Outdoor Air Temp (F):	40	H=	0.8
House Surface	Area:	1721 sq.ft.	Air density factor:	0.9713	S=	1
Special Note: No	o Forced Air	-			L= N-	1.4
					11=	4 0.04

	House	Log	Fan	Calc Flow	Log Flow
	Pressure	House	Pressure		-
Rings		Pressure			
O, A, B	(Pa)	log 10	(Pa)	(cfm)	log 10
В	10.00	1.00	-9.60	174.64	2.24
В	20.30	1.31	-30.90	315.70	2.50
В	30.10	1.48	-50.10	403.26	2.61
В	40.20	1.60	-75.50	496.36	2.70
В	49. 80	1.70	-99.7 0	571.42	2.76
В	60.20	1.78	-128.90	650.82	2.81

CFM4 =	92.79	cfm - from curve fit
CFM10 =	180.30	cfm - from curve fit
ELA =	26.31	sq. in @ 4 Pa
EqLA =	52.99	sq. in @ 10 Pa
CFM =	579.10	cfm - from curve fit
ACH50 =	6.26	air changes per hour at 50 Pascal
ACH50/20 =	0.31	estimate of natural ACH by Persily
ACH50/N	0.27	estimate of natural ACH by Sherman
SLA =	2.56	dimensionless specific leakage area

7.6 COHEATING DATA

•

Unit1-1pal

Coheat	ing Test:	Unit 1.	1 story S	SIC						
Passive	Vents: Ta	ped								
Nov. 24,	, 1993	^								
Time	Tair1(F)	Tair2(F)	Tair3(F)	Tair4(F)	Tair5(F)	Avg Tair(F)	Tamb(F)	ΔΤ	w-hr	UA(W/F)
306	74.9	75.2	75.0	76.3	75.0	75.3	22.0	53.3	424.8	79.70
312	74.9	75.1	75.0	75.9	75.1	75.2	22.1	53.1	403.2	75.98
318	75.0	75.1	75.0	76.9	75.6	75.5	21.7	53.9	331.2	61.49
324	75.2	75.1	75.0	77.3	75.5	75.6	21.2	54.4	208.8	38.38
330	75.1	75.2	75.0	76.2	75.0	75.3	21.1	54.2	165.6	30.54
336	75.0	75.7	75.0	76.2	74.8	75.3	20.9	54.5	208.8	38.35
342	75.0	76.3	75.0	76.4	74.9	75.5	20.7	54.8	223.2	40.70
348	75.0	76.8	75.0	76.1	74.8	75.5	20.6	55.0	237.6	43.22
354	75.0	77.1	75.0	76.2	74.8	75.6	20.6	55.0	439.2	79.84
400	74.9	76.7	75.0	76.5	75.2	75.7	20.4	55.3	388.8	70.36
406	74.9	76.0	75.0	76.8	75.2	75.6	20.3	55.3	381.6	69.01
412	75.2	75.7	75.0	77.6	75.6	75.8	20.1	55.8	201.6	36.15
418	75.2	75.2	75.0	76.4	75.1	75.4	19.7	55.6	172.8	31.06
424	75.1	75.1	75.0	76.2	74.9	75.3	19.4	55.9	158.4	28.36
430	75.1	75.1	75.0	76.2	74.9	75.3	19.6	55.7	187.2	33.61
436	75.0	75.1	75.0	76.1	74.8	75.2	19.6	55.6	237.6	42.74
442	74.9	75.2	75.0	76.2	74.7	75.2	19.7	55.5	460.8	83.03
448	74.9	75.7	75.1	76.5	75.2	75.5	20.1	55.4	489.6	88.38
454	74.9	76.3	75.2	77.1	75.3	75.8	20.2	55.6	432	77.70
500	75.0	76.9	75.3	77.7	75.7	76.1	20.0	56.1	345.6	61.57
506	75.1	77.2	75.3	76.8	75.4	76.0	19.8	56.1	187.2	33.36
512	75.2	76.8	75.1	76.3	74.9	75.7	19.7	56.0	151.2	27.02
518	75.1	76.0	75.1	76.2	74.9	75.5	19.6	55.8	122.4	21.92
524	75.0	75.3	75.0	76.2	74.7	75.2	19.7	55.5	172.8	31.11
530	74.9	75.1	75.0	76.0	74.7	75.1	19.8	55.4	295.2	53.32
						Avg. Tair	Avg. Tamb	$\mathbf{Avg} \Delta \mathbf{T}$	Sum W-hr.	Avg. UA
						75.5	20.3	55.1	7027.2	51.08

~

Cohea	ting Tes	t: Unit 2	2, 1 story	v Closed	Panel					
Passive	e Vents: '	Taped								
Nov. 2	8, 1993					-				
Time	Tair1(F)	Tair2(F)	Tair3(F)	Tair4(F)	Tair5(F)	Avg T	Tamb(F)	$\Delta T(F)$	w-hr	UA(W/F)
306	75.0	75.2	75.0	75.3	75.0	75.1	35.4	39.7	223.2	56.2
312	75.0	75.3	75.0	75.3	75.0	75.12	35.1	40.0	208.8	52.2
318	75.0	75.2	75.1	75.4	75.0	75.14	35.1	40.0	194.4	48.6
324	75.0	75.2	75.1	75.3	75.1	75.14	35.2	40.0	201.6	50.4
330	75.0	75.2	75.0	75.3	75.1	75.12	35.2	40.0	230.4	57.7
336	75.0	75.3	75.0	75.4	75.1	75.16	35.2	39.9	201.6	50.5
342	75.0	75.2	75.1	75.3	75.1	75.14	35.3	39.8	201.6	50.6
348	75.0	75.2	75.0	75.3	75.0	75.1	35.5	39.6	223.2	56.4
354	75.0	75.2	75.0	75.4	75.0	75.12	35.5	39.6	208.8	52.7
400	75.0	75.2	75.1	75.4	75.0	75.14	35.6	39.6	187.2	47.3
406	75.0	75.2	75.0	75.3	75.1	75.12	35.7	39.4	208.8	52.9
412	75.0	75.2	75.1	75.3	75.0	75.12	35.7	39.5	223.2	56.6
418	75.0	75.2	75.1	75.5	75.0	75.16	35.6	39.6	223.2	56.4
424	75.0	75.3	75.0	75.4	75.0	75.14	35.7	39.4	201.6	51.2
430	75.0	75.3	75.1	75.3	75.0	75.14	35.7	39.5	194.4	49.3
436	75.0	75.2	75.0	75.3	75.0	75.1	35.6	39.5	223.2	56.5
442	75.0	75.3	75.1	75.4	75.0	75.16	35.5	39.6	201.6	50.9
448	75.0	75.2	75.0	75.4	75.1	75.14	35.6	39.5	208.8	52.8
454	75.1	75.2	75.0	75.3	75.0	75.12	35.6	39.5	201.6	51.0
500	75.0	75.2	75.1	75.3	75.1	75.14	35.6	39.5	223.2	56.5
506	75.0	75.2	75.1	75.4	75.0	75.14	35.7	39.5	216	54.7
512	75.0	75.2	75.1	75.4	75.0	75.14	35.6	39.6	194.4	49.1
518	75.1	75.3	75.0	75.4	75.1	75.18	35.5	39.7	187.2	47.1
524	75.0	75.3	75.0	75.3	75.0	75.12	35.4	39.8	230.4	58.0
530	75.0	75.3	75.1	75.4	75.0	75.2	35.5	39.7	216.0	54.5
						Avg. Tair	Avg. Tamb	Avg. ΔT	Sum W-hr	Avg. UA
						75.1	35.5	39.7	5234.4	52.8

Cohea	ting Test	t: Unit 3,	1 1/2 sto	ry Open	Panel					
Passiv	e Vents: 7	Taped								
Dec. 1,	1993									
Time	Tair1(F)	Tair2(F)	Tair3(F)	Tair4(F)	Tair5(F)	T Avg	Tamb(F)	$\Delta \mathbf{T}$	w-hr	UA (w/4)
306	75.3	75.1	75.2	75.3	75.1	75.2	51.73	23.47	122.40	52.15
312	75.2	75.1	75.2	75.3	75.2	75.2	51.64	23.56	144.00	61.12
318	75.3	75.1	75.1	75.3	75.1	75.2	51.66	23.52	158.40	67.35
324	75.1	75.2	75.2	75.3	75.2	75.2	51.58	23.62	144.00	60.97
330	75.3	75.2	75.3	75.3	75.3	75.3	51.45	23.83	108.00	45.32
336	75.2	75.1	75.2	75.3	75.2	75.2	51.34	23.86	151.20	63.37
342	75.4	75.1	75.1	75.2	75.1	75.2	51.4	23.78	151.20	63.58
348	75.4	75.2	75.3	75.3	75.1	75.3	51.31	23.95	136.80	57.12
354	75.3	75.2	75.3	75.3	75.2	75.3	51.21	24.05	129.60	53.89
400	75.2	75.2	75.3	75.3	75.1	75.2	51.3	23.92	151.20	63.21
406	75.4	75.4	75.3	75.3	75.1	75.3	51.34	23.96	129.60	54.09
412	75.3	75.1	75.3	75.4	75.2	75.3	50.89	24.37	144.00	59.09
418	75.3	75.2	75.3	75.2	75.2	75.2	50.89	24.35	144.00	59.14
424	75.1	75.2	75.2	75.3	75.2	75.2	50.61	24.59	144.00	58.56
430	75.4	75.2	75.2	75.2	75.1	75.2	50.88	24.34	136.80	56.20
436	75.3	75.2	75.3	75.2	75.2	75.2	51.16	24.08	165.60	68.77
442	75.5	75.4	75.3	75.4	75.2	75.4	51.2	24.16	122.40	50.66
448	75.4	75.3	75.2	75.2	75.2	75.3	51.05	24.21	129.60	53.53
454	75.3	75.2	75.2	75.3	75.1	75.2	51.36	23.86	144.00	60.35
500	75.2	75.1	75.2	75.2	75.2	75.2	51.32	23.86	129.60	54.32
506	75.3	75.1	75.3	75.2	75.2	75.2	51.23	23.99	122.40	51.02
512	75.2	75.1	75.2	75.3	75.1	75.2	51.18	24	151.20	63.00
518	75.4	75.2	75.2	75.3	75.1	75.2	50.98	24.26	136.80	56.39
524	75.4	75.2	75.2	75.2	75.2	75.2	51.34	23.9	136.80	57.24
530	75.2	75.3	75.3	75.2	75.2	75.2	51.31	23.93	144.00	60.18
						Avg. Tair	Avg. Tamb	Avg ΔT	Avg. W-hr.	Avg. UA
						75.23	51.25	23.98	3477.60	58.02

Unit4-1 pal

Cohe	ating Tes	t: Unit 4	1 1/2 Sto	ry Open	Panel Un	it				
Passiv	ve Vents: '	Taped								
Time	Tair1(F)	Tair2(F)	Tair3(F)	Tair4(F)	Tair5(F)	Avg Tair	Tamb(F)	ΔT	w-hr	UA(W/F)
252	75.2	75.2	75.1	75.2	75.1	75.2	49.4	25.8	136.8	53.11
258	75.2	75.1	75.1	75.3	75.1	75.2	49.4	25.8	144.0	55.81
304	75.1	75.2	75.1	75.2	75.1	75.1	49.4	25.8	136.8	53.11
310	75.2	75.2	75.1	75.3	75.1	75.2	49.4	25.8	151.2	58.58
316	75.3	75.3	75.1	75.3	75.1	75.2	49.6	25.6	144.0	56.21
322	75.3	75.3	75.2	75.3	75.1	75.2	49.4	25.9	144.0	55.64
328	75.3	75.3	75.2	75.2	75.1	75.2	49.2	26.0	165.6	63.59
334	75.1	75.3	75.1	75.3	75.2	75.2	49.1	26.1	144.0	55.24
340	75.2	75.3	75.1	75.4	75.2	75.2	49.1	26.1	151.2	57.86
346	75.3	75.5	75.1	75.2	75.2	75.3	49.2	26.0	129.6	49.77
352	75.4	75.3	75.2	75.3	75.1	75.3	49.0	26.2	151.2	57.64
358	75.3	75.4	75.1	75.3	75.2	75.3	48.9	26.4	151.2	57.38
404	75.2	75.3	75.1	75.4	75.1	75.2	49.0	26.3	151.2	57.60
410	75.2	75.4	75.1	75.3	75.1	75.2	48.9	26.4	151.2	57.38
416	75.3	75.4	75.1	75.4	75.1	75.3	48.7	26.5	158.4	59.73
422	75.3	75.4	75.2	75.4	75.2	75.3	48.7	26.6	122.4	46.02
428	75.3	75.4	75.1	75.2	75.1	75.2	48.5	26.7	165.6	61.95
434	75.1	75.4	75.1	75.3	75.2	75.2	48.6	26.6	144.0	54.09
440	75.4	75.2	75.1	75.3	75.1	75.2	48.5	26.7	144.0	53.95
446	75.3	75.4	75.1	75.2	75.1	75.2	47.5	27.7	136.8	49.39
452	75.4	75.4	75.1	75.4	75.1	75.3	46.2	29.1	158.4	54.38
458	75.2	75.4	75.1	75.4	75.2	75.3	45.9	29.4	129.6	44.11
504	75.1	75.3	75.1	75.3	75.1	75.2	45.4	29.8	158.4	53.15
510	75.2	75.3	75.1	75.4	75.2	75.2	45.3	29.9	158.4	52.96
516	75.3	75.3	75.1	75.3	75.1	75.2	45.0	30.3	129.6	42.83
	ļ		j			Avg. Tair	Avg. Tamb	Avg. ΔT	Sum W-hr.	Avg. UA
						75.22	48.29	26.94	3657.6	54.46

Unit5-1pal

Coheatin	ng Test:	2 Story	Closed F	Panel			····			
Passive V	ents: Ta	ped				-				
5-Dec-93									1	
Time	Tair1(F)	Tair2(F)	Tair3(F)	Tair4(F)	Tair5(F)	T Avg	Tamb(F)	ΔΤ	w-hr	UA
306	75.3	75.1	75.3	75.4	75.1	75.2	36.8	38.5	136.80	35.56
312	75.3	75.2	75.2	75.4	75.0	75.2	36.4	38.8	158.40	40.84
318	75.3	75.4	75.3	75.4	75.0	75.3	35.6	39.7	151.20	38.12
324	75.3	75.3	75.2	75.3	75.0	75.2	35.7	39.5	144.00	36.47
330	75.2	75.3	5.2	75.3	75.0	75.2	35.7	39.5	151.20	38.27
336	75.4	75.3	75.2	75.4	75.0	75.3	35.7	39.5	144.00	36.42
342	75.3	75.3	75.2	75.4	75.0	75.2	35.5	39.7	158.40	39.86
348	75.2	75.1	75.3	75.3	75.0	75.2	35.1	40.1	129.60	32.30
354	75.2	75.1	75.2	75.3	75.0	75.2	34.6	40.6	151.20	37.25
400	75.2	75.1	75.2	75.4	75.0	75.2	34.4	40.8	158.40	38.84
406	75.3	75.2	75.2	75.3	75.0	75.2	34.6	40.6	129.60	31.92
412	75.3	75.1	75.2	75.3	75.1	75.2	34.2	41.1	309.60	75.42
418	75.3	75.3	75.2	75.3	75.0	75.2	34.2	41.1	122.40	29.82
424	75.2	75.2	75.2	75.4	75.1	75.2	34.4	40.9	201.60	49.34
430	75.4	75.1	75.2	75.3	75.1	75.2	34.2	41.0	165.60	40.40
436	75.2	75.4	75.2	75.5	75.1	75.3	34.4	40.9	180.00	43.98
442	75.2	75.4	75.3	75.3	75.1	75.3	34.2	41.1	115.20	28.04
448	75.2	75.1	75.3	75.4	75.1	75.2	34.5	40.8	108.00	26.50
454	75.2	75.1	75.2	75.4	75.0	75.2	34.4	40.8	136.80	33.56
500	75.2	75.2	75.2	75.5	75.0	75.2	34.6	40.6	144.00	35.47
506	75.2	75.2	75.3	75.4	75.0	75.2	34.7	40.5	136.80	33.79
512	75.2	75.1	75.2	75.5	75.0	75.2	35.0	40.2	144.00	35.86
518	75.3	75.2	75.2	75.4	75.1	75.2	35.3	39.9	144.00	36.05
524	75.3	75.3	75.2	75.3	75.1	75.2	35.4	39.9	151.20	37.94
530	75.3	75.1	75.3	75.5	75.0	75.24	35.73	39.51		36.45
						Avg. Tair	Avg. Tamb	Avg. ΔT	Sum W-hr.	Avg. UA
						75.2	35.01	40.2116	3816.00	37.94

Unit6-lapal

Coheati	ng Test:	Unit 6	, 2 Stor	y Closed	l Panel					
Passive V	Vents: Ta	aped								
Dec. 11,	1993									
Time	Гair1(F	Fair2(F	fair3(F	Fair4(F	Fair5(F	Tamb(F)	T Avg	$\Delta \mathbf{T}$	w-hr	UA
306	75.5	75.2	75.2	75.2	75.3	44.8	75.3	30.5	136.80	44.93
312	75.3	75.4	75.2	75.4	75.5	44.9	75.4	30.5	79.20	25.98
318	75.3	75.4	75.2	75.3	75.4	44.9	75.3	30.4	158.40	52.09
324	75.4	75.4	75.2	75.4	75.4	44.9	75.4	30.5	100.80	33.05
330	75.4	75.4	75.2	75.3	75.5	44.9	75.4	30.5	136.80	44.85
336	75.4	75.5	75.2	75.3	75.5	44.9	75.4	30.5	108.00	35.42
342	75.4	75.3	75.2	75.4	75.5	44.9	75.4	30.5	108.00	35.43
348	75.5	75.3	75.2	75.3	75.3	44.9	75.3	30.4	129.60	42.59
354	75.4	75.2	75.2	75.5	75.5	44.9	75.4	30.4	108.00	35.50
400	75.3	75.2	75.2	75.2	75.4	45.0	75.3	30.3	136.80	45.18
406	75.3	75.3	75.2	75.4	75.5	45.0	75.3	30.3	86.40	28.51
412	75.5	75.4	75.2	75.3	75.3	45.2	75.3	30.2	144.00	47.76
418	75.5	75.4	75.2	75.5	75.4	45.1	75.4	30.3	93.60	30.90
424	75.4	75.3	75.2	75.3	75.4	45.1	75.3	30.2	144.00	47.63
430	75.3	75.3	75.2	75.3	75.4	45.0	75.3	30.3	122.40	40.45
436	75.4	75.3	75.2	75.4	75.5	45.1	75.4	30.2	108.00	35.70
442	75.2	75.2	75.2	75.3	75.3	45.2	75.2	30.1	129.60	43.10
448	75.3	75.3	75.1	75.4	75.5	45.4	75.3	30.0	108.00	36.05
454	75.4	75.3	75.2	75.2	75.4	45.4	75.3	29.9	136.80	45.75
500	75.5	75.2	75.2	75.3	75.4	45.4	75.3	29.9	100.80	33.71
506	75.3	75.3	75.2	75.3	75.4	45.5	75.3	29.8	115.20	38.66
512	75.3	75.3	75.2	75.2	75.3	45.6	75.3	29.7	<u> </u>	48.52
518	75.4	75.3	75.2	75.4	75.5	45.7	75.4	29.7	100.80	33.99
524	75.5	75.4	75.2	75.3	75.3	45.7	75.3	29. <u>6</u>	122.40	41.35
530	75.4	75.3	75.1	75.4	75.5	45.9	75.3	29.4	108.00	36.68
						Avg. Tair	Avg. Tamb	Avg ∆T	Sum W-hr.	Avg. UA
						45.2	75.3	30.2	2966.4	39.35

7.7 THEORETICAL UA CALCULATIONS

•

UA DATA, ASHRAE 93 • University Housing						
UNIT 1						
Component	Material	R value	U value	Source		
SSIC Panel		(F ft^2 h/Btu)	(Btu/F ft^2 h)			
	outdoor air (7.5 mph)	0.25		ASHRAE 93		
	5/8" DG plywood	0.77		ASHRAE 93		
	5/8" DG plywood	0.77		ASHRAE 93		
	EPS Foam Core	23.00		Constr. Doc		
	.5" OSB (35 lb/ft^3)	0.62		ASHRAE 93		
	5/8" gypboard	0.56		ASHRAE 93		
	indoor air	0.68		ASHRAE 93		
_	TOTAL	26.65	0.038			
SSIC Panel at						
Spline						
······	outdoor air (7.5 mph)	0.25		ASHRAE 93		
	5/8" DG plywood	0.77		ASHRAE 93		
	5/8" DG plywood	0.77		ASHRAE 93		
	2x3 DG Stud, (1.03 F ft^2 h/ Btu in)	1.55		ASHRAE 93		
	1.25" EPS Foam	4.81		ASHRAE 93		
	2x3 DG Stud, (1.03 F ft^2 h/ Btu in)	1.55		ASHRAE 93		
	7/16" OSB (35 lb/ft^3)	0.61		ASHRAE 93		
	5/8" gypboard	0.56		ASHRAE 93		
	indoor air	0.68		ASHRAE 93		
	TOTAL	11.55	0.09			
_						
Window						
				Constr. Doc.,		
	window	2.94		includes air		
				layers		
	TOTAL	2.94	0.340	· · · · · · · · · · · · · · · · · · ·		
Window						
Headers				1		
	outdoor air (7.5 mph)	0.25		ASHRAE 93		
	5/8" DG plywood	0.77		ASHRAE 93		
	1.5" DG (1.03 1/k)	1.55		ASHRAE 93		
	2" Polyiso 1.5 lb/ft^3 (R5.9/in.)	11.81		ASHRAE 93		
	1.5" DG (1.03 1/k)	1.55		ASHRAE 93		
	5/8" gypboard	0.56		ASHRAE 93		
	indoor air	0.68		ASHRAE 93		
	TOTAL	17.17	0.058			

Unit 1 Continued				
commuted				
Door				
	outdoor air (7.5 mph)	0.25		ASHRAE 93
	Door	5.26		Constr. Doc.
-	indoor air	0.68		ASHRAE 93
	TOTAL	6.19	0.162	
Vaulted Roof	outdoor air (7.5 mph)	0.25		ASHRAE 93
	asphalt shingles	0.44		ASHRAE 93
	30 lb felt	0.06		ASHRAE 93
	7/16" OSB (35 lb/ft^3)	0.61		ASHRAE 93
	R38 Batts	38.00	_	Constr. Doc.
	5/8" gypboard	0.56		ASHRAE 93
	indoor air (sloping 45)	0.62		ASHRAE 93
	TOTAL	40.54	0.025	· · ·
Vaulted Roof at Truss	outdoor air (7.5 mph)	0.25		ASHRAE 93
	asphalt shingles	0.44		ASHRAE 93
	30 lb felt	0.06		ASHRAE 93
	7/16" OSB (35 lb/ft^3)	0.61		ASHRAE 93
	2 x 6, DG fir, R1.03/in.	6.18		ASHRAE 93
	5/8" gypboard	0.56		ASHRAE 93
	indoor air (sloping 45)	0.62		ASHRAE 93
= = =				
	TOTAL	8.72	0.115	
Flat Roof	outdoor air (7.5 mph)	0.25		ASHRAE 93
	R49 Batts	49.00		Constr Doc
	5/8" gypboard	0.56	terior e construir de centre	ASHRAE 93
· · _ · _ · _ · _ · _ · _ · _	indoor air	0.61		ASHRAE 93
	TOTAL	50.42	0.020	

Unit 1				
Continued				
Flat Roof at Truss	outdoor air (7.5 mph)	0.25		ASHRAE 93
	2 x 4, DG fir, R1.03/in.	6.18		ASHRAE 93
	5/8" gypboard	0.56		ASHRAE 93
	indoor air	0.61		ASHRAE 93
	TOTAL	7.6	0.132	
Perimeter			F2 (Btu/h F ft	
		<u> </u>	perim)	Dot Dat
	Perimeter		0.40	$q=F2*P\Delta t$
				F2 from
		<u>. </u>		wattsun
			······	
<u> </u>				
I		AREA		
		(perimeter		
UNIT 1		found.)	U Value	UA Value
	SSIC Wall Panel	772.44	0.038	28.98
	Wall Splines	51.67	0.087	4.47
	Windows	80.52	0.340	27 20
Ì			010 10	21.03
	Window Headers	22.67	0.058	1.32
	Window Headers Doors	22.67 20.00	0.058	1.32
	Window Headers Doors Flat Roof	22.67 20.00 165.69	0.058 0.162 0.020	1.32 3.23 3.29
	Window Headers Doors Flat Roof Flat Roof at truss	22.67 20.00 165.69 12.38	0.058 0.162 0.020 0.132	1.32 3.23 3.29 1.63
	Window Headers Doors Flat Roof Flat Roof at truss Vaulted Roof	22.67 20.00 165.69 12.38 535.43	0.058 0.162 0.020 0.132 0.025	1.32 3.23 3.29 1.63 13.21
	Window HeadersDoorsFlat RoofFlat Roof at trussVaulted RoofVaulted Roof at Truss	22.67 20.00 165.69 12.38 535.43 36.83	0.058 0.162 0.020 0.132 0.025 0.115	1.32 1.32 3.23 3.29 1.63 13.21 4.22
	Window HeadersDoorsFlat RoofFlat Roof at trussVaulted RoofVaulted Roof at TrussFoundation Perimeter	22.67 20.00 165.69 12.38 535.43 36.83 120.50	0.058 0.162 0.020 0.132 0.025 0.115 0.400	1.32 1.32 3.23 3.29 1.63 13.21 4.22 48.20
	Window HeadersDoorsFlat RoofFlat Roof at trussVaulted RoofVaulted Roof at TrussFoundation Perimeter	22.67 20.00 165.69 12.38 535.43 36.83 120.50	0.058 0.162 0.020 0.132 0.025 0.115 0.400	1.32 1.32 3.23 3.29 1.63 13.21 4.22 48.20
	Window HeadersDoorsFlat RoofFlat Roof at trussVaulted RoofVaulted Roof at TrussFoundation PerimeterTotal	22.67 20.00 165.69 12.38 535.43 36.83 120.50	0.058 0.162 0.020 0.132 0.025 0.115 0.400	1.32 1.32 3.23 3.29 1.63 13.21 4.22 48.20
	Window Headers Doors Flat Roof Flat Roof at truss Vaulted Roof Vaulted Roof at Truss Foundation Perimeter Total	22.67 20.00 165.69 12.38 535.43 36.83 120.50	0.058 0.162 0.020 0.132 0.025 0.115 0.400	1.32 1.32 3.23 3.29 1.63 13.21 4.22 48.20 135.94
	Window Headers Doors Flat Roof Flat Roof at truss Vaulted Roof Vaulted Roof at Truss Foundation Perimeter Total	22.67 20.00 165.69 12.38 535.43 36.83 120.50	0.058 0.162 0.020 0.132 0.025 0.115 0.400	1.32 1.32 3.23 3.29 1.63 13.21 4.22 48.20 135.94
	Window Headers Doors Flat Roof Flat Roof at truss Vaulted Roof Vaulted Roof at Truss Foundation Perimeter Total	22.67 20.00 165.69 12.38 535.43 36.83 120.50	0.058 0.162 0.020 0.132 0.025 0.115 0.400	1.32 1.32 3.23 3.29 1.63 13.21 4.22 48.20 135.94
	Window Headers Doors Flat Roof Flat Roof at truss Vaulted Roof Vaulted Roof at Truss Foundation Perimeter Total	22.67 20.00 165.69 12.38 535.43 36.83 120.50	0.058 0.162 0.020 0.132 0.025 0.115 0.400	1.32 1.32 3.23 3.29 1.63 13.21 4.22 48.20 135.94
	Window Headers Doors Flat Roof Flat Roof at truss Vaulted Roof Vaulted Roof at Truss Foundation Perimeter Total	22.67 20.00 165.69 12.38 535.43 36.83 120.50	0.058 0.162 0.020 0.132 0.025 0.115 0.400	1.32 1.32 3.23 3.29 1.63 13.21 4.22 48.20 135.94
	Window Headers Doors Flat Roof Flat Roof at truss Vaulted Roof Vaulted Roof at Truss Foundation Perimeter Total	22.67 20.00 165.69 12.38 535.43 36.83 120.50	0.058 0.162 0.020 0.132 0.025 0.115 0.400	1.32 1.32 3.23 3.29 1.63 13.21 4.22 48.20 135.94

UNIT 2				
Component	Material	R value	U value	Source
Closed Panel		(F ft^2 h/Btu)	(Btu/F ft^2 h)	
	outdoor air (7.5 mph)	0.25		ASHRAE 93
	5/8" DG plywood	0.77		ASHRAE 93
	5/8 inch polyisocyanurate	5.00		ASHRAE 93
	Insulation	21.00		Constr. Doc
	5/8" gypboard	0.45		ASHRAE 93
	indoor air	0.68		ASHRAE 93
1				
	TOTAL	28.15	0.036	
			1]
Closed Panel				
at Stud				
	outdoor air (7.5 mph)	0.25		ASHRAE 93
	5/8" DG plywood	0.77		ASHRAE 93
	5/8 inch polyisocyanurate	5.00		Constr. Doc
	2X6 DG Stud, (1.5x5.5" nominal)	5.67		ASHRAE 93
	5/8" gypboard	0.56		ASHRAE 93
	indoor air	0.68		ASHRAE 93
				-
	TOTAL	12.93	0.08	
Window				
	window	2.94		Constr. Doc.
	TOTAL	2.94	0.340	
Window				
Headers				
	outdoor air (7.5 mph)	0.25	·	ASHRAE 93
	5/8" DG plywood	0.77		ASHRAE 93
	1.5" DG (1.03 1/k)	1.55		ASHRAE 93
	2" Polyiso 1.5 lb/ft^3 (R5.9/in.)	11.81		ASHRAE 93
	5/8 inch polyisocyanurate	5.00		Constr. Doc.
	1.5" DG (1.03 1/k)	1.55	·	ASHRAE 93
	5/8" gypboard	0.56	·	ASHRAE 93
	indoor air	0.68		ASHRAE 93
	TOTAL	22.17	0.045	
				1

Continued				
Door			а. С	Ì
	outdoor air (7.5 mph)	0.25		ASHR
	Door	5.26		const
	indoor air	0.68		ASHR
	ጥ እ I	6 10	0 169	
		0.15	0.102	
Vaulted Roof	outdoor air (7.5 mph)	0.25		ASHR
	asphalt shingles	0.44		ASHR
	30 lb felt	0.06		ASHR
	7/16" OSB (35 lb/ft^3)	0.61		ASHR
	R38 Batts	38		constr
	5/8" gypboard	0.56		ASHR
	indoor air (sloping 45)	0.62		ASHR
	TOTAL	40.54	0.025	
Vaulted Roof	outdoor air (7.5 mph)	0.25		ASHR
at Truss	-	0.11		
	20 lb falt	0.44		
	$7/16" OSB (35 lb/\theta A3)$	0.00		
	$2 \times 6 DC 6r B1 03/ip$	6 19		
	5/8" gypboard	0.10		ASHR
	indoor air (sloping 45)	0.62		ASHR
	TOTAL	8.72	0.115	
Flat Roof	outdoor air (7.5 mph)	0.25		ASHR
	R49 Batts	49		Consti
	5/8" gypboard	0.56		ASHR
	indoor air	0.61		
	ΤΟΤΑΙ	50.42	0.020	

· ·

..

Unit 2 Contnued				
Flat Roof at Truss	outdoor air (7.5 mph)	0.25		ASHRAE 93
	2 x 6, DG fir, R1.03/in.	6.18		ASHRAE 93
	5/8" gypboard	0.56		ASHRAE 93
	indoor air	0.61		
	TOTAL	7.6	0.132	
Perimeter			F2 (Btu/h F ft perim)	
	Perimeter		0.40	q=F2*P∆t
				F2 from Wattsun
UNIT 2		AREA (perimeter found.)	U Value	UA Value
	Closed Panel	758.11	0.036	26.93
	Studs	66.00	0.077	5.10
	Windows	80.52	0.340	27.39
	Window Headers	22.67	0.045	1.02
	Doors	20.00	0.162	3.23
	Flat Roof	165.69	0.020	3.29
	Flat Roof at truss	12.38	0.132	1.63
	Vaulted Roof	535.43	0.025	13.21
	Vaulted Roof at Truss	36.83	0.115	4.22
	Perimeter	120.50	0.400	48.20
	Total			134.22

.
UNIT 3				
Component	Material	R value	U value	Source
Open Panel		(F ft^2 h/Btu)	(Btu/F ft^2 h)	
	outdoor air (7.5 mph)	0.25		ASHRAE 93
	5/8" DG plywood	0.77		ASHRAE 93
	5/8 inch polyisocyanurate	5.00		ASHRAE 93
	Insulation	21.00		Constr. Doc
	5/8" gypboard	0.56		ASHRAE 93
i	indoor air	0.68		ASHRAE 93
	TOTAL	28.26	0.035	
Open Panel at				
Stud				
	outdoor air (7.5 mpn)	0.25		ASHRAE 93
	5/8 DG plywood	0.77		ASHRAE 93
	2x6 DG Stud, (1.03 F ft ⁻² f/ Btu in)	<u> </u>		ASHRAE 93
	$\frac{7/10}{5} \frac{\text{OSB}(3510)}{10} \frac{10}{10} 1$	5.00		ASHRAE 93
	5/8" gyphoerd	0.56		ASHDAE 02
	indoor oir	0.50		ASHRAE 93
		0.08		ASIINAL 55
	TOTAL	13 54	0.07	·
		10.01		
Window				
				Constr. Doc,
	window	2.94		includes air
				layer
				-
	TOTAL	2.94	0.340	
Window				
Headers				· · · · · · · · · · · · · · · · · · ·
	outdoor air (7.5 mph)	0.25	· ·	ASHRAE 93
	5/8" DG plywood	0.77		ASHRAE 93
	1.5" DG (1.03 1/k)	1.55		ASHRAE 93
	2" Polyiso 1.5 lb/ft^3 (R5.9/in.)	11.81		ASHRAE 93
	5/8 inch polyisocyanurate	5.00		ASHRAE 93
	1.5" DG (1.03 1/k)	1.55		ASHRAE 93
	5/8" gypboard	0.56	······	ASHRAE 93
· ····· · ······ · ···················	indoor air	0.68		ASHRAE 93
·				
	TOTAL	22.17	0.045	

Unit 3				
continued				
Door				
Dool	outdoor air (7.5 mph)	0.25		ASHRAE 93
	Door	5.26	· · · · · · · · · · · · · · · · · · ·	Constr. Doc.
	indoor air	0.68		ASHRAE 93
	<u> </u>			
	TOTAL	6.19	0.162	
	_			
Vaulted Roof	outdoor air (7.5 mph)	0.25		ASHRAE 93
	asphalt shingles	0.44		ASHRAE 93
	30 lb felt	0.06		ASHRAE 93
	7/16" OSB (35 lb/ft^3)	0.61		ASHRAE 93
	R38 Batts	38.00		Constr. Doc.
	5/8" gypboard	0.56		ASHRAE 93
	indoor air (sloping 45)	0.62		ASHRAE 93
	TOTAL	40.54	0.025	
	1			
	1			
Vaulted Roof				
at Truss	outdoor air (7.5 mph)	0.25		ASHRAE 93
	2 x 4. DG fir. R1.03/in.	3.61		ASHRAE 93
	5/8" gypboard	0.56		ASHRAE 93
	indoor air (sloping 45)	0.62		ASHRAE 93
	TOTAL	5.04	0.199	
Flat Roof	outdoor air (7.5 mph)	0.25		ASHRAE 93
·	R49 Batts	49.00		Constr. Doc.
······································	5/8" gypboard	0.56	······································	ASHRAE 93
	indoor air	0.61		ASHRAE 93
	TOTAL			
	TOTAL	50.42	0.020	
	·····			
				·

Flat Roof at Truss outdoor air (7.5 mph) 0.25 ASHR 2 x 4, DG fir, R1.03/in. 3.61 ASHR b/8" gypboard 0.56 ASHR indoor air 0.61 ASHR TOTAL 5.03 0.199 Perimeter F2 (Btu/h F ft perim) F2 (Btu/h F ft perim) Perimeter 0.40 q=F2 Watt	Unit 3 continued			1	
2 x 4, DG fir, R1.03/in. 3.61 ASHR 5/8° gypboard 0.56 ASHR indoor air 0.61 ASHR TOTAL 5.03 0.199 Perimeter F2 (Btu/h F ft perim) Perimeter Perimeter 0.40 q=F2 Watt KaREA Value Value UNIT 3 AREA Value Value Open Wall Panel 733.78 0.035 Value Windows 78.30 0.340 Value Windows 21.67 0.045 0.020 Flat Roof 280.05 0.020 Flat Roof 207.58 0.025 Vaulted Roof 207.58 0.025 Vaulted Roof 207.58 0.025 Vaulted Roof at Truss 16.82 0.199 Perimeter 1.33 0.400	Flat Roof at Truss	outdoor air (7.5 mph)	0.25		ASHRAE 93
5/8" gypbard 0.56 ASHR indoor air 0.61 ASHR TOTAL 5.03 0.199 Perimeter F2 (Btu/h F ft perim) F2 (Btu/h F ft perim) Perimeter 0.40 q=F2 Watt F2 (Btu/h F ft perim) F2 (Btu/h F ft perim) Value Value Value Value VINIT 3 AREA (perimeter found.) U Value UA V Open Wall Panel 733.78 0.035 Value Windows 78.30 0.340 Vindows Window Headers 21.67 0.045 0.020 Flat Roof 288.05 0.020 Flat Roof 288.05 0.020 Flat Roof 288.05 0.025 Vaulted Roof 0.025 Vaulted Roof		2 x 4, DG fir, R1.03/in.	3.61		ASHRAE 93
indoor air 0.61 ASHR TOTAL 5.03 0.199 Perimeter F2 (Btu/h F ft perim) Perimeter 0.40 q=F2 Perimeter 0.40 q=F2 Value Value Value Value Value Value Value Value Value Value 75.15 0.074 Windows 78.30 0.340 Windows 78.30 0.340 Windows 78.30 0.020 Flat Roof 288.05 0.020 Flat Roof at truss 24.75 0.199 Vaulted Roof at Truss 16.82 0.199 Perimeter 71.33 0.400		5/8" gypboard	0.56		ASHRAE 93
TOTAL 5.03 0.199 Perimeter		indoor air	0.61		ASHRAE 93
Perimeter F2 (Btu/h F ft perim) Perimeter 0.40 q=F2 Watt F2 f Watt AREA (perimeter found.) UValue UNIT 3 AREA (perimeter found.) UValue Open Wall Panel 733.78 0.035 Wall studs 75.15 0.074 Windows 78.30 0.340 Windows 78.30 0.045 Doors 36.70 0.162 Flat Roof at truss 24.75 0.199 Vaulted Roof at Truss 16.82 0.199 Perimeter 71.33 0.400		TOTAL	5.03	0.199	
Perimeter 0.40 q=F2 Image: Second s	Perimeter			F2 (Btu/h F ft perim)	
Image: Non-State index F2 f NIT 3 AREA (perimeter found.) UValue UA V Open Wall Panel 733.78 0.035 UA V Wall studs 75.15 0.074 UA V Windows 78.30 0.340 0.045 Doors 36.70 0.162 Flat Roof 288.05 0.020 Flat Roof at truss 24.75 0.199 Vaulted Roof 207.58 0.025 Vaulted Roof at Truss 16.82 0.199 Perimeter 71.33 0.400 Total Image: Contract of the state indicate indite indite indicate indicate indicate indicate indite indicate i		Perimeter		0.40	q=F2*P∆t
Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Secon					F2 from Wattsun
AREA (perimeter found.) U Value UA V Open Wall Panel 733.78 0.035 Wall studs 75.15 0.074 Windows 78.30 0.340 Window Headers 21.67 0.045 Doors 36.70 0.162 Flat Roof 288.05 0.020 Flat Roof at truss 24.75 0.199 Vaulted Roof at Truss 16.82 0.199 Perimeter 71.33 0.400 Total					
AREA (perimeter found.) UValue UA V Open Wall Panel 733.78 0.035 Wall studs 75.15 0.074 Windows 78.30 0.340 Window Headers 21.67 0.045 Doors 36.70 0.162 Flat Roof 288.05 0.020 Flat Roof at truss 24.75 0.199 Vaulted Roof 207.58 0.025 Vaulted Roof at Truss 16.82 0.199 Perimeter 71.33 0.400					
AREA (perimeter found.) U Value UA V Open Wall Panel 733.78 0.035 Wall studs 75.15 0.074 Windows 78.30 0.340 Window Headers 21.67 0.045 Doors 36.70 0.162 Flat Roof 288.05 0.020 Flat Roof at truss 24.75 0.199 Vaulted Roof at Truss 16.82 0.199 Perimeter 71.33 0.400 Total					
Open Wall Panel 733.78 0.035 Wall studs 75.15 0.074 Windows 78.30 0.340 Window Headers 21.67 0.045 Doors 36.70 0.162 Flat Roof 288.05 0.020 Flat Roof at truss 24.75 0.199 Vaulted Roof 207.58 0.025 Vaulted Roof at Truss 16.82 0.199 Perimeter 71.33 0.400	UNIT 3		AREA (perimeter found.)	U Value	UA Value
Open Wall Panel 733.78 0.035 Wall studs 75.15 0.074 Windows 78.30 0.340 Window Headers 21.67 0.045 Doors 36.70 0.162 Flat Roof 288.05 0.020 Flat Roof at truss 24.75 0.199 Vaulted Roof at Truss 16.82 0.199 Perimeter 71.33 0.400					011 / 4140
Wall studs 75.15 0.074 Windows 78.30 0.340 Window Headers 21.67 0.045 Doors 36.70 0.162 Flat Roof 288.05 0.020 Flat Roof at truss 24.75 0.199 Vaulted Roof 207.58 0.025 Vaulted Roof at Truss 16.82 0.199 Perimeter 71.33 0.400 Total		Open Wall Panel	733.78	0.035	25.97
Windows 78.30 0.340 Window Headers 21.67 0.045 Doors 36.70 0.162 Flat Roof 288.05 0.020 Flat Roof at truss 24.75 0.199 Vaulted Roof 207.58 0.025 Vaulted Roof at Truss 16.82 0.199 Perimeter 71.33 0.400 Total		Wall studs	75.15	0.074	5.55
Window Headers 21.67 0.045 Doors 36.70 0.162 Flat Roof 288.05 0.020 Flat Roof at truss 24.75 0.199 Vaulted Roof 207.58 0.025 Vaulted Roof at Truss 16.82 0.199 Perimeter 71.33 0.400		Windows	78.30	0.340	26.63
Doors 36.70 0.162 Flat Roof 288.05 0.020 Flat Roof at truss 24.75 0.199 Vaulted Roof 207.58 0.025 Vaulted Roof at Truss 16.82 0.199 Perimeter 71.33 0.400		Window Headers	21.67	0.045	0.98
Flat Roof 288.05 0.020 Flat Roof at truss 24.75 0.199 Vaulted Roof 207.58 0.025 Vaulted Roof at Truss 16.82 0.199 Perimeter 71.33 0.400 Total		Doors	36.70	0.162	5.93
Flat Roof at truss 24.75 0.199 Vaulted Roof 207.58 0.025 Vaulted Roof at Truss 16.82 0.199 Perimeter 71.33 0.400 Total		Flat Roof	288.05	0.020	5.7
Vaulted Roof 207.58 0.025 Vaulted Roof at Truss 16.82 0.199 Perimeter 71.33 0.400 Total		Flat Roof at truss	24.75	0.199	4.93
Vaulted Roof at Truss 16.82 0.199 Perimeter 71.33 0.400 Total		Vaulted Roof	207.58	0.025	5.12
Perimeter 71.33 0.400 Total		Vaulted Roof at Truss	16.82	0.199	3.34
Total		Perimeter	71.33	0.400	28.53
		Total			112.69
		1			

UNIT 4				
Component	Material	R value	U value	Source
Open Panel		(F ft^2 h/Btu)	(Btu/F ft^2 h)	
	outdoor air (7.5 mph)	0.25		ASHRAE 93
	5/8" DG plywood	0.77		ASHRAE 93
	Insulation	21.00		Constr. Doc
	7/16" OSB (35 lb/ft^3)	0.61		ASHRAE 93
-	5/8 inch polyisocyanurate	5.00		ASHRAE 93
	5/8" gypboard	0.56		ASHRAE 93
	indoor air	0.68		ASHRAE 93
	TOTAL	28.87	0.035	
Open Panel at				
Spine	outdoor oir (75 mph)	0.95		ACHDAF 02
	5/9" DC = hrused	0.23		ASHRAE 93
	2X6 DC Stud (1.02 E 6.02 h/Btu in)	0.77		ASHRAE 93
	2X6 DG Stud, (1.03 F It' 2 II/ Btu III) 7/16" OSB (25 lb/0A2)	0.07		ASHRAE 93
·	$\frac{1}{5} \frac{9}{9} \frac{1}{2} \frac{1}$	5.00		ASHRAE 93
	5/8 Inch polyisocyanurate	0.00		ASHRAE 93
	b/o gypboard	0.00		ASHRAE 93
		0.08		ASHRAE 93
	TOTAL	13.54	0.07	
Window				
	window	2.94		Constr. Doc, includes air layer
	TOTAL	2.94	0.340	
Window Headers				
	outdoor air (7.5 mph)	0.25		ASHRAE 93
	5/8" DG plywood	0.77	<u>+</u>	ASHRAE 93
	1.5" DG (1.03 1/k)	1.55		ASHRAE 93
	2" Polyiso 1.5 lb/ft^3 (R5.9/in.)	11.81		ASHRAE 93
	5/8 inch polyisocyanurate	5.00		ASHRAE 93
····	1.5" DG (1.03 1/k)	1.55		ASHRAE 9
	5/8" gypboard	0.56		ASHRAE 93
	indoor air	0.68		ASHRAE 93
	TOTAL	22.17	0.045	

Unit 4				
continueu				
Door				
	outdoor air (7.5 mph)	0.25		ASHRAE 93
<u> </u>	Door	5.26		Constr Doc
	indoor oir	0.20		ASHDAE 02
		0.00		ASIINAL 93
		C 10	0 169	
	IUIAL	0.19	0.102	
Voultad Doof	autidaan air (7.5 mmh)	0.95		
vaulted Rool	outdoor air (7.5 mpn)	0.23		ASHDAE 02
	asphalt shingles	0.44		ASHDAE 02
	7/16" OSP (25 lb/0.02)	0.00		ASHDAE 02
	1/10 USB (35 ID/IL*3)	28.00		Consta Dec
	Koo Datts	30.00		ASUDAE 02
	indeen cir (clening 45)	0.00		ASHDAE 02
	indoor air (sioping 45)	0.02		ASHRAE 93
		40.54	0.005	
		40.54	0.025	i
Vaulted Poof				
of Trues	outdoor air (7.5 mph)	0.25		ASHRAE 93
	asphalt shingles	0.44		ASHRAF 02
	30 lb falt	0.44		ASHRAF 03
	7/16" OSB (35 lb/ 0 43)	0.00		ASHRAF 03
	2×4 DG fr B1 03/in	3.61		ASHRAF 03
	5/8" gyphoard	0.56		ASHRAE 93
	indoor oir (sloping 45)	0.50		ACHDAE 02
		0.02		ASIINAL 55
	ΤΟΤΑΙ	<u> </u>	0 162	
		0.13	0.105	······································
			· · · · · · · · · · · · · · · · · · ·	
Flat Roof	outdoor air (7.5 mph)	0.25	·—	ASHRAE 93
	R49 Batts	49.00		Constr. Doc
······································	5/8" gyphoard	0.56		ASHRAE 93
· ··	indoor air	0.61		ASHRAF 93
				110111011 30
·	ΤΩΤΑΙ	50 49	0.020	
			0.020	
·			·····	

Unit 4 continued				
Flat Roof at Truss	outdoor air (7.5 mph)	0.25	· · · · · · · · · · · · · · · · · · ·	ASHRAE 93
	2 x 4, DG fir, R1.03/in.	3.61		ASHRAE 93
	5/8" gypboard	0.56	I	ASHRAE 93
	indoor air	0.61		ASHRAE 93
	TOTAL	5.03	0.199	
Perimeter			F2 (Btu/h F ft perim)	
	Perimeter		0.40	g=F2*P∆t
				F2 from Wattsun
		AREA (perimeter		
UNIT 4		found.)	U Value	UA Value
	Open Wall Panel	846.75	0.035	29.33
	Wall studs	93.15	0.074	6.88
	Windows	101.30	0.340	34.46
	Window Headers	33.00	0.045	1.49
	Doors	36.70	0.162	5.93
	Flat Roof	374.50	0.020	7.43
	Flat Roof at truss	29.50	0.199	5.87
	Vaulted Roof	126.25	0.025	3.11
	Vaulted Roof at Truss	16.25	0.163	2.64
	Perimeter	79.33	0.400	31.73
	Total			128.87
·				
			•	

UNIT 5 and 6				
Component	Material	R value	U value	Source
Closed Panel		(F ft^2 h/Btu)	(Btu/F ft ² h)	
	outdoor air (7.5 mph)	0.25		ASHRAE 93
	5/8" DG plywood	0.77		ASHRAE 93
	Insulation	21.00		Constr. Doc
	7/16" OSB (35 lb/ft^3)	0.61		ASHRAE 93
	5/8 inch polyisocyanurate	5.00		ASHRAE 93
	5/8" gypboard	0.56		ASHRAE 93
	indoor air	0.68		ASHRAE 93
	TOTAL	28.87	0.035	
Closed Panel				
at Spline				
ut Spinie	outdoor air (7.5 mph)	0 25		ASHRAE 93
	5/8" DG plywood	0.77		ASHRAE 93
	$2X6 DG Stud. (103 F ft^2 h/Btu in)$	5.67		ASHRAE 93
	$7/16"$ OSB (35 lb/ft^3)	0.61		ASHRAE 93
	5/8 inch polyisocyanurate	5.00		ASHRAE 93
	5/8" gyphoard	0.56		ASHRAE 93
	indoor air	0.68		ASHRAE 93
	TOTAL	13.54	0.07	
Window				
	window	2.94		Constr. Doc., includes air layers
	TOTAL	2.94	0.340	
TT7:_ J				
Window Headers				
	outdoor air (7.5 mph)	0.25		ASHRAE 93
	5/8" DG plywood	0.77		ASHRAE 93
	1.5" DG (1.03 1/k)	1.55		ASHRAE 93
	2" Polyiso 1.5 lb/ft^3 (R5.9/in.)	11.81		ASHRAE 93
	5/8 inch polyisocyanurate	5.00	·	ASHRAE 93
	1.5" DG (1.03 1/k)	1.55		ASHRAE 93
	5/8" gypboard	0.56		ASHRAE 93
	indoor air	0.68		ASHRAE 93
	TOTAL	22.17	0.045	l

Unit 5 and 6 continued				
Door				
2001	outdoor air (7.5 mph)	0.25		ASHRAE 93
	Door	5 26		Constr Doc
	indeer ein	0.20		A SHDAE 02
[0.00		ASHKAE 95
	mom A I	6.10	0.100	
	TOTAL	6.19	0.162	1
Vaulted Roof	outdoor air (7.5 mph)	0.25		ASHRAE 93
	asphalt shingles	0.44		ASHRAE 93
	30 lb felt	0.06		ASHRAE 93
	7/16" OSB (35 lb/ft^3)	0.61		ASHRAE 93
	R38 Batts	38.00		Constr. Doc.
	5/8" gypboard	0.56		ASHRAE 93
	indoor air (sloping 45)	0.62		ASHRAE 93
	TOTAL	40.54	0.025	
Vaulted Roof at Truss	outdoor air (7.5 mph)	0.25		ASHRAE 93
	asphalt shingles	0.44		ASHRAE 93
	30 lb felt	0.06		ASHRAE 93
	7/16" OSB (35 lb/ft^3)	0.61		ASHRAE 93
	2 x 4, DG fir, R1.03/in.	3.61		ASHRAE 93
	5/8" gypboard	0.56		ASHRAE 93
	indoor air (sloping 45)	0.62		ASHRAE 93
	TOTAL	6.15	0.163	
Flat Roof	outdoor air (7.5 mph)	0.25		ASHRAE 93
	R49 Batts	49.00		Constr. Doc.
	5/8" gypboard	0.56		ASHRAE 93
	indoor air	0.61		ASHRAE 93
	TOTAL	50.42	0.020	
				······································

Unit 5 and 6 continued				
Flat Roof at Truss	outdoor air (7.5 mph)	0.25		ASHRAE 93
	2 x 4, DG fir, R1.03/in.	3.61		ASHRAE 93
	5/8" gypboard	0.56		ASHRAE 93
- ¹ · ⁻	indoor air	0.61		ASHRAE 93
	TOTAL	5.03	0.199	
Perimeter			F2 (Btu/h F ft perim)	
	Perimeter		0.40	q=F2*P∆t
				F2 from Wattsun
		AREA		
UNIT 5 and 6		(perimeter found.)	U Value	UA Value
	Closed Wall Panel	786.10	0.035	27.23
	Wall studs	75.15	0.074	5.55
	Windows	81.50	0.340	27.72
	Window Headers	28.53	0.045	1.29
	Doors	40.00	0.162	6.46
	Flat Roof	323.00	0.020	6.41
	Flat Roof at truss	69.50	0.199	13.83
	Perimeter	59.00	0.400	23.60
	Total			112.09
1				