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DISSERTATION ABSTRACT

Sudarshan Karki

Doctor of Philosophy

Department of Physics

March 2019

Title: Accurate and Precise Calibration of Advanced LIGO Detectors in the Era of
Gravitational Wave Astronomy

The first direct detection of gravitational waves in 2015, and the multiple

detections that followed ushered in the era of gravitational-wave astronomy. With

these developments, the focus of the gravitational-wave community shifted from

detection to precision measurement, requiring a factor of ten improvement in

calibration accuracy to maximize the astrophysical information that can be extracted

from these detected signals.

This dissertation discusses the implementation and characterization of a

radiation-pressure-based calibration system called the Photon calibrator that is

used as the primary calibration reference for the Advanced LIGO detectors. It

also discusses the techniques and procedures used to realize sub-percent accuracy

calibration of absolute displacement fiducials introduced using the Photon calibrator

system during Advanced LIGO’s first and second observing runs.

Using the Photon calibrator systems, frequency dependent calibration of the

interferometer responses was achieved at the level of 2-3% in magnitude and 3-

5 degrees in phase across the LIGO detection band. This level of calibration

accuracy has already played a significant role in extracting astrophysical parameters

from LIGO’s detections. With the LIGO and Virgo detectors operating at design
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sensitivity, updated rate estimates indicate that measurement of the Hubble constant

with gravitational waves with 1% accuracy will be possible within the next decade.

This will require absolute amplitude calibration of the detectors at the sub-1% level.

This dissertation also discusses the improvements that have been implemented in the

Photon calibrator systems that will reduce the uncertainty in absolute displacement

to below 0.5%.

The gravitational waves from the post-merger phase of binary neutron stars

are expected to contain interesting features at frequencies up to few kHz, carrying

rich information about neutron-star astrophysics. This dissertation discusses the

calibration errors introduced by test mass deformations caused by calibration

forces at frequencies above 1 kHz. The errors, estimated using Finite Element

Analysis, is in reasonable agreement with measurement results in the 1 to 5 kHz

band. These investigations have enabled the reduction of calibration uncertainty

at these frequencies, which should enhance our ability to decipher the neutron star

astrophysics encoded in the gravitational wave signals from the post-merger phase.

This dissertation includes previously published co-authored material.
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CHAPTER 1

GRAVITATIONAL WAVES

On the 14th of September 2015, the second generation Laser Interferometer

Gravitational-wave Observatory (LIGO), referred to as Advanced LIGO, made the

first direct detection of gravitational waves from the merger of a pair of black holes.

The direct detection of the gravitational waves, which were predicted by the theory of

general relativity formulated a century ago, was in itself a remarkable feat. However,

additional gravitational-wave detections have been made since then, marking the

beginning of the era of gravitational-wave astronomy, and enabling astronomers to

use gravitational waves to probe the physics of the dense matter objects that produce

these waves. Among the detections that Advanced LIGO made during its first and

second observing runs, a signal from a pair of merging neutron stars created great

interest among astronomers and scientists. The event was followed up by more

than seventy electromagnetic observatories and more than one thousand scientists,

leading to the detection of multiple signals in electromagnetic frequencies emitted

by the source of this event. This was the first joint detection of gravitational and

electromagnetic waves from a single event, giving birth to multi-messenger astronomy.

This single event helped us to understand the answers to some of the long-sought

questions within the scientific community, ranging from the source of Gamma Ray

Bursts (GRBs) to the speed of propagation of gravitational waves and whether the

hypothesized kilonova are the source of heavy metals like gold and platinum. The

Advanced LIGO interferometers will undoubtedly be able to detect more of these

signals in the future and allow us to probe the physics of the dense matter inside

these neutron stars, of which we have limited understanding. In this dissertation we
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describe a crucial aspect for GW detection – the calibration of the detector response

in physical units, thus enabling quantitative interpretation of the gravitational-wave

detections for astrophysics.

1.1. Theory of Gravitational waves

1.1.1. Special Theory of Relativity

Einstein introduced the special theory of relativity in 1905 [1], combining the

theory of electromagnetism and Newton’s equations of motion, to describe the

dynamics of moving bodies more accurately. In Newtonian theory, time and space are

absolute quantities for all observers. With the theory of special relativity, Einstein

changed the notion of absolute time and space. He postulated that space and time are

not separate entities but are closely tied together in what he termed as “spacetime.”

In this theory, a spacetime interval is an invariant quantity and in free space is defined

by

ds2 = −c2dt2 + dx2 + dy2 + dz2 (1.1a)

= ηµνdx
µdxν (1.1b)

where dxµ = (cdt, dx, dy, dz) and ηµν is represented by the Minkowski metric,

ηµν =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(1.2)

2



Because it is described by the Minkowski metric, special relativity operates in the

realm of flat Euclidean spacetime where the effect of gravitational fields on spacetime

itself is ignored.

1.1.2. General Theory of Relativity

Since the special theory of relativity does not take into account the effect of

gravitational fields on spacetime, Einstein worked on a more complete theory for

about a decade and formulated the “general theory of relativity,” which included the

effect of gravity as well [2]. In the general theory of relativity, spacetime is no longer

Euclidean (flat). The energy in the spacetime produces distortion resulting in curved

spacetime. The general theory of relativity can be summarized by Einstein’s field

equation

Rµν −
1

2
gµνR =

8πG

c4
Tµν (1.3)

where gµν is the metric tensor, Rµν is the Ricci tensor and R the scalar curvature, all

of which describe the geometry of the spacetime and Tµν is the energy-momentum

tensor that describes the radiation and matter in the spacetime. G is the universal

gravitational constant and c is the speed of light [3]. As John Wheeler put it

brilliantly, Einstein’s general theory of relativity describes the phenomenon where

“matter tells spacetime how to curve, and curved spacetime tells matter how to

move.” [4]

There are a number of physical consequences of the general theory of relativity

that were not previously described by Newton’s theories of moving bodies and

gravitation. Some of the most striking ones are gravitational time dilation and the

gravitational redshift, gravitational lensing, effects on the orbit of moving bodies and

the existence of gravitational waves [5].
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All of these predictions except gravitational waves had been experimentally

verified. The fact that the measured perihelion precession of Mercury’s orbit could not

be explained by Newtonian physics but agreed well with the prediction of the general

theory of relativity provided credence to this theory from the very beginning [6].

Time dilation due to gravity has been measured with precision using atomic

clocks [7]. One of the most consequential everyday evidence of time dilation is

provided by modern-day GPS tracking systems that rely on satellites far from Earth’s

surface where time runs faster than on Earth. Thus, time dilation effects must be

taken into account to give correct position information and thus accurate routes while

using GPS systems.

Similarly the prediction that light is redshifted due to gravitational fields has

been tested and verified on several occasions [8]. One example is the gravitational

redshift of the light coming from Sirius-B, which has been measured at 80.65±0.77

km/sec using the Hubble telescope [9].

The prediction that gravitational fields bend light and other electromagnetic

waves was first tested by Eddington in 1919 during a solar eclipse. He showed that

light from a distant source was bent by the gravitational field of the Sun. Modern

astronomers have measured the gravitational deflection of radio waves by the Sun

using very-long-baseline interferometery [10].

1.1.3. Gravitational Waves in General Relativity

Einstein realized that there exists a wave-like solution for his field equation,

Eq. 1.3 [5]. If one solves Einstein’s field equation, one can completely determine both

the gravitational field (gµν) and the motion of the matter in the spacetime described

by Rµν . In the limit of weak gravitational fields, when the spacetime metric is only
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slightly deviated from a flat metric, we can write

gµν = ηµν + hµν (1.4)

where
∣∣hµν∣∣ << 1. Here ηµν is the flat Minkowski metric, the same used for

special relativity and hµν is a linear term in the curved spacetime metric due to

the gravitational field. This approximation is referred to as linearized gravity. Using

this approximation Einstein’s field equation, in the Lorenz gauge for a trace-reversed

metric perturbation (h̃µν), can be written as

2h̃µν = −16πTµν (1.5)

where 2 is the d’Alembert operator. The hµν in Eq. 1.4 is the metric perturbation

and h̃µν in Eq. 1.5 is the gravitational field (trace reverse of hµν); their relationship

is given by

h̃µν = hµν −
1

2
ηµνh

α
α = hµν −

1

2
ηµνh (1.6)

where h is the trace of hµν .

The linearized field equation (Eq. 1.5) very far from the source of the gravitational

field, where the energy-momentum tensor is effectively zero, can be written as

2h̃µν =

(
− 1

c2

∂2

∂t2
+∇2

)
h̃µν = 0 (1.7)

This is a three-dimensional wave equation and the plane wave solution to this equation

has the form

h̃µν = Aµνe
ikαxα (1.8)
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where Aµν is a 4×4 constant symmetric tensor in which information about the

amplitude and the polarization of the wave is encoded. Thus, it is also referred

to as a polarization tensor. kα is a wave vector that determines the propagation

direction of the wave and its frequency. If we assume that the gravitational waves

propagate along the z-axis with frequency ω, then the four-momentum wave vector

must have the form:

kα =

(
ω

c
, 0, 0, k

)
(1.9)

1.1.4. Polarization of Gravitational Waves

The polarization tensor, in Eq. 1.8 is a 4×4 symmetric tensor and thus should

generally have ten independent components. However, the freedom of coordinate

transformation such as xµ → x′µ = xµ + εµ(x) gives

h̃µν = hµν − ∂µεν − ∂νεµ (1.10)

and leaves

∂ν h̃
ν
µ −

1

2
∂µh̃

ν
ν = 0 (1.11)

This does not change the physical meaning of the the field equations, but provides a

boundary condition such that any four components of hµν can be set to zero. Using

this condition, we can choose to set

h̃0i = 0 (i = 0, 1, 2, 3) (1.12)

and in terms of the polarization tensor Aµν , we can write:

A0i = 0 (i = 0, 1, 2, 3) (1.13)
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This reduces the ten independent components to six. However, the requirement that

the solution satisfies the Lorentz gauge condition,

∂h̃αµ

∂xα
= 0 (1.14)

implies that

Aµνk
µ = 0 (1.15)

This can be explicitly written as:

A11k
1 + A12k

2 + A13k
3 = 0 (1.16a)

A21k
1 + A22k

2 + A23k
3 = 0 (1.16b)

A31k
1 + A32k

2 + A33k
3 = 0 (1.16c)

Solving these three equations and using the fact that k1 = k2 = 0 from Eq. 1.9 we

can write:

A13 = A23 = A33 = 0 (1.17)

Therefore, for the 4×4 symmetric tensor Aµν , there are only three surviving

independent components, A11, A12 = A21 and A22. The solution we are seeking

is traceless, i.e.

TrA = Aµµ = 0
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This imposes the condition A11 = −A22. Thus, the polarization tensor defined in

Eq. 1.8 ends up with only two independent components and is of the form:

Aµν =



0 0 0 0

0 A11 A12 0

0 A12 −A11 0

0 0 0 0


(1.18)

Considering that we chose a plane wave solution moving in the z direction with

frequency ω, we can write, ikαx
α = −i(ωt − kz). Thus the general solution of

Einstein’s linearized equations can be written as:

h̃µν(t, z) =



0 0 0 0

0 A11 A12 0

0 A12 −A11 0

0 0 0 0


ei(kz−ωt) (1.19)

The component of the wave that is proportional to A11 = A22 is called the plus

polarization (denoted by +) and the component proportional to A12 = A21 is called

the cross polarization (denoted by×). In terms of these two polarization the equations

above can be written as:

h̃µν(t, z) =



0 0 0 0

0 A+ A× 0

0 A× −A+ 0

0 0 0 0


ei(kz−ωt) (1.20)

8



T/4 T/2 3T/4 T

FIGURE 1.1. Gravitational waves traveling perpendicular to the plane containing a
ring of masses stretches and contracts them as shown in the figure. The top figure
shows the effect of plus polarization and bottom one cross polarization

where A+ and A× denote the amplitude of the plus polarization and cross polarization

components respectively.

1.1.5. Effects of Gravitational Waves

We have established that gravitational waves are perturbations of a flat spacetime

metric. If we consider a ring of test masses and the gravitational waves propagating

perpendicular to the plane containing the ring, the passing gravitational wave changes

the proper distance between the test masses in the ring. The waves that have plus

polarization cause the two transverse axes to contract and expand alternately as

shown in the top panel of Fig. 1.1. However, if the gravitational waves are purely

cross-polarized, they will produce expansions and contractions that are rotated by

45◦ as shown in the lower panel of Fig. 1.1. In general, the gravitational waves from

any astrophysical source will contain a linear combination of these two polarizations.

Thus gravitational waves can be detected by measuring changes in the proper

distances between the test masses in such a ring. However, even for the most
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energetic astronomical events the relative change in distance, ∆L/L, is on the order of

≈ 10−21 and thus instruments designed to detect gravitational waves must be sensitive

enough to measure these extremely small relative length variations. A more detailed

description of how the passing gravitational wave causes contraction and expansion

of a set of test masses is given in Chapter 2.

1.1.6. Generation of Gravitational waves

The generation of gravitational waves can be understood using the analogy of

the generation of electromagnetic radiation. In the long wavelength approximation,

where the wavelength of the radiation is much larger than the size of the source, we

can use a multipole expansion to describe the process of gravitational wave generation.

As we know, the electric monopole cannot produce electromagnetic radiation due to

conservation of charge; conservation of energy forbids gravitational radiation from

having a monopole component. Additionally, conservation of momentum prevents

gravitational radiation from having a dipole moment. The lowest order and the most

significant component of gravitational radiation comes from the quadrupole moment

of the mass distribution.

The amplitude of the gravitational wave that arises from this quadrupole moment

is directly proportional to the second derivative of the quadruple moment of the mass

distribution and is given by [11]

hµν =
2G

rc4
Ïµν(t−

r

c
) (1.21)
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where the quadrapole moment of the mass distribution Iµν is given by

Iµν =

∫
ρ(r, t)

(
xµxν −

1

3
δµνr

2

)
d3r (1.22)

where ρ(r, t) is the time dependent mass distribution of the system.

Using the relations above one can estimate the amplitude of gravitational waves

(dimensionless quantity) from a typical binary star system rotating in circular motion

around each other using the following relation [11]

|h| ≈ rs1rs2
r0R

(1.23)

where rs1 and rs2 are the Schwarzschild’s radius of the binary components, r0 is the

distance from the center of mass to each binary component and R is the distance from

the source at which the gravitational-wave amplitude is measured. If we consider

a binary system with each component having a mass of 1.4 times the solar mass

(Chandrasekhar limit for a neutron star) and have come fairly close to each other

such that r0 = 10 km and are at a distance of 40 Mpc from the Earth, the amplitude

of the gravitational waves emitted by the system will be 1.6 × 10−21 when they arrive

at a detector on earth [11].

1.2. Gravitational Wave Sources

The direct detection of these gravitational waves remained elusive for a long

time because they have amplitude in the order of 10−18 m by the time they arrive

at detectors on Earth. Producing measurable effects requires astronomical masses

moving at relativistic velocities. Compact binary systems composed of black holes

and neutron stars are the prime candidates. Depending upon the type of sources and
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the type of signals they generate, gravitational-wave sources can be classified into

three different types.

1.2.1. Transient Sources

The orbiting pairs of massive and dense objects like white dwarfs, black holes,

and neutron stars radiate gravitational waves bringing them ever closer and increasing

their rotation speed around each other. They eventually merge together releasing a

huge burst of energy in form of gravitational waves. The gravitational waves from

some of these sources are and will be visible to LIGO-like detectors at the very end of

their life-cycle. The most prominent types of compact binaries are two blacks holes,

a black hole and a neutron star, or two neutron stars. These sources are referred to

as transient gravitational wave sources. For such a binary system, the time evolution

of the system during the inspiral phase where the two components are separate from

each other can be determined accurately using weak field approximations of Einstein’s

field equations. In these approximations, the amplitude of the gravitational waves

that arrive at the detector can be written as [12]

h(t) =
4

R

(
GM
c2

)5/3(
πfgw(t)

c

)2/3

e−iφgw(t) (1.24)

whereM = µ3/5M2/5 is called the chirp mass, µ = m1m2/M is the reduced mass and

M = m1 +m2 is the total mass of the system. fgw(t) and φgw(t) are the frequency and

the phase of the gravitational wave, respectively. For the simple case of a circular

binary system, the frequency and the phase of the system can be computed using
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Newtonian approximations and written as [12]

fgw(t) =
5

8π

(
c3

5GM

)5/8 [
1

tc − t

]3/8

(1.25)

φgw(t) = −2

[
c3(tc − t)

5GM

]5/8

+ φc (1.26)

where tc is the time of merger and φc is the phase at the time of merger. Note that

the amplitude and the frequency of the wave from a binary system increase with time.

However, to accurately describe the waveform from a gravitational wave sources when

the orbital velocity of the binaries approach significant fraction of the speed of light,

Newtonian approximations are not enough and models that include post-Newtonian

correction terms are required. A detailed description of the required post-Newtonian

corrections can be found in [12]. The first gravitational-wave detection, GW150914,

that LIGO made came from such a transient source and is shown Fig. 1.2.

1.2.2. Narrow-Band Sources

Gravitational waves are also produced by a single spinning massive object, like

a neutron star, if the mass distribution of the star is not perfectly symmetric about

the rotation axis. There are several mechanisms that could lead to the formation of

asymmetry in these dense objects. The neutron star may develop deviations from

symmetry during its crystallization period. Also, a strong magnetic field in the

neutron star, if not aligned with the rotational axis will result in magnetic-pressure-

induced distortion. The accretion of matter onto a neutron star from a companion

can also produce asymmetry. These asymmetries within the neutron star will result in

the emission of gravitational waves [14]. The continuous gravitational waves emitted
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FIGURE 1.2. Top: Estimated gravitational-wave strain amplitude from GW150914
projected onto H1. The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian effective black hole
separation in units of Schwarzschild radii (RS = 2GM/c2) and the effective relative
velocity given by the post-Newtonian parameter v/c = (GMπf/c3)1/3, where f is the
gravitational-wave frequency calculated with numerical relativity and M is the total
mass [13].
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by these sources, with relatively small time varying quadrupolar moment, are narrow-

band signals and are typically smaller in amplitude compared with the short-duration

signals from the burst sources. However, these sources will emit gravitational waves

for a long period of time allowing us to integrate the signal over time intervals as

long as one year [15]. The amplitude of the gravitational waves from such a system

is given by [16]

h0 =

(
16π2G

c4

)(
εIf 2

R

)
(1.27)

where f is the sum of the rotation frequency of the source and the frequency of

precession, I is the moment of inertia with respect to rotation axis, ε is the ellipticity

of the source and R is the distance from the source to the detector.

1.2.3. Stochastic Background

In addition to the events that produce strong gravitational-wave signals that

are detected as individual events, there are numerous weak and unresolved sources.

It also includes the gravitational wave radiation of cosmological origin [17]. The

integrated effect of these weak sources are referred to as stochastic gravitational-wave

background. If this background is stronger than the noise in a detector, it can be

detected directly. However, the noise level of the ground-based detectors are well

above the possible background signals.

But these signals can be discerned from the detector noise by cross-correlating

the data streams from two or more detectors. If the detectors instrumental noise

is uncorrelated, one can look for the correlated noise created by gravitational wave

background by cross-correlation [17]. LIGO searches for these signals using this cross-

correlation method [18]
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1.3. History of Gravitational-wave Detectors

After decades of debates regarding the existence of gravitational waves, Joseph

Weber at the University of Maryland started an effort to detect them in 1960,

using resonant bar detectors. These detectors were made of aluminum cylinders,

isolated from external vibrations and designed to resonate at certain frequencies. The

passing gravitational waves would set these bar in motion and the piezoelectric sensors

attached to the cylinders would be able to detect these tiny motions. Although Weber

claimed to have detected gravitational waves, it was never independently verified and

other people could not make detections using the same technique. Variants of these

bar detectors, some spherical in shape and others cooled to sub-kelvin level were

designed later [19]. However, due to the lack of success, alternative methods of

detection were sought and interferometer-based detectors were conceived.

The idea of an interferometric detector was first proposed by Michael

Gertsenshtein and Vladislav Pustovoit in Russia in 1962 [20] and later independently

by Rainier Weiss in the United States. Rainier Weiss went on to write a more detailed

paper outlining the noise sources these detectors would encounter and a prescription

for dealing with those noises [21].

A crucial breakthrough in the detection of gravitational waves came in the form

of binary pulsar system called PSR 1913+16 discovered by Hulse and Taylor in 1974.

Careful radio observations of the evolution of the system’s orbit showed that the

energy loss was through the emission of gravitational waves exactly as predicted by

general relativity [22]. Gravitational waves was no longer merely theoretical. Though

this was only indirect evidence of gravitational waves, it stimulated a dramatic

increase in research activities related to gravitational-wave detectors.
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Building upon the vision of Rainier Weiss and the research of many others,

the Laser Interferometer Gravitational-wave Observatory (LIGO) project started in

the early 90’s and led to the operation of Initial LIGO (2002-2005) and Enhanced

LIGO (2005-2010). Both versions were variations of Michelson interferometers with

enhancements to increase their sensitivities. The searches carried out during Initial

and Enhanced LIGO did not produce any detection of gravitational waves but

provided crucial insight into the upgrades required to make Advanced LIGO possible,

resulting in the subsequent direct detection of gravitational waves. Currently there

are networks of ground-based interferometric detectors that are operating (LIGO,

Virgo, GEO), under construction (Kagra) and planned (LIGO-India).
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CHAPTER 2

ADVANCED LIGO DETECTORS AND ACCURATE CALIBRATION

2.1. Gravitational Waves and Laser Interferometers

The LIGO detectors are laser interferometers with light propagating between

large suspended mirrors in two perpendicular arms. They are power-recycled

Michelson interferometers with Fabry-Perot cavities in each interferometer arm and

a signal-recycling cavity at the output of the detector.

The power-recycling, signal-recycling and Fabry-Perot cavities are added to

enhance the sensitivity of the detector. However the fundamentals of gravitational

wave detection using interferometers can be best understood using the example of

a simple Michelson interferometer. In a standard Michelson interferometer, shown

schematically in Fig. 2.1, laser light from a source divides at the beam splitter and

travels on perpendicular paths along each arm of the interferometer. The light reflects

from the mirrors at the ends and returns to the beam splitter before combining to

reach the photodetectors. If the two arms of the interferometer are of same length

than the two beams will return precisely in phase. If the length of one or both arms

changes due to passing gravitational waves, the light returning from the two arms

incur a phase shift, ∆φ, with respect to each other given by

∆φ =
2π

λ
∆x (2.1)

where λ is the wavelength of the interferometer laser beam and ∆x is the length change

between the two arms. This phase shift is related to the interference produced by the
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FIGURE 2.1. A simple Michelson interferometer showing laser beam being divided
at the beam splitter (BS) and travelling along the two perpendicular paths. The
reflected beam combines at the BS and reaches the signal readout photodetector.
Template credit: “ComponentLibrary” by A. Franzen.

two beams through ∆φ = ±2mπ for constructive interference and ∆φ = (2m + 1)π

for destructive interference where, m = 0, 1, 2...

By monitoring the change in the interference pattern we can measure the relative

change in the lengths of interferometer arms and thus the gravitational wave that

caused it [11].

Consider a gravitational wave with a single polarization (+) traveling along the

z-axis such that

h+(t) = h0 sin(kz − ωt) (2.2)

The Advanced LIGO test masses are suspended, and thus are freely falling along the

laser beam direction. The coordinates are labeled by these freely falling masses and
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for ease of calculation we can assign the beam splitter to be the origin and two arms

of the interferometer, each with a length of L0, to be along the x and y axes with the

test masses at (L0, 0) and (0,L0). We know, from Eq. 1.1b, that the interval between

two events is given by

ds2 = gµνdx
µdxν (2.3a)

= −c2dt2 + [1 + h0 sin(kz − ωt)]dx2 + [1 + h0 sin(kz − ωt)]dy2 + dz2 (2.3b)

For the light traveling along the x arm (assuming h << 1 such that the higher

order terms in h can be ignored) the travel time from the beam splitter to the end

and back to the beam splitter is given by

τx(t) =
2L0

c
+ h0 sin(kz − wt)L0

c
(2.4)

In the absence of gravitational waves, τx(t) = 2L0/c. Thus, the variation in

propagation time due to the gravitational wave, δτ , can be written as

δτ =
∆L0

c
= h+(t)

L0

c
(2.5)

This equation can be rewritten in the following form to show that the gravitational

waves produces strain in the interferometer arm

∆L0

L0

= h+(t) (2.6)

Furthermore, the light traveling in the y-arm will also incur the same amount

of perturbations but in the opposite direction. The light in the two arms of the
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interferometer that interacted with the gravitational wave while traveling from the

beam splitter to the end mirror and returning back to the beamsplitter will incur a

travel time difference of

∆τ(t) = h0 sin(kz − wt)2L0

c
(2.7a)

= h+(t)
2L0

c
(2.7b)

We can rewrite this equation as a phase shift between the lights resonating in two

interferometer arms

∆φ(t) = h+(t)
4πL0

λ
(2.8)

where λ is the wavelength of the laser light. This shows that the phase shift incurred

is directly proportional to the amplitude of the gravitational wave and also the length

of the interferometer arms.

2.2. Advanced LIGO Design and Sensitivity

Advanced LIGO detectors are a variants of a Michelson interferometer with

enhancements added to increase the sensitivity of the detector. A schematic of the

Advanced LIGO interferometer is shown in Fig. 2.2.

The main laser source for the interferometer is a 2-W Nd:YAG non-planar, ring

oscillator operating at 1064 nm, followed by two amplification stages with a maximum

output power of 200 watts. [23, 24]. The output light passes through an input

mode cleaner (IMC) that filters the laser light before it enters the interferometer.

The power recycling mirror (PRM), after the IMC, forms a resonant cavity between

the laser source and the interferometer to increase the laser power circulating in

the interferometer. The arm Fabry-Perot cavities, one in each of the interferometer
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FIGURE 2.2. Advanced LIGO interferometer design showing the Michelson
interferometer with power recycling cavity (PRM) at the input end, signal-recycling
cavity(SRM) at the signal readout end and Fabry-Perot cavities in each interferometer
arm. It also contains input mode cleaner (IMC) and output mode cleaner (OMC) at
the input and the output end of the interferometer.

arms, are approximately 4 km long. The circulating light makes ≈ 140 round trips

(finesse = 450, Q = 3.6 × 1012). This increases the effective length of the arms by

a factor of 140 and thus increases the sensitivity of the detector by building up the

phase shift produced by any arm length change. This helps to make the Advanced

LIGO detectors sensitive to length perturbations, on the order of 10−18 m [25].

The signal-recycling mirror (SRM) at the gravitational readout port forms the

signal recycling cavity and helps to lower the arm cavity finesse and maintain a

broad detector frequency response. This cavity can also be selectively tuned to make
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the detector more sensitive at a narrow band frequency with an associated loss of

sensitivity at other frequencies. This could principally be used to study signal from

specific sources. Finally the interferometer output signal is passed through the Output

Mode Cleaner (OMC) that filters unwanted light read by the photodetectors at the

anti-symmetric port [26].

The sensitivity of the LIGO detectors is determined by the noise floor of the

interferometer as shown in Fig. 2.3. To make a detection, the gravitational wave strain

signal needs to be above the noise floor of the detector. At frequencies below 20 Hz

the noise floor is dominated by seismic noise, at frequencies between 20-200 Hz, the

microscopic fluctuations of the individual atoms in the mirrors and their suspensions

dominates the noise floor and at frequencies above 200 Hz it is dominated by the

fluctuations of the number of photons in the laser light, referred to as shot noise [25].

For Advanced LIGO, the low frequency seismic noise floor has been reduced by

active and passive isolation of the test mass from ground motion. The test mass

and suspension thermal noise levels have been reduced by using a high purity fused

silica for the test mass and by constructing the suspension fibers out of fused silica

to create a monolithic suspension for the lower two stages [27]. This has improved

the detection bandwidth of the Advanced LIGO detectors at lower frequencies. The

high frequency noise level has been reduced by increasing the laser power at the

input of the interferometer and adding a signal recycling cavity at the output of the

interferometer [26]. The Advanced LIGO detector noise floor for the Hanford and

Livingston detectors during the second observing run, along with the detector design

noise floor, is shown in Fig. 2.3.
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FIGURE 2.3. Representative displacement noise curve for Livingston and Hanford
detectors during Advanced LIGO’s O2 observing run. Expected noise curve for the
Advanced LIGO design sensitivity is also shown.

2.3. Calibration Methods

Calibration of gravitational-wave detectors entails converting the electronic

outputs of each detector into detector strain, the measured differential arm length

variation divided by the length of the interferometer arm. Over the past twenty

years a variety of techniques have been implemented to achieve improvements in the

calibration of the LIGO detectors [28, 29, 30].

The calibration of the interferometer output signals is an essential element of

data analysis. In order to fully exploit the astrophysical content of the gravitational-

wave detections, continuous calibration with accuracy and precision approaching the

1% level is required [31]. This requirement includes amplitude and phase calibration

of the Advanced LIGO detectors over the entire range of frequencies to which the

Advanced LIGO detectors are sensitive.
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Previously, the LIGO project relied on a calibration method that requires

extrapolation from test mass displacements that are about 12 orders of magnitude

larger than the displacements caused by gravitational waves [28]. This method is

referred to as the free-swinging Michelson (FSM) technique. It relies on measurement

of Michelson interference fringes when the suspended optics are swinging freely, i.e.

not under servo control. It uses the wavelength of the interferometer laser light as

a length reference, and calibrates the actuation function of the mirror at the end of

the interferometer arms (ETM) via a series of measurements made with both the

interferometer and the actuation path electronics in various configurations. As noted

earlier, these configurations include the condition where the optics are swinging freely

and thus changes in calibration due to the change in optic and control configuration

cannot be captured by this method [28].

Another technique is a frequency modulation method which provides a force-

free method of calibrating the actuators that are used to drive the test mass (no

modulation of the test mass position). This method uses a single-arm configuration

and by modulating the frequency of the laser light creates an effective modulation

of the arm length given by the dynamic resonance for a Fabry-Perot resonator [32].

Another modulation, close in frequency to the laser frequency modulation, is injected

using the test mass actuator that is to be calibrated. By comparing the signals

from the two modulations as detected by the single-arm readout sensor, also called

the Pound-Drever-Hall (PDH) sensor, the test mass actuator strength is calibrated.

Unlike FSM, this technique does not require precise measurement of electronic paths

because the actuator electronics are configured to be in run mode during these

measurements. But it still will not be able to capture the changes in calibration
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due to the change in configuration of the interferometer between the measurement

time and the run time [29].

A radiation pressure based technique, referred to as the Photon calibrator (Pcal),

has been used in several interferometers and has evolved significantly within LIGO

during the past ten years. Pcals were used during initial LIGO to provide an

independent check of the calibration. During the Enhanced LIGO era, Pcals were

redesigned and installed on one arm of each interferometer with the goals of providing

absolute calibration of the interferometer response at one frequency and assessing the

long-term trends of actuator coefficients. Analysis of about 400 days of data recorded

during Enhanced LIGO’s final observing run showed that the long-term stability of

the actuation coefficient of the Pcals were at the 1% level for both the H1 and L1

detectors [33]. The redesigned Pcals used a configuration with two diametrically-

opposed laser beams in order to minimize the impact of local elastic deformation at

the center of the the optic, the region sensed by the interferometer [30]. The Pcal

beams are also positioned at the nodal circle of the low order natural vibrational

mode of a right, circular cylinders, the drumhead mode, to minimize the impact of

the elastic deformation of the test mass.

Photon calibrators are being used in Advanced LIGO as the primary calibration

tool. Details of the Advanced LIGO Pcals and their use in detector calibration are

discussed in Chapter 3 and Chapter 4.

2.4. Calibration Technique

In Advanced LIGO, several feedback control servos are used to keep the

interferometer in “resonance” or “lock” to reduce the length variations, ∆Lfree, due

to the unwanted noise or passing gravitational waves. Most of the servo loops have
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negligible impact on the gravitational wave strain data for the frequencies between

5 Hz-5 kHz however, the feedback control loop that operates on the differential

arm (DARM) length degree of freedom suppresses the gravitational wave strain by

significant amount. The suppressed length variation, ∆Lres, is determined by the

open-loop gain, G, of the control loop and is given by

∆Lres =
∆Lfree
(1 +G)

(2.9)

In order to estimate the gravitational wave strain sensed by the interferometer, the

effect of DARM feedback control loop needs to be taken into account. As shown in

Fig. 2.4, the DARM feedback control loop is characterized by a sensing function C, a

set of digital filters D, and an actuation function A. The sensing function C relates

the suppressed length variation, ∆Lres, to the loop error signal, derr; the digital filters

D converts the loop error signal to the control signal dctrl and the actuation function

A relates how the control signal produces the differential displacement of the arm

length, ∆Lctrl and is given by the following three equations respectively.

∆Lres =
1

C
∗ derr (2.10a)

dctrl = D ∗ derr (2.10b)

∆Lctrl = A ∗ dctrl (2.10c)

The strain sensed by the interferometer can be written in terms of the

interferometer output signals derr and dctrl as

h =
1

L

(
1

C
∗ derr + A ∗ dctrl

)
(2.11)
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FIGURE 2.4. Left: Block diagram showing different components of Advanced LIGO
Differential Arm (DARM) control loop. The external length variation, ∆Lfree and the

Pcal induced length variations, x
(PC)
T , are suppressed to maintain the interferometer

at lock. Right: The two signals from the output of the interferometer, derr and dctrl,
are combined to reconstruct the strain sensed by the interferometer from any external
length variation including the gravitational waves [34].

where C and A are the model of the sensing and actuation function respectively and

* denotes convolution in time domain and multiplication in the frequency domain.

An accurate characterization and modeling of the sensing and the actuation function

enables accurate calibration of the interferometer strain signal [35].

The sensing function C incorporates the laser power fluctuations at the GW port

in response to the length variation and also includes the response of the photodiodes

and the effects of the analog electronics and the digitization process. The sensing

function of the Advanced LIGO interferometers is approximated fairly accurately by

a single-pole low-pass filter with a gain (Hc), an additional time delay (τC) and a
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term that accounts for a detuned signal-recycling cavity [35].

C(f, t) =
κC(t)Hc

(1 + if/fc)
CR(f)e−2πifτC × f 2

f 2 + f 2
s − iffs/Qs

(2.12)

κC(t) is a correction factor that accounts for change in Hc over time. fc is

the characteristic cavity pole frequency that determines the attenuation of the

interferometer response to length variations at high frequency. CR(f) describes the

effect of electronics and the digital filters which are only relevant at frequencies above

1 kHz. fs and Qs parameterizes the detuned signal recycling cavity and are the pole

frequency and the quality factor of the optical anti-spring.

The actuation function A describes the response of the Advanced LIGO

quadruple suspended pendulum system to the control signal applied to the actuators

(applied force). This response includes the mechanical dynamics of the test mass

system, actuator strength, the effect of electronics and digital filtering and can be

written as

A(f, t) = [κT (t)AT (f) + κP (t)AP (f) + κUAU(f)]e−2πifτA (2.13)

where Ai denotes the frequency dependent actuation response of the different stages

of the cascaded pendulum and κi are the correction factor that accounts for change in

Ai over time. During O2 observing run, the penultimate and the upper-intermediate

mass used a combined time-varying correction factor κPU . τA is the time-delay

between digital to analog signal conversion.

A more detailed description of the calibration technique including the description

of the sensing and actuation function can be found in [34, 35]. The measurement
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technique used to determine the sensing and the actuation function using the Photon

calibrator is described in Chapter 4.

2.5. Motivation for Accurate Calibration

The gravitational wave signals detected so far have already been used to test the

general theory of relativity in the strong-field regime [36], to understand the physics

of evolution of binary mergers [37, 38, 39, 40], to check the validity of the equation of

state of the neutron stars [41], to estimate the values of cosmological parameters [42],

and to measure the speed of gravitational wave propagation [43]. Accurate calibration

of the gravitational-wave strain data has direct implications on the astrophysics we

can extract from these detected signals.

2.5.1. Absolute Calibration

The absolute calibration refers to an accurate amplitude calibration of the

gravitational-wave signal. There are numerous astrophysical implications of absolute

calibration, but the most important identified so far is the measurement of Hubble

constant. Independent measurement of the Hubble constant relies on measurement

of the luminosity distance, which is directly dependent on the accurate calibration of

the amplitude of the signal (see, for example, Eq. 1.24).

The most current measurement of the Hubble constant by the SHoES

(Supernovae, HO, for the Equation of State of Dark energy) collaboration using the

Hubble Space Telescope, which combines distance measurements from Cepheids and

type Ia supernova, is 73.24 ± 1.74 km s−1Mpc−1, which translates to an uncertainty of

2.4 %, 1-σ, and includes the systematic uncertainty in the measurement [44]. However,

the measurement of the Hubble constant using the Planck satellite’s measurement of
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the Cosmic Microwave Background (CMB) combined with the effect of gravitational

lensing on the CMB, results in a value of 67.8 ± 0.9 km s−1 Mpc −1 [45]. These two

values are in tension with each other at a level of 3σ. The determination of the Hubble

constant using the standard siren sources detected by the gravitational wave detectors

have the potential to resolve the tension between these two measurement. The signals

from the gravitational-wave sources give us an independent direct measurement of

the distance to the sources. Both the SHoES and CMB measurements are limited by

systematic effects which are not controlled by the experimenters. It is not clear if the

tension between the two current measuring techniques is due to lack of understanding

of the systematic errors, or due to lack of understanding of fundamental physics. On

the other hand, the GW technique is limited by event statistics and eventually by the

absolute calibration of the detectors.

The first detection of gravitational-wave signal from two coalescing neutron-stars

binary, GW170817, and the subsequent detection of electromagnetic counterparts

enabled the measurement of both the distance to the source and the redshift. This

allowed us to determine the Hubble constant which was measured to be 70+12.0
−8.0 km s−1

Mpc −1. This value is consistent with the current measurements from both Planck

and SHoES, while being completely independent of them. The 15 % uncertainty

in the measurement, which might seem large, is due to the combination of noise in

the detectors, calibration uncertainties and the degeneracy between the measurement

distance and the inclination angle of the source. However, the uncertainty arising

from noise in the detectors can be improved as the number of detections increases.

The inclination angle of the binary can be inferred from measurements of both

polarizations of the gravitational wave. This will be improved in the future as

there will be multiple detectors enabling us to make the polarization measurements
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FIGURE 2.5. Posterior probability distribution on the measurement of Hubble
constant using the gravitational-wave signal from the merger of binary neutron stars
GW170817 [42]

more accurately. The polarization measurement for GW170817 was vastly improved

because of the involvement of the Virgo detector compared to previous GW detections,

which had large uncertainties in distance and inclination because the two LIGO

detectors are co-aligned and thus prevents a more accurate polarization measurement

[42]. With enough signals over the course of future runs and the involvement of

multiple detectors, eventually the measurement of the Hubble constant will be limited

by the calibration of the gravitational-wave data itself.

As outlined in the paper published by Hsin-Yu Chen et.al [46], 4% accuracy

in the measurement of the Hubble constant will require about ten events such as

GW170817, and to get to the 1% level will require 200 events. With the LIGO

detectors operating at design sensitivity and additional detectors joining the network,

32



updated rate estimates predicts the 1% measurement can be achieved within the

next decade. A 1% measurement of the Hubble parameter would resolve the current

discrepancy between the measurement derived from the distance ladder and CMB

temperature, perhaps pointing to some new understanding of fundamental physics. In

addition, a 1% measurement will have a significant impact on the measurement of the

dark energy equation of state [47]. Sub-1 % amplitude calibration of the gravitational-

wave data will require a significant effort, but is within our reach. Chapter 3 of this

thesis will outline and describe a scheme designed to achieve 1 % absolute amplitude

calibration accuracy in the foreseeable future.

2.5.2. Relative detector calibration

In order to increase the astrophysical impact of the gravitational wave detections,

relative calibration of the detectors is a also crucial. Here relative calibration refers

to the calibration accuracy between the detectors that are involved in the search for a

particular gravitational wave. If the calibration between the detectors has a relative

systematic bias then the estimate of the SNR will also have the same bias resulting

in an error in the estimate of sky position of the source. However, achieving accurate

relative calibration is easier than getting an absolute calibration. We have designed a

scheme in which the calibration tools used in most, if not all, detectors are calibrated

against a single standard. As of now, LIGO-Hanford, LIGO-Livingston and Kagra

are involved in this scheme and LIGO-India will join it when it goes into operation.

We are working on bringing the Virgo calibration into this scheme as well.
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2.5.3. Frequency Dependent Calibration

The gravitational waves emitted from compact binary coalescence detected by

LIGO are in a wide frequency band, from 5 Hz to 5 kHz. Most of the signals from

binary black-hole mergers enter the detector sensitivity at frequencies of a few tens of

Hz and sweep all the way to a few hundreds of Hz. However for binary neutron star

(BNS), low mass binary-black holes and black hole/neutron star systems the merger

frequency may be as high as a few kHz. Additionally the post merger signal of BNS

systems could be as high as 4 kHz, depending on which equation of state [EoS] models

are valid. So accurate detector calibration over a range of frequencies is important.

Frequency-dependent amplitude errors do not affect parameter estimation for

non-spinning sources because the parameters will mostly be determined by the average

amplitude. Measurement of the spin of the system will be affected by the modulation

of amplitude because the amplitude modulation will mimic the effects of orbital

precession [48]. The frequency dependent amplitude calibration error will either

overestimate or underestimate the amplitude of the detected signal as it sweeps

through the frequency, thus producing an apparent amplitude modulation which might

mimic the effects of source spin. The frequency-dependent amplitude error could

become significantly large at frequencies above 1 kHz when photon calibrators are

used to make calibration measurements at these frequencies. Chapter 5 of this thesis

will discuss in detail how frequency dependent amplitude errors can be minimized by

modeling the effect of bulk elastic deformation and compensating for it.

Frequency-dependent phase errors can mimic the effect of Post-Newtonian (PN)

corrections thus biasing the measurement of intrinsic source parameters like masses

and spin. However, Vitale et al. show that for Advanced LIGO, where frequency
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dependent phase error are in the order of only few degrees at its worst, the impact of

these error on most signals will be minimal [48].
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CHAPTER 3

THE PHOTON CALIBRATOR

The content described in this chapter has been published before in the journal

listed below:

S. Karki, D. Tuyenbayev, S. Kandhasamy, et al. “The Advanced LIGO photon

calibrators.” Review of Scientific Instruments, 87:114503, 2016.

Photon calibrators were first installed on the 10-m prototype detector in

Glasgow [49] and later at GEO600 detector in Hannover, Germany [50]. Variations

of these instruments have been tested and improved within LIGO over the past 16

years [51, 52]. During this time, the LIGO Pcals evolved from instruments intended as

a sanity check on other calibration methods [30] to the primary absolute calibration

tools for the Advanced LIGO interferometers. The earlier versions of Pcals used

a single-beam configuration. In this configuration, where the force is applied at the

center of the optic to minimize unwanted rotation, it deforms the mirror surface in the

region sensed by the interferometer, introducing significant calibration errors. This

effect, due to so-called local elastic deformation, was first predicted by Hild et. al.

in 2007 [53]. Goetz et al., in 2009, demonstrated that the errors in calibration due to

this effect could be as large as 50 % at few kHz [54]. Subsequent LIGO Pcal systems,

beginning with Enhanced LIGO, were designed with two beam configurations with

beams displaced from and diametrically opposed about the center of the face of the

optic. This ensured that the local elastic deformations due to the Pcal beams were

far from the center of the optic and minimized the unwanted rotation by effectively

applying the Pcal force at the center of the optic. For Advanced LIGO, Pcals

were upgraded with more powerful laser, better optics and electronics and added
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FIGURE 3.1. Schematic diagram showing the working principle of Photon calibrators.
The right panel shows the position of Pcal beam and the interferometer beam on the
test mass surface.

functionality. The design and performance of the Advanced LIGO Pcals are described

in detail in [55] and they are the main subject of this chapter.

3.1. Principle of Operation

Photon Calibrators operate by applying periodic forces on suspended test masses

(optics), via photon radiation pressure, using auxiliary power-modulated laser. The

suspended test mass to which the force is applied has a pendulum resonance frequency

of about 1 Hz. Thus, for frequencies far above the resonance frequency motion of the

test mass can be approximated as a free mass. Thus, one can write the relation

between the motion of the test mass, x(t), and the force applied to it (F ) as

F (t) =
dp

dt
≈Mẍ(t) (3.1)

where p is the momentum of the photons that recoil from the test mass and M is the

mass of the test mass.
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Considering that the laser power reflected from the test mass is modulated

sinusoidally with a modulation amplitude of Pm and angular frequency ω, we can

write the power reflected from the test mass as

P (t) = P0 + Pm sin(ωt) (3.2)

where P0 is the average power. A single photon carries momentum, p = h/λ, where

h is Planck’s constant and λ is the wavelength of the laser light. Since the photons

reflect from the mirror surface, the momentum imparted to the optic is twice the

normal component of the photon momentum. So for a laser beam that hits the test

mass with an angle of incidence θ, the momentum imparted to the test mass is given

by p = 2 cos θ(h/λ). If there are n photons per second hitting the test mass then

dp

dt
= 2 cos θ

(
h

λ

)
n = 2 cos θ

(
hν

c

)
n (3.3)

Each photon has energy E = hν where ν is the frequency of the continuous wave

(CW) laser. For n photons reflecting off the test mass per second, the power on the

test mass surface is given by P = nhν. Using this, we can rewrite equation 3.3 as

dp

dt
=

2 cos θ

c
P (3.4)

Using equations 3.1, 3.2 and 3.4, we can write

ẍ(t) =
2cosθ

Mc

(
P0 + Pmsin(ωt)

)
(3.5)
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Taking the Fourier transform of this expression with respect to time, the

amplitude of the motion induced due to the modulated laser power is given by

x(ω) = −2Pm(ω)cosθ

Mcω2
(3.6)

where Pm(ω) is the amplitude of the power modulation at frequency ω and the

negative sign indicates that the test mass motion is 1800 out of phase with the applied

force.

Equation 3.6 is valid for the case where the Pcal’s center of force is at the center

of the test mass. However, E. Goetz, et al. [54] pointed out that if the Pcal’s center

of force is offset from the center of the test mass, with the displacement offset given

by the vector ~a, the test mass will rotate periodically. This induced rotation can be

approximated as free rotation for modulation frequencies well above the rotational

resonant frequency of about 1 Hz. Thus the equation of motion of the freely rotating

test mass can be written as

IΩ̈(ω, t) = aF (ω, t) (3.7)

where I is the moment of inertia of the test mass about an axis through the center

of the mass and parallel to the face of the test mass, Ω̈ is the angular acceleration

and F (ω, t) is the modulated Pcal force. For motion at frequencies well above the

rotational resonance frequencies of the test mass, the modulated laser power induces

rotation about the center of mass with amplitude given by

Ω(ω) ≈ −2~aPm cos(θ)

Icω2
(3.8)

39



For a perfectly centered interferometer beam the interferometer senses a net length

change of zero over the entire beam and thus the rotation has no effect. However, if the

interferometer beam is offset from the center of the test mass with the displacement,

denoted by vector ~b, the interferometer senses an effective length change that is given

by [54]

xrot(ω) ≈ −2Pm cos(θ) (~a ·~b)
Icω2

(3.9)

Combining Eq. 3.6 and 3.9, we can write the effective length modulation due to the

Pcal forces as

xrigid(ω) = −2Pm cos(θ)

Mcω2

[
1 +

M

I
(~a ·~b)

]
(3.10)

where xrigid indicates that the test mass is assumed to be a rigid body.

Also, as discussed above, the Advanced LIGO Pcal use two beams with

approximately equal powers diametrically opposed and displaced from the center of

the test mass to avoid local elastic deformation. The location of Pcal center of force,

~a, depends on the beam positions and the ratio of the powers in the two Pcal beams.

It is given by

~a =
β ~a1 + ~a2

β + 1
(3.11)

where ~a1 and ~a2 are the displacement vectors of the two Pcal beams from the center

of the test mass face and β = P1/P2 is the ratio of the laser powers in the two beams.

At higher frequencies the test mass motion does not behave as a rigid body.

The Pcal forces excite the natural vibrational modes (normal modes) of the test

mass introducing bulk elastic deformation and thus compromising the accuracy of the

calibration. The contributions from bulk elastic deformation depend on the geometry
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of the modes and can be written as a frequency dependent factor given by

G(ai,b)(ω) =

[
1 +

∑
m xm(ω)

xrigid(ω)

]
(3.12)

and described in detail in Chapter 5.

Thus, the total displacement due to the Pcal forces sensed by interferometer can

be written as

xtot(ω) = −2Pm cos(θ)

Mcω2

[
1 +

M

I
(~a ·~b)

]
G(ai,b)(ω) (3.13)

where G(ai,b)(ω) is the effective weight due to bulk elastic deformation.

3.2. Instrument Description

For the Advanced LIGO detectors, Photon Calibrators have been used as the

primary calibration tool. This increases the need for reliability and performance. The

Advanced LIGO Pcals have more powerful 2-W lasers, four times the initial LIGO

Pcal laser powers, better beam relay optics, and a feedback control loop to generate

arbitrary power modulation. Each detector has two of these Pcal systems, one at

the end of each arm of the detector. One Pcal system is adequate for the calibration

of the detector. The second system is used as a backup in case of failure and for

injecting simulated gravitational-wave signals in order to test the accuracy, efficiency

and robustness of the detection pipelines [56]. The second Pcal system is also used

to generate displacement modulations at higher frequencies, which require significant

power (and integration time) to achieve an appreciable signal-to-noise ratio (SNR),

in order to check the calibration at frequencies above 1 kHz. These high frequency

modulations will be discussed in greater detail in Chapter 5.

A schematic diagram of the Advanced LIGO Pcals is shown in Fig. 3.2. The
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FIGURE 3.2. Schematic diagram of an Advanced LIGO photon calibrator in plan
view.

Pcal system consists of out-of-vacuum and in-vacuum components. The transmitter

module that houses the laser, signal conditioning optics and power sensors is on

a pylon on one side of the beam-tube as shown in Fig. 3.3. The receiver module

embedded in the Optical Lever pylon is on the other side of the beam tube and

houses relay optics and the receiver module power sensor (RxPD). The two beams

from the transmitter module enter the vacuum enclosure through optical-quality,

super-polished windows with low-loss ion beam sputtered anti-reflection coatings.

Inside the vacuum chamber there is a periscope structure with relay mirrors, that

guide the beams to the appropriate positions on the test mass surface. The reflected

beams are then directed out of the vacuum by a another set of mirrors on the same

periscope structure to a power sensor in the receiver module.
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FIGURE 3.3. Bird-eye view of the layout of Advanced LIGO Pcal at the X-End
Station. The Pcal transmitter module (square box to the left of the vacuum tube)
is mounted in the Pcal pylon, and the Pcal receiver module (on the right side of the
vacuum tube) is mounted in the Optical Lever pylon. The Pcal beam path through
the periscope and to the ETM and back is shown in red (lower beam) and green
(upper beam).
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FIGURE 3.4. Schematic diagram of the optical layout of the transmitter module.
Template credit: “ComponentLibrary” by A. Franzen.

3.2.1. Transmitter and Receiver Modules

The transmitter module includes a laser, an acousto-optic modulator (AOM),

power sensors and optical components necessary to generate the two power-modulated

beams. All components are mounted on a 2” thick bread board which in turn is

mounted on a pylon, with a flexible bellows connecting its output aperture to the

vacuum viewport flange. The optical layout of the transmitter module is shown

in Fig. 3.4. The laser inside the module is a 2-watt, continuous-wave, Nd:YLF

laser operating at 1047 nm. The laser wavelength is close enough to the 1064 nm

wavelength of the interferometer laser to ensure high reflectivity from the test

mass mirror coating. The Pcal laser frequency is sufficiently far from that of the

interferometer light (approximately 5 THz higher) that the scattered Pcal light does
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not compromise interferometer signals that are phase modulated and demodulated

at tens of MHz. Furthermore, the relatively large incidence angles and extremely low

bidirectional reflectance distribution function (BRDF) of the test mass surface ensure

that scattered interferometer light does not impact the accuracy of the Pcal systems.

This is confirmed by monitoring the light at the RxPD, which shows no change in

measured laser power when the interferometer loses lock or powers up.

The beam originating from the laser is horizontally-polarized using a polarizing

beam splitter, then focused into an acousto-optic modulator. The AOM diffracts a

fraction of the light in response to a control signal that changes the amplitude of

the 80 MHz RF drive signal. The maximum diffraction efficiency is approximately

80 %. The non-diffracted beam is dumped and the first-order diffracted beam is

directed through an uncoated wedge beam splitter oriented near Brewster’s angle

that generates the sample beams used for two photodetectors. The first sample beam

is directed into a 2 in. diameter integrating sphere with an InGaAs photodetector.

This system monitors the power directed into the vacuum system and is referred to

as the transmitter module power sensor (TxPD). The second sample beam is directed

to a similar photodetector, but without an integrating sphere. This detector is the

in-loop sensor for the Optical Follower Servo described in Sec. 3.2.3. The beam

transmitted through the wedged beam splitter is collimated using two convex lenses

such that it will have a beam waist of approximately 2 mm near the surface of the

test mass. The laser beam is divided into two beams of equal power, with the beam-

splitting ratio tuned by adjusting the angle of incidence on the beamsplitter. These

power-balanced beams enter a separate section of the transmitter housing that is

designed to accommodate the power sensor used for laser power calibration and left-
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FIGURE 3.5. Schematic diagram of the optical layout of the receiver module.
In the receiver module, both Pcal beams reflected from the test mass surface
are combined and monitored using a calibrated power sensor. Template credit:
“ComponentLibrary” by A. Franzen.

hand (Y-arm) or right-handed (X-arm) configurations for operation on either arm of

the interferometer (see Fig 3.4).

The receiver module is shown schematically in Fig. 3.5. The Pcal beams reflected

from the test mass are redirected by mirrors mounted to the in-vacuum periscope

structure into the receiver module where a pair of mirrors direct both beams to a

single receiver module power sensor (RxPD). This sensor is a 4 in. diameter integrating

sphere with an InGaAs photodetector.

The ratio of the power measured at the receiver module to that measured at

the transmitter module gives the overall optical efficiency. It is typically about

98.5 %. Using this optical efficiency, the power measured with either the transmitter

or receiver power sensors can be used to estimate the laser power reflecting from

the test mass. Sec. 3.3.1 describes the absolute calibration process for these power

sensors.
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FIGURE 3.6. Schematic diagram showing the Pcal beam path inside the vacuum
enclosure. The beams are guided by the mirrors mounted on the periscope on both
the transmission and receiver side (left). Schematic diagram of Pcal beams relative
to the interferometer beam (right). [Image Credit: Evan Goetz]

3.2.2. Periscope

In Advanced LIGO, folded Arm Cavity Baffles, with apertures just 4 mm in

diameter larger than that of the ETM, are located in front of the ETMs. These

baffles that are mounted into the persicope structure, preclude directing the Pcal

beams directly onto the surfaces of the ETMs. The Advanced LIGO Pcals thus

use mirrors attached to the periscope structure to direct the Pcal beam toward the

axis of the beam tubes to decrease the angle of incidence on the ETMs and reduce

interference with the Arm Cavity Baffles. In addition, for Advanced LIGO, the Pcal

beams that reflect from the ETMs are collected by periscope output beam relay optics

and directed out of the vacuum system for continuous monitoring. The upper beam
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is aligned in such a way that it propagates horizontally from transmitter to receiver

modules and has two mirrors on each side of the periscope structure. The lower beam,

the one that starts farthest from the beam tube manifold axis, is directed down by an

input periscope mirror, then propagates horizontally to the ETM and the receiving

periscope which directs it back up to the level of the upper beam and out of the

vacuum system. The lower beam path has one additional mirror, i.e. three mirrors,

on the transmission side. These periscope support structures are held in place by

flexures made from maraging steel.

3.2.3. Optical Follower Servo

In order to produce the required calibrated displacement of the test mass, the

laser power is modulated such that it produces modulated test mass displacement

with a signal-to-noise ratio (SNR) of about 100 in the most sensitive region of the

interferometer, near 150 Hz. These modulations run at all times, providing continuous

calibration of the detectors. In order to ensure that these calibrated displacements are

of a single-tone and at a desired frequencies, a servo is used to improve the purity of

the modulated waveform by feedback control. This servo is referred to as the Optical

Follower Servo (OFS) [57].

The optical components of the OFS are within the Pcal transmitter module

enclosure (see Fig. 3.4) and the electronic components are mounted in the transmitter

module pylon. A fraction of the modulated light is sensed by an in-loop photodetector

referred to as the optical follower servo PD (OFSPD). The OFSPD signal is subtracted

from the reference waveform to form the error signal of the servo. The servo maintains

the requested waveform by minimizing the error signal in the loop. The Optical

Follower Servo feedback loop block diagram is shown in Fig. 3.7.
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FIGURE 3.7. Optical Follower Servo (OFS) block diagram.

The open- and closed-loop transfer functions of the OFS are shown in Fig. 3.8.

The unity gain frequency is approximately 100 kHz, with 62 deg. of phase margin.

From DC upto 5 kHz, the discrepancy between the requested and delivered sinusoidal

waveforms is less than 0.005 dB (0.06%) and the phase lag is less than 0.6 deg.

This feedback servo also enables operating with larger modulation depths without

compromising performance, thus increasing actuation range and more effectively

utilizing the available laser power. Fig. 3.9 shows the waveform from the OFS

photodetector (red trace) with the servo operating and modulating the available

diffracted laser power by 95% peak-to-peak. The black trace (under the red trace)

is the requested waveform and the blue trace is the actuation signal, multiplied by a

factor of 4 for better visualization, sent to the AOM driver.

Generating high SNR length modulations via the Pcal systems risks introducing

unwanted displacement noise into the detectors either through broadband laser noise

or through modulation harmonics. Broadband relative laser power noise is inherent

to the laser and harmonics are produced by non-linearity in the modulation process.

49



101 102 103 104 105

0

20

40

60

101 102 103 104 105

-120

-80

-40

0

-0.5

0

0.5

1

1.5

-60

-40

-20

0

FIGURE 3.8. Measured open-loop (blue) and closed-loop (red) transfer functions of
the Optical Follower Servo.

The displacement noise, xn, caused by the power noise, Pn, is given by

xn =
2 Pn cos(θ)

Mcω2
(3.14)

The Advanced LIGO requirement is that the noise and the harmonics be a factor

of ten below the detector sensitivity [58], that is xn 6 Lh(f)/10, where h(f) is the

strain sensitivity of the detector and L is the length of the interferometer. The

maximum allowed relative power noise (Pn/Pmax), where Pmax is the total laser power

incident on the test mass, is given by

Pn
Pmax

=
Mcω2Lh(f)

20Pmax cos(θ)
(3.15)
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FIGURE 3.9. Optical Follower Servo signals with the loop closed and modulating at
95% of the maximum diffracted laser power. The black trace (under the red trace)
is the requested waveform. The red trace is the delivered waveform measured by the
OFS photodetector. The blue trace is the actuation signal (x 4) sent to the AOM
driver.

Fig. 3.10 shows the free-running (in red) and OFS-suppressed (in blue) relative power

noise (RPN) of the Pcal laser light. The suppressed power noise is well below the

Advanced LIGO noise requirement, calculated using Eq. 3.15 with the assumption

that all the available modulated laser power (≈ 1 W) is incident on the test mass and

plotted in black, in the LIGO detection band, from 10 Hz to 5 kHz. Fig. 3.11 shows the

suppression of modulation harmonics relative to the carrier as detected by an outside-

the-loop transmitted light power sensor, for a requested sinusoidal waveform at 100

Hz and 95% modulation depth. The harmonics are also well below the Advanced

LIGO requirement. Furthermore, the modulated power required to achieve an SNR
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FIGURE 3.10. Free running Relative Power Noise (RPN) of the Pcal laser (in red)
and the OFS suppressed RPN (in blue). The suppressed RPN is well below the
Advanced LIGO requirement (in black) at frequencies above 10 Hz.

of 100 at 100 Hz is a factor of about 20 less than the maximum modulated power and

the sideband amplitudes are lower for lower modulation depths.

The long term stability of the Pcal system can be evaluated by injecting

sinusoidal modulations with constant amplitudes into the optical follower servo and

measuring the amplitude of the laser power modulation recorded by the transmitter

and receiver module power sensors. Since the transmitter module power sensor is

insensitive to changes in Pcal performance due to beam misalignments or optical

efficiency changes, the receiver module power sensor is used to monitor the state

of calibration over time. The amplitude of the receiver module power sensor signal

measured over a ninety day interval is plotted in Fig 3.12. The peak-to-peak variation

is approximately 0.20 %. Using the RxPD to estimate the induced motion also

eliminates errors caused by the induced waveform not exactly matching the requested
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FIGURE 3.11. Suppressed modulation harmonics relative to the carrier. The 100 Hz
modulation is at 95 % of the maximum diffracted power. All harmonics are well below
the Advanced LIGO noise requirement (in black).

waveform. Thus the data in Fig. 3.12 represents an upper limit of the temporal

variations in the Pcal calibration.

3.2.4. Beam Localization System

The accuracy and performance of the Pcal systems depend on the position of

the Pcal beams on the test mass surface. There are two important consequences of

Pcal beams being offset from the optimal locations: Pcal-induced rotation of the test

mass and bulk elastic deformation of the test mass due to the applied calibration

forces. [59]. Details of the impact of bulk elastic deformation will be discussed in

Chapter 5.

Rotation-induced length variation, due to mis-positioning of the Pcal beams

and when the interferometer beam is also off center, is given by the second term in
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FIGURE 3.12. Trend of the normalized amplitude of the power modulation measured
by the power sensor in the receiver module. The amplitudes are calculated using
fourier transforms with 10 sec. integration intervals. The variations seen here are
correlated with temperature fluctuations in the end-stations.

Eq. 3.10. The rotation can be reduced by optimizing the positions of the Pcal beams.

The ideal locations of the Pcal beams and the modeled local deformations caused by

them are shown in Fig. 3.13. At the center of the test mass, the effect of this local

elastic deformation is minimal because the beams are placed far away from the center

of the test mass.

During O1 and O2 a beam localization system consisting of a high-resolution,

digital, single lens reflex camera (Nikon D7100; 6000 x 4000 pixels) with the internal

infrared filter removed and a telephoto lens remotely controlled via an ethernet

interface was used. The camera systems were mounted on separate vacuum view-

ports, and used relay mirrors mounted to the same Pcal in-vacuum periscope structure

to acquire images of the test mass surfaces such as the one shown in Fig. 3.14.
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FIGURE 3.13. Plotted here is the surface deformation due to Pcal forces showing
the local deformation at the Pcal beam positions. The legend denotes the surface
deformation in metres. The two beam configuration is used to avoid the local
deformation of the test mass at the center, the region of the test mass surface sensed
by the interferometer.

ETM images were analyzed using a MATLAB script to determine the positions

of the Pcal beams and to adjust them to their optimal locations, if necessary, using

mirror mounts inside the transmitter modules. The algorithm used features of the

electrostatic drive (ESD) pattern on the reaction mass surface. The viewing angle,

refraction through optics, and the distance between the test mass and reaction mass

were used to determine the coordinates of the center of the test mass. This technique

enabled estimation of the position of the beams with an uncertainty of about ±2 mm.

At the end of the second observing run, the beam localization systems were

removed because of concerns over noise introduced by the in-vacuum image relay

optics that coupled scattered light back into the interferometer. We now rely on

measurements made inside the vacuum envelope using a target attached to the
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FIGURE 3.14. Image of an end test mass from a Pcal beam localization camera
system (top). The left side of the optic is occluded by stray-light baffling. Zoomed
versions showing the Pcal beams on the test mass surface (bottom). The beam
positions are determined using the electrostatic drive (ESD) pattern on the reaction
mass located ≈1 mm behind the test mass.
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suspension cage and a fixed-aperture integrating sphere (RxPD) at the receiver side.

The target is attached temporarily for beam alignment and later removed. The

position of the beams within the aperture of RxPD are used as monitors of the beam

positions on the test mass surface. Since the laser travels twice the distance to the

test mass before it reaches the RxPD, it will approximately move 0.5 mm on the test

mass for every 1 mm movement on the RxPD aperture.

3.3. Absolute Displacement Calibration

The absolute calibration of the relative length response of the interferometer

using the Photon calibrator relies on our ability to accurately measure the Pcal laser

power, measure the mass of the Advanced LIGO test mass optic in order to determine

the force to length transfer function of the quadruple suspension system, and locate

the Pcal beam positions to reduce errors due to rotation and elastic deformation of

the test mass.

Absolute laser power measurement is realized by calibrating the Pcal power

sensors in the transmitter and receiver module of each Pcal system against a standard

traceable to SI units and calibrated at the National Institute of Standards and

Technology (NIST). This calibration process is described in detail in Sec. 3.3.1. The

force to length transfer functions of the Advanced LIGO suspension systems are

imported from suspension models. These transfer functions are well approximated by

those of a free mass at frequencies above 10 Hz as described in detail in Sec. 3.3.3. The

estimate of length variation due to rotation is treated as an additional uncertainty in

our estimate of displacement errors as described in Sec. 3.4.5. The impact of the bulk

elastic deformation of the test mass due to Pcal forces is small at lower frequencies,
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but becomes significant at frequencies above a few kHz and is described in greater

detail in Chapter 5.

Equation 3.10 can be rewritten in terms of the signals from the Pcal transmitter

and receiver module power sensors, TxPD (VT ) and RxPD (VR), (in volts) 1 to give

the induced test mass displacement (in meters) as

xT (f) = VT ΓT S(f) R(a,b) G(ai,b)(f) (3.16a)

xR(f) = VR ΓR S(f) R(a,b) G(ai,b)(f) (3.16b)

where ΓT and ΓR are the force coefficients for the transmitter and receiver module

power sensors in newtons per volt (see Eq. 3.30) and S(f) is the force to length

transfer function of the Advanced LIGO quadruple suspension system. R(a,b) is a

frequency independent factor that accounts for the apparent length variation caused

by rotation of the test mass given by

R(a,b) =

[
1 +

M

I
(~a ·~b)

]
(3.17)

and G(ai,b)(f) is a frequency dependent factor that accounts for the elastic deformation

of the test mass due to Pcal forces.

3.3.1. Absolute Laser Power Calibration

Measuring the modulated laser power reflecting from the mirror with the required

accuracy is one of the principal challenges for Pcal systems. An integrating sphere

based power sensor called the Gold Standard (GS) is maintained in one of the optics

1The output signals from the digital system are in counts. The counts are converted into volts
by using a constant conversion factor of 216 counts for ± 20 volts or 1638.4 counts per volt. For
Advanced LIGO DAQ system these conversions are calibrated within ±5 counts/V.
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FIGURE 3.15. A block-diagram showing the calibration transfer process

laboratories at the LIGO Hanford Observatory (LHO). The GS is calibrated annually

at NIST, which provides traceability to SI units. The calibration of the Gold standard

is then transferred to similar power sensors called Working Standards (WS). Each

observatory has a Working Standard. The Working Standards are then used to

calibrate the power sensors in the Pcal transmitter and receiver modules. This

calibration transfer process is shown schematically in Fig. 3.15. The calibrated

power sensors in the Pcal modules are then used to estimate the power leaving the

transmitter module and the power entering the receiver module using the following
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relations:

PT (t) =
VT
ρT

(3.18a)

PR(t) =
VR
ρR

(3.18b)

where, ρT and ρR are the responsivity of the transmitter and receiver module power

sensors in units of V/W and VT and VR are the voltages reported by these power

sensors. The responsivities are determined from three sets of measurements: the

Gold Standard calibration at NIST, Gold Standard to Working Standard relative

responsivity measurement in the LIGO Hanford Observatory laboratory, and finally

the Working Standard to Pcal power sensors relative responsivity measurements at

the interferometer end stations. The responsivities, ρT and ρR, are given by

ρT = αTW αWG ρG (3.19a)

ρR = αRW αWG ρG (3.19b)

where ρG is the responsivity of the GS, αWG is the responsivity ratio between the GS

and the WS and αTW and αRW are the responsivity ratios between the WS and the

transmitter module power sensor and the receiver module power sensor respectively.

Each step in this power calibration process is described in detail below.

Gold Standard Calibration(ρG):

The Gold Standard is a power sensor based on a 4 inch diameter integrating

sphere manufactured by Labsphere (Model:3P-040-LPM-SL) with a Spectralon

interior, a 1” diameter entrance aperture, and two 1/2”diameter detector apertures.
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FIGURE 3.16. Gold Standard setup showing the power sensor mounted on an
integrating sphere with Keithley Model 428 programmable current amplifier and
Keithely Model 2100 digital multimeter.

An unbiased InGaAs photodetector is mounted to one of the sphere’s detector

apertures. The GS setup, shown in Fig. 3.16, includes a Keithley Model 428

programmable current amplifier and a Keithley Model 2100 digital multimeter.

This setup is sent to NIST for calibration annually. NIST provides the calibration

of the Gold Standard that is traceable to Systéme International (SI) units in volts per

watt of laser power. Four such calibration measurement result for the Gold Standard

are plotted in Fig. 3.17.

To estimate ρG, we calculate the mean of all valid and relevant measurements.

Each NIST measurement has a 2-σ (expanded) relative uncertainty of approximately

0.88 % [60]. The source of uncertainties in Gold Standard calibration and how they

are incorporated into the overall laser power calibration uncertainty is discussed in

Sec. 3.4.
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FIGURE 3.17. Variation in the value of Gold Standard responsivity measurement.

Relative responsivity of Gold Standard to Working Standard (αWG)

The calibration of the Gold Standard is transferred to similar integrating sphere

based power sensors called Working Standards (WS). Each interferometer has its own

Working Standard labeled “WSX” where ‘X’ denotes the first letter of the detector

(H for Hanford and L for Livingston). The calibration transfer is made by taking

ratio measurements between the Gold Standard and the Working Standard using the

setup shown schematically in Fig. 3.18.

For the first measurement the two power sensors are placed in the transmitted

and reflected beam paths as shown in Fig.3.18(a) and the time series of the

photodetector outputs are recorded. The output of each detector can be written

as

VWX
(t1,i) = TBSPl(t1,i)ρWX

(3.20a)
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FIGURE 3.18. Schematic of the setup used to transfer the Gold Standard calibration
to a Working Standard. The two measurements are made in order to factor out
potential variations in the laser power and the beam splitter ratio.

VG(t1,i) = RBSPl(t1,i)ρG (3.20b)

where, Pl is the output power of the laser source, ρG and ρWX
are the responsivities

of the Gold Standard and the Working Standard respectively and TBS and RBS are

the transmission and reflection coefficients of the beam splitter.

Then, a second measurement is made after switching the power sensor positions

as shown in Fig.3.18(b). The output of each detector can then be written as

VWX
(t2,i) = RBSPl(t2,i)ρWX

(3.21a)

VG(t2,i) = TBSPl(t2,i)ρG (3.21b)

We can divide out laser power variations by taking ratios of the simultaneously

measured voltages VWX
(t, i) and VG(t, i) for each set of measurement.

R1 =
1

N1

N1∑
i=1

VWX
(t1, i)

VG(t1, i)
=
TBSρWX

RBSρG

(3.22a)
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R2 =
1

N2

N2∑
i=1

VWX
(t2, i)

VG(t2, i)
=
RBSρWX

TBSρG

(3.22b)

We can eliminate the beam splitter transmission and reflection coefficients,

assuming they have not changed between first and second measurements, by taking

the product of R1 and R2. The resultant ratio between the Working Standard and

Gold Standard responsivities, αWG, can thus be written as

αWG =
√
R1 R2 ≡

ρWX

ρG
(3.23)

One can see that αWG, by definition, is obtained from the measurements alone

without explicitly knowing the responsivity of either the Gold Standard or the

Working Standard. These responsivity measurements are performed periodically in

the optics laboratory at LHO where the Gold Standard is maintained. The Hanford

Working Standard (WSH) was measured more frequently, whereas the WSL is shipped

from LIGO Livingston Observatory (LLO) at the beginning and the end of each

observing run and every 6 months after. Fig 3.19 shows the long-term trends of the

responsivity ratios of WSH and WSL to GS respectively. The standard deviation in

these measurements over a period of four years is about ± 0.2 %.

During these measurements, slow variations in the detector signals on the order

of 1% peak-peak with periods of tens of seconds are observed as shown in Fig. 3.20.

These variations are attributed to laser speckle in the integrating spheres due to the

coherent combination of multiple scatterings inside the integrating sphere [61]. The

impact of laser speckle is minimized by taking the average of the ratios of the data

collected for a period of several minutes.

The Gold Standard and the Working Standards have the same design features

and operate on the same principle. If there are common mode changes in the
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FIGURE 3.19. Working Standard to Gold Standard Ratio trend for the Hanford and
Livingston Working Standards.

responsivities, those changes would not be captured in the ratio measurements. In

order to have an independent measurement of the stability of these standards, the

responsivity of the Gold Standard is also compared to a thermopile-based power sensor

referred to as the Checking Standard (CS). The trend of the relative responsivity

ratios between the Gold Standard and the Checking Standard (αCG) is plotted in

Fig. 3.21. Although these measurements show larger variations compared to the

integrating sphere based power sensor measurements; fairly normal distribution of the

data indicates that there is no common-mode systematic error in the Gold Standard

and the Working Standard calibrations.
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FIGURE 3.20. Output of a calibration standard showing correlated output variations
due to laser speckle.

Relative responsivity of Working Standard to end station power sensors (αTW and αRW )

The next step is the measurement of the relative responsivities of the Pcal power

sensors inside the Pcal transmitter and receiver modules with respect to a Working

Standard. This will eventually provide absolute calibration of Pcal power sensors

traceable to SI units. A Working Standard is used to measure the power of each of

the two Pcal beams before it leaves the transmitter module and after it reflects from

the test mass surface and propagates to the receiver module. The appropriate ratios

between these measurements give us the relative responsivity between the Working

Standard and the Pcal power sensors. Here assumption is made that the wedged

beam splitter ratio that samples the light that goes to the transmitter module power

sensor and the light that goes towards the vacuum enclosure remains constant. These

measurements also give additional information about the laser power ratio between

the two Pcal beams and the optical efficiency of the system for each beam. Using

a technique similar to that used for relative responsivity of the Gold Standard to

66



2014-06

2014-12

2015-06

2015-12

2016-06

2016-12

2017-06

2017-12

2018-06
−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

V
ar

ia
ti

on
[%

]

CS/GS; σCG =0.36%

1-σ Standard Deviation

FIGURE 3.21. Checking Standard to Gold Standard responsivity ratio trend.

Working Standard, we can define the relative responsivities of Pcal power sensors

and the Working Standard, (αTW and αRW ), as

αTW =
1

m1 +m2

≡ ρT
ρWX

(3.24a)

αRW =
1

2

(
m5

m3

+
m6

m4

)
≡ ρR
ρWX

(3.24b)

where ρT and ρR are the responsivity of transmitter module and receiver module

power sensor respectively and m1 to m6 are the set of six ratio measurements taken

between the working Standard and Pcal power sensors. The detailed measurement

procedure and the derivation of Eq. 3.24 are described in Appendix A.
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Corrections for Optical Efficiencies

During normal operation of a Pcal system, the laser power leaving the transmitter

module, PT (t), is monitored by the transmitter module power sensor and the laser

power reflected from the ETM and reaching the receiver module, PR(t), is measured

by the power sensor in the receiver module. The combined power in the beams

incident on the ETM surface is between PT (t) and PR(t), depending on the optical

losses between the transmitter and receiver modules. Assuming that the power loss

is evenly distributed between the incident and the reflected beam we can write the

power incident on the test mass as the mean of the power measured by the transmitter

module power sensor and the receiver module power sensor 2. Thus, the power

incident on the test mass surface, PM(t) is given by

PM(t) =
1

2
(PT (t) + PR(t)) (3.25)

Given that the optical efficiency of the system can be written as, e = PR(t)/PT (t),

we can write PT (t) and PR(t) as

PT (t) =
2

1 + e
PM(t) ≡ ET PM(t) (3.26a)

PR(t) =
2e

1 + e
PM(t) ≡ ER PM(t) (3.26b)

2In vacuum optical efficiency measurements were made after the O2 observing run to improve
the uncertainty in power estimated at the test mass and is described in Appendix B

68



where ET and ER are correction factors for optical efficiency. Using the definitions of

responsivity in Eq. 3.18, we can write the voltages measured by the power sensors as

VT(t) = PT (t)ρT = PM(t) [ET ρT]︸ ︷︷ ︸
ρ′T

(3.27a)

VR(t) = PR(t)ρR = PM(t) [ER ρR]︸ ︷︷ ︸
ρ′R

(3.27b)

Here ρ′T and ρ′R are responsivities of the transmitter and receiver module power sensors

corrected for optical efficiency. They can be written in an expanded form using

Eq. 3.19 as

ρ′T = ET αTW αWG ρG (3.28a)

ρ′R = ER αRW αWG ρG (3.28b)

These responsivity factors provide estimates of the laser power at the test mass surface

given by

PM(t) =
VT (t)

ρ′T
=
VR(t)

ρ′R
(3.29)

This shows that the estimate of the power measured by either of the Pcal power

sensors is theoretically the same, but the RxPD is more reliable and thus the preferred

choice because it receives all the power and is thus not subject to changes in the

wedged beam splitter (WBS) reflectivity which is the pick-off point for TxPD.

During the upgrade between second and third observing run and when

this dissertation was already in its mature state, in-vacuum optical efficiency

measurements were made thus providing an ability to determine the amount of power

loss between the transmitter side and the receiver side. This led to a new scheme
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where the overall power loss inside the vacuum enclosure measured during future

calibration measurement can be partitioned between the transmitter and receiver

module to estimate the actual power at the test mass surface. The procedure, along

with the uncertainty calculation associated with this scheme, is described in detail in

Appendix B.

3.3.2. Pcal Force Coefficient: ΓT and ΓR

The modulated laser power that reflects from the test mass exerts a force that is

directly proportional to the laser power. The Pcal force coefficient, Γ, (in N/V) can

be defined as

ΓT =
2 cos(θ)

c

1

ρTe
(3.30a)

ΓR =
2 cos(θ)

c

1

ρRe
(3.30b)

where ρ′T and ρ′R (in watts per volts) are the calibration coefficient of the power

sensors such that each power sensors provide an estimate of the laser power reflecting

from the surface of the test mass (mirror). The angle of incidence at which the Pcal

beams impinge on the test mass surface, θ, determined from design drawings for the

interferometer hardware, is 8.75 deg and c is the speed of light, 299792458 m/s.

The calibration, up to this point where we determine the Pcal force coefficient

is carried out in steady state (no modulation). The parameters that were used to

calculate the LHO Y-end force coefficients that were used during the Advanced LIGO

second observing run, and their associated uncertainties, are shown in Table 3.1.
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Parameter Symbol Value

Angle of incidence cos θ cos(8.75) ± 0.07 %

GS responsivity ρG -1.7001 ± 0.51 %

WS/GS responsivity ratio αWG 0.9266 ± 0.003 %

OE correction factor ET (ER) 1.0058 (0.9941) ± 0.37 %

WS/Tx,Rx responsivity ratio αTW (αRW ) -2.7447 (-4.0193) ± 0.05 %

Speed of light c 299792458 ± 0.0 %

Force coefficient ΓT (ΓR) 1.5160e-09 (1.0475e-09) ± 0.64 %

TABLE 3.1. Parameters used to calculate the LHO Y-end Pcal power sensor force
coefficient, along with their associated uncertainties, during the O2 observing run.

3.3.3. Suspension Transfer Function: [S(f)]

The suspension transfer function, S(f), describes the dynamics of the test mass

in response to applied forces. For a simple pendulum, at frequencies well above the

resonance frequency, S(f) can be approximated by free mass motion and is given by

1/Mω2. For Advanced LIGO test mass, which are suspended cascaded quadruple

pendulums, this transfer function is valid for frequencies well above the resonance

frequencies of ∼1 Hz. However, for frequencies close to resonance, the transfer

function is complicated, as shown in Fig. 3.22. To consider frequencies close to

pendulum resonances, we use the measured transfer functions of the Advanced LIGO

suspension systems to calibrate the Pcal power sensors. The suspension force-to-

displacement transfer function is imported from a MATLAB model and is separated
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FIGURE 3.22. True force to displacement transfer function of the Advanced LIGO
test mass plotted in green and the same transfer function approximated using the
free-mass motion plotted in red. Inset: Normalized suspension transfer function,
‘susnorm’.

into three components such that:

S(f) = kmpN × S⊥(f)×H⊥(f) (3.31)

where

– kmpN (m_per_N) is a constant factor that normalizes the suspension transfer

function at DC. This is realized by simply picking the value of S(f) at a few

mHz.
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FIGURE 3.23. MEDM screen showing the filter modules for the Photon Calibrator
channels from the transmitter and receiver module power sensors. The input to these
modules are digitized signals of the power sensors, which are appropriately and the
ouput is the

– S⊥(f) (susnorm) is the residual frequency response that has been normalized

at DC and divided by two normalized poles at 1 Hz. The resultant transfer

function is shown in the inset of Fig. 3.22.

– H⊥(f) (:1,1) is the transfer function of two normalized poles at 1 Hz that

compensate the two poles removed from normalized frequency response.

As part of the interferometer calibration process the Pcal force coefficient (N/V)

from Sec. 3.3.2 and the three components of the suspension transfer function are

entered into a filter bank that conditions the signals from the power sensors at the

end station as shown in Fig. 3.23. The second component (the two normalized poles

at 1 Hz) from the suspension transfer function is not applied to the signals. This is

left out in order to whiten the signals at high frequency and thus reduce the range

of the signal that is recorded. To obtain the output signals in units of meters, the

Pcal signals recorded in the front-end system are de-whitened by reapplying the two

normalized poles at 1 Hz that were omitted to whiten the signals. Additionally, the
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poles at 1 Hz.

signals must be corrected for the frequency-dependent distortion created by the anti-

aliasing filters and phase delays incurred within LIGO’s data acquisition system. This

process is shown in the block diagram in Fig. 3.24.

3.4. Uncertainty Analysis

Estimating the uncertainty in displacement calibration using the Photon

calibrator relies on uncertainty estimates for the parameters used to calculate

displacement from the Pcal power sensor signals. The main sources of uncertainty

are described in detail below.

3.4.1. Uncertainty in Gold Standard (GS) Calibration

Each Gold Standard calibration measurement from NIST comes with an

approximately 0.44 % 1-σ uncertainty. This uncertainty is determined from various
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components of the NIST calibration process and contains two types of uncertainty,

Type-A and Type-B [62].

For statistical, type A, uncertainties the components are assumed to be

independent and normally distributed and hence the relative standard uncertainty

is determined using the following relation [62]:

urel,A =
1

x̄
√
N

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2 (3.32)

where xi are the individual measurements, x̄ is the average of the measured values,

and N is the number of measurements.

For type B uncertainties, the uncertainties are assumed to be independent and

have a uniform or rectangular distribution such that the probability of a a value being

anywhere within the region, ±δrel, is equal and the probability of the value being

outside this range is zero. The relative standard uncertainty for such components is

given by [62]:

urel,B =
δrel√

3
(3.33)

The overall uncertainty is estimated by adding the relative uncertainties of all type

A and B components in quadrature,

urel =
√∑

u2
rel,A +

∑
u2
rel,B (3.34)

The 0.44 % 1-σ uncertainty on each Gold Standard calibration measurement is

calculated using Eq. 3.34. Type B components remain unchanged each time the

standard is sent for calibration because the uncertainty in these components are drawn

from the knowledge of past measurements and device history. Type A components
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Date Calibration factor Std. Deviation Uncertainty

(V/W) (%) (1-σ )

2014/08/12 -1.6935 0.13 ± 0.44

2015/10/17 -1.7067 0.25 ± 0.43

TABLE 3.2. Gold Standard calibration Measurements carried out at NIST with their
associated uncertainty.

will change between measurements but provide a smaller contribution to the overall

uncertainty.

At the beginning of the O2 observing run, there were two Gold Standard

calibration measurements, shown in Table 3.2, each with approximately 0.44 %

relative standard uncertainty. Using these two measurements, relative standard

uncertainty on the Gold Standard was estimated using the following relation

urel, ρG =
1√
n

(
σρ

G

|ρ
G
|

)
× S(n) (3.35)

where |ρ
G
| and σρ

G
are the weighted mean and the weighted standard deviation of

the Gold Standard calibration measurements and S(n) is the students-T correction

for small sample size.

The estimated relative standard uncertainty on ρ
GS

, using Eq. 3.35, was 0.51 %.
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Working Standard # Meas α
WXG

σα
WXG

urel, αWXG

WSH 34 0.9268 0.0003 0.0003

WSL 13 0.8896 0.0003 0.0003

TABLE 3.3. Weighted mean values and their associated uncertainties for Hanford
and Livingston Working Standard to Gold Standard ratio measurements.

3.4.2. Uncertainty in WS to GS relative responsivity measurements

The mean of the Working Standard to Gold Standard relative responsivity, α
WXG

,

is estimated using the following relation

α
WXG

=
1

N

∑
α
WXG

(i) (3.36)

and the uncertainty on the mean is calculated using

urel, αWXG =
1√
n

(
σα

WXG

α
WXG

)
× S(n) (3.37)

where σα
WXG

is the standard deviation of the n ratio measurements. The students-

T correction, S(n), is applied if the sample size is small. The weighted mean

values and their associated uncertainties for the Hanford and Livingston Working

Standard relative responsivity measurements used during O2 observing run are shown

in Table. 3.3.

3.4.3. Uncertainty in End-station ratio measurements

The end station relative responsivity measurements produce two quantities,

the optical efficiency of the system (incorporated into ET and ER) and the relative
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responsivities of the Pcal power senors with respect to the Working Standard (αTW

and αRW ). Since, ET and αTW (ER and αRW ) in equation 3.28 come from same set of

measurements, for uncertainty calculation we define effective relative responsivities,

α′TW and α′RW , as follows

α′TW = ET · αTW (3.38a)

α′RW = ER · αRW (3.38b)

Contributions to the uncertainty in the effective relative responsivities include three

components: statistical uncertainties associated with a single set of measurements,

uncertainty associated with the variations in the relative responsivity values between

measurements, and the uncertainty associated with optical efficiency.

Statistical uncertainty from a single set of measurements

The statistical uncertainty associated with each end station measurement is

mostly attributed to laser speckle. We use six minutes of data acquired at 16 kHz,

calculate ratios point-by-point, then calculate the mean and the standard deviation

of the ratios for each measurement (m1 to m6). The effective relative responsivities,

α′TW and α′RW , can be written in terms of these six ratios as

α′TW =
2

(m1 +m2 +m3 +m4)
(3.39)

α′RW =
1

(m1 +m2 +m3 +m4)︸ ︷︷ ︸
a

·
[
m5 +

m3m6

m4

+
m4m5

m3

+m6

]
︸ ︷︷ ︸

A

=
A

a
(3.40)
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Differentiating with respect to each ratio, the relative uncertainty in α′TW and α′RW

can be written as

(
urel, α

′
TW

)
stat

=

[
(σm1)

2 + (σm2)
2 + (σm3)

2 + (σm4)
2
] 1

2

|(m1 +m2 +m3 +m4)| (3.41)

(
urel, α

′
RW

)
stat

=
1

A
·
{(

A

a

)2

σ2
m1

+

(
A

a

)2

σ2
m2

+

(
1 +

m4

m3

)2

σ2
m5
. . .

+

(
m6

m4

− m4m5

m2
3

− A

a

)2

σ2
m3

+

(
1 +

m3

m4

)2

σ2
m6
. . .

+

(
m5

m3

− m3m6

m2
4

− A

a

)2

σ2
m4

} 1
2

(3.42)

where σmi are the standard deviations of the corresponding ratios. These statistical

uncertainties are plotted as error bars in Fig. 3.25 and are used as weighting factors

to estimate the mean and standard uncertainty from multiple measurements.3

Standard uncertainty on the mean of multiple measurements

The weighted mean, α′
TW

and α′
RW

, of these effective relative responsivities is

given by:

α′
TW (RW )

=

∑
(α′

TW (RW )
(i)× wi)∑
wi

(3.43)

where the weighting factor, wi, is calculated from the statistical variance for each

measurement and is given by

wi =
1(

urel, α′TW (RW )
(i)stat

)2 (3.44)

3Refer to Appendix A for the derivation of Eqs. 3.39 -3.42.
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FIGURE 3.25. Ratio of Pcal power sensors (TxPD and RxPD) to Working Standard
(WS) measurements from all four end stations over a period of three years. The ±1-σ
standard deviation shown as horizontal bands is 0.15% for αRW and 0.19% for αTW .

The relative standard uncertainty on the mean is given by

urel, α′TW (RW )
=

1√
n

(
σα′

TW (RW )

α′
TW (RW )

)
× S(n) (3.45)

where σα′
TW (RW )

is the weighted standard deviation of the effective relative responsivity

of Pcal power sensors to the Working Standard and S(n) is the correction prescribed

by the Student’s t-distribution for small sample numbers.
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Parameter
LHO LLO

Y-End[63] X-End[64] Y-End[65] X-End[66]

α′
TW

-2.7608 -3.5467 -2.7392 -2.5902

α′
RW

-3.9957 -4.4511 -4.1603 -4.0881

TABLE 3.4. Effective relative responsivities of Pcal power sensors to Working
Standards for Hanford (LHO) and Livingston (LLO) observatories used during O2
observing run.

The weighted mean values of α′
TW

and α′
RW

for the Hanford and the Livingston

observatories used during the O2 observing run are listed in Table. 3.4. The relative

uncertainty on these mean values, calculated using Eq. 3.45, is typically about 0.05%;

it varies between 0.03% and 0.06%. We used the typical value for calculating the

overall uncertainties in the effective relative responsivities.

Type B uncertainty from optical efficiency

The effective relative responsivities are calculated with the assumption that the

optical losses are equally divided between the input and output paths (and that the

ETM reflectivity is 1.0) as shown in Eqs. 3.38a and 3.38b. Lacking measurements

that allow us to divide the optical losses between the input and output paths, we use

a rectangular distribution (Type-B uncertainty) with full-width equal to the optical

efficiency deficit and estimate the uncertainty using the following relation [62]

urel, ET = urel, ER =
1√
3

(
1− e

2

)
. (3.46)
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Given that the optical losses between the transmitter module and the receiver module

are about 1.3% in general, the associated 1-σ uncertainty is about 0.37% (1.3%/2
√

3).

3.4.4. Uncertainty estimate in Pcal Force Coefficient

The estimate of the overall uncertainty in Pcal Force coefficient ΓT and ΓR is

calculated by adding the relative uncertainties in all (uncorrelated) terms in Eqs. 3.28

and 3.30 in quadrature. The overall uncertainty is thus given by

urel,ΓT/R =

{
(urel, cos θ)2 +

(
urel, ρGS

)2
+
(
urel, αWG

)2
+

(
urel, ET/R

)2
+
(
urel, α′TW/RW

)2
} 1

2
(3.47)

The maximum deviation in the cosine of the incidence angle in Eq. 3.47 is bounded

by the size of the periscope optics (2 in. diameter) and their incidence angles that

relay the beams to the end test mass. The 1-σ (Type B) relative uncertainty in the

cosine of the angle is 0.07 %. The relative uncertainty in the components described

above that contributed to the uncertainty in Pcal Force coefficients, calculated for

the O2 observing run, are shown as an example in Table 3.5.

3.4.5. Uncertainty due to Pcal beam spot misplacements

The misplacements of the Pcal and the interferometer beams introduce error in

calibration either by introducing a unwanted rotation of the test mass or through the

excitation of the normal modes of the test mass. The impact of the excitation of the

test mass normal modes, also referred to as bulk elastic deformation, will be discussed

in detail in Chapter 5. Here the impact of rotation is discussed. Using Eq. 3.17 to
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Parameter
Relative

Uncertainty

NIST -> GS [ρGS] 0.51 %

WS/GS [αWG] 0.03 %

Rx/WS [α′RW ] 0.05 %

Optical efficiency [ET ] 0.37 %

Angle of incidence [cos θ] 0.07 %

Force Coefficient (ΓR) 0.64 %

TABLE 3.5. Uncertainty estimate for the receiver module power sensor force
coefficient. The NIST calibration and the optical efficiency are the most significant
contributors to the uncertainty budget.

account for the apparent length variation caused by rotation, we define ∆R(a,b) as

∆R(a,b) ≡ |~a||~b|
M

I
(3.48)

Considering that the angle between the Pcal force displacement vector and the

interferometer beam centroid displacement vector could be between 0 and 360 degrees,

the value of the rotation induced apparent displacement factor, R(a,b), is between

1-∆R(a,b) and 1+∆R(a,b). Because the probability that the value being anywhere

between these extremes is equally likely and probability of being outside this range

is zero, we treat the uncertainty on this quantity as of Type B. It is given by

urel,R(a,b) =
∆R(a,b)√

3
(3.49)
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Estimates of Pcal beam offsets (~a)

Including the impact of imbalance of the powers in the two Pcal beams, the

location of the Pcal center of force is given by:

~a =
β ~a1 + ~a2

β + 1
(3.50)

where ~a1 and ~a2 are the displacement vectors of the two Pcal beams about the center

of the mirror face and β is the ratio of beam powers, P1/P2 [54].

To consider the case where the effects of Pcal beam offset and power imbalance

are determined separately, Eq. 3.50 can be re-written by expanding the Pcal beam

displacement vectors as

~a1 = ~a0 + ~∆a1 (3.51a)

~a2 = −~a0 + ~∆a2 (3.51b)

where |~a0|= 111.6 mm (in ±y-direction) is the nominal pcal beam displacement from

the center of the optic as shown in Fig. 3.26

Rewriting Eq. 3.50 using Eqs. 3.51a and 3.51b yields,

~a = ~a0
(β − 1)

(β + 1)
+

(β ~∆a1 + ~∆a2)

β + 1
(3.52)
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FIGURE 3.26. Schematic showing the positions of the Pcal and interferometer beams
on the surface of the test mass. The beam positions and beam sizes are exaggerated
for better visualization.

To decouple beam offsets from the power imbalance, the second term in Eq. 3.52 can

be rewritten using β = 1 + δβ. Here, δβ is small because β is within 1-2% of 1.

~a = ~a0
(β − 1)

(β + 1)
+

(
(1 + δβ) ~∆a1 + ~∆a2

1 + δβ + 1

)

~a = ~a0
(β − 1)

(β + 1)
+

(
~∆a1 + ~∆a2 + δβ ~∆a1

2 + δβ

)
(3.53)

Ignoring terms to first order in δβ,

~a ≈ ~a0
(β − 1)

(β + 1)︸ ︷︷ ︸
~m

+
( ~∆a1 + ~∆a2)

2︸ ︷︷ ︸
~n

(3.54)
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To estimate the worst-case scenario, we assume that the offset induced by power

imbalance is in the same direction as the center of force offset induced by beam

position offsets. Thus the maximum magnitude of ~a is |~m| + |~n|. The offset in the

Pcal beam position, ~n, can be determined using the Pcal beam localization system

described in detail in Sec. 3.2.4. The“effective” beam offset (~m) induced by power

imbalance can be determined from the end-station calibration measurement, where

~m = 111.6×
(
β − 1

β + 1

)
(3.55)

Estimates of Main Interferometer Beam offsets (~b)

For each ETM, we take the largest observed excursion in the horizontal direction

and add it in quadrature with the largest observed excursion in the vertical direction.

This gives an upper bound on the expected displacement of the interferometer beams

from the center of the ETM.

Uncertainty estimate in R(a,b) for O2

In order to estimate the rotation-induced uncertainty, we used the maximum

value of 0.98 for power ratios between the two Pcal beams (β) observed during O2

observing run to get an effective center of force position offset of 1.1 mm, i.e. ~m =

1.1 mm using Eq. 3.55. The moment of inertia, I, was determined from test mass

fabrication drawings and the value that produced the maximum rotation of the test

mass (in this case, the lowest value) was used. For Pcal beam positions offsets, the

displacements estimated using the Pcal beam localization systems were used. For the

interferometer beam offsets the worst-case scenario for each ETM was considered from

interferometer beam position studies carried out by colleagues at the observatories.
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End Station ~n ~a ~b
Mass
(M)

∆R(a,b) urel,R(a,b)

LLOX 3.65 4.75 13 39664 0.0060 0.35 %

LLOY 3.84 4.94 3.6 39608 0.0017 0.01 %

LHOX 7.63 8.73 7.3 39647 0.0062 0.36 %

LHOY 0.70 1.80 5 39641 0.0009 0.05 %

TABLE 3.6. Rotation induced uncertainty for each end test mass (ETM) and the
components that were used to calculate them during the O2 observing run.

The values for both the Pcal and interferometer beam position offsets are listed in

Table 3.6. Using these values and the mass of each test mass, the rotation-induced

uncertainty for each test mass was estimated using Eq. 3.49. They are listed in

Table. 3.6. During the O2 observing run, for convenience, the single value (largest

from the table) of 0.36 % was used for Pcal error estimation for all test masses.

3.4.6. Uncertainty in Suspension transfer function

The only uncertainty associated with the suspension transfer functions

considered during the O1 and O2 observing runs was the uncertainty in the

determination of the ETM masses. This relative uncertainty is less than 0.005 %.

The comparison between the actual ETM force-to-length transfer function, S(f),

to that estimated using the “free mass” approximation is shown in Fig. 3.27. The

residual is well below 0.1% for frequencies above 30 Hz, where most of the calibration

lines are placed.
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FIGURE 3.27. Ratio between the actual Advanced LIGO test mass suspension
transfer function to the one approximated as a free mass.

3.4.7. Uncertainty in Pcal-induced displacement

The overall uncertainties in the calibration of the Pcal power sensor channels

can be estimated by adding, in quadrature, the uncertainties associated with the

three major components of Eq. 3.16: the Pcal force coefficient (ΓT/R), the unintended

rotation factor, and the suspension transfer function as

urel, xT/R =
[(
urel,ΓT/R

)2
+
(
urel,R(a,b)

)2
+
(
urel, S(f)

)2
] 1

2
(3.56)

The overall calibration uncertainty in Pcal induced length modulation and the factors

contributing to it are listed in Table 3.7. Thus for the O2 observing run, the total

calibration uncertainty associated with Pcal was less than one percent at 0.75%.
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Parameter
Relative

Uncertainty

Force Coefficient [ΓR] 0.64 %

Mass of test mass [M ] 0.005 %

Rotation [R(a,b)] 0.40 %

Overall 0.75 %

TABLE 3.7. Uncertainty in the Pcal induced length modulation, x(f), in Eq. 3.10.
The power calibration and the rotational effect introduce the most significant
uncertainty. The rotational effect can be minimized by precise location of the Pcal
beams.

3.5. Potential Sources of Systematic Errors

3.5.1. NIST Absolute Power Calibration Accuracy

As mentioned earlier in this chapter, the calibration accuracy of the Pcals relies

on our ability to measure laser power accurately. For LIGO, laser power calibration

traceable to SI units is provided by NIST, so if there is any systematic error in the

NIST calibration, it will manifest as an error in absolute displacement calibration.

Between 2005 and 2007, national metrology institutes from nine countries, five in

Europe (France, Germany, Great Britain, Romania, Sweden) and four outside Europe

(Australia, Japan, South Africa, United States of America), measured two different

radiant laser power sensors (Ophir and Molectron) at various laser wavelengths and

power levels. Relevant for LIGO are measurements made at 1064 nm at power levels

of 1 W (Note that the Pcal wavelength is 1047 nm, close to the measured 1064 nm

wavelength).
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The comparisons are summarized in the report, Final report on EUROMET

comparison EUROMET.PR-S2 (Project No. 156): Responsivity of detectors for

radiant power of lasers [67]. Discrepancies between the values reported by NIST

and those reported by other national metrology institutes are as large as 3.5%.

Discussion with representatives at NIST revealed that NIST was the only

participant in the EUROMET study with a 100 mW-level power standard; all others

extrapolated from microwatt cryogenic radiometers. Additionally, transfer standards

data collected by NIST over periods as long as 30-40 years provide added confidence

that the calibration provided by NIST are accurately traced to the fundamental SI

units and the uncertainties stated are accurate.

Currently, NIST is working to initiate a new comparative study at 1-W level

among different metrology institutes, using LIGO-style power sensors.

3.5.2. 808 nm Laser Pump Light in Output Beam

The Pcal lasers are optically-pumped Nd:YLF solid-state lasers. The pump light

wavelength is 808 nm. Due to the different reflectivity of the optics for 808 nm

wavelength light, as well as the different responsivities of the power sensors, 808 nm

light in the Pcal laser beams could cause systematic calibration errors. To minimize

this potential source of error, the Pcal lasers incorporate a second internal filter to

reduce 808 nm light in the output to below the 1 mW level making this a negligible

source of error.

3.5.3. Beam Polarization Effects

The reflectivity of the non-normal-incidence optical components in the Pcal beam

paths (periscope relay mirrors, ETM, etc.) have different reflectivities for s-polarized
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and p-polarized light. The periscope relay mirrors have nominal angles of incidence of

45 deg. They have high reflectivity for p-polarized light and even higher reflectivity

for s-polarized light. For reflection from the ETM, the upper (inner) Pcal beam is

p-polarized and the lower (outer) beam is s-polarized. However, the angle of incidence

on the ETM is only 8.75 degrees and recent measurements performed at all four LIGO

end stations show that the reflectivity is at the level of 99.9%.

3.5.4. Frequency Response of Power Sensors

The Pcal power sensor photodetectors are designed to have frequency responses

that are flat within 0.01 dB (0.1%) for frequencies from DC to 10 kHz. Measurements

made during the assembly and testing of the photodetectors confirmed that they

meet this requirement. A similar measurement, comparing Livingston Y-end receiver

module photo detector (RxPD) to a Newport M2033 Germanium photodetector is

plotted in Fig. 3.28 [68]. It shows that the frequency response is flat at the level of

one-tenth of a percent up to 5 kHz.

3.5.5. Amplitude Response of Power Sensors

Non-linear amplitude response of the power sensors could cause systematic

errors. During fabrication and testing of the sensors, saturation in the photodetectors

was observed if the photocurrents were above 1 mA. The aperture diameter in the

photodiode adapters are designed to keep the photocurrents at a level of tens of

microamps.
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FIGURE 3.28. Frequency Response of the receiver module photodetector (RxPD)
compared to a Newport M2033 Germanium photodetector [68].

3.5.6. Laser Beam Diffraction

Laser light that diffracts out of the beams while they propagate from the

transmitter module to the receiver module, could impact the Pcal uncertainty. The

Pcal laser output beam was propagated over a path length of ∼12 m in the lab during

the assembly and the power as measured both at the laser output and at the distant

location. Differences in power was shown to be within measurement uncertainty.
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3.5.7. Temperature Dependence of Power Sensor Responsivity

The temperature coefficient of the InGaAs photodiodes that are used in our

power sensors is ≤ ± 0.1%/deg. The temperature of the measurement laboratory

at NIST is controlled to keep temperature variations to below ∼ 1 deg level.

The temperatures in the optics laboratory where the Working Standard to Gold

Standard responsivity measurements are made varies by several deg C, but this is a

common mode variation, i.e. the responsivities of both photodetectors are expected

to vary in the same way, so the ratio of responsivities is not expected to vary with

temperature.
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CHAPTER 4

APPLICATIONS OF PHOTON CALIBRATORS IN ADVANCED LIGO

Some of the contents described in this chapter has been published before in the

journal listed below:

S. Karki, D. Tuyenbayev, S. Kandhasamy, et al. “The Advanced LIGO photon

calibrators.” Review of Scientific Instruments, 87:114503, 2016.

In Advanced LIGO, Photon calibrators operate continuously, during normal

interferometer operations, to provide and monitor the calibration of the interferometer

output signals. These functions are realized by injecting Pcal excitations at discrete

frequencies. They are also used periodically to measure detector parameters– sensing

function, actuation function, signs and time delays– that impact the calibrated output

signals. These measurements are used to improve the calibration accuracy. Pcals

are also used to inject simulated gravitational wave displacements, both continuous

and transient, to test the efficiency, accuracy and robustness of the detection

pipelines. Furthermore Pcals have been used as low-noise displacement actuators to

maintain the resonant lengths of the interferometer arm cavities. Various functions

and measurements associated with Photon calibrator are described below in detail.

Measurements from only one detector (either LHO or LLO) are chosen to avoid

repetition.

4.1. Calibration Lines

The single-frequency length modulations induced using the Pcals are also referred

to as Calibration Lines. These calibration lines are run at multiple frequencies

simultaneously to provide continuous calibration of the interferometer signals and
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Freq.
(Hz)

DFT
Length
(sec)

Cal
Params

Required Pcal Power

O2 Sensitivity
Design

Sensitivity

36.7 10 Actuation 0.2 % 0.1 %

331.9 10 Sensing 8.0 % 4.0 %

1083.7 60 HF cal. check 75 % 24 %

TABLE 4.1. Photon Calibrator excitation frequencies during normal interferometer
operations. DFT intervals and percentage of available laser power required to generate
the excitations with SNR of 100, for O2 sensitivity and the Advanced LIGO design
sensitivity.

to track changes in the calibration. The nominal frequencies and amplitudes of these

Pcal excitations for LHO during O2 observing run are listed in Table 4.1.

Each calibration line frequency is chosen to most effectively inform various

interferometer parameters pertaining to the calibration, while avoiding the most

sensitive region of the detection band. The line near 37 Hz is used to measure

the actuation strength at that frequency and thus tracks temporal changes in the

strength of the test mass actuators. The excitation near 332 Hz measures the

sensing function at that frequency and tracks temporal change in the optical gain

and the coupled-cavity pole frequency of the interferometer response. For these lines,

SNRs of approximately 100 are required to enable calibration at the one percent

level with 10-second integration intervals. The line near 1.1 kHz is used to get

an independent check of the calibration far from the cavity-pole frequency. This

line utilizes approximately three quarter of the Pcal laser power and requires longer

integration time to get an appreciable SNR. These excitation frequencies are also

chosen to avoid known potential sources of gravitational wave signals, most of which

are rapidly-rotating neutron stars observed electromagnetically as pulsars. A Fisher-
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matrix-based approach towards the selection of these calibration line frequencies was

also explored and is described in [69, 70].

The amplitude of the laser power modulation required to induce a length

modulation with a desired SNR at a given frequency is given by

P (fi) =

(
c

2 cos θ · S(fi)

)
∆L(fi) SNR(fi)√

T
(4.1)

where fi is the modulation frequency, ∆L(fi) is the amplitude spectral density of the

interferometer sensitivity noise floor, and T is the measurement integration time.

Table 4.1 also lists the percentage of available Pcal modulated laser power

required to achieve an SNR of 100 with the listed discrete Fourier transform (DFT)

time for each excitation. All the calibration lines listed in table 4.1 are generated

using the Pcal system at one of the end station.

During the observing run O2, using the Pcal system at the other end station,

the one not being used for primary interferometer calibration, calibration lines were

injected at frequencies between 1 kHz and 5 kHz, one frequency at a time, to enable

more accurate calibration of the interferometer response at these frequencies. The

motivation for and results of these measurements are discussed in detail in Chapter 5.

For the Advanced LIGO Pcals the amplitude spectral density of the maximum

modulated displacement that can be achieved using all of the available Pcal laser

power is plotted in Fig. 4.1 for a 10-second integration interval. It falls as 1/f 2 due

to the force-to-displacement response of the test mass, from 1 × 10−14 m/
√

Hz at

20 Hz to below 2 × 10−19 m/
√

Hz at 5 kHz. Fig. 4.1 also shows the displacements

induced by the Pcal excitations during normal operation and the interferometer noise

floor in Sept 2015. Finally, the requirement for the maximum unwanted Pcal-induced

displacement noise, one tenth of the design sensitivity noise floor, is plotted. As the
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FIGURE 4.1. Maximum modulated displacement using all of the available Photon
Calibrator power at one frequency (red). Pcal-induced displacements in Sept. 2015
(blue) along with the Sept 2015 sensitivity noise floor (black) with a 10 second
integration time. The gray curve is the maximum allowed unintended displacement
noise, one tenth of the design sensitivity noise floor [55].

interferometer sensitivity improves and the noise floor approaches design levels, the

amplitude of the Pcal excitations can be reduced proportionately, reducing the laser

power required and therefore also the level of unwanted displacement noise.

4.2. Frequency Response Measurements

In order to measure the frequency dependent sensing and actuation functions of

the interferometer, a series of swept-sine measurements are made. A sensing function

measurement is made by comparing the interferometer response to differential

length variation, derr(f), to the excitation induced using a Pcal system, xT (f) and
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compensating for the suppression caused by the differential arm length (DARM)

feedback control loop shown in Fig 2.4. The measured interferometer sensing function,

C(meas)(f), is thus given by

C(meas)(f) =
derr(f)

xT (f)
[1 +G(f)] (4.2)

where the open-loop transfer function, G(f) = A(f)C(f)D(f), is measured separately

using in-loop suspension actuators over the same range of frequencies as above. For

frequencies above 1 kHz, the open-loop gain is negligible and thus the sensing function

is approximated by

C(meas)(f) ≈ derr(f)

xT (f)
(4.3)

A comparison between a sensing function “model”, determined using Eq. 2.12, and

the measurement made using Pcal and estimated using Eq. 4.2 is shown in Fig 4.2 as

an example.

An actuation function measurement for each stage in the cascaded pendulum is

achieved by first measuring the interferometer response to differential length variation,

derr(f), to excitations induced using the actuators on each stage, xi(f) which is given

by

derr(f)

xi(f)
=
Ai(f)C(f)

1 +G(f)
(4.4)

A second measurement is made by comparing the interferometer response to

differential length variation, derr(f), to an excitation induced using the Pcal system,

xT (f), at the same frequencies as the cascaded pendulum stage transfer function

measurements.

derr(f)

xT (f)
=

C(f)

1 +G(f)
(4.5)
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FIGURE 4.2. Comparison between a model of the interferometer sensing function
and measurement made using the Pcal system. The plot on the right shows the
residuals between the measurement and the model.

In order to make sure there is no change in the detector response between the

first and second swept-sine measurements, the second measurement is started just a

few minutes after the first so that it does not corrupt the first measurement but still

follows closely in time with the first sweep. Combining the two set of measurements

described by Eqs. 4.4 and 4.5, the measured actuation function,A
(meas)
i (f), can be

calculated using the following relation

A
(meas)
i (f) =

derr(f)

xi(f)

xT (f)

derr(f)
(4.6)
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A comparison between an actuation function “model”, determined using Eq. 2.13,

and the measured transfer function of different stages of the pendulum, estimated

using Eq. 4.6 is shown in Fig. 4.3.

FIGURE 4.3. Left: Comparison between actuation function models, determined
primarily from the mechanical response, for different stages of the pendulum and
measurement made using the Pcal system. Right:Cascaded quadruple pendulum
showing the top mass, PUM, UIM and the test mass (TST) [34]

During the course of observation runs, although the calibration is tracked by the

time-varying parameters calculated using the calibration lines, to assess the accuracy

of the calibration over a wide range of frequencies, these swept-sine measurements

are made during dedicated calibration interludes, the length of which are minimized

in order to maximize observing time. Thus, the Pcal displacement amplitudes must

be sufficiently large to complete the measurements in a relatively short time. Fig. 4.4

shows a typical transfer function from 20 Hz to 1.2 kHz, with approximately 60 points.

The measurement was made in approximately one hour; the measurement statistical

uncertainties, calculated from the coherence of the measurements, are approximately

1% in amplitude and 1 deg. in phase for frequencies between 20 Hz and 1.2 kHz .
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FIGURE 4.4. Magnitude and phase of a typical swept-sine measurement of the
transfer function between displacement induced (and calibrated) by the Pcal and
the calibrated output of the interferometer [55].

The statistical variation are higher in the band from 20 to 30 Hz due to resonances

in the suspension systems of ancillary interferometer optics.

Rather than injecting Pcal excitations at discrete frequencies, the transfer

function can also be measured simultaneously by injecting a broadband signal. This

can potentially make the calibration comparison process faster and more accurate.

It also has the potential of revealing features in the transfer function that might

be missed in measurements made only at discrete frequencies. However, this type

of measurement is also limited by the available Pcal laser power. To assess the

101



101 102

Frequency (Hz)

10−20

10−19

10−18

10−17
D

is
p

la
ce

m
en

t
(m

/√
H

z)

GDS (NO INJ)

PCAL

GDS (WITH PCAL INJ)

FIGURE 4.5. Pcal broadband displacement excitation (black) and calibrated
interferometer output signal with (blue) and without (red) the Pcal excitation [55].

feasibility of this method, a broadband signal covering the 30-300 Hz frequency band,

band-pass filtered to attenuate it at higher and lower frequencies, was injected into

the Pcal Optical Follower Servo. Fig. 4.5 shows the displacement injected by the Pcal

together with the calibrated interferometer output signal both with and without the

Pcal excitation. No unexpected discrepancies that might have been missed by the

discrete-frequency transfer function measurement were identified. As the sensitivity of

the interferometers improves, the band over which this method is useful will increase.

These measurements have not been used extensively thus far, but will potentially be

a part of routine calibration measurements during future observing runs.
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4.3. Differential-mode and Common-mode Actuation

Normally, the differential length response of the detector is calibrated using

one Pcal system varying the length of only one interferometer arm. The Advanced

LIGO interferometers, however, have Pcal systems installed at both end stations.

They can be used simultaneously to produce either pure differential arm length

variations, where the two arms of the interferometer stretch and contract out of

phase or pure common arm length variations, where the arms stretch and contract in

phase. Comparing differential and common excitations, enables diagnosing systematic

differences between the two arms and quantifying the coupling between common-arm

motion and differential-arm motion.

A comparison of differential-and common-mode actuation of the interferometer

using the Pcals is shown in Fig. 4.6. Both Pcal systems induced modulated

displacements of equal amplitudes, as determined by the calibration of the Pcal

receiver module power sensors. The relative phases of the excitations was changed

from 0 deg. (in phase) to 180 deg. (out of phase) to transition between common and

differential-mode actuation. Less than 0.2 % of the common-mode motion is sensed

as differential-mode motion by the interferometer.

The ability to precisely vary the amplitude and phase of the injected length

modulations enables high-precision calibration measurements without inducing large

amplitude lines in the output signal. This can be realized by canceling length

excitations injected by other actuators with Pcal lines injected at the same frequency

but 180 deg. out of phase.
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4.4. Measuring Time Delays and Signs

Radiation pressure actuation via the Pcals has a simple phase relationship

between the length excitation (modulated laser power detected by the receiver

module power sensor) and the induced motion of the test mass. For a sinusoidal

length excitation introduced using Pcal, the Pcal readback signals, xp(t), and the

interferometer output signal, xd(t), can be written as

xp(t) = Ap sin(2πftp + φp) (4.7a)

xd(t) = Ad sin(2πftd + φd) (4.7b)
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The total phase difference between these two signals is given by

θ = 2πf(tp − td) + (φp − φd) (4.8)

where ∆t = (tp − td) gives the time delay between the length excitation and the

induced motion and ∆φ = (φp − φd) gives the frequency independent phase change

between these two signals [71].

Using multiple Pcal excitations we can measure the time delays (∆t) in the

response of the detectors to motion of the test masses (and consequently gravitational

waves). Understanding these delays is crucial for localizing the source of the detected

gravitational waves on the sky using two or more detectors. Previously in LIGO, two

frequencies were used to measure the delays yielding timing uncertainties on the order

of 10 µs [72]. With the upgraded Advanced LIGO Pcal data acquisition and better

timing standards, similar measurements are easily performed at many frequencies,

or even broadband, achieving measurement uncertainties on the order of a few µs.

Fig. 4.7 shows the results of such measurements made at frequencies between 100 and

1400 Hz during the first Advanced LIGO observing run. The straight line fit to the

data shows a time delay of 103.2 ± 2.4 µs (105.3 ± 2.0 µs). These delays arise from

several sources-, the digital data acquisition (76 µs), analog electronics (20 µs) and

light travel times in the arms (13 µs).

For frequencies much larger than the 1 Hz resonances of the test mass suspension

system, the induced motion of the test mass is 180 deg. out of phase with respect

to the excitation signal. This property of Pcal excitations was exploited for the

initial LIGO detectors to investigate the sign of the calibrated interferometer output

signals [72]. Confirming the relative signs of the interferometer outputs also impacts

the sky localization of gravitational wave sources for a network of detectors.
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FIGURE 4.7. Interferometer output signal timing measured using Pcal excitations.
The least squares fit to the data shows the expected phase shift at low frequency and
a delay of 103.2± 2.4 µs for the X-arm and 105.3± 2.0 µs for the Y-arm.

In order to confirm the sign of signals, we take that the strain of the

interferometer to be defined as

h =
∆L

L
= ±Lx − Ly

L
(4.9)

with the freedom to choose the sign as per our convention which is chosen to be ‘+’

for Advanced LIGO. The results, plotted in Fig. 4.7, show that the relative phase

(∆φ) between the Pcal signal and the interferometer output signal is ∼180 deg. for

the Pcal on the X-arm and ∼0 deg. for the Pcal on the Y-arm. This shows that the

interferometer output is maximum when the X-arm gets longer and is minimum when

the Y-arm gets longer. This confirms that the interferometer strain has the ‘+’ sign
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as defined by Eq. 4.9. The results of measurements like these are used to model the

response of the interferometers to gravitational waves [34].

4.5. Time Varying Parameters

FIGURE 4.8. Calibration parameters that track changes in the calibration of the
interferometer. κT , κP and κC track frequency-independent scalar parameters and
Cavity-pole tracks changes in the pole frequency of the interferometer response.

The response of the interferometer to differential length variations changes slowly

over time due to the changes in various interferometer parameters. These include
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the actuation strength of the test mass actuators and the alignment of the optical

cavities. The parameters used to track these temporal changes are incorporated into

the sensing and actuation functions given by Eq. 2.12 and 2.13 respectively. These

slow temporal changes are monitored using the calibration lines listed in table 4.1

and produced using the photon calibrator system. The frequency of these calibration

lines are selected to optimize the calculation of these time-varying parameters. As an

example, some of these parameters that were calculated over a period of 24 hours are

plotted in Fig. 4.8 [73].

Since the calibrated interferometer signal is directly dependent on the accuracy

of the sensing and actuation functions, these changes need to be compensated for to

improve calibration accuracy. During the first and second observing runs some of these

time-varying calibration parameters were used to correct the interferometer output

data in low latency (less than 10 seconds), while others were tracked and corrected

later. The application of these time-varying parameters improved uncertainty in the

calibration from approximately 10% in magnitude and 10 deg . in phase to 3% in

magnitude and 2 deg in phase [74].

For the upcoming (2019) O3 observing run, the infrastructure is in place to

correct these time-varying calibration parameters within the LIGO’s real-time data

acquisition (front-end) system which will provide the most accurate calibration in

real-time. These real-time corrections will enable the production of calibrated

gravitational wave data with calibration uncertainty at the level of 3-4% in magnitude

and about 5 degrees in phase. However, there are some high frequency effects that

cannot be corrected within the front-end model that will be corrected in the offline

strain generation pipeline (GDS), improving the overall uncertainty to less than 3%

in magnitude and 2 degrees in phase.
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FIGURE 4.9. Trends of the ratio between the displacement reported by the
interferometer output signal and the displacement calculated from the Pcal power
sensor in the receiver module using the excitation at 332 kHz. Blue: uncorrected
data showing the slow temporal variations in the interferometer parameters. Red:
corrected data after applying the calculated time-varying correction factors.

The slow variations in the interferometer calibration, measured using a Pcal line

near 332 Hz, over an eight day period in Sept. 2015 are shown in Fig. 4.9. The slow

variations in the calibrated output signal are as large as 3%. Also shown in Fig. 4.9

are the calibration data that were corrected for the observed slow variations using

calibration parameters calculated using the Pcal excitations. The technique used to

calculate these time-varying calibration parameters and its application to the data in

order to improve the calibration accuracy is described in detail in [73] and [75].
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FIGURE 4.10. Block overview of the Advanced LIGO hardware injection system [56].

4.6. Hardware Injections

Hardware injections are simulated gravitational-wave displacements injected into

the interferometer to understand the response of the interferometer to gravitational

wave signals and to test the robustness and efficiency of the detection pipelines.

In Advanced LIGO, hardware injections are made via the Pcals. The simulated

gravitational wave time series are sent to the Pcals which actuate (displace) the end

test mass of the interferometer via laser power modulation to mimic a gravitational

wave passing through the detector as shown schematically in Fig. 4.10. The high-

bandwidth Optical Follower Servo ensures that the Pcal power modulation closely

matches the analog signal injected at the input of the servo. A set of digital infinite

impulse response (IIR) filters, referred to as “inverse actuation filters,” convert the

requested interferometer strain signal into an Optical Follower Servo input signal that

produces an equivalent modulation of the differential arm lengths.

These inverse actuation filters are designed by making a transfer function

measurement between the excitation channel and the readback photodetectors and
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incorporating the measured transfer function into the Pcal actuation path using a

set of zeros and poles. These inverse actuation filters provide calibration accuracy

on the order of a few percent in magnitude but have significant phase distortion.

The phase distortion is due to phase delays of anti-imaging filters and the physical

time delays of the digital control system which cannot be compensated by the inverse

actuation filters because the digital IIR filters allowed by the Advanced LIGO control

system must be casual. These phase delays can be compensated later during analysis.

One can compare the recovered signal to the signal measured by the readback

photodetector for a more accurate comparison. Detail description of the use of the

Pcals as hardware injection tools can be found in [56].

4.7. Differential Arm Actuator

Photon Calibrators have also been used as actuators for the differential length

degree of freedom (DARM) to keep the interferometer in lock during observing

runs [76]. This is achieved by feeding the part of the control signal in the DARM

loop that drives the test mass to the Pcal Optical Follower Servo input and thus

driving the lowest test mass stage using the Pcal system. The advantage of Pcals

over the electrostatic drives (ESD) that is currently used as the actuator, is that it is

not sensitive to charge that accumulates on the optic. This charge accumulation has

caused the electrostatic drive actuation function to drift over time.
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CHAPTER 5

CALIBRATION IN THE HIGH FREQUENCY REGIME

5.1. Astrophysical Motivation

As mentioned in Chapter 2, gravitational-wave astrophysicists have great interest

in gravitational waves originating from neutron star mergers, knowing that these

signals will help to understand the physics of the densest matter in the universe.

There are numerous models that predict different outcomes for the merger of binary

neutron stars. The merger results in one of the following four possible outcomes: (i)

formation of a black hole, (ii) formation of a stable neutron star, (iii) formation of a

supramassive neutron star, or (iv) formation of a hypermassive neutron star.

If the component mass of the merging neutron stars are large enough and the

resultant merger does not have a mechanism to resist gravitational collapse, the

merger results in a black hole. If the remnant mass is smaller than the maximum

mass allowed for a neutron star, the merger will result in a stable neutron star.

However, if the remnant is a uniformly rotating neutron star the maximum

allowed mass could be 15-20 % larger than the one for non-rotating neutron star.

Neutron stars with these large masses, called supramassive neutron stars, will

eventually collapse into a black hole if there is process to dissipate the angular

momentum. The most likely dissipation processes are EM and GW emission. Some

resultant merger remnants could have mass greater than a uniformly rotating star, but

are prevented from collapsing through support from differential rotation and thermal

gradients. This type of remnant called a hypermassive neutron star, eventually
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FIGURE 5.1. Fourier spectra of gravitational waves for different models of BNS
mergers. The amplitude is shown for the hypothetical event at a distance of 50 Mpc
along the direction perpendicular to the orbital plane (the most optimistic direction).
The black dash curve is the noise spectrum of the Advanced LIGO optimized for the
detection of gravitational waves at higher frequencies [78].

collapse to a black hole through neutrino emission and magnetic braking of the

differential rotation [77].

The post merger GW emission from these systems is dominated by broad

secondary and tertiary peaks in the 1.8 to 4 kHz range as shown in Fig. 5.1 [78].

The post merger frequency is model-dependent and the post-merger peak frequency

depends on the stellar radius as shown in Fig. 5.2 [79]. The mass of the system can be

determined from the low frequency inspiral signals. The simultaneous measurement

of mass and the radius of these neutron stars system using the inspiral and the post-

merger signal will enable determination of the Equation of States (EOS) of these

systems. The detection of the post-merger signal from these systems is possible with

the Advanced LIGO operating at full design sensitivity and probable with the next

generation of gravitational wave detectors [80]. Thus, in order to accurately estimate

the astrophysical parameters and maximize the science impact, accurate calibration

of the gravitational wave data in the frequency regime of these signals will be crucial.
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FIGURE 5.2. Peak frequency of the postmerger GW emission versus the radius of the
maximum-mass configuration of non-rotating neutron stars for different equations of
state [79].

Calibration of the Advanced LIGO detectors in this high frequency regime

requires careful consideration of various factors. They include accurate compensation

of signal distortion caused by analog electronics and digital systems and taking into

account the error introduced by using an approximated single-pole model of the

interferometer response. Furthermore, using forces to measure the calibration in this

regime will cause the test mass to deform, introducing significant errors. This chapter

discusses various aspects of interferometer calibration at higher frequencies and

prescribes a method to obtain better calibration at higher frequencies by correcting

the errors due to test mass deformations.
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5.2. Single-pole Approximation

The response of the interferometer output signal to length variations depends

on the reflectivity of the arm cavity mirrors and the light travel time between the

mirrors in the cavity. It is given by

HL(iω) =
1− rarb

1− rarbe−2iωT
(5.1)

where ra and rb are the reflectivity of the input and end test mass mirrors of the

Fabry-Perot cavities and T = L/c is the time that light takes to travel between these

mirrors [81].

In the current Advanced LIGO configuration, the interferometer response to

length variation can be approximated by a single-pole low pass filter with a

characteristic pole frequency called the ‘cavity-pole’ and an appropriate gain factor.

The approximate normalized transfer function is given by

C(f) =
1

1 + if/f0

(5.2)

This approximation is often made in order to reduce the parameters needed to describe

the response and thus simplify the interferometer model. Comparison between the

exact response and an approximated single-pole response is plotted in Fig. 5.3. As

seen from the plot, the single-pole approximation is valid, in magnitude, within well-

below 1% for frequencies below 1 kHz, but becomes as large as 3% at 5 kHz. The

error in phase is larger even at lower frequencies, but it can be compensated using

an appropriate time delay in the interferometer model. Thus, in order to get the

calibration of the detector within a few percent at frequencies above one kilohertz,
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FIGURE 5.3. Comparison between the exact and an approximated single-pole
response of the interferometer to the length variations. The discrepancy between the
two is as large as 3% at 5 kHz. the large discrepancy in the phase can be corrected
by adding an appropriate time-delay.

one must either implement the full response or correct for the errors arising from

using the single-pole approximation.

5.3. Digital and Analog Filters

The displacement induced by the gravitational waves in the interferometer arms

is not measured as a displacement of the test masses, rather as the force required to

keep the test mass in position when the passing gravitational waves produce relative
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FIGURE 5.4. Transfer function of a decimation filter that down-samples signals from
64 kHz to 16 kHz.

strain variations. When they are operating at their most optimal configuration, the

interferometer arms are kept at resonance using a control loop that is referred to

as the Differential Arm (DARM) length control servo. The equivalent displacement

from an external force is thus reconstructed from interferometer output signals that

involve the DARM servo.

The impact of analog electronics and digital systems on these signals during

signal conditioning are severe at higher frequencies as shown in Fig. 5.4, as an example,

for a 64 kHz to 16 kHz down-sampling digital filter. The transfer functions of the

analog electronics can be measured very accurately and those of the digital systems

are known to arbitrary precision and thus are compensated to get an accurate and

precise response. But there are several components in each signal path that need

to be correctly accounted for, and thus a careful consideration of each component is
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necessary to realize an accurate interferometer calibration. The block diagram C.1

in Appendix D gives a detailed representation of the different signal paths and the

associated components required for interferometer calibration.

5.4. Bulk Elastic Deformation: Modeling

Possible errors in calibration due to the impact of bulk elastic deformation of

the test masses caused by the applied calibration and actuation forces was first

studied by Afrin Badhan, et al. [82] and later by P. Daveloza, et al. [59] and

Nicola De Lillo [83]. It was shown that the deformations due to these forces can

be represented by a linear combination of the normal modes of the test mass. For

Advanced LIGO’s frequency band, the contribution from the lower-order butterfly

and drumhead mode is significant. So, in order to reduce the error in calibration due

to this effect, the Pcal beams are placed at the nodal circle of the drumhead mode.

This reduces the deformation of the mirror in the drumhead mode shape, it efficiently

deforms the mirror in the lower-resonant-frequency butterfly mode. However, when

the interferometer beam is centered on the test mass surface, the error due to butterfly

mode integrates out to zero over the central circular region for .

In cases where the Pcal beams are not at their optimal positions and/or the

interferometer beam is not at the center of the optic, the displacement sensed by the

interferometer can be written as

xtot(f) = xrigid(f) +
∑
m

xm(f)

= xrigid(f)

[
1 +

∑
m xm(f)

xrigid(f)

] (5.3)
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where xrigid(f) is the free mass motion of the test mass, considering the test mass

as a rigid body and calculated using Eq. 3.10 and
∑

m xm(f) is the apparent test

mass motion due to the deformation of the test mass and includes contributions from

all of the natural vibrational (normal) modes of the test mass [84]. The term inside

the square brackets is a frequency dependent factor, G(ai,b)(f), that can be estimated

using finite element analysis (FEA) as

G(ai,b)(f) =

[
1 +

∑
m xm(f)

xrigid(f)

]
=

[
xtotal

xrigid

]
FEA

(5.4)

where the ai’s are the positions of the Pcal beams and b is the position of the

interferometer beam relative to the center of the face of the optic.

5.4.1. COMSOL Modeling

The sensed displacement of the test mass can be estimated using the finite

element analysis tool COMSOL Multiphysics, referred to as COMSOL hereafter. For

simulation purposes two models of the test mass were used: the actual Advanced

LIGO ETM 3D model imported into COMSOL from a SolidWorks drawing which

has flat cuts on the sides of the optics and ears glued on each flat that are used as

anchor points for suspension fibers as shown in Fig. 5.5, and a perfect cylinder without

the flats but with the diameter and the thickness same as that of the Advanced LIGO

test mass. Since it is easier to, at least qualitatively, understand the dynamics of a

symmetric cylinder, it provides a good consistency check to the results of an actual

Advanced LIGO test mass.

For all these COMSOL simulations, we assume that the test mass obeys the

dynamics of free mass motion. This assumption is fairly accurate for a test mass
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FIGURE 5.5. 3D model of the Advanced LIGO ETM and an equivalent right circular
cylinder used for COMSOL simulation.

Parameter Thickness [mm] Diameter [mm] Mass [kg]

aLIGO ETM 199.85 340 39.618

Ideal Cylinder 200 340 40.003

TABLE 5.1. Dimensions of the Advanced LIGO ETM and an equivalent ideal cylinder
used for COMSOL simulation

that has a resonance frequency of 1 Hz when all displacements, for this study, are

at frequencies far above the resonance (10 Hz and above). The dimensions and the

mass of the test mass and the ideal cylinder are extracted from the 3D model and

are listed in Table 5.1. Additionally, the physical parameters of the material (fused

silica) that the test masses are composed of are listed in Table 5.2.
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Quantity Symbol
COMSOL
Library

Fine Tuned

Density [kg m−3] ρ 2200 2203

Young’s modulus [Pa] E 70 × 109 72.6 × 109

Poisson Ratio ν 0.17 0.1631

TABLE 5.2. Physical Parameters of the aLIGO ETM and an equivalent cylinder used
for COMSOL simulation

5.4.2. Eigenfrequencies and Eigenmodes

Eigenfrequencies are set of frequencies at which the object is prone to vibrate and

the corresponding shapes of the vibrational deformations are called the eigenmode

shapes. The eigenfrequencies and thus the eigenmodes depend on the physical

properties of the material and the also the shape of the test mass. In order to estimate

the eigenfrequencies of the Advanced LIGO test mass, finite element analysis was

performed with the parameters of the test mass material (fused silica) as found in

the COMSOL material library. These parameters were later fine tuned such that the

eigenfrequencies of the test mass from the COMSOL simulation match the measured

eigenfrequencies of the test mass. The parameters from the COMSOL library and the

fine-tuned parameters used for all of the studies reported here are listed in Table. 5.2.

The eigenfrequencies of the lower-order butterfly and drumhead modes calculated

using COMSOL using the parameters described above are listed in Table 5.3.

There are a number of higher order modes (see Table 5.4) but we will try to

qualitatively understand the sensed displacement due to bulk elastic deformation in

terms of the two lowest frequency modes, the butterfly and the drumhead mode. Later,

we will show that the contributions from the higher order modes are important as well
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Mode

COMSOL Library Fine Tuned

Advanced LIGO
ETM

Advanced LIGO
ETM

Cylinder

Butterfly 5826 5946 5969

Drumhead 8028 8153 8109

TABLE 5.3. Eigenfrequencies of the lower order drumhead and the butterfly mode for
Advanced LIGO ETM (for two different physical parameters from Table 5.2) and a
cylinder.

and thus the best approach is to use the cumulative contributions from all possible

modes.

In order to reduce the effect of the drumhead mode, the Pcal beams can be placed

at the nodal circle of this mode, the position at which Pcal forces produce the least

excitation, of the drumhead mode. This increases the deformation due to butterfly

mode but for a perfectly centered interferometer beam the effect of the butterfly mode

integrates out to zero for an ideal cylinder because of symmetry. This is not the case

for the Advanced LIGO test masses because of the flats on the sides, which introduces

asymmetry, but is still minimal at frequencies below 5 kHz for optimally located Pcal

beams.

Additionally, one can notice from Table 5.4 that there are two butterfly mode

eigenfrequencies for the Advanced LIGO ETM, shown in Fig. 5.6. The lack of

azimuthal symmetry due to the flats and the ears attached to them creates two

butterfly modes, unlike only one in the case of a symmetric cylinder.
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Advanced LIGO ETM Cylinder

COMSOL Measured COMSOL

5946 5948 5969

6051 6052

8153 8156 8109

8262 8252

8312 8312

9097 9099 9198

9333 9330

9418 9409

9827 9827 9826

9879 9878

TABLE 5.4. List of eigenfrequencies between 5 kHz and 10 kHz for the Advanced
LIGO ETM as determined using COMSOL (first column) and measured using
the interferometer OMC DCPD signal (second column) [85, 86]. Corresponding
eigenfrequencies of a perfect cylinder obtained from COMSOL simulation are listed
in the third column.
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FIGURE 5.6. The two lowest order butterfly modes of the Advanced LIGO test
masses. The first one is at 5946 Hz and the second at 6051 Hz.

5.4.3. Nodal Circle of the Drumhead Mode

As discussed earlier, placing the Pcal beams at the nodal circle of the drumhead

mode minimizes the effect of elastic deformation due to that mode. In order to

determine the nodal circle we use the mode shape, shown in Fig 5.7, generated using

COMSOL. We determine the least displacement along the radius of the cylinder as

a function of angle and consider angles at every 0.5 degrees. Here least displacement

refers to the smallest absolute displacement in the direction (z-direction) to which

the interferometer is sensitive to length variation.

As shown in Fig. 5.8, the ideal cylinder has a circular nodal circle at a distance

of 108.9 mm from the center. The nodal circle of the Advanced LIGO test mass is

elliptical in shape with a larger radius along vertical axis and smaller along horizontal

axis due to the lack of symmetry. The nodal circle crosses the vertical axis at ±110.9

mm. In the case where the effect of other modes, most importantly the butterfly

mode, is negligible, the nodal circle is the optimal position for the Pcal beams. But
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FIGURE 5.7. The shape of the drumhead mode of the Advanced LIGO test mass, at
a frequency of 8153 Hz. (a) shows the face of the optic where interferometer beam
and Pcal beams are reflected off and (b) shows the z-displacement of the same face
of the optic as a result of the drumhead mode excitation.

in order to account for the effect of other modes, we define the optimal positions

as Pcal beam positions at which the value of G(a,b)(f) in Eq. 5.4 is closest to 1 at

frequencies between 10 Hz and 5 kHz. Using this definition, the optimal positions of

the Pcal beams for the Advanced LIGO test mass are determined to be at (0, ±111.6

mm) on the face of the test mass.

5.4.4. Effect of deformation as a function of Pcal & IFO beam positions

The deviation from the rigid body motion is estimated, in COMSOL, by

measuring the total surface displacement of the test mass weighted by the main

interferometer beam gaussian profile and comparing it to the rigid body motion of

the test mass. The total displacement, xtotal (in Eq. 5.4), which includes the rigid-body

motion and the displacement due to the deformation, is the overlap of the surface
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FIGURE 5.8. Nodal radius of the drumhead mode of a perfect cylinder (same diameter
and thickness as Advanced LIGO ETM) and an actual aLIGO ETM. The cylinder
has a circular nodal radius at 108.9 mm. The Advanced LIGO ETM has an elliptical
nodal radius because of the flats on two sides of the optic. The nodal radius on y-axis,
where the Pcal beams are placed, is at approx 110.9 mm.

displacement over the Gaussian interferometer beam and is given by [53, 59, 83]

xtotal(f) = kI

∫
Ω

w(x, y; f) · I(x, y, z)dxdy (5.5)

where kI is the normalization constant such that kI
∫

Ω
I(x, y, z)dxdy = 1, “w” is the

actual displacement of the test mass surface in the z direction and I(x, y, z) is the

profile of the interferometer beam given by:

I(x, y, z) = exp

(
−2

(x− x0)2 + (y − y0)2

ω(z)2

)
(5.6)

Here [x0, y0] are the coordinates of the interferometer beam center. They are [0,0]

for a centered interferometer beam. ω(z) describes the interferometer beam spot size

given by

ω(z) = rifo ×
√

1 +
z

zR
(5.7)
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where rifo is the average interferometer beam radius at the test mass, zR is called

the Rayleigh range and accounts for the reduction of beam in the z-direction. Since

z <<< zR, the quantity inside the square root is approximately equal to 1 and for

practical purpose, ω(z) ≈ rifo is a valid approximation.

To estimate the rigid-motion of the test mass, xrigid (in Eq. 5.4), center-of-mass

motion is estimated in COMSOL and the effect of rotation is added by calculating it

analytically.

Using the technique described above we estimated the deviation of test mass

displacement from a rigid body motion, given by Eq. 5.4, for configurations at which

the interferometer beam is centered and the Pcal beam positions are varied. For

this study, we moved the Pcal beams away and towards the center of the test mass

surface, from their optimal positions, along the vertical axis (y-axis). Given that the

Pcal beam positions are (0,±y), we define Pcal beam displacement, ∆y = y − 111.6

where +∆y denotes that the Pcal beams have moved away from the center and

−∆y denotes that the Pcal beams have moved towards the center from their optimal

positions.

The result of such simulations is shown in Fig. 5.9 for various Pcal beam positions.

The results show that for optimally located Pcal beams the deviation is less than 1%

below 4 kHz but reaches 3% at 5 kHz. However, for Pcal beams that are even a

few mm away from their optimal positions, the deviation from the rigid body motion

increases dramatically at frequencies above 2 kHz. The results also show that the

estimation of displacement is underestimated for Pcal beams that have moved towards

the center and is overestimated for Pcal beams displaced away from the center. This

is consistent with the shape of the drumhead mode as shown Fig. 5.7(b) and its

resultant z-displacement. However, one can also notice that the plots start to curve
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FIGURE 5.9. Deviations from the rigid body motion of the test mass as a function of
Pcal beam positions. Results are estimated using finite element analysis, COMSOL
Multiphysics, for Pcal beams displaced symmetrically away from (solid lines) and
toward (dashed lines) the center of the test mass from their ideal locations.

back towards the positive y-axis at higher frequencies for all Pcal beam configurations.

This is because the frequency approaches the resonance of the butterfly mode and

the butterfly mode dominates.

A similar study for a perfect cylinder is shown in Fig. 5.10. The results show

that the impact of the lower order frequency butterfly mode (f = 5969 Hz) indeed

averages to zero for an ideal symmetric cylinder. However, the optimal locations

are not on the nodal circle of the drumhead mode. This is because the higher order

modes impact the motion at lower frequencies as well. The optimal radius for an

ideal cylinder, based on FEA results, is ≈ 113 mm.
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[0,0] is the center of the test mass surface.

In order to study the impact of interferometer beam position offset, the

longitudinal displacement of the test mass as sensed by the interferometer beam

was calculated for various beam position offset from the center for each set of Pcal

beam position offsets. The results are shown in Fig. 5.11, where “ai” denotes the

position of Pcal beam offset and the coordinates in the legend denote the center

of the interferometer beam where [0,0] is the center of test mass face. The results

show that the deviations are smaller for interferometer beam position offsets than

they are for the Pcal beam position offset of the same amplitude. However, even for

an optimized Pcal beam locations, the deviations are as large as 2% at frequencies

between 4 and 5 kHz for an interferometer beam that is as far as 1 cm from its optimal

position.
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FIGURE 5.12. Displacement of the test mass due to butterfly and drumhead modes
as sensed by a centered Gaussian interferometer beam from are plotted in solid
lines. The curve with diamond is the sum of displacement due to the butterfly and
drumhead mode and with circle is the overall sensed displacement due to bulk elastic
deformation.

5.4.5. Single Mode Analysis

In order to understand the contribution of each normal mode of the test mass,

simulations were run such that impact of a single mode was captured in each

simulation. The Pcal beams were placed at two configuration, +5 mm and -5

mm (same sign convention as used in analysis before) from their optimal positions.

The results are plotted in Fig. 5.12 and the result shows that the overall sensed

displacement is different from the sum of the displacement due to butterfly and

drumhead mode. In order to check the contribution of the higher order modes we

ran simulations for single-mode contributions for Pcal beam configuration at -5 mm

for the modes as high as 15 kHz. The result is plotted in Fig. 5.13. The result
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FIGURE 5.13. Contribution of normal modes to the overall sensed displacement of
the test mass.

indicates that the contributions from some of these higher order modes are indeed

much larger than expected. A further study is required for more detail understanding.

5.5. Bulk Elastic Deformation: Measurement

To assess the impact of the bulk elastic deformation described above and

to compare experimental results with the predictions of finite element analysis

(COMSOL Multiphysics), a series of measurements were made using the two LIGO

interferometers during Advanced LIGO’s second observing run. The Pcal beams were

moved to desired positions on the test mass surface with the aid of the Pcal beam

localization system described in detail in Chapter 3. Three configurations, first at

optimal positions (111.6 mm above and below the center of the test mass surface),

second where both beams were offset 14 mm away from the center(+14 mm) and
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Config.

Pcal Beam Position

Beam Config.Beam Target (mm) Actual (mm)

OP

Upper [0, 111.6] [0.8, 112.2]

Lower [0,-111.6] [-0.8, -111.8]

P14

Upper [0, 127.6] [1.2, 126.1]

Lower [0, -127.6] [-0.5, -125.7]

M8

Upper [0, 103.6] [2.5, 103.2]

Lower [0, -103.6] [-1.3, -103.0]

TABLE 5.5. Positions of Pcal beams on the surface of the test mass for three different
beam configurations. The illustration on the right shows optimal positions (OP) in
black, P14 in red and M8 in blue.

the third where both beams were offset 8 mm towards the center(−8 mm) from the

optimal positions, were used. These configurations are referred to as OP, P14 and

M8 from here onward and are illustrated in Table 5.5.

The beams were moved symmetrically to avoid unwanted rotation of the test

mass. After the beams were placed approximately at the desired positions, the Pcal

system was used to inject sinusoidal excitations at frequencies between 1000 Hz and

5000 Hz. Since the Pcal laser power required to produce a given displacement of the

test mass increases as the square of the frequency at which the displacement is made,

for these “high frequency” excitations, a single excitation was introduced at one given

time using all available laser power. The excitations were left on for at least 24 hours

and sometimes even for days, depending on the duty cycle of the interferometer. An

automated script was used to change the frequency of the excitation if and when the

interferometer went out of lock and enough data had been collected at that frequency.

For the times when the excitation lines were on and the interferometer was

in lock, data from relevant channels were demodulated at the excitation frequency.
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During demodulation, the integration time was set to 10 minutes for frequencies below

2500 Hz, 30 minutes for frequencies between 2500 Hz and 4000 Hz and and one hour

for frequencies above 4000 Hz to achieve an appreciable SNR for each data point. The

estimate of the displacement from the interferometer strain channel was compared

with the displacement estimated using the Pcal read-back signals. The displacement

recorded by the interferometer strain channel (xGDS) includes the impact of bulk

elastic deformation while the displacement estimated from the Pcal read-back channel

(xT ) assumes the test mass is a rigid body. In order to account for temporal variations

in interferometer configurations between different excitations, the displacement at

each frequency were normalized to a ∼1 kHz excitation running at all times.

The interferometer strain channel uses an approximation that the interferometer

response to length variations is described by a single pole. In order to account for

the error due to this approximation, a correction factor (residual from plot shown in

Fig. 5.3) is applied at each excitation frequency. Thus, the discrepancy between the

observed displacement and the rigid body motion, G(ai,b)(f)meas, can be written as

G(ai,b)(f)meas =
xGDS(f)

xT (f)
× xT (f0)

xGDS(f0)
×QC(f) (5.8)

where f is the measurement frequency, f0 is the frequency of the excitation used for

normalization and QC(f) is the correction factor that accounts for errors due to the

single pole approximation of the interferometer response.

Fig. 5.14 shows the results from simulations and measurements for three different

Pcal beam positions, P0, P14 and M8. The impact of the bulk elastic deformation

measured using the interferometer agrees reasonably well with the results from the

finite element analysis for all three beam configurations.
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FIGURE 5.14. Deviations from the rigid body motion of the test mass as a function of
Pcal beam positions. The data plotted in crosses with dashed lines are the results of
COMSOL simulations for the measured Pcal beam positions and for perfectly centered
interferometer beam. The shaded regions are for interferometer beam centering offsets
as large as ±10 mm. The data plotted in circles with error bars are the measured
deviations, G(ai,b)(f)meas, estimated using Eq. 5.8.

Similar measurements were later made using the Livingston interferometer (L1)

and the Hanford interferometer (H1), but only for the Pcal beam positions close to

optimal locations and the results are shown in Fig. 5.15. The results indicates that

the data agrees reasonably well with the model at most frequencies, including close

to the resonance, but between 4.5 and 5.5 kHz there exists some deviations from the

result estimated using finite element analysis and the data.

By looking at the interferometer response at some of these frequencies at times

when the excitation was present and comparing it to the times when the excitations

were absent indicates that these are produced due to calibration forces and are not

inherent to the interferometer. Additional studies will be required to understand
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FIGURE 5.15. Plot showing the deviations from the rigid body motion of the test
mass. Both Hanford (H1) and Livingston (L1) data shows feature between 4.5 kHz
and 5.5 kHz, where the measurement results deviate from the modeled result.

these features. One can avoid exciting these features by restricting the calibration

lines up to 4.5 kHz and extrapolating the calibration to 5 kHz.

5.6. Application to interferometer calibration

We have shown that the calibration forces excite the natural vibrational modes

of the test mass causing it to deviate from the rigid body motion, especially when the

measurement (excitation) frequency reaches the resonant frequency of these modes.

So when using calibration forces, these effects need to be accounted for to achieve a

better calibration of the interferometer data.

During Advanced LIGO’s first and second observing runs, these deviations of the

interferometer response from rigid body motion were simply folded into the calibration
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uncertainty as systematic error. This method might be sufficient if the Pcal and the

interferometer beams are optimally located and the calibration uncertainty is deemed

satisfactory at a level of 10%. However, we have shown that the deviation increases

significantly if Pcal and/or interferometer beam are not optimally located. More

importantly, if and when there is a detection of gravitational-wave signals with signal

content at higher frequencies, the calibration requirements at these frequencies will

become stringent. So in order to meet these requirements, correction to the deviation

due to bulk elastic deformation is essential.

For frequencies above 1 kHz, where the response function is dominated by the

sensing function and the open loop gain is negligible, the sensing function measured

using Pcal excitations can be approximated using Eq. 4.3. However, in order to

account for the effect of bulk elastic deformation, the sensing function needs to be

written as

C ′(f)meas ≈
derr(f)

xT(f)
× 1

G(ai,b)(f)
(5.9)

where Gai,b(f) is estimated from COMSOL simulation, using Eq. 5.4, for a given Pcal

and interferometer beam positions. This shows that the ability to determine the

location of the Pcal and interferometer beams will directly influence the calibration

accuracy in this regime.

The sensing function shown in Fig. 4.2 is recalculated, correcting for the bulk

elastic deformation using Eq. 5.9, and plotted as shown in Fig. 5.16. The improvement

below 4 kHz is minimal with a few % improvement in calibration error between 4 and

5 kHz.
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CHAPTER 6

DISCUSSION AND CONCLUSIONS

In light of the gravitational wave detections during the past few years and

their enormous astrophysical implications, accurate calibration of gravitational wave

detectors has become even more important. This dissertation is an attempt to

describe the aspects of astrophysics that rely on accurate calibration and the methods

employed within the LIGO project to achieve the calibration accuracy required to

maximize the astrophysical and cosmological information extracted from these signals.

The first direct detection of gravitational waves was in itself a great scientific

achievement. But the gravitational-wave community has always been motivated

by the astrophysics and precision cosmology studies that are possible with these

detected signals. The gravitational waves provide information about the physical

parameters [87] and the dynamics of the sources [36] that produce them as well as

the environment in which these sources reside and evolve [88].

Since gravitational wave signals are reconstructed from interferometer output

signals registered on photodetectors as power fluctuations using a calibration

pipeline [89], the astrophysical information that is contained within the signals is

affected by the calibration. Better calibration accuracy ensures that low SNR signals

that arrive at the detectors are not missed, and for detected signals it ensures that

the parameters of the sources are accurately determined. In 2009, Lee Lindblom

estimated that calibration accuracy in the order of 5% in magnitude and 5 deg in phase

is required to optimize signal detection efficiency and an order of magnitude better

calibration accuracy, 0.5%, is required to optimally extract astrophysical parameters

from these signals [31].
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For the detections made during the Advanced LIGO’s first and second observing

runs, improved calibration accuracy resulted in more constrained values for source

parameters that include progenitor masses, chirp mass, spin, and luminosity distance,

among others [90].

As suggested and described for the first time in [91] and many other papers there

after, the luminosity distance measured using the gravitational waves, along with the

red-shift determined from an electromagnetic (EM) counterpart signals enables an

independent measurement of the Hubble parameter. This technique has already been

used to determine the Hubble parameter from the gravitational wave signal generated

by a pair of binary neutron stars merger, GW170817, with an EM counterpart with

an uncertainty of 15% [42]. Using such EM-bright gravitational wave sources referred

to as “standard sirens”, Hsin-Yu Chen, et al. [46] have predicted that this method

will enable measurement of the Hubble parameter with an uncertainty of 4% with

approximately twenty such events. It will require approximately 100 events to reach

the level of 1%.

In cases where an EM counterpart is absent, as in the case of binary black

hole mergers, for sources that are well-localized using a network of gravitational

wave detectors, red-shift information from galaxy catalogs can be utilized to make

a statistical measurement of the Hubble parameter [92]. Gravitational wave signals

from the binary black hole merger GW170814, which had better source localization

due to the involvement of three detectors – two LIGO detectors and a Virgo detector

– have been used in conjunction with the galaxy catalog from the Dark Energy Survey

(DES) to make such a measurement of the Hubble parameter. The study estimates

that using GW170814-like events where EM counterpart is absent, referred to as
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“dark standard sirens”, the Hubble parameter measurement with an uncertainty of

approximately 4.5% can be achieved with 100 such events [93].

Since the luminosity distance of the gravitational wave sources used in these

studies is directly dependent on the amplitude of the gravitational wave signals,

calibration of the gravitational wave data with an accuracy of 1% or better will be

required when enough signals have been detected to constrain the Hubble parameter

with an uncertainty close to 1%. With improved detector sensitivity, involvement

of multiple detectors, and updated rate estimates [94], measurement of the Hubble

parameter with an uncertainty of 4% can be achieved within the next few years and

1% within a decade [46].

This dissertation discusses the design, implementation and characterization of an

upgraded radiation-pressure-based calibration tool called the Photon calibrator (Pcal)

that is used as the primary calibration reference for the Advanced LIGO detectors.

During the Advanced LIGO first and second observing runs, using Pcal systems,

we were able to generate calibrated displacement fiducials with an uncertainty of

0.75 %. The main contributor to this uncertainty (0.51%) was the calibration of

power sensors used to monitor the Pcal laser power. The calibration was performed

at National Institute of Standards and Technology (NIST) and is traceable to SI

units. A robust method to transfer calibration from a NIST-calibrated power sensor

to the power sensors in the Pcal modules at the end station that monitor the laser

power at all times has been established without introducing significant uncertainty.

This procedure involves series of responsivity ratio measurements between different

power sensors. Rotation of the test mass due to misaligned Pcal beam spots and the

allocation of optical losses inside the vacuum enclosure were other significant sources
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of uncertainty during the first and second observing runs. These have been improved

since then.

Frequency dependent calibration of the LIGO interferometers is obtained by

measuring the response function, R(f), which relates the strain sensed by the

interferometer, h(f), to the error signal of the differential length control servo, derr(f),

recorded by the output photodetector as: h(f) = (1/L)R(f)derr(f), where R(f) is

given by

R(f) =
1 + A(f)D(f)C(f)

C(f)
=

1 +G(f)

C(f)
(6.1)

Based on the absolute displacement calibration achieved using the Pcal systems,

series of swept sine measurements are made to determine the actuation function

A(f) and sensing function C(f) and thus obtain the response function, R(f), of the

interferometer. The discrepancy between the measurements and the models of these

actuation and sensing function provides the measure of uncertainty in the response

function. The transfer function of the digital filters, D(f), is known to a negligible

uncertainty.

Calibration lines were placed at different frequencies to determine calibration

factors that were used to track and compensate temporal changes in the interferometer

response. The frequency independent scalar factors were applied in low latency (on

order of tens of seconds) within the calibration pipeline during both first and second

observing runs providing overall calibration accuracy in order of 10% in magnitude

and 10 deg in phase. Corrections of known systematic error were applied later during

second observing run to produce an offline calibrated data-stream referred to as ‘C01’

with 1-σ calibration uncertainty of 6.1% in magnitude and 2.2 deg in phase for H1

and 4.8% in magnitude and 2.2 deg in phase for L1 at frequencies between 20 Hz and

2048 Hz [95]. Frequency dependent lowest order “cavity-pole” frequency fluctuations
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FIGURE 6.1. Frequency dependent systematic error and uncertainty in the response
function of LIGO H1 detector during the entire second observing run. The central
dashed line represents the estimated systematic error from the modeled interferometer
response and the color band represents the uncertainty about the median.

was left as a systematic error during first observing run and corrected offline (in high

latency) during the second observing run, producing data referred to as ‘C02’ with

improved 1-σ calibration uncertainty of 2.6% in magnitude and 2.4 deg in phase for H1

and 3.9% in magnitude and 2.2 deg in phase for L1 across the same frequency band as

above [95]. This is a significant improvement from its predecessor, Enhanced LIGO,

where calibration uncertainty was at the level of 10-15% in magnitude and 5 deg in

phase [96]. For illustration, Fig. 6.1 shows the overall frequency dependent calibration

uncertainty for H1 detector during the entire second observing run corrected for all

time-varying calibration parameters.
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Further improvement in detector calibration will require improvement in absolute

displacement calibration accuracy, reducing the systematic error in the interferometer

response function, and reduction of uncertainty in the measurement of actuation

and sensing functions. There have been numerous small, yet crucial, improvements

towards better accuracy of the absolute displacement calibration for the planned third

observing run (O3) and beyond.

Within LIGO, the power measurement standards have been reconfigured to

increase the power sensor stability and decrease laser speckle. This increases

the reliability of the power sensors and reduces the uncertainty in photodetector

responsivity measurements. The accuracy of the placement of the Pcal beams on

the test mass surface has been improved to within ±2 mm using in-chamber targets

mounted to the test mass suspension frame during vents. The interferometer beam

is expected to be centered on the test mass within ±5 mm during the O3 run.

These improvements will reduce the uncertainty due to rotation of the test mass

by approximately a factor of four (0.40% → 0.10%) for O3. Similarly, uncertainty

arising from the optical losses within the Pcal system has been improved by making

in-vacuum measurements of power and apportioning the losses between the input

(incident) and output (reflected) sides. The associated uncertainty has thus been

reduced by about a factor of four as well (0.37% →∼ 0.10%).

A collaborative effort between NIST and the LIGO Scientific Collaboration has

been initiated to get better calibration accuracy on power sensor measurements. For

the most recent calibration measurement of the updated Pcal Gold Standard, NIST

provided an improved uncertainty of 0.31% (1-σ) compared to 0.44% in the past. This

is a significant step in our goal of improving the absolute displacement calibration

accuracy using Pcal.
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Parameter
Relative

Uncertainty
(Expected O3)

NIST -> GS [ρGS] 0.31 %

WS/GS [αWG] 0.03 %

Rx/WS [α′RW ] 0.05 %

Optical efficiency [ET ] 0.10 %

Angle of incidence [cos θ] 0.07 %

Mass of test mass [M ] 0.005 %

Rotation [(~a ·~b)M/I] 0.10 %

Overall 0.35 %

TABLE 6.1. Expected Pcal uncertainty for planned third LIGO observing run (O3).

With these improvements, as shown in Table 6.1, a calibration accuracy of ∼

0.35% could be achieved for the absolute displacement introduced using the Pcal

system for the third LIGO observing run. If realized as expected, this would be an

improvement in excess of a factor of two (0.75%→ 0.35%) compared to the Advanced

LIGO first and second observing runs.

Reducing frequency-dependent systematic errors will require better understanding

of the interferometer to accurately model its response. One such improvement is

the implementation of the full response of the interferometer to length variations

instead of the single-pole approximation that is currently being used. Additionally,

compensation for the impact of analog electronics and digital systems used within

LIGO controls and data acquisition system should be carefully considered. Although

it is a straight forward measurements, the sheer number of these transfer functions,
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as shown in the Calibration Subway Map in Appendix D, makes this task challenging.

Improvements in actuation and sensing function measurement uncertainty will

require more measurements and thus more interferometer time. For the planned

third observing run, time-varying calibration parameters, including the cavity-pole

frequency, will be compensated within the front-end of the Advanced LIGO data

acquisition system, thus providing the most accurate calibration in real-time.

Along with its contributions to accurate detector calibration, the Pcal systems

have been used as actuators to inject simulated gravitational wave signals to

understand the response of the interferometer and test the robustness and efficiency

of the detection pipelines used for gravitational wave analysis [56]. Additionally,

use of Pcal system as a low-noise actuator for the interferometer length control

was demonstrated during Advanced LIGO’s second observing run [76] and plans are

underway to establish it as an alternative to electrostatic drives (ESD) for low-noise

operation during the upcoming observation run.

This dissertation also explores the impact of bulk elastic deformation of the test

mass in response to calibration forces, which could result in significant calibration

errors at frequencies above 1 kHz. This effect was modeled using finite element

analysis (FEA) simulations. The FEA results presented here are in agreement with

the results from previous studies shown in [59]. However, the overall impact of the

bulk elastic deformation is not only due to the lower order vibrational modes, the

butterfly (∼6 kHz) and the drumhead (∼8 kHz) modes, as previously believed. This

study shows that the contribution of the higher order modes, with resonant frequency

as high as 15 kHz, were significant and much larger than expected. So, in order to

estimate the impact of bulk elastic deformation even at frequencies well below some
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of the resonant modes, all possible natural vibrational modes of the test mass needs

to be included.

Through precise positioning of Pcal beams and using the Pcal system to drive

the test mass at higher frequencies, it was shown that the modeled calibration error at

these frequencies agree reasonably with the measurements, across most frequencies,

while leaving some yet unexplained features between 4.5 to 5.5 kHz. As shown in

Chapter 5, this understanding has provided a way to correct for the error due to bulk

elastic deformation at higher frequencies and reduce calibration uncertainty at these

frequencies. However, these calibration errors are a result of applying calibration

forces, so alternative calibration techniques that do not rely on applying forces on the

test mass such as frequency modulation based methods might be a good alternative

to probe the calibration at these frequencies. This could be a topic of future study.

Accurate calibration at higher frequencies will be particularly important for the

signals from binary neutron star mergers. The binary neutron star mergers are

predicted to have characteristic post-merger signals at frequencies between 1 and

5 kHz. These post-merger frequency estimates are model-dependent and depend on

the radius of the neutron star, thus providing an important parameter for determining

the equation of state of the neutron star [79]. It is estimated that the post merger

signal from a GW170817-like event would be an order of magnitude below the current

Advanced LIGO sensitivity [80]. But it is likely that the post-merger signals from

binary neutron stars will be detected with the next generation of gravitational wave

detectors. Further improvement of the calibration in the high frequency regime will

be necessary to understand these signals and decipher the information they carry.
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6.1. Future Prospects

The astrophysical and cosmological implications of the multiple gravitational

wave detections that have been made in the past few years and many more that will

be detected in the near future are enormous. With improved detector sensitivity,

the prospect of detections with an SNR of 1000 are becoming reality rather than

fantasy, pushing the calibration requirement to the level of 0.1%. The direct bearing

that absolute laser power calibration has on LIGO science, coupled with the expected

need for improved uncertainty has stimulated a lot of interest among global metrology

institutes that provide absolute laser power calibration used for the calibration of

gravitational-wave detectors.

NIST is coordinating with global metrology institutes to initiate a study that

would enable calibration of power standards at the 1-W level among different

institutes. This is in response to the requirements of the gravitational wave

community and the differences in calibration of laser power sensors (at a level of

3%) observed during one such comparative study performed more than a decade

ago [67]. Additionally, NIST is expected to roll out a new type of calibration tool

based on cryogenic radiometers that will provide a calibration of laser power sensors

with an uncertainty of 0.1% (1-σ) within the next few years [97].

The procedure to transfer the calibration from the LIGO Gold Standard to the

power sensors in Pcal systems has been shared with the Japanese GW detector,

KAGRA, and propagating this process to the Virgo detector is in progress. These

are steps towards the goal of standardizing the calibration of all ground-based

gravitational-wave detectors to ensure that relative calibration errors among the

network of detectors are minimized.
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In conjunction with the Pcal system, a method that employs varying Newtonian

gravitational fields to produce displacement of a test mass, called Newtonian

calibrator (Ncal) has been demonstrated as a calibration tool in an interferometer

setting in Virgo detector [98]. Variants of these Ncals are being investigated by

LIGO and KAGRA [99]. Although these system will be limited to lower frequencies

and a detailed estimates of its systematic and measurement uncertainties needs to

be undertaken, they hold a good promise as a viable alternative absolute calibrator

because of their relative simplicity and well understood physics.

The prospect of utilizing the gravitational wave signals, especially the ones from

standard sirens, those with an EM counterpart, to calibrate the GW detectors has

been proposed and studied. Current estimates show that uncertainty in amplitude

calibration within 10% can be obtained for a source at 100 Mpc and the uncertainty

increases and plateaus around 25% for a source at 250 Mpc and beyond [100, 101].

Such level of amplitude calibration might not be on par in accuracy and precision

achieved using current methods but will provide an independent verification of the

calibration methods currently employed. However, astrophysical calibration of the

GW detectors, especially when multiple detectors are involved, has a potential to

provide a good accuracy on the relative calibration between the detectors.

Accurate and precise calibration of interferometric gravitational-wave detectors

is a key aspect of gravitational-wave detection and the science that can be extracted

using these detections. Optimizing scientific rewards will require that the calibration

techniques that are currently employed are constantly improved and new techniques

be considered and developed for improved and better calibration accuracy.
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APPENDIX A

PCAL POWER SENSORS RESPONSIVITY MEASUREMENTS

[Note: The work presented in this Appendix is produced in collaboration with

Darkhan Tuyenbayev, Shivaraj Kandhasamy and Richard Savage and has previously

been described in LIGO-T1500219.]

A.1. Working Principle

Responsivity relates the electrical output of the power sensor to the optical

power input. Within Advanced LIGO Pcal systems, the following notation is used to

describe the responsivity of different power sensors in units of volts per watts (V/W).

1. ρG - Gold Standard (GS),

2. ρWX
- Working Standard (WS),

3. ρR - receiver module power sensor (RxPD), and

4. ρT - transmitter module power sensor (TxPD).

Measuring the relative responsivity of the Pcal power sensors (RxPD and TxPD)

to a Working Standard (WS) requires making measurements of powers in each Pcal

beam at various positions in the Pcal beam path.

The following definitions will be used to express absolute powers in watts at

different positions within the Pcal system:

1. Pti(t), Pto(t) - laser power in the inner and outer beams coming out of the

transmitter module and going into the viewport, in watts;
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2. Pri(t), Pro(t) - laser power in the inner and outer beams going into the receiver

module, in watts;

3. Pt(t) - combined laser power in the inner and outer beams coming out of the

transmitter module, Pt(t) = Pti(t) + Pto(t);

4. Pr(t) - combined laser power in the inner and outer beams going into the receiver

module, Pr(t) = Pri(t) + Pro(t).

We can express the ratio of the absolute powers in the two beams at the output

of the transmitter module (Tx) as

rio =
Pti(t)

Pto(t)
(A.1)

Then we can write Pti(t) and Pto(t) in terms of Pt(t) and rio as

Pti(t) = Pt(t)

(
rio

1 + rio

)
(A.2)

Pto(t) = Pt(t)

(
1

1 + rio

)
(A.3)

Defining the optical efficiency of each of the two beams as ei = Pri(t)/Pti(t) and

eo = Pro(t)/Pto(t) and using Eqs. A.2 and A.3 we can write the total power at the

receiver module (Rx) as

Pr(t) = Pri(t) + Pro(t)

= Pti(t)ei + Pto(t)eo

= Pt(t)

[
rio

1 + rio
ei +

1

1 + rio
eo

]
(A.4)
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The overall (combined) optical efficiency, e, of the system is given by

e =
Pr(t)

Pt(t)

=
rio

1 + rio
ei +

1

1 + rio
eo

=
1

1 + rio
(rioei + eo) (A.5)

The TxPD receives only a small fraction of the laser power which is proportional

to Pt(t) whereas the RxPD and the WS receive all the laser power in the beam they

are measuring.

A.2. Ratio Measurements

Pcal power sensors to working standard relative responsivity measurements

carried out at the end stations involve taking measurements in six different

configurations. Using the definitions described above, for each measurement, we can

write the voltage recorded by the power sensor (V) in terms of actual laser power (P )

and the responsivity of the power sensor (ρ).

1. First, the outer beam is blocked and the laser power in the inner beam is

measured with WS at the output of the transmitter module. Considering that

the full output power (in both beams, including the one blocked) is Pt(t1,i), we

obtain the following time series.

– VT(t1,i) = Pt(t1,i)ρT

– VWX
(t1,i) = Pti(t1,i)ρWX

= Pt(t1,i)

(
rio

1 + rio

)
ρWX
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The ratio of these two gives1

RWtiT =
1

N1

N1∑
i=1

VWX
(t1,i)

VT(t1,i)
=

(
rio

1 + rio

)
ρWX

ρT

≡ m1 (A.6)

2. The inner beam is blocked and the outer beam is measured with WS at the

output from the transmitter module. The full output power is Pt(t2,i).

– VT(t2,i) = Pt(t2,i)ρT

– VWX
(t2,i) = Pto(t2,i)ρWX

= Pt(t2,i)

(
1

1 + rio

)
ρWX

RWtoT =
1

N2

N2∑
i=1

VWX
(t2,i)

VT(t2,i)
=

(
1

1 + rio

)
ρWX

ρT

≡ m2 (A.7)

3. The outer beam is again blocked and the inner beam is measured with WS at

the receiver module. The full output power is Pt(t3,i).

– VT(t3,i) = Pt(t3,i)ρT

– VWX
(t3,i) = Pti(t3,i)eiρWX

= Pt(t3,i)

(
rio

1 + rio

)
eiρWX

RWriT =
1

N3

N3∑
i=1

VWX
(t3,i)

VT(t3,i)
=

(
rio

1 + rio

)
ei
ρWX

ρT

≡ m3 (A.8)

4. The inner beam is blocked and the outer beam is measured with WS at the

receiver module. The full output power is Pt(t4,i).

– VT(t4,i) = Pt(t4,i)ρT

– VWX
(t4,i) = Pto(t4,i)eoρWX

= Pt(t4,i)

(
1

1 + rio

)
eoρWX

1In RWtiT , R denotes ratio and WtiT denotes Working standard at transmitter module inner
beam to TxPD.
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RWroT =
1

N4

N4∑
i=1

VWX
(t4,i)

VT(t4,i)
=

(
1

1 + rio

)
eo
ρWX

ρT

≡ m4 (A.9)

5. The outer beam is blocked and the inner beam is measured with RxPD. The

full output power is Pt(t5,i).

– VT(t5,i) = Pt(t5,i)ρT

– VR(t5,i) = Pti(t5,i)eiρR = Pt(t5,i)

(
rio

1 + rio

)
eiρR

RRiT =
1

N5

N5∑
i=1

VR(t5,i)

VT(t5,i)
=

(
rio

1 + rio

)
ei
ρR
ρT

≡ m5 (A.10)

6. The inner beam is blocked and the outer beam is measured with RxPD. The

full output power is Pt(t6,i).

– VT(t6,i) = Pt(t6,i)ρT

– VR(t6,i) = Pto(t6,i)eoρR = Pt(t6,i)

(
1

1 + rio

)
eoρR

RRoT =
1

N6

N6∑
i=1

VR(t6,i)

VT(t6,i)
=

(
1

1 + rio

)
eo
ρR
ρT

≡ m6 (A.11)

A background measurement is taken for each unique measurement setup. There

are three unique measurement setups: one when the Working Standard is in the

transmitter module (m1 and m2), second when the Working Standard is in the receiver

module (m3 and m4) and the third when Working Standard is off the Pcal system

(m5 and m6). The background is subtracted from each data point in the time series

before calculating the ratios defined above.

A.3. Responsivity and optical efficiency calculations

After having obtained all the necessary measurements and calculating six basic

ratios, m1-m6, these ratios can be used to obtain the overall optical efficiencies of the
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system and relative responsivities between the Pcal power sensors and the Working

Standard.

Power ratios between Pcal beams

The ratio of the absolute powers in the two beams at the transmitter module,

rio, can be obtained from ratios between (A.6) and (A.7).

m1

m2

=

(
rio

1 + rio

)
ρWX

ρT(
1

1 + rio

)
ρWX

ρT

= rio (A.12)

Optical efficiencies

The optical efficiencies of the inner and outer beams, ei and eo, respectively, can

be obtained from ratios between (A.6), (A.7), (A.8) and (A.9) as

m3

m1

=

(
rio

1 + rio

)
ei
ρWX

ρT(
rio

1 + rio

)
ρWX

ρT

= ei (A.13)

m4

m2

=

(
1

1 + rio

)
eo
ρWX

ρT(
1

1 + rio

)
ρWX

ρT

= eo (A.14)

155



The overall optical efficiency, e, can be derived by substituting Eqs. (A.12),

(A.13) and (A.14) into Eq. (A.5).

e =

(
1

1 + rio

)
(rioei + eo)

=

 1

1 +
m1

m2

(m1

m2

m3

m1

+
m4

m2

)

=

(
m2

m2 +m1

)(
m3 +m4

m2

)

e =
m3 +m4

m1 +m2

(A.15)

Relative responsivities

Adding Eqs. A.6 and A.7 we get

m1 +m2 =

(
rio

1 + rio

)
ρWX

ρT

+

(
1

1 + rio

)
ρWX

ρT

=
ρWX

ρT

The relative responsivity between TxPD and the Working Standard, αTW , can be

written as

αTW ≡
ρT

ρWX

=
1

m1 +m2

(A.16)

The ratio between the responsivity of the receiver module power sensor (RxPD)

and the Working Standard (WS) can be obtained in two different ways using Eqs. A.8,
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A.9, A.10, and A.11

m5

m3

=

(
rio

1 + rio

)
ei
ρR
ρT(

rio
1 + rio

)
ei
ρWX

ρT

=
ρR
ρWX

(A.17a)

or

m6

m4

=

(
1

1 + rio

)
eo
ρR
ρT(

1

1 + rio

)
eo
ρWX

ρT

=
ρR
ρWX

(A.17b)

In theory these two values should be equal but due to errors present in

measurement data, we estimate the relative responsivity between RxPD and the

Working Standard, αRW , as the average of the two.

αRW ≡
ρR

ρWX

=
1

2

(
m5

m3

+
m6

m4

)
(A.18)

A.4. Uncertainty

The effective relative responsivities, α′TW and α′RW , are used to estimate the

power on the test mass surface based on relative responsivity measured at transmitter

and receiver module, αTW and αRW , and the optical efficiency, e, of the system.

Since relative responsivity and optical efficiency are calculated from the same set

of measurements, combining the two before uncertainty calculation avoids double-

counting and thus overestimation of uncertainty.
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A.4.1. TxPD to WS effective relative responsivity

The effective relative responsivity between TxPD and WS, α′TW , is given by

α′TW =
2

(1 + e)
αTW

=

 2

1 +
m3 +m4

m1 +m2

 1

m1 +m2

α′TW =
2

m1 +m2 +m3 +m4

(A.19)

This assumes that the optical efficiency of the system is close to 1. If the optical

efficiency is far from 1, it will grossly underestimate the laser power at the test mass.

The statistical uncertainty on this quantity is determined by taking the partial

derivatives with respect to each ratio measurement

∂α′TW
∂m1

=
∂α′TW
∂m2

=
∂α′TW
∂m3

=
∂α′TW
∂m4

=
−2

(m1 +m2 +m3 +m4)2
(A.20)

and combining it in quadrature.

σα′
TW

=

 4∑
i=1

(
∂α′TW
∂mi

σmi

)2
 1

2

(A.21)

=
∂α′TW
∂m1

 4∑
i=1

(
σmi
)2

 1
2

(A.22)
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Thus we can write the relative uncertainty in α′TW as

(
urel, α

′
TW

)
stat

=
σα′

TW

α′TW
=

[
(σm1)

2 + (σm2)
2 + (σm3)

2 + (σm4)
2
] 1

2

|(m1 +m2 +m3 +m4)| (A.23)

A.4.2. RxPD to WS effective relative responsivity

The effective relative responsivity between RxPD and WS, α′RW , is given by

(again assuming that the optical efficiency is close to 1)

α′RW =
2e

(1 + e)
αRW

=

 2

1 +
m3 +m4

m1 +m2

[(m3 +m4)

(m1 +m2)

]
1

2

[
m5

m3

+
m6

m4

]

=

[
m3 +m4

m1 +m2 +m3 +m4

] [
m5

m3

+
m6

m4

]

α′RW =
1

m1 +m2 +m3 +m4

[
m5 +

m3m6

m4

+
m4m5

m3

+m6

]
(A.24)

In order to make the uncertainty calculation simpler we define,

α′RW =
A

a
(A.25)

where A =

[
m5 +

m3m6

m4

+
m4m5

m3

+m6

]
and a = (m1 +m2 +m3 +m4).
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The partial derivative of α′RW with respect to each measurement quantities results

in following components

∂α′RW
∂m1

=
A

a

(
−1

a

)
(A.26)

∂α′RW
∂m2

=
A

a

(
−1

a

)
(A.27)

∂α′RW
∂m3

=
1

a

(
m6

m4

− m4m5

m2
3

− A

a

)
(A.28)

∂α′RW
∂m4

=
1

a

(
m5

m3

− m3m6

m2
4

− A

a

)
(A.29)

∂α′RW
∂m5

=
1

a

(
1 +

m4

m3

)
(A.30)

∂α′RW
∂m6

=
1

a

(
1 +

m3

m4

)
(A.31)

The standard uncertainty in α′RW is given by

σα′
RW

=

 6∑
i=1

(
∂α′RW
∂mi

σmi

)2
 1

2

(A.32)

Thus we can write the relative uncertainty in α′RW as

(
urel, α

′
RW

)
=
σα′

RW

α′RW
=

1

A

{(
A

a

)2

σ2
m1

+

(
A

a

)2

σ2
m2
. . .

+

(
m6

m4

− m4m5

m2
3

− A

a

)2

σ2
m3
. . .

+

(
m5

m3

− m3m6

m2
4

− A

a

)2

σ2
m4
. . .

+

(
1 +

m4

m3

)2

σ2
m5

+

(
1 +

m3

m4

)2

σ2
m6

} 1
2

(A.33)
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APPENDIX B

ACCOUNTING FOR IN-VACUUM OPTICAL LOSS MEASUREMENTS

During O1 and O2 observing runs, in-vacuum optical loss measurement was

not possible so, laser powers measured at the transmitter and receiver modules,

outside the vacuum enclosure, were used to estimate the power at the test mass. An

assumption was made that the power loss between the input (incident) and output

(reflected) sides were equal, which happens to be a good approximation.

During the vent between O2 and O3 observing runs, in-vacuum measurements

of powers were made, allowing to apportion the losses between the input and output

sides. A method to use that in-vacuum optical efficiency information to apportion

the overall optical efficiency change measured from outside the vacuum in the future

is described below. Here instead of assuming the power loss is equal on both sides, we

make an assumption that the optical efficiency between the input and output sides

remain constant.

B.1. Corrections for Optical Efficiencies

Six quantities, eiT , eoT , eiM , eoM , eiR and eoR are derived from measurements made

inside and outside the vacuum envelope at the end stations. In accordance with the

layout shown in Fig. B.1, eT , eM and eR can be defined as the optical efficiency

between T1 and T2, T2 and R2, and R2 and R1 respectively and the superscript “i”

and “o” denote the inner (upper) and outer (lower) beams.

Assuming that the power in the inner and the outer beams are equal (they are

within 2% of each other) we can write the combined optical efficiency as an average
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T1 
(at TX Module)

ETM

R1 
(at RX Module)

R2

T2

FIGURE B.1. Layout showing the position of the power senors at different locations
of the Pcal beams for in-vacuum optical efficiency measurements (Only one beam is
shown for clarity). Positions T1 and R1 are outside the vacuum at transmitter and
receiver module respectively. Positions T2 and R2 are inside the vacuum, just in front
of the test mass, on incident and reflected light respectively.

of the inner and the outer beam optical efficiencies.

eT ≡
1

2
(eiT + eoT ) (B.1a)

eM ≡
1

2
(eiM + eoM) (B.1b)

eR ≡
1

2
(eiR + eoR) (B.1c)

While we can use these data to measure the reflectivity of the test mass we

impose the constraint that this reflectivity is unity1. To accomplish this, we multiply

the transmitted-side and reflected-side optical efficiencies by the square root of the

measured test mass optical efficiency. The transmitter and receiver side optical

efficiencies, calculated based on the in-chamber measurements and corrected for unity

1We expect, based on numerous measurements, that the reflectivity is greater than 0.9999
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test mass reflectivity are denoted by εT0 and εR0 and given in Eq. B.2.

εT0 ≡
√
eM eT (B.2a)

εR0 ≡
√
eM eR (B.2b)

The initial, calculated overall optical efficiency is thus given by

ε0 ≡ εT0 × εR0 (B.3)

Later, when measurements inside the vacuum envelope are not feasible, overall optical

efficiencies for the two Pcal beams, ei and eo, can be measured with the transmitter-

side and receiver-side Pcal power sensors and the measured overall efficiency is given

by

e ≡ 1

2
(ei + eo) (B.4a)

≡ ε ≡ εT × εR (B.4b)

where εT and εR are the new transmitter and receiver side optical efficiencies that will

be determined from future out of vacuum measurements.

The ratio of optical efficiencies between the input and output side is defined as:

β ≡ εT0

εR0

(B.5)

We require that the ratio of the optical efficiencies for the transmitter and receiver

sides, β, remains the same, i.e. we apportion changes in the overall optical efficiency
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between the two sides using

εT
εR

= β (B.6)

Using Eq. B.4b and Eq. B.5 we can write the calculated transmitter and receiver side

optical efficiencies, based on measurements made outside the vacuum envelope and

with the assumption that the ETM reflectivity is unity, as

εT = [β e]1/2 (B.7a)

εR =

[
e

β

]1/2

(B.7b)

where β is derived from one set of initial in-vacuum measurements and the total

optical efficiency e is measured each time the end-station ratio measurements are

made. We will also define a term η such that it tracks the change in overall optical

efficiency of the system over time.i.e

η ≡ e

ε0
=

ε

ε0
(B.8)

Alternatively, we can write the optical efficiency factors, εT and εR from Eqs. B.7, in

terms of η and their original values as

εT =
√
η εT0 (B.9a)

εR =
√
η εR0 (B.9b)

Thus, η keeps track of both the optical efficiency ε(e) and its component values from

the transmitter and the receiver sides.
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With the power incident on the mirror denoted by PM(t), we can estimate that

power using the following relations

PM(t) = PT (t) εT (B.10a)

PM(t) = PR(t)/εR (B.10b)

where PT (t) and PR(t) are the powers measured at the transmitter and receiver

modules respectively. Using Eqs. B.7 and B.10, we can write PT (t) and PR(t) as

PT (t) =

[
1

β e

]1/2

PM(t) ≡ ET PM(t) (B.11a)

PR(t) =

[
e

β

]1/2

PM(t) ≡ ER PM(t) (B.11b)

where ET and ER are the correction factors associated with change in optical efficiency.

Using the definitions of responsivity from Eq. 3.18, we can write the voltages measured

by the transmitter and receiver module power sensors as:

VT(t) = PT (t)ρT = PM(t) [ET ρT]︸ ︷︷ ︸
ρ′T

(B.12a)

VR(t) = PR(t)ρR = PM(t) [ER ρR]︸ ︷︷ ︸
ρ′R

(B.12b)

Here ρ′T and ρ′R are responsivity of the transmitter and receiver module power sensor

corrected for optical efficiency such that they represent the power measured at the

165



Parameter O2 Method O3 Method

ET 2/(1 + e) (1/β e)1/2

ER 2e/(1 + e) (e/β)1/2

TABLE B.1. ET and ER translate the power measured at the transmitter and receiver
module to the power at the test mass (mirror). These terms for O2 (without in-
vacuum measurements) and O3 (with in-vacuum measurements) are slightly different
and are listed above.

test mass and can be written in more expanded form using Eq. B.13.

ρ′T = ET αTW αWG ρG (B.13a)

ρ′R = ER αRW αWG ρG (B.13b)

These equations (Eqs. B.13) have the same form as the equations of ρ′T and ρ′R in

3.28 but the crucial difference is the definition of ET and ER. Symbolic values of ET
and ER for the old method (O2) and the new method (O3) are listed in Table B.1.

B.2. Uncertainty

To estimate the uncertainty we can write effective relative responsivities of the

transmitter and receiver module power sensors, α′TW and α′RW , as:

α′TW = ET αTW =
1√
βe

αTW (B.14a)

α′RW = ER αRW =

√
e

β
αTW (B.14b)
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Given that β does not change over time the uncertainty associated with β comes

from the measurement uncertainty. We can write β in terms of the optical efficiency

measurements made inside the vacuum as

β =
eiT + eoT
eiR + eoR

(B.15)

Defining eiT = e1, eoT = e2, eiR = e3, and eoR = e4 to make the uncertainty

calculations easier and differentiating with respect to each component the statistical

uncertainty on β can be written as

(urel, β)stat =
σβ
β

=

[
(σe1)

2 + (σe2)
2

(e1 + e2)2
+

(σe3)
2 + (σe4)

2

(e3 + e4)2

] 1
2

(B.16)

To estimate the uncertainty in the rest of the quantities we can rewrite α′TW

and α′RW in terms of six measurement ratios (m1 − m6) that we make during the

end-station calibration measurement.

B.2.1. TxPD to WS effective relative responsivity (α′TW )

From Eq. B.14a we can write TxPD to WS effective relative responsivity as

α′TW =
1√
βe

αTW

=
1√
β

√(m1 +m2)

(m3 +m4)

 1

m1 +m2

α′TW =
1√
β

[
1√

(m1 +m2)(m3 +m4)

]
(B.17)
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Now taking partial derivatives of α′TW with respect to measurement quantities

results in

∂α′TW
∂m1

=
∂α′TW
∂m2

= −1

2

1√
β(m1 +m2)(m3 +m4)

1

(m1 +m2)
(B.18)

∂α′TW
∂m3

=
∂α′TW
∂m4

= −1

2

1√
β(m1 +m2)(m3 +m4)

1

(m3 +m4)
(B.19)

∂α′TW
∂β

= −1

2

1√
β(m1 +m2)(m3 +m4)

1

β
(B.20)

Using these partial derivatives we can write the relative uncertainty in α′TW as

(
urel, α

′
TW

)
stat

=
σα′

TW

α′TW
=

1

2

[
(σm1)

2 + (σm2)
2

(m1 +m2)2
+

(σm3)
2 + (σm4)

2

(m3 +m4)2
+

(
σβ
β

)2
] 1

2

(B.21)

B.2.2. RxPD to WS effective relative responsivity (α′RW )

From Eq. B.14b we can write RxPD to WS effective relative responsivity as

α′RW =

√
e

β
αRW

=
1√
β

√(m3 +m4)

(m1 +m2)

[1

2

(
m5

m3

+
m6

m4

)]

α′RW =
1

2
√
β

√(m3 +m4)

(m1 +m2)

(
m5

m3

+
m6

m4

) (B.22)
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In order to make the uncertainty calculation simpler we define,

α′RW =
1

2
√
β
A a (B.23)

such that,

A =

√
(m3 +m4)

(m1 +m2)

a =

(
m5

m3

+
m6

m4

)

The partial derivative of α′RW with respect to each measurement quantity results in

following components:

∂α′RW
∂m1

=
Aa

2
√
β

(
−1

2

1

(m1 +m2)

)
(B.24)

∂α′RW
∂m2

=
Aa

2
√
β

(
−1

2

1

(m1 +m2)

)
(B.25)

∂α′RW
∂m3

=
Aa

2
√
β

(
1

2

1

(m3 +m4)
− 1

a

m5

m2
3

)
(B.26)

∂α′RW
∂m4

=
Aa

2
√
β

(
1

2

1

(m3 +m4)
− 1

a

m6

m2
4

)
(B.27)

∂α′RW
∂m5

=
Aa

2
√
β

(
1

a

1

m3

)
(B.28)

∂α′RW
∂m6

=
Aa

2
√
β

(
1

a

1

m4

)
(B.29)

∂α′RW
∂β

=
Aa

2
√
β

(
− 1

2β

)
(B.30)
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Using these partial derivatives we can write the relative uncertainty in α′RW as

(
urel, α

′
RW

)
stat

=

{(
1

2

1

(m1 +m2)

)2

σ2
m1

+

(
1

2

1

(m1 +m2)

)2

σ2
m2
. . .

+

(
1

2

1

(m3 +m4)
− 1

a

m5

m2
3

)2

σ2
m3

+

(
1

a

1

m3

)2

σ2
m5
. . .

+

(
1

2

1

(m3 +m4)
− 1

a

m6

m2
4

)2

σ2
m4

+

(
1

a

1

m4

)2

σ2
m6
. . .

+
1

4

(
σβ
β

)2
} 1

2

(B.31)

where σmi are the standard deviations of the corresponding ratios.

B.2.3. Systematic uncertainty in β, ET , and ER

The uncertainty described above is only the statistical uncertainty that comes

from the measurements. However to get the accuracy of the calibration right we need

to understand the systematic uncertainty in our measurements.

One way of estimating the overall uncertainty in β is by comparing the optical

efficiency calculated using the measurements made at the transmitter and receiver

modules with the optical efficiency calculated by multiplying the optical efficiencies

between the transmitter and receiver sides from measurements made inside the

vacuum enclosure. The former assumes unity for the test mass power reflectivity.

This assumption is justified based on the resonance of light on the interferometer arm

cavities that sets the upper limit on losses (transmission, scattering and absorption)

of less than 0.001%. The latter measures the overall losses, without this assumption of

unity reflectivity, and thus provides an estimate of the uncertainty in our calculation

of e0 = εT0 × εR0, and thus also of β = εT0/εR0. Similarly, calculating the test mass
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reflectivity from in-chamber measurements and evaluating the deviation from unity

enables estimating the uncertainty in β.

ET and ER, the coefficients that convert powers measured at the transmitter

module and receiver modules to estimated power incident on and reflected from the

test mass, based on transmitter and receiver side optical efficiencies, εT and εR, are

given by

ET =
1

εT
=

1√
α εT0

(B.32)

ER = εR =
√
α εR0 (B.33)

where α = e/e0 is the measured relative change in the overall optical efficiency.

While we have assumed that β is constant to estimate, εT and εR, to

conservatively estimate uncertainty in these correction factors, we use Type-B

uncertainty.

So for εT =
√
α εT0, the values could be between αεT0 and εT0 and for εR =

√
α εR0, the values could be between αεR0 and εR0. Using these we can write the

relative uncertainty in εT and εR as

urel, εT =
1√
3

(
εT0 − α εT0

εT0 + α εT0

)
=

1√
3

(
1− α
1 + α

)
(B.34)

urel, εR =
1√
3

(
εR0 − α εR0

εR0 + α εR0

)
=

1√
3

(
1− α
1 + α

)
(B.35)

Thus the uncertainty in ET and ER is given by

urel, ET = urel, ER =
1√
3

(
1− α
1 + α

)
(B.36)
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For illustration, if the overall optical efficiency is to change from 0.987 to 0.982,

a change in optical loss from 1.3% to 1.6%, the estimated relative uncertainties in ET
and ER would be ∼0.10%.
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APPENDIX C

CALIBRATION SUBWAY MAP
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FIGURE C.1. Advanced LIGO Calibration Scheme shown using blocks and arrows.
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APPENDIX D

ABBREVIATIONS

LIGO Laser Interferometer Gravitational-wave Observatory

GRB Gamma Ray Bursts

GW Gravitational Wave

GPS Global Positioning System

Mpc Megaparsec

H1 Hanford interferometer 1

BS Beam Splitter

Nd:YAG Neodymium-doped Yttrium Aluminum Garnet

IMC Input Mode Cleaner

PRM Power Recycling Mirror

SRM Signal Recycling Mirror

OMC Output Mode Cleaner

O2 Observing run 2

FSM Free-swinging Michelson

ETM End Test Mass

PDH Pound-Drever-Hall
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Pcal Photon calibrator

L1 Livingston interferometer 1

DARM Differential ARM

SHoES Supernova, H0, for the Equation of State of Dark energy

CMB Cosmic Microwave Background

SNR Signal-to-Noise Ratio

BNS Binary Neutron Star

EoS Equation of State

PN Post-Newtonian

CW Continuous Wave

RxPD Receiver module Photo Diode (Power Sensor)

AOM Acousto-Optic Modulator

Nd:YLF Neodymium-doped Yttrium Lithium Fluoride

BRDF Bidirectional Reflectance Distribution Function

RF Radio Frequency

InGaAs Indium Gallium Arsenide

TxPD Transmitter module Photo Diode (Power Sensor)

ACB Arm Cavity Baffles
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OFS Optical Follower Servo

OFSPD Optical Follower Servo Photo-diode

RPN Relative Power Noise

O1 Observing run 1

ESD Electrostatic Drive

NIST National Institute of Standards and Technology

GS Gold Standard

WS Working Standard

LHO LIGO Hanford Observatory

LLO LIGO Livingston Observatory

WSH Working Standard Hanford

WSL Working Standard Livingston

CS Checking Standard

WBS Wedged Beam Splitter

AA Anti-aliasing

DTD Digital Time Delay

IOP Input Output Processor

DFT Discrete Fourier Transform
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PUM Penultimate Mass

UIM Upper Intermediate Mass

TST Test Mass

GDS Global Diagnostic System

IIR Infinite Impulse Response

EM Electromagnetic

BED Bulk Elastic Deformation

IFO Interferometer

DES Dark Energy Survey

FEA Finite Element Analysis
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