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IUTRODtJCTIOS

In ijaking use of the theory of linear.regression to obtain an estl*

mation of a dependent variate froa th^ information contained In an inde*.

pendent variate:, one frequently Ie faped with the problem of having the

independent variable given in a non-quantitative manner* In these cases
'.'•'. - •• ' I, /

the independent variable usually is classified into ordered groups* In
.'.••'• .• ' " " -•.•''. •••''.

order tp; use t)\e theory of regression one must assign a numerical .weight

to each of these .groups* lis is the purpose of this paper to consider the

problem of determining these wights„ \ .

The data considered in this papef Will be assumed to be bivariate

with the dependent variable quantltatiyely measured and the independent

variable classified into ordered groups. Numerical weights are to be

determined aueh that <she regression equation thereupon sbtdined will give

the best estimate of the dependent variable.,

..At; present the usual practice 1$ to obtain these weights in a more

or less subjective manner* In considering this problem Prank A. Pearson1

states that since there is no numerical value gi,ven to the classes*

% .... » • a unit rate of change cannot be calculated for a relationship in

which the independent variable is noh-:numerioal% while Saekial8, in the

iprank A» Pearson and Kenneth. R* 'Bennett, Statistical Methods» (flew
York*«John Wiley and Sons, 1042), p. 135. "~~~~. *~~*.—*--—--•

%ordecal Eaekial^ Methods of Correlation Analysis. (Hew Yorkj «7ohn
Wiley and Sons, 1941), p. 3lo. ""p ..• ' —'



recent edition of his book, makes the following statement*

In ease a non-quantitative factor is a very important one, so that
ignoring it in determining the net linear regressions may seriously
impair their accuracy, it may be roughly included by designating
successive groups by a numerical code which approximates the expect*
ed influence of the variable*

The literature contains Very little in the way of a direct reference
i

to •Oils problem as it arises in oonneotion with regression* however* one

finds in the literature many references to the problem of estimating the

correlation coefficient from qualitative data. Among the references

available* an assignment of weights may be made incidental to the esti

mation of the correlation coefficient;. For this reason* and since the

problem of correlation is so olosely related to that of regression* the

principle methods of determining the correlation coefficient for non*

quantitative dalsa will be given before the actual problem of this paper

is considered.

Following the dismission of these: methods, a method of assigning

weights to the ordered classes of an independent variable* which is based

on minimizing the standard error of estimate* is developed* This will be

followed by a numerical example to illustrate this method for determina-

tion of weights and the result obtained compared with those obtained for

several other choices of weights* A discussion of other definitions of

what might be considered as the best estimate of the dependent variable

together with a few summarising remarks will conclude the paper*

—""*—-*--""*>-"



^ CHAPTER I

UN5AR REGBl!SS.IOHi;AS[D COSRlLAflQW

For a Sample Population

Consider a series of observations x« and y. that are linearly con-

neoted* these observations can be plotted on a graph to for© what is

oalled the scattered diagram* By fitting a straight line to the eoattered

diagram in such a my as to stake the aiaa of the squares of the ordinate

distances from the points to the line a minimum, one obtains the regression

line of y on •%:, the regression line or the best fitting straight lino

thus obtained is the best estimate, in the least wquare sense, of the

relation of the values of the dependent variable, y, to the values of the

•independentvamble,. »f. .:. ,, ^
Let y^ > mx * b be the line of regression of y on x« Representing

the difference between the ordinate pf any given point and the correspond*

ing ordinate of the line by sj# that is, cj_.« y^ • yQ a y. «.. ax » b»

these differences are oalled residual ^errors«.
no'

. How m and b are chosen subject to the condition that the 2 e? is
' r " •" \ iol i •'

to be a minimum. Using the calculus to minimize

;a i!'?(y»'m*b)|.'

* . ' . n
AIn the rest of the paper 2 sign will be used in place of S •

i«*l'

P
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on©' obtain© Ufroa differenblatiag trtth roflpoot to ta ©»d'?t» reapectlvoly*

and sotting the derivatives equal

Sy * a£a * ab

to aero* the two normal Otjuat iono i

&aty » xoSsS'* b$8«

Solving tho norsjal ©qsatioos stsailtaneoMly, the following values tyx; a

sad b are obtained*

aS*2 - (Sx)8

• ii

&

Bene© the regroaaioa Ha© of y on x roay be written ft©

If by chane© all of the plotted point© should fait ©a th© regression

liae0 the estimate of tho dependent variable trould be perfect, la general
....•'..••• . ii -

tho points Mil not foil on th® line* \ Consequently tho goodneoo of esti

mate ia JudtiOd la terms of the standard deviation of th© residual errors*

Thio standard deviation ia &ao©n as th© standard direr of estimate and olll

b© denoted by S with a ©absoript to indicate th© variable whoso deviations

are; being mooaured* It differs from an ordinary standard deviation of a

aingle variable only ia that deviatioao are measured frota the regreosioa

11a© iaatoad of the jseaa or arithmetic average*

At this point ia the disenealon tso. are interested ia SU* la symbols

the computation is •;

¥ a I
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Substituting mx ♦■ b for yft, the equation becomes

s2 o 2(y •* m - b)'

Upon further simplification and since

a^ «gy2V sigy - bSay »

2e a 0t the equation becomes

(2)

The standard error of estimate is a measure ©f the scatter of the

points from the regression line* The closer the points lie to the line*

the smaller will be the valu* of Sy and vice versa* 8y is to be inter

preted in the same way as,any other standard deviation. It gives the

range on either side of the regression line within which about 68 percent

of the points can be expected to fallJ provided the distribution of both

variables are approximately normal.

The variability ofthe y-variable whieh can be explained by the lin-i-

ear association of y with x is determined from the equation of the regres

sion line* $y is a measure of the remaining part of the variability of

y that is not explained by the regression line*

Some standard is necessary in order to determine what constitutes a

large or a small value of S,,, The largest value that S„ can take is oW
y • t, - y . • • 9 • .

That is if x and y were completely independent, the regression line of

y on x would be y •«. Sy/n* This means that the best estimate of y for any

value of x is the mean of the y distribution, hence all the values ot yQ

would be equalo We also know that when there is a perfect relationship

Sy a 0^ and we therefore can use ©y as the standard for judging whether

the values of Sy are large or small.



In order to obtain tjhe relationship existing between the correlation

coefficient and the standard error of estimate let us replace the values

of m and b in equation (2) by the values of m and b used in the regression

equation (!)•

mz. ($L±m* - *m
T

*I [ri$y2«<Sy)2■.♦ &&LZ
a? n2x« -

A ,2

'•* Py2(i-r2)

(nSxy,« 2xJ8y)'

(3)

where r denotes the correlation coefficient between tne variables x and

y and takes the sign of the slope of the regression line.

Therefore one can see from equation (3) that the fundamental re*

lationship between the standard error and the correlation coefficient is

such that if the two variables are unrelated* S_ and «t are Identical and

the value of t is aero. If the two variables are perfectly related, that

is, all points falling on the regression line, the value of Sy is sere

and the value of r would be plus or minus one. the value of the correla

tion coefficient may therefore range froin aero to plus or minus one*

These limits represent perfect correlation (direct or inverse), and com*

plete absence of correlation*

For a Parent Population

Let us extend the discussion of the relation between regression and



iiu'/TjaarnffMiiriftBTi

correlation of a sample to that of a parent population* The parent pop*

ulatlon may be represented by the continuous variables x and y* We assume

the Variables x and y have the joint >robabllity function f(x,y), where

the double integral of f(x*y) over a region of the xy plane measures the

relative frequency of occurrence of the pairs of values of x and y In the,

region* Heaoe we have

*(»*y) dy dx o 1,

where f(x,y) dy dx is the probability that simultaneously x lies in the

interval (xp x ♦ dx) and y lies la the interval (y, y 4 dy)*

the probability that x occurs in the Interval (x» x ♦ dx) for all y*e»

will' be denoted by g(x) dx» then integrating over all admissible values

of y, we have

g(x) dx.* dx /* *(x,y) dy*

Similarly* if h(y) dy is the probability that y oooura in the interval

(y» y ♦ dy) for all assignments of x,

h(y) dy «dy/* f{x,y) dx>

In accordance with convention we shall

dietributions*

The general product moment about

defined as follows*

**a */*/* *(*»y) ^V dy dx

we have

call g(x) and h(y) the marginal

the common origin of x and y may be

l^ohn f* Kenney, Mathematics of
Company* 1939)# pp# 63-7^*

Statistics* (Hew York* p. Van Nostran4
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If a a o and n *•%, we have

?<* *^-£» f(*»y) y ^ ***
tet f(x,y) be a function in whioh the

changed« ?he vC* becomes,

/*•[£ *(*»y) d* ]y dy•> /V h

whioh is the mean^ y, of the y»s» Similarly the mean of the xte is

y' o * ?/fVI ?(s#y)x dy dx
m£0

How defining the general product

follows*

Am «*/*/* •(* #1c) (y - y) f(x„y) dy dx
When m •& n o 1, we have >

/ll * /•./* (x * x)(y * y)f(x,y) dy dx,

which is called the co-varianoe of. the/joint distribution*

ffihen'm # 2 and n w 0, we have the variance of x*

>20

2
•*• <** .*•

(x - x> f(x^y) dj

order of integration may be inter-

dy*

*<£! g(*)* dx»

•' • j

moment about the means (x*y) as

dx

Similarly, $hea m • 0 and n =» 29 we have the variance of y,

^°? *£& <y *B2f(x*y) dy dx
' % :

Saving defined the moments of the distribution function f(xty) we

are ntm ready to oonsider the regression curve*

|f y has been assigned in the joJ.nt probability funotioa t(x$y)i, the

probability that x will lie in an Infinitesimal interval is
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thus* when y is fixed*

too 14W:*
and 00 f(x*y)A(y) M the probability

may be called the probability density

Likewise if tre fix x» the probal?

is given by t(x,y)/g(x)t and

^iiMdycl

when x is fixed*

the mean of ehx array of y»s is

y */* Z£i*alLdy

--frli*^-Jf",-T,"*'*"-i^'~>"~,a-"-"-••*^

function of x for a fixed y* it

representing a y array of x*s«

ility density for an * array of y*s

(8)

where the Integration is performed over all values in the array defined

by x* Similarly, the mean of a y array of x's is

&,*./?• *,f^*y) dx«y
3*0

*m
<•>

integrated over all x's in an array for a fixed y

fhe variance in an x array of y*s| is given by

cn

integrated over all values in the array fixed by x. Similarly the var»

ianoe in a y array of x's is
/
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**•' y h(~v

Taking different x arrays of y's

varies continuously we get the locus of these means whioh is called the

regression curve of y on x# Jts equation is given by (6). Similarly (6)

gives the regression.ourve of x en y,

We shall consider only the case wheret the, regression ourves are

straight lines* If the equation of the regression ourve of y on x is Of

the form

y_ * not ♦ b

then the regression of y on x is said

, Consider

•• y,. *^£ y-*l**7l. dy «mx ♦ b

op £>y '*(?•*). *sr *•* s<*) ♦ b$(*)• , (9)
Integrating each side and remenibering ^shat *e may change the order of

integration, we obtain

y6l em v|g ♦ b* (10)

Multiplying eaoh side of equation (9) by x and integrating with respect

to x» we have

%*mV?®** V

.•^Mi&rjia-V.'^i-'W^i-i*iKi.'f'''ii>nif-arg,iTi*T<r?<giiB'imf

10

(8)

'1

fixes the mean points y and as x
35

to; be linear*

«u)

A simultaneous solution of (10$i and (11) yields

Hi

m
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V

therefore th0 equation of regression: pf y on x beoomes

(12)

We shall how consider the standard error of estimate* We have seen

that the probability density in an x array of y*s is f(x>y)/g{x)., and the

variance s • within such an array is given by (7)»

Tihe> mean, over all %arrays, of values of s_\ weighted with the

by y s, and $L is called themarginal distribution of x is denoted

standard error of estimate* We will now show that/ 2* tf 2(l -a%)*
• | y y r

By defihition>

if «pp» •• jr#X ••

«* '2' ''"
(y * yJ *(*#y) <*y <*=*«

r

the value of y4 given in

, ^ * ,;. . m

the above expression becomes

2

*y i (y - y *3a£(* •»• i*> ]" t{*»y) dy da

I(y * f)8 * 27^<y * y)(?

?he right member simplifies so that we

.H tf'fyt* I

where p is the correlation coefficient
r

This result is analogous to that obtained from the sample problem,

*-s J*ll ' *n 21

have the result

of the parent population*



and thus we see that the relationship

is the same in sample and parent popu

-ff-ft-w,'"*"*,*^^J—*-*—-^-"-^"

• 12

between regression and correlation

ation*



CHAPTER IX -x

THE PROBtM OP ESTIMATING THB CORRELATION

COBFPIGIBBT FOR NOE-QUAHTIfATlVB DATA
r

Tetrachorio Correlation

One of the first references dealing with the correlation ofi non meas-

1urable characters is, given by Pearson

Pearson considered the case of $

II i

a fourfold table as they poesees one, both, or neither, of two qualitative

traits or characters, which may, for convenience, be denoted by I and II,

Suoh'aclassification may be represent 3d in the following fourfold tablet

Table I

i ; • '

objects which are classified into

d c ♦ d

Total a Vo b*d

where ft a a + b ♦ b ♦ d*

To measure the intensity of association between two characters in

iEarl Pearson, "Mathematical Contributions to the Theory of Evolu-
tlonj1* Philosophical Transactions, Vpii 1§6, At (Feb, 1900), pp. 1-6,
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such a classification, it is supposed that the data can be represented

by a normal correlation surface containing r, the correlation coefficient,

as the parameter, the problem is to determine r so that the surface can

be divided into four cells by two planes intersecting at right angles, to

yield the relative frequencies observed, Then the correlation coefficient

for this normal surface is called the

Let the frequency surface

a •»

teti?aohoric r»

g 0" g.fn?^' f y - 2p*y)
2n (1 • r*)1/2

where the variates are measured in standard deviation units, be divided

Into four cells by two planes x » h aiid.y «» k. The total volumes or
.,.•.,• . |

frequencies in these parts will be represented by a, b, c, and dj in the

manner indicated in fable I.

the value of h and k can readily

under the normal curve between k and ,«, and

normal curve between h and «>.

We see that

b ♦ d

'e found since e-'* « is the area
N

is the area under the

d e

i 2 2

dx dy. (1)

From this equation the value of r is found since d, H, h, and k are known.

The solution of equation (1) is obtained by expanding the equation

in terns of r by Maolaurin'e theorem* After taking logarithm!© differen

tials and differentiating a times by Leibnits^s theorem we may integrate

from h to • with respect to a, and from k to « with respect to y, obtain*
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ie

ing, after some reductions, the following equations

:2 ••' --.3 A, 2ad *» bo • r «• JLhk ♦ X^h > 1)(1e - 1) ♦ |-*<h - 3)k(kZ -3)
2 6

6

24

*lis(h*" •^»8 *3)(k* •6k* *3)
♦ y20 h(h •? lOh ♦:

where

Ho
-¥

(2n)
TJi and

The numerical solution has to be

4 2

5)k(k4 *10k2 ♦ 18) ♦ .,, ,.

£

(2n)W

1 2
e 2 ...

obtained by approximating to the

roots, end Newton's method- is convenient for this purpose*

To .facilitate the arithmetical -srork of this method there are tables2

available* These are arranged so that the equation

can be usedr F are known to be tetrachori
n

up t6 Fg* Further values may be

work can be avoided since all that has

available, is to calculate h, k, and

the tables so as to obtain r«

•'• * •' *"

o functions and are tabulated

obtained by a difference formula* Such

to be done, if these tables are

the ratio d/fe, then Interpolate in

Polychorlc Correlation

%. Palin'Elderton, Frequency Curves and Correlation 3rd edition*
(London* Cambridge University Press, 1938), pp, 176*

%arl Pearson, Tables for Statisticians and Biometrlolans* (London*
Cambridge University Press, 1914J, pp. 42-67*

3$ee page (18) for further details on tetraehoric functions.
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The more generalproblem* that of determining r when objects are

classified into an m by n fold table was- also considered by Pearson*1

the procedure he followed is similar to that used when considering the

specialised 2 by 2 classification, in as much.as, a normal correlation

surface is fitted to the table and equationsJfor the correlation coef-

ficient are derived-employing the tetrachorlo functions and the observed

cell frequencies. Prom these equations the value of r is obtained*

Again it is supposed that there exists a normal correlation surface

with a fixed r which when cut up into the m by n cells will .contain in

the several cells precisely the relative frequencies given, the r that

pretains to such a surface is the coefficient of correlation sought.

This coefficient is oommonly known as the polychorio coefficient of

correlation. In the oases encountered in applications* there is usually

no one value of r which determines a surface whose theoretical frequencies

will 'exaotiy equal allof the observed frequencies, since the observed

frequencies-contain sampling variations* the problem Is, therefore, to

determine, the surface that satisfies the conditions as neafrly as possible.

Before, going into the details of this method,of finding the polychorio

coefficienV of correlation* a brief discussion pretaihing to the notation

to be' used will be given.

We start with the assumption that

marginal totals of the polychorio table can be represented on a normal

scale. Now the pqiychorio table is such that in the population N under

both the horizontal and vertical

!Sarl Pearson and Egon Pearson* *0n Polychorio Coefficients of
Cor*elatlon% Blometrika; XI?. pp* 12?«466+ • •""<.'

r
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1 all

n21

'*M

, 2

r

*!*, %
H H

discussion* the sth category of the first'varlate, x. contains n

individualsand^ the^ r^ bategbry of the second variate, yt contains n

individuals, while the number of individuals who combine In the population

Bthe sth category of * and the rth category of ywill he denoted by ngp.

fable II

n6t

- •

n
; ••".«*..

*r

U

-^ ni»« n2V* * ** ne»'' ': "*;-' *"? *he frequencies of the x variat©

for the, several categories, the values of the ratios 6f abscissae to

standard deviation* or end xrs, will he specified as <*, hj, hg, . * hs, ♦ , .

Here hg^i and h8 are the values on either side of the category ne#.

Similarly, if the frequencies of the 'various categories of the yvarlate

*e a41» a«2* • * * » a*r» *ix'e Valuei of the ratios of ordinates to standard

deVia^i^^|l;tbe„:repre6ented. by'^i .^ kg, :# **̂ -j^ w„;.:, ?. ^0re•
fisp^ and kr give the end y*a on either side of n#T*

fhe means of the categories n^Q ad a^ will be denotedby & and

%•» whereas Fg, and f^ will be the xand yvarlate means for the sth^rth
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oell, and s6j, the product moment of the frequency la the sth-rth cell*

To find the mean points we nake use of the followiag property11. The

ffiean value of that portion of the area under the curve which lies over

the interval j h^ to hg« is found by suh^raoting the ordinate at \ from

the ordinate at ^\» and dividing the result by the area* fhus the means

of the categories n#8 and ar- are determined by

• hB • -..I • * i;. r,:° .Sad fcj, a S*X $
%./8 ^ry

where

* lh$ M
nnn V . *v iiiii.i i i,' i ii n ii. & *v*I5W"* *** v*7^r

the theoretical oell frequency will be denoted by ner* whereas the
observed cell frequency is agr. We Shall write the real ooeffioieat of

correlation of the population as t0 t^e- coefficient as from a single

sth^rth cell as *w» aad those from the n*, and n _ arrsiv. as r„ and

~t+j respectively* fhis aotatioa will be used throughout the methods that

follow ualess otherwise specifled.

In the development of the polyehorie r, Pearson isalces use of the

tetraohoric functions; fhe tetraoherio fuhctioa of the order t is, defined

Certain properties aad notation concerning these fractions a*e useful

ia the davelppnieftti We shall write for brevity

iBurton H* Camp, Elementary Statistics. (Boston* D, G* Heath dad
Company, 1931)» p* 88*?•
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where r^(h) denotes the value of the tetrachorlo function for. x.« h« the

formula for obtaining the successive tetrachorlo functions for a given x

isv ••' •'.•'••••••;..•:.'•.

where the values for p^. and q^ have been tabulated* If

then

*A-«^J"*;«W8fJ> ^♦;vM.t(t»i)rV.,L, ♦ ». .
t*l t*I

»

. 0 and F
r

where ft »fi(x) and F* » rt(y).
... -' fr'

Finally we have

4>*Ms^*%
and

ns*l
aF*. dx *. * ,'.tVo'^s-t*!

..fw- <t)V*rt ♦ <% T. i)1^. „.

On the supposition that the surface is normal, has corrolatlon r,

and follows the actual jnarginal frequencies* the following equations are

established by Pearson showing how r is related to the knoum parts of th©

m by a tablet ,...>,-: • •.
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2.0

S^ ^Ij^ If ** ^*D»Wo *rVlD/i* AiW* ***, (3)

^8r ^!l^!f ^dXd^ *CsWo *f¥l¥l *%2^- •

Zsr*er* £\ •£* »'«* dy =W>r*o +WW** A8^r**! ♦ *• *(6)
,«••:•..'•-..•' ; • ' • ••

those equations provide us with a large number of trays of determining
,rv For examples -t^.": :..••„_, * <l'

U We might find r, that is, rgr from a; single cell by writing in (2)

nsr for V;
'*•• We ^y ?lnd '$,from a given oolumn of the table by using the re

lationship

£ vJ+MvJ^t) vrrfitr* (D«**fc*o ♦ i»*$iPt& ♦»♦♦)] (6)
'•*«- ng# *.'•'";•'• B8fr l«fcr • • 'J^

*eM »8r ^ S^en by (2), and It, is the known oentroid of the n mar-

ginal total* Henoe the above is an equation to find rv that is, r » If

we use this value of r0> in (2) and (4) we obtain the theoretical cell

frequency n> and the mean of y for the cell kV as found from a column*

Summing tgf, for every value of r we find kV , the y mean of a column,
depending on the data as found from the column, fhus

8* .'*».• ' Br
(7)

fhls would be an ideal method of determining the mean of arow or oolumnj

but it Tvould involve a great deal of hard work, as with the two regression
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curves we should need to find r for every row and column by an equation

of higher order. \

3* To find r for the whole table we might assume the product moment

components from (5) and sum for all cells. We should have

& "fr**** * r,
: ** ^~ ' • '

since the coordinates are measured from the means in terms of the standard

deviations as unites Hence substituting in (0) wehhavei

. tt » i

*•* »V =^ (WM?o ♦ rDeTiDrTi* , . *)\ (8)
rP#r n8y J * '

Hero n^ must be substituted from (2) and we have finally

r, zlht fg*foDry ^*«fr£* **« x) (9)

It will be observed that what we are trying to do is to fit a normal

correction surface to a series of cell frequenbies. If the observed

results are oloeely normal then n&r fould be nearly equal to n ♦ Jf we

might aeoume the difference n^ and aSP so small as to be negligible we

should have*

r> s?r <W>«*<j>' t *W>r*l ♦ *• •* *) (10)
4, ket us ooasider what the most probable value for r might be* We

observe ngr as the frequency of the sth-rth cell; we find that w|th a

given correlation r the frequency of this cell would be n * on the
sr*

assumption that the frequenoy surface is the normal frequency surface

corresponding to the observed marginal totals*, Accordingly, the most

probable value to give to t would be that Tsfeich mad©
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Vl ° .2 ;,, V •., ... ,,:,.„ a minimum
a*p Bar

or, what is the same thing,

flSr (sSS\a minimum*

This leads us, differentiating with regard to r, to

}ir liter/ -wlus;

ov§ writing at length, our equation for r 1st

•ute)'. ' '.' ...
Again if we assume the differences of n8p and nQt negligible, we have

sJp <Wrrl ♦. ** SsWg .♦' . *. ) =0 (12)
It will be found that the equations (10) and (12)<are identically

satisfied. Hence our values for r from (8) and (11) depend en n differ

ing from n6p* Without the assumption that n may be replaced bv n
sr • * dr

neither (8) nor (11) are readily solvable* Probably the easiest way will

be to obtain an approximate value of ,'r, one well above and one well below

this result, so that the real value of r lies between the two* A linear

interpolation will probably suffice in most oases to determine r with

sufficient accuracy* ' (

The polychoric table as discussed by Ritchie-Scott1 describee another

method of reaching a polychoric coefficient from the weighted means of the

.fr|f^) ■^♦»^H,M.L G (11)
fi / (D8r0I>rro ♦ r Dsr.iDrFi ♦ , , , A

A* RitohlerSoott* "The Correlation Coefficient of a Polvchorio
Table", Biometry, Xll, pp» 106-108,

/aw«^
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possible tetrachorib values* <

The frequency surface divided into p columns and q rows is divided

at each point into four quandrants* and for each of thesedivisions a

value for r, that is, t^i r. -t »: V * * may be found by the tetraohorie

methodi These may be regarded as approximations to the true value of r,

and their weighted mean founds the weights being determined so that the

probable error of the mean r so found shall be a minimum*

Bet r » n ** 12*12

'11 ♦ G12 * ». '••

Squaring* and summing for all possibly values and dividing by the number

of samplesj ... .v :.

If ^> 2(Gat^t>? *2S(cstcI^t4|R0t^)»

Snd. .,* •••».••• •
* C2

fhen for a xoinimum ^

8G0t

6t

„4 . * 0
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&4

W*f«*f » 1 and if we let S/(3 « r then -££-. * i*.

Similarly --U*-•# J£— «•« ,;,,. * •» r
60lg 6C1S

and one obtains thenfollowing equationsr
) a

Cllffll 4 ^S^iAmS * ei3^1^isRll,lS ?>' * *# P (13)
^l*»rtftl^« *^12*12 * C13<512^13S12,13 *> *'* *f <*4>

•. » » •• « « • « * * • * j, .<j » ^ •» .9 $ # ^. ^ ,• f -#

The -values for the C»s are determined by solving these equations simultan
eously*

Approximate Methods

.- The Ritchie-Scott prooess is so laborious that it can hardly estab

lish itself in practice, whereas* Pearson's method of evaluating the

polyohorie*coefficient is hot too tedious providing one had access to the

tables referred to and when ahigh decree of ^accuracy is. required, it is '

the best method available. However if one is willing to sacrifice accuracy,
there are several simplified methods of approximating rt

Arecent publication hy Camp1 provides us with asimplified method

of approximating both the tetraohoric coefficient and the polyehoric co-,

efficient. These very short methods cannot guarantee to give v accurately
to more than one or two deoimal piaoes*

Let ue first consider the tetraohoric ras found from a2by 2fold

classification. Camp replaces the frequencies in Table Iby the ratios as ,

H amp* «£. olt>„ pp. 3O2*310«
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given in fable III*

fable lit

where f, * a + e*; f g '» b ■♦ dj, -

and Ai *a/^, Ag .* \>/t%$ Bj *. c/fj, B^ *d/pg, Fj «f^/ft, Fg *f?/fo,
the problem again is to find a normal Surface which "when divided into

four eells will present in these cells the relative frequencies observed.

The procedure la as follows* Find x8 yj, yg4 from the relatione

£fi?) d** t%k ^V(*> ** *%, ^%(*) 4* *8g,
?\ * to ' /' •

then ;ro»:^?g.4---^ where m is the slope of the re&rdJvion line y on a,
$x)

Since m a i" "iiyiii-'£

(1 * »*)V*

it follows that r « •""**"*—' 'o V/p" * sin tan'* nu
(1 * m4)1'*

this formula rests on three assumptions? first, that for suoh a

divie ion of a normal surface the mean of each coluna would lie on the re»

gresijion line} second, that the standard deviation of each column would

' 9 l/S
equal Cy(l *r)/ jand third*that,* considered as aone-way distrlbutioii

in the y directionji the distribution would be normal.

In order to estimate the polyohoric t by means of the simplified

method given by Gamp it will be necessary to subdivide the frequency

m
**
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table in the following manner* ..Lot AB be any of the horizontal divisions

of the table which cuts all th© frequency columns* In the first column

let aj denote the total frequency above AB, b^ the total frequency belowj

in the second column use similarly a2 and o:g» etc,, as indicated in tM

following fable*
A - • . •

Table IV

4

Frequency
above AB ,
frequency

below AB

totals "nT"

2

a2

•5 :

n2 **3

m

iBttL
B

**!

First on© finds the mean lij, Eg, etc., which are referred to the mean

abscissa of the whole table as the origin, and the units of measurement

are &x. How considering eaoh of the columns individually, let ©V, ov.

ete,, be the standard deviations of the columns* fhese standard devia

tions are *11 approximately equal to Oy(l -r*)*/*, afortunate oircum.
stance which is essential to the success of this method* Let y*, yL, eto»,

be the distpjrioes of the means of the several columns below the line AB in

terms of ffj, <r2, etc, ,as units* If the columns are normal distributions,

these distances can be found from the equations!
y,' ¥ ''*

•/JVC*) dx »b^, Q fa) <** mbg/kg, etcr'-
One may thus obtain* relative to a horizontal axis AB and a vertical axis

through the general mean point of the whole table, the following coordinates
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of the mean points of the several columns In cl and p" units?

%^(1 -r2)1^] «[ng. y^(l .r)1^], etc*
Slow if there is a normal eurfaoe satisfying:the conditions laid donta

at the ouvset, its regression line y on x passes through these mean pointed

its slope Is rin the <% and tfy units and! •• ^ 2\l/Z ^ th* °k *** I

©I units* If these mean points do not lie approximately on a line, there

is no normal surface which approximately fits the data and so the method

cannot be usedV

To find the slope of the line, least squares might be used* If

graphical methods are desired it might be necessary to accord, greater

weight to points representative of greater column frequencies. Also

columns in which a or b is very small should be given very little weight*

r
Since the slope m :** '•'•''" ' 6 \/h> ,

(1 - r )'

tie can solve for r a ..••.•••••,•'. % y*. >,., /» .gin tan*1 m*
(1 fm3)1'2 ' ."'

Pearson has also contributed simplified methods whereby we may ob

tain an r which is an approximation to the true oorrelation* She eorre*

lation from marginal oentroids, and the mean contingency method will be

the two methods of Pearson*s that we will discuses.

In discussing the oorrelation from marginal oentrolds1, it will first

he necessary,to nonnallae the aeries. That isf we assigii to several groups

%ari Pearson, Blcmetrlka XIV, PP, 128-129*
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pf an ordered series their proper spacing so that the whole will fit the

aonaai curve* this means of course* that some groups will b© aqueeaed into

Shorter intervals* others spread over longer ones* Automatically now, the

moans are p.t the origin, and the standard deviation are the units,

The means of the categories a^ and, n^r are determined by

respectively, ?he numerical values of t& and S\ can now be found. Gar©

must be taken in every case to give the correct sign to 1Te and $L»

How if there is no correlation, VQ and tp combined would give the

coordinates of the mean point of the nSJ? group, and they give a fair

approximation to the result if there are numerous categories* that is, if

the range of the categories b© small* the correlation found from the mar*

ginal oentroide tsould then b©

Sdigphgk,,)
,r 9 -i'.i- V,i* .- ,'inn mi, ii, .^; /\r\

It can be shown that this' r le a poorer approximation of the true corre

lation than the tetrachorio r or the polychorie r* The reason for this

is that fa and t^ do not give the coordinate of the mean of n^. In faot
aer%-il& ;not the contribution of the nsr group to the product moment*

few \q\ vs consider the mean contingency method as developed Vy*

Pearson* ffu^ be the frequency in the cell of the ath column and the

^Por details se© page J.8*

Spearson, «Qn the fheory of CoatingencyV Draper's domnanv Research
Memoirs» Uo« I* > • *• -n •'"r :ma..j r.. ^ L r r.-, m,.
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rth.row of a correlaticn table and n be the total frequency in the filth
So N

ooluffiri, n,y the total frequency in the r$h row* then if two varlates are

independent, the frequency to be expected in the eth-rth cell will b©

US . Sf

?he observed excess over this* l*e., %,» - ;5*.,.?i&

isltermed the ffintlng&icy in the cell* the total contingency must of

course be zero> that is, the sum of all the c©ll eontlncenoiee*

To find the so-called mean contingencryyy/1 one sums all the positive

excess contingencies and divides by n, obtaining

-..."■♦ N •' - - :..••..

Assuming a normal frequency distribution it is possible to deduce the

actual correlation-from y» provided that the cells are sufficiently small*

Generally a value below that of the true correlation^ ©ven if the system

h& accurately normal j, is found* A corrective factor has not as yet b©en

theoretically deduced* but experience seems to show that to add half th©

correction due to class index Correlation' gives good results*

If the mean contingency correlation is denoted by r«/» and *_* Qui ,

'"'yftiT *°' *he 0lass in&©x correlations for xand y, we should take for the

tJrti© correlation* .

I'Cl&te- index correlations denoted by r^* and .r -. give the corre*
1ation between variat© and its class mark*..-'-••ATI we increase the ntimber of
oiasses the index correlations approach unity; Values of class index
Oprrelations ate tabulated in Biometrika IX pp 1& and 218#
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CHAPTER lit

imisBMxmai&s .0? weights by minimizing wm

STAHPAR© ERHOE 0$ ESfIMTE

Ii«t us regard a aeries of observations of two variables, say x and

y, where the independent variable * is classified into groups and the de*

pendent variable y is measured* We shall assume that there exists a

linear relationship between the variables* Our problem is to determine

the best method of estimating the dependent variable, y, from the olaesi.

fied independent variable, r. In order to do this we will determine

weights to be assigned to the ordered classes of■*♦* eueh that the standard

error of estimate for the regression of y on x is minimised, From Chapter

imfound that Sy? »e^Cl .r8), and hence when the standard error of
estimate is minimized the correlationJ coefficient is ma*imieed, and con

versely* It follows therefore that our problem may also be considered as

a determination of weights for the ol&sses of the jc's such that the qorre*

lation coefficient, as found by Pearson's product moment formula, shall
be a maximum*.

Since the data which we use is such that each class of the x»s pay

contain several variates, it will be convenient to determine avalue for

y from each class that can be used to correspond to each weight assigned

to the x»e. For this\y value we shall use the mean value of the y's withinj

each class, The data which we assume to; be classified into np^claisesi

can then be represented graphically by n points whoae coordinates are the
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•weight assigned to th© class and the mean y value for that olass« We shjail

denote the coordinates of the ith point by (*i»Fi)# ^&9 following table

is given to clarify the notation that will be used*

fable V

s^Ciass 2

'»• f21-

y>s.
yi? y22

yifj y$f2

f 9 •
Ifrequeh.oies '; [ %. .•'%

n nMean y*s
m0fnm+i*mm,m,w*m,mmmii*m mm>mim<*»

Weights %\ %%

1 .III I llll I.I IIMHIH. I II

ynl

n2

>i".W"» :i'».i'ii'iii

t&<n

Before going into the methods of determining the weights let us etate

and prove three theorems related to the problem*

Theorem I* The dhanging of weights in proportion does not effect the

correlation coefficient nor the standard error of estimate*

Consider a aeries of observatione X-y^* **&*• «*¥ #* 3%? ♦-*->-*

Usher© the y*s are numerical and the x's are classified into n classes

with the weight t-j. assigned Ibo the ith class as indicated in Table V*

Since f| equals the number of variates in the ith olaes> the total number
n

of yarlates H * Z f«*.
. -.' .'Ml *"

We can Ta-riie the oeirelatlos coefficient ae
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„ fia a fi a : a fi
•ft**&&V*4 ' tftr»<«Attiy'J
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i*i"Hw| r +-..'. i*a * i i i»i * y •.

ItoTr chaagiag th© W9i|ht£i ia proportion^ i*©* siultlplyiag each t^ by sop©

eoaistaat k, the correlatipa eoeffioient becomse

.$f4 1 3Tcfc,y4, - I f.kt. 1 2 y,>
3T ' C? WWMWW—Ifllli .1 • <•• Willi Wi Mill I'•••111 •IJMIillMiWiMM.wi. •Pill — ilMm.iW.) i••••••nil n _!•—•!

1*1 ait6i i i id i i' 1 i^i i

laotoriag the coa^taat & from th© numerator and deaomlaator are hav#

"V

/a . .-a' **1 '• .a , a ^i
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, . j±*3i *****•*'•*• i*i * *'> i^i * y

a a *i a a *i
Z ft 2 2 tiy44 * 2 f4t4 2 ly,4

f 1 f, I *itJ$ -, ( 1 f**,)3^ 1-fcflC. • .
'.;. U»* 1*1 ' 4-1 *•*•• J 1=1 1^r

fherefor© *•''» r« ••

Theorem II* ffe© corralatioa epefgieieat la independent of th© weight

aligned •rafeea th©•'observations ar© classified into but tw© elaaeee*

fcet t« and t„ b© th© weights assigned to th© two olaa8©s% low egress-

iag r as a function of t. aad t vre hay©

r =

y
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Since this value of r is independent of t^ m have our conclusion that

the correlation coefficient is independent of the weights assigned mfcen

the data is classified into two classes*!

In our work that follows a proposition taken from the analysis of

variance will siiaplify our considerations*

theorem 111, Within any class the variance of the points from the

regression value,is equal to the sum 0f the variance of the points from

the column mean and the variance of the column mean from the regression

value.

Let us consider any class in fable % say the ith class. If y is

the regression value for this class, then we can write

ri* ~ 7* • yii ~ yi * *i * *c

then

But

j!i(yy *h)(?i **.> •<?i ~y*>3i^ *F4) #Q*
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So

•^••^^S^v^^i-^1 <*>
fi 2

8*om th0 abdve theorem we see that since jLfo* * jr.) is indepen

dent of the regression line, to minimiae the left hand side of equation

(1), one needs but to minimize the quantities (y, « y )^ for the various

classes* this means that the regression line can be determined f»om the
/ ,' ..' ' • •

mean points of each column instead of using all the points within each

column*

Sow in considering the general problem of determining values for the

weights t|,tg, * ;« ,# » tn# to b« assigned to the n classes so as to min

imize the standard error of estimate, we have from the proceeding develop*

ment, that the problem ©an be reduced to that of determining the weights

so that the points, C%,yp, (tg,yg), ,* , (t^)* *r© eollinear*

This can be done by assigning to any two olasses arbitrary values for

the weights* say tj an4 tgf fhen th© points, (t^yj) and (tg,yg),

determine a straight line and the value of the remaining weights will

therefore depend upon the equation of this straight line and the corres*

ponding yvalues« It oan readily be justified from analytical geometry

that the value of tj in terms of t| and tg, to make the point (t« ,y.)

fall en the line, is

1 ••••Hi'• 1' _* !""•• "11:11 : •• i"- .• 1,-Mm 1 ;.i -ii „ .

this value will be appropriate for the it'h class as long as the y»s
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for the n classes ore in the sasao order as the x^ciasees, ,

to verify that those weights v?iil minimize the standard error of

estimate obtained in regression,, we can approach the problem of deter*

mining the weights by means of analysis* That is, we shall consider; the

problem of determining the weights by using the methods of the oaleulus

so as to maximize the correlation coefficient, Sine© a more or less in

ductive appreaoh will be used, we shall first consider the oases where

the data are classified into three classes and then four classes before

considering the general case where the |x*s fall into n ©lasses.

Case (i). With the data classified into three classes* let the

weights assigned to each class be tj^ tg, and tg. Expressing ras a
function of tj, tg» and t«, we have

*•« %V§)(t?ifin^2f^3fa^3> »*WWW i*&i*t&&*gz>
•-••'•''• .••• ' •• ; •; •' .'- ' • - - ;''•.-•• •• ' •; - ,-.,•• " .-i-...'.•.,•••; i.ni! X...I..M..

[(f^fgtfg) (f^f^^fgtgj^fjt^fgtg*f^g)2f. ^(tpfeig)Oy
to maximise rwe,differentlater partially with respect to *,* **, and t«.

respectively, and setting each of the derivatives equal t© aero, we ob#

tain the following three equations!

•.-«•.' 8 2 2
<b> %^)*i t p,t2* <$^% +(y^t^z +&tj?9)*#t •* <yi*%ys)^iV °
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Since ©aoh of th© equation©' are linear in oh© of the three variables ti*

tg* and tg_, let us solve fori say t3, fremt equation (©)* We obtain

"3 " 1 "^ _ ''. .!' i'--.'..•. '• i. -....in;....

then verifying that this solution satisfies equations (©>) and (b) we

hav© a coiiamon solution for th© ©b©v© ©quations, that is t« in terms of

t^ and tg, Hence we naty arbitrarily assign values to the weights tj and

tg from which tg nust be determined to have a maxiiaum value for ,**. this

value for t^ is the same as was obtained by fitting the mean points to a

straight line.

Case (11)* Similarly^ lot tj, tg, t^, and t^,: o© the weights assigned
io ©aoh class when the data is biassifled into four classes* Again ex*

presstog r as a function of the four weights we have r equal to

'2.8 : 2 ' 2.' '•"• 2Ti/fc

then differentiating r partially with respect to each of th© four weights

and setting the doriv&tives equal to zero we obtain four equationsi

2 ,•••••• »
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ts^^^a**^)••* °

(f) *3L(*y8*2yg*y4) ♦ ^(^*^^|) *••<**%'£ ^(^-72*273) *tit2(y\<iyg^) ♦

^i*3^%+ 72^4) * ht4(^*^y4) */t8Mn-2Sw4) * *2t4(yg-?yV S *

In solving these four equations we shall express each of the torn.equations

as the sum of three equations* fha<5 ie, equation <<e) may be expressed asr

the sufi of the following three equations j

• 2 2 • . ' Z

U> a**a ♦ (72*73}% * <v^i)H * W^)^ ♦ t^^y,}*^ ^r^W °
2 ,- *, '2 _ ^ 2

(2) O«t0 ♦ (73-74)% ♦ (yg-y^^ *- (7*4-71H^g ■♦ (*27*2t7*1*74>ti*4* (Tj^Hgt^ 0

(3} 0**2-* (72*74)13 ♦ (72-73H4 * (iM^Hg*? * ^27^73*74)^3*4 # (yVy^tg^. 0,

Since equation (J) eM equation (<b) are the same equation they are satisfied

by

?i *T2

t3* fryi .•* -^ *^yp.* ^
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Equation <2) and equation (b) or© similar equations, and must be satis*

fled by similar values so that

' **-'« ^ "*****"*&*•*'*&* •
n - ?»•

Equation (3) is satisfied by the solutions from ©quatione (l) and (2),
henb© equation (f) is satisfiedby expressing the values for t- and t

la tonus of tj ahd t ♦

Since each of the equations (4), (f), and (gh can b© ©^pressed as

the sum of three equations *toich are similar to ©quations (l), (2), and

(3)* th© values of t3 M% which satisfy equation (<e) will also satisfy
equations-(d)* (f), and (g)i fhl* leads us to the conclusion that to

maximize th© correlation coeffioient |n the case of 4 classes* one, can
arbitrarily choose %and tg ani then $he values for t3 and t4 ar© deter-
mined'.

How w© aro ready tp discuss;data which la classified into n classes.

Expressing v as a function of the tyelghts assigned to the n classes to
• •.•'.". \:r

have •

A*i\ViJi *••-.? h\ t *&1?1 i*l * VX i*l %iiol **t.
3P est.''. >»iimiiii- • ii i- .VnMiji^int

& fc s> n g]X/2

!l«l H«4-M.-\- i»l."l 1 J i£l *T

Upon differentiating r partially with respect to each of t?he n weights

and setting th© derivatives equal to aero, m obtain n equations* Using

sunmaUon notation, theith of these n equation?,, (1*©* the equation ob
tained when differentiating with respect to t4)/ may be expressed as



where j / k / 1
a

The netatioa ; jj • • means that the subscripts 4 arid k take oa
3»k«l '•*'".

where--3 / k / i

all values from 1 to a except the ith value but are never equal to a.aoh

other. The ith equation corresponds to one of the equations (a), (b),

and (c)> ia ease (i)* and to one of the equations (a).* (a), (f)* and (g),

in case (ii)* Bow equations (J) may be expressed as the sua of a^CJg
equat ions of the form

(k) 0*tf .* (yi^)t| ♦ %^)t**<Vfy^Vj *^^l*^^^^ *fy^>Vk*°
where J: /k/1, an£ jand ktake on values from Ito ayielding /*v\C2
different equations* These equations correspondto equations (1), (2)»

and (3), ia ease (ii)* fnrthenjiore^ it caa readily be se^a that these

equatioas are similar to equatioas (l), (2), and (»)•, and therefore

similar to equations (a)* (b)> and (c)# also. Since n*S of these equations

contain the variables t%, tg, and one other t^ we can use these equations
to solve for n*? of the t'e in terjss; of t^ and tg* The solutions obtained

for n-S of the t's are similar to the solutions from case (i) and (ii)

which would be espeoted since the equations, as previously stated, are

similar* the solutions obtained from the n-2 equations of the type (k)

will satisfy the remainiag equations of that set* How, the solutions

satisfying the ith equations in a variables will satisfy the remaining

equations in a variables si&ce the parts they split up iato have the same

solutioa* fhe solution for tj_ may be writtea as

40

iXi^^h'?S«Ph *<4rWiW *•G*
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which checks with the result obtained from the geometric method previously

discussed* '

We have obtained, therefore, by meaiM of geometry as well as by means

of analysis an assignment for weights which depend upon any two of the

weights which are given arbitrary values, and the corresponding y values,

Iheae weights will render a maximum value for the correlation coefficient

thus minimising the standard...error of estimate.



CHAFJER IV

A SQHEBieAL EXM3PLB

We shall now regard a numerical illustration employing the method of

assignment of weights that has been discussed in Chapter III, Using these

weights, the regression line, the standard, error, and the correlation co»

efficient will be computed* this numerical example for comparison will

also inolude the computation of the regression line, standard error, and

the oorrelation coefficient from an aseijsnment of evenly spaoed weights1

together ^th weiJtb^S4eriyed from marginal centro|d^>^

the data used in the following illustration is the mathematical

plnoement test sooree and the first term mathematics grades compiled from

207 freshman students entering the University of Oregon in the fell of
... • I I ?

1939* the |bcore received in the math placement test will be denoted by y,

the measurable series, i?Mle the grade received in the respective math d

courses taken will be considered as the ordered series *♦ fliere are

twenty olasses for x since there were four different freshman courses

classified as I, II, III# and IV,• and within each course are five olassr-

ifications Recording to grades received* the order of the classes is such

1Carl f4 fcossaofc, "Mathematics Placement at the University of Oregon rt
American Mathematical Monthly XLIX. Bo* 4 (April 1942). ',"

2See pages 27 and 28*

bourses olaseified as I, II, III, and IV, denote Introduction to
Algebra, Intermediate Algebra^ College Algebra, and Introduction to Analysis,
respectively.
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that the first class in the x series consists of students that received

P(faiiure) in Course 1, the second olass, those who received 0 in Course

I, etc., and the twentieth class would therefore consist of studente

that received an A in Course IV, The raw data is given in the appendix

In Table VIII,

We shall arbitrarily let the weights range from 0 to 100, remembering

that In Theorem I it was established that the correlation coefficient is

not effected when the weights are changed in proportion. In order to

determine the minimising weights it will be necessary to arbitrarily

assign values to any two of the weights* It ia convenient to let t.

equal 0 and tg0 equal 100. The remaining weights are then determined

from the formula derived in Chapter III ,• •

• • --J P <,'«»•• ii,i!iii,^wi<»i«iwwiiii ••••••»* ii iii ,i, inmii.

these data are somewhat irregular in that the means of the y series

are not in exactly the same order as the jc-olassesi There are three mean

y values that are out of order and consequently the values for the eorres*

ponding weights will not be in the desired order, A second set of weights

are determined by making an arbitrary adjustment to the above weights such

that the weights will be in order. Still another set of weights are deter

mined by ohoosing a set of weights that are evenly spaced, fhese are

obtained by dividing the range from 0to 100 so that with the first weight

equal to zero the value of the remaining 19 weights will differ from each

successive weight by lQQ/id units* Finally a set of weights referred to

as normalUed ©entroid Weights are determined in the same manner as in the
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technique discussed in Chapter II that involved marginal centroids* The

'..eaatrold values thus found are multiplied by the proper constants so

•that the Value of the oentroids range front 0 to 100, A table of the

four assignments of weights is given below*

%

table VJ

Minimiiiag
Weights

0

Adjusted
Weights

Even Spaced
.Weights

' Gentroid

Weig-hts

/&940 0

2 2.69 2.69 6,263 14.507

3 5.38 5.38 10.526 23.633

4 13.08 13.08 17.789 29.406

6 11.64 17.00 21.052 33,866

6 21«64 .2i*:64c L 26.316 36*673,

7 39,49 39.49 31*579 38*677

6 39,71 39*71 36*842 44,679

9 48.31 48.31 42.106 51*466

io 61.54 51.54 49*368 86*019

11 «>•»«» •»:•-•* 82*631 86.019

; 12 62.82 62.82 87.894 58*916

13 72.58 63.00 63.157
-/ •

61*192

U 63.95 63.95 68*420 63*862

10 80.51 80,51 73.683 66,807

16 63*69 81.50 78.946 67*670

IT 83*25 83.25 84*210 70*277

*8 84.00 84.00 89.473 75*492

19 89.36 89.35 94.736 84*781

20 100.00 100.00 100*000 100*000

, , ,
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pie regression line, the standard error* and the correlation eo^

effioient^ are stainjiariaed in, the following table according to the weights
used* ,. •. -.

- Table VII

Minimizing
gfeighte
Sajusted
Slights
kven Spaced

ftantrpid
freights ,,

degression
tine

y » *66jc ♦ 7*0

y o ♦843* ♦ 7,1Q8

standard correlation
i: Error. Coefficient

9*70 ,885

9*97 •879

y * vQ$6* ♦ 7*907 /• 10*31 ,866

y a *888* ♦ S*6$8 ; 10*86 >859

It should be noted from the abovi table that the minimising weights
are such that even when adjusted to keep them in natural order they yield

a regression with a significantly smaller standard error than in either

of the other cages*



CHAPTER?

SOME 98AffSH8tBQ PROBLEMS •

In the development of the weights above we have assumed that the

"best'' weights are those which minimise the standard error of estimate.

However, this definition of "best" might very well be questioned* In re

cession problems one usually thinks of the data as being a sample of some

population and the predicting equation one obtains from the data is used

pa new variates which were-iipt present in the original problem; This pro

cedure gives rise to the question, "Will the standard error of estimate,

or the errors made in future estimations, be also minimised if the weights

determined by minimising, the" standard error for the known sample popula

tion is used?" Perhaps one Should approach the whole problem from the

point of view of bivariate distribution function rather than from the

finite Sample approach used in this paper* It appears that such an in

vestigation will be needed to answer the above question*

In Chapter.11 several elaborate techniques of computing r as an

estimation of the correlation coefficient from a non-quantitative bi

variate sample were discussed*, However in tb$ development of a system

of weights to be need in regression very little use was made of the in

formation contained in this chapter. In fact all that was done was to

make a comparison between the minimising weights developed in Chapter ill

and the, weights that have been used in the past* It seems that a more

thorough study of the connection between these two problems could be made.
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How does the r found from using the minimizing weights Compare with those f

developed in estimating the correlation coefficient? Con the methods of

successive approximations developed in Chapter II for adjusting r so as

to matte it a oloser estimate of the correlation coefficient be applied

in adjusting the weights for regression?

the problem considered in this paper; could readily be enlarged* We

have considered only the determination of "weights for the independent

variable, which we assume to be ordered but unmeasured* Using these

weights we may obtain by regression the beet estimate, in the sense of

minimising the standard error, for the dependent variable y which is

measurable, A new problem arises if one considers the dependent variable

as the non-measurable series while the independent variable is the measured

series, Hera the problem is not as straight-forward as the one considered

In this paper, for one can malce r equal to one, by simply giving the same

weight to every class of the dependent variable. This, of course, does

not help in the regression problem, as there would be no way of discrim*

inating between the classes. What is apparently needed is a set of un*

equal weights, but how to vary these weights so as to obtain the best

regression could not be determined by the technique used in this paper.

One could further consider the problem of having both variables un

measured and then the next step would be to consider more than tm> var*

iafrlesY Thus we eee that thie paper merely scratches the surface of a

whole series of problems associated with nonmeasured variables in re<»

greselon.



COKCLOSIOB

Itt this paper we have shown that if one defines the best weights to

be assigned Iprplasses of a non-measured dependent rarioble as those which

make the standard error of estiaiate a minimum* theft these weights are de»
.,•"-' .' - • • . '• r '' . •

pendent upon arbitrary lights assigned to two of the olaases, the weight

for the ith class is determined to be

t>£ • O . .'."• -' '.' "V -i .i- niiV i.;;.-n i ill j;;i.,-; |> i ,_ . • . .

- n.*h
where tj and tg are the arbitrary weights, and y^ is the mean of the yfe

of the yarlates of the ith olass* We have shown by* means of an example

that the weights so determined are different £han those determined by

methods that" ha^e bee& used in the past* In fact the differences between

these> sets # weights gives rise to 'jthe question of whether there is some

better way to define •'beet" for determining th© weights ia this problem,

and finally, how the methods used in this paper might be used to approach

the many additional problems associated with using non-measured varl*W©8

in regression.
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APPEIDIX^

table tl11
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- •• •Ml.nrir--,, -v ryr -.^.^ ., .,,,„-,„••>..>••,-,-
1—'

fable 'tilt: -r-
•'* •

_

"•.'••- .1 • - ' • tl '-•••=.. '• ••'.,, ""• Hi" ->• ....... Iv .

Elements of . Intermediate College Introduction to

*-*-•

Algebra Algebra Algebra Analysis ^

0 2 24 24

4 10 26 48

p 12 io 42 48

——.

' ',18 . 20
24 : '

86 ,
66

.;•• 2 -.14 . .'.-• m:. ••••": ' 2S ' •'"••'•' '#'•••«$•'•"••
.

Q 14 , 44 40 63
6 32 48 48 60

0
8 '. •• 24 • • ' 82 60 60

8 .• '28 •: 58 62

12 .-.»t',. • • 60 62
12 rT. , 36^;- 66

.._*,
is ; 56; 68

£ " 14;" ' 32 i '•:. 42 " 34 ' .
2. '' ' . 16 ' -34- •; 42 80

•- 2 . 18 •34, • tHs 66

3 18 36 46 58

4 '•80 : . •' 38V y^,:vv 48 '...'' 60 ••"
8 : iz ' • te SO 60

8 24 38 86 62

C 10 24, ' .fifrv 60 62

12 26i • -m-' ••••-',•' 64 '. -"63
14 28.' "48');... 68 64

14 28 ' ' 44?' V.V^- 76 " '64.
16 28:v-- 44 ,.'•'", 66

18 30 48 72

34 . 30. ; so .•'•,'.-:c::.
32". 88-

...32; • fi|l'

•y ••>

" 76
78

7 -'•• 80; ••'. 38 40 44 i2
8 28 . • 40/ ' . • 48 60 74

~\p 10 32 42 48 60 74

10 ••' ;38!i' 42 48 60

> 12 "34- ••'• '48 60 60

16 34 44 '. Xli '84' 62
16 34 44 "''•[.'. 58 08
20 36 ' 4« 78

26 86 48 70

'•t*« 30 36 62 '78
8 ' .12 -•;' " .44-. ' •' :•' 60 oO

9 24 46 62 70

12 24 46 , 86 70

16 32 48 58 84
A 20 32 48 66 86

24 44 60

.44 58

44 68

72
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