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DISSERTATION ABSTRACT
Daniel Nicholas Raies
Doctor of Philosophy
Department of Mathematics
June 2019

Title: Mackey Functors over the Group Z/2 and Computations in Homological
Algebra

Mackey functors over the group Z/2 are useful in the study of Z/2-equivariant
cohomology. In this dissertation we establish results which are useful for homological
algebra computations for certain Mackey rings over Z/2. We also provide some Ext
computations for Mackey modules over Mackey rings. Additionally, we study the
bigraded ring My (which is the Bredon cohomology of a point) and its Mackey ring
analog. This includes a computation of Ext(k, k) over My and a computation of
Ext(M, k) for certain My-modules M as well as a proof that the Mackey ring analog

is self-injective as a bigraded Mackey ring.
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CHAPTER 1

INTRODUCTION

In this dissertation we examine Mackey functors. We evolve the theory behind
them and look at properties of a particular Mackey functor that is prevalent in
equivariant topology.

Classical algebraic topology uses abelian groups (rings, and modules) to measure
topological spaces through homotopy, cohomology theories, and other constructions.
In equivariant algebraic topology the role of abelian groups is played by objects
called Mackey functors. For a finite group G the category of G-Mackey functors
has a symmetric monoidal product (called a box product) and so one can construct
ring objects and module objects in the usual way. This dissertation concerns some

homological computations for certain Mackey rings and modules for the group Z/2.

1.1 Background on Equivariant Topology

Consider the category of topological spaces Top and the category of G-
equivariant topological spaces G — Top for a finite group GG. Equivariant cohomology

provides a Bredon contravariant functor

H} : G — Top — Ab (1.1.1)

for integers ¢ > 0. One also finds that the cup product induces a functor

H{. : G — Top — Rings. (1.1.2)

Definitions and a rigorous treatment of these topics is given by May in [May96|.
1



Consider the group G = Z/2. The transitive G-sets are given by cosets G/H
for H < G. In this case, there is the two-point set G = G/(0) and the singleton set
(0) 2 G/G. The non-trivial element of G swaps the elements of G and, of course,
acts trivially on the element of (0). There is a map of G-sets t : G — G which swaps
the elements and the quotient map of G-sets p : G — (0). This yields the following

diagram of G-sets:

The theory of G-sets tells us that there are no other non-identity maps of G-sets in
the previous diagram.

Consider an object X € G — Top. By considering G and G/G as elements of
G — Top with the discrete topology we can apply the functor X x (—) to the above

diagram to get the following:

1d><t(_ijG X x (0).
~_
id X p

We can then apply the Bredon cohomology functor H{ which yields the following

diagram of graded rings:

(id x t)* C
H:H(X X Q) HE(X % (0)).
\/

(id x p)*

Furthermore, the map id x p: X Xg G — X X (0) is a two-sheeted cover. It follows
that there is a transfer map (id x p). : H5(X X G) — HE(X X (0)) (see [Hat02]).

We can add this to the previous diagram to get
2



(id x p)«

(id x ¢)* @g(X x@X x (0)).

(id x p)*

Note that (id x p). is a map of graded abelian groups but it is not a map of rings.
Given a space X this previous diagram (of graded abelian groups) will be denoted
HE(X). Based on the properties of the transfer map, one can check that this diagram

satisfies
o (id x p)*o (id x p), = id + (id x t)*,

e (id x p). o (id x t)* = (id X p)s,

(id x t)* o (id x p)* = (id x p)*, and
o (id x t)* o (id x t)* = id.

Diagrams of graded abelian groups of this form which satisfy those four axioms
will be called Mackey functors over the group G = 7Z/2 (see section 2.1). These
form the objects of a category Mack and the morphisms are natural transformations
between the diagrams. Since all of the constructions above were functorial we have
functors

H¢. : G — Top — Mack. (1.1.3)

There is also a forgetful functor U : Mack — Ab which maps a Mackey functor
M to the rightmost group in the diagram. (In the notation of the rest of the paper,
U(M) = M,.) Tt is clear from the construction of H, that the following diagram

commutes:



Mack
2
G — Top H—g> Ab

In this way, the cohomology with Mackey functor coefficients H{(X) provides
additional structure that one can study. Furthermore, it turns out that Mack is
a symmetric monoidal category (see section 2.2) and that H(X) is a ring object in
Mack. We can then replace Ab and Mack with Rings and the category of Mackey
rings in the previous diagram.

Let P = {x} € Z/2 — Top be a single point. The cohomologies of this space
are the ring My = Hj ,(P) and the Mackey ring M> = M ,(P). These rings are
stated explicitly and explored in Chapter IV. In particular, we will prove a structure
theorem for Exty, (M, Z/2) (for certain My-modules, M) and we will prove that M,
is self-injective.

If G is an arbitrary finite group then there is still a Mackey ring valued
cohomology functor HY,. Mackey functors over other groups form different diagrams

but the construction is similar.

1.2 Background on Mackey functors

Full treatments of Mackey functors can be found in [May96] and [Web00]. In
this paper we are only concerned with the case where G = Z/2 and we give a
rigorous treatment of that case in Chapter II. In this section, however, we will give
an overview of the general case. There are several different equivalent definitions of

Mackey functors; we provide just one of them here.

Definition 1.2.1. Let G be a finite group. A Mackey functor over G is an additive
functor M : G — Ab where AG is the category defined in Definition 1.2.2. The

4



category G — Mack is the resulting functor category whose morphisms are natural

transformations. (When we write Mack in future sections we mean Z/2 — Mack.)

Definition 1.2.2. Let GG be a finite group. The Burnside Category AG is defined as

follows:
e The objects are finite (left) G-sets.

e The set Homgye(A, B) is the set of equivalence classes of diagrams of (left)

G-sets

These diagrams are called spans and two spans are equivalent if there exists a

commutative diagram of the form

where P =Y xp X.

In G — Mack there is an obvious direct sum given by (M & N)(X) = M(X) &

N(X). In [Shul0] Shulman describes a box product — O — : Mack x Mack — Mack.
This acts as the tensor product under which Mack is a symmetric monoidal category.

(In section 2.2 we describe the box product for G = Z/2; see Theorem 2.1.14 for a
5



description of the unit and the maps which define that structure.) As a result we can
form a category of Mackey rings and a category of R-modules for any Mackey ring
R in the usual way.

Note that a Mackey functor M : ZG°? — Ab is determined by its values on the
sets G/H for subgroups H < G because every G-set is isomorphic to a coproduct of
those sets. This allows us to represent Mackey functors as finite diagrams of abelian
groups where the shape of the diagram depends on G. In the case where G = Z/2
there are only two subgroups, namely (0) and Z/2, and so the resulting diagram
only has two objects. In [Shul0|, Shulman explains how in the case when G = Z/2,

Mackey functors can be represented by diagrams of the form

t D

Q o
Moy M,
~_ -

*

p

(subject to some axioms). In section 2.1 we adopt these diagrams as our definition of
Mackey functors. One finds that a Mackey ring is a diagram where both objects are
rings (along with some conditions on the maps) and that if R is a Mackey ring then
an R-module is a diagram where the objects are modules over the corresponding rings

(again with some conditions on the maps). This is discussed further in section 2.2.

1.3 Summary of Results

We conclude this chapter with a brief summary of the new results found in the

rest of the dissertation.

Free Mackey Modules



In Ab free modules are all isomorphic to @,.; Z for some set I. Let A be the
unit in the symmetric monoidal structure on Mack. Mackey functors ,; A are all
free in Mack but there are not enough of those modules (in the categorical sense).
There is another Mackey functor Fy(Z) which is free but which is not isomorphic to

P, A for some set I. Mackey functors of the form

(@ A) ® (@ ]-"g(Z)> (1.3.1)

il jeJ

are all free and, moreover, there are enough free Mackey functors of that form.
We investigate the free modules of R — Mod. Similarly, the regular module R is
free and there is a second module Fp(Z) R such that there are enough free modules

of the form

(@R) o <@f9(Z)DR>. (1.3.2)

il jed

We provide a working model for F4(Z) R and explore some of its properties.
Injective Mackey Modules

A module @ is defined to be injective if for any map f : X — @ and any injection
t: X — Y there is an extension f : Y — @ such that fu = f. Baer’s Criterion (see
[Wei94|) states that in the case of traditional modules over a ring R it is enough to
check the cases where Y = R and X is an ideal of R.

We develop an analog to Baer’s Criterion for Mackey modules over a Mackey
ring R. It turns out that one needs to check both the case when ¥ = R as well as

the case when Y is the free module F4(Z)OR discussed above.

Homological Algebra Calculations



Suppose that C is a tensor category. If R is a ring object and M is an R-bimodule
one can form the square-zero extension of R by M which is a ring object that we
denote Exr(M). As an example, if C = Ab and R is a ring then Ez(R) = R|x]/(z?).

A standard computation in homological algebra shows that

In the case where C = Mack and R is a Mackey ring we compute the ring

when M =R and when M = F4(Z)OR. In particular,

Ext}, (R, R) = R.[a] (1.3.5)

When M = F»(Z) O R the general result is perhaps too complicated to present here.
However, if R is the specific Mackey ring where R, = Ry = R (with char(R) = 2),

p* =id, p, =0, and t = id then

Extg, 7@or) (R R) = R{z1, 79,23, .. ) (1.3.6)

where the algebra on the right is the graded non-commutative algebra generated by

the z; with deg(z;) = 1.

Homological algebra over the ring M,



A description of the (traditional) ring M is given in Chapter IV. It isa k = Z/2-
algebra and we find that there is a ring homomorphism k[r, p| < My which yields a

split short exact sequence of k[r, p]-modules,

0— k[r,p] = My — J — 0. (1.3.7)

Suppose M is an My-module which is finite length as a module over k[r, p] (i.e. which

is finite dimensional over k = Z/2). We prove that

Extyy, (M, k) = Exty, (M, k) ® klo] (1.3.8)

where « is in degree 3. We further prove that the action of the ring

Extyy, (k, k) = Exty, , (k k) ® k[o] (1.3.9)

on the module in Equation 1.3.8 is the obvious natural action.
Furthermore, it is known that the traditional ring My is self-injective (see
[May18]). We use this analog to Baer’s Criterion to show that the Mackey ring

M, is also self-injective.



CHAPTER II

MACKEY FUNCTORS, MACKEY RINGS, AND MACKEY MODULES

In this chapter we review some terminology and background results surrounding
Mackey functors as well as provide some new results that will be useful in the
computations found in later chapters. Most of the results found in this chapter are

attributed to Schulman in [Shul0]; we aim to build on her work.

2.1 A review of Mackey functors

A Mackey functor over the group G is a functor from the Burnside category AG
into the category of abelian groups as discussed in [Shul0]. In this paper we will be
concerned only with the case where G = Z/2. In this case a Mackey functor M is

represented by a diagram in Ab of the form

t D

Q o
Moy M,
~_ -

*

p

which satisfies the following conditions:

e p'p, =1+t
® Pt =D

o tp* =p*

o t2=1

The map p* is called restriction, the map p, is called transfer, and the map ¢ is

called twist. For the remainder of the paper the term Mackey functor will refer to
10



a Mackey functor over the group Z/2. A morphism of Mackey functors is a natural

transformation of functors or, in our case, maps f, and fy in the diagram below

O™
My M.
~_

fo

Jo
Cy, ™
Ny N.
~_

which commute with the restriction, transfer, and twist maps whenever possible. An
isomorphism of Mackey functors is a morphism f : M — N where f, : My — N,
and fp : My — Ny are both isomorphisms. The category of Mackey functors will be
called Mack.

Remark 2.1.1. Whenever possible we will use calligraphic letters to represent Mackey
functors and roman letters to represent the corresponding abelian groups. For
example, if M is a Mackey functor then we will use M, and M, for the two abelian
groups in the diagram without explicitly specifying. We will try to remain consistent
with this convention but it should be clear from context when it is necessary to break

it.

Example 2.1.2. There are two Mackey functors which will be important for the
remainder of the paper. If A € Ab then the Mackey functors F,(A) and Fy(A) are

shown below:

1 9] [70] [11]
Fu(A) QACAQ Fo(A) QAQCA

11



For reasons that are made clear in Theorem 2.1.3 we will make the following
definitions:

L = (1,0) € (F.(Z)), Iy = (1,0) € (Fo(Z)),
Theorem 2.1.3. Let M be a Mackey functor.

o The function o : Homppaek(Fe(Z), M) — M, given by a(f) = fo(Ls) is an

isomorphism of Abelian groups.

o The function  : Hommae(Fo(Z), M) — My given by B(f) = fo(ly) is an

isomorphism of Abelian groups.

Proof. Consider a map f : Fo(Z) — M as follows:

1 [7]
Gz g

[12]
fo fe
t D
Q /\
My M,
r\/
p*

Since f is a map of Mackey functors, fy[12] = p* f, and hence

Jo(1) = fo ([12]L) = p"(fe(L)). (2.1.4)

Similarly, fo[{] = p«fo and hence

fo(0,1) = fo ([T11) = pu(p" (fo(LL)))- (2.1.5)

We see that the map f is determined uniquely by fo(I,) and hence « is injective.

Since (Fo(Z)), = Z* and (Fu(Z)), = Z are free abelian groups we see that any choice
12



of fo(I,) € M, induces such a map f and hence « is surjective. The proof that g is

a bijection is similar. O

There is a direct sum in Mack which is induced by taking the abelian group sum
at each spot in the diagram. Given M, N € Mack there is also a boz product MON.
This is discussed further in [Shul0] where it is shown that for our purposes M ON

can be defined as follows.
o (MON)y= My® Ny

o (MOWN), is the quotient of (My® Ny) ® (M, @ N,) generated by the following

relations:
Me R PNy ~ P Me D Ny for me € M, and ng € Ny
DMy X N ~ My X P N for my € My and ne € N,
tme @ tng ~ My  Ng for mgy € My and ng € Npy.

The twist map on (M ON )y is induced by the diagonal action, i.e.

my @ Ng —> tmyg Q thyg (216)

for my € My and ng € Npy.

The restriction map (MON )y — (M ON)y is the map induced by

(Me @ Ne) + (Mg @ ng) = (P Me @ P*Ne) + (Mg @ ng) + (tmy @ tng) (2.1.7)

for me € M,, ne € No, mg € My, and ng € Ny.

The transfer map (M ON)y — (M ON), is induced by the inclusion

13



Note that the elements my®@ng in (M ON), are the image of those same elements

from (M ON)g under transfer. The element my®@ny € (M ON), is equal to p,(mg®

ng) where my ® ny is considered to be an element of My ® Ny = (M ON),y. This is

because the transfer map p. is induced by the inclusion in Equation 2.1.8.

Theorem 2.1.9. If M is any Mackey functor we have MO Fy(Z) = Fo(My).

Proof. We start by computing M [0 Fy(Z). For convenience, call this Mackey functor

Q.

First we have

Qo= My ®@ (Fy(Z))g = Mp ® Z* = My

and

Qo = [(Me ® (Fo(Z))s) © (Mo @ (Fo(Z))o)] /| ~
= (M. ®Z) ® (My® Z%)] | ~

>~ [My @ My & My| | ~

where the relations are as follows:

(0,0,p*me) ~ (M4, 0,0) ~ (0, p*m,, 0) for me € M,
(psmag, 0,0) ~ (0,mqg, my) for my € My
(0,7719,0) ~ (0,0,tmg) for my € M.

One can then compute that the map

¢ : Mg — [M. © Mg ©® Mg] / ~ where ¢(m9) = [(0, me, O)}

(2.1.10)

(2.1.11)

(2.1.12)

is an isomorphism. Hence Q4 = Mjy. One can also compute the twist, transfer, and

restriction maps on Q as follows:

14



e The twist map M7 — M} is given by (p,q) — (tq,tp).
e The transfer map M7 — My is given by (p, q) — p + tq.
e The restriction map My — M} is given by r — (r,tr).

Note that in the maps above, t is the twist map from M. This concludes the
computation of Q@ = MO Fy(Z).

Now define f: Q — Fy(Mpy) as follows:
o fo: My — M§ is given by fo(p,q) = (p, tq).
o fo: My — Myis given by fo(r) =r.

Clearly fy and f, are isomorphisms of abelian groups since the twist is an isomorphism.

It follows that f is an isomorphism and hence M O Fy(Z) = Fy(My). O

The Mackey functor Fyp(Z) is meant to act as free in the #-spot. There is a
generator g in (Fp(Z))s. There is also the twist of the generator tg € (Fy(Z))y as
well as the transfer of the generator p.g € (Fo(Z))s. We can then picture Fyp(Z) as

follows:

/_\

C__ Zg @ Litg) Z(p.g).

\_/

The Mackey functor relations allow us to do the rest of the computations in this

particular Mackey functor.
e t(tg) = g because t* = 1.
e p.(tg) = p.g because p.t = p,.

e p*(pxg) = g+ tg beacuse p*p, = 1+ t.
15



Note that in relating this picture to the definition of Fy(Z) in Example 2.1.2 we can
choose the generator g to be either of (£1,0) or (0,+1) in (Fy(Z))s = Z*. However,
because of the isomorphism presented in the proof of Theorem 2.1.9, it is convenient
to think of g as (1,0) = I,.

Theorem 2.1.9 explains that M O Fy(Z) is isomorphic to Fyp(My). It is helpful
to frame that isomorphism in terms of the previous diagram. The elements of
(MOFy(Z))y are of the form my ® g + t(my ® ¢g) and elements of (MUOFy(Z)).
are of the form p,(mp ® g). The diagram we can draw for M [ Fy(Z) is as follows:

(MO Fy(Z))y ——— (MDOFp(Z))s

t(mg ® g)

-------------- > [Da(me @ g)

We can, again, use the Mackey functor relations to do all of the desired computations.

Here is an example of one such computation:

Pr(pe(mp® g)) = (1 +1)(my ® g) =mp ® g +t(me ® g). (2.1.13)

Schulman showed in [Shul0] that [J acts as a tensor in a symmetric monoidal

category as stated in the following result.

Theorem 2.1.14. The category Mack forms a symmetric monoidal category where
the box product is the tensor and A = F (Z) acts as the unit. The associativity
isomorphism (MON)OP = MOWN OP) is clear and the twist map 7 : MON —

N OM is induced by the obvious isomorphisms

M9®N9§N9®Mg and
(2.1.15)

[(My ® Ny) @ (Mp @ Np)]/ ~ =2 [(Ne @ M,) ® (Np @ My)]/ ~
16



For the remainder of the paper, we will use A to refer to the unit in the symmetric
monoidal structure. Theorem 2.1.16 is proven in [ShulO| and will be useful for the

rest of the paper when discussing maps out of box products.

Theorem 2.1.16. If M, N, P € Mack then a map f: MON — P is determined
uniquely by abelian group maps fo : Me @ Ny — Py and fy : My ® Ng — Py subject to

the following relations (called Frobenius relations):

fo(p'me @ p*ne) = p* fo(me @ n4) for me € M, and n, € N,
fo(pimg @ na) = pifo(me @ p*na) for mg € My and ne € N,
fo(me @ pung) = pufo(p*me @ nyp) for me € M, and ng € Ny
(

fo(tmg @ tng) = tfo(me ® ny) for mg € My and ng € Ny

For Mackey functors M and N the set Homyjae (M, N) has the structure of an
abelian group. One can also construct an internal Hom object Hom (M, N) € Mack
which, when used in homologocial algebra, allows us to realize Exty;(M,N) as a
Mackey functor. We now provide that construction.

Consider the following three maps of Mackey functors:
® g: Fuo(Z) = Fy(Z) defined by gu(Ls) = ps(Ip)
o f:Fy(Z) — Fuo(Z) defined by fy(Ip) = p*(T,)
o 7: Fy(Z) — Fo(Z) defined by 79(Iy) = t(Ty)

Together these create the diagram of Mackey functors shown below:

f
- /_\
S Fo(2) F.(2).
\_/
g

17



Now, the objects in the diagram above are not abelian groups but one can check that
the maps 7, f, and g satisfy the Mackey functor axioms. That is, gf = idg,z) + 7,
fr=f,79g=g,and 72 = idr,(z).-

We can then apply the functor (—) M to this diagram. This results in the

following:

Cfa(Z)D@Z)DM.

Finally, we can apply the functor Hompypu(—, N) which results in the diagram of

abelian groups shown below:

T

( Homyaa(Fo(Z) DM, ) Homy (74 (2) DM, ).

\_/

Since the Mackey functor axioms held in the original diagram and we have only applied
additive functors, they still hold in this final diagram of abelian groups. This Mackey
functor will be called an internal Hom or a Hom object and is denoted Hom(M, N).
Note that (Hom (M, N))s = Hompaek (M, N).
It is possible to simplify the last diagram by observing that F,(Z) O M = M and
by choosing an isomorphism Fy(Z) O M = Fy(M,) as demonstrated in Theorem 2.1.9.
At this point we prove that the functors — X and Hom(X, —) are adjoint as

one might expect.

Theorem 2.1.17. If M, N, and X are Mackey functors then we have

Homyaa (M O X, N) = Homppae (M, Hom(X, N)). (2.1.18)

18



That is, the functor — O X : Mack — Mack is left-adjoint to the functor Hom(X, —) :

Mack — Mack.

Proof. This theorem is similar to the usual proof that —® X : Ab — Ab is left adoint

to Hom(X, —) : Ab — Ab for abelian groups, X. We will provide the bijection

© : Homypa (M O X, N') — Homppae (M, Hom (X, N)). (2.1.19)

Choose a map f € Homppua (M OX, N). By Theorem 2.1.16 f is determined by

maps fg: My ® X9 — Ny and f, : My ® Xq — N,.
We will now define an element ¢ € Homyg,q (M, Hom(X, N)) which will become
©(f). Based on the definition of Hom we need to construct maps ¢y and ¢, in the

diagram below.

"
¢9L ¢0L
—
( Homypuo(Fo(Z) DX, N) Homygae(Fo(Z) 0 X, N).
_

Choose an element my € My. Recall that in order to specify a map Fy(Z) O X —
N it is sufficient to define it on elements of the form gy ® xy € (Fy(Z) DX )s where

ge is a chosen generator for Fy(Z). Define

[66(m0)] (g0 ® x9) = fo(mg @ z0). (2.1.20)

Now choose an element m, € M,. Similarly, in order to specify a map Fo(Z)OX —

N it is sufficient to define it on elements of the form g, ® x, € (Fy(Z) O X)s where
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ge 18 a chosen generator for F,(Z). Define

[6e(10)] (ge ® T4) = fo(e @ 7). (2.1.21)

We leave it to the reader to justify that ¢y and ¢, define a map ¢ : M — Hom (X, N)
of Mackey functors. The only requirement is that there must be some compatibility
between the generators gy and g,.

Define O(f) to be the map ¢ constructed above. We also leave it to the reader

to justify that © is a bijection. n

Corollary 2.1.22. For any given Mackey functor X the functor — X is right-exact

and the functor Hom (X, —) is left-ezact.

Proof. This is a direct corollary of Theorem 2.1.17. m

2.2 Mackey rings and modules

One can now define the notion of Mackey rings and Mackey modules just as in

any symmetric monoidal category.

Definition 2.2.1. A Mackey ring is an object R € Mack combined with a unit
map A — R and a multiplication map ROR — R which satisfy the appropriate
associativity and unital axioms.

If R is a Mackey ring then a left Mackey module over R is an object M € Mack
combined with a map punr : ROM — M that satisfies the appropriate associativity
and unital axioms. A right Mackey module is defined in the analagous way.

A morphism f : M — N of Mackey modules over R is a morphism in Mack

such that f o puy = pa o (idO f). The category of left Mackey modules over R will
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be called R — Mod and the category of right Mackey modules over R will be called

Mod — R.

Theorem 2.2.2. The structure of a Mackey ring R is determined by operations
©: Re® Ry — Re and ® : Ry ® Ry — Ry which make (R, +,®) and (Ry,+,®) into

rings and which satisfy the following relations:

P Te @ P Ye = D" (Te © Ya) for x4,ys € R,
PeTo © Yo = Ps(Tg © P*Ya) for xg € Ry and y, € R,
Te @ Pl = Pi(P*Te © Yp) for x4 € Ry and yg € Ry
trg © tys = t(xe © yp) for xg,yg € Ry.

Proof. This is a simple matter of chasing through the properties in Definition 2.2.1.

See [Shul0] for a complete proof. O

The symbols ® and ® are used in Theorem 2.2.2 for clarity but those symbols
will be suppressed for the sake of readability in the remainder of the paper.

It can be helpful to understand conditions equivalent to those in Theorem 2.2.2.

e [t is clear that the first condition in Theorem 2.2.2 is equivalent to the condition

that p* is a ring map.

e [t is also clear that the fourth condition in Theorem 2.2.2 is equivalent to the

condition that ¢ is a ring map.

e Since p* : R, — Ry is a ring map we have induced functors Ry — Mod —
R, — Mod and Mod — Ry — Mod — R,. Hence we can realize Ry as a left or

right R,-module. The condition

PsTo © Yo = Pu(To © P*Ys) for zp € Ry and y, € R,
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is equivalent to the condition that p, : Ry — R, is a map of right R,-modules

and the condition

Te O P2Yo = D+(P*Te © yp) for z, € R, and yy € Ry

is equivalent to the condition that p, is a map of left R,-modules.

Theorem 2.2.3. If R is a Mackey ring then the structure of a module M € R —Mod
1s determined by the module structures M, € Ry — Mod and My € Ry — Mod which

satisfy the following relations:

(p*re)(p*me) = p*(rema) for re € Ry and me € M,
(p«r)me = pu(ro(p*ma)) for rg € Ry and me € M,
Te(Psme) = pu((p*1e)myg) for re € Ry and mg € My
(trg)(tmg) = t(rgmy) forrg € Ry and my € M,.

Proof. This theorem is also a straightforward consequence of chasing through the

properties in Definition 2.2.1. ]

Definition 2.2.4. Let R be a Mackey ring and let M € R — Mod. A submodule
of M is a Mackey functor A as shown below where Ny < My and N, < M, are

submodules:

t| Ny Pel N,

/\
Ny N,
~_

P*IN,

Each map in the diagram is meant to be the restriction of the corresponding map in

M.

Lemma 2.2.5. Submodules Ny < M, and Ny < My determine a submodule N < M

if and only if p.(Ng) C N,, p*(Ns) C Ny, and t(Ng) C Npy.
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Proof. The “only if” direction is clear from Definition 2.2.4. For the “if” direction,

observe that as long as the maps p,|n,, p*|n,, and t|y, are well-defined, the Mackey

functor axioms are inherited from M. O]

Example 2.2.6. If R is a Mackey ring and f : M — N is a morphism in R — Mod

then the submodules ker f, < M, and ker fy < My form a submodule of M.

o If m, € ker f, then fyp*me = p*feme = 0 and hence p*m, € ker fo. Thus

p*(ker f,) C ker fp.

o If my € ker fy then fop.my = p.fomy = 0 and hence p,my € ker f,. Thus

p«(ker fp) C ker f,.

o If my € ker fy then fotmy = tfymy = t0 = 0 and hence tmy € ker fp. Thus

t(ker fy) C ker fp.
This submodule is naturally called ker f.

Definition 2.2.7. A left (resp. right, resp. two-sided) ideal of a Mackey ring R is a

left (resp. right, resp. two-sided) R-submodule of R.

2.3 Free modules

In Mack the free objects are those Mackey functors F where

F (EB?.(Z)> ® (EBH(Z)) (2.3.1)

AEA weN

23



for some aribitrary sets A and 2. Theorem 2.1.3 yields the following isomorphisms:

IIOIH&EEK(JTVA4)

o (H HomMack(.F.(Z),M)) x (H Homm(fe(@’/\/’)) (2.3.2)

AEA we

(10w < (1)

The composite isomorphism
Homygaq, (F, M) (H M> x (H M9> (2.3.3)
AEA we
is the map

Fr ((Fo@))rens (FoI5))wea) - (2.3.4)

Free modules in R — Mod look like R F where F is a free object in Mack.

These take the form
(@RDF.(Z)) ® (@RD]—}(Z)). (2.3.5)
AEA weN

Since A = F,(Z) is the unit in the symmetric monoidal structure on Mack we have
ROF.(Z) =2 R and by Theorem 2.1.9 we have that R 0 Fy(Z) = Fy(Ryp). It follows

that free modules in R — Mod are those of the form

(@R) ® (@mm) . (2.3.6)

AEA weN

In order to make useful resolutions out of these free modules we need to know

that they are projective and that there are enough of them.
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Theorem 2.3.7. Let R be a Mackey ring. Then the free R-modules are projective
i R — Mod.

Proof. There are obvious forgetful functors Uy : Mack — Ab and U, : Mack — Ab
where Ug(M) = My and Uy(M) = M,. In [Shul(], Schulman gives a left adjoint
to these functors. With this adjoint one can use the usual categorical argument to
show that Fy(Z) and F.(Z) (and hence direct sums thereof) are projective objects in
Mack. An application of Theorem 2.1.17 then shows that R 0 Fy(Z) and R O F.(Z)

(and hence direct sums thereof) are projective objects in R — Mod. [

Theorem 2.3.8. There are enough free modules in R —Mod. That is, for every M &

R — Mod there ezists a free module F € R —Mod and an epimorphism [ : F — M.

Proof. Let

F= ( D f.<Z>> @ ( . fe<Z>> (2.3.9)

MmeEMe ngMg

and define f : F — M such that
fo(I7'*) = ma and fo(I5") = my. (2.3.10)

Note that F is a free object in Mack and f is a morphism of Mackey functors but
not a morphism in R — Mod. Clearly this is an epimorphism since f, and f, are
surjective.

Since RO(—) is a right-exact functor the map ROF — RO M obtained by
applying RO(—) to f : F — M is an epimorphism. Finally, the map ROM — M

which defines the module structure on M is an epimorphism and the composition

ROF - ROM — M (2.3.11)
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is the desired epimorphism of R-modules. ]

Theorem 2.1.9 provides an isomorphism R O Fy(Z) = Fy(Ryp). It is clear how R
acts on RO Fy(Z) and Theorem 2.3.12 describes the action of R on Fy(Ry) under

that isomorphism:

Theorem 2.3.12. Let R be a Mackey ring and recall that Fy(Ry) is the following

R-module:
[ (1)] [11]
CQp—
R Ry
~_ —
[1]
From Theorem 2.1.9 we have that RO Fy(Z) = Fy(Ry) and under this isomorphism
the action of R on Fp(Ry) is as follows:

e The map Ry ® R2 — R2 is given by ro @ (g, yg) + (rexe, (tre)ys) for re € Ry

and (zg,yp) € R2.
e The map Re® Ry — Ry is given by re @ —> (p*1e)xg forre € Ry and xq € Ry.

Before continuing to the proof it can be helpful to recall that R O Fy(Z) can be

realized as the following diagram:

(ROF4(Z))y ——— (ROFH(Z)),

t(rg ® g)

-------------- > | pe(re @ g)

This notation can help us understand Theorem 2.3.12 more clearly.

o Ifrp€ Rypand sp @ g € (ROFH(Z))g then ry - (sg @ g) = (rgs9)  g.
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e If rp € Ry and t(Se &® g) S (RD.F@(Z))@ then
ro[t(s9 @ 9)] = (10)t(s0 @ 9) = t((tro) (50 © 9)) = t(((tra)s0) @ 9). (2.3.13)
o Ifry € Re and p.(sp ® g) € (RO Fy(Z))e then

re[P(50 ® g)] = pu((P°1e) (50 @ 9)) = s (((p*r.)se) ® g) (2.3.14)

We can compare these equations with the results in the statement of Theorem 2.3.12
and see that they are analogous. The proof is shown below but these techniques can

help us remember the module structure.

Proof of Theorem 2.3.12. The proof of Theorem 2.1.9 provides an isomorphism
qb : FQ(RQ) — RDFQ(Z) (2.3.15)

Let

p:ROR R (2.3.16)

be the map which defines the ring structure on R and let
a:ROMROF(Z)) — (ROR)OFy(Z) (2.3.17)

be the associativity isomorphism. Then the map 1 which makes the diagram below

commute defines the R-module structure of Fy(Ry).

RO Fy(Rg) ----=--==mmmmmmm- L e e e » Fo(Ro)
idOe! T¢>
ROROF(Z) —5— (ROR)OFH(Z) —z~ ROFH(Z)
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All that remains is to compute the maps 79 and 7, by evaluating the above composition
on elements of the appropriate sets.
First, choose r € Ry and (z,y) € (Fo(Rp))e = R2Z. After referencing

Theorem 2.1.9 we see that
by (2, y) =2 ® (1,0) +ty ® (0,1) (2.3.18)
and hence
(i[dO¢ e(r @ (z,y) =7 @ (r @ (1,0)) + r @ (ty ® (0, 1)). (2.3.19)

It is clear that

(1Did)y (a0 (r @ (2@ (1,0)) + 7@ (ty @ (0,1))))
= (pOid)s((r @ 2) @ (1,0) + (r @ ty) © (0, 1)) (2.3.20)

=rr® (1,0) +r(ty) ® (0,1).

Another reference to Theorem 2.1.9 then gives us that
Go(rz @ (1,0) + 1(ty) @ (0,1)) = (rz,0) + (0, (tr)y) = (ra, (1)) (2.3.21)

Finally, this shows that the R-module structure of Fy(Ry) is given by r ® (z,y)
(rx, (tr)y) in the #-component, as desired.
Now, choose r € R, and = € (Fy(Ry))s = Ry. A similar computation shows that

r®x— (p'r)x. O
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2.4 Injective Modules

Baer’s Criterion (see [Wei94]) gives a condition for checking that a module M €
R —Mod is injective for traditional rings R. Theorem 2.4.1 below is a generalization

of that theorem for Mackey functors.

Theorem 2.4.1. A module M € R — Mod is injective if and only if both of the

following conditions are satisfied:

1. For every monomorphism of R-modules v : T — RO Fo(Z) and every morphism
f T — M there exists a morphism g : RO F(Z) — M such that go = [ as

i the diagram below:

2. For every monomorphism 7 : J — RO Fy(Z) and every morphism f: J — M
there exists a morphism g : RO Fp(Z) — M such that gt = f as in the diagram

below:

All morphisms and objects are taken to be in R — Mod.

Proof. If M is injective then it is clear that both conditions hold. We will prove the
other implication. Assume that the two conditions hold and consider the following

diagram of R-modules:
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A g

/|

M

In order to prove that M is injective we will produce a map ¢ : B — M such that
gi=f.

Consider the following set:
Az{oc,g)\Aszcss,g:/mM, a1 (2.42)

The set A has a partial order where (K, g) < (K', ¢’) whenever < K" and ¢'|x = g.
If S C A is a totally ordered subset then it is clear that S has a maximal element given
by the union of the elements in S. Since S is also nonempty (because (A, f) € 5)
then, by Zorn’s Lemma, A has a maximal element (KC,g). We wish to show that
K = B and hence that ¢ is the required map. Assume, to the contrary, that IC is a
proper submodule of B.

It follows that either K, is a proper traditional submodule of B, or Kj is a
proper traditional submodule of By. Instead of treating each case seperately we will
choose an element x, so that either x, € B, \ K, or xz, € By \ Ky. Note that the
star is meant to represent an index; x, is either x, € B, or xy € By depending on
the case. Mimicking this notation, let F, be the Mackey module R 00 F,(Z) and note
that morphisms out of F, are determined by the image of the element I, (i.e. either
I, or I).

We can now form the Mackey submodule (z,) < B which is generated by z..
Specifically, (x,) is the intersection of all submodules which contain x,. We can also

form the module (x,) + K as the following pushout:
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Define a map u : F, — (z,) such that I, — x, and consider the following diagram:

v {z) NK) — (z)NK — K

[ u j [ \ g

B

Note that the map u™!({(x,) N K) — (z,) N K is the restriction of u.

The inclusions K < B and (z,) < B induce an inclusion (x,) + K < B by
the universal property of pushout. This means that (x.) + IC can be realized as a
submodule of B and, in particular, that A < (z,) + K < B.

Now consider the map u ™! ({z.) N K) — M given by the composition along the
top of the previous diagram. Since u™'({z,) N K) is a submodule of F, = RO F,.(Z)
this map can be extended to a map h : F, — M by our initial assumption (i.e. by the
appropriate condition in the statement of the theorem). We now have the following

diagram:
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v {z) NK) — (z)NK — K

Lo, J ;

Fo ——————» (xy) — (1) —i—IC\
t
h M

At this point, if we can show that the left-most square is a pushout diagram
then we reach the desired contradiction. Indeed, if both squares are pushouts then,
by basic category theory, the larger rectangle is a pushout diagram as well. The
maps h : F, - M and g : K — M then induce a map § : (z.) + K — M
by the universal property of pushouts. It is then clear that g|x = ¢ and hence
dla = (9lx)|la = gla = f. Thus the pair ({x.) + K, g) is an element of A and, since
z. ¢ K., we have (K, g) < ((x.) + K, §) which violates the maximality of (IC, g).

To complete the proof it remains to show that the left-most square in the previous

diagram is a pushout square, which is a direct result of Lemma 2.4.3. O

Lemma 2.4.3. Fiz a Mackey ring R. Let u : X — Y be a surjective map of R-
modules, let J be a submodule of Y, and let 7 : J — Y be the inclusion. Define
t = uly-1(7), define v 2 uH(J) < X to be the inclusion, and define P to be the

pushout in the following diagram:

u‘l(j)Lj
L\[ 35
X a7 P

Then Y is isomorphic to P. In other words, the following is a pushout diagram:
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wi()

L

Q

(<<—)
9

X —>
U

Proof. First we make a reduction. Note that pushouts of Mackey functors are
calculated by computing the pushouts of the module diagrams in each of the two
positions. More specifically, there are forgetful functors U, : R — Mod — R, — Mod
and Up : R — Mod — Ry — Mod where U, (M) = M, and Uy(M) = My. Computing
the pushout of a diagram D in R — Mod is equivalent to computing the pushouts of
U, (D) in Ry — Mod and Uy(D) in Ry — Mod.

As a result, it is sufficient to prove Lemma 2.4.3 when the objects and morphisms
in question lie in R — Mod for an ordinary ring R (i.e. not a Mackey ring).
Consider the solid-line diagram of R-modules shown below where all objects are given

definitions analogous to those in the statement of the lemma.

wJ) s g
L lﬁ T
X——P
« N
o
u Y

It is sufficient to prove that P is isomorphic to Y.

The maps v : X — Y and 7: J — Y induce a map ¢ : P — Y by the universal
property of pushout which is represented by the dashed arrow in the previous diagram.
We will show that ¢ is an isomorphism.

Since u is a surjection and ¢a = wu it follows that ¢ must also be a surjection. It
remains to show that ¢ is inective. To that end, suppose that there is some s € P

such that ¢(s) = 0. By definition there exists some x € X and some j € J such that
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s =a(x) 4+ B(j). Then

0= ¢(s) = ¢la(x) + £())) = u(zx) +7(j) (2.4.4)

and hence u(z) = 7(—7). Since u(x) is in the image of 7 (i.e. since u(x) € J) it follows

that x € u=!(J) (i.e. that x is in the image of +.). Observe that 7(t(x)) = u(i(z)) =

u(z) = 7(—j) which forces t(x) = —j since 7 is injective. Finally, it follows that
s = a(x) + () = a(u(x) = B(t(z)) = a((z)) — alur)) =0 (2.4.5)
and hence ¢ is injective, as desired. O]

2.5 Homological Algebra

If M € R—Mod then we can construct a free resolution F, — M since R —Mod
has enough free modules. In order to compute Tor(M,N) we need to be able to

perform box product “over R” which is provided by Definition 2.5.1 below.

Definition 2.5.1. Let M be a right R-module and let N be a left R-module. We
define
M%Nzcoeq(MDRDNZZMDN) (2.5.2)

where the two maps in the coequalizer on the right are induced from the maps

MOR - M and RON — N.

In homological algebra we often need only compute box products of the form

FOr N when F is a free module in R — Mod. It is clear that R Or M = M. To
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compute Fy(Ry) Or M observe the following:

Fo(Bg) DM = (Fy(Z) IR) M
~ Fy(Z) O (R%M) (2.5.3)

- fg(Z) OM = fg(Mg)

Definition 2.5.4. Let M be a right R-module, let N be a left R-module, and let F,
be a free resolution of M. If we apply the functor (—) Or A and compute homology

of the resulting complex we get
EﬁMLM:H%ﬁ%N) (2.5.5)

This functor is called internal Tor.

In section 2.1 we discussed the two different versions of Hom. During
that discussion we constructed an internal Hom for Mack but we need a similar
construction of an object Homz (M, N') in Mack. Let M and N be left R-modules.

In that construction we developed the diagram of Mackey functors below.

f

TC /_\
MO Fy(Z) MOF.(Z)

\_/

9

Since this is a diagram of R-modules we can apply Homgz(—, ). The resulting
diagram is then an object in Mack that we call Homg (M, N).
There is also a definition of Homg (M, N) using an equalizer that is given in

Definition 2.5.6 below and which has some symmetry with the coequalizer definition
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of M Og N in Definition 2.5.1. It is a simple exercise to prove that the construction

above is equivalent to the definition below.

Definition 2.5.6. Given left R-modules M and A and a map f : M — N of
Mackey functors (i.e. not R-modules) we can make two maps ROM — N out of

the two paths around the following diagram:

ROM —"™M

idRDf[ Lf

RON N

This induces two maps Hom(M,N) — Hom(ROM,N). One can also realize

Homg (M, N) as the equalizer
Home (M. N) = oo (Hom(M.A) = Bom(ROMN) ). (257

The functors Hom and Hom induce functors Ext and Ext in the usual way.

Definition 2.5.8. Let M and N be left R-modules and let F, be a free resolution
of M.

e If we apply the functor Homg_poa(—, V) : R —Mod — Ab to F, and compute

homology of the resulting complex we get

Extl, (M, N) = H (Homp _ped(Fe, N)). (2.5.9)

e If we apply the functor Homz(—, V) : R —Mod — R —Maod to F, and compute

homology of the resulting complex we get

Exth (M, N) = H' (Homg (F., N)). (2.5.10)
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The functor Exty(—, —) is called internal Euxt.
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CHAPTER III

EXT-ALGEBRA COMPUTATIONS OVER MACKEY ALGEBRAS

Suppose C is a tensor! category, R is a ring object in C, and M is an R-bimodule

object. One can then construct a ring object Eg(M) as follows:

e As an object Eg(M) is defined to be R & M.

e Observe that

(ReEM)®(Re M)~ (R®R) & (R®M)& (M®R)& (M&M). (3.0.1)

The structure map Eg(M) ® Er(M) — Er(M) is the map induced by the
multiplication map R® R — R, the module maps RQM — M and M®R — M,

and the zero map M @ M — M.

One might call Eg(M) the square-zero extension of R by M. In the examples below,
we will consider examples in which C is Mack. We will also assume that R is a
commutative Mackey ring and that the left and right R-module structures on objects
M € R — Mod are the same.

If M is a module in R — Mod the module Ex(M) = R & M can be equipped
with a the structure of an N-graded module which will be useful in the following
results. We consider the R summand to be in degree 0 and the M summand to be
in degree 1. (Note that R is given the trivial graded ring structure where everything

is in degree 0.) It can be helpful to visualize Ex (M) as follows:

"'We need C to be a symmetric monoidal category in which the tensor product distributes over
direct sums.
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|» \/
/\
g’R(M) . R - RQ \—/ R. (degree 0)

The vertical lines indicate direct sum between the pieces in various degrees. According
to Theorem 2.2.2, the Mackey ring structure on Ex(M) is determined by the ring
structure of the two components of the Mackey functor. Explicitly, the multiplicative

structure on Ex(M)e = Re ® M, is as follows:

o If ry, s, € R, then rys, is computed using the ring structure on R,.
e If mq,ne € M, then men, = 0.

o If r, € R, and m, € M, then rym, and mer, are computed using the left and

right R.-module structure on M,.

Analogous rules are used to compute products in Egr(M)g = Ry & My.

3.1 Computing Ext¢(R,R) when & = Eg(R)

We consider the special case of £ = Ex(R) for any Mackey ring, R. Below is a

symbolic diagram of £.

/\

R R9 <p*7'> R. <T> (degree 1)
/\

Er(R) R = Ro(1p) Re(1,) (degree 0)
\/

The e-component is R,[7]/7% and the f-component is Ry[p*T]/(p*T)>.
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Theorem 3.1.1. Let R be a Mackey ring and let £ = Ex(R). Then there is an

augmented free resolution of R € £ — Mod of the following form:

o= E=E=E >R (3.1.2)

Furthermore, as Abelian groups, Extg(R,R) = Re for all n > 0 and, as a ring,

Exti:(R,R) = Re[z] where x is one of the following:
e The cocycle [r] € Ext{(R,R) where w: & — R is shown below:

R

e The Yoneda estension R — €& — R in Ext;(R,R) shown below:
R—>R

R R

Proof. The ring E, is R, in degree 0 and R, in degree 1, as well. We use I, to denote
the element 1, € R, in degree 0 and, for the purproses of this proof, we will define 7
to be the element 1, € R, in degree 1.

It is easy to verify that the map 7 : £ — R is a map of Mackey rings and hence
a map of E-modules. It is clear that ker(r) = Y R. (By > M we mean the graded
module M shifted upward by one degree. In general, (3 M); = M,_;.) Next,
define the map ¢ : Y & — £ where ¢(I,) = 7. It is similarly easy to verify that ¢

is the identity map R — R in degree 1, the trivial map R — 0 in degree 2, and the
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trivial map 0 — R in degree 0. It is then clear that the following augmented chain

complex is a free resolution of R:

3 _\2 —_ —_

It becomes more clear when the resolution is stratified by degree as shown below:

R
””” +id
R— R
~~~~~~~~~~~~ -
R— R
******************* fz e
************************** ISP

Recall that Homg (£, R) = R,. Then, by inspecting the grading structure, we see that

applying the functor Homg(—,R) to our resolution yields the following:

Ry <— R, (3.1.3)

This shows that Exty(R,R) = R, for all i € Zx.

All that remains is to compute the ring structure on Exts(R,R). Choose an
element p € Ry = Ext%(R,R) and an element A € R, = ExtZ(R,R). The element
can be represented by a map g : £ — R where g(I,) = p and the element A\ can be
represented by a map f: & — R where f(I,) = A.

Now define maps f; : € — &€ where f;(L,) = A for all i € Zs(. Observe that

m(fo(le)) = 7(A) = A = f(L) (3.1.4)
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and so mo fy = f. Next, for ¢ € Z>(, observe that

fildg+i(Ls)) = fi(T) = 7fi(La) = TA (3.1.5)

and

di(fir1(L)) = di(\) = Ay (L) = Ar. (3.1.6)

Since R was assumed to be a commutative ring we have that f; o d,y; = d; o fii1.

This shows that the diagram below is commutative.

doz o Qv o du o
le f1l fol \fJ
» & » & »E —»

0

da d1 d

By definition, the product pu* A € Extt™(R,R) is the element represented by the

composition

We then have

9(fp(le)) = g(A) = Ap. (3.1.7)

This shows that the product p % A in Extz(R,R) is the product pu\ € R, =
Extt (R, R).

Finally, define a map © : Ext:(R,R) — R.[z] such that

0; : Extt(R,R) — R.[z] is given by A — Az’ (3.1.8)

The argument above shows that © is an isomorphism of rings, as desired.
It is clear that ©([r]) = z. It is then straightforward to verify that [r] is the
Yoneda extension described in the problem statement. O
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3.2 Computing Extg(R,R) when & = Ex(Fp(Ry))

We now consider the special case of & = Ex(Fp(Z)OR) for any Mackey ring,
R. Our goal is to compute Extz(R,R) but first we try to understand some of the
objects involved.

We start with any arbitrary Mackey ring R. The module R = Fo(Z)OR

is isomorphic to Fy(Ry) by Theorem 2.2.2. Then, based on the discussion at the

~

beginning of this section, the ring £ = Ex(R) can be visualized as follows:

The ring structure on £ is not immediately clear. However, after a careful application

of the discussion earlier in the section and Theorem 2.3.12 we find the following:
() Products in E, = Re ® Ry:

x In degree 0, if r,,5¢ € R, then r,s, is computed according to the ring

structure on R,.
x In degree 1, if ry, sy € Ry then rysy = 0.

« If re € R (in degree 0) and sy € Ry (in degree 1) then

TeSo = (P"Te)So (3.2.1)
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where p* is the restriction map in R and the product (p*r,)sg is computed

according to the ring structure of Ry.
(6) Products in Ey = Ry & R:

x In degree 0, if 79,59 € Ry then rysy is computed according to the ring
structure on Ry.
+ In degree 1, if (rg, s9), (29, y9) € R then (rg, sp) (29, ys) = 0.

x If rg € Ry (in degree 0) and (g, yp) € R3 (in degree 1) then

ro(29, yo) = (roze, (tro)yo) (3:2.2)
where t is the twist map in R and both products reze and (try)yy are
computed according to the ring structure on Ry.

Symbolically we can realize the Mackey functor £ as shown below.

/_\

R = Ry(n) @ Re(tn) Ro(psn)
\_/
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, b;,,,,,,,, .
/_\
& R - R9<10> Ro<1o>
\_/
p*

The element n € Ey in degree 1 is meant to represent a generator of Fp(Ry). (It
is the same as the 1 use in the proof of Theorem 3.2.7 below.) Thinking about &
in this way can be helpful in keeping track of the products. Note that an element

(x9,y0) € (Fo(Rp))g is meant to correspond to xen + t(yen) or xen + (tye)(tn).
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We next examine £ = Fo(z)OE = FQ(EQ). After a careful application of

Theorem 2.2.2 one finds that Fy(Ey) takes the following form:

o)
b
[
&
&

The action of € on & can be understood through an application of Theorem 2.3.12,
but there is one special case that will be helpful in the future. Suppose that (a,b) €
R2 C Ey is in degree 1 and that (p,q) € R2 C Ep is in degree 0. Then the product

(a,b) x (p,q) € By is computed as follows:

(a,b) * (p,q) = ((a,b) * p, t(a,b) * q)
= (p* (a,b),q* (b,a)) (3.2.3)

= ((pa, (tp)b), (b, (tq)a))

The map t is the twist map on Ry and multiplication in the last line of this equation
takes place in Ry.

The symbolic visualization of & is shown below.
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)
)

&
~

\E

[ ]

RRSt
(tn)(tLy) | ---------- > | pa(nle) = pu((tn)(tLy))
(tn)Lo e
T2
n(thy) | ~=--------- > | pe((tn)lg) = pu(n(tly)) (deg 1)

_______________---::::3 (deg 0)

As usual, the Mackey functor axioms are enough to work out all of the necessary
calculations in the previous diagram. For example, the product of p,n € F, and

Py € E@ is calculated as follows:

(p«1) (p+llp) = p(p*(psn) - L)

= p.((n + tn) - Lo) (3.24)
= p«(nllp) + p:((tn)Tp).
As a remark, it may be helpful to point out that in the proof of Theorem 3.2.7

below we define n € R2 C FEy to be the degree 1 element (1,0) and I, € R3 C Eg is

the degree 0 element (1,0). An application of Equation 3.2.3 shows the following:

nllp = (170) * (1’()) = ((1’0)7 (070))7
(tn)(tIp) = (0,1) = (0,1) = ((0,0), (1,0)),

(tn)Ty = (0,1) % (1,0) = ((0,1),(0,0)), and

(3.2.5)

77(?5]10) = (17 0) * (Oa 1) = (<O7 O)? (07 1))
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It is clear that these are the four generators of (R2)?.

Finally, for the sake of comparisson, we can repeat the calculation done in
Equation 3.2.3 using the previous diagram. Recall that an element (a,b) € R} C Ejy
in degree 1 is represented as an+t(bn) and that an element (p, q) € R3 C Ejy in degree

0 is represented as plly + t(qly). We then have

(an + t(bn)) * (p]Ig + t(q]Ig))
= (an)(ply) + (an) (t(qlp)) + (t(bn)) (pLe) + (t(bn)) (t(qly)) (3.2.6)

= (ap)(nlp) + (a(tq)) (n(tle)) + ((tb)p) ((tn)Ls) + (t(bq)) (t(nls)).

Note that our rings were assumed to be commutative so ap = pa and bg = ¢b.
Before finally continuing to the computation below, recall that maps f : &€ — M

of &-modules are determined uniquely by fo(L,) € M, and, similarly, maps g : E— M

of £&-modules are determined uniquely by go(Iy) € My. It follows that maps £ - M

are determined by the images of the s generators. Furthermore, recall that
o [, is the identity element in the R, summand of F, = R, & Ry and
e I, is the element (1,0) € R in the degree 0 summand of Ey = R & Ry.

For clarity we will distinguish the identity elements of R, and Ry by denoting them

1, and 1y, respectively.

Theorem 3.2.7. Let R be a Mackey ring, let R = Fo(Z) OR = Fo(Ry), and let

o~

E =Er(R). Then there is an augmented free resolution of R € &€ — Mod of the form
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where

E if k=0, and
P, = (3.2.9)

£ ifk > 0.

and & = Fy(Z) O E = Fo(Ey). Furthermore,

R, if k=0, and
Exti(R,R) = (3.2.10)

R®™D itk >o.

Proof. We start by constructing the free resolution. The objects of our resolution
P, — R are given in the statement of the theorm. It remains to define the £-module
maps di : Pry1 — Pg for £ >0 and a map 7 : Py - R.

Define 7 : &€ — R such that 7(I,) = 1, € R,. It is clear that this map is the
identity map R — R in degree 0 and the zero map R — 0 in degree 1. It follows
that 7 is surjective and ker 7 = Zﬁ

Recall that the degree 1 component of Ey is R3. Define ) € Fjp to be the degree 1
clement i = (15,0). Define do : 3. & — & such that do(Iy) = 5. This map the takes
the form shown below.

R2
|
|

R

It is clear that d is the trivial map 0 — R in degree 0 and the zero map R2 — 0
in degree 2. Since e and 7 are both the element (15,0) € Ry = R? it follows that
dy is the identity map R - R in degree 1. We see that kerdy = 22 R2 and that
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For the remainder of the proof we will omit the suspensions. All maps are
assumed to be maps of graded £-modules and the degrees of the maps and the required
suspensions can be deduced by examination if necessary.

The module £2 has two generators, which we will denote x and y. Define a map

¢« E2 — & where ¢(z) = nly and ¢(y) = (tn)Iy. This map takes the form shown

below.
(R?)?
‘ :1}'—)’)’]]19
732 y—>(tn)le ﬁg

A~

R

In degree 1 the f-component of this map is R; — Rj. In the domain the

four generators are {z,tr,y,ty} and in the codomain the four generators are

{nlly, (tn)(tLy), (tn)lg, n(tLy)}.
e Since ¢(x) = nlly we have ¢(tx) = t(nly) = (tn)(tly).
e Since ¢(y) = (tn)ly we have ¢(ty) = t((tn)ly) = n(tly).

It follows that in degree 1 the #-component of ¢ is an isomorphism. Since £ is free
in the #-component it can be shown that ¢ is an isomorphism of Mackey functors in
degree 1. Note that the kernel of ¢ is R* and the image of ¢ is R2.

Since Py = 2 and P; = € we can define d; = ¢. Then kerdy = R? = imd,
2k-1)

which ensures exactness at P;. Furthermore, since Py = £ and P = &l

we can define dj : (£2)@7) = 2" g0 that dj, = ¢*"). Based on the discussion
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above we see that

ker dy,—y = (ker ¢>(2k_2) = (ﬁ4)(2k_2) = R® and
(3.2.11)

imdy, = (im¢)* ) = (R?)*) = RCY

for £ > 1. This ensures exactness at each P,. The diagram below shows the graded

structure of the resulting chain complex P, — R for clarity.

=L RS

***** 1

************* o

777777777777777777777 izA
R— R

S jzi»n

Next, we’d like to argue that the map dj : Homg(Pg, R) — Homg(Pri1, R) is
the zero map. If ¢ € Homg(Py, R) is non-zero then, by inspecting degrees, one finds

that v o dj is the composition shown below.

ﬁ(2k+1)
REY & 328

REH YR

Clearly this composition is zero for all ¢ € Homg(Px_1, R) so dj is also zero.

Finally, for free modules we have

Home(E°,R)= R,  and  Homg(E%,R) ™ R. (3.2.12)
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Since the modules in the resolution P, are free it follows that applying the functor

A~

Homg(—, R) to the resolution yields
0 4 0 2 0 0
...— Ry <— Ry +— Ry +— R,. (3.2.13)

The result then follows. O]

We now wish to compute the ring structure on Exts(R,R). First, we introduce
some notation. In Theorem 3.2.7 we constructed an £-module resolution for £ of the
form

where

E if £k =0, and
Py = (3.2.15)

EY i k>0
and € = Fo(Z)OE = Fy(FEy). For k > 0 each of the £-summands of P, contains a

generator Iy € &. We will denote these 2¥~1 generators by e; for indices I in a set

Aj_1 described below.

Definition 3.2.16. We define a sign sequence to be a finite sequence of the symbols
+ and —. If I is a sign sequence, denote its length by ¢(I). Define A to be the
set of all sign sequences and define A, = {I € A | {(I) = n}. As an example,
Ay ={++,+—,—+,—}

Finally, if J € A, define J° to be the sign sequence where all of the symbols +

and — are swapped. For example, if J = — 4+ —— then J° =+ — ++.

It is clear that Aj_; contains 2! sign sequences and hence is an appropriate

2k—1)

index set for the generators of P, = &l . Note that when k£ = 1 there is one sign
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sequence in Ag, namely the empty sequence, and the corresponding generator will
simply be written as e. We will now express the differentials in the resolution P, in
terms of these generators.

Recall that the degree 1 component of Fy is R2 and n € Ej is the degree 1
element (1y,0) € R%. The map dj : £ — £ was defined to send the generator of € to
n. According to this new notation, dy(e) = 7.

The map dy : E2 — & sent the two generators of €2 to nl, and (tn)Lp. The
generator [y € £ = P, is now called e and the two generators in Py = £2 are e, and

e_. Assign these generators so that
di(ey) =ne and di(e_) = (tn)e. (3.2.17)

Later differentials dy : Prr1 — P are sums of d; (which we called ¢ in the
previous proof). It follows that for each generator e; of Py (for I € Ax_;) we must
choose two generators in Py to get sent to ney and (tn)e;. Obviously there are many

such choices. We choose these generators so that
dp(esr) = ney and dr(e—1) = (tn)er (3.2.18)

for all £ > 1 and for all I € A,_5. Note that “4+I” and “—I” in the above equation

refer to concatenation. For example, if [ = +— then +/ =+ + — and -] = — + —.
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From this point forward we will omit the subscripts on the differentials when

doing so does not cause confusion. In summary;,

d(e) =1,
d(eyr) =ney for all I € A, and (3.2.19)

d(e_y) = (tn)eyr for all I € A.

The important piece of indexing to remember going forward is that the generators of
Py, are indexed by sign sequences of length k—1. That is, if e; € Py, then (1) = k—1.
This notation gives us a way to express the elements of Extz(R,R) as explained

below. After Definition 3.2.20 we can now proceed to compute the ring structure on

Extz(R,R).

Definition 3.2.20. Choose k > 0 and I € Ay_;. Define €; € Homg(Py, R) to be the
map which is dual to e;. That is, e;(e;) = 1g and er(ey) = 0 for J € Ap_1 \ {I}.
Then €y is a cocycle in P, and hence represents an element of Extz (R, R) which will

also be called ¢€;. It follows as a result of Theorem 3.2.7 that

Ext{(R,R) =< > Mer| A€ Ry (3.2.21)

TeA, 4
for k£ > 0.

Choose I € Ay_;. By standard arguments in homological algebra, the map
er : P — R lifts to maps f; : Pryi — P; for i > 0 which make the diagram below
commute.

+— Prys S Prt2 S Prt1 i

fsl le f1l \f;}[ XZ

>P3 >732 >P1

»
s

d d
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When the objects in this diagram are replaced by their definitions in Theorem 3.2.7
we get the following new diagram.

s §(2n+2) L} g(szrl) L} g(Qn) L} 5(27171)

B B n| fol X

o — & — & — & ——

Lemma 3.2.23 below gives an example of one such lift. In the statement we omit
the subscripts on the f;. When we write f(e;.;) = ey, one can deduce the subscript

on f from the length of I and J if needed. We chose I € Ay_1 so ¢(I) =k — 1. Thus
T+ =J)+l(+)+LI)=0J)+1+(k=1)=k+¢J]) (3.2.22)

and it follows that J + I € Apyyy) and so ey ; € Pryys)+1. Hence when we write

f(esyr) = ey we mean fy5)+1(esqr) = ey. However, these subscripts are rarely useful.

Lemma 3.2.23. Choose I € Ap_1. The map e : Pr — R lifts to maps f; : Pryi — P;

for i > 0 which make the diagram below commute.

d d d
> Prs — 1 Prpy — 1 P — 1 P

fsl f2l f1l >f t;i Y

>7D3 >732 >7D1

\
7

d d d

One such lift is as follows:
o f(er) =1y and f(ex) = 0 whenever K € A1\ {I}.
o flejax)=0if K € Ay \{[} and J € A.
o flejrr) =ey forany J € A.

o flesj_r) =t(eso) forany J € A. (See Definition 3.2.16 for the definition of J°.)
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Note that the sequences above are being concatenated so that J + I is the symbol +
concatenated between J and I. For example, if J = + and I = —+ then J + 1 =

++—Fand J—1=+——+.

Proof. We start by explaining the definition of f. The domain of the maps f; are the
modules Py, for i > 0. The generators of those modules are eg where ¢(S) > k — 1
and since the chain complexes involved are free it is sufficient to define f on those

generatores. The generators eg then fall into two categories.

o If /(S) = k — 1 then the generator in question must either be e; or ex where
K € A1\ {I}. (9 is just the right-most & — 1 signs.) The definition of f(egs)

in this case is given by the first bullet point in the statement.

o If /(S) > k—1 then we can write S as J £ 5" where J € A is any sign sequence
and ¢(S") = k—1. In this case the generator must either be one of e ; for some
J €A, ey for some J € A, or ej for some J € A and some K € Ap_1\ {[}.
The definition of f(eg) for these generators is given by the last three bullet

points in the statement.

Given this definition of f, the only thing to check is that the diagram commutes.

We first check the right-most triangle. It is clear that

m(fo(er)) = 1o = ez(er) and

W(fo(@K)) =0= A[(@]{) when K 7é I

(3.2.24)

so mo fo = er. To verify that the squares commute we will show that f(d(eg)) =
d(f(eg)) for generators eg with ¢(S) > k — 1. This comes down to examining several

cases.
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First, consider a generator eg where ¢(S) = k. Then S must be one of +1, —1,

or £K for some K € Ay \ {I}. In the case when S = +I we have

fd(esr)) = f(ner) = nf(er) = nle = n = d(e) = d(f(e41)). (3.2.25)

Nearly identical calculations show

fld(e—r)) = tn = d(f(e-r)) and

f(d(eiK)) =0= d(f(@iK» for K € A, \ {[}

(3.2.26)

This verifies that f(d(es)) = d(f(es)) when £(S) = k.

Now consider a generator eg where ¢(S) > k. Then we can find some J € A and
some K € Ay such that § = +J + K. Note that K is the right-most k£ — 1 signs
of S and it is possible that K = I. Note, also, that J might be empty. This leads to
eight cases depending on the two signs and whether K = [ or K # [.

There are four cases when K = I. In the particular case when S = +J + [ for

some J € A we have

d(f(e+s+r)) = d(ets) =me; and
(3.2.27)

fld(essv1)) = f(nessr) = nflesir) = ney.

The other three cases when K = [ are similar and the reader can verify the following:

d(f(ess-1)) = nt(ese) = f(d(e4s-1)),
d(fle—se1)) = (tn)es = f(d(e—s+1)), and (3.2.28)

d(f(e—s-1)) = t(nlese)) = fld(e—s-1))-
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In all four cases where K # I the computation is simple and the reader can verify

that

fld(ersrr)) =0 =d(f(etssk))- (3.2.29)

We've now verified that d(f(es)) = f(d(es)) whenever £(S) > k. This completes the

proof. O]

In Corollary 3.2.31 we provide a similar lift for maps Ae; : P, — R where

I € A1 and XA € Ry. In case it is unclear, this is the map defined so that

)\/6\[ er =\ and
(er)er) (3.2.30)

(Xer)(ex) =0 forall K € Ay \ {I}.
Corollary 3.2.31. Choose I € Ap_1 and choose some \ € Ry. Then the map \ej :
Pr — R lifts to maps g; : Prri — Pr for i > 0 which make the diagram below
commute.
- — Prys T Phva T P+ —4 Py

gSl 92l gll gol Y
> Po

>733 >P2 >’Pl

»
T

d d d

One such lift is given by g(ey) = Af(ey) for all J € A where the maps f; are those
provided by Lemma 3.2.23.

Proof. To check the commutivity of the right-most triangle, choose a generator e

where ¢(J) = k — 1. Since 7 fy = €; by Lemma 3.2.23 observe that

m(go(es)) = m(Afoles)) = An(foles)) = AEr(es)) = (Xer)(es). (3.2.32)

Hence mgg = Aej.
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Next consider a generator e; where ¢(J) > k — 1. Since fd = df we have

d(g(es)) = d(Af(es)) = M(f(es)) = Mf(d(es)) = g(d(ey)) (3.2.33)

and so gd = dg. O]

Theorem 3.2.34 below describes the product structure on Extz(R,R). In light

of Definition 3.2.20 it suffices to compute the product of elements of the form Ae; and

Heg.

Theorem 3.2.34. Choose I € A,_1, choose J € A,_1, and choose \,;u € Ry. The
map

Ext?(R,R) ® Ext}(R,R) — Extt (R, R) (3.2.35)

which defines the product structure on Extsz(R,R) is given by

(Hey) ® (Ner) = (pA)esr + ((Eu)A)ese—r (3.2.36)

Proof. Corollary 3.2.31 provides the lift g shown in the diagram below.

- —— Ppig b > Py—1 > Py
gpl Qll gol Y,I
> P, N s P, > Po »
/@Jl
R

By the definition of the product structure on Extz(R,R), the product (uey) * (Aey)

is the element represented by the composition

9p reg
Priq > Pp > R.
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We will compute this composition by evaluating it on the generators of P,.,. Elements

of Api,—1 can be represented as S + 7" where S € A,_; and T € A,_; because

USET)=US) + ) +UT)=(p-1)+1+(g—1)=p+q—1.  (3.2.37)

It remains to compute pey(g,(estr)) for all choices of S and 7. By Corollary 3.2.31

we have the following:
® gylesir) = Aes
o gy(es—1) = At(ego)
o gyleser) =0 T #1

Furthermore we have that pe;(e;) = p and pey(es) = 0 whenever S # J. Combining

these facts we have the following:

¢

LA itK=J+1

nes(gplex)) = (A if K =J°—1- (3.2.38)

0 otherwise
\

It follows that the resulting element of Ext?™ (R, R) is

(HAN)essr + ((Ep)A)ese—r, (3.2.39)

as desired. [

The ring structure on Extz(R,R) is a recognizable one at least in some specific

cases. Theorem 3.2.40 below gives one such instance.
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Theorem 3.2.40. Let R be a (traditional) ring of characteristic 2 and let R be

id 0

QR C R.
id

It is easy to verify that R is a Mackey ring. Let R = Fo(Z)OR and £ = 573(7%)

Then there is a graded ring isomorphism
Extz(R,R) = R(xy, x2, x3,...) (3.2.41)

where x; is in degree i and the ring on the right denotes noncommutative polynomaials

n the ;.

Proof. Define a graded R-algebra o7y as follows:
e The generators of 7 (as an R-algebra) are ey for I € A with deg(ey) = £(1)+1.
e Multiplication on @7y is induced by eje; =¢€;,.; +ejo_; for all I € A.

Since the twist map in R is the identity and since R, = Ry = R it is then clear that
Extz (R, R) = /g (3.2.42)

by the previous results in this section. It is also clear that
o (3.2.43)

since the characteristic of R was assumed to be 2.
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Define a graded R-algebra #Br = R(x1,xs,...) where z; is in degree i. It is clear

that Zr = R ® %Bz/. By Lemma 3.2.45 below, o779 = %79 so
Exty, (R, R) = /g 2 R® o) = R® By = Br (3.2.44)

and the result follows. O
It remains only to prove Theorem 3.2.40 in the special case when R = Z/2.
Lemma 3.2.45. If R = 7Z/2 and R and & are the corresponding Mackey rings

discussed in Theorem 3.2.40 then

Ext:(R,R) = R(xy,xa,x3,...). (3.2.46)

Proof. The structure of Exti:(R,R) is described previously in this section (see
Theorem 3.2.34 for the culmination of that discussion). For k > 0 define I;_; to

be the sign sequence of length k£ — 1 consisting only of the symbol 4. That is,

Lii=++-+. (3.2.47)
——

k—1 times

Define €, = €;,_, and observe that ¢, € Ext{(R,R). (Following the previously-
established convention, assume I is the empty sequence and that e; = e.)

Define a graded ring homomorphism
© : R(xy, 29, 23,...) = Extz(R,R) (3.2.48)
such that ©(xy) = € for all £ > 0. We wish to prove that © is a bijection.
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Define A to be the ideal consisting of all the elements in the graded ring
Extz(R,R) with positive degree. By Lemma 3.2.50 below, A/A? = {[e1], [e2], [e3], - - .)-
It is clear that © surjects onto A/A? and hence © is surjective.

The graded ring homomorphism © is a map of finite-rank free R-modules in each

degree. By Theorem 3.2.7 we have that

1 if k=0, and
rankp ( Extg(R,R)) = (3.2.49)

k=1 if k> 0.

It is a simple exercise in combinatorics to check that the ranks of R(z,xs,x3,...) in
each degree agree with the ranks in Equation 3.2.49. Since O is a surjective map of
finite-rank free R-modules of the same rank in each degree it follows that © is also

bijective in each degree. Hence O is a bijection, as desired. [

Lemma 3.2.50. Let R = Z/2 and let R and &€ be defined as in Theorem 3.2.40.
Define A to be the ideal consisting of all the elements in the graded ring Exte(R,R)
with positive degree. Then AJA? = ([e1],[ea],[e3],...) where the elements €, €

ExtE(R,R) are those described in the proof of Theorem 3.2.40.

Proof. We first wish to justify that if £(J) = ¢(I) and J # I then ey +¢; € A% Let

n = {(J) = {(I). There exist sequences V, U, K € A such that

€] = evk and /6\[ = é\UK- (3251)

Not all of the signs in J and I can match since J # [ but some of them might.
The sequence K is a sign sequence that matches the right-most signs of both J and
I. Note that K could be the empty sequence (which is forced to happen when the

right-most sign of J and the right-most sign of I are different) but V' and U cannot be
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empty (because then both J and I would equal K'). This means that 0 < ((K) < n.
Furthermore, we can assume that K is chosen to be the longest possible sign sequence
(and hence V' and U are the shortest possible) for which Equation 3.2.51 holds. Under
this assumption the choices of V', U, and K are unique and the right-most sign of V'
and U must be different.

We wish to proceed by reverse induction on k = ¢(K). In the base case, suppose

k=n —1. Then V and U have length 1 so J = +K and I = FK. It follows that

€ exk=6x+e.x=26+¢r (3.2.52)

Hence e; +¢; € A%

Now suppose that k& < n — 1. The induction hypothesis is that ex + ey € A?
whenever the right-most £+ 1 (or more) signs of X and Y match. Since R = Z/2 we
have

ej+er=evk +euk
(3.2.53)

=eyk + eyok + euek + euk-

Our choice of V,U, K € A guaranteed that the right-most signs of V' and U
were different. Hence the right-most signs of V' and U° match. It follows that the
right-most k 4 1 signs of the sequences VK and U°K match so, by the induction
hypothesis, ey x + eyox € A%

Now, since /(U) > 0 we can write U = US where (S) = 1. By Theorem 3.2.34,

e ek = €y T epo_k and ege r ek = ege kT ep_k- (3.2.54)

63



In the case when S = + we have that UK = U + K and U°K = U  — K. In the
case when S = — we have that UK = U — K and U°K = U + K. In either case,
Equation 3.2.54 shows that eyeox + eyx € A2

We have now shown that ey + epox € A? and epox + eyx € A%, Since A?
is closed under addition it follows that €; +e; € A? by Equation 3.2.53. Hence, by
induction, if ¢(J) = ¢(I) and J # I then €; +¢; € A%

We now wish to argue that ex ¢ A? for all K € A. By Theorem 3.2.34 we know

that €;-e; = €51 + €so_7. Now consider a sum

ej-€er+ey-ep=¢Cjrt+eo_r+epp+ é\(J/)O_]/. (3.2.55)

Since R has characteristic 2 the terms on the right side of that sum can cancel
pairwise but after cancellation an even number of terms must remain. Now consider
an arbitrary sum x = Y. €y, - €., l.e. an arbitrary element of A?. When those
products are expanded and we write x = ) 8 er,, pairwise cancellation means that
this new sum must also contain an even number of terms. In particular, the resulting
sum cannot contain a single term so if K € A then ey ¢ A2

We have shown that if €5 € A then [€x] is non-zero in A/A%. We have also
shown that for k > 0 elements [€x]| with ¢(K) = k — 1 are all equivalent in A? (since

ex +exr € A2 if ((K) = ((K')) and hence we can choose one such element, namely

lex] = [er,_,], to represent them. Since it is clear that [e;] # [e;] when k # j, the
result follows. O
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3.3 A Conjecture about the Tensor Algebra

Recall the situation from the beginning of the chapter where C is a tensor

category, R is a ring object, and M is an R-bimodule object. We constructed the

square-zero extention of R by M, called Eg(M). We now wish to construct the tensor

algebra, Tr(M).

As an N-graded object in C,

TpRM)=ReMd(MIrM)®(MrMerM)o...

(3.3.1)

where R is in degree 0 and M®* is in degree k. An R-algebra structure is given by

the bimodule maps

R&@ M®" — M

M@k ®R—> M®lc

and the natural map

M®P & M®1 — \OP+a),

Consider the case when C = Ab. It is straightforward to show that

EXtER(M) (R, R) = TR(M)

As an example, consider M = R. First, we have

sy

[2]
(22)

Er(R) = and so  Exte, ) (R, R) = R|z]
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Furthermore, since R®* = R we have that

TR(R)=R®R®R®R®... andso Tgr(R)= Rlx]. (3.3.6)

Hence Exte, g (R, R) = Tr(R).

One might suspect a similar isomorphism in the case when C = Mack. Note
that Exte,ar)(R,R) and Tr(M) do not live in the same category; the former is a
traditional ring and the latter is a Mackey functor. Instead, Conjecture 3.3.7 uses the

internal Ext construction.

Conjecture 3.3.7. Extg (1) (R,R) = Tr(M) for any Mackey ring R and R-

bimodule M.

We wish to support this conjecture by showing that

(Exter 1) (R, R))e & (Tr(M))e. (3.3.8)

in the case where M =R and when M = F4(Z)OR. To do this, first recall that

(Exte, (R, R))e = Exteg (1o (R, R). (3.3.9)

Consider M = R. Since R"* =2 R we have

TR(R)=R®R®R® ... (3.3.10)

and, in particular, (TRr(R))e = Re[z]. Furthermore, by Theorem 3.1.1, we have

(Exte o) (R, R))s = Extog ) (R, R) = Rula] (3:3.11)
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and hence

(Exte (r) (R, R))e = (TR(R))s- (3.3.12)

Now consider M = R = Fy(Z) OR. In section 3.2 we computed Exte, 7 (R, R).

~

We now proceed to compute (Tr(R))s as well.

Recall the structure of R = Fy(Z)OR described in Chapter II:

(ROFp(Z))y —————= (RO Fy(Z)).

@ _______________ > | pe(g) = pu(tg)

The element g in this diagram is a chosen generator for R. Now recall that for any

Mackey functors X and Y, (¥ J)Y)y = Xy ® Y. This means that
(Tr(R))y = Ry R2a (R o (R o ... (3.3.13)
with (R2)®" in degree k. Furthermore, the Ry-linear generators of (Tr(R))g are

Degree 1: g, tg

Degree 2: g®g, g®tg, tg® g, tg®tg
(3.3.14)

Degree 3: ¢gRg®g, gRgRtg, gRLgR g, gty tg,

lgRQgRg,lgRgRtg, tgRtgR g, tgRitgR1g.

Let (i, be the set of generators in degree k& > 0 and let 3 = (J,., Bx- Then, in general,

Br={¢®g| o€ Pr1}U{o@1lg| ¢ € Pr1}. (3.3.15)
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Note that t(¢ ® tg) = t¢ ® g which means that the twist map on (Tr(R))s induces
a bijection between {¢ ® g | ¢ € fr—1} and {p @ tg | ¢ € Pr_1}. Note also that in
degree k the rank of (Tx(R))y is 2% as an Rg-module.

It is easy to compute that RORZR @ R. Inductively then we have

2k71

ROk = RO (3.3.16)
In particular, since (ﬁ). >~ Ry, this tells us that in degree k, (Tn(ﬁ)). is a free

Rp-module of rank 21

A~ A~

We now wish to produce generators for (T%(R)).. In degree k, (Tr(R)). contains
elements of the form p,(¢) for ¢ € Fi subject to the relation that p.(¢) = p.(to).
Note that since |3 = 2%, there are 2¥~! of these elements. Based on the properties
of R it follows that these 28~1 elements generate (Tx(R)).. In summary, we have

~

developed the following picture for T (R):

‘d)@g‘ ’tgb@tg‘ ““““““““ > | pe(P® g) (deg k)
lg@g| [tg@tg| - r (g ® g) = pu(tg ® tg)
g®tg] |[tg@g| - > 1p-(g @ tg) = p.(tg @ g) (des 2

[9] [tg]------------- v |p«(9) = pu(tg) (deg 1)
p*l. R et (deg 0)
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Let 19 = p*(1,) and note that 14 is the unit in the algebra (Tr(R))s (since p* is a

ring map). For the remainder of the section we will use the set

y={p(p®@g)|d€BU{ls}} (3.3.17)

as our Ry-lincar generators? for (Tr(R)). in positive degree.

Lastly, we need to understand multiplication on (Tn(ﬁ)). It suffices to
understand multiplication of the generators so choose generators p,(¢®g), p«(V®g) €
~. First, recall the fact that p*p, = 14t and the Frobenius relations in Theorem 2.2.2.

A~

Also, recall that (Tr(R))s is a (traditional) tensor algebra and so the product of p® g

~

and ¥ ® g in (TRr(R)). is simply ¢ ® g ® ¥ ® g. We then have

pi(0®g) - p(Y®g) =pl(o®g) @pp(Y ® g))
=p:((0®9g) @ (1+1)(¢ @)
= (02 9) ® (Y ® g+t ® tg)) (3.3.18)
=p(0R YR G) +p(P Qg Rt R1g)

=p(0RgRYVRg) +p(toRtgRY R g).

~

We can now describe the isomorphism Ext. (R, R) = (Tr(R)).. Consider

the sets § and A. There is a map

[=]: BU{le} = A (3.3.19)

2We use B U {15} instead of just 3 so that + includes p.(1p ® g) = p.(9g).

69



where [1y] is the empty sequence, [g] = +, [tg] = —, and we let [—] commute with the

operations of tensor in U {1} and concatenation in A. As examples,

gRtggl=+—+ and [tgRlgRgRtg=——+—. (3.3.20)

It is clear that © is a bijection. Furthermore, it is clear that for any ¢ € fU {14} we
have [t¢] = [¢]°.

We can define a map of R,-modules

~

©: (Tr(R))e = Extg, (7 (R, R) (3.3.21)

such that ©(1,) = 1, and

O(p: (¢ ® g)) = €y (3.3.22)

for generators p.(¢ ® g) € B U {1ly}. To show that this is a map of R.-algebras we
need only show that it is a homomorphism.

Choose p.(¢ ® g), p«(1 ® g) € v. On one hand,

~

O(p(0®9))  Opu(¥ ® g)) = Elgl - Ey) = Eigl+1w] + Elglo—u- (3.3.23)
On the other hand,

O« ®9g) pu(¥ ®g))

O (P RgRY®g) +p(tdpRtg 1Y@ g))

(3.3.24)

)

®

begey] T Eltsotgny]

)

61+[] T €lgo—[4]-
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Hence O is a homomorphism. Since © is an abelian group isomorphism by inspection

it is an isomorphism of R,-algebras.
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CHAPTER IV

HOMOLOGICAL PROPERTIES OF THE RINGS My AND M,

In this section we investigate certain homological questions about a ring My and

a Mackey ring M that show up in Z/2-equivariant algebraic topology.

Definition 4.0.1. Let k be a field. Define a k-algebra M as follows: elements 7¢p’
and riipj for 7,5 € Z>o form a k-basis for My and multiplication on this basis is given

by

(T'p7) (7P pf) = TP I,

b (7"‘2]‘)(7’?1)‘1) = 07

(T'0)(=L.) =0if i > por j > ¢, and

Tppq

(Tlp])( 9 ):Lifigpandjﬁq-

TPpd TP—1pd—J

We will consider M to be a Z?-graded module where 7%/ is in degree (j,7 + i) and

0
TtpI

is in degree (—j, —i — j — 2).

For the rest of this chapter we will write R = k[, p] and S = M, for convenience.
It is clear that R is a Z?-graded ring but we will differ from normal convention and
give 7¢p’ a degree of (4,7 +1). For the remainder of this chapter we will assume that

all R-modules and S-modules are Z2-graded.

%
Tipd

There is a ring map S — R under which 79 — 7p/ and

— 0 and a ring
inclusion R < S. The former map allows us to regard an R-module M as an S-
module which we will call ¢ M and the latter map allows us to regard an S-module N

as an R-module, which we will call g/N. Note that the regular S-module splits over

R as gpS = R ® J where J is the R-submodule of zS generated by all elements Tfpj.
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Note, also, that the kernel of the map S — k sending 1 to 1 is (7, p); this is because

i = ()T € (T p).

The goal of this chapter is to relate Exts(grM, k) to Exty(M, k) for finite length

R-modules M. In particular, we compute Ext§(k, k) as a ring.

4.1 A Resolution of J

First, we will produce an R-module resolution for J. For ¢ € N consider the

0

Tipt

submodule (=) < J. The following is a free resolution of this module where dy(t) =
(o, =7 ) and dy(a,b) = 71T — ptib:

d d
0 R—sR—'3R (L)

0

Tipi

Of course, the map R — (==) is given by 1 — epi. These chain complexes form a

Tt

directed system in Ch(R — Mod) via chain maps of the form

0 R R? R ()
fa Ji fo
0 R R? R ()

where f; is the identity map, fi(a,b) = (pa,7b), and fy(t) = 7pt. On the homology

of the individual chain complexes, the induced maps become
0
(77

le fll fo[
0

(i)
P
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and fo(t) = 7pt. By computing the colimits of the columns in the previous two
diagrams we have that the directed limit of the original directed system is

0 R T 'R®p'R—— (7p) 'R

and its homology is zero except at the right-most spot, where the homology is J.

Hence this resulting complex is a flat R-module resolution of J.

4.2 Calculating the Groups Extjy (k, k)

Now suppose that M is a finite length R-module. Since rS = J @& R we have
that a resolution of S is given by

R—— 717 'Reop'R—— (1p) 'R® R

and tensoring this complex with M (over R) yields
M s TS o (2P TS M.

Note that 77*M, p~'M, and (7p)~'M are all zero because M is finite length and
hence killed by a sufficiently large power of 7, p, and 7p. Hence we have the following

isomorphisms of R-modules:
Torl(M,rS) = M,  Torf(M,zS) =0, and  Torf(M,pS)=M (4.2.1)

Choose a projective resolution 0 — P, — P, — Py - M of M as an R-module
and consider the chain complex P, ®g S. We wish to compute the homology of this
complex. The R-module structure of H,(P,®zS) is given by Tor’(M, zS) and hence

the following isomorphisms hold as R-modules:

HQ(P. KR S) %’M7 Hl(P. QR S)%(), and Ho(P. KRR S)gM (422)
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By definition, the element 6 € S acts as zero on ¢ M and, by Corollary 4.2.4 below, 6

acts as zero on H,(P, ®g S). Hence the isomorphisms above also hold as S-modules.

Lemma 4.2.3. Let N be a multigraded S-module and let n € N. If On # 0 then
(ny =2 S and hence S < N.

Proof. Choose a monomial v = 7'p/ € S. Observe that ¢(vn) = On. Since On # 0 it
follows that vn # 0. Similarly, v (%n) = On and hence %n # 0. It follows that the
(multigraded) map of S modules S — N defined by ¢ — tn is injective and clearly

its image is (n). This proves the result. O

Corollary 4.2.4. If N is an S-module such that gN is finite length then 6 acts as

zero on N.

Proof. Recall that dimg(N) < oo since gN is finite length. Suppose, to the contrary,
that there exists some n € N such that n # 0. Then, by Lemma 4.2.3, S < N.

Hence R < pS < grN and so gN does not have finite length. O

We now wish to find a projective S-module resolution of gM. At this point we

have developed the following exact complex of S-modules:

d d
SM‘—>P2®RS—2>P1®R541>PQ®RS%'>5M

Now consider a new complex

d
—1>P0®R543>P2®RS—2>P1®RS

d/)
(///dg/ ' dy dq
Ph@rS ——Po@rS —— P ®@rS—— FPh®rS

0

where d3 : Py ®r S — P, ®pg S is the following composition:
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Py®r S —» coker(dy) = sM = ker(dy) —— P, ®r S

\/’

ds

This is an acyclic complex of free S-modules and hence resolves coker(d;) = M.
This resolution is used to prove Theorem 4.2.5 below.
Theorem 4.2.5. Let M be a finite length R-module. Then

1. Bxti(sM, k) = Ext’ (M, k) fori € {0,1,2} and

2. Exth(sM, k) = Exts?(sM, k) for all i > 3.

Proof. Recall that 0 — P, - P, — Py — M 1is a projective resolution for the R-
module M. Write dy = dy®idg and d; = d, ®idg where dy : Py — P, and d; : P, — P,
are the maps in this resolution.

Apply the functor Homg(—, k) to the resolution for ¢M constructed previously.
Lemma 4.2.9 below shows that when the functor Homg(—, k) is applied to d3 the result
is the zero map. This fact, combined with the repitition in the resolution, shows that

the resulting complex breaks up into exact sequences of the following form:
0« HomS(Pg KR S, k?) — HomS(Pl QR S, k’) — Homs(Po KRR S, ]{?) + 0. (426)

This proves part 2 of the theorm.

By adjunction we have

Homg(P, ®g S, k) = Hompg(P;, Homg(S, k)) = Hompg(P;, k). (4.2.7)

76



The naturality of the adjunction then tells us that these exact sequences become
0 < Homp(Ps, k) <2 Homp(Pr, k) <= Homp(Py, k) + 0. (4.2.8)

The homology of this complex is Ext’, (M, k) which proves part 1 of the theorem. [

Lemma 4.2.9. Let d3 : Py ®r S — P, ®r S be the map described prior to

Theorem 4.2.5. The induced map
d; : HomS(P2 XRpr S, k) — HomS(PO KRR S, k) (4210)

18 the zero map.

Proof. We repeat the notation used for d; and d, in the proof of Theorem 4.2.5.

Choose a map ¢ : P, ®g S — k. Then dj(¢) is the composition ¢ o d3, or
Py ®p S — coker(d;) = ker(dy) — P, ®gr S % k. (4.2.11)

Our goal is to prove that this composition is the zero map. For the rest of this proof
assume that all tensors are taken over R.

We first claim that kerdy; € P, ® J. (Recall that R C S and S = R® J. In
particular, J is spanned by elements of the form % for monomials m € R.) Choose

an element = € ker dy. Then we can write

7
7

N N’
x:Zvi@)mi—i—Zv;@mi (4.2.12)
0 =0

7=

for integers 0 < N, N’ < oo, elements v;, v, € P,, and monomials m;, m, € R. Note

that every element % € J is annihilated by some power of p. Choose k large enough
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so that p* annihilates each % (which is possible because there

are only N/ < oo

such elements). Note that p* € R also annihilates elements v} ® %. Since kerd, is a

submodule of P, ® S we have that p*z € ker d,. Furthermore,

N N’
pra=) puem)+) e
1=0 1=0

p*(v; @ m;)

[
M =

0

-
Il

(P vim;) @ 1.

I
.MZ

@
i
o

Thus we have

N
O—dgpx —d2<2pvlm, ®1>
i=0

= (dy ®1d) (Z(P vm;) ® 1) (Zp Uzml) ® 1.

1=0

Recall that dy : Py, — P, is the map from the resolution 0 — P,

and hence is injective. We can now conclude that

N

CZ2 <Z kaimi =0,
ZZON

Pk@ (Z vim; | =0,

i;O
JQ (Z v;im; | = 0,
=0

N
and finally Z v;m; = 0.

1=0
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(4.2.14)

- P —>F > M

(4.2.15)



Finally, we have that

0= (Z vimi> ®1= Z(vimi ®1)= Z(Uz ® m;) (4.2.16)

=0 1=0

and hence, recalling Equation 4.2.12, we have

N N N
szm@mi—i—Zv;@m%:Zv;@m%. (4.2.17)
i=0 i=0 i=0

Thus z € P, ® J. This proves that kerds C P, ® J as we claimed.

We now claim that ¢(P, ® J) = 0. Choose z € P, ® J. Then
M
=y u ek (4.2.18)
=0

for an integer 0 < M < oo, elements u; € P,, and monomials m; € R. Since each %
J

is divisible by p we have that

M M
xzp(Z@g@%) and so x = pz’ for CL‘/:ZUj@p%J_EPQ(X)J. (4.2.19)
=0

=0

Note that since ' € P, ® J we have that dy(z’) € k. Then, since everything in £ is

annihilated by p, it then follows that

o(x) = ¢(pa') = p(z') = 0. (4.2.20)

This proves the claim that ¢(P> ® J) = 0.
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We are now ready to prove the lemma. We have shown that kerd, C P, ® .J and

that ¢(P, ® J) = 0. It then follows that the composition
kerdy — P, @ S S k (4.2.21)

is zero. It is then clear that the composition shown in Equation 4.2.11 is zero and

hence dj is zero, as desired. O

In summary, Theorem 4.2.5 tells us that as a vector space Extg(sM, k) is
isomorphic to Exty(sM, k) ® k[a] where o has degree 3. For the remainder of
the paper we will omit subscripts; it should be clear from context whether M is being

considered an R-module or an S-module.

4.3 Calculating the Ring Structure on Ext} (k. k)

Consider the case when M = k. This module is resolved over R by the Koszul
complex 0 = R — R*> — R — k and we have shown that it is resolved over S by a

resolution of the form

by g2 4, g B g 2 g2 D, g (4.3.1)

LBy g By g

Recall that d;(a,b) = 7a — pb and dy(t) = (pt, —7t). Also, d3(x) = 20 for all x € k
and dz(z) =0 for all z € S\ k.
We now wish to compute the Yoneda extensions corresponding to basis elements

of Ext%(k, k). Two linearly independent Yoneda extensions in Extg(k, k) are given by

1—1 1—p 1—1

k2T S/7% ) 2k and k5 S/(r, %) 2 k. (4.3.2)

80



Call these extensions h, and h,, respectively.
There is a map of algebras Exty(k, k) — Extg(k, k). This is most easily seen
on Yoneda extensions as the map X, — g(X.). There is also an algebra map

Exts(k, k) — Exty(k, k) given by X, — g(X.) and it is clear that the composition

Ext’y(k, k) — Ext’(k, k) — Ext’y(k, k) (4.3.3)

is the identity. Hence the map Ext}(k, k) — Extg(k, k) is injective. We recall that

Ext’(k, k) = (4.3.4)

and it is easy to verify that h, and h, are the image of 7 and p. This shows that
h.h, = h,h, and that this element is non-zero in Ext%(k, k).

Define the extension a € Ext}(k, k) as

N SN L RN Ny ¥ (4.3.5)

We first wish to verify that ah, = h,a and that this element is non-zero in Ext(k, k).

Define ¢ : S? — k to be ¢(a,b) = [a]. We will show that the cocycle ¢ represents
both ah, and h,c.

In the diagram below, the top row is the resolution of k£ and the bottom row is

the Yoneda extension corresponding to h,a.

d d d d
52 L .5 LAY BRI <. SN i
P [ [id [id [id [id
k——— S/{r2,p) S 52 I
l—T 1—6 ds dy 1—1
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It is clear (since d;(1,0) = 7) that the diagram above commutes. This shows that ¢
represents h,a.
In the diagram below the top row is again the resolution of k£ while the bottom

row is the Yoneda extension corresponding to ah.,.

PR R SN T TS, S 2

‘925 ‘fz; ‘fs hﬁ ‘fl ‘id

. S 52 S S/ p) —— k
1—0 do dq l—T 1—1

The f; are given by

A@) =T[t], fola,d)=a, f3(t)=(0,-t), and fi(t)= (%)t (4.3.6)

The reader can verify that this diagram commutes which shows that ¢ represents
ah.. We have thus verified that ah, = h,« is non-zero. A similar argument shows
that ah, = h,a is non-zero in Extg(k, k) (represented by the cocycle S? — k where
(a,b) = [b]). Tt is also straightforward to show that h,h,a is non-zero in Ext2(k, k)
(represented by the cocycle S — k given by the quotient map).

We now wish to verify that the element of € Ext¥ (k, k) is non-zero for all 7 > 1.
In the diagram below the top row is the resolution of k£ and the bottom row is the

Yoneda extension for o.

d d d d d

[ AN S NS S NN BN < S BN 2

lw lm lm lm lm lm

i S 52 . 52 S i
1—6 d2 d1 dg dl

It is clear that this diagram commutes when the map ¢ : S — k is the quotient map.

This shows that a’ # 0.
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These facts together justify that

Ext® (k, k) = (o),
Ext?”l)(k’ k) = (h.a', hya'), and (4.3.7)

Ext® ™ (k, k) = (h,hyal).
Furthermore, the products computed justify Theorem 4.3.8 below.

Theorem 4.3.8. The ring Exts(k, k) is isomorphic to Exth(k, k) @ kla] as a k-

algebra.

Note that Extj(k, k) is isomorphic to k[r, p]/(72,p?). The isomorphism & :

k[T, pl/(T%, p*)®rk[a] — Extg(k, k) is given by ®(7) = h., ®(p) = h,, and ®(a’) = o’

4.4 Calculating the Module Structure on Exty, (M, k)

We now wish to understand the action of Extg(k, k) on Extg(M, k). That action

follows directly from Theorem 4.4.1 below.

Theorem 4.4.1. Suppose M is a finite length R-module. If u € Exty(M, k) is non-
zero then au is also mon-zero. Additionally, the map Extiy(M, k) — Exti®(M, k)

giwven by u — au is an isomorphism of vector spaces.

Proof. We will proceed by induction on the length of M. If /(M) = 1 then M = k
and this is verified above. If /(M) > 1 then, since M has finite length, there exists a

short exact sequence of the form

0=k M5 N0 (4.4.2)
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where 1 < ¢(N) < ¢(M). Consider the corresponding long exact sequence under

Exty(—, k):
co e Exctly(k, k) <= Exti(M, k) &= Exty(N, k) < BExti ' (k, k) < -+ (4.4.3)

It is clear that the maps ¢* and 7* are maps of left Ext(k, k)-modules. We claim that
the boundary map 0 is, as well. This can be shown by considering the corresponding
maps of Yoneda extensions. First, recall that 0 : Exth(k, k) — Extst (N, k) is given
by (V) =V - & where & is the short exact sequence in Equation 4.4.2 (and V - &

indicates concatenation). Choose Yoneda extensions U, V' € Extg(k, k). Then
U-oV)y=U0-(V-&=U-V)-&E=0U-V) (4.4.4)

and so 0 is a map of Extg(k, k)-modules.
It follows that the diagram (of vector spaces) shown below is commutative when

the vertical maps are all given by the (left) action of o € Extg(k, k).

Exti ™ (N, k) «— Extl(k, k) «— Extg(M, k) +— Exty(N, k) +— Exty '(k, k)

L

Exti (N, k) < Exti(k, k) < BExtS? (M, k) < Exti (N k) + Exti?(k, k)

Note that (k) < ¢(N) < (M) so, by induction, the four outermost maps are
isomorphisms. Therefore, by the Five Lemma (see [Wei94]), it follows that the map
Exts(M, k) — Exty™ (M, k) given by the (left) action of « is an isomorphism of vector

spaces. This completes the proof. O

We have already verified for 0 < i < 3 that Exti(M, k) is isomorphic to

Ext% (M, k) and for i > 3 that Exty (M, k) = Ext’ ?(M, k). We have also verified that
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multiplication on the left by « induces an isomorphism Extk(M, k) — Ext5™> (M, k).
It follows that Extg(k, k) = Exth(k, k) ® k[a] acts on the module Extg(M, k) =

Exty(M, k) @y kla] in the natural way.

4.5 Generalization to Higher Dimensions

The ring S is the two-dimensional case of a broader concept. Let R, =
klx1, 2, ..., x,] and define S, as the n-dimensional analog of S. That is, S, is
generated as a vector space by elements of the form m and % where m is a monomial
in R,. Multiplication on S, is done in the obvious way (i.e. 8> = z;6 = 0). There
are analogous results to the above work in these higher-dimensional cases. Suppose
that M is a finite-length R,-module and that P, is a free resolution of M. There is

a resolution of g M given by
= PS> PSS, -2 PRS—>PeS, == RS, (4.5.1)

One can compute this resolution in the same way; we can write g, S, = R, ® J, and

compute the following flat resolution of J,:

0—R— @ xi_llR — @ (,2,) "R — -+ = (2129 - 2,) "R — 0
1<ii<n 1<iy<iz<n
(4.5.2)
It then follows that Exty (k, k) = Exty (K, k) ®; k[a] (where o has degree n+ 1) and

that Exty (M, k) = Exty (M, k) @ k[a] with the expected action.

4.6 Properties of the Mackey Ring M,

In the previous sections of this chapter we analyzed the ring M. We called it S

for convenience but we will now abandon that notation. Additionally, we will assume
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that k = Z/2. Recall that there is a k[r, p]-module isomorphism My = k[, p|] & J
where J consists of k-linear combinations of elements of the form % for monomials
m € k[T, pl.

Recall that M, is Z2-graded and we consider all My-modules (and hence ideals
of M) to be Z2-graded, as well. We first classify the ideals of M.

Lemma 4.6.1. If I <M, and I Nk[t, p| is non-empty then J C I.

Proof. Suppose that I N k[r,p] is non-empty. Since I is a Z*-graded ideal we can
assume that there is a monomial m € I N k[r,p]. Consider an element % e J.

Observe that % € Ms and I is an ideal of M so
0
=— - -mel. (4.6.2)

It follows that J C I. O

Corollary 4.6.3. If [ <M, then either I C J or there exists an ideal I' k[T, p| and

a k[T, p]-module isomorphism I = I' & J.

The Mackey functor in Definition 4.6.4 has useful applications in equivariant

homotopy theory.

Definition 4.6.4. The Mackey functor M, is defined as follows:

[ ] [ )
VS VS
E
S— S—
fa) [ ]
| |
o
g =
\]
_

The twist map ¢ : k[7,77!] — k[r,771] is the identity map.

The restriction map p* : My — k[r, 77! is defined so that p*(7*) = 7% for i > 0,
0

and p*(m) = 0 for all other monomials m € k[r, p] C My, and p*(-%) = 0 for all

m € k[r, p] C M.
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e The transfer map p, : k[r, 77!] — M, is defined so that

) % if ¢ S 2, and
0 if o> 2.

Both k[r,77!] and M, are rings and it is straightforward to check that the Mackey

functor My has the structure of a Mackey ring.

A diagram of M, is shown below.

7_4 7_4
I I P4
twist ;-: 3 3
I I PB
2 f 72
transfer P2
—
T T
— ~
- S P
1 1
1 ﬁ\ //
T S —
1 restriction
=3 9 o
a ? o
3 0 T
2
a ? 0
vy )

Note that a Mackey functor M is considered graded over a monoid () provided
that My and M, are both ()-graded and that the restriction, transfer, and twist maps
are all Q-graded as well. We will consider k[r,77!] to be a Z?-graded ring where the
degree of 7% is (0,7). Then the Mackey ring M, is a Z*-graded Mackey functor and
this graded structure makes it easier to keep track of the restriction and transer maps
in Definition 4.6.4. The previous diagram of My honors this graded structure; the
element 1 on either side is in degree (0,0).

Note that the only Z?-degrees in which both of k[r,77!] and M, are non-trivial
are (0,n) for n # —1. Furthermore, the corresponding components of both rings are

k = 7Z/2 in those degrees. Let D = {(0,n) € Z* | n # —1}. We can then make the

following observations about the restriction and transfer maps:
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e In every degree d € Z*\ D the restriction and transfer maps are maps of the

form 0 — &k, k — 0, or 0 — 0 and hence are forced to be zero.

e For degrees (0,n) € D where n > 0, restriction is the identity map & — k and

transfer is the zero map k — k.

e For degrees (0,n) € D where n < —2, restriction is the zero map k — k and

transfer is the identity map k£ — k.

The diagram below summarizes these observations. Only the maps in highlighted
degrees can be non-zero and on these gradings the map & — k can only be 0 or id,

as indicated.

(l |

| 1

J\‘

id

id ’1
( id

~-

AN

May proved that the (traditional) ring My is self-injective (see [May18|) and here
we prove that M, is a self-injective Mackey ring. Recall from Theorem 2.4.1 that our
criterion for verifying the injectivity of a Mackey module requires us to understand the

ideals of the corresponding Mackey ring. Lemma 4.6.6 below provides a categorization

of the ideals of M.

Lemma 4.6.6. If Z is an ideal of My then it must be of one of the following two

forms:
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1. Iy=0and 7" & I, for all i > 0.
2. Iy =k[r,77] and & € I, for alli >0

Additionally, any choice of ideals Iy < k[r,7 '] and I, < My which fall into one of

those two categories will form an ideal T < M.

Proof. Recall from Lemma 2.2.5 that an ideal Z < M, will consist of ideals I, <
(Msy)e = My and Iy < (My)g = k[r,77!] such that the restrictions of all the maps
in My to the appropriate ideals are well-defined. Also note that k[, 77!] is a graded

field and hence only has two ideals.

e Suppose that Iy = 0. The only non-zero outputs of p* are linear combinations
of 78 € M, for i > 0. Hence, in order for p*|;, to be well-defined, we must have
7t ¢ I, for all i > 0. Clearly p.|;, and t|;, will both be well-defined and hence

any such ideal I, will yield an ideal Z < M5 in this case.

e Suppose that Iy = k[r,771]. The image of p, is all linear combinations of

elements % € M, for i > 0. In order for p,|, to be well-defined, I, must contain

all of those elements. It is clear that p*|;, and ¢ will both be well-defined and

hence any such ideal I, will yield and ideal Z < M, in this case.

Since the only ideals of k[r,77!] are 0 and k[, 77| we have now covered all possible

cases. O
Example 4.6.7. We’d now like to consider an example of some of the ideals of M.

e Consider the ideal I, = (1%, 7p?, p*) < M,. Note that J C I, (this is proven in

Lemma 4.6.1). If we let Iy = k[r,77!] then the resulting Mackey functor
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is an ideal of My based on Lemma 4.6.6. Shown below is a diagram of this

ideal:

This ideal is of the second type described by Lemma 4.6.6.

e Consider the ideal I, = <%, T%p) <M. It is easy to check that I, C J. Based

on Lemma 4.6.6 the Mackey functor
0 0
/_\
L™
~_
0

is an ideal of My. Shown below is a diagram of this ideal:

!
!
| ’
_— o
7
v

{0}



This ideal is of the first type described by Lemma 4.6.6.

e [deals I, <My need not be finitely generated. Consider

L={{z}u{%%5. ). (4.6.8)

If we let Iy = {0} the diagram of the resulting Mackey ideal is as follows:

!
!
| 4
_— ke
7
v

%
|
|
| ) 0
| 2, -~ 3
| X
I
| % —3
I 4 T
| 7/

0

I -~ 3
I

As a brief aside, now that we understand the ideals of Ms it becomes clear that

it is not a Noetherian ring.
Theorem 4.6.9. The Mackey ring My is not Noetherian.

Proof. First note that My is not Noetherian and this theorem is essentially a direct
corollary of that fact.

For i € N let v; = T,.ipi € M. Consider ideals J; <M, where J; = (v;). Note that
J; does not contain J since v;11 € J\ J; and hence J; # M for all i € N. Additionally,
it is clear that J; is a proper subset of J;;1 since v;yq € Jiyq \ J;. It follows that the
collection {J; };cn is an ascending chain of ideals in M.

As a result of Corollary 4.6.3 we see that J; C J. Furthermore, by Lemma 4.6.6,

there exist ideals J; < M of the following form:

0 0
NE Q{O}/_\Ji
-
0
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It is clear that {7; }icn is an ascending chain of ideals and that J; # J;4; for all i € N.

Hence M, is non-Noetherian. ]
We are now ready to show that M, is a self-injective ring.

Theorem 4.6.10. The Mackey functor My is an injective object in the category of

graded Ms-modules.

Proof. This proof will use the criteron described in Theorem 2.4.1. We need to prove

two things:

1. For every inclusion of My-modules ¢ : T —+ M, and every morphism f : 7 —

M, there exists a morphism g : My — M such that g¢ = f as in the diagram

below:
T >L> M,
A
My g

2. For every inclusion ¢ : J — MyOFy(Z) and every morphism f : J — M,
there exists a morphism g : MyOFy(Z) — My such that g¢ = f as in the

diagram below:

My<---"""g

In this context we are dealing with graded modules and maps of graded modules.
The only adjustment that needs to be made is to understand that the codomains of

the maps f and g in the diagrams above may contain a shift in the Z2-grading.
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We start by addressing the first of these two conditions. Choose an ideal Z <M,
and a My-map f : Z — Ms. Since the choice of g is clear when f = 0, assume f # 0.
Since M, is an injective Mly-module there exists a map g, : I, — My of Ms-modules
such that gete = fo. However, My = My F,(Z) is free. Hence there is a map of
My-modules g : My — My determined by Iy — ge(1s). We claim that for this choice
of g it follows that ggtg = fo.

We first make some reductions. If I is trivial then it is clear that ggep = fy
so assume Iy = k[r,771]. Now, recall that f, g, and ¢ are all graded maps wih the
understanding that the codomain of f and ¢ undergoes a shift; write this shift as
(a,b). That is, if an element # € Z has degree (a’,b’) then the degree of f(z) is
(@' 4+ a,t +b). The same must also hold for elements € My and g(z). Note that
the non-zero elements in the #-components of My and Z all have degree (0,n). This
means that if @ # 0 then the maps f, and g, must both be zero and it is clear that
gotg = fp in that case. Hence we can assume that a = 0.

Since g is a graded map and 1, has degree (0,0) we have that the degree of go(I,)

is (0,b). If b > 0 then go(I,) = 7° and if b < —2 then g,(L,) = =%5.

T

e Suppose b > 0. First we have

go(10™) = () = (D L) = T L) = 70 (g, L) = 770 = T
(4.6.11)

Next, observe that
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The degree of 7772 is (0, —b—2) and so it follows that the degree of fp(77°72) is
(0, —2). The component of k[r, 7] that lies in degree (0, —2) is {0,772}. Since
p(fo(T7072)) # 0 it must be that fo(770"2) # 0. This forces fo(77072) = 772,

Finally,

o) = fo(rlHOTRITIT02)) = GHOR2 £ (p7072) = 4082272 — 770 (4.6.13)

Thus ggtg = fo in this case.

e Suppose b < —2. An argument nearly identical to the previous one shows that
in this case we must have that fy = 0 and gy = 0. Hence gyi9 = fp in this case,

as well.

This completes the proof justifying the first of the two conditions.
We now verify the second condition. For convenience, let F = k[r,77!]. (Recall

that here we are assuming k = Z/2.) As a consequence of Theorem 2.1.9 we have

that My 0 Fy(Z) = Fy(F) and

Choose a submodule J < Fy(F) and choose a map f : J — May. Observe that (since
k=17/2,F is a field, and J is a homogeneous ideal) there are only the following five

choices of J, < F?:

00, Fa&o, 0aF, A, [F? (4.6.14)
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where A = ((1,1)) < F2. We now consider five cases based on the choice of Jy and in
each case we construct a map g : Fy(IF) — M,y such that go = f (where v : J — Fy(F)
is the inclusion).

First we show that two of those five cases aren’t possible. Suppose that Jy = F&®0.
Lemma 2.2.5 states that J, must contain p,.(Jy) = F which forces J, = F. Lemma 2.2.5
also states that Jy must contain p*(J,) = A but it is clear that A ¢ F @ 0. Hence
there is no submodule J < Fy(F) such that Jy = F&0. An identical argument shows
that there is no submodule J < Fy(F) such that J, =0& F.

Next we show that two of those cases are trivial. If J; = 0 then Lemma 2.2.5
forces J, = 0 and hence J = 0 which forces f = 0. In this case, we can choose g =0
and then clearly gt = f. Similarly, if J; = F? then Lemma 2.2.5 forces J, = I and
hence J = Fy(F) which forces ¢ = id. In this case, we can choose g = f and then
clearly gt = f.

Finally, suppose Jy = A and suppose f : J — M, is a map of the following

form:

"¥*/

| Jo Je
S

Note that p. = 0 in the above diagram because for (77,77) € A we have

pu(ri 71y = 71 4 1) = 279 — 0. (4.6.15)
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The rest of this proof is dedicated to showing that there exists a map g : Fy(F) — M,
such that g« = f in this specific case.

We first wish to argue that fy is the zero map. Suppose, to the contrary, that
fo is non-zero. Then, since fy : A — I is a map of graded F-modules this forces

f9(7i7 7—'5) — Ti+j for some ﬁxed j c Z If’L = —] -2 then we have

p*(fe(TiaTi)) = P*(T’Q) =6 and

fo(pu (7', 7)) = £4(0) = 0.

(4.6.16)

Since f is a map of Mackey functors we have p,fy = fop« and so # = 0 which is a
contradiction. This shows that f; must be the zero map.

If f, is also the zero map then f: A — M, must be zero, in which case we can
choose ¢ = 0 and have g. = f. We are left with the case where f : A — M, is a
graded map of Ms-modules and f, is non-zero. An application of Lemma 2.2.5 shows
that J, can either be F < or 0 < T so, since f, # 0, we must have J, = F.

We are now considering a map f : A — M, of the form

id pe =0
QA/\F
| Jo o fe
S

where f, : F — M, is non-zero. (In the above diagram when we write p* = id we

mean the map z +— (x,z).) We first wish to make some reductions regarding the
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image of f,. In what follows we use the action of My on My Fy(Z) = Fp(F); a

description of this action can be found in Theorem 2.3.12.!

e Suppose 7%’ is in the image of f,. Then there is some 7' € F where f,(7%) =
79p°. By checking the gradings we then find that f,(777271) is forced to equal

0. Since f, is a map of Ms-modules we have

T = fu(r) = fu(r ) = e (e <, (46.17)

which is a contradiction. Thus the image of f, does not contain an element of

the form 7p°.

0

e Suppose with b > 0 is in the image of f,. Then there is some 7° € F such

Tapb
that fo(7%) = Tfpb. After noting that pr? € T is zero we have
i i 0 0
0=1e0) = fop = pfu(T) =\ 5 | = 7t (4.6.18)

This is a contradiction since b > 0 and so Ta:ﬁ € M, is non-zero. It follows

that the image of f, does not contain an element of the form T%b where b > 0.

e Suppose % is in the image of f,. (Note that in this case there is no contradiction

to be found.) Then there is some 7° € F such that f,(7%) = £. If j > i then

fo(r)) = 7770 f (71) = Tﬂ'—"( o ) _ 0 (4.6.19)

; - rati—j

n particular, we use that elements 7¢ € My where i > 0 act on (F4(F)) = F, as expected and
all other elements of My act as zero.
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where, of course, we mean that f,(77) is zero if a + i — j < 0. Furthermore, if
j <1 then

Ti_jf0(7j> = fo(Ti_jTj) = fO(Ti) = 4 (462())

It follows that f,(77) is non-zero and, in particular, it must be that fo(77) =

0

—+i=; (this is clear by examining the graded structure of My).

As a result of the above reductions we have shown that a non-zero graded map of

0

Tk=J

M,-modules F — M, must be of the form 77 for some k € Z. Assume that the
map f, takes this form. For the rest of this proof when we write an element % e M,
where n € 7Z it will be under the assumption that we mean this element to be zero in
cases where n < 0.

Recall that maps F(F) — M,y are uniquely determined by the image of I, =
(1,0) € (Fp(IF))g = F2. Define g : Fy(F) — My such that g¢(1,0) = 77275, We wish
to prove that g = f. We will do this by showing that g|7 = f or, equivalently, by
showing that gy(z) = fy(x) for all z € Jy = A and ge(x) = fo(z) for all z € J, =F.

Choose an element (77,77) € A. Observe that

g(m?,77) =77g(1,1) = 77 ¢((1,0) + ¢(1,0)) (4.6.21)

— Tj (7_—2—k 4 t<7_2_k>) — Tj (T—Q—k 4 7_—2—k) = 0.

Hence go(77,77) = 0 = fo(77,77), as desired.
Choose an element 77 € F. Before computing g.(77) it helps to recall the transfer

maps? in Fy(F) and My: for (a,b) € (Fy(F))g = F? we have p.(a,b) = a + b and for

2Note that we do not give the usual description of the transfer map in My but rather a description
adapted to the notation in this proof.
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" € (My)g = F we have p, (") = %. Now observe that

90(7—]) = Ge (p*(T], O)) = D« (99(7—]> 0)) = D« (7—]99(17 0)) = D« (T_Q_IH_J) = m
(4.6.22)
and hence go(77) = fo(77), as desired.

Finally, we have satisfied the conditions laid out in Theorem 2.4.1 and hence M,

is an injective My-module. n
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