
MACKEY FUNCTORS OVER THE GROUP Z/2 AND COMPUTATIONS IN

HOMOLOGICAL ALGEBRA

by

DANIEL NICHOLAS RAIES

A DISSERTATION

Presented to the Department of Mathematics
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2019



DISSERTATION APPROVAL PAGE

Student: Daniel Nicholas Raies

Title: Mackey Functors over the Group Z/2 and Computations in Homological
Algebra

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Mathematics
by:

Dr. Daniel Dugger Chair
Dr. Nicholas Proudfoot Core Member
Dr. Ben Elias Core Member
Dr. Jon Brundan Core Member
Dr. Eren Çil Institutional Representative

and

Dr. Janet Woodruff-Borden Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded June 2019

ii



c© 2019 Daniel Nicholas Raies
This work is licensed under a Creative Commons

Attribution-NonCommercial-NoDerivs (United States) License.

iii



DISSERTATION ABSTRACT

Daniel Nicholas Raies

Doctor of Philosophy

Department of Mathematics

June 2019

Title: Mackey Functors over the Group Z/2 and Computations in Homological
Algebra

Mackey functors over the group Z/2 are useful in the study of Z/2-equivariant

cohomology. In this dissertation we establish results which are useful for homological

algebra computations for certain Mackey rings over Z/2. We also provide some Ext

computations for Mackey modules over Mackey rings. Additionally, we study the

bigraded ring M2 (which is the Bredon cohomology of a point) and its Mackey ring

analog. This includes a computation of Ext(k, k) over M2 and a computation of

Ext(M,k) for certain M2-modules M as well as a proof that the Mackey ring analog

is self-injective as a bigraded Mackey ring.
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CHAPTER I

INTRODUCTION

In this dissertation we examine Mackey functors. We evolve the theory behind

them and look at properties of a particular Mackey functor that is prevalent in

equivariant topology.

Classical algebraic topology uses abelian groups (rings, and modules) to measure

topological spaces through homotopy, cohomology theories, and other constructions.

In equivariant algebraic topology the role of abelian groups is played by objects

called Mackey functors. For a finite group G the category of G-Mackey functors

has a symmetric monoidal product (called a box product) and so one can construct

ring objects and module objects in the usual way. This dissertation concerns some

homological computations for certain Mackey rings and modules for the group Z/2.

1.1 Background on Equivariant Topology

Consider the category of topological spaces Top and the category of G-

equivariant topological spaces G−Top for a finite group G. Equivariant cohomology

provides a Bredon contravariant functor

H i
G : G−Top→ Ab (1.1.1)

for integers i > 0. One also finds that the cup product induces a functor

H∗G : G−Top→ Rings. (1.1.2)

Definitions and a rigorous treatment of these topics is given by May in [May96].
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Consider the group G = Z/2. The transitive G-sets are given by cosets G/H

for H ≤ G. In this case, there is the two-point set G ∼= G/〈0〉 and the singleton set

〈0〉 ∼= G/G. The non-trivial element of G swaps the elements of G and, of course,

acts trivially on the element of 〈0〉. There is a map of G-sets t : G→ G which swaps

the elements and the quotient map of G-sets p : G → 〈0〉. This yields the following

diagram of G-sets:

G 〈0〉.
p

t

The theory of G-sets tells us that there are no other non-identity maps of G-sets in

the previous diagram.

Consider an object X ∈ G − Top. By considering G and G/G as elements of

G−Top with the discrete topology we can apply the functor X × (−) to the above

diagram to get the following:

X ×G X × 〈0〉.

id× p

id× t

We can then apply the Bredon cohomology functor H∗G which yields the following

diagram of graded rings:

H∗G(X ×G) H∗G(X × 〈0〉).

(id× p)∗

(id× t)∗

Furthermore, the map id× p : X ×GG→ X ×G 〈0〉 is a two-sheeted cover. It follows

that there is a transfer map (id× p)∗ : H∗G(X ×G G)→ H∗G(X ×G 〈0〉) (see [Hat02]).

We can add this to the previous diagram to get
2



H∗G(X ×G) H∗G(X × 〈0〉).

(id× p)∗

(id× p)∗

(id× t)∗

Note that (id × p)∗ is a map of graded abelian groups but it is not a map of rings.

Given a space X this previous diagram (of graded abelian groups) will be denoted

H∗G(X). Based on the properties of the transfer map, one can check that this diagram

satisfies

• (id× p)∗ ◦ (id× p)∗ = id + (id× t)∗,

• (id× p)∗ ◦ (id× t)∗ = (id× p)∗,

• (id× t)∗ ◦ (id× p)∗ = (id× p)∗, and

• (id× t)∗ ◦ (id× t)∗ = id.

Diagrams of graded abelian groups of this form which satisfy those four axioms

will be called Mackey functors over the group G = Z/2 (see section 2.1). These

form the objects of a category Mack and the morphisms are natural transformations

between the diagrams. Since all of the constructions above were functorial we have

functors

H∗G : G−Top→ Mack. (1.1.3)

There is also a forgetful functor U : Mack→ Ab which maps a Mackey functor

M to the rightmost group in the diagram. (In the notation of the rest of the paper,

U(M) = M•.) It is clear from the construction of H∗G that the following diagram

commutes:

3



Mack

G−Top Ab

U
H∗G

H∗G

In this way, the cohomology with Mackey functor coefficients H∗G(X) provides

additional structure that one can study. Furthermore, it turns out that Mack is

a symmetric monoidal category (see section 2.2) and that H∗G(X) is a ring object in

Mack. We can then replace Ab and Mack with Rings and the category of Mackey

rings in the previous diagram.

Let P = {∗} ∈ Z/2 − Top be a single point. The cohomologies of this space

are the ring M2 = H∗Z/2(P ) and the Mackey ring M2 = H∗Z/2(P ). These rings are

stated explicitly and explored in Chapter IV. In particular, we will prove a structure

theorem for Ext∗M2
(M,Z/2) (for certain M2-modules, M) and we will prove thatM2

is self-injective.

If G is an arbitrary finite group then there is still a Mackey ring valued

cohomology functor Hi
G. Mackey functors over other groups form different diagrams

but the construction is similar.

1.2 Background on Mackey functors

Full treatments of Mackey functors can be found in [May96] and [Web00]. In

this paper we are only concerned with the case where G = Z/2 and we give a

rigorous treatment of that case in Chapter II. In this section, however, we will give

an overview of the general case. There are several different equivalent definitions of

Mackey functors; we provide just one of them here.

Definition 1.2.1. Let G be a finite group. A Mackey functor over G is an additive

functorM : BGop → Ab where BG is the category defined in Definition 1.2.2. The

4



category G − Mack is the resulting functor category whose morphisms are natural

transformations. (When we write Mack in future sections we mean Z/2−Mack.)

Definition 1.2.2. Let G be a finite group. The Burnside Category BG is defined as

follows:

• The objects are finite (left) G-sets.

• The set HomBG(A,B) is the set of equivalence classes of diagrams of (left)

G-sets

X

B A.

These diagrams are called spans and two spans are equivalent if there exists a

commutative diagram of the form

X

B A.

X ′

∼=

Composition of spans is obtained from the pullback

P

Y ◦ X = Y X

C B B A C B A

where P = Y ×B X.

In G−Mack there is an obvious direct sum given by (M⊕N )(X) =M(X)⊕

N (X). In [Shu10] Shulman describes a box product −�− : Mack×Mack→ Mack.

This acts as the tensor product under which Mack is a symmetric monoidal category.

(In section 2.2 we describe the box product for G = Z/2; see Theorem 2.1.14 for a
5



description of the unit and the maps which define that structure.) As a result we can

form a category of Mackey rings and a category of R-modules for any Mackey ring

R in the usual way.

Note that a Mackey functorM : BGop → Ab is determined by its values on the

sets G/H for subgroups H ≤ G because every G-set is isomorphic to a coproduct of

those sets. This allows us to represent Mackey functors as finite diagrams of abelian

groups where the shape of the diagram depends on G. In the case where G = Z/2

there are only two subgroups, namely 〈0〉 and Z/2, and so the resulting diagram

only has two objects. In [Shu10], Shulman explains how in the case when G = Z/2,

Mackey functors can be represented by diagrams of the form

Mθ M•

p∗

p∗

t

(subject to some axioms). In section 2.1 we adopt these diagrams as our definition of

Mackey functors. One finds that a Mackey ring is a diagram where both objects are

rings (along with some conditions on the maps) and that if R is a Mackey ring then

an R-module is a diagram where the objects are modules over the corresponding rings

(again with some conditions on the maps). This is discussed further in section 2.2.

1.3 Summary of Results

We conclude this chapter with a brief summary of the new results found in the

rest of the dissertation.

Free Mackey Modules
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In Ab free modules are all isomorphic to
⊕

i∈I Z for some set I. Let A be the

unit in the symmetric monoidal structure on Mack. Mackey functors
⊕

i∈I A are all

free in Mack but there are not enough of those modules (in the categorical sense).

There is another Mackey functor Fθ(Z) which is free but which is not isomorphic to⊕
i∈I A for some set I. Mackey functors of the form

(⊕
i∈I

A

)
⊕

(⊕
j∈J

Fθ(Z)

)
(1.3.1)

are all free and, moreover, there are enough free Mackey functors of that form.

We investigate the free modules of R−Mod. Similarly, the regular module R is

free and there is a second module Fθ(Z)�R such that there are enough free modules

of the form (⊕
i∈I

R

)
⊕

(⊕
j∈J

Fθ(Z)�R

)
. (1.3.2)

We provide a working model for Fθ(Z)�R and explore some of its properties.

Injective Mackey Modules

A module Q is defined to be injective if for any map f : X → Q and any injection

ι : X → Y there is an extension f̄ : Y → Q such that f̄ ι = f . Baer’s Criterion (see

[Wei94]) states that in the case of traditional modules over a ring R it is enough to

check the cases where Y = R and X is an ideal of R.

We develop an analog to Baer’s Criterion for Mackey modules over a Mackey

ring R. It turns out that one needs to check both the case when Y = R as well as

the case when Y is the free module Fθ(Z)�R discussed above.

Homological Algebra Calculations
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Suppose that C is a tensor category. If R is a ring object andM is an R-bimodule

one can form the square-zero extension of R by M which is a ring object that we

denote ER(M). As an example, if C = Ab and R is a ring then ER(R) ∼= R[x]/〈x2〉.

A standard computation in homological algebra shows that

Ext∗ER(R)(R,R) ∼= R[x]. (1.3.3)

In the case where C = Mack and R is a Mackey ring we compute the ring

Ext∗ER(M)(R,R) (1.3.4)

whenM = R and whenM = Fθ(Z)�R. In particular,

Ext∗ER(R)(R,R) ∼= R•[x] (1.3.5)

WhenM = Fθ(Z)�R the general result is perhaps too complicated to present here.

However, if R is the specific Mackey ring where R• = Rθ = R (with char(R) = 2),

p∗ = id, p∗ = 0, and t = id then

Ext∗ER(Fθ(Z)�R)(R,R) ∼= R〈x1, x2, x3, . . .〉 (1.3.6)

where the algebra on the right is the graded non-commutative algebra generated by

the xi with deg(xi) = i.

Homological algebra over the ring M2
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A description of the (traditional) ring M2 is given in Chapter IV. It is a k = Z/2-

algebra and we find that there is a ring homomorphism k[τ, ρ] ↪→ M2 which yields a

split short exact sequence of k[τ, ρ]-modules,

0→ k[τ, ρ]→M2 → J → 0. (1.3.7)

Suppose M is an M2-module which is finite length as a module over k[τ, ρ] (i.e. which

is finite dimensional over k = Z/2). We prove that

Ext∗M2
(M,k) ∼= Ext∗k[τ,ρ](M,k)⊗ k[α] (1.3.8)

where α is in degree 3. We further prove that the action of the ring

Ext∗M2
(k, k) ∼= Ext∗k[τ,ρ](k, k)⊗ k[α] (1.3.9)

on the module in Equation 1.3.8 is the obvious natural action.

Furthermore, it is known that the traditional ring M2 is self-injective (see

[May18]). We use this analog to Baer’s Criterion to show that the Mackey ring

M2 is also self-injective.

9



CHAPTER II

MACKEY FUNCTORS, MACKEY RINGS, AND MACKEY MODULES

In this chapter we review some terminology and background results surrounding

Mackey functors as well as provide some new results that will be useful in the

computations found in later chapters. Most of the results found in this chapter are

attributed to Schulman in [Shu10]; we aim to build on her work.

2.1 A review of Mackey functors

A Mackey functor over the group G is a functor from the Burnside category BG

into the category of abelian groups as discussed in [Shu10]. In this paper we will be

concerned only with the case where G = Z/2. In this case a Mackey functor M is

represented by a diagram in Ab of the form

Mθ M•

p∗

p∗

t

which satisfies the following conditions:

• p∗p∗ = 1 + t

• p∗t = p∗

• tp∗ = p∗

• t2 = 1

The map p∗ is called restriction, the map p∗ is called transfer, and the map t is

called twist. For the remainder of the paper the term Mackey functor will refer to
10



a Mackey functor over the group Z/2. A morphism of Mackey functors is a natural

transformation of functors or, in our case, maps f• and fθ in the diagram below

Mθ M•

Nθ N•

fθ f•

which commute with the restriction, transfer, and twist maps whenever possible. An

isomorphism of Mackey functors is a morphism f : M → N where f• : M• → N•

and fθ : Mθ → Nθ are both isomorphisms. The category of Mackey functors will be

called Mack.

Remark 2.1.1. Whenever possible we will use calligraphic letters to represent Mackey

functors and roman letters to represent the corresponding abelian groups. For

example, ifM is a Mackey functor then we will use M• and Mθ for the two abelian

groups in the diagram without explicitly specifying. We will try to remain consistent

with this convention but it should be clear from context when it is necessary to break

it.

Example 2.1.2. There are two Mackey functors which will be important for the

remainder of the paper. If A ∈ Ab then the Mackey functors F•(A) and Fθ(A) are

shown below:

F•(A) : A A2

[ 0
1 ]

[ 1 2 ]

1

Fθ(A) : A2 A

[ 1 1 ]

[ 1
1 ]

[ 0 1
1 0 ]

11



For reasons that are made clear in Theorem 2.1.3 we will make the following

definitions:

I• = (1, 0) ∈ (F•(Z))• Iθ = (1, 0) ∈ (Fθ(Z))θ

Theorem 2.1.3. LetM be a Mackey functor.

• The function α : HomMack(F•(Z),M) → M• given by α(f) = f•(I•) is an

isomorphism of Abelian groups.

• The function β : HomMack(Fθ(Z),M) → Mθ given by β(f) = fθ(Iθ) is an

isomorphism of Abelian groups.

Proof. Consider a map f : F•(Z)→M as follows:

Z Z2

Mθ M•

[ 0
1 ]

[ 1 2 ]

1

fθ f•
p∗

p∗

t

Since f is a map of Mackey functors, fθ[ 1 2 ] = p∗f• and hence

fθ(1) = fθ ([ 1 2 ]I•) = p∗(f•(I•)). (2.1.4)

Similarly, f•[ 0
1 ] = p∗fθ and hence

f•(0, 1) = f• ([ 0
1 ]1) = p∗(p

∗(f•(I•))). (2.1.5)

We see that the map f is determined uniquely by f•(I•) and hence α is injective.

Since (F•(Z))• = Z2 and (F•(Z))θ = Z are free abelian groups we see that any choice
12



of f•(I•) ∈ M• induces such a map f and hence α is surjective. The proof that β is

a bijection is similar.

There is a direct sum in Mack which is induced by taking the abelian group sum

at each spot in the diagram. GivenM,N ∈ Mack there is also a box product M�N .

This is discussed further in [Shu10] where it is shown that for our purposesM�N

can be defined as follows.

• (M�N )θ = Mθ ⊗Nθ

• (M�N )• is the quotient of (Mθ⊗Nθ)⊕ (M•⊗N•) generated by the following

relations:

m• ⊗ p∗nθ ∼ p∗m• ⊗ nθ for m• ∈M• and nθ ∈ Nθ

p∗mθ ⊗ n• ∼ mθ ⊗ p∗n• for mθ ∈Mθ and n• ∈ N•

tmθ ⊗ tnθ ∼ mθ ⊗ nθ for mθ ∈Mθ and nθ ∈ Nθ.

• The twist map on (M�N )θ is induced by the diagonal action, i.e.

mθ ⊗ nθ 7→ tmθ ⊗ tnθ (2.1.6)

for mθ ∈Mθ and nθ ∈ Nθ.

• The restriction map (M�N )• 7→ (M�N )θ is the map induced by

(m• ⊗ n•) + (mθ ⊗ nθ) 7→ (p∗m• ⊗ p∗n•) + (mθ ⊗ nθ) + (tmθ ⊗ tnθ) (2.1.7)

for m• ∈M•, n• ∈ N•, mθ ∈Mθ, and nθ ∈ Nθ.

• The transfer map (M�N )θ 7→ (M�N )• is induced by the inclusion

Mθ ⊗Nθ → (Mθ ⊗Nθ)⊕ (M• ⊗N•) (2.1.8)
13



Note that the elementsmθ⊗nθ in (M�N )• are the image of those same elements

from (M�N )θ under transfer. The element mθ⊗nθ ∈ (M�N )• is equal to p∗(mθ⊗

nθ) where mθ ⊗ nθ is considered to be an element of Mθ ⊗Nθ = (M�N )θ. This is

because the transfer map p∗ is induced by the inclusion in Equation 2.1.8.

Theorem 2.1.9. IfM is any Mackey functor we haveM�Fθ(Z) ∼= Fθ(Mθ).

Proof. We start by computingM�Fθ(Z). For convenience, call this Mackey functor

Q.

First we have

Qθ = Mθ ⊗ (Fθ(Z))θ = Mθ ⊗ Z2 ∼= M2
θ (2.1.10)

and

Q• = [(M• ⊗ (Fθ(Z))•)⊕ (Mθ ⊗ (Fθ(Z))θ)] / ∼

=
[
(M• ⊗ Z)⊕ (Mθ ⊗ Z2)

]
/ ∼

∼= [M• ⊕Mθ ⊕Mθ] / ∼

(2.1.11)

where the relations are as follows:

(0, 0, p∗m•) ∼ (m•, 0, 0) ∼ (0, p∗m•, 0) for m• ∈M•

(p∗mθ, 0, 0) ∼ (0,mθ,mθ) for mθ ∈Mθ

(0,mθ, 0) ∼ (0, 0, tmθ) for mθ ∈Mθ.

One can then compute that the map

φ : Mθ → [M• ⊕Mθ ⊕Mθ] / ∼ where φ(mθ) = [(0,mθ, 0)] (2.1.12)

is an isomorphism. Hence Q• ∼= Mθ. One can also compute the twist, transfer, and

restriction maps on Q as follows:

14



• The twist map M2
θ →M2

θ is given by (p, q) 7→ (tq, tp).

• The transfer map M2
θ →Mθ is given by (p, q) 7→ p+ tq.

• The restriction map Mθ →M2
θ is given by r 7→ (r, tr).

Note that in the maps above, t is the twist map from M. This concludes the

computation of Q =M�Fθ(Z).

Now define f : Q → Fθ(Mθ) as follows:

• fθ : M2
θ →M2

θ is given by fθ(p, q) = (p, tq).

• f• : Mθ →Mθ is given by f•(r) = r.

Clearly fθ and f• are isomorphisms of abelian groups since the twist is an isomorphism.

It follows that f is an isomorphism and henceM�Fθ(Z) ∼= Fθ(Mθ).

The Mackey functor Fθ(Z) is meant to act as free in the θ-spot. There is a

generator g in (Fθ(Z))θ. There is also the twist of the generator tg ∈ (Fθ(Z))θ as

well as the transfer of the generator p∗g ∈ (F•(Z))•. We can then picture Fθ(Z) as

follows:

Z〈g〉 ⊕ Z〈tg〉 Z〈p∗g〉.

The Mackey functor relations allow us to do the rest of the computations in this

particular Mackey functor.

• t(tg) = g because t2 = 1.

• p∗(tg) = p∗g because p∗t = p∗.

• p∗(p∗g) = g + tg beacuse p∗p∗ = 1 + t.
15



Note that in relating this picture to the definition of Fθ(Z) in Example 2.1.2 we can

choose the generator g to be either of (±1, 0) or (0,±1) in (Fθ(Z))θ = Z2. However,

because of the isomorphism presented in the proof of Theorem 2.1.9, it is convenient

to think of g as (1, 0) = Iθ.

Theorem 2.1.9 explains that M�Fθ(Z) is isomorphic to Fθ(Mθ). It is helpful

to frame that isomorphism in terms of the previous diagram. The elements of

(M�Fθ(Z))θ are of the form mθ ⊗ g + t(m′θ ⊗ g) and elements of (M�Fθ(Z))•

are of the form p∗(mθ ⊗ g). The diagram we can draw forM�Fθ(Z) is as follows:

(M�Fθ(Z))θ (M�Fθ(Z))•

t(mθ ⊗ g)

mθ ⊗ g p∗(mθ ⊗ g)

We can, again, use the Mackey functor relations to do all of the desired computations.

Here is an example of one such computation:

p∗(p∗(mθ ⊗ g)) = (1 + t)(mθ ⊗ g) = mθ ⊗ g + t(mθ ⊗ g). (2.1.13)

Schulman showed in [Shu10] that � acts as a tensor in a symmetric monoidal

category as stated in the following result.

Theorem 2.1.14. The category Mack forms a symmetric monoidal category where

the box product is the tensor and A = F•(Z) acts as the unit. The associativity

isomorphism (M�N )�P ∼=M�(N �P) is clear and the twist map τ :M�N →

N �M is induced by the obvious isomorphisms

Mθ ⊗Nθ
∼= Nθ ⊗Mθ and

[(M• ⊗N•)⊕ (Mθ ⊗Nθ)]/ ∼ ∼= [(N• ⊗M•)⊕ (Nθ ⊗Mθ)]/ ∼
(2.1.15)
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For the remainder of the paper, we will useA to refer to the unit in the symmetric

monoidal structure. Theorem 2.1.16 is proven in [Shu10] and will be useful for the

rest of the paper when discussing maps out of box products.

Theorem 2.1.16. If M,N ,P ∈ Mack then a map f : M�N → P is determined

uniquely by abelian group maps f• : M• ⊗N• → P• and fθ : Mθ ⊗Nθ → Pθ subject to

the following relations (called Frobenius relations):

fθ(p
∗m• ⊗ p∗n•) = p∗f•(m• ⊗ n•) for m• ∈M• and n• ∈ N•

f•(p∗mθ ⊗ n•) = p∗fθ(mθ ⊗ p∗n•) for mθ ∈Mθ and n• ∈ N•

f•(m• ⊗ p∗nθ) = p∗fθ(p
∗m• ⊗ nθ) for m• ∈M• and nθ ∈ Nθ

fθ(tmθ ⊗ tnθ) = tfθ(mθ ⊗ nθ) for mθ ∈Mθ and nθ ∈ Nθ

For Mackey functorsM and N the set HomMack(M,N ) has the structure of an

abelian group. One can also construct an internal Hom object Hom(M,N ) ∈ Mack

which, when used in homologocial algebra, allows us to realize Ext∗R(M,N ) as a

Mackey functor. We now provide that construction.

Consider the following three maps of Mackey functors:

• g : F•(Z)→ Fθ(Z) defined by g•(I•) = p∗(Iθ)

• f : Fθ(Z)→ F•(Z) defined by fθ(Iθ) = p∗(I•)

• τ : Fθ(Z)→ Fθ(Z) defined by τθ(Iθ) = t(Iθ)

Together these create the diagram of Mackey functors shown below:

Fθ(Z) F•(Z).

f

g

τ
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Now, the objects in the diagram above are not abelian groups but one can check that

the maps τ , f , and g satisfy the Mackey functor axioms. That is, gf = idFθ(Z) + τ ,

fτ = f , τg = g, and τ 2 = idFθ(Z).

We can then apply the functor (−)�M to this diagram. This results in the

following:

Fθ(Z)�M F•(Z)�M.

Finally, we can apply the functor HomMack(−,N ) which results in the diagram of

abelian groups shown below:

HomMack(Fθ(Z)�M,N ) HomMack(F•(Z)�M,N ).

Since the Mackey functor axioms held in the original diagram and we have only applied

additive functors, they still hold in this final diagram of abelian groups. This Mackey

functor will be called an internal Hom or a Hom object and is denoted Hom(M,N ).

Note that (Hom(M,N ))• = HomMack(M,N ).

It is possible to simplify the last diagram by observing that F•(Z)�M∼=M and

by choosing an isomorphism Fθ(Z)�M∼= Fθ(Mθ) as demonstrated in Theorem 2.1.9.

At this point we prove that the functors −�X and Hom(X ,−) are adjoint as

one might expect.

Theorem 2.1.17. IfM, N , and X are Mackey functors then we have

HomMack(M�X ,N ) ∼= HomMack(M,Hom(X ,N )). (2.1.18)
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That is, the functor −�X : Mack→ Mack is left-adjoint to the functor Hom(X ,−) :

Mack→ Mack.

Proof. This theorem is similar to the usual proof that −⊗X : Ab→ Ab is left adoint

to Hom(X,−) : Ab→ Ab for abelian groups, X. We will provide the bijection

Θ : HomMack(M�X ,N )→ HomMack(M,Hom(X ,N )). (2.1.19)

Choose a map f ∈ HomMack(M�X ,N ). By Theorem 2.1.16 f is determined by

maps fθ : Mθ ⊗Xθ → Nθ and f• : M• ⊗X• → N•.

We will now define an element φ ∈ HomMack(M,Hom(X ,N )) which will become

Θ(f). Based on the definition of Hom we need to construct maps φθ and φ• in the

diagram below.

Mθ M•

HomMack(Fθ(Z)�X ,N ) HomMack(F•(Z)�X ,N ).

φθ φ•

Choose an element mθ ∈Mθ. Recall that in order to specify a map Fθ(Z)�X →

N it is sufficient to define it on elements of the form gθ ⊗ xθ ∈ (Fθ(Z)�X )θ where

gθ is a chosen generator for Fθ(Z). Define

[
φθ(mθ)

]
(gθ ⊗ xθ) = fθ(mθ ⊗ xθ). (2.1.20)

Now choose an element m• ∈M•. Similarly, in order to specify a map F•(Z)�X →

N it is sufficient to define it on elements of the form g• ⊗ x• ∈ (Fθ(Z)�X )• where
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g• is a chosen generator for F•(Z). Define

[
φ•(m•)

]
(g• ⊗ x•) = fθ(m• ⊗ x•). (2.1.21)

We leave it to the reader to justify that φθ and φ• define a map φ :M→ Hom(X ,N )

of Mackey functors. The only requirement is that there must be some compatibility

between the generators gθ and g•.

Define Θ(f) to be the map φ constructed above. We also leave it to the reader

to justify that Θ is a bijection.

Corollary 2.1.22. For any given Mackey functor X the functor −�X is right-exact

and the functor Hom(X ,−) is left-exact.

Proof. This is a direct corollary of Theorem 2.1.17.

2.2 Mackey rings and modules

One can now define the notion of Mackey rings and Mackey modules just as in

any symmetric monoidal category.

Definition 2.2.1. A Mackey ring is an object R ∈ Mack combined with a unit

map A → R and a multiplication map R�R → R which satisfy the appropriate

associativity and unital axioms.

If R is a Mackey ring then a left Mackey module over R is an objectM∈ Mack

combined with a map µM : R�M→M that satisfies the appropriate associativity

and unital axioms. A right Mackey module is defined in the analagous way.

A morphism f : M → N of Mackey modules over R is a morphism in Mack

such that f ◦ µM = µN ◦ (id� f). The category of left Mackey modules over R will
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be called R−Mod and the category of right Mackey modules over R will be called

Mod−R.

Theorem 2.2.2. The structure of a Mackey ring R is determined by operations

� : R•⊗R• → R• and } : Rθ ⊗Rθ → Rθ which make (R•,+,�) and (Rθ,+,}) into

rings and which satisfy the following relations:

p∗x• } p∗y• = p∗(x• � y•) for x•, y• ∈ R•

p∗xθ � y• = p∗(xθ } p∗y•) for xθ ∈ Rθ and y• ∈ R•

x• � p∗yθ = p∗(p
∗x• } yθ) for x• ∈ R• and yθ ∈ Rθ

txθ } tyθ = t(xθ } yθ) for xθ, yθ ∈ Rθ.

Proof. This is a simple matter of chasing through the properties in Definition 2.2.1.

See [Shu10] for a complete proof.

The symbols } and � are used in Theorem 2.2.2 for clarity but those symbols

will be suppressed for the sake of readability in the remainder of the paper.

It can be helpful to understand conditions equivalent to those in Theorem 2.2.2.

• It is clear that the first condition in Theorem 2.2.2 is equivalent to the condition

that p∗ is a ring map.

• It is also clear that the fourth condition in Theorem 2.2.2 is equivalent to the

condition that t is a ring map.

• Since p∗ : R• → Rθ is a ring map we have induced functors Rθ −Mod →

R• −Mod and Mod−Rθ →Mod−R•. Hence we can realize Rθ as a left or

right R•-module. The condition

p∗xθ � y• = p∗(xθ } p∗y•) for xθ ∈ Rθ and y• ∈ R•

21



is equivalent to the condition that p∗ : Rθ → R• is a map of right R•-modules

and the condition

x• � p∗yθ = p∗(p
∗x• } yθ) for x• ∈ R• and yθ ∈ Rθ

is equivalent to the condition that p∗ is a map of left R•-modules.

Theorem 2.2.3. If R is a Mackey ring then the structure of a moduleM∈ R−Mod

is determined by the module structures M• ∈ R• −Mod and Mθ ∈ Rθ −Mod which

satisfy the following relations:

(p∗r•)(p
∗m•) = p∗(r•m•) for r• ∈ R• and m• ∈M•

(p∗rθ)m• = p∗(rθ(p
∗m•)) for rθ ∈ Rθ and m• ∈M•

r•(p∗mθ) = p∗((p
∗r•)mθ) for r• ∈ R• and mθ ∈Mθ

(trθ)(tmθ) = t(rθmθ) for rθ ∈ Rθ and mθ ∈Mθ.

Proof. This theorem is also a straightforward consequence of chasing through the

properties in Definition 2.2.1.

Definition 2.2.4. Let R be a Mackey ring and let M ∈ R −Mod. A submodule

of M is a Mackey functor N as shown below where Nθ ≤ Mθ and N• ≤ M• are

submodules:

Nθ N•

p∗|Nθ

p∗|N•

t|Nθ

Each map in the diagram is meant to be the restriction of the corresponding map in

M.

Lemma 2.2.5. Submodules N• ≤M• and Nθ ≤Mθ determine a submodule N ≤M

if and only if p∗(Nθ) ⊆ N•, p∗(N•) ⊆ Nθ, and t(Nθ) ⊆ Nθ.
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Proof. The “only if” direction is clear from Definition 2.2.4. For the “if” direction,

observe that as long as the maps p∗|Nθ , p∗|N• , and t|Nθ are well-defined, the Mackey

functor axioms are inherited fromM.

Example 2.2.6. If R is a Mackey ring and f :M→N is a morphism in R−Mod

then the submodules ker f• ≤M• and ker fθ ≤Mθ form a submodule ofM.

• If m• ∈ ker f• then fθp
∗m• = p∗f•m• = 0 and hence p∗m• ∈ ker fθ. Thus

p∗(ker f•) ⊆ ker fθ.

• If mθ ∈ ker fθ then f•p∗mθ = p∗fθmθ = 0 and hence p∗mθ ∈ ker f•. Thus

p∗(ker fθ) ⊆ ker f•.

• If mθ ∈ ker fθ then fθtmθ = tfθmθ = t0 = 0 and hence tmθ ∈ ker fθ. Thus

t(ker fθ) ⊆ ker fθ.

This submodule is naturally called ker f .

Definition 2.2.7. A left (resp. right, resp. two-sided) ideal of a Mackey ring R is a

left (resp. right, resp. two-sided) R-submodule of R.

2.3 Free modules

In Mack the free objects are those Mackey functors F where

F ∼=

(⊕
λ∈Λ

F•(Z)

)
⊕

(⊕
ω∈Ω

Fθ(Z)

)
(2.3.1)
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for some aribitrary sets Λ and Ω. Theorem 2.1.3 yields the following isomorphisms:

HomMack(F ,M)

∼=

(∏
λ∈Λ

HomMack(F•(Z),M)

)
×

(∏
ω∈Ω

HomMack(Fθ(Z),M)

)

∼=

(∏
λ∈Λ

M•

)
×

(∏
ω∈Ω

Mθ

)
.

(2.3.2)

The composite isomorphism

HomMack(F ,M)→

(∏
λ∈Λ

M•

)
×

(∏
ω∈Ω

Mθ

)
(2.3.3)

is the map

f 7→
(
(f•(I

λ
•))λ∈Λ, (fθ(I

ω
θ ))ω∈Ω

)
. (2.3.4)

Free modules in R − Mod look like R�F where F is a free object in Mack.

These take the form

(⊕
λ∈Λ

R�F•(Z)

)
⊕

(⊕
ω∈Ω

R�Fθ(Z)

)
. (2.3.5)

Since A = F•(Z) is the unit in the symmetric monoidal structure on Mack we have

R�F•(Z) ∼= R and by Theorem 2.1.9 we have that R�Fθ(Z) ∼= Fθ(Rθ). It follows

that free modules in R−Mod are those of the form

(⊕
λ∈Λ

R

)
⊕

(⊕
ω∈Ω

Fθ(Rθ)

)
. (2.3.6)

In order to make useful resolutions out of these free modules we need to know

that they are projective and that there are enough of them.
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Theorem 2.3.7. Let R be a Mackey ring. Then the free R-modules are projective

in R−Mod.

Proof. There are obvious forgetful functors Uθ : Mack → Ab and U• : Mack → Ab

where Uθ(M) = Mθ and U•(M) = M•. In [Shu10], Schulman gives a left adjoint

to these functors. With this adjoint one can use the usual categorical argument to

show that Fθ(Z) and F•(Z) (and hence direct sums thereof) are projective objects in

Mack. An application of Theorem 2.1.17 then shows that R�Fθ(Z) and R�F•(Z)

(and hence direct sums thereof) are projective objects in R−Mod.

Theorem 2.3.8. There are enough free modules in R−Mod. That is, for everyM∈

R−Mod there exists a free module F ∈ R−Mod and an epimorphism f : F →M.

Proof. Let

F =

( ⊕
m•∈M•

F•(Z)

)
⊕

( ⊕
mθ∈Mθ

Fθ(Z)

)
(2.3.9)

and define f : F →M such that

f•(I
m•
• ) = m• and fθ(I

mθ
θ ) = mθ. (2.3.10)

Note that F is a free object in Mack and f is a morphism of Mackey functors but

not a morphism in R − Mod. Clearly this is an epimorphism since f• and fθ are

surjective.

Since R�(−) is a right-exact functor the map R�F → R�M obtained by

applying R�(−) to f : F →M is an epimorphism. Finally, the map R�M→M

which defines the module structure onM is an epimorphism and the composition

R�F → R�M→M (2.3.11)
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is the desired epimorphism of R-modules.

Theorem 2.1.9 provides an isomorphism R�Fθ(Z) ∼= Fθ(Rθ). It is clear how R

acts on R�Fθ(Z) and Theorem 2.3.12 describes the action of R on Fθ(Rθ) under

that isomorphism:

Theorem 2.3.12. Let R be a Mackey ring and recall that Fθ(Rθ) is the following

R-module:

R2
θ Rθ

[ 1 1 ]

[ 1
1 ]

[ 0 1
1 0 ]

From Theorem 2.1.9 we have that R�Fθ(Z) ∼= Fθ(Rθ) and under this isomorphism

the action of R on Fθ(Rθ) is as follows:

• The map Rθ ⊗ R2
θ → R2

θ is given by rθ ⊗ (xθ, yθ) 7→ (rθxθ, (trθ)yθ) for rθ ∈ Rθ

and (xθ, yθ) ∈ R2
θ.

• The map R•⊗Rθ → Rθ is given by r•⊗xθ 7→ (p∗r•)xθ for r• ∈ R• and xθ ∈ Rθ.

Before continuing to the proof it can be helpful to recall that R�Fθ(Z) can be

realized as the following diagram:

(R�Fθ(Z))θ (R�Fθ(Z))•

t(rθ ⊗ g)

rθ ⊗ g p∗(rθ ⊗ g)

This notation can help us understand Theorem 2.3.12 more clearly.

• If rθ ∈ Rθ and sθ ⊗ g ∈ (R�Fθ(Z))θ then rθ · (sθ ⊗ g) = (rθsθ)⊗ g.
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• If rθ ∈ Rθ and t(sθ ⊗ g) ∈ (R�Fθ(Z))θ then

rθ
[
t(sθ ⊗ g)

]
= t2(rθ)t(sθ ⊗ g) = t

(
(trθ)(sθ ⊗ g)

)
= t
((

(trθ)sθ
)
⊗ g
)
. (2.3.13)

• If r• ∈ R• and p∗(sθ ⊗ g) ∈ (R�Fθ(Z))• then

r•
[
p∗(sθ ⊗ g)

]
= p∗

(
(p∗r•)(sθ ⊗ g)

)
= p∗

((
(p∗r•)sθ

)
⊗ g
)

(2.3.14)

We can compare these equations with the results in the statement of Theorem 2.3.12

and see that they are analogous. The proof is shown below but these techniques can

help us remember the module structure.

Proof of Theorem 2.3.12. The proof of Theorem 2.1.9 provides an isomorphism

φ : Fθ(Rθ)→ R�Fθ(Z). (2.3.15)

Let

µ : R�R → R (2.3.16)

be the map which defines the ring structure on R and let

α : R�(R�Fθ(Z))→ (R�R)�Fθ(Z) (2.3.17)

be the associativity isomorphism. Then the map η which makes the diagram below

commute defines the R-module structure of Fθ(Rθ).

R�Fθ(Rθ) Fθ(Rθ)

R�(R�Fθ(Z)) (R�R)�Fθ(Z) R�Fθ(Z)

id�φ−1

η

α µ� id

φ
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All that remains is to compute the maps ηθ and η• by evaluating the above composition

on elements of the appropriate sets.

First, choose r ∈ Rθ and (x, y) ∈ (Fθ(Rθ))θ = R2
θ. After referencing

Theorem 2.1.9 we see that

φ−1
θ (x, y) = x⊗ (1, 0) + ty ⊗ (0, 1) (2.3.18)

and hence

(id�φ−1)θ(r ⊗ (x, y)) = r ⊗ (x⊗ (1, 0)) + r ⊗ (ty ⊗ (0, 1)). (2.3.19)

It is clear that

(µ� id)θ

(
αθ
(
r ⊗ (x⊗ (1, 0)) + r ⊗ (ty ⊗ (0, 1))

))
= (µ� id)θ

(
(r ⊗ x)⊗ (1, 0) + (r ⊗ ty)⊗ (0, 1)

)
= rx⊗ (1, 0) + r(ty)⊗ (0, 1).

(2.3.20)

Another reference to Theorem 2.1.9 then gives us that

φθ(rx⊗ (1, 0) + r(ty)⊗ (0, 1)) = (rx, 0) + (0, (tr)y) = (rx, (tr)y). (2.3.21)

Finally, this shows that the R-module structure of Fθ(Rθ) is given by r ⊗ (x, y) 7→

(rx, (tr)y) in the θ-component, as desired.

Now, choose r ∈ R• and x ∈ (Fθ(Rθ))θ = Rθ. A similar computation shows that

r ⊗ x 7→ (p∗r)x.
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2.4 Injective Modules

Baer’s Criterion (see [Wei94]) gives a condition for checking that a module M ∈

R−Mod is injective for traditional rings R. Theorem 2.4.1 below is a generalization

of that theorem for Mackey functors.

Theorem 2.4.1. A module M ∈ R − Mod is injective if and only if both of the

following conditions are satisfied:

1. For every monomorphism of R-modules ι : I → R�F•(Z) and every morphism

f : I → M there exists a morphism g : R�F•(Z) → M such that gι = f as

in the diagram below:

I R�F•(Z)

M

ι

f

g

2. For every monomorphism τ : J → R�Fθ(Z) and every morphism f : J →M

there exists a morphism g : R�Fθ(Z)→M such that gτ = f as in the diagram

below:

J R�Fθ(Z)

M

τ

f

g

All morphisms and objects are taken to be in R−Mod.

Proof. IfM is injective then it is clear that both conditions hold. We will prove the

other implication. Assume that the two conditions hold and consider the following

diagram of R-modules:
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A B

M

i

f

In order to prove that M is injective we will produce a map g : B → M such that

gi = f .

Consider the following set:

Λ =

{
(K, g)

∣∣∣∣ A ≤ K ≤ B, g : K →M, g|A = f

}
(2.4.2)

The set Λ has a partial order where (K, g) ≤ (K′, g′) whenever K ≤ K′ and g′|K = g.

If S ⊆ Λ is a totally ordered subset then it is clear that S has a maximal element given

by the union of the elements in S. Since S is also nonempty (because (A, f) ∈ S)

then, by Zorn’s Lemma, Λ has a maximal element (K, g). We wish to show that

K = B and hence that g is the required map. Assume, to the contrary, that K is a

proper submodule of B.

It follows that either K• is a proper traditional submodule of B• or Kθ is a

proper traditional submodule of Bθ. Instead of treating each case seperately we will

choose an element x∗ so that either x∗ ∈ B• \ K• or x∗ ∈ Bθ \ Kθ. Note that the

star is meant to represent an index; x∗ is either x• ∈ B• or xθ ∈ Bθ depending on

the case. Mimicking this notation, let F∗ be the Mackey module R�F∗(Z) and note

that morphisms out of F∗ are determined by the image of the element I∗ (i.e. either

I• or Iθ).

We can now form the Mackey submodule 〈x∗〉 ≤ B which is generated by x∗.

Specifically, 〈x∗〉 is the intersection of all submodules which contain x∗. We can also

form the module 〈x∗〉+K as the following pushout:

30



〈x∗〉 ∩ K K

〈x∗〉 〈x∗〉+K

Define a map u : F∗ → 〈x∗〉 such that I∗ 7→ x∗ and consider the following diagram:

u−1(〈x∗〉 ∩ K) 〈x∗〉 ∩ K K

F∗ 〈x∗〉 〈x∗〉+K

B

M

u
g

Note that the map u−1(〈x∗〉 ∩ K)→ 〈x∗〉 ∩ K is the restriction of u.

The inclusions K ↪→ B and 〈x∗〉 ↪→ B induce an inclusion 〈x∗〉 + K ↪→ B by

the universal property of pushout. This means that 〈x∗〉 + K can be realized as a

submodule of B and, in particular, that A ≤ 〈x∗〉+K ≤ B.

Now consider the map u−1(〈x∗〉 ∩ K) →M given by the composition along the

top of the previous diagram. Since u−1(〈x∗〉 ∩ K) is a submodule of F∗ = R�F∗(Z)

this map can be extended to a map h : F∗ →M by our initial assumption (i.e. by the

appropriate condition in the statement of the theorem). We now have the following

diagram:
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u−1(〈x∗〉 ∩ K) 〈x∗〉 ∩ K K

F∗ 〈x∗〉 〈x∗〉+K

B

M

u
g

h

At this point, if we can show that the left-most square is a pushout diagram

then we reach the desired contradiction. Indeed, if both squares are pushouts then,

by basic category theory, the larger rectangle is a pushout diagram as well. The

maps h : F∗ → M and g : K → M then induce a map ĝ : 〈x∗〉 + K → M

by the universal property of pushouts. It is then clear that ĝ|K = g and hence

ĝ|A = (ĝ|K)|A = g|A = f . Thus the pair (〈x∗〉 + K, ĝ) is an element of Λ and, since

x∗ /∈ K∗, we have (K, g) < (〈x∗〉+K, ĝ) which violates the maximality of (K, g).

To complete the proof it remains to show that the left-most square in the previous

diagram is a pushout square, which is a direct result of Lemma 2.4.3.

Lemma 2.4.3. Fix a Mackey ring R. Let u : X � Y be a surjective map of R-

modules, let J be a submodule of Y, and let τ : J ↪→ Y be the inclusion. Define

t = u|u−1(J ), define ι : u−1(J ) ↪→ X to be the inclusion, and define P to be the

pushout in the following diagram:

u−1(J ) J

X P

ι β

t

α

Then Y is isomorphic to P. In other words, the following is a pushout diagram:
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u−1(J ) J

X Y

ι τ

t

u

Proof. First we make a reduction. Note that pushouts of Mackey functors are

calculated by computing the pushouts of the module diagrams in each of the two

positions. More specifically, there are forgetful functors U• : R−Mod→ R• −Mod

and Uθ : R−Mod→ Rθ −Mod where U•(M) = M• and Uθ(M) = Mθ. Computing

the pushout of a diagram D in R−Mod is equivalent to computing the pushouts of

U•(D) in R• −Mod and Uθ(D) in Rθ −Mod.

As a result, it is sufficient to prove Lemma 2.4.3 when the objects and morphisms

in question lie in R − Mod for an ordinary ring R (i.e. not a Mackey ring).

Consider the solid-line diagram of R-modules shown below where all objects are given

definitions analogous to those in the statement of the lemma.

u−1(J) J

X P

Y

ι β

t

α

u

τ

φ

It is sufficient to prove that P is isomorphic to Y .

The maps u : X → Y and τ : J → Y induce a map φ : P → Y by the universal

property of pushout which is represented by the dashed arrow in the previous diagram.

We will show that φ is an isomorphism.

Since u is a surjection and φα = u it follows that φ must also be a surjection. It

remains to show that φ is inective. To that end, suppose that there is some s ∈ P

such that φ(s) = 0. By definition there exists some x ∈ X and some j ∈ J such that
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s = α(x) + β(j). Then

0 = φ(s) = φ(α(x) + β(j)) = u(x) + τ(j) (2.4.4)

and hence u(x) = τ(−j). Since u(x) is in the image of τ (i.e. since u(x) ∈ J) it follows

that x ∈ u−1(J) (i.e. that x is in the image of ι.). Observe that τ(t(x)) = u(ι(x)) =

u(x) = τ(−j) which forces t(x) = −j since τ is injective. Finally, it follows that

s = α(x) + β(j) = α(ι(x))− β(t(x)) = α(ι(x))− α(ι(x)) = 0 (2.4.5)

and hence φ is injective, as desired.

2.5 Homological Algebra

IfM∈ R−Mod then we can construct a free resolution F∗ �M since R−Mod

has enough free modules. In order to compute TorRi (M,N ) we need to be able to

perform box product “over R” which is provided by Definition 2.5.1 below.

Definition 2.5.1. Let M be a right R-module and let N be a left R-module. We

define

M�
R
N = coeq (M�R�N ⇒M�N ) (2.5.2)

where the two maps in the coequalizer on the right are induced from the maps

M�R →M and R�N → N .

In homological algebra we often need only compute box products of the form

F �RN when F is a free module in R −Mod. It is clear that R�RM ∼= M. To
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compute Fθ(Rθ)�RM observe the following:

Fθ(Rθ)�
R
M∼= (Fθ(Z)�R)�

R
M

∼= Fθ(Z)�
(
R�
R
M
)

∼= Fθ(Z)�M∼= Fθ(Mθ)

(2.5.3)

Definition 2.5.4. LetM be a right R-module, let N be a left R-module, and let F∗

be a free resolution ofM. If we apply the functor (−)�RN and compute homology

of the resulting complex we get

TorRi (M,N ) = Hi

(
F∗�
R
N
)
. (2.5.5)

This functor is called internal Tor.

In section 2.1 we discussed the two different versions of Hom. During

that discussion we constructed an internal Hom for Mack but we need a similar

construction of an object HomR(M,N ) in Mack. LetM and N be left R-modules.

In that construction we developed the diagram of Mackey functors below.

M�Fθ(Z) M�F•(Z)

f

g

τ

Since this is a diagram of R-modules we can apply HomR(−,N ). The resulting

diagram is then an object in Mack that we call HomR(M,N ).

There is also a definition of HomR(M,N ) using an equalizer that is given in

Definition 2.5.6 below and which has some symmetry with the coequalizer definition
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ofM�RN in Definition 2.5.1. It is a simple exercise to prove that the construction

above is equivalent to the definition below.

Definition 2.5.6. Given left R-modules M and N and a map f : M → N of

Mackey functors (i.e. not R-modules) we can make two maps R�M → N out of

the two paths around the following diagram:

R�M M

R�N N

µM

idR� f

µN

f

This induces two maps Hom(M,N ) → Hom(R�M,N ). One can also realize

HomR(M,N ) as the equalizer

HomR(M,N ) = eq

(
Hom(M,N )⇒ Hom(R�M,N )

)
. (2.5.7)

The functors Hom and Hom induce functors Ext and Ext in the usual way.

Definition 2.5.8. LetM and N be left R-modules and let F∗ be a free resolution

ofM.

• If we apply the functor HomR−Mod(−,N ) : R−Mod→ Ab to F∗ and compute

homology of the resulting complex we get

ExtiR(M,N ) = H i(HomR−Mod(F∗,N )). (2.5.9)

• If we apply the functor HomR(−,N ) : R−Mod→ R−Mod to F∗ and compute

homology of the resulting complex we get

ExtiR(M,N ) = H i(HomR(F∗,N )). (2.5.10)
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The functor ExtR(−,−) is called internal Ext.

37



CHAPTER III

EXT-ALGEBRA COMPUTATIONS OVER MACKEY ALGEBRAS

Suppose C is a tensor1 category, R is a ring object in C, and M is an R-bimodule

object. One can then construct a ring object ER(M) as follows:

• As an object ER(M) is defined to be R⊕M .

• Observe that

(R⊕M)⊗ (R⊕M) ∼= (R⊗R)⊕ (R⊗M)⊕ (M ⊗R)⊕ (M ⊗M). (3.0.1)

The structure map ER(M) ⊗ ER(M) → ER(M) is the map induced by the

multiplication map R⊗R→ R, the module maps R⊗M →M andM⊗R→M ,

and the zero map M ⊗M →M .

One might call ER(M) the square-zero extension of R by M . In the examples below,

we will consider examples in which C is Mack. We will also assume that R is a

commutative Mackey ring and that the left and right R-module structures on objects

M∈ R−Mod are the same.

If M is a module in R −Mod the module ER(M) = R ⊕M can be equipped

with a the structure of an N-graded module which will be useful in the following

results. We consider the R summand to be in degree 0 and theM summand to be

in degree 1. (Note that R is given the trivial graded ring structure where everything

is in degree 0.) It can be helpful to visualize ER(M) as follows:

1We need C to be a symmetric monoidal category in which the tensor product distributes over
direct sums.
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M Mθ M• (degree 1)

ER(M) : R = Rθ R• (degree 0)

The vertical lines indicate direct sum between the pieces in various degrees. According

to Theorem 2.2.2, the Mackey ring structure on ER(M) is determined by the ring

structure of the two components of the Mackey functor. Explicitly, the multiplicative

structure on ER(M)• = R• ⊕M• is as follows:

• If r•, s• ∈ R• then r•s• is computed using the ring structure on R•.

• If m•, n• ∈M• then m•n• = 0.

• If r• ∈ R• and m• ∈ M• then r•m• and m•r• are computed using the left and

right R•-module structure on M•.

Analogous rules are used to compute products in ER(M)θ = Rθ ⊕Mθ.

3.1 Computing ExtE(R,R) when E = ER(R)

We consider the special case of E = ER(R) for any Mackey ring, R. Below is a

symbolic diagram of E .

R Rθ〈p∗τ〉 R•〈τ〉 (degree 1)

ER(R) : R = Rθ〈1θ〉 R•〈1•〉 (degree 0)

The •-component is R•[τ ]/τ 2 and the θ-component is Rθ[p
∗τ ]/(p∗τ)2.
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Theorem 3.1.1. Let R be a Mackey ring and let E = ER(R). Then there is an

augmented free resolution of R ∈ E −Mod of the following form:

. . .→ E → E → E � R. (3.1.2)

Furthermore, as Abelian groups, ExtnE(R,R) ∼= R• for all n ≥ 0 and, as a ring,

Ext∗E(R,R) ∼= R•[x] where x is one of the following:

• The cocycle [π] ∈ Ext1
E(R,R) where π : E → R is shown below:

R

R Rid

• The Yoneda extension R → E → R in Ext1
E(R,R) shown below:

R R

R R

id

id

Proof. The ring E• is R• in degree 0 and R• in degree 1, as well. We use I• to denote

the element 1• ∈ R• in degree 0 and, for the purproses of this proof, we will define τ

to be the element 1• ∈ R• in degree 1.

It is easy to verify that the map π : E → R is a map of Mackey rings and hence

a map of E-modules. It is clear that ker(π) =
∑
R. (By

∑
M we mean the graded

module M shifted upward by one degree. In general, (
∑kM)i = Mi−k.) Next,

define the map φ :
∑
E → E where φ(I•) = τ . It is similarly easy to verify that φ

is the identity map R → R in degree 1, the trivial map R → 0 in degree 2, and the
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trivial map 0 → R in degree 0. It is then clear that the following augmented chain

complex is a free resolution of R:∑3 E
∑2 E

∑
E E Rd3=

∑3 φ d2=
∑2 φ d1=

∑
φ d0=φ π

It becomes more clear when the resolution is stratified by degree as shown below:

R

R R

R R

R R

R R

id

id

id

id

id

Recall that HomE(E ,R) = R•. Then, by inspecting the grading structure, we see that

applying the functor HomE(−,R) to our resolution yields the following:

. . .
0←−− R•

0←−− R•
0←−− R•

0←−− R• (3.1.3)

This shows that ExtiE(R,R) ∼= R• for all i ∈ Z≥0.

All that remains is to compute the ring structure on Ext∗E(R,R). Choose an

element µ ∈ R• ∼= ExtpE(R,R) and an element λ ∈ R• ∼= ExtqE(R,R). The element µ

can be represented by a map g : E → R where g(I•) = µ and the element λ can be

represented by a map f : E → R where f(I•) = λ.

Now define maps fi : E → E where fi(I•) = λ for all i ∈ Z≥0. Observe that

π(f0(I•)) = π(λ) = λ = f(I•) (3.1.4)

41



and so π ◦ f0 = f . Next, for i ∈ Z≥0, observe that

fi(dq+i(I•)) = fi(τ) = τfi(I•) = τλ (3.1.5)

and

di(fi+1(I•)) = di(λ) = λdi(I•) = λτ. (3.1.6)

Since R was assumed to be a commutative ring we have that fi ◦ dq+i = di ◦ fi+1.

This shows that the diagram below is commutative.

E E E

E E E R

dq+2 dq+1

f2

dq

f1 f0
f

d2 d1 d0 π

By definition, the product µ ∗ λ ∈ Extp+qE (R,R) is the element represented by the

composition

E E R.fp g

We then have

g(fp(I•)) = g(λ) = λµ. (3.1.7)

This shows that the product µ ∗ λ in Ext∗E(R,R) is the product µλ ∈ R• ∼=

Extp+qE (R,R).

Finally, define a map Θ : Ext∗E(R,R)→ R•[x] such that

Θi : ExtiE(R,R)→ R•[x] is given by λ 7→ λxi. (3.1.8)

The argument above shows that Θ is an isomorphism of rings, as desired.

It is clear that Θ([π]) = x. It is then straightforward to verify that [π] is the

Yoneda extension described in the problem statement.
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3.2 Computing ExtE(R,R) when E = ER(Fθ(Rθ))

We now consider the special case of E = ER(Fθ(Z)�R) for any Mackey ring,

R. Our goal is to compute Ext∗E(R,R) but first we try to understand some of the

objects involved.

We start with any arbitrary Mackey ring R. The module R̂ = Fθ(Z)�R

is isomorphic to Fθ(Rθ) by Theorem 2.2.2. Then, based on the discussion at the

beginning of this section, the ring E = ER(R̂) can be visualized as follows:

R̂ = R2
θ Rθ

E : R = Rθ R•

[ 1 1 ]

[ 1
1 ]

[ 0 1
1 0 ]

p∗

p∗

t

The ring structure on E is not immediately clear. However, after a careful application

of the discussion earlier in the section and Theorem 2.3.12 we find the following:

(•) Products in E• = R• ⊕Rθ:

∗ In degree 0, if r•, s• ∈ R• then r•s• is computed according to the ring

structure on R•.

∗ In degree 1, if rθ, sθ ∈ Rθ then rθsθ = 0.

∗ If r• ∈ R• (in degree 0) and sθ ∈ Rθ (in degree 1) then

r•sθ = (p∗r•)sθ (3.2.1)
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where p∗ is the restriction map in R and the product (p∗r•)sθ is computed

according to the ring structure of Rθ.

(θ) Products in Eθ = Rθ ⊕R2
θ:

∗ In degree 0, if rθ, sθ ∈ Rθ then rθsθ is computed according to the ring

structure on Rθ.

∗ In degree 1, if (rθ, sθ), (xθ, yθ) ∈ R2
θ then (rθ, sθ)(xθ, yθ) = 0.

∗ If rθ ∈ Rθ (in degree 0) and (xθ, yθ) ∈ R2
θ (in degree 1) then

rθ(xθ, yθ) = (rθxθ, (trθ)yθ) (3.2.2)

where t is the twist map in R and both products rθxθ and (trθ)yθ are

computed according to the ring structure on Rθ.

Symbolically we can realize the Mackey functor E as shown below.

R̂ = Rθ〈η〉 ⊕Rθ〈tη〉 Rθ〈p∗η〉

E : R = Rθ〈1θ〉 R•〈1•〉

p∗

p∗

The element η ∈ Eθ in degree 1 is meant to represent a generator of Fθ(Rθ). (It

is the same as the η use in the proof of Theorem 3.2.7 below.) Thinking about E

in this way can be helpful in keeping track of the products. Note that an element

(xθ, yθ) ∈ (Fθ(Rθ))θ is meant to correspond to xθη + t(yθη) or xθη + (tyθ)(tη).
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We next examine Ê = Fθ(Z)� E ∼= Fθ(Êθ). After a careful application of

Theorem 2.2.2 one finds that Fθ(Êθ) takes the following form:

R̂2 (R2
θ)

2 R2
θ

Ê : R̂ = R2
θ Rθ

The action of E on Ê can be understood through an application of Theorem 2.3.12,

but there is one special case that will be helpful in the future. Suppose that (a, b) ∈

R2
θ ⊆ Eθ is in degree 1 and that (p, q) ∈ R2

θ ⊆ Êθ is in degree 0. Then the product

(a, b) ∗ (p, q) ∈ Êθ is computed as follows:

(a, b) ∗ (p, q) = ((a, b) ∗ p, t(a, b) ∗ q)

= (p ∗ (a, b), q ∗ (b, a))

= ((pa, (tp)b), (qb, (tq)a))

(3.2.3)

The map t is the twist map on Rθ and multiplication in the last line of this equation

takes place in Rθ.

The symbolic visualization of Ê is shown below.
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Êθ Ê•

ηIθ

(tη)(tIθ) p∗(ηIθ) = p∗((tη)(tIθ))

(tη)Iθ

η(tIθ) p∗((tη)Iθ) = p∗(η(tIθ)) (deg 1)

tIθ

Iθ p∗Iθ (deg 0)

As usual, the Mackey functor axioms are enough to work out all of the necessary

calculations in the previous diagram. For example, the product of p∗η ∈ E• and

p∗Iθ ∈ Êθ is calculated as follows:

(p∗η)(p∗Iθ) = p∗(p
∗(p∗η) · Iθ)

= p∗((η + tη) · Iθ)

= p∗(ηIθ) + p∗((tη)Iθ).

(3.2.4)

As a remark, it may be helpful to point out that in the proof of Theorem 3.2.7

below we define η ∈ R2
θ ⊆ Eθ to be the degree 1 element (1, 0) and Iθ ∈ R2

θ ⊆ Êθ is

the degree 0 element (1, 0). An application of Equation 3.2.3 shows the following:

ηIθ = (1, 0) ∗ (1, 0) = ((1, 0), (0, 0)),

(tη)(tIθ) = (0, 1) ∗ (0, 1) = ((0, 0), (1, 0)),

(tη)Iθ = (0, 1) ∗ (1, 0) = ((0, 1), (0, 0)), and

η(tIθ) = (1, 0) ∗ (0, 1) = ((0, 0), (0, 1)).

(3.2.5)
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It is clear that these are the four generators of (R2
θ)

2.

Finally, for the sake of comparisson, we can repeat the calculation done in

Equation 3.2.3 using the previous diagram. Recall that an element (a, b) ∈ R2
θ ⊆ Eθ

in degree 1 is represented as aη+t(bη) and that an element (p, q) ∈ R2
θ ⊆ Êθ in degree

0 is represented as pIθ + t(qIθ). We then have

(
aη + t(bη)

)
∗
(
pIθ + t(qIθ)

)
= (aη)(pIθ) + (aη)

(
t(qIθ)

)
+
(
t(bη)

)
(pIθ) +

(
t(bη)

)(
t(qIθ)

)
= (ap)(ηIθ) +

(
a(tq)

)(
η(tIθ)

)
+
(
(tb)p

)(
(tη)Iθ

)
+
(
t(bq)

)(
t(ηIθ)

)
.

(3.2.6)

Note that our rings were assumed to be commutative so ap = pa and bq = qb.

Before finally continuing to the computation below, recall that maps f : E →M

of E-modules are determined uniquely by f•(I•) ∈M• and, similarly, maps g : Ê → M

of E-modules are determined uniquely by gθ(Iθ) ∈Mθ. It follows that maps Ês →M

are determined by the images of the s generators. Furthermore, recall that

• I• is the identity element in the R• summand of E• = R• ⊕Rθ and

• Iθ is the element (1, 0) ∈ R2
θ in the degree 0 summand of Êθ = R2

θ ⊕R4
θ.

For clarity we will distinguish the identity elements of R• and Rθ by denoting them

1• and 1θ, respectively.

Theorem 3.2.7. Let R be a Mackey ring, let R̂ = Fθ(Z)�R ∼= Fθ(Rθ), and let

E = ER(R̂). Then there is an augmented free resolution of R ∈ E −Mod of the form

. . .→ P3 → P2 → P1 → P0 � R (3.2.8)
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where

Pk =


E if k = 0, and

Ê (2k−1) if k > 0.

(3.2.9)

and Ê = Fθ(Z)� E ∼= Fθ(Eθ). Furthermore,

ExtkE(R,R) ∼=


R• if k = 0, and

R
(2k−1)
θ if k > 0.

(3.2.10)

Proof. We start by constructing the free resolution. The objects of our resolution

P∗ � R are given in the statement of the theorm. It remains to define the E-module

maps dk : Pk+1 → Pk for k ≥ 0 and a map π : P0 � R.

Define π : E → R such that π(I•) = 1• ∈ R•. It is clear that this map is the

identity map R → R in degree 0 and the zero map R̂ → 0 in degree 1. It follows

that π is surjective and kerπ =
∑
R̂.

Recall that the degree 1 component of Eθ is R2
θ. Define η ∈ Eθ to be the degree 1

element η = (1θ, 0). Define d0 :
∑
Ê → E such that d0(Iθ) = η. This map the takes

the form shown below.

R̂2

R̂ R̂

R

Iθ 7→η

It is clear that d0 is the trivial map 0 → R in degree 0 and the zero map R̂2 → 0

in degree 2. Since e and η are both the element (1θ, 0) ∈ R̂θ = R2
θ it follows that

d0 is the identity map R̂ → R̂ in degree 1. We see that ker d0 =
∑2 R̂2 and that

im d0 =
∑
R̂.

48



For the remainder of the proof we will omit the suspensions. All maps are

assumed to be maps of graded E-modules and the degrees of the maps and the required

suspensions can be deduced by examination if necessary.

The module Ê2 has two generators, which we will denote x and y. Define a map

φ : Ê2 → Ê where φ(x) = ηIθ and φ(y) = (tη)Iθ. This map takes the form shown

below.

(R̂2)2

R̂2 R̂2

R̂

x7→ηIθ
y 7→(tη)Iθ

In degree 1 the θ-component of this map is R4
θ → R4

θ. In the domain the

four generators are {x, tx, y, ty} and in the codomain the four generators are

{ηIθ, (tη)(tIθ), (tη)Iθ, η(tIθ)}.

• Since φ(x) = ηIθ we have φ(tx) = t(ηIθ) = (tη)(tIθ).

• Since φ(y) = (tη)Iθ we have φ(ty) = t((tη)Iθ) = η(tIθ).

It follows that in degree 1 the θ-component of φ is an isomorphism. Since Ê2 is free

in the θ-component it can be shown that φ is an isomorphism of Mackey functors in

degree 1. Note that the kernel of φ is R̂4 and the image of φ is R̂2.

Since P2 = Ê2 and P1 = Ê we can define d1 = φ. Then ker d0 = R̂2 = im d1

which ensures exactness at P1. Furthermore, since Pk+1 = Ê (2k) and Pk = Ê (2k−1)

we can define dk : (Ê2)(2k−1) → Ê (2k−1) so that dk = φ(2k−1). Based on the discussion
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above we see that

ker dk−1 = (kerφ)(2k−2) = (R̂4)(2k−2) = R̂(2k) and

im dk = (imφ)(2k−1) = (R̂2)(2k−1) = R̂(2k)

(3.2.11)

for k > 1. This ensures exactness at each Pk. The diagram below shows the graded

structure of the resulting chain complex P∗ � R for clarity.

R̂8

R̂4 R̂4

R̂2 R̂2

R̂ R̂

R R

∼=

∼=

∼=

∼=

∼=

Next, we’d like to argue that the map d∗k : HomE(Pk,R) → HomE(Pk+1,R) is

the zero map. If ψ ∈ HomE(Pk,R) is non-zero then, by inspecting degrees, one finds

that ψ ◦ dk is the composition shown below.

R̂(2k+1)

R̂(2k) R̂(2k)

R̂(2k−1) R

dk

ψ

Clearly this composition is zero for all ψ ∈ HomE(Pk−1,R) so d∗k is also zero.

Finally, for free modules we have

HomE(Ês,R) ∼= Rs
θ and HomE(Es,R) ∼= Rs

•. (3.2.12)
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Since the modules in the resolution P∗ are free it follows that applying the functor

HomE(−, R̂) to the resolution yields

. . .
0←− R4

θ
0←− R2

θ
0←− Rθ

0←− R•. (3.2.13)

The result then follows.

We now wish to compute the ring structure on Ext∗E(R,R). First, we introduce

some notation. In Theorem 3.2.7 we constructed an E-module resolution for Ê of the

form

. . .→ P3 → P2 → P1 → P0 � R (3.2.14)

where

Pk =


E if k = 0, and

Ê (2k−1) if k > 0

(3.2.15)

and Ê = Fθ(Z)� E ∼= Fθ(Eθ). For k > 0 each of the Ê-summands of Pk contains a

generator Iθ ∈ Eθ. We will denote these 2k−1 generators by eI for indices I in a set

Λk−1 described below.

Definition 3.2.16. We define a sign sequence to be a finite sequence of the symbols

+ and −. If I is a sign sequence, denote its length by `(I). Define Λ to be the

set of all sign sequences and define Λn = {I ∈ Λ | `(I) = n}. As an example,

Λ2 = {++,+−,−+,−−}.

Finally, if J ∈ Λ, define J◦ to be the sign sequence where all of the symbols +

and − are swapped. For example, if J = −+−− then J◦ = +−++.

It is clear that Λk−1 contains 2k−1 sign sequences and hence is an appropriate

index set for the generators of Pk = Ê (2k−1). Note that when k = 1 there is one sign
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sequence in Λ0, namely the empty sequence, and the corresponding generator will

simply be written as e. We will now express the differentials in the resolution P∗ in

terms of these generators.

Recall that the degree 1 component of Eθ is R2
θ and η ∈ Eθ is the degree 1

element (1θ, 0) ∈ R2
θ. The map d0 : Ê → E was defined to send the generator of Ê to

η. According to this new notation, d0(e) = η.

The map d1 : Ê2 → Ê sent the two generators of Ê2 to ηIθ and (tη)Iθ. The

generator Iθ ∈ Ê = P1 is now called e and the two generators in P2 = Ê2 are e+ and

e−. Assign these generators so that

d1(e+) = ηe and d1(e−) = (tη)e. (3.2.17)

Later differentials dk : Pk+1 → Pk are sums of d1 (which we called φ in the

previous proof). It follows that for each generator eI of Pk (for I ∈ Λk−1) we must

choose two generators in Pk+1 to get sent to ηeI and (tη)eI . Obviously there are many

such choices. We choose these generators so that

dk(e+I) = ηeI and dk(e−I) = (tη)eI (3.2.18)

for all k > 1 and for all I ∈ Λk−2. Note that “+I” and “−I” in the above equation

refer to concatenation. For example, if I = +− then +I = + +− and −I = −+−.
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From this point forward we will omit the subscripts on the differentials when

doing so does not cause confusion. In summary,

d(e) = η,

d(e+I) = ηeI for all I ∈ Λ, and

d(e−I) = (tη)eI for all I ∈ Λ.

(3.2.19)

The important piece of indexing to remember going forward is that the generators of

Pk are indexed by sign sequences of length k−1. That is, if eI ∈ Pk then `(I) = k−1.

This notation gives us a way to express the elements of Ext∗E(R,R) as explained

below. After Definition 3.2.20 we can now proceed to compute the ring structure on

Ext∗E(R,R).

Definition 3.2.20. Choose k > 0 and I ∈ Λk−1. Define êI ∈ HomE(Pk,R) to be the

map which is dual to eI . That is, êI(eI) = 1θ and êI(eJ) = 0 for J ∈ Λk−1 \ {I}.

Then êI is a cocycle in P∗ and hence represents an element of Ext∗E(R,R) which will

also be called êI . It follows as a result of Theorem 3.2.7 that

ExtkE(R,R) =

 ∑
I∈Λk−1

λI êI | λI ∈ Rθ

 (3.2.21)

for k > 0.

Choose I ∈ Λk−1. By standard arguments in homological algebra, the map

êI : Pk → R lifts to maps fi : Pk+i → Pi for i ≥ 0 which make the diagram below

commute.

· · · Pk+3 Pk+2 Pk+1 Pk

· · · P3 P2 P1 P0 R

d

f3

d

f2

d

f1 f0
êI

d d d π
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When the objects in this diagram are replaced by their definitions in Theorem 3.2.7

we get the following new diagram.

· · · Ê (2n+2) Ê (2n+1) Ê (2n) Ê (2n−1)

· · · Ê4 Ê2 Ê E R

d

f3

d

f2

d

f1 f0
êI

d d d π

Lemma 3.2.23 below gives an example of one such lift. In the statement we omit

the subscripts on the fi. When we write f(eJ+I) = eJ , one can deduce the subscript

on f from the length of I and J if needed. We chose I ∈ Λk−1 so `(I) = k − 1. Thus

`(J + I) = `(J) + `(+) + `(I) = `(J) + 1 + (k − 1) = k + `(J) (3.2.22)

and it follows that J + I ∈ Λk+`(J) and so eJ+I ∈ Pk+`(J)+1. Hence when we write

f(eJ+I) = eJ we mean f`(J)+1(eJ+I) = eJ . However, these subscripts are rarely useful.

Lemma 3.2.23. Choose I ∈ Λk−1. The map êI : Pk → R lifts to maps fi : Pk+i → Pi

for i ≥ 0 which make the diagram below commute.

· · · Pk+3 Pk+2 Pk+1 Pk

· · · P3 P2 P1 P0 R

d

f3

d

f2

d

f1 f0
êI

d d d π

One such lift is as follows:

• f(eI) = 1θ and f(eK) = 0 whenever K ∈ Λk−1 \ {I}.

• f(eJ±K) = 0 if K ∈ Λk−1 \ {I} and J ∈ Λ.

• f(eJ+I) = eJ for any J ∈ Λ.

• f(eJ−I) = t(eJ◦) for any J ∈ Λ. (See Definition 3.2.16 for the definition of J◦.)
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Note that the sequences above are being concatenated so that J + I is the symbol +

concatenated between J and I. For example, if J = + and I = −+ then J + I =

+ +−+ and J − I = +−−+.

Proof. We start by explaining the definition of f . The domain of the maps fi are the

modules Pk+i for i ≥ 0. The generators of those modules are eS where `(S) ≥ k − 1

and since the chain complexes involved are free it is sufficient to define f on those

generatores. The generators eS then fall into two categories.

• If `(S) = k − 1 then the generator in question must either be eI or eK where

K ∈ Λk−1 \ {I}. (S ′ is just the right-most k − 1 signs.) The definition of f(eS)

in this case is given by the first bullet point in the statement.

• If `(S) > k− 1 then we can write S as J ±S ′ where J ∈ Λ is any sign sequence

and `(S ′) = k−1. In this case the generator must either be one of eJ+I for some

J ∈ Λ, eJ−I for some J ∈ Λ, or eJ±K for some J ∈ Λ and some K ∈ Λk−1 \ {I}.

The definition of f(eS) for these generators is given by the last three bullet

points in the statement.

Given this definition of f , the only thing to check is that the diagram commutes.

We first check the right-most triangle. It is clear that

π(f0(eI)) = 1θ = êI(eI) and

π(f0(eK)) = 0 = êI(eK) when K 6= I

(3.2.24)

so π ◦ f0 = êI . To verify that the squares commute we will show that f(d(eS)) =

d(f(eS)) for generators eS with `(S) > k − 1. This comes down to examining several

cases.
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First, consider a generator eS where `(S) = k. Then S must be one of +I, −I,

or ±K for some K ∈ Λk−1 \ {I}. In the case when S = +I we have

f(d(e+I)) = f(ηeI) = ηf(eI) = η1θ = η = d(e) = d(f(e+I)). (3.2.25)

Nearly identical calculations show

f(d(e−I)) = tη = d(f(e−I)) and

f(d(e±K)) = 0 = d(f(e±K)) for K ∈ Λk−1 \ {I}.
(3.2.26)

This verifies that f(d(eS)) = d(f(eS)) when `(S) = k.

Now consider a generator eS where `(S) > k. Then we can find some J ∈ Λ and

some K ∈ Λk−1 such that S = ±J ±K. Note that K is the right-most k − 1 signs

of S and it is possible that K = I. Note, also, that J might be empty. This leads to

eight cases depending on the two signs and whether K = I or K 6= I.

There are four cases when K = I. In the particular case when S = +J + I for

some J ∈ Λ we have

d(f(e+J+I)) = d(e+J) = ηeJ and

f(d(e+J+I)) = f(ηeJ+I) = ηf(eJ+I) = ηeJ .

(3.2.27)

The other three cases when K = I are similar and the reader can verify the following:

d(f(e+J−I)) = ηt(eJ◦) = f(d(e+J−I)),

d(f(e−J+I)) = (tη)eJ = f(d(e−J+I)), and

d(f(e−J−I)) = t(η(eJ◦)) = f(d(e−J−I)).

(3.2.28)
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In all four cases where K 6= I the computation is simple and the reader can verify

that

f(d(e±J±K)) = 0 = d(f(e±J±K)). (3.2.29)

We’ve now verified that d(f(eS)) = f(d(eS)) whenever `(S) > k. This completes the

proof.

In Corollary 3.2.31 we provide a similar lift for maps λêI : Pk → R where

I ∈ Λk−1 and λ ∈ Rθ. In case it is unclear, this is the map defined so that

(λêI)(eI) = λ and

(λêI)(eK) = 0 for all K ∈ Λk−1 \ {I}.
(3.2.30)

Corollary 3.2.31. Choose I ∈ Λk−1 and choose some λ ∈ Rθ. Then the map λêI :

Pk → R lifts to maps gi : Pk+i → Pk for i ≥ 0 which make the diagram below

commute.

· · · Pk+3 Pk+2 Pk+1 Pk

· · · P3 P2 P1 P0 R

d

g3

d

g2

d

g1 g0
λêI

d d d π

One such lift is given by g(eJ) = λf(eJ) for all J ∈ Λ where the maps fi are those

provided by Lemma 3.2.23.

Proof. To check the commutivity of the right-most triangle, choose a generator eJ

where `(J) = k − 1. Since πf0 = êI by Lemma 3.2.23 observe that

π(g0(eJ)) = π(λf0(eJ)) = λπ(f0(eJ)) = λ(êI(eJ)) = (λêI)(eJ). (3.2.32)

Hence πg0 = λêI .
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Next consider a generator eJ where `(J) > k − 1. Since fd = df we have

d(g(eJ)) = d(λf(eJ)) = λd(f(eJ)) = λf(d(eJ)) = g(d(eJ)) (3.2.33)

and so gd = dg.

Theorem 3.2.34 below describes the product structure on Ext∗E(R,R). In light

of Definition 3.2.20 it suffices to compute the product of elements of the form λêI and

µêJ .

Theorem 3.2.34. Choose I ∈ Λq−1, choose J ∈ Λp−1, and choose λ, µ ∈ Rθ. The

map

ExtpE(R,R)⊗ ExtqE(R,R)→ Extp+qE (R,R) (3.2.35)

which defines the product structure on Ext∗E(R,R) is given by

(µêJ)⊗ (λêI) 7→ (µλ)êJ+I + ((tµ)λ)êJ◦−I (3.2.36)

Proof. Corollary 3.2.31 provides the lift g shown in the diagram below.

· · · Pp+q · · · Pq−1 Pq

· · · Pp · · · P1 P0 R

R

gp g1 g0
λêI

µêJ

By the definition of the product structure on Ext∗E(R,R), the product (µêJ) ∗ (λêI)

is the element represented by the composition

Pp+q Pp R.gp µêJ
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We will compute this composition by evaluating it on the generators of Pp+q. Elements

of Λp+q−1 can be represented as S ± T where S ∈ Λp−1 and T ∈ Λq−1 because

`(S ± T ) = `(S) + `(±) + `(T ) = (p− 1) + 1 + (q − 1) = p+ q − 1. (3.2.37)

It remains to compute µêJ(gp(eS±T )) for all choices of S and T . By Corollary 3.2.31

we have the following:

• gp(eS+I) = λeS

• gp(eS−I) = λt(eS◦)

• gp(eS±T ) = 0 if T 6= I

Furthermore we have that µêJ(eJ) = µ and µêJ(eS) = 0 whenever S 6= J . Combining

these facts we have the following:

µêJ(gp(eK)) =



µλ if K = J + I

(tµ)λ if K = J◦ − I

0 otherwise

. (3.2.38)

It follows that the resulting element of Extp+q−1
E (R,R) is

(µλ)êJ+I + ((tµ)λ)êJ◦−I , (3.2.39)

as desired.

The ring structure on Ext∗E(R,R) is a recognizable one at least in some specific

cases. Theorem 3.2.40 below gives one such instance.
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Theorem 3.2.40. Let R be a (traditional) ring of characteristic 2 and let R be

R R.

0

id

id

It is easy to verify that R is a Mackey ring. Let R̂ = Fθ(Z)�R and E = ER(R̂).

Then there is a graded ring isomorphism

Ext∗E(R,R) ∼= R〈x1, x2, x3, . . .〉 (3.2.41)

where xi is in degree i and the ring on the right denotes noncommutative polynomials

in the xi.

Proof. Define a graded R-algebra AR as follows:

• The generators of AR (as an R-algebra) are êI for I ∈ Λ with deg(êI) = `(I)+1.

• Multiplication on AR is induced by êJ êI = êJ+I + êJ◦−I for all I ∈ Λ.

Since the twist map in R is the identity and since R• = Rθ = R it is then clear that

Ext∗E(R,R) ∼= AR (3.2.42)

by the previous results in this section. It is also clear that

AR = R⊗AZ/2 (3.2.43)

since the characteristic of R was assumed to be 2.
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Define a graded R-algebra BR = R〈x1, x2, . . .〉 where xi is in degree i. It is clear

that BR
∼= R⊗BZ/2. By Lemma 3.2.45 below, AZ/2 ∼= BZ/2 so

Ext∗ER(R,R) ∼= AR
∼= R⊗AZ/2 ∼= R⊗BZ/2 ∼= BR (3.2.44)

and the result follows.

It remains only to prove Theorem 3.2.40 in the special case when R = Z/2.

Lemma 3.2.45. If R = Z/2 and R and E are the corresponding Mackey rings

discussed in Theorem 3.2.40 then

Ext∗E(R,R) ∼= R〈x1, x2, x3, . . .〉. (3.2.46)

Proof. The structure of Ext∗E(R,R) is described previously in this section (see

Theorem 3.2.34 for the culmination of that discussion). For k > 0 define Ik−1 to

be the sign sequence of length k − 1 consisting only of the symbol +. That is,

Ik−1 = + + · · ·+︸ ︷︷ ︸
k−1 times

. (3.2.47)

Define êk = êIk−1
and observe that êk ∈ ExtkE(R,R). (Following the previously-

established convention, assume I0 is the empty sequence and that e1 = e.)

Define a graded ring homomorphism

Θ : R〈x1, x2, x3, . . .〉 → Ext∗E(R,R) (3.2.48)

such that Θ(xk) = êk for all k > 0. We wish to prove that Θ is a bijection.
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Define A to be the ideal consisting of all the elements in the graded ring

Ext∗E(R,R) with positive degree. By Lemma 3.2.50 below, A/A2 = 〈[ê1], [ê2], [ê3], . . .〉.

It is clear that Θ surjects onto A/A2 and hence Θ is surjective.

The graded ring homomorphism Θ is a map of finite-rank free R-modules in each

degree. By Theorem 3.2.7 we have that

rankR
(

ExtkE(R,R)
)

=


1 if k = 0, and

2k−1 if k > 0.

(3.2.49)

It is a simple exercise in combinatorics to check that the ranks of R〈x1, x2, x3, . . .〉 in

each degree agree with the ranks in Equation 3.2.49. Since Θ is a surjective map of

finite-rank free R-modules of the same rank in each degree it follows that Θ is also

bijective in each degree. Hence Θ is a bijection, as desired.

Lemma 3.2.50. Let R = Z/2 and let R and E be defined as in Theorem 3.2.40.

Define A to be the ideal consisting of all the elements in the graded ring Ext∗E(R,R)

with positive degree. Then A/A2 = 〈[ê1], [ê2], [ê3], . . .〉 where the elements êk ∈

ExtkE(R,R) are those described in the proof of Theorem 3.2.40.

Proof. We first wish to justify that if `(J) = `(I) and J 6= I then êJ + êI ∈ A2. Let

n = `(J) = `(I). There exist sequences V, U,K ∈ Λ such that

êJ = êV K and êI = êUK . (3.2.51)

Not all of the signs in J and I can match since J 6= I but some of them might.

The sequence K is a sign sequence that matches the right-most signs of both J and

I. Note that K could be the empty sequence (which is forced to happen when the

right-most sign of J and the right-most sign of I are different) but V and U cannot be
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empty (because then both J and I would equal K). This means that 0 ≤ `(K) < n.

Furthermore, we can assume that K is chosen to be the longest possible sign sequence

(and hence V and U are the shortest possible) for which Equation 3.2.51 holds. Under

this assumption the choices of V , U , and K are unique and the right-most sign of V

and U must be different.

We wish to proceed by reverse induction on k = `(K). In the base case, suppose

k = n− 1. Then V and U have length 1 so J = ±K and I = ∓K. It follows that

ê · êK = ê+K + ê−K = êJ + êI . (3.2.52)

Hence êJ + êI ∈ A2.

Now suppose that k < n − 1. The induction hypothesis is that êX + êY ∈ A2

whenever the right-most k+ 1 (or more) signs of X and Y match. Since R = Z/2 we

have

êJ + êI = êV K + êUK

= êV K + êU◦K + êU◦K + êUK .

(3.2.53)

Our choice of V, U,K ∈ Λ guaranteed that the right-most signs of V and U

were different. Hence the right-most signs of V and U◦ match. It follows that the

right-most k + 1 signs of the sequences V K and U◦K match so, by the induction

hypothesis, êV K + êU◦K ∈ A2.

Now, since `(U) > 0 we can write U = US where `(S) = 1. By Theorem 3.2.34,

êU · êK = êU+K + êU◦−K and êU◦ · êK = êU◦+K + êU−K . (3.2.54)
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In the case when S = + we have that UK = U + K and U◦K = U
◦ − K. In the

case when S = − we have that UK = U − K and U◦K = U
◦

+ K. In either case,

Equation 3.2.54 shows that êU◦K + êUK ∈ A2.

We have now shown that êV K + êU◦K ∈ A2 and êU◦K + êUK ∈ A2. Since A2

is closed under addition it follows that êJ + êI ∈ A2 by Equation 3.2.53. Hence, by

induction, if `(J) = `(I) and J 6= I then êJ + êI ∈ A2.

We now wish to argue that êK /∈ A2 for all K ∈ Λ. By Theorem 3.2.34 we know

that êJ · êI = êJ+I + êJ◦−I . Now consider a sum

êJ · êI + êJ ′ · êI′ = êJ+I + êJ◦−I + êJ ′+I′ + ê(J ′)◦−I′ . (3.2.55)

Since R has characteristic 2 the terms on the right side of that sum can cancel

pairwise but after cancellation an even number of terms must remain. Now consider

an arbitrary sum x =
∑

α êJα · êIα , i.e. an arbitrary element of A2. When those

products are expanded and we write x =
∑

β êLβ , pairwise cancellation means that

this new sum must also contain an even number of terms. In particular, the resulting

sum cannot contain a single term so if K ∈ Λ then êK /∈ A2.

We have shown that if êK ∈ A then [êK ] is non-zero in A/A2. We have also

shown that for k > 0 elements [êK ] with `(K) = k − 1 are all equivalent in A2 (since

êK + êK′ ∈ A2 if `(K) = `(K ′)) and hence we can choose one such element, namely

[êk] = [êIk−1
], to represent them. Since it is clear that [êk] 6= [êj] when k 6= j, the

result follows.
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3.3 A Conjecture about the Tensor Algebra

Recall the situation from the beginning of the chapter where C is a tensor

category, R is a ring object, and M is an R-bimodule object. We constructed the

square-zero extention of R byM , called ER(M). We now wish to construct the tensor

algebra, TR(M).

As an N-graded object in C,

TR(M) = R⊕M ⊕ (M ⊗RM)⊕ (M ⊗RM ⊗RM)⊕ . . . (3.3.1)

where R is in degree 0 and M⊗k is in degree k. An R-algebra structure is given by

the bimodule maps

R⊗M⊗k →M⊗k

M⊗k ⊗R→M⊗k
(3.3.2)

and the natural map

M⊗p ⊗M⊗q →M⊗(p+q). (3.3.3)

Consider the case when C = Ab. It is straightforward to show that

ExtER(M)(R,R) ∼= TR(M). (3.3.4)

As an example, consider M = R. First, we have

ER(R) ∼=
R[x]

〈x2〉
and so ExtER(R)(R,R) ∼= R[x] (3.3.5)
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Furthermore, since R⊗k ∼= R we have that

TR(R) = R⊕R⊕R⊕R⊕ . . . and so TR(R) ∼= R[x]. (3.3.6)

Hence ExtER(R)(R,R) ∼= TR(R).

One might suspect a similar isomorphism in the case when C = Mack. Note

that ExtER(M)(R,R) and TR(M) do not live in the same category; the former is a

traditional ring and the latter is a Mackey functor. Instead, Conjecture 3.3.7 uses the

internal Ext construction.

Conjecture 3.3.7. ExtER(M)(R,R) ∼= TR(M) for any Mackey ring R and R-

bimoduleM.

We wish to support this conjecture by showing that

(ExtER(M)(R,R))• ∼= (TR(M))•. (3.3.8)

in the case whereM = R and whenM = Fθ(Z)�R. To do this, first recall that

(ExtER(M)(R,R))• ∼= ExtER(M)(R,R). (3.3.9)

ConsiderM = R. Since R� k ∼= R we have

TR(R) = R⊕R⊕R⊕ . . . (3.3.10)

and, in particular, (TR(R))• ∼= R•[x]. Furthermore, by Theorem 3.1.1, we have

(ExtER(R)(R,R))• ∼= ExtER(R)(R,R) ∼= R•[x] (3.3.11)
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and hence

(ExtER(R)(R,R))• ∼= (TR(R))•. (3.3.12)

Now considerM = R̂ = Fθ(Z)�R. In section 3.2 we computed ExtER(R̂)(R,R).

We now proceed to compute (TR(R̂))• as well.

Recall the structure of R̂ = Fθ(Z)�R described in Chapter II:

(R�Fθ(Z))θ (R�Fθ(Z))•

tg

g p∗(g) = p∗(tg)

The element g in this diagram is a chosen generator for R̂. Now recall that for any

Mackey functors X and Y , (X �Y)θ = Xθ ⊗ Yθ. This means that

(TR(R̂))θ ∼= Rθ ⊕R2
θ ⊕

(
R2
θ

)⊗2 ⊕
(
R2
θ

)⊗3 ⊕ . . . (3.3.13)

with (R2
θ)
⊗k in degree k. Furthermore, the Rθ-linear generators of (TR(R̂))θ are

Degree 1: g, tg

Degree 2: g ⊗ g, g ⊗ tg, tg ⊗ g, tg ⊗ tg

Degree 3: g ⊗ g ⊗ g, g ⊗ g ⊗ tg, g ⊗ tg ⊗ g, g ⊗ tg ⊗ tg,

tg ⊗ g ⊗ g, tg ⊗ g ⊗ tg, tg ⊗ tg ⊗ g, tg ⊗ tg ⊗ tg.

(3.3.14)

Let βk be the set of generators in degree k > 0 and let β =
⋃
k>0 βk. Then, in general,

βk = {φ⊗ g | φ ∈ βk−1} ∪ {φ⊗ tg | φ ∈ βk−1}. (3.3.15)
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Note that t(φ ⊗ tg) = tφ ⊗ g which means that the twist map on (TR(R̂))θ induces

a bijection between {φ ⊗ g | φ ∈ βk−1} and {φ ⊗ tg | φ ∈ βk−1}. Note also that in

degree k the rank of (TR(R̂))θ is 2k as an Rθ-module.

It is easy to compute that R̂� R̂ ∼= R̂ ⊕ R̂. Inductively then we have

R̂⊗k ∼= R̂⊕2k−1

. (3.3.16)

In particular, since (R̂)• ∼= Rθ, this tells us that in degree k, (TR(R̂))• is a free

Rθ-module of rank 2k−1.

We now wish to produce generators for (TR(R̂))•. In degree k, (TR(R̂))• contains

elements of the form p∗(φ) for φ ∈ βk subject to the relation that p∗(φ) = p∗(tφ).

Note that since |βk| = 2k, there are 2k−1 of these elements. Based on the properties

of R̂ it follows that these 2k−1 elements generate (TR(R̂))•. In summary, we have

developed the following picture for TR(R̂):

...
...

φ⊗ g tφ⊗ tg p∗(φ⊗ g) (deg k)

...
...

g ⊗ g tg ⊗ tg p∗(g ⊗ g) = p∗(tg ⊗ tg)

g ⊗ tg tg ⊗ g p∗(g ⊗ tg) = p∗(tg ⊗ g) (deg 2)

g tg p∗(g) = p∗(tg) (deg 1)

p∗1• 1• (deg 0)
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Let 1θ = p∗(1•) and note that 1θ is the unit in the algebra (TR(R̂))θ (since p∗ is a

ring map). For the remainder of the section we will use the set

γ = {p∗(φ⊗ g) | φ ∈ β ∪ {1θ}} (3.3.17)

as our Rθ-linear generators2 for (TR(R̂))• in positive degree.

Lastly, we need to understand multiplication on (TR(R̂))•. It suffices to

understand multiplication of the generators so choose generators p∗(φ⊗g), p∗(ψ⊗g) ∈

γ. First, recall the fact that p∗p∗ = 1+t and the Frobenius relations in Theorem 2.2.2.

Also, recall that (TR(R̂))• is a (traditional) tensor algebra and so the product of φ⊗g

and ψ ⊗ g in (TR(R̂))• is simply φ⊗ g ⊗ ψ ⊗ g. We then have

p∗(φ⊗ g) · p∗(ψ ⊗ g) = p∗((φ⊗ g)⊗ p∗p∗(ψ ⊗ g))

= p∗((φ⊗ g)⊗ (1 + t)(ψ ⊗ g))

= p∗((φ⊗ g)⊗ (ψ ⊗ g + tψ ⊗ tg))

= p∗(φ⊗ g ⊗ ψ ⊗ g) + p∗(φ⊗ g ⊗ tψ ⊗ tg)

= p∗(φ⊗ g ⊗ ψ ⊗ g) + p∗(tφ⊗ tg ⊗ ψ ⊗ g).

(3.3.18)

We can now describe the isomorphism ExtER(R̂)(R,R) ∼= (TR(R̂))•. Consider

the sets β and Λ. There is a map

[−] : β ∪ {1θ} → Λ (3.3.19)

2We use β ∪ {1θ} instead of just β so that γ includes p∗(1θ ⊗ g) = p∗(g).
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where [1θ] is the empty sequence, [g] = +, [tg] = −, and we let [−] commute with the

operations of tensor in β ∪ {1} and concatenation in Λ. As examples,

[g ⊗ tg ⊗ g] = +−+ and [tg ⊗ tg ⊗ g ⊗ tg] = −−+− . (3.3.20)

It is clear that Θ is a bijection. Furthermore, it is clear that for any φ ∈ β ∪ {1θ} we

have [tφ] = [φ]◦.

We can define a map of R•-modules

Θ : (TR(R̂))• → ExtER(R̂)(R,R) (3.3.21)

such that Θ(1•) = 1• and

Θ(p∗(φ⊗ g)) = ê[φ] (3.3.22)

for generators p∗(φ ⊗ g) ∈ β ∪ {1θ}. To show that this is a map of R•-algebras we

need only show that it is a homomorphism.

Choose p∗(φ⊗ g), p∗(ψ ⊗ g) ∈ γ. On one hand,

Θ(p∗(φ⊗ g)) ·Θ(p∗(ψ ⊗ g)) = ê[φ] · ê[ψ] = ê[φ]+[ψ] + ê[φ]◦−[ψ]. (3.3.23)

On the other hand,

Θ(p∗(φ⊗ g) · p∗(ψ ⊗ g))

= Θ(p∗(φ⊗ g ⊗ ψ ⊗ g) + p∗(tφ⊗ tg ⊗ ψ ⊗ g))

= ê[φ⊗g⊗ψ] + ê[tφ⊗tg⊗ψ]

= ê[φ]+[ψ] + ê[φ]◦−[ψ].

(3.3.24)
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Hence Θ is a homomorphism. Since Θ is an abelian group isomorphism by inspection

it is an isomorphism of R•-algebras.
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CHAPTER IV

HOMOLOGICAL PROPERTIES OF THE RINGS M2 ANDM2

In this section we investigate certain homological questions about a ring M2 and

a Mackey ringM2 that show up in Z/2-equivariant algebraic topology.

Definition 4.0.1. Let k be a field. Define a k-algebra M2 as follows: elements τ iρj

and θ
τ iρj

for i, j ∈ Z≥0 form a k-basis for M2 and multiplication on this basis is given

by

• (τ iρj)(τ pρq) = τ i+pρj+q,

• ( θ
τ iρj

)( θ
τpρq

) = 0,

• (τ iρj)( θ
τpρq

) = 0 if i > p or j > q, and

• (τ iρj)( θ
τpρq

) = θ
τp−iρq−j

if i ≤ p and j ≤ q.

We will consider M2 to be a Z2-graded module where τ iρj is in degree (j, j + i) and

θ
τ iρj

is in degree (−j,−i− j − 2).

For the rest of this chapter we will write R = k[τ, ρ] and S = M2 for convenience.

It is clear that R is a Z2-graded ring but we will differ from normal convention and

give τ iρj a degree of (j, j + i). For the remainder of this chapter we will assume that

all R-modules and S-modules are Z2-graded.

There is a ring map S � R under which τ iρj 7→ τ iρj and θ
τ iρj
7→ 0 and a ring

inclusion R ↪→ S. The former map allows us to regard an R-module M as an S-

module which we will call SM and the latter map allows us to regard an S-module N

as an R-module, which we will call RN . Note that the regular S-module splits over

R as RS ∼= R ⊕ J where J is the R-submodule of RS generated by all elements θ
τ iρj

.
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Note, also, that the kernel of the map S � k sending 1 to 1 is 〈τ, ρ〉; this is because
θ

τ iρj
= ( θ

τ i+1ρj
)τ ∈ 〈τ, ρ〉.

The goal of this chapter is to relate Ext∗S(RM,k) to Ext∗R(M,k) for finite length

R-modules M . In particular, we compute Ext∗S(k, k) as a ring.

4.1 A Resolution of J

First, we will produce an R-module resolution for J . For i ∈ N consider the

submodule 〈 θ
τ iρi
〉 ≤ J . The following is a free resolution of this module where d2(t) =

(ρi+1t,−τ i+1t) and d1(a, b) = τ i+1a− ρi+1b:

0 R R2 R 〈 θ
τ iρi
〉

d2 d1

Of course, the map R � 〈 θ
τ iρi
〉 is given by 1 7→ θ

τ iρi
. These chain complexes form a

directed system in Ch(R−Mod) via chain maps of the form

...
...

...
...

...

0 R R2 R 〈 θ
τ iρi
〉

0 R R2 R 〈 θ
τ i+1ρi+1 〉

...
...

...
...

...

f2 f1 f0

where f2 is the identity map, f1(a, b) = (ρa, τb), and f0(t) = τρt. On the homology

of the individual chain complexes, the induced maps become

0 0 〈 θ
τ iρi
〉

0 0 〈 θ
τ i+1ρi+1 〉

f̂2 f̂1 f̂0

73



and f̂0(t) = τρt. By computing the colimits of the columns in the previous two

diagrams we have that the directed limit of the original directed system is

0 R τ−1R⊕ ρ−1R (τρ)−1R

and its homology is zero except at the right-most spot, where the homology is J .

Hence this resulting complex is a flat R-module resolution of J .

4.2 Calculating the Groups ExtiM2
(k, k)

Now suppose that M is a finite length R-module. Since RS ∼= J ⊕ R we have

that a resolution of RS is given by

R τ−1R⊕ ρ−1R (τρ)−1R⊕R

and tensoring this complex with M (over R) yields

M ���
�: 0

τ−1M ⊕����: 0
ρ−1M ���

���: 0
(τρ)−1M ⊕M.

Note that τ−1M , ρ−1M , and (τρ)−1M are all zero because M is finite length and

hence killed by a sufficiently large power of τ , ρ, and τρ. Hence we have the following

isomorphisms of R-modules:

TorR2 (M, RS) ∼= M, TorR1 (M, RS) ∼= 0, and TorR0 (M, RS) ∼= M (4.2.1)

Choose a projective resolution 0 → P2 → P1 → P0 � M of M as an R-module

and consider the chain complex P• ⊗R S. We wish to compute the homology of this

complex. The R-module structure of H∗(P•⊗RS) is given by TorR∗ (M, RS) and hence

the following isomorphisms hold as R-modules:

H2(P• ⊗R S) ∼= M, H1(P• ⊗R S) ∼= 0, and H0(P• ⊗R S) ∼= M (4.2.2)
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By definition, the element θ ∈ S acts as zero on SM and, by Corollary 4.2.4 below, θ

acts as zero on H∗(P•⊗R S). Hence the isomorphisms above also hold as S-modules.

Lemma 4.2.3. Let N be a multigraded S-module and let n ∈ N . If θn 6= 0 then

〈n〉 ∼= S and hence S ≤ N .

Proof. Choose a monomial v = τ iρj ∈ S. Observe that θ
v
(vn) = θn. Since θn 6= 0 it

follows that vn 6= 0. Similarly, v
(
θ
v
n
)

= θn and hence θ
v
n 6= 0. It follows that the

(multigraded) map of S modules S → N defined by t 7→ tn is injective and clearly

its image is 〈n〉. This proves the result.

Corollary 4.2.4. If N is an S-module such that RN is finite length then θ acts as

zero on N .

Proof. Recall that dimk(N) <∞ since RN is finite length. Suppose, to the contrary,

that there exists some n ∈ N such that θn 6= 0. Then, by Lemma 4.2.3, S ≤ N .

Hence R ≤ RS ≤ RN and so RN does not have finite length.

We now wish to find a projective S-module resolution of SM . At this point we

have developed the following exact complex of S-modules:

SM P2 ⊗R S P1 ⊗R S P0 ⊗R S SM
d2 d1

Now consider a new complex

· · · P0 ⊗R S P2 ⊗R S P1 ⊗R S

P0 ⊗R S P2 ⊗R S P1 ⊗R S P0 ⊗R S

d1 d3 d2

d1
d3 d2 d1

where d3 : P0 ⊗R S → P2 ⊗R S is the following composition:
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P0 ⊗R S coker(d1) ∼= SM ∼= ker(d2) P2 ⊗R S

d3

This is an acyclic complex of free S-modules and hence resolves coker(d1) ∼= SM .

This resolution is used to prove Theorem 4.2.5 below.

Theorem 4.2.5. Let M be a finite length R-module. Then

1. ExtiS(SM,k) ∼= ExtiR(M,k) for i ∈ {0, 1, 2} and

2. ExtiS(SM,k) ∼= Exti−3
S (SM,k) for all i ≥ 3.

Proof. Recall that 0 → P2 → P1 → P0 � M is a projective resolution for the R-

moduleM . Write d2 = d̄2⊗idS and d1 = d̄1⊗idS where d̄2 : P2 → P1 and d̄1 : P1 → P0

are the maps in this resolution.

Apply the functor HomS(−, k) to the resolution for SM constructed previously.

Lemma 4.2.9 below shows that when the functor HomS(−, k) is applied to d3 the result

is the zero map. This fact, combined with the repitition in the resolution, shows that

the resulting complex breaks up into exact sequences of the following form:

0← HomS(P2 ⊗R S, k)← HomS(P1 ⊗R S, k)← HomS(P0 ⊗R S, k)← 0. (4.2.6)

This proves part 2 of the theorm.

By adjunction we have

HomS(Pi ⊗R S, k) ∼= HomR(Pi,HomS(S, k)) ∼= HomR(Pi, k). (4.2.7)
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The naturality of the adjunction then tells us that these exact sequences become

0← HomR(P2, k)
d̄∗2←− HomR(P1, k)

d̄∗1←− HomR(P0, k)← 0. (4.2.8)

The homology of this complex is ExtiR(M,k) which proves part 1 of the theorem.

Lemma 4.2.9. Let d3 : P0 ⊗R S → P2 ⊗R S be the map described prior to

Theorem 4.2.5. The induced map

d∗3 : HomS(P2 ⊗R S, k)→ HomS(P0 ⊗R S, k) (4.2.10)

is the zero map.

Proof. We repeat the notation used for d̄1 and d̄2 in the proof of Theorem 4.2.5.

Choose a map φ : P2 ⊗R S → k. Then d∗3(φ) is the composition φ ◦ d3, or

P0 ⊗R S � coker(d1) ∼= ker(d2) ↪→ P2 ⊗R S
φ−→ k. (4.2.11)

Our goal is to prove that this composition is the zero map. For the rest of this proof

assume that all tensors are taken over R.

We first claim that ker d2 ⊆ P2 ⊗ J . (Recall that R ⊆ S and S = R ⊕ J . In

particular, J is spanned by elements of the form θ
m

for monomials m ∈ R.) Choose

an element x ∈ ker d2. Then we can write

x =
N∑
i=0

vi ⊗mi +
N ′∑
i=0

v′i ⊗ θ
m′i

(4.2.12)

for integers 0 ≤ N,N ′ < ∞, elements vi, v′i ∈ P2, and monomials mi,m
′
i ∈ R. Note

that every element θ
m
∈ J is annihilated by some power of ρ. Choose k large enough
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so that ρk annihilates each θ
m′i

(which is possible because there are only N ′ < ∞

such elements). Note that ρk ∈ R also annihilates elements v′i ⊗ θ
m′i

. Since ker d2 is a

submodule of P2 ⊗ S we have that ρkx ∈ ker d2. Furthermore,

ρkx =
N∑
i=0

ρk(vi ⊗mi) +
N ′∑
i=0

ρk(v′i ⊗ θ
m′i

)

=
N∑
i=0

ρk(vi ⊗mi)

=
N∑
i=0

(ρkvimi)⊗ 1.

(4.2.13)

Thus we have

0 = d2(ρkx) = d2

(
N∑
i=0

(ρkvimi)⊗ 1

)

= (d̄2 ⊗ id)

(
N∑
i=0

(ρkvimi)⊗ 1

)
= d̄2

(
N∑
i=0

ρkvimi

)
⊗ 1.

(4.2.14)

Recall that d̄2 : P2 → P1 is the map from the resolution 0 → P2 → P1 → P0 � M

and hence is injective. We can now conclude that

d̄2

(
N∑
i=0

ρkvimi

)
= 0,

ρkd̄2

(
N∑
i=0

vimi

)
= 0,

d̄2

(
N∑
i=0

vimi

)
= 0,

and finally
N∑
i=0

vimi = 0.

(4.2.15)
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Finally, we have that

0 =

(
N∑
i=0

vimi

)
⊗ 1 =

N∑
i=0

(vimi ⊗ 1) =
N∑
i=0

(vi ⊗mi) (4.2.16)

and hence, recalling Equation 4.2.12, we have

x =
N∑
i=0

vi ⊗mi +
N ′∑
i=0

v′i ⊗ θ
m′i

=
N ′∑
i=0

v′i ⊗ θ
m′i
. (4.2.17)

Thus x ∈ P2 ⊗ J . This proves that ker d2 ⊆ P2 ⊗ J as we claimed.

We now claim that φ(P2 ⊗ J) = 0. Choose x ∈ P2 ⊗ J . Then

x =
M∑
j=0

uj ⊗ θ
mj

(4.2.18)

for an integer 0 ≤M <∞, elements uj ∈ P2, and monomials mj ∈ R. Since each θ
mj

is divisible by ρ we have that

x = ρ

(
M∑
j=0

uj ⊗ θ
ρmj

)
and so x = ρx′ for x′ =

M∑
j=0

uj ⊗ θ
ρmj
∈ P2 ⊗ J. (4.2.19)

Note that since x′ ∈ P2 ⊗ J we have that d2(x′) ∈ k. Then, since everything in k is

annihilated by ρ, it then follows that

φ(x) = φ(ρx′) = ρφ(x′) = 0. (4.2.20)

This proves the claim that φ(P2 ⊗ J) = 0.
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We are now ready to prove the lemma. We have shown that ker d2 ⊆ P2⊗J and

that φ(P2 ⊗ J) = 0. It then follows that the composition

ker d2 ↪→ P2 ⊗ S
φ−→ k (4.2.21)

is zero. It is then clear that the composition shown in Equation 4.2.11 is zero and

hence d∗3 is zero, as desired.

In summary, Theorem 4.2.5 tells us that as a vector space Ext∗S(SM,k) is

isomorphic to Ext∗R(SM,k) ⊗k k[α] where α has degree 3. For the remainder of

the paper we will omit subscripts; it should be clear from context whetherM is being

considered an R-module or an S-module.

4.3 Calculating the Ring Structure on ExtiM2
(k, k)

Consider the case when M = k. This module is resolved over R by the Koszul

complex 0 → R → R2 → R � k and we have shown that it is resolved over S by a

resolution of the form

· · · d3−→ S
d2−→ S2 d1−→ S

d3−→ S
d2−→ S2 d1−→ S. (4.3.1)

Recall that d1(a, b) = τa − ρb and d2(t) = (ρt,−τt). Also, d3(x) = xθ for all x ∈ k

and d3(x) = 0 for all x ∈ S \ k.

We now wish to compute the Yoneda extensions corresponding to basis elements

of Ext∗S(k, k). Two linearly independent Yoneda extensions in Ext1
S(k, k) are given by

k
17→τ−−→ S/〈τ 2, ρ〉 1 7→1−−→ k and k

17→ρ−−→ S/〈τ, ρ2〉 17→1−−→ k. (4.3.2)
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Call these extensions hτ and hρ, respectively.

There is a map of algebras Ext∗R(k, k) → Ext∗S(k, k). This is most easily seen

on Yoneda extensions as the map X∗ 7→ S(X∗). There is also an algebra map

Ext∗S(k, k)→ Ext∗R(k, k) given by X∗ 7→ R(X∗) and it is clear that the composition

Ext∗R(k, k)→ Ext∗S(k, k)→ Ext∗R(k, k) (4.3.3)

is the identity. Hence the map Ext∗R(k, k)→ Ext∗S(k, k) is injective. We recall that

Ext∗R(k, k) =
k[τ, ρ]

〈τ 2, ρ2〉
(4.3.4)

and it is easy to verify that hτ and hρ are the image of τ and ρ. This shows that

hτhρ = hρhτ and that this element is non-zero in Ext2
S(k, k).

Define the extension α ∈ Ext3
S(k, k) as

k
17→θ−−→ S

d2−→ S2 d1−→ S
17→1−−→ k (4.3.5)

We first wish to verify that αhτ = hτα and that this element is non-zero in Ext4
S(k, k).

Define φ : S2 → k to be φ(a, b) = [a]. We will show that the cocycle φ represents

both αhτ and hτα.

In the diagram below, the top row is the resolution of k and the bottom row is

the Yoneda extension corresponding to hτα.

· · · S2 S S S2 S k

k S/〈τ 2, ρ〉 S S2 S k

d1 d3 d2 d1

1 7→ τ 1 7→ θ d2 d1 1 7→ 1

φ π id id id id
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It is clear (since d1(1, 0) = τ) that the diagram above commutes. This shows that φ

represents hτα.

In the diagram below the top row is again the resolution of k while the bottom

row is the Yoneda extension corresponding to αhτ .

· · · S2 S S S2 S k

k S S2 S S/〈τ 2, ρ〉 k

d1 d3 d2 d1

1 7→ θ d2 d1 1 7→ τ 1 7→ 1

φ f4 f3 f2 f1 id

The fi are given by

f1(t) = [t], f2(a, b) = a, f3(t) = (0,−t), and f4(t) =
(
θ
τ

)
t. (4.3.6)

The reader can verify that this diagram commutes which shows that φ represents

αhτ . We have thus verified that αhτ = hτα is non-zero. A similar argument shows

that αhρ = hρα is non-zero in Ext4
S(k, k) (represented by the cocycle S2 → k where

(a, b) 7→ [b]). It is also straightforward to show that hτhρα is non-zero in Ext5
S(k, k)

(represented by the cocycle S → k given by the quotient map).

We now wish to verify that the element αi ∈ Ext3i
S (k, k) is non-zero for all i > 1.

In the diagram below the top row is the resolution of k and the bottom row is the

Yoneda extension for αi.

· · · S S S2 · · · S2 S k

k S S2 · · · S2 S k

d3 d2 d1 d2 d2

1 7→ θ d2 d1 d2 d1

ψ id id id id id

It is clear that this diagram commutes when the map ψ : S → k is the quotient map.

This shows that αi 6= 0.
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These facts together justify that

Ext
(3i)
S (k, k) = 〈αi〉,

Ext
(3i+1)
S (k, k) = 〈hταi, hραi〉, and

Ext
(3i+2)
S (k, k) = 〈hτhραi〉.

(4.3.7)

Furthermore, the products computed justify Theorem 4.3.8 below.

Theorem 4.3.8. The ring Ext∗S(k, k) is isomorphic to Ext∗R(k, k) ⊗k k[α] as a k-

algebra.

Note that Ext∗R(k, k) is isomorphic to k[τ, ρ]/〈τ 2, ρ2〉. The isomorphism Φ :

k[τ, ρ]/〈τ 2, ρ2〉⊗kk[α]→ Ext∗S(k, k) is given by Φ(τ) = hτ , Φ(ρ) = hρ, and Φ(αi) = αi.

4.4 Calculating the Module Structure on Ext∗M2
(M,k)

We now wish to understand the action of Ext∗S(k, k) on Ext∗S(M,k). That action

follows directly from Theorem 4.4.1 below.

Theorem 4.4.1. Suppose M is a finite length R-module. If u ∈ ExtiS(M,k) is non-

zero then αu is also non-zero. Additionally, the map ExtiS(M,k) → Exti+3
S (M,k)

given by u 7→ αu is an isomorphism of vector spaces.

Proof. We will proceed by induction on the length of M . If `(M) = 1 then M = k

and this is verified above. If `(M) > 1 then, since M has finite length, there exists a

short exact sequence of the form

0→ k
ι−→M

π−→ N → 0 (4.4.2)
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where 1 ≤ `(N) < `(M). Consider the corresponding long exact sequence under

Ext∗S(−, k):

· · · ← ExtiS(k, k)
ι∗←− ExtiS(M,k)

π∗←− ExtiS(N, k)
∂←− Exti−1

S (k, k)← · · · (4.4.3)

It is clear that the maps ι∗ and π∗ are maps of left Ext∗S(k, k)-modules. We claim that

the boundary map ∂ is, as well. This can be shown by considering the corresponding

maps of Yoneda extensions. First, recall that ∂ : Ext∗S(k, k)→ Ext∗+1
S (N, k) is given

by ∂(V ) = V · E where E is the short exact sequence in Equation 4.4.2 (and V · E

indicates concatenation). Choose Yoneda extensions U, V ∈ Ext∗S(k, k). Then

U · ∂(V ) = U · (V · E ) = (U · V ) · E = ∂(U · V ) (4.4.4)

and so ∂ is a map of Ext∗S(k, k)-modules.

It follows that the diagram (of vector spaces) shown below is commutative when

the vertical maps are all given by the (left) action of α ∈ Ext∗S(k, k).

Exti+1
S (N, k) ExtiS(k, k) ExtiS(M,k) ExtiS(N, k) Exti−1

S (k, k)

Exti+4
S (N, k) Exti+3

S (k, k) Exti+3
S (M,k) Exti+3

S (N, k) Exti+2
S (k, k)

α· α· α· α· α·

Note that `(k) ≤ `(N) < `(M) so, by induction, the four outermost maps are

isomorphisms. Therefore, by the Five Lemma (see [Wei94]), it follows that the map

Ext∗S(M,k)→ Ext∗+3
S (M,k) given by the (left) action of α is an isomorphism of vector

spaces. This completes the proof.

We have already verified for 0 ≤ i < 3 that ExtiS(M,k) is isomorphic to

ExtiR(M,k) and for i ≥ 3 that ExtiS(M,k) ∼= Exti−3
S (M,k). We have also verified that
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multiplication on the left by α induces an isomorphism ExtiS(M,k)→ Exti+3
S (M,k).

It follows that Ext∗S(k, k) ∼= Ext∗R(k, k) ⊗k k[α] acts on the module Ext∗S(M,k) ∼=

Ext∗R(M,k)⊗k k[α] in the natural way.

4.5 Generalization to Higher Dimensions

The ring S is the two-dimensional case of a broader concept. Let Rn =

k[x1, x2, . . . , xn] and define Sn as the n-dimensional analog of S. That is, Sn is

generated as a vector space by elements of the form m and θ
m

where m is a monomial

in Rn. Multiplication on Sn is done in the obvious way (i.e. θ2 = xiθ = 0). There

are analogous results to the above work in these higher-dimensional cases. Suppose

that M is a finite-length Rn-module and that P• is a free resolution of M . There is

a resolution of SnM given by

· · · → P0 ⊗ Sn → Pn ⊗ Sn → · · · → P0 ⊗ Sn → Pn ⊗ Sn → · · · → P0 ⊗ Sn (4.5.1)

One can compute this resolution in the same way; we can write RnSn
∼= Rn ⊕ Jn and

compute the following flat resolution of Jn:

0→ R→
⊕

1≤i1≤n

x−1
i1
R→

⊕
1≤i1<i2≤n

(xi1xi2)
−1R→ · · · → (x1x2 · · ·xn)−1R→ 0

(4.5.2)

It then follows that Ext∗Sn(k, k) ∼= Ext∗Rn(k, k)⊗k k[α] (where α has degree n+ 1) and

that Ext∗Sn(M,k) ∼= Ext∗Rn(M,k)⊗k k[α] with the expected action.

4.6 Properties of the Mackey Ring M2

In the previous sections of this chapter we analyzed the ring M2. We called it S

for convenience but we will now abandon that notation. Additionally, we will assume
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that k = Z/2. Recall that there is a k[τ, ρ]-module isomorphism M2
∼= k[τ, ρ] ⊕ J

where J consists of k-linear combinations of elements of the form θ
m

for monomials

m ∈ k[τ, ρ].

Recall that M2 is Z2-graded and we consider all M2-modules (and hence ideals

of M2) to be Z2-graded, as well. We first classify the ideals of M2.

Lemma 4.6.1. If I EM2 and I ∩ k[τ, ρ] is non-empty then J ⊂ I.

Proof. Suppose that I ∩ k[τ, ρ] is non-empty. Since I is a Z2-graded ideal we can

assume that there is a monomial m ∈ I ∩ k[τ, ρ]. Consider an element θ
n
∈ J .

Observe that θ
mn
∈M2 and I is an ideal of M2 so

θ

n
=

θ

mn
·m ∈ I. (4.6.2)

It follows that J ⊂ I.

Corollary 4.6.3. If I EM2 then either I ⊆ J or there exists an ideal I ′E k[τ, ρ] and

a k[τ, ρ]-module isomorphism I ∼= I ′ ⊕ J .

The Mackey functor in Definition 4.6.4 has useful applications in equivariant

homotopy theory.

Definition 4.6.4. The Mackey functorM2 is defined as follows:

• (M2)• = k[τ, τ−1]

• (M2)θ = M2

• The twist map t : k[τ, τ−1]→ k[τ, τ−1] is the identity map.

• The restriction map p∗ : M2 → k[τ, τ−1] is defined so that p∗(τ i) = τ i for i ≥ 0,

and p∗(m) = 0 for all other monomials m ∈ k[τ, ρ] ⊆M2, and p∗( θm) = 0 for all

m ∈ k[τ, ρ] ⊆M2.
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• The transfer map p∗ : k[τ, τ−1]→M2 is defined so that

p∗(τ
i) =


θ

τ (−2−i) if i ≤ 2, and

0 if i > 2.

(4.6.5)

Both k[τ, τ−1] and M2 are rings and it is straightforward to check that the Mackey

functorM2 has the structure of a Mackey ring.

A diagram ofM2 is shown below.

τ2

1
τ2

τ3

1
τ3

τ4

1
τ4

τ

1

1
τ

τ2

ρ2

τ3

ρ3

τ4

ρ4

1

τ
ρ

θ

θ
τ

θ
τ2

θ
ρ

θ
ρ2

transfer

restriction

a

twist

Note that a Mackey functorM is considered graded over a monoid Q provided

that Mθ and M• are both Q-graded and that the restriction, transfer, and twist maps

are all Q-graded as well. We will consider k[τ, τ−1] to be a Z2-graded ring where the

degree of τ i is (0, i). Then the Mackey ringM2 is a Z2-graded Mackey functor and

this graded structure makes it easier to keep track of the restriction and transer maps

in Definition 4.6.4. The previous diagram of M2 honors this graded structure; the

element 1 on either side is in degree (0, 0).

Note that the only Z2-degrees in which both of k[τ, τ−1] and M2 are non-trivial

are (0, n) for n 6= −1. Furthermore, the corresponding components of both rings are

k ∼= Z/2 in those degrees. Let D = {(0, n) ∈ Z2 | n 6= −1}. We can then make the

following observations about the restriction and transfer maps:
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• In every degree d ∈ Z2 \ D the restriction and transfer maps are maps of the

form 0→ k, k → 0, or 0→ 0 and hence are forced to be zero.

• For degrees (0, n) ∈ D where n ≥ 0, restriction is the identity map k → k and

transfer is the zero map k → k.

• For degrees (0, n) ∈ D where n ≤ −2, restriction is the zero map k → k and

transfer is the identity map k → k.

The diagram below summarizes these observations. Only the maps in highlighted

degrees can be non-zero and on these gradings the map k → k can only be 0 or id,

as indicated.

id

0

id

0

a

id

a

id

May proved that the (traditional) ring M2 is self-injective (see [May18]) and here

we prove thatM2 is a self-injective Mackey ring. Recall from Theorem 2.4.1 that our

criterion for verifying the injectivity of a Mackey module requires us to understand the

ideals of the corresponding Mackey ring. Lemma 4.6.6 below provides a categorization

of the ideals ofM2.

Lemma 4.6.6. If I is an ideal of M2 then it must be of one of the following two

forms:
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1. Iθ = 0 and τ i /∈ I• for all i ≥ 0.

2. Iθ = k[τ, τ−1] and θ
τ i
∈ I• for all i ≥ 0

Additionally, any choice of ideals Iθ E k[τ, τ−1] and I• EM2 which fall into one of

those two categories will form an ideal I EM2.

Proof. Recall from Lemma 2.2.5 that an ideal I EM2 will consist of ideals I• E

(M2)• = M2 and Iθ E (M2)θ = k[τ, τ−1] such that the restrictions of all the maps

inM2 to the appropriate ideals are well-defined. Also note that k[τ, τ−1] is a graded

field and hence only has two ideals.

• Suppose that Iθ = 0. The only non-zero outputs of p∗ are linear combinations

of τ i ∈M2 for i ≥ 0. Hence, in order for p∗|I• to be well-defined, we must have

τ i /∈ I• for all i ≥ 0. Clearly p∗|Iθ and t|Iθ will both be well-defined and hence

any such ideal I• will yield an ideal I EM2 in this case.

• Suppose that Iθ = k[τ, τ−1]. The image of p∗ is all linear combinations of

elements θ
τ i
∈M2 for i ≥ 0. In order for p∗|Iθ to be well-defined, I• must contain

all of those elements. It is clear that p∗|I• and t will both be well-defined and

hence any such ideal I• will yield and ideal I EM2 in this case.

Since the only ideals of k[τ, τ−1] are 0 and k[τ, τ−1] we have now covered all possible

cases.

Example 4.6.7. We’d now like to consider an example of some of the ideals ofM2.

• Consider the ideal I• = 〈τ 2, τρ2, ρ3〉 EM2. Note that J ⊆ I• (this is proven in

Lemma 4.6.1). If we let Iθ = k[τ, τ−1] then the resulting Mackey functor
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k[τ, τ−1] I•

p∗

p∗|I•

id

is an ideal of M2 based on Lemma 4.6.6. Shown below is a diagram of this

ideal:

a ρ3

τρ2

τ2

This ideal is of the second type described by Lemma 4.6.6.

• Consider the ideal I• = 〈 θ
τρ3
, θ
τ2ρ
〉EM2. It is easy to check that I• ⊆ J . Based

on Lemma 4.6.6 the Mackey functor

{0} I•

0

0

0

is an ideal ofM2. Shown below is a diagram of this ideal:

{0}

θ
τρ3

θ
τ2ρ
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This ideal is of the first type described by Lemma 4.6.6.

• Ideals I• EM2 need not be finitely generated. Consider

I• =
〈{

θ
τ2ρ2

}
∪
{
θ
τ2
, θ
τ4
, θ
τ6
, . . .

}〉
. (4.6.8)

If we let Iθ = {0} the diagram of the resulting Mackey ideal is as follows:

{0}

θ
τ2ρ

θ
τ2

θ
τ2

θ
τ2

As a brief aside, now that we understand the ideals ofM2 it becomes clear that

it is not a Noetherian ring.

Theorem 4.6.9. The Mackey ringM2 is not Noetherian.

Proof. First note that M2 is not Noetherian and this theorem is essentially a direct

corollary of that fact.

For i ∈ N let vi = θ
τ iρi
∈M2. Consider ideals JiEM2 where Ji = 〈vi〉. Note that

Ji does not contain J since vi+1 ∈ J \Ji and hence Ji 6= M2 for all i ∈ N. Additionally,

it is clear that Ji is a proper subset of Ji+1 since vi+1 ∈ Ji+1 \ Ji. It follows that the

collection {Ji}i∈N is an ascending chain of ideals in M2.

As a result of Corollary 4.6.3 we see that Ji ⊆ J . Furthermore, by Lemma 4.6.6,

there exist ideals Ji EM2 of the following form:

Ji : {0} Ji

0

0

0
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It is clear that {Ji}i∈N is an ascending chain of ideals and that Ji 6= Ji+1 for all i ∈ N.

Hence M2 is non-Noetherian.

We are now ready to show thatM2 is a self-injective ring.

Theorem 4.6.10. The Mackey functor M2 is an injective object in the category of

gradedM2-modules.

Proof. This proof will use the criteron described in Theorem 2.4.1. We need to prove

two things:

1. For every inclusion of M2-modules ι : I → M2 and every morphism f : I →

M2 there exists a morphism g :M2 →M2 such that gι = f as in the diagram

below:

I M2

M2

ι

f

g

2. For every inclusion ι : J → M2�Fθ(Z) and every morphism f : J → M2

there exists a morphism g : M2�Fθ(Z) → M2 such that gι = f as in the

diagram below:

J M2�Fθ(Z)

M2

ι

f

g

In this context we are dealing with graded modules and maps of graded modules.

The only adjustment that needs to be made is to understand that the codomains of

the maps f and g in the diagrams above may contain a shift in the Z2-grading.
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We start by addressing the first of these two conditions. Choose an ideal IEM2

and aM2-map f : I →M2. Since the choice of g is clear when f = 0, assume f 6= 0.

Since M2 is an injective M2-module there exists a map g• : I• →M2 ofM2-modules

such that g•ι• = f•. However, M2
∼= M2�F•(Z) is free. Hence there is a map of

M2-modules g :M2 →M2 determined by I• 7→ g•(1•). We claim that for this choice

of g it follows that gθιθ = fθ.

We first make some reductions. If Iθ is trivial then it is clear that gθιθ = fθ

so assume Iθ = k[τ, τ−1]. Now, recall that f , g, and ι are all graded maps wih the

understanding that the codomain of f and g undergoes a shift; write this shift as

(a, b). That is, if an element x ∈ I has degree (a′, b′) then the degree of f(x) is

(a′ + a, b′ + b). The same must also hold for elements x ∈ M2 and g(x). Note that

the non-zero elements in the θ-components ofM2 and I all have degree (0, n). This

means that if a 6= 0 then the maps f• and g• must both be zero and it is clear that

gθιθ = fθ in that case. Hence we can assume that a = 0.

Since g is a graded map and 1• has degree (0, 0) we have that the degree of g•(I•)

is (0, b). If b ≥ 0 then g•(I•) = τ b and if b ≤ −2 then g•(I•) = θ
τb−2 .

• Suppose b ≥ 0. First we have

gθ(ιθτ
i) = gθ(τ

i) = gθ(τ
ip∗I•) = τ igθ(p

∗
I•) = τ ip∗(g•I•) = τ iτ b = τ i+b.

(4.6.11)

Next, observe that

p∗(fθ(τ
−b−2)) = f•(p∗(τ

−b−2)) = f•
(
θ
τb

)
= g•

(
ι•
(
θ
τb

))
= g•

(
θ
τb

)
= θ

τb
g•(1•) = θ

τb
τ b = θ.

(4.6.12)
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The degree of τ−b−2 is (0,−b−2) and so it follows that the degree of fθ(τ−b−2) is

(0,−2). The component of k[τ, τ−1] that lies in degree (0,−2) is {0, τ−2}. Since

p∗(fθ(τ
−b−2)) 6= 0 it must be that fθ(τ−b−2) 6= 0. This forces fθ(τ−b−2) = τ−2.

Finally,

fθ(τ
i) = fθ(τ

(i+b+2)+(−b−2)) = τ i+b+2fθ(τ
−b−2) = τ i+b+2τ−2 = τ i+b. (4.6.13)

Thus gθιθ = fθ in this case.

• Suppose b ≤ −2. An argument nearly identical to the previous one shows that

in this case we must have that fθ = 0 and gθ = 0. Hence gθιθ = fθ in this case,

as well.

This completes the proof justifying the first of the two conditions.

We now verify the second condition. For convenience, let F = k[τ, τ−1]. (Recall

that here we are assuming k = Z/2.) As a consequence of Theorem 2.1.9 we have

thatM2�Fθ(Z) ∼= Fθ(F) and

Fθ(F) = F2 F.

p∗ = [ 1 1 ]

p∗ = [ 1
1 ]

t = [ 0 1
1 0 ]

Choose a submodule J ≤ Fθ(F) and choose a map f : J →M2. Observe that (since

k = Z/2, F is a field, and J is a homogeneous ideal) there are only the following five

choices of Jθ ≤ F2:

0⊕ 0, F⊕ 0, 0⊕ F, ∆, F2 (4.6.14)
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where ∆ = 〈(1, 1)〉 ≤ F2. We now consider five cases based on the choice of Jθ and in

each case we construct a map g : Fθ(F)→M2 such that gι = f (where ι : J → Fθ(F)

is the inclusion).

First we show that two of those five cases aren’t possible. Suppose that Jθ = F⊕0.

Lemma 2.2.5 states that J• must contain p∗(Jθ) = F which forces J• = F. Lemma 2.2.5

also states that Jθ must contain p∗(J•) = ∆ but it is clear that ∆ * F ⊕ 0. Hence

there is no submodule J ≤ Fθ(F) such that Jθ = F⊕0. An identical argument shows

that there is no submodule J ≤ Fθ(F) such that Jθ = 0⊕ F.

Next we show that two of those cases are trivial. If Jθ = 0 then Lemma 2.2.5

forces J• = 0 and hence J = 0 which forces f = 0. In this case, we can choose g = 0

and then clearly gι = f . Similarly, if Jθ = F2 then Lemma 2.2.5 forces J• = F and

hence J = Fθ(F) which forces ι = id. In this case, we can choose g = f and then

clearly gι = f .

Finally, suppose Jθ = ∆ and suppose f : J → M2 is a map of the following

form:

∆ J•

F M2

p∗ = 0

p∗

id

fθ f•
p∗

p∗

id

Note that p∗ = 0 in the above diagram because for (τ j, τ j) ∈ ∆ we have

p∗(τ
j, τ j) = τ j + τ j = 2τ j = 0. (4.6.15)
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The rest of this proof is dedicated to showing that there exists a map g : Fθ(F)→M2

such that gι = f in this specific case.

We first wish to argue that fθ is the zero map. Suppose, to the contrary, that

fθ is non-zero. Then, since fθ : ∆ → F is a map of graded F-modules this forces

fθ(τ
i, τ i) = τ i+j for some fixed j ∈ Z. If i = −j − 2 then we have

p∗(fθ(τ
i, τ i)) = p∗(τ

−2) = θ and

f•(p∗(τ
i, τ i)) = f•(0) = 0.

(4.6.16)

Since f is a map of Mackey functors we have p∗fθ = f•p∗ and so θ = 0 which is a

contradiction. This shows that fθ must be the zero map.

If f• is also the zero map then f : ∆→M2 must be zero, in which case we can

choose g = 0 and have gι = f . We are left with the case where f : ∆ → M2 is a

graded map ofM2-modules and f• is non-zero. An application of Lemma 2.2.5 shows

that J• can either be FE F or 0E F so, since f• 6= 0, we must have J• = F.

We are now considering a map f : ∆→M2 of the form

∆ F

F M2

p∗ = 0

p∗ = id

id

fθ f•
p∗

p∗

id

where f• : F → M2 is non-zero. (In the above diagram when we write p∗ = id we

mean the map x 7→ (x, x).) We first wish to make some reductions regarding the
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image of f•. In what follows we use the action of M2 on M2�Fθ(Z) ∼= Fθ(F); a

description of this action can be found in Theorem 2.3.12.1

• Suppose τaρb is in the image of f•. Then there is some τ i ∈ F where f•(τ i) =

τaρb. By checking the gradings we then find that f•(τ i−a−1) is forced to equal

0. Since f• is a map of M2-modules we have

τaρb = f•(τ
i) = f•(τ

a+1τ i−a−1) = τa+1f•(τ
i−a−1) = 0, (4.6.17)

which is a contradiction. Thus the image of f• does not contain an element of

the form τaρb.

• Suppose θ
τaρb

with b > 0 is in the image of f•. Then there is some τ i ∈ F such

that f•(τ i) = θ
τaρb

. After noting that ρτ i ∈ F is zero we have

0 = f•(0) = f•ρτ
i = ρf•(τ

i) = ρ

(
θ

τaρb

)
=

θ

τaρb−1
. (4.6.18)

This is a contradiction since b > 0 and so θ
τaρb−1 ∈ M2 is non-zero. It follows

that the image of f• does not contain an element of the form θ
τaρb

where b > 0.

• Suppose θ
τa

is in the image of f•. (Note that in this case there is no contradiction

to be found.) Then there is some τ i ∈ F such that f•(τ i) = θ
τa
. If j > i then

f•(τ
j) = τ j−if•(τ

i) = τ j−i
(
θ

τa

)
=

θ

τa+i−j (4.6.19)

1In particular, we use that elements τ i ∈ M2 where i ≥ 0 act on (Fθ(F)) = F• as expected and
all other elements of M2 act as zero.
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where, of course, we mean that f•(τ j) is zero if a + i − j < 0. Furthermore, if

j < i then

τ i−jf•(τ
j) = f•(τ

i−jτ j) = f•(τ
i) =

θ

τa
. (4.6.20)

It follows that f•(τ j) is non-zero and, in particular, it must be that f•(τ j) =

θ
τa+i−j

(this is clear by examining the graded structure of M2).

As a result of the above reductions we have shown that a non-zero graded map of

M2-modules F→M2 must be of the form τ j 7→ θ
τk−j

for some k ∈ Z. Assume that the

map f• takes this form. For the rest of this proof when we write an element θ
τn
∈M2

where n ∈ Z it will be under the assumption that we mean this element to be zero in

cases where n < 0.

Recall that maps Fθ(F) → M2 are uniquely determined by the image of Iθ =

(1, 0) ∈ (Fθ(F))θ = F2. Define g : Fθ(F)→M2 such that gθ(1, 0) = τ−2−k. We wish

to prove that gι = f . We will do this by showing that g|J = f or, equivalently, by

showing that gθ(x) = fθ(x) for all x ∈ Jθ = ∆ and g•(x) = f•(x) for all x ∈ J• = F.

Choose an element (τ j, τ j) ∈ ∆. Observe that

g(τ j, τ j) = τ jg(1, 1) = τ jg
(
(1, 0) + t(1, 0)

)
= τ j

(
τ−2−k + t(τ−2−k)

)
= τ j

(
τ−2−k + τ−2−k) = 0.

(4.6.21)

Hence gθ(τ j, τ j) = 0 = fθ(τ
j, τ j), as desired.

Choose an element τ j ∈ F. Before computing g•(τ j) it helps to recall the transfer

maps2 in Fθ(F) andM2: for (a, b) ∈ (Fθ(F))θ = F2 we have p∗(a, b) = a + b and for

2Note that we do not give the usual description of the transfer map inM2 but rather a description
adapted to the notation in this proof.
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τn ∈ (M2)θ = F we have p∗(τn) = θ
τ−n−2 . Now observe that

g•(τ
j) = g•

(
p∗(τ

j, 0)
)

= p∗
(
gθ(τ

j, 0)
)

= p∗
(
τ jgθ(1, 0)

)
= p∗(τ

−2−k+j) =
θ

τ k−j

(4.6.22)

and hence g•(τ j) = f•(τ
j), as desired.

Finally, we have satisfied the conditions laid out in Theorem 2.4.1 and henceM2

is an injectiveM2-module.
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