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How animals and microbes interact with each other can mean the difference 

between harmonious coexistence and deadly infection. These interactions create the 

potential for evolutionary conflict which can contribute to the antagonistic evolution of 

host and microbial genomes. Specific adhesion to host cells is often a necessary first 

step in bacterial pathogenesis; "adhesins" are proteins on bacterial surfaces that mediate 

host cell adhesion and subsequently, invasion and infection. The N domain of human 

carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a host protein 

that modulates cell adhesion and other cell processes, is targeted and exploited by 

various human-associated bacterial adhesins.  

The Barber Lab at the University of Oregon has recently discovered that primate 

CEACAM1 proteins are rapidly evolving, suggesting an evolutionary 'arms race' with 

the bacterial adhesins that target them. One such adhesin is Helicobacter outer protein Q 

(HopQ) of Helicobacter pylori. H. pylori is a human-specific bacterium that colonizes 

the stomach of approximately half of the human population worldwide and is the major 

causative agent for stomach ulcers and gastric cancer. The HopQ gene has two major 
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variants that are associated with both virulence and geographical location. It remains 

unclear how genetic diversity among adhesins such as HopQ impacts host specificity.  

We tested our hypothesis that HopQ will bind differentially to various primate 

CEACAM1 proteins by performing biochemical binding experiments with H. pylori 

and recombinant, GFP-tagged, CEACAM1 N domains from a panel of primates. 

Interestingly, we found that HopQ binds to the N domains of human, chimpanzee, and 

gorilla CEACAM1. We also found multiple signatures of positive selection on sites of 

HopQ that contact rapidly evolving sites on the N domain of CEACAM1 lending 

support to a potential evolutionary “arms race” between the two. These findings are 

directly applicable to human health, as understanding the determinants of host 

specificity in human-associated pathogens could reveal new avenues for the treatment 

and prevention of infectious diseases as well as provide valuable information about 

which species are more susceptible to reverse zoonoses, the transfer of a disease-

causing agent from humans to non-human animals.  
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Introduction  

 The molecular evolution of host-microbe interactions is a particularly exciting 

area of research because host-microbe systems are highly relevant in human health and 

disease. Understanding the genetic and molecular basis of why human-specific 

pathogens cannot be transmitted to other hosts could provide insights into how to better 

target these pathogens for the prevention and control of infectious disease. Moreover, 

understanding the host specificity of a pathogen could help determine which species are 

more susceptible to reverse zoonoses, the transmission of a pathogen from a human to a 

non-human animal. Therefore, a microbe’s host specificity provides information that 

could be vital in controlling the spread of infectious disease. As we see a global increase 

in industrial food animal production, the rapid movement of humans and non-human 

animals, and the habitats of humans and non-human wild animals intertwining with 

great complexity, the future promises more opportunities for human-associated 

pathogens to jump species and cause reverse zoonoses. Reverse zoonoses are important 

to investigate because bacteria and viruses could potentially mutate into a more easily 

transferrable, or more dangerous, form when they go from humans to non-human 

animals. Scientific research must be conducted in this area to provide a richer 

understanding of emerging and reemerging disease threats. 

Bacteria encode classes of proteins called "adhesins" that allow them to adhere 

to host cells and grow. Pathogenic bacteria require adhesins to invade host cells and 

cause infection. Adhesins are located on the surfaces of bacteria making them attractive 

vaccine candidates because of their accessibility to antibodies. Many bacterial adhesins 

target and utilize carcinoembryonic antigen-related cell adhesion molecule 1 
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(CEACAM1) as a host receptor (Kuespert et al., 2006). CEACAM1 is part of a family 

of widely distributed immunoglobin superfamily-related glycoproteins that modulate 

diverse cellular functions including cell adhesion, differentiation, proliferation, and 

survival (Gray-Owen & Blumberg, 2006). There are seven well-described CEACAM 

family members that are all characterized by a membrane distal N domain and a 

variable number of additional extracellular domains (Gray-Owen & Blumberg, 2006) 

(Figure 1). 

 
 

 
Figure 1. CEACAM family members (adapted from Gray-Owen & Blumberg, 2006)  

All extracellular domains of the CEACAM family of proteins have a membrane distal 

N domain (yellow) and some have additional extracellular domains (orange). 

CEACAM proteins are often expressed in epithelial cells where they can be in 

contact with bacteria that colonize epithelial tissues. Epithelial tissues line the outer 

surfaces of organs and blood vessels throughout the body, as well as the inner surfaces 

of cavities in many internal organs. The N domain of CEACAM1 is the main target of 

several bacteria specialized to colonize the human mucosa (Voges et al., 2010). 
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Bacterial attachment to CEACAM proteins results in a tight association between the 

bacterium and the cell surface; this can either stimulate the internalization of the 

bacterium or the translocation of bacterial particles which can trigger CEACAM-

initiated gene expression events, thus interfering with host function (Moonens et al., 

2018 and Tchoupa et al., 2014). Some of these bacteria are obligate pathogens, meaning 

they must cause disease in order to survive, while others are commensal pathogens—

bacteria that are normally harmless to the host, but can cause disease. The variety of 

bacteria that bind CEACAM1 makes it an interesting host protein to study since 

bacterial attachment to a host cell is a critical step in bacterial infection. The bacterial 

adhesins that target the N domain of CEACAM1 are genetically highly diverse (Figure 

2); however, these adhesins have evolved to share the same function of adhering to the 

N domain of CEACAM1 to mediate invasion and colonization (Voges et al., 2010).  

 

 

 

Figure 2. Bacterial adhesins that target the N domain of CEACAM1 in epithelial tissues 

(adapted from Matt Barber) (Voges et al., 2010) 

Multiple phylogenetically diverse adhesins target the N domain of CEACAM1 in 

various epithelial surfaces. 

It has been speculated that CEACAM1 recognition may be a specific adaptation 

by bacteria to facilitate the colonization of the human mucosa (Kuespert et al., 2006). It 
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is possible, then, that CEACAM1 diversification is a pathogen-driven process. 

Infectious diseases are a powerful driver of natural selection: the host adapts because 

there is pressure to avoid being antagonized by the microbe, whereas the microbe adapts 

because it has pressure to maintain recognition of the host; this is referred to as a host-

microbe evolutionary “arms race” (Figure 3).  

 
 

 

 

 

 

Figure 3. Host-microbe evolutionary “arms race” (adapted from Emily Baker) 

Host protein variation that prevents bacterial attachment is counteracted by adaptation 

among bacterial adhesins. This sets up repeated episodes of counter-adaptation by both 

host and microbial populations. Only the bacterial adhesins that have maintained 

recognition of the host protein will be able to bind. 

These interactions are an example of a classical “Red Queen” genetic conflict (Van 

Valen, 1973). The Red Queen hypothesis states that organisms must constantly evolve 

and proliferate not only to reproduce, but also to survive and out-compete opposing 
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organisms that are also ever-evolving in a constantly changing environment (Daugherty 

& Malik, 2012). The recurrence of positive selection can be an indicator that a host-

pathogen conflict is underway. Positive selection is a type of natural selection that 

accelerates the fixation of an advantageous mutation in a population. Phylogenetic 

analyses can determine if a protein is rapidly evolving by locating signatures of positive 

selection. By looking at groups of closely related species, such as humans and other 

primates, we can better understand the consequences of rapid evolution with more 

resolution and statistical power. Since these species are closely related, we can identify 

sites on the protein of interest where evolutionary events have occurred due to natural 

selection and not random genetic drift.  

The Barber Lab at the University of Oregon has recently discovered that the N 

domains of primate CEACAM1 proteins are rapidly evolving at sites that contact 

bacterial adhesins (unpublished) (Figure 4).  
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Figure 4. Signatures of positive selection in the N domain of primate CEACAM1 

(Barber Lab) 

Sites with signatures of positive selection (blue) are primarily on the N domain of 

CEACAM1. These sites are rapidly evolving in Hominids, Old World Monkeys, and 

New World Monkeys. 

These signatures of rapid evolution suggest that CEACAM1 and the bacterial adhesins 

that target them may be engaged in evolutionary “arms races;” CEACAM1 variation 

that prevents bacterial attachment may then be counteracted by adaptation among 

bacterial adhesins, such that repeated episodes of counter-adaptation by both host and 

microbial populations occur. 

Since the N domain of human CEACAM1 is a target of multiple pathogens, it is 

difficult to elucidate which pathogen(s), if any, might be driving its evolution. 

Helicobacter pylori is one such bacteria that specifically binds to the N domain of 

CEACAM1 via adhesin Helicobacter outer membrane protein Q (HopQ) in the 

digestive tract (Javaheri et al., 2016) (Figure 5).  
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Figure 5. Rapidly evolving sites on the N domain of CEACAM1 contact H. pylori 

adhesin HopQ (Barber Lab) 

Sites with signatures of positive selection on the N domain of CEACAM1 are in contact 

with HopQ suggesting a potential host-microbe evolutionary “arms race” 

The adherence of HopQ to CEACAM1 mediates the delivery of the virulence factor 

CagA into host cells and stimulates the release of pro-inflammatory molecules, both of 

which are critical steps in an H. pylori infection (Bonsor et al., 2018 and Parsonnet et 

al., 1997).  

H. pylori has coexisted with humans for tens of thousands of years, with genetic 

studies indicating that humans have been colonized with H. pylori for at least 58,000 

years (Linz et al., 2007). H. pylori is a commensal-pathogen; though its presence in the 

gastric microbial community is critical for human health, it is naturally transformable, 

very recombinogenic, and has a high mutation rate making it vulnerable to gaining 

pathogenicity (Whalen & Massidda, 2015). H. pylori specifically colonizes the gastric 

epithelium of approximately half of the human population worldwide, making it one of 

the most common infections (Rahman et al., 2014). Though the majority of infections 

Positive 
 

CEACAM1 N domain 
 

HopQ 



 

8 
 

are asymptomatic, some infected individuals experience chronic gastritis and stomach 

ulcers (Dunne et al, 2014). Significantly, H. pylori is also the major causative agent for 

gastric cancer (Javaheri et al., 2016). 1%-3% of infected individuals develop gastric 

cancer resulting in almost one million cases of gastric cancer being diagnosed each year 

(Wroblewski et al., 2010). Because of this, H. pylori is the second leading cause of 

cancer-related deaths and is classified as a group I carcinogen by the World Health 

Organization (Wroblewski et al., 2010). H. pylori infections disproportionately 

devastate developing countries, especially in Eastern Asia, due to a combination of 

untreated water, crowded conditions, and poor hygiene (Rahman et al., 2014). The 

global and regional burden of H. pylori infections is enormous; thus it is crucial that we 

continue to gain an understanding of the host and microbial factors that increase the risk 

of developing more severe clinical outcomes. 

The HopQ gene exhibits diversity that represents two allelic variants, called 

type-I and type-II (Cao & Cover, 2002) (Figure 6).  
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Figure 6. Diversity of HopQ gene (Javaheri et al., 2016) 

HopQ genes can be grouped into two major allelic variants (type-I and type-II). The 

type-I HopQ genes are more diverse and can be further divided into the two 

subgroupings type Ia (orange shaded) and Ib (pink shaded). The type II HopQ genes are 

highlighted in green.  

The alleles are roughly 70% identical at the amino acid level (Cao & Cover, 2002) and 

therefore bind to human CEACAM1 in slightly different ways (Moonens et al., 2018) 

(Figure 7).  
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Figure 7. H. pylori binding to CEACAM1 differs depending on HopQ allele type 

(Moonens et al., 2018) 

The binding of H. pylori to the N domain of CEACAM1 depends on the HopQ allele 

type as seen in the 3D reconstruction of type-I HopQ (blue) interaction with the N 

domain of CEACAM1 (purple) and type-II HopQ (green) interaction with N domain of 

CEACAM1 (purple). 

H. pylori strains with the different allelic variants of HopQ differ in their virulence; 

strains with type-I HopQ are more virulent than strains with type-II HopQ and therefore 

cause worse symptoms including higher inflammation, gastric atrophy, and greater risk 

of developing gastric cancer (Blaser et al., 1995 and Cao & Cover, 2002). The type-I 

HopQ allele is associated with higher virulence because it is more frequently found in 

CagA-positive H. pylori strains (Javaheri et al., 2016 and Parsonnet et al., 1997). CagA 

is a virulence factor that is delivered into gastric epithelial cells via H. pylori secretion 

where it manipulates intracellular signaling of the host to promote neoplastic 

transformation (Hatakeyama, 2017). The interaction of type-I HopQ with the N domain 

of CEACAM1 is necessary for CagA transduction into the gastric epithelium and is 

therefore essential for H. pylori virulence (Javaheri et al., 2016). CagA was the first 

identified bacterial protein involved in human cancer; because of this, chronic infection 

with CagA-positive H. pylori strains is the strongest risk factor of gastric cancer (Blaser 
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et al., 1995 and Hatakeyama, 2017). H. pylori strains with the different allelic variants 

of HopQ also differ in their geographic distribution; strains with type-I HopQ appear to 

be more prevalent in Asian countries while strains with type-II HopQ seem to be more 

common in Western countries (Ohno et al., 2009). This may explain why Asian 

populations are at greater risk for stomach cancer (Rahman et al., 2014).  

The H. pylori adhesin HopQ selectively binds to human CEACAM1, but not 

murine, bovine, or canine CEACAM1 orthologs (Javaheri et al., 2016). It is unknown 

whether HopQ can also recognize CEACAM1 orthologs from non-human primates; this 

is important to investigate since findings could give insight into evolutionary “arms 

races” between CEACAM1 and H. pylori as well as shed light on the impact of this 

rapid evolution on infectious disease. Since the HopQ gene exhibits such great 

diversity, our primary interest is to understand how this diversity might impact the host 

specificity of H. pylori. This information will increase our understanding of the genetics 

and evolutionary conflicts that occur at the host-pathogen protein interface in an H. 

pylori infection. Specifically, this thesis will investigate if H. pylori strains with type-I 

HopQ are rapidly evolving at sites that contact rapidly evolving sites in the N domain of 

CEACAM1 as well as examine the host specificity of H. pylori strains with type-I 

HopQ. 

In addition to H. pylori, this thesis will also examine the binding interactions of 

Haemophilus influenzae, another species of bacteria that exploits the N domain of 

CEACAM1 (Tchoupa et al., 2015). H. influenzae asymptomatically colonizes the upper 

respiratory tract mucosa in healthy individuals (Mukundan et al., 2007). However, if H. 

influenzae makes the shift from commensal to pathogen, the H. influenzae adhesin outer 
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membrane protein P1 (OMP P1) specifically binds to CEACAM1 in the nasopharynx 

which leads to bacterial uptake by host cells and eventually infection (Tchoupa et al., 

2015). Though OMP P1 and HopQ both exploit the N domain of CEACAM1 to cause 

infection, these adhesins are genetically unrelated (Voges et al., 2010). Like HopQ, the 

adhesin OMP P1 of H. influenzae selectively recognizes human CEACAM1, but not 

orthologs from other mammals (Tchoupa et al., 2015). To explore how the diversity of 

non-homologous bacterial adhesins impacts host specificity, we wanted to compare the 

binding interactions of two phylogenetically diverse adhesins. Thus, we also tested the 

binding of H. influenzae via OMP P1 to the N domains of various primate CEACAM1 

proteins.   

Though OMP P1 does not exhibit as much diversity as HopQ, H. influenzae 

strains differ based on the presence or absence of a capsule, a polysaccharide layer that 

lies outside the cell envelope (Falla et al., 1994). Encapsulated strains of H. influenzae 

are called typable whereas unencapsulated strains are called non-typable. There are six 

encapsulated serotypes, designated A through F, that each have distinct capsular 

polysaccharides (LaClaire et al., 2003). We investigated EAGAN, a type B H. 

influenzae strain, as well as two non-typeable strains of H. influenzae (strain 5 and 

strain 11) to determine if the presence or absence of a capsule impacts the binding of H. 

influenzae to the N domains of various primate CEACAM1 proteins.  
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Methods 

In order to determine if sites on type-I HopQ are rapidly evolving, a 

phylogenetic tree was made using a diverse subset of H. pylori strains with type-I HopQ 

(Figure 8).  

  
Figure 8. HopQ type-I protein phylogenetic tree  

This phylogenetic tree was generated on FigTree after generating a maximum 

likelihood phylogeny in PhyML of approximately 20 H. pylori strains with type-I 

HopQ. These strains were chosen because they are a representation of the diversity of 

the HopQ type-I allele. 

This tree was used in a Phylogenetic Analysis by Maximum Likelihood (PAML) which 

calculated the ratio of non-synonymous to synonymous substitutions (dN/dS ratio).  

Non-synonymous substitutions are nucleotide mutations that alter the amino acid 

sequence of a protein, thus changing the structure of the protein, while synonymous 

substitutions do not alter the amino acid sequence of a protein. Therefore, a dN/dS ratio 

greater than 1 indicates positive selection (driving change), a ratio less than 1 indicates 
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stabilizing or purifying selection, and a ratio of exactly 1 indicates neutral selection. 

The recurrence of positive selection is indicative of a potential host-pathogen conflict. 

To test if H. pylori and H. influenzae bind to primate CEACAM1 proteins via 

their respective CEACAM1 N domain-binding adhesins, CEACAM1 N domains from 

various primates were first tagged with green fluorescent protein (GFP) for 

visualization and expressed in mammalian cells. They were then incubated with the 

bacteria of interest in a pulldown assay, a laboratory technique used to detect physical 

interactions between two or more proteins and a tool for confirming a predicted protein-

protein interaction. After a series of washes, the bacterial pellets were resuspended in a 

sample buffer that denatures the proteins and makes them negatively charged. After the 

pulldown assay, a western blot was performed.  

The western blot is a common laboratory method used in molecular biology that 

can detect specific protein molecules from a mixture of proteins, evaluate the size of a 

protein of interest, and measure the amount of protein expression. The protein 

molecules were first separated according to their size using gel electrophoresis, a 

method that separates mixtures of DNA, RNA, or proteins according to molecular sizes 

by applying an electric field to a gel that contains small pores. Following separation, the 

proteins were transferred from the gel to a blotting membrane, such that the membrane 

now carried all the protein bands originally on the gel. Next, the membrane went 

through a treatment called blocking, which prevented any nonspecific reactions from 

occurring during the primary antibody incubation. The membrane was then incubated 

with the primary antibody which specifically bound to the GFP-CEACAM1 fusion 

protein. Following incubation, any unbound primary antibody was washed away, and 
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the membrane was incubated again with a secondary antibody that specifically 

recognized and bound to the primary antibody. The secondary antibody was linked to a 

reporter enzyme that produced light, which allowed it to be easily detected via 

chemiluminescence and imaged via an imaging system that used a digital CCD camera 

to capture the emitted light as an image. These steps permitted the GFP-CEACAM1 

protein bound to H. pylori via HopQ (or H. influenzae via OMP P1) to be detected from 

a mixture of proteins (Figure 9). 

 

 

 

 

Figure 9. Bacterial pulldown assay (with H. pylori) and western blot (adapted from 

Emily Baker) 

A. GFP-tagged CEACAM1 N domains from a panel of primates were individually 

incubated with H. pylori. Cells were then washed and pelleted. Binding of HopQ to 

CEACAM1 was determined via western blot using a GFP antibody. B. Input lanes 

contain 10% input (GFP-tagged CEACAM1 N domains). Pulldown lanes contain GFP-

tagged CEACAM1 N domains incubated H. pylori. A band in the pulldown lane 

indicates the binding of H. pylori to the N domain of CEACAM1 via HopQ.  
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The following sections describe in detail the specific laboratory methods and 

materials employed: 

Cell culture, transfections, and protein production: 

Human embryonic kidney cell line 293T (ATCC CRL-1573) were cultured in 

Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum, L-

glutamine, and antibiotics at 37oC in 5% CO2 and were sub-cultured every second 

day.  The GFP-tagged CEACAM1 N-terminal domain proteins from various primates 

were expressed by cloning into a mammalian expression vector (pcDNA). Secretion of 

GFP-tagged CEACAM1 N-terminal domain protein from various primate species into 

the culture media was achieved by transient transfections of 293T cells using 

Lipofectamine 3000 (Life Technologies). Filtered supernatants and lysates were used 

for pulldown experiments.  

Bacterial strains and growth conditions: 

H. pylori strain G27 was grown on a horse blood agar plate under aerobic conditions 

(10% CO2 and 37o) for 96 hours. All bacterial colonies were scraped into Luria broth 

(LB) and colony-forming units (c.f.u.) were estimated by OD600nm readings according to 

a standard curve. H. influenzae strains EAGAN, 5, and 11 were grown on chocolate 

agar plates at 5% CO2 and 37oC overnight. One colony from each of the H. influenzae 

strains was precultured in brain-heart infusion broth (containing NAD and hemin) 

overnight until the mid-log phase (OD600nm = 1) (see Future Directions for more on H. 

influenzae).  
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Bacterial pulldown: 

Bacterial cultures were incubated with GFP-tagged CEACAM1 N-terminal domain 

proteins from various primates for 30 minutes at room temperature, with head-over-

head rotation. After incubation, bacteria were washed 2 times with 1X PBS and boiled 

in 1X sodium dodecyl sulfate (SDS) sample buffer (62.5 mM Tris-HCl, pH 6.8, 2% 

wt/vol SDS, 10% glycerol, 50 mM dithiothreitol (DTT) and 0.01% wt/vol bromophenol 

blue) before sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

and western blotting. 

Western blot: 

Equal volumes of CEACAM1-GFP fusion protein with bacterial culture in SDS and 

10% inputs were loaded on SDS–PAGE gels. After electrophoresis, separated proteins 

were transferred to nitrocellulose membrane. Membranes were blocked in 5% non-fat 

milk for 1 hour at room temperature and incubated overnight with the primary antibody 

(α-GFP mouse, monoclonal, Sigma). After washing with 1X PBS, membranes were 

incubated with the secondary antibody (HRP-conjugated goat-α-mouse) and the ladder 

antibody (HRP-conjugated precision protein strep-tactin). Proteins were detected using 

an enhanced chemiluminescence western blotting detection kit (Advansta). Imaging was 

performed with a chemiluminescent western blot imager (LI-COR Biosciences).  

Phylogenetic analysis:  

HopQ maximum likelihood phylogeny was generated using protein sequences from 

approximately 20 H. pylori strains with the type-I HopQ allele in PhyML. A 

phylogenetic tree was generated using FigTree and used in a Phylogenetic Analysis by 
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Maximum Likelihood (PAML) that calculated the ratio of non-synonymous to 

synonymous substitutions (dN/dS ratio). Sites under positive selection were mapped 

onto three-dimensional molecular structures available from the Protein Databank (PDB) 

using UCSF Chimera. 

Sequence alignment:  

Sequences of primate CEACAM1 N domain were aligned using the MUSCLE 

algorithm (Edgar, 2004) and visualized with AliView.  
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Results  

PAML generated a ratio of non-synonymous to synonymous substitutions over 1 

which indicates that sites on type-I HopQ are rapidly evolving. Eight sites were found 

to be under positive selection; two of the sites are not on the crystal structure of type-I 

HopQ and are therefore not shown (Figure 10; pink residues). Importantly, some of the 

sites on type-I HopQ with signatures of positive selection contact sites on the N domain 

of CEACAM1 that are also under positive selection in primates (Figure 10; teal 

residues). Some of the sites on type-I HopQ with signatures of positive selection are 

also near sites on the N domain of CEACAM1 that frequently vary in humans, called 

high frequency coding polymorphisms (Figure 10; orange residues).   

 

 
 
 
 
 
 
 
 
 
 

 

Figure 10. Signatures of positive selection in type-I HopQ  

Eight residues (six shown) on type-I HopQ were identified by PAML to be under 

positive selection (pink residues). Teal residues indicate sites on the N domain of 

CEACAM1 that are under positive selection. Orange residues in the N domain of 

CEACAM1 are sites of high frequency coding polymorphisms in humans.  
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The results from the H. pylori binding assay show that HopQ binds to the N 

domains of human, chimpanzee, and gorilla CEACAM1 (Figure 11). 

 
 

Figure 11. CEACAM1 recognition of type-I HopQ is species-specific 

H. pylori bound via HopQ to the N domains of human, chimpanzee, and gorilla 

CEACAM1, but failed to bind to the N domains bonobo, orangutan, baboon, and 

squirrel monkey CEACAM1. The phylogenetic tree on the left shows the relatedness of 

the primates used.  

The results from the H. influenzae binding assay show that OMP P1 from all 

three strains (strain 5, strain 11, and EAGAN) only binds to the N domain of human 

CEACAM1 (Figure 12). Therefore, was no observed difference in the binding of OMP 

P1 to the N domain of human CEACAM1 based on the presence or absence of a 

capsule.  
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Figure 12. OMP P1 recognition of the N domain of CEACAM1 is human-specific  

H. influenzae adhesin OMP P1 only binds to the N domain of human CEACAM. This 

was the case with regardless of presence of a capsule: strains 5 and 11 are non-typable 

while EAGAN is typable. The phylogenetic tree on the left shows the relatedness of the 

primates used. 
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Discussion 

The discovery of signatures of positive selection on type-I HopQ was exciting 

because H. pylori is a human-associated pathogen, so selection might not be expected. 

However, since some of the sites in type-I HopQ that are under positive selection 

contact sites of high frequency coding polymorphisms in human CEACAM1, the 

signatures of positive selection on type-I HopQ might be indicative of H. pylori 

adaptation to human CEACAM1 variants. Importantly, some of the sites in type-I HopQ 

that are under positive selection contact sites on the N domain of CEACAM1 that are 

rapidly evolving in primates. This lends evidence to support a potential host-bacterial 

evolutionary “arms race” between type-I HopQ and CEACAM1 where CEACAM1 

variation that prevents attachment of H. pylori may then be counteracted by adaptation 

of HopQ, setting up repeated episodes of counter-adaptation by both host and microbial 

populations. Despite this possibility, rapid evolution of HopQ could also be a result of 

its targeting by the host immune system. Since HopQ is an extracellular bacterial 

protein, it is exposed to antibodies and other immune proteins. Thus, host immune 

defense may be responsible for HopQ’s evolution.    

We found that the H. pylori adhesin HopQ type-1 (from strain G27) binds 

human, chimpanzee, and gorilla CEACAM1. This is surprising because H. pylori is 

considered a human-specific microbe and humans are the principal reservoir (Brown, 

2000). Thus, the binding of H. pylori to the N domains of chimpanzee and gorilla 

CEACAM1 is intriguing. This could be relevant in the control of infectious disease 

because chimpanzees and gorillas may be susceptible to H. pylori infections via reverse 

zoonoses where H. pylori jumps species from humans.   
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Moreover, it is curious that HopQ binds the N domains of chimpanzee and 

gorilla CEACAM1, but not the N domain of bonobo CEACAM1 because humans are 

more closely related to bonobos and chimpanzees than they are gorillas. To elucidate 

why HopQ bound to some but not all of the N domains of primate CEACAM1 proteins, 

the amino acid sequences of the N domains of CEACAM1 of various primates were 

aligned and compared (Figure 13).  

 
Figure 13. Amino acid sequence alignment of the N domains of CEACAM1 from 

various primates (adapted from Emily Baker) 

The yellow represents amino acid changes in primate CEACAM1 N domains that differ 

from the human CEACAM1 N domain (shown in red). Red asterisks above the 

sequences indicate sites undergoing positive selection. Entire N domain is not shown.   

The N domains of chimpanzee and gorilla CEACAM1 are very similar to the N domain 

of human CEACAM1: the N domains of human and chimpanzee CEACAM1 differ in 

only 4 amino acids (96% amino acid identity) and the N domains of human and gorilla 

CEACAM1 differ in 5 amino acids (95.33% amino acid identity). Due to their 

similarity in amino acid sequence, it is intelligible why N domains of human, 

chimpanzee, and gorilla CEACAM1 are bound by H. pylori. Interestingly, we found 

that the N domains of human and bonobo CEACAM1 differ in 17 amino acids (83% 

amino acid identity). This larger divergence from the human CEACAM1 N domain 

amino acid sequence might explain why H. pylori, a human-associated microbe, is 

unable to bind to the N domain of bonobo CEACAM1.  

                                     *             *  *      *              *      
Bonobo     KLTIESTPFNVAEGKEVLLLTHNLPQNHIGYTWYKGERVDGNRLIVAHAIQNQQTTRGPAHSGRETVYPN 
Human      QLTTESMPFNVAEGKEVLLLVHNLPQQLFGYSWYKGERVDGNRQIVGYAIGTQQATPGPANSGRETIYPN 
Chimpanzee QLTTESMPFNVAEGKEVLLLVYNLPQQLFGYSWYKGERVDGNRQIVGYVIGTQQATPGPAYSGRETTYPN 
Gorilla    QLTTESMPFNVAEGKEVLLLVHNLPQPLFGYSWYKGERVDGNRQIVGYVIATQQATPGPAYSGRETINPN 
Orangutan  QLTTESTPFNVAEGKEVLLLVHNLPQNPLGYNWYKGEMVDANHRIIGYVISDQLTTPGPAYSSREKIYPN 
Baboon     QLTIESRPFNVAEGKEVLLLAHNLSQNLIGYNWYKGERVDAKRLIVAYVIGTQQTTPGPAHSGREIIYSN 
           :** ** *************.:** *  :**.***** **.:: *:.:.*  * :* *** *.**    * 
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The finding that H. influenzae (strain 5, strain 11, and EAGAN) only binds to 

the N domain of human CEACAM1 was interesting because its failure to bind to N 

domains of non-human primate CEACAM1 proteins suggests that OMP P1 of H. 

influenzae is more species-specific than HopQ of H. pylori. Since the N domains of 

human and chimpanzee CEACAM1 differ in only 4 amino acids (Figure 13), those 

amino acids must be preventing OMP P1 from binding to chimpanzee CEACAM1 since 

it can bind to human CEACAM1. Future research might investigate which amino acids 

in the N domain of chimpanzee CEACAM1 prevent OMP P1 from binding since 

identifying the determinants of host specificity could reveal new avenues for infectious 

disease treatment and prevention  

Bacteria are often specific to a single host species. The finding that the H. pylori 

adhesin HopQ is rapidly evolving and binds to the N domains of human, chimpanzee, 

and gorilla CEACAM1 not only has global health significance in terms of a reverse 

zoonotic threat, but also reveals new avenues to study the mechanisms underlaying host 

specificity and microbial adaptation. With more research, the evolutionary and 

molecular processes that shape host-microbe interactions, such as the engagement of 

CEACAM1 by HopQ, can be further elucidated to give insights into the treatment and 

prevention of infectious disease.  
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Future Directions 

 Since the HopQ gene has diversity that exhibits two allelic families, a logical 

next step is to determine if type-II HopQ also has signatures of positive selection. Since 

strains with different HopQ alleles differ in virulence and geographical location, 

comparing the evolution of the two HopQ types could be telling. In addition, the 

binding interactions of H. pylori type-II HopQ with the N domains of primate 

CEACAM1 proteins must be tested and compared to the binding interactions of H. 

pylori type-I HopQ with the N domains of primate CEACAM1 proteins.   

A growing body of evidence suggests that many other bacteria bind to the N 

domain of human CEACAM1 via adhesins. In addition to H. pylori and H. influenzae, 

future research should test the binding interactions of other pathogens known to exploit 

the N domain of human CEACAM1. Neisseria gonorrhoeae and Neisseria meningitidis 

(bacteria which express Opa adhesins), Moraxella catarrhalis (bacteria which expresses 

USP A1 adhesin), and Candida albicans (a fungus that exploits human CEACAM1) are 

some of such pathogens (Voges et al., 2010 and Klaile et al., 2017). It is currently 

unknown whether these microbes bind to the N domains of non-human primate 

CEACAM1 proteins.  

 Since some strains of bacteria may express more adhesins than others, it would 

be beneficial to express adhesins in E. coli before testing their binding interactions with 

CEACAM1 to allow for a more controlled system. Additionally, this system would be 

helpful in testing the binding interactions of bacteria that express multiple different 

adhesins on their surface, such as certain Neisseria species. Site-directed mutagenesis 
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could be employed to mutate specific sites in adhesins to determine which sites are 

necessary for CEACAM1 binding (Figure 14).  

 
Figure 14. E. coli adhesin expression system  

Adhesins from a multitude of pathogens that target CEACAM1 can be expressed in E. 

coli to better assess their binding interactions with CEACAM1. With this method, we 

can test how site-directed mutations in adhesins affect its ability to interact with primate 

CEACAM1.
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