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DISSERTATION ABSTRACT 
 
Danielle Emily Cosme 
 
Doctor of Philosophy 
 
Department of Psychology 
 
March 2020 
 
Title: Behavioral and Neural Effects of Self-determined Choice on Goal Pursuit 
 
 

A wealth of research has documented the positive associations between autonomy 

and health and well-being. Acting in autonomous, self-determined ways promotes 

intrinsic motivation and has been linked to more successful goal pursuit in numerous 

domains. However, it is unclear how motivation might affect the ability or tendency to 

use self-regulatory strategies. If such strategies are the building blocks that enable 

successful goal pursuit, then investigating how motivation affects strategy 

implementation might help elucidate the mechanisms underlying the relationship between 

motivation and goal pursuit.  

The goal of this dissertation was to assess whether and how motivation impacts 

goal pursuit during a novel appetitive self-regulation task in which participants use 

cognitive reappraisal to control their cravings for personally-desired foods. Since choice 

is a primary method for supporting autonomy, and autonomy is associated with greater 

intrinsic motivation and more successful goal pursuit, we expected that manipulating 

motivation via choice would result in enhanced goal pursuit during this task. Across three 

experiments, we showed that autonomous and controlled goal pursuit were dissociable 

neurally, and that autonomous goal pursuit was perceived as less difficult across task 

goals. Furthermore, we demonstrated that the degree to which choice helps or hinders 
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goal pursuit is dependent on how self-determined and autonomously motivated choice 

feels. Together, these results help refine neurobiological and social psychological theories 

of motivation, self-regulation, and goal pursuit. 

This dissertation includes previously published co-authored material. 
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CHAPTER I 

INTRODUCTION 

Whether your goal is to start running, eat more healthfully, or simply to better 

manage your emotional experience, how successful you are at achieving your goal will 

have major implications for your health and well-being (Carver & Scheier, 1999; Deci & 

Ryan, 2000; Sheldon & Elliot, 1999). As universal as goal striving is, so too is the 

experience of failure and frustration. Why is it that some people are better at achieving 

their goals than others? What strategies do they use to help them regulate their behavior 

in goal-congruent ways? And why is it that goals you’re passionate about seem easier to 

accomplish? How does motivation influence goal pursuit? Inspired by these questions, 

this dissertation will explore how choice, motivation, and difficulty impact goal pursuit in 

the context of an appetitive self-regulation task with the goal of identifying mechanisms 

underlying the relationship between motivation and goal pursuit. 

Goal pursuit, motivation, and self-regulation 

Some goals are large and take years to accomplish, while others might be ticked 

off a to-do list in the space of an afternoon. In general, a goal can be defined as a mental 

representation of a desired state or outcome (Braver et al., 2014). Goals are hierarchically 

organized with lower-level, more concrete goals (e.g., prepare a salad) subserving higher-

order, more abstract goals (e.g., live healthfully; Carver & Scheier, 1999). Lower-order 

goals tend to be more closely connected to the “how” of goal pursuit, whereas higher-

order goals tend to be connected to the “why” (Vallacher & Wegner, 1989). Within this 

framework, the higher a goal is in the hierarchy, the more important and self-relevant it 

tends to be, with the highest order constituting the ideal self (Carver & Scheier, 1999). 
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Goals can also be characterized as being more or less integrated into the self with greater 

integration denoting that a goal is motivated by intrinsic, self-determined reasons, rather 

than by external pressure or coercion (Deci & Ryan, 2000). As such, Self-Determination 

Theory posits that the quality of the motivation, or driving force, behind a goal matters; 

that is, the same goal pursued for two different reasons will be associated with different 

probabilities of success and implications for well-being. For example, the concrete goal 

of preparing a salad might be associated with a higher-order goal of eating healthfully for 

one person because it feels good and because they feel pressured to conform to society’s 

beauty ideals for another. This example illustrates the distinction between autonomous or 

“want to” motivation and controlled or “have to” motivation (Milyavskaya et al., 2015; 

Werner & Milyavskaya, 2019). Self-Determination Theory would predict that the person 

in the former example would be more likely to accomplish their higher-order goal 

because their motivation is autonomous rather than controlled.  

Autonomous motivation refers to the extent to which goals have been internalized 

and are pursued for authentic reasons, such as providing meaning and purpose aligned 

with an individual’s core values and identity (Deci & Ryan, 2000; Sheldon & Elliot, 

1999). This type of motivation encompasses the motivational orientations outlined in 

Self-Determination Theory (Deci & Ryan, 2000) as intrinsic, integrated, and identified. 

Whereas intrinsic motivation refers to goals that are completely internalized and pursued 

for the sake of interest and enjoyment alone, integrated and identified motivation are less 

internalized, but are still pursued volitionally. On the other hand, controlled motivation 

refers to the extent to which goals are pursued due to external factors, such as societal 

pressure, rewards, or punishments–also referred to as external motivation–or to avoid 
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internal feelings, such as guilt or shame–which is referred to as introjected motivation. At 

their core, autonomous goals feel volitional and self-determined–you want to do them, 

whereas controlled goals feels obligatory–you have to do them.  

Across a large number of studies, research has demonstrated that the reason why a 

person pursues a goal is critically important for both the probability of success, and for 

health and well-being more broadly (for reviews and meta-analyses, see Ng et al., 2012; 

Ryan et al., 2006; Slemp et al., 2018). In contrast to controlled motivation, autonomous 

motivation has been linked to more successful goal pursuit in a variety of domains 

(Milyavskaya et al., 2015; Werner & Milyavskaya, 2019; Judge et al., 2005; Sheldon & 

Elliot, 1998, 1999; Vansteenkiste et al., 2004; Koestner et al., 2002; Werner et al., 2018; 

Koestner et al., 2008). However, the mechanism underlying the relationship between 

motivation and successful goal pursuit remains unclear. One hypothesis is that 

autonomous motivation facilitates goal attainment because goal pursuit is experienced as 

less effortful and more automatic (Werner et al., 2016; Werner & Milyavskaya, 2019), 

making it easier to engage in self-regulation, which is defined as goal-congruent behavior 

(Carver & Scheier, 1982). Throughout this dissertation, self-regulation and pursuit of 

goals for relatively self-determined, intrinsic reasons will be referred to as autonomous 

self-regulation and autonomous goal pursuit, whereas those that are pursued for relatively 

extrinsic reasons will be referred to as controlled self-regulation and controlled goal 

pursuit. 

There are a variety of strategies individuals use to regulate their behavior in 

service of their goals. Regulation becomes particularly important in the face of tempting, 

goal-incongruent alternatives, such as browsing Twitter instead of writing your 
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dissertation. During such dilemmas, individuals can engage in self-control to promote 

goal-congruent behavior. Although classic definitions of self-control have typically 

emphasized the effortful inhibition of impulses, more contemporary definitions recognize 

that self-control need not be effortful (Fujita, 2011; de Ridder et al., 2012; Gillebaart et 

al., 2018; de Ridder et al., 2018). Here, we use the operational definition of self-control 

as favoring distal, abstract goals over proximal, concrete goals when they are in conflict 

(Fujita, 2011). Self-control encompasses a variety of distinct strategies that can be used to 

navigate goal conflicts (Duckworth et al., 2018). Drawing a parallel to the process model 

of emotion regulation (Gross & Thompson, 2007), recent research has enumerated 

various personal strategies, including situation selection and modification, distraction, 

reappraisal, and suppression, that can be used to exert self-control as a goal conflict 

unfolds (Duckworth et al., 2016). This reflects a burgeoning integration between the 

fields of emotion regulation, self-control, and goal pursuit (Gross, 2015). 

 The studies in this dissertation focus on cognitive reappraisal, which is the 

reconstrual of a stimulus to change its affective meaning (Gross, 1998). Although much 

of the original research on cognitive reappraisal was conducted using aversive stimuli, 

there is growing acknowledgement that it can be used to regulate a variety of affective 

responses, including appetitive motivations (Giuliani & Berkman, 2015). Indeed, this 

strategy can be flexibly used to modulate affective responses in order to enhance the 

value of goal-congruent behavior (e.g., by focusing on how good making progress on 

your dissertation will feel) or to decrease the value of goal-incongruent behavior (e.g., by 

reframing Twitter browsing as a waste of time) by emphasizing relevant features of a 

stimulus (Giuliani et al., 2014; Hutcherson et al., 2012; Kober et al., 2010; Yokum & 
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Stice, 2013). Furthermore, brief training in cognitive reappraisal has been shown to 

improve healthy decision making (Boswell et al., 2018), underscoring the translational 

potential of this strategy. However, it is unclear how motivation might affect the ability 

or tendency to use self-regulatory strategies. If such strategies are the building blocks that 

enable successful goal pursuit, then investigating how motivation affects strategy 

implementation might help elucidate the mechanisms underlying the relationship between 

motivation and goal pursuit (Cosme & Berkman, 2020). 

The paradox of choice 

 A common means of supporting autonomy and promoting autonomous motivation 

is to provide individuals with choice (Ryan & Deci, 2006). While many studies have 

demonstrated a positive relationship between choice and autonomous motivation (for a 

meta-analysis, see Patall et al., 2008), task performance (Murayama et al., 2015), 

engagement (Leotti & Delgado, 2011), persistence (Bonita et al., 2019), and self-

regulation (Legault & Inzlicht, 2013), others have shown detrimental effects of choice on 

motivation (Botti & Iyengar, 2004; Iyengar & Lepper, 2000) and self-regulation (Vohs et 

al., 2008; Bigman et al., 2017). One possibility for these conflicting results is that the 

quality of the choice options matter. Self-Determination Theory suggests that to enhance 

autonomous motivation, choice must feel meaningful and self-determined (Reeve et al., 

2003; Ryan & Deci, 2006). From this perspective, if choice does not actually confer 

personal control or if an individual feels pressured to choose a particular option, potential 

benefits of choice may be undermined (Moller et al., 2006; Sullivan-Toole et al., 2017; 

Legault & Inzlicht, 2013). On the other hand, some research has suggested that even 

superficial or illusory control can promote autonomous motivation and improve task 
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performance (Leotti & Delgado, 2011; Murayama et al., 2015; Langer, 1975). Indeed, a 

large meta-analysis on the effect of choice on autonomous motivation found that 

irrelevant choice had the strongest effect on motivation (Patall et al., 2008). It is difficult 

to reconcile these disparate results and also account for other moderating factors, such as 

goal difficulty (Sullivan-Toole et al., 2017), choice valence (Leotti & Delgado, 2011), the 

number of choice options and choices (Patall et al., 2008), and individual differences in 

preference for choice (Iyengar & Lepper, 1999) and need for autonomy (Schüler et al., 

2014). Further research is necessary to determine when and for whom choice promotes 

autonomous motivation and successful goal pursuit. Throughout this dissertation, I use 

the term “choice” simply to denote when one or more option is present and “self-

determined choice” when the choice architecture is autonomy-supportive and/or choice is 

perceived as autonomous.  

Overview of studies and aims 

The overarching goal of this dissertation was to explore whether and how choice 

affects motivation and goal pursuit during an appetitive self-regulation task. Across three 

studies, I investigated the following questions: Does choice help or hinder goal pursuit in 

this context? Does it promote autonomous motivation? Is controlled versus autonomous 

goal pursuit dissociable behaviorally or neurally? And are the effects of choice moderated 

by subjective task difficulty and/or individual differences in autonomous motivation? I 

addressed these questions in three samples of college students–largely during the 

transition to college–as this period is particularly important for the development of 

autonomous goal pursuit (Lamborn & Groh, 2009; Oudekerk et al., 2014; Gestsdottir & 
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Lerner, 2008) and individuals likely vary in the degree to which they have internalized 

self-regulatory goals and engage in them without external support (Koestner et al., 2010).  

Study 1  

 The purpose of this study was to develop a cognitive reappraisal task that uses 

appetitive stimuli and incorporates choice. In order to robustly elicit appetitive 

motivation, we utilized personally-craved food as stimuli and adapted a commonly used 

craving regulation task (Giuliani et al., 2014; Giuliani & Pfeifer, 2015; Kober et al., 

2010) by adding a choice condition. We employed this new task, the Regulation of 

Craving–Choice (ROC-C) task, in a sample of 33 incoming college freshmen while they 

underwent functional neuroimaging in an MRI scanner to investigate the neural and 

behavioral effects of choice on craving regulation. 

Study 2 

The goal of this study was twofold. First, we aimed to design an improved version 

of the ROC-C task, in order to control for potential confounds identified during Study 1. 

Second, we tested whether the effect of choice on task performance during the ROC-C 

task could be enhanced through experimental manipulation. We devised two between-

subject manipulations with the goal of making choice more salient and personally-

relevant during the ROC-C task in order to promote autonomous motivation. This pilot 

study was conducted in a sample of college students (N = 105). 

Study 3 

The goal of this study was to further investigate the effects of choice on 

autonomous motivation and goal pursuit during the ROC-C task in a large sample of 

incoming college freshmen (N = 117) while they underwent functional neuroimaging. We 
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tested whether choice enhanced goal pursuit, and whether these effects were moderated 

by the perceived difficulty of goal pursuit and individual differences in autonomous 

motivation. We also tested whether there was evidence that controlled goal pursuit was 

dissociable from autonomous goal pursuit neurally.   

This dissertation contains published co-authored material. Study 1 (described in 

Chapter II) is published in Social Cognitive and Affective Neuroscience and was co-

authored by A. Mobasser, D. Zeithamova, E. T. Berkman, and J. H. Pfeifer.  
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CHAPTER II 

STUDY 1: CHOOSING TO REGULATE:  

DOES CHOICE ENHANCE CRAVING REGULATION? 

 

This chapter is published in Social Cognitive and Affective Neuroscience and is therefore 

formatted according to the journal’s publication standard–the American Psychological 

Association style manual. It was co-authored by A. Mobasser, D. Zeithamova, E. T. 

Berkman, and J. H. Pfeifer. With help from my colleagues, I designed and collected the 

data for this study; I preprocessed and analyzed the data, wrote the first draft of the 

manuscript, and revised it based on my colleagues’ feedback. 

 

Introduction 

The ability to control appetitive urges, such as cravings for food or drugs, or 

impulses to engage in risky sexual behavior, is an essential skill for health and well-

being. Craving is an affective state characterized by strong appetitive motivation and can 

be regulated using various strategies (Giuliani & Berkman, 2015; Kober & Mell, 2015), 

including cognitive reappraisal or the reconstrual of a stimulus to change its affective 

meaning (Gross, 1998). Recent research has shown that cognitive reappraisal can be used 

to effectively reduce cravings for a variety of appetitive stimuli, including food (Siep et 

al., 2012; Giuliani et al., 2013; Yokum & Stice, 2013; Giuliani et al., 2014), drugs (Kober 

et al., 2010; Kober et al., 2010) and alcohol (Naqvi et al., 2015) and elicits activity in a 

network of regions, including dorsolateral (dlPFC), ventrolateral prefrontal cortex and 

dorsomedial prefrontal cortex (dmPFC) (for a meta-analysis, see Buhle et al., 2014). 
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While the implementation of cognitive reappraisal has been studied extensively, much 

less is known about earlier stages in the emotion regulation process, including the 

decision to engage in regulation (Gross, 2015). As emotion regulation in the real-world 

typically begins with the decision to regulate, laboratory studies focusing exclusively on 

regulation implementation may actually misjudge individuals' emotion regulation abilities 

outside the lab where they might otherwise choose not to engage in emotion regulation in 

the first place, independent of ability. Indeed, previous research has indicated that 

regulation ability and frequency are only modestly related (McRae et al., 2012) if at all 

(Giuliani & Pfeifer, 2015). 

Emotion regulation choice 

Although this is a relatively new area, researchers have begun to investigate the 

process of choosing to engage in emotion regulation and factors affecting choice. Within 

the extended process model of emotion regulation (Gross, 2015), this antecedent stage is 

referred to as identification, and concerns the processes of forming an emotion regulation 

goal that ultimately leads to the decision to engage (or not engage) in regulation. Initial 

studies indicate that when given the choice whether to naturally view aversive images or 

engage in emotion regulation, individuals choose to regulate their emotions using 

cognitive reappraisal, though there are individual differences in frequency, and mean 

frequencies across individuals are lower than might be expected (Suri et al., 2015; Doré 

et al., 2017). For example, Suri et al. (2015) showed that when individuals were forced to 

make a choice between viewing aversive images and cognitively reappraising them, 

individuals chose to reappraise on approximately 40% of trials. However, when the 

forced choice was removed and the default option was to view (which may be more akin 
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to the default in the real world), participants chose to reappraise relatively infrequently 

(approximately 10% of trials), demonstrating that although individuals do choose to use 

cognitive reappraisal to reduce negative affect, their choices are strongly influenced by 

the choice architecture. 

However, whether and how choosing to regulate affects regulation 

implementation remains unknown. While the extended process model does not make 

explicit predictions regarding this relationship, it does posit that the strength of the 

emotion regulation goal formed during identification will affect the efficacy of 

implementation, with stronger regulation goals leading to more effective implementation. 

One factor that likely affects the strength of the regulation goal and the subsequent 

implementation process is the degree to which the decision to regulate is self-determined. 

Choice supports autonomous self-regulation 

Self-Determination Theory (Deci & Ryan, 2000) suggests that the degree to 

which a goal is autonomous will affect the level of intrinsic motivation to regulate. 

Indeed, environments and choice architectures that promote autonomy facilitate self-

regulation and improve health and well-being (Deci & Ryan, 2000; Ng et al., 2012). 

Although it is difficult to manipulate autonomy in the laboratory, autonomy can be 

supported by providing individuals with choice. For example, one study showed that 

choice improved self-regulation on the Stroop task, by increasing intrinsic motivation and 

heightening attentional engagement (Legault & Inzlicht, 2013). In the context of emotion 

regulation, one functional neuroimaging (fMRI) study compared the neural and affective 

consequences of freely chosen reappraisal of aversive images (choice condition) and 

instructed reappraisal of aversive images (no choice condition; Kühn et al., 2014). In line 
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with the findings from Legault & Inzlicht (2013), choice was associated with increased 

activity in regions associated with attention and control (e.g. dlPFC, dmPFC and 

posterior parietal cortex) and enhanced regulation success. However, it is unknown 

whether choice will similarly enhance emotion regulation in response to appetitive 

stimuli. 

The present study 

The present study integrates the extended process model of emotion regulation 

and Self-Determination Theory to investigate the relationship between regulation 

identification and implementation, and characterize whether choice enhances craving 

regulation at the behavioral and neural levels during reappraisal of appetitive stimuli. 

Participants were presented with images of personally craved foods and performed two 

actions: they either actively viewed the foods (‘look’) or reappraised their cravings for 

them (‘regulate’). Choice was manipulated by instructing participants on each trial 

whether to view or reappraise (‘no-choice’) or asking them to choose whether to view or 

reappraise (‘yes-choice’). We hypothesized that choice would increase intrinsic 

motivation to regulate, resulting in greater regulation success. As such, we expected an 

interaction between action (look vs regulate) and choice (yes vs no) on craving ratings, 

such that choice would increase regulation success. Neurally, we expected increased 

blood-oxygen-level-dependent (BOLD) signal in the frontoparietal control network (e.g. 

dlPFC, dmPFC and posterior parietal cortex) for the main effect of choice. Due to the 

lack of previously reported effects, we did not have strong hypotheses regarding regions 

involved in potential interactions between choice and action. 
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Materials and methods 

Participants 

Participants were 33 incoming college students (16 females, M = 18.12, 

SD = 0.34) recruited in the summer during freshman orientation at the University of 

Oregon, as part of a longitudinal study on health and well-being during the transition to 

college. Three participants were excluded from all analyses for failure to comply with 

instructions and one for indicating they disliked the food images. Two additional subjects 

were excluded from the univariate neural analyses because they exhibited excessive 

motion or did not complete the final run of the task. As follow-up multivariate analyses 

could still be performed on the participant missing the final task run, this participant was 

included in these analyses. This yielded a total of 29 participants for behavioral analyses, 

27 for univariate neural analyses and 28 for multivariate neural analyses. This study was 

approved by the University of Oregon Institutional Review Board; all participants gave 

written informed consent and were compensated for their participation. 

Procedure 

Participants were presented with images of personally craved foods and 

completed a craving regulation task while in the MRI scanner. Prior to this, participants 

completed a structured training session to learn how to perform the craving regulation 

task and selected their top three ‘most craved’ foods from a list of 14 food categories 

(described below). Food craving was operationalized as having a strong desire to eat the 

food even when not hungry. To control for individual differences in hunger, participants 

reported their current hunger on a five-point scale (1 = not hungry at all, 5 = extremely 

hungry) and the time since their last meal. Body mass index (weight in kg/height in m2) 
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was measured to control for individual differences in body mass. Participants were then 

situated in the MRI scanner and completed the craving regulation task (described below). 

To ensure task compliance, the experimenter interviewed participants after the first run of 

the task to help them improve their reappraisal strategy if they reported having difficulty 

and again after scanning to assess fidelity to the reappraisal instructions. Outside of the 

scanner, participants completed a short rating task in which they rated their craving for 

(i.e. the desire to eat) each of the food images they viewed while in the scanner. 

Participants also completed a number of survey measures as a part of the longitudinal 

study that will not be discussed further. 

Stimuli 

Stimuli were 84 appetizing images of food items based on participants’ food 

preferences. Participants chose their top three ‘most craved’ food categories from the 

following menu: barbeque, burgers, candy, cheese, chips, chocolate, cookies, doughnuts, 

French fries, fruit, fruit desserts, pasta, pizza and roasted vegetables. Each category 

contained 28 images independently rated for desirability (stimuli available via 

http://dsn.uoregon.edu/foodie). 

Craving regulation task 

Participants completed a craving regulation task (Giuliani et al., 2014; Giuliani & 

Pfeifer, 2015) that was modified to include a choice manipulation. Participants either 

actively viewed (‘look’ condition) or reappraised their craving for (‘regulate’ condition) 

the food images. On half of the trials, participants freely chose whether to look or 

regulate (‘yes-choice’ condition), and on the other half, participants were instructed 

whether to look or regulate (‘no-choice’ condition). Therefore, the task design was a 2 × 2 
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within-subjects repeated measures factorial with action (look, regulate) and choice (yes, 

no) as factors. To ensure a sufficient number of observations per condition, participants 

were instructed to choose to look approximately 50% of the time and to regulate the other 

50%. They were reassured, however, that it was fine if their ratio was not exactly 50/50. 

They were also informed that their choices should be spontaneous (e.g. not alternating 

between the two actions). Descriptive analyses confirmed that participants were generally 

able to follow these instructions. The average percentage of regulation trials in the choice 

condition was 49.4% (SD = 5.4%; range = 38.1%–61.0%). More information regarding 

the relationship between percentage of regulation trials and outcome measures can be 

found in the Supplementary material. 

On all look trials, participants were instructed to imagine that the food items were 

real and to consider how they would interact with them. On all regulate trials, participants 

were instructed to reappraise their craving for the foods by considering short- or long-

term negative health consequences associated with consumption (e.g. stomach aches, 

weight gain, cavities), and participants were instructed to try to imagine how the health 

effects would feel physically. With the help of the experimenter, participants generated 

several negative health consequences so as to have multiple strategies to use while 

completing the task. 

Each trial (see Figure 2.1) was 15 seconds long and consisted of the following 

events: cue (2 seconds), image presentation (7 seconds), craving rating (4 seconds) and 

action report (2 seconds). Inter-trial intervals were selected from a gamma distribution 

jitter (M = 1.01, SD = 0.26), and participants viewed a fixation cross during this period. 

On each trial, participants were cued about the instruction to look or regulate (no-choice 
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condition) or to make a choice to look or regulate (yes-choice condition). The task 

consisted of three runs and each run consisted of 28 trials: 7 trials instructing participants 

to look, 7 trials instructing participants to regulate and 14 trials instructing participants to 

choose whether to look or regulate. To reduce potential image-related confounds (i.e. 

choosing to regulate on relatively less craved images and choosing to look on relatively 

more craved images) on choice trials, participants made their decision during the cue 

phase and were told that it was important to stick with their choice once made. After the 

cue, participants proceeded to look or regulate while viewing the food image, reported 

their craving for the food by rating how much they desired to eat the food item (1 = no 

desire, 5 = strong desire) and finally reported their instructed or chosen action. To 

minimize demand characteristics (e.g. reduced craving ratings on regulate trials), the 

experimenter stated that participants were not expected to be able to regulate well on 

every trial and stressed the importance of making honest craving ratings. Within each 

run, the trial order was optimized to maximize contrast estimation using a genetic 

algorithm (Wager & Nichols, 2003). Stimuli and trial order varied by subject, and run 

order was also counterbalanced across participants. Stimuli were presented using 

Psychtoolbox 3 (Brainard, 1997), and participants responded using a five-button box. 
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Figure 2.1. Task design. Each trial consisted of a 2 second cue period, followed by a 
7 second image presentation during which participants looked or regulated while viewing 
the food image. Participants then had 4 seconds to rate their desire to eat the food and 
2 seconds to report whether they looked or regulated on the trial. All trials ended with a 
jittered fixation cross for an average of 1 second. 
 

Post-task craving ratings 

Participants completed a rating task after the scan session to account for 

idiosyncratic reactions to stimuli (e.g. not liking some ice cream images due to the 

presence of a disliked topping). Participants were instructed to view the images afresh 

and rate their current craving, irrespective of their rating during the regulation task. Post-

task ratings were centered within-subject to account for potential habituation effects. 

Neuroimaging data acquisition 

Data were acquired using a 3T Siemens Skyra scanner at the University of 

Oregon’s Lewis Center for Neuroimaging. High resolution anatomical volumes were 

acquired using a T1-weighted MP-RAGE pulse sequence and functional volumes were 

acquired using a T2*-weighted echo-planar sequence (voxel size = 2 mm3). Scan 

parameters are listed in Supplementary material. 

Behavioral analysis 

Multilevel modeling was used to test the effects of action and choice on self-

reported craving ratings. Post-task craving ratings were included as a covariate to control 

for idiosyncratic reactions to stimuli. The model included the fixed effects of action, 
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choice, action × choice and post-task craving ratings, and the inclusion or exclusion of 

random effects was determined by sequentially removing effects that did not account for 

significant variance (see Supplementary material). Regulation success was defined as the 

mean difference in craving ratings between look and regulate conditions (look − regulate) 

and was calculated for each level of choice separately. Statistical analyses were 

performed in R 3.3.0 (R Core Team, 2016; https://www.r-project.org/) using the lme4 

package (Bates et al., 2015). Behavioral data and related analysis scripts are available via 

the Open Science Framework (http://osf.io/e9cqv). 

Univariate neural analysis 

Images were preprocessed and analyzed using SPM12 (Wellcome Department of 

Cognitive Neurology; http://www.fil.ion.ucl.ac.uk/spm) with the following steps: 

realignment of functional images, coregistration of the anatomical image, manual 

reorientation of all images, and segmentation of the anatomical image. Segmented images 

for each subject were combined to form a group template using Dartel and flow fields 

were generated for each subject. Functional images were then spatially normalized to a 

Montreal Neurological Institute (MNI) standard using the Dartel template and individual 

flow fields, and smoothed using a 6 mm3 full-width at half maximum (FWHM) Gaussian 

smoothing kernel. 

In first-level statistical analyses, event-related condition effects were estimated 

using a fixed-effects general linear model and convolving the canonical hemodynamic 

response function with stimulus events. Separate regressors were entered for conditions 

of interest (no-choice look, yes-choice look, no-choice regulate and yes-choice regulate) 

and modeled during the image presentation period. Additional regressors were added for 
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the cue period, rating period and reporting period. Realignment parameters were 

transformed into five motion regressors, including absolute displacement from the origin 

in Euclidean distance and the displacement derivative for both translation and rotation, 

and a single trash regressor for images with >1 mm translation or rotation or visible 

motion artifacts (e.g. striping). These regressors were included as covariates of no 

interest. One participant was excluded from the group-level analysis for having >15% 

unusable volumes, which was more than 3 SD from the mean (M = 2.26%, SD = 4.08%). 

Additional regressors (covariates of no interest) were included as needed for trials in 

which participants failed to report whether they looked or regulated during yes-choice 

trials (N = 21, 0.87% of trials), or reported doing the opposite of the instruction during 

no-choice trials (N = 20, 0.83% of trials). All data were high-pass filtered at 128 seconds 

and modeled with a first-order autoregressive error structure. Linear contrasts for each 

condition of interest vs rest were estimated for each participant and used as inputs in 

second-level analyses. 

A flexible factorial model was used to estimate second-level random effects. To 

determine the main effects of action, choice and their interaction, condition contrast 

images from each participant were used as inputs. This model was masked using a gray 

matter mask created by calculating the average of all subjects’ segmented grey matter 

maps, smoothing the average with a 6 mm3 FWHM Gaussian smoothing kernel and 

binarizing using the optimal thresholding protocol. 

To correct for multiple comparisons, cluster-extent thresholding was implemented 

using AFNI version AFNI_16.1.06 (Cox, 1996). Smoothness was first estimated for each 

subject using AFNI’s 3dFWHMx tool with the spatial autocorrelation function and then 
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averaged across subjects. To determine probability estimates of false-positive clusters 

given a random field of noise, Monte-Carlo simulations were conducted with AFNI’s 

3dClustSim. To achieve a whole-brain familywise error rate of α = 0.05, a voxel-wise 

threshold of p < 0.001 and cluster extent of k > 108 was estimated (voxel dimensions = 2 

mm3). 

Multivariate neural analysis 

To further explore differences in neural activity between yes-choice and no-

choice trials, we conducted a follow-up analysis using multi-voxel pattern analysis 

(MVPA). For each participant, functional images were realigned, coregistered to the 

high-resolution anatomical image and smoothed using a 2mm3 FWHM Gaussian 

smoothing kernel in SPM12. The same first-level modeling procedure detailed above was 

followed, with the exception that models were run in native-space and each trial was 

entered in the model as a separate regressor (rather than grouped by condition). The 

resulting statistical maps for each trial were concatenated to create a beta-series (Rissman 

et al., 2004) and z-scored within run. 

Classifier-based MVPA analyses were implemented in MATLAB 2014a 

(MathWorks; http://www.mathworks.com) using the Princeton MVPA Toolbox (Detre et 

al., 2006). To restrict the number of voxels, subject-specific masks were created using a 

standard parcellation atlas based on intrinsic connectivity from resting-state fMRI (Yeo et 

al., 2011). The frontoparietal network from this atlas was registered for each subject 

using FreeSurfer (Fischl, 2012; http://surfer.nmr.mgh.harvard.edu/) and binarized in 

SPM12. We then tested how well the trial-by-trial activation patterns in the frontoparietal 

network differentiated between look and regulate trials using a leave-one-out cross-
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validation procedure. During each cross-validation fold, a linear logistic regression 

classifier was trained to distinguish between look and regulate trials from two of three 

functional runs and then applied to the remaining run. This procedure was repeated so 

that each run served as a testing run, yielding three cross-validation accuracies for each 

subject. To test whether classification accuracy differed as a function of level of choice, 

this procedure was conducted separately for yes-choice and no-choice trials and accuracy 

was regressed on choice using multilevel modeling with subject intercepts as random 

effects. 

Results 

Behavioral results 

We used multilevel modeling to evaluate the effect of choice and action on self-

reported craving ratings. All parameter estimates and relevant statistics can be found in 

Table 2.1. Consistent with previous findings, we found a significant main effect of action 

(see Figure 2.2), with lower ratings for food items on regulate trials (M = 2.36, SD = 0.98) 

than on look trials (M = 3.72, SD = 1.14). As expected, craving ratings on no-choice trials 

(M = 3.04, SD = 1.29) did not differ from yes-choice trials (M = 3.05, SD = 1.24) and the 

main effect of choice on craving ratings was not significant. The interaction between 

action × choice was significant (Figure 2.3), but contrary to our predictions, the difference 

between look and regulate trials was lower for yes-choice trials (Mdiff = 1.29, SD = 0.59) 

than for no-choice trials (Mdiff = 1.42, SD = 0.60). Further, visual inspection revealed that 

choice affected both the look and regulate conditions, with cravings on yes-choice look 

trials rated lower than on no-choice look trials and higher on yes-choice regulate trials 

than on no-choice regulate trials (Figure 3B). Including hunger, last meal time, and body 
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mass index did not improve model fit or change any of the results, χ2(3) = 1.79, 

p = 0.616. 

 

Table 2.1 

Parameter estimates for fixed effects behavioral analysis 

Parameter b 95% CI SE df t p 
Intercept 3.70 3.51 3.90 0.10 32.00 37.48 < .001 

Choice (yes) -0.07 -0.16 0.03 0.05 2261.57 1.37 .171 

Action (regulate) -1.34 -1.57 -1.10 0.12 33.75 11.43 < .001 

Average post-task rating 0.39 0.33 0.46 0.03 28.34 11.83 < .001 

Choice × Action 0.15 0.01 0.29 0.07 2256.06 2.14 .032 

Note. The reference group for Choice is no and the reference group for action is look. Degrees of 

freedom (df) were calculated using the Satterthwaite approximation. CI, confidence interval. 

 

 

Figure 2.2. (A) Parameter estimates for the fixed-effect of action from the multilevel 
model predicting self-reported craving ratings and (B) the raw subject means. Error bars 
and bands are 95% confidence intervals. 
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Figure  2.3. Parameter estimates from the multilevel model predicting self-reported 
craving ratings, plotted as (A) mean regulation success (look − regulate) for no- and yes-
choice separately and (B) the interaction between Action and Choice (blue = no, 
yellow = yes). Error bars are 95% confidence intervals. 
 

Univariate neural results 

Main effect of choice. To investigate areas that showed relatively greater BOLD 

signal during implementation following choice, a contrast of yes > no was computed 

during the image presentation period (Figure 2.4). We observed increased BOLD signal 

in the frontoparietal control network, with significant clusters in bilateral posterior 

parietal cortex and lateral and medial prefrontal cortex. Additional clusters were found in 

left inferior temporal gyrus and left cerebellum. The reverse contrast, no > yes choice 

(Figure 2.4), revealed significant clusters of activation in bilateral ventromedial prefrontal 

cortex with a peak in left middle orbital gyrus. Table 2.2 shows the full results. 

Unthresholded statistical maps for this effect and all other effects reported in this article 

are available through NeuroVault (Gorgolewski et al., 2015; 

http://neurovault.org/collections/2427). 
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Table 2.2 

Regions, MNI coordinates, cluster extent, and peak t values for the main effects of 
yes > no choice and no > yes choice 
Contrast and region MNI Coordinates (x, y, z) Extent (k) Peak t 
Yes > No 
R Angular Gyrus 44 -50 38 1037 6.03 

  R Inferior Parietal Lobule 44 -44 60 1037 4.02 

R Middle Frontal Gyrus 32 46 38 1952 5.88 

  R Middle Frontal Gyrus 42 50 20 1952 5.41 

  R Middle Orbital Gyrus 22 60 -8 1952 4.58 

L Inferior Parietal Lobule -44 -48 42 1013 5.23 

  L Superior Parietal Lobule -32 -64 50 1013 3.67 

L Cerebellum (VII) -40 -72 -52 771 5.06 

  L Cerebellum (VIII) -40 -48 -46 771 4.59 

  L Cerebellum (Crus 1) -42 -80 -26 771 4.07 

Bilateral PCC 0 -26 28 140 4.83 

R Precuneus 12 -60 40 272 4.73 

  L Precuneus -8 -66 40 272 4.53 

L Superior Medial Gyrus 2 22 50 363 4.51 

L Inferior Temporal Gyrus -60 -34 -18 221 4.47 

L Middle Frontal Gyrus -32 54 18 265 4.41 

R IFG (p. Orbitalis) 36 26 -6 142 4.39 

R Superior Frontal Gyrus 18 18 54 326 4.08 

  R Middle Frontal Gyrus 38 10 52 326 3.88 

L Inferior Parietal Lobule -38 -52 44 1013 3.37 

              

No > Yes 
L Mid Orbital Gyrus -2 50 -8 334 4.91 
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Figure 2.4. Univariate main effects for Choice. Results are thresholded at p < .001 and k 
= 108. Cluster extent (k) is measured in 2 mm3 voxels. 
 

Main effect of action. To assess which areas of the brain had relatively stronger 

BOLD response when participants were reappraising their cravings and actively viewing 

food items, we computed contrasts for regulate > look and look > regulate. These results 

maps are visualized in Figure 2.5, and clusters that survived thresholding are reported in 

Table 2.3. 
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Table 2.3 

Regions, MNI coordinates, cluster extent and peak t values for the main effects of 
regulate > look and look > regulate 
Contrast and region MNI Coordinates (x, y, z) Extent (k) Peak t 
Regulate > Look           

L Post. Med. Frontal Gyrus -8 14 66 1796 7.49 

  L Superior Frontal Gyrus -12 52 42 1796 6.63 

  L Superior Medial Gyrus -8 34 52 1796 5.78 

L Middle Frontal Gyrus -44 10 54 782 6.88 

L IFG (p. Orbitalis) -48 34 -12 2495 6.83 

  L Temporal Pole -40 14 -40 2495 6.06 

  L IFG (p. Triangularis) -54 18 16 2495 5.91 

R Cerebellum (VII) 32 -76 -44 1216 6.75 

  R Cerebellum (Crus 2) 10 -82 -26 1216 5.37 

L Middle Temporal Gyrus -66 -36 -2 167 4.38 

              Look > Regulate           

R IFG (p. Triangularis) 48 34 20 3284 6.02 

  R Middle Orbital Gyrus 38 48 -6 3284 5.87 

  R Superior Frontal Gyrus 20 58 10 3284 5.22 

L Postcentral Gyrus -50 -22 22 3657 5.89 

  L IFG (p. Opercularis) -60 6 32 3657 5.61 

  L Postcentral Gyrus -42 -32 60 3657 5.48 

R Intraparietal Sulcus 30 -44 42 3125 5.53 

  R Rolandic Operculum 58 -18 22 3125 5.37 

  R Angular Gyrus 34 -66 52 3125 4.85 

R Intraparietal Sulcus 30 -44 42 3125 5.53 

R Insula Lobe 42 -2 12 181 5.42 

R Insula Lobe 42 -2 12 181 5.42 

L Post. Med. Frontal Gyrus -2 -4 54 189 4.88 

R MCC 10 -38 42 769 4.79 

  R Precuneus 6 -66 50 769 3.85 

  L Precuneus -2 -46 62 769 3.59 

R Inferior Temporal Gyrus 58 -40 -12 554 4.74 

  R Cerebellum (Crus 1) 48 -56 -24 554 3.72 

  R Inferior Temporal Gyrus 60 -20 -22 554 3.54 

R IFG (p. Opercularis) 46 8 32 516 4.74 

  R IFG (p. Opercularis) 56 8 14 516 3.94 

L Cerebellum (VIII) -28 -70 -52 298 4.69 

R Cerebellum (VIII) 22 -56 -52 260 4.29 

R Calcarine Gyrus 10 -68 22 285 4.19 

L Inferior Temporal Gyrus -52 -58 -8 163 3.89 
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Figure 2.5. Univariate main effects for Action. Results are thresholded at p < .001 and k 
= 108. Cluster extent (k) is measured in 2 mm3 voxels. 
 

Interaction between action and choice. No significant clusters of activation for 

either the positive or negative effect of the interaction survived thresholding. However, to 

explore sub-threshold interactions, we parcellated the brain into 353 clusters (Craddock et 

al., 2012) and calculated the average effect size for the interaction within each parcel. 

This map, as well as similar maps for the simple effects, has been uploaded to the 

collection for this article on NeuroVault. 

Post hoc multivariate neural results 

We expected that choice would increase engagement with the task, resulting in 

increased activity in attention- and control-related regions and greater regulation success. 

Though we observed increased activity in the frontoparietal network following choice, 

behavioral results indicated reduced rather than enhanced regulation success. Although 

seemingly at odds, one hypothesis consistent with these findings is that choice may 

disrupt concurrent allocation of cognitive resources that are bandwidth limited (Vohs et 
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al., 2008). We reasoned that if choice disrupted cognitive resource allocation during 

implementation, then neural representations for look and regulate would be less 

distinguishable in the yes-choice vs no-choice condition, mirroring the reduced self-

reported regulation success in the choice condition. To test this hypothesis, we conducted 

post hoc analyses using MVPA. We measured classification accuracy of look vs regulate 

trials in the frontoparietal network and predicted lower classification accuracy on yes-

choice relative to no-choice trials. Consistent with this prediction, we observed 

significantly lower classification accuracy for yes-choice (M = 0.65, SD = 0.16) than for 

no-choice (M = 0.70, SD = 0.17) trials, t(137.17) = 2.48, p = .014. Parameter estimates and 

statistics are in Table 2.4 and visualized in Figure 2.6. 

 

 

Figure 2.6. Mean group and subject classification accuracy from MVPA analyses 
classifying look and regulate trials, plotted separately for no- and yes-choice. Error bars 
are 95% confidence intervals and the dotted line at 50% represents chance accuracy. 
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Table 2.4 

Parameter estimates for fixed effects of MVPA analysis 

Parameter b 95% CI SE df t p 

Intercept 0.70 0.66 0.75 0.02 41.82 29.91 < .001 

Choice (yes) -0.05 -0.09 -0.01 0.02 137.17 2.48 .014 

Note. The reference group for choice is no. Degrees of freedom (df) were calculated using the 

Satterthwaite approximation. CI, confidence interval. 

 

Discussion 

Our goal was to investigate whether and how choice affects appetitive regulation 

during a craving reappraisal task. As expected, reappraisal effectively reduced self-

reported craving for personally craved foods. In line with previous studies, we also 

observed increased activity in regions associated with reappraisal (e.g. dlPFC, 

ventrolateral prefrontal cortex and dmPFC) and decreased activity in vmPFC, a region 

implicated in valuation and reward-processing (Hare et al., 2009; Kober et al., 2010; 

Giuliani et al., 2014). However, contrary to our prediction, choice slightly reduced rather 

than enhanced regulation success. This behavioral effect was not readily explainable by 

the univariate activation results. While choice was associated with relatively greater 

BOLD signal in the frontoparietal control network, there were no interactions at the 

whole-brain level that might explain the behavioral results. To reconcile the neural and 

behavioral findings, we hypothesized that choice may have disrupted allocation of 

cognitive resources during implementation. Consistent with this hypothesis, classifier-

based MVPA demonstrated less differentiation between look and regulate trials in the 

yes-choice relative to no-choice condition. 
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Neural and behavioral effects of choice 

Based on the theoretical premise that choice would enhance motivation for and 

engagement with the task, we expected to see increased BOLD signal in regions 

associated with attention and control following choice. In accordance, we replicated 

previous research showing increased activity in the frontoparietal control network during 

choice trials (Kühn et al., 2014). However, in contrast to Kühn et al. (2014), this activity 

was not accompanied by enhanced regulation success. Instead, choice slightly reduced 

regulation success on average. 

One key difference between Kühn et al. (2014) and our study is that we used 

appetitive rather than aversive stimuli. Because appetitive stimuli like craved foods 

typically elicit approach tendencies rather than avoidance tendencies (Lang & Bradley, 

2010), motivation to regulate affective responses likely differs between appetitive and 

aversive stimuli. This asymmetry may have made regulation more effortful in our study 

and could have undermined potential regulatory enhancement effects of choice. Although 

this has not been tested directly with emotional pictures, recent research has shown that 

affective context can modulate the effect of choice. For example, when both gains and 

losses are presented, individuals prefer choice in the gain, but not the loss condition 

(Leotti & Delgado, 2014). 

Another potential explanation that reconciles these findings is that choice led to 

inefficient allocation of limited cognitive resources, such as attention and working 

memory. On choice trials, participants may have over-allocated attention to the decision 

during the choice phase (e.g. by tracking the number of times they chose to look and 

regulate) or equivocated about the decision during the implementation phase, resulting in 
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the combination of increased activity in the frontoparietal network and reduced 

implementation efficacy. Consistent with this explanation, the follow-up MVPA analyses 

suggested that the neural representations for look and regulate trials were less 

differentiable. The pattern of the behavioral results also supports this conclusion, as 

choice reduced implementation efficacy for both look and regulate trials. That is, craving 

ratings were lower on yes-choice look trials than on no-choice look trials and higher on 

yes-choice regulate trials than on no-choice regulate trials. Together, these results support 

the hypothesis that, rather than enhancing task engagement and regulation success, in 

some contexts, choice may disrupt regulation. These findings are significant because the 

majority of research on cognitive reappraisal has focused narrowly on regulation per se 

without considering the effects of the antecedent choice to regulate, and therefore may 

misjudge cognitive regulation ability outside the lab when individuals must first choose 

to regulate their emotions. 

Helpful and harmful effects of choice 

Although the present manipulation of choice did not enhance regulation success, 

other laboratory studies have demonstrated positive effects of choice on self-regulation 

(Legault & Inzlicht, 2013; Kühn et al., 2014) and task performance (Murayama et al., 

2015) and engagement (Leotti & Delgado, 2011; Legault & Inzlicht, 2013) more 

generally. Although several of these studies manipulated choice in a similar fashion, it is 

possible that choice in the context of this study may have felt burdensome rather than 

motivating (Schwartz, 2000; Vohs et al., 2008). 

Indeed, although choice often promotes autonomy and intrinsic motivation, in 

certain contexts, choice can be detrimental. For example, individuals report decreased 
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preference for choice in decisions involving unattractive or difficult options (Iyengar & 

Lepper, 2000; Botti & Iyengar, 2004). For choice to enhance motivation, choices should 

feel volitional and self-determined (Reeve et al., 2003; Ryan & Deci, 2006). If 

individuals feel pressured or compelled to choose a particular option, or if the choice 

does not confer actual agency (i.e. the locus of perceived causality is external), the 

positive effects of choice can be undermined (Moller et al., 2006; Legault & Inzlicht, 

2013; Sullivan-Toole et al., 2017). In our study, we asked participants to try to look and 

regulate approximately equally. While necessary to ensure there were sufficient trials per 

condition, this may have reduced participants experience of self-determination on choice 

trials. Further, because we sought to study the effect of choice on craving regulation in a 

normative sample and therefore did not explicitly recruit participants based on health- or 

diet-related goals, it is possible that choice in this context may not have been meaningful 

to all participants. Future research assessing the relationship between choice and craving 

regulation may benefit from a stronger choice manipulation to support autonomy, such as 

by providing more personally relevant choices or studying this relationship in individuals 

with explicit health or dietary concerns. 

This study has several limitations. First, on choice trials, participants chose before 

viewing the food images. We did this to avoid confounding the decision to regulate with 

stimulus features (e.g. looking when food images were relatively more craved and 

regulating when food images were relatively less craved), even though it restricted 

ecological validity. Second, our task was not designed to assess how choice affected 

neural activity separately during the choice and implementation phases. Because 

regulation choices likely involve a host of cognitive processes, such as working memory 



 
 

33 

to track previous decisions and effort calculations (Shenhav et al., 2013), we cannot rule 

out that these processes extended into the implementation phase. Indeed, this explanation 

would be consistent with the pattern of results indicating that choice disrupted 

implementation. Future studies may benefit from separating the choice and 

implementation phases to control for increases in cognitive load associated with choice 

(e.g. decision making and set shifting; Lo et al., 2012). It is possible that doing so would 

reduce the cognitive disruption and lead to enhanced regulatory success in the choice 

condition. However, it is important to note that implementation under the present 

conditions may more closely resemble the implementation process in the real-world. 

Third, to have sufficient trials per condition, participants were instructed to look and 

regulate approximately equally. This was necessary to ensure adequate power, but 

regulation frequency is likely an individual difference that should be investigated 

subsequently (see Supplementary material; McRae et al., 2012). Fourth, we did not 

measure affective experience, perceived effort or self-determination. Including these 

measures would help characterize the effects of choice on craving regulation. Fifth, we 

focused on cognitive reappraisal, but there are other effective regulatory strategies, such 

as mindfulness-based approaches, that require less effortful control (Westbrook et al., 

2013; Kober & Mell, 2015). Because choice appears to have taxed limited cognitive 

resources, it may differentially affect such regulatory strategies and should be 

investigated in future studies. Finally, future studies should extend this work to include 

other outcomes measures, such as food choice (Hare et al., 2011; Hutcherson et al., 

2012). 
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Conclusions 

The present study is the first to investigate how choice affects appetitive 

regulation in the context of a craving reappraisal task. This study adds to the growing 

body of research on the cognitive regulation of appetitive motives, as well as emerging 

research on regulation choice. Contrary to the theoretical prediction that choice would 

increase task engagement and improve regulation, choice actually disrupted the 

implementation process, resulting in increased activity in the frontoparietal network and 

reduced regulation success. These unexpected results highlight the importance of 

considering upstream processes, such as regulation choice, when studying emotion 

regulation. 

Supplementary material 

Supplementary material for this study is included in Appendix A.  
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CHAPTER III 

STUDY 2: A PILOT STUDY COMPARING THE EFFICACY OF TWO 

EXPERIMENTAL AUTONOMY MANIPULATIONS TO ENHANCE TASK 

PERFORMANCE 

 

Introduction 

Building on the results from Study 1, which suggested that choice may have taxed 

cognitive resources and felt burdensome rather than motivating, the purpose of this study 

was to redesign the Regulation of Craving–Choice (ROC-C) task and test whether the 

effect of choice on goal pursuit (i.e., task performance) could be enhanced through 

experimental manipulation. We reasoned that choice may only improve goal pursuit if it 

is perceived as self-determined–that is, it feels volitional and self-relevant–and therefore 

devised two between-subject manipulations with the goal of strengthening the connection 

between choice and autonomy. 

The first experimental manipulation (“Food” manipulation) sought to bolster 

autonomy by giving participants meaningful choice about how they approached the task, 

by either emphasizing the consequences of eating the foods they saw in the ROC-C task 

or emphasizing the immediate experience of eating the foods. After choosing how they 

wanted to approach the task, they wrote a short paragraph elaborating on why they made 

this choice. The second experimental condition (“Agency” manipulation) sought to 

bolster autonomy by emphasizing the value of choice and highlighting choice as a form 

of self-expression and means of agency. Participants in this condition read a short 

paragraph about how choice is a fundamental part of being human and how choices–big 
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and small alike–shape identity, and then wrote a short paragraph about a specific choice 

they recently made that illustrated taking ownership of their life.  

We also made several substantial modifications to the ROC-C task used in Study 

1, which showed reduced regulation success and greater activity in the salience and 

frontoparietal control networks on choice trials. First, we altered the task design by 

grouping trials in sets of three to reduce potential set shifting costs and cognitive burden 

associated with choice. Thus, rather than choosing (or being instructed) on every trial 

individually, participants chose (or were instructed) to pursue the same goal for three 

trials in a row. Second, we added a short preview of the three upcoming foods prior to the 

choice/instruction cue and added a short break after the cue to more clearly separate the 

act of choosing from goal pursuit. Third, we unconstrained choice so that participants 

were encouraged to choose to look and regulate as frequently as they wanted, rather than 

doing so approximately evenly. Fourth, we added summaries of participant choices at the 

end of each task run to reduce potential cognitive load associated with keeping track of 

their choices throughout the task. Last, we added difficulty ratings after each trial to 

investigate the degree to which choice affects perceived difficulty of goal pursuit on a 

trial-by-trial basis. 

The goal of this study was to pilot this new version of the ROC-C task and 

determine whether we could potentiate task effects by adding an experimental 

manipulation designed to make choice feel more self-determined. Across all experimental 

groups, we expected that choice would be associated with enhanced task performance. 

With respect to trial-level difficulty ratings, we expected that the Regulate condition 

would be rated as more difficult than the Look condition and that choice would be 
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associated with lower perceived difficulty (Werner et al., 2016; Milyavskaya et al., 

2015). We also investigated the possibility that autonomous motivation enhanced by 

choice may only be helpful when goal pursuit is perceived as relatively difficult (Klein et 

al., 1999). If this were the case, then we would expect to observe an interaction between 

task Goal, Choice, and Difficulty. We used model comparison to determine whether the 

difficulty of goal pursuit accounted for additional variance and interpret effects of the 

between-subject autonomy manipulations in the best fitting model.  

We expected that successful manipulations would be associated with stronger 

effects of choice on task performance, operationalized as the interaction between Goal 

and Choice (and potentially Difficulty). For participants in the Food autonomy 

manipulation group, we expected that improvements in task performance would be 

related to which approach they identified with and chose to focus on during the task. 

Specifically, we expected that those who chose to focus on the immediate experience of 

eating food during the task would show higher craving ratings when they chose to look, 

whereas those who focused on the consequences of consumption would show lower 

craving ratings when they chose to regulate. For those in the Agency autonomy 

manipulation group, we expected choice effects to operate on both task goals; that is, 

choosing to look would be associated with higher craving ratings and choosing to 

regulate would be associated with lower craving ratings. We also expected successful 

manipulations to be associated with increased perceived autonomous motivation rated 

after the ROC-C task was completed. 
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Method 

Participants 

Participants were 105 college students (65 females, 37 males, 3 not reported; Mage 

= 20.66, SDage =  3.10) recruited through the University of Oregon Human Subjects Pool. 

No participants were excluded from this study. This study was approved by the 

University of Oregon Institutional Review Board; all participants gave written informed 

consent and were compensated with course credit for their participation. 

Procedure 

First, participants selected their three “most craved” foods from a list of 14 

categories (described below) and completed a rating task to assess craving ratings prior to 

the ROC-C task. Food craving was operationalized as having a strong desire to eat the 

food, even when not hungry. Next, participants were randomly assigned to one of two 

experimental autonomy manipulation conditions, “Food” (N = 38) or “Agency” (N = 32),  

or a control condition, “Control” (N = 35). Participants in the Food and Agency 

manipulation conditions completed a writing task, whereas participants in the Control 

condition did not. After this, all participants completed a structured training session to 

learn how to perform the Regulation of Craving–Choice (ROC-C) task and completed a 

short practice task to familiarize themselves with the task timing. To ensure task 

compliance, the experimenter interviewed participants after the first run of the task to 

help them improve their reappraisal strategies if they reported having difficulty and again 

after the task to assess fidelity to the reappraisal instructions. After the task, participants 

completed the Intrinsic Motivation Inventory (Ryan, 1982; McAuley et al., 1989), as well 

as individual difference measures and experimental manipulation questions. 
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Measures 

Agency manipulation. In an effort to increase the connection between choice and 

autonomy while completing the ROC-C task, participants in the Agency autonomy 

manipulation group completed an experimental manipulation inspired by Whitson & 

Galinsky (2008). In this manipulation, participants read the following passage, which 

emphasized choice as a form of self-expression and a means of agency: 

The following information will be important to keep in mind as you complete the 

rest of the study. 

  

“Our ability to make choices is fundamental to our sense of ourselves as human 

beings . . . . Whom we love; where we work; how we spend our time; what we 

buy; such choices define us in the eyes of ourselves and others . . . .” 

–Cass Sunstein, Legal Scholar 

 

“We are the captains of our own ships. Nearly each and every choice is yet 

another opportunity to steer the course of our lives.” 

–Unknown 

  

As these quotes illustrate, making choices is an important part of being human. 

We make choices all the time. Some are big–which class to take, what career to 

pursue, who to marry; other choices are smaller–what to eat, which clothes to 

wear, or which route to take to school or work. No matter the size, making 

choices is a critical way in which we express and define ourselves, as well as take 

ownership of our lives. The ability to make choices is also important for health 

and well-being. Research shows that making choices and feeling in control are 

essential ingredients for leading a healthy, happy life. 

 

They then wrote 4-6 sentences about a specific choice they made in the past few 

weeks that demonstrated having agency and taking ownership of their lives. The purpose 

of this manipulation was to emphasize that even small choices, including choosing which 

goal to pursue in the ROC-C task, can be expressions of one’s identity and manifestations 

of autonomy. 
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Food manipulation. Because participants were not recruited based on whether 

they valued healthy eating or had explicit goals to control their desire for unhealthy 

foods, and therefore may not perceive choice during the ROC-C task as goal-relevant in a 

broader sense, this experimental manipulation sought to provide participants with a 

meaningful choice for how they approached the ROC-C task. Participants saw the 

following text and chose whether they wanted to emphasize the immediate experience of 

eating foods (more akin to the “look” condition in the ROC-C task; N = 22) or focus on 

the potential consequences of eating the foods (more akin to the “regulate” condition in 

the ROC-C task; N = 16). They then wrote 4-6 sentences explaining and elaborating on 

their preference for the approach to food that they chose to emphasize during the task. 

The following information will be important to keep in mind as you complete the 
rest of the study. Not everyone thinks about food the same way or to the same 
degree when choosing what to eat. 
 
Description 1: 
Sometimes, people focus on the potential effects of eating certain foods. They 
might think carefully about how eating those foods would affect their health in the 
long run and make food choices based on these factors. For example, beyond 
considering taste, they might also think about the food’s ingredients, nutritional 
content, or origin, and anticipate how they’ll feel after they’ve eaten the food. 
 
Description 2: 
Other times, people focus on the sensory experience of eating certain foods or 
simply don’t think much about the foods at all. Their food choices tend to be 
rooted in how the foods will make them feel in the moment rather than in the long 
run. For example, they might think about the food’s smell, texture, taste, or just 
anticipate the pleasure of eating the food. 
 
When making food choices, a person’s thoughts might alternate between two 
descriptions above. For purposes of this study, we'd like for you to decide which 
of them best depicts your thoughts about food right now. In a few minutes, you’ll 
do a task where you view your favorite foods and think about them in different 
ways. How would you prefer to approach today’s food task? Would you like to 
emphasize the potential effects of eating the foods or simply focus on the 
immediate experience? 
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Stimuli and craving rating task. Stimuli were 90 appetizing images of food 

items based on participants’ food preferences. Participants chose their top three “most 

craved” food categories from the following menu: barbeque, burgers, candy, cheese, 

chips, chocolate, cookies, doughnuts, French fries, fruit, fruit desserts, pasta, pizza, and 

roasted vegetables. Each category contained 45 images, the majority of which were 

procured from the FoodIE stimuli set, which was independently rated for desirability by a 

sample of individuals who reported craving that food category (available via 

http://dsn.uoregon.edu/foodie). Participants then completed a computerized task in which 

they rated their desire to eat the foods (1 = no desire to eat, 4 = strong desire to eat). 

Participants were also given the option to flag foods they have a strong aversion to or 

cannot eat. These ratings were ranked with respect to desirability and randomized within 

rating category. Flagged foods were removed and the top 90 images were selected to use 

in the craving regulation task. Of these 90 images, the top 60 were classified as relatively 

“more craved” and the next 30 were classified as relatively “less craved.”  

Regulation of Craving–Choice task. All participants completed a modified 

version of the Regulation of Craving–Choice (ROC-C) task used in Study 1. On each 

trial, participants either actively viewed (“Look” condition) or reappraised their craving 

for (“Regulate” condition) the foods. On 60% of the trials, participants freely chose 

whether to look or regulate (“Yes-Choice” condition), and on the other 40%, participants 

were instructed whether to look or regulate (“No-Choice” condition). Therefore, the task 

design was a 2 × 2 within-subjects repeated measures factorial with Goal (Look, 

Regulate) and Choice (Yes, No) as factors. On all Look trials, participants were 

instructed to imagine that the food items were real and to visualize how they would 
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interact with them. Their goal on these trials was to make the food feel as vivid and real 

as possible. On all Regulate trials, participants were instructed to reappraise their craving 

for the food by considering short- or long-term negative consequences associated with 

consumption (e.g., stomach aches, weight gain, cavities, guilt, embarrassment), and 

participants were instructed to try to imagine how these negative effects would feel 

physically. With the help of the experimenter, participants generated several, personally-

relevant negative consequences so as to have multiple strategies to use while completing 

the task. The goal on Regulate trials was to make the negative consequences feel as real 

as possible. To ensure that all participants chose to look and regulate during the task, 

participants were told that it was up to them to decide whether they wanted to look or 

regulate on any given set, and how frequently they wanted to look and regulate 

throughout the task, but that they should do some of each. To help participants keep track 

of their choices, a summary of the number of times they chose to look and regulate were 

presented at the end of each run.  

To reduce potential set shifting costs and the cognitive burden observed in Study 

1, we modified the task so that trial-type switched after three trials, rather than every trial 

(Figure 3.1). To ensure the images across trial sets were relatively equivalent with respect 

to desirability, each set included two “more craved” images and one “less craved” image 

based on the rating task. At the beginning of each set, participants saw a preview of the 

three images in the set for 2 seconds, after which they saw a cue informing of the set type 

for 2 seconds. On No-Choice sets, participants simply pressed a button to acknowledge 

the set type (Look or Regulate), whereas on choice sets, they chose whether to Look or 

Regulate. Participants then viewed a fixation cross for 2 seconds before the food image 
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appeared, after which they completed three trials, pursuing the same goal (Look or 

Regulate) in each. On each trial, participants viewed a food image for 6 seconds while 

looking or regulating, and then rated their current to eat the food in (1 = no desire, 4 = 

strong desire). To minimize demand characteristics (e.g., reduced craving ratings on 

Regulate trials), the experimenter stated that participants were not expected to be able to 

regulate well on every trial and stressed the importance of making honest craving ratings. 

They then rated how difficult it was to fulfill their goal (1 = not hard, 4 = very hard). On 

Look trials, the goal was defined as the ability to make the food feel vivid and real, 

whereas on Regulate trials, the goal was to make the negative consequences feel vivid 

and real. Each rating was on the screen for 2.5 seconds and trials were separated by 2 

seconds of fixation. The task consisted of three separate runs and each run consisted of 30 

trials: 18 Choose trials (6 sets), 6 Look trials (2 sets), and 6 Regulate trials (2 sets). 

Stimuli were presented using Psychtoolbox 3 (Brainard, 1997) and participants responded 

using a keyboard. 

 

Figure 3.1. Modified ROC-C task design. Each set consisted of the following events: 
preview (2s), cue (2s), fixation (2s), and three trials. Each trial consisted of the following 
events: image presentation (6s), fixation (1s), craving rating (2.5s), and effort rating 
(2.5s). Trials were separated by 2s of fixation. 
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 Phenomenology of choice. To characterize the affective experience of choice, 

and compare potential differences in autonomous motivation for Yes-Choice versus No-

Choice trials during the task, participants rated Yes-Choice and No-Choice sets in a post-

task survey on the following dimensions: enjoyment, engagement, motivation, and 

difficulty. Conditions were rated separately and for each statement (e.g., “I felt engaged 

with the task during these sets”), participants rated how much they agreed or disagreed (1 

= strongly disagree, 5 = strongly agree). To assess autonomous motivation, we averaged 

the enjoyment, engagement, and motivation items for each condition separately. This 

measure and the difficulty item served as the primary manipulation checks to assess 

whether the Yes-Choice condition was associated with greater self-reported autonomous 

motivation and less perceived difficulty, and how they differed as a function of the 

experimental autonomy manipulations. 

Intrinsic Motivation Inventory. To measure autonomous motivation during the 

ROC-C task as a whole, we administered the Intrinsic Motivation Inventory (Ryan, 1982; 

McAuley et al., 1989). This scale consists of 37 items measuring interest and enjoyment, 

perceived competence, perceived choice, and pressure and tension, during the task as a 

whole, as well as the value and usefulness of the task, the importance of the task and how 

much effort was put into it. Each item is scored on a 7-point scale (1 = not at all true, 7 = 

very true). The relatedness facet was omitted from this study as it was not directly related 

to our hypotheses. 

Analysis plan 

Due to the largely exploratory nature of this pilot study, we focus on estimating 

effect sizes rather than on statistical significance and therefore present effects with 95% 
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confidence intervals rather than p-values (Cumming, 2014). During model comparison, a 

model with an Akaike Information Criterion (AIC) value of at least two points lower than 

the comparator model was considered to better fit the data. For all analyses, participants 

in the Food autonomy manipulation group were separated based on whether they chose to 

focus on the immediate experience of eating (Food: Look group) or on the consequences 

of eating (Food: Regulate group) during the ROC-C task. Consequently, there were four 

autonomy manipulation groups in the analyses: Agency, Food: Look, Food: Regulate, 

and Control. 

Autonomous motivation. We investigated the degree to which the experimental 

autonomy manipulations bolstered autonomous motivation during the task in two ways. 

First, we compared mean differences between each manipulation group and the control 

group on the Intrinsic Motivation Inventory to determine whether the autonomy 

manipulations increased autonomous motivation during the task as a whole (i.e., not as a 

function of the task choice condition) compared to the control group. Autonomous 

motivation was calculated by averaging the scores on each facet, with the pressure / 

tension scale reverse coded so that higher values indicated lower pressure / tension. We 

report mean differences for each facet of the scale separately, as well as for the combined 

measure of autonomous motivation. Next, we calculated mean differences between the 

Yes- and No-Choice conditions for items on the post-task manipulation check survey, for 

each group separately. This allowed us to assess whether the effects of the autonomy 

manipulations differed as a function of the task choice condition (i.e., versus during the 

task as a whole). Due to a technical error, these survey measures were not administered to 

two participants and therefore the sample size for these analyses is N = 103. 
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ROC-C task analysis. We used multilevel modeling and model comparison to 

investigate the effect of the autonomy manipulations on goal pursuit in the ROC-C task. 

Goal pursuit was operationalized as task performance, with higher craving ratings on 

Look trials and lower craving ratings on Regulate trials indicating more successful goal 

pursuit. In the base model (Model 1 – Base), we regressed trial-level craving ratings on 

the fixed effects of Goal, Choice, and the interaction between Goal and Choice, and 

included the fixed effects of Trial and trial-level Baseline Craving collected prior to the 

task to control for habituation and idiosyncratic responses to the stimuli, respectively. In 

the next model (Model 2 – Difficulty), we added fixed effects for trial-level Difficulty 

and its interactions with Goal and Choice. We then compared how well these two models 

fit the data using AIC as the model fit index and specified a third model to test for 

moderation by autonomy manipulation group (Model 3 – Group) in the best fitting 

model. In all models, intercepts, Goal, and Baseline Craving were treated as random 

effects nested within person (Cosme et al., 2018b). Baseline Craving and Difficulty were 

Z-scored across participants and Trial was centered at 45 and scaled in units of 10. We 

report parameter estimates and 95% confidence intervals for the fixed effects from the 

best fitting model. Confidence intervals for predicted effects plots were generated using 

the bootMer function from the lme4 package with 1000 parametric simulations (Bates et 

al., 2015). 

Results 

Regulation choices 

Across the four autonomy manipulation groups, there was moderate variability in 

the percentage of trials in which participants chose to regulate their cravings (Figure 3.2; 
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SD range = 7.0 - 9.1). On average, participants in both the Agency and Control groups 

chose to regulate approximately 50% of the time (MControl = 49.8%, MAgency = 50.3%), 

whereas those in the Food group chose to regulate slightly less frequently (MFood: Look = 

48.4%, MFood: Regulate = 45.9%). 

 

Figure 3.2. Distribution of the percentage of trials in which participants chose to regulate 
their cravings as a function of autonomy manipulation group. The dotted line indicates 
50%; dots represent individuals. 

 

Autonomous motivation 

 When considering autonomous motivation during the task as a whole, the Agency 

autonomy manipulation group reported the highest autonomous motivation compared to 

the Control group (Figure 3.3B), followed by the Food: Regulate group, and finally the 

Food: Look group, which reported less autonomous motivation than the Control group 

(Table 3.1). On the subfacets of the scale, the Agency and Food: Regulate groups also 

reported higher levels of perceived choice during the task than the Control group, 

whereas the Food: Look group reported similar perceived choice. The Agency group 

reported similar levels of effort/importance and value/usefulness as the Control group, 
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whereas both Food groups reported lower levels of effort/importance. The Food: 

Regulate group endorsed greater value/usefulness than the Control group, and the Food: 

Look group endorsed less. The Food: Regulate group reported the most 

interest/enjoyment, followed by the Agency group, and finally the Food: Look group, 

which reported slightly lower interest/enjoyment than the Control group. All 

experimental groups reported lower perceived pressure and tension than the control 

group. All mean differences and confidence intervals are reported in Table 3.1. 

 

Table 3.1 
Mean differences and 95% confidence intervals between each autonomy manipulation 
group and the control group on the facets of the Intrinsic Motivation Inventory 
Facet Choice Food: Look Food: Regulate 

Autonomous motivation 0.14 [0.49, -0.21] -0.04 [0.37, -0.45] 0.11 [0.50, -0.27] 

Competence -0.05 [0.44, -0.54] 0.01 [0.61, -0.60] -0.20 [0.38, -0.79] 

Effort / importance -0.03 [0.42, -0.48] -0.26 [0.24, -0.76] -0.45 [0.15, -1.04] 

Interest / enjoyment 0.08 [0.58, -0.41] -0.03 [0.52, -0.59] 0.41 [1.07, -0.24] 

Perceived choice 0.53 [1.04, 0.02] 0.02 [0.55, -0.50] 0.58 [1.10, 0.06] 

Pressure / tension -0.27 [0.33, -0.87] -0.22 [0.49, -0.94] -0.16 [0.52, -0.84] 

Value / usefulness 0.02 [0.67, -0.63] -0.22 [0.52, -0.96] 0.19 [1.07, -0.70] 

Note. Autonomous motivation is a composite measure of all facets in the Intrinsic Motivation 
Inventory with pressure / tension items reverse coded so that higher values indicated lower 
pressure / tension. Positive values indicate that the autonomy manipulation group mean is greater 
than the control group mean. 
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Figure 3.3. Mean ratings on the A) post-task survey and B) Intrinsic Motivation 
Inventory (IMI) as a function of autonomy manipulation group. Items on the post-task 
survey were asked separately for each choice condition, whereas items in the IMI were 
asked about the task as a whole. Autonomous motivation is a composite measure of the 
engagement, liking, and motivation items in the post-task survey, and all facets in the IMI 
with pressure / tension items reverse coded so that higher values indicated lower pressure 
/ tension. Error bars are 95% confidence intervals across ratings. 

 

We next considered whether the autonomy manipulation had specific effects on 

autonomous motivation and perceived difficulty as a function of the choice conditions 

during the ROC-C task (Figure 3.3A). The Control group reported the largest difference 
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in autonomous motivation between the choice conditions, experiencing greater 

autonomous motivation during Yes-Choice trials (Table 3.2). Both the Food groups also 

reported greater autonomous motivation during Yes-Choice trials, whereas the Agency 

group reported lower autonomous motivation during Yes-Choice trials. The Food: 

Regulate group had the largest difference in difficulty, reporting less difficulty on Yes-

Choice than No-Choice trials. The Control group also reported less difficulty on the Yes-

Choice trials, whereas the Agency group reported equivalent difficulty, and the Food: 

Look group reported more difficulty on Yes-Choice trials. Mean differences between the 

ratings for the Yes- and No-Choice conditions and confidence intervals around them are 

reported for all items in Table 3.2. 

Table 3.2 
Mean differences and 95% confidence intervals between the Yes-Choice and No-Choice 
conditions on the post-task survey for each autonomy manipulation group 
Facet Control Choice Food: Look Food: Regulate 

Autonomous 
motivation 

0.21 [0.55, -0.14] -0.19 [0.22, -0.60] 0.15 [0.64, -0.34] 0.06 [0.70, -0.58] 

Difficulty -0.26 [0.24, -0.77] -0.03 [0.60, -0.67] 0.18 [0.98, -0.62] -0.56 [0.37, -1.49] 

Engagement 0.26 [0.64, -0.11] -0.06 [0.40, -0.53] 0.23 [0.70, -0.25] 0.06 [0.89, -0.76] 

Liking 0.09 [0.56, -0.38] -0.42 [0.03, -0.87] 0.23 [0.81, -0.35] 0.06 [0.64, -0.51] 

Motivation 0.26 [0.69, -0.16] -0.10 [0.39, -0.58] -0.00 [0.54, -0.54] 0.06 [0.86, -0.74] 

Note. Autonomous motivation is a composite measure of the engagement, liking, and motivation 
items in the post-task survey. Positive values indicate that the Yes-Choice mean is greater than 
the No-Choice mean. 

 
ROC-C task analysis 

 Model comparison revealed that trial-level difficulty explained additional 

variance and this model (Model 2 – Difficulty) fit the data better than the base model 

(Table 3.3). Furthermore, adding autonomy manipulation Group and its interactions with 

Goal, Choice, and Difficulty further improved model fit. In this model, participants 

reported lower cravings when they were regulating (Table 3.4), as expected. This effect 
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was moderated by Difficulty; higher perceived difficulty of goal pursuit was associated 

with worse task performance (i.e., lower craving ratings on Look trials and higher craving 

ratings on Regulate trials). We expected there would be an interaction between Goal and 

Choice across all groups, but this was only the case for the Agency group. In this group, 

choice was associated with better task performance on trials of average difficulty, with 

higher craving ratings on Look trials and lower craving ratings on Regulate trials, as 

expected (Figure 3.4). However, on relatively difficult trials, there was an interaction 

between Goal and Choice. On Look trials, choice on relatively difficult trials was 

associated with better performance in the Agency group, but worse performance in the 

Food: Regulate group, and no difference in the Control and Food: look groups. On 

Regulate trials, choice on more difficult trials was associated with slightly better 

performance in the Control and Agency groups, but worse performance in both Food 

groups. 

 

Table 3.3 
Comparison of multilevel models with trial-level craving ratings as the criterion 
Model Model df AIC 

Model 1 – Base 13 22503.02 

Model 2 – Difficulty 17 22050.17 

Model 3 – Group 41 22038.05 
Note. The best fitting model is bolded. 
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Figure 3.4. Predicted trial-level craving ratings from the best fitting multilevel model 
(Model 3) as a function of trial-level Goal, Choice, and Difficulty, and autonomy 
manipulation Group. Better task performance is indicated by higher ratings on Look trials 
and lower ratings on Regulate trials. Error bars are bootstrapped 95% confidence 
intervals. 
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Table 3.4 
Parameter estimates from the best fitting multilevel model (Model 3 – Group) 
Fixed effect b [95% CI] df 
Intercept (Look, No-Choice) 2.93 [2.81, 3.05] 166.82 

Goal -0.78 [-0.95, -0.61] 158.90 

Choice 0.02 [-0.06, 0.11] 8630.51 

Difficulty -0.19 [-0.27, -0.12] 8626.28 

Group Agency -0.01 [-0.18, 0.16] 167.26 

Group Food: Look -0.04 [-0.23, 0.14] 165.62 

Group Food: Regulate 0.04 [-0.16, 0.24] 159.03 

Trial -0.02 [-0.03, -0.02] 8651.24 

Baseline Craving 0.31 [0.27, 0.36] 94.53 

Goal × Choice 0.02 [-0.11, 0.14] 8633.42 

Goal × Difficulty 0.57 [0.47, 0.67] 8791.40 

Choice × Difficulty -0.03 [-0.12, 0.07] 8674.84 

Goal × Group Agency 0.21 [-0.04, 0.45] 157.13 

Goal × Group Food: Look 0.27 [-0.00, 0.55] 156.48 

Goal × Group Food: Regulate 0.15 [-0.16, 0.45] 158.49 

Choice × Group Agency 0.02 [-0.10, 0.15] 8643.95 

Choice × Group Food: Look -0.02 [-0.16, 0.12] 8633.57 

Choice × Group Food: Regulate -0.02 [-0.17, 0.13] 8627.61 

Difficulty × Group Agency -0.09 [-0.21, 0.02] 8668.54 

Difficulty × Group Food: Look 0.06 [-0.07, 0.18] 8698.87 

Difficulty × Group Food: Regulate 0.01 [-0.12, 0.15] 8755.99 

Goal × Choice × Difficulty -0.10 [-0.22, 0.03] 8659.92 

Goal × Choice × Group Agency -0.15 [-0.33, 0.03] 8642.29 

Goal × Choice × Group Food: Look 0.05 [-0.15, 0.24] 8626.27 

Goal × Choice × Group Food: Regulate 0.03 [-0.19, 0.25] 8629.71 

Goal × Difficulty × Group Agency -0.06 [-0.21, 0.09] 8790.65 

Goal × Difficulty × Group Food: Look -0.31 [-0.47, -0.15] 8800.41 

Goal × Difficulty × Group Food: Regulate -0.25 [-0.43, -0.07] 8813.22 

Choice × Difficulty × Group Agency 0.14 [-0.00, 0.28] 8683.75 

Choice × Difficulty × Group Food: Look 0.00 [-0.15, 0.16] 8678.12 

Choice × Difficulty × Group Food: Regulate -0.09 [-0.26, 0.08] 8666.84 

Goal × Choice × Difficulty × Group Agency -0.01 [-0.19, 0.18] 8670.60 

Goal × Choice × Difficulty × Group Food: Look 0.14 [-0.05, 0.34] 8664.86 

Goal × Choice × Difficulty × Group Food: Regulate 0.22 [-0.00, 0.44] 8672.91 

   

Random effects variance SD 
Participant   

Intercept 0.08 0.29 
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Post hoc task analysis 

 We ran a follow-up multilevel model to test whether the act of choosing itself 

negatively affected task performance in this modified version of the ROC-C task. We 

reasoned that if this were the case, we would expect that 1) task performance would be 

worse on the first trial of the three-trial sets, 2) this decrement should be exclusive to the 

Yes-Choice condition, and 3) it should not differ as a function of autonomy manipulation 

group. To test this, we added fixed effects for the interactions between set trial number 

(i.e., 1, 2, or 3) and Goal, Choice, and Difficulty to the best fitting model, Model 3 – 

Group. This model did not better fit the data (AICModel 3 = 22038.05 v. AICModel 4 = 

22039.40) and task performance was equivalent or better on the first trial compared to the 

last trial. Furthermore, improvements were greater in the Yes-Choice condition (Figure 

3.5), which provides evidence that there were not negative effects directly associated with 

the act of choosing itself.  

 

 
 
 
 
 

Table 3.4 (continued) 

Random effects variance SD 

Participant   

Goal 0.19 0.44 

Baseline Craving 0.03 0.19 

Residual 0.65 0.81 

Note. Degrees of freedom (df) were calculated using the Satterthwaite approximation. 

Statistically significant parameters at p < .05 are bolded. The reference condition for Group is 

Control, for Goal is Look, for Choice is No-Choice; Difficulty and Baseline Craving are Z-

scored; and Trial is centered at 45 and is units of 10 trials. 



 
 

55 

 
 

Figure 3.5. Predicted trial-level craving ratings from the post hoc multilevel model 
including set trial number as a function of trial-level set trial number, Goal, Choice, and 
Difficulty, and autonomy manipulation Group. For simplicity, these effects are visualized 
for the Control and Agency groups only. Better task performance is indicated by higher 
ratings on Look trials and lower ratings on Regulate trials. Error bars are bootstrapped 
95% confidence intervals. 
 

Discussion 

The goal of this study was to pilot a new version of the Regulation of Craving–

Choice (ROC-C) task and test whether two different experimental manipulations to 

enhance autonomous motivation improved goal pursuit. On the whole, the new task 

performed as expected and participants successfully controlled their food cravings using 

cognitive reappraisal. Although we expected that task performance would vary as a 

function of whether or not participants chose, differences between the choice condition 

emerged primarily when goal pursuit was perceived as more difficult. Of the autonomy 
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manipulations, the writing exercise in which participants reflected on how choice affords 

autonomy in their lives (i.e., the Agency group) was most promising. Participants in this 

group reported greater perceived choice and slightly higher autonomous motivation than 

the control group. Furthermore, whereas choice was associated with worse task 

performance in both the Food autonomy manipulation groups, the Agency group 

performed better across both task goals when choosing.  

Effect of difficulty on goal pursuit 

We included trial-level difficulty ratings in this version of the ROC-C task in 

order to investigate how perceived difficulty of goal pursuit was related to task 

performance and whether it might moderate the effects of self-determined choice. In this 

study, reappraisal was associated with higher difficulty ratings and greater difficulty was 

related to worse performance for both goals. Although we are unaware of research 

directly assessing the relationship between difficulty and regulation success, these results 

are in line with research showing negative associations between effort and task 

performance (Sullivan-Toole et al., 2017; Kool et al., 2010). Furthermore, previous 

research on emotion regulation choice has shown that higher perceived difficulty of 

reappraisal (i.e., lower reappraisal affordance) is associated with a lower probability of 

choosing to reappraise aversive stimuli, suggesting that participants strategically choose 

emotion regulation strategies (Suri et al., 2017). Although the present study was not 

designed to test this hypothesis, it would be informative for future research to assess out 

of sample prediction of choice from average ratings of reappraisal difficulty to determine 

whether there is evidence of strategic emotion regulation choice with appetitive stimuli. 
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Does choice help or harm goal pursuit? 

 Based on the notion that self-determined choice supports autonomous motivation 

during goal pursuit (Legault & Inzlicht, 2013), we expected that choice would be 

associated with better task performance. However, we only observed this effect for the 

Agency autonomy manipulation group. For all other groups, choice was associated with 

equivalent performance on Look trials and slightly worse performance on Regulate trials 

at mean-level difficulty. Although we redesigned the ROC-C task to reduce potential 

sources of cognitive burden associated with choice, these results suggest that there may 

be residual effects of choice not necessarily related to cognitive load or misallocation of 

attentional resources. Indeed, post hoc analyses assessing whether trial number within 

each set–which served as a proxy for cognitive burden directly associated with choice–

was related to decrements in task performance on choice trials, revealed the opposite. 

Task performance was better on the first trial in both choice conditions and this effect 

was stronger for Yes-Choice trials. Together, these results indicate that choice-related 

decreases in task performance cannot be fully explained by cognitive load associated with 

the choice. This finding is consistent with recent research on emotion regulation of 

aversive stimuli showing negative effects of choice on reappraisal success that could not 

be attributed to cognitive load (Bigman et al., 2017), and other work documenting 

adverse effects of choice more generally (Iyengar & Lepper, 2000; Botti & Iyengar, 

2004; Vohs et al., 2008). 

 In contrast, when goal pursuit was perceived as more difficult, choice improved 

task performance but only for the Agency autonomy manipulation group. Since this 

group also reported higher levels of autonomous motivation and perceived choice during 
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the task as a whole, this finding is consistent with other research showing that positive 

effects of choice on inhibitory control task performance were partially mediated by 

autonomous motivation (Legault & Inzlicht, 2013). However, it adds nuance to the notion 

that choice invariably improves task performance and supports the position that the 

context in which choices are made matters (Patall et al., 2008). Although other studies 

have demonstrated positive effects of choice on performance without considering 

difficulty (Murayama et al., 2015; Patall et al., 2008), the present findings are consistent 

with a recent study that varied difficulty and choice independently and found that choice 

was only beneficial when difficulty was relatively high (Sullivan-Toole et al., 2017). 

Furthermore, it is important to note that this interaction was observed only in the Agency 

autonomy manipulation group, suggesting that potential positive effects of choice in this 

context are subtle and contingent. 

Despite showing improved task performance and greater autonomous motivation 

during the task as a whole, it is notable that when considering Yes- and No-Choice sets 

separately, the Agency autonomy manipulation group reported lower autonomous 

motivation during Yes-Choice relative to No-Choice trials. In particular, this effect was 

driven primarily by lower liking ratings. This may indicate that the manipulation was 

successful in promoting autonomous motivation and improving task performance 

generally, but there may have been elements specifically associated with choice that 

participants reduced their preference for it. One possibility is that the summaries at the 

end of each task run reminding participants of the number of times they chose to look and 

regulate may have inadvertently undermined autonomy in this group. Although 

participants were not instructed to choose to look and regulate evenly, this group chose to 
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regulate on average 50% of the time, and the run summaries may have implicitly 

reinforced the perception that participants should choose evenly, diminishing autonomous 

motivation (Moller et al., 2006). Although this was consistent for all groups, the effect on 

the Agency group may have been compounded by the manipulation itself, which detailed 

how even the smallest of choices are opportunities to express oneself and take ownership 

of one’s behavior. While Self-Determination Theory posits that important and personally-

relevant choices should have the strongest effects on autonomous motivation (Reeve et 

al., 2003; Ryan & Deci, 2006), other research has suggested that these features of choice 

can actually undercut potential benefits (for a meta-analysis, see Patall et al., 2008). 

It is also noteworthy that Food autonomy manipulation was not effective. The 

purpose of this manipulation was to give participants a meaningful choice about how they 

approached the task that reflected their natural inclination towards food. Although the 

Food: Regulate group did report greater autonomous motivation, finding the task more 

useful and enjoyable than the other groups, the Food: Look enjoyed and valued it least. In 

combination with the higher perceived choice for the Food: Regulate group, this suggests 

that while participants in this group who chose to focus on the consequences of 

consumption felt choice was meaningful, it did not translate into better task performance. 

We hypothesized that self-determined choice would be associated with better 

performance when participants in this group cognitively reappraised their food craving 

and when participants in the Food: Look group actively viewed, but both groups showed 

equivalent or slightly worse performance on Yes-Choice trials. Overall, this autonomy 

manipulation does not appear to have been successful and this approach is unlikely to be 

a useful way to promote autonomy. 
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Limitations 

 The results of this pilot study should be considered in light of several limitations. 

First, the sample size was relatively small. Although this is not necessarily problematic 

for estimating task effects which included many trials per participant, it makes precise 

estimation of between-group effects challenging given the relatively large confidence 

intervals. Furthermore, the design of the Food autonomy manipulation caused 

participants to be split into two separate groups, which further reduced power. Second, 

we did not assess autonomous motivation for each goal separately in the post-task survey. 

This precluded us from assessing whether differences in self-reported autonomous 

motivation and difficulty mirrored the asymmetrical effects of choice on task 

performance during the ROC-C task. Last, though the target population for this pilot 

study was college students, the results may not generalize beyond this population.  
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CHAPTER IV 

STUDY 3: DISSOCIABILITY OF AUTONOMOUS AND CONTROLLED GOAL 

PURSUIT: ASSESSING THE EFFECTS OF SELF-DETERMINED CHOICE ON 

APPETITIVE SELF-REGULATION 

 

This chapter is being prepared for submission and is therefore formatted according to the 

journal’s standard–the American Psychological Association style manual. 

 

Introduction 

Autonomy is recognized as a fundamental human need and is autonomous 

motivation is associated with more successful self-regulation, and better health and well-

being (Deci & Ryan, 2000; Ng et al., 2012; Ryan et al., 2006; Sheldon & Elliot, 1999; 

Slemp et al., 2018). This research highlights the importance of the motivation underlying 

behavior. Recent research has suggested that autonomous motivation makes goal pursuit 

and self-regulation feel effortless (Werner et al., 2016; Werner & Milyavskaya, 2019), 

but the underlying mechanism remains unclear. Initial research investigating the 

relationship between autonomy and self-regulation while participants exerted inhibitory 

control (Legault & Inzlicht, 2013) suggested enhanced attention and sensitivity to 

feedback as a potential mechanism. However, it is broadly acknowledged that self-

regulation is supported by a whole suite of cognitive skills beyond the effortful control of 

impulses (Fujita, 2011; de Ridder et al., 2012; Gillebaart & de Ridder, 2015) and it is 

therefore important to examine whether the same mechanism underlies this relationship 

in other types of self-regulatory strategies. In this paper, we therefore focus on cognitive 
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reappraisal, which is an antecedent-focused self-regulation strategy that can be used to 

flexibly modulate affective responses to goal-relevant stimuli (Gross, 1998). Our primary 

goal was to use behavioral and functional neuroimaging (fMRI) data to assess the 

dissociability of motivational orientation during goal pursuit and test several theoretical 

predictions about the relationship between autonomy and self-regulation posited by Self-

Determination Theory (Deci & Ryan, 2000). We extend previous research by examining 

how choice supports autonomy and goal pursuit in the context of an appetitive self-

regulation task with relatively high ecological validity in which participants use cognitive 

reappraisal to control desires. 

Why the “why” matters 

Motivation is the driving force behind goal pursuit and refers to the reasons why a 

goal is pursued. Two individuals can pursue the same goal (e.g., completing a PhD) but 

for very different reasons; Student A may be motivated by their deep curiosity and 

enjoyment of the research process, while Student B may be motivated by the status and 

high salary they’ll obtain once they’ve finished. The former is an example of autonomous 

or “want to” motivation, whereas the latter represents controlled or “have to” motivation 

(Werner & Milyavskaya, 2019). Autonomous motivation refers to the extent to which 

goals are pursued because of genuine interest and enjoyment, and because they provide 

meaning and purpose that is aligned with an individuals’ identity and values. This type of 

motivation encompasses the motivational orientations classically referred to as intrinsic, 

integrated, and identified in Self-Determination Theory (Deci & Ryan, 2000). On the 

other hand, controlled motivation refers to the extent to which goals are pursued due to 

external factors, such as societal pressure, rewards, or punishments, also referred to as 
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external motivation, or to avoid internal feelings, such as guilt or shame, which is 

referred to as introjected motivation. At its core, autonomous behavior feels volitional 

and self-determined–you want to do it, whereas controlled behavior feels obligatory–you 

have to do it. Across a broad body of literature, autonomous motivation has been linked 

to more successful goal pursuit and task performance in a wide variety of domains 

(Milyavskaya et al., 2015; Werner & Milyavskaya, 2019; Judge et al., 2005; Sheldon & 

Elliot, 1998, 1999; Vansteenkiste et al., 2004; Koestner et al., 2002; Werner et al., 2018; 

Koestner et al., 2008). Autonomous motivation is associated with greater persistence 

(Pelletier et al., 2001), less stress and burnout (Slemp et al., 2018; Lonsdale et al., 2009), 

and better overall well-being (Ryan et al., 2006). Based on this evidence, we would 

expect that Student A would be more likely to successfully complete their PhD with their 

health and well-being relatively intact, while Student B would be more likely to drop out 

or struggle under the pressure. 

But what is it about the quality of motivation that makes it so potent? Recent 

research suggests that autonomous motivation facilitates goal achievement because goal 

pursuit is experienced as less effortful and more automatic (Werner et al., 2016; Werner 

& Milyavskaya, 2019), and reduces susceptibility to and magnitude of goal-incongruent 

temptations (Milyavskaya et al., 2015; Lopez et al., 2016). These qualities are thought to 

enhance self-regulation, which is defined as any behavior that is goal-congruent (Carver 

& Scheier, 1982). However, this broad definition makes it practically challenging to 

uncover specific mechanisms underlying the relationship between motivation and self-

regulation. Because self-regulation encompasses such a vast number of processes, there 
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may be numerous ways in which motivation might affect self-regulation depending on 

particular context.  

Effects of autonomous motivation during self-regulation 

An alternative approach for elucidating mechanisms is to focus on how 

motivation affects goal pursuit while individuals are utilizing specific self-regulatory 

strategies, such as inhibitory control and emotion regulation. Although motivation can be 

challenging to manipulate experimentally, autonomy can be supported by giving 

individuals choice. Indeed, choice is a hallmark of autonomy-supportive environments 

(Ryan & Deci, 2006). Laboratory experiments on inhibitory control and cognitive 

reappraisal of aversive stimuli suggest that autonomy-supportive, also known as self-

determined, choice may improve self-regulation via heightened attentional engagement 

and enhanced error-monitoring (Kühn et al., 2014; Legault & Inzlicht, 2013). Both of 

these studies reported that choice, either at the task-level (Legault & Inzlicht, 2013) or the 

trial-level (Kühn et al., 2014), was associated with stronger engagement of neural indices 

associated with attention and executive control. 

However, previous research from our lab investigating the effect of choice on 

self-regulation during cognitive reappraisal of appetitive stimuli showed that while choice 

was associated with increased activation in these same brain networks, it actually reduced 

task performance rather than enhancing it (Cosme et al., 2018b). Follow-up analyses 

indicated that choice may have disrupted cognitive resource allocation during the task, 

but it is possible that this pattern of results may have been due to the task design. In this 

study, participants made choices on half of the trials, which may have felt like choice 

overload (Patall et al., 2008; Iyengar & Lepper, 2000). Cognitive reappraisal was also 
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implemented directly after the choice, making it difficult to separate the neural activation 

associated with the choice from that associated with reappraisal, because they were 

closely correlated in time. It is also possible that choice simply did not feel self-

determined in this context, which has been shown to undermine potential positive effects 

on task performance (Moller et al., 2006; Legault & Inzlicht, 2013; Sullivan-Toole et al., 

2017). Indeed, in Legault & Inzlicht (2013) the relationship between choice and better 

inhibitory control was partially mediated by perceived autonomous motivation. This 

suggests that choice may only improve self-regulation when individuals feel 

autonomously motivated by it.  

The present study 

 In this preregistered study, we build on these findings to investigate the effects of 

choice on autonomous motivation and goal pursuit in the context of an appetitive self-

regulation task in which participants control their cravings for personally-desired foods 

using cognitive reappraisal. We chose to focus on appetitive rather than aversive stimuli 

because goal-incongruent temptations that require regulation are often appetitive in 

nature, and we utilized food cues because food is a primary reward, robustly elicits 

appetitive motivation, and is easily customizable to individual tastes (Hill, 2007; Kober & 

Mell, 2015). Cognitive reappraisal, or the reframing of a stimulus to change its affective 

meaning (Gross, 1998), is a flexible strategy that can be used to enhance the value of 

goal-congruent behavior (e.g., healthy eating) or decrease the value of goal-incongruent 

behavior (e.g., unhealthy eating) by emphasizing relevant features of the stimulus (e.g., 

by focusing on positive or negative consequences of consumption). In this study, 

participants completed a cognitive reappraisal task while in the MRI scanner. They saw 
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images of personally-craved foods and either actively viewed them (Look condition) or 

reappraised their desire for the foods by visualizing the negative consequences of 

consumption (Regulate condition). We supported autonomy by providing choice, and 

choice was manipulated by instructing participants whether to look or reappraise (No-

Choice condition) or asking them to choose whether to look or reappraise (Yes-Choice 

condition). To reduce potential cognitive burden associated with choice, trials were 

blocked in sets of three. After each trial, participants rated their craving for the food and 

how difficult it was for them to achieve their goal, which was defined as making the food 

feel real on Look trials and making the negative consequences feel real on Regulate trials. 

Behaviorally, we expected that choice would be associated with higher levels of 

perceived autonomous motivation as well as better performance across both task goals 

(i.e., Look or Regulate). Using model comparison, we also tested whether this effect was 

moderated by trial-by-trial perceived difficulty and by individual differences in 

autonomous motivation during the task. We reasoned that motivation may matter most 

when goal pursuit is difficult (Klein et al., 1999), and that choice may only enhance 

performance if it is perceived as motivating. Because autonomous motivation has been 

characterized as facilitating “effortless” goal pursuit (Werner et al., 2016; Werner & 

Milyavskaya, 2019), we conducted parallel analyses to assess whether choice and 

perceived autonomous motivation are associated with lower difficulty ratings on a trial-

by-trial basis.  

Finally, we utilized univariate and multivariate neuroimaging methods to assess 

whether neural activity during goal pursuit differs as a function of choice; that is, are 

autonomous and controlled goal pursuit dissociable? Due to the relative novelty of this 
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research, we did not have strong spatial hypotheses, but reasoned that increased activity 

in the salience and/or frontoparietal control network for Yes-Choice > No-Choice would 

be consistent with the hypothesis that autonomous motivation increases attention and 

engagement (Lee & Reeve, 2012; Legault & Inzlicht, 2013), whereas increased activity 

in the reward and/or default mode network would be consistent with a reward-based 

account of self-determined choice (Murayama et al., 2015; Reeve & Lee, 2017). Because 

we compared the effects of choice during actual goal pursuit and not while participants 

made choices, the critical test is whether there are differences between choice conditions 

during goal pursuit at all. Whereas the univariate main effect of Choice will inform us 

about potential differences irrespective of goal, the interaction between Goal and Choice 

will inform us about potential differences that vary with respect to goal. We 

complemented these univariate contrasts by using multivoxel pattern analysis (MVPA). 

We expected that if autonomous and controlled goal pursuit are dissociable, we would 

observe greater than chance accuracy classifying Yes-Choice versus No-Choice within 

brain regions supporting goal pursuit in this task. 

Methods 

Open science statement 

This study was preregistered and the preregistration, as well as all analysis scripts 

and behavioral data will be made available on the Open Science Framework 

(https://osf.io/pnc7m). Deviations from the preregistered analysis plan are noted in the 

manuscript. Group-level univariate contrast maps and multivariate classification weight 

maps are available on NeuroVault (Gorgolewski et al., 2015; 

https://neurovault.org/collections/NDHWTOBQ).  
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Participants 

Participants included 117 (73 females, as defined by biological sex) incoming 

college students at the University of Oregon recruited during the summer prior to 

freshman year. These participants were part of a larger longitudinal study on health and 

well-being during the transition to college. Participants were eligible if they were 

incoming freshmen between 17-19 years old (M = 18.01, SD = 0.28), right-handed, had 

not previously attended college at a different institution, and were planning to live on 

campus during their first year of college. Potential participants were not enrolled if they 

endorsed one or more of the following items: diagnosis of a psychiatric, learning, or 

neurologic disorder; presence of disordered eating or diagnosis of a condition that 

significantly impacted their diet; use of psychotropic medications; significant visual 

impairment or color blindness; concussion or other brain trauma; MRI contraindications 

(e.g. metal implants, biomedical devices, pregnancy). We excluded participants from the 

fMRI analyses for failure to comply with task instructions (n = 1) or missing data due to a 

technical failure (n = 1). Task runs were individually excluded from fMRI analyses if 

participants exhibited excessive head motion (n = 9; as defined below), technical errors (n 

= 8), or missing trials from at least one condition (n = 4). Several participants (n = 4) did 

not complete the post-task survey measures and are therefore not included in analyses 

using these measures. This yielded 115 participants for the neural analyses and 111 

participants for behavioral analyses. All available data were used unless the analysis 

method required complete data. This study was approved by the University of Oregon 

Institutional Review Board; all participants gave written informed consent and were 

compensated for their participation. 
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Procedure 

All participants completed an MRI session during the summer prior to, or during 

the first week of, freshman year. After consent, participants completed a rating task in 

which they selected their three most craved foods from a list of 13 food categories and 

rated the palatability of 45 images within each category. They then completed a brief 

writing exercise designed to strengthen the association between choice and autonomy. 

After this, participants were trained how to do the Regulation of Craving–Choice (ROC-

C) task and worked with the researcher to develop personalized craving reappraisals. 

Participants then completed the ROC-C task while undergoing functional neuroimaging 

in the MRI scanner. After the scan, participants completed post-task experimental 

manipulation checks, as well as individual difference survey described below. They also 

completed other tasks and surveys related to the larger study on health and well-being not 

discussed in this manuscript.  

Materials 

Writing exercise. Although choice is a primary means of supporting autonomy, 

choice and autonomy are not identical (Ryan & Deci, 2006; Moller et al., 2006; Sullivan-

Toole et al., 2017). In order to increase the salience of the connection between choice and 

autonomy during the ROC-C task, all participants completed the Agency writing exercise 

from Study 2, which highlighted how choice is a form of self-expression and a means of 

exerting autonomy. Participants read a passage and then wrote 4-6 sentences about a 

specific choice they made in the last few weeks and how it demonstrated taking 

ownership of their lives. 
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Stimuli and baseline craving rating task. Stimuli were 90 appetizing images of 

food items based on participants’ food preferences. Participants chose their top three 

“most craved” food categories from the following menu: barbeque, burgers, cheese, 

chips, chocolate, cookies, doughnuts, French fries, fruit, fruit desserts, pasta, pizza, and 

roasted vegetables. Each category contained 45 images, most of which came from the 

FoodIE stimuli set, which was independently rated for desirability by individuals who 

reported craving that food category (available via http://dsn.uoregon.edu/foodie). 

Participants then completed a computerized task in which they rated their craving for the 

foods (1 = no desire to eat, 4 = strong desire to eat). Participants were also able to flag 

foods they have a strong aversion to or cannot eat. These ratings were then ranked by 

desirability and randomized within rating category (1-4). Flagged foods were removed 

and the 90 highest rated images were selected to use in the craving regulation task. Of 

these 90 images, the top 60 were coded as relatively “more craved” and the next 30 were 

coded as relatively “less craved.” 

Regulation of Craving–Choice (ROC-C) task. All participants completed a 

modified version of the ROC-C task used in Cosme et al. (2018) while in the MRI 

scanner. On each trial, participants either actively viewed (“Look” condition) or 

reappraised their craving for (“Regulate” condition) the foods. On 60% of the trials, 

participants freely chose whether to look or regulate (“Yes-Choice” condition), and on 

the other 40%, participants were instructed whether to look or regulate (“No-Choice” 

condition). Therefore, the task was a 2 × 2 within-subjects repeated measures factorial 

design with Goal (Look, Regulate) and Choice (Yes, No) as factors. On Look trials, 

participants were instructed to imagine that the foods were real and to visualize how they 
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would interact with them, with the goal of making the food feel as vivid and real as 

possible. On all Regulate trials, participants were instructed to reappraise their craving for 

the food by visualizing short- or long-term negative consequences associated with 

consumption (e.g., stomach aches, weight gain, guilt), and participants were instructed to 

try to imagine how these negative effects would feel viscerally. With the help of the 

experimenter, participants generated multiple personally-relevant negative consequences 

in order to have multiple strategies to use while completing the task. The goal on 

Regulate trials was to make the negative consequences feel as real as possible. With 

respect to Choice, participants were told that it was up to them to decide whether they 

wanted to look or regulate on any given choice set, and how frequently they wanted to 

pursue each goal throughout the task, but that they should both look and regulate some of 

the time. 

To reduce potential set shifting costs and cognitive load (Cosme et al., 2018b), we 

modified the task so that trial-type switched every third trial, instead of every trial (Figure 

4.1). To ensure the images across trial sets were relatively equivalent with respect to 

desirability, each set included two relatively “more craved” images and one “less craved” 

image identified during the rating task. At the beginning of each set, participants saw a 

preview of the three images and then saw a cue signaling the set type. On No-Choice sets, 

participants simply pressed the correct button to acknowledge the set type (Look or 

Regulate), whereas on Yes-Choice sets, they chose whether to Look or Regulate. To 

reduce the blood-oxygen-level-dependent (BOLD) signal correlation between the cue and 

image in future MRI studies utilizing this task, participants viewed a jittered fixation 

cross before the food image appeared. Participants then completed three trials, pursuing 
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the same task goal (Look or Regulate) in each. On each trial, participants viewed a food 

image while looking or regulating, and then rated their present desire to eat the food (1 = 

no desire, 4 = strong desire). To minimize demand characteristics (e.g., reporting lower 

craving ratings on Regulate trials), the experimenter emphasized that participants weren’t 

expected to be able to regulate well on every trial and stressed the importance of making 

honest ratings. Participants then rated how difficult it was to fulfill their goal (1 = not 

hard, 4 = very hard). On Look trials, the goal was defined making the foods feel vivid and 

real, whereas on Regulate trials, it was making the negative consequences feel vivid and 

real. The task consisted of three runs and each run consisted of 30 trials: 18 Choose trials 

(6 sets), 6 Look trials (2 sets), and 6 Regulate trials (2 sets). Within each run, the trial 

order was optimized to maximize contrast estimation for MRI studies using a genetic 

algorithm (Wager & Nichols, 2003). Stimuli were presented using Psychtoolbox 3 

(Brainard, 1997) and participants responded using a button box. 

 

Figure 4.1. ROC-C task design. Each set consisted of the following events: preview (2s), 
cue (2s), jittered fixation (2 seconds), and three trials. Each trial consisted of the 
following events: image presentation (6s), fixation (.5s), craving rating (2.5s), and effort 
rating (2.5s). Trials within a set were separated by 4s of jittered fixation, whereas trials at 
the end of a set were separated by 2s jittered fixation. 
 

Post-task manipulation check questions. To characterize the affective 

experience of choice, and compare potential differences in autonomous motivation for 
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Yes-Choice versus No-Choice trials during the task, participants rated each set type in a 

post-task survey on the following dimensions: enjoyment, engagement, motivation, and 

difficulty. Choice conditions (Yes-Choice or No-Choice) were rated separately. For each 

statement (e.g., “I liked the task during these sets”), participants rated the degree to which 

they agreed or disagreed (1 = strongly disagree, 5 = strongly agree). These items were 

used to determine whether the Yes-Choice condition was associated with greater self-

reported autonomous motivation and lower perceived difficulty.  

Intrinsic Motivation Inventory. To measure autonomous motivation during the 

ROC-C task as a whole, we administered the 22 item version of the Intrinsic Motivation 

Inventory (Ryan, 1982; McAuley et al., 1989), which is used to assess dimensions of 

motivation during targeted activities. This scale measures interest and enjoyment, 

perceived competence, perceived choice, and pressure and tension, during the task as a 

whole. Each item is scored on a 7-point Likert-type scale (1 = not at all true, 7 = very 

true).  

Behavioral analyses 

 Post-task autonomous motivation and task difficulty analysis. We used 

multilevel modeling to assess the degree to which post-task ratings of autonomous 

motivation and difficulty differed as a function of Choice condition. Task autonomous 

motivation was operationalized as the mean of the enjoyment, engagement, and 

motivation items from the post-task manipulation check questions, calculated separately 

for each choice condition. Task difficulty was measured using a single item. Multilevel 

models were implemented using the lme4 package (Bates et al., 2015) in R 3.5.1 (R Core 
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Team, 2018; https://www.r-project.org). Each model included a fixed effect of Choice; 

participant intercepts will be specified as random effects.  

ROC-C trial-level craving analyses. We compared a series of multilevel models 

to test the degree to which choice helps or harms goal pursuit during the task, and assess 

potential moderation effects of trial-level difficulty and subject-level autonomous 

motivation. Goal pursuit was operationalized as task performance, with higher craving 

ratings on Look trials and lower craving ratings on Regulate trials indicating more 

successful goal pursuit. In all models, we regressed trial-level craving ratings on the fixed 

effects of Goal, Choice, and the interaction between Goal and Choice. We also included 

fixed effects for baseline craving ratings to control for idiosyncratic responses to foods 

and trial number to control for habituation effects. Trial number was centered at 45 and 

scaled in units of 10. Consistent with Cosme et al. (2018), we treated participant 

intercepts, baseline cravings, and Goal as random effects within participant. Baseline 

cravings were Z-scored across participants. This model specification (Model 1 – Choice) 

tested the effect of Choice on craving ratings as a function of Goal. In the second model 

(Model 2 – Difficulty), we added the fixed effect of trial-level Difficulty (Z-scored across 

participants), the 2-way interactions between Goal and Difficulty, and Choice and 

Difficulty, and the 3-way interaction between Goal, Choice, and Difficulty. This model 

tested the degree to which perceived difficulty moderated the interaction between Goal 

and Choice. Because these models are nested, we used a chi-squared difference test to 

compare model fit; models were treated as better fitting if p < .05. We then compared the 

best fitting trial-level model to a third model (Model 3 – Autonomous Motivation), which 

included a second-level fixed effect of task Autonomous Motivation. This term was Z-
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scored across participants and we included all cross-level interactions between 

Autonomous Motivation and Goal, Choice, and Difficulty. Again, we compared model fit 

and interpret the parameters from the best fitting model. Confidence intervals for 

predicted effects plots were generated using the bootMer function from the lme4 package 

with 1000 parametric simulations (Bates et al., 2015). 

ROC-C trial-level difficulty analyses. We tested the degree to which choice 

affects perceived difficulty of goal pursuit at the trial-level. In this model, (Model 1 – 

Choice) we regressed trial-level difficulty ratings on the fixed effects of Goal, Choice, 

and their interaction, as well as trial number and baseline craving rating. The same 

random effects structure and Z-scoring procedures as in the craving models was used. To 

parallel the craving rating analysis, we specified additional post hoc (i.e., not 

preregistered) models and compared them to determine whether individual differences in 

perceived autonomous motivation during the task moderated the relationships between 

Goal, Choice, and trial-level difficulty. We compared the first model (Model 1 – Choice) 

to models that included the fixed effect of Autonomous Motivation and two-way cross-

level interactions with Goal and Choice (Model 2 – Autonomous Motivation × Choice) 

and the three-way cross-level interaction between Goal, Choice, and Autonomous 

Motivation (Model 3 – Autonomous Motivation × Choice × Goal). Confidence intervals 

for predicted effects plots were generated using the bootMer function from the lme4 

package with 1000 parametric simulations (Bates et al., 2015). 

Post hoc individual difference analyses. We conducted follow-up multilevel 

models to determine whether autonomous motivation, assessed about the task as a whole 

(via the Intrinsic Motivation Inventory) and separately as a function of choice condition, 
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was related to regulation success and whether these relationships were moderated by 

choice. Regulation success was defined as the difference between an individual’s average 

craving rating in the Look and Regulate conditions and were calculated for each level of 

choice separately. In each model, we regressed the regulation success on Choice, 

Autonomous Motivation (either from the IMI or the post-task survey), and the 

interactions between these variables. Autonomous Motivation was Z-scored across 

individuals. Intercepts were treated as random effects. The same bootstrapping procedure 

was used to estimate 95% confidence intervals for visualization. 

Neuroimaging data acquisition and preprocessing 

Neuroimaging data were acquired on a 3T Siemens Skyra scanner at the 

University of Oregon Lewis Center for Neuroimaging. We acquired a high-resolution 

anatomical T1-weighted MP-RAGE scan (TR/TE = 2500.00/3.43ms, 256 × 256 matrix, 

1mm thick, 176 sagittal slices, FOV = 208 × 208mm), functional images with a T2*- 

weighted echo-planar sequence (72 axial slices, TR/TE = 2000.00/25.00ms, 90-degree 

flip angle, 104 × 104 matrix, 2mm thick, FOV = 208 × 208mm), and opposite phase 

encoded echo-planar images to correct for magnetic field inhomogeneities (72 axial 

slices, TR/TE = 6390.00/47.80ms, 90-degree flip angle, 104 ×104 matrix, 2mm thick, 

FOV = 208 × 208mm), resulting in a 2 × 2 × 2 mm voxel size. 

Neuroimaging data were preprocessed using fMRIPrep 1.1.4 (Esteban et al., 

2019). Preprocessing details appear in Supplementary Material in Appendix B, but 

briefly, anatomical images were segmented and normalized to MNI space using 

FreeSurfer (Fischl, 2012); functional images were susceptibility distortion corrected, 
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realigned, and coregistered to the normalized anatomical images. Normalized functional 

data were then smoothed (6mm FWHM) in SPM12. 

Univariate neural analysis 

In first-level statistical analyses, event-related condition effects were estimated 

using a fixed-effects general linear model and convolving the canonical hemodynamic 

response function with stimulus events using SPM12 (Wellcome Department of 

Cognitive Neurology; http://www.fil.ion.ucl.ac.uk/spm). Separate regressors were entered 

for conditions of interest (No-Choice Look, No-Choice Regulate, Yes-Choice Look, Yes-

Choice Regulate) and the duration was modeled as the 6s image presentation. Additional 

regressors of no interest were included for the following events: food preview, condition 

cue, craving ratings, and difficulty ratings. An additional regressor of no interest was 

included for trials in which participants failed to respond to both the craving and 

difficulty ratings (modeled as the duration of the image presentation period). Ratings 

were modeled as the response time; if there was no response, it was modeled as the 

duration of the event (2.5s). Five motion regressors were modeled as covariates of no 

interest. Realignment parameters were transformed into Euclidean distance for translation 

and rotation separately; we also included the displacement derivative of each transformed 

regressor. Another “trash” regressor marked images with motion artifacts (e.g., striping) 

identified via automated motion assessment (Cosme et al., 2018a) and visual inspection. 

Nine participant task runs were excluded from the group-level analysis for having >10% 

unusable volumes, which was more than 2.5 SD from the mean (M = 1.50%, SD = 

3.23%). All data were high-pass filtered at 128 seconds and temporal autocorrelation was 

modeled using the FAST method (Corbin et al., 2018). Linear contrasts for each 
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condition of interest versus rest were estimated across runs for each participant and used 

as inputs in second-level analyses.  

Second-level, random effects were estimated by specifying a 2 × 2 within subject 

repeated measures ANOVA using a flexible factorial model in SPM12. This model was 

masked using a binarized average of participants’ grey matter tissue probability maps 

generated by fMRIPrep. From this model, we generated the following contrasts of 

interest: Regulate > Look, Yes-Choice > No-Choice, and Yes-Choice (Regulate > Look) 

> No-Choice (Regulate > Look). Multiple comparisons were corrected using cluster-

extent thresholding implemented in AFNI version 18.2.04 (Cox, 1996). In accordance 

with recent guidelines (Cox et al., 2017), the spatial autocorrelation function was first 

estimated for each subject and task run separately using AFNI’s 3dFWHMx, and then 

averaged across subjects. To determine probability estimates of false-positive clusters 

given a random field of noise, Monte-Carlo simulations were conducted with AFNI’s 

3dClustSim using the average autocorrelation across subjects. A voxel-wise threshold of 

p < 0.001 and cluster extent of k = 60 was estimated (voxel dimensions = 2 × 2 × 2 mm) 

to achieve a whole-brain familywise error rate of α = 0.05. Contrast tables were generated 

using BSPMVIEW (Spunt, 2016).  

Post hoc trial-level analysis. We conducted a follow-up multilevel model adding 

trial-level pattern expression of the unthresholded whole-brain group-level Yes-Choice > 

No-Choice statistical map to the best fitting behavioral model in order to test whether 

choice-related neural activation was related to the task effects. Pattern expression reflects 

the degree to which a functional brain image corresponds to a target brain map and was 

calculated by taking the dot product of the group-level Yes-Choice > No-Choice contrast 
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and each trial statistical map. Trial-level maps were generated using the same first-level 

modeling procedure described previously with the exception that each trial was modeled 

as a separate regressor rather than grouped by condition (Rissman et al., 2004). Dot 

products were calculated using the 3ddot function in AFNI. Dot products were converted 

to Z-scores and trials that were more than 3 SDs from the mean were winsorized to 3 

SDs. We then added this variable and its interaction with Goal, Choice, Difficulty, and 

Autonomous Motivation as fixed effects to Model 3 – Autonomous Motivation. 

Multivariate neural analysis 

We complemented the univariate analyses with multivoxel pattern analysis 

(MVPA) implemented using NLTools 0.3.11 (Chang et al., 2018). Because there were 

relatively few trials per condition and run, and the number of trials different based on 

participant choices, we conducted these analyses between-subjects in MNI space using 

average condition effects for each participant as the input data. We conducted the MVPA 

analyses within a binarized mask of the univariate main effect of Goal, which was 

computed as an F-contrast on data from the group-level univariate model. Classification 

of Look versus Regulate within this mask confirmed that the patterns of activation in it 

contained information that distinguished Goal (cross-validation accuracy = 0.78, 95% CI 

[0.74, 0.82], p < .001).  

We then trained a logistic classifier to decode Yes-Choice versus No-Choice in 

this mask using 5-fold cross-validation. Although we originally preregistered using leave-

one-subject-out cross-validation, we selected this procedure instead because it yielded 

equivalent results when classifying Goal and the k-fold approach requires substantially 

less computational resources. Within each fold, data from 92 participants served as the 
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training set and the data from the remaining 23 participants served as the test set. In 

addition to classifying Choice collapsed across Goal, we conducted four additional 

analyses, classifying Choice within Regulate and Look separately, as well as classifying 

Goal within Yes-Choice and No-Choice separately.  

Results 

Behavioral analyses 

Post-task autonomous motivation and task difficulty analysis. After 

completing the ROC-C task, participants rated how autonomously motivated they felt and 

how difficult they perceived the Yes-Choice and No-Choice task conditions (Figure 4.2). 

Participants reported higher autonomous motivation during Yes-Choice trials (M = 4.09, 

SD = 0.68) than No-Choice trials (M = 4.01, SD = 0.65), but this difference was not 

statistically significant (b = 0.08, SE = 0.07, t(111) = 1.16, p = .249). This appears to be 

due to the fact that the individual items differed in their relationship to choice. That is, 

motivation was rated as being higher during Yes-Choice than No-Choice trials (Mdiff = 

0.25, SD = 0.96), whereas they were rated equivalently for engagement (Mdiff = 0.03, SD 

= 0.87) and liking (Mdiff = -0.04, SD = 0.93). With respect to difficulty, participants rated 

Yes-Choice trials (M = 2.05, SD = 1.06) as less difficult than No-Choice trials (M = 2.33, 

SD = 1.15), and this difference was statistically significant (b = -0.28, SE = 0.10, t(111) = 

2.66, p = .009).  
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Figure 4.2. Post-task ratings of autonomous motivation and task difficulty as a function 
of choice. A) shows the distribution of ratings and B) shows means and 95% confidence 
intervals overlaid on individual data. The lines in panel B indicate the difference between 
the Yes- and No-Choice conditions for each participant; the darker the line, the more 
observations. 

 

Because these post-task manipulation check items were not part of a previously 

validated measure, we conducted post hoc analyses (Figure 4.3) to assess their validity. 

Pearson correlations among the liking, engagement, and motivation items showed 

moderate to high correlations within choice condition (r range = .39 to .65) and these 

items were correlated negatively with difficulty (r range = -.32 to -.46). Furthermore, as 

expected, the aggregate measures of autonomous motivation derived from these items 

were moderately to highly correlated (r range = .35 to .54) with indicators of autonomous 

motivation on the previously validated Intrinsic Motivation Inventory (IMI; Ryan, 1982; 

McAuley et al., 1989), including interest and enjoyment, and perceived competence 

during the task, and uncorrelated with pressure and tension during the task (r range = -.03 

to .00). However, the correlations between the perceived choice facet on the IMI was less 

strongly correlated with the aggregate measure derived from items on the post-task 

manipulation check survey (r range = .13 to .21).  
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Figure 4.3. Bivariate correlations among measures from the post-task manipulation check 
survey (POST) and the Intrinsic Motivation Inventory (IMI). Autonomous motivation is a 
composite measure of the engagement, liking, and motivation items in the post-task 
survey, and all facets in the IMI with pressure / tension items reverse coded so that higher 
values indicated lower pressure / tension. 
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Table 4.1 

Means and standard deviations for facets of the Intrinsic Motivation Inventory 
Facet M SD 
Autonomous motivation 5.13 0.58 

Interest / enjoyment 4.56 1.21 

Perceived choice 6.33 0.64 

Perceived competence 4.79 0.92 

Pressure / tension 3.14 0.72 

Note. Autonomous motivation is a composite measure of all facets in the IMI with pressure / 

tension items reverse coded so that higher values indicated lower pressure / tension. 

 

Task choice distribution. There was substantial variability in the percentage of 

trials in which participants chose to regulate (Figure 4.4). On average, participants chose 

to regulate 46.6% of the time (SD = 9.2%). 

 

Figure 4.4. Density distribution and box plot of the percentage of trials in which 
participants chose to regulate. 
 

 
ROC-C trial-level craving analyses. We compared three multilevel models and 

found that Model 3 – Autonomous Motivation best fit the data (Table 4.2). In this model, 
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participants reported lower cravings on Regulate trials than Look trials. Trials perceived 

as more difficult were associated with lower craving ratings on Look trials and higher 

ratings on Regulate trials, indicating worse performance when goal pursuit was difficult. 

This interaction was magnified by autonomous motivation on No-Choice trials, such that 

stronger autonomous motivation was associated with further decrements to task 

performance. Specifically, higher autonomous motivation on No-choice trials was 

associated with even lower craving ratings for more difficult Look trials (b = -0.07, p < 

.001) and even higher craving ratings for more difficult regulate trials (b = 0.07, p = 

.011). However, this relationship was reversed for Yes-Choice trials. Participants with 

relatively greater autonomous motivation on Yes-Choice trials reported higher craving 

ratings for difficult Look trials (b = 0.09, p = .001) and lower craving ratings for difficult 

Regulate trials (b = -0.10, p = .002), indicating better task performance compared to No-

Choice trials. Parameter estimates and statistics for all models terms are listed in Table 

4.3 and the predicted effects are visualized in Figure 4.5. We also conducted a post hoc 

analysis modeling the fixed effects of autonomous motivation during Yes-Choice and 

No-Choice sets separately rather than as a single individual differences variable. This 

allowed us to determine whether increased perceived autonomous motivation for Yes- 

and No-Choice were uniquely related to the corresponding choice condition during the 

task. This model fit the data better than Model 3, X2(8) = 27.71,  p < .001 (Table B1), and 

confirmed that the effect of autonomous motivation on task performance was unique to 

the specific choice condition (Table B2). That is, higher autonomous motivation during 

Yes-Choice trials was not related to task performance on No-Choice trials and vice versa 
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(Figure B1). The full model and model comparison is reported and visualized in 

Supplementary material in Appendix B. 

 

Table 4.2 

Comparison of multilevel models with trial-level craving ratings as the criterion 
Model Model df AIC X2 X2 df p 

Model 1 – Choice 13 22844.13 – – – 

Model 2 – Difficulty 17 22159.90 692.24 4 < .001 

Model 3 – Autonomous Motivation 25 22150.26 25.63 8 .001 
Note. The best fitting model is bolded. 

 
 

Figure 4.5. Predicted trial-level craving ratings from the best fitting multilevel model 
(Model 3 – Autonomous Motivation) as a function of trial-level Goal, Choice, and 
Difficulty, and person-level Autonomous Motivation rated post-task. Error bars are 
bootstrapped 95% confidence intervals. 
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Table 4.3 

Results from the best fitting trial-level craving rating multilevel model 
Fixed effects b [95% CI] SE t df p 

Intercept (Look, No-Choice) 2.91 [2.85, 2.98] 0.03 84.07 148.21 < .001 
Goal -0.79 [-0.90, -0.69] 0.05 -15.26 146.09 < .001 
Choice 0.04 [-0.01, 0.08] 0.02 1.73 9327.99 .084 

Difficulty -0.26 [-0.30, -0.22] 0.02 -12.88 9445.41 < .001 
AM 0.02 [-0.02, 0.06] 0.02 0.86 4382.26 .389 

Trial -0.01 [-0.02, -0.01] 0.00 -4.15 9343.70 < .001 
Baseline Craving 0.26 [0.23, 0.29] 0.02 16.06 89.66 < .001 
Goal × Choice -0.04 [-0.10, 0.02] 0.03 -1.30 9327.05 .193 

Goal × Difficulty 0.48 [0.42, 0.53] 0.03 18.33 9497.92 < .001 
Choice × Difficulty 0.02 [-0.03, 0.07] 0.03 0.83 9373.60 .407 

Goal × AM 0.03 [-0.03, 0.09] 0.03 1.00 4476.93 .317 

Choice × AM 0.02 [-0.03, 0.07] 0.03 0.84 8170.75 .399 

Difficulty × AM -0.07 [-0.11, -0.03] 0.02 -3.53 9431.30 < .001 
Goal × Choice × Difficulty -0.01 [-0.07, 0.06] 0.03 -0.24 9381.03 .808 

Goal × Choice × AM -0.06 [-0.14, 0.01] 0.04 -1.70 8243.77 .088 

Goal × Difficulty × AM 0.07 [0.02, 0.12] 0.03 2.54 9494.30 .011 
Choice × Difficulty × AM 0.09 [0.04, 0.13] 0.02 3.47 9455.02 .001 
Goal × Choice × Difficulty × AM -0.10 [-0.16, -0.03] 0.03 -3.03 9500.58 .002 
      

Random effects variance SD   

Participant     

Intercept 0.10 0.31   

Goal 0.23 0.48   

Baseline Craving 0.02 0.14   

Residual 0.55 0.74   

Note. Degrees of freedom (df) were calculated using the Satterthwaite approximation. 

Statistically significant parameters at p < .05 are bolded. The reference condition for Goal is 

Look; the reference condition for Choice is No-Choice; Difficulty, Autonomous Motivation, and 

Baseline Craving are Z-scored; and Trial is centered at 45 and is units of 10 trials. AM = 

Autonomous Motivation. 

 

ROC-C trial-level difficulty analyses. Model comparison revealed the Model 2 

– Autonomous Motivation × Choice best fit the data (Table 4.4). In this model, 

participants reported more difficulty on Regulate than Look trials (b = 0.44, p < .001). 

Choice was associated with lower difficulty ratings (b = -0.05, p = .030) and this effect 
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did not differ as a function of Goal (b = 0.01, p = .757). However, the effect of Choice 

was moderated by individual differences in autonomous motivation, such that Yes-

Choice trials were rated as less difficult for individuals who reported also higher 

autonomous motivation during these trials (Figure 4.6). Parameter estimates and statistics 

for all models terms are listed in Table 4.5. 

 

Table 4.4 

Comparison of multilevel models with trial-level difficulty ratings as the criterion 
Model Model df AIC X2 X2 df p 

Model 1 – Choice 13 24124.17 – – – 

Model 2 – Autonomous Motivation × Choice 15 24114.27 13.90 2 .001 
Model 3 – Autonomous Motivation × Choice × Goal 17 24114.55 3.72 2 .156 

Note. The best fitting model is bolded. 

 

 

Figure 4.6. Predicted trial-level difficulty ratings from the best fitting multilevel model 
(Model 2 – Autonomous Motivation × Choice) as a function of trial-level Goal and 

Choice, and person-level Autonomous Motivation rated post-task. Error bars are 
bootstrapped 95% confidence intervals. 
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Table 4.5 

Results from the best fitting trial-level difficulty rating multilevel model 
Fixed effects b [95% CI] SE t df p 

Intercept (Look, No-Choice) 1.69 [1.62, 1.76] 0.04 46.26 152.24 < .001 
Goal 0.44 [0.35, 0.53] 0.05 9.64 168.49 < .001 
Choice -0.05 [-0.10, -0.01] 0.02 -2.17 9352.20 .030 
Autonomous Motivation 0.02 [-0.01, 0.06] 0.02 1.27 6685.77 .204 

Trial -0.00 [-0.01, 0.01] 0.00 -0.20 9371.21 .841 

Baseline Craving -0.01 [-0.04, 0.01] 0.01 -0.97 90.32 .335 

Goal × Choice 0.01 [-0.06, 0.08] 0.03 0.31 9342.56 .757 

Choice × Autonomous Motivation -0.07 [-0.11, -0.03] 0.02 -3.59 9109.02 < .001 
      

Random effects variance SD   

Participant     

Intercept 0.11 0.33   

Goal 0.16 0.40   

Baseline Craving 0.01 0.08   

Residual 0.68 0.82   

Note. Degrees of freedom (df) were calculated using the Satterthwaite approximation. 

Statistically significant parameters at p < .05 are bolded. The reference condition for Goal is 

Look; the reference condition for Choice is No-Choice; Autonomous Motivation and Baseline 

Craving are Z-scored; and Trial is centered at 45 and in units of 10 Trials. 

 

 Post hoc individual difference analyses. We ran two multilevel models 

regressing regulation success on Choice, Autonomous Motivation, and their interaction 

(Table 4.6). When autonomous motivation was assessed toward the task as a whole in the 

Intrinsic Motivation Inventory, autonomous motivation was positively associated with 

regulation success across both choice conditions, but this relationship was stronger in the 

Yes-Choice condition (Figure 4.7). For autonomous motivation assessed separately for 

each choice condition during the post-task survey, autonomous motivation was only 

positively associated with regulation success in the Yes-Choice condition.  



 
 

89 

 

Figure 4.7. Predicted regulation success during the Regulation of Craving–Choice task as 
a function of Autonomous Motivation and Choice. Autonomous motivation was assessed 
about the task as a whole using the Intrinsic Motivation Inventory) and as a function of 
choice on the post-task manipulation check survey (post-task). Error bands are 
bootstrapped 95% confidence intervals. 

 

Table 4.6 

Results from the individual difference multilevel models 
IMI b [95% CI] SE t df p 
Intercept (No-Choice) 0.80 [0.70, 0.89] 0.05 16.02 131.18 < .001 
Choice 0.05 [-0.00, 0.11] 0.03 1.81 110 .073 

Autonomous Motivation 0.12 [0.02, 0.22] 0.05 2.44 131.18 .016 
Choice × Autonomous Motivation 0.07 [0.01, 0.13] 0.03 2.44 110 .016 
 

Post-task 

Intercept (No-Choice) 0.80 [0.69, 0.90] 0.05 15.48 128.95 < .001 
Choice 0.05 [-0.00, 0.11] 0.03 1.83 107.85 .070 

Autonomous Motivation -0.03 [-0.09, 0.03] 0.03 -1.06 138 .290 

Choice × Autonomous Motivation 0.11 [0.04, 0.17] 0.03 3.05 116.43 .003 
Note. Degrees of freedom (df) were calculated using the Satterthwaite approximation. 

Statistically significant parameters at p < .05 are bolded. The reference condition for Choice is 

No-Choice; Autonomous Motivation is Z-scored across participants. IMI = Intrinsic Motivation 

Inventory; Post-task = post-task manipulation check survey. 
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Univariate neural analyses 

To identify brain regions that showed relatively greater BOLD signal during 

autonomous goal pursuit, we contrasted Yes-Choice > No-Choice trials (Figure 4.8). We 

observed increased BOLD signal in the frontoparietal control network, with significant 

clusters in left dorsolateral prefrontal cortex (dlPFC), inferior frontal gyrus (IFG), and 

inferior parietal lobule. Additional clusters were found in bilateral pre-supplementary 

motor cortex (pre-SMA) and visual cortex. The reverse contrast, No-Choice > Yes-

Choice, revealed small significant clusters of activation in bilateral superior temporal 

cortex, cuneus, and posterior cingulate cortex, as well as in other regions listed in Table 

4.7. We also observed several small clusters of activations in bilateral postcentral gyrus, 

right posterior insula and amygdala, and left precuneus, when contrasting Yes-Choice 

(Regulate > Look) > No-Choice (Regulate > Look). All cluster locations and statistics are 

listed in Table 4.7. Unthresholded statistical maps for this effect and all other effects 

reported in this article are available through NeuroVault (Gorgolewski et al., 2015; 

https://neurovault.org/collections/NDHWTOBQ/).  
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Table 4.7 

Regions, MNI Coordinates, cluster extent, and peak t-values for choice contrasts 
Contrast Region MNI Coordinates (x, y, z) Extent (k) Peak t 
Yes > No L Lingual Gyrus -12 -96 -10 8945 8.82 
 R Cerebellum (VI) 12 -88 -10 8945 8.06 
 L Cerebellum (Crus 1) -32 -82 -14 8945 7.08 
 L Middle Occipital Gyrus -26 -68 42 1360 5.28 
 L Inferior Parietal Lobule -48 -40 52 1360 4.16 
 L Inferior Parietal Lobule -36 -60 60 1360 3.91 
 L Superior Frontal Gyrus -4 12 50 567 5.80 
 L IFG (p. Triangularis) -56 14 36 522 4.85 
 R Superior Occipital Gyrus 30 -66 34 179 3.90 
 L IFG (p. Triangularis) -58 22 2 103 4.02 
 L Middle Frontal Gyrus -50 46 8 70 3.90 
No > Yes L PCC -20 -46 14 312 7.30 
 L Caudate Nucleus -20 -24 28 312 4.50 
 L Caudate Nucleus -20 0 28 312 4.45 
 R Cuneus 14 -82 36 224 4.83 
 R PCC 24 -44 18 172 6.29 
 R Fusiform Gyrus 34 -54 2 172 4.07 
 L Cuneus -8 -84 36 169 4.28 
 L Calcarine Gyrus -20 -74 18 169 3.95 

 R Superior Temporal Gyrus 54 -24 12 140 3.94 
 R Postcentral Gyrus 26 -32 64 138 4.53 
 L Superior Temporal Gyrus -58 -32 12 74 3.91 
Yes (Reg. > Look) >  

No (Reg. > Look) 
R Medial Temporal Pole 54 14 -30 96 4.47 
R Rolandic Operculum 48 -26 24 132 4.34 
R Amygdala 28 -4 -14 66 4.25 
L Precuneus -10 -40 56 60 3.98 
R Postcentral Gyrus 24 -38 76 60 3.81 
L Postcentral Gyrus -22 -38 72 65 3.70 

Note. Cluster family-wise error correction for α = 0.05 and p < 0.001 is k = 60. Cluster extent (k) 

is measured in 2 mm3 voxels. 
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Figure 4.8. Univariate main effects for Choice and the interaction between Choice and 
Goal: Yes-Choice (Regulate > Look) > No-Choice (Regulate > Look). Results are 
thresholded at p < .001 and k = 60. Cluster extent (k) is measured in 2 × 2 × 2mm voxels. 

 

In line with previous research on cognitive reappraisal (for meta-analyses, see 

Buhle et al., 2014; Han et al., 2018), we observed robust activation in regions within the 

frontoparietal control network when contrasting Regulate > Look (Figure 4.9). There 

were large clusters of bilateral activation in IFG, anterior temporal cortex, middle 

temporal cortex, posterior parietal cortex, posterior cingulate cortex, pre-SMA and 

dorsomedial prefrontal cortex, and dorsal and ventral striatum, as well as in left dlPFC. 

The reverse contrast Look > Regulate was associated with relatively greater BOLD signal 

in bilateral postcentral gyrus, mid and posterior insula, precuneus, anterior and mid 

cingulate cortex, subgenual anterior cingulate cortex, as well as right anterior 

ventromedial prefrontal cortex. Spatial and statistical information about all clusters are 

specified in Table 4.8. 
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Table 4.8 

Regions, MNI Coordinates, cluster extent, and peak t-values for goal contrasts 

Contrast Region MNI Coordinates (x, y, z) Extent (k) Peak t 
Regulate > Look L Superior Frontal Gyrus -8 14 68 19251 13.77 

 R IFG (p. Orbitalis) -52 36 -12 19251 13.59 

 L Superior Medial Gyrus -6 42 54 19251 12.90 

 R Cerebellum (Crus 2) 32 -84 -38 3546 11.51 

 R Cerebellum (Crus 2) 12 -84 -26 3546 8.88 

 R Cerebellum (Crus 1) 34 -60 -32 3546 6.73 

 L Angular Gyrus -54 -64 36 1858 10.01 

 L Inferior Parietal Lobule -46 -62 56 1858 6.94 

 R IFG (p. Orbitalis) 50 30 -10 995 7.53 

 R IFG (p. Orbitalis) 32 20 -10 995 6.15 

 R IFG (p. Triangularis) 60 24 12 995 5.24 

 R Medial Temporal Pole 46 8 -44 815 7.85 

 R Medial Temporal Pole 52 16 -26 815 6.23 

 L MCC -2 -18 36 804 8.90 

 L PCC -4 -46 26 804 6.51 

 L Lingual Gyrus -12 -80 6 594 5.49 

 L Cerebellum (Crus 2) -36 -86 -34 443 5.87 

 L Cerebellum (Crus 2) -8 -86 -24 443 4.16 

 L Precuneus -6 -74 38 438 7.35 

 
R Superior Temporal 

Gyrus 
46 -32 -4 216 5.03 

 R Cerebellum (IX) 6 -58 -42 213 5.59 

 R Precentral Gyrus 40 -18 40 156 4.47 

 R Postcentral Gyrus 20 -28 68 67 4.75 

 R Angular Gyrus 52 -56 42 63 3.95 

Look > Regulate       

 L Postcentral Gyrus -42 -28 58 8220 9.88 

 L Insula Lobe -40 -2 16 8220 8.67 

 L Postcentral Gyrus -62 -24 42 8220 8.40 

 R Rolandic Operculum 58 -18 22 3459 7.84 

 R Postcentral Gyrus 48 -30 54 3459 6.40 

 R Middle Occipital Gyrus 42 -72 32 3459 5.68 

 L MCC -6 -6 52 882 7.54 

 L ACC -2 14 30 882 4.74 

 L MCC -10 -26 50 882 3.58 

 R Insula Lobe 40 0 14 750 6.39 

 R Amygdala 26 -2 -8 750 4.96 

 R Putamen 36 -18 0 750 4.36 

 R Inferior Temporal Gyrus 60 -46 -8 710 6.32 
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Table 4.8 (continued) 

Contrast Region MNI Coordinates (x, y, z) Extent (k) Peak t 
 R IFG (p. Opercularis) 60 10 22 568 5.79 

 R Precentral Gyrus 24 -10 58 465 4.81 

 L IFG (p. Opercularis) -60 6 32 311 8.10 

 R Superior Orbital Gyrus 30 60 2 307 4.44 

 R Mid Orbital Gyrus 4 62 0 307 3.88 

 R Middle Frontal Gyrus 24 40 32 289 4.34 

 R Cerebellum (VIII) 28 -44 -52 260 5.04 

 R Lingual Gyrus 12 -68 -2 226 5.43 

 R Mid Orbital Gyrus 0 18 -6 215 5.38 

 L Inferior Temporal Gyrus -58 -58 -6 214 3.98 

 L Middle Occipital Gyrus -34 -84 36 201 4.27 

 R Middle Frontal Gyrus 46 40 12 194 4.23 

 R Calcarine Gyrus 6 -64 24 172 4.73 

 L Fusiform Gyrus -32 -40 -16 115 4.47 

Note. Cluster family-wise error correction for α = 0.05 and p < .001 is k = 60. Cluster extent (k) is 

measured in 2 × 2 × 2 mm voxels. 

 

 

Figure 4.9. Univariate main effects for Goal. Results are thresholded at p < .001 and 
k = 60. Cluster extent (k) is measured in 2 × 2 × 2mm voxels. 

 

Post hoc trial-level analysis. The model including trial-level pattern expression 

of the Yes-Choice > No-Choice group-level contrast explained additional variance 
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compared to the best fitting behavioral model, X2(16) = 36.15, p = .003. Adding trial-

level pattern expression did not alter the effects reported in Model 3 –Autonomous 

Motivation, but revealed additional statistically significant interactions between Pattern 

Expression and Goal, Difficulty, and Autonomous Motivation (Table 4.9). Specifically, 

stronger expression of the whole-brain autonomous goal pursuit pattern (i.e., Yes-Choice 

> No-Choice) on relatively difficult No-Choice trials was associated with worse task 

performance for both the Look and Regulate conditions (Figure 4.10). We also observed 

a four-way interaction between these variables, such that individuals with greater 

autonomous motivation and pattern expression on relatively difficult No-Choice Regulate 

trials had further decrements in task performance. In contrast, stronger expression of the 

autonomous goal pursuit pattern during Yes-Choice trials was associated with better 

performance with increasing difficulty and autonomous motivation across both Look and 

Regulate conditions. However, although the effect sizes were similar for Yes- and No-

Choice trials, the effects for Yes-Choice were not statistically significant at p < .05.  
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Figure 4.10. Predicted craving ratings from the post hoc multilevel model including 
neural pattern expression of the Yes-Choice > No-Choice group-level contrast as a 
function of trial-level Goal, Choice, Difficulty, and pattern expression, and person-level 
Autonomous Motivation rated post-task. The top panel describes these interactions one 
standard deviation above mean Autonomous Motivation, whereas the bottom panel 
shows the interactions at mean Autonomous Motivation. The left panel visualized them at 
one standard deviation above mean Difficulty, and the right panel shows them at mean 
Difficulty. Error bars are bootstrapped 95% confidence intervals. AM = Autonomous 
Motivation; PEV = pattern expression value. 
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Table 4.9 

Results from the post hoc trial-level craving rating multilevel model 
Fixed effects b [95% CI] SE t df p 

Intercept (Look, No-Choice) 2.91 [2.84, 2.98] 0.03 83.69 149.23 < .001 
Goal -0.78 [-0.89, -0.68] 0.05 -15.21 147.11 < .001 
Choice 0.04 [-0.00, 0.09] 0.02 1.84 9057.17 .065 

Difficulty -0.26 [-0.30, -0.22] 0.02 -12.82 9169.30 < .001 
PEV 0.01 [-0.02, 0.05] 0.02 0.59 9148.8 .557 

AM 0.02 [-0.02, 0.07] 0.02 0.96 4176.83 .336 

Trial -0.01 [-0.02, -0.01] 0.00 -4.36 9095.37 < .001 
Baseline Craving 0.26 [0.23, 0.29] 0.02 15.79 88.61 < .001 
Goal × Choice -0.04 [-0.10, 0.02] 0.03 -1.20 9056.85 .229 

Goal × Difficulty 0.48 [0.43, 0.53] 0.03 18.22 9221.09 < .001 
Choice × Difficulty 0.02 [-0.03, 0.07] 0.03 0.94 9100.72 .347 

Goal × PEV -0.02 [-0.07, 0.03] 0.03 -0.79 9117.26 .430 

Choice × PEV 0.04 [-0.00, 0.09] 0.02 1.94 9110.50 .053 

Difficulty × PEV -0.04 [-0.08, -0.01] 0.02 -2.3 9148.79 .021 
Goal × AM 0.03 [-0.03, 0.09] 0.03 0.96 4108.48 .336 

Choice × AM 0.01 [-0.04, 0.06] 0.03 0.50 7917.91 .617 

Difficulty × AM -0.07 [-0.11, -0.04] 0.02 -3.71 9152.46 < .001 
PEV × AM 0.00 [-0.04, 0.04] 0.02 0.03 9172.47 .976 

Goal × Choice × Difficulty -0.02 [-0.08, 0.05] 0.03 -0.55 9107.46 .584 

Goal × Choice × PEV -0.05 [-0.11, 0.02] 0.03 -1.46 9108.60 .144 

Goal × Difficulty × PEV 0.06 [0.01, 0.11] 0.03 2.33 9168.36 .020 
Choice × Difficulty × PEV 0.03 [-0.02, 0.08] 0.02 1.10 9123.93 .271 

Goal × Choice × AM -0.05 [-0.13, 0.02] 0.04 -1.45 7945.69 .146 

Goal × Difficulty × AM 0.06 [0.01, 0.11] 0.03 2.42 9218.02 .016 
Choice × Difficulty × AM 0.09 [0.04, 0.14] 0.02 3.63 9179.32 < .001 
Goal × PEV × AM 0.02 [-0.03, 0.08] 0.03 0.85 9166.10 .396 

Choice × PEV × AM -0.02 [-0.06, 0.03] 0.02 -0.64 9177.18 .520 

Difficulty × PEV × AM -0.03 [-0.07, 0.01] 0.02 -1.69 9136.43 .090 

Goal × Choice × Difficulty × PEV -0.03 [-0.10, 0.03] 0.03 -0.92 9114.11 .356 

Goal × Choice × Difficulty × AM -0.10 [-0.16, -0.03] 0.03 -3.00 9226.42 .003 
Goal × Choice × PEV × AM -0.04 [-0.11, 0.03] 0.04 -1.06 9180.15 .291 

Goal × Difficulty × PEV × AM 0.06 [0.01, 0.11] 0.03 2.46 9145.39 .014 
Choice × Difficulty × PEV × AM 0.04 [-0.01, 0.08] 0.02 1.53 9122.07 .126 

Goal × Choice × Difficulty × PEV × AM -0.06 [-0.13, 0.00] 0.03 -1.86 9129.49 .063 

  



 
 

98 

Table 4.9 (continued) 

Random effects variance SD    

Participant      

Intercept 0.10 0.31    

Goal 0.22 0.47    

Baseline Craving 0.02 0.14    

Residual 0.55 0.74    

Note. Degrees of freedom (df) were calculated using the Satterthwaite approximation. 

Statistically significant parameters at p < .05 are bolded. The reference condition for Goal is 

Look; the reference condition for Choice is No-Choice; Difficulty, Yes-Choice > No-Choice 

Pattern Expression, Autonomous Motivation, and Baseline Craving are Z-scored across 

participants; and Trial is centered at 45 and is units of 10 trials. AM = Autonomous Motivation; 

PEV = Pattern Expression Value. 

 

Multivariate neural analysis 

The MVPA analyses revealed that autonomous goal pursuit was distinguishable 

from controlled goal pursuit above chance accuracy (Figure 4.11). This was the case 

when collapsed across Goal, as well as for Regulate and Look separately. Overall, 

classification accuracy was the highest when decoding Choice within the Look condition 

only (accuracy = 0.59, 95% CI [0.52, 0.65]), followed by the Regulate condition only 

(accuracy = 0.57, 95% CI [0.50, 0.63]), and lowest when collapsed across Goal (accuracy 

= 0.55, 95% CI [0.50, 0.60]). All statistics are reported in Table 4.10. 

We also investigated whether choice reduced classification accuracy when 

decoding Goal. We observed somewhat higher classification accuracy during 

autonomous goal pursuit (accuracy = 0.77, 95% CI [0.71, 0.82]) than during controlled 

goal pursuit (accuracy = 0.75, 95% CI [0.69, 0.81]), but the difference was not 

statistically significant. 
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Table 4.10 

Cross-validated MVPA analysis results 
Choice Accuracy [95% CI] p Sensitivity Specificity 

Look & Regulate 0.55 [0.50, 0.60] .018 0.52 0.58 

Regulate only 0.57 [0.50, 0.63] .028 0.53 0.60 

Look only 0.59 [0.52, 0.65] .005 0.55 0.63 

     

Goal     

Yes- & No-Choice 0.78 [0.74, 0.82] < .001 0.78 0.78 

Yes-Choice only 0.75 [0.69, 0.81] < .001 0.78 0.72 

No-Choice only 0.77 [0.71, 0.82] < .001 0.75 0.78 

Note. Chance accuracy is 0.5. 

 

 

Figure 4.11. Receiver operating characteristic curves as a function of classification 
model. Choice was decoded across the Look and Regulate conditions (Choice Regulate & 
Look), and for Look and Regulate separately (Choice Look only and Choice Regulate 
only, respectively). Goal was decoded across the Yes- and No-Choice conditions (Goal 
Yes- & No-Choice), and for the Yes- and No-Choice conditions separately (Goal Yes-
Choice only and Goal No-Choice only,  
respectively). 
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Discussion 

The goal of this study was to investigate potential mechanisms underlying the 

relationships between choice, autonomous motivation, and goal pursuit during a cognitive 

reappraisal task. The results showed that on average, choice was associated with lower 

perceived difficulty, but not greater autonomous motivation. However, individual 

differences in perceived autonomous motivation reported after the task were related to 

task performance. Individuals reporting higher autonomous motivation were more 

successful at the task when they choose on relatively difficult trials. We observed similar 

results when modeling trial-level difficulty; greater autonomous motivation was 

associated with lower difficulty ratings when participants had choice. Neurally, choice 

was associated with stronger engagement of brain regions associated with attention and 

cognitive control across both task goals (i.e., Look and Regulate) in univariate models. 

Furthermore, we observed greater than chance accuracy when classifying choice 

condition during goal pursuit, further indicating that autonomous and controlled goal 

pursuit are dissociable.  

Behavioral effects of choice 

It is notable that choice was not associated with increased self-reported 

autonomous motivation during the post-task manipulation check. This is in contrast to 

other studies reporting a positive association between choice and autonomous motivation 

(Legault & Inzlicht, 2013; Patall et al., 2008), but may be due to the fact that the three 

items (liking, engagement, and motivation) used to create the preregistered measure of 

autonomous motivation varied in their relationship to choice. Specifically, participants 

reported stronger motivation during choice, but equivalent liking and engagement during 
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choice and no-choice trials. However, post hoc analyses indicated that the items were 

moderately to highly correlated, suggesting that averaging across items was appropriate. 

In addition, this measure of autonomous motivation was moderately to highly correlated 

with a separate validated measure of autonomous motivation administered in relation to 

the task as a whole (i.e., not separated by choice condition), suggesting convergent 

validity. Despite not observing an effect of choice on autonomous motivation on average, 

there was substantial variability across people and individual differences in this measure 

were related to task effects, which is consistent with prior research detailing individual 

differences in preference for choice (Iyengar & Lepper, 1999).  

 In the cognitive reappraisal task, we investigated how choice affects goal pursuit 

(operationalized as task performance), and how this relationship might be moderated by 

trial-level perceived difficulty of goal pursuit and individual differences in autonomous 

motivation. Given that 1) choice supports autonomy, 2) autonomous motivation is 

associated with successful goal pursuit and self-regulation, and 3) motivation may matter 

most when goal pursuit is difficult, we expected that choice would be related to better 

task performance on more difficult trials for individuals who reported higher autonomous 

motivation. We observed this effect across both task goals, indicating that choice was 

associated with task goal pursuit broadly rather than while engaging in cognitive 

reappraisal specifically. While this result is in contrast to previous research showing that 

choice was associated with decreased task performance during cognitive reappraisal of 

food cravings (Cosme et al., 2018b) and aversive pictures (Bigman et al., 2017), it is 

consistent with other research showing that choosing to view aversive images was 

associated with greater negative emotional intensity, whereas reappraisal was associated 
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with lower intensity (Kühn et al., 2014). The difference in the direction of the effect 

between this study and Cosme et al. (2018) is likely due to differences in task design that 

were made in order to reduce potential cognitive burden associated with choice, which 

may have led to reduced task performance in the previous study. 

Another interesting finding is that post hoc analyses indicated that the task 

interaction was also specific to choice condition and that more successful goal pursuit 

was only related to autonomous motivation experienced during the Yes-Choice condition. 

That is, higher autonomous motivation in the Yes-Choice condition was only associated 

with better performance on Yes-Choice trials and not No-Choice trials. Further, 

autonomous motivation on Yes-Choice trials was associated with better performance, 

whereas No-Choice autonomous motivation was associated with worse performance. 

This suggests that choice only promotes more successful goal pursuit when it is 

accompanied by feelings of subjective autonomous motivation. This is consistent with 

research showing that the association between choice and better inhibitory control was 

partially mediated by subjective autonomous motivation (Legault & Inzlicht, 2013). We 

were precluded from testing mediation with the current design, but this is an important 

avenue for future research. 

The relationship between choice and subjective difficulty 

  Previous research has suggested that autonomous motivation makes goal pursuit 

feel easier (Werner & Milyavskaya, 2019; Werner et al., 2016; Milyavskaya et al., 2015), 

but the mechanism underlying this association is unclear. Here, we tested the relationship 

between autonomous motivation and goal pursuit while individuals deployed a regulatory 

strategy–cognitive reappraisal–and found that choice was indeed associated with lower 
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subjective difficulty, both when reflecting on the task as a whole and on a trial-by-trial 

basis. However, the effect of choice was consistent across both task goals, indicating that 

it affected goal pursuit broadly, rather than this self-regulation strategy specifically. 

Mirroring the effects on craving, this finding was also moderated by the degree to which 

individuals felt autonomously motivated; higher self-reported autonomous motivation 

during choice was associated with further reductions in perceived difficulty of goal 

pursuit during choice. It is notable that the effect of autonomous motivation on difficulty 

was only present in the context of choice, suggesting that motivation may only become 

relevant when it is environment supports autonomy (i.e., via choice). 

Neural effects of choice 

 In this study, we utilized functional neuroimaging to test whether and how 

autonomous goal pursuit differed from controlled goal pursuit. Across both task goals, 

autonomous goal pursuit was associated with stronger activation in brain regions 

associated with attention and cognitive control, largely replicating Cosme et al. (2018). 

This is notable given that the current task design was modified substantially in order to 

reduce potential cognitive disruption associated with choice. In addition, in the present 

study, this neural activation occurred in the context of enhanced rather than reduced task 

performance, which is in line with the prediction that choice enhances attention to and 

engagement with stimuli relevant for goal pursuit (Legault & Inzlicht, 2013; Kühn et al., 

2014). Indeed, post hoc analyses showed a moderating effect of increased pattern 

expression of the Yes-Choice > No-Choice group-level contrast indicating that the more 

that individuals expressed the group-level pattern during Yes-Choice trials, the better 

they performed, whereas higher expression on No-Choice trials was associated with 
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worse performance. Although inferences related to this analysis should be approached 

with caution given that it was not preregistered and relies on reverse inference, these 

results provide further conditional evidence that attentional enhancement may be a 

candidate mechanism through which choice facilitates goal pursuit.  

 However, it was somewhat surprising that greater self-reported autonomous 

motivation and pattern expression of the group-level autonomous goal pursuit pattern 

were related to worse task performance during controlled goal pursuit. Given their 

positive associations with task performance during autonomous goal pursuit, it is unclear 

why they’d be negatively associated with performance on No-Choice trials. While further 

research is needed to better understand this finding, it highlights the complexity of the 

relationships between choice, motivation, and goal pursuit. 

 We complimented the univariate analyses, which provide spatial information 

about mean activation differences between conditions, using MVPA, which tested 

whether patterns of activation contain information that can distinguish conditions. This is 

the first study that we are aware of that has attempted to decode motivational orientation 

during goal pursuit. This approach revealed that choice could be decoded with greater 

than chance accuracy from patterns of activation in the regions associated with goal 

pursuit during the task. This is remarkable given the fact that we modeled the data during 

goal pursuit (not during the actual choice) and the only difference between conditions 

was that participants chose. It is also notable that accuracy was highest when choice was 

classified in the Look condition only, which mirrors the behavioral results showing 

somewhat larger effects when participant’s goal was to visualize the food as real and in 

front of them. Although overall accuracy might have been higher if the analysis had been 
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conducted within-person (Clithero et al., 2010), which affords greater idiosyncrasy of 

brain patterns, a strength of this between-person design is that other researchers can 

utilize this classifier and apply it to new or existing data. This analytic approach enables 

researchers to test the generalizability of this predictive model of autonomous versus 

controlled motivation in new tasks, contexts, and populations to assess the degree to 

which it represents information related to a common underlying mechanism. 

Theoretical implications 

 Combined, these results have several important theoretical implications that add 

nuance to the relationships between choice, motivation, difficulty, and goal pursuit. First, 

they suggest that subjective difficulty of goal pursuit and choice are important moderators 

of the relationship between autonomous motivation and goal pursuit. With a few notable 

exceptions (Sullivan-Toole et al., 2017), most research has focused on subjective 

difficulty as a consequence, rather than a moderator, of motivation (Werner et al., 2016), 

positing that autonomous motivation facilitates goal progress by making goal pursuit feel 

easier. Although the present study found evidence in support of this hypothesis, we also 

observed that motivation only mattered when goal pursuit was perceived as relatively 

difficult. This suggests that when the goal is easy to attain, motivation may not be 

particularly relevant (Klein et al., 1999). This is an under-researched yet important area 

for future inquiry. 

 Second, we sought to investigate potential mechanisms underlying the 

relationship between motivation and goal pursuit by assessing it while individuals 

actually utilized an effective self-regulatory strategy–cognitive reappraisal. Though a 

similar approach has been taken to study the effect of autonomy-supportive choice on 
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inhibitory control (Legault & Inzlicht, 2013), this study lacked a non self-regulatory 

condition and therefore could not address whether choice facilitates goal pursuit 

generally or self-regulation specifically. The results presented here suggest that, at least 

in the context of cognitively reappraising food cravings, the effect of choice operates on 

goal pursuit broadly. This implies that the underlying mechanism may be a more basic 

processes that is not tied to self-regulation per se.  

Third, the neural results suggest that attentional enhancement during self-

determined goal pursuit is a potential mechanism through which choice might facilitate 

goal pursuit. This is consistent with research showing increased sensitivity to error-

related feedback (Legault & Inzlicht, 2013) and stronger activation in the salience (Lee & 

Reeve, 2012) and frontoparietal control networks (Kühn et al., 2014) during autonomous 

goal pursuit. While we were unable to test this mechanistic hypothesis directly, future 

research could adopt a similar approach as in this study to assess whether a classifier 

trained to distinguish high versus low attentional engagement could predict choice 

condition in a separate task, and whether the relationship between choice and task 

performance was mediated by changes in pattern expression in this network. 

Limitations and future directions 

 The results of this study should be considered in light of several limitations. First, 

the design precluded us from testing causal relationships and therefore the direction of 

effects is unclear. Future research could adopt structural equation modeling approach to 

test directionality. Second, we did not use a validated measure of autonomous motivation 

in the post-task manipulation questions. Although the post hoc analyses indicated that our 

operationalization was reasonable and this measure correlated as expected with global 
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indicators of autonomous motivation during the task, it is important to replicate these 

results using validated measures in the future. Third, this study only included college 

freshmen and it therefore it may not be warranted to generalize beyond this population. 

Fourth, we did not recruit participants who had healthy eating goals. We sought to study 

the ability to utilize cognitive reappraisal, which is a flexible self-regulatory strategy that 

can be applied in various contexts to increase the value of goal-congruent and decrease 

the value of goal-incongruent stimuli, in a normative sample, but studying this strategy in 

a dieting sample could provide additional insight into these relationships when the task is 

highly relevant to individual goals. 

Conclusions 

 In this preregistered study, we tested theoretical predictions about how and 

whether autonomous motivation facilitates goal pursuit in the context of a novel 

appetitive self-regulation paradigm that included choice. We used choice to support 

autonomy and found that autonomous and controlled goal pursuit were dissociable 

neurally using both univariate and multivariate neuroimaging methods, and that 

autonomous goal pursuit more strongly engaged brain regions associated with attention 

and cognitive control. Autonomous goal pursuit was also perceived as less difficult, 

particularly for individuals who reported higher autonomous motivation. More 

autonomously motivated individuals were more successful at pursuing task goals during 

autonomous goal pursuit on relatively difficult trials. These effects were consistent across 

both task goals and were not uniquely present when participants engaged in cognitive 

reappraisal, suggesting a more basic underlying mechanism, such as enhanced attentional 
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processing. Overall, these findings add nuance to theories of how motivation and self-

regulation interact, and help refine potential mechanistic explanations.  
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CHAPTER V 

GENERAL DISCUSSION 

Chapter overview  

Given the comprehensive discussion of results provided within each study 

separately, this general discussion will focus primarily on integrating the findings across 

studies. I will highlight consistencies and discrepancies among the studies and discuss the 

collective practical and theoretical implications of this research. I will also discuss 

limitations and future directions before presenting general conclusions. 

Integrative summary of results and implications 

 The goal of this dissertation was to assess whether and how choice impacts goal 

pursuit during a novel appetitive self-regulation task. Since choice is a primary method 

for supporting autonomy, and autonomy is associated with greater intrinsic motivation 

and more successful goal pursuit, we expected that manipulating motivation via choice 

would result in enhanced goal pursuit during this Regulation of Craving–Choice (ROC-

C) task. However, in the initial task design (Study 1), we observed that choice reduced 

rather than enhanced task performance. Because this performance decrement occurred in 

the context of greater activation in brain regions associated with attention and cognitive 

control, we hypothesized that the design of the task may have inadvertently undermined 

potential benefits of autonomy. In particular, making many choices throughout the task 

and not separating the choice and goal pursuit phases may have increased the cognitive 

burden and led to inefficient allocation of cognitive resources during goal pursuit, 

ultimately resulting in worse task performance. However, because we did not explicitly 

assess the affective experience of choice to determine whether choice felt autonomous, it 
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was unclear whether decrements during the task were due to methodological issues, 

because choice did not feel self-determined, or both. 

 To better account for these potential alternatives, in Study 2, we redesigned the 

task to alleviate potential cognitive load directly associated with choice. We also included 

trial-level difficulty to investigate its interaction with choice and goal pursuit, and 

devised two between-subject experimental manipulations in an effort to make choice feel 

more self-determined. Overall, only participants in the experimental manipulation 

characterizing choice as a means of exerting autonomy and as a form of self-expression 

(the Agency manipulation group), displayed the expected pattern of results. This group 

reported higher levels of autonomous motivation and perceived choice during the task as 

a whole, and performed better on the task during autonomous goal pursuit, particularly 

when goal pursuit was perceived as difficult. However, this group unexpectedly reported 

lower autonomous motivation–in particular lower liking–for choice sets. One possible 

explanation for this result is that participants may have felt subtly pressured to choose to 

look and regulate evenly by the run summaries at the end of each run, which were 

included to alleviate potential cognitive burden keeping track of choices. While this was 

the same across experimental groups, any undermining effect may have been magnified 

in this group because the pre-task manipulation emphasized the importance of each 

choice made. In Study 3, we removed these run summaries and utilized the ROC-C task 

in a large sample incoming college freshmen. Participants in this sample showed greater 

variability in their choices, and higher overall autonomous motivation and perceived 

choice, and lower difficulty than participants in Study 2, suggesting that removing the run 

summaries may have alleviated potential undermining effects. 
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 Though not directly comparable, there was general consistency between the ROC-

C task results in Study 3 and the Agency autonomy manipulation group in Study 2. 

Across both samples, choice was associated with better task performance on relatively 

more difficult trials. In both studies, this effect was also stronger when individuals chose 

to visualize the foods as being real (Look condition), rather than visualizing the negative 

consequences associated with consumption (Regulate condition). It is not clear what is 

driving this effect, though it is unlikely to be accounted for by differences in subjective 

difficulty between the task goals because difficulty was equivalent across the conditions 

in these models. One possibility is that participants felt more motivated when they chose 

to look, but since we did not measure autonomous motivation for the goals separately, we 

cannot be sure. However, this explanation would be consistent with other research 

showing differential preference for choice as a function of valence (Leotti & Delgado, 

2014) and preferences for less effortful tasks more generally (Sullivan-Toole et al., 2017; 

Kool et al., 2010).  

 Across both Studies 2 and 3, the effect of choice on goal pursuit was consistent 

but relatively small. Therefore, the practical significance of these findings is unclear. 

Theoretically speaking, albeit small, these results bolster the notion that choice in and of 

itself does not enhance goal pursuit. Rather, choice only supports goal pursuit insofar as it 

elicits feelings of autonomous motivation. This also suggests that not all choice is 

inherently self-determined and that individual differences in the perceptions of choice are 

critically important. Given that most studies addressing the effect of choice either 

operationalize motivation as the outcome or use choice as a proxy for motivation and 

assess goal pursuit without measuring motivation explicitly (Patall et al., 2008), these 
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findings add important evidence that choice does not inherently enhance motivation 

(Legault & Inzlicht, 2013) and that empirical studies should measure both motivation and 

goal pursuit when investigating the effects of choice. These findings also indicate that 

future studies should include measures of the subjective difficulty of goal pursuit as it 

moderated the effect of choice on goal pursuit.  

 Because even small effects can have important behavioral consequences over 

time, one indicator of practical significance might be the extent to which these 

relationships are reflected at the individual, rather than trial, level. Post hoc correlational 

analyses in Study 3 provided at least some evidence that this was the case. Specifically, 

they showed that individual differences in autonomous motivation during the task as a 

whole were positively related to regulatory success and that this relationship was stronger 

when participants chose. This suggests that although choice might enhance the 

relationship between autonomous motivation and successful goal pursuit, this effect may 

be small in comparison to preexisting individual differences. That is, individuals who feel 

more autonomously motivated during goal pursuit may be more successful regardless of 

whether they have a choice, but they may be slightly more successful during autonomous 

goal pursuit.  

These results also highlight a challenge of experimentally manipulating 

motivation to identify underlying mechanisms. Although research assessing goal progress 

for participant generated goals as a function of motivation has identified “effortless” goal 

pursuit as a possible mechanism (Milyavskaya et al., 2015; Werner et al., 2016), this type 

of study design makes it difficult to disentangle the motivation from the goal since goals 

are self-selected. More successful goal pursuers may simply select goals they are more 
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autonomously motivated to pursue (Weinstein et al., 2012). Indeed, this would be 

consistent with research suggesting individuals with higher self-control engage in more 

automatic and “effortless” regulatory strategies (Gillebaart & de Ridder, 2015) and that 

self-control is linked to greater autonomous motivation during goal pursuit (Converse et 

al., 2019). In this dissertation, we attempted to control for this possibility by limiting the 

goals available for pursuit and manipulating motivation by providing or withholding 

choice. Consistent with the hypothesis that autonomous motivation enhances goal pursuit 

by reducing subjective difficulty, we observed that self-determined choice was associated 

with lower perceived difficulty, independent of goal. However, the relationship with task 

performance was more complicated. Here, self-determined choice was related to more 

successful goal pursuit (i.e., better task performance), but only when goal pursuit was 

perceived as relatively difficult. Because we only collected subjective difficulty ratings, it 

is impossible to determine whether improvements in task performance at higher objective 

difficulty is due to the perception that it is less difficult. Future research could disentangle 

these effects by comparing the subjective difficulty at different levels of objective (e.g., 

normed ratings across a large pool individuals) difficulty. 

 Finally, across Studies 1 and 3, autonomous and controlled goal pursuit were 

dissociable and autonomous goal pursuit engaged a highly similar network of brain 

regions. Specifically, choice was associated with greater activation in brain regions 

associated with attention and cognitive control. However, this activation occurred in the 

presence of reduced task performance in Study 1, and enhanced task performance in 

Study 3, making its specific role unclear. In Study 1, we reasoned that the study design 

may have led to overallocation of cognitive resources to the choice, resulting in 
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diminished task performance. Although this may have been the case in Study 1, it is 

unclear why we would observe the same network of regions in the redesigned task in 

Study 3 in the context of better task performance. One possibility is that this activation is 

incidental and unrelated to task performance. However, we tested this possibility in a post 

hoc analysis in Study 3, and found that stronger pattern expression of the whole-brain 

autonomous goal pursuit pattern was associated with task performance over and above 

the effects of autonomous motivation and difficulty, making this account unlikely. 

Additional research is needed to systematically investigate the role brain regions 

supporting attention and cognitive control play in autonomous and controlled goal 

pursuit.  

Limitations and future directions 

 One primary limitation of this work is that it was conducted exclusively in college 

students, and primarily college freshmen. We focused on this population because this 

period may be an inflection point in the development of autonomous self-regulation and 

the degree to which young adults have internalized self-regulatory goals may have 

implications for how successfully they navigate the transition to college. Studies 1 and 3 

were conducted as part of a larger project on health and well-being during this transition 

and we plan to integrate the findings from this dissertation to investigate the relationship 

between individual differences in autonomous and controlled self-regulation, as index by 

neural and behavioral effects in the ROC-C task, and changes in health and well-being 

during freshman year. However, it is important that future studies assess the 

generalizability of the task effects detailed here in more diverse samples across a broad 

age range. Additionally, although autonomy is theorized to be a basic psychological need 
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(Deci & Ryan, 2000), it may be more or less relevant in particular developmental stages. 

For example, the need for autonomy may be particularly salient during mid-late 

adolescence when self-exploration is heightened (Crone & Dahl, 2012). Future research 

should also investigate other factors that may affect the degree to which choice promotes 

autonomous motivation during goal pursuit. Here, we focused exclusively on autonomous 

motivation and difficulty related to the task, but individual differences in the preference 

for choice (Iyengar & Lepper, 1999; Kehl et al., 2015) and need for autonomy (Schüler et 

al., 2014) are likely important moderators. Adopting an individual difference approach 

may help resolve conflicting evidence in the literature on motivation and goal pursuit. 

 Another limitation is that this dissertation employed a single goal-relevant task. In 

order to investigate potential mechanisms through which autonomous motivation might 

enhance goal pursuit, we focused on a specific self-regulatory strategy–cognitive 

reappraisal–that can be used to favor goal-congruent behavior in the face of tempting 

goal incongruent options. Therefore, it is unclear whether choice has similar effects on 

other self-regulatory strategies. Assessing the effect of choice on a broad array of self-

regulatory strategies in the same sample would help identify common underlying 

mechanisms that are not tied to a specific task.  

 Another fruitful avenue for future research is to investigate the antecedents of 

choice. In this dissertation, we only characterized choice as a predictor variable to 

understand how it is associated with motivation and goal pursuit, but predicting 

regulatory choice would help further our understanding how and under what 

circumstances regulatory goals are formed. For example, research on cognitive 

reappraisal of negative emotion identified reappraisal affordance (i.e., how easy it is to 
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generate effective reappraisals) as an important predictor of choosing to regulate affect 

via reappraisal independent of stimulus intensity, but it is unclear whether the same is 

true for appetitive stimuli.  

 Finally, most analyses in this dissertation are correlational in nature. Although we 

experimentally manipulated choice across all studies, the present design did not allow us 

to disentangle the direction of effects between choice and difficulty. Future research 

could employ structural equation modeling to better test the unique of choice and 

difficulty on goal pursuit. 

 General conclusions 

 Across three experiments, we investigated whether and how choice affects 

autonomous motivation and goal pursuit in the context of an appetitive self-regulation 

task. We showed that autonomous and controlled goal pursuit were dissociable neurally, 

and that autonomous goal pursuit was perceived as less difficult across task goals. 

Furthermore, we demonstrated that the degree to which choice helps or hinders goal 

pursuit is dependent on how self-determined and autonomously motivated choice feels. 

Together, these results help refine neurobiological and social psychological theories of 

motivation, self-regulation, and goal pursuit.  
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APPENDIX A 

STUDY 1 SUPPLEMENTARY MATERIAL 

Exclusion criteria 

Potential participants were excluded prior to enrollment if they were not incoming 

college freshman aged 18-19 years, planning to live on campus, or possessed other 

exclusion criteria (i.e., left handedness; pregnancy; presence of neurological, mood, or 

eating disorders; presence of MRI contraindications). 

Neuroimaging scan sequence parameters 

High resolution anatomical volumes were acquired using a T1-weighted 3D MP-

RAGE pulse sequence (TR = 2500 ms, TE = 3.41 ms, matrix size = 256 x 256, voxel size 

= 1 mm3, sagittal slices = 176, FOV = 256). Functional volumes were acquired using a 

T2*-weighted echo-planar sequence (TR = 2000 ms, TE = 25.0 ms, flip angle = 90˚, 

matrix size = 100 x 100, voxel size = 2 mm3, axial slices = 72, FOV = 200). 

Percentage of regulation trials in the Choice condition 

To ensure there were enough trials in each condition, within the Choice condition, 

participants were instructed to try to regulate and look approximately equally. Although 

most individuals were within one standard deviation from the mean, individuals varied in 

the degree to which they choose to regulate. The average percentage of regulation trials 

in the Choice condition was 49.4% (SD = 5.4%; range = 38.1% to 61.0%). The 

percentage of regulation trials was negatively correlated with regulation success (the 

mean difference between craving ratings in the look and regulate conditions), such that 

the more trials individuals choose to regulate, the worse regulation success they had. This 
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was true for both no-choice, r = -.41, 95%CI [-.67, -.05], t(29) =  2.32, p = .028, and yes-

choice trials, r = -.40, 95%CI [-.67, -.04], t(29)  =  2.24, p = .032 (see Figure A.1).  

 

 

Figure A.1. Correlation between the percentage of trials on which participants chose to 
regulate and regulation success, defined as the mean difference in craving ratings on look 
and regulate trials. The correlations are plotted separately for each level of Choice (blue = 
no, yellow = yes). Data points represent subjects. 
 
 

Dividing individuals based on whether they chose to regulate more (> 50% 

regulate trials), look more (> 50% look trials), or look and regulate equally revealed that 

those that chose to look more rated their cravings higher on look trials and lower on 

regulate trials (see Figure A.2). This relationship was slightly blunted in the no-choice 

relative to the yes-choice condition.   
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Figure A.2. The relationship between the percentage of trials on which participants chose 
to regulate and mean craving ratings as a function of Action and Choice. The “equal” 
group consists of participants that chose to look and regulate equally, the “more look” 
group consists of participants that chose to look > 50% of trials, and the “more regulate” 
group consists of participants that chose to regulate > 50% of trials. 
 
 

With respect to neural activity, we extracted mean parameter estimates from 

clusters in the regulate > look contrast (FWE-corrected at p < .05 to separate clusters, k = 

108) and correlated them with percentage of regulation trials. No correlations were 

statistically significant, rs = -.16 to -.04, ps > .44 (Figure A.3). 
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Figure A.3. Correlations between the percentage of trials on which participants chose to 
regulate and mean parameter estimates extracted from the regulate > look contrast, 
thresholded at FWE-corrected p < .05, k = 108. CBLM = right cerebellum, DLPFC = left 
dorsolateral prefrontal cortex, IFG = left inferior frontal gyrus, SFG = left superior frontal 
gyrus, SMA = left supplementary motor area. Data points represent subjects. 

 

Model selection 

Multilevel modeling was used to test the effects of Action and Choice on self-

reported craving ratings and the best fitting model was selected via model comparison. In 

the null model, fixed and random effects were estimated for the intercept as well as for 

Action, Choice, and post-task craving ratings. In each subsequent model, random effects 

were removed sequentially in the following order: Choice, post-task craving ratings, 

Action. In the final model, the fixed effect of post-task craving ratings was removed, and 

therefore only the fixed effects of Action and Choice and the random effects of the 

intercept were estimated. Comparing these models revealed that including fixed effects 

for Action, Choice, the interaction between Action and Choice, and post-task craving 

ratings, and random effects for Action, post-task craving ratings, and the intercept, 

produced the best fit (see Table A1 for full results). Consequently, results from this 

model are reported in the paper. The equation for this model is: 
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First level equation: 

Yij (Task craving rating of image i by person j) = !0j + !1j(Choicei) + !2j(Actioni) + 

!3j(Choicei*Actioni) + !4j(post-task craving ratingsi) + "ij 

Second level equations: 
!0j = #00 + $0j 

!1j = #10  

!2j = #20 + $2j 

!3j = #30  

!4j = #40 + $4j 

 

Table A1 

Model comparison for behavioral analysis 

Model Model df AIC BIC Deviance χ2 df χ2 p 

Model 4 6 6778.71 6813.22 6766.71 – – – 

Model 3 7 6214.95 6255.22 6200.95 1 565.75 < .001 

Model 2 9 6058.93 6110.70 6040.93 2 160.03 < .001 

Model 1 12 5979.64 6048.67 5955.64 3 85.29 < .001 

Null model 16 5986.66 6078.70 5954.66 4 0.98 .913 

Note. Null Model = includes fixed and random effects for the intercept as well as for Action, 

Choice and post-task craving ratings; Model 1 = removed random effect of Choice; Model 2 = 

removed random effect of post-task craving ratings; Model 3 = removed random effect of Action; 

Model 4 = removed fixed effect of post-task craving ratings. Model 1 (bolded) was selected as 

the best fitting model. 
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APPENDIX B 

STUDY 3 SUPPLEMENTARY MATERIAL 

 
Neuroimaging preprocessing 

Neuroimaging data were preprocessed using fMRIPrep 1.1.4 (Esteban et al., 

2018, RRID:SCR_016216), which is based on Nipype 1.1.1 (Gorgolewski et al., 2011; 

Gorgolewski et al., 2018, RRID:SCR_002502). The T1-weighted (T1w) image was 

corrected for intensity non-uniformity (INU) using N4BiasFieldCorrection (Tustison et 

al., 2010, ANTs 2.2.0), and used as T1w-reference throughout the workflow. The T1w-

reference was then skull-stripped using antsBrainExtraction.sh (ANTs 2.2.0), using 

OASIS as target template. Brain surfaces were reconstructed using recon-all (FreeSurfer 

6.0.1, RRID:SCR_001847, Dale, Fischl, & Sereno, 1999), and the brain mask estimated 

previously was refined with a custom variation of the method to reconcile ANTs-derived 

and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle (Klein et 

al., 2009, RRID:SCR_002438). Spatial normalization to the ICBM 152 Nonlinear 

Asymmetrical template version 2009c (Fonov, Evans, McKinstry, Almli, & Collins, 

2009), RRID:SCR_008796) was performed through nonlinear registration with 

antsRegistration (ANTs 2.2.0, RRID:SCR_004757, Avants, Epstein, Grossman, & Gee, 

2008), using brain-extracted versions of both T1w volume and template. Brain tissue 

segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) 

was performed on the brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, 

Zhang, Brady, & Smith, 2001).  

For each of the functional runs per subject (across all tasks), the following 

preprocessing was performed. First, a reference volume and its skull-stripped version 
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were generated using a custom methodology of fMRIPrep. A deformation field to correct 

for susceptibility distortions was estimated based on two echo-planar imaging (EPI) 

references with opposing phase-encoding directions, using 3dQwarp (AFNI). Based on 

the estimated susceptibility distortion, an unwarped BOLD reference was calculated for a 

more accurate co-registration with the anatomical reference. Head-motion parameters 

with respect to the BOLD reference (transformation matrices and six corresponding 

rotation and translation parameters) are estimated before any spatiotemporal filtering 

using mcflirt (FSL 5.0.9, Jenkinson, Bannister, Brady, & Smith, 2002). The BOLD time-

series were resampled onto their original, native space by applying a single, composite 

transform to correct for head-motion and susceptibility distortions. These resampled 

BOLD time-series will be referred to as preprocessed BOLD in original space, or just 

preprocessed BOLD. The BOLD reference was then co-registered to the T1w reference 

using bbregister (FreeSurfer) which implements boundary-based registration (Greve & 

Fischl, 2009). Co-registration was configured with nine degrees of freedom to account for 

distortions remaining in the BOLD reference. The BOLD time-series were resampled to 

surfaces in fsnative space. The BOLD time-series were resampled to 

MNI152NLin2009cAsym standard space, generating a preprocessed BOLD run in 

MNI152NLin2009cAsym space.  

Several confounding time-series were calculated based on the preprocessed 

BOLD: framewise displacement (FD), DVARS and three region-wise global signals. FD 

and DVARS are calculated for each functional run, both using their implementations in 

Nipype (following the definitions by Power et al., 2014). The three global signals are 

extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set of 
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physiological regressors were extracted to allow for component-based noise correction 

(CompCor, Behzadi, Restom, Liau, & Liu, 2007). Principal components are estimated 

after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter 

with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical 

(aCompCor). Six tCompCor components are then calculated from the top 5% variable 

voxels within a mask covering the subcortical regions. This subcortical mask is obtained 

by heavily eroding the brain mask, which ensures it does not include cortical GM regions. 

For aCompCor, six components are calculated within the intersection of the 

aforementioned mask and the union of CSF and WM masks calculated in T1w space, 

after their projection to the native space of each functional run (using the inverse BOLD-

to-T1w transformation). The head-motion estimates calculated in the correction step were 

also placed within the corresponding confounds file. All resamplings can be performed 

with a single interpolation step by composing all the pertinent transformations (i.e., head-

motion transform matrices, susceptibility distortion correction when available, and co-

registrations to anatomical and template spaces). Gridded (volumetric) resamplings were 

performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to 

minimize the smoothing effects of other kernels (Lanczos, 1964). Non-gridded (surface) 

resamplings were performed using mri_vol2surf (FreeSurfer). Many internal operations 

of fMRIPrep use Nilearn 0.4.2 (Abraham et al., 2014, RRID:SCR_001362), mostly 

within the functional processing workflow. For more details of the pipeline, see the 

section corresponding to workflows in fMRIPrep’s documentation.  
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Figure and tables from post-hoc behavioral analyses 

 We conducted a post-hoc analysis modeling the fixed effects of autonomous 

motivation during Yes-Choice and No-Choice sets separately rather than as a single 

individual differences variable, yoked to choice. This allowed us to determine if 

increased perceived autonomous motivation for Yes- and No-Choice were uniquely 

related to the corresponding choice condition during the task. This model fit the data 

better than Model 3, X2(8) = 27.71,  p < .001 (Table B1), and confirmed that the effect of 

autonomous motivation on task performance was unique to the specific choice condition 

in which it was measured (Table B2). That is, higher autonomous motivation during Yes-

Choice trials was not related to task performance on No-Choice trials and vice versa 

(Figure B.1). 

 

Table B1 

Comparison of multilevel models with trial-level craving ratings as the criterion 
Model Model df AIC X2 X2 df p 

Model 1 – Choice 13 22844.13 – – – 

Model 2 – Difficulty 17 22159.90 692.24 4 < .001 

Model 3 – Autonomous Motivation 25 22150.26 25.63 8 .001 

Model 4 – Separated 33 22138.55 27.71 8 .001 
Note. The best fitting model is bolded. 
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Figure B.1. Predicted craving ratings from the best fitting post-hoc multilevel model 
(Model 4) as a function of trial-level Goal, Choice, and Difficulty, and person-level Yes- 
and No-Choice Autonomous Motivation rated post-task. The top panel describes these 
interactions one standard deviation above mean Yes-Choice Autonomous Motivation, 
whereas the bottom panel shows the interactions at mean Yes-Choice Autonomous 
Motivation. The left panel visualized them at one standard deviation above mean No-
Choice Autonomous Motivation, and the right panel shows them at mean No-Choice 
Autonomous Motivation. Error bars are 95% confidence intervals. AM = Autonomous 
Motivation 
 
 
 
 
 
 
 
 
 



 
 

127 

Table B2 

Results from the best fitting post hoc trial-level craving rating multilevel model 
Fixed effects b [95% CI] SE t df p 

Intercept (Look, No-Choice) 2.91 [2.84, 2.98] 0.03 84.03 148.58 < .001 
Goal -0.79 [-0.89, -0.69] 0.05 15.39 147.71 < .001 
Choice 0.03 [-0.01, 0.08] 0.02 1.49 9328.75 .135 

Difficulty -0.26 [-0.30, -0.22] 0.02 12.97 9447.96 < .001 
Yes AM -0.03 [-0.11, 0.04] 0.04 0.97 155.44 .333 

No AM 0.01 [-0.06, 0.08] 0.04 0.36 160.86 .722 

Trial -0.01 [-0.02, -0.01] 0.00 4.11 9346.15 < .001 
Baseline Craving 0.26 [0.23, 0.30] 0.02 16.13 90.10 < .001 
Goal × Choice -0.04 [-0.10, 0.03] 0.03 1.13 9329.30 .260 

Goal × Difficulty 0.48 [0.43, 0.53] 0.03 18.39 9502.44 < .001 
Choice × Difficulty 0.02 [-0.03, 0.07] 0.03 0.68 9365.56 .497 

Goal × Yes AM -0.06 [-0.16, 0.05] 0.05 1.08 147.02 .283 

Choice × Yes AM 0.06 [0.01, 0.10] 0.02 2.35 9336.10 .019 
Difficulty × Yes AM -0.03 [-0.07, 0.01] 0.02 1.56 9459.64 .118 

Goal × No AM 0.01 [-0.09, 0.11] 0.05 0.16 144.76 .877 

Choice × No AM -0.04 [-0.09, 0.00] 0.02 1.79 9322.81 .073 

Difficulty × No AM -0.06 [-0.10, -0.02] 0.02 2.79 9426.72 .005 
Goal × Choice × Difficulty -0.00 [-0.07, 0.06] 0.03 0.12 9375.88 .907 

Goal × Choice × Yes AM -0.02 [-0.09, 0.05] 0.03 0.52 9339.31 .605 

Goal × Difficulty × Yes AM 0.03 [-0.02, 0.09] 0.03 1.31 9520.85 .191 

Choice × Difficulty × Yes AM 0.06 [0.02, 0.11] 0.02 2.67 9344.48 .008 
Goal × Choice × No AM -0.03 [-0.10, 0.04] 0.03 0.85 9322.63 .397 

Goal × Difficulty × No AM 0.06 [0.00, 0.11] 0.03 2.10 9518.01 .036 
Choice × Difficulty × No AM -0.01 [-0.06, 0.05] 0.03 0.19 9373.06 .847 

Goal × Choice × Difficulty × Yes AM -0.09 [-0.16, -0.03] 0.03 2.85 9389.78 .004 
Goal × Choice × Difficulty × No AM 0.03 [-0.04, 0.10] 0.03 0.78 9377.51 .434 

      

Random effects variance SD   

Participant      

Intercept 0.10 0.31   

Goal 0.23 0.48   

Baseline Craving 0.02 0.14   

Residual 0.55 0.74   

Note. Degrees of freedom (df) were calculated using the Satterthwaite approximation. 

Statistically significant parameters at p < .05 are bolded. The reference condition for Goal is 

Look; the reference condition for Choice is No-Choice; Difficulty, Yes Autonomous Motivation, 

No Autonomous Motivation and Baseline Craving are Z-scored across participants; and Trial is 

centered at 45 and is units of 10 trials. AM = Autonomous Motivation.  
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