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DISSERTATION ABSTRACT
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Title: Some Extension Algebras of Standard Modules over Khovanov-Lauda-Rouquier
Algebras of Type A, Including A-Infinity Structure

We give an explicit description of the category of Yoneda extensions of
standard modules over KLLR algebras for two special cases in Lie type A. In these
two special cases, the A.-category structure of the Yoneda category is formal. We
give an example to show that, in general, the A, -category structure of the Yoneda
category is non-formal.
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CHAPTER I

INTRODUCTION

This chapter contains unpublished co-authored material. The summary of
results in section |1.2| appears (also as a summary of results) in [2, §1] and was
written in close collaboration by the author and Alexander Kleshchev.

This dissertation contains unpublished co-authored material. Chapter [[]]
contains material which appears in [I, §2]. The purpose of this material both
in this dissertation and in [1] is to provide background for the remaining work
and was written by the author, David J. Steinberg, and Alexander Kleshchev.
Chapter [I1I| contains material which appears in [I, §3]. The author and David J.
Steinberg independently performed the relevant computations under the supervision
of and with assistance from Alexander Kleshchev. The results were written initially
by David J. Steinberg and were revised by the author and Alexander Kleshchev.
Chapter [[V| contains material which appears in [I, §4]. The author performed the
relevant computations under the supervision of and with assistance from Alexander
Kleshchev. The results were written initially by the author with revisions by the
author and Alexander Kleshchev. Chapter [V] contains material which appears
in [, §5]. The author performed the relevant computations under the supervision of

Alexander Kleshchev. The results were written by the author.

1.1. The big picture

Khovanov-Lauda-Rouquier (KLR) algebras are connected to fundamental
objects in the representation theory of Lie groups and Lie algebras. This connection

can be summarized by the following diagram, which is explained below. Horizontal
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arrows in the diagram represent relationships which carry more or less equivalent
amounts of data and structure, upward arrows represent an enrichment of data and
structure, and downward arrows represent a specialization or collapsing of data and

structure.

’ R-proj and R—fmod ‘

categoriﬁcation]\ lGroié};gﬁgieck

>

positive part of

Uy
integral form
q-deformation]\l lim

q—1

differentiation
—F ] e
universal

exponential map enveloping
algebra

Beginning with a compact, simply connected Lie group G, one associates to it a
finite-dimensional complex semisimple Lie algebra g. The representation theories
of G and g are the same in the sense that there is an equivalence of categories
rep(G) = rep(g). One then passes to the (associative) universal enveloping algebra
U for which there is an equivalence of categories U—Mod = Rep(g). The quantized
universal enveloping algebra U, of Drinfeld and Jimbo [5], 0] is a g-deformation
which specializes to ¢ in the limit as ¢ — 1. Much of the structure of ¢, can be
understood from the positive part Z/Iq+ C U,. Moreover, Lusztig [7] defines dual
integral forms f,£* C U such that C(q) ®zjqq-1 f 2 US = C(q) ®z)qq-1 *. Finally,
Khovanov and Lauda [8, 9] and, independently, Rouquier [10] define the family of
KLR algebras {Ry | 0 € Q+} (where @, is the positive part of the root lattice
for the root system corresponding to G or g), together with induction functors
Indg, : (Ry ® R,)-mod — Ry, mod giving a monoidal structure on the category

R-mod = ®0€Q+ Ry—mod. There are dual isomorphisms between f and the split



Grothendieck group [R-proj| of finitely-generated projective modules, and between
f* and the Grothendieck group [R—fmod] of finite-dimensional modules.

Let us now restrict our attention to simply laced Lie types (A, D, and E).
Under certain conditions, the isomorphisms f — [R-proj] and [R-fmod] — f*

identify various important bases of f and f* with certain families of modules:

~

[R-—proj] +———— f f* «————— [R-fmod]

{Indecomp0sable} - Canonical  Dual canonical { Irreducible } (1.1)

projectives P(r) basis basis modules L(r)
“Standard” PBW Dual PBW “Proper standard”
{modules A(T&')} basis basis { modules A(r) 12

The above families are each indexed by the set of Kostant partitions. A Kostant
partition is a tuple 7 = (87", ..., 5;"*) such that m; € Z>q and 5, > --- > [(; are
positive roots, ordered according to some fixed convex total order. If, in addition,
mifBy + - + myfBy = 6, we say that 7 is a Kostant partition of 6 and write

7 € I1(#). Note that the standard modules are not, in general, projective. Rather,
they have finite length projective resolutions and therefore represent classes in the
Grothendieck group [R-proj].

Crucially, the algebras Ry can be defined over a field F of arbitrary
characteristic p (in fact, we typically work over the integers), and the Grothendieck
groups for varying p are all isomorphic. The identification holds in arbitrary
characteristic and is due to Kato [I1] (when p = 0) and Brundan, Kleshchev, and
McNamara [12] (for arbitrary p). The identification is due to Rouquier [13]
and Varagnolo and Vasserot [14], and holds only when p = 0: counterexamples of

Williamson [15] (cf. [12, §2.6]) show that (1.1]) fails when p > 0. Nevertheless, in

characteristic p, the families { P(7)} and {L(7)} categorify some pair of dual bases



of f and f*, respectively, which we shall refer to as the p-canonical basis and dual
p-canonical basis. One is then lead to inquire about the change of basis between the
(dual) p-canonical basis and the (dual) PBW basis.

For 6 € @, the category Ry—mod is an affine highest weight category [12, [16],
17, 18] (see section for details). In particular, the projective indecomposables
admit standard filtrations, i.e., finite filtrations with subquotients among the
standard modules. The duality of the two change of bases between the (dual)
p-canonical basis and the (dual) PBW basis is then categorified by affine BGG
reciprocity:

(P(1) : A(m))g = [A() : L(7)], (1.3)

where the left-hand side stands for the graded multiplicity of A(7) in a standard
filtration for P(7), and the right-hand side stands for the graded multiplicity of
L(7) as a composition factor in A(7).

Since the projective indecomposables admit standard filtrations, the left-hand
side of can be computed in the full subcategory F(A) C Ry—mod of modules
which admit a standard filtration. Keller and Lefévre-Hasegawa [19] 20, 21] (see
also [22], [12], Corollary 3.14] and [16, Theorem 4.28]) provide machinery for
describing F(A) using only information from the Yoneda algebra Ext% (A, A),
where A = ®7r61_[(9)’ see section for details. The author, Kleshchev, and
Steinberg give explicit projective resolutions for the standard modules in [2], and in
this dissertation, we use those resolutions to explicitly describe the Yoneda algebra

in certain special cases as outlined in the next section.



1.2. Summary of results

Throughout, we work over an arbitrary principal ideal domain k (since
everything is defined over Z, one could just consider the case k = Z). We also use
F to denote a field with characteristic p. Let Ry be a Khovanov-Lauda-Rouquier
(KLR) algebra of finite Lie type over I corresponding to 6 € @, [8, 9, 10]. It is
known that Ryy is affine quasihereditary [12, 111, 23, [17], and in particular it comes
with a family of standard modules {A(m)g | # € KP(0)}, where KP(0) is the set
of Kostant partitions of §. KLR algebras are defined over k, so we have a k-algebra
Ry with Rpr = Ry ®¢ F. The standard modules have natural k-forms A(7) with
A(m)r =2 A(m) @, F. All modules and algebras are explicitly graded, and we refer to
these gradings as KLR gradings.

We now assume that the Lie type is A, with simple roots {a; | i € Z} so
that the set of positive roots @ is {a; + a1 + -+« | ¢ < j}. Thereis a
natural lexicographic total order > on ®,. Let () be the positive root lattice,
and fix 0 € Q4. If 0 = > ko, we define the height of 0 as ht(0) = > k;. A
Kostant partition of 6 is a sequence m = (57", ...,5") where my,...,my € Zy,
By > --- > [3; are positive roots, and m5; + - -- + m;5; = 6.

We consider the Yoneda algebra & = Exty (A, A) (where A =
D.cxp@) A(T)) as the k-linear category whose objects are KP(6), and the set of

morphisms from p € KP(0) to o € KP(0) is

£3(p,) = Bxti, (A(p), A0)).

The composition gf of ¢ € & (o,7) and f € &;(p, o) is obtained using the

composition of lifts of g in Hompg, (P?, P]) and f in Homg,(P?, P7), where P] is



a projective resolution of A(7) for 1 € KP(#). The category & has a homological
grading for which the homogeneous components are £;*(p, o) := Exty (A(p), A(0)),
and a KLR grading which is inherited from the KLR grading on the standard
modules. We use ¢ to denote the KLR degree shift functor. Theorems [A] and
describe the category & (as a bigraded category) in two special cases: (1) when

0 is an arbitrary positive root, and (2) when 6 is of type A,, i.e. 6 is of the form

Cc1011 + Co(xs.

The case where 6 is a positive root

Let 0 = ag + qgy1 + -+ apg € P4 Setl == b+ 2 —a = ht(d) and
consider the polynomial algebra X' := kzy,...,2;]. We consider X" to be graded
with degx, = 2. Note that KP(0) is in bijection with the set of subsets of [1,] — 1]:
the subset associated to p = (f1,...,0,) € KP(0)is D, := {dy,...,d,—1} where
dy := ht(51) + - -+ + ht(8,). For such D,, set dy := 0 and d,, := [, and let J” be the
ideal of X generated by all x,,—z, such that there is 1 <t < wu with d;_1 < r,s < d,.
Define X? := &'/ J?. If D, C D,, then J C J¥ so we have a natural projection pf :

X7—XP. We use the notation C' C,,, D to indicate that C C D with |D\ C| = m.

Theorem A. Let 0 = ay + g1 + -+ + apy1 € Oy be a positive root. We have

¢ ™mX? if D, Cp, Dy,
&' (p,o) =

0 otherwise.

If D, C,, Dy Cp, Dr with f € ¢ XP 2 Ey(p,0) and g € ¢ "X = &Ey(o,T), then the

composition of g with f is given by pf(g)f € g M = Ey(p, T).



The A, case

For a nonnegative integer k, let Ay be the algebra of symmetric polynomials
in k variables. We impose a grading on Ay where linear symmetric polynomials
have degree 2. The space Ay, is a free k-module with basis {s, | A € Z(k)}, where
P (k) is the set of partitions with at most k parts, and s, is the Schur polynomial
corresponding to A [24, §1.3]. Letting V' be the free graded k-module with basis

{vo, v1, V9, ...} such that degwv; := 2i, there is an isomorphism of graded k-modules
c A, Dy g R(=1) ARy, 1.4
Yot Ay —> q ANV, S0ua) F U AUs 41 A AU 4h—1 (1.4)
where /\kV is the kth exterior power of V. Define

—*x = Aa ® Ab — q2abAa+b> f X g — /Ya_J:b(’Ya(f) A 'Vb(g)) (15)

Considering A, , to be a subalgebra of A, ® Ay in the obvious way, we have
that A, ® Ay is free as a A, p-module with basis {sy ® 1 | A € P(a,b)}, where
P(a,b) is the set of partitions with at most a nonzero parts, the first part being at
most b, see [25, PARTL.1.5] and [26], Proposition 2.6.8]. Moreover, [25, SCHUB.1.7]
provides an explicit algorithm for writing any element of A, ® A, as a A, p-linear
combination of the basis elements s, ® 1.

Let c1,cy € Z>o and 0 = cjaq + cace. Note that there is a bijection

[0, min{cy, o }] «— KP(0), 7 — (a>™"

c1—r

(o +ag) 07" ™), 1y p.



For p,o € KP(0) with r, > r,, let

w(p,0) == —(r, =o)L+ (c1 —7,) + (c2 — 1)),
A(p,o) = q“’(p’”)ACQ_rp QAr,ry @A, @Ay s,

Py i=P(r)—T5,Ty).
If feA, ., wewrite

fP% =1, ® f @1, @14 € A(p, o).

cQ—Tp c1—Tp

Then note that A(p, o) is a free right A(p, p)-module with basis {s¥7 | A €
P, s} We make A(p, o) into a left A(o, o)-module via the composition of algebra

homomorphisms:
£ N (0,0)Neyr, @ Nryry @ Ny, @ Ay @ Moy —y,—q PN (p, 0);

the first map uses the embeddings Ac,_,,—A.,—,, ® Ap ., and Ae ., =N, ., @
Ac,—r,, and the second map is a ® b @ c®d® e — a ® bd ® ¢ ® e (which we think of
as identifying the two factors of A, _;,).

If p,o,7 € KP(0) with r, > r, > r;, the tensor product A(c,7) @(r0) Alp, o)

is now a free right A(p, p)-module with basis

{77 @8 | pe Pory A€ Ppot



and we define a map of right A(p, p)-modules
O : A0, 7) n(o.0) Mp,0) = Ap, T), 877 @ 877 1= (5, % 52)"7.

Let

_O_:A(UvT) ®kA<p70) %A<IO>T>7 g®f'_>@(g®f)

Thus, to compute g ¢ f for some g € A(o,7) and f € A(p, o), the following steps
must be performed: (1) write g = > 5 s77g, with g, € A(0,0), (2) for each

1€ Py, write £(gu)f = Dsem, , S8 My with hyx € A(p, p), (3) we have

gof= Z (8% 52)"Thyx.

“690,77 Aegp,a

Theorem B. Let c¢i,¢c0 € Z>o and 0 = cioq + cocs. We have

Ap,o) ifm=r,—r, >0,
&' (p, o) =
0 otherwise.

Ifr, > re > 1 with f € ANp,0) = E(p,0) and g € Ao, 7) = Ey(o,T), then the

composition of g with f is given by go f € Ap,7) = Eg(p, 7).

Formality

For 6 as in Theorem [A] or [B] note that Extg, (A(p), A(0)) is torsion-free as a
k-module. We do not know if this is true in general.

Also note that because Extg,(A(p), A(o)) is concentrated in homological
degree | X, \ X,| (in the case of Theorem [A) or r, — 7, (in the case of Theorem [B),

the A-category structure of & must have m,, = 0 unless n = 2, so that & is

9



intrinsically formal, see [20, §3.3]. In chapter [V we show that intrinsic formality

and even formality does not occur in general:

Example C. If 0 = a1 + 2as + as, then the Ay -category &y is non-formal.

1.3. The structure of the dissertation

The proofs of Theorems [A] and [B] occupy chapters [[I]| and [[V], respectively. In
the preliminary chapter , we review affine highest weight categories (section ,
A.-categories and the homological algebra machinery (section see the
appendix for an application of this machinery in the context of truncated
polynomial rings k[z]/(2™)), the definition of the KLR algebra R, and the standard
modules A(r), and the resolutions of the standard modules from [2] (section [2.3).

In sections [3.1] and [4.1, we record the relevant special cases of the projective
resolution P? of A(p) constructed in [2]. This resolution is finite and has the form
pr=...4 P? LY PP A A(p) with PP = D.cx, ¢ Rol, for some explicit index set
X, integers s,, and idempotents 1,. The map d,, : P?; — P? can be described as
right multiplication by an X,+1 x X,, matrix (d%*) for some d%* € 1,Ry1,.

In sections [3.2] and [4.3] we use the isomorphism Hompg, (Rgl,, A(0)) = 1,A(0)
to describe the complex Homy, (Pf, A(c)) in terms of familiar objects from
commutative algebra; in the case of Theorem [A] these objects are polynomial
rings and in the case of Theorem [B], they are rings of symmetric polynomials. It
turns out that in both cases, the complex Homy (Pf, A(0)) is isomorphic to a
Koszul complex corresponding to an explicit regular sequence, and we can therefore
compute its homology H(Homy, (P7,A(0))) =: &(p, o) as a bigraded k-module.

It remains to describe the composition in the category &. This is done in
sections and , where we explicitly lift elements of Hom}, (P2, A(0)) to

10



Homy, (P/, PJ). The function composition map Homy (FY, P))®Homy, (P, P]) —
Homy, (PZ, P7) induces a map on homology &(o,7) ® &(p,0) — E(p, 7) which is
the composition in the category &y.

In chapter [V] we provide details for Example [C]

11



CHAPTER II

BACKGROUND

This chapter, specifically section , contains material which appears in [1]
§2]. The purpose of this material both in this dissertation and in [1I] is to provide
background for the remaining work and was written by the author, David J.

Steinberg, and Alexander Kleshchev.

2.1. Affine highest weight categories

Highest weight categories were introduced by Cline, Parshall and Scott [27] to
axiomatize the study of many fundamental categories appearing in representation
theory, including the BGG category O. Let R be a finite-dimensional F-algebra, let
IT be a set indexing the simple modules L(7), and choose a partial order < on II.
We require Endg(L(7w)) = F for each # € II. For a finite-dimensional R-module
V', denote by [V : L(m)] the multiplicity with which L(7) appears in a composition
series for V. Let P(m) be a projective cover of L(m) and let A(m) be the (unique)
maximal quotient of P(m) such that [A(7) : L(7)] = 0 unless 7 < 7, and [A(7) :
L(m)] = 1. Thus, the matrix [A(7) : L(7)]rren of composition multiplicities is
unitriangular with respect to <. We call the modules A(7) the standard modules.

We say that an R-module V' admits a standard filtration if there is a chain of
submodules 0 = V; C V; C --- C V, = V such that each of the subquotients
Vi/Va-1 (forn = 1,2,...,n) are isomorphic to a standard module. If V' admits
a standard filtration, we denote by (V' : A()) the multiplicity with which A(7)
appears as a subquotient. We say that R-mod is a highest weight category with

respect to < if each P(7) admits a standard filtration such that (P(7) : A(7)) =0

12



unless 7 < 7w and (P(7) : A(m)) = 1. Thus, the matrix (P(7) : A(7))xren of
filtration multiplicities is unitriangular with respect to <.

An important consequence is BGG reciprocity: for w, 7 € II, we have

(P(1) : A(m)) = [A(7) : L(7)]. (2.1)

The Grothendieck classes of simple modules and projective indecomposable
modules form bases, respectively, of the Grothendieck group [R-mod] of finitely-
generated R-modules, and the split Grothendieck group [R—proj] of finitely-
generated projective R-modules. In fact, these bases are dual with respect to the
non-degenerate pairing [R-proj] x [R-mod| — Z which is defined, for finitely-

generated projective P and finitely-generated V' by

([P],[V]) = dim Hompg(P, V). (2.2)

Under the additional assumption that the standard modules have finite length
projective resolutions (for example if the algebra R has finite global dimension),
the standard modules represent classes in both Grothendieck groups, and since the
two matrices [A(7) : L(7)|rren and (P(7) : A(7))xren are unitriangular, the
classes of the standard modules form bases in both Grothendieck groups. Moreover,
BGG reciprocity shows that these bases are dual to each other with respect to the
pairing .

Motivated from the fact that KLR algebras (which are infinite-dimensional)
have many properties reminiscent of highest weight categories [12] [17], affine
highest weight categories were axiomatized by Kleshchev [I§]. Let R be a (possibly

infinite-dimensional) Noetherian Laurentian graded F-algebra, let II be a set

13



indexing the simple modules L(7) up to degree shift, and choose a partial order
< on II. For a finitely-generated R-module V', denote by [V : L(7)], the graded
multiplicity with which L(7) appears as a composition factor of V. Since R is
Laurentian, this is a Laurent series in ¢ with non-negative coefficients. Let P(7)
be a projective cover of L(m) and let A(m) be the (unique) maximal quotient of
P(r) such that [A(7) : L(7)], = 0 unless 7 < 7. We call the modules A(7)

the standard modules. We also define the proper standard module A(w) to be the
(unique) maximal quotient of P(7) such that [A(r) : L(7)], = 0 unless 7 < 7 and
[A(7) : L(m)], = 1. Note that it is the proper standard modules whose definition
mirrors the standard modules in the finite-dimensional case. Also note that A(r) is
a quotient of A(m).

As in the finite-dimensional case, we say that an R-module V' admits a
standard filtration if there is a chain of submodules0 =V, CV; C --- CV, =V
such that each of the subquotients V,,/V,,_; (for n = 1,2,... n) are isomorphic to
a standard module, up to degree shift. If V' admits a standard filtration, we denote
by (V : A(m)), the graded multiplicity with which A(7) appears as a subquotient.

We say that R—mod is an affine highest weight category with respect to < if the

following conditions hold:

e for each 7 € II, the algebra B, := Endg(A(7))°? is an affine algebra, that is, a

quotient of a polynomial algebra by a homogeneous ideal,

e for cach 7,7 € II, the right B;-module Hompg(P(7), A(7)) is free of finite

rank,

e for each 7 € II, P(7) admits a standard filtration such that (P(7) : A(w)), =

0 unless 7 < m and (P(7) : A(7)), = 1.

14



Analogous to the finite-dimensional case, we have affine BGG reciprocity: for

w, 7 € II, we have

(P(7) s Am))g = [A(m) « L(7)]¢1-

In our main application to KLR algebras, there is an additional duality present, in

which case affine BGG reciprocity reads

(P(7) : A(m))g = [A(7) « L(7)]y: (2:3)

We again have the Grothendieck groups [R-mod] and [R—proj|, for which the
classes of simple modules and projective indecomposable modules form dual

bases with respect to the non-degenerate pairing . The proper standard
modules represent classes in [R-mod], and under the additional assumption that
the standard modules have finite length projective resolutions (for example if the
algebra R has finite global dimension which is the case for KLR algebras), the
standard modules represent classes in [R-proj]. Since the two matrices ([A() :
L(7)]g)rren and ((P(7) : A(7))y)xren are unitriangular, the classes of the proper
standard modules form a basis for [R—mod] and the classes of the standard modules
form a basis for [R—proj|. Moreover, affine BGG reciprocity shows that these bases

are dual to each other with respect to the pairing ([2.2)).

2.2. Homological algebra

A.-categories

The theory of A.-spaces, Ay -algebras, and A -categories has topological
origin due to Stasheff [28 29]. The prototypical example of an A..-space is

the loop space QX of a pointed topological space (X, zg). The loop space QX
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possesses a multiplication, namely, concatenation of loops. The multiplication is not
associative, rather it is associative up to homotopy—for loops 71, 72,73, there is a

homotopy (71172)73 — 71(727y3). Similarly, for an additional loop 74, the homotopies

((72)73)71 = (n(273)) 78 = 1 ((7273)74) = 71(72(7374))  and

(172)73)72 = (72) (1372) = 1 (2(7374))

are not equal, rather there is a higher homotopy between them. Continuing in this
way, we obtain a sequence of higher homotopies [0,1]"7% x (QX)" — QX. The
singular chain complex C*QX is therefore endowed with maps m,, : (C*QX)*" —
C*QX which turn out to satisfy the axioms of an A..-algebra.

In what follows, we follow the sign conventions of Keller [20] (see also [19]
21]). Note that these conventions include the Koszul-Quillen sign convention: For
Z-graded k-modules A, B, C, and D, homogeneous elements a € A and b € B, and

graded maps f: A — C, g: B— D, we have

fla)®g(b)  if g is an even map or a is of even degree
(f®@g)a®b) =
—f(a) ® g(b) if g is an odd map and «a is of odd degree.

A (small, strictly unital) A -category A over k consists of the following data:
e a set of objects ob(A),
e a Z-graded k-module of morphisms A* =D, .4 A" (T, ),
e for each n € Z-q, a degree 2 — n k-linear map m,, : (A®)®" — A°,
subject to the following conditions:
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e for each n € Z-( and objects mo, ..., 7T, 7, ..., 7,1, the restriction of the
map my, to A*(m),_1, mn) @ A (7], o5, 1) @ - - - @A (], M) ® A®(mp, 1) 1S zero

unless m; = 7} (for 1 <i <n—1), and in that case factors through A*(mo, 7,),

e for each n € Z-(, we have

> (=1t m L (dGE @m, ©1d50) =0, (2.4)
r+s+t=n
e for each object 7 € ob(A), there exists a strict identity 1, € A°(w,m) such
that ma(1, ® ) = ma(x ® 1) = « for any = € A*, and for n # 2 and elements

x1,...,x, € A% if any of the z; are equal to 1,, we have

my(r1 ® - Q@x,) =0.

The strict identity axiom is omitted in typical treatments, but its inclusion is
convenient for our purposes. If A has only one object, it is called an A -algebra.
If my is zero, A is called minimal. An A,-category with m,, = 0 forn > 2is a
differential graded category. The axioms show that the data of the map m,, can be
expressed as a collection of maps

T s AT, ) @ - 0 Ao, ) — A (0, )

n

for all choices of objects 7, ..., 7, € ob(A).
A (strictly unital) As-functor F' from A = (A®*,my,ma,...)to B =
(B®,my, ma,...) consists of the following data:
e a function F' : ob(A) — ob(B),
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e for each n € Z>g, a degree 1 — n k-linear map F, : (A*)®" — B®,
subject to the following conditions:

e for each n € Z-q, and objects mg, ..., T, 7, ..., 7, 1 € ob(A), the restriction
of the the map F,, to A*(m),_,m,) @ A*(1),_g, Tp—1) @ -+ @ A*(7], m2) ®
A®(mo, ) is zero unless m; = 7} (for 1 < ¢ < n — 1), and in that case factors

through B*(F(m), F(my)),

e for each n € Z-(, we have

S (T F i (dT em @id5) = > (1) my(F, @ - @ F,)
r+s+t=n i1+ Fig=n

(2.5)
where s := Y% (k — j)(i; — 1).

j=1

e for each object 7 € ob(A), we have Fi(1;) = 1lp(r), and for n > 1 and

elements z1,...,z, € A*, if any of the z; are equal to 1., we have

Folr1® - ®x,) =0.

The axioms show that the data of the map F;, can be expressed as a collection of
maps

Fﬂ‘g ..... Tn . A.<7Tn7177rn) ® e ® A.(ﬂ'o’ﬂ'l) — B.(77077Tn)

for all choices of objects 7, ..., m, € ob(A).
Some special cases of relations (2.4)) and (2.5)) have familiar interpretations

and nice consequences. When n = 1, the relations read

m% = 0, F1m1 = m1F1

18



so my is a differential and Fj is a chain map. In particular, we may speak of the
homology of A*®, which we denote by HA®, and F} induces a map [F;] : HA®* —

HB*. When n = 2, the relations read

mimeo = mQ(ml ®1+1® m1)7

Fimg =mo(Fy @ Fy) + miFo 4+ Fo(my @ 1+ 1@ my),

so that m; is a derivation with respect to ms, and we may speak of the map [ms] :
HA* ® HA®* — HA® induced by homology, which then commutes with [F;]. When

n = 3, the relation (2.4) reads
me(l1@mg—me®@1)=mmz+mz(m 11+103m 1+1®1m),

so that if either of my or mg is zero, then my is associative. In particular, [ms] is
associative, so HA is a Z-graded k-linear category with the same object set as A,
and [F}] is a functor from HA to HB. If [F}] is an isomorphism of categories, then
F'is called a quasi-isomorphism.

The composition of two A,-functors F': A — B and G : B — C is given on

objects by (GF)(m) = G(F(w)) for m € ob(.A), and on morphisms by

(GF)p= Y (F1)°Gu(F, ®@---© F,)

i1+ Fip=n

where s is as in (2.5)) The identity functor on A is the A-functor 14 : A — A
with 14(m) = 7 for each m € ob(A), (14); = idye, and (14), = 0 forn > 1. An
isomorphism of A.-categories is an A, -functor F' : A — B such that there exists

an A.-functor G : B — A such that GF = 14 and FG = 15.
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We have seen that the homology HA of A is a Z-graded k-linear category. In
fact, HA also carries (uniquely) the structure of an A..-category which contains, in

the following sense, the same information as A:

Theorem 2.6. [30] Let A = (A®,my1,ma,...) be an A -category and HA its
homology. If each morphism space in HA is a free Z-graded k-module, then HA

carries the structure of an Ay -category HA = (HA®, My, My, ...) such that

1. M1 =0 and M2 == [mz],

2. there ezists a quasi-isomorphism F : HA — A such that F(m) = 7 for each
m € ob(A) and [F] = idg4e.

Moreover, the Ay -category structure on HA satisfying [1] and[3 is unique up to

(non-unique) isomorphism of A.-categories.

Such an A,.-category structure on HA is called a minimal model of A. The
Aso-category A is called formal if its minimal model can be chosen so that M,, = 0
for n # 2. A (small) Z-graded k-linear category B is intrinsically formal if every
As-category A whose homology is isomorphic to B as a Z-graded k-linear category
is formal.

Kadeishvili’s original proof is constructive and yields an inductive algorithm
for producing a minimal model in the special case where A is a differential-graded

algebra, i.e., m,, =0 for n > 2:

Algorithm 2.7. [30, Proof of Theorem 1] Let A = (A®*,my, ma,...) be an
Ay-category with m, = 0forn > 2 and HA its homology (as a Z-graded
k-linear category). The following algorithm produces an A.-category structure
(HA®, My, M,,...) and an A,-functor F' : HA — A which satisfies the conditions

in Theorem 2.6l
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Step 1: Let M; = 0 and take F} : HA®* — A°® to be a cycle-choosing homomorphism

of Z-graded k-modules. Set n := 2.

Step 2: Since my, = 0 for k > 2, we may rewrite (2.5) as
man = Fan — Una (28)
where

U, == ms (1) (F® F,)

— (=)t R (dS T oM, @1dE ). (2.9)
The factorizations
urem s HA (w1, mp) @ -+ - @ HA®(mg, m1) — A* (70, m) (2.10)

will also be useful in applications of this algorithm. One can check that
m1U, = 0. Thus, since My, F} have been defined for & < n, we take M, to

be the (well-defined) homology class [U,] of U,,.

Step 3: Note that [FyM,, — U,| = [Fi1M,] — [U,] = M,, — M,, = 0, so F1M,, — U, is
a boundary, and choose F,, such that m,F,, = FiM, — U,. Increment n and

return to Step 2.

The machine

Let R be a k-algebra and let A = {A, | # € II} be a collection of R-

modules, and suppose we are interested in the full subcategory F = filt(A) of
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R-Mod consisting of modules which admit a finite filtration whose subquotients are
among the A,. In appendix [A] we discuss an example where A is the collection of
simple R-modules, in which case F is the category of finite-length R-modules. In
our main application, A is the collection of standard modules over a KLR algebra
(or more generally, the standard modules in an affine highest weight category). In
this case, since the projective covers P, have filtrations by the standard modules
A, the multiplicities (P, : A;), involved in affine BGG reciprocity are present
in the category F. Keller and Lefevre-Hasegawa [19] 20], 21] provide a procedure for

reconstructing F using the A..-category structure on & = P E*(m, p) where

m,pell
E*(m,p) = Extyh(Ax, A,).

For each m € II, we fix a projective resolution P? i» A, with differential d.
We then have the chain complex Hom% (P, A,) whose homology, by definition, is

the Z-graded k-module
E*(m,p) = HHom%L(FPr, A,)). (2.11)
We also have the chain complex Hom%(Pyr, Py) with differential § given by
(i) :=dp — (=1)"¢d (2.12)
for ¢ € Homy (Py, P7). There is an isomorphism

HHom¥y(Py, Py) — £°(m, p) (2.13)
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induced by the maps

m(m+1)

Homp (P2, P7) — Homp(P", A,), ¢ (=1)" 2 e,(¢lpp). (2.14)

Let H be the differential graded category with object set I, morphism spaces

H* (7, p) := Hom%y(Py, Py), differential ¢, and composition H*(p, o) @ H*(m, p) —

H*(m,0) given by composition of homomorphisms Hom%(Py, Py)®@Hom%(Pr, P3) —

Hom%, (P2, P2). We can therefore consider £ as a Z-graded k-linear category,

and in light of Theorem as an A,-category. Moreover, any of the higher

multiplications M,, on the A.-category £ can be computed using Algorithm [2.7]
Following [19], we now describe how to reconstruct the category F using the

Aso-category structure on £. We define the category of twisted stalks twst £ over £.

A twisted stalk M over £ is the following data:

e a sequence 7y, ..., T, € ob(E) of objects of &,

e an n X n matrix § = (&;;) with 6;; € E'(m;, m;)
satisfying the conditions:

e 0 is strictly upper-triangular, i.e., 6;; = 0 for i > 7,

e we have
(t—1)
S (-1 M) = o, (2.15)
t=1
where M}, denotes the natural extension of M, to matrices with coefficients in

the morphism spaces of £ (note that since ¢ is strictly upper-triangular, only

finitely many terms of the sum are nonzero).
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A morphism of twisted stalks M = (my,...,mp,0) — M' = (@},..., 7@ ,,0") is the

y !y

datum of an n’ x n matrix f = (f;;) with f;; € E%(m;, 7)), satisfying the condition

S T M (0)% © f @ 67 = 0. (2.16)

s,t>0

The composition of two morphisms f: M — M’ and g : M’ — M" is given by

af =Y. (1)L L W (0) T @@ () @ fe %), (2.17)

r,s5,t>0

Note that the identity morphism idy; on M = (mq,...,m,,0) is given by the n x n

diagonal matrix with (idys); = 1,, the strict identity on ;.

Theorem 2.18. [19] There is an equivalence of categories twst & — F which
takes the twisted stalk (my,...,m,,d) to an R-module which admits a filtration with

subquotients given by Ay, ..., Ay, . In particular, the equivalence takes the twisted

stalk (m,8 = 0) to A,.

2.3. KLR algebras and their modules

Basic notation

For r,s € Z, we use the segment notation [r,s] :== {t € Z | r < t < s},
rys):={te€Z|r<t<s}, etc.
Let ¢ be a variable, and Z((q)) be the ring of Laurent series. For n € Z>,, we

define

=" Il =) iy = Wl - [l
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and if 0 < m < n,

- [m]zi)[ﬁ(f)mng

We denote by &, the symmetric group on d letters considered as a Coxeter

group with generators {s, := (r,r + 1) | 1 < r < d} and the corresponding length
function ¢. The longest element of &, is denoted wy or wy 4. By definition, &,

acts on [1,d] on the left. For a set I the d-tuples from I are written as words i =
iy - --ig. The group &, acts on I¢ via place permutations: w - i = Ty=1(1) " * T (d)-

Given a composition g = (p1,..., tx) of d, we have the corresponding
standard parabolic subgroup 6, = 6,, x --- x §,, < &,;. We denote by Z*
the set of the shortest coset representatives for 6,/6,,.

Let R be a Z-graded k-algebra. We denote by R—Mod the category of graded
left R-modules. The morphisms in this category are all homogeneous degree zero
R-homomorphisms, which we denote homg(—, —). For V € R-Mod, let ¢?V denote
its grading shift by d, so if V;, is the degree m component of V', then (¢?V),, =
Vin—a. More generally, for a Laurent series a = a(q) = Y. aqq" € Z((q)) with
non-negative coefficients, we set aV' := @d(qu)@ad. For U,V € R-Mod, we set

Hompz(U,V) := @ ez Homg(U, V)4, where

Homg (U, V)4 := homg(¢U, V) = homg(U, ¢V).

We define Ext; (U, V) and Endg(U) similarly from ext’y (U, V) and endg(U).
For a free k module V of finite rank, we denote the rank of V' by dimV. A
graded k-module V' = €, _, Vi, is called Laurentian if the graded components V;,,

are free of finite rank for all m € Z and V,,, = 0 for m < 0. The graded rank of a
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