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American Indians and Alaskan Natives (AI/AN) have the highest diabetes rate 

of any racial group in the United States. Rates range from 6.0% in some Alaskan 

Natives to 29.3% for tribes in Southern Arizona (Edwards and Patchell, 2009), 

suggesting that environmental and social effects may exacerbate health disparities. Due 

to the violent and traumatic events that created the reservation system, there are likely 

enduring conditions that deepen health disparities for AI/AN within these areas. 

Diabetes serves as the outcome of interest. The current thesis examines the correlation 

between living in a Census-designated American Indian Area (AIA) and having a 

diabetes diagnosis. Data from the 2015-2018 series of the National Survey on Drug Use

and Health was run in logistic regression models to determine if residency in AIAs 

influences diabetes rates. These models quantify the severity of this inequality while 

controlling for other demographic factors such as age, family income, gender, 

education, and metropolitan status. The results show that AI/AN living in AIAs are 

anywhere between 1.595 - 1.764 times more likely to have diabetes than AI/AN outside 

of AIAs, depending on the controls. All models demonstrate statistical significance for 

the relationship between AIA and diabetes, showing that living in reservation-like areas 
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is correlated with conditions that likely contribute to diabetes disparities. Potential 

explanations for inequalities include lack of nutritious food sources, environmental 

stress, suboptimal prenatal conditions, and other socio-environmental conditions. This 

expands the current notion of factors that influence health, especially in the cultural 

context of AI/AN. These findings serve as a starting point for further qualitative 

research to explore social processes creating environmental inequalities and 

exacerbating health disparities. Exploring these mechanisms is crucial for creating 

effective policies and interventions that reduce diabetes disparities for AI/AN in their 

appropriate social contexts. 
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Introduction

Individual vs social determinants of health: socio-ecological model

A large proportion of public health interventions focus on modifying individual-

level behavior to improve health outcomes. For diabetes prevention, an example of 

individual-level intervention would be nutrition education to promote healthy dieting. 

Although these interventions may be helpful to some extent, they do not always account

for environmental factors that complicate the intervention's effectiveness. For the 

aforementioned example, nutrition education is less effective if it does not address 

structural barriers in obtaining healthier foods. Thus, this individual-level intervention 

may be helpful in some contexts where individuals lack education about a topic, but 

ineffective when social structures make some healthy behaviors more unrealistic. 

The socio-ecological model theorizes the interplay between various individual 

and environmental structures that influence health outcomes. Individuals are embedded 

within larger social systems, so accounting for interaction between individuals and their

environment is important for understanding situations like the hypothetical example 

listed earlier. Most interventions do not address causes at the socio-environmental level.

A systematic review of intervention approaches notes that 95% of articles describe 

individual-level activities, 67% describe interpersonal activities, but only 39% describe 

institutional-level activities (Golden and Earp, 2012). This means that a large majority 

of interventions target individual behavior, some seek to influence social networks 

through interpersonal intervention, and less seek to modify institutional structures and 

policies. Although designing larger-scale interventions may be more difficult, more 

people are advocating for multilevel focuses to create effective programs. Community-
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focused interventions attempt to increase health services and empower disadvantaged 

groups (Golden and Earp, 2012). These may help address the social, cultural, and 

physical aspects of environments that influence health, specifically suited for each 

community’s unique characteristics. This is especially important for marginalized 

groups such as AI/AN because living on reservations could create unique complications

that require tailored interventions to reduce diabetes prevalence. Reservations would 

directly affect community-level factors because they influence the built environment 

and local conditions that impacts access to food and mental health services. The socio-

ecological model pertaining to diabetes disparities is shown below in Figure 1.

Figure 1: Socio-ecological Model For Diabetes in AI/AN Reservations

The socio-ecological model as it applies to diabetes outcomes in reservations. Includes 

factors in the societal, community, interpersonal, and individual levels that could 

influence diabetes risk and outcomes for AI/AN in these areas. Adapted from: “Models 

and Frameworks for the Practice of Community Engagement.” Agency for Toxic 

Substances and Disease Registry. Retrieved May 21, 2020 

Creating an enclave: history of reservations

AI/AN have a marginalized history in United States, as their traditional lands 

were seized during colonization. The result of this environmental degradation is 
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deprivation, trauma, and poverty that has persisted in AI/AN tribes from generation to 

generation. In the 1830’s, the U.S. government started systematically removing AI/AN 

from their traditional lands and relocating them through the Indian Removal Act. 

(Banner, 2005). This did not help reduce conflict between settlers and AI/AN as 

anticipated, so the U.S. government designated land to establish the first reservations in 

the 1850’s (Dippel, 2014).

 For the government, there were benefits to confining AI/AN into these 

concentrated lands. First, they could maximize land area for the growing population of 

settlers (Banner, 2005). Second, they could easily monitor AI/AN and prevent them 

from interfering with further colonization (Dippel, 2014). Some argue that segregation 

could also protect AI/AN from white settlers, but this policy did not guarantee that new 

AI/AN land was secure from further seizure. 

Reservations remained in place until the 1950’s, resulting in the termination era. 

Though individual tribes were terminated throughout the 19th and early 20th centuries, 

termination became the official policy for all tribes in 1953 (Wilkinson and Biggs, 

1977). Congress attempted to assimilate AI/AN by removing them from their 

established reservations and integrating them into the rest of American society. This 

freed up tribal lands for further settlement, so the U.S. government reaped economic 

benefits (Wilkinson and Biggs, 1977). Termination and forced assimilation created 

several negative outcomes for AI/AN, including loss of remaining tribal lands, 

enfeeblement of culture and religion, and weakening family structures (Wilkinson and 

Biggs, 1977). These historical traumas have endured to create disparities in AI/AN 

10

10



populations today, including in socioeconomic status (SES) and health outcomes—both 

mentally and physiologically.

Indigenous self-determination became increasingly relevant in the U.S. 

government from the 1960s-1980s (Wilkins, 2011). Many tribes regained recognition 

during this time. As of 2016, there are 567 federally recognized tribes and 63 state-

recognized tribes (Salazar, 2016). Federal recognition is coveted because it provides 

legal status and federal benefits to tribes, which is not guaranteed with state recognition.

Not all recognized tribes have reservation land, but likely share similar disparities with 

AI/AN on reservations due to residential conditions in highly AI/AN-concentrated 

areas. This includes socio-environmental disparities that influence health outcomes, 

including in diabetes.

Historically high diabetes rates amongst AI/AN populations

AI/AN have higher rates of diabetes than any other racial group in the United 

States. The Indian Health Service (IHS) and National Health Interview Survey indicate 

that age-adjusted prevalence rate for type 2 diabetes in AI/AN populations is more than 

double that of the total U.S. population, with 25% of AI/AN males and 30% of AI/AN 

females diagnosed with diabetes (Benyshek et al. 2010). The CDC claims that diabetes 

is the 4th leading cause of death in the AI/AN population, behind heart disease, cancer, 

and unintentional injuries (Benyshek et al. 2010). This makes diabetes one of the top 

preventable chronic diseases for AI/AN. It is comorbid with obesity and cardiovascular 

disease, which disproportionately impacts AI/AN (Spanakis and Golden, 2014). Risk 

factors such as concentrated poverty, smoking, poor mental health, stress, and maternal 

pregnancy conditions can increase risk of diabetes (Kelley et al., 2015). AI/AN on 
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reservations may be particularly vulnerable to chronic diseases because of destabilized 

food sources, psychosocial stressors from community conditions, and inadequate areas 

to exercise (Spanakis and Golden, 2014). 

Before colonization in the U.S., AI/AN populations cultivated crops suitable for 

the growing seasons they lived in. After colonizers pushed AI/AN out of their 

traditional lands, their food sources were destabilized. Government food aid was not a 

sufficient replacement, as their supplies was low in nutritional value. Surveys from the 

1920s and 1950s found that the AI/AN diet post-colonization consisted of canned meat, 

bread, sugar, and other non-traditional processed foods (Edwards and Patchell, 2009). 

The Food Distribution Program on Indian Reservations (FDPIR) serves as the primary 

food source for many tribes, providing monthly food packages to qualifying low-

income households on reservations (Fox et al., 2004). Many were concerned that these 

packages lacked fresh produce and had high levels of fat, sodium, and sugar. They were

updated in 1998, but still lack certain nutrients compared to dietary recommendations 

(Fox et al., 2004). As a result, malnutrition and nutritional deficiencies were common 

on reservations. By the 1990s, around ¼ of AI/AN households were food insecure 

(Edwards and Patchell, 2009). Lack of reliable nutritious food sources for AI/AN 

populations has resulted in increased rates of diabetes.

 One specific case is the Pima tribe of Arizona, who practiced traditional 

agriculture and sold their crops to settlers, creating a successful commercial agriculture 

business. After Anglo and Mexican-American farmers started diverting water from the 

Gila River, the Pima’s main source, the Pima’s crop production dropped to nearly zero. 

Starvation and poverty set in shortly afterwards. The Pima diet shifted from a traditional
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diet to a high fat, high carb diet based on wheat flour, animal fats, sugar, and other 

processed foods (Benyshek et al. 2010). Caloric intake was initially low, but 

government nutrition programs increased caloric intake to excessive amounts. Diabetes 

rates increased with these nutritional deprivation trends to the point where 50% of Pima 

30 to 64 years old have diabetes as of 2010, compared to 4% in the general population 

(Benyshek et al. 2010), (Fox et al., 2004). The Pima’s history show how systematic 

malnutrition can lead to increased diabetes rates. Nutritional deprivation can 

specifically impact AI/AN populations on reservations if their community food sources 

are compromised.

AI/AN are likely to experience stress and trauma related to historical loss of 

land, systematic attacks on culture, and poverty, which can influence diabetes 

outcomes. The most common mental health diagnoses for AI/AN are alcohol 

dependency and Post-Traumatic Stress Disorder (PTSD), though prevalence varies by 

tribe (Beals et al., 2005). Alcohol impacts biological mechanisms by reducing glucose 

intake into cells, leading to high blood glucose—characteristic of diabetes (Jiang et al., 

2013). PTSD is associated high levels of obesity and metabolic irregularities, which 

also causes diabetes (Scherrer et al., 2019). PTSD and alcohol dependency are strongly 

correlated, so compounding biological effects from these conditions greatly increase 

diabetes risk. PTSD rates are 2 to 3 times higher for AI/AN compared to the general 

population (Sarche and Spicer, 2008). According to the National Comorbidity Survey, 

AI/AN in poor rural communities may have a higher risk of PTSD and alcohol 

dependency than the general survey sample (Beals et al., 2005). They are also more 

likely to drink heavily than other groups (Whitesell et al., 2012). Smoking is correlated 
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with stress and increases risk for diabetes, with rates varying by tribe. Some tribes may 

use tobacco for cultural reasons, such as in the North Plains, so they have a higher 

smoking rate than Southwest tribes (44% vs 21%) (Dennis and Momper, 2012). As a 

result, it is difficult to characterize diabetes risk for AI/AN generally because risk 

factors are not consistent for each tribe. However, the overall trend of mental health 

diagnoses and alcohol/tobacco use correlates with increased diabetes rates. These 

mental health disparities may be exacerbated by the high rate of per-capita violent 

victimization for AI/AN (Sarche and Spicer, 2008). Though individual rates of trauma 

are already high, the interconnected culture of reservations makes it so trauma is shared 

throughout the community instead of staying within the individual’s immediate family 

(Sarche and Spicer, 2008). Thus, frequent traumatic incidents in the community can 

greatly increase individual stress, potentially leading to higher amounts of alcohol and 

tobacco use. Reservations may have higher rates of substance use and mental health 

disorders due to living in a stressful environment, though there is not substantial 

research on reservation/non-reservation disparities.

Concentrated poverty and neighborhood effects on reservations may also 

increase risk for developing diabetes. Over 25% of AI/AN live in poverty—double that 

of the general population (Sarche and Spicer, 2008). For some tribes, this rate can be as 

high as 40% (Sarche and Spicer, 2008). Concentrated poverty is correlated with poorer 

health outcomes. AI/AN from areas with higher median household income have 35% 

lower risk of having diabetes than those from low neighborhood income areas (Jiang et 

al., 2018). Since reservations are generally known to have high rates of poverty and 

unemployment, this would likely increase the risk of developing diabetes. Past studies 
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have shown that living in areas with high concentrations of AI/AN—such as 

reservations—are less effective at reducing BMI and increasing physical activity (Jiang 

et al., 2018). This could be due to neighborhood characteristics, since lifestyle 

interventions are ineffective in areas with many neighborhood disadvantages. If an area 

is unsafe for exercise and has no accessible exercise facilities, then it is difficult to 

increase physical activity. Ideal exercise environments are more likely to be in higher 

SES areas, which may partially explain why these areas are more effective at reducing 

BMI and increasing health food consumption (Jiang et al., 2018). These disparities may 

relate to the fact that low-income neighborhoods contain more racial minorities, which 

correlate to less allocation of resources. Regardless, neighborhood SES and resources 

are correlated with health outcomes, so reservation areas with lower SES and higher 

concentrations of racial minorities may have higher rates of diabetes.

Intrauterine factors, or conditions within the uterus, influence likelihood to have 

diabetes later in life. Maternal factors such as nutrition and stress influence 

development in the womb, with adverse conditions leading to increased risk of insulin 

resistance and type 2 diabetes (Jiang et at., 2013). Disadvantages in the social 

environment can become embodied before birth, thereby creating health disparities 

through social inequalities. Maternal stress creates hormones that can result in insulin 

resistance in offspring (Jiang et at., 2013). Poor nutrition, whether that be through 

malnutrition or overnutrition, alters biological mechanisms in mice and lead to insulin 

resistance (Jiang et at., 2013). This includes having low protein, high protein, and high 

fat maternal diets during pregnancy, since this causes disturbances in crucial 

development periods. Living in reservations may include geographic isolation that 
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makes it more difficult to access fresh foods at grocery stores. Poverty makes it difficult

to afford healthy options as well, so AI/AN may turn to processed food subsidies, if 

available. Lower birth weights may result in negative health outcomes, as shown in twin

studies, where the twin with a lower birth weight is more likely to have diabetes 

(Benyshek et al. 2010). Additionally, glucose intolerance is most prominent amongst 

babies gestated under famine conditions during the third trimester of pregnancy, where 

21% of them had impaired glucose tolerance or were diabetic (Benyshek et al. 2010). 

Given the increased barriers in accessing traditional food sources, this makes AI/AN 

especially susceptible to having unideal diets during pregnancy in comparison to other 

races. Social inequalities and risk factors can even extend to exacerbate health 

disparities even prenatally. 

Despite several documented health disparities between AI/AN and other races, 

there is not as much research on intersectional disparities within the AI/AN community.

Less studies have compared the disparities between AI/AN living on and off 

reservations. It is difficult to generalize AI/AN population health because risk factors 

vary by tribe and partially depend on each tribe’s unique history and local context. 

Though diabetes inequalities appear differently in each tribe, there are likely general 

inequalities that create overall trends. Quantifying the relationship between reservation 

habitation and diabetes amongst AI/AN can open up avenues of research into disparities

that may exist for AI/AN living on reservations.
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Methods

Survey Data

Data from the 2015-2018 series of the National Survey on Drug Use and Health 

(NSDUH) was analyzed to determine statistical correlations between living in an AIA 

and diabetes rates amongst AI/AN. Aggregating multiple years of data collection 

ensures sufficient sample size. The annual survey is taken by the U.S. Department of 

Health and Human Services through the Substance Abuse and Mental Health Services 

Administration, which measures use of drugs (prescription and illegal), alcohol, 

tobacco, substance use disorder care, mental health disorders, and more. The survey 

includes questions about clinical health, such as if participants have been diagnosed 

with diabetes. This data can support public health programs by identifying community 

health disparities and treatment needs. Professional interviewers conduct surveys in 

person, with the first data collected in 1971. The annual data collection makes the 

NSDUH an ideal dataset for analysis because it provides a large representative sample 

throughout several years.

Outcome of Interest

The outcome of interest is diabetes, and whether the participant has a diagnosis. 

A specific survey question asks about general health conditions such as heart condition, 

cancer, HIV/AIDS, and diabetes. Participants self-report on whether a doctor or health 

care professional has diagnosed the participant with any of the conditions, selecting 

either “yes” or “no.” If participants do not have any of the conditions listed, they would 

self-report as having none of the conditions, coded as a “legitimate skip.” For the 
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purposes of this research, the “legitimate skip” responses are recoded as “no” responses,

since they indicate an absence of diabetes diagnosis. Responses coded as “bad data,” 

“don’t know,” “refused,” and “blank,” were excluded from the logistic regression 

models. Thus, after recoding, the only participants included in the models responded 

with either a “yes” or “no” response.

Main Predictor

The main predictor is living in an “American Indian Area” (AIA), which 

indicates concentrated areas of AI/AN populations. The Census specifies five types of 

AIAs, including federally-recognized American Indian reservations (AIRs), state-

recognized American Indian reservations (SAIRs), Oklahoma tribal statistical areas 

(OTSAs), tribal designated statistical areas (TDSAs), and state designated tribal 

statistical areas (SDTSAs). The U.S. federal government designates AIR land for 

AI/AN tribes holding federal recognition. SAIRs are state-established reservations for 

tribes recognized by the state but not federally. OTSAs are intended to indicate former 

AI reservation land existing before Oklahoma statehood, which is still considered for 

statistical purposes. TDSAs include federally-recognized tribes without reservation 

land, intended to represent contiguous areas containing individuals that identify with the

tribe. SDTSAs are identified for state-recognized tribes without reservation land, 

including geographic areas with large concentrations of tribe members. These AIAs are 

mutually exclusive and serve as indicators for reservation-type areas, the effect of 

interest.

AIA was chosen as a main predictor because it includes “pseudo-reservation” 

areas. This indicator is more inclusive than only looking at recognized reservations 
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because it accounts for AI/AN tribes without recognized reservation land, who may 

share similar outcomes from residency in predominantly AI/AN areas. AI/AN living 

within these AIAs will be compared to those living outside these areas to see if living in

concentrated AI/AN areas are correlated with diabetes disparities. This indicator is more

inclusive and comprehensive than looking at federally-recognized tribal land alone 

because many tribes do not have federal recognition, though they may share similar 

environmental conditions and health outcomes. This provides a better understanding of 

how an enclave effect of racial minorities can influence health outcomes, making the 

AIA an ideal predictor for diabetes rates.

Control Variables

Control variables include gender, age, education, family income and 

metropolitan status. Gender is coded with males as the reference variable, where “male”

= 0 and “female” = 1. Age is split into 5 categories, with the age group “50+” serving as

the reference variable, and the other groups coded as “12-17” = 1, “18-25” = 2, “26-34” 

= 3, and “35-49” = 4. The 50+ age group was chosen as the reference variable because 

it would predictably have the highest prevalence of diabetes, as chronic disease rates 

generally increase with age. Education was recoded and split into 4 categories, with 

“less than HS degree” serving as the reference variable, “HS degree” = 2, “some 

college” = 3, and “college/secondary degree” = 4. College/secondary degrees include 

associate’s, bachelor’s, master’s, and doctorate degrees. Within the dataset’s codebook, 

the variable for highest achieved education was coded to distinguish between each 

grade level in high school, so these categories were combined into the reference 

variable. Family income includes “< $10,000” as the reference variable, with the 

19

19



remaining categories being “$10,000-$19,999” = 2, “$20,000-$29,000” = 3, “$30,000-

$39,000” = 4, “$40,000-$49,000” = 5, “$50,000-$74,999” = 6, and “≥ $75,000” = 7. 

Metropolitan status has “large metro” as the reference variable, with “small metro” = 2, 

and “nonmetro” = 3. 

The education and family income variables include imputed data, which means 

that respondents did not input those responses. Instead, this missing data is estimated 

based on responses to other survey questions. Two versions of the education and 

income data exist: one with imputed data and one with reported data only. Both were 

analyzed in two separate sets of models.
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Analysis

Six total logistic regression models were run. Logistic regression models best fit 

the data because the outcome of interest is binary, meaning there are two responses: 

having a diabetes diagnosis and not having one. All data management and statistical 

analyses were conducted using R. Models 1A-3A contain imputed data and Models 1B-

3B exclude imputed data. Models 1A and 1B include the main predictor only, looking at

AIA vs diabetes rates amongst AI/AN without controlling for other variables. Models 

2A and 2B look at AIA vs diabetes rates while controlling for gender, age, education, 

and family income. Controlling for these variables accounts for imbalances in the 

demographics spread, ensuring that AIA is the only effect creating trends in the 

outcome. It also minimizes confounding effects and isolates the main predictor to best 

determine statistical relationships. For example, the average age of people living in 

AIAs may be disproportionately older, so failing to control for this variable would make

it appear that residency in AIAs is correlated with higher diabetes rates, when this effect

is actually caused by age of population living in this area. After controlling for all these 

variables, it can be determined if living in an AIA directly relates to diabetes rates. 

Models 3A and 3B still look at AIA vs diabetes and contain the same controls as 

Models 2A and 2B, but now controls for metropolitan status. Controlling for 

metropolitan status removes effects that rural or urban environments may have on 

diabetes rates, since reservation land tends to lie in rural areas. The results of all models 

were compared to see if significant correlations still appear after adding more controls.

Figure 2 depicts the data-cleaning process, including the number of respondents 

excluded during each step. Data from the 2015-2018 NSDUHs were appended after 
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sub-setting the race variable for AI/AN, so only respondents identifying as AI/AN      

(N = 3363) were included in the appended dataset. Respondents were dropped from the 

regression models if they did not have a “yes” or “no” response to having diabetes after 

recoding. The remaining respondents (N = 3286) were included in Models 1A-3A. To 

test for robustness, respondents with imputed data for education and family income 

were dropped and the remaining sample (N = 2876) was included in Models 1B-3B. 

Table 1 shows respondent demographics in the starting sample before the data cleaning 

process in Figure 2.

Figure 2: Data Cleaning

Depicts the process for sub-setting data in the regression models. After removing 

missing data for the outcome of interest, subset data was used for Models 1A-3A. To 

test for robustness, imputed data was dropped and the remaining data was used in 

Models 1B-3B.
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Table 1: Respondent Demographics

Full Sample AIA = yes AIA = no
N % N % N %

Demographics
Gender

Male 1623 48.260 580 17.247 1043 82.753
Female 1740 51.740 618 18.376 2745 81.624

Age
12-17 834 24.799 309 9.188 3054 90.812
18-25 874 25.989 311 9.248 3052 90.752
26-34 568 16.890 207 6.155 3156 93.845
35-49 680 20.220 225 6.690 3138 93.310

50+ 407 12.102 146 4.341 3217 95.659
Education

Less than HS
Degree

416
12.370

104
3.092 3259 96.808

HS Degree 940 27.951 347 10.318 3016 89.682
Some College 649 19.298 225 6.690 3138 93.310

College/Secondary
Degree

416
12.370

104
3.092 3259 96.908

Family Income
< $10,000 (REF) 531 15.789 229 6.809 3134 93.191
$10,000-$19,999 688 20.458 247 7.345 3116 92.655
$20,000-$29,999 454 13.500 193 5.739 3170 94.261
$30,000-$39,999 379 11.270 124 3.687 3239 96.313
$40,000-$49,999 315 9.367 114 3.390 3249 96.610
$50,000-$74,999 407 12.102 141 17.247 3222 82.753

≥ $75,000 589 17.514 150 18.376 2745 81.624
Metro Status

Large Metro 484 14.392 28 9.188 3054 90.812
Small Metro 1060 31.519 203 9.248 3052 90.752

Nonmetro 1819 54.089 967 6.155 3156 93.845
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Results

All models indicate a statistically significant correlation between living in an 

AIA and having a diabetes diagnosis within AI/AN populations. The magnitude of 

disparity varies depending on the controls. Table 2 shows results of logistic regression 

models including imputed data. When looking at the main predictor and the outcome of 

interest without controls, Model 1A finds that AI/AN living in an AIA are 1.595 times 

more likely to have diabetes than AI/AN living outside of an AIA. This probability is 

found through the odds ratio, listed in the first column of each model’s results. P-values 

less than 0.05 are considered statistically significant. The data in Models 1A-3A yields 

a p-value of <0.001, making it statistically significant. Model 2A finds that disparities 

caused by AIA are greater than represented in the first model. After controlling for 

gender, age, education, and family income, Model 2A shows that AI/AN living in an 

AIA are 1.764 times more likely to have diabetes than AI/AN living outside of an AIA. 

This means that within cohorts in the same categories for gender, age, education, and 

family income, the disparity for those living in an AIA is even greater than when 

looking at AIA status alone. In Model 3A, AI/AN living in AIAs are 1.725 times more 

likely than those outside an AIA to have diabetes. The odds ratio in Model 3A 

decreased in comparison to Model 2A, meaning that metropolitan status likely 

contributes some effects that influence likelihood of having diabetes. The differences 

were not formally tested for statistical significance, serving instead as a qualitative 

observation of changing odds ratios between models.  

These overall trends demonstrate how living in an AIA increases risk of diabetes

for AI/AN. Table 3 shows Models 1B-3B, which tests for robustness by fitting the same
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controls as Models 1A-3A, but without imputed data. If the trends in Table 2 are also 

present in Table 3, findings are strengthened because the trends persist even in data 

where participants reported all demographic information. Models 1B-3B show 

statistical significance for AIA vs diabetes, which means that AI/AN living in AIA have

a higher likelihood of having a diabetes diagnosis. The same general trend appears in 

Models 1B-3B compared to Models 1A-3A, with the odds ratio increasing when adding 

all controls excluding metropolitan status, then decreasing again after metropolitan 

status is included. 

The odds ratios of models listed in Table 3 are all less than their corresponding 

models in Table 2. In Model 1B, the odds ratio is 1.584, as compared to 1.595 in Model 

1A. In Model 2B, the odds ratio is 1.703, which is less than the ratio of 1.764 in Model 

2A. In Model 3B, the odds ratio is 1.665, compared to the ratio of 1.725 in Model 3A. 

This trend between Models 1A-3A and Models 1B-3B shows that the diabetes disparity 

for AI/AN in AIAs is reduced after excluding imputed data, but the findings are still 

statistically significant and strengthen evidence for a health disparity. All models show 

varying magnitudes of diabetes disparity for AI/AN living within AIAs, indicating that 

there is an overall disparity within AI/AN populations dependent on residential 

environment.
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Table 2: Logistic Regression Models with Imputed Data
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Table 3: Logistic Regression Models without Imputed Data
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Figure 3: Odds Ratios (Models 1A-3A)

Compares the odds ratios for models containing imputed data. Statistically significant 

values are indicated by asterisks. Data demonstrates that AI/AN in AIAs are between 

1.595-1.764 times more likely to have diabetes than those outside of these areas.

Figure 4: Odds Ratios (Models 1B-3B)

Compares the odds ratios for models without imputed data. Statistically significant 

values are indicated by asterisks. Data demonstrates that AI/AN in AIAs are between 

1.584-1.703 times more likely to have diabetes than those outside of these areas.
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Discussion

There are many health disparities between AI/AN and other racial/ethnic groups 

in the United States, but further disparities dependent on demographics and social 

environments may exist within these populations. AI/AN may face health disparities 

related to historical and contemporary marginalization, including forced relocation onto 

government-designated reservations. This historical trauma could contribute to poor 

health outcomes, yet additional disparities within the AI/AN population may potentially

lead to diabetes disparities based on residential context. Though many AI/AN live on 

reservations, many others live in urban and suburban settings. If there is a disparity in 

diabetes rates between AI/AN living in AIAs or reservation-like land, there are likely 

effects in the social environment that contribute to overall health outcomes. All logistic 

regression models find that AI/AN living in AIAs have a higher likelihood of having 

diabetes than those living outside of AIAs. These findings were consistent while 

controlling for several other demographic factors such as gender, age, education, and 

family income. The test for robustness strengthens evidence for this disparity because it 

excludes imputed data. Thus, it is likely that there are effects within AIAs and 

reservation-like areas that create health disparities and can increase risk of having 

diabetes. 

Future Research

Given these findings, more research on area-level effects is needed to determine 

exactly why AI/AN have a higher risk of having diabetes when living in AIAs. 

Disparities could be related to an “enclave effect,” where having high concentrations of 

AI/AN living within a specific area of land correlates with social effects that increase 
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risk of adverse health outcomes such as diabetes. Environmental conditions could be 

related to conditions such as differing food sources, since reservations may be 

disproportionately located in food deserts. There could also be adverse effects related to

concentrated poverty and internalized stress for those living on reservations. Stress can 

weaken immune systems, result in poorer health outcomes, and is correlated to 

substance use and poor mental health outcomes—also increasing diabetes risk. These 

conditions can influence maternal health and create unideal intrauterine factors, which 

increases diabetes risk for newborns from the start. These explanations can come 

together to create a more complete picture of why health disparities exist in AIAs, but 

researchers will need to conduct specific case studies to determine social conditions that

contribute to these disparities. They will also need to compare local conditions with AI/

AN living outside of AIAs, especially to find factors outside of AIAs that are more 

optimal for health. Finally, they should compare conditions between tribes in different 

states and geographical areas, since diabetes rates range greatly from tribe to tribe. 

The regression models in this study did not compare diabetes rates between 

specific geographical regions, so analyzing disparities within AI/AN living in AIAs can 

reveal qualitative factors impacting AI/AN health. If there are explanations relating to 

social conditions, this can help determine the main factors for diabetes disparities 

among AI/AN populations, as well as how social environments shape their general 

health outcomes. Qualitative data is needed to contextualize these quantitative findings 

and provide a better idea of what public health interventions are needed to reduce these 

disparities.
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Limitations

Several limitations exist within the data, both in terms of data collection design 

and the use of self-reported data. First, the survey does not distinguish between Type 1 

and Type 2 diabetes, leading to an incomplete profile of health conditions in the 

findings. In Type 1 diabetes, the body is unable to produce insulin, while in Type 2 

diabetes, the body becomes insulin-resistant due to diet, stress, weight, and other 

factors. The main causes of these diabetes types can differ, which changes the ideal type

of intervention to reduce these disparities. Failing to distinguish between these 

conditions removes context that is crucial for determining which factors contribute most

to these health disparities, especially if one type is diabetes is more prevalent within or 

outside of AIAs. Another limitation exists in rates of diabetes diagnosis because many 

individuals may not have a formal diagnosis of diabetes from a healthcare worker, but 

may still have the condition, nonetheless. Organizational structures may make it more 

difficult for AI/AN to access healthcare if they live in certain areas, resulting in 

underdiagnosis. Diabetes rates may also change depending on geographic area and 

could vary region by region. AI/AN populations have a wide range of diabetes rates, so 

generalized findings may not accurately depict disparities for certain tribes. More 

research is needed on area-level effects and structural conditions shaping health in order

to accurately identify AI/AN most at risk for diabetes. This includes case studies and 

historical analyses on how neighborhood setup and environmental-based factors 

influence food sources, mental health and substance use, and maternal health disparities 

for specific reservations. Given the small sample size for respondents living in AIAs 

and the limited scope of survey questions surrounding built environment, determining 
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most influential causes of diabetes in AIAs could not be done with current limitations in

the data.

Conclusion

Although there are limitations in the findings, the results are still compelling 

because it substantially demonstrates a health disparity between AI/AN in AIAs and 

those living outside of AIAs. The results are generalizable for the AI/AN population 

because it comes from a representative sample. The data within both sets of models 

have many respondents and spans through four years of data collection. This large 

sample size generates a more accurate average when looking at overall trends, reducing 

the likelihood of outliers skewing the data. The logistic regression models also 

demonstrate a substantially higher likelihood of AI/AN living in AIAs to have diabetes, 

and the results in all models are statistically significant. This was true in the initial 

models containing imputed data, but also appeared in the models without imputed data. 

The test for robustness strengthens the validity of the findings, where AI/AN living in 

AIAs may be as high as 1.764 times more likely than AI/AN outside of AIAs to have 

diabetes. All results demonstrate a diabetes disparity within AI/AN populations that 

depend on residency in reservation-like areas, despite all limitations. Further research 

can help fill in knowledge gaps due to design limitations within these results, providing 

more social context for analyzed trends.

Diabetes disparities between AI/AN in AIAs and those outside of AIAs can now

be quantified through odds ratios found in these models. There is a clearly established 

health disparity related to living on reservation-type land, but more research is needed 

to understand causes for these disparities. Future research will need to look at 

32

32



qualitative environmental factors and area-level effects specific to a tribe or region to 

supplement quantitative findings. This can include differing access to food sources, 

community stress levels, mental health disparities, and various other factors. Due to the 

variability of conditions surrounding each tribe, specific comparisons are needed to 

explain disparities existing between tribes living in AIAs. Public health organizations 

will need to address qualitative factors that create diabetes disparities for AI/AN living 

in AIAs. By doing so, policies and interventions can effectively mitigate diabetes 

disparities in AI/AN and have potential to create successful prevention measures.
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