THE CALCULATED PROPERTIES OF HELIUM II

by

James S. Brooks and Russell J. Donnelly

A Technical Report from

The Institute of Theoretical Science

and

Department of Physics

Research supported by the National Science Foundation and the Air Force Office of Scientific Research.

University of Oregon, Eugene, Oregon 97403

December 1973

· Mary

Preface

There is a continual need for a consistent set of experimental data on helium II. Compilations have been given in the Appendix of Wilks's "The Properties of Liquid and Solid Helium" and Donnelly's "Experimental Superfluidity." Since then, it has become increasingly evident that all quantities must be known as a function of pressure as well as temperature, and an inspection of experimental data shows that there are many gaps in the (T,P)-plane and not a few inconsistencies. We have decided to try to provide an interim solution to this problem by producing empirical formulae which represent the data over the complete range, excluding the transition region near the λ -line. The results of these calculations are tabulated in increments of 0.05 K in temperature from 0.1 K to 2.10 K, and in increments of 2.5 atmospheres from 0 to 25 atmospheres. The tables are presented in Part I and are printed on colored sheets to facilitate reference to different properties.

The reliability of each table varies, and in some cases the experimental data are inconsistent. Although most tables are believed to agree with experiment to within \pm 10% below 1.6 K, the discussions of Part II, and where necessary the original data, should be consulted when accuracy is necessary.

The authors are acutely aware of the limitations of these tables and would appreciate receiving suggestions to improve them as well as copies of new experimental data as it becomes available. The success of these tables will be measured, in part, by the speed with which they are superseded. This research was supported by the Air Force Office of Scientific Research under grant AF-AFOSR-71-1999 and by the National Science Foundation under grant NSF-GH-35898. This work was begun when the authors were guests at the Niels Bohr Institute, Copenhagen. We thank Professor Aage Bohr for the hospitality of the Institute and access to the computing facilities of the University of Copenhagen (REKU).

iii

Contents

			Page
Part	I.	The Tables	
	1.	Use of the Tables	1
	2.	Index to the Tables	2
Part	II.	Formulae and Discussion	
	1.	Equation of State for Helium II	50
	2.	The Excitation Spectrum	55
		(a) Parametrization of neutron data	55
		(b) A series representation of the excitation spectrum	58
	3.	Thermodynamic Calculations From Model Dispersion Curves	60
		(a) Thermodynamic quantities	60
		(b) The thermal roton gap	62
		(c) The excitation number densities, and the normal and	
		superfluid densities	64
		(d) The velocity of second sound	66
	4.	References	67

Part I

The Tables

1. Use of the Tables

These tables are derived from the equation of state and the model dispersion curve (MDC) method. Several considerations should be observed when using the tables:

(i) As a rule of thumb, the tables can be expected to be most accurate below 1.60 K.

(ii) The worst agreement of tabulated values with the data is often at the vapor pressure. The tables may be less reliable near the λ -line, and certainly no attempt should be made to use them in scaling relations.

(iii) All numbers are the result of continuous functions, and each number has been given as many figures as space allows to provide a continuous tabulation for numerical analysis. The relation .34756E + 05 implies that the number 0.34756 is to be multiplied by 10^{+5} (where E \pm n = $10^{\pm n}$).

(iv) The highest temperature for which data is listed in each pressure column corresponds to the temperature at which the calculated normal fluid density starts to exceed the total density, ($\rho_n/\rho = 1$) and represents the "lambda line" of the model calculation.

Index to Tables

PART I				
Table	Property	Symbol [Page	Color code
	Equation of State			Blue
I	Density	ρ	4	
II	Molar Volume	v	6	
III	First Sound Velocity	^u 1	8	
IV	Isothermal Compressibility	κ _T	10	
v	Thermal Expansion Coefficient	α _P	12	
	Thermodynamic Properties			Pink
VI	Helmholtz Free Energy of Excitations	FE	14	
VII	Entropy	S	16	
VIII	Specific Heat (Constant Pressure)	Cp	18	
IX	Specific Heat (Constant Volume)	C _v	20	
x	Ratio of Specific Heats	c _p /c _v	22	
	Excitation Properties			Yellow
XI	Phonon Number Density	Np	24	
XII	Roton Number Density	N _r	26	
XIII	Normal Fluid Density	ρ _n	28	
XIV	Normal Fluid Ratio	₽n/₽	30	
xv	Superfluid Density	٥s	32	
XVI	Superfluid Ratio	ρ _s /ρ	34	
XVII	Second Sound Velocity	^u 2	36	

Index to Tables (continued)

Table	Property	Symbol .	Page	Color Code
	Parameters of the Excitation Spec	trum		Green
XVIII	Energy of First Maximum at 1.1 Å ⁻¹	ε _{max} /k	38	
XIX	Thermal Roton Energy Gap	∆ _t /k	40	
xx	Roton Effective Mass	μ	42	
XXI	Momentum at Roton Minimum	p _o /h	44	
	Coefficients of the MDC Series	1		Golden Rod
XXII	Coefficients	^u l, ^a n	46	
PART II				
	양 그 그는 것을 사람이 같아요?			
Au	xiliary Tables			
100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100				

1	Gruneisen Constant	u _G	55
2	Second Order Derivative	w	55
3	Ground State Helmholtz Free Energy	F _G	61
4	Ground State Gibbs Free Energy	^Φ G	61

TABLE I. DENSITY (gm·cm⁻³)

The second standards in	1
Proceura	otml
TTESSUIE I	almi

0.00 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 22.50 25.00 Temp. (K) •10 .14513E+00 .14925E+00 .15284E+00 .15603E+00 .15892E+00 .16157E+00 .16403E+00 .16633E+00 .16347E+00 .17053E+00 .17246E+00 . 15 .14513E+00 .14925E+00 .15284E+00 .15503E+00 .15892E+00 .16157E+00 .16403E+00 .16633E+00 .16849E+00 .17053E+00 .17246E+00 . 20 .14513E+00 .14925E+00 .15284E+00 .15603E+00 .15892E+00 .16157E+00 .16403E+00 .16633E+00 .16849E+00 .17053E+C0 .17246E+00 .14513E+00 .14925E+00 .15283E+00 .15603E+00 .15892E+00 .16157E+00 .16403E+00 .16633E+00 .16849E+00 .17053E+00 .17246E+00 .25 .14513E+00 .14925E+00 .15283E+00 .15602E+00 .15892E+00 .16157E+00 .16403E+00 .16633E+00 .16349E+00 .17053E+C0 .17246E+C0 .30 .14513E+00 .14925E+00 .15283E+00 .15602E+00 .15891E+00 .16157E+00 .16403E+00 .16632E+00 .16848E+00 .17052E+00 .17245E+00 .35 .40 .14513E+00 .14925E+00 .15283E+00 .15602E+00 .15891E+00 .16157E+00 .16403E+00 .16632E+00 .16843E+00 .17052E+00 .17245E+00 .14513E+00 .14925E+00 .15283E+00 .15602E+00 .15891E+00 .16156E+00 .16402E+00 .16632E+00 .16343E+00 .17052E+00 .17246E+00 . 45 .14513E+00 .14924E+00 .15283E+00 .15602E+00 .15891E+00 .16156E+00 .16402E+00 .16632E+00 .16843E+00 .17052E+C0 .17246E+00 .50 .14512E+00 .14924E+00 .15282E+00 .15601E+00 .15891E+00 .16156E+00 .16402E+00 .16632E+00 .16848E+00 .17052E+00 .17246E+00 . 55 .14512E+00 .14924E+00 .15282E+00 .15601E+00 .15891E+00 .16156E+00 .16402E+00 .16632E+00 .16848E+00 .17052E+00 .17246E+00 . 60 .14512E+00 .14724E+00 .15282E+00 .15601E+00 .15890E+00 .16156E+00 .16402E+00 .16632E+00 .16848E+00 .17053E+00 .17246E+00 . 65 .14512E+00 .14923E+00 .15282E+00 .15601E+00 .15890E+00 .16156E+00 .16402E+00 .15633E+00 .15849E+00 .17053E+C0 .17247E+)) .70 . 75 .14511E+00 .14923E+00 .15282E+00 .15601E+00 .15891E+00 .16156E+00 .16403E+00 .16633E+00 .16855E+00 .17054E+00 .17243E+30 .14511E+00 .14923E+00 .15282E+00 .15601E+00 .15891E+00 .16157E+00 .16404E+00 .16634E+00 .16351E+00 .17055E+00 .1725CF+00 . 80 .14511E+C0 .14923E+00 .15282E+00 .156C1E+00 .15891E+00 .16156E+00 .16405E+00 .16635E+00 .16852E+00 .17057E+00 .17251E+00 .85 •14511E+00 •14923E+00 •15282E+00 •15602E+00 •15892E+00 •16159E+00 •16406E+00 •16637E+00 •16854E+00 •17059E+00 •17254E+00 .90 .95 .14511E+00 .14923E+00 .15282E+00 .15603E+00 .15893E+00 .16160E+00 .16408E+00 .16639E+00 .16855E+00 .17052E+00 .17257E+00 1.00 .14511E+00 .14923E+00 .15283E+00 .15604E+00 .15895E+00 .16162E+00 .16410E+00 .16862E+00 .16863E+00 .17065E+00 .17261E+00 .14510E+00 .14924E+00 .15284E+00 .15605E+00 .15897E+00 .16165E+00 .16413E+00 .16645E+00 .16364E+00 .17070E+00 .17266E+00 1.05 1.10 .14511E+00 .14924E+00 .15285E+00 .15607E+00 .15899E+00 .16168E+00 .16417E+00 .16649E+00 .16863E+00 .17075E+00 .17271E+00

2

D

TABLE I. DENSITY (gm·cm⁻³) (continued)

.

.

Pressure	(at	m)

Temp. (K)	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
1.10	.1+511E+00	•14924E+00	.15285E+00	.15607E+00	•15899E+00	.16168E+00	•16417E+00	.16649E+00	•16953E+00	.17075E+00	.172715+00
1.15	•14511E+00	·14925E+00	•15285E+00	.15609E+00	.15902E+00	.16172E+00	.16421E+00	.16655E+00	.16874E+00	.17081E+CO	.17274E+00
1.20	.14511E+00	•14926E+00	.15288E+00	.15612E+00	•15906E+00	.16176E+00	•16427E+00	.16661E+00	.16891E+00	.17089E+00	·17296E+00
1.25	.14511E+00	·14927E+00	.15291E+00	.15616E+00	.15911E+00	.16182E+00	.16433E+00	·16668E+00	.16899E+00	·17093E+00	.172 765+ 30
1.30	.14512E+00	.14929E+00	.15294E+00	.1562CE+00	·15916E+00	.16189E+00	•16441E+00	•16677E+00	.168988+00	.17103E+00	.173078+00
1.35	.14513E+00	• 14931E+00	•15297E+00	.15625E+00	.15922E+00	.16196E+00	.16450E+00	.16687E+00	.16910E+00	•17120E+C0	.17320E+00
1.40	.1+514E+00	•14934E+00	•15302E+00	•15631E+00	.15930E+00	.16205E+00	.16460E+00	•16698E+00	.16923E+00	.17134E+CO	·17336E+00
1.45	.14515E+00	•14937E+00	•15307E+00	.15638E+00	.15939E+00	.16215E+00	.16472E+00	.16712E+00	.169385+00	.17151E+00	+17353E+ 00
1.50	.14517E+00	•14941E+00	•15313E+00	•15646E+00	•15949E+00	.16227E+00	.16486E+00	.16727E+00	.16955E+00	.17170E+00	·17374E+00
1.55	.14519E+00	•14945E+00	•15320E+00	.15655E+00	.15960E+00	.16241E+00	.16502E+00	.16745E+00	•16975E+00	.17191E+00	.173976+00
1.00	•14521E+00	•14950E+CC	•15323E+00	.15666E+00	•15974E+00	•16257E+00	.16520E+00	.16766E+00	.16997E+00	.17216E+00	.174232+00
1.65	•14524E+00	-14956E+00	•15337E+00	.15679E+00	•15990E+00	·16276E+00	.16541E+00	•16790E+00	.170238+00	.17244E+00	.174545+00
1.70	.14527E+00	.149532+00	.15348E+00	.15693E+00	,16007E+00	.16297E+00	.16566E+00	•16817E+00	•17053E+00	•1727/E+00	.17487E+00
1.75	•14531E+00	.14971E+00	.15360E+CO	.157C9E+00	.16028E+00	•16321E+00	~16593E+00	• 16848E+00	.170875+00	·17313E+00	.17528E+00
1.80	•14535E+00	•14980E+00	•15374E+00	•15728E+00	•16051E+00	·16349E+00	.16625E+00	• 16883E+00	•17126E+00	.17356F+07	.17574F+00
1.05	•14540E+00	•14991E+00	.15390E+00	•1575CE+00	.16076E+00	•16380E+00	•16661E+00	•16924E+00	.17171E+00	.17404E+00	
1.90	·14546E+00	•15003E+00	.15409€+00	•15775E+00	.15109E+00	•16417E+00	.16703E+00	.16970E+00			
1.95	•14553E+00	•15017E+00	.15430E+00	.15804E+00	.16144E+00	.16459E+00	.16751E+00				
2.00	.14561E+00	•15033E+00	•15455E+00	•15837E+00	•16185E+00						
2.05	•14570E+00	•15052E+00	.15484E+CO								
1 2 2 3 3 3 5 5 5											

2.10 .14580E+00 .15073E+00

•

4

41.

D

TABLE II. MOLAR VOLUME (cm³mole⁻¹)

1

14

. .

. .

					Press	sure (atm))				
Temp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
(K) • 10	•27579E+02	• 26 818E + 02	•20189E+02	•25653E+02	•25185E+02	•24773E+02	•24401E+02	.24064E+02	.23756E+02	.23472E+02	•23208E+02
.15	.27579E+C2	.26818E+02	.26189E+02	.25653E+02	.25186E+02	·24773E+02	.24401E+02	.24064E+02	·237555+02	.234725+02	·23203E+02
. 20	•27579E+02	• 26 918E+02	.26189E+02	.25653E+02	.25186E+02	.24773E+02	.24401E+02	.24064E+02	.237555+02	.23472E+02	.232038+02
. 25	·27579E+02	.26813E+02	.26189E+02	.25653E+02	.25187E+02	.247732+02	.24402E+02	.24065E+02	.237555+02	·23472E+02	.232095+02
. 30	•27579E+C2	.26318E+02	•26189E+02	•25654E+C2	.25187E+02	.24773E+02	.24402E+02	·24065E+02	.237555+02	·23472E+02	.23209E+02
• 35	•27530E+02	.26818E+02	•26190E+02	.25654E+02	.25187E+02	.24773E+02	.24402E+02	.24055E+02	·23757E+02	.23472E+02	+23209E+02
. 40	•27580E+C2	• 26818E+02	•26190E+02	.25654E+02	.25187E+02	.24774E+02	.24402E+02	.24055E+02	·23757E+02	•23473E+02	• 23209E + 32
. 45	.2753UE+02	•26819E+02	•26190E+02	•25655E+02	•25188E+02	·24774E+02	· 24402E+02	• 24065E+02	.23757E+02	·23473E+02	·23209E+12
. 50	.27530E+02	• 26819E+02	•26191E+02	.25655E+02	.25188E+02	•24774E+02	.24403E+02	·24066E+02	.23757E+02	·23473E+02	.23209E+02
. 55	.27531E+02	• 26820E+02	•26191E+02	.25655E+02	• 25188E+02	.24774E+02	*24403E+02	.240555+02	.23757E+02	.23473E+32	.232395+02
•60	•27581E+C2	• 26820E+02	•26191E+02	.256568+02	.25189E+02	·24775E+02	•24403E+02	• 24066E+02	.23757E+02	• 23473E+02	.232098+02
. 65	.27581E+02	• 26 8 20 E + 0 2	•26192E+02	.25656E+02	.25189E+02	.24775E+02	.24403E+02	.240555+02	.23757E+02	.234728+02	.232085+02
. 70	• 27 582E+02	• 26821E+02	.25192E+02	.25656E+02	.25189E+02	.24774E+02	.24402E+02	.240555+02	.237558+02	· 23471E+02	.212075+02
. 75	·27582E+02	.26821E+02	.26192E+02	·25656E+02	.25188E+02	•24774E+02	.24402E+02	.24064E+02	·23755E+02	.23470E+02	.232056+32
. 80	.27583E+02	• 26 822E+02	.26192E+02	.25656E+02	.25188E+02	.24773E+02	.24401E+02	.240635+02	• 23753E + 02	•23463E+02	·23204E+02
.85	•27583E+02	· 26822E+02	• 25192E+02	•25655E+02	.25187E+02	·24772E+02	•24399E+02	.24061E+02	.23751E+02	.23466E+02	.232028+02
. 90	•27534E+C2	• 26822E+02	·26192E+02	.256548+02	.25186E+02	.24770E+02	.24397E+02	.24059E+02	·23749E+02	.23463E+02	.231985+02
.95	•27584E+C2	.268222+02	•26191E+02	.25653E+02	•25184E+02	.24763E+02	•24394E+02	.240555+02	.23745E+02	•23459E+02	.231945+32
1.00	.27584E+C2	.26821E+02	.26190E+02	.25651E+02	•25182E+02	·24765E+02	·24391E+02	.240512+02	.23741E+02	.23454E+02	·23139E+02
1.05	.27584E+02	• 26821E+02	.26189E+02	.25649E+02	•25179E+02	.24761E+02	.24337E+02	•24046E+02	·23735E+02	•23449E+32	.231338+32
1.10	.27584E+C2	.26820E+02	•26187E+02	.25646E+02	•25175E+02	.247578+02	•24381E+02	.24040E+02	.23729E+02	•23441E+02	·23175E+02

 \triangleleft

6

.

TABLE II. MOLAR VOLUME (cm³mole⁻¹) (continued)

1000000000				10000	12222000000	
1.1	00	- C + + + + +	10 0	0	Contraction (N (2)
	25	SIL	C C L		1 H H H H H	3
	~	Uu.		\mathbf{u}		

0.00 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 Temp. 22.50 25.00 (K) .27534E+02 .26820E+02 .26187E+02 .25646E+32 .25175E+02 .24757E+02 .24381E+02 .24040E+02 .23729E+02 .23441E+02 .23175E+02 1.10 1.15 .27584E+02 .26818E+02 .26184E+02 .25642E+02 .25170E+02 .24751E+02 .24374E+02 .24033E+02 .23721E+02 .23433E+02 .231665+02 1.20 •27583E+02 •26816E+02 •26181E+02 •25638E+02 •25164E+02 •24744E+02 •24366E+02 •24024E+02 •23711E+02 •23422E+02 •23155E+02 1.25 .27532E+C2 .26814E+02 .26176E+02 .25632E+02 .25157E+02 .24735E+02 .24357E+02 .24014E+02 .23700E+02 .23140E+02 .23142E+32 1.30 ·27581E+02 ·26811E+02 ·26171E+02 ·25625E+02 ·25148E+02 ·24725E+02 ·24346E+02 ·24001E+02 ·23636E+02 ·23396E+02 ·23127E+02 1.35 •27580E+02 •26807E+02 •26165E+02 •25617E+02 •25138E+02 •24714E+02 •24333E+02 •23987E+02 •23671E+02 •23374E+02 •23109E+02 1.40 .27578E+C2 .26802E+02 .26158E+02 .256C7E+02 .25126E+02 .247005+02 .24317E+02 .23970E+02 .23652E+02 .23360E+02 .23039E+32 1.45 •27575E+C2 •26796E+02 •26149E+C2 •25566E+02 •25113E+02 •24684E+02 •24300E+02 •23951E+02 •23632E+02 •2333AE+02 •23055E+02 1.50 .27572E+02 .26790E+02 .26139E+02 .25582E+02 .25097E+02 .24665E+02 .24279E+02 .23928E+02 .23603E+02 .23312E+02 .23039E+02 1.55 •27509E+02 •26782E+02 •26127E+02 •25567E+02 •25078E+02 •24645E+02 •24255E+02 •23903E+02 •23580E+02 •23283E+02 •2303E+12 1.60 +27564E+02 +26773E+02 +26114E+02 +25549E+02 +25057E+02 +24620E+02 +24228E+02 +23873E+02 +23543E+02 +23249E+02 +22973E+02 1.05 .27557E+C2 .26762E+02 .26098E+02 .25529E+02 .25033E+02 .24593E+02 .24198E+02 .23840E+02 .23512E+02 .23211E+02 .22933E+02 1.70 .27553E+02 .26750E+02 .26079E+02 .25506E+02 .25005E+02 .24561E+02 .24162E+02 .23801E+02 .23471E+02 .23153E+02 .22837E+02 1.75 .27546E+02 .26735E+02 .26059E+02 .25479E+02 .24973E+02 .24524E+02 .24122E+02 .23757E+02 .23425E+02 .23113E+02 .229355+02 1.80 .27537E+02 .26719E+02 .26035E+02 .25448E+02 .24936E+02 .24483E+02 .24076E+02 .23708E+02 .23371E+02 .23062E+02 .22775E+02 1.85 .27528E+02 .26700E+02 .26007E+02 .25413E+02 .24895E+02 .24435E+02 .24023E+02 .23651E+02 .23310E+02 .22993E+02 •27516E+C2 •26678E+02 •25976E+02 •25373E+02 •24847E+02 •24381E+02 •23964E+02 •23586E+02 1.90 1.95 .27564E+02 .26653E+02 .25940E+02 .25327E+02 .24792E+02 .24319E+02 .23895E+02 2.00 .27489E+02 .26625E+02 .25898E+02 .25274E+02 .24730E+02 2.05 .27472E+C2 .26592E+02 .25851E+02 2.10 .27453E+02 .26555E+C2

TABLE III. FIRST SOUND VELOCITY (cm.sec⁻¹)

4

.

16

. . . .

10	Pressure (atm)											
	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00	
	.23821E+05	• 25746E+05	•27422E+05	•28916E+05	.30271E+05	.31515E+05	.32669E+05	.33747E+05	.34763E+05	.35719E+05	.36627E+05	
	.23822E+05	• 25747E+05	• 27422E+05	.289165+05	.30271E+05	.31515E+05	.32669E+05	.33747E+05	.34760E+05	.35718E+05	· 35627E+3	
	.23823E+05	• 25747E+05	•27423E+05	.289178+05	· 30271E+05	.31515E+05	.32669E+05	.33747E+05	.34760E+05	.35718E+05	· 35527E+0	
	.23824E+75	·25748E+05	.27423E+05	·28917E+05	.30272E+05	·31516E+05	.32669E+05	· 33747E+05	.347602+05	·35717E+05	. 35627E+0	
	.23826E+05	.25749E+05	.27424E+05	.28913E+05	. 302722+05	•31516E+05	.32669E+35	.33746E+05	.347575+05	·35717E+05	.366268+0	
	·23829E+05	.25751E+05	.27425E+05	·28918E+05	· 30272E+05	.31516E+05	·32669E+05	.337465+05	.347598+05	.357168+05	.35525E+0	
	.23830E+05	.25752E+05	.27426E+05	.28918E+05	.302725+05	·31515E+05	.32668E+05	.337455+05	·34753E+05	.357155+05	· 30624E+0	
	.23833E+C5	.25754E+05	.27426E+05	·28918E+05	.30271E+05	.315148+05	.32657E+05	. 337435+05	.34755E+05	.35713E+05	. 366225+0	
	.238362+05	· 25755E+05	•27427E+05	·28918E+05	.30270E+05	·31513E+05	.32565E+05	.33741E+05	.34753E+05	.35710E+35	. 355195+0	
	.23840E+05	·25757E+05	.27427E+05	.23917E+C5	.30268E+05	.31510E+05	.32661E+35	.337375+05	.347495+05	+35705E+05	+ 36514E+1	
	.23843E+05	.25757E+C5	.27426E+05	.28914E+05	· 30265E+05	· 31506E+05	.32657E+05	.33732E+05	.347445+05	- 35700E+05	- 355035+0	
	•23845E+05	.25757E+C5	.27424E+05	.28911E+05	· 30261E+05	.315015+05	. 326518+05	. 33725F+05	- 34737E+05	- 156935+35	. 355015+1	
	.238476+05	.25756E+C5	.27423E+05	.239668+05	.302545+05	.31493E+05	. 326435+05	-337185+05	- 347295+05	354955405	346035+0	
	.238436+05	· 25753E+05	.27415E+05	.288992+05	- 30246E+05	. 314345+05	. 326335+05	. 337 185+05	- 367135+05	356746105	345335+0	
	•23847E+05	.257482+05	+27403E+05	-23890E+05	+ 30236E+05	.314735+05	. 326225+05	. 334945+05	367065405			
	·23846E+05	.257438+05	.273995405	.238795+05	. 302245+05	314405+05	324025405	336016+05	- 341002+03	• 350322+05	• >>> / !!!!	
	-23943E+05	- 25735E+05	. 273845+05	.238655405	302095405	31444 5+05			. 340722+03	. 330475+35	.335585+3	
	. 239395+05	257245405	272745405	250005000	.302082+05		* 325912+05	. 330002+00	• 345/52+05	• >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	• 36543E+3	
		357125405	273575425	144305496405	. 301402405	• 314250+05	. 325722+05	• 335462+05	. 346572+05	• 35615E+35	•36523E+3	
	234345+35	25-046-05	272246405	.238292405	. 301692405	.314032+05	. 325492+05	• 336238+05	• 34636E+05	·35596E+05	.355108+0	
	•238242+35	· 20090E+05	•273362+05	.233002+05	• 30144E+05	·31377E+05	• 32523E+05	• 33598E+05	.345125+05	.35574E+05	•354905+0	
1.1	·23812E+05	• 25677E+05	.273128+05	.287792-05	.30115E+05	·31347E+05	.324935+05	.335595+05	.34585E+05	. 3554 dE+05	- 35469E+05	

8

"l

10

TABLE III. FIRST SOUND VELOCITY (cm·sec⁻¹) (continued)

*

. .

. .

	Pressure (atm)											
Temp. (K)	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00	
1.10	·23812E+05	• 25677E+05	·27312E+05	·28779E+05	.30115E+05	•31347E+05	· 32493E+05	•33569E+05	.34585E+05	.355485+05	. 3045 92+05	
1.15	.23798E+05	• 25654E+C5	.27284E+05	·28747E+05	.30081E+05	•31312E+05	·32459E+05	.335365+05	.34553E+05	.355232+05	.354442+35	
1.20	·23780E+05	• 25626E+C5	•27250E+05	.28710E+05	• 30042E+05	·31273E+05	.32420E+05	·33498E+05	.345138+05	.354395+05	.35+102+05	
1.25	•23758E+05	.25593E+05	.27211E+05	•28667E+05	• 29997E+05	.312275+35	· 32375E+05	• 33455E+05	· 34478E+05	• 35451E+35	.353375+35	
1.30	·23732E+05	.255558+05	.27166E+05	.28617E+05	·29940E+05	• 311 75E+05	.32324E+05	.33406E+05	.344338+05	.35414E+05	.353512+05	
1.35	.23700E+05	.25511E+05	•27114E+05	•28561E+05	.29887E+05	•31116E+05	.32266E+05	.33351E+05	.34382E+05	·35355E+35	.3531-5+05	
1.40	.23603E+05	·25460E+05	.27054E+05	.284976+05	·29820E+05	.310495+05	. 32201E+05	• 33239E+05	·34324E+05	.35315E+05	.3-2708+05	
1.45	.236198+05	.25402E+05	.25987E+05	•28424E+J5	.29746E+05	.30974E+05	.32123E+05	.33220E+05	• 34261E+05	.352615+05	.352165+05	
1.50	.23559E+05	.25335E+C5	.269102+05	•28342E+05	.29661E+05	.303705+05	. 32C47E+05	· 33142E+05	· 34190E+05	.351955+05	.351585+35	
1.55	.23511E+05	.252588+05	.2.8232+05	.282492+05	·29566E+05	·30796E+05	.31956E+05	.33059E+05	.341128+05	.351235+05	.351115+35	
1.60	.234+5E+05	.25171E+C5	.26725E+05	·28146E+05	.29451E+05	.305938+05	·31855E+05	· 32955E+05	.34029E+05	.353565+35	.350525+05	
1.65	.23370E+05	.25076E+C5	. 2661 7E+05	.28031E+05	.29344E+05	.305795+05	· 31748E+05	· 32961E+05	.339342+05	.349525+05	. 359942+ 35	
1.70	.232858+05	.24957E+05	.26495E+05	·27903E+05	• 29217E+05	.304545+05	.315262+05	.32752E+05	.338422+05	.318958+15	. 357245+35	
1.75	.23190E+05	· 24846E+05	• 26361E+C5	.27763E+05	.29075E+05	.303162+05	·31499E+05	· 32634E+05	.33737E+05	.348142+35	. 358565+05	
1.83	.23083E+05	·24711E+05	.26213E+05	• 276C8E+05	.28919E+05	.301075+05	.31362E+05	.325138+05	.336332+05	.347358+35	. 357372+05	
1.85	.22964E+35	.24564E+05	. 26047E+05	.27439E+05	.28751E+05	.30007E+05	·31213E+05	. 32383E+05	.33519E+05	.346192+05		
1.90	·22830E+05	.24403E+05	.25867E+05	.272528+05	.285682+05	·29834E+05	.31057E+05	.32241E+05				
1.95	•22688E+C5	.24216E+05	.25668E+05	.27049E+05	·28370E+05	·29647E+05	.303868+05					
2.00	.225278+05	.24023E+C5	.25450E+05	.26825E+05	.28153E+05							
2.05	+22349E+35	.23804E+05	.25214E+05									
2.10	.22158E+05	.23569E+C5										

u1

.

.

TABLE IV. ISOTHERMAL COMPRESSIBILITY (cm²·dyne⁻¹)

1

.

. . . .

	Pressure (atm)											
Temp. (K)	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00	
.10	.121438-07	.101086-07	·87012E-08	.76651E-C8	•68670E-08	.623152-08	· 57122E-08	.52792E-08	•49121E-03	• 45 43 55 - 13	• 432218=33	
.15	.12142E-C7	.10107E-C7	.87010E-08	•76650E-08	.68670E-08	.6231+E-09	.571228-08	. 527928-08	.491225-08	.45365F-08	.432215-03	
.20	.121+1E-07	.10107E-C7	.87003E-08	.756496-08	.686695-08	.623145-09	.571225-08	.527938-08	.491226-08	.459558-03	.432228-08	
. 25	·12140E-C7	.101068-07	.37004E-08	.766476-08	.686688-08	.623146-05	.571228-08	.52793E-08	.49123E-08	.459575-08	.432235-04	
. 30	.12139E-07	.101058-07	.a7001E-08	.76546E-03	.636635-03	.623145-03	.571232-08	• 52794E-03	.49124E-08	.4590 12-73	.+322+8-08	
.35	.12137E-C7	.101058-07	.85997E-03	.76545E-08	.686585-03	.623162-08	.571258-08	.52796E-03	•49120E-03	.459712-13	.+32275-38	
. 40	.12134E-07	.10104E-C7	.86994E-08	.76645E-08	.68570E-08	.623195-08	.571255-08	.528005-08	.491305-08	.459755-08	. +32305-03	
.45	.12132E-C7	.10103E-07	.86992E-08	.76647E-08	.680748-08	.673235-08	.571348-08	. 528058-08	.49135E-08	.453806-08	.432365-03	
.50	.12129E-07	.10102E-07	.36993E-08	.76651E-08	.08681E-03	.623315-05	.57141E-08	.528135-03	.49143E-08	.+59995-)3	+432+38-08	
. 55	.12127E-07	.10102E-C7	.869978-08	.766598-08	.63691E-08	.023425-03	.571532-38	. 528258-03	.491546-03	.459995-08	.432535-08	
.60	.121248-07	.10102E-C7	.87005E-08	.766725-38	.687058-09	.52357E-08	.57108E-08	. 52 94 05-08	.49159E-03	.463128-38	. 432575-34	
. 65	.121228-07	.10102E-C7	. 370208-08	.766918-38	.58726E-03	.623785-04	. 571888-08	.528598-03	.49133E-03	.45-375-13	.432345-33	
. 70	.12121E-C7	. 10103E-C7	.87042E-08	.767178-68	.68753E-08	.52405E-06	.572158-08	.523858-08	.49212F-03	.480538-03	.+333002-38	
. 75	.12120E-07	.10105E-07	.87073E-08	.76752E-08	.587396-03	.624+CE-03	. 572-98-38	.529178-03	.47242E-03	. 4-17926-33	. 43 3 3 3 5 - 7 9	
. 80	-12120E-07	. 10108E-C7	.87115E-08	.767985-08	.688348-08	.624348-08	.572918-08	.529568-08	.49230E-03	.451146-)3	.433505-04	
. 95	-12121E-07	. 101135-07	.871715-08	.76856E-08	.58891E-08	.625395-05	.573428-08	.53005E-C3	.493258-08	.46151E-05	.43+075-08	
- 90	-12123E-07	.101195-07	.87241E-08	.769235-08	.08951E-08	.625058-03	.57405E-03	.53054E-03	.493815-09	. 452128-73	.434552-08	
	12127E-07	. 10125E-C7	.87329E-08	.770168-08	.69046E-09	.625355-03	.574805-08	.531355-03	.494478-08	.45274F-33	.435145-18	
	121365-07	101365-07	.8743HE-08	.771235-08	. 69149E-09	.627528-03	.575708-08	. 532188-08	.49525E-09	.46347E-05	.+35325-28	
1.05	121625-67	101495-01	.87570E-08	-77252E-08	. 69270E-08		.570706-08	•53317E-03	.49617E-03	.+>4338-03	.+35528-14	
1.10	.12154E-07	. 101648-07	.87728E-08	.774C5E-08	.69414E-08	.63029E-08	. 5780 JE- 38	.534328-01	.49724E-08	.46533E-Cd	.437555-08	

×Τ

.

TABLE IV. ISOTHERMAL COMPRESSIBILITY (cm²·dyne⁻¹) (continued)

 h_{i}

. . . .

	Pressure (atm)										
Temp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
(K) 1.10	.12154E-07	.10164E-C7	.877288-08	.77405E-08	.69414E-08	.63029E-08	. 578005-08	.53432E-03	.49724E-08	.46533E-08	.43755E-0d
1.15	.12169E-07	.101838-07	.87916E-08	.775855-08	.69582E-08	.631358-08	.579458-03	.53566E-08	.499482-08	.466435-03	.439535-78
1.20	.12187E-C7	.10205E-C7	.88138E-08	.777968-08	. 697798-08	.63367E-08	.59112E-08	.537218-08	.49991E-03	.46781E-09	•43937E-08
1.25	.12209E-07	. 10 23 1E-C7	•38398E-08	.78041E-08	.70006E-03	.63577E-08	.58305E-08	. 538995-08	.50156E-08	.45935E-08	•44129E-08
1.30	.122378-07	.10262E-07	.387COE-08	.78324E-08	.70268E-08	.63318E-08	.585275-08	.541048-03	.503458-08	.47110E-08	.442928-08
1.35	·12269E-C7	.10298E-C7	.89050E-C8	.736516-08	.70569E-08	.64094E-08	.53731E-08	. 543375-08	.50551E-08	.47309E-38	. 444785-03
1.40	.123085-07	·10339E-C7	•89453E-08	.790255-08	.70914E-08	•64410E-08	.590715-08	.546032-08	.50806E-08	.47535E-08	•44683E-08
1.45	•12353E-C7	•10388E-C7	.89916E-08	.794555-08	.71308E-08	.04770E-08	.59401E-03	.549062-03	.510858-08	.47794E-08	.44927E-08
1.50	.124055-07	.104438-07	.90446E-03	.79945E-08	.71756E-08	.651802-08	.597752-08	.552508-08	.514018-03	•49085E-08	.451995-08
1.55	·12456E-C7	.10507E-C7	.91051E-08	.805C4E-08	.72266E-08	.656455-08	.602002-38	. 556395-08	•51759E-08	.48416E-08	.455048-03
1.60	.125376-07	.105805-07	•91742E-C8	.811406-08	•72846E-08	• 661 73E-08	.606825-08	.5503CE-03	.521655-08	.43790E-08	.453502-08
1.65	·12613E-C7	· 10663E-C7	•92528E-08	.818035-08	.73505E-08	•66773E-08	.61229E-08	.55580E-03	.526248-08	.492138-09	.462+18-08
1.70	.127106-07	• 10753E-07	.934248-08	.326855-03	•74254E-08	•67454E-08	.51347E-08	.571472-03	.531438-08	.49691E-03	.455938-08
1.75	.12816E-07	.10866E-C7	.94445E-08	.836216-08	.751055-08	•68227E-08	. 525538-08	. 577898-08	• 53732E-08	.50233E-08	.47132E-08
1.80	·12937E-07	.109908-07	.955088-08	.846885-08	.76075E-08	.69107E-08	•63353E-08	.535198-03	•54400E-08	.509478-08	.47749E-08
1.85	.130768-07	.11131E-07	.96937E-08	.35906E-C8	.77182E-08	.70111E-08	• 64265E-08	.593515-09	.55161E-09	• 51 54 5E-08	
1.90	.132338-07	•11292E-C7	•98457E-08	.873018-08	•78449E-08	•71260E-08	.65308E-08	.603012-03			
1.95	.13414E-07	•114775-07	·10020E-07	.88904E-08	.79905E-08	•72580E-08	.66506E-08				
2.00	.136208-07	• 11689E-C7	·10222E-07	•90756E-08	.81588E-08						
2.05	.13856E-07	• 119348-07	.10455E-07								
2.10	.141288-07	·12219E-C7		200 200 1	W. States						

× T .

TABLE V. THERMAL EXPANSION COEFFICIENT (mK)⁻¹

de:

.

٠

. . . .

Pressure (atm)

Temp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
(K) .10	•1124E-02	• 7208E-03	.5007E-03	.3674E-03	.2808E-03	.22165-03	.1793E-03	.1480E-03	.12436-03	.1008E-03	.8754E-04
.15	.3728E-02	• 2408E-02	.1679E-02	.1235E-02	.9455E-03	.7467E-03	.6046E-03	.49948-03	.4195E-03	.3404E-03	.29518-03
.20	•8644E-02	• 5633E-02	•3949E-02	.29125-02	•2234E-02	•1766E-02	·1431E-02	.1183E-02	.9945E-03	.8074E-03	•7025E-03
. 25	.1046E-01	.1083E-01	•7640E-02	•5653E-02	•4346E-02	•3442E-02	.2792E-02	.23108-02	.19438-02	.1579E-02	.1374E-02
. 30	.2766E-01	•1841E-C1	.1306E-01	•9703E-02	.7477E-02	•5932E-02	.4818E-02	· 3990E-02	.33578-02	.2731E-02	.2377E-02
. 35	•4265E-01	.2871E-01	.2051E-01	.15302-01	.1182E-01	.93928-02	.7638E-02	.6329E-02	.5327E-02	.43355-02	.37698-02
. 40	.6174E-01	• 4205E-01	• 3025E-01	.2265E-01	•1754E-01	.1395E-01	.11355-01	.93835-02	.78605-02	.6350E-02	.5479E-02
• 45	.85232-01	• 5861E-01	.42428-01	.3137E-01	.2469E-01	•1960E-01	.15868-01	.13008-01	.10748-01	•8487E-02	.73295-02
• 50	.1130E+00	.7855E-01	.57098-01	•4284E-01	.33025-01	.2593E-01	·2057E-01	.16365-01	.12968-01	.9295E-02	•0549E-02
• >5	.14475+00	.1014E+00	.73595-01	.5473E-01	•41438-01	.31548-01	·2376E-01	.1727E-01	.1153E-01	.55335-02	.39898-03
.60	.17952+00	•1259E+00	.9042E-01	.6566E-01	•4759E-01	•3355E-01	.21945-01	·1162E-01	.18328-02	3344E-02	13598-01
. 65	.21528+00	•1498E+C0	.1048E+0C	.7223E-01	.4741E-01	.27218-01	.95118-02	71318-02	2372E-01	4134E-01	53256-31
. 73	.2494E+CO	• 1692E+00	•1123E+00	.6944E-01	.3511E-01	•5734E-02	2110E-01	4777E-01	75568-01	10455+00	13595+00
. 75	+2778E+00	.1795E+00	.1073E+00	.5C61E-01	.3259E-02	3913E-01	7972E-01	1207E+0C	1644E+CO	21035+00	25158+00
.80	.295JE+CO	·1746E+00	.83585-01	.8301E-02	57125-01	1109E+00	1762E+00	2373E+60	30285+00	3730E+00	45096+00
. 55	.2764E+00	.1526E+00	•3273E-01	65638-01	1537E+00	2371E+00	3219E+00	4099E+00	50255+00	00406+00	7170E+00
.90	.2735E+CO	.1015E+00	5009E-01	17936+00	29635+00	4104E+00	52508+00	64728+00	77715+00	91132+00	10755+01
. 95	.2330E+0C	.1324E-01	17345+00	34085+00	+735E+00	5435E+00	7977E+00	96135+00	11345+01	13096+01	15302+01
1.00	.1625E+CO	1036E+00	3+35E+00	55305+00	7504E+00	9464E+00	-,1147E+01	1358E+01	15348+01	18252+01	2087E+01
1.05	.5347E-01	2601E+00	5633E+00	8310E+00	1079E+01	1325E+01	15782+01	18458+01	2135E+01	24408+01	27702+01
1.13	4045E-01	4860E+CO	84252+00	11055+01	14795+01	17875+01	21018+01	2437E+01	2791=+01	3155E+01	35748+01

12

pap

. . .

TABLE V. THERMAL EXPANSION COEFFICIENT (mK)⁻¹ (continued)

5

. . . .

Pressure (atm)

emp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
(K) 1.10	4845E-01	4860E+00	8425E+00	1165E+01	1479E+01	17878+01	2101E+01	2437E+01	2791E+31	3155E+01	3574E+01
1.15	2218E+CO	7358E+00	1174E+01	1574E+01	1964E+01	2338E+01	2721E+01	3134E+01	35615+01	4009E+01	4513E+01
1.20	4201E+00	1036E+01	1574E+01	2062E+01	2526E+01	2984E+01	3454E+01	3938E+01	4459E+01	5012E+01	55795+01
1.25	6620E+00	1364E+01	2042E+01	2633E+01	3184E+01	37382+01	4290E+01	4877E+01	5494E+01	61136+31	6838E+01
1.30	9055E+C0	1817E+01	2587E+01	3285E+01	3945E+01	4601E+01	5268E+01	5943E+01	66845+01	7470E+01	8230E+01
1.35	1144E+01	2289E+01	3223E+01	4041E+01	48292+01	5603E+01	6373E+01	7192E+01	80386+01	3897E+01	9873E+01
1.40	15C0E+01	2850E+01	3929E+01	~.4924E+01	5840E+01	6748E+01	7668E+01	8596E+01	95352+01	10505+02	1170E+02
1.45	1830E+01	35268+01	4767E+01	5925E+01	7026E+01	80578+01	9135E+01	1023E+02	11375+02	1261E+02	1371E+02
1.50	23338+01	4256E+01	5735E+01	7105E+01	3347E+01	95918+01	1085E+02	1209E+02	1343E+02	14795+02	15225+02
1.55	28356+01	5069E+01	6866E+01	8444E+01	9917E+01	1136E+02	1281E+02	1432E+02	15828+02	1731E+02	19058+02
1.50	3575E+01	5983E+01	8173E+01	1C01E+02	1175E+02	1344E+02	1511E+02	1685E+02	18625+02	2047E+02	2237E+02
1.65	4308E+01	7311E+01	9733E+01	11886+02	1390E+02	1589E+02	1788E+02	1978E+02	21826+02	2408E+02	2623E+02
	52218+01	8759E+01	1158E+02	1410E+02	1649E+02	1830E+02	2102E+02	2334E+02	25816+02	2827E+02	3077E+02
. 75	6010E+01	10408+02	13785+02	1679E+02	1953E+02	2221E+02	24875+02	2756E+02	30415+02	3332E+02	3526E+02
	7975E+01	1246E+02	1653E+02	1994E+02	2313E+02	2533E+02	2951E+02	3265E+02	35946+02	39385+02	4245E+02
. 85	9844E+01	1529E+02	19726+02	2383E+02	2756E+02	3130E+02	3501E+02	3874E+02	42448+02	46005+02	
. 90	12006+02	1878E+02	2372E+02	2845E+02	3283E+02	3734E+02	4170E+02	4595E+02			
. 95	15596+02	22225+02	28552+02	3418E+02	3944E+02	4462E+02	4967E+02				
.00	1926E+02	2765E+02	3450E+02	4112E+02	4733E+02						
. 05	2382E+02	3371E+02	4210E+02								
10	20105-02	(1005+03									

13

p

TABLE VI. HELMHOLTZ FREE ENERGY OF EXCITATIONS (ergs.gm⁻¹)

. .

. .

.

14

.

1.

	Pressure (atm)											
emp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00	
.10	1721E+01	1327E+01	1073E+01	8961E+00	7556E+00	66795+00	5904E+00	5279E+00	4767E+00	43588+00	39762+00	
.15	86986+01	6722E+01	5442E+01	4550E+01	3895E+01	33968+01	30045+01	2687E+01	24236+01	2211E+01	20276+31	
. 20	2737E+02	2121E+02	1719E+02	1439E+02	12336+02	10758+02	95126+01	85138+01	76928-01	7005E+01	54245+01	
• 25	6648E+02	5165E+02	41946+02	3513E+02	30126+02	2628E+02	23265+02	20825+02	19815+02	1714E+32	15728+02	
. 30	1373E+03	1068E+03	8688E+02	7285E+02	5249E+02	54552+02	48305+02	4325E+02	39095+02	3552E+02	3257E+02	
• 35	2523E+C3	1973E+03	16C8E+03	1350E+03	1159E+C3	10128+03	89645+02	80295+02	7259E+02	66156+02	5369E+02	
+ 40	4276E+03	3356E+03	2740E+03	2303E+03	1979E+03	1730E+03	1532E+03	1373E+03	12+28+03	1134E+03	10436+03	
. 45	6305E+03	5361E+03	4389E+03	3696E+03	3180E+03	2784E+03	24702+03	2217E+03	2007E+03	1836E+03	1591E+03	
. 50	10326+04	9164E+03	6700E+03	56532+03	48746+03	4274E+C3	3801E+03	34225+03	3113E+C3	23598+03	26515+03	
.55	1504E+04	11962+04	9849E+03	8338E+03	72158+03	63555+03	56832+03	51525+03	47316+03	43985+03	41428+03	
. 60	21232+04	1702E+04	1410E+04	1201E+04	10468+04	92975+03	8407E+03	7728E+03	7220E+03	64585+03	652*8+03	
. 65	2944E+04	2376E+04	1986E+04	1709E+04	1503E+04	1360E+04	1252E+04	-,1176E+04	11276+04	·.1103E+04	1102E+04	
. 70	4019E+04	3284E+04	2782E+04	2432E+04	21845+04	2013E+04	1900E+04	1935E+04	1813E+04	1333E+04	13938+04	
. 75	54528+04	4530E+04	39096+04	34885+04	3203E+04	30348+04	2945E+04	29305+04	29335+04	3103E+04	32938+0+	
. 80	7392E+04	6273E+04	5538E+04	5065E+04	47332+04	4649E+04	4637E+04	4737E+04	4942E+04	52558+04	568 1E+04	
. 85	1000E+05	8748E+04	79212+04	74362+94	72055+04	7180E+04	7330E+04	76492+04	8125E+04	37675+04	95896+04	
. 90	1377E+05	1229E+05	11415+05	10982+05	1089E+05	1103E+05	11528+05	-+1219E+05	13115+05	14276+05	1571E+05	
. 95	1895E+05	1734E+05	16496+05	1621E+05	16385+05	16935+05	17836+05	19075+05	20665+05	2259E+05	2493E+05	
1.00	2514E+05	2446E+05	23758+05	23768+05	24362+05	25486+05	27072+05	2913E+05	31572+05	34738+05	38336+05	
1.05	36015+05	34396+05	3395E+05	3444E+05	35715+05	37555+05	40232+05	4 3 4 4 5 + 0 5	47315+05	51895+05	57228+05	
1.10	49448+05	4799E+05	4804E+05	49256+05	31442+05	54545+05	58+76+05	6325E+05	68926+05	7552E+05	8312E+05	

FE

TABLE VI. HELMHOLTZ FREE ENERGY OF EXCITATIONS (ergs·gm⁻¹) (continued)

1.

.

.

The second s	A CONTRACTOR OF	
Date a accesso /		۰.
Presente I	arm	
TTCOOLTC		

. . . .

Temp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
(K) 1.10	4944E+05	4799E+05	48045+05	492 5E+05	51448+05	5454E+05	5847E+05	6325E+05	68925+05	7552E+05	83125+05
1.15	6743E+05	6635E+05	6711E+05	6933E+05	72822+05	7749E+05	8322E+05	9008E+05	98105+05	1073E+06	11795+06
1.20	9117E+05	9C7UE+05	9247E+05	9610E+05	1013E+06	1080E+06	1161E+06	1257E+06	1367F+06	14945+06	1637E+05
1.25	1221E+06	1225E+06	1257E+C6	1312E+06	1387E+06	1460E+06	1592E+06	1721E+06	18702+06	20495+96	2231E+06
1.30	1019E+06	1636E+06	1686E+06	1765E+06	18686+06	1995E+05	2146E+06	2319E+06	25168+06	27408+06	29915+06
1.35	2125E+06	2157E+06	2232E+C6	2342E+06	2482E+06	26528+06	2851E+06	3079E+06	3337E+06	3623E+05	39535+06
1.40	2760E+06	2814E+06	2920E+06	3069E+06	32568+06	3480E+05	3740E+06	4035E+06	43692+00	47448+05	5161E+06
1.45	3551E+06	3633E+06	3779E+06	3977E+06	4224E+05	4515E+06	4850E+06	5231E+06	5658E+06	61386+05	65638+96
1.50	4525E+06	4646E+06	4843E+06	51048+06	5424E+06	5796E+06	5230E+06	6716E+06	7261E+06	78695+06	3544E+06
1.55	5724E+06	5391E+06	6152E+06	6492E+06	6904E+06	7384E+06	7933E+06	8552E+06	9245E+06	1001E+07	10855+77
1.50	7183E+06	7413E+06	7754E+C6	8195E+06	8721E+06	93365+06	1003E+07	10826+07	1159E+07	12578+07	1374E+07
1.65	8952E+C6	\$263E+06	9710E+06	1028E+07	1095E+07	1173E+07	1262E+07	13616+07	14725+07	1594E+07	1731E+37
1.70	11106+07	1151E+07	1209E+07	1282E+07	1368E+07	1467E+07	1579E+07	1705E+07	1845E+07	20016+07	21728+07
1.75	1363E+07	1423E+07	14986+07	1591E+07	1701E+07	1827E+07	1970E+07	21308+07	23076+07	25048+07	2722E+07
1.80	1580E+C7	1752E+07	1849E+C7	1969E+07	2109E+07	2270E+07	2451E+07	2654E+07	2880E+C7	31306+07	34052+07
1.85	2055E+C7	2151E+07	2277E+07	2430E+07	2610E+07	2814E+07	3046E+07	3304E+07	3593E+07	39105+07	
1.90	2508E+C7	2634E+07	2797E+07	2994E+07	3224E+07	3486E+07	3783E+07	4114E+07			
1.95	3055E+C7	3221E+07	3432E+C7	3687E+07	3982E+07	4320E+07	4700E+07				
2.00	3716E+C7	3936E+07	4212E+07	4540E+07	4922E+07						
2.05	4520E+C7	48096+07	5170E+07							đ	
2.10	550 26+07	58838+07									

FE

15

. . . .

TABLE VII. ENTROPY (ergs.gm⁻¹.K⁻¹)

.

14

. . . .

Pressure (atm)											
Temp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
(K) .10	.68876E+02	• 53168E+02	.430185+02	•35957E+02	.30779E+02	•26830E+02	.23727E+02	•21227E+02	+19174E+02	•17459E+02	·16007E+02
• 15	•23135E+03	•17910E+03	.14514E+03	•12143E+03	.10402E+03	.90717E+02	• 80254E+02	.718235+02	.549935+02	.59105E+02	• 54202E+02
.20	•54487E+03	• 42328E+C3	•34365E+03	.28783E+03	·24673E+03	.21529E+03	·19053E+03	.17056E+C3	.15414E+03	•14041E+03	.123795+03
• 25	• 10554E+04	• 82385E+03	.67029E+03	•56214E+03	•48226E+03	•42105E+03	.37278E+03	•33381E+03	.30175E+03	• 27493E+03	.25223E+03
.30	.13110E+04	•14184E+C4	•11567E+04	•97147E+03	.83420E+03	.72831E+03	•64556E+03	• 57828E+03	.522885+03	.47552E+03	.43721E+03
. 35	.285232+04	• 22439E+C4	.18346E+04	.15433E+04	.13266E+04	•11598E+04	·10280E+04	•92127E+03	.833375+03	.75982E+03	.697435+03
. 40	•4223JE+J4	• 33378E+04	•27365E+04	·23051E+04	.19849E+04	·17373E+04	.15413E+04	·13829E+04	.125235+04	•11446E+04	.105358+04
• 45	.596752+04	.47403E+04	.38997E+04	.32950E+04	.284295+04	.24947E+04	•22201E+04	.199965+04	.182055+04	· 16742E+04	.15548E+04
. 50	•81434E+04	.65087E+C4	•53800E+04	. 456648+04	. 39601E+04	•34955E+04	.31363E+04	.28541E+04	·26335E+04	·24647E+04	.234135+04
. 55	.108402+05	.87388E+04	•72824E+04	•62376E+04	•54589E+04	.4895CE+04	.44656E+04	•41528E+C4	.39355E+04	·38036E+04	·37537E+04
. 60	•14235E+05	•11o26E+05	•98254E+04	.85548E+04	.75494E+04	.70113E+04	.65816E+04	.632485+04	·62234E+04	.526838+04	.64543E+04
. 65	.18654E+C5	.15535E+05	.13416E+05	·11975E+05	.11019E+05	•10433E+05	·10149E+05	·10131E+05	.10363E+05	.10848E+05	.116005+05
. 70	.24654E+05	• 21077E+05	.13734E+05	.172562+05	.15421E+05	.16103E+05	.16223E+05	•16749E+05	.17630E+05	.190265+05	.208096+05
. 75	.330958+05	·29187E+05	.26300E+05	.25517E+05	.25091E+05	.25377E+05	.263025+05	.27836E+05	.29785E+05	.327935+05	.352995+05
. 60	+5130E+05	+41165E+05	· 39010E+05	.38274E+05	.38675E+05	.40054E+05	.42328E+05	.45497E+05	•49571E+05	.54627E+05	. 50745E+05
. 85	.62512E+05	.586922+05	.57174E+05	.57467E+05	.59227E+05	.62328E+05	.66654E+05	.72274E+05	.79153E+05	+8742ªE+35	.97236E+05
. 90	.87033E+05	• 83848E+05	.83456E+05	.853635+05	.89188E+05	.94770E+05	.102048+06	.11100E+05	.12173E+06	.134425+06	.149135+06
. 95	.12108E+06	• 11899E+06	.12035E+06	.12458E+06	•13131E+06	.14027E+06	.15148E+06	.164925+05	.18078E+06	.19936E+06	.22015E+36
1.00	•15728E+06	.16683E+06	.17064E+06	.17803E+06	.18849E+05	.20190E+06	.21815E+06	.23735E+06	.259552+06	.28504E+06	.31401E+06
1.05	•22844E+06	•23028E+06	.23726E+06	•24875E+06	.26409E+06	.28307E+06	.30563E+06	.331845+05	. 361895+06	.39603E+06	.434548+36
1.10	.307755+06	• 31242E+06	.32358E+06	.34005E+06	• 35129E+06	.38710E+06	.417295+06	.452025+06	• 49151E+06	.53594E+06	.58574E+06

S

16

. . .

TABLE VII. ENTROPY (ergs·gm⁻¹· κ ⁻¹) (continued)

4

.

.

. . . .

	Pressure (atm)										
Temp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
1.10	• 30775E+C6	• 31242E+06	•32358E+06	•34005E+06	• 35129E+06	.38710E+06	.41729E+06	.45202E+06	.49151E+06	•53594E+06	.585748+36
1.15	•40839E+06	•41671E+06	•43276E+06	•45531E+06	•48370E+06	.51775E+05	• 55696E+06	.60180E+C6	.65234E+06	.70884E+06	.77187E+36
1.20	• 53375E+06	• 54636E+C6	•56831E+06	.59815E+06	•63501E+06	.67851E+06	• 72847E+06	•78507E+06	•84836E+06	.91903E+06	· 99722E+06
1.25	•63769E+06	• 70 52 9E + 0 6	•73403E*06	• 77247E+06	•81917E+06	.87377E+06	.93615E+06	.10061E+07	.10845E+07	.11711E+07	.12667E+07
1.30	.87344E+C6	.89697E+C6	.93394E+06	.982082+06	.10402E+07	.11075E+07	·11842E+07	•12699E+07	·13649E+07	.14704E+07	.158615+07
1.35	.10957E+07	• 11254E+C7	•11718E+07	•12313E+07	.13025E+07	•13848E+07	.14777E+07	.15812E+C7	·16961E+07	+18222E+07	.196065+07
1.40	.13581E+07	.13956E+C7	•14523E+07	·15248E+07	•16114E+07	•17104E+07	+18223E+07	•19463E+07	.20833E+07	•22335E+07	.23977E+07
1.45	.16653E+C7	• 1711 4E + 07	.17807E+07	·18681E+07	.19721E+07	.20909E+07	•22239E+07	•23719E+07	.25341E+07	.27122E+07	.29053E+07
1.50	.20221E+07	.207885+07	•21623E+07	.22673E+07	.23915E+07	•25322E+07	• 26909E+07	• 28655E+07	.30574E+07	•32671E+07	.34948E+J7
1.55	.24351E+07	.25034E+C7	•26035E+07	·27288E+07	.28760E+07	.30433E+07	•32302E+07	•34367E+07	• 36633E+07	.39089E+07	• 41757E+ 07
1.60	.29C98E+07	.29927E+07	.31119E+07	.32610E+07	.34348E+07	.36331E+07	.38533E+07	.40966E+07	.43625E+07	•46519E+07	.495548+07
1.65	.34531E+C7	.35534E+07	.36962E+07	·38728E+07	.40790E+07	•43127E+07	.45734E+07	.48600E+07	•51708E+07	• 55102E+07	•58784E+07
1.70	.40754E+07	•41960E+07	.43662E÷07	.45758E+07	+48201E+07	•50969E+07	• 54039E+07	.57398E+07	.61073E+07	.65066E+07	.69368E+07
1.75	.47845E+C7	• 49311E+C7	.51335E+07	.53831E+07	.55732E+07	•59996E+07	.63622E+07	+67590E+07	.71914E+07	.76608E+07	.81668E+07
1.80	•55934E+07	.57702E+C7	.60135E+07	.63113E+07	•66541E+07	.70408E+07	.74696E+07	.79397E+07	.84498E+07	.90030E+07	.95956E+07
1.85	.65161E+07	.67317E+C7	.70234E+07	.73776E+07	.77874E+07	.82453E+07	.87550E+07	•93096E+07	.99144E+07	.10563E+08	
1.90	•75634E+07	• 78319E+C7	.81848E+07	.860788+07	.90961E+07	.96412E+07	.10248E+08	.10905E+08			
1.95	.87716E+C7	.90966E+C7	.95203E+07	.10030E+08	.10613E+08	.11266E+08	•11986E+08				
2.00	.10150E+08	.10551E+C8	.11066E+08	·11678E+C8	•12379E+08						
2.05	•11734E+08	+12227E+08	•12857E+08								
2.10	.13558E+C8	-14172E+C8							S. Contraction		

S

17

.

. .

TABLE VIII. SPECIFIC HEAT AT CONSTANT PRESSURE ($ergs \cdot gm^{-1} \cdot K^{-1}$)

.

. .

. . .

					Pres	sure (atm)				
Temp. (K)	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
.10	.20611E+03	•15939E+03	•12908E+03	.10795E+03	.92449E+02	.806125+02	•71305E+02	.63809E+02	.576485+02	• 52502E+32	•48142E+02
• 15	.68783E+03	• 53578E+C3	•43491E+03	.36421E+03	.31215E+03	.27235E+03	.24099E+03	·21567E+03	.194835+03	·17739E+03	+16256E+03
• 20	•16194E+04	• 12643E+04	•10292E+04	•86338E+03	•74084E+03	•64590E+03	• 57 28 0E + 03	.51296E+03	.463715+03	.42253E+03	.387615+03
• 25	• 31283E+04	• 24566E+04	•20063E+04	.16864E+04	•14489E+04	·12662E+04	•112195+04	.10051E+04	•90894E+03	.82840E+03	.76005E+03
• 30	•53446E+04	•42230E+04	• 34609E+04	•29154E+04	.25082E+04	•21942E+04	·19453E+04	.17437E+04	.157728+04	.14374E+C4	.131876+04
• 35	•83915E+04	• 66728E+04	•54885E+04	•46339E+04	.39929E+04	.34967E+04	·31026E+04	•27831E+04	.252025+04	• 23017E+04	+21107E+04
• 40	·12393E+05	• 99206E+04	•81985E*C4	•69459E+04	.600305+04	•52741E+04	•46974E+04	.423398+04	.335762+04	.35510E+04	.33029E+04
. 45	.17531E+C5	•14154E+C5	.11775E+05	.10041E+05	.a7442E+04	*77537E+04	+69908E+04	.64039E+04	.595332+04	.55376E+04	.54340E+04
• 50	.24143E+05	.19749E+05	.16644E+05	.14410E+05	.12786E+05	.11607E+05	.10776E+05	·10237E+05	.99577E+04	.992625+04	.10150E+05
.55	• 33041E+C5	• 27632E+05	.23877E+05	.21291E+05	.195605+05	.18498E+05	.17998E+05	.17997E+05	.184945+05	.19488E+05	.210316+05
. 60	.45998E+05	• 39805E+05	.35716E+05	• 33213E+05	+31942E+05	.31701E+05	.32371E+05	·33931E+05	.36373E+05	+ 39790E+05	+44304E+05
. 65	.60138E+05	• 59756E+C5	.560662+05	.545258+05	.547608+05	.56604E+05	.59903E+05	•64635E+05	.710532+05	.77153E+05	.890555+35
.70	.98630E+C5	•92951E+C5	.90857E+05	•91719E+05	.95138E+05	.100438+06	.10906E+06	•11954E+05	.132576+05	+14840E+05	.157202+96
. 75	.15044E+06	.14694E+06	.14812E+06	.153316+06	.152285+05	.17+64E+06	.19042E+06	.209815+05	.232925+05	.200298+05	. 292326+06
. 80	.23001E+C6	• 23102E+06	.23773E+C6	.249998+06	.267108+06	.299252+06	.31599E+06	·34334E+06	.33555E+96	+2892E+05	.478335:06
. 35	.34909E+06	.356522+06	.37112E+06	.39334E+06	. 422005+06	.4573cE+06	. 49943E+06	.54820E+05	.604748+06	. 568736+05	.741835+06
.90	•51570E+06	. 535075+06	.56066E+C6	.595718+06	.64026E+06	.692525+06	.75423E+06	.82403E+05	.904616+06	.99398E+06	.10950E+07
. 95	.7>371E+06	.77947E+Co	.819215+06	.87088E+06	.93346E+06	.10075E+07	.10924E+07	.11894E+07	·12975E+07	.141925+07	.1553hE+07
1.00	.10636E+C7	. 11030E+C7	.11586E+07	.123115+07	.13170E+07	.14168E+07	.15299E+07	· 16571E+07	.179845+07	·19577E+07	•21323E+07
1.05	.14639E+07	.15172E+C7	.15945E+07	.168965+07	.18025E+07	.19322E+07	.20783E+07	.22409E+07	.2+222E+07	·26205E+07	.243675+07
1.10	.19075E+C7	. 203548+67	.21383E+07	.2259+E+07	.240236+07	.255826+07	.27505E+07	.295538+07	.313055+07	. 34249E+07	.36935E+07

PC

18

. . .

TABLE VIII. SPECIFIC HEAT AT CONSTANT PRESSURE (ergs \cdot gm⁻¹ \cdot K⁻¹) (continued)

5

.

. .

. .

	Pressure (atm)										
Temp. (K)	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
1.10	•19675E+07	• 20384E+C7	•21383E+07	•22594E+07	.24023E+07	.25682E+07	.27505E+07	·29553E+07	.31806E+07	.34249E+07	.36935E+07
1.15	·25850E+07	.26767E+C7	•28003E+07	•29536E+07	•31331E+07	.33360E+07	.35630E+07	.38144E+07	·40867E+07	•43887E+07	.47145E+07
1.20	•33373E+C7	.34482E+C7	·35996E+C7	.379C6E+07	.40096E+07	.42555E+07	+45334E+07	.48338E+07	•51677E+07	.55267E+07	.59172E+07
1.25	•42298E+C7	.43670E+C7	•45543E+C7	.47822E+07	.50471E+07	.534422+07	.567652+07	.60398E+07	.64346E+07	. 0870CE+07	.73375E+07
1.30	.528546+07	.54425E+C7	.56721E+C7	.59461E+07	.62619E+07	.66223E+07	.70161E+37	•74522E+07	•79255E+07	.84387E+07	.899255+07
1.35	.65241E+C7	.67110E+C7	.69760E+07	.730386+07	.76871E+07	.81119E+07	.358872+07	•91032E+07	.96687E+07	.102685+08	·10923E+08
1.40	.79528E+07	.81801E+C7	.84997E+07	.88865E+07	•93462E+07	.93570E+07	.10414E+08	.11036E+08	.11693E+08	.12421E+03	-13131E+08
1.45	.96CC5E+C7	• \$8786E+C7	.10256E+08	.10736E+C8	.11280E+08	.118812+08	.12553E+08	•13287E+03	.14079E+08	.14940E+03	+15857E+08
1.50	.11517E+08	.11848E+C8	.12308E+08	·12875E+08	•13519E+08	·14239E+08	.15050E+08	·15920E+03	.16386E+08	.17884E+C9	.13983E+08
1.55	.13727E+C8	.14130E+C8	.14677E+08	·15357E+08	.161182+08	.17013E+08	.17954E+08	.19014E+08	.20161E+08	•21392E+08	.22712E+38
1.60	.16243E+C8	. 167542+08	•17433E+08	.18248E+08	.19189E+08	.20242E+08	.21420E+08	.22699E+08	.24027E+08	.255228+08	.271475+08
1.65	.19182E+C3	.19795E+C8	·20636E+C8	.21627E+08	.22784E+08	.24072E+08	.25499E+08	• 27015E+03	.28684E+08	- 30484E+08	. 373945+08
1.70	•22574E+C8	·23357E+08	.24359E+08	.25592E+08	•27013E+08	.295325+08	.30299E+08	• 32155E+08	.34219E+08	• 3641 3E+ 38	- 347515+04
1.75	.26487E+C8	. 27462E+C8	.28733E+C8	.30274E+08	.31978E+08	.33887E+08	.36005E+08	· 38353E+09	+40322E+08	+43512E+08	. 463245+33
1.30	.31C79E+08	· 32308E+C8	.33901E+08	.3577CE+08	.37914E+08	.40254E+08	+42396E+08	+5718E+03	+43313E+08	- 51990E+08	- 555495408
1.85	.36423E+C8	· 38012E+C8	.40032E+08	.423186+08	.45003E+08	.479C6E+08	.51183E+08	• 54622E+08	- 583965+08	-62431E+04	• >>> +>2.00
1.90	.42711E+C8	.44772E+C8	.47254E+08	• 501 96E+08	•53460E+08	• 57156E+08	.61103E+08	.65403E+08			
1.95	.50162E+08	. 52835E+C8	.55961E+08	.596C5E+08	.63730E+08	.68250E+08	.73192E+08				
2.00	•59023E+C8	.62349E+C8	.66457E+C8	.71059E+C8	.76168E+08						
2.05	.69570E+C8	.73890E+C8	.79101E+08								
2.10	.82327E+C8	. 80056E+C8									

pC

19

. .

•

TABLE IX. SPECIFIC HEAT AT CONSTANT VOLUME (ergs·gm⁻¹·K⁻¹)

. . . .

					Press	ure (atm)					
Temp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
(K) .10	.20611E+03	.15939E+03	.12903E+03	.10795E+03	.92449E+02	.80612E+02	• 71305E+02	.63909E+02	.576+3E+02	.52502E+02	.431422+02
.15	.689835+03	• 53578E+03	•43491E+03	.30421E+03	·31215E+03	.27235E+03	.24099E+03	.21567E+03	.194835+03	·17739E+03	.162555+03
.20	.16193E+04	· 12643E+04	.10292E+34	.86338E+03	.740948+03	.64690E+03	.572795+03	.51296E+03	.463712+03	• 42253E+03	.337516+03
. 25	.312838+04	· 24566E+04	.200628+04	.168648+04	.14438E+04	.12662E+04	.11219E+04	.10051E+04	.908942+03	.3284CE+03	.750055+03
. 30	.534455+04	.422296+04	.34609E+04	.291535+04	+25082E+04	.21942E+04	.194535+04	•17437E+04	.15772E+04	.14374E+04	.131372+04
. 35	.339118+04	. 66726E+C4	•54884E+04	.463382+04	.39928E+04	.34766E+04	.31026E+04	.27831E+04	.252025+04	·23017E+04	.211075+94
. 40	.123928+05	.99202E+C4	.819828+04	.69458E+04	.600298+04	. 57741E+04	.45973E+04	.42338E+04	• 33576E+04	.35509E+04	.330238+04
. 45	.175292+05	.14153E+05	.117745+05	.10041E+05	. 37439E+04	.77535E+04	.699072+04	.64039E+04	+59532E+04	.56375E+04	.54343E+-34
. 50	.24139E+C5	.19747E+C5	.16642E+05	.14409E+05	.12736E+05	.11606E+05	.107765+05	.10236E+05	.99575E+04	.99261E+0+	.101506+05
. 55	.33035E+05	.276288+05	.23874E+05	.2129CE+05	.19559E+05	.18496E+05	.17998E+05	.179975+05	.18494E+05	.19493E+05	.210315+05
. 60	.45987E+C5	.39799E+05	.35713E+05	.33211E+05	.31941E+05	•31701E+05	·32371E+05	.339315+05	.30378E+05	.397908+05	.4430+=+35
. 65	.50171E+35	.597455+05	.507605+05	.545225+05	.54765E+05	.56603E+05	.599C3E+05	.646858+05	.71057E+05	. 191558+05	. 370522+05
.75	.430502+05	.929376+05	.903515+05	.91716E+05	. 95137E+05	.10093E+06	.1C906E+05	.119548+05	.132555+05	.148398+05	.157198+35
. 75	.10040E+06	.14692E+C6	.148125+06	.153312+36	.162288+06	.17404E+06	.19041E+36	.209905+06	.232935+06	.250258+05	. ? 7225-+ 16
. 30	.23057E+00	.23101E+06	.23770E+05	.249995+00	.2671CE+06	•28924E+05	.3159oE+06	.348292+05	.38557E+05	.42875E+05	.473517+35
. 35	. 34965E+C	.35651E+C6	· 37112E+06	.393335+06	.42198E+06	.45731E+06	.49934E+06	•54803E+06	.50448E+06	• • • 5 3 3 4 E + · ? •	.7+1258+35
.90	.51935E+36	.53500E+06	.56065E+05	.59569E+05	.54018E+06	.692372+06	.75395E+06	.823512+06	.903952+06	. 99303E+05	.109355+37
. 95	•75363E+00	• 77947E+06	• 81919E+06	. 370798+36	. 93325E+06	.10071E+07	.10917E+07	.118345+07	·1296.0E+07	•14171E+07	.155058+)7
1.00	.106355+07	.11030E+C7	·11586E+07	• 123C3E+37	.13165E+07	•14159E+07	.15285E+J7	.1555GE+07	·17954E+07	.19535E+C7	.212552+)7
1.05	.1+639E+07	• 15171E+C7	.15942E+07	.1589CE+07	.180146+07	.19304E+07	.20756E+07	+22368E+C7	. 241558 +07	+261265+07	.232315+07
1.10	.196752+07	. 20382E+C	.21377E+07	•22531E+C7	.240025+07	.256478+07	.27454E+37	+29479E+07	• 31703E+07	•34111F+07	.357475+37

vC

20

. .

TABLE IX. SPECIFIC HEAT AT CONSTANT VOLUME (ergs·gm⁻¹·K⁻¹) (continued)

. . . .

t

. . .

21

73		
Procettro (atm	۰.
TTESSULE (alm.	

Temp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
(K) 1.10	•19675E+07	• 20382E+07	•21377E+07	.22581E+07	.24002E+07	.25647E+07	.27454E+07	.29479E+07	.31703E+07	.34111E+07	.36749E+07
1.15	•25650E+C7	• 26763E+C7	•27991E+07	•29513E+07	• 31291E+07	.33299E+07	·35540E+07	.380175+07	•40693E+07	.43655E+07	.45836E+07
1.20	.33372E+C7	• 34474E+C7	•35974E+07	.37864E+07	•40027E+07	•42451E+07	•45184E+07	.48130E+07	•51394E+07	•54390E+07	.536906+07
1.25	•42295E+C7	• 43655E+C7	.45504E+07	.47751E+07	•53358E+07	•53272E+07	•56525E+07	.600675+07	•63901E+07	.63113E+07	.726096+07
1.30	•52848E+G7	• 54397E+C7	•56657E+07	. 593452+07	•62438E+07	.65957E+C7	• 59786E+07	•74013E+07	.78573E+07	.83487E+07	• 337 76E+ J7
1.35	•65231E+07	• 67064E+C7	.69657E+07	•72858E+07	•76591E+07	.30710E+07	.85320E+07	. 902625+07	.95666E+07	.10136E+08	.10752E+38
1.40	•79511E+07	• 81728E+C7	• 84339E+07	.88590E+C7	•93039E+07	.97959E+07	.10329E+08	•10923E+C3	•11544E+08	·12228E+08	•12933E+38
1.45	.95978E+07	•96670E+C7	.10242E+08	.10695E+C8	.11217E+08	.117925+08	• 12434E+08	•131225+08	.13862E+08	.14659E+03	.15507E+08
1.50	•11513E+08	•118316+08	·12273E+08	•12915E+C8	.13428E+08	.14109E+08	•14371E+08	•15683E+08	.165755+08	•17490E+08	.134862+08
1.55	•13720E+C9	• 14104E+08	•14625E+08	•15269E+08	•15986E+08	•16826E+08	.176985+08	.18673E+03	•19720E+08	.20834E+03	.220025+08
1.60	·16231E+09	• 16718E+C8	•17357E+C8	•18122E+08	•18999E+08	.199735+08	.21055E+08	.22215E+08	.23401E+08	.24724F+03	.251+5E+)8
1.65	·19165E+08	· 19740E+C8	.20526E+08	•21445E+08	•22513E+08	.23689E+08	• 24 978E + 38	·26336E+03	.27806E+08	.29357E+08	.309825+08
1.70	.22549:+03	•23276E+C8	•24200E+08	.25332E+08	•26624E+08	.280365+08	.29507E+08	.311925+08	.32969E+08	•34836E+03	·36760E+08
1.75	•26445E+08	•27346E+08	•285C4E+C8	.298938+08	.31424E+08	•33112E+08	• 34952E+08	•36988E+C8	·39059E+08	•41279E+03	• 435 425 + 38
1.50	.31C13E+08	• 32138E+08	•33566E+08	.35232E+38	• 37126E+08	.39160E+03	•41407E+03	•43775E+03	• 46317E+09	+48825E+08	.516332+38
1.05	•35329E+08	• 37753E+C8	• 39550E+08	•41542E+08	•43871E+08	•46328E+08	.490665+39	• 51858E+08	. 543775+08	.580685+38	
1.90	•42569E+C8	•44377E+C8	.46549E+08	•49080E+08	.51835E+08	•54892E+08	.58075E+08	•61483E+08			
1.95	•49919E+C8	• 522768+08	•54933E+08	.579836+08	.61378E+08	.65001E+08	.08374E+08				
2.00	•54647E+C8	• 61478E+C8	•64949E+08	•68706E+38	•72776E+03						
2.05	• 68994E+08	•72593E+C8	•76850E+08								
2.10	.814C3E+C8	.80063E+C8							1. 1. 1.		

vC

TABLE X. RATIO OF THE SPECIFIC HEATS

					Press	ure (atm)					
Temp.	0.00	2.50	5.00	7.50	10*00	12.50	15.00	17.50	20.00	22.50	25.03
10 K	.10C30E+01	• 10000E+01	•10000E+01	.10C00E+01	. 10000E+01	.10000E+01	•10000E+01	• 10000E+01	• 100001 •	10+300001*	10+300001*
. 15	*10030E+01	. 100000E+01	.10000E+01	•10C00£+01	.10000E+01	.10000E+01	.10000E+01	.1C000E+01	• 10000E +01	.10+300001.	10+300001*
• 20	.10000E+01	. 100COE+01	• 1C000E+01	• 10000E+01	.10300E+01	.10000E+01	.10000E+01	.10000E+01	10+3000c1.	10+300001.	10-300001.
• 25	.1CC 30E+01	. 10000E+01	.10000E+01	.10000E+01	.10000E+01	.100000E+01	.10000E+01	.104300001.	10+3C0001.	.100001.	.10000f.
• 30	.10000E+01	.10000E+01	• 10000E+01	.10000E+01	.10000E+01	+100000E+01	.10000E+01	• 104 300001 •	.1043C0001.	.10000E+01	10+300001*
• 35	.10000E+01	 10000€+01 	.10000E+01	+10000E+01	.1000CE+01	. 10000C+01	.10000E+01	.10+30001.	10+300001.	10+300001*	10+300001.
• 40	.10001E+01	. 10400E+01	•10000E+01	·100001 -	10+300001*	.10000E+01	• 1C 000E+01	• 10000E+01	10+900001 .	. 10+366601	10+300001*
• 45	·100016+01	. 10001E+C1	.10001E+01	+10300E+01	.10000E+01	.10000E+01	+ 10000CE+01	·1000001 ·	.10000£+01	10+300001.	10+300001*
• 50	.100026+01	. 10001E+01	.10001E+01	.10001E+01	.10000E+01	.10000E+01	10+300001*	·10+300001*	· 100000E+01	· 10+300001 •	10+300001.
• 55	.100325+61	.10001E+01	.10001E+01	.10001E+01	. 10030E+01	.10000E+01	.10030E+01	.10000E+01	.100001.	10+300001*	10+300001*
. 60	• 10002E+01	.100026+01	.10001E+01	.100016+01	.10000E+01	.10000E+01	+10000E+01	• 10000E+01	.100001 +01	10+300001*	.10000E+01
• 05	.10003E+01	. 10002E+01	+10001E+01	• 1C 0 C 1 E + 0 1	• 10000E +01	.100006+01	. 10000E+01	+10000E+01	• 100001 • 01	.103396+01	10+300001*
• 70	.10035.01	. 10001E+01	.10001E+01	.100005+01	+10000E+01	10+300001*	10+300001.	.10000E+01	.1000016+01	.104310001.	+100016+01
• 75	• LCC 02E+01	. 10001E+01	.10000E+01	.1000001.	.10000E+01	.10+300601.	. 10000E+01	. 10001E+01	10+310001.	+10002E+01	10+320001.
. 80	.10002E+01	. 10C01E+01	.10000E+01	·100000E+01	.10000E+01	.100COE+01	• 10001E+01	. 10001E+01	.10002F+01	10+36001.	.103056+01
• 85	• 1C COIE +01	. 10000E+C1	. 10000E +01	.10000£+01	.10000E+01	*10001E+01	. 10002E+01	.10003E+C1	. 10004E+01	+10006E+01	• 10-950001 •
.90	• 10001 E+01	10+300001*	•10000E+01	.10000E+31	•10001E+01	.10002E+01	.10036+01	.100056+01	.130075+01	10+301001*	10+361001*
• 95	•1000000	.104300301	.10000E+01	• 10001E+01	• 10-302E+01	*10004E+01	• 10006E+01	. 100086+01	· 10+311001	.100156+01	10+361001*
1.00	•10000E+01	• 10000E+01	.10001E+01	.10002E+31	.10004E+01	•10006E+01	.10009E+01	• 100136+01	10+311001*	.100226+01	10+372001.
1.05	· 10 CODE + 01	. 10000E+01	• 10002E+01	.10cc4č+01	.100066+01	10+360001*	. 1001 3E+01	10+361001*	• 10024E+01	.100306+01	.100396+01
1.10	10+30r001*	. 10631E+01	10+350001*	.10005E+31	.10009E+01	.10013E+01	10+361001*	10+352001*	.10032E+01	· 10040E+01	•10051E+01

22

C_p/C_v

TABLE X. RATIO OF THE SPECIFIC HEATS (continued)

. . . .

4

.

1000

					Pressu	re (atm)					
Temp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
(K) 1.10	.10000E+01	• 10001E+01	.10003E+01	.10005E+01	.10009E+01	•10013E+01	.10019E+01	.10025E+01	.10032E+01	.10040E+01	.100515+01
1.15	.10000E+01	.10002E+01	.10004E+01	.100C8E+01	.10013E+01	.10018E+01	.10025E+01	.10033E+01	.10043E+01	.10053E+01	.100502+01
1.20	.10000E+01	• 10002E+01	.10006E+01	.10011E+01	.10017E+01	.10025E+01	.10033E+01	.100435+01	.100555+01	.100595+01	.100345+01
1.25	.10C01E+01	• 10C03E+01	.10003E+01	.10015E+01	.10023E+01	.10032E+01	.100+2E+01	•10055E+01	.10070E+01	•10085E+01	.101055+01
1.30	.10001E+01	.10005E+01	.100115+01	•10019E+01	.10029E+01	.10040E+01	.10054E+01	.100695+01	.10087E+01	.10109E+01	.101295+01
1.35	.10C02E+01	.10C07E+01	.10015E+01	.10025E+01	•10037E+01	.10051E+01	.10006E+01	.10035E+01	.10107E+01	.10130E+01	.101595+01
1.40	.10002E+01	• 10009E+01	•10019E+01	•10031E+01	•10045E+01	.10062E+01	.10082E+01	.10104E+01	.1013DE+01	.10153E+01	.131915+31
1.45	.100C3E+01	.1C012E+01	.10023E+01	.10038E+01	.10056E+01	.10076E+01	.10099E+01	•10126E+01	.10155E+01	•10192E+01	.102255+01
1.50	.100C4E+01	• 10C15E+01	.10029E+01	• 10047E+01	.10068E+01	.10092E+01	.10121E+01	.10151E+C1	.10137E+01	.10227E+01	.102725+01
1.55	.10C05E+01	•10013E+01	.10036E+01	.1C057E+01	.10083E+01	•10112E+01	.13145E+01	.101838+01	• 10224E+01	.102598+01	.103235+01
1.60	.10C07E+01	.100226+01	.10044E+01	•10070E+01	.10100E+01	.10134E+01	·10173E+01	.10217E+01	.10267E+01	•10323E+01	.103835+01
1.05	.10009E+01	•10028E+01	.10054E+01	.100858+01	.10120E+01	.10162E+01	.10209E+01	•10258E+01	.10315E+01	.103945+01	.134555+31
1.70	.10011E+01	• 10035E+01	.10066E+01	•10103E+01	.10146E+01	.10195E+01	.10248E+01	•10309E+01	•10379E+01	•10454E+01	.105365+01
1.75	.10016E+01	.10C43E+01	.10080E+01	.10126E+01	•10176E+01	·10234E+01	·10298E+01	•10369E+01	.10451E+01	.105415+01	.105395+01
1.30	.10020E+01	• 10053E+C1	.10100E+01	.101532+01	•10212E+01	•10282E+01	·10359E+01	·10444E+01	•10539E+01	•1064HE+01	•13748E+31
1.85	.10C25E+01	•10069E+01	.10122E+01	•10187E+01	.10258E+01	.10341E+01	.104325+01	.10533E+C1	.106418+01	.107518+01	
1.90	.1J033E+01	• 10C89E+C1	.10151E+01	.10227E+01	.10314E+01	.10413E+01	·10521E+01	.10638E+01			
1.95	•10049E+01	.10107E+C1	•10187E+01	•10280E+01	.10383E+01	•10500E+01	•10627E+01				
2.00	.10C64E+01	• 10142E+01	.10232E+01	.10342E+01	.10466E+01						
2.05	.10C84E+01	•10179E+C1	.10292E+01								
2.10	.10113E+01	.10232E+C1									

.cp/cv

23

TABLE XI. PHONON NUMBER DENSITY (number · cm⁻³)

Pressure (atm)

0.00 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 Temp. 22.50 25.00 (\mathbf{K}) .19992E+17 .15838E+17 .13102E+17 .11166E+17 .97245E+16 .86100E+16 .77227E+16 .69998E+16 .63994E+16 .58931E+16 .54602E+15 .10 .15 •07547E+17 •53646E+17 •44451E+17 •37927E+17 •33062E+17 •29297E+17 •26297E+17 •23852E+17 •21820E+17 •20105E+17 •18639E+17 .20 •15967E+18 •12713E+18 •10549E+18 •90089E+17 •78580E+17 •69672E+17 •62565E+17 •56766E+17 •51947E+17 •47373E+17 •44397E+17 .31052E+18 .24791E+18 .20602E+18 .17611E+18 .15372E+18 .13635E+18 .12248E+18 .11116E+18 .10175E+18 .93799E+17 .86996E+17 .25 .30 •53383E+13 •42746E+18 •35582E+18 •30447E+18 •26594E+18 •23600E+18 •21207E+18 •19253E+18 •17626E+18 •16252E+18 •15075E+18 . 35 • 34297E+18 • 67712E+13 • 56+63E+18 • 48367E+18 • 42277E+18 • 37536E+18 • 33744E+18 • 30642E+18 • 28060E+18 • 25877E+18 • 24007E+18 .40 .12509E+19 .10081E+19 .84222E+18 .72230E+18 .63184E+18 .56129E+18 .50478E+18 .45853E+18 .41999E+18 .38739E+18 .35946E+18 +17705E+19 •14317E+19 •11984E+19 •10290E+19 •90091E+18 •800785+18 •72047E+18 •55467E+18 •59979E+18 •55335E+18 •51353E+18 . 45 .241418+19 .195898+19 .16431E+19 .14127E+19 .12379E+19 .11010E+19 .99104E+18 .90083E+18 .52555E+18 .76178E+18 .70710E+18 . 50 .31944E+19 .26013E+19 .21865E+19 .18824E+19 .16510E+19 .14694E+19 .13232E+19 .12032E+19 .11030E+19 .10180E+19 .94514E+18 + 55 •41237E+19 •33701E+19 •28388E+19 •24475E+19 •21486E+19 •19136E+19 •17241E+19 •15684E+19 •14382E+19 •13277E+19 •12329E+19 . 50 .65 • 52148E+19 • 42772E+19 • 36108E+19 • 31175E+19 • 27396E+19 • 24416E+19 • 22011E+19 • 20031E+19 • 18374E+19 • 16957E+19 • 15758E+19 . 70 • 64807E+19 • 53345E+19 • 45136E+19 • 39028E+19 • 34332E+19 • 30621E+19 • 27621E+19 • 25147E+19 • 23074E+19 • 21314E+19 • 19799E+19 . 75 ·/9348E+19 ·55550E+19 ·55589E+19 ·48140E+19 ·42393E+19 ·37841E+19 ·34153E+19 ·31109E+19 ·28555E+19 ·26383E+19 ·24515E+19 . 80 \$95915E+19 .79521E+19 .67591E+19 .53624E+19 .51684E+19 .46172E+19 .41698E+19 .38000E+19 .34894E+19 .32251E+19 .29974E+19 .85 •11466E+20 •95400E+19 •81276E+19 •70609E+19 •62320E+19 •55721E+19 •50356E+19 •45914E+19 •42179E+19 •36996E+19 •36254E+19 •13574E+20 •11335E+20 •96793E+19 •84224E+19 •74426E+19 •66605F+19 •60234E+19 •54951E+19 •50504E+19 •46710E+19 •43438E+19 . 90 •15935E+20 •13353E+20 •11430E+20 •99620E+19 •88141E+19 •78953E+19 •71454E+19 •65226E+19 •59977E+19 •55494E+19 •51624E+19 .95 .18570E+20 .15615E+20 .13397E+20 .11696E+20 .10362E+20 .92909E+19 .84150E+19 .76866E+19 .70717E+19 .65462E+19 .60919E+19 1.00 1.05 ·21499E+20 .18140E+20 .15600E+20 .13644E+20 .12103E+20 .10863E+20 .98476E+19 .90016E+19 .82864E+19 .76745E+19 .71450E+19 1.10 •24751E+20 •20953E+20 •18062E+20 •15825E+20 •14056E+20 •12631E+20 •11460E+20 •10484E+20 •96571E+19 •89489E+19 •83355E+19

PN

TABLE XI. PHONON NUMBER DENSITY (number \cdot cm⁻³) (continued)

2

.

.

.

					Press	sure (atm)				
Temp. (K)	C.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.30	22.50	25.00
1.10	.24751E+20	• 20953E+20	•18062E+20	·15825E+20	.14056E+20	•12631E+20	.11400E+20	.10484E+20	.965718+19	.894895+19	•33355 ‡1 9
1.15	•28350E+20	•24079E+20	•20807E+20	.18262E+20	.16244E+20	.14614E+20	•13272E+20	•12151E+20	.112018+20	.103865+20	.957972+19
1.20	.32328E+20	•27549E+20	.23860E+20	.20980E+20	•18690E+20	•16834E+20	+15305E+20	.140258+20	•12933E+20	.120055+20	.11196E+20
1.25	• 36726E+20	• 31394E+20	•27254E+20	•240C9E+20	.21420E+20	.19318E+20	.17583E+20	•16127E+20	.148916+20	•13327E+20	-12903E+20
1.30	.41574E+20	• 35648E+20	.310225+20	.273786+20	•24464E+20	.22092E+20	.2013CE+20	•18483E+20	.170812+20	.158756+20	.1+3255+20
1.35	•+5921E+20	• 40352E+20	•35197E*20	•31121E+20	.27852E+20	.25186E+20	•22977E+20	•21120E+20	•19538E+20	•18173E+20	·15744E+20
1.40	•52810E+20	.45550E+2C	.39819E+20	•35274E+20	.31520E+20	•28632E+20	•26154E+20	•24057E+20	.222855+20	.20747E+20	•19406E+20
1.45	•59292E+20	• 51283E+20	•44933E+20	.39877E+20	.358038+20	.32466E+20	.29692E+20	.273545+20	• 25354E+20	.23627E+20	.22115E+20
1.50	+66414E+20	• 57605E+20	.505815+20	.44971E+20	.40440E+20	.36721E+20	• 33627E+20	.31012E+20	.28775E+20	• 26838E+20	.25142E+20
1.55	•74249E+20	.64565E+2C	•50811E+20	.506C0E+20	.455698+20	.414365+20	.379902+20	• 35073E+20	.32576E+20	. 30407E+20	.285055+20
1.60	•82346E+20	• 72224E+20	.636745+20	•56806E+20	•51232E+20	• 46646E+20	•42815E+20	.39569E+20	.36782E+20	.34361E+20	• 32233E+20
1.65	•92275E+20	. 806376+20	•71221E+20	.63638E+20	•57472E+20	•52388E+20	.48134E+20	.445258+20	.41419E+20	• 33716E+20	.303365+20
1.70	.10252E+21	.898586+20	•79506E*20	.71140E+20	.64324E+20	• 58694E+20	• 53976E+20	.49962E+20	.46504E+20	+3487E+20	.40820E+20
1.75	•11393E+21	.999608+20	.885725+20	.79351E+20	•71817E+20	.65586E+20	•60353E+20	•55893E+20	• 52039E+20	• 48666E+20	.+56795+20
1.80	.12630E+21	•11100E+21	.98479E+20	.88310E+20	•79983E+20	.73081E+20	.67271E+20	.62311E+20	.53011E+20	•54235E+20	.50874E+20
1.85	.13579E+21	•12304E+21	.10925E+21	.98037E+20	.83829E+20	.81175E+20	.74721E+20	.69187E+20	.64379E+20	.60134E+20	
1.90	.15449E+21	•13612E+21	•12095E+21	.10854E+21	•98337E+20	.89832E+20	.82643E+20	•76459E+20			
1.95	.17C47E+21	·15029E+21	.13353E+21	.11979E+21	.10846E+21	.989922+20	.90952E+20				
2.00	.18775E+21	• 16554E+21	.14699E+21	•13173E+21	.11910E+21						
2.05	.20637E+21	.18184E+21	•16125E+21								
2.10	+22631E+21	.19909E+21									

pN

25

.

TABLE XII. ROTON NUMBER DENSITY (number \cdot cm⁻³)

P	r	es	SS	u	r	e	(a	tm)

Temp. 0.00 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 22.50 25.00 (K) .77853E-11 .77853E-11 .77853E-11 .77853E-11 .77853E-11 .82570E-11 .10962E-10 .22088E-10 .56037E-10 .23934E-09 .92055E-09 . 10 .15 .31916E-02 .79794E-02 .19933E-01 .49718E-01 .12427E+00 .30962E+00 .77172E+00 .19233E+01 .47882E+01 .11934E+02 .29711E+32 •58891E+04 •11719E+05 •23319E+05 •46335E+05 •91965E+05 •18272E+06 •30257E+06 •71933E+06 •14260E+07 •28253E+07 •56043E+07 .20 .34800E+C8 .60393E+C8 .10473E+09 .18149E+09 .31448E+09 .54405E+09 .94111E+09 .16289E+10 .28182E+10 .48720E+10 .34184E+10 .25 .11575E+11 .18339E+11 .29042E+11 .45869E+11 .72606E+11 .11471E+12 .18117E+12 .28616E+12 .45134E+12 .71307E+12 .11251E+13 . 30 .74305E+12 .11020E+13 .16349E+13 .24216E+13 .35865E+13 .53097E+13 .78594E+13 .11627E+14 .17201E+14 .25425E+14 .37611E+14 .35 .17024E+14 .24038E+14 .33932E+14 .47879E+14 .67501E+14 .95130E+14 .13407E+15 .18879E+15 .26609E+15 .37471E+15 .52772E+15 + 40 .19605E+15 .26621E+15 .36186E+15 .49138E+15 .66677E+15 .90506E+15 .12277E+16 .16643E+16 .22565E+16 .30595E+16 ..41470E+16 . 45 .13929E+16 .18346E+16 .24189E+16 .31850E+16 .41930E+16 .55146E+16 .72573E+16 .95511E+16 .12550E+17 .16503E+17 .21701E+17 .50 .69649E+16 .89481E+16 .11496E+17 .14763E+17 .18961E+17 .24330E+17 .31225E+17 .40053E+17 .51387E+17 .65975E+17 .34476E+17 .55 .26765E+17 .33660E+17 .42341E+17 .53256E+17 .66952E+17 .84164E+17 .10579E+18 .13286E+18 .16692E+18 .20953E+18 .26324E+13 . 60 .83878E+17 .10370E+18 .12808E+18 .15820E+18 .19541E+18 .24139E+18 .29797E+18 .36781E+18 .45379E+18 .55983E+18 .59075E+18 . 65 .224G7E+18 .27262E+18 .33178E+18 .40361E+18 .49091E+18 .59726E+18 .72619E+18 .88259E+13 .13731E+19 .13045E+19 .15843E+19 .70 •52693E+18 •63213E+18 •75911E+18 •91142E+18 •10942E+19 •13134E+19 •15764E+19 •18913E+19 •22687E+19 •27219E+19 •32633E+19 .75 .11156E+19 .13230E+19 .15701E+19 .18630E+19 .22117E+19 .26249E+19 .31136E+19 .36936E+19 .43795E+19 .51939E+19 .61534E+19 . 80 .21693E+19 .25445E+19 .29883E+19 .35121E+19 .41250E+19 .48465E+19 .56898E+19 .66849E+19 .78464E+19 .92093E+19 .10811E+20 .85 .39248E+19 .45636E+19 .53091E+19 .61824E+19 .71976E+19 .83792E+19 .97536E+19 .11349E+20 .13209E+20 .15365E+20 .17879E+20 . 90 .66877E+19 .77098E+19 .88981E+19 .10277E+20 .11874E+20 .13710E+20 .15834E+20 .18280E+20 .21119E+20 .24357E+20 .23113E+20 .95 .10830E+20 .12391E+20 .14198E+20 .16282E+20 .18667E+20 .21408E+20 .24547E+20 .28147E+20 .32266E+20 .36989E+20 .42393E+23 1.00 .16783E+20 .19077E+20 .21712E+20 .24745E+20 .28202E+20 .32138E+20 .36619E+20 .41719E+20 .47526E+20 .54149E+20 .61681E+20 1.05 1.10 .25060E+20 .28302E+20 .32047E+20 .36303E+20 .41133E+20 .46618E+20 .52820E+20 .59846E+20 .67807E+20 .76807E+20 .36996E+20

r

26

TABLE XII. ROTON NUMBER DENSITY (number · cm⁻³) (continued)

٠

.

3

To

-

P	r	e	S	S	u	r	e	(a	tm)
				-	~				1. A . A . A . A . A . A . A . A . A . A		

(K)	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
1.10	•25C60E+20	• 28302E+20	• 32047E+20	•36303E+20	•41133E+20	•46618E+20	.528202+20	• 59846E+20	.57837E+20	. 75807E+20	.859965+20
1.15	•36217E+20	•40698E+20	.45832E+20	.51652E+20	• 58235E+20	•65688E+20	• 74048E+20	• 33492E+20	•94129E+20	.10610E+21	.119595+21
1.20	•50830E*20	• 56910E+20	.637958+20	.715858+20	• 80357E+20	.90213E+20	•10128E+21	•11370E+21	.12761E+21	.14325E+21	.15075E+21
1.25	•69786E+20	• 77729E+20	•80766E+20	•96958E+20	•10846E+21	•12129E+21	•13566E+21	•15168E+21	.16964E+21	.189675+21	.212078+21
1.30	•93640E+20	•10395E+21	•11566E+21	•12884E+21	•14358E+21	.16002E+21	•17839E+21	.198848+21	•22158E+21	•24704±+21	•27533E+21
1.35	•l2339E*21	•13648E+21	.151448+21	.16821E+21	•18691E+21	.20778E+21	.23095E+21	.25670E+21	.28537E+21	.317175+21	.352522+21
1.40	•15993E+21	.17647E+21	•19527E+21	•21636E+21	+23991E+21	.26600E+21	.29506E+21	· 32720E+21	.36285E+21	• 40238E+21	• 44521E+21
1.45	·20434E+21	•22498E+21	.24851E+21	.274792+21	.30414E+21	• 33657E+21	• 37262E+21	.412565+21	• 45661E+21	•50552E+21	.559366+21
1.50	·25781E+21	•28348E+21	•31265E+21	• 34527E+21	.38161E+21	•42168E+21	.465285+21	• 51541E+21	.56975E+21	.62984E+21	.63615E+21
i.o 35	•32191E+21	• 35353E+21	.38751E+21	.42975E+21	•47442E+21	•523388+21	.57861E+21	.639095+21	• 70599E+21	• 77955E+21	.86076F+21
l. 60	.39819E+21	•43712E+21	•43127E+21	• 53073E+21	•53551E+21	•64639E+21	•71349E+21	.78775E+21	.86971E+21	.96019E+21	.10600E+22
1.65	•48853E+21	•53632E+21	•59057E+21	•65118E+21	•71349E+21	•79306E+21	.87570E+21	• 96690E+21	•10671E+22	.11780E+22	.130082+22
1.70	.595628+21	•65410E+21	•72056E+21	•79487E+21	.87751E+21	•96925E+21	.10706E+22	•11823E+22	•13060E+22	•14427E+22	.15932E+22
1.75	•72198E+21	•79378E+21	.87509E+21	.96639E+21	·10580E+22	.11806E+22	.130548+22	•14432E+22	.15956E+22	·17643E+22	.19505E+22
1.80	•87131E+21	•95920E+21	•10592E+22	•11717E+22	·12965E+22	•14353E+22	.158948+22	•17601E+22	•19488E+22	•21579E+22	.23881E+22
1.85	.10480E+22	11561E*22	•12792E+22	.14175E+22	•15722E+22	•17437E+22	.19351E+22	•21466E+22	.23819E+22	.25410E+22	
1.90	•12571E+22	•13905E+22	•15429E+22	•17139E+22	.19057E+22	.21189F+22	•23576E+22	•26217E+22			
1.95	·15057E+22	• 16714E+22	•18598E+22	.20729E+22	•23118E+22	.257908+22	•28774E+22				
2.00	•18023E+22	•20086E+22	•22440E+22	•25099E+22	.28098E+22						
2.05	•21579E+22	· 24155E+22	•27115E+22								
2.10	•25863E+22	+ 29111E+22									

r

27

-

TABLE XIII. NORMAL FLUID DENSITY (gm·cm⁻³)

4

.

3

. . . .

					Press	ure (atm))				
Temp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
(K) •10	.17520E-08	•11947E-08	.87415E-09	.67153E-09	.53470E-09	.43747E-09	.36563E-09	•31101E-09	·26831E-09	·23426E-09	.205635-09
.15	• 87 6 59 E- C8	.601408-08	•441455-08	.339792-08	.270865-08	.221785-08	.18549E-08	.157836-08	.13621E-08	.11395E-08	.104945-08
• 20	•27314ē-07	.188788-07	·13913E-07	.10734E-07	.85697E-08	.702455-08	.58795E-08	.500545-03	.43215E-08	.37754E-03	.333165-08
• 25	.65646E-C7	• 45749E-C7	.338718-07	·26206E-07	.20959E-07	.172028-07	•14411E-07	·12277E-07	.106065-07	.927035-08	.818505-08
• 30	•13391E-05	•94156E-C7	.70066E-07	• 54385E-07	•43599E-07	.358528-07	.30097E-07	.257078-07	.222945-07	·19511E-07	.17501E-07
• 35	•24423E-C6	.173465-06	.13000E-06	.10157E-05	•82C82E-07	.682578-07	.58392E-07	·51348E-07	. 406538-07	.440935-07	•43774E-07
• 40	•41330E-06	· 29938E-C6	·22930E-06	•18479E-06	.15646E-06	.13958E-06	.13196E-06	.132968-05	.143305-05	•15469E-06	.200365-06
• 45	.638898-06	• 52627E-C6	•43511E-0o	.33971E-06	. 378318-06	• 39696E-06	• 44623E-06	.530638-06	.659038-06	• 34412E-00	.110425-05
• 50	.12443E-05	.107558-05	•10303E-05	.103095-05	•12184E-05	.14476E-05	.17859E-05	.225838-05	.239955-05	. 375348-05	. 491745-05
• 55	.264622-05	.2661CE-05	.29156E-05	.33914E-05	•41C37E-05	• 50850E-C5	.6+C27E-05	.813318-05	■10394E-04	.13321F-04	•17117E-04
. 60	.634395-05	• 70729E-05	•82974E-05	•10039E-04	·12366E-04	•15396E-04	.192908-04	.242418-04	• 30540E-04	.38505E-04	.43500E-04
• 65	.15343E-04	.17972E-04	.21585E-04	.263218-04	• 32370E-04	.40005E-04	•49533E-J4	.51434E-04	.75215E-04	.945778-04	•11744E-03
• 70	•35002E-04	•41672E-C4	•50285E-04	.511025-04	.74528E-04	•91120E-04	•11146E-03	.136355-03	.155905-03	.204265-03	. 2+9728-03
.75	.736635-04	.87904E-04	.10568E-03	.127485-03	.15401E-03	·18620E-03	.225158-03	.272158-03	.328365-03	.397385-03	•+7930E-03
• 80	• L + 2 96E - 0 3	• 170128-03	.20317E-03	.24294E-03	·29079E-03	.34801E-03	•41521E-03	.49770E-03	.594535-03	.710465-03	.848368-03
. 85	.258298-03	• 305528-03	•36213E-03	.429655-03	• 50 9 35E - 03	.603388-03	.71513E-03	.847195-03	.100235-02	.118535-02	•140146-02
• 90	•43793E-03	.515078-03	•60582E-03	.712915-03	.33832E-03	•98522E-03	.11571E-02	.135798-02	·15932E-02	.186735-02	.218358-02
.95	.70366E-03	• 82198E-03	.96015E-03	•112148-02	•13092E-02	•15265E-02	.17792E-02	.207178-02	.241135-02	.230425-02	.32603E-02
1.00	•13793E-C2	.125285-02	.145395-02	.16868E-02	.19547E-02	•22640E-02	.26200E-02	.303058-02	.3502%8-02	.404528-02	.457155-02
1.05	•15902E-02	•13352E-C2	•21164E-02	•244C9E-02	.28123E-02	.32371E-02	.37230E-02	.42756E-02	.491438-02	.554288-02	.647535-02
1.10	•22643E-02	•25978E-02	.29815E-02	.341858-02	•39166E-02	• 448335-02	•51275E-02	• 586076-02	• 55953E-02	.76433E-02	.372165-02

nd

28

* * * *

TABLE XIII. NORMAL FLUID DENSITY (gm·cm⁻³) (continued)

4

.

. . . .

. . . .

29

					Pres	sure (atm)				
Temp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
1.10	.22643E-02	.259735-02	.29815E-02	.34185E-02	• 39160E-02	.448335-02	•51275E-02	.58607E-02	.669535-02	•76433E-02	. 372158-02
1.15	• 31 2 93 E-02	• 35733E-02	•40797E-02	• 46 5 4 2 5 - 0 2	.530568-02	.60455E-02	.687928-02	•792518-02	.889535-02	.10105E-01	.114755-01
1.20	.42140E-02	.47906E-02	•54451E-02	•61854E-02	.702078-02	•79627E-02	.902388-02	•102206-01	.11555E-01	•13035E-01	.147958-31
1.25	.555248-02	• 628658-02	•71157E-02	.805325-02	•9105CE-02	.10267E-01	.116148-01	.131018-01	.147748-01	•16549E-01	.137558-01
1.30	•71713E-02	• 90926E-02	•91313E-02	.102978-01	.116035-01	.130648-01	.147018-01	.165328-01	.185735-01	.20377E-01	.234448-01
1.35	+91129E-02	• 10247E-01	•11529E-01	.129658-01	•14566E-01	.16358E-01	•183548-01	.205828-01	.230738-01	.25349E-01	•23949E-01
1.40	.114105-01	•12798E-01	•14360E-01	.161072-01	.13059E-01	•20228E-01	.226508-01	.253418-01	.283398-01	.316798-01	.353998-01
1.45	.141358-01	• 15736E-01	•17680E-01	.197518-01	•22147E-01	.247668-01	.275718-01	.309115-01	.345028-01	.335068-01	. 429 395-01
1.50	.172438-01	.19273E-01	•21552E-01	.240928-01	.26923E-01	• 30053E-01	.33548E-01	.374165-01	•41714E-01	.464918-01	.517918-01
1.55	•20893E-01	•23321E-C1	•26050E-01	.29093E-01	.324736-01	.362258-01	.403928-01	.450135-01	.501508-01	• 55 34 55 - 01	• 521575-01
1.60	•25110E-01	.28015E-01	• 312708-01	.349062-01	• 339365-01	.434258-01	• 483948-01	.539196-01	.600508-01	• 66357E - 01	•74413E-31
1.05	.299708-01	.33436E-01	•37327E-01	.416618-01	.464788-01	.51832E-01	.57790E-01	.644008-01	.717048-01	.798458-01	.337056-01
1.70	.355378-01	.397178-01	.443558-01	.495295-01	.552918-01	•61709E-01	.083368-01	.707365-01	.855352-01	.953238-01	.105195+00
1.75	•42004E-01	.46996E-01	•52525E-01	.58721E-01	.050328-01	.733208-01	.819385-01	• 91409E - 01	.102018+00	•11334E+00	•12700E+00
1.80	•49552E-01	• 55434E-01	.62066E-01	.695082-01	.777978-01	.87059E-01	.974068-01	.108956+00	.121326+00	.136196+90	•15217E+00
1.85	.582342-01	.652918-01	•73255E-01	.822048-01	•92248E-01	.103458+00	•11604E+00	•130088+00	•14583E*00	•16336E+CO	
1.90	.68327E-01	.768218-01	.864536-01	.972868-01	.10948E+00	•12315E+00	•13857E+00	•15580E+00			
1.95	.801295-01	• 90431E-01	.10210E+00	•11532E+CO	.13024E+00	•14707E+00	.16006E+00				
2.00	.94C05E-01	• 1C656E+00	•12035E+00	.137062+00	.15549E+00						
2.05	.110445+00	• 12581E+00	•14346E+00								
2.10	.13C02E+00	.149065+00									

 $^{\rho}_{n}$

TABLE XIV. NORMAL FLUID RATIO

4

6

. . . .

					Press	ure (atm)		in Star			
emp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
(K) •10	.12072E-07	. 80045E-08	•57195E-08	•43042E-08	• 33646E-08	.27076E-08	.22293E-08	.186985-08	.159252-08	-13738E-08	.119815-08
. 15	.60400E-C7	• 40294E-C7	·28884E-07	.21777E-07	.17044E-07	.137275-07	•11303E-07	.94890E-08	.80841E-08	.69756E-08	. 603492-38
. 20	.1d820E-06	·12648E-06	•91031E-07	.687985-07	•53925E-07	•434768-07	.358442-07	.30094E-07	·25649E-07	.22140E-07	.193135-07
• 25	•45232E-Co	.30652E-C6	.221628-00	.16796E-06	•13189E-06	.1064cE-05	•87855E-07	.738138-07	.62947E-07	.54363E-07	.474605-07
. 30	•92271E-06	• 63086E-C6	•45844E-06	•34856E-C6	•27435E-06	.221908-06	.18349E-06	.154502-06	•13232E-06	.115005-05	.101485-00
• 35	•16828E-C5	.11622E-C5	.85059E-06	•65100E-06	•51651E-C6	•42265E-00	.35593E-06	.30872E-06	.27690E-06	.258578-00	.253328-05
• 40	·28513E-05	• 20C59E-C5	•15003E-C5	.118442-05	.93454E-05	.86390E-06	• 80448E-06	.799395-06	.85052E-06	.965828-05	•11613E-05
• 45	•47468E-05	• 35262E-05	.28471E-05	·24978E-05	•23807E-05	.24570E-05	• 27205E-J5	·31907E-05	.39110E-05	.495028-05	.64025=-05
• 50	.8573∀E-05	•72061E-05	.674498-05	•69281E-05	.76670E-05	.89597E-05	.103885-04	•13531E-04	•172108-04	.22070E-04	·2851+d-04
• 55	·18234E-04	.178308-04	.190788-04	•21738E-04	•25825E-04	•31480E-04	.39036E-04	•48900E-04	•61694E-04	.781225-04	. 992538-34
.60	• 43714E-04	•47393E-04	•54295E-04	•04348E-04	.778198-04	•95297E-04	11701E-03	.14575E-03	.181278-03	.225815-03	.281805-03
• 05	.1J576E-03	• 1204 3E-03	·14125E-03	.168718-03	•20371E-03	.247625-03	.302028-03	.369378-03	.452368-03	.55463E-03	.630952-23
.70	•24120E-C3	.279248-03	·32906E-03	·39160E-03	.46901E-03	•56400E-03	.57953E-03	.81930E-03	.990565-03	•11973E-02	• 14+792- 32
. 75	· >6752E-03	.58904E-03	.691588-03	.317108-03	•969215-03	•11525E-02	.137265-02	.163525-02	·19513E-02	.233018-02	.273135-32
. d0	•90517E=03	• 11400E-02	.13295E-02	.15572E-02	•18299E-02	.215398-02	.25373E-02	.299208-02	.352918-02	•+1555E-02	.491325-32
. 85	·17800E-02	•20474E-02	·23697E-02	•27539E-02	.323528-02	• 37374E-02	.435935-02	.509275-02	.5947+E-02	•6949JE-02	. =123+8-02
.90	•30183E-C?	• 34516E-02	.39643E-02	.456948-02	•52750E-02	.609712-02	.70531E-02	.31618E-02	.945278-02	.109458-01	.126858-01
• 95	•43493E-C2	• 55082E-C2	•02829E-C2	•71874E-02	• 82377E-02	•94401E-02	,103+35-01	.124518-01	•14308E-01	.104355-01	.183735-01
1.00	•74333E-C2	• 8395úE-C2	.95135E-C2	.108108-01	.122978-01	.140038-01	.159058-31	.182108-01	.207746-01	.237108-01	.270545-01
1.05	.109598-01	•12297ë-Cl	•13848E-C1	•15642E-01	•176918-01	.20026E-01	.225838-01	.257048-01	.291428-01	• 33057E-01	.3750+8-51
1.10	.155055-01	.17407E-01	.19500E-01	·21904E-01	.246368-01	.277368-01	• 31233E-01	.352005-01	.396928-01	. 447538-01	.504935-01

ρ_n/ρ

30

. . . .

TABLE XIV. NORMAL FLUID RATIO (continued)

4

.

. . . .

Pressure	2	Lm.
	· · · · ·	

Temp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
(K) 1.10	.15605E-01	.17407E-01	.19506E-01	.21904E-01	.24630E-01	.277308-01	·31233E-01	.35200E-01	.396928-01	•44753E-01	. 534988-31
1.15	·21565E-01	.23942E-01	.26688E-01	.29816E-01	•33363E-01	.373835-01	.418925-01	•40995E-01	.527158-01	•59158E-01	.654155-01
1.20	•29040E-01	• 32096E-01	.35616E-01	• 396195-01	•44138E-01	.492258-01	.54934E-01	.613435-01	.685152-01	.705735-01	.855898-01
1.25	.33252E-01	•42114E-01	•46536E-01	•51571E-01	• 57226E-01	.635708-01	.70675E-01	.785985-01	.874808-01	.97376E-01	.108445+00
1.30	.49416E-01	.54207±−01	.597058-01	.659238-01	•72903E-01	.80703E-01	.894215-01	.991345-01	.10994E+00	.12203E+00	.135466+00
1.35	.62792E-01	.68627E-01	.753678-01	.829758-01	.914835-01	•10100E+00	•11158E*00	12335E+00	.136455+00	·15098E+00	+157148+00
1.40	.78615E-01	.856998-01	.933485-01	•103C5E+00	•11337E+00	.12482E+00	.137605+00	• 151768+90	.16745F+00	•18488E+C0	.204203+00
1.45	.971718-01	• 10 50 dE + C 0	•11551E+00	.12.566+00	•13895E+00	.15274E+00	•16799E+00	.184975+00	.20370E+00	.224528*00	• 24744E* JC
1.50	.11978E+00	.128995+00	•14C74E+00	.15398E+C0	.16881E+00	.18520E+00	.203505+00	.223638+00	.24603E+C0	·27073E+00	.293105+00
1.55	•1+390E+00	•15604E+CC	.170048+00	.185848+00	.20346E+00	•22304E+00	•24477E+00	.258848+00	.29550E+00	.324858+00	.357275+90
1.60	.17292E+00	•18739E*CO	·20401E+00	•22281E+00	•24374E+00	•26711E+00	•29294E+00	.321608+00	•35329E+00	•38834E+00	• 427078+00
1.65	.20c35E+00	•22350E+00	.24333E+00	.265728+00	•29068E+00	•31846E+00	.34936E+00	.383576+00	.421218+00	• 46303E+00	•50937E+00
1.70	.244985+00	• 26543E+00	.28960E+00	•31501E+00	•34541E+00	• 37800E+00	.41554E+00	.456318+00	.50159E+00	•55173E*00	.507225+00
1.75	.289485+00	• 31391E+CC	.34195E+00	.37379E+00	.40949E+00	•44924E+00	•4935CE+00	.542568+00	.59702E+00	•55752E+00	.724535+30
1.80	.34091E+00	.37004E+CO	.40370E+00	•44193E+00	.48468E+00	•53251E+00	.535912+00	•6453 €+30	.71129E+00	•78472E+00	.355918+00
1.35	•4C050E+C0	•43553E+00	.47593E+00	•52193E+CO	• 57375E+00	.63156E+CO	.696488+00	.768625+00	.849295+00	•93361E+00	
1.90	.459728+00	• 51203E+00	.56109E+00	•61671E+00	•67964E+00	•75013E+00	.32961E+30	•91807E+00			
1.95	•55C50E+00	.60218E+CC	.65155E+00	.72971E+00	.80671E+00	.89357E+CO	•99132E+00				
2.00	.64561E+0C	• 70883E+00	.78194E+00	• 35547E+00	.900685+00						
2.05	.757992+00	.83582E+00	.92652E+00								
2.10	.89176E+00	. 98892E+CC									

 ρ_n/ρ

31

• • • •

TABLE XV. SUPERFLUID DENSITY (gm·cm⁻³)

54

.

.

. . . .

1 **.** 1 3

32

Pressure (atm)											
Temp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
(K) • 10	.14513E+00	•14925E+00	.15284E+00	•15603E+00	•15892E+00	■16157E+00	.16403E+00	.16633E+00	.16849E+00	·17053E+00	·17246E+00
. 15	.14513E+00	· 14925E+00	·15284E+00	•15603E+00	.15892E+00	■16157E*00	•16403E+00	•16633E+00	.163495+00	.17053E+00	.17246E+00
.20	.14513E+00	.14925E+CO	·15284E+00	·15003E+00	15892E+00	.16157E+00	.16403E+00	.16633E+00	.168495+00	.170538+00	·17240E+00
. 25	.14513E+00	.14925E+00	•15283E+00	•15603E+00	.15892E+00	·16157E+00	•16403E*00	•16633E+00	·16849E+00	.17053E+00	·17240E+00
. 30	•14513E+00	•14925E+00	•15283E+00	.156025+00	·15892E+00	.16157E+00	.16403E+00	•16633E+00	.163492+00	·17053E+00	.172465+00
. 35	.145132+00	.14925E+CO	•15283E+00	15602E+00	.15891E+00	.16157E+00	.16403E+00	.16632E+00	.158485+00	.17052E+00	.172+6E+00
- 40	.14513E+00	• 14925E+0C	•15283E+00	•15602E+00	.15891E+00	.10157E+00	.16403E+J0	•16632E+CO	.108435+00	.17052E+00	.172+68+00
. 45	.14513E+CO	.14925E+0C	•15283E+00	.15602E+00	•15891E+00	.161568+00	.16402E+00	.16632E+00	.168432+00	.170528+00	.17240E+00
• 50	.1+512E+00	• 14524E+0C	•15282E+00	•15¢C2E+C0	.15891E+00	.15156E+00	.16402E+00	.166325+00	.10343E+00	.17052E+00	.17245E+00
. 55	.14512E+00	.14924E+00	•15282E+00	.15001E+00	.1559CE+00	.16156E+00	.16402E+00	.160315+00	.168472+00	.17051E+00	.172448+00
. 60	.14512E+00	•14923E+CO	.15281E+00	.150CCE+UO	.15887E+00	.10155E+00	.16400E+00	.16630E+00	.158452+00	.170435+00	.172418+00
. 55	.14510E+CO	.14922E+00	•15280E+00	·15598E*00	.15887E+00	·16152E+00	■ 16397E+00	.15626E+00	.168415+00	.17043E+00	.172356+00
. 70	.145085+00	.14919E+00	.15277E+00	.155952+60	.158832+00	.161475+00	.16391E+00	.166195+00	.153325+00	.170335+00	.17222:+30
.75	.145C4E+00	.14914E+00	.15271E+00	.155838+00	.158758+00	·16136E+00	.16380E+00	.16506E+00	.16817E+00	.1701+E+60	.172065+00
. 80	•14497E+CO	• 14906E+00	.15261E+00	.155772+00	.158628+00	.161225+00	.163628+00	•16584E+00	•16791E+00	.16984E+00	.171058+30
.85	.14435E*CO	.14892E+CO	•15245E+00	.15558E+00	.15841E+00	.15097E+00	.16333E+00	.16551E+00	.15752E+00	.15933E+00	.171112+00
. 90	•14467E+CO	.14871E+CC	.15221E+CO	.15531E+00	.153088+00	.10060E+00	.16290E+00	.16501E+00	.15595E+00	·16372E+00	.17035E+00
. 45	.14440E+CO	.14841E+CO	.15186E+00	.154915+00	•15752E+00	.16038E+00	.10230E+00	.16432E+00	.15615E+00	.15731E+00	.159318+00
1.00	.14403E+00	.147985+00	.15137E+00	.154358+00	.150998+00	.159368+00	.161485+60	.16339E+00	.15509E+00	•16651E*00	.157942+00
1.05	•14351E+CO	.147405+00	•15072E+C0	.153618+00	·15516E+00	.15841E+0C	.15041E+00	•16217E+00	•16372E+00	•10505E+00	.135185+00
1.10	.14284E+00	.14664E+CO	.14987E+00	.152055+00	.15508E+00	.1572CE+00	·15904E+00	.100038+00	·16199E+00	.16311E+00	.163992+00

e de la constante de la consta
TABLE XV. SUPERFLUID DENSITY (gm·cm⁻³) (continued)

.

4

. . . .

. . . .

33

					Press	ure (atm)					
Temp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
(K) 1.10	·14284E+00	.14664E+00	·14987E+00	.15265E+00	.15508E+00	.15720E+00	·15904E+00	.16063E+00	.16199E+00	.16311E+00	.163995+00
1.15	.14198E+00	•14568E+00	•14879E+00	•15144E*00	•15372E+00	.15557E+00	•15733E+00	.15872E+00	.159845+00	.16071E+00	.151315+00
1.20	.14090E+00	.14447E+CO	.14744E+00	.14994E+00	.15204E+00	•15380E+00	•15524E+00	15639E+00	.157248+00	.15780E+00	.158075+00
1.25	.13956E+00	•14299E+00	.14579E+00	.14810E+00	.15000E+00	■15153E+00	.15272E+00	·15358E+00	.154125+00	•15433E+CO	.154208+00
1.30	.13795E+CO	.14120E+00	.14381E+00	.1459CE+00	.14756E+00	.14832E+00	•14971E+00	•15023E+00	.150418+00	•15021E+CO	.149035+00
1.35	.13602E+00	.13907E+0C	.14145E+00	.14328E+00	.14466E+00	.14500E+00	.14614E*00	•14628E+00	.14502E+00	.14535E+00	·14425E+00
1.40	.13373E+00	·13654E+00	.13866E+00	.14020E+00	.14124E+00	.141828+00	•14195E+00	.14104E+00	.14089E+00	.13967E+00	.137962+00
1.45	.13105E+00	.13358E+CO	.13539E+00	.13659E+00	.13724E+00	.13739E+00	.13705E+00	•13621E+00	.134375+00	.13300E+C0	.130598+00
1.50	.12792E+00	.13C14E+00	.13153E+00	.132372+00	.13256E+00	.132226+00	.13131E+JO	.12936E+00	.12783E+00	.125205+00	.12194E+00
1.55	.12429E+00	.12613E+00	.12715E+00	.127465+00	.12713E+00	.12619E+00	+12463E+00	.12244E+00	.11959E+00	.11607E+00	.111515+00
1.60	.12010E+00	.121496+00	.12201E+00	.12176E+00	.12080E+00	.11915E+00	.11681E+00	.11374E+00	.10992E+00	.10530E+C0	.998248-01
1.65	.11527E+00	. 11613E+CC	.11604E+00	.11513E+00	.11342E+00	.110935+00	.107625+30	.10350E+00	.985308-01	.925968-01	. 356335-01
1.70	.10553E+00	.10992E+00	.10912E+00	.1074CE+00	.10478E+00	.10126E+00	.96319E-01	.914328-01	.84995E-01	.774368-01	.036925-01
1.75	.10324E+CO	. 10272E+0C	.10107E+00	.983142-01	.946465-01	.89890E-01	.34044E-01	.77068E-01	.63554E-01	.592968-01	- 482868-01
1.80	.958018-01	. 54371E-01	.91076E-01	. 87775E-01	.82715E-01	.70428E-01	.58543E-01	.598788-01	.49445E-01	.373538-01	.23505E-01
1.35	.87169E-C1	.84620E-C1	.80543E-01	.75257E-01	.68533E-01	.603538-01	.50569E-01	.391588-01	.258778-01	.100848-01	
1.90	.77135E-01	.732116-01	.67632E-01	.60464E-01	•51606E-01	.41021E-01	.28461E-01	.13903E-01			
1.95	.65401E-01	.55741E-01	.52207E-01	.427168-01	. 312065-01	.175178-01	•14533E-02				
2.00	.51602E-01	.43773E-01	.337028-01	.21305E-01	•63647E-02						
2.05	.352518-01	.24711E-01	.11377E-01								
2.10	.15781E-C1	.16703E-02							tensi (al-		

s s TABLE XVI. SUPERFLUID RATIO

-37

emp.	0.00	2.50	5.00	7.50	Pres 10.00	sure (atr 12.50	n) 15.00	17.50	20*30	22. 53	25.00
(K)											
• 10	.10C00E+01	• 10000E+01	. 10000E+C1	· 10000E+31	*10000E+01	10+300001*	10+300001*	· 100000 +01	* 10333E + 01	10+3CCOC1.	10+300001*
• 15	.100.30E+01	 10000E+01 	.10000E+01	· 100006+01	*10000E+01	.100001.	. 10000E-01	.100305+01	*10000E+01	• 1000004+01	.100005+01
• 20	. 10.000E+01	· 100000E+01	.10000E+01	• 10000E+01	• 10000E+01	.100006+01	* 100000E+01	• 100000E + 01	.103036+31	· 10.00006 + 01	10+300001*
• 25	.11000E+31	. 100000E+01	*10000E+01	• 10000E+01	*10030E+01	•1000001 •	.100001+	• 1000005 + 01	.100335+01	.1000006+01	10+300001.
• 30	.10C00E+01	. 100C0E+C1	.10000E+C1	. 10000E+01	• 10000E+01	.10000E+01	.100CCE+01	10+300001*	.100305+01	.10000E+01	10+300001.
• 35	.100005+01	. 10000E+01	.10330E+01	• 10.00.0E +01	.100005+01	10+300001.	.100006+01	· 100000E+01	•1000001 •	10+300001*	10+300001.
• 40	10+300061.	• 10000E+01	.100005+01	. ICCODE+01	• 100000E + 01	10+300001°	• 1030005+01	.1000001	10+300001*	.10430001.	. 10-300cc1
• 45	.luccof+01	.1000001.	.10300E+01	.leocof+01	.10000E+01	.100305+01	.10+300001.	10+300001 *	.100001.	10+300001*	00+366666*
• 50	00+366665*	00+366666 *	00+366666°	03+366666	CC+36666.6*	00+366666	00+366666	00+366666*	00+3+6666.	CC+346666 .	00+316566.
• 55	00+366566*	• 999986+00	•99998E+00	00+35566°	• 99997E+00	00+316560.	°99995€+00	.99995E+0C	• 33994E+00	C0+326646.	00+306666*
. 60	• 354 95E+00	* 94995E + 0C	00+356656 *	00+3+5566.	· 93992E+03	00+305666*	· 39983E+00	. 99935E+00	• 99932E+03	67+311666.	· 399 72E+30
• 55	00+2+8565*	• 99 983E+CO	•99980E+C3	•99983E+00	• 3996CE+00	.90975E+00	.99972E+30	· 99963E+0'3	*99955E+00	CD+35+066 *	. 999325+90
22.	. 995 76E + 00	. 99972E+00	00+319656*	•994516400	00+3536460	00+3+5666*	.99932E+00	C0+381666*	00+310666*	03+308666	0C+355Pr6*
÷15	00+36+666*	• 94 94 16 + 00	• 99931E+00	00+3£1566*	* 999J3E+00	.04355+00	. 994554969	• 99836E+00	.99305E+00	. 99757E+C3	07+322265*
66.	CO+310666.	• 598845+00	.99867E+00	00+354866.	.993176+00	• 93785E+00	.457456+00	00+31016¢ *	* 9364 75 +00	* 33583E+03	* 33503E+30
• 35	• 94d22E+30	• 99795E+CC	*99763E+00	• 99725E+C0	. 99679E+00	 990256+00 	· 9956+5+00	00+316500	00+35C766°	**********	• 3-91636+00
06.*	. 14693E+93	• 99 555E+00	00+3+0966*	99543E+0C	· 39472E+00	00+304666.	• 492955+00	.99164E+30	• 990555 + 30	00+3900#6 ·	• 337325+00
• 95	00+351566*	00+36+565*	* 99372E+00	•99281E+30	00+201166.	00+3550+o*	00+391686°	· 98755E+00	00+365586.	. 983565+33	00+311166.
1.00	\$94353E+0C	• 99161E+00	00+36+066°	00+361686*	. 9377CE+00	00+36655t *	* 98403E+00	60+362186*	.979235+00	· 37529E+03	• 972 34E + 00
1.05	0C+2+C+8+.	· 587736+00	• 98615E+C0	• 384 366 + 00	.982316+00	00+346646*	•97732E+00	.974306+30	.970355+33	03+3+6996*	· 402535+02
1.10	C3+30++84.	• 98259E+00	•98049E+00	.9731CE+CO	• 97537E+00	• 9 7227E+CO	00+3175cF .	· 96430E+00	· 35031:+30	• 95524E+00	.949505+00

34

p_s/p

TABLE XVI. SUPERFLUID RATIO (continued)

1

.

-

. . . .

					Press	ure (atm)					
	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
-	98440E+00	• 98259E+00	.98049E+00	.97810E+00	.97537E+00	•97227E+00	•96877E+00	•9648CE+00	.960315+00	.955242+00	.94950E+00
	97843E+00	.97606E+00	.97331E+00	.97018E+00	.96664E+00	•96262E+00	.95811E+00	.95302E+00	.947235+00	•94084E+00	.933595+10
	97096E+00	. 96790E+00	.96433E+00	.96038E+00	.95586E+00	.95078E+00	.94507E+00	•93866E+00	.931495+00	.92343E+00	.914412+00
	96174E+00	.957896+00	•95346E+00	.94843E+00	.94277E+00	.93643E+00	•92933E+00	.92140E+00	•91252E+00	.90252E+00	.371568+00
	95C58E+00	.94579E+CO	.94029E+00	.93408E+00	.92710E+00	.91930E+00	.91058E+00	.900875+00	. 89006E+00	.577978+00	.354545+00
	93721E+00	• \$3137E+00	.92463E+00	.91702E+00	.90852E+00	.89900E+00	.88842E+00	.87665E+00	.863558+00	.84902E+CO	.832869*00
	92139E+00	.91430E+00	.90615E+00	.89695E+00	.88663E*00	.87518E+0C	.862405+00	.848248+00	.832548+00	.815125+00	.795905+00
	.902338+00	. 89432E+00	.88449E+00	.87344E+00	.86105E+00	.847268+00	.83201E+00	.31503E+00	• 79630E+00	• 77543E+CO	.752569+30
	.981222+00	.87101E+00	.35925E+00	.846C2E+00	.83119E+00	•81490E+00	• 7965 0E+00	.77632E+00	.75397E+00	.72922E+00	.731905+30
	.65610E+00	.843968+00	.82996E+00	.d1416E+00	.79654E+00	•77695E+CO	.75523E+00	.73116E+00	.704508+00	.57515E+00	.5+2715+00
	.327038+00	.91251E+CC	.79599E+00	.77719E+00	.75626E+00	•73239E+00	.707068+00	•67840E+00	.640715+00	•61155E*CO	.572935+30
	.793658+00	.776442+00	.75662E+00	.73423E+00	.709328+00	.63154E+00	.650642+00	.616438+00	•57379E+00	•53697E+00	. + 70535+00
	.75502E+00	.73457E+00	.71103E+C0	.58439E+00	.65459E+00	•62134E+00	.53446E+00	.54369E+03	.498412+00	.44322E+CO	.392785+03
	.71052E+00	.68609E+00	.65804E+00	.626218+00	.59051E+00	.55076E+00	.506505+00	• 45744E+00	•40293E+00	.34249E+00	.27547E+30
	.654095+00	.62996E+00	.5963JE+0J	.558C7E+00	.51532E+00	.467492+00	.41409E+00	.354668+00	.288715+00	•21528E+CC	.134095+00
	.599505+00	. 56447E+00	.52402E+00	.478C7E+00	• 42625E+00	.368442+00	.30352E+00	.231385+00	.150712+00	.61393E-01	
	.530285+00	• 48797E+C(.43891E+00	.38329E+CO	. 32036E+00	.24937E+00	.17039E+00	.319278-01			
	.44940E+00	.397825+00	.33834E+00	.27029E+00	.19329E+0	•10643E+00	.86762E-02				
	.35439E+00	. 29117E+00	.21806E+00	.13453E+00	.39324E-0	La mana					
	.2+201E+00	• 16418E*00	.73476E-01								
	.108248+00	.11031E-C	1								

ρs/ρ

35

. . . .

TABLE XVII. VELOCITY OF SECOND SOUND (cm·sec⁻¹)

. . . .

t , z ,

36

25.00
+05 .210775+05
+05 -211075+05
+35 -210495+05
+05 -209965+05
+05 .207015+05
+05 179075405
+05 -107525+05
04 550145+04
307735+04
04 102675104
104 .192076904
04 .141702+04
·04 •12006E+04
04 .111312+04
04 +110092+04
.04 .111032+34
.0+ .11501: +.14
04 .11932E+04
0+ .12405E+34
04 .125935+04

u2

.

.

4

TABLE XVII. VELOCITY OF SECOND SOUND (cm.sec⁻¹) (continued)

4

.

. .

. .

					Pres	sure (atm	1)				
Temp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
(K) 1.10	.18277E+04	• 17243E+04	•16455E+04	.15856E+04	.15385E+04	.15001E+04	.14597E+04	.14438E+04	·14213E+04	·14031E+04	.13351E+04
1.15	.18348E*C4	·17440E+04	.16748E+04	.16206E+04	.15774E+04	.15426E+C4	.15132E+04	.14882E+04	.14659E+04	•1++70E+04	.142935+04
1.20	•18507E+04	•17700E+04	•17075E+04	.16570E+04	.16166E+04	.158358+04	•15545E+04	•15301E+04	.150745+04	.14871E+04	.140795+34
1.25	•18743E+C4	•17996E+04	•17407E+04	.16936E+04	.16547E+04	•16219E+04	.159305+04	.15672E+04	.15438E+04	.15209E+04	.147725+04
1.30	.18999E+04	• 18311E + 04	•17744E+04	.17285E+04	.16901E+04	.16502E+04	.162662+04	·15939E+04	·15729E+04	.154808+04	.152355+04
1.35	.19255E+04	•18595E+04	.18055E+04	.175992+04	.17201E+04	.16855E+04	.16531E+04	.162342+04	.15944E+04	.15663E+04	.153352+34
1.40	•19507E+04	•18858E+04	.18315E+04	.17856E+04	.17441E+04	.170682+04	•16727E+34	•16389E+04	·16072E+04	.157455+04	.154265+34
1.45	•19727E+04	•19073E+04	•18519E+04	.18036E+04	•17600E+04	17204E+04	• 16 81 7E+04	•16448E+04	.16079E+04	.15703E+34	.153215+04
1.50	•19377E+04	•19220E+04	.18551E+04	.18140E+04	.17677E+04	•17239E+04	.16307E+04	•163865+04	•15952E+04	.15526E+04	.150728+04
1.55	·19953E+04	•19283E+04	•18692E+04	•18145E+04	.17646E+04	•17144E+04	.16671E+04	.16182E+04	.15684E+04	.151695+04	.140305+04
1.60	•19973E+04	.19259E+C4	.18622E+04	.18034E+04	.17471E+04	•16920E+04	.153622+04	•15797E+04	•15231E+04	.146135+04	.13952E+04
1.65	.198628+04	.191198+04	•18428E+04	.17783E+04	.171475+04	•16518E+04	+15376E+04	.15226E+04	•14533E+04	.138056+04	·13020E+04
1.70	.196335+04	•18832E+C4	.18092E+04	.17366E+04	.10645E+04	.15923E+04	.15180E+34	.14406E+04	.13570E+04	.176705+04	.115552+34
1.75	•19267E+04	•18403E+C4	•17574E+04	·16752E+04	15937E+04	.150956+04	.14210E+04	·13257E+04	•12233E+04	.110888+04	. 978775+03
1.80	.13717E+04	• 17771E+C4	.10341E+04	.15910E+04	.14950E+04	.139436+04	·12964E+04	• 11579E +04	.103336+04	• 87742E+03	.679732+03
1.85	•179678+04	.16907E+04	•158428+04	•14763E+04	.13609E+04	.12376E+04	·10938E+04	.94002E+03	.74336E+03	.405025+03	
1.90	•10901E+04	.15750E+C4	.14515E+04	•13202E+04	.11773E+04	•10145E+04	•81395E+03	.55525E+03			
1.95	•15525E+C4	• 14204E+04	•12703E+04	•11041E+04	•90875E+03	.657218+03	•19302E+03				
2.00	•13843E+C4	.12112E+04	.10138E+04	.77243E+03	•40583E+03						
2.05	•11331E+C4	• 90263E+C3	•58283E+03								
2.10	.75438E+C3	·23107E+03									

u2

37

. . . .

TABLE XVIII. ENERGY OF FIRST MAXIMUM AT 1.1 $Å^{-1}$ (K)

4

. .

. .

				Press	sure (atm)				
0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
.13816E+02	•14197E+02	•144335+02	•1+592E+02	•14691E+02	.147525+02	.14789E+02	•14809E+02	.148195+02	.148225+32	.148225+1
.13816E+02	.14197E+02	.14438E+02	.14592E+02	•14691E+02	+14752F+02	.1+789E+02	•14809E+02	.148195+02	.14822E+02	.148225+0
.13816E+02	.14197E+C2	.144385+02	-14592E+02	.14691E+02	·14752E+02	.14789E+02	.14809E+02	.148198+02	.148228+02	.148225+0
.13816E+C2	.14197E+02	.14438E+02	.14592E+02	•14691E+02	+14752E+02	.14789E+02	•14809E+02	•148192+02	.148225+02	.1+8225+3
.13816E+02	• 14197E+02	.14437E+02	.14592E+02	.14591E+02	.147528+02	.14789E+02	•14809E+02	•14819E+02	.14322E+C2	.143225+1
.13816E+02	•14196E+02	.14437E+02	.14592E+02	•14091E+02	•14752E+02	.14789E+02	•14809E+02	.14919E+02	.14822E+02	.148228+
.13816E+02	• 14195E+02	.14437E+02	·14592E+02	.14690E+02	.14752E+02	·14739E+02	.14809E+02	.14819E+02	•14822E+02	.148228+
.13816E+02	•14195E+02	.14437E+02	.14592E+02	•14690E+02	•14752E+02	.14739E+02	.14809E+02	.14819E+02	.148226+02	.143225+0
.138155+02	• 14196E+C2	.14437E+02	.14592E+02	.14690E+02	.14752E+02	·14789E+02	.14809E+02	•14819E+02	•14822E+0Z	.149225+
.13315E+02	• 14196E+02	·14437E+02	.14592E+02	+14690E+02	·14752E+02	.14789E+02	.14809E+02	.14919E+02	.14822E+02	.143238+
.13315E+02	• 14196E+02	•14437E+02	.14591E+02	.14690E+02	.14752E+02	.14789E+02	•14809E+02	•14819E+02	.148225+02	.148228+
.13815E+02	• 14195E+02	•14437E+02	.145918+02	.14690E+02	•14752E+02	·14789E+02	·14809E+02	.148195+02	•14822E+02	.148225+
·13815E+C	. 14195E+02	.14437E+02	.14591E+02	.14690E+02	.147525+02	.147892+02	•14809E+02	.14819E+02	.14822E+02	.148225+
.13814E+C2	• 14195E+02	.14435E+02	.14591E+02	.14690E+02	•14752E+02	.14799E+02	•14809E+02	.14819E+02	•14322E+C2	.148225+
.138146+02	2 .14195E+02	.14436E+02	.14591E+02	.146905+02	.14752E+02	.14789E+02	•14809E+02	•14819E+02	•143225+02	.148225+
•13814E+03	. 14195E+02	.14436E+02	.14592E+02	.14691E+02	•1+752E+02	.14789E+02	.14809E+02	.148198+02	.14822E+02	.148225+
.13814E+C	2 .14195E+02	.14437E+02	.145928+02	.14691E+02	.14752E+02	•14789E+02	•14809E+02	•14819E+02	•14822E+02	.143225+
.138138+0.	· 14195E+02	.144378+02	·14592E+02	·14691E+02	•14753E+02	·14789E+02	.14810E+02	.148195+02	.148225+02	.143225+
+138132+C	2 .14195E+02	.144378+02	·14593E+02	.14691E+02	.14753E+02	.14790E+02	• 14810E+02	•14819E+02	.148228+02	.148225+
·13813E+0	2 .14195E+02	•14438E+02	·14593E+02	.14692E+02	.14754E+02	•14790E+02	·14810E+02	•14819E+02	· 14822E+02	•143225+
.13813E+0	2 .14196E+02	.14438E+02	.14594E+02	.14593E+02	.14754E+02	.14790E+02	.14810E+C2	· .14819E+02	· 14822E+02	.148222+

e max'

38

. .

TABLE XVIII. ENERGY OF FIRST MAXIMUM AT 1.1 \mathring{A}^{-1} (K) (continued)

1 1

. .

.

39

					Pres	sure (atm	1)				
emp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
(K) 1.10	+13813E+02	.141956+02	.14438E+02	.14594E+02	+14693E+02	•147548+02	.14790E+02	.14810E+02	·14819E+02	.148225+02	.148225+02
1.15	.13813E+C2	.141965+02	.14439E+02	.14595E+02	•14694E+02	.147552+02	•14791E+02	·14810E+02	•14319E+02	.148225+02	.143215+02
1.20	.138146+02	.14197E+02	.14440E+02	.14556E+02	.14595E+02	.14756E+02	.14792E+02	.148112+02	.14320E+02	.148225+02	•14921E+02
1.25	•13814E+02	.14193E+02	.14442E+02	.14557E+02	.146962+02	.14757E+02	.14792E+32	.14811E+02	.148208+02	•14822F+02	.148215+02
1.30	.13815E+02	.14200E+C2	.14443E+02	.14599E+02	.14597E+02	.147585+02	.14793E+02	•14812E+02	.148208+02	·14822E+02	.143212+32
1.35	.13816E+02	.142018+02	.14445E+02	.14601E+02	.14699E+02	.14759E+02	.14794E+32	.14312E+02	.14820E+02	.148225+02	.145215+02
1.40	.13817E+02	.14203E+02	·14448E+02	.14603E+02	.14701E+02	.14751E+02	.14795E+02	.14813E+02	.14820E+02	·14822E+02	.143215+03
1.45	-13318E+02	.14206E+02	.14451E+02	.146065+02	.14703E+02	.14762E+02	.14796E+32	.14814E+C2	.14821E+02	.149228+02	.143215+02
1.50	-13620E+02	.14209E+02	.14454E+02	.14609E+02	·14706E+02	.14764E+02	.147988+02	.14814E+02	.14821E+02	.14822E+02	.148215+02
1.55	-13822E+C2	. 14212E+02	.14458E+02	-14613E+02	.14709E+02	.14767E+32	.147995+02	.14315E+02	·14321E+02	·14372E+02	.143215+02
1.60	-13825E+02	- 14216F+C2	-14452E+02	.14617E+02	.14712E+02	•14769E+02	.14301E+02	.14816E+02	.148225+02	·14922E+02	.149205+02
1 45	136275+02	- 14221 E+ 02	-14467E+02	-146215+02	-14716E+02	.147728+02	.143028+02	.14817E+02	.148225+02	.148225+02	.148205+32
1.00	120210-02	14 326 54 02	144735+02	.146275+02	-14720E+02	.147758+02	-14804E+J2	.14818E+02	.14822E+02	.148218+02	.149205+02
1.70	.135312+02	.1+2200+02	14/705+07	144335402	147252+02	-147795+02	-14HOUE+02	-14819E+02	.14822E+02	·14821E+02	.148205+02
1. 15	.130352+02	• 142326+02	.144192402	144305402	147315+02	.147825+02	.148096+02	-14820E+02	-14822E+02	.14821E+02	.14820E+02
1.80	•13840E+C2	• 142396+02	.144872+02	.140392402	1/72/5/02	147945402	145115+02	-148205+02	-14822E+02	-14821F+02	
1.35	•13845E+C2	• 14247E+02	•14495E+02	.1454/2+02	•147362+02	.147002+02	1/0125-02	149215+02	•1+0222.92		
1.90	·13851E+02	:14256E+02	•14505t+02	.140552+02	•14/435+02	.147902+02		.140212402			
1.95	•13858E+C2	• 14266E+02	•14515E+02	.14664E+02	•14750E*02	*14795E+02	140155+02				
2.00	•13266E+02	• 14278E+02	• 14527E+02	.14675E+02	•14757E+02						
2.05	•13875E+02	• 14291E+02	•14540E+02								
2.10	.138868+02	• 14300E+02									

^emax'

TABLE XIX. THERMAL ROTON ENERGY GAP (K)

. .

. .

				Pres	sure (atm	n)				
0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
•85699E+01	•84330E+01	.32961E+01	.81592E+01	.80223E+01	.79854E+01	.17495E+01	.76115E+01	.74745E+01	.73377E+01	.72308E+01
.85705E+01	• 84336E+01	•82966E+01	.81596E+01	.80227E+01	.73857E+01	.774888+01	.76118E+01	.747495+01	.73379E+01	.720105+01
•85709E+01	.843395+01	•82969E+01	.81559E+01	.80229E+01	.788595+01	.774895+01	.75118E+01	.747485+01	.73373E+01	.72004E+01
.85710E+01	• 94340E+01	.829692+01	•91598E+01	.80228E+01	•78857E+01	.774878+01	.76115E+01	.747455+01	•73375E+01	.720045+01
.35709E+01	•84338E+01	.82967E+C1	.81556E+01	.802255+01	.78854E+01	.77483E+01	.761116+01	.747405+01	•73369E+01	•71993E+71
.85705E+C1	.84334E+01	.82962E+01	.81591E+01	.30220E+01	.79848E+01	.77477E+01	.761052+01	.747345+01	.733625+01	.71991E+01
.85700E+01	• 84328E+C1	•82956E+01	.81584E+01	.80213E+01	.78841E+C1	•77469E+01	.76077E+01	.747265+01	.73354E+01	.719325+01
.85692E+01	.84320E+01	.82948E+01	.81576E+01	.80204E+01	.788335+01	.774615+01	.760895+01	.74717E+01	.733455+01	.719738+01
•85083E+C1	•84311E+C1	•82939E+01	•81567E+01	.801955+01	•78823E+01	.77452E+01	.760305+01	.74703E+01	.733355+01	•7196÷E+01
.85673E+01	•84301E+01	•82929E+01	.81557E+01	.80186E+01	.799145+01	•77442E+01	.76070E+01	.746995+01	.733275+01	.719555+01
.35661E+01	.84290E+C1	·82918E+01	.81547E+01	.80175E+01	.73804E+01	.774326+01	.75061E+01	.74690E+01	.733195+01	.719475+01
.85650E+01	•84278E+01	•82907E+C1	•81536E+01	.80165E+01	.787948+01	.77423E+01	.750516+01	.746305+01	.733075+01	.719333+01
·35637E+01	•84266E+C1	.828965+01	.81525E+01	.80154E+01	.787936+01	.774128+01	.760412+01	.746705+01	.733005.01	.719295+01
.85624E+01	.84254E+01	•82683E+01	•91512E+01	.80142E+01	.78771E+01	.77400E+01	.760306+01	.746595+01	.73233E+01	.719185+01
.356108+01	+ 84240E+01	.82369E+01	.814986+01	.801285+01	•79757E+01	.773865+01	.700168+01	.746455+31	.732745+01	. 719042+01
.85575E+01	• d4224E+01	•82853E*01	•81482E+01	.80111E+01	.787400+01	•77309E+01	.759978+01	.74525=+01	.73255E+01	.713345+01
.35578E+C1	• 84206E+01	.82834E+01	.81461E+01	.300892+01	.78717E+01	.773455+21	.75973E+01	.74501E+01	.73229E+01	.719575+01
.35557E+01	•84183E+01	.823095+01	•81435E+01	• 90061E+01	.78687E+01	.773132+01	.759402+01	.7+505E+01	.73192E+01	.71918E+01
.85531E+01	•84155E+01	.827785+01	.81401E+01	.30024E+01	.73647E+01	.772716+01	.758948+01	·74517E+01	.731406+01	.717635+01
.85499E+01	•84118E+C1	•82737E+01	.8135cE+01	•/9975E+01	.78594E+01	•77213E+01	.758325+01	.744515+01	.730708+01	.715895+31
.85458E+C1	.84071E+01	.32684E+01	·81297E+01	.799LOE+01	.78523E+01	.77136E+01	.75749E+01	.743525+01	.729755+01	.71584E+01

 Δ_t/k

2

40

. . . .

TABLE XIX. THERMAL ROTON ENERGY GAP (K) (continued)

. . . .

-		٠
Procettre	arm	3
TTESSULE I	L'LIII.	

Temp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.53	25.00
(K) 1.10	.85458E+01	. 94071E+01	.82684E+01	.81297E+01	.79910E+01	.78523E+01	.77136E+01	.75749E+01	.743625+01	.72975E+01	.715888+01
1.15	.85404E+01	.84009E+01	.82614E+01	.81219E+01	•79824E+01	.78429E+01	.77034E+01	.75639E+01	.74244E+01	•72849E+01	.71454E+01
1.20	.853355+01	.83930E+01	.82524E+01	.81119E+01	.79713E+01	.78308E+01	.75902E+01	.75497E+01	.74091E+01	.72636E+01	•71290E+01
1.25	.85247E+01	.83828E+01	.82409E+01	.80990E+01	.79571E+01	.78152E+01	.76733E+01	.75314E+01	.73895E+01	.724765+01	.710575+01
1.30	.85135E+01	.83699E+01	.82263E+01	.80827E+01	•79391E+01	•77955E+01	.76519E+01	.75083E+01	.73647E+01	.722116+01	.70775E+01
1.35	.84994E+C1	.83537E+C1	.82080E+01	.80623E+01	.79166E+01	.77709E+01	.76252E+01	.74795E+01	.73337E+01	.715805+01	.704235+01
1.40	.84818E+01	.83335E+01	.81652E+C1	.80369E+01	.78886E+01	.77404E+01	.75921E+01	.74438E+01	.729555+01	.71472E+01	.699995+01
1.45	.84600E+01	.83086E+01	.81572E+01	.80058E+01	.78544E+01	.77030E+01	.75516E+01	.74001E+01	.72487E+01	.70973E+01	. 594595+01
1.50	.84333E+01	.82782E+01	.81230E+01	.79679E+01	.78127E+01	.76576E+01	.75025E+01	•73473E+01	.71922E+01	.70370E+01	.538195+31
1.55	.84C09E+01	.82413E+01	.80817E+01	.792228+01	.77626E+01	.760 30E+01	.74434E+01	.72839E+01	.71243E+01	. 6964 7E+01	. 590512+01
1.60	. \$3618E+01	.81470E+01	.80322E+01	.78675E+01	.77027E+01	.75379E+01	.73731E+01	.72083E+01	.70435E+01	.68787E+01	.67139E+01
1.65	.83151E+01	• 81442E+01	.79733E+01	.78025E+01	.76316E+01	.745075+01	.72898E+01	.71190E+01	.69481E+01	.67772E+01	
1.70	.82596E+01	.80817E+01	.79037E+01	.772585+01	.75479E+01	.73099E+01	.71920E+01	.701405+01	.68361E+01	.565825+01	.543025+01
1.75	.81542E+01	. 80)81E+01	.79220E+01	.76360E+01	.74499E+01	.726385+01	.70777E+01	.68916E+01	.67055E+01	.55194E+01	.53333E+01
1.80	- 81 1 76E + 01	.79222E+01	.77267E+01	.75313E+01	.73359E+01	.71404E+01	.69450E+01	.67495E+01	.65541E+01	.63587E+01	.616335+01
1.85	. 80 2835+01	-78222E+01	.76161E+01	.74100E+01	.72039E+01	.699788+01	.67917E+01	.65857E+01	.63796E+01	.51735E+01	
1.90	.79243E+01	. 77C67E+01	.74585E+01	.72703E+01	.70521E+01	.683392+01	.66157E+01	.63975E+01			
1.65	.780575+01	.75738E+01	.73419E+01	.71100E+01	.68781E+01	.00452E+01	.04143E+01				
2.00	76 4005 401	74 21 7E+01	.71744E+01	+69271E+01	.66797E+01						
2.00	.751306+01	. 724835+01	-69837E+01								
2.10	.733555+01	. 705156+01									

 h_t/k

1.

.

41

. . . .

TABLE XX. ROTON EFFECTIVE MASS (m_{He})

1.

· 15

. .

. *

					Press	ure (atm))				
lemp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
(K)	-16010E+00	.15555E+00	.151605+00	.14309E+00	.14490E+00	.14197E+00	.13926E+00	.13673E+00	.13435E+00	.13210E+00	.129978+30
. 15	. 16011E+00	.15556E+00	.15161E+00	.14809E+00	.14491E+00	.14198E+00	.13927E+00	.136735+00	.13435E+00	.1321 DE+00	.129975+00
. 20	.16012E+00	.15557E+00	.15162E+00	.14810E+00	.14491E+00	.141985+00	.13927E+00	.13674E+00	.134358+00	·13210E+00	.129975+00
. 25	.16012E+00	.15557E+00	.15162E+00	.14810E+CO	.14491E+00	.14198E+00	.13927E+00	.13673E+00	.134355+00	.13210E+00	.129965+00
• 30	.16012E+00	.15557E+00	.15162E+00	.1481CE+00	.14490E+00	.14198E+00	.13926E+00	•13672E+00	•13434E+00	•13209E+00	.129955+00
. 35	.16011E+00	.15556E+CO	.15161E+00	.148098+00	.14490E+00	.14197E+00	.13925E+00	.13671E+0C	•13433E+00	•13203E+C0	·12994E+00
• 40	.16010E+00	.15555E+00	+15160E+00	.148C8E+00	.14489E+00	.14196E+00	.13924E+00	.13670E+00	•13432E+00	.13206E+00	.129925+00
. 45	.16CG9E+00	·15554E+00	.15159E+00	.143C7E+00	•14487E+00	.14194E+00	.13923E+00	•13669E+00	•13430E+00	•13205E+00	.129915+00
.50	.1.CC7E+00	.155532+00	.15157E+CO	.14805E+00	.14485E+00	.14193E+00	.13921E+00	.13667E+00	•13429E+00	13203E+00	.129895+00
. 55	.10006E+00	.15551E+00	.15156E+CO	.14804E+00	·14484E+00	·14191E+00	·13920E+00	.136565+00	·13427E+00	·13202E+00	·12938E+00
. 60	.15004E+00	.15549E+00	.1515+E+00	.14802E+00	•14483E+00	.14190E+00	.139138+00	·13654E+00	·13425E+00	.132305+00	.124366+33
. 65	.16002E+00	.15548E+00	.15152E+CO	.14800E+00	.14491E+00	.14138E*00	.13916E+00	·13652E+CO	.134245+00	.13198E+00	.129845+30
. 70	.1.0CCDE+CO	• 15 546E*CO	• 1515JE+00	.14758E+00	.14479E+00	.141868+00	•13914E+30	·13600E+00	·13421E+00	.1319//5+00	+129918+0
. 75	.15557E+00	.15544E+00	.151489*00	.147565+00	.14477E+00	•14183E+00	•13911E+00	.136578+00	.134138+90	.131938+00	.129735+00
. 80	.15993E+00	.155418+00	.15145E+00	.14753E+60	.14474E+00	.14180E+30	.13903E+00	·13654E+00	•13415E+00	.131896+30	·12974E+3
.85	·15993E+00	.15538E+00	.15143E+00	.1479CE+00	•14470E+00	•14176E+00	•13904E+30	·13649E+00	.134105+00	•13184E+00	•12959E+0.
. 90	.15590E+00	.15535E+00	.15139E+00	.14786E+00	.14455E+00	.14171E+00	13898E*00	•13643E+CC	.134035+00	•13176E+CO	•12951E+2
.95	·15985E+00	· 15531E+00	.15134E+00	.147802+00	•14459E+00	• 14164E+00	.13890E+00	.13635E+00	.13394E+00	.131578+00	.129515+3
1.00	.159816+00	.15525E+00	.15123E+00	.147736+00	.14451E+00	.14155E+00	· 13990E+00	•13623E+00	•13382E+00	•13153E+C7	.129375+7
1.05	.15975E+CC	•15513E+CC	• • 15119E+0C	.147635+00	.14440E+00	.141422+00	.139568+00	.13608E+00	.13366E+00	•13136E+00	.129195+1
1.10	.15967E+CO	.15509E+00	.15103E+00	.14750E+00	.14425E+00	.1+1268+00	· 13848E+00	.135896+00	.133445+00	•13113E+03	.1237-2*0

42

. . .

к.

TABLE XX. ROTON EFFECTIVE MASS (m_{He}) (continued)

4

.

E

. . . .

					Press	ure (atm)	1				
Temp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
1.(贤)	.15967E+00	.15509E+00	+15108E+90	.14750E+00	.14425E+00	.14126E+00	.13348E+00	.13589E+00	•13344E+00	·13113E+00	.128946+00
1.15	.15957E+00	.15497E+00	.15094E+00	.14734E+00	•14406E+00	.14105E+00	.13825E+00	.13564E+00	.13317E+00	.13084E+C0	.123525+00
1.20	•15944E+00	•15481E+00	.15075E+00	+14712E+CO	.14382E+00	·14078E+00	.13796E+00	.13531E+00	·13282E+00	.13046E+00	.123228+00
1.25	.15927E+00	.15460E+00	.15052E+00	.146858+00	.14352E+00	.14044E+00	.13759E+00	.13491E+00	•13233E+00	•12999E+CO	+127715+00
1.30	·15905E+00	•15435E+CC	•15022E+00	.14551E+00	.14313E+00	.14002E+03	•13712E+00	.13440E+00	.13193E+00	.12940E+00	.127085-00
1.35	.15878E+00	·15402E+00	.14984E+00	.146C8E+00	.14266E+0C	.13949E+00	.13654E+00	.133775+00	.13116E+00	.12363E+00	.12531E+30
1.40	.15844E+00	• 15 362E+00	.14933E+00	·14556E+00	.14207E+00	·13885E+00	·13584E+00	.13301E+00	.13034E+00	.12779E+00	·12537E+00
1.45	•15802E+00	.15313E+CO	.14881E+00	.14492E+00	.14136E+00	.138062+00	·13498E+00	.13209E+00	•12934E+00	•12673E+30	.124235+00
1.50	.15750E+00	.15253E+00	.14813E+00	.14415E+CO	.14050E+00	·13712E+00	.13396E+00	.130982+00	.12815E+00	.125458+00	·12297E+00
1.55	.15688E+00	· 15180E+00	.14730E+00	.14322E+00	.13948E+00	•13600E+00	.13273E+00	.12966E+00	•12673E+00	+12394E+00	.121255+00
1.60	·15612E+00	• 15C93E+00	.14531E+00	.14212E+00	.13826E+00	·13466E+00	.13129E+00	.12810E+00	.12506E+00	·12215E+00	.119358+00
1.65	·15522E+00	.14990E+00	.14514E+00	.14081E+00	.13582E+00	.13309E+00	·12959E+00	.126265+00	.123105+00	.12006E+C0	·11714E+00
1.70	.15415E+00	.14857E+00	.14375E+00	•13928E+00	.13513E+00	13125E+00	.12760E+00	•12413E+00	.12031E+00	•11763E+00	.114555+00
1.75	•15239E+00	• 14724E+CC	.14215E+00	.13749E+60	.13317E+00	+12912E+00	.12529E+00	.12165E+00	·11917E+00	• 114825+00	.111535+70
1.80	.15142E+00	• 14556E+CO	.14J27E+00	.13541E+00	.13089E+00	.126655+00	.12253E+00	•11830E+00	.11512E+00	•11158E+CO	.108158+00
1.85	.14570E+CO	.14361E+00	.13810E+00	•13301E+00	.123272+00	.12381E+00	•11957E+00	•11553E+00	•1116+E+00	.10793E+00	
1.90	.14771E+00	•14137E+00	.13560E+00	.13026E+00	.12527E+00	.12056E+00	.11608E+00	•11179E+00			
1.95	·14542E+00	.13880E+00	.132735+00	.12711E+00	·12185E+00	.116868+00	.112115+00				
2.00	.14280E+CC	.13585E+CO	.12947E+00	.12353E+00	.11795E+00						
2.05	.L3931E+00	.13250E+00	.12577E+00								
2.10	.13641E+00	•12871E+00									

43

. . . .

TABLE XXI. MOMENTUM AT ROTON MINIMUM $(Å^{-1})$

, :

. .

.

. .

.

44

					Pres	sure (atm)				
.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
)	.191296+01	.193085+01	•19462E+01	.19556E+01	.19716E+01	.19826E+01	·19926E+01	.200185+01	.20104E+01	•20135E+01	.20251E+01
	.19129E+01	.19308E+C1	.19461E+01	.195562+01	.19716E+01	·19826E+01	.19926E+01	*20013E+01	.20104E+01	.20185E+01	.202618+01
	.19129E+01	· 19308E+01	.19461E+01	.19596E+01	.19716E+01	.19825E+01	.19926E+01	.20018E+01	.20134E+01	.20185E+01	.202518+01
	.19129E+01	.19308E+01	.19461E+01	.195968+01	.19716E+01	•19825E+01	.19926E+01	.200195+01	.20104E+01	•20135E+01	.202516+01
	.15129E+01	.19308E+01	.19461E+01	.195962+01	.19716E+01	.19825E+01	.19925E+01	.20018E+01	.20104E+01	.20185E+01	.202618+01
	.19129E+01	.19308E+01	.194615+01	.19556E+01	.19716E+01	.19825E+01	.19925E+01	.20018E+01	.20104E+01	•20185E+01	.202515+01
	.191296+01	.19308E+C1	.19461E+01	.195965+01	.19716E+01	.198255+01	.19925E+01	.20018F+01	.2010+E+01	.20185E+01	.202615+01
	.191296+01	.19308E+01	.19461E+01	.195965+01	.19716E+01	.198252+01	.19925E+01	.20018E+01	.20104E+01	.20185E+01	.202512+01
	.191298+01	.19308E+01	.19461E+01	.19596E+01	.19716E+01	.19825E+01	.19925E+01	.200185+01	•20104E+01	.20185E+01	.20251E+01
	.191282+01	.1930dE+01	.19461E+01	.19596E+01	.19716E+01	.19825E+01	.199252+01	.20018E+01	.20104E+01	.20135E+01	.202515+01
	.191238+01	.19308E+01	.19461E+01	.19595E+01	.19716E+01	.19825E+01	.199255+01	.200185+01	.20104E+01	.20185E+01	.202518+31
	.19128E+01	.19308E+01	.19461E+01	.19595E+01	.19716E+01	•19825E+C1	·19925E+01	.200185+01	.201048+01	.20135E+01	.202515+01
	.1.1236+01	.19307E+01	.19461E+01	.19555E+01	.19716E+01	.195258+01	.19925E+31	.200135+01	.20104E+01	.20135E+01	.202625+01
	.19128E+01	• 19307E+01	.19461E+01	.19595E+01	.19716E+01	.198258+01	.19925E+01	.200186+01	.201056+01	.20136F+01	.232525+31
	.191282+01	.19307E+01	.19461E+01	.195952+01	.19716E+01	.19825E+01	.19926E+01	.200195+01	.201055+01	.20136E+01	.202538+01
	+19123E+01	. 19307E+01	.19461E+01	.195968+01	.19716E+01	.19826E+01	.19925E+01	.200195+01	.201058+01	.201875+01	.202615+01
	.19128E+01	+ 19307E+01	.19461E+01	.19596E+01	.197178+01	.19825E+01	.19927E+01	.20020F+01	.20105E+01	.23188E+01	.20254E+01
	-19123E+01	. 19307E+01	.19461E+01	.195968+01	.197176+01	.19827E+01	.19927E+01	.20021E+01	.20107E+01	.201898+01	.20255=+3
	.191295+01	.19307E+01	.19461E+01	.19596E+01	.19715E+01	.19828E+01	.199285+01	.200225+01	.201095+01	.201908+01	.20207=+01
	-19123E+01	. 19307E+01	.194625+01	.19597E+01	197182+01	.198296+01	.19930E+71	. 200236+01	.2011)E+01	.201925+01	.202698+0
	101245-01	193085+01	1 -19462E+01	.195585+01	.197198+01	.19830E+01	.19931E+01	.20075E+01	.201128+01	.201945+31	.202718+0

po/ħ

٠.

TABLE XXI. MOMENTUM AT ROTON MINIMUM (\AA^{-1}) (continued)

. .

. .

					Pres	sure (atm)				
emp.	0.00	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50	25.00
(K)	.19128E+01	.19308E+01	.19462E+01	.19598E+01	.19719E+01	.19830E+01	.19931E+01	•20025E+01	.201128+01	.20194E+01	-20271E+01
.15	.191285+01	.19308E+01	.19463E+01	.19559E+01	.19721E+01	.19831E+01	•19933E+01	.20027E+01	.20114E+01	.20196E*C1	.20274E+01
. 20	.191235+01	.19309E+01	.19464E+01	.195COE+01	.19722E+01	.19833E+01	•19935E+01	.200298+01	.201178+01	.201998+01	.202775+01
25	.19128E+01	.19309E+01	.19465E+01	.196C1E+01	.19724E+01	.148356+01	.199385+01	.200325+01	•20120E+01	·20203E+01	.202315+01
30	.19123E+01	.19310E+01	.19465E+01	.196036+01	.19726E+01	.198388+01	.19941E+01	.20036E+01	.20124E+01	.202075+01	.202355+01
35	.19129E+01	. 19311E+01	.19467E+01	.196C5E+01	.19729E+01	.178416+01	.19944E+01	.20040E+01	.201295+01	.202128+01	.202905+01
4.0	101206+01	. 193125+01	.19469E+01	.195C8E+01	.19732E+01	.19845E+01	.19949E+01	.20044E+01	.2013+E+01	.202175+01	.202965+01
40	101335+01	193135+01	.19471E+01	.19611E+01	.19736E+01	.19849E+01	.199536+01	.20050E+01	.201402+01	.20224E+01	·20303E+01
42	101305+01	103155+01	.19474F+01	.19614E+01	.197405+01	.19854E+01	.19959E+01	.20056E+01	.201458+01	.202318+01	.20311E*01
50	.191302+01	103175+01	104775+01	.19618E+01	.19745E+01	.19850E+01	.19965E+01	. 2005 3E +01	. 201548 + 01	.202408+01	.203205:01
55	*14131E+01	. 1931/0+01	10/005-01	104735+01	-19750F+01	-19866F+01	.19973E+J1	.20071E+01	.20103E+01	.20249F+01	.203305+01
60	•19132E+01	• 19319++01	194806+01	104295401	107576+01	. 19974F+01	.199815+01	.200815+01	.20174E+01	.202505+01	.273425+01
65	.19134E+C1	. 19322E+01	19484E+01		1076.6401	198425+01	.19991F+01	.200926+01	. 201855+61	.202738+01	.203556+31
70	.19135E+01	193258+01	194892+01	195345+01	1077040101	108075+01		-20104E+01	.201946+01	.272346+01	.203715+01
75	.19137E+C1	. 19328E+01	•19494E+01	195412+01		1 119092010	200155+31	. 201185+0	- 20214E+31	.2030+0+01	.203396+01
80	.19139E+C	.19332E+0	.19500E+01	1.19648E+0	1 .147825+01	1 .199032+0.				- 20323E+01	
85	.19141E+0	1 .19337E+0	.19507E+01	1.196588+0	1 .19793E+C	1 .19916:+0	1 .200292+0				
. 90	.19143F+0	1 .193428+0	1 .19515E+C	1.196685+0	1 .19806E+0	1 .19931E+0	.200462401	.201536+0			
. 95	.1914oE+C	1 .19343E+0	1.19524E+0	1 .19680E+0	1 .19820E+0	1 .19948E+C	1 .20065E+0				
. 30	.19150E+C	1 .19355E+C	1 .19534E+0	1.19693E+0	1 ,19837E+0	1					
. 05	.191546+1	1 .19363E+0	1 •1954oE+0	1							
. 10	.19153E+C	1 . 19372E+C	1			and a spin				N. Starting	

₽₀/ħ

٠.

45

•

. . .

TABLE XXII. COFFFICIENTS u_{1} AND a_{1} OF THE MDC SERIES (K·Åⁿ)

5

oc d	,	-5.051226	-4.097425	-3.590226	-3.301260	-3.125751	-3*013185	-2-935682	-2+376501	-2.828393	-2.785905	-2. 745946	-5*046043	-4° 095961	-3.538288	-3* 300I 44	-3.125759	-3*014248	-2.936396	-2.878347	-2.831225	-2. 789296	-2.750023
a7		40°273163	32.267731	27.993724	25-551579	24.063075	23,103241	22.631275	21+920452	276633475	21. 110541.	20° 744548	40°223897	32+242942	27.972796	25° 538529	24* 059593	23*109499	18865+*22	2495569-12	21.516427	21+138271	20.778472
e B)	-125.673328	-98*697950	-84.014912	-75.408146	020186*69-	-65.325668	-63.640234	-61.499905	-59.646589	-57=942348	-56*299343	-125.487410	-98 - 59 67 12	-83•,928465	-75-350203	-69°957117	\$152EE * 99-	- 63 • 660755	-61 • 538231	-59.7173.05	-58°031803	-56.411120
ar5	•	193.906639	147.0313552	121 - 619660	10'5-66007's	148261.º46	85°783516	80.493637	75*163475	70~366096	65° 872196	61.533390	193,554619	147.716293	121.648155	105-531162	94.674544	86.790768	80.517403	15-219700	70.479752	210610.63	61.020217
a 4		-148-399590	-103.048447	-83.450813	-66. 839668	-54.540337	+51124	-36.419163	-23*992477	-22 • 120266	-15.613583	-9.348080	-148, 563622	-107.348022	-83.285855	-66.725693	-54-481724	111652*55-	-34.438087	-29.041698	-22 -220032	-15.743347	-9.512177
33		40-392212	25«002220	14.545467	6*666134	0.238511	-5=295059	-10.261622	-14.841613	-19-148213	-23=245555	-27°177349	40=256992	24-919998	16ª481995	6e624533	0*219105	-5=291285	-10-245864	-14=817477	-19.106045	-23e191919	-27.0111522
-In		18e197294	19.661132	20.946748	22°C87739	23.122439	24«012513	24,953532	25.776669	26.550618	27.292121	27.976554	18.205668	19.671720	20°948719	22.087786	23.121006	24.069950	24°949937	25°T72259	26=545509	27.276416	27-970323
A	(atm)	0.00	2.e50	5.00	05°1	10-20	12.50	15.00	17.50	20-00	22.50	25.00	0.00	2×50	5.00	1.50	10-50	12.50	15-00	17.50	20.00	22 e 50	25=00
E-I	8	0°25	0.25	0.25	0.25	0°25	0.25	0°25	0.25	0.=25	0.25	0=25	0 ~ 50	0.~50	0.50	0 = 50	0.° 20	0.= 50	0. = 50	0.50	050	0.0	0.50

46

an

TABLE XXII. COEFFICIENTS u₁ AND a_n OF THE MDC SERIES (K·Åⁿ) (continued)

T (K)	P (atm)	" <u>1</u>	^a 3	a ₄	^a 5	^a 6	a ₇	^a 8	-1
0.75	0.00	18.213680	40.102932	-147.685852	193.173271	-125.297533	40.177937	-5.041745	
0.75	2.50	15.659701	24.864193	-107.687485	147.548790	-98.517328	32.226620	-4.093978	
0.75	5.00	20.939762	14.512241	-83.329277	121.691097	-83.961908	27.936835	-3.590%99	
0.75	7.50	22.073709	6.718538	-66,918991	105.727151	-75.464230	25.573969	-3,304679	
0.75	10.00	23.102968	0.371523	-54.817944	95,019470	-70.149857	24.115602	-3.132410	
0.75	12.50	24.048740	-5.099443	-45.178711	87.230797	-66.579744	23.178533	-3.022212	
0.75	15.00	24.926125	-10.003167	-37.013260	81.117130	-63.990383	22.532522	-2.946870	
0.75	17.50	25.746255	-14.538903	-29.695496	75.901089	-61.910618	22.037673	-2.889952	
0.75	20.00	26.517637	-18.790549	-22.971039	71.267025	-60.146923	21.635337	-2.844407	
0.75	22.50	27.246910	-22.842522	-15.584217	66-904034	-58.513844	21.271053	-2.803906	
0.75	25.00	27.939394	-25.7.5550	-10.390423	62.641293	-50.910693	20.915286	-2,764991	
1.00	0.00	18.203727	40.075455	-147-562019	193.031712	-125.235575	40.163908	-5.041892	
1.00	2.50	15.639285	25,067619	-108.093834	147.946568	-98.742962	32.295641	-4.102588	
1.00	5.00	20.895141	14.905370	-84.209160	122.586929	- 84. 45 5740	28.128692	-3.607073	
1.00	7.50	22.018587	7.258755	-68.177322	107-024460	-75.175083	25. 774459	-3.327536	
1.30	10.00	23.039693	1.061656	-56.438969	96.712818	-71.075676	24.375303	-3.161690	
1.00	12.50	23.978933	-4-288704	-47.117836	89.273804	-67.700361	23.490731	-3.057052	
1.00	15.00	24.850915	-9.084592	-39,241199	83.450110	-65.288015	22,892635	-2.985913	
1.00	17.50	25.666502	-13. 518588	-32,200203	79.572727	-63.378693	22.443929	-2,934783	
1.00	20.00	26.433977	-17-636769	-25.701046	74:188217	-61.751955	22.078427	-2.893111	
1.00	22.50	27.159857	-21.658720	-19.532539	70.068275	-60.252512	21.750099	-2.858389	
1.00	25.00	27.849335	-25. 470152	-13-595284	66.094807	-58.609614	21.437674	-2.822051	

an

47

. . . .

ŝ	-5.05359%	「臣」や臣」の考し	-3.657463	-3.395612	-3.240333	-3.157939	-3.102588	-3.05525	-3* 337219	-3.013383	15.6.1 Les - 5-	-5-541233	-4.237763	-3-776143	-3.560945	-3.e 455343	-3.41.3576	66 1903 °C -	-3.3990.87	-3.410537	-3.e425645	-3.44,24,53
ay	40°548759	32 × 551 552	28= 556 725	26-353497	25.ª LI6021	24.0379594	23-917485	156909-52	23-363600	23 . 150523	22.959472	40=404515	33.123016	\$1\$165=52	27.0756262	26-907317	26-558233	26.465725	26-515346	26.634929	26.730423	26.942722
a6	-125。441986	-99 \$594734	-35* 926932	-78.224369	-73*669500	-70+ 323446	-63.897976	-67.463625	- 66* 295790	-\$5*243534	-64.204963	-125-771983	-101+392039	-39 4147012	-82*915525	- 79. 702199	-79.280167	-77+557764	-77.516994	-77.509482	-77.734540	-78,640472
at C	193.357578	149~455482	125-23-31.5	2.204 075155	969522*101	94.512333	458778.04	85.436407	82, 222195	74.326517	75.022569	195° 774429	152*432433	130-723-30	118.7742641	111.305122	107+544347	10-4952353	103*170479	201.040060	120. +52.533	93.435415
a4	-147.942833	-109-598709	-86.735031	-7%.625771	115057.03-	-52.223801	-45.083840	-38.793510	-32.058069	-27.463795	-22-137211	-148-526169	-112°560776	-91.901314	65616E°81-	-70-161400	-63.645305	-58.403046	-53 - 349429	106195-64-	-46-265327	-42, 805861
a ₃	151825.04	25a786789	16.029335	\$° 735088	2=837589	-2.222267	-6.756527	-10.931861	-14.869450	-18 . 63 50 50	-22.205774	40°844275	27.237755	13-501863	195267 -11	6=611614	2.232557	-4-65029	-5*219641	-8.53,6502	-11-030868	-14-502611
Ę'n	18+146559	19.553534	20, 775300	21.680432	22.8853948	23*814254	24,050672	250 483797	26.244180	26°563855	27. 6447845	17* 999296	15,337142	20+52%705	21.ª 597368	22.=579305	23.436487	24.0332231	25.125643	25.874054	312223294	27.253017
P (atm)	0.00	.2.50	5.00	7.5.0	10.00	12.50	15.0.0	27.50	20.00	22.50	25.00	0.00	2.50	2*03	75.0	10.00	12.50	15.0C	17-50	20-00	22.50	25-05
I (X)	1 a 25	I. 25	1.25	1 - 25	1+25	1+25	1+25	1.25	1.25	1.25	1.25	1.00	1.50	1.50	1 = 50	1.30	1.59	1.50	1.50	i 50.	1-50	1.053

COEFFICIENTS u_1 AND a_n OF TEE NDC SERIES (K.Åⁿ) (continued) TABLE XXII.

1.6

48

a_n

TABLE XXII. COEFFICIENTS u_1 AND a_n OF THE MDC SERIES (K·Åⁿ) (continued)

C

1

22

a 8	-5.142122	-4°382419	-4-053469	-3° 958601	-3°979427	+6-0+340+	-4.140561	-4.254344	-4. 373736	-4ª 510284	CF7743.4-	E+1866 *5+	-4*.933454	-4°.933122.	-5.146739	-5°475962
a ₇	40.715668	34.434075	31.865520	31 • 135631	31.4310048	31+952319	32 a856 399	33,9294352	35,4039082	36a 234326	37=430163	42°386198	38.699657	38.392541	111 5 75 0 9	43° 358963
a õ	+126.194578	-105-307907	-96.695232	-94.031616	-94°445784	-95.0424545	-99*287098	-132+642996	-1 06 * 299643	-1100175005	-114.235817	-130 - 235052	-118°324904	+119°194513	-126.241625	-136,509981
un g	193.655280	15.8. 538405	143.217397	131.223591	135.264716	138.101063	141.339306	145.452011	150.121727	155+223315	160.702782	198.702652	173, 807240	179. 382458	189,935230	205*750910
a 4	-148,855461	-118.221489	-102.836492	-95.129250	-91.388550	-89.783928	-89.476418	-49.980769	-91,049698	-92.591904	-94.552317	-152° \$95351	-135 . 153824	-1.33 . 338120	-139.25092	-149.320854
e E	41=561306	29.335719	22°833330	18-235365	14= 563788	076615011	3.643444	7.710716	6.042431	4.612323	3.406398	43, 75 2022	36.750774	34.291205	34=350286	35e1\$7121
E.	17.699843	13,937643	20.054539	21-074557	22.015341	22.890059	23.708824	24.479534	25.208487	25, 900773	Z6.560571	17.152158	18-221287	19,217662	20°147925	21°019463
P (atm)	00-0	2.50	5.00	7.50	10-03	12.50	15.00	17.50	20.00	22.050	25-00	0.000	2.50	5.00	7.50	10-00
T (K)	1.75	1.15	1.75	1 • 7.5.	1.75	1 • 75	1. 75	1+75	2.0.75	1.75	1.e 75	2 × 00	2.000	2.000	2.000	2 = 00

an

Part II

Formulae and Discussion

1. Equation of State for Helium II

The only equation of state for helium II in the literature is that of Keesom (1942) based on the data of Keesom and Miss Keesom. It is reproduced in Table A2 of Wilks (1967).

Our empirical equation of state was developed from multiple regression analysis of the combined PVT data of Abraham et al. (1970), Boghosian & Meyer (1966, 1967), Elwell & Meyer (1967) and Kerr and Taylor (1964). The form was prompted by the success of the low temperature (T-independent) equation of state of Abraham et al. (1970). The resulting expression, which has temperature dependent coefficients, is

$$P(\rho, T) = A(T) + B(T)\rho + C(T)\rho^{2} + D(T)\rho^{3}, \qquad (1)$$

where

$$A(T) = A_{0} + A_{1}T^{2} + A_{2}T^{3} + A_{3}T^{4},$$

$$B(T) = B_{0},$$

$$C(T) = C_{0} + C_{1}T^{2} + C_{2}T^{4},$$

$$D(T) = D_{0} + D_{1}T^{2} + D_{2}T^{3} + D_{3}T^{4};$$

and

$$A_o = -74.28059, A_1 = -.23016, A_2 = -.41029, A_3 = -1.38002,$$

 $B_o = 2007.539,$
 $C_o = -20944.09, C_1 = 28.05456 C_2 = 254.3206,$
 $D_o = 73300.0, D_1 = -124.4081, D_2 = 162.6083, D_3 = -1318.33.$

Here P is in atmospheres, T is in degrees Kelvin, ρ is in grams per cubic centimeter. The constants are in the appropriate units of atm gm⁻ⁿcm³ⁿK^{-m}, where n is the power of ρ^{n} , and m is the power of T^m. Any variable P, ρ or T may be solved in terms of the other two by simple root searching methods. The standard error in pressure is $\pm 0.1969T^{2}$ atm K⁻².

Eq. (1) is shown in Fig. 1, plotted in the form V(P, T) - V(P, 0)[δ (Molar Volume)] vs. T for one atmosphere increments in P. To the left of the dotted lines, the thermal expansion is positive, to the right, it is negative. Beyond T = 1.5 K the change in molar volume becomes large and negative, and has not been drawn.

Figure 1.

The relative change in molar volume as calculated from the empirical PVT relation. The dotted line represents the locus of zero thermal expansion. (Note that the pressure increases toward the viewer.)

51

In order to complete the analysis successfully, the data of Boghosian & Meyer had to be slightly modified to match the T = 0 values of Abraham et al. There still remained, however, certain difficulties in matching different sets of PVT data (Boghosian & Meyer, Elwell & Meyer) at about 1.25 K for pressures greater than 10 atm. This mismatch (discussed in detail by Brooks, 1973) made it difficult to obtain a good fit in the region where the expansion coefficient changes sign, and α_{p} , which is defined by

$$\alpha_{p} = \frac{i}{V} \left(\frac{\partial V}{\partial T} \right)_{p}, \qquad (2)$$

is in only qualitative agreement with thermal expansion data. The tabulated values of α_p in Table V are <u>not</u> calculated from the equation of state, but from the Landau theory.

We show in Fig. 2 the general agreement of our equation of state with the experimental data of Boghosian & Meyer and Elwell & Meyer. The agreement of (1) in terms of $\rho(P,T)$ (Table I) or V(P,T) (Table II) with the experimental data used in the analysis is in all cases better than + .5%.

There are several other quantities which may be calculated from (1), such as the isothermal velocity of sound

$$u_1^2 = \left(\frac{\partial P}{\partial \varrho}\right)_T.$$
(3)

Results calculated from (1) and (3) are shown in Fig. 3 with the data of Atkins & Stasior (1953) and Vignos & Fairbank (1966). Also shown is the velocity of sound corrected for thermal expansion using calculated values of C_p/C_v to be discussed below. The corrected velocity of sound (Table III)

52

is in \pm 0.5% agreement with the experimental data below 1.5 K, and deviates no more than \pm 4% between 1.5 K and 2.0 K.

Figure 2.

The PVT surface of helium II. The solid lines are from (1); the solid circles are the data of Elwell & Meyer; the open circles are from Boghosian & Meyer, and represent the data as determined from their errata note. Deviations of the data from the lines are interpreted as vertical departures normal to the P-T plane.

The velocity of first sound u vs. temperature for different pressures. The solid lines are for u₁, corrected for C /C \neq 1; the dotted lines are u uncorrected. The open circles are the data of Vignos & Fairbank (1966). The rest of the data are from Atkins & Stasior (1953). The isothermal compressibility

$$K_{T} = -\frac{i}{V} \left(\frac{\partial V}{\partial P} \right)_{T} , \qquad (4)$$

has been calculated from Eq. (1) and is tabluated in Table IV. The deviation from the data of Boghosian & Meyer is at worst 8% low for T \leq 1.2 K. For T \leq 1.8 K and P \leq 20 atm the deviation from Elwell & Meyer is less than \pm 3%.

The Gruneisen constant

$$u_{c} = \frac{\varphi}{u_{i}} \left(\frac{\partial u_{i}}{\partial \varphi} \right)_{T} , \qquad (5)$$

and the second order derivative

$$w = \frac{e^{2}}{u_{1}} \left(\frac{\partial^{2} u_{1}}{\partial e^{2}} \right)_{T} , \qquad (6)$$

are listed in the short tables below. They are in agreement with the values of Abraham et al. at T = 0.1 K to within \pm .25% for u_G and \pm 1.5% for w.

TABLE 1	L. GI	RUNEISEN	CONSTANT	u.
---------	-------	----------	----------	----

T

emp.	(K)		Pressu	re (atm	1)			_
		0	5	10	15	20	25	
0. 0		8.083	6.803	6.054	5.549	5.179	4.893	
0.5		8.035	6.774	6.034	5.533	5.166	4.881	
1.0		7.657	6.540	5.865	5,401	5.057	4.788	

TABLE 2. SECOND ORDER DERIVATIVE (-) w

Temp.	(K)		Pressu	ire (atm	n)			
		0	5	10	15	20	25	1
0.0		2.843	2.608	2.461	2.356	2.276	2.212	
0.5		2.835	2.603	2.456	2.352	2.273	2.209	
1.0		2.767	2.557	2.421	2.324	2.249	2.188	

2. The Excitation Spectrum

(a) Parametrization of neutron data

Until about one year ago the best available representation of the excitation spectrum, especially under pressure, was the Landau approximation:

$$\in = u, p, \quad (p \to 0)$$
(7)

$$(\epsilon = \Delta + (p - p_0)^2 / 2\mu . \quad (p \rightarrow p_0) \quad (8)$$

In (7) and (8), p_0 and μ were considered functions of pressure, and Δ a function of pressure and temperature (see, for example, Donnelly, 1967, p. 213).

This situation was dramatically changed by the systematic studies of Dietrich, Huang, Graf & Passell (1972) at Brookhaven and Cowley & Woods (1971) at Chalk River. Donnelly (1972) and Brooks (1973) have found simple parametrizations of this data by considering \triangle and μ to be functions of ρ only at T = 0:

$$\Delta(\rho, 0)/k = (16.99 - 57.31\%)$$
 (9)

and

$$u(e,0) = (0.32 - 1.103 e) m_{4}.$$
⁽¹⁰⁾

They have attempted a representation at finite temperatures by additional terms:

$$\Delta (e,T)/k = \Delta (e, 0)/k - \frac{P_m}{P} T \left(1 - \frac{a N_r}{T} \right),$$
(11)
(a = 8.75 × 10⁻²³ cm³. K)

and

$$\mu(\rho,\tau) = \mu(\rho, \circ) \Delta(\rho,\tau) / \Delta(\rho, \circ).$$
⁽¹²⁾

Finally we have the relation of Dietrich et al. for p_0/\hbar :

$$p_0/h = 3.64 \ C^{1/3} \ A^{-1}$$
 (13)

If we wish to improve on the Landau approximation we need more experimental information. The maximum energy, ε_{max} , of single particle excitations near Q = p/ħ = 1.1 Å⁻¹ has recently been observed as a function of pressure by Passell et al. (1973). The position of ε_{max} in momentum space does not change noticably with pressure. The energy may be parametrized as

$$E_{max}/k = E_0 + E_1 Q + E_2 Q^2 + E_3 Q^3$$
, (14)

where

$$E_0 = -216.5672 \text{ K},$$

 $E_1 = 3998.6005 \text{ K gm}^{-1} \text{ cm}^3,$
 $E_2 = -23028.6027 \text{ K gm}^{-2} \text{ cm}^6,$
 $E_3 = 44199.7232 \text{ K gm}^{-3} \text{ cm}^9.$

It is tabulated in Table XVIII.

For momenta larger than p_0 , the slope of the spectrum approaches the velocity of sound, then bends over and goes to 2Δ for increasing momentum, finally terminating at p'. This behavior has been theoretically predicted by Pitaevskii (1959) to be

$$\epsilon(\mathbf{p}) = 2\Delta - \alpha \, \mathrm{exp} \left[-\alpha / (\mathbf{p}' - \mathbf{p}) \right] \tag{15}$$

where α and a are constants. Neutron measurements have not yet been made over the (P,T) plane which would allow extraction of α and a as a function of temperature and pressure. Fortunately, this region of phase space has little thermodynamic content, and it is sufficient for many purposes to locate the momentum p_c to the right of p_o at which $d\epsilon/dp$ from (8) reaches the velocity of sound, u_1 , and continue the dispersion curve as a straight line of slope u_1 :

$$\varepsilon(\mathbf{p}) = \mathbf{u}_{1}(\mathbf{p}-\mathbf{p}_{c}) + \varepsilon(\mathbf{p}_{c}), \qquad (16)$$

where

$$p_{c} = \mu u_{1} + p_{o}$$
 (17)

(b) A series representation of the excitation spectrum

We have found that the series $(p \leq p_c)$

$$\varepsilon(p) = u_1 p + a_3 p^3 + a_4 p^4 + a_5 p^5 + a_6 p^6 + a_7 p^7 + a_8 p^8, \qquad (18)$$

can be used to represent the neutron data up to $p = p_c$. We show in Fig. 4 the fit to the neutron data with equations (16)-(18).

Energy vs. wave number at T = 1.1 K, P = 0 atm given by (18). The dispersion curve is continued as a straight line after the roton group velocity reaches u₁. The points are from Cowley & Woods (1971); the error bar represents the minimum quoted error (+ .2 K), and is not associated with any particular data point.

The coefficients $a_3^{-a_8}$ are obtained by requiring that the curve meet the constraints discussed in section (a) above:

59

3. Thermodynamic Calculations from Model Dispersion Curves

(a) Thermodynamic quantities

Thermodynamic quantities have been obtained by numerical integration over the curve determined by (18) and (16) which <u>together</u> we refer to as the "Model Dispersion Curve" or MDC. All quantities, of course, make use of the equation of state. Integrations in Q-space are in increments of 0.003 Å^{-1} , and are performed by the simple Riemann sum method, which is sufficiently accurate compared with other methods, such as Simpson's rule in this problem. The range of integration is 0 to 3.0 Å⁻¹.

The Helmholtz free energy of the excitation gas is

$$F = -\frac{kT}{2\pi^{2}\rho} \int_{0}^{\infty} ln(1 + M(Q))Q^{2} dQ, \qquad (20)$$

where

$$m(q) = \begin{bmatrix} -e & -i \end{bmatrix}^{-1}$$
(21)

The <u>total</u> Helmholtz freeenergy of the liquid must include the sum of (20) and the ground state contribution $F_G(P,0)$ at T = 0. This can be determined easily from Eq. (1) by integrating the expression $dF_G = -PdV$; a similar integration will provide the ground state Gibbs free energy $d\Phi = VdP$. The results provide F_G and Φ_G at T = 0 to within an additive constant, L $(L = F_G(0,0) = \Phi_G(0,0)$, where L is the latent heat of vaporization extrapolated to zero temperature, and is approximately 14 cal/mole (from Keesom, 1942). The two ground state free energies are given as a function of pressure in Tables 3 and 4.

TABLE 3. Ground State Helmholtz Free Energy $\Delta F_{G} \equiv F_{G}(P,0) - F_{G}(0,0)$ (ergs·gm⁻¹)x 10⁻⁶

					Pr	essure (a	tm)				
	0	2.5	5	7.5	10	12.5	15	17.5	20	22.5	25
∆F _G	0	0.9297	3.3006	6.6760	10.8000	15.4987	20.6656	26.2145	32.0703	38.1851	47.5416

TABLE 4. Ground State Gibbs Free Energy $\Delta \Phi_{G} \equiv \Phi_{G}(P,0) - \Phi_{G}(0,0)$ (ergs·gm⁻¹)x 10⁻⁶

					Pres	sure (atm	1)				
	0	2.5	5	7.5	10	12.5	15	17.5	20	22.5	25
$^{\Delta\Phi}G$	0	68.823	136.064	201.680	266.018	329.191	391.477	452.937	513.532	573.393	632.2

The entropy is calculated from

$$S = \frac{k}{2\pi^{2}\rho} \int_{0}^{\infty} \left\{ \frac{\epsilon(Q)/kT}{e^{\epsilon(Q)/kT} - l} - ln(1 - e^{-\epsilon(Q)/kT}) \right\} Q^{2} dQ, \quad (22)$$

and the specific heat at constant pressure C_p is obtained from (22) by five point numerical differentiation with respect to temperature (cf. Bendt, Cowan & Yarnell, 1959).

The calculated entropy (Table VII) is in agreement with the data of Wiebes (1969) and Van den Meijdenberg et al. (1961) to within \pm 6% over the entire range of values calculated. The specific heat C_p (Table VIII) deviates from Wiebes's data at worst \pm 4% below 1.6 K, and a maximum of \pm 20% with the data of Lounasmaa & Kojo (1959) in the range 1.5 T<2K.

The specific heat at constant volume (Table IX) is obtained by calculating C_p/C_v from

$$\frac{C_{P}}{C_{V}} = \left[1 - \alpha_{P} T / (4.0026 C_{P} (\partial e/\partial P)_{T}) \right]^{-1}, \quad (23)$$

where α_p is calculated as discussed below, and $(\partial \rho / \partial P)_T$ comes from the equation of state. The term in α_p^2 is subject to an accumulation of errors and may be as much as 50% in error for T> 1.6 K.

The corrected velocity of sound (Table XI) is computed from

$$u_{i} = \left[\left(C_{P} / C_{v} \right) \left(\frac{\partial P}{\partial e} \right)_{T} \right]^{\frac{1}{2}}$$
(24)

The thermal expansion coefficient has proved to be one of the most difficult quantities to obtain. As we have mentioned, the equation of state is not accurate enough for direct use of (2). Therefore we have used the Maxwell relation $(\partial V/\partial T)_p = -(\partial S/\partial P)_T$, and computed α_p (Table V) from the entropy by five point differentiation. Experimental values of α_p differ from author to author, and estimation of the error α_p is difficult. Hence, perhaps the most informative statement that can be made concerning the accuracy of the calculated α_p is that the average absolute deviation from the data of Elwell & Meyer, Boghosian & Meyer, and Mills & Sydoriak is 18%.

(b) The thermal roton gap

If the procedures of the previous three sections are followed, the thermodynamic results do not agree with experiment at any temperatures above 1 K (cf. Dietrich et al., 1972, Fig. 17). The disagreement arises whenever the neutron linewidth becomes significant, and attempts by Dietrich to include corrections for linewidth were unsuccessful. Since there is no theory at present which resolves this difficulty and since there is an urgent need to use dispersion curves above 1 K, we have adjusted the roton energy gap so that the calculated entropy agrees with the experimental entropy. This new parameter is called the "thermal roton gap" Δ_t , and its usefulness can be judged by the fact that it allows us to estimate many quantities with reasonable accuracy and consistency. Quite clearly it should be an important goal in statistical mechanics to discover how to go from the neutron data to thermodynamics in the presence of broadened and temperature dependent energy levels.

The entropy used for the determination of \triangle_t was that of Wiebes (1969) and Van den Meijdenberg et al. (1961). The latter data had to be adjusted slightly to agree with the former at T = 1.6 K; the manner of doing so is discussed by Brooks (1973).

We find that in general Δ_t lies above Δ as determined from neutron scattering, and that Δ_t approaches Δ increasingly closely below 1.3 K, except at the vapor pressure. There we find $\Delta_t/k = 8.57$ K in contrast to neutron determinations of 8.65 - 8.68 K. The values of Δ_t obtained by computer search, parametrization and calculation are given in Table XIX. These values replace the neutron values of Eq. (11) and allow determination of the coefficients of the model dispersion curve at all temperatures and pressures. The results are tabulated in Table XXII, and yield $\varepsilon(Q)$ in degrees Kelvin for a_n in K·Åⁿ. These dispersion curves were used to calculate all tabulated properties related to the excitation spectrum. The dispersion curves automatically contain phonon dispersion, and are excellent fits to experimental thermodynamic and neutron data at low temperatures (Brooks, 1973, Brooks & Donnelly, 1973).

63

(c) <u>The excitation number densities</u>, and the normal and superfluid densities

The excitation density, which may be calculated by numerical integration, has been divided into a roton part N_r and a phonon part N_p by a perhaps arbitrary method, namely calling excitations with Q<1.1 Å⁻¹ phonons, and Q>1.1 Å⁻¹ rotons. The advantage is that this momentum division is pressure independent. Hence

$$N_{p} = \int_{0}^{1.1 R^{-1}} \mathcal{M}(Q) d\mathcal{T}, \qquad (25)$$

and

$$N_r = \int_{1}^{3A^{-1}} M(Q) dC. \qquad (26)$$

Tabulations of (25) and (26) appear in Tables XII and XIII.

The normal fluid density is computed from

$$P_{m} = \frac{t^{2}}{6\pi^{2}kT} \int_{0}^{\infty} \frac{e^{\epsilon(Q)/kT}}{\left(e^{\epsilon(Q)/kT} - 1\right)^{2}} Q^{4} dQ, \qquad (27)$$

and appears in Table XIV. From the equation of state one obtains $\rho_s = \rho - \rho_n$ and the ratios ρ_n / ρ and ρ_s / ρ , which appear in Tables XV, XIV, and XVII.

The values of ρ_n may be compared with torsional pendulum data of Romer & Duffy (1969) as shown in Fig. 5. The agreement is obviously not very good, though the general pressure and temperature dependence is satisfactory. Below 1.7 K, the calculated values of ρ_n agree with experimental

TEMPERATURE (K)

Figure 5.

The normal fluid fraction as a function of temperature for different pressures. The data are from Romer & Duffy (1969).

data (Romer & Duffy, 1969; Tough, McCormick & Dash, 1963) to within 10%. Cohen (1960) has indicated that there is no simple way to relate the normal fluid density and the neutron data, and that (27) may be incorrect. One should note parenthetically that calculating ρ_n/ρ from the Landau theory at the vapor pressure gives apparently better agreement with experiment. There is no reason to believe that this procedure is more reliable than the present one. (d) The velocity of second sound

In the limit $C_p/C_v \rightarrow 1$

$$u_2^2 = (\rho_s / \rho_n) (TS^2 / C_v).$$

It has recently been pointed out by Romer & Duffy (1969) that by replacing C_v by C_p , various errors due to thermal expansion cancel, and one obtains

$$u_2^2 = (\rho_s / \rho_n) (TS^2 / C_p)$$
 (28)

We have used (28) to compute u_2 in Table XVII. Comparison above 0.8 K with experiment is shown in Fig. 6. Below 1.7 K, the calculated u_2 is lower than the data of Maurer & Herlin by no more than 10%. Below 0.8 K the calculated velocity shows marked effects of phonon dispersion which have yet to be observed (Brooks, 1973).

The second sound velocity. Solid curves calculated from (28); data points, Maurer & Herlin (1951).

REFERENCES

- B.M. Abraham, Y. Eckstein, J.B. Ketterson, M. Kuchnir, and P.R. Roach, Phys. Rev. A 1, 250 (1970).
- K.R. Atkins and R.A. Stasior, Can. J. Phys. 31, 1156 (1953).
- P.J. Bendt, R.D. Cowan, and J.L. Yarnell, Phys. Rev. 113, 1386 (1959).
- C. Boghosian and H. Meyer, Phys. Rev. <u>152</u>, 200 (1966); errata appear in Phys. Rev. <u>164</u>, 205(E) (1967).
- J.S. Brooks, Ph.D. Thesis, University of Oregon (1973).
- J.S. Brooks and R.J. Donnelly, <u>Proc. 13th Int. Conf. Low Temp. Phys.</u>, Boulder, Colorado (to appear).
- J.S. Brooks and R.J. Donnelly, Phys. Lett. (to appear).
- M. Cohen, Phys. Rev. 118, 27 (1960).
- R.A. Cowley and A.D.B. Woods, Can. J. Phys. 49, 177 (1971).
- O.W. Dietrich, E.H. Graf, C.H. Huang, and L. Passell, Phys. Rev. A 5, 1377 (1972); (some unpublished data have been provided by Dietrich).
- R.J. Donnelly, <u>Experimental Superfluidity</u> (University of Chicago Press, Chicago, 1967).
- R. J. Donnelly, Phys. Lett. 39 A, 221 (1972).

E.L. Elwell and H. Meyer, Phys. Rev. 164, 245 (1967).

E.C. Kerr and R.D. Taylor, Ann. Phys. 26, 292 (1964).

W.H. Keesom, Helium (Elsevier, Amsterdam, 1942).

O.V. Lounasmaa and E.Kojo, Ann. Acad. Scient. Fennicae A. VI 36, (1959).

R.D. Maurer and M.A. Herlin, Phys. Rev. 81, 444 (1951).

R.L. Mills and S.G. Sydoriak, Ann. Phys. 34, 276 (1965).

L. Passell, V.J. Minkiewicz, H.B. Møller and E.H. Graf, to be published.

L.P. Pitaevskii, Zh. Eksperim. i Teor, Fiz. <u>36</u>, 1168 (1959); Sov. Phys. JETP 9, 830 (1959).

R.H. Romer and R.J. Duffy, Phys. Rev. 186, 255 (1969).

- J.T. Tough, W.D. McCormick, and J.G. Dash, Phys. Rev. 132, 2373 (1963).
- C.J.N. Van den Meijdenberg, K.W. Taconis, and R. De Bruyn Ouboter, Physica 27, 197 (1961).

J.H. Vignos and H.A. Fairbank, Phys. Rev. 147, 185 (1966).

- J. Wiebes, <u>Caloric Measurements of Liquid and Melting Helium Below 1.5 Kelvin</u> (Thesis, Kammerlingh Onnes Laboratory, Leiden, 1969).
- J. Wilks, <u>The Properties of Liquid and Solid Helium</u> (Oxford University Press, Oxford, 1967).