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INTRODUCTION

The Electron Microprobe has become an important tool in the quanti-
tative analysis of rocks and minerals in the relatively short time
since its conception in the late 1940's by Castaing and Guinier (1949).
The probe enables researchers to study in-situ mineral relations on a
micron scale. Whole rock analyses may also be done using fused rock
powders. The importance of the probe as an analytical tool requires
that critical examinations of data gathering and data reduction tech-
niques be made. These examinations entail the study of machine design,
operating conditions, standard preparation, and data reduction methods.

The purpose of this project has been to produce several "reliable"
standards of significance to silicate systems and to critically examine
one method of data reduction - the Bence-Albee method. Quantitative
microprobe analysis is a camparative technique (as are all X-ray
methods of analysis). X-ray intensities produced by known standards
are compared to X-ray intensities produced by the unknown. The ratio
of standard X-ray intensity for a particular element to X-ray intensity
for that samé element in the unknown is approximately equal to the
ratio of weight concentration of that element in the standard to
concentration in the unknown. If the standard is exactly the composi-
tion of the unknown, these ratios should be equal. Since this is

rarely the case, théoretical or empirical factors are employed to



correct the intensity ratio. To minimize the correction factor, the
standards should be Vclose in composition to the unknowns.

A four component system was chosen to study in this project -
Sio.,, A1203, Ca0 and MgO. The combination of these four oxides
camprises approximately 80% by weight of most rocks and constitutes a
significant portion of many minerals. Therefore, glasses in this four
conmponent system provide valuable microprobe standards for geologists.
The glass standards produced were used to refine the Bence-Albee data
reduction method. The Bence Albee technique employs empirical matrix
correction factors that are essentially weighted averages of binary
oxide correction factors. These factors reflect the effect of one
element or oxide upon the X-ray intensity of another element. Several
glasses within the four component system were used to re-determine
these correction factors. The following report describes the ana-
lytical inst.ﬁxnent used, the method of glass preparation, the Bence-
Albee method and the use of carefully prepared glasses to refine this
empirical data reduction method.



THE MICROPROBE

A basic appreciation of the instrument is pertinent to the under-
standing of standard selection and preparation, and data reduction
techniques. The electron microprobe consists principally, of an
electron source, a series of de-magnifying electro-magnetic lenses, a
viewing system 4 usually a polarizing and/or reflecting microscope,
electron detectors, X-ray detectors, and a means of converting X-ray
intensity (or electron signal) to a digital readout.

The electron beam colum consists of an electron source, lenses

4 torr to minimize

and sample stage sealed in a vacuum of less than 10
electron absorption and scattering by air. The electron source is a
hot filament, usually of tungsten wire about 100 microns in diameter.
The number of electrons emitted from the filament is proportional to
the amount of current flowing through the filament. The grid cap
(physically below the filament) is biased negatively with respect to
the filament causing the electrons to cross-over approximating focus.
The electrons are accelerated toward the anode by a potential of 0 to
30KV. Two electro-magnetic lenses - the condenser and objective lenses
are used to de-magnify the source image 100 to 1000 times, allowing a
"spot" of approximately 0.2-300 microns to be focused on the surface of
a sample. The sample is raised into optical focus by a mechanical

stage. The optical focal point and beam focal point are coincident.



Electrons incident on the sample excite X-rays of wavelengths
characteristic of the elements in the sample. These X-rays are
analyzed by wavelength spectrometers. Three wavelength spectrometers
are mounted on the ARL probe used in this project. The spectrometer
consists of a diffracting crystal and a sealed or flow proportional
counter. The crystal can be mechanically positioned such that specific
wavelengths are diffracted according to Bragg's Law:

nA = 2dsin®
where n is an integer, A = the wavelength of the X-ray photon, d = the
lattice spacing of the crystal, and 6 = the angle of incidence of the
X-rays on the crystal. The X-ray photons diffracted by the crystal are
collected by a gas proportional counter and converted to electrical
pulses. The probe uses both flow proportional and sealed proportional
counters. X-ray photons enter the counter through a thin detector
window of beryllium or mylar. The window must be thin enough to allow
X-rays through without significant absorption. For X-rays of wave-
length greater than three angstrams, windows must be so thin that they
are not gas tight. In this case, gas must constantly flow through the
counter. For X-rays less than three angstroms, a thicker window is
used; the counter is gas tight or sealed.

Each X-ray photon entering the counter produces a number of ion -
electron pairs of the gas (usually Xenon or Argon-methane) proportional
to the energy of the photon. The electrons produced are accelerated to
a central collection wire maintained at a positive potential of 1000 to

2000 volts. Each accelerated electron causes many other ionizations



(approx. 104 such events) so that many electrons strike the wire for

each entering photon. The collection of these electrons produces a
momentary drop in voltage. This drop and subsequent recovery in
voltage produces an electrical pulse. The pulses are amplified and
represented on a digital display. The characteristic X-ray intensity
(or number of photons) is proportional to the concentration of the
element in question. Therefore, the number of pulses per time period

is proportional to concentration.



STANDARD SELECTTION AND PREPARATION

Selection of Mixes

Standards used in microprobe analysis should closely approximate
the chemical composition of phases analyzed (the "unknowns"). Using a
standard that closely approximates the unknown minimizes the correction
factor required to convert X-ray intensity to concentration. After the
raw counts (measure of X-ray intensity) are corrected for background
and deadtime, the ratio of the characteristic X-ray intensity produced
by the element being analyzed in the unknown to that X-ray intensity
measured for the standard is multiplied by a correction factor, f.
That is:

@ Y- oD

where CE equals the weight concentration of element n in the unknown,
Cl; equals the weight concentration of element n in the standard, kﬁ
equals the characteristic X-ray intensity produced by n in the unknown,
k: equals the characteristic X-ray intensity produced by element n in
the standard, and f is the correction factor. As the composition of
the standard approaches the composition of the unknown, £ approaches
one. For example, is Cr:uSiO3 (wollastonite) is the unknown, analyzed
for Si, three possible Si standards result in the following correction

factors (ZAF correction for Si):



Standard
Si (metal)
(Ca,Mg) Si0,

CaSi('.)3

£
0.8817
0.9348
1.0000

A secornd example, when Fezsio4 (fayalite) is the unknown being analyzed

for Fe, the correction factors are (Bence-Albee correction for FeO) :

Standard
Fe ZS i0 4
FeTJ.O3

FeO

£
1.00
1.14

1.21

Since silicate rocks and minerals are an integral part of geologic

study, microprobe standards that closely approximate the major element

campositions of rocks: and minerals are important to geologists. For

this reason, glasses in the system SiO

- Al O, - Ca0O - MgO were pre-

&9

pared for microprobe standards. Seventy-five to 85% by weight of most

igneous rocks and many minerals lie within this system. The ten mixes

chosen for preparation are plotted with representative rock and mineral

campositions in the quaternary system on Figure 1 and listed in Table 1.

These mixes were chosen to encompass the greatest volume within the

quaternary system limited by stability and high melting temperatures.

Pre

The composition of a standard should be well known, i.e., more

exactly than can be determined by the microprobe. Most other methods

of major element analysis are no more accurate than microprobe analysis.
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Pyrope
Grossular
Anorthite
Diopside

Si0;
Weight %

Mgy 4155130,
CozAl, 530,
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(Mg, 5i), 5i,0¢
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AthruJ - Synthetic Glosses

Granodiorite
Andesite
Bosalt
Peridotite

Figure 1. Quaternary Diagram: SiO%l- Al 0, - Ca0 - MgO including the
ive rgc)%

ten mixes and representa

and mineral compositions.



Table 1.

Results of Analysis of Ten Mixes at 15 KV by the Bence-Albee Method

(in weight percent)

Sio, Al,03 cao MgO
Mix
Weighed-in Probe Weighed-in ©Probe Weighed-in Probe Weighed-in Probe B-A Total

Mix C 52,1275 — 13.5750 16.9639 S 16.9336 —

Mix A 49.7197 49.58 16.0740 36.06 " 23,1517 23.20 11.0547 11.04 99.87
Mix B 48.9858 48.88 16.0520 16.04 20.9739 21.08 13.9883 13.95 99.95
Mix D 45.0723 45.08 20.9604 20.96 15.9953 16.09 17.9720 18501 100.14
Mix E 79.9712 77.42 8.9880 9.34 5.0432 5.04 59976 5.91 97.71
Mix E* 80.27 9.34 5.04 5.91 100.56
Mix F 52.0609 51.84 30.9256 30..57 6.9410 7.00 10.0725 10.06 99.46
Mix G 61.1182 60.69 3.3063 3.30 2.8875 2.96 32.6880 32.72 99.74
Mix H 30.2072 31.30 41 .8957 41.79 21.9741 22.01 5.2230 5.18 100.28
Mix I 52.9524 52.8L 2.0056 2,05 26.0093 26.07 19.0327 18+99 99.9]
Mix J 42.9757 42.95 19.0180 19210 36.9943 36.78 1.0120 0.99 99.82

*Mix E analyzed for Si using Quartz (SiOz) as a standard.
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Therefore, it was decided to use weighed-in concentrations of oxides as
the "true" composition of the synthetic standards prepared for this
project.

Synthetic CaO crystals from Atomergic Chemetals, synthetic peri-
clase (MgO) from Materials Research Corp., synthetic alumina (A1203;
sapphire crackle) from Union Carbide and natural quartz (Sioz) from
Ward's Scientific were used as starting materials. All of the oxides
were of at least 99;9% purity. The four oxides were analyzed on the
microprobe for Ca, Mg, Al and Si. Only MgO showed slightly higher than
background counts of a contaminating element - Ca. The manufacturer's
analysis of the MgO included 300ppm Ca. Oxide powders were purposely
avoided as starting materilas for the synthetic glasses because they
absorb water (as much as a percent by weight when wéighing out several
gram (1-5) quantities of MgO). Several steps were taken to avoid this
problem. Coarse crystalline oxides were used as starting materials.
Obviously, since coarse materials have less surface area per mass than
powders, there was less absorption of water. MgO and CaO (CaO is
unstable in air) were stored in a vacuum dessicator under an argon
atmosphere. ILarge chunks of these two oxides were broken in a hardened
steel cylinder into millimeter (1-3mm) size pieces just before weighing.
The A1203 was particularly difficult to break up into small pieces. It
was coarse ground in a tungsten carbide ball mill to approximately one
mm size. The A1203 picked up about one percent by weight tungsten
during grinding. The tungsten was removed by soaking the contaminated

1%.1.203 in aqua regia for 24 hours, followed by rinsing in de-ionized
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water. The AL,0, was then dried at 200-300°C for 24 hours and stored

in a dessicator (Ca504 dessicant) until used. The quartz was broken in
an iron mortar and cleaned with concentrated HCl, rinsed with de-ionized
water, dried for 24 hours at 200-300°C and stored with the 21,0, until
used. The balance chamber was dessicated before using. CaO, then MgO
were weighed out. Each was exposed to the air for the time it took to
break the material and weigh it - several minutes. CaO exhibited a

slight weight gain during weighing (on the order of 10_6

grams). The
other three oxides exhibited no such gain.

The third factor in accurate weighing was the accuracy and
precision of the balance used. A Mettler, M5, microbalance (sensitiv-
ity to 1076 grams) was used. The balance was in a temperature and
humidity controlled room. The zero of the balance was checked repeat-
edly during weighing and did not appear to drift. Two to three mixes
were weighed out in a single sitting. The total weighing time was
under two hours for each group so possible barometric effects were
considered negligible. The balance was repeatable to 1x10 > grams.
Mixes weighed either two or five grams. These weights were selected
to conserve input materials while minimizing possible weighing errors.
No single oxide in any mix weighed less than 0.10 grams. Therefore,
the possible error due to weighing in the weight percent of any one
oxide in the five gram mixes was no more than 2x10_4; the possible
error in the weight percent of any one oxide in the two gram mixes was

no more than 5x107%. The weighing errors were well below the limit of

detectability of the microprobe.
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The procedure outlined below was followed, in general, in the
preparation of each of the glasses. After weighing, the coarse mixture
was stirred slightly, poured into a platinum crucible and fused in a
tungsten resistance (Centorr) furnace at 1550° to 1650°C for two to
B b A3 TN s e ok approximately 100-200°C above
the melting temperature to decrease viscosity of the liquid and promote
mixing. If the mix appeared glassy after the first run, it was cracked
out of the crucible into mm size pieces and re-melted under the same
conditions; then cracked and melted for a third time. If the mix did
not appear glassy after the first run, it was broken and re-melted until
it did appear glassy and then melted two more times. Details of prepar-

ation of each standard glass are given in Appendix 1.

Analysis of Standards

The ten mixes were analyzed by microprobe at 15KV accelerating
potential and 50 nanoamps sample current on brass. Mix C, as an inter-
mediate composition within the volume encompassing the ten mixes in the
quaternary system, was the natural choice for a common standard. The
data were reduced by the Bence-Albee method using Albee and Ray's
correction factors (1970). See Table 1 for a comparison of the
weighed-in and analyzed compositions.

The microprobe analyzes a small (on the order of several tens of
cubic microns) volume of a polished sample. Since the microprobe
analyzes only a small volume of a standard, every volume of the standard
must be alike in composition. That is, the standard must satisfy the
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criteria of being homogeneous. To check for hamogeneity, twenty pieces
of each glass (each piece approx lmm across) were selected at random,
mounted and polished for microprobe analysis. Four spots on each piece
of glass were analyzed. The glasses were analyzed for homogeneity at
15KV accelerating potential, 50 nanoamps sample current on brass, and
an approximately 16 micron fluorescent spot size (measured on anorthite
glass). At the beginning of each run, beam current was integrated over
a ten second interval. The counting interval for the run was determined
by this preset integrated value of beam current. The time (usually
about 10 seconds) per counting interval was recorded; the calculated
drift never exceeded two percent.

It follows fram counting statistics that a frequency distribution
of a set of counts (in this case, approx. 80 counts) of a homogeneous
sanmple will follow a Poisson distribution. €onsequently, if it can be
shown that the variance for any element (set of counts) is strictly due
to counting statistics, the glass with respect to that element must be
homogeneous. For example, Figure 2 illustrates Poisson distributions
calculated for the averages of all elements in Mix B. Intuitively, one
might expect that a ratio of the calculated standard deviation (s) to
the Poisson standard deviation for the same arithmetic mean (o) would
be quite close to one for a perfectly homogeneous sample. This ratio
is camonly termed the "sigma ratio". Sigma ratios were calculated for
each element in the ten glasses and are listed in Table 2. Generally,

it is accepted that a sigma value less than 1.5 indicates homogeneity.
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A more quantitative statement about hamogoneity can be obtained
using the xz (chi-s._quare) statistic which provides a method of comparing
a set of measurements with its supposed parent population when the
variance of the measured set (sz) and the variance of the assumed parent
population (0°) are known. The ratio, (s2)/(02) = x2, is expected to
follow the reduced chi-square probability distribution (P) whenever the
sample set (s2) is really a part of the assumed parent (02). A comparisan
of x2 vs. P for various hypothesized levels of inhamogeneity leads to a
statement about probable upper limits of inhomogeneity. The approach is
most easily explained in terms of an illustrative example.

In Table 2a we present a set of one hundred microprobe analyses
taken randomly over a "perfectly homogeneous" sample. To the extent that
machine variables can be neglected we would expect the frequency distribu-
tion to resemble a Gaussian with y = N and 02 =N (c stands for x-ray
"counting"). The histogram shown in Fig. 3a confirms these expectations,
i.e., the visual agreement is good. For the set of 100 measurements

52 = 10,666 while for the assumed Gaussian population 02 = 9,000 and

x2 = 1.185. Only one degree of freedam is needed to specify the Gaussian,

( N), therefore we lock up the chi-square probabilij:y distribution for
100-1 = 99 degrees of freedan and find P = 0.10, i.e., the chances are

1 in 10 that if our set of 100 counts came from a homogeneous sample with
average concentration indicated by N, the cbserved s2 would be 10,666 or
larger. This is a reasonable chance, and we are led to say samething
like, "it is not at all unlikely that this sample was perfectly homo-

geneous".
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Had we not known "a priori" that the sample was homogeneous we might
reasonably have assumed a certain possible level of inhomogeneity, i.e.,
assumed that the total variance was due to counting statistics plus ci,
the variance contributed by inhomogeneity. Had we assumed a & 1% level
of inhomogeneity:

o; = 0.01(N) ; 02 = 9,000 + ( (0.01) (9,000) )2 = 17,100

xz = 0.624 ; P > 0.995

We are led to conclude that there is very little chance that the sample
wasa'sinl‘mmg’eneousastl%. This sets an upper limit on the probable
inhamogeneity, but we might well wonder if we have not been too cautious
and if the probable upper limits of inhamogeneity have not been set too
high. The resolution of that question is to same extent arbitrary and
will depend on how conservative we wish to be. For example, it would
be quite reasonable to set P = 0.50 to cbtain the probable limits on
inhamogeneity or we could set P = 0.995 if we wanted to be very very
cautious. In the example we have been considering, these two approaches
would yield the following upper limits on inhomogeneity:

P=0.50; x°=0.993 = 10,666/(9,000 + ciz) ; 0, = 0.46%

P=0.995; x°=0.672 = 10,660/ (9,000 + cf) ; 0y = 0.923

We now consider a set of one hundred microprobe analyses taken

randomly over a relatively inhamogeneous sample (Table 2b). In Fig. 3b
we compare the frequency distribution (N = 9000 and 52 = 248,293) of

this set of measurements with two Gaussian distributions. Both of these
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Gaussians have a mean, y = N = 9,000. One Gaussian (02——~ oz = 9,000) is

what we would expect from a perfectly homogeneous sample as in the
previous example. It clearly does not correspond to our data set. The
other Gaussian (02 = 02 + ciz, where o, = (0.05) (9,000) corresponds to

vﬂ:atwemighte}@ectfmnaninhamgeneoussanplevhereci=i-5.0%. In
this case the visual agreement is good. Our test should confirm this.

P =0.50; x2 = 0.993 = 248,293/(9,000 + ai); o; = 5.46%

P = 0.995; x° = 0.672 = 248,293/(9,000 + 02); O, = 6.67%

In'I'ableZwelistci values (in % for P = 0.50) for each of the
elements in the synthesized standards. These figures are to be
interpreted as reasonable limits to the standard deviation fram the

average weight concentration for each element.



Table 2.
Mix and
Element
Mix A

Si

Al

Ca

Mg

Mix B

gope £ sope B sepe B Fepe B sope

Homogeneity Data for the Ten Glasses

d.f.

9
79

79
79
79
79

79

19%
79

79

70
80

79

79
79

63
67
67
67

N

16614

7989
25912
31259

16374

7727
23337
39209

17378

6575
18023
47772

15059
10346
18131
53525

28464
5013
5678

17920

16814
15989

7857
30196

27602

5170
32900
35177

17159

8598
26686
55344

10872

4323
15917
57054

18369
10704
26627
71623

29167
5654
6319

32113

18093
25565

8889
58355

Sigma
Ratio

18



Table 2. continued

Mix and

o= 2 Sigma
El t a.f. N s Ratio o (%)
Mix G
Si 74 20846 27812 1.16 0.41
Al 75 1520 1118 0.85 *0.00"
Ca 75 3215 4558 .22 1.16
Mg 74 95882 147094 1.15 0.24
Mix H
Si 76 9774 9553 1.03 "0.00"
Al 75 21487 22623 1.09 0.17
Ca 75 24840 39490 1.21 0.49
Mg 75 15165 14719 0.95 "0.00"
Mix I
Si 20* 18090 26507 3:15 0.53
Al 83 967 733 0.87 "0.00"
Ca 20* 28047 63717 1.48 0.69
Mg 83 26494 34395 113 0.34
Mix J
Si 20* 14619 21372 0.96 0.59
Al 84 9615 20801 1.39 1.11
Ca 20* 40117 579317 1.17 0.35
Mg 83 3170 40 0.99 "0.00"

*Glasses I, J and C were analyzed in cne experiment; the remaining
glasses were analyzed in a second experiment. There appeared to be an
analytical problem with the PET crystal on spectrameter one - cause
unknown; therefore, these three glasses were re-analyzed during the
second experiment (LiF crystal was used instead of PET crystal in the
second experiment). Only one spot on each piece of glass (i.e., approx.
20 per mix) was analyzed. A dramatic improvement in the counting
statistics for Ca was cbserved. This improvement was also noticed for
Si in Mixes I and J. The counting statistics for Si in C did not change.
This improvement was also noticed in subseguent analyses of these three
glasses.



Table Z2a.
counting interval)
No. Counts No. Counts
1 8868 26 8805
2 9000 27 9003
3 9179 28 8917
4 9099 29 9160
5 8995 30 8987
6 9020 31 9017
7 8985 32 8926
8 9055 33 9021
9 8906 34 8891
10 9112 35 9125
1 9028 36 9030
12 8946 37 8990
13 9015 38 8969
14 9090 39 9041
15 8945 40 8943
16 9115 41 9096
17 8818 42 8835
18 9237 43 9035
19 8983 44 8887
20 9070 45 9039
21 8977 46 8963
22 9120 47 9078
23 8922 48 9005
24 9186 49 8850
25 8924 50 8720

m.

51
52
53
54
55
56
57

58

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Counts

9011
8940
9050
8914
9038
8875
8980
9225
9079
8967
8949
8979
8896
9215
8875
9018
8955
9065
8860
9060
9100
8960
9058

- 9083

8961

One Hundred Replicate Measurements of Counts on One Spot
(or over a Perfectly Hamogeneous Specimen).

(100 second
No. Counts
76 8936
77 9066
78 9007
79 8930
80 8565
81 9040
82 8973
83 9107
84 9263
85 8903
86 5057
87 8910
88 9194
89 8867
90 9071
91 8990
92 8997
93 9024
94 9141
95 8975
96 9032
97 8767
98 9043
99 8999
100 9170
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Table 2a.

N = 9000

continued

Intervals Prob. x 100
9000 -‘8981“+“ (10) 7.93 (7)
8981 - 8962 ( 8) 7.62 (8)
8962 - 8943 ( 6) 7.04 (7)
8943 - 8924 ( 5) 6.24 (6)
8924 - 8905 ( 6) 5.32 (4)
8905 - 8886 ( 4) 4.36 (5)
8886 — 8867 ( 3) 3.43 (3)
8867 — 8848 ( 3) 2.60 (1)
8848 - 8829 (1) 1.89 (2)
8829 - 8810 (1) 1.32 (2)
8810 - 8791 (1) 0.89 (1)
8791 - 8772 ( 0) 0.57 (2)
8772 - 8753 ( 1) 0.36 (1)
8753 - 8734 (0) 0.21 (1)
8734 - 8715 (1) 0.12 (0)

S

5

@

&
B g E
éi : éi

w0

'—l.
5 &

o= 95 .20 = 19

Intervals
9000"+"- 9019
9019 -~ 9038
9038 - 9057
9057 - 9076
9076 - 9095
9095 - 9114
9114 - 9133
9133 - — 8152
9152 - - 9171
9171 - 9190
9190 - 9209
9209 - 9228
9228 - 9247
9247 - 9266
9266 - 9285

21



Table 2b.
No. Counts
1 10,312
2 8372
3 9384
4 8759
3 9280
6 7999
7 9780
8 9551
9 7899
10 9065
11 8180
12 9181
13 8476
14 9043
15 8729
16 9420
17 8302
18 8621
19 9030
20 8808
21 9094
22 8592
23 8722
24 8097
25 9007

100 Analysis Points Over an Inhamogeneous Sample

(100 second intervals)

No.

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Counts
9199
8845
9357
8739
9642
9072
9056
8451
9131
9290
8820
9300
8850

10,160
9388
8923
9094
8840
9088
8835
9274
8800
8910
8915
7950

No.
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Counts

9125
8537
9311
8982
9475
9160
7752
9220
8609
8825
3998
8559
8689
9062
8127
9856
8976
9100
8492
8989
9707
8670
8680
8709
9146

No.
76
77
78
79
80
81
82
83
84
85
86
87
88
89
20
21
22
93
94
95
96
97
98
99
100

22°

Counts

9457
8799
9578
9732
8700
9410
9187
9226
7867
9370
8437
9650
8976
9588
8830
8509
9497
8900
8381
9255
8759
9015
8259
9091
9481



Table 2b. continued

Intervals Prob. x 100 Intervals
9000 - 8908"+"  (7) 7.93 (10)  9000"+"- 9092
8908 - 8816 (8) 7.62 (8) 9092 - 9184
8816 - 8724 (7) 7.04 (6) 9184 ~- 9276
8724 - 8632 (6) 6.24 (5) 9276 ~- 9368
8632 - 8540 (4) 5.32 (6) 9368 ~- 9460
8540 - 8448 (5) 4.36 (4) 9460 =~ 9552
8448 - 8356 (6) 3.43 (3) 9552 ~- 9644
8356 - 8264 (1) 2.60 (3) 9644 ~- 9736
8264 - 8172 (2) 1.89 (1) 973 - 9828
8172 - 8080 (2) 1.32 (1) 9828 ~- 9920
8080 - 7988 (1) 0.89 (1) 9920 - 10012
7988 - 7896 (2) 0.57 (0) 10012 - 10104
7896 - 7804 (1) 0.36 (1) 10104 - 10196
7804 - 7712 (1) 0.21 (0) 10196 - 10288
7712 - 7620 0) 0.12 (1) 10288 - 10380

2
> 8
N = 9000; o2 = 9000 + o> = 9000 + 202,500 = 211,500

"

460; o__ = 95; o, 450 (5% inhamogeneity); .20 = 92.



=

=
2 - 0E6
g" -

o
3 oo b - 9926
$88, & |
= QS Q
© O O O - = °
z L1 ~l| S ”y ‘l;, & — 9226
= IR % !
z 5 s EEE&'
a 2 - 0616
:u §

- 888
[ ]
-
]
- 0188
L]
L
I
L]
L]
- bel8
[
- 9698
| o— T T ] L T T T L) ; (e T r 1 L ] L T v
o (] @ ~ (7] 's} < ) ~N - o

AON3ND34d

IN-NI1/O

3

Histogram of Data taken over "Perfectly Homogeneous Sample".

Figure 3a.

24



FREQUENCY

“COUNTING " GAUSSIAN

= 9000
0.2 = 000
0 = 95

"ACTUAL" GAUSSIAN

= 8000
0,2 = 211,500
Op = 460
2
S=248,293
S =498
®
®
. I:l
®
°
- .
T 1 T §F v § 1 T 1] 1 1 v L3 1 ¥  § L] T L] 1 L | |lél&
o~ 0 O < @ o~ © o o+ ® o © (o} < - N
2 = 8 & £ & 5.2 & 9 BB §F £ @ ¥ W
~ ~ [++] w o W w (o] (2] [+ }] [+)] (o] o] o (o] o
2 | 0 | 2 3 IN-NI/O

Figure 3b. Histogram of Data taken over "Inhomogeneous Sample".

14



26

CORRECTION TECHNIQUES FOR MICROPROBE DATA REDUCTION

There are two approaches to reducing raw microprobe data. Both
methods involve multiplying the intensity ratio by a correction factor
to obtain the concentration ratio:

(1) . CHCE , B x £.
The difference between the two approaches is the way in which f is
obtained. The "ZAF" technique uses theoretically derived equations to
produce £ and the empirical methods use empirically derived correction

factors or calibration curves.

ZAF Correction Technique

The ZAF technique corrects for three types of effects: the atomic
mmber effect (Z), the absorption effect (A), and the secondary fluores-
cence effect (F). The product of these three factors is the total
correction factor, T. The set of equations as recommended by Yakowitz
(1975) was employed in this project.

The atomic number effect depends upon two quantities - the electron
stopping power and the electron backscattering. Electron backscattering
occurs when an incident electron is elastically deflected (scattered) in
passing close to an atomic nucleus. The electron leaves the sample

without generating X-rays. The backscatter factor is dependent upon the
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critical excitation potential of the element being analyzed, the accel-
erating potential, the ataomic number of each element in the matrix, and
the weight fraction of each element. There is a given probability of
ionization (and subsequent X-ray generation) by an electron traveling a
given distance through the sample. This probability is roughly propor-
tional to the distance the electron travels in a material before its
energy falls below the critical excitation level of the element being
analyzed. This distance is determined by the stopping power of a
sanple. The stopping power factor is dependent upon the critical
excitation energy of the analyzed element, accelerating potential,
atomic number of each of the matrix elements in the sample, atomic
weight of those elements and their weight fractions in the sample. The
quotient of the stopping power and the electron backscattering
quantities (stopping power/backscattering) equals the atomic number
correction (Z).

The second correction is the absorption correction (A). Due to
absorption, the intensity of electron excited X-rays emerging from the
sample is less than the intensity produced by incident electrons.
Incident electrons penetrate a sample and generate characteristic X-rays
below the surface of the sample. As X-rays pass through the sample,
some of the X-ray photon energy is expended in the ionization of inner
atomic shells and in other processes. The amount of absorption of
energy depends upon the thickness through which the X-ray travels and
the mass absorption coefficient of the sample. The total absorption is
integrated over an infinite volume. This integral depends on the mass
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absorption coefficient, the cosecant of the take-off angle (the angle
between the sample surface and the X-ray path to the spectrometer) and
the distribution of X-ray production with depth in the sample. This
distribution depends upon the average atomic number, the atomic weights
of the constituent elements, accelerating potential and the critical
excitation potential of the analyzed element.

The third correction is for secondary fluorescence (F). Incident
electrons may excite characteristic X-rays that are higher in energy
than the absorption edge of the element being analyzed. These energetic
X-rays may excite X-rays characteristic of the element being analyzed.
The X-ray intensity produced by that element is increased and the
apparent concentration of that element is increased. The magnitude of
the fluorescence correction is calculated via a complex equation
depending primarily on the weight concentrations of the exciting
elements in the matrix and the fluorescent yields of those elements.
Fluorescence also depends upon atomic number, accelerating potential,
atomic weight, critical excitation potential of the analyzed element
and the mass absorption coefficients for the matrix elements.

The three corrections - Z, A and F - are made for the standard and
for the unknown. Since the concentrations of the elements in the
unknown are not known, these concentrations are first approximated by
the X-ray intensities measured by the microprobe. The elemental compo-
sition of the unknown is calculated using the resulting correction
factors. For element n in an unknown:

(la)  C/C = (ki/k2) X ((2, XA F )/ (2 3AF)).
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This second estimate of the concentration of element n in the unknown is
used to re-calculate the correction factor for the unknown. This
process is repeated for each element in the unknown until the results
converge. The ZAF correction process (abstracted from a program written
for a 9830 Hewlett Packard computer) is shown in detail in Appendix 2
using a pure element standard. Whether done by hand or by computer,
this method can be complex and time consuming for multicomponent
systems.

Enmpirical Correction Techniques

There are two empirical approaches to data reduction, calibration
curves and the use of empirical correlation coefficients. The calibra-
tion curve method involves a series of standards close in composition to
the unknown to be analyzed. X-ray intensities of the elements of
interest are measured for each standard. Curves of X-ray intensity
versus elemental weight concentrations are plotted and the unknown
concentrations are determined from these curves. When dealing with
complex silicates, this method can become extremely complicated due to
the potentially large number of independently variable concentrations.
The second empirical approach employs the empirical correction factor
or "correlation coefficient". These coefficients may be produced by
the solution of a series of linear equations and applied to a wide
variety of campositions.

Empirical correlation coefficients have been used to reduce X-ray

fluorescence data since the mid-1950's. Ziebold and Ogilvie (1964)
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developed an empirical equation for the calculation of chemical compo-
sitions from probe analyses. Using binary metal alloys, they found
that the plots of concentration/intensity versus concentration of an
element were almost linear (the straight line fit was within the
variance of the individual points). They produced the straight line
function:

(2) €0 /KD) = ay + (1=ad )xCh
where 2

ab
binary alloy ab to the weight fraction of element a in pure a; k:b/k:

equals the ratio of the weight fraction of element a in the

equals the ratio of the X-ray intensity of a characteristic line
produced by element a in the alloy to that intensity produced by

P : ; S .
element a in the pure material and a is the limit of C:b.(kab/ka) as

b

element a in binary mix ab respectively. a:b is a measure of the effect

approaches zero. The superscript a and the subscript ab indicate

of element b in the binary mix upon the X-ray intensity produced by a.
This correction factor may be related to the theoretical correction
factor. If a>l, then absorption is important. If a<l, then secondary
fluorescence is important. There is no theoretical basis for this
approach; the equation merely fits the observed data.

Ziebold and Ogilvie (1964) extended this empirical approach to
multicomponent systems. Suppose one has determined a:b and a:C in the
respective binary systems. Consider a ternary system, abc. Extending

Equation (2) for the ternary case:

IR —a
() CQ g /) =T + (1G5 )xCG
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where

@) B =+ xS /(D ).
The ternary correlation coefficient is the weighted average of the
binary correlation coefficients. :

Bence and Albee (1968) extended the correlation coefficient as
suggested by Ziebold and Ogilvie to the use of oxide rather than element
components and then to multicomponent oxide systems. Equations (2), (3)
and (4) are applied to oxide systems by the following: cgm becomes the

weight concentration of the oxide of n in the oxide system nO+mD; o

nm
becames the effect of oxide m in the oxide system nO+mO upon the
intensity of characteristic X-rays produced by element n; kg becomes
the intensity of characteristic X-rays produced by element n in the
pure oxide of n; and k?m becames the intensity of characteristic X-rays

produced by element n in nO+nO.

Calculation of Alpha Factors

Bence and Albee (1968), and Albee and Ray (1970) have determined
alpha factors for many oxide pairs. In a few instances, the alpha
factors were determined directly by measuring X-ray intensities in
binary oxide systems and calculating alpha factors from Equation (2).
Many of these alpha factors, however, were indirectly determined. They
were calculated using the theoretical correction factor approach
mentioned previously. For such cases, the so-called empirical correc-

tion factor approach is merely a mathematical approximation of the
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theoretical approach. That is, theoretically derived binary alpha
factors are linearly combined to produce an "empirical" correction
factor. These factors are not independent of the many approximations
and simplifications inherent in the theoretical method. Obviously, it
is desirable to empirically produce a set of alpha factors independent
of the complex theoretical formulae.
A set of alpha factors may be simply calculated from empirical data.

Re-arranging Equation (3) (all of the following are for oxides):

(3)  Corle/ky) = (@5 x(1-c)) + ¢
where E:u is the same as E:bc except u represents any multicomponent
oxide system including aO. aZu is the weighted average of the indi-
vidual alpha factors excluding the factor a:a:

(5) G, = n;ﬁ(cg x o )/ (1-CY) -
Combining Equations (3) and (5):

© D - ke o ol ]
a:a is defined as being equivalent to one so it may be included in
Equation (6):

M D = ek ek ¢ S+ e,
The summation on the right hand side of Equation (7) is equivalent to
beta (B, see Bence and Albee, 1968). Notice that beta is not equiva-
lent to E‘:u. Consider, for example, a quaternary oxide system with

oxides 1, 2, 3 and 4; element 1 is being analyzed:
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® bk =2 eyc) = 8.

For a glass of known composition, C1.11' C121’ Ci and Cﬁ are known and
given the pure oxide of 1, (ki/ki’) may be measured. Since ail is
equivalent to one, there are three unknowns in this equation. Given at
least three different glasses within this system, the set of resulting
equations may be solved for the three alpha factors. This four
camponent system includes 16 alpha factors, four of which are equal to
one. Therefore, a total of twelve alpha factors can be produced given
three glasses and the four oxides within a four component system. If
more than three glasses are used, the alpha factors may be calculated
using the linear regression method or a least squares fit.

The four component oxide system within which the glass standards
were produced closely approximates the compositions of many rocks and
minerals. Therefore, alpha factors involving the interrelationships of
Sioz, A1203, Ca0 and MgO are useful to geologists in the reduction of
microprobe data. The second section of this project was devoted to the
calculation of the twelve alpha factors within this system.

The first requirement in calculating the twelve alpha factors was
to have three or more homogeneous mixes of well known camposition from
which the Si, Al, Ca and Mg X-ray intensities could be measured. The
second was to have the end member oxides in a form that could also be

analyzed by the microprobe. The ratio:
a_  .a,a
Ta = Kk

where kz equals the characteristic X-ray intensity produced by element
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ainam.i.xa.rx:lk:equalstheintensityproducedbyelarentainthe
pure oxide of a, could then be measured and with the compositions of

the mixes be used to form a series of equations:

/Iy = o wag Cr ¢ o O + a2ch
CaZ/I‘;l = u:acg s a:bcg + agccg - a:.d 5
2 e 1 | a [ - gl a
CY/I3 = 03,5 + 03, C3 + of 5 + 02y

where each equation represents a different mix (numbered subscripts;
see Appendix 3) and the letters stand for the four elements (or oxides).
The last requirement was to have a method of solving the set of linear

equations.
Experimental Procedure

The ten standard glasses produced for the first half of this
project filled the first requirement. They had been proven hamogeneous,
their compositions were known more exactly than could be analyzed by the
probe. Two pieces of each glass, about two-three mm across, were
mounted in one polished section and analyzed. The natural quartz,
synthetic periclase and synthetic alumina used as starting materials for
the glasses were used to obtain kﬁ values. The synthetic, crystalline
Ca0 presented a problem in mounting, polishing and analyzing. CaO is
unstable in the air. It reacts with H,0 to form Ca(OH)2 and with o,

to form Cacx)3. The CaO could have became contaminated to an unknown
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degree during polishing and handling. Also, the stability of CaO under

the electron beam was poorly known. Therefore, an indirect method of
Ca

kCaO
Iceland Spar obtained fram the University of Oregon, Geology Department

obtaining was followed. Synthetic CaF2 and natural calcite (clear
mineral collection) were mounted with a piece of the Ca0. The surfaces
of the crystals were sealed in epoxy until polishing. All the polishing
was done under oil. The mount was cleaned between polishing steps in
xylene and transferred to the carbon coater immediately upon completion
of polishing and placed under a vacuum until analysis. A piece of the
were also included in the mount with the MgO and

CaF, and the CaCO

2 3
quartz (A1203 mounted separately due to extreme hardness). The CaO,

CaF, and CaCO, were analyzed at 15KV accelerating potential and 50

3
nanoamps sample current on brass. The ratios - kcc:szkgo and
kcc:cn',v/kchO - were measured. These ratios are not quite equal to the
ratios - Cccze/Cc;O and CéCO3/CCC§O - respectively. The Bence-Albee
method predicts a small correction, B (Bx"k" ratio = "C" ratio). This
correction is 0.971 for Ca in Car, and 1.004 for Ca in CaCo,. The
theoretical method (Appendix 2) produces small but different correc—
tions - 0.998 for Ca in CaF, and 1.051 for Ca in CaCO,. None of these
corrections are the same as the empirical corrections produced by the
experiment outlined above. The values of the concentration ratios and

the observed intensity ratios are:

ca LoE ca ,Ca _
Coar/ oo = 0-718 Coac0s/Sono = 0+560
K2 Al _ .94 K2 ALa _ g.537

CaFy’ "Ca0 CaC03
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That is, these empirically produced corrections are 0.969 for Ca in

CaF, and 1.043 for Ca in CaC0;. Both the Bence-Albee method (using
theoretically derived a factors) and the theoretical method are based

on theoretical eq1.1at.1.ons The purpose of this exercise was to produce
empirical correction factors. Incorporating a theoretical factor in the
calculations would defeat that purpose. Therefore, the empirically
produced intensity ratios were adopted and used to calculate kccz‘o for
each alpha factor run (see Appendix 4 for a further discussion of the
intensity ratios). The X-ray intensities produced by Ca in Cacx)3 and

Ca

CaF, were measured and with the adopted "k" ratios, two values of kCaO

2
were calculated (the two values differed by 2% of the average). Each
of these values was given equal weight; the average was used in the
calculation of alpha factors.

The procedure outlined below was followed during each microprobe
run used to collect data for alpha factor calculations. Before each
run, both the standard mounts and oxide mounts were re-polished; then
carbon coated together. The microprobe was allowed to "warm up" for
one and a half to two hours. Calcium (Ko radiation for all elements,
for all runs) was analyzed using an LiF crystal, aluminum and silicon
were analyzed using an ADP crystal, and magnesium was analyzed using an
RAP crystal. Sample current was set at 50 nanoamps on brass. The
fluorescent spot size was set at approximately 20 microns on anorthite
glass before starting each run. All analyses were done at a preset
integrated value of beam current chosen so that counts were accumulated

over approximately a ten second interval. The time was recorded during
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each counting interval and less than two percent drift (in time) was
observed during each run. Backgrounds for calcium, magnesium and
silicon were measured (on peak) on the alumina; background counts for
aluminum were taken on quartz. At the beginning of each cycle, counts
were taken ten times on each oxide and backgrounds were repeated four
times on the alumina and/or quartz. Ten areas of each glass (five
spots on each of two pieces) were analyzed for each standard mix. At
the end of each cycle the oxide analyses and backgrounds were repeated.
A run consisted of two cycles - calcium, magnesium and aluminum or
silicon were analyzed during the first cycle and aluminum or silicon
was analyzed during the second cycle. An entire run including peaking
in of the spectrameters took under four hours. This procedure was
followed so that differences between the analysis conditions of each
glass (in fact, each spot) would be minimized.

The means of each set of counts were corrected for background.
The oxide count averages were calculated at the beginning of a cycle
and the end of a cycle and campared. If the difference between the
averages was greater than one standard deviation, the oxide counts were
corrected for drift in the following manner: the drift was assumed to
be linear and one tenth (an increment for each of the ten glasses) of
the difference was successively added (or subtracted) to the initial
average oxide count, and paired with the appropriate glass according
to its order of analysis (the glasses were always analyzed in alpha-
betical order). The initial oxide average was paired with the first

analyzed glass. Drift was rarely encountered and the few exanples of
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drift encountered are listed in Appendix 4. Drift during the analysis
of any single glass was not observed. If the number of counts per
second exceeded 10,000, the following deadtime correction was made:

(9) N = ((No/lo)/(l-(No x 1/10))) x 10
where No equals the counts observed, N equals the "true" number of

6

counts and 1T for each of the three spectrameters was 2-3x10 “sec. A

deadtime correction was made primarily on oxide counts at 30KV accel-
erating potential (see Appendix 4).

The corrected counts and the known compositions in weight fraction
of the glasses were arranged in Equation (8). This equation was
modified to:

(8a) (I -] = i;ncia&.
The difference on the left hand side of the equation and the C''s for
each glass were input in a linear least squares program. Appendix 3
lists the data just as it was input in the least squares program. Forty
sets of {difference, ct} were produced for the ten glasses at each
accelerating potential. That is, ten equations were available to solve
for the three alpha factors of each of the four elements - Ca, Mg, Si
and Al.

Since theoretical correction factors vary with accelerating
potential, one would expect empirical correction factors to vary in a
similar fashion. A difference in theoretically derived alpha factors
at 15KV and 20KV has been shown by Albee and Ray (1970). A variation
with take-off angle was also shown by Albee and Ray (1970). All alpha
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factors calculated for this project are for an angle of 52.5°. The

procedure for empirically deriving alpha factors was repeated for runs
at 10KV, 15KV, 20KV and 30KV accelerating potentials. The ratios used
Ca

to calculate k

a0 at 15KV were used at all four accelerating potentials.

Theoretical Alpha Factor Calculation

The alpha factor may be calculated fram the theoretical correction
factor, T. Appendix 2 abstracts the method used to calculate T using a
pure element standard. Using this method, T for an element in a mix and
T for an element in the oxide must be calculated in order to solve the

empirical equation (for oxides):

® By 00 ) = 6
for beta and ultimately for alpha:
2 in
(8) B = E Cool ;-
The following method (abstracted from a subroutine of the 9830
program mentioned in the section, "ZAF Correction Technique") was used
to theoretically calculate beta and alpha. Consider the simple binary
oxide system - MgO+Si02, analyzing for Mg. All C's represent weight
fractions of an element or oxide (noted). The concentrations Cl?fg A

C:r?_x ; CO. arsd cS:|.02

ool c[r.:i/c{g-metal i (kmmix ItMgm—netal) 2]

Since ({g_ meta]-1s it will be omitted from the following equations.

are known.

5102

(8) (8@.;/‘{38’ ”&nn/’%go) - mx"Mg—Mgo Cmix Mg-5i0,"
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The right hand sum, of course, equals B and %El. Notice that )ﬁml -
appears in Equation (8) and not in Equation (la). This necessitates

the calculation of T for Mg in MgO (To) 3

) 2 RS ) <7,

These three equations may be combined to solve for beta (B):
10  B= (G x Qo x M/ x G,

In this binary system:
L5 :M_;O i0 _ Mg
(B = Crix)/ Crsm.x “Mg-8i0,°
If the mix is composed of more than two oxides,

i Y
B = Cnix = e mixnd

where C stands for oxide weight fraction and the set of such linear
equations may be solved for the alpha factors as were the sets of
empirical linear equations by the linear least squares method (see
Apperdix 3 for data involved in these calculations).

Using the theoretical procedure outlined previously and in Appendix
2, alpha factors were calculated for all the binary systems within the
four component oxide system studied. Alpha factors were calculated at
ten mole percent intervals in each binary system. Alpha factor values
versus weight fraction oxide are plotted in Figures 4-9. Alpha factors
are considered to be constant, i.e., they are used as if independent of
composition. Tables 3 and 4 list the alpha factors calculated by the
empirical method (Ea), the theoretical alpha factors calculated from

the binary mixes (Ba), the theoretical alpha factors calculated by the



. Al L wa
160 — Q= Al-Si0, - Q=X Ng-5i0; - 1.60
3 Si Si
X = bz
X si-aiz0; e, D (BTN
.40 - = X X X x ¥ X s P - - 1.40
A Ko R ek bx X % X X AT
x X
|
1.20 + — .20
5 0 © o] © o] © Q o' 9
© o) (o]
© (o} o} © (o] o}
100 o -~ — 1.00
1
| IO N AV U R O b T LT T e TR T e ) 1 R s N Y ! SV T TR L L e I
A1,04 .25 .50 A - Si0, B .5C T MgO
Weight % Weight %

Figure 4. Theoretical binary alpha factors Figure 5. Theoretical binary alpha factors
involving A1203 and Sioz. involving SiO, and MgO.

v



; [
1.60 = - - 1.60
¥y S x R BT X X X 5
1.0 = Co - i Mg - 1.0
@ %G ¢a-a150,4 © = & mg-8i,0,
kel A1 g .1
o X=X al-co0 | L o
, i 4 =T
G e b X X X X 20
e % o) gD o e B0
1.00 |- 4 - 1.00
®o0 © 0 o (o] © o ®
1 1 1 ' 'l 1 X2 I i L L 1 i L i 1 L ' I Y 8 A X A ! 1 e L L l Ll L i A
€s0 25 50 75 A1,04 25 50 75 MgO
Weight % Weight %
Figure 6. Theoretical binary alpha factors Figure 7. Theoretical binary alpha factors

involving Cao and A120

3

involving A1203 and MgO.



Co S
180 = © =& coipog TR L S R — 1.60
& Mg Co
Sl Mg-Co0 rag Ce-Si0;
1.40 — - —~ 1.40
% <k x X X X X X X
(0 x
1.20 i < 120
!
% X X e Xk X %
0w B T ° & o 6 ® s 9 o @ o o,
1.00 &~ + — 1.00
|
OIS T M fa e DR N, P O e S e (S e e T ST T 00 (AT ST T, 8 K] O 1 WY, P AT
MgO o .50 ¥ ) CoO 25 .30 -] Si0;
Weight % Weight %
Figure 8. Theoretical binary alpha factors Figure 9. Theoretical binary alpha factors

involving MgO and CaO.

involving Ca0O and Si02.

£v



44

least squares method from the ten mixes (Ta), the Bence and Albee alpha
factors (B-An), and the Albee and Ray alpha factors (A-Ra). Included
in these tables are the errors propagated by the linear least squares
method (LLSQ errors).

Uncertainties in Alpha Factors

Uncertainties exist in the calculation of the alpha factors by any
of the methods employed in this project. Figures 4-9 graphically show
the scatter (uncertainty) in alpha factors calculated theoretically for
binary systems. Given the uncertainty in the input data, the error
propagated by the least squares method may be calculated (Young, 1962;
p.105 and pp.98-99). For a given set of equations (group of mixes),
the error propagated by each equation may be calculated. The total
error associated with an alpha factor is the average of these errors
propagated by each equation. Appendix 3 gives the errors propagated by
each equation for Ta's and Ea's. Tables 3 and 4 list the averages of
these errors. It should be noted that the errors in Ta are consistently
negligible because there is no uncertainty in the input data (same
uncertainty, if the weighing error in mix composition is included).

The following discussion deals, therefore, with the errors propagated
by the least squares method for empirical alpha factors only.

The largest errors are associated with alpha factors in which MgO
is the "affecting" oxide. The individual errors propagated by each
equation were studied (Appendix 3) and it was observed that one glass

contributed the greatest error to each alpha factor of the form aﬁ -MgO"



Table

o Factor

c‘.S:'L
Si-Al,03

aSi
Si-Cca0

aSi
Si-MgO

uAl
Al-Si0;

aAl
Al-Ca0

aAl
Al-MgO

apa
Ca-Si0;

Ca
aCa-Alea

aCa
Ca-MgO

Mg
Mg-5i0,

Mg
aMg-Alea

Mg
aMg—CaO
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3. Alpha Factors Calculated by Several Methods at 15 KV

1.43

1,056

1.14

1.06

1.09

1.03

B-AQ

1.34

1.03

d 29

1.01

k.18

1.62

1.18

5 1

1.10

1.16

1.02

1.20

1:39

1.06

1.36

1.55

1.06

1.07

L.36

1.09

SR

1.04

1.07

1.10

1.00

1.36
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Error

+1%10°
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£1x10°
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<1X10

+3X10
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5

6

6

-6
£2x10

1.34

0.98

1.30

0.81

0.90

1.48

1.10

1.07

1.01

1.09

1.36

LLSQ
Error

I+

.03

H+

.03

I+
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I+

.003

I+

11

+

.80

+.0007

I+

.06
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11
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Table 4.

o Factor
m*
a:i—Alzoa 1.18
agi-CaO 1.04
azi-ugo 1.20
“:i—Sioz 1.01
a:i-CaO R
“:i-m;o 1.35
Sca-sio; 105
“g:-nlzog aes
ag:—MgO 1.05
a:g-Sioz 1.06
u:g_31203 0.98
“SE-Cao 1.16

Ta and Ea Factors Calculated at 10 KV, 20 Kv,
10 KV 20 KV 30
Ea T EQ A-Ro, To
1.16 £.06 1.56 1.60 1.04 1.67 1.88
0.99 £.04 1.18 0.94 .03 1.10 2.86
1,04, .25 ¥ohd 1.45.%.27 1.58 1.66
0.96 *.003 3303 -0.97 .002 . 1.05 1.02
YelX 4,39 1380 1,251 .19 L 22 —_
1.41 — F283 2:03 — 1.92 2:10
1.08 £.002 330 < 1.15 £20008F1°012 1.18
1,00 +.29 212 31012 204 1.09 1.19
0.99 £,27 ¥.08 -1.07 2,06 1.09 1.13
1.15 *.0008 g 161 1. 20 . 00058445 el
1.09 2,02 0:99 % 1.10 .03 1.06 1502
34702, 02 2,33 1 155 501 1.40 —_
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30 Kv.

Ex

2.23 .04
.03
2705, %20
1.02 %.002
1.52 %329
2: 7251225
L2250 001
1.19 .04
1.97 3,06
1.26 *.0004
.02

1.14

V.72 2503

*LLSQ errors are not included—they are negligible, see Appendix 3.
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This glass, Mix J, contains only one percent MgO - the lowest concentra-
tion of any one oxide in any of the ten mixes. This is understandable
since an oxide of very small concentration contributes a small correc-
tion regardless of the value of the alpha factor in the reduction of raw
data (ZL/C2 is a factor in the error propagation equation). Therefore,
the alpha factors of the form ag_m predicted by a mix with a very

small concentration of oxide MO are not significant. To attach a more
realistic error to the alpha factors (at 15KV only), groups of nine
mixes were used to calculate Ea. The values of these alpha factors
were not different from those calculated using ten mixes. However, the
errors propagated by the least squares method were greatly reduced by
eliminating mixes of the type described above. Table 5 shows these

"improved" errors along with the mixes eliminated in their calculation.

Variation in Values of Alpha Factors

The values of alpha factors appear to be dependent upon the compo-
sitions of the mixes used to calculate the alpha factors. The more
equations used to calculate an alpha factor, the less important an
individual mix becames. To study the effects of individual mixes upon
the calculation of alpha factors, all possible groups of three out of
the ten mixes were used to give exact solutions to the linear equations
by the least squares method. Both theoretical and empirical alpha
factors were calculated for a 15KV accelerating potential. The results
of these calculations were a set of 120 theoretical and 120 empirical

values for each of the twelve alpha factors. These results are shown
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Table 5. Error Reduction Caused by Elimination of One Mix
from Least Squares Solution at 15 KV.

ik - it ;gtsm Ergofu::ing mimﬁ:ted
a:;O + .13 €202 J
agio + .11 + .03 *
“:;o + .80 + .04 J
322203 + .06 t .03 G
“ﬁ:o & bl £ .02 J
oSt + .03 + .01 G

cao
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graphically in Figures 10-21. For each alpha factor, the 120 theoret-

ical or empirical values were divided into groups that consisted of all

values in a 0.02 range. For example, all values of agi ~Ca0 (theoretical)
such that 1.00 £ .aSJL < 1.02 were included in one group. The

= "si-Ca0
abscissas of the histograms in Figures 10-21 represent the alpha factor

(group) range and the ordinates represent frequency or number of alpha
factor values per 0.02 range. For comparison, the theoretical (Ta) and
empirical (Ea) alpha factors calculated by least squares from all ten
mixes, and the theoretical binary alpha factors (Ba) are included on
the diagrams.

An estimate of the standard deviations of each of the theoretical
and empirical alpha factor distributions was made. These estimates are
included in Figures 10-21. The estimates were made assuming that 68%
of the total points should lie within *o0. Eighty-one points (0.68x120)
were counted symmetrically about each peak (highest peak for that theo-
retical or empirical alpha factor). The included spread in the value
of the alpha factor was divided by two giving an estimate of the
standard deviation (o). Table 6 compares the errors propagated by the
least squares fit to ten mixes and the standard deviations calculated
by the above method (method two).

No one composition seemed to control the distributions of alpha
factors shown in Figures 10-21. Removing a mix with a low concentra-
tion of the "affecting" oxide reduced the standard deviation calculated
by the least squares method. This is not true for the standard

deviation calculated by method two. For example, removal of Mix J fram
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Table 6. Comparison of Standard Deviations by
Least Squares Method and Method Two.

o raco e - e
a:i-AlZOg\ .0 £ .09 % +.05
agi-CaO * .01 t .09 + .10
aii-MgO + .02 + .07 £ .07
“:i-sioz £.003 £ .13 + .08
aii—CaO 59 $ .30 3 127
a:i-MgO S wid + .43 + .40
g:—Sioz * .0007 t .04 + .05
“g:-mzoa et £..07 + .14
“(c::-Mgo e + .12 £ 39
“53-5102 * .0004 + .03 + .07
“33-A1203 Liali2 t .04 .18
“:g—Cao t.,01 + .09 + .18

*See Table 5 and text.
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the calculation of agi g0 reduced the uncertainty from 0.13 to 0.02
using the least squares method. Figure 22 shows that this reduction in
uncertainty does not occur when Mix J is removed fram the method two
calculation. In fact, the standard deviation increases from 0.07 to
0.13 for both the theoretical and empirical alpha factors.

There does not seem to be a straightforward explanation for the
differences between alpha factors predicted by various methods. The
value of an alpha factor is apparently controlled by the complex inter-
relationships of all constituents within the mixes and by the method
used to calculate that factor. The question remains, "Which method
produces the best alpha factors?" The definition of the best set of
alpha factors is that set which best predicts the weight compositions
of a broad range of mixes from X-ray intensities. Therefore, each set
of alpha factors has been used to predict concentrations from the X-ray
intensities.

This has already been done for Albee and Ray's alpha factors -
using Mix C as a standard (see Table 1) and the other mixes as unknowns.
The X-ray intensities recorded during the run at 15KV accelerating
potential used to calculate empirical alpha factors were used as the
raw data (see Appendix 3, Table 9). The B-Aa factors, the Ba factors,
the Ta factors and the Ea factors were each used to predict the campo-
sitions of Mixes A-J using Mix C as the standard. Table 7 compares the
calculated compositions and the weighed-in compositions of the mixes.
The differences: weighed-in composition minus calculated composition in

percent of the weighed-in composition are listed. No one method consis-
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tently gave the best answers for all oxides or even any one oxide.

Mix E contains 80% Sioz. No one set of alpha factors seemed to be

able to predict the composition of E using C as a standard. The
empirical alpha factors came closest to predicting this extreme compo-
sition. Mix H contains almost 42% A1203. Its camposition was best
predicted by the A-R and B-A alpha factors. To decide which method best
predicted the nine compositions in the SiO2 - 2’11203 - Ca0 - MgO system,
the differences listed in Table 7 were averaged over the nine mixes

for each oxide. The sets with the lowest averages for each oxide are
listed in Table 8. All averages within ten percent of the lowest
average were considered to be the same. The Eoa factors best predicted
SJ’.O2
is eliminated from the average, the Ea factors predict Al,0, as well as

values. A1203 was best predicted by the A-Ra factors. If Mix H

the A-Ro factors. CaO is predicted well by all five sets though the
A-Ro. and To factors give the best results. MgO is predicted well by all
methods but the best results are given by the A-Ro and the Ea factors.
The A-Ra and Eo factors seem to give the best overall results in this

four camponent system.*

*Note: The campositions as calculated by the theoretical method could
be compared to the compositions calculated by the various sets
of alpha factors. See Appendix 3, Table 9 for the necessary
information to do these calculations.
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Table 7. Differences (in %) in Compositions as Predicted
by Various Sets of Alpha Factors at 15 RV.

Method Si0a Al;03 caoO MgO Total
Mix A 49,72 16.07 23.15 11,05 100.00
A-Ra .14 .01 -.05 .01 .13
B-AQ 105 -.02 .01 .06 = i
Ba .06 -.09 -.06 -.04 -.12
TO. 0.00 -.40 -.10 -.04 -.53
Eo J2k L. -.13 -.03 S L7
Mix B 48.99 16.05 20.97 13.99 100.00
A-RQl 3390 .01 -.11 .04 .05
B-AC. 10 -.02 -.07 .08 .09
Bol .08 -.05 -.11 -.01 -.09
T <05 -.23 -.15 0.00 -.33
E0l .20 .02 -.14 .01 .09
Mix D 45,07 20.96 16.00 17.97 100.00
A-Ro -.01 0.00 -.09 -.04 -.14
B-AQ o232 -.03 -.04 Ol .16
BQ .13 Lol -.08 -.01 03
To. =iy .09 -.14 .01 23
Ea laf -.38 -.07 -.01 -.29
Mix E 79.97 8.99 5.04 6.00 100.00
A-RQ 2ib8 -.35 0.00 .09 2:.29
B-AQ e B -.24 -.10 01 312
Ba 2538 - 35 -.02 .14 2.10
To 2.-55 -.48 .02 .14 223
Eo 1.38 -.03 -.06 .05 1.14
Mix F 52.06 30.93 6.94 10.07 100.00
A-Ro 22 .36 -.06 L0l .54
B-AQ .46 -47 -.10 -.02 .81
Bo, .45 .36 -.06 w12 T8l
T .74 21 =13 S .01

Eg, .18 o 7 =10 .04 <39



Mix

Mix

Mix

Mix

Method

A-RoO
B-AQ

Ea

A-Ra
B-AQ
BaO

Ea

A-RO,
B-AQ

Ea

Table
Si0,

(S L

.43
.56
.56
.60
18

30.91

=339
-.12
-.28
=ikl
=il

5295

.14
-.14
=.40

.09

42.98

.03
.24
g
-.41

.30

7—continued

Al,03

3101

e ]
.02
.06
w2d
0.00

41.90

<11
=65
18]
=212
-2.34

20l

-.04
-.05

=06
0.00

19.02

=08
-.25
-.42
#=1.55

£ 2

CaO

2. 89

=07
=l
-.14
e B
-.12

21.97

-.04

12
-.02
-.38

26.01

=06
.04
-.06
.07
L

36.99

v X
.48
-18
=03
=.12

MgO

32.69

-.10
-.46
.24
kS
plZ

S22

.04
P )
.05
.08
.03

39103

.04
.11
=2
=215
.03

.03
.01
0.00
.01
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Total

100.00

.26
.05
- T
:87
=2

100.00

528
-+53
=1.05
-2.59
—2 02

100.00

.09
-.04
-.32
-.50

aE3

100.00

.18
0k
-.40
=199
-.46



Table 8. Sets of Alpha Factors Which Show the Average Lowest
Difference (from Table 7) for Individual Oxides.

Si0p Al,03 Ca0o MgO
Ea (0.29) A-Ra (0.11) A-Ro (0.08) A-Ro (0.04)
EQ .. (0.1.2)* Bo  (0.07) Ea (0.05)

*Average calculated without Mix H.
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QONCLUSION

The purpose of this project was twofold - to produce a set of
reliable microprobe standards of use to geologists and to calculate a
set of empirical correction (alpha) factors for microprobe data
reduction. Ten homogeneous glasses in the system: .Sio2 - A1203 - Ca0 -
MgO were synthesized. The compositions of these standards were taken
directly from the weighed-in concentrations of the end member oxides
and verified by microprobe analysis. The empirical alpha factors
calculated for this project have been shown to be as accurate as
published alpha factors in predicting compositions within the four
component system.

The values and precision of these twelve alpha factors might be
improved by repeated calculations using different microprobe runs .at
set conditions for a constant set of mixes. The values of the twelwve
alpha factors could be tested by using them to reduce microprobe data
for more complex silicate systems. The method of alpha factor genera-
tion could be applied to other, more complex silicate systems. Perhaps,
the next logical oxides to add to the system studied are Na20, K20, FeO

and TiO, since these oxides comprise a significant proportion of many

2

rocks and minerals.



Appendix 1.

Mix A

4.
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Sample Preparation Notes

Oxide mixture was stirred slightly and fused for approxi-
mately 3 hours at 1650°C. The mix appeared glassy after
the run. ("glassy" = clear, non-crystalline at approx.
0.1lmm scale)

Glass was broken in crucible into several mm size pieces
and run for 2% hours at approximately 1650°%C. It appeared
glassy after the run.

Glass was broken in crucible and then in a hardened steel
cylinder. It was run for 2% hours at 1650°C. It appeared
glassy after the run.

The glass was stored in a dessicator on 27 July, 1976.

The oxide mixture was stirred, then fused for 2% hours at
approximately 1650°C. The mix appeared glassy after the
run.

The glass was broken in the crucible and in the steel
cylinder. It was run for 2% hours at the same temperature.
It appeared glassy after the run.

The glass was broken and re-run as in step 2. It appeared
glassy after the run.

The glass was stored in the dessicator on 27 July, 1976.
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Mix C

Mix D

Mix E
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continued

The oxide mixture was stirred and run for 2.33 hours at
approximately 1600°%. It appeared glassy after the run.
The mixture was broken into mm size pieces in the crucible
and run for 2.33 hours at approximately 1650°C. It
appeared glassy after the run.

The mix was broken and re-run as in step 2. It appeared
glassy after the run.

The mix was stored in the dessicator on 15 June, 1976.

The mixture was stirred and run at approximately 1650°C
for 3 hours. It appeared glassy after the run.

The glass was broken in the crucible and run at the same
temperature for 2% hours. It appeared glassy after the
run.

The glass was broken and re-run as in step 2. It appeared
glassy after the run.

The glass was stored in the dessicator on 29 July, 1976.

The oxide mixture was stirred and run at approximately
1600°C for 2 hours. Apparently, some undissolved material
ﬁ:emained after the run.

The mix was broken in the crucible and re-run as in step 1

with the same results.
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Mix F
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continued

The mix was run twice at approximately 1650°C for 2 hours
each time. Some undissolved material and/or crystallites
remained after each run.

The mix was ground under alcohol in an agate mortar into
0.1 mm size pieces. It was run at 1650°C for 2 hours and
appeared glassy after the run.

The mix was ground and run twice more as in step 4. It
appeared glassy after each run.

The mix was proven inhomogeneous by the microprobe check.
The mix was re-ground under alcohol in an agate mortar,
then run at approximately 1700°C for one hour. It
appeared glassy after the run.

The glass was stored in a dessicator on 1 August, 1976,

after proving to be homogeneous by microprobe check.

The oxide mix was stirred and run for 2% hours at approxi-
mately 1650°C. Same undissolved material was observed
after. the run.

The mix was broken in the crucible and run for 2.75 hours
at approximately 1670%. 1t appeared glassy after the run.
The glass was broken and run as in step 2 for 2% hours.

It appeared glassy after the run.
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Mix G

O
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continued

The glass was broken and run as in step 3 for 2 hours. It
appeared glassy after the run.

The glass was stored in the dessicator on 15 June, 1976.

The oxide mixture was stirred and run for 3 hours at
approximately 1650°C. It appeared milky after the run.
The mix was broken in the crucible and run for 2.33 hours
at approximately 1670°C. It still appeared milky after
the run.

The mix was crushed in the steel cylinder and ground
slightly (to "gritty" texture) under alcohol in an agate
mortar. It was run for 2% hours at approximately 1670°C.
It appeared milky after the run.

Step 3 was repeated but the temperature was raised to
1700°C. The mix appeared milky after the run.
Approximately 1/3 of the mix was run for 1% hours at about
1730°C but had the same homogeneous, cloudy appearance
after the run.

The mix was shown to be homogeneous by microprobe check
inspite of its cloudy appearance and was stored in the

dessicator on 29 July, 1976.
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Mix H

Mix I

Mix J
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continued

The oxide mixture was stirred and run for 3 hours at
approximately 1650°C. Same undissolved material was
observed after the run.

The mix was broken in the crucible and run for 2% hours
at approximately 1650°C. It appeared glassy after the
run.

The glass was broken and run as in step 2 two more times.
It appeared glassy after each run.

The mix was stored in the dessicator on 19 July, 1976.

The oxide mixture was stirred and run for 2% hours at
approximately 1650°C. It appeared glassy after the run.
The mix was broken in the crucible and run for 2% hours at
approximately 1650°c. It appeared glassy after the run.
Step 2 was repeated. The mix appeared glassy after ‘the
run.

The mix was stored in the dessicator on 8 June, 1976.

The oxide mixture was stirred and run for 2% hours at
approximately 1650°%. It appeared élassy after the run.
The mix was broken in the crucible and run for 2% hours
at approximately 1650°C. It appeared glassy after the

run.
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3. Step 2 was repeated. The mix appeared glassy after the
run.

4. The glass was stored in the dessicator on 10 June, 1976.

Note: 1. Mixes broken in the crucible were broken into pieces
several mm across. Mixes crushed in the steel cylinder
were broken into somewhat smaller pieces - about 1-2mm.

2. Unless otherwise stated, all mixes were shown to be
homogeneous by the first microprobe check.
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Theoretical (ZAF) Correction Method Using a Pure Element
Standard, with n elements in the mix and m is the element
analyzed. (Yakowitz, 1975)

Number Correction (Z)

(8.73x107° x (V/Ep)>) ~ (0.1669 x (V/Ep)?) +
(0.9662 x (V/Ey)) + 0.4523

= (2.70x107> x (WER D) - (5.182x107% x (W/E)DD +
(0.302 x (V/Ep)) - 0.1836

= ((0.887 x (V/Ep)®) - (3.44 x (V/E)° +
(9.33 x (V/Ep)) - 6.43)/((V/Ep)°>)

% (C. x (RI-(R2 x 1og((R3 x N:) + 25)))}
i=1 1 1

where

V is the accelerating potential in KV.
Eq is the critical excitation potential of "m" in KV.

N,
3

C.
1

equals the atomic number of element i.
equals the weight fraction of element i in the mix.

R equals the backscatter correction for the unknown.

RI

=Rl - (R2 - log((R3 x N ) + 25))

where

RI

is the backscatter for the pure element standard.

s =,I§1{Ci X (Nj/(Wi x (V + Ep))) x log(583 x (V + Em)/Ji)}
l:

-0*19

Ji= (9.76 x Nj) + (58.8 x Nj )

S'= (Ny/ Wy x (V + Ep))) x 1log(583 x (V + Ep)/Ip)
where

W; = the atomic weight of element i.

S = the atomic stopping power for the unknown.

S' = the stopping power for the pure element standard.



Appendix 2. continued
C. &= (S'x R")/(S' %'R)

II. The Absorption Correction (A)
A, ¥ =_E My § x C§ x 1,2605}
=1 "

1.2605 = cosec(52.5°) where 52.5° is the take—off angle.
X'= Mg m x 1.2605
P=1+(1 + (3x10°® x (v1-65 - El%.65) x x) +

(4.5x10~13 x (v1.65 — Eml.65)2 X ¥2))
P'= P when x' is substituted for y.

where

M,y is the mass absorption coefficient; y is the absorber.
P is the correction for the unknown.
P' is the correction for the standard.

B. A=P'/P -—- the absorption correction.

74
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§ W 1 8

The Fluorescence Correction (F)

A.

For energy of the "excitor" greater than E . "i" stands
for the excitor.

B
D

Il

(0.88 x wy x Wp) /Wi
((V/Ei) - 1)/((V/Em) - 1))1-%7

— n .

n
s2=1 {Cj x M, j}

J=
Gl = log((1 + (1.2605 x S2/51))/(1.2605 x S2/51))
G2 = log{ (1 + (3.3x10°/(v+"® - (£.2°%5 x s1)))) =
(3.3x10°/ (v 8 - (5,1°% x s1))}

Gp,;= (€ x B x D X Mj,m)/(S1 x (Gl + G2))

B.

G

D.

n
F=1{1+ (X Gpi)l}
1=1

w is the fluorescent yield and F is the fluorescence
correction.

There is no fluorescence correction for the pure element
standard.

The Completed Theoretical Correction

Cy/C' = (Iy/I') x Z XA X F

where

Cp = weight fraction of element m in the unknown.

C' = the weight fraction of element m in the standard (Z1).

I, = characteristic X-ray intensity produced by element m in
the unknown.

I' = that X-ray intensity produced by element m in the pure

element standard.
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V. The Constants used for the Theoretical Correction
W = atomic weight

I

w
Mg,y = the mass absorption coefficient; y is the absorber.
E;= the critical excitation potential in KV of element i.

fluorescent yield

A. Oxygen
W= 15.9994, w = 0.0022, EO= 0.532
M(0,0) = 1340
M(O,Mg) = 5680
M(0,Al) = 6830
M(O,si) = 8770
M(O,Ca) = 29900

B. Magnesium
W= 24,312, w = 0.03, EM; 1.303

M(Mg,0) = 2620
M(Mg,Mg)= 555
M(Mg,Al)= 661
M(Mg,Si)= 888
M(Mg,Ca)= 2980

C. Aluminum
W= 26.9815, w= 0.04, E_.= 1.56

Al
M(Al1,0) = 1620
M(Al,Mg)= 4040
M(Al,Al)= 410
M(Al,Si)= 555
M(Al,Ca)= 1850

D. Silicon
W = 28.086, w = 0.055, ES = 1.84

&
M(Si,0) = 1060
M(Si,Mg)= 2780
M(Si,Al)= 3340
M(Si,Si)= 365
M(Si,Ca)= 1220



Appendix 2. continued

E. Calcium
W= 40.08, w = 0.19, Eca= 4,038

M(Ca,0) = 122
M(Ca,Mg)= 390
M(Ca,Al)= 475
M(Ca,Si)= 590
M(Ca,Ca)= 165
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Data used in the Linear Least Squares Program and the
errors propagated by that method.

Tables 9, 10 and 11 list the data just as it was input in
the least squares program. The data was used to solve a
set of linear equations of the form:

i?);ncian . =B
u n-i
where
B= (k/k) - Cp-
kﬁ/k; is the observed intensity ratio in Tables 9 and 10.
n ?

ku/kn is the theoretically calculated intensity ratio in

Table 11. By substituting the appropriate B's (at a
particular accelerating potential; empirical or theoretical)
into Table 9, each line represents an equation - one set of
{cj, difference} input in the linear least squares program
to produce empirical or theoretical alpha factors at that
accelerating potential.

G%veﬂ B for element n in Mix u, the intensity ratio -

Kk u/kn - can be simply obtained:

Ean.n
B+C3_ku/kn'

The k ratios obtained from Table 9 may be used to
theoretically calculate mix compositions at 15KV and
compare with the compositions calculated by the Bence-
Albee method, pages 52-56.

Ratios rather than individual X-ray intensities (counts)
were included in this appendix because the ratios might
be reproduced.

Tables 12, 13, 14, 15 and 16 list the errors (by equation)
propagated by the least squares method. Errors for
theoretical alpha factors are negligible so only those at
15KV are listed as an example.



Table 9.

Element
Analyzed

Si
8i
s5i
o
Si
Si
Si
Si
Si
51

Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

Ca
Ca
Ca
Ca
Ca
Ca
Ca
Ca
Ca
Ca

Mg
Mg
Mg
Mg
Mg
Mg
Mg
Mg
Mg
Mg

Empirical Alpha Factor Data (15KV) -

Linear Equations.

Mix 5102 P20
mix mix
A — .160740
B —_ .160520
C —_— .139750
D — . 209604
E LA .089880
F i .309256
G —_— .033063
H —_— .418957
1 el . 020056
J —_— .190180
A .497197 _—
B .489858 —_
c .521575 —_—
D .450723 —_
E .799712 SR
F .520609 e
G 1,611402 _—
H .309072 —_
I .529524 Sl
J .429757 —_—
A .497197  .160740
B .489858  .160520
C .521275  .139750
D .450723  .209604
E .799712  .089880
F .520609  .309256
s .611182  .033063
H .309072  .418957
1 .529524  .020056
o] .429757  .190180
A .497197  .160740
B .489858  .160520
o .521275  .139750
D .450723  .209604
E .799712  .089880
F .520609  .309256
g .611182  .033063
H .309072  .418957
I .529524  .020056
J .429757  .190180

Note. The standard deviation

E s Hi= &

.000005 and in Glasses E,

CaO
[l

mix
231517
.209730
.169639
159853
.050432
.069410
.028875
.219741
.260093
. 369943

231517
+ 209139
.169639
. 159953
.050432
.069410
.028875
.219741
.260093
. 369943

)
W
b
wu
=t
~]

ARRRARARE

. 260093
.369943

of each oxide in Glasses A,

G, I, & J

76

Used in Solution of Ten

MgO
mix

.110547
.139883
.169336
- 179720
.059976
.100725
.326880
.052230
.190327
.010120

.110547
.139883
.169336
«179720
.059976
.100725
.326880
.052230
.190327
.010120

.110547
.139883
.169336
» 179720
. 059976
.100725
.326880
.052230

B

.5878
.6043
.5710
.6738
.2616
.6155
.4979
.8416
.5284
.6343

.7862
.7986
.8304
.7627
.7838
.6241
1.0083
.4806
.9500
.7131

s b o
.8559
<2051
.9076
1.0358
1.0015
1.0322
.8435
.8074
G939

1.0642
1.0296
.9882
.9683
1.1069
1.0368
« 7938
1.1184
<9921
1.2202

= * .000002.

S.Daef B

.0083
.0105
.0087
.0104
.0093
.0167
0123
L33
.0078
.0108

O

.0197
.0237
.0216
.0203
<O01Y1
.0226
.0263
.0186
.0424
.0279

[ R S T L L

.0094
.0087
.0102
.0107
.0164
-0199
.0196
.0119
.0083
.0095

L N P N My Eg PR KA

.0100
.0098
079
088
114
116
.0058
.0054
.0074
-0X5e

OO0

N S T S o e

B, C, D,
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Table 10. Empirical "B" Used in Solution of Ten Linear Equations by Least
Squares Method at 10, 20 and 30 KV.

Element 31t B Standard B Standard B Standard
Analyzed 10KV Deviation 20KV Deviation 30KV Deviation
Si A .5379 .0136 .6109 0151 .8556 .0107
Si B .5491 0132 .6424 .0252 +8925 <0317
Si @ .5240 .0159 .6193 .0120 .8511 .0163
Si D .6083 .0162 .7487 .0208 1.0200 .0168
Si E <2367 .0138 . 2868 .0089 .4021 .0087
Si F .5430 .0183 .7180 .0145 .9738 .0159
Si G .4385 .0130 D212 .0116 <189 20111
Si H .7619 .0167 .9459 .0179 133023 .0075
Si I .4987 .0122 .5634 .0097 .7454 .0107
Si J .6043 .0154 .6804 .0158 .8813 .0140
Al A .8912 .0241 .9976 <0151 1.1601 .0131
Al B .9116 .0258 1.0314 .0142 12121 .0165
Al € .9305 .0197 1.0566 .0175 1.2615 .0167
Al D <B7LT .0301 1.0045 +DESS 1.2063 .0182
Al E .9020 .0285 <9523 .0182 1.0402 .0185
Al I .7306 .0228 .8090 .0158 .9392 .0197
Al G 1.0838 .0530 1.2988 .0377 1.5645 .0465
Al H 6175 .0190 .6860 .0111 .8110 .0112
Al I 1.0451 .0058 1.2061 .0301 31,3999 .0505
Al J .8431 20337 -.9050 .0284 1.0369 s LS
Ca A .8014 .0l198 .8781 .0091 - 9231 .0081
Ca B - 82177 .0178 .8949 .0099 .9421 ..0076
Ca e .8770 .0142 .9431 .0103 29961 .0104
Ca D .8734 .0194 .9476 .0100 <9910 .0448
Ca E 1.0077 .0289 . 0717 +0125 1.1294 .0138
Ca F .9645 .0201 1.0401 .0143 1.0972 .0138
Ca G 1.0104 .0450 1.0789 .0171 i 7 0137
Ca H <8113 waEad: .8791 .0083 .9287 .0084
Ca E - 7913 .0187 .8431 .0070 .8897 .0066
Ca J .6679 .0154 + 1309 .0072 .7729 .0067
Mg A 1.0268 .0118 T.1338 0113 1.2245 S0113
Mg B .9878 .0091 1.0846 .0097 1.1725 .0074
Mg C .9495 .0119 1.0386 .0078 T o .0059
Mg D .9330 -0076 1.0157 .0072 1.0841 .0089
Mg E 1.0723 .0129 1.1587 .0124 1. 2123 .0108
Mg F 1.0089 o ) 1.0748 .0083 1.1198 .0089
Mg G .7703 .0063 :7922 .0058 +B331 .0062
Mg H Lia7e3 .0123 1.1706 .0087 1.2432 .0033
Mg I .9416 .0067 1.0579 .0090 1.1338 .0074
Mg J ) EW: 51 7 . .0254 1.3075 .0174 1.3806 .0194
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Table 11. Theoretical Alpha Factor Data at 10, 15, 20, and 30 KV Used in
Linear Least Squares Solutions of Ten Equations.

Element Mix B B B B
Analyzed 10KV 15KV 20KV 30KV
Si A .5600 .62047 .6895 1.1176
Si B .5837 .64943 7233 341252
Si G .5403 .60305 .6726 1.0005
Si D .6286 . 70593 . 7907 1.1413
S E =230 .26038 .2918 .3943
81 F 5625 .64052 7235 .9480
Si G .4587 .52062 + 2852 . 7149
Si H . 7889 .88723 .9964 1.5209
53 I w320 .58198 .6409 1.1091
51 J .6161 BT272 .7416 1.4537
Al A . 9007 .95732 1.0368 .7536
Al B .9207 .98427 1.0688 .8167
Al C .9338 .99814 1.0795 .8823
Al D .8673 .93256 1.0137 .8333
Al E .9427 97392 3 .,0110 .9456
Al F v i3nd .77370 .8189 .7450
Al G 1.0827 1.04330 1.2661 1.3554
Al H .6202 .65894 7179 .4447
Al ¥ 1.0884 1.16920 12792 .9503
Al J .8499 .89547 9767 .5524
Ca A .8186 .83136 .8516 .9075
Ca B .8513 .86424 .8850 .9425
Ca G .8832 .89663 .9182 .9778
Ca D .8933 .90652 + 9279 .9871
Ca E 1.0086 1.02570 1.0523 1. 1250
Ca F . 9890 1.00430 1.0285 1.0958
Ca G 1.0359 105130 1.076l1 1.1451
Ca H .8262 .83832 - 8579 .9124
Ca I 1422 .75356 .7718 .8222
Ca J .6709 .68167 .6987 .7455
Mg A 29533 1.02450 1.2243 .9424
Mg B .8626 .92488 1.0948 .8572
Mg C .8989 .95929 13137 .9063
Mg D .8700 .92576 1.0677 .8759
Mg E .9910 1.03860 1.1276 1.0538
Mg F .9377 .98084 1.0693 .9780
Mg G JL0L . 74373 .8026 .7610
Mg H . 9992 1.06460 1.2489 .9849
Mg 3 .8993 .97818 12121 .8750
Mg J 1.0709 1.16760 1.4874 1.0217



Table 12, Standard Deviations (o) of the Twelve Empirical Alpha Factors Propagated by the Least Squares

Solution of Ten Equations. The error propagated for each equation is listed. (at 15 KV)

si
§i=A1,03

A .002666

B .004279

/2] .003876

D .002462

E .010706

F .002916

G .138397

H .001008

I .151258

J .003225

Si

§i-Ca0O
.001285
.002506
.002630
.004227
.0340086
.057888
.181455
.003663

.000899

000852

Si

Si-MgO
.005638
.005634
.602640
.003349
.024044
.027489
.001416
.064845

.001680

1.139048

Al

Al-510,

.001570

.002341

-001717

.002028

.000193

.001884

.001852

.003622

.006412

.004215

¢ of the Follcwing Alpha Factors:

Al

Al-Ca0

.007241

.012768

.016213

.016107

-048444

-106017

.829603

.G07165

.026575

-005688

WPl
Al-MgOo

.031758
.028706
.016271
.012758
.034253
.050343
.006473
.126620

.049c28

7.600763

Ca

Ca-5i0z

.000357

.000315

.000383

.000564

.000421

.001461

.001028

.001482

.000246

-000489

Ca

Ca-Al303 aCa-MgO

.003420

.002938

.005327

.002602

.033294

.004141

.351424

.000807

.171279

.002495

Ca
.007232
.003868
.003628
.003545
.674771
.039033
.003595
.051912
.001902

.8813%6

“ﬂg—Sioz
.000405
.000400
.000230
.000381
.000203
.000496
.000090
.000305

.000195

.001251

aﬁg—hl:o; aﬁg-C50
;003871 .001866
.003727  .002133
.0031%6  .C02169
.001763  .003027
.016087  .051098
.601407 .027931
.030775  .040350
.C00166  .00C604
.136160  .000809
.006388  .001688

6L



Table 13. Standard Deviations (o) of the Twelve Empirical Alpha Factors Propagated by the Least Squares
Solution of Ten Equations. (10 KV)

o of the Following Alpha Factors:

Si Si uSi uAl uAl aAl Ca aCa GCa an M9 GMg
%si-a1,03 ®si-cao 5i-MgO Al-Si02 Al-CaO al-Mg0  %ca-sio, “ca-al;0; “Ca-¥go Mg-Si0z  Mg-aAla03 Mg-Cal

A .007159 .003451 .015136 .002350 .010836 .047529 .001586 .015174 .032082 .000563 .005350 .C02598
B .006762  .003961  .008905  .002774 .015131  .034018 001320 .012297 .016192 .000345  .003214  .001882
Cc .012945 .008785 .008816 .001428 .013486 .013534 .000742 .010325 .007032 .000521 .007251 .004921
D .005874 .010258 .008125 .004460 .035412 .028050 .001853 .008567 .011652 .000284 .001315 .002258
E .023574 .074877 .052942 .001270 .319358 .225806 .001306 .103388 .232189 .000260 .020599 065429
F .003502 .069512 .033009 .001918 .107902 .051238 .001491 .004224 .039822 .000455 .001288 .025575
G .154598  .202696 .001582  .007520 3.369059  .026289 005421 1.852427 .018952 .000106  .036309  .047606
H .00158¢° .005776 .102235 .003779 .007476 .132334 .001796 .000978 062909 .001584 .000862 .0G03133
I .370031 .002200 .004109 .000120 .000497 .000929. .001247 .B69364 .009653 .000160 .111619 .000664

J .006557 .001733 2.315821 .006149 .008298 1108943 001284 .006557 2.315849 .003453 .017838 .004717

08



Table 14. Standard Deviations (o) of the Twelve Empirical Alpha Factors Propagated by the least Squares
Solution of Ten Equations. (20 KV)

0 of the Following Alpha Factors:

Si Si Si Al Al Al Ca Ca Ca Mg Mg Mg
5i-A1303 *si-ca0 "si-wgo %al-sio; ®Al-ca0 %Al-Mgd %Ca-5i0; OCa-A1203 %Ca-tgo Mg-si0 Mg-Al20s g-ca0

A .008825 .004254 .018659 .000522 .004254 .018660 .000335 .0032086 .006778 .000517 .004943 .C02382
B .024646 .014436 .032454 .000840 .004584 .010305 .000408 .003904 .005009 .000392 .003652 .002139
Cc -007373 . 005004 .008022 .001127 .010642 .010680 .000390 .005432 .0037C0 .000224 .003115 .002114
D .009848 .016910 .013395 .001183 .009390 .007438 .000492 .00227% .003096 .000255 .001180 .002026
E .009805 .031144 .022020 .000518 -130236 .092085 .000244 .019342 .043438 .000240 .019033 .060455
F .002198 .043641 .020723 .000921 .051817 .024606 +000754 .002138 .020156 .000254 .000720 .014300
G .123093 .161390 .001259 .003805 1.704672 .013302 .0C0783 .267494 .002737 .0000650 020775 -040351
H .001825 -006636 .117456 .001290 .002552 .045167 .000721 .000392 .025256 .000792_ .000431 : .001568
I .233%20 .001391 .002597 .003231 .013393 .025011 .060175 -121833 .001353 .000289 .201%98 .001197

J -006902 .001824 2.437700 .004367 .005893 7.875751 .000281 .001433 .506363 .001639 .008371 .002212

18



Table 15. Standard Deviations (o) of the Twelve Empirical Alpha Factors Propagated by the Ieast Squares

Solution of Ten Equations.

GSi
Si-Al203

A .004432

B .007284
c 013604
D .006424

E .009369

F .002643

G -112711

H -000320

2 .<B84641

J -005419

Si
5i-Ca0

.002136

.004267

.009233

-011032

.029760

.052476

.147778

.001165

-001692

.001432

si
%si-Mgo

.009370
.009592
.009266
.008738
.021042

.024919
.001153
.020624
.003161

1.914079

uAl
Al-S5i0z

.000694
.001135
.001026
.001631
000535
.001432
.005788
.001313
.009095

.001235

o of the Following Alpha Factors:

unl
Al-CaO

.003202
.006189
.009691
.012947
.134565
.0B0555
2.593368
.002598
.037699

.001666

(30 XV)

uAI
Al-MgO

.014046
.013914
.009726
.010255
.095146
.038252
.020236
.045984
070401

2,.226727

Ca

o
Ca-510z uCa—Al:O; Ca~-Mg0O

.000265

.000241

.000398

©.009880

.000298
.000703
.000502
.000739
.000155

.000243

Ca

.002540

.002242

.005538

.045683

.023574

.001991

.171699

.000402

.108310

-001241

Ca
.005371
.002952
.003772
.062139
.052943
.018771
.001757
.025868
.001203

.438523

Mg

(s ]
OMg-si02  “Mg-Al1,0s

.000517

.000228

.000128

.000390

.Gools2

.000292

.000103

.000114

.000195

.002038

ig

.004943
.002125
.001783
.001803
.014439
.060329

.035166

.000062

.136l68

.010406

Mg
an—CaO

.002382
.001245
.001210
.003096
.045861
.016442
.046108
.000226
.000809

.002750
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Table 16. Standard Deviations (o) of the Twelve Theoretical Alpha Factors Propagated by the lLeast Squares
Solutions of Ten Equations. (15 KV)

o of the following Alpha Factors:

“:i L 351 §1 us:. y a“ ual uCa ) u(:a °lCa o o o )

-A1;03 Si-Ca0 Si-Mg0 ~Al-5i0; ~Al-Ca0 ~Al-MgO Ca-5i0; Ca-Al;03 Ca-MgO  Mg-SiOz = Mg-Al20;  Mg-CaO
A 0<10=® ¢<10-* 1x10=* g<10-% @<10-* 2x10-%° ¢<10=® g<10-® 2x10"° ©<107® 1x10¢ g<107°
B g<10-®* ©<107¢ : 0<10=* 0<10-* ©0<10™* 0<107* g<c10-® og<10~® ©<107® o0<10°® ©0<10% o<10”*
c 0<10~% @g<10-* 0<10=®* 0<10"®* @<10™®* 0<10"°* gg<10-® @<10=® G<10~® o©<10"® o<10"¢ og<lo-®
D 6<10”* 0<10"* o0<10=* 0<10"* 0<1207* 0<10"* $<10°®* ©<107* 0<10"* 0<107* o<107¢ o< 10~¢
E 0<10-® 0<10”* og<10=* o©0<10®* o0<10* 0<107* G<10°®* o<10-® 0<10~% o<10~® o©<10-¢ 1x10-°
F 0<10~* 0<10"* og<107* o0<10"* 0@<107®* 0<107* gG<ci10~® o<10=* o<l0~* o<10-* o<i0=¢ 1x107°
G N1~y 1 %30%% . 0<307t. 0<10"* - Ix10* ©<10°%  geiort  axi0™Y. g™t [ geloT® 3.ax107% 39 xi0”?
H 0<10~%* 0<10"* 2x10~* 0<10-* ©0<10™®* 1%10"* g<i10-* o<10°® 2%x10"* o<10* o<i0”¢ g<i0”*
I 7%10-% 0<10™" o<10™* 0<10-* 0<10"* 0<10"* . Ge107% 1.6x10"% g<10”® G<10~® 2.2x10" g<lo~*
J 0<10™* 0<10”® 17.3%10"% 0<10~®* 0<107* 3Ga4%x10™% G<10™® ©@<10”® 172x10-% o<10”® oO<10~* a<lo”*t
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Appendix 4.
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III.

Miscellaneous Data

Ca0 Problem
Deadtime Corrections

Drift Corrections

84



150

85

Ca0 Problem
The intensity ratios - ngszio and kggcog’/kgo - were measured
at 10KV and 15KV:

Ratio at 15 KV Ratio at 10 KV
Can/CaO i 0.741 0.743
CaCO3/CaO 0.537 0.555

In between the 15KV run and the 10KV run, the CaO mount was
exposed to the air (by opening of the sample chamber, removal to
the carbon coater and then return to the sample chamber for the
10KV run). If CaO reacts in the air to form Ca(OH)2 and Ca003, one
might expect an increase in the ratios from the 15KV run to the 10KV
run. The "contaminated" CaO (at the time of the 10KV run) would
contain relatively less Ca than the "uncontaminated" (at the time of
the 15KV run) Ca0O. It was impossible to tell whether such contamin-
ation was the only cause of the change in the ratios. Since the
mount had had least exposure to air at the time of the 15KV run,
these ratios were adopted for use in all of the alpha factor

calculations.



II.

Deadtime Correction
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This correction was applied when count rate exceeded 10,000 cps.

10 KV Run: Count rate
15 KV Run: Count rate
Count rate
CaCO3) was
20 KV Run: Count rate
Count rate
30 KV Run: Count rate
Count rate
Count rate

There were no deadtime

for Mg in MgO was approximately 20,000 cps.
for Mg in MgO was approximately 30,000 cps.
for Ca in "CaO" (calculated from CaF, and
approximately 14,000 cps.

for Mg in MgO was approximately 40,000 cps.
for Ca in "CaO" was approximately 20,000 cps.
for Mg in MgO was approximately 40,000 cps.
for Ca in "Ca0" was approximately 30,000 cps.
for Si in SiO2 was approximately 10,000 cps.

corrections for any of the ten mixes.
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III. Drift Corrections

10 KV Run: Mg counts (in MgO) were corrected for drift - the
mean counts changed from 207,737 to 205,218 and were
changed by increments of 252 per glass.

15 KV Run: No drift was observed.

20 KV Run: Si counts (in Si02) were corrected for drift by
increments of 124 counts per glass out of approxi-
ately a total of 80,000 counts. Ca counts in "CaO"
were corrected for drift by increments of 272 per glass
out of a total of about 224,000 counts.

30 KV Run: Mg counts in MgO were corrected for drift by increments
of 580 per glass. Total counts were approximately

400,0007.
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