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THESIS ABSTRACT 

Markus W. Koeneke 

Master of Science 

Department of Earth Science 

December 2020 

Title: Magnetite and Manganese Dioxide Nanoparticle Amendment Impacts on Arsenic, 
Cadmium, and Greenhouse Gas Dynamics in Paddy Soil 

 
Rice contamination by arsenic and cadmium is a well-documented challenge that 

impact billions of people globally. Our goal is to quantify the extent to which magnetite 

and manganese dioxide could be used as rice paddy amendments that limit As and Cd 

mobility and methane emissions. To do this, a suite of anaerobic and aerobic batch 

incubations were conducted utilizing rice-paddy soil and varying quantities and 

combinations of nano-magnetite and -MnO2. In the anaerobic incubation, As release 

decreased for all treatments, and Cd was not mobilized. In the aerobic incubations, all As 

concentrations in solutions were low and MnO2 decreased the amount of available Cd. 
This research demonstrates that nanoparticle magnetite and MnO2 can be used to reduce 

As and Cd mobility in flooded paddy soils, while having varying impacts on greenhouse 

gas emissions. 

There is Supplemental Information that goes in-depth on my digestion and 

extraction methods, data, and other figures. 
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I. INTRODUCTION 
 
 

Rice is the most important food in the world for human consumption, with 

approximately 4 billion people relying on it as a staple food (1). Several challenges 

currently jeopardize global rice production, one being the accumulation of arsenic (As) in 

rice grain, which poses threats to human health (2). This challenge has been exacerbated 

by farmers using As-contaminated groundwater for irrigation, causing an increase in As 

concentrations in rice paddy soils and rice (3). Many solutions have been proposed to 

address this challenge, but there are other environmental quality and human health issues 

that can arise or be intensified. Some of these issues are increasing methane (CH4) 

emissions (4), cadmium (Cd) accumulation in rice grain (5), or a decrease in iron (Fe)  

and manganese (Mn) micronutrients in rice. Therefore, solutions are critically needed that 

comprehensively address all of these problems. 

 
Varying solutions have been proposed to address these challenges, however each solution 

comes with complicating factors that can decrease the overall utility of that solution. 

Alternate wet-dry irrigation (AWD), where rice fields are drained to oxygenate the 

system, decreases As and Fe uptake, yield, water use, and CH4 emissions, but increases 

Cd uptake and N2O emissions (6-9). Silicon amendments, typically in the form of rice 

straw, rice husk, rice straw ash, and rice husk ash, have shown very promising results in 

decreasing As uptake by rice. This is due to many species of As and Si sharing a pathway 

for uptake into rice, which Si is prioritized for (10), with the exception of dimethylarsenic 

acid, which increases in grain concentration with this amendment.  In flooded paddy 

soils, rice with husk amendments took up 45% less As and reduced CH4 emissions, and 

in non-flooded paddy soils, rice took up 40-50% less Cd attributed to increasing pH and 

biomass content (11, 12). Biochar formed from the rice husk is another possible solution 

to this challenge that is promising. Studies have shown increases and decreases in both 

As, Cd and CH4 depending on how the biochar is made and manipulated (13)(14). 
Biochar can also decrease zinc, a micronutrient, uptake by rice and stimulate direct 

interspecies electron transfer, which can increase methane emissions, though it is poorly 
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studied. (14)(15). The strategies stated above are useful for achieving certain objectives 

with growing rice, however they can also threaten rice or environmental quality. 

 
Iron and manganese oxides are two oxide minerals that impact redox chemistry 

and contaminant sorption, which suggest they can be used to solve As and Cd issues (16). 

Iron- and Mn-oxide amendments have been used to varying success on limiting As and 

Cd uptake by rice. Both Fe- and Mn- oxides have the ability to scavenge contaminants 

like As and Cd in soil and can keep them bound in the soil (17). Iron-oxides readily sorbs 

As, but, it can be reduced in a flooded system, which mobilizes the sorbed As (17). 

Manganese-oxide is a powerful oxidant, that can oxidize As(III) to As(V), Fe(II) to 

Fe(III) and sorb cations (18). Cadmium plant uptake occurs through the Fe(II) and Mn(II) 

transporters, so amendments could prevent mobilized Cd from being taken up by rice. 

Their reactivities and ability to sequester contaminants vary according to the specific 

oxide mineralogy, surface chemistry, and surface area. 

 
In the present study, we utilize nanoparticle Fe- and Mn-oxides to examine their 

utilities as soil amendments. Nano Fe- and Mn-oxides size can be orders of magnitude 

smaller than their bulk counterparts, resulting in reactivities, structures, and mobility in 

soils exceeding those of their bulk counterparts (19). Their small size results in very high 

surface areas and unique surface structures that can make them more reactive or act 

differently in the environment to the bulk-oxides. They have the ability to get into pore 

water and have a higher impact on contaminant sorption and reduction potential (19). In 

particular, nano-magnetite is an Fe-oxide that is very effective at sequestering As, and in 

reduced environments, when most Fe-oxides would undergo reduction and release the As 

back into solution, magnetite does not (20). Nano-MnO2 is a mineral that has been 

successfully shown to mitigate As accumulation in rice from a contaminated field 

through sorption and oxidation of Fe(II) to form Fe(III) oxides (21). No studies have 

looked into the impacts that both nano-magnetite and nano-MnO2 have on arsenic, 

cadmium, and greenhouse gas emissions (GHG). 
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The overall goal of this work is to utilize magnetite and manganese dioxide as soil 

amendments to limit As and Cd mobility and monitor methane and CO2 emissions. To 

accomplish this goal, we examined the impacts of magnetite and MnO2 nanoparticle 

amendments on As and Cd mobility and availability and GHG emissions in oxic and 

anaerobic rice paddy soil incubations. Overall, we found that magnetite and MnO2 can be 

effective at limiting As and Cd mobilization and greenhouse gas emissions in oxic and 

anaerobic environments, although specific results are dependent on amendment 

concentrations. 
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II. METHODS 
 
 

2.1 Sample Collection 
 
 

Bulk soil samples were collected from the University of Delaware RICE farm in Newark, 

DE, USA and shipped to Eugene, Oregon aerobically. The farm was naturally a grassland 

and the soil is an Utisol/Acrisol. 

 
2.2 Anaerobic Batch Reduction Incubation 

 
 

A 2-month batch incubation experiment was conducted to assess how Fe and Mn 

nanoparticle treatments impact reduction potential and As and Cd dynamics in farm soils. 

The method was adopted from Gillispie et al. 2016 (22), and modified for this 

experiment. Two and a half grams of soil were added to 30 mL serum vials for 3 different 

treatments. The three treatments were a 50 nm manganese dioxide nanoparticle (US 

Research Nanomaterials Inc.), a 15-20 nm magnetite nanoparticle (US Research 

Nanomaterials Inc.), and a combination of the MnO2 (Mn) and magnetite (Fe) 

nanoparticles. Each treatment had 3 different concentrations, 0.025 g, 0.075 g, and 0.125 

g, for 5 sample dates where each date has a specific sample for it, in triplicate. Each 

sample was destructively sampled, so every vial was unique for each sample date, 

treatment, and replica. The solution was purged of oxygen by boiling 18 mΩ water and 

bubbling N2 through it, and contained HEPES buffer, a minimally reactive buffer to a pH 

around 6, and 10 mM potassium chloride (KCl) as an electrolyte. Samples and solutions 

were brought into an anaerobic chamber, purged with nitrogen (92%) and hydrogen gas 

(8%) to remove oxygen, and 25 mL solution was added to each sample. Soil-free controls 

and blanks were included in duplicate, where treatment in the soil free controls was 0.075 

g for Fe and Mn. Vials were crimp sealed in the anaerobic chamber, taken out of the 

chamber, and set up on shakers covered in tinfoil until sample day. 

 
On sample day vials were taken off the shaker and headspace concentrations of CO2 and 

CH4 were analyzed by gas chromatography (GC) using a flame ionization detector 



5  

equipped with a methanizer (SRI Instruments, Torrance, CA, USA). For GC analysis, the 

instrument was calibrated using a mixed CO2 and CH4 gas with a calibration range of 

1,010-10,100 ppm CO2 and 99.9-999 ppm CH4. After samples were analyzed for gas they 

were brought back into the anaerobic chamber. In the anaerobic chamber samples were 

measured for Eh and pH, decanted into 50 mL centrifuge tube, centrifuged at 4,000 rpm 

for 10 minutes, decanted into a 50 mL syringe, pushed through a Thermo Scientific PTFE 

0.2 um filter, and then acidified with 5 drops of 12M HCl. Sample vials with the soil 

inside were left in glovebox to air-dry in an anaerobic environment. Solutions were taken 

out of the glovebox and refrigerated at 4°C. For Fe, Mn, As, and Cd solution analysis, 

samples were diluted at a 2:5 ratio in 2% HNO3, then taken to Oregon State University’s 
W.M. Keck Lab. Iron and Mn were analyzed via ICP-OES (Spectros Arcos II), and As 

and Cd solutions analyzed on an ICP-MS (Thermoscientific iCAP-RQ). 

 
Water content of the soil was calculated by weighing out 2.5 grams of soil, done with 6 

replicates, putting them in an over at 105°F for 24 hours, taking them out and reweighing 

the dry soil. 

 
2.3 Aerobic Batch Incubation 

 
 

A follow up 2-month batch incubation experiment was conducted to assess how Fe and 

Mn nanoparticle treatments impact As and Cd dynamics in an aerobic farm soil. The 

same method for the anaerobic study was used for this one with a few changes. Only one 

amount, 0.025 g, of amendment was used, the water for the solution was not purged with 

nitrogen, samples were set up outside of glovebox, and covered in parafilm with slits for 

oxygen exchange. Because of this there was no gas analyses done at the end of the study. 

Samples were processed, stored, and analyzed the same way as the aerobic study. 

 
2.4 Strong Acid Digestion (EPA 3050b) 

 
 

The soil used for the experiment, and soils from week 8 samples, were analyzed for Fe, 

Mn, As, and Cd after they were acid digested following the EPA 3050b protocol. This 
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shows the “environmentally available” but does not dissolve silicate structures. For the 

digestion, 0.5 g of wet soil was weighed and put in a 50 mL digestion tube. Two and a 

half milliliters of 18.2 MΩ water and 2.5 mL of 15.8 M Nitric Acid (HNO3) were added 

to tubes and the samples were vortexed. The samples sat over night for 16 hours in the 

acid covered with a watch glass. After the 16 hours, the samples were heated to 95°C in a 

DigiPrep Digestion Block for 15 minutes then removed from heat to cool for 10 minutes. 

After cooling, 2.5 mL of 15.8 M HNO3 was added to samples, then they were vortexed, 

and tubes heated to 95°C for 30 minutes. This step was repeated once. After the 

repetition, watch glasses were removed and tubes were heated to 95°C for 2 hours. 

Following the 2 hours the samples are removed from the heat to cool. Once cooled, 1.5 

mL of 18.2 MΩ water and 1 mL of 30% hydrogen peroxide were added to samples. 

Samples were then put back in the digestion block with watch glasses on and heated to 

95°C, adding 1 mL of 30% hydrogen peroxide when the effervescence stopped from the 

previous addition. This was done until 5 mL total of 30% hydrogen peroxide had been 

added to the samples. Once the effervescence of the 5th mL of 30% hydrogen peroxide 

stopped, samples were vortexed and heated uncovered to 95°C for 2 hours. After the 2 

hours, samples were taken off the digestion block and left to cool. Once cool, 2.5 mL of 

12 M hydrochloric acid (HCl) was added to samples, then samples put back on digestion 

block and heated to 95°C for 45 minutes. Samples were taken off of the digestion block, 

cooled, filtered with Whatman paper #41 into 50 mL centrifuge tubes and stored in the 

fridge. Samples were analyzed for As, Cd, Fe, and Mn via ICP-MS and ICP-OES, as 

described above. 

 
2.5 Sequential Extraction 

 
 

The chemical fractionation of solid-phase Fe, Mn, As, and Cd was achieved via 

sequential extraction adopted by Keon et at 2001, modified with the addition of a step for 

chemical fractions associated with crystalline Fe oxides (Mehra and Jackson, 1960) and 

without the monosodium phosphate step (Detailed in Supplemental Information). The 

extractants and steps detailed below target Fe, Mn, As, and Cd from (1) ionically bound, 
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(2) Mn-Oxides (3) amorphous iron oxide, and (4) crystalline iron oxide. 

1. 1 M MgCl2, pH 8, 2 h, 25 °C two repetitions + one water wash 

2. 1 N HCl, 1 h, 25 °C one repetition + one water wash 

3. 0.2 M ammonium oxalate/oxalic acid, pH 3, 2 h, 25 °C in dark 

one repetition + one water wash 

4. Citrate-bicarbonate-dithionite (from Mehra and Jackson, 1960) 
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III. RESULTS 
 
 

3.1 Characterization of Soils 
 
 

Data in Table S1, obtained through digestions and extractions, show associations between 

elements in the soil. These strong acid digestion data show the original soil had 881 mg/g 

Fe, 13.1 mg g-1 Mn, 227 ng g-1 As, and 3440 ng g-1 Cd. The soil has a pH of 6.67 and a 

wet-dry-ratio of 1.34 g : 1 g. 

 
3.2 Experiment 1: Anaerobic Incubation 

 
 

3.2.1 Arsenic Dynamics in Soil 

Across all incubations, As release from soil to solution was greatest for samples not 

treated with Fe or Mn nanoparticles (Figure 1), with nearly 500 ng As released per g soil, 

or roughly 9% of the total As in the soil (6 ug g-1, Table S1). In contrast, only 165 ng As 

per g soil was released in incubations with added nanoparticles, excepting the 1% and 3% 

MnO2 amendments, where 400 ng g-1 and 300 ng g-1 As released, respectively, by day 
28. For all treatments, As release primarily occurred in the first 28 days, after which 

dissolved As concentrations stabilized or slightly decreased. Magnetite amendments 

appeared to have the greatest inhibition of As release, as shown in Figures 1a and 1c, 

whereas MnO2-only treatments resulted in As release that approached levels observed 

without nanoparticle addition through 28 days (Figure 1b). However, by 8 weeks of 

incubation, As release was below 165 ng g-1 in all treatments (Figure 5c). Finally, As 

release generally was lessened with increasing nanoparticle concentration for all 

treatments. 
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Figure 1: Anaerobic experiment arsenic release per gram of dry soil from magnetite treatment (A), from 

MnO2 (B), and from a combination of both magnetite and MnO2 (C). Error bars represent standard error of 

experimental triplicates. 

 
The digestion and extraction data of the post-experiment week 8 anaerobic incubation 

soils are shown in Table S2. The strong acid digestion released 6.47-7.51 ug g-1 As from 

the soils. The ammonium oxalate/oxalic acid (AMO), hydrochloric acid (HCl), and 

citrate-bicarbonate-dithionite (CBD) extractions released between 0.6-3.7 ug g-1 As. All 

magnesium chloride (MC) extractions released a maximum of 0.23 ng g-1 As. 

 
3.2.2 Cadmium Dynamics in Soil 

 
 

Across all incubations Cd release from soil to solution was low, with highest values in 

samples treated with Fe or Mn nanoparticles (Figure 2). The range of Cd released over 8 

weeks was 2-6 ng Cd released per g soil, or roughly 0.05-0.15% of the total Cd in the soil 

(4260 ng g-1, Table S1). In contrast, samples that did not receive a treatment released less 

than 1.6 ng of Cd per gram of dry soil across the entire experiment. The highest 

concentrations of Cd released occurred at 56 days for the 5% magnetite amendment, 14 

days for the 5% MnO2 amendment, and 56 days for the 5% magnetite/MnO2 treatment. 
These were the only samples that released over 3.15 ng of Cd across the incubation. For 

the magnetite amendment, the majority of the Cd was released after 14 days, with the 

exception of the 5% amendment, which released 1.63 ng Cd per g soil over 14 days. For 

the MnO2 amendment, there is a spike in cadmium that occurred between 7 and 14 days, 

with Cd release being 2.33- 5.65 ng per gram of dry soil, and increasing with amendment 

concentration. However, by 28 days, Cd levels lowered to 1.4-2.6 ng Cd per g soil, and 
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those levels plateaued through 56 days. For samples treated with magnetite/MnO2, Cd 

release primarily happened between 7 and 14 days to 1.3-2.6 ng per g soil, which 

plateaued through 28 days, and slightly increased through 56 days to 2.2-3.6 ng per g 

soil. 

 
Figure 2: Anaerobic experiment cadmium release per gram of dry soil from magnetite treatment (A), 

MnO2 treatment (B), and Fe/Mn treatment (C). Error bars represent standard error of experimental 

triplicates. 

 

The digestion and extraction data of the post-experiment week 8 anaerobic incubation 

soils are shown in Table S2. The strong acid digestion data of released Cd ranging from 

83.5-105.6 ng L-1. HCl extractions released between 58.4-77.4 ng g-1 Cd, and the MC, 

AO, and CBD extractions released a maximum of 17.71 ng g-1 Cd. 

 
3.2.3 Soil Carbon Emissions 

 
 

Greenhouse gas emission data in Figures 3 and 4 vary with Fe and Mn treatments and 

concentrations. The data in Figure 3a, the Fe treatments, show CH4 emissions increased 

over time, and with concentration of Fe added. In Figure 3b, where Mn was added, these 

data show CH4 production is lower than when Fe is added, with the lowest CH4 produced 

in the 1% additions. The 1% Mn amendment sample CH4 total emissions are constant 

throughout each sampling date of the experiment, while the 3% and 5% Mn amendment 

samples increased CH4 emissions throughout the experiment. In Figure 3c, the Fe and Mn 

treatments, CH4 levels are consistent throughout the 56 days, suggesting that either 
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almost all the CH4 was produced in the first 4 days. The data also show lower CH4 

emissions with lower Fe/Mn amendment concentrations added to samples. 

 

Figure 3: Anaerobic experiment CH4 emissions from magnetite treatment (A), MnO2 treatment (B), and 

magnetite and MnO2 treatment (C). Error bars represent standard error of experimental triplicates. 

 

The Fe treatments produced CO2 concentrations greater than the 0-treatment sample over 

the first 28 days, then significantly less than the 0-treatment sample on day 56 due to a 

huge spike (Figure 4). Concentration of the Fe amendment did not have an observed 

impact on CO2 production. The data in Figure 4b, the MnO2 nanoparticle amendment, the 

data show CO2 production was 0 across all days and concentrations except the 0% 

sample. The data in Figure 4c, the Fe/Mn amendment samples, we see very small 

amounts of CO2 produced, all below 2,000 ppm, except the 0% sample, that slightly 

increase with time, and are highest in the 1% treatments. 

 

Figure 4: Anaerobic experiment CO2 emissions from magnetite treatment (A), MnO2 treatment (B), and 

magnetite and MnO2 treatment (C). Error bars represent standard error of experimental triplicates. 
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3.2.4 Comparing Treatments 

The nanoparticle magnetite and MnO2 amendments decreased As concentrations, 

increased Cd concentrations, decreased CO2 emissions and CH4 emissions were increased 

and decreased depending on treatment and concentration. These data in Figure 5a show 

As concentrations of samples treated with Fe or Mn significantly lower than the no 

treatment sample. While As concentration decreased, data in Figure 5b show that Cd 

concentration increased in about every sample with the exceptions of the 1% and 5% Mn 

treatments where they were about the same as the treatment blank. Magnetite treatments 

increased CH4 emissions, with the 5% amendment increasing CH4 production the most 

and the 1% and no treatment samples producing the least. For the samples with Mn added 

(including Fe/Mn), the 5% treatment was similar to the no treatment, but in the 3 and 1% 

treatment samples were lower than the no treatment. The 1% Fe and Fe/Mn treatments 

had the least CH4 produced by a decent amount. In Figure 5d, CO2 week 8 data, all 

samples were much lower than the no treatment, given a huge spike in CO2 produced in 

the 8 week no treatment samples. There was CO2 produced in all the magnetite 

treatments, there was no CO2 produced in the MnO2 samples, and very small 

concentrations of CH4 produced for the Fe/Mn data for the week 8 samples. 
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Figure 5: Week 8 anaerobic experiment data compared across treatments for As (A), Cd (B) released into 

solution and CO2 (C), and CH4 (D) emissions from the soil. Error bars represent standard error of 

experimental triplicates. 

 

3.3 Experiment 2: Aerobic Study 
 
 

In our follow up aerobic incubation experiment, As concentrations were low through all 

treatments, magnetite increased Cd concentrations, and MnO2 decreased Cd released 

(Figure 6). 

As concentrations in solution throughout the study ranged from 0.2-0.7 ng g-1. Cd 

concentrations in solution were low through the first 14 days of the study, and then spike 

at 28 days. All of our Cd results are significantly higher than the anaerobic study, which 

had a spike at 28 days, but MnO2 treated samples reduced Cd concentrations relative to 

the magnetite and no treatment samples. 
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Figure 6: Aerobic experiment As released (A), Cd released (B) from soils with each treatment. Error bars 

represent standard error of experimental triplicates. 
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IV. DISCUSSION 
 
 

4.1 Anaerobic Study 
 
 

Soils treated with nanoparticle magnetite amendment had little As released into solutions, 

with minimal impacts on Cd dynamics. However, depending on amendment 

concentration, it can increase CH4 emissions. In the 1% Fe sample, we see methane 

emissions similar to that of the no treatment, so lower concentration amendments of 

magnetite have the potential of sequestering As in reduced environments while having 

little impact on cadmium mobility and possible CH4 production. 

 
Nanoparticle MnO2 amendments reduced As concentration in solution without 

mobilizing Cd, reduced CH4 production, and inhibited CO2 production. Arsenic readily 

binds to Fe-oxides, which Mn-oxides can oxidize if reduced (23). This can explain how 

we measured no Fe in solution in samples treated with Mn, and low As concentrations in 

solution. Mn also reduced the amount of CH4 produced for the 1% amendment and was 

similar emissions in all the other concentrations (Figure 3). For this treatment there was 

no CO2 produced throughout the entire experiment (Figure 4), suggesting that Mn could 

be toxic at treatment concentrations to certain microbes (24). Lower concentrations of 

Mn should be studied to see impacts of smaller amendments on GHG emissions and 

contaminant mobility in paddy soils. 

 
In dually treated samples that received nanoparticle magnetite and MnO2 amendments, 

As and CH4 concentrations were reduced (Figures 1 and 3) relative to no treatment 

samples, while minimally impacting Cd relative to the oxic study (Figures 2 and 6b), and 

limiting CO2 production (Figure 4). The 1% amendment had the lowest CH4 emissions 

out of all samples over 56 days, and had similar results for As and Cd release as the 3% 

and 5% treatment concentrations. Limiting the treatment concentration while decreasing 

As and Cd released, and CH4 production is optimal for a solution. Further research into 

lower and varying concentrations of these amendments can optimize this strategy. 



16  

4.2 Oxic Study 
 
 

In the oxic incubation, Cd concentrations increased by over an order of magnitude under 

all treatments relative to the anaerobic incubation, and the magnetite amendment 

increased [Cd] to levels higher than the samples that did not receive an amendment. 

There is a spike in cadmium that occurred between 2 and 4 weeks into the incubation, so 

oxidizing a field with this treatment for harvest might not result in cadmium uptake by 

rice, though this needs further investigating. Also, only one treatment concentration was 

used in the oxic study, so further investigation needs to be done on the concentration of 

Mn amendments to paddy soil and their impact on Cd. 

 
4.3 Future Challenges 

 
 

Growing rice in the future faces a multitude of challenges, many related to environmental 

quality, and we need solutions ready to address these challenges to ensure we have a 

well-nourished global population. Managing rice paddy fields to address contaminant 

fate, water scarcity, climate change, and rice yields are a hard task to achieve 

simultaneously (25, 26). Results from our study indicate that using MnO2 amendments to 

alleviate the cadmium contamination from AWD irrigation practices can reduce Cd 

mobility, however none of our amendments demonstrated that they can reduce Cd 

concentrations in that environment. 

 
In our study, all treatments in the anaerobic incubation demonstrated that they can 

address some of the challenges presented to rice growing, though more research is needed 

to investigate the possible externalities from these amendments. Future research needs to 

look into the use of Fe and Mn nanoparticles applied to paddy soil at smaller amendment 

concentrations to investigate if we see similar results. We recommend these amendments 

are tested on field studies with flooded irrigation to see if what we observe in the 

laboratory translates to the field. We advocate for the use of magnetite at low 

concentrations in flooded systems to alleviate As contamination, and MnO2 for lowering 

soil emissions, however, there needs to be more research into the implications of varying 
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the amendment concentration. By addressing these questions, we will be able to improve 

the quality of rice without decreasing yield and limiting negative impacts from this 

practice. 

 
Overall a combination of Fe and Mn seems like it could be ideal at addressing this issue, 

as you can gain benefits from them both in different ways. The 1% Fe treatment seems 

like it is ideal for an anaerobic system, but it does not reduce CH4, and Cd can still be 

mobilized upon oxidation of the field. The 1% Mn seems like too large of a concentration 

to pair with the Fe, as it impacts microbes more and results in high Mn in solution, 

therefore, further investigations into Mn amendments at lower concentrations, paired with 

Fe seem like the ideal way to address the issue. Honing in on ideal concentration for the 

amendments can prevent rice from taking up As and Cd as well as lower CH4 emissions. 
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V. CONCLUSION 
 
 

Global rice contamination by As and Cd is a well-documented challenge with no known 

solutions that address both contaminants. The driving factors that cause the 

contaminations are tied to irrigation practices that influence redox processes and 

contaminant sorption in paddy soils. Our results demonstrate that nanoparticle magnetite 

can be used to sorb As in reduced environments, while not mobilizing Cd, though you 

risk increasing CH4 emissions. They also demonstrate that in an oxic environment, 

nanoparticle MnO2 can reduce Cd availability. Both amendments had varying influence 

on CH4 and CO2 emissions so future research needs to elucidate the impacts of these 

amendments on emissions in a field study. Solutions to address these challenges are 

critical and many parts of the world are relying on them for growing rice in a safe matter. 



19  

REFERENCES CITED 
 

1) Importance of rice - RICE: CGIAR Research Program on Rice Agri-Food 
Systems. (n.d.). Retrieved July/August, 2020, from http://ricecrp.org/importance- 
of-rice/ 

 

2) Yamaji, Naoki, Mitani, Namiki, Xu, Xiao-Yan, Su, Yu-Hong, Ma, J F, Yamaji, N, 
Mitani, N, Xu, X-Y, Su, Y-H, McGrath, S P, and Zhao, F-J. "Transporters of 
Arsenite in Rice and Their Role in Arsenic Accumulation in Rice 
Grain." Proceedings of the National Academy of Sciences of the United States of 
America. 105.29 (2008): 9931-935. Web. 

 
3) Meharg A. A.; Rahman M. Arsenic contamination of Bangladesh paddy field 

soils: Implications for rice contribution to arsenic consumption. Environ. Sci. 
Technol. 2003, 37, 229-234. 

 
4) Chang, Jiali, Liu, Pengfei, Fu, Li, Ding, Dewen, Li, Huijuan, and Lu, Yahai. 

"Direct Interspecies Electron Transfer Accelerates Syntrophic Oxidation of 
Butyrate in Paddy Soil Enrichments." Environmental Microbiology. 17.5 (2015): 
1533-547. Web. 

 
5) Wang, Ping-Mei, Gu, Yi, Kopittke, Peter M., Zhao, Fang-Jie, Wang, Jing, 

Kopittke, Peter M, and Wang, Peng. "Iron–Manganese (Oxyhydro)oxides, Rather 
than Oxidation of Sulfides, Determine Mobilization of Cd during Soil Drainage in 
Paddy Soil Systems." Environmental Science & Technology. 53.5 (2019): 2500- 
508. Web. 

 
6) Lundy, Mark E., Linquist, Bruce A., Carrijo, Daniela R, Lundy, Mark E, and 

Linquist, Bruce A. "Rice Yields and Water Use under Alternate Wetting and 
Drying Irrigation: A Meta-analysis." Field Crops Research 203 (2017): 173-80. 
Web. 

 
7) Arao, Tomohito, Kawasaki, Akira, Baba, Koji, Mori, Shinsuke, and Matsumoto, 

Shingo. "Effects of Water Management on Cadmium and Arsenic Accumulation 
and Dimethylarsinic Acid Concentrations in Japanese Rice." Environmental 
Science & Technology. 43.24 (2009): 9361-367. Web. 

 
8) LAGOMARSINO, Alessandra, AGNELLI, Alessandro Elio, LINQUIST, Bruce, 

ADVIENTO-BORBE, Maria Arlene, AGNELLI, Alberto, GAVINA, Giacomo, 
RAVAGLIA, Stefano, and FERRARA, Rossana Monica. "Alternate Wetting and 
Drying of Rice Reduced CH4 Emissions but Triggered N2O Peaks in a Clayey 
Soil of Central Italy." Pedosphere. 26.4 (2016): 533-48. Web. 

 
9) Carrijo, D.R., Lundy, M.E., Linquist, B.A., 2017. Rice yields and water use under 

alternate wetting and drying irrigation: a meta-analysis. Field Crop Res. 203, 173– 
180. 

http://ricecrp.org/importance-


20  

10) Seyfferth, A. L., Limmer, M. A., & Dykes, G. E. (2018). On the Use of Silicon as 
an Agronomic Mitigation Strategy to Decrease Arsenic Uptake by Rice. 
Advances in Agronomy, 49–91. 

 
11) Amaral, Douglas, Limmer, Matt A., Guilherme, Luiz R. G., Seyfferth, Angelia L, 

Limmer, Matt A, and Guilherme, Luiz RG. "Combined Impacts of Si-rich Rice 
Residues and Flooding Extent on Grain As and Cd in Rice." Environment 
International 128 (2019): 301-09. Web. 

 

12) Penido, E.S., Bennett, A.J., Hanson, T.E. et al. Biogeochemical impacts of 
silicon-rich rice residue incorporation into flooded soils: Implications for rice 
nutrition and cycling of arsenic. Plant Soil 399, 75–87 (2016). 
https://doi.org/10.1007/s11104-015-2682-3 

 
13) Wang, Xin, Peng, Bo, Tan, Changyin, Ma, Lena Q., Yin, Daixia, and Ma, Lena Q. 

"Effect of Biochar and Fe-biochar on Cd and As Mobility and Transfer in Soil- 
rice System." Chemosphere. 186 (2017): 928-37. Web. 

 
14) Chen, Zheng, Cai, Chao, Tie, Baiqing, Liu, Xiaoli, Zheng, Ruilun, Reid, Brian J, 

Huang, Qing, Lei, Ming, Sun, Guoxin, and Baltrėnaitė, Edita. "Mitigating Heavy 
Metal Accumulation into Rice (Oryza Sativa L.) Using Biochar Amendment — a 
Field Experiment in Hunan, China." Environmental Science and Pollution 
Research International 22.14 (2015): 11097-1108. Web. 

 
15) Xin Xiao, Baoliang Chen, and Lizhong Zhu. Transformation, Morphology, and 

Dissolution of Silicon and Carbon in Rice Straw-Derived Biochars under 
Different Pyrolytic Temperatures Environmental Science & 
Technology 2014 48 (6), 3411-3419 DOI: 10.1021/es405676h 

16) Borch, T., Kretzschmar, R., Kappler, A., Cappellen, P. Van, Ginder-Vogel, M., … 
Voegelin, A. (2010). Biogeochemical Redox Processes and their Impact on 
Contaminant Dynamics. Environmental Science & Technology, 44(1), 15–23. 
https://doi.org/10.1021/es9026248 

 
 
 

17) Chowdhury SR, Yanful EK. Kinetics of cadmium(II) uptake by mixed 
maghemite-magnetite nanoparticles. Journal of Environmental Management. 2013 
Nov;129:642-651. DOI: 10.1016/j.jenvman.2013.08.028. 

 
18) Makino, Tomoyuki, and Suda, Aomi. "Functional Effects of Manganese and Iron 

Oxides on the Dynamics of Trace Elements in Soils with a Special Focus on 
Arsenic and Cadmium: A Review." Geoderma. 270 (2016): 68-75. Web. 

 
19) Huber DL. Synthesis, properties, and applications of iron nanoparticles. Small. 

2005 May;1(5):482-501. doi: 10.1002/smll.200500006. PMID: 17193474. 



21  

20) Sun J, et al. Enhanced and Stabilized Arsenic Retention in Microcosms through 
the Microbial Oxidation of Ferrous Iron by 
Nitrate. Chemosphere. 2016;144:1106–1115. 

 
21) Li, B., Zhou, S., Wei, D., Long, J., Peng, L., Tie, B., … Lei, M. (2019). 

Mitigating arsenic accumulation in rice (Oryza sativa L.) from typical arsenic 
contaminated paddy soil of southern China using nanostructured α-MnO2: Pot 
experiment and field application. Science of the Total Environment, 650, 546– 
556. https://doi.org/10.1016/j.scitotenv.2018.08.436 

 
22) Gillispie, E. C., Andujar, E., & Polizzotto, M. L. (2016). Chemical controls on 

abiotic and biotic release of geogenic arsenic from Pleistocene aquifer sediments 
to groundwater. Environ. Sci.: Processes Impacts, 18(8), 1090–1103. 
https://doi.org/10.1039/C6EM00359A 

 
 

23) Dixit, S., & Hering, J. G. (2003). Comparison of Arsenic(V) and Arsenic(III) 
Sorption onto Iron Oxide Minerals: Implications for Arsenic Mobility. 
Environmental Science & Technology, 37(18), 4182–4189. 
https://doi.org/10.1021/es030309t 

 
 
 

24) Cheung, H. Y., VitkoviČ, L., & Brown, M. R. W. (1982). Toxic Effect of 
Manganese on Growth and Sporulation of Bacillus stearothermophilus. 
Microbiology, 128(10), 2395–2402. 
https://doi.org/https://doi.org/10.1099/00221287-128-10-2395 

 

25) Shi, Z., Carey, M., Meharg, C. et al. Rice Grain Cadmium Concentrations in the 
Global Supply-Chain. Expo Health (2020). https://doi.org/10.1007/s12403-020- 
00349-6 

 

26) Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., … 
Cassman, K. G. (2004). Rice yields decline with higher night temperature from 
global warming. Proceedings of the National Academy of Sciences, 101(27), 
9971–9975. https://doi.org/10.1073/pnas.0403720101 

 

27) EPA (1996) Method 3050B: Acid Digestion of Sediments, Sludges, and Soils. 
Revision 2. 

 
 

28) N. Keon, C. Swartz, D. Brabander, C. Harvey, H. HemondValidation of an 
arsenic sequential extraction method for evaluating mobility in sediments 
Environ. Sci. Technol., 35 (2001), pp. 2778-2784 



22  

29) O.P. Mehra, M.L. JacksonIron oxide removal from soils and clays by a dithionite- 
citrate system buffered with sodium bicarbonate Clays and Clay Miner. Proc. 
Seventh Nat.Conf. (1960), pp. 317-327 


