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DISSERTATION ABSTRACT 

 

Stefania René Ashby 

 

Doctor of Philosophy 

 

Department of Psychology 

 

June 2021 

 

Title: Behavioral and Neural Mechanisms of Spontaneous Generalization 

 

 

Memory generalization is the process by which we extract commonalities across 

our individual experiences to form new knowledge that can guide future decisions. 

Studies examining generalization have traditionally employed tasks, like category 

learning, that emphasize learning categorical information via extraction of commonalities 

among stimuli. Generalization is then explicitly assessed via transfer of category 

knowledge to new examples. Separately, memory for individual experiences, or memory 

specificity, has been studied through episodic memory tasks that emphasize differences 

between stimuli. However, real-world experience rarely puts us in situations where 

learning goals prioritize specificity or generalization at the expense of the other. Rather, 

circumstances often require us to extract the commonalities across our experiences while 

also maintaining memory for the specific details. Thus, the goal of the dissertation was to 

evaluate the behavioral and neural mechanisms that support spontaneous memory 

generalization during learning that emphasizes memory specificity. Using a novel, paired 

associates learning task where blended faces were paired with full-name labels, we 

provided an opportunity for participants to form category knowledge based on shared 

surname labels. Unlike traditional category learning tasks, learning goals in the current 

task explicitly required participants to differentiate all faces, even those with shared 
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family membership. Across 3 studies, using behavioral measures of perceived similarity 

and neural pattern analyses during encoding, we found that the mere presence of a shared 

label produced behavioral and neural evidence for category-biased representations during 

learning. Notably, neural evidence for category-biased representations extended beyond 

hypothesized memory generalization regions to include widespread aspects of the brain 

including higher-order visual cortex. Further, we found evidence that the hippocampus 

may support generalization and specificity simultaneously via differential connections 

with other hypothesized memory generalization and specificity regions. Together, our 

results inform our understanding of current theories of memory generalization by 

demonstrating conditions under which memory generalization proceeds spontaneously 

during learning. 

 

This dissertation includes previously published and unpublished co-authored material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 vi 

CURRICULUM VITAE 

 

NAME OF AUTHOR:  Stefania René Ashby 

 

 

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED: 

 

 University of Oregon, Eugene 

 Brigham Young University, Provo 

  

 

DEGREES AWARDED: 

 

 Doctor of Philosophy, Psychology, 2021, University of Oregon 

 Master of Science, Psychology, 2016, University of Oregon 

Bachelor of Science, Psychology, 2011, Brigham Young University 

  

AREAS OF SPECIAL INTEREST: 

 

 Cognitive Neuroscience 

 

PROFESSIONAL EXPERIENCE: 

 

Graduate Research & Teaching Assistant, University of Oregon,  

 September 2015 – June 2021 

 

 Staff Research Associate I, University of California, Davis, 

  June 2012 – August 2015 

 

 Undergraduate Research Assistant, Brigham Young University, 

  January 2011 – January 2012 

 

 

GRANTS, AWARDS, AND HONORS: 

 

National Science Foundation GRFP Honorable Mention, Functional Neural 

Networks Underlying the Testing Effect, University of Oregon, 2016 

 

 Phi Kappa Phi National Honor Society, Brigham Young University, 2011 

 

 Golden Key National Honor Society, Brigham Young University, 2010 

 

 Psi Chi International Honor Society, Brigham Young University, 2010 

  

 Phi Eta Sigma National Honor Society, Brigham Young University, 2009 

 



 

 vii 

PUBLICATIONS: 

 

Ashby, S.R. Chaloupka, B., & Zeithamova, D. (in prep). Category learning 

induces true category biases in perception that are dissociable from 

strategic judgment bias.  

 

Ashby, S.R. & Zeithamova, D. (in prep). Category-biased neural representations 

form spontaneously during learning that emphasizes memory for specific 

instances. Journal of Neuroscience. 

 

Bowman, C.R., Ashby, S.R. & Zeithamova, D. (submitted). Aging effects on 

instructed and non-instructed category learning. 

 

Ashby, S.R. & Zeithamova, D. (submitted). The role of test and restudy in the 

retention of briefly encountered facts. 

 

Ashby, S.R., Bowman, C.R., & Zeithamova, D. (2020). Perceived similarity 

ratings predict generalization success after traditional category learning 

and a new paired-associate learning task. Psychonomic Bulletin and 

Review, 27(4), 791-800, doi: 10.3758/s13423-020-01754-3 

 

Rosenthal, A., Mayo, D., Tully, L.M., Patel, P.K., Ashby, S.R., Titone, M., 

Meyer, M., Carter, C.S., & Niendam, T.A. (2020). Contributions of 

childhood trauma and atypical development to poor clinical course in 

recent onset psychosis. Early Intervention in Psychiatry, 1-7, 

https://doi.org/10.1111/eip.12931 

 

Garcia, P.L., Ashby, S.R., Patel, P.K., Pierce, K.M., Meyer, M., Rosenthal, A., 

Titone, M., Carter, C.S., & Niendam, T.A. (2019). Clinical and 

neurodevelopmental correlates of aggression in early psychosis. 

Schizophrenia Research, 212, 171-176. 

 

Niendam, T.A., Ray, K.L, Losif, A.M., Lesh, T.A., Ashby, S.R., Patel, P.K., 

Smuncy, J., Ferrer, E., Solomon, M., Ragland, J.D., & Carter, C.S. (2018). 

Association of age at onset and longitudinal course of prefrontal function 

in youth with schizophrenia. JAMA Psychiatry, 75(12), 1252-1260, 

doi:10.1001/jamapsychiatry.2018.2538 

 

Kirwan, C.B., Ashby, S.R., & Nash, M.I. (2014). Remembering and imagining 

differentially engage the hippocampus: A multivariate fMRI investigation. 

Cognitive Neuroscience, 5(3-4), 177-185, doi: 

10.1080/17588928.2014.933203 

 

 

  



 

 viii 

ACKNOWLEDGMENTS 

 

 

Throughout my degree program I have received a great deal of support and 

assistance. I first wish to express sincere appreciation to my advisor and mentor Dr. Dasa 

Zeithamova, whose expertise was invaluable in formulating the research questions and 

methodology of my projects in the lab. Your feedback and guidance throughout grad 

school pushed me to grow both professionally and personally during my academic 

journey.  

In addition, special thanks are due to all the staff at the Lewis Center for 

Neuroimaging for providing facilities, equipment, training, and support integral to 

collection of the data included in this project. I greatly appreciate their assistance over the 

years and the opportunity to collect imaging data on my own providing me with more 

breadth of training. 

I would also like to thank Dr. Caitlin Bowman and all my colleagues in the Brain 

and Memory Lab for their guidance, assistance, and emotional support in the form of 

long conversations and happy distractions from the stress of graduate school. Being 

surrounded by a friendly support system in the lab made all the difference in completing 

my degree.  

Lastly, I would like to thank my parents for their encouragement, wise counsel, 

and sympathetic ear. I could not have overcome the struggles of the last six years without 

their unfailing support. My degree is a direct reflection of the amazing people I have the 

privilege to call family.  



 

 ix 

 

 

 

 

To Grandpa C. whose support made all this possible.  

Thank you. Love you.  

Until we meet again.  

 

 

 



 

 x 

TABLE OF CONTENTS 

Chapter Page 

 

 

I. INTRODUCTION .................................................................................................... 1 

 Competing Theories of How Memory Generalization  

 Proceeds from Learning ......................................................................................... 4 

 On-demand Generalization Through Flexible Retrieval.................................. 4 

 Memory Integration During Encoding............................................................. 6 

 Generalization May Proceed from Learning Via Both Mechanisms ............... 7 

 Can Memory Generalization Proceed Spontaneously? .......................................... 9 

 Category Bias in Perception as a Means to Measure  

 Spontaneous Generalization................................................................................... 11 

 Goal and Structure of the Dissertation  .................................................................. 13 

 

II. PERCEIVED SIMILARITY RATINGS PREDICT GENERALIZATION  

 SUCCESS AFTER TRADITIONAL CATEGORY LEARNING AND A  

 NEW PAIRED-ASSOCIATE LEARNING TASK ................................................ 16 

 

 Method ................................................................................................................... 20 

 Participants ....................................................................................................... 20 

 Stimuli  ............................................................................................................. 21 

 Procedure  ........................................................................................................ 24 

  Passive Viewing ......................................................................................... 24 

  Pre-learning Similarity Ratings ................................................................. 24 

  Learning Phase  .......................................................................................... 25 

   Experiment 1: Feedback-based Category Learning  ................ 25 

   Experiment 2: Observational Learning of Face-Full 

   Name Associations .................................................................. 25 

  Post-Learning Similarity Ratings  .............................................................. 26 

  Cued Recall of Face-Name Associations  .................................................. 26 

  Generalization Phase  ................................................................................. 27 

 Results  ................................................................................................................... 27 

 



 

 xi 

Chapter Page 

 

 Learning Phase ................................................................................................. 27 

  Experiment 1: Feedback-based Category Learning  ............................ 27 

        Experiment 2: Observational Learning of Face-Full 

        Name Associations .............................................................................. 27 

 Similarity Ratings  ........................................................................................... 28 

  Experiment 1 ........................................................................................ 28 

        Experiment 2  ....................................................................................... 29 

 Category Generalization  ................................................................................. 31 

  Experiment 1 ........................................................................................ 31 

        Experiment 2  ....................................................................................... 32 

 Discussion  ............................................................................................................. 32 

 Open Practices  ...................................................................................................... 37 

 

III. CATEGORY-BIASED NEURAL REPRESENTATIONS FORM 

SPONTANEOUSLY DURING LEARNING THAT EMPHASIZES  

 MEMORY FOR SPECIFIC INSTANCES ............................................................ 38 

 Method  .................................................................................................................. 42 

 Participants  ...................................................................................................... 42 

 Stimuli  ............................................................................................................. 43 

  Training Stimuli  .................................................................................. 43 

  Test Stimuli ...................................................................................... 45 

 Experimental Design  ....................................................................................... 45 

  Passive Viewing  .................................................................................. 46 

  Pre-Learning Similarity Ratings  ......................................................... 46 

  Observational Learning of Face-Full Name  

  Associations (scanned) ........................................................................ 47 

  Post-Learning Similarity Ratings  ........................................................ 47 

  Cued Recall of Face-Name Associations  ............................................ 48 

  Recognition (scanned)  ........................................................................ 48 

  Generalization (scanned)  .................................................................... 48 

 



 

 xii 

Chapter Page 

   

 fMRI Data Acquisition  ................................................................................... 49 

 Preprocessing and Single-Trial Modeling  ...................................................... 50 

 Regions of Interest (ROIs)  .............................................................................. 51 

 Statistical Analysis ...................................................................................... 52 

  Memory Performance for Faces and Names  ....................................... 52 

  Categorization Performance ................................................................ 52 

  Similarity Ratings  ............................................................................... 53 

  fMRI Classification of Category-Relevant and  

  Category-Irrelevant Information  ......................................................... 53  

  Neural Pattern Similarity Representations of  

  Category Information  .......................................................................... 55 

  Searchlight Classification of Category-Relevant and  

  Category-Irrelevant Information  ......................................................... 56 

  Searchlight Neural Pattern Similarity Representations 

  of Category Information  ..................................................................... 57 

 

Results  ......................................................................................................................... 58 

 Behavioral  ....................................................................................................... 58 

  Memory for Faces and Names  ............................................................ 58 

  Categorization Performance ................................................................ 59 

  Similarity Ratings  ............................................................................... 59 

 Region of Interest Analyses  ............................................................................ 61 

  Classification of Category-Relevant and 

  Category-Irrelevant Visual Information  ............................................. 61 

  Neural Pattern Similarity Representations of  

  Category Information  .......................................................................... 64 

 Whole-Brain Searchlight Analyses  ................................................................. 65 

  Searchlight Classification of Category-Relevant and 

  Category-Irrelevant Information  ......................................................... 65 

  Searchlight Neural Pattern Similarity Representations of 

  Category Information  .......................................................................... 68 

Discussion  ................................................................................................................... 69 

  



 

 xiii 

Chapter Page 

  

 Category-Bias in Behavioral Ratings Predicts Subsequent  

 Generalization Performance ............................................................................ 70 

 Category-Biased Neural Representations are Measurable  

 During Encoding  ............................................................................................. 71 

 Category-Biased Neural Representations May Reflect  

 Attentional Allocation to Category-Relevant Information  ............................. 74 

 Summary .......................................................................................................... 76 

 

IV. HIPPOCAMPAL INTERACTIONS WITH CORTICAL MEMORY REGIONS 

DURING SPONTANEOUS GENERALIZATION .............................................. 78 

 

 Division of Labor Within the Hippocampus  ................................................. 79 

 Cortical Regions Supporting Memory Generalization  .................................. 80 

 Cortical Regions Supporting Memory Specificity  ........................................ 81 

 Prior Study that Identified an Anterior/Posterior Dissociation 

 In Functional Connectivity to Memory Specificity and 

 Generalization Regions  ................................................................................. 82 

 The Current Study  ......................................................................................... 83 

Method  ........................................................................................................................ 85 

 Participants  .................................................................................................... 85 

 Procedure & fMRI Data Acquisition  ............................................................. 86 

 Regions of Interest (ROIs)  ............................................................................ 86 

 fMRI Preprocessing  ....................................................................................... 87 

 Calculating Background Connectivity  .......................................................... 88 

Results  ......................................................................................................................... 90 

 Connectivity with Cortical Memory Regions  ............................................... 90 

 Connectivity with Visual Regions  ................................................................. 91 

 Connectivity-Behavior Relationships: Exploratory Analyses  ....................... 92 

Discussion  ................................................................................................................... 95 

 Posterior Hippocampus Connections with Specificity Regions  .................... 96 

 Anterior Hippocampus Connections with Generalization Regions ............... 97 

 No Differential Connectivity Preferences Between the Hippocampus  

 and MTG  ....................................................................................................... 99 



 

 xiv 

Chapter Page 

 

 Individual Differences in Hippocampal Connectivity with 

 Cortical Visual Regions Tracks Generalization Performance  ....................... 100 

 Conclusions  ................................................................................................... 101 

 

V. GENERAL DISCUSSION  .................................................................................... 102 

 Integrated Summary of Results  ............................................................................. 102 

 Category Learning Biases Attention to Category-Relevant Information 

 Even When Task Goals Emphasize Specificity  .................................................... 105 

 

 Does Category Bias in Perception Reflect a True Learning-Driven 

 Perceptual Change or a Strategic Decision to Generalize Because 

 of Similar Labels?  ................................................................................................. 108 

 The Role of the Hippocampus in Spontaneous Category Learning  ...................... 112 

 Broader Implications  ............................................................................................. 114 

 General Conclusions  ............................................................................................. 117 

 

REFERENCES CITED ................................................................................................ 118 

 

  

  



 

 xv 

LIST OF FIGURES 

 

Figure Page 

 

 

2.1 Example face-blend stimuli ............................................................................... 23 

 

2.2 Behavioral results for traditional category and paired associate learning ......... 30 

 

3.1 Structure of the face-blend stimuli  ................................................................... 44 

3.2 Full imaging procedure  .................................................................................... 46 

3.3 Behavioral category bias ................................................................................... 61 

3.4 Pattern classification and pattern similarity analyses within six 

 a-priori regions of interest  ................................................................................ 63 

 

3.5 Whole-brain searchlight results ......................................................................... 66 

4.1 Bandpass filtering for a representative subject .................................................. 89 

4.2 Functional connectivity results .......................................................................... 91 

4.3 Correlations between anterior and posterior hippocampus connectivity  

 with visual control regions and behavioral measures  

 of memory generalization  ................................................................................. 94 

 

5.1 Differential family category structures for two conditions  .............................. 110 

 

5.2 Preliminary data indicating category-bias reflects true 

 learning-related perceptual changes  ................................................................. 111 

 



 

 xvi 

LIST OF TABLES 

 

Table Page 

 

 

3.1 Learning phase searchlight MVPA results  ........................................................... 67 

 

3.2 Searchlight RSA results  ........................................................................................ 68 

  

 

  



 

 1 

CHAPTER I 

INTRODUCTION 

 

Memory allows us to store the individual details of our daily experiences.  

However, our memory is not a mirror reflecting a detailed and perfect recall of past 

events. Rather it is a flexible, reconstructive process that also supports the extraction of 

common details across our individual experiences. Generalizing memory information 

across all our prior experiences is adaptive and allows us to determine the best course of 

action when placed in novel situations. For example, a child may take several swimming 

lessons over the course of a summer and store individual memories for each lesson. 

However, details from the individual memories pertaining to water safety and various 

strokes can be combined across lessons and thus guide the child’s behavior and decisions 

at the inaugural family beach visit the following summer. Although the child has never 

set foot on a beach before, generalizable aspects of prior experiences can be combined 

and are helpful in guiding decisions for safely and successfully swimming in this new 

environment. Though memory generalization is widely studied across many disciplines—

decision making, perception, psychology, neuroscience—the mechanisms which allow 

generalization to proceed from our individual experiences and inform decisions in novel 

situations remains an actively explored topic in the literature. 

How does the brain represent memories to retain specific information while also 

representing generalizable knowledge? Traditionally, a multiple memory systems view 

has suggested that memory generalization is supported by disparate neural substrates 

from those supporting memories for specific information. The hippocampus has a well-
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known role in supporting detailed episodic memory (Scoville & Milner, 1957; Squire & 

Zola, 1998) and serves as a key region for reducing memory interference between similar 

experiences through pattern separation processes (for review see Yassa & Stark, 2011).  

In contrast, other memory systems such as the striatum (Poldrack & Foerde, 2008; 

Poldrack & Packard, 2003) or cortex (McClelland, McNaughton, & O’Reilly, 1995; 

O’Reilly & Norman, 2002) learn slowly and thus only represent statistical regularities 

that are likely to generalize across experiences. While the multiple memory systems view 

is intuitive and well supported, more recent work has indicated that there may be other 

ways the brain supports generalization. The hippocampus may also contribute to memory 

generalization that is rapid and based on a small number of experiences.  

 Hippocampal-based generalization has been studied using multiple paradigms. 

Episodic inference tasks contain various learning experiences that share common 

elements. Participants are instructed to learn details of the individual episodes but are also 

tested on whether they can infer new knowledge by linking common information across 

individual experiences. Many studies across various domains of episodic inference find 

hippocampal involvement (Ryan et al., 2016; Schlichting, Mumford, & Preston, 2015; 

Shohamy & Wagner, 2008; Zeithamova, Dominick, & Preston, 2012; Zeithamova & 

Preston, 2010) and interactions between the hippocampus and putative memory 

generalization cortical regions like the ventromedial prefrontal cortex (Bunsey & 

Elchenbaum, 1996; DeVito, Lykken, Kanter, & Eichenbaum, 2010; Schlichting et al., 

2015) supporting these inference judgments.  More recently additional support for 

hippocampal-based generalization has come from studies of category learning. Category 

learning paradigms typically involve presenting individuals with explicit instructions to 
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learn the category structure of a set of stimuli. After category learning, successful transfer 

of category knowledge to new, never-studied stimuli is evaluated as memory 

generalization performance. These category learning studies have demonstrated evidence 

for abstracted category representations in the anterior portions of the hippocampus as 

well as the ventromedial prefrontal cortex (Bowman, Iwashita, & Zeithamova, 2020; 

Bowman & Zeithamova, 2018) and within the middle temporal gyrus (Bowman & 

Zeithamova, 2018) another region known to support semantic gist memory (Dennis, Kim, 

& Cabeza, 2008; Turney & Dennis, 2017).  

Using these paradigms, we have learned much about rapid hippocampal-based 

generalization. However, our knowledge comes primarily from laboratory tasks where 

learning explicitly emphasizes memory generalization. Real world experience suggests 

that learning conditions are often less explicit and multiple learning goals may 

simultaneously be at play. For example, a child encountering multiple dogs at the park 

may both remember the individual dogs as well as form an overall generalized “dog” 

representation that can be applied to identify a new animal the next time a furry, four-

legged creature is encountered. Thus, it is unlikely in a real-world context that 

generalized representations only form when learning goals emphasize generalization. 

Instead, memory generalization may proceed more spontaneously under conditions that 

emphasize learning episodic details of our experiences. Thus, the primary goal of the 

dissertation is to determine the behavioral and neural mechanisms that support the 

spontaneous formation of generalized memory representations under learning conditions 

that do not emphasize generalization.  
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Competing Theories of How Memory Generalization Proceeds from Learning 

A vast wealth of research has explored memory generalization (F. G. Ashby, 

Alfonso-Reese, Turken, & Waldron, 1998; F. G. Ashby & Maddox, 2005, 2011; 

Zeithamova & Bowman, 2020; Zeithamova, Schlichting, & Preston, 2012) and ultimately 

several theories have emerged regarding how memory generalization proceeds from 

learning. One proposal of memory generalization postulates a flexible retrieval 

hypothesis where generalization occurs “on-demand” at retrieval when task demands 

require individuals to make a generalization judgment (Squire, 1992; Teyler & DiScenna, 

1986; Winocur, Moscovitch, & Sekeres, 2007). Thus, during learning individual 

memories are stored and it is not till individuals are prompted to make a generalization 

judgment (e.g. categorize new examples or infer a relationship between two associated 

episodes) that generalization occurs.  Alternatively, another proposal of memory 

generalization postulates an integrative encoding hypothesis where generalization occurs 

prior to retrieval or situations that create generalization task-demands (Shohamy & 

Wagner, 2008; Zeithamova, Schlichting, et al., 2012). Therefore, during learning the 

commonalities across experiences are integrated simultaneously.  

On-demand Generalization Through Flexible Retrieval 

Several areas of research have supported a flexible retrieval account of memory 

generalization. Exemplar theories of category learning postulate that a generalized 

memory representation is unnecessary for individuals to make a generalization judgment. 

Instead, specific memory traces representing each learned item are stored at encoding and 

these traces are sufficient for informing generalization at retrieval (Hintzman, 1984; 

Kruschke, 1992; Nosofsky, 1988). When probed to make a generalization judgement the 
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individual stored examples are retrieved and compared with one another “on-the-fly” to 

inform the generalization decision. Formal mathematical models for exemplar models of 

category learning have been applied to fMRI to elucidate the representations underlying 

concept learning. Using this modeling approach exemplar model correlates have been 

found in lateral occipital and posterior parietal cortices during retrieval (Mack, Preston, & 

Love, 2013) indicating that these regions support generalization by representing each 

exemplar separately.  

Studies of episodic inference provide converging evidence for how separate 

memory representations for individual experiences can be used to inform generalization. 

In associative inference paradigms, pairs of items with overlapping associations are 

learned (e.g. AB and BC pairs) and generalization is tested by examining performance on 

the indirectly learned association (e.g. AC pairs; for examples see Zeithamova & Preston, 

2010; Zeithamova, Schlichting, et al., 2012). Retrieval-based accounts of inference assert 

that hippocampal pattern-separated episodes are stored for every experience during 

encoding; even experiences that are related to one another are orthogonalized. Thus, 

generalization is a result of reactivation of multiple related memory traces (AB and BC 

pairs) that are recombined dynamically or “on-the-fly” during retrieval (Kumaran, 2012) 

in response to a generalization task-demand. Consistent with retrieval-based accounts, 

Banino, Koster, Hassabis, and Kumaran (2016) found that better memory for directly 

studied items (AB and BC pairs) predicted better generalization performance and 

computational modeling showed that a retrieval-based account of generalization best fit 

the data.  
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Memory Integration During Encoding 

Others argue that people may also link information across distinct episodes during 

encoding, prior to retrieval or situations that create generalization task-demands. 

Prototype theories of category learning postulate that memory generalization is supported 

by a generalized category representation created by averaging features abstracted across 

category exemplars (Posner & Keele, 1968; Reed, 1972). Thus, memory generalization is 

facilitated by comparing new, incoming information against the category prototype 

representation which is then dynamically updated over the course of learning. Fitting a 

formal mathematical model for prototype category learning, Minda and Smith (2001) 

found evidence that a prototype account fit the data best indicating that learning category 

information during encoding is a function of how similar individual items are to a given 

prototype representation.  

Other episodic inference work supports an integrative encoding account. For 

example, in studies of associative inference, it is also possible that when overlap between 

items is encountered (e.g. studying a BC pair after already learning AB) memory for the 

overlapping pair (AB) is reactivated by hippocampal pattern completion processes and 

combined with the BC representation. Thus, an integrated ABC representation during 

encoding is constructed (for review see Zeithamova, Schlichting, et al., 2012). Consistent 

with the integrative encoding hypothesis, Shohamy and Wagner (2008) found that the 

degree of neural activation increases within the hippocampus across encoding is 

associated with performance on subsequent memory generalization tests. Further, 

Schlichting et al. (2015) found evidence for integrated memory representations in anterior 

hippocampus and posterior medial prefrontal cortex prior to an explicit inference test. 
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Other support for integrative encoding comes from observations of impaired cognition in 

amnesic patient populations which have shown impaired recognition memory but spared 

ability to classify and make generalization judgments (Knowlton & Squire, 1993). 

Because amnesiacs cannot use a flexible retrieval process due to impaired memory 

specificity for individual events, their intact ability to generalize may indicate that 

generalizable information was learned independently from their ability to learn the 

episodic details at encoding.  Together this evidence would suggest that generalized 

memory representations can be constructed spontaneously during learning. 

Generalization May Proceed from Learning Via Both Mechanisms  

Flexible retrieval and integrative encoding may not be mutually exclusive 

mechanisms of how memory generalization proceeds from learning. Instead it is plausible 

that both integrative encoding and flexible retrieval processes are at play and disparate 

findings across domains of study reflect the widely different circumstances surrounding 

individual task parameters and learning goals resulting in dominance of one or the other 

mechanism (for more discussion see review by Zeithamova & Bowman, 2020). One 

possibility is that separate memory representations may be flexibly linked on-demand at 

retrieval, but this process may result in constructing integrated memory representations. 

This is consistent with work in associative inference that shows individuals have 

significantly more false memories for directly studied pairs (AB and BC) after but not 

before successful AC inference trials are tested (Carpenter & Schacter, 2017, 2018). 

Further, patterns of neural activity in the anterior hippocampus during AB retrieval after 

successful inference trials (AC test) are more similar to neural activity patterns in the 

overlapping BC trials (Carpenter, Thakral, Preston, & Schacter, 2021). Thus, memories 
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for the directly learned associations must have been formed at encoding and only after 

task-demands required a generalization decision (integration of the AC items at retrieval) 

did a generalized memory representation form that interfered with the ability to recall the 

direct associations. 

Alternatively, both types of representations may co-exist. Representations for 

item- or episode-specific information contain the detailed memories of our individual 

experiences while generalized memory representations contain information combined 

across our varied experiences and support more conceptual memory information. If 

learning proceeds via both mechanisms generalized memory representations may be both 

measurable during retrieval as well as during encoding alongside our memories for 

individual experiences. There is emerging evidence that the hippocampus may support 

the simultaneous construction of both types of representations via a division of labor 

along the long axis of the hippocampal body (Poppenk, Evensmoen, Moscovitch, & 

Nadel, 2013). Animal work has shown that information is represented in the 

hippocampus at multiple levels of spatial specificity via an anterior-posterior gradient in 

receptive field size along the long axis of the hippocampus. Kjelstrup et al. (2008) found 

larger receptive fields in the ventral (analogous to human anterior) hippocampus and 

smaller receptive fields in the dorsal (analogous to human posterior) hippocampus. 

Similar findings in the human hippocampus by Brunec et al. (2018) showed more overlap 

of spatial representational patterns in the anterior hippocampus compared to the posterior 

hippocampus. Thus, the anterior portions of the hippocampus may be capable of 

supporting learning of generalizable information while maintenance of episodic details 

may be supported by the posterior hippocampus. Alternatively, other work posits that 
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support for both representations simultaneously could also be made through differential 

pathways (monosynaptic vs. trisynaptic) within hippocampal subfields (Schapiro, Turk-

Browne, Botvinick, & Norman, 2017; Schlichting, Zeithamova, & Preston, 2014; 

Zeithamova, Manthuruthil, & Preston, 2016). Importantly, the hippocampus appears to be 

a structure that is capable of supporting information across multiple levels of specificity 

in service of both episodic memory and memory generalization.  

Can Memory Generalization Proceed Spontaneously? 

 While existing work has provided many new insights into the possible 

mechanisms of generalization, the majority of studies have focused on memory 

generalization as it proceeds from explicit instructions. For example, in traditional 

category learning tasks participants are often explicitly instructed that there is a category 

structure. The category structure is learned via feedback-based learning where a category 

label is guessed, and corrective feedback is received (F. G. Ashby & Maddox, 2005). 

However, it is clear from other work that explicit awareness of relationships between 

learned items is not necessary for memory generalization. Shohamy and Wagner (2008) 

found that overlap between some elements across episodes induced integration of that 

information into a generalized representation even though there was no explicit 

awareness amongst participants regarding the relationships. Examples of incidental 

generalization can also be seen in episodic inference. Transitive inference tasks—where 

hierarchical relationships between items are learned (A > B, B > C, C > D) and then 

unlearned relationships are tested (B ? D)—typically withhold details that the individual 

associations being learned together form a hierarchical relationship (Heckers, Zalesak, 

Weiss, Ditman, & Titone, 2004; Ryan et al., 2016; Zalesak & Heckers, 2009). Yet, 
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activity in the hippocampus during encoding predicts inference performance even after 

controlling for how well individuals learned the directly studied associations (Heckers et 

al., 2004), suggesting that the hierarchical knowledge is being spontaneously formed.  

Studies of incidental category learning also show that even without explicit 

instruction to categorize, it is still possible for individuals to acquire generalized category 

knowledge (Aizenstein et al., 2000; Bozoki, Grossman, & Smith, 2006; Gabay, Dick, 

Zevin, & Holt, 2015; Kéri, Kálmán, Kelemen, Benedek, & Janka, 2001; Love, 2002; 

Reber, Gitelman, Parrish, & Mesulam, 2003; Wattenmaker, 1993). In these tasks, 

category information is present but not emphasized during learning as participants are 

typically distracted with a cover task at encoding. For example, Aizenstein and 

colleagues (2000) used black and white dot pattern stimuli that changed to one of three 

colors (red, blue, or yellow). Participants were only instructed to make a corresponding 

button press when the dot colors changed. However, unbeknownst to participants, which 

color the dots would become was determined by the spatial pattern of the dots. Their 

results showed that after learning, even though participants had no conscious awareness 

of there being an underlying category structure, they were more accurate at classifying 

never-studied distortions of the three dot pattern category prototypes than they were at 

classifying never-studied distortions of prototypes that were not learned during the 

incidental training.  

Other incidental category learning tasks have used only a single category 

paradigm often referred to as “A/not-A” learning (F. G. Ashby & Maddox, 2005; F. G. 

Ashby & O’Brien, 2005). In these tasks, participants learn examples of a single category 

during a study phase. Following this phase, they are then informed that all the items they 
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learned were members of a single category and then asked to make a judgment as to 

whether new items are also members of the same category they learned previously. 

Together, previous findings make it clear that individuals are capable of learning 

category information that can be generalized to new situations incidentally and under 

conditions which do not promote awareness of the generalizable information. Thus, it is 

conceivable that information may be spontaneously generalized during encoding even 

without explicit awareness. 

Category Bias in Perception as a Means to Measure Spontaneous Generalization 

Category learning may induce conditions which allow us to uniquely measure 

memory generalization outside of the confines of an explicit generalization task. 

Acquiring category knowledge has been shown to bias our perception. Leveraging these 

perceptual biases during learning of category information may allow for a more 

incidental measure of generalization under conditions when generalization task demands 

are greatly minimized. Early work showing this influence comes from studies examining 

categorical perception. Categorical perception effects are best defined as an ability to 

better differentiate stimuli when they belong to different categories than when they 

belong to the same category (Goldstone, 1994a). For example, in prior work examining 

speech categories, individuals were better able to distinguish speech sounds from one 

another when they were from different phonemic structure categories than when they 

both had similar phonemic structures (Liberman, Harris, Hoffman, & Griffith, 1957). 

Other work examined categorical perception effects using color stimuli that varied on a 

graded scale from green to blue. Gilbert, Regier, Kay, and Ivry (2006) found that 

participants were slower to make a discrimination judgment between two colors that were 
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within the same color category than they were at making judgments between colors 

across the category boundary.  

Additional work has expanded these categorical perception findings to determine 

if categorical perception could be induced by learning new category structures. Beale and 

Keil (1995) found participants were better able to discriminate morphed face stimuli 

when they straddled a learned category boundary than when they were learned to be 

within the same category. Further, Folstein, Palmeri, and Gauthier (2013) demonstrated 

the same result while also controlling for within and between category similarity of the 

stimuli and showed that participants were better able to discriminate along a category-

relevant dimension that was diagnostic of category membership rather than along a 

category-irrelevant dimension that did not coincide with the learned category structure. 

Utilizing a traditional feedback-based category learning task, Livingston, Andrews, and 

Harnad (1998) presented artificial stimuli that varied on two dimensions (e.g. artificial 

microorganisms that varied across category boundary according to shape and length of 

artificial cilia projections) and participants made subjective ratings of perceived similarity 

for pairs of stimuli.  They found participants rated across-category pairs as being less 

similar to one another than pairs within either category (between-category expansion or 

acquired distinctiveness). Thus, category learning induced a perceptual category bias that 

was primarily driven by an expansion effect where items between learned category 

boundaries were “pushed apart” in perceptual space.  

In addition to this category biased expansion effect in perceptual similarity space 

for items learned to be between category boundaries, other studies have found perceptual 

changes for items learned to be within categories. Oftentimes, category learning causes 
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within-category items be perceived as more similar to one another leading to a category 

biased compression effect. Gureckis and Goldstone (2008) found items within a learned 

category to be less discriminable after learning while other studies that objectively 

measured changes in perceived similarity found participants rated items within learned 

categories as more perceptually similar to one another after compared to before learning 

(Goldstone, Lippa, & Shiffrin, 2001; Kurtz, 1996; Livingston et al., 1998). Goldstone, 

Lippa, and Schriffin (2001) found both compression and expansion effects in perceptual 

similarity ratings after learning.  

Together these findings suggest that tracking perceptual category biases after 

learning may provide a unique way to measure learning related category knowledge. 

Moreover, detecting a category bias in perceived similarity ratings after learning but prior 

to an explicit generalization task may be a good index of generalizable category 

knowledge that is present prior to a task that explicitly demands a generalization 

judgement. A category learning task that presents category-relevant information but 

emphasizes encoding of detailed episodic memory while also controlling for within and 

between-category similarity amongst stimuli would be an excellent way to explore the 

questions presented.  

Goal and Structure of the Dissertation 

The primary goal of the dissertation is to determine the behavioral and neural 

mechanisms that support the spontaneous formation of generalized memory 

representations under learning conditions that do not emphasize generalization. We 

developed a novel category learning paradigm that emphasized learning of unique, 

detailed episodic information while also providing generalizable information in the form 
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of an underlying category structure. In addition to theoretical discussions in Chapters 1 

and 5, we addressed this question in three empirical studies described in Chapters 2-4.  

In the empirical chapters we leveraged measures of perceived similarity changes 

following category learning, memory performance for transferring category labels to 

never-studied stimuli, and neural measures of category-biased information during 

encoding to examine generalization. In Chapter 2, we introduce the novel category 

learning paradigm to assess the extent to which signatures of category knowledge are 

present in a task that emphasizes memory for stimulus-specific information. The goal of 

Chapter 2 was to determine to what degree a category-bias in perception following 

learning may be a useful behavioral index of memory generalization. We found that 

individuals were able to successfully generalize to never-studied examples although 

learning goals emphasized specificity and individuation of studied stimuli. The degree of 

category bias after learning predicted subsequent generalization performance providing 

evidence for generalization immediately after learning and prior to retrieval.  

In Chapter 3, we utilized fMRI during encoding to determine whether evidence 

for category-biased information is present in neural representations during encoding and 

prior to retrieval. We found patterns of activity that were biased towards category-

relevant information across widespread aspects of the cortex including some regions 

hypothesized to support memory generalization. Lastly, in Chapter 4 we examined 

intrinsic background connectivity between the hippocampus and putative generalization 

and specificity regions to explore how the hippocampus is able to simultaneously support 

memory generalization while maintaining specificity. We found differential connections 

between anterior and posterior portions of the hippocampus with putative generalization 
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and specificity regions providing further evidence for a hippocampal mechanism 

supporting spontaneous generalization during encoding.  
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CHAPTER II 

PERCEIVED SIMILARITY RATINGS PREDICT GENERALIZATION SUCCESS 

AFTER TRADITIONAL CATEGORY LEARNING AND A NEW PAIRED-

ASSOCIATE LEARNING TASK 

From Ashby, S.R., Bowman, C.R., & Zeithamova, D. (2020). Perceived similarity ratings 

predict generalization success after traditional category learning and a new paired-

associate learning task. Psychonomic Bulletin and Review, 27(4), 791-800, doi: 

10.3758/s13423-020-01754-3 

 

 

Categorization helps us organize information from the world around us into 

meaningful clusters relevant to behavior. A hallmark of category knowledge is the ability 

to categorize new instances (memory generalization), allowing us to use our prior 

experiences to guide decisions in novel situations (Knowlton & Squire, 1993; Nosofsky 

& Zaki, 1998; Poldrack et al., 2001; Reber, Stark, & Squire, 1998). Category knowledge 

also results in biases in perception, which can manifest as increased perceived similarity 

of items within a category, decreased perceived similarity of items from different 

categories, or a combination of both (Beale & Keil, 1995; Goldstone, 1994a; Goldstone et 

al., 2001; Kurtz, 1996; Livingston et al., 1998). These perceptual biases are often thought 

to reflect stretching of the perceptual space along the category-relevant dimensions 

and/or shrinking along the category-irrelevant dimension, resulting from shifts of 

attention to the relevant features (Goldstone & Steyvers, 2001; Kruschke, 1996; Medin & 

Schaffer, 1978; Nosofsky, 1991; Nosofsky, 1986). While a category bias on peception 

can emerge relatively quickly following category learning, it remains unknown to what 

degree it reflects the quality of category knowledge and relates to subsequent 

categorization and generalization performance. If category learning results in changes of 
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perceptual space and persistent attentional shifts to category-relevant features, the degree 

of category bias on perception should be a good indicator of the quality of category 

knowledge. On the other hand, if good learners more accurately encode all information—

which may allow them to better determine which information is category relevant and 

which irrelevant—then the degree of category bias may not be a good predictor of 

category knowledge. Thus, one goal of the current study was to measure both category 

bias in perception and generalization in a single study to determine to what degree 

category bias in perception following category learning can be used as a measure of 

generalizable category knowledge by predicting performance on unstudied items. 

Most categorization studies explicitly instruct participants to learn categories. 

Several studies have also compared categorization tasks that focus on contrast across 

categories and commonalities within categories to identification tasks that focus on 

learning stimulus-specific information (Nosofsky, 1986; Shepard & Chang, 1963; 

Shepard, Hovland, & Jenkins, 1961). However, in the real world, category information 

can be available alongside information about specific items or individuals, without an 

explicit goal to form category knowledge. For example, when attending a wedding and 

meeting many new individuals, one’s objective is to remember individual people and 

learn their unique names. Yet, some guests may share last names, providing an 

opportunity to also extract categorical structure across individuals. Past work has shown 

that category knowledge can be extracted without explicit instruction (Aizenstein et al., 

2000; Bozoki et al., 2006; Gabay et al., 2015; Kéri et al., 2001; Love, 2002; Reber et al., 

2003; Wattenmaker, 1993). However, how category learning proceeds when category 

information is available, but instructions emphasize learning of specific information is 
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rarely addressed. While some show that categorization performance can be predicted 

from performance on identification tasks that emphasize discrimination of individual 

items (Nosofsky, 1986), others have found that learning and generalizing concept 

information is more challenging when learning is focused on discrimination of individual 

stimuli (Soto & Wasserman, 2010). Thus, in Experiment 2, our goal was to assess 

signatures of category knowledge – generalization and category bias on perception – in a 

task that emphasizes memory for stimulus-specific information and more closely 

resembles an episodic paired-associate learning task than a traditional category-learning 

task. 

 In the current paper, we assessed (a) category bias on perception, (b) category 

generalization success, and (c) their relationship after traditional category learning 

(Experiment 1) and after a novel task where category information was available but 

instructions emphasized stimulus-specific information (Experiment 2). Participants were 

shown faces that belonged to three categories (families), designated by a family name. 

Face stimuli were created as blends of never-seen “parent” faces, resulting in increased 

physical similarity between faces that shared a parent. Some physically similar faces 

were members of the same family while others were members of different families, 

allowing us to dissociate the effect of category membership from physical similarity. In 

Experiment 1, faces were encountered in the context of a traditional feedback-based 

category learning task, emphasizing similarities among faces belonging to the same 

family and how they contrast with faces belonging to different families. In Experiment 2, 

faces were encoded through observational, face-full name paired-associate learning. 

While family names were identical to Experiment 1, with each family name shared across 
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several faces, first names were unique for each face, requiring participants to remember 

individual faces and differentiate faces within each family. Perceived similarity ratings 

were collected immediately before and after learning to test for the emergence of 

category bias in perception. We also tested participants’ ability to generalize family 

names to new face-blend stimuli. The category bias in perceived similarity ratings after 

learning was related to subsequent generalization success in order to determine the extent 

to which category bias in perception reflects the quality of category knowledge.  

The current design allowed us to also address additional questions regarding the 

nature of category bias in perception. First, what drives category bias in perception has 

been variable across studies. Some studies have shown between-category expansion or 

acquired distinctinctiveness, where items across a learned category boundary become 

more discriminable (Beale & Keil, 1995; Folstein et al., 2013; Goldstone, 1994a; 

Gureckis & Goldstone, 2008; Wallraven, Bülthoff, Waterkamp, van Dam, & Gaißert, 

2014) and are perceived as more dissimilar after category learning (Goldstone et al., 

2001). Category bias can also manifest as within-category compression or acquired 

equivalence, where items within a learned category become less discriminable (Gureckis 

& Goldstone, 2008; Soto, 2019) and are perceived as more similar after category learning 

(Goldstone et al., 2001; Kurtz, 1996; Livingston et al., 1998). As relatively few studies 

show both compression and expansion effects following category learning (but see 

Goldstone et al., 2001; Gureckis & Goldstone, 2008), we were interested to what degree 

both expansion and compression effects can be observed after category learning of the 

face-blend stimuli with equated within-category and between-category physical 

similarity. Furthermore, the aforementioned studies on learning-related category bias 
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have focused on traditional category learning. Thus, the degree to which within-category 

compression and between-category expansion can be observed after learning that 

emphasizes memory for stimulus-specific information remains unknown.   

Finally, using perceived similarity to probe category knowledge in Experiment 2 

can help us link research on the emergence of conceptual knowledge to another area of 

generalization research: episodic inference. Episodic inference refers to the ability to 

integrate information across distinct experiences that share content to infer new 

information (e.g. infering that two people are likely a couple after seeing each of them 

with the same child on different occasions). Whether people spontaneously integrate 

memories of related events as they are encoded (Cai et al., 2016; Gershman, Schapiro, 

Hupbach, & Norman, 2013; Schlichting et al., 2015; Shohamy & Wagner, 2008; 

Zeithamova, Dominick, et al., 2012) or whether links between related memories are 

formed in response to generalization demands (Banino et al., 2016; Carpenter & 

Schacter, 2017, 2018) remains debated. Here, observing evidence for the formation of a 

category representation under conditions that minimize generalization demands – such as 

observing category bias in perceived similarity ratings after learning but before the 

explicit generalization test —would suggest that  participants may extract category 

information and form category representations spontaneously.  

Method 

Participants  

Healthy participants—N = 39 in Experiment 1 and N = 43 in Experiment 2—were 

recruited from the University of Oregon community via the university SONA research 

system and received course credit for their participation. Except for the learning phase, 
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all procedures were identical across experiments and will be presented together. All 

participants provided written informed consent, and experimental procedures were 

approved by Research Compliance Services at the University of Oregon. From 

Experiment 1, four participants were excluded due to chance performance (accuracy ≤ 

.33) in categorizing the training faces. From Experiment 2, participants were excluded for 

failing to make responses on more than 25% of categorization trials (n = 3) and 

incomplete data (n = 1). After exclusions, analyses were carried out with the remaining 

35 participants for Experiment 1 (Mage = 20.43, SDage = 2.58, 18-32 years, 21 females) 

and 39 participants for Experiment 2 (Mage = 19.26, SDage = 1.13, 18-23 years, 21 

females). These sample sizes provide 80% power for detecting medium size effects (d ≥ 

0.5) using planned one-sample and paired t-tests and strong (r ≥ .5) correlations, as 

determined in G-Power (Faul, Erdfelder, Buchner, & Lang, 2009; Faul, Erdfelder, Lang, 

& Buchner, 2007). 

Stimuli 

Stimuli were grayscale images of blended faces constructed by morphing two 

unaltered face images together using FantaMorph Version 5 by Abrosoft. We used 

blended faces because it allowed us to maintain realistic-looking stimuli while also 

controlling for within- and across-category physical similarity. Faces were also 

convenient for creating the face-name learning task in Experiment 2 that was intuitive for 

the participants and yielded the right level of difficulty as verified through a pilot study. 

Prior work has shown that category effects differ based on whether morphed faces are 

constructed from parents within one race versus across two races (Levin & Angelone, 

2002). Thus, we restricted all parent faces to be Caucasian to ensure that the resulting 
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face-blend stimuli were comparably similar to all other faces with a shared parent. 

Additionally, all parent faces were of a single gender (male) to ensure that face-blends 

maintained a realistic appearance. Parent faces were compiled over several years from 

multiple sources, including the Dallas Face Database (O’Toole et al., 2005), CVL Face 

Database provided by the Computer Vision Laboratory, University of Ljubljana, Slovenia 

(Peer, 1999), and Google Image Search. Faces were selected primarily based on whether 

they would blend well with other faces (e.g., visibility of both ears, no facial hair, etc.) 

but were not formally equated for features such as attractiveness or memorability. 

The stimulus structure is presented in Figure 2.1. For each participant, three 

category-relevant parent faces and three category-irrelevant parent faces were randomly 

selected from a total set of twenty faces. Each of the three category-relevant parent faces 

were individually morphed with each of the three category-irrelevant parent faces with 

equal weight given to each parent face (50/50 blend). The resulting nine blended faces 

were then used as training stimuli. Faces that shared a category-relevant parent shared a 

family name (belonged to the same category). Faces that shared a category-irrelevant 

parent belonged to different families. As faces sharing any parent (category-relevant or 

category-irrelevant) shared physical traits, physical similarity alone was not diagnostic of 

category membership. Because of the blending procedure used, an equal number of 

category-relevant and category-irrelevant parent faces were selected to provide equal 

exposure to the relevant and irrelevant category features. With an uneven number of 

relevant vs. irrelevant parent faces (e.g. two relevant parent faces blended with multiple 

irrelevant parent faces to create family members), unsupervised learning could take place, 
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making the features of the relevant parent faces more prominent through increased 

exposure instead of being category-learning driven. We chose a three-way category 

structure, which provided nine blended faces to learn and therefore 36 pairwise similarity 

rating comparisons. We determined that the three-way structure provided the best balance 

of a reasonable number of training stimuli to learn but still provided adequate pairwise 

comparisons for similarity ratings. Generalization stimuli were new faces created by 

Miller 

Category

Irrelevant 

Parents

Wilson 

Training

…

Generalization

Davis

Shared Parent
(same family name)

Shared Parent
(different family name)

Not Related

Category 

Relevant

Parents

…

Figure 2.1. Example face-blend stimuli. Parent faces on the leftmost side are designated 

“category relevant parents” as these parents determined family membership—Miller, Wilson, 

or Davis—during learning and generalization. Parent faces across the top are designated 

“category-irrelevant parents” as these parents introduced physical similarity across families 
but did not determine categories. Three category-irrelevant parents were used for learning. 

The rightmost three category-irrelevant parents are a subset of new faces used for 

generalization. Parent faces were never viewed by participants, only the resulting blended 

faces. The face blending procedure produced pairs of faces that shared a category-relevant 

parent and belonged to the same family (shared parent - same family name; example indicated 

with dark grey box), pairs of faces that shared a category-irrelevant parent and belonged to 

different families (shared parent- different family name; example indicated with medium grey 

box). Non-adjacent pairs did not share a parent and were not related (example indicated with 
light grey boxes).  
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blending category-relevant parent faces with fourteen remaining parent faces not used for 

creation of the training faces.  

Procedure 

Both experiments consisted of the following phases: passive viewing, pre-learning 

similarity ratings, learning (different in each Experiment), passive viewing, post-learning 

similarity ratings, and category generalization. Additionally, Experiment 2 included cued-

recall of face-name associations before the category generalization phase. Self-paced 

breaks separated the phases. 

Passive viewing. To familiarize participants with the stimuli and give them an 

idea of the degree of similarity between all faces before collecting perceived similarity 

ratings, participants first viewed each of the nine training stimuli individually, once in a 

random order without any labels and without making any responses. Face-blends were 

shown for 3s with a 1s inter-stimulus-interval (ISI). Passive viewing of the face-blends 

immediately before the pre- and post-learning similarity rating phases was also included 

as a pilot of a future neuroimaging experiment. No responses were collected during 

viewing. 

 Pre-learning similarity ratings. To validate that participants were sensitive to 

the similarity structure among faces introduced by the blending process and to obtain 

baseline similarity ratings, participants rated the subjective similarity of pairs of faces to 

be used during the learning phase. All possible 36 pairwise comparisons of the 9 training 

faces were presented and participants rated the similarity of the two faces on a scale from 

one to six (1 = two faces appeared very dissimilar, 6 = two faces appeared very similar). 

Face pairs and the similarity rating scale were displayed for 5s with a 1s ISI. Face pairs 
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were then binned into three conditions for analyses depending on whether they 1) shared 

a parent and a family name, 2) shared a parent face but did not share a family name, or 3) 

did not share a parent face (see example pairs in Figure 2.1).  

Learning phase.  

Experiment 1: Feedback-based category learning. On each trial, a training face 

was presented on the screen along with family names (Miller, Wilson, Davis) as response 

options. Participants were instructed to indicate family membership via a button press 

and received corrective feedback after each trial. Each face was viewed simultaneously 

with the family name response options on the screen for 4s, received corrective feedback 

for 1s, and trials were separated by a 1s ISI. Each face was presented 16 times total, 

evenly split across 2 blocks. 

Experiment 2: Observational learning of face—full name associations. To test the 

robustness of category learning outside of a traditional categorization task, Experiment 2 

provided an opportunity to form associations between faces from the same families in the 

context of a face-full name associative learning task. On each trial, participants studied a 

face-name pair that was presented on-screen for 2s and then made a prospective memory 

judgement for 2s on a scale from one to four (1 = definitely will not remember, 4 = 

definitely will remember). Trials were separated by a 4s ISI and participants viewed each 

face-name pair twelve times, evenly split across 3 blocks. Prospective memory judgments 

were included to facilitate participant engagement with the observational learning task 

and were not considered further. Family names were identical to Experiment 1 and shared 

across faces whereas first names were unique to each face. While the inclusion of face-

specific first names required participants to differentiate individual faces, the inclusion of 
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the shared family names provided an opportunity to form links between related faces. We 

designed the task to determine to what degree experiences that overlap in content (here, 

last name) tend to affect perception and be related in memory, bridging traditional 

category research with research on generalization through episodic inference (Schlichting 

& Preston, 2015; Zeithamova, Dominick, et al., 2012). However, we subsequently 

discovered similarities between our task and a study by Medin, Dewey, and Murphy, 

(1983). In Medin et al. (1983), participants also learned first and shared last names of 

faces but under a feedback-based categorization paradigm rather than a paired-associate 

observational paradigm. Because our task did not employ feedback-based learning, 

participants were not provided with cues as to the number of first names or surnames. 

The fact that family names were repeated across faces or that there was a category 

structure among faces was not explicitly emphasized to participants. This allowed us to 

see if we could replicate results from Experiment 1 under very different conditions, in a 

task that does not resemble traditional category learning and where category information 

is present but not emphasized. 

Post-learning similarity ratings. Perceived similarity ratings were repeated after 

the learning phase with the same timing as pre-learning ratings. Of main interest was a 

potential category bias in perceived similarity, i.e., whether faces that shared a parent 

would be rated as more similar when they had the same family name than when they had 

different family names.  

Cued recall of face-name associations. Experiment 2 included a self-paced 

cued-recall task of face-name associations. Participants viewed each training face 

individually on a computer screen and handwrote the full name of each face on a sheet of 
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paper. Participants advanced the trials at their own pace but were not able to skip faces or 

go back and look at faces already named. Participants were encouraged to make their best 

guess as to the first and family names of each face even if they were not confident in their 

memory.  

Generalization phase. As the last phase of both Experiments, category 

knowledge was tested directly using categorization of old and new faces. In addition to 

the nine training faces, participants categorized 42 never-seen faces, consisting of 14 new 

blends of each of the three category-relevant parent faces. Participants were asked to 

select via button press the family name for each face, which were presented individually 

for 4s, from the three options (Miller, Wilson, Davis) presented on the screen. Trials were 

separated by an 8s ISI. No feedback was provided, and participants were encouraged to 

make their best guess when unsure of family membership. 

Results 

Learning Phase 

Experiment 1: Feedback-based category learning. Overall percent correct 

across training was 76% (SD = 14%), which was well above chance (33% for three 

categories; one-sample t(34) = 17.66, p < .001, d = 3.01).  Categorization accuracy 

improved across training, from 66% in the first half to 85% in the second half (t(34) = 

9.72, p < .001, d = 1.63), demonstrating learning over time.  

Experiment 2: Observational learning of full name—face associations. 

Observational learning provided no measure of accuracy from the learning phase. 

Therefore, in Experiment 2 a cued-recall task was included to assess how well 
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participants learned the face-full name pairs. Participants recalled on average 52% of first 

names and 65% of family names.  

Similarity Ratings  

We compared mean face similarity ratings in each pair-type (shared parent-same 

family name, shared parent-different family name, not related) using repeated-measures 

ANOVA. Analyses were performed separately in each phase (pre-learning, post-

learning). We also assessed learning-related rating changes by comparing ratings across 

phases. For all ANOVAs, a Greenhouse-Geisser correction for degrees of freedom 

(denoted as GG) was used wherever Mauchly’s test indicated a violation of the 

assumption of sphericity. 

Experiment 1. Pre-learning ratings (Fig. 2.2A) demonstrated that participants 

were sensitive to the physical similarity structure introduced with the face-blending 

procedure. A one-way, repeated measures ANOVA showed a significant effect of pair 

type (F(2, 68) = 58.74, p < .001, 𝜂𝑝
2 = .63), driven by lower perceived similarity for faces 

that did not share a parent compared to those that shared a parent (with or without shared 

family name, both t > 9.17, p < .001, d > 1.50). Faces that shared a parent were perceived 

as equally similar to one another irrespective of whether they also shared the same—not 

yet presented—family name (t(34) = -0.17, p = .87, d = 0.03).   

Post-learning ratings (Fig. 2.2B) revealed a category bias on perceived similarity: 

pairs of faces sharing a parent and family name were perceived as significantly more 

similar than faces that shared a parent but not a family name (Mdiff = 0.72, SDdiff = 1.41, 

t(34) = 3.02, p = .005, d = 0.51). Faces that shared a parent remained rated as more 

similar than unrelated faces (both t > 6.85, p < .001, d > 1.15). 
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To further test the effect of learning, we conducted a 2 x 3 (timepoint [pre-

learning, post-learning] x pair-type [shared parent-same family name, shared parent-

different family name, not related]) repeated-measures ANOVA. There was no main 

effect of timepoint (F(1, 34) = 0.04, p = .85, 𝜂𝑝
2 = .001). There was a significant main 

effect of pair-type (F(1.63, 55.38) = 61.21, p < .001, 𝜂𝑝
2   = .64, GG), and a significant 

interaction between timepoint and pair-type (F(1.64, 55.88) = 11.85, p < .001, 𝜂𝑝
2   = .25, 

GG). Follow-up pre-post comparisons within each pair-type (Fig. 2.2C) revealed that this 

interaction was driven by both a significant increase in similarity ratings for faces sharing 

a parent and a family name (t(34) = 3.02, p = .005, d = 0.51) and a significant decrease in 

similarity ratings for faces only sharing a parent but not a family name (t(34) = -2.33, p = 

.026, d = -0.39). There was no significant change in similarity ratings for faces that did 

not share a parent (t(34) = -0.18, p = .86, d = -0.03).  

Experiment 2. As in Experiment 1, participants were sensitive to the face 

similarity structure. Pre-learning similarity ratings (Fig. 2.2E) differed significantly 

among pair types (F(1.46, 55.47) = 72.22, p < .001, 𝜂𝑝
2  = .655, GG), driven by lower 

perceived similarity of faces that did not share a parent compared to faces that shared a 

parent (with and without shared family names, both t > 10.65, p < .001, d > 1.70). For 

faces that shared a parent, ratings did not significantly differ when face pairs had the 

same or different—not yet presented—family names (t(38) = 1.82, p = .077, d = 0.29). A 

category bias was found in post-learning ratings (Fig. 2.2F) with pairs of faces sharing a 
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parent and family name perceived as significantly more similar than faces that shared a 

parent but not a family name (Mdiff = 0.58, SDdiff = 1.52; t(38) = 2.39, p = .022, d = 0.38). 

Testing the effect of learning, the 2 x 3 (timepoint x pair-type) repeated-measures 

ANOVA revealed a significant main effect of timepoint (F(1, 38) = 5.20, p = .028, 𝜂𝑝
2  = 

.120), with overall similarity ratings being lower post-learning than pre-learning (Mpre = 

3.49, SDpre = 0.51; Mpost = 3.33, SDpost = 0.59; t(38) = -2.28, p = .028, d = 0.37). There 

was also a significant main effect of pair-type (F(1.28, 48.60) = 60.42, p < .001, 𝜂𝑝
2  = 

.614, GG), and a significant interaction between timepoint and pair-type (F(1.67, 63.37) = 

Figure 2.2. Behavioral results for traditional category and paired associate learning. Top panel 

are results from the traditional category learning experiment. Bottom panel (shaded grey) are 

results from the face-name paired associate learning experiment. A & E. Average similarity 

ratings for faces that share a parent and family name, faces that only share a parent, and faces that 

don’t share any parents before learning. B & F.  Average similarity ratings for the same pairwise 

comparisons after learning. Asterisk represents a significant (p < .05) difference in post-learning 

similarity ratings for faces that belong to the same family vs. faces that share physical similarity 

but belong to different families (i.e. a category bias in perception). C & G. Changes in similarity 

ratings from pre- to post-learning. Asterisk denotes significant (p < .05) increases and decreases 

in perceived similarity for faces. D & H. Positive relationship between indirect (category bias in 

perception) and direct (categorization accuracy for new faces) measures of memory 

generalization.  
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4.21, p = .03, 𝜂𝑝
2  = .10, GG). Follow-up pre-post comparisons within each pair-type (Fig. 

2.2G) revealed that the interaction was driven by a significant decrease in similarity 

ratings for faces sharing a parent but not a family name (t(38) = -3.71, p = .001, d = -

0.59), but there were no significant changes in similarity ratings for other pair-types (both 

t < -1.04, p > .30, d < -0.18). Thus, changes in perceived similarity were affected by 

category membership in both experiments.  

Although not significant (p = .077), we noted a numerical tendency towards a 

category bias in pre-learning similarity ratings. Parent faces were randomly selected for 

each participant to serve as category-relevant or category-irrelevant parents, but some of 

the category-relevant parent faces may have been more salient, leading to a numerically 

greater pre-learning similarity rating. Thus, we tested whether the post-learning category 

bias on perceived similarity was reliably greater than pre-learning bias. A 2 x 2 

(timepoint [pre-learning, post-learning] x pair-type [shared parent-same family name, 

shared parent-different family name]) repeated-measures ANOVA showed only a 

marginal interaction between timepoint and condition (F(1, 38) = 2.87, p = .098, 𝜂𝑝
2 = 

.07). We thus controlled for pre-learning similarity rating differences in subsequent 

analyses that assessed the relationship of post-learning ratings and generalization 

performance. 

Category Generalization 

Experiment 1. Participants correctly categorized 85% of training faces (SD = 

17%) and 74% of new faces (SD = 13%), which was well above chance (.33 for three 

categories; both one-sample t(34) > 18.12, p < .001, d > 3.06). A paired-samples t-test 

showed higher categorization accuracy for the training faces than for the new faces (t(34) 
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= 5.48, p < .001 , d = 0.93). We next tested whether the category bias on perceived 

similarity ratings (an indirect measure of category knowledge) was related to subsequent 

generalization success. A Pearson’s correlation showed a significant positive relationship 

between the category bias on perceived similarity ratings and generalization accuracy 

(r(33) = .64, p < .001; Fig. 2.2D). The category bias on perceived similarity in the post-

learning phase was a significant predictor of subsequent generalization performance even 

when pre-learning similarity ratings were considered (multiple regression: pre-learning 

differences in perceived similarity β = .30, t(34) = 1.80, p = .08; post-learning category 

bias β = .46, t(34) = 2.75, p = .01).   

Experiment 2. Participants correctly categorized 70% of training faces (SD = 

23%) and 64% of new faces (SD = 22%), which was well above chance (.33 for three 

categories; both one-sample t(38) > 8.65, p < .001, d > 1.38). A paired-samples t-test 

showed higher categorization accuracy for the training faces than for new faces (t(38) = 

2.12, p = .04, d = 0.34). The post-learning category bias on perceived similarity ratings 

was significantly correlated with generalization accuracy (Pearson’s r(37) = .48, p = .002; 

Fig. 2.2H). Further, the category bias was a significant predictor of subsequent 

generalization performance even when pre-learning similarity ratings were controlled for 

(multiple regression: pre-learning category bias β = -.22, t(38) = -0.86, p = .40; post-

learning category bias β = .66, t(38) = 2.57, p = .01).  

Discussion 

The current study investigated category learning using measures of perceived 

similarity and category generalization across two experiments. Face-blend stimuli were 

used to control physical similarity within and across categories (families). Experiment 1 
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was a traditional feedback-based category-learning task, with three family names serving 

as category labels. In Experiment 2, the shared family name category label was 

encountered in the context of a face-full name paired-associate learning task, where first 

names were unique for each face. Participants were able to successfully apply category 

labels to new faces in both experiments, demonstrating that category information can be 

extracted in support of generalization even when task goals do not emphasize learning 

categories at encoding. Past work of incidental category learning has shown that 

individuals can extract category structures when not instructed using patterns of physical 

similarity as category cues (Aizenstein et al., 2000; Love, 2002; Reber et al., 2003; 

Wattenmaker, 1993). We extend these prior findings by showing that category structure 

can also be extracted when category membership is dissociable from physical similarity 

and further when individuals are actively learning information that differentiates 

individual items within the same category.  

Learning-related changes in perceived similarity ratings were observed in both 

experiments. In both cases, following learning, participants rated faces sharing a category 

label as more similar than equally physically similar faces that did not share a category 

label. These results extend prior studies finding changes in perceived similarity as a result 

of explicit category learning (Goldstone, 1994b, 1994a; Livingston et al., 1998) to a 

novel task that exposes participants to a category label but requires individuation of 

stimuli within a category. Observing category bias after the face-name paired-associate 

learning also indicates that the mere presence of a shared piece of information can bias 

perception even outside the context of a traditional category-learning task. 
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The current results also indicate that similarity ratings provide a useful tool to 

index category knowledge while minimizing explicit generalization demands. In both 

experiments, category bias in similarity ratings observed after learning predicted 

subsequent generalization of category information to new examples. To our knowledge, 

this is the first study relating the strength of a perceptual category bias to the quality of 

learned category information (as measured by generalization success). The finding that 

good category generalizers were those who showed the greatest distortion in perceptual 

representations (rather than those with representations better aligned with physical 

similarity) is consistent with the view that category bias in perception results from 

learning-related attentional shifts and differential weighting of perceptual features based 

on their category relevance (Goldstone & Steyvers, 2001; Kruschke, 1996; Medin & 

Schaffer, 1978; Nosofsky, 1991; Nosofsky, 1986). Our findings tie together research on 

categorical perception and concept generalization, and newly indicate that perceived 

similarity ratings reflect the quality of new category knowledge robustly across two 

distinct tasks involving category learning. 

Interestingly, while perceptual biases occurred in both experiments, they took 

different forms. In Experiment 1, similarity ratings for faces within a family increased 

while similarity ratings for faces that were physically similar but belonged to different 

families decreased. These results provide a new example of a category structure in which 

both within-category compression and between-category expansion are observed after 

traditional feedback-based category learning (Gurekis & Goldstone, 2008; Goldstone, 

Lippa & Shiffrin, 2001), and aligns well with the task demands of treating some stimuli 

as distinct and some as equivalent. Based on prior work on attentional shifts after 
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category learning (Goldstone & Steyvers, 2001; Kruschke, 1996; Nosofsky, 1991), this 

result indicates that participants both focused more strongly on features that differentiate 

between categories (features of the relevant parent faces) and decreased attention to 

features that do not differentiate between categories (features of the irrelevant parent 

faces that affected physical similarity of faces but not family membership).  

In contrast, the changes in perceived similarity after the face-name paired-

associate learning in Experiment 2 were primarily driven by decreased similarity for 

faces that were physically similar but belonged to different families. We did not observe 

increases in perceived similarity ratings for faces belonging to the same family. While 

more difficult category structures are thought to trigger within-category compression 

(Pothos & Reppa, 2014), this does not explain differences observed here as category 

structure was the same across experiments and category learning was easier rather than 

more difficult in Experiment 1, where compression was observed. Rather, we suspect that 

learning goals at encoding drove the differences in the pattern of category bias between 

experiments. Although it is not possible to rule-out a contribution from other factors, 

such as feedback-based vs. observational learning, the goal of learning a full name for 

each face (including the unique first names) in the paired-associates task was likely a key 

factor. It required participants to look for differences between all faces, even faces within 

the same family, in order to differentiate between categories as well as between 

“brothers” within the same family. That meant that all features remained relevant for task 

goals in Experiment 2, as the features of category-irrelevant parent faces were important 

for discriminating two members of the same family, such as differentiating Brad Miller 
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from Ryan Miller. Thus, participants could not simply ignore the category-irrelevant 

features as they could in Experiment 1.  

Notably, the category bias was measured after learning but before the explicit 

generalization test, meaning that the category bias was present prior to explicit 

generalization demands. Yet, the presence of a shared piece of information (same last 

name) was sufficient to affect how faces became represented, even in Experiment 2 

where no features were irrelevant for the task at hand. This finding is consistent with the 

notion that people spontaneously link related episodes into an integrated representation at 

encoding (Shohamy & Wagner, 2008; Zeithamova, Dominick, & Preston, 2012) rather 

than in response to explicit generalization demands (Banino et al., 2016; Carpenter & 

Schacter, 2017, 2018). As a strategic decision to rate faces with the same last name as 

more similar can contribute to biases in similarity ratings (Goldstone, 1994b; Goldstone 

et al., 2001), we cannot definitively attribute our findings to spontaneous integration 

during learning. However, our results do indicate that evidence for the formation of 

category knowledge can be demonstrated even when generalization task demands are 

greatly minimized, and outside of a traditional category learning task. The nature of the 

resulting category representations—such as whether they are exemplar-based (Hintzman, 

1986; Medin & Schaffer, 1978), prototype-based (Homa, Cross, Cornell, Goldman, & 

Shwartz, 1973; Posner & Keele, 1968), or cluster-based (Love & Medin, 1998)—cannot 

be resolved in the current study as any model of category learning that postulates 

learning-related attentional shifts would predict the emergence of perceptual biases.  

In summary, we build on long lines of research on category learning (for reviews 

see Ashby & Maddox, 2011; Seger, 2008) and categorical perception (for reviews see 
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Goldstone & Hendrickson, 2010; Harnad, 2006) by demonstrating that category bias in 

perception reflects the quality of learned category knowledge. We further extend prior 

work beyond traditional category learning, to demonstrate perceptual biases and 

successful generalization even after learning that emphasizes individuation of category 

members, with the specific pattern of learning-related perceptual shifts reflecting goals 

during learning. Lastly, relating our results to hypotheses generated from studies of 

episodic inference, our data align with the notion that individuals may spontaneously link 

related information at encoding, prior to explicit demands to generalize.   

Open Practices 

None of the experiments discussed in the current report were preregistered. Data 

and materials for all experiments are freely available in the Blended-Face Similarity 

Ratings and Categorization Tasks repository on the Open Science Framework 

(https://osf.io/e8htb). 
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CHAPTER III  

CATEGORY-BIASED NEURAL REPRESENTATIONS FORM SPONTANEOUSLY 

DURING LEARNING THAT EMPHASIZES MEMORY FOR SPECIFIC INSTANCES 

This chapter contains unpublished co-authored material. The graduate student is the 

primary author of this chapter with input from her adviser Dasa Zeithamova (second 

author). The graduate student contributions to this chapter include task design, data 

collection, all data processing and analyses, figure creation, initial drafting of the 

manuscript, and incorporation of edits based on feedback from the second author. 

 

The ability to link details across our varied experiences and organize them into 

meaningful clusters of information that can be readily applied in new situations is an 

important aspect of memory. The organization of memory in service of generalization to 

new situations has been often studied using category learning paradigms. In traditional 

category learning tasks, individuals explicitly learn to categorize a set of stimuli and then 

memory generalization performance is measured through successful transfer of category 

knowledge to new, never-studied examples. Oftentimes, category learning involves 

learning which stimulus features are category-relevant (determining category 

membership) and which features are irrelevant for category membership (Goldstone & 

Steyvers, 2001; Medin & Schaffer, 1978). Attending to category-relevant information 

while discarding category-irrelevant information has been shown to bias perception after 

learning such that items within the same category are perceived as more similar while 

items across categories are perceived as less similar to one another (S. R. Ashby, 

Bowman, & Zeithamova, 2020; Beale & Keil, 1995; Goldstone, 1994a; Goldstone et al., 

2001; Kurtz, 1996).  
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Traditional category learning approaches have been fruitful for understanding 

how memory generalization proceeds when task goals emphasize learning generalizable 

information. However, there are other situations where information about category 

membership is present, but task goals instead require differentiation of individual 

members of a category from one another. We recently examined whether individuals 

would extract category information and display a perceptual category bias when stimuli 

shared generalizable information but task instructions emphasized memory for individual 

stimuli (Ashby, Bowman, & Zeithamova, 2020). Using a paired associate learning task, 

participants learned face-full name associations for face-blend stimuli. Face-blends were 

created by morphing together never-studied “parent” faces resulting in increased physical 

similarity for faces that shared a parent. Some faces that were physically similar were 

then assigned a shared family name (belonged to the same category) while other faces 

that were physically similar had different family names, allowing us to dissociate the 

effects of physical similarity from category membership. Each blended face stimulus was 

also paired with a unique first name and the instructions emphasized learning a full name 

for each face. After the paired-associate learning, participants showed a category-bias in 

perceptual similarity ratings of the face-blends, where faces with the same last name were 

rated as more similar than faces that were physically equally similar but had different 

family names. This indicated that category-relevant information is still extracted even 

when task goals at encoding emphasize learning of individual items. Further, we found 

that the category-bias in perception measure predicted performance on a subsequent 

categorization test of never-studied face-blends, indicating that category-bias in 

perception may be a good index of the extent of category learning.  
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The category-bias in perception was measurable after learning, but prior to an 

explicit generalization test, providing behavioral evidence that category information was 

extracted in service of generalization prior to the explicit demand to generalize, and even 

when task goals directed individuals to learn face-specific information. While this data 

suggests that participants formed category representations spontaneously during 

encoding, we cannot rule out the possibility that the act of making similarity judgments 

after category learning carries inherent strategic cues to rate same-category items as more 

similar to one another. Thus, in the current study, we set out to utilize neural evidence to 

determine whether representations that form at encoding already reflect category 

information. Whether related memories are linked in service of memory generalization 

spontaneously during encoding or in response to task demands at retrieval is an active 

area of debate within the literature (for a review see Zeithamova & Bowman, 2020). 

Some argue that individual memories are stored at encoding and memories are only 

related to one another on-the-fly at retrieval in response to generalization demands 

(Banino et al., 2016; Carpenter & Schacter, 2017, 2018). Others argue that overlap 

between events leads to reactivation of prior related memories during learning, resulting 

in the spontaneous formation of an integrated memory that links related experience as 

they are encoded (Cai et al., 2016; Gershman, Schapiro, Hupbach, & Norman, 2013; 

Shohamy & Wagner, 2008). Thus, the first goal of this study was to test whether related 

faces are spontaneously linked to extract category knowledge before any explicit 

generalization demands. To achieve this goal, we measured neural representations of 

individual face stimuli using functional MRI and pattern information analyses to test for 
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the presence of category information and category bias in neural representations during 

encoding of face-full name associations.   

A second question we had was where in the brain category-biased representations 

may spontaneously form. Several regions have been identified to support organization of 

related memories in service of generalization.  The ventromedial prefrontal cortex 

(VMPFC) has  been shown to integrate new information while taking into account prior 

memories (van Kesteren et al., 2013). Learning-related interactions between the anterior 

hippocampus (AHIP) and the VMPFC have also been shown to support integration across 

memories (Schlichting et al., 2015; Zeithamova, Dominick, et al., 2012), and abstract 

category representations in AHIP and VMPFC support the transfer of concept 

information to new examples (Kumaran, Summerfield, Hassabis, & Maguire, 2009). 

Additionally, portions of the lateral temporal cortices, in particular the middle temporal 

gyrus (MTG), have been implicated in semantic memory (Mummery et al., 2000) and gist 

representations (Dennis et al., 2008; Turney & Dennis, 2017). VMPFC, MTG and AHIP 

have been also shown to represent abstract category knowledge in an explicit 

categorization task where all stimulus features were category-relevant and jointly 

determined category membership (Bowman, Iwashita, et al., 2020; Bowman & 

Zeithamova, 2018). However, it is unknown whether these regions also would also reflect 

a representational shift of individual stimuli based on feature relevance to align with their 

category membership and in a paradigm where explicit task goals require attending to 

category-irrelevant information for successful learning of full names for individual 

stimuli.  
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Alternatively,  as  behavioral category bias in perception is thought to be driven 

by attentional shifts towards category-relevant and away from category-irrelevant 

features (Nosofsky, 1986, 1991), neural reflections of such category biases may not be 

localized to putative generalization regions. In one study that investigated how neural 

representations align with learned attentional bias during categorization, Mack, Preston, 

and Love (2013) found relatively widespread evidence for attention-biased neural 

representations after category learning across the brain, including lateral occipital cortex, 

posterior parietal cortex, and lateral prefrontal regions.  Recruitment of prefrontal regions 

has been reported in other studies of category learning (Nosofsky, Little, & James, 2012; 

Seger et al., 2000) and left dorsolateral prefrontal activity was found in individuals that 

showed a larger degree of category knowledge (Seger et al., 2000). It has been proposed 

that greater dorsolateral activity may reflect attentional processes that guide examining 

features and making decisions as to whether or not features are category diagnostic 

(Seger et al., 2000). Furthermore, attention is known to have widespread effect on neural 

processing across the brain, from high-level cognitive regions to sensory cortices 

(Hämäläinen, Hiltunen, & Titievskaja, 2002; Kanwisher & Wojciulik, 2000; Olson, 

2001). Thus, if the presence of a category label during face-name learning results in a 

spontaneous attentional shift towards category-relevant features, then we may observe 

category-biased neural representations widespread across the cortex.  

Method 

Participants 

Forty-four healthy participants were recruited from the University of Oregon and 

surrounding community via the university SONA research system and community fliers. 
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Participants received monetary compensation for their participation ($10/hr outside the 

scanner and $20/hr inside the scanner). All participants provided written informed 

consent, were right-handed, native English speakers, and were screened for neurological 

conditions and medications known to affect brain function. Experimental procedures 

were approved by Research Compliance Services at the University of Oregon. Four 

participants were excluded from analyses: two for movement in excess of 1.5mm frame-

wise displacement within a run, one due to operator error resulting in poor data quality, 

and one for having an undisclosed migraine disorder and subsequent migraine headache 

in the middle of the scanning session. The remaining sample of 40 participants (22 

female, 18 male; age 18-30 years; Mage = 21.33, SDage = 2.92) are reported in all analyses.   

Stimuli 

 Stimuli were grayscale images of blended faces that we previously developed and 

made publicly available (OSF Repository: https://osf.io/e8htb/; see also Ashby, Bowman 

& Zeithamova, 2020). The stimulus set comprises of a pool of 20 face photographs (so 

called “parent” faces, never shown to the participants in our study) and all 190 pairwise 

computer blends of those 20 parent faces.  

Training stimuli. To create the training blended faces, 6 parent faces were 

randomly chosen for each participant, three of them assigned as category-relevant and 

three assigned as category-irrelevant. Each of the three category-relevant parent faces 

were individually morphed with each of the three category-irrelevant parent faces, with 

equal weight given to each parent face (50/50 blend; see Figure 3.1). The resultant nine 

face-blends were then used as stimuli in the learning task, with faces sharing a parent face 

being physically more similar than faces that did not share a parent face. Faces that 

https://osf.io/e8htb/
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shared a category-relevant parent also shared a family name (belonged to the same 

category) while faces that shared a category-irrelevant parent had different family names. 

Thus, using blended-faces provided us with realistic-looking face stimuli while allowing 

us to control within- and between-category similarity. Because pilot data indicated that 

some parent faces were more distinct and thus more prominent in the resulting blend 

while other faces were more average and thus less prominent in the resulting blend, we 

took two additional steps not implemented in our prior work to better equate pre-learning 

perceived similarity of the face-blends that shared a parent within and between 

Miller 

Category

Irrelevant 

Parents

Wilson 

Training

…

Generalization

Davis

Shared Parent
(same family name)

Shared Parent
(different family name)

Not Related

Category 

Relevant

Parents

…

Figure 3.1*. Structure of face-blend stimuli. Parent faces on the leftmost side are designated “category 

relevant parents” as these parents determined family membership—Miller, Wilson, or Davis—during 

learning, recognition, and generalization. Parent faces across the top are designated “category-

irrelevant parents” as these parents introduced physical similarity across families but did not determine 

categories. Three category-irrelevant parents were used for learning. The rightmost three category-

irrelevant parents are a subset of new faces used for generalization. Parent faces were never viewed by 

participants, only the resulting blended faces. The face blending procedure produced pairs of faces that 

shared a category-relevant parent and belonged to the same family (shared parent - same family name; 

example indicated with dark grey box), pairs of faces that shared a category-irrelevant parent and 

belonged to different families (shared parent- different family name; example indicated with medium 

grey box). Non-adjacent pairs did not share a parent and were not related (example indicated with light 

grey boxes).  
*Figure is adapted with permission from Ashby, Bowman, & Zeithamova 2020. 
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categories. First, we limited the pool of possible parent faces for the creation of the 

training stimulus set to 10 faces (from the full set of 20) that were of intermediate 

distinctiveness based upon an item analysis of pre-learning similarity rating data that we 

collected through pilot testing and previously published studies (see Ashby et al., 2020; 

Bowman, Ashby, & Zeithamova 2021). Second, we implemented a yoking procedure 

between subjects so that two participants were assigned the same parent faces with 

reversed category-relevant and category-irrelevant parent designation. This ensured that 

if one parent face happened to have more salient features, it would be equally frequently 

assigned as a category-relevant parent or a category-irrelevant parent.  

Test stimuli. In addition to the nine training stimuli, 52 new face-blend stimuli 

were created for subsequent old/new recognition test and a surprise generalization test. 

To create new test stimuli, the three category-relevant parent faces were blended with 14 

new parent faces (all parent faces not used for training stimuli) resulting in 14 new face-

blends per category.   

Experimental Design 

 The experiment consisted of the following phases (Figure 3.2): initial exposure 

(passive viewing), pre-learning similarity ratings, observational learning of face-full 

name associations (scanned), post-learning similarity ratings, cued-recall of face-name 

associations, old/new recognition test (scanned), and category generalization (scanned). 

Only the fMRI data from the observational learning phase were analyzed for the purpose 

of the current paper, testing for the formation of category-biased neural representations 

when task goals emphasize face-specific information.  
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Passive viewing. Prior to entering the scanner, participants first passively viewed 

each of the nine training stimuli individually, once in random order without any labels 

and without making any responses. Face-blends were shown for 3s with a 1s inter-

stimulus-interval (ISI). This was done to familiarize participants with the stimuli, 

minimize novelty effects during the learning phase, and provide participants with an 

estimate of the degree of similarity between all faces prior to collecting the pre-learning 

perceptual similarity ratings.  

Pre-learning similarity ratings. Prior to entering the scanner, participants rated 

the subjective similarity of all pairs of training faces. This allowed us to verify that 

participants were sensitive to the inherent similarity structure among faces introduced by 

the blending procedure. All possible 36 pairwise comparisons of the 9 training faces were 

presented and participants rated the subjective similarity of the two faces on a scale from 

one to six (1 = the two faces appeared very dissimilar, 6 = the two faces appeared very 

similar). The face pairs and the rating scale were presented simultaneously for 5s with a 

1s ISI. For subsequent analyses face pairs were binned into three conditions depending on 

whether they 1) shared a parent and a family name, 2) shared a parent but did not share a 

Figure 3.2. Full Imaging Procedure.  Participants passively viewed the 9 training faces and rated the 

subjective similarity of all 36 pairwise comparisons of the training faces prior to entering the scanner. 

Face-full name learning was scanned and completed in four runs. Anatomical scans were collected during 

post-learning similarity ratings to minimize time spent in scanner. Cued name recall was completed with 

participants communicating their answers to researchers verbally through the scanner intercom system. 

The recognition phase was scanned and consisted of 51 trials (9 old and 42 new faces) split into three 

runs. The categorization phase was also scanned and used the same faces as the recognition phase and 

was also split into three runs.  
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family name, or 3) did not share a parent (see example pairs in Figure 3.1). Because there 

are 9 pairs of faces that share a relevant parent, 9 pairs of faces that share an irrelevant 

parent, and 18 pairs of faces that do not share a parent, we presented the 9+9 pairs of 

faces with shared parents twice, with counterbalanced left-right position of the two faces. 

Observational learning of face-full name associations (scanned). Participants 

were next placed in the MRI machine and scanned during learning of the face-full name 

associations across 4 training runs. During learning, participants studied a face-full name 

pair for 3s and then made a prospective memory judgement on a scale from one to four (1 

= definitely will not remember, 4 = definitely will remember) for 2s. Prospective memory 

judgments were included to encourage participant engagement with the observational 

task and were not considered further. All trials were separated by a 3s ISI. Each face-full 

name pair was studied 3 times per run for a total of 12 exposures across all of learning. 

Family names (Miller, Wilson, Davis) were shared across faces that shared a category-

relevant parent face. Nine unique first names (Brad, John, Paul, Steve, Tyler, Andy, 

Ryan, Kyle, Eric) were randomly assigned to each face. This structure allowed for 

participants to differentiate individual faces, even within the same family, while also 

providing an opportunity to form links between related faces in service of memory 

generalization. Participants were instructed to learn each individual’s full name and 

repetition of family names across faces or the presence of any category structure was not 

explicitly emphasized to participants.  

Post-learning similarity ratings. Post-learning perceived similarity ratings were 

collected in the scanner while anatomical data was collected (see fMRI data acquisition 
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below). Timing and presentation of face-pairs was identical to the pre-learning similarity 

rating procedure, in a new random order.  

Cued recall of face-name associations. To assess learning success, participants 

completed cued-recall of the face-full name associations. During this recall phase, 

participants viewed each of the nine training faces individually for as much time as 

needed while still lying in the scanner. Participants were instructed to vocalize the first 

and last name of each face and the researcher, listening through the scanner intercom 

system, recorded their responses on a piece of paper. Trials were advanced by the 

researcher at the request of the participant. Participants were encouraged to make their 

best guess as to the full names of the faces even if they were not confident in their 

memory.  

Recognition (scanned).  An old/new recognition test was also used as another 

learning performance metric for the individual faces. In addition to the nine training 

faces, participants were exposed to 42 never-seen faces that consisted of the 14 new 

blends of each of the three category-relevant parent faces. Participants were asked to 

select via button press whether or not the face presented was old—meaning it was a face 

they had already studied while in the scanner—or new. No feedback was given. The 51 

trials were split into 3 runs of 17 trials each (each run contained 14 new and 3 old faces) 

and each trial was presented for 4s with an 8s ISI. Imaging data from the recognition 

phase were not considered further in the current report.  

Generalization (scanned). Lastly, category knowledge was directly tested using 

categorization of old (training) and new face blends. New face blends were the same as 

those used in the recognition phase. Participants were asked to select via button press the 
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family name for each face from the three options (Miller, Wilson, Davis) presented on the 

screen. No feedback was provided. The 51 trials were split into 3 runs of 17 trials each 

(14 new and 3 old faces) with 4s trials and an 8s ISI. Imaging data from the 

categorization phase were not considered further in the current report.  

fMRI Data Acquisition 

Imaging data was collected using a 3T Siemens MAGNETOM Skyra scanner at 

the University of Oregon Lewis Center for Neuroimaging using a 32-channel head coil. 

Foam padding was used around the head to minimize head motion. The scanning session 

started with a localizer SCOUT sequence followed by four functional runs of the learning 

task, and three functional runs each of the recognition and generalization tasks using a 

multiband gradient echo pulse sequence [TR = 2000 ms; TE = 26 ms; flip angle = 90 º; 

matrix size = 100 x 100; 72 contiguous slices oriented 15º off the anterior commissure-

posterior commissure line to reduce prefrontal signal dropout; interleaved acquisition; 

FOV = 200 mm; voxel size = 2.0 x 2.0 x 2.0 mm; Generalized Autocalibrating Partially 

Parallel Acquisition (GRAPPA) factor = 2]. For each task run, 110 volumes were 

collected for the learning task and 104 volumes each for the recognition and 

categorization tasks. Only data from the learning phase are presented here. A standard 

high-resolution T1-weighted MPRAGE anatomical image [TR = 2500 ms; TE = 3.43 ms; 

TI = 1100 ms; flip angle = 7º; matrix size = 256 x 256; 176 contiguous slices; FOV = 256 

mm; slice thickness = 1 mm; voxel size = 1.0 x 1.0 x 1.0 mm; GRAPPA factor = 2] and a 

custom anatomical T2 coronal image [TR = 13,520 ms; TE = 88 ms; flip angle = 150º; 

matrix size = 512 x 512; 65 contiguous slices oriented perpendicularly to the main axis of 

the hippocampal body; interleaved acquisition; FOV = 220 mm; voxel size = 0.4 x 0.4 x 
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2 mm; GRAPPA factor = 2) were collected to facilitate anatomical localization of the 

neural signals. 

Preprocessing and Single-Trial Modeling 

Raw dicom images were converted to Nifti format using MRIcron’s 

(https://www.nitr.org/projects/mricron) dcm2nii function. Functional, behavioral and 

anatomical data were organized in the Brain Imaging Data Structure (BIDS) format for 

public dissemination on OpenNeuro (forthcoming). Functional images were entered into 

a single-trial fMRI Expert Analysis Tool (FEAT) model from FSL Version 6 

(www.fmrib.ox.ac.uk/fsl). First the functional images were skull stripped using the Brain 

Extraction Tool (BET) and corrected for within-run motion using MCFLIRT by 

realigning all volumes to the middle volume. Next, we applied high-pass temporal 

filtering (60s) and minimal spatial smoothing using a 2mm FWHM Gaussian Kernel. No 

slice timing correction was applied.  

Individual trials were modeled using the GLM including nuisance regressors 

representing the six, standard motion regressors for rotational and translational motion. A 

regressor for the individual trial onset times for the training was included in each model 

and events were modeled with durations of 3s (the period of time the face-name pair was 

on the screen prior to the prospective memory judgment). This was then convolved with 

the hemodynamic response function as implemented in FSL (gamma function: phase = 

0s, SD = 3s, mean lag time = 6s) resulting in beta weight estimations for each individual 

trial, for each functional run of the training task. We next concatenated the resultant beta 

images for each trial across time creating a single betaseries image for each of the four 

functional runs. Across-run realignment was then applied to the betaseries images for 

https://www.nitr.org/projects/mricron
http://www.fmrib.ox.ac.uk/fsl
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each run using Advanced Normalization Tools (ANTs; http://stnava.github.io/ANTs/) 

with the first volume of the fourth run of the training task used as the reference volume. 

The first volumes of all other task runs were registered to the reference volume and the 

resulting transformation was applied to the concatenated betaseries images. Lastly, we 

concatenated all the realigned betaseries images across runs for pattern analyses.  

Regions of Interest (ROIs)  

Three regions of interest (ROIs) were selected for their hypothesized roles in 

memory generalization. We selected the VMPFC because of its well established role in 

supporting memory integration (Schlichting et al., 2014; Zeithamova & Bowman, 2020; 

Zeithamova, Dominick, et al., 2012), MTG because of its role in semantic and gist 

memory (Dennis et al., 2008) and our recent findings of its role in category learning 

(Bowman & Zeithamova, 2018), and the anterior portion of the hippocampus (AHIP) 

given recent proposals that AHIP (ventral hippocampus in rodents) may be uniquely 

involved in forming coarser, generalized representations (for review see Poppenk, 

Evensmoen, Moscovitch, & Nadel, 2013).  

Three additional ROIs were included as control regions. Because the face-blend 

stimuli share physical similarity both within and across category boundaries, we chose 

two visual ROIs that we expected would be sensitive to the physical similarity between 

face-blends but perhaps not the learned category structure: lateral occipital cortex (LO) 

and the posterior fusiform gyrus (PFUS). We also explored the posterior hippocampus 

(PHIP) to test for anterior-posterior dissociation within the hippocampus.  

ROIs were defined in each individual participant’s native space using the cortical 

parcellation and subcortical segmentation routines from Freesurfer version 6 

http://stnava.github.io/ANTs/
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(https://surfer.nmr.mgh.harvard.edu/) of the T1-Weighted MPRAGE anatomical image. 

Bilateral masks for each ROI were created by collapsing together across hemispheres. 

The VMPFC ROI was defined as the Freesurfer medial orbitofrontal cortex label. To 

obtain separate AHIP and PHIP regions, we divided the Freesurfer hippocampal ROI at 

the middle slice. In the event that there were an odd number of hippocampal slices for a 

given participant, the middle slice was assigned to the posterior hippocampus (PFUS) and 

not included in the AHIP definition for that participant. All ROI functional analyses were 

conducted in native space of each participant. 

Statistical Analysis  

Memory performance for faces and names. To index participants’ memory for 

the individual faces and their names that participants encountered during the paired-

associates task, we recorded the proportion of first names and the proportion of last 

names correctly recalled during the cued recall test. Additionally, we used a measure of 

corrected hit rate (hits – false alarms) from the recognition task to determine how well 

participants were able to identify the individual faces encountered during learning. 

Recognition performance was evaluated using a one-sample t-test comparing corrected 

hit rate against zero.  

Categorization performance. Generalization performance was measured as the 

accuracy (percent correct) for categorizing new face blends during the surprise 

categorization task. We also recorded percent correct categorization of the training faces. 

One-sample t-tests compared categorization performance against chance performance 

(33.3% for three categories), separately for training faces and for new stimuli. A paired 

https://surfer.nmr.mgh.harvard.edu/
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sample t-test was used to compare categorization performance for the training faces 

against categorization performance for the new faces.  

Similarity ratings. Of main interest from the similarity ratings task was the 

category bias in perception (similarity ratings for two faces that shared parent and family 

name – two faces that shared parent but had different family names) from the post-

learning similarity ratings. First, we examined perceptual similarity ratings separately for 

the pre- and post-learning phases. Within each phase we compared mean similarity 

ratings for faces in each pair-type (shared parent-same family name, shared parent-

different family name, not related) using repeated-measures ANOVA. To examine 

learning-related changes we also compared across phases using a 2x3 (timepoint [pre-

learning, post-learning] x pair-type [shared parent-same family name, shared parent-

different family name, not related] repeated measures ANOVA. A Greenhouse-Geisser 

correction for degrees of freedom (denoted as GG) was used wherever Mauchly’s test 

indicated there was a violation of the assumption of sphericity in the data.  

Lastly, to determine whether the category-bias in similarity ratings predicts 

generalization performance (see also Ashby et al., 2020) we used a Person correlation to 

examine the relationship between the indirect and direct measures of generalization. To 

confirm that individual differences in pre-learning similarity ratings did not account for 

this relationship we also used a multiple regression including both the pre- and post-

learning category biases in the model as predictors of generalization success.  

fMRI classification of category-relevant and category-irrelevant information. 

Our first approach was to use multi-voxel pattern analysis (MVPA) classification analysis 

within each a-priori ROI to test to what degree it is possible to decode the category-
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relevant and the category-irrelevant parent structure among the training stimuli. Each 

face-blend seen during category learning contained features shared with other face-blend 

stimuli with whom it shared the same parent, whether a category-relevant or a category-

irrelevant parent. However, it belonged to the same family category only with faces with 

whom it shares the same category-relevant parent. Thus, we reasoned that if both the 

category-relevant and category-irrelevant information are decodable in a given region, 

that may indicate that the region is sensitive to the physical similarity shared between 

stimuli. In contrast, if a classifier can decode the category-relevant but not the category-

irrelevant information in a region, the region primarily represents category information 

rather than physical similarity. Finally, a classifier may be able to decode both types of 

information but perform better when decoding category-relevant information compared 

to category-irrelevant information. This also would indicate category-biased 

representations during learning.  

We predicted that classifier accuracy would be greater for category-relevant 

compared to category-irrelevant information in regions known to support memory 

generalization. Further, we predicted above-chance classification of both category-

relevant and category-irrelevant information in visual control regions as they should be 

sensitive to the physical similarity of the faces regardless of the learned category 

information. Critically, this classification would test whether that category 

representations are spontaneously formed even when a task emphasizes individuation of 

individual exemplars and when a category label is present but not emphasized.  

To test these predictions, we used PyMVPA (www.pyvmpa.org; see also Hanke et al., 

2009) and trained two separate classifiers, one to classify the category-relevant parent 

http://www.pyvmpa.org/
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faces and one to classify the category-irrelevant parent faces among the nine training 

faces. We used a support vector machine (SVM) classifier and a leave-one-run-out cross-

validation procedure across all 4 blocks of learning. Classifier success was tested to see if 

performance was greater than theoretical chance performance (33.3% for three 

categories) using one-tailed, one-sample t-tests for category-relevant and category-

irrelevant classification within each ROI. Differences in classification accuracy for 

category-relevant vs. category-irrelevant information was examined using paired-samples 

t-tests within each ROI. All t-tests were corrected for multiple comparisons using the 

Bonferroni correction.  

Neural pattern similarity representations of category information. Our 

second approach was to use representational similarity analysis (RSA) to directly test for 

the existence of a category bias in neural representations. Since pairs of faces that share a 

category-relevant parent and pairs that share a category-irrelevant parent are equated for 

physical similarity, greater neural pattern similarity for pairs that share a category-

relevant parent would demonstrate that learning altered neural representations to reflect a 

category bias. As with the MVPA approach, we predicted generalization regions, but not 

necessarily the visual control regions, would demonstrate this neural category bias. To 

test for the category-biased representations, we first measured the degree of neural 

pattern similarity using a Pearson correlation within each ROI for all pairs of trials that 

(a) shared a parent and also shared a family name and (b) shared a parent and had 

different family names. The resulting R-values were Fisher z-transformed to conform to 

normality and permit statistical analyses. For each participant and ROI, we then 

calculated the category bias in neural pattern similarity by subtracting the mean pattern 
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similarity for the two types of pairs (Shared Parent Same Family Name Similarity – 

Shared Parent Different Family Name Similarity), and dividing the difference by their 

variability to quantify the category bias in terms of normalized distance Cohen’s D. The 

pattern of results remains the same when raw (not normalized) similarity differences are 

used. Category biases in neural representations for each hypothesized generalization ROI 

were then tested against zero using one-tailed, one-sample t tests to assess if there was 

greater neural pattern similarity for faces that shared parents and were within the same 

family compared to faces that shared parents but were from different families.  

Searchlight classification of category-relevant and category-irrelevant 

information. Because the anatomical ROI approach may be insufficient by either 

including uninformative voxels or excluding informative voxels (Kriegeskorte & 

Bandettini, 2007; Kriegeskorte, Goebel, & Bandettini, 2006), and because we were 

interested in how any potential category representations may be distributed across the 

brain, we also conducted a MVPA searchlight analysis to classify the category-relevant 

and category-irrelevant parent faces across the entire brain. This allowed for a data-

driven approach to discover where in the brain, outside the a priori ROIs, category-

biased representations may form during learning. The searchlight analysis was completed 

using a 3mm sphere which then was iteratively swept across the entire brain using 

PyMVPA producing separate searchlight accuracy maps for category-relevant and 

category-irrelevant decoding for each subject. Individual subject searchlight maps were 

then normalized to the standard MNI template space using ANTs. Transformations to 

standard space were calculated between each subject’s reference volume (run 4 of 
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training) and the standard template and then applied to the searchlight maps for category-

relevant and category-irrelevant classification.  

Next, individual subject maps in standard space were merged into two 4D maps 

(one for category-relevant and one for category-irrelevant) and smoothed (Gaussian 

Kernel: 4mm) in preparation for group-level statistics. In order to compute one-sample t-

tests on the merged images to statistically test which regions in the brain represented 

category-relevant and category-irrelevant information, we first subtracted theoretical 

chance performance from each merged image (1/3) and then masked the images with the 

standard MNI template whole-brain mask. Lastly, we used FSL Randomise with 

Threshold-Free Cluster Enhancement (TFCE) to perform two one-sample t-tests using the 

category-relevant and category-irrelevant merged, smoothed, and masked images.  The 

resultant t-stat images were then thresholded using the cluster-corrected p-value image to 

produce maps with only statistically significant clusters. In the event that the TFCE 

procedure produced a large significant cluster that spanned many functional regions and 

extended across lobes, we applied an additional voxel-wise threshold (T = 3.5) in order to 

separate the larger cluster for better characterization of the functional regions evoked.  

Searchlight neural pattern similarity representations of category 

information. We also tested for category-biased neural representations across the entire 

brain by running an RSA searchlight analysis.  As with the MVPA approach, we used a 

3mm sphere to iteratively sweep across the entire brain comparing pattern similarity 

between face stimuli using PyMVPA. The subtraction described in the ROI analysis 

above were also carried out to produce a searchlight map of category representations for 

each subject. Searchlight maps were next normalized to the standard MNI template space 
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using ANTs and transformations were calculated as outlined above in the MVPA 

searchlight. Next, the individual subject maps in standard space were merged into a 

single 4D map, smoothed with a 4mm Gaussian Kernel, and masked with a standard MNI 

template whole-brain mask. Statistical analysis was performed using one-sample t-tests to 

test against zero and TFCE with FSL Randomise. As with the MVPA classifier 

searchlight, the resultant t-stat images were then thresholded using the cluster-corrected 

p-value image to produce maps with only statistically significant clusters representing a 

neural category bias.  

Results 

Behavioral 

Memory for faces and names. We first examined recall accuracy from the cued-

recall task to assess how well participants stayed on task and learned the first and family 

names during the observational paired-associates learning. On average, participants were 

able to recall 58% of first names and 65% of family names, similar to our prior 

behavioral study (52% of first names, 65% of family names, see Ashby et al., 2020). 

Next, we examined performance for identifying individual faces during the recognition 

phase as a secondary measure of learning success. We examined performance for 

identifying faces during the recognition phase as either old or new using a corrected hit 

rate (hits – false alarms) to account for unequal exposure to old (n = 9) and new training 

faces (n = 42). We found evidence for good recognition as the average corrected hit rate 

for participants was 79.5% (SD = 17%) which was well above zero (t(39) = 29.19, p < 

.001, d = 4.616). The hit rate was 89.1% (SD = 11.1%) and the false alarm rate was 9.6% 

(SD = 11.2%). 
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Categorization performance. Next, we examined performance for learning the 

category-relevant information by assessing categorization accuracy during the surprise 

categorization task.  We examined accuracy separately for the training faces and the 

never-learned faces.  During categorization, participants correctly categorized 69% (SD = 

21%) of the old faces that were learned during the observational training and 62% (SD = 

18%) of the new faces that were never viewed during learning, which is well above 

chance (both t(39) > 10.00 , p  < .001 , d > 1.58 ). A paired-samples t-test showed lower 

categorization accuracy for the new faces than for the training faces (t(39) = -3.19, p = 

.003, d = .505). The successful categorization of the new faces into the appropriate family 

categories indicates that category information extracted during learning was successfully 

generalized.  

Similarity ratings. For our indirect measure of memory generalization, we 

examined perceptual similarity ratings separately for pre- and post-learning phases. Pre-

learning similarity ratings confirmed that participants were sensitive to the similarity 

structure among stimuli, introduced by the blending procedure (Figure 3.3a). We found a 

significant main effect of pair type (F(2, 78) = 96.18, p < .001, 𝜂𝑝
2= .71), driven by lower 

similarity ratings for faces that did not share a parent compared to those that shared a 

parent (both t(39) ≥ 12.705, p < .001, d ≥ 2.010). Faces that shared a parent were rated 

equally similar to one another regardless of whether or not they shared the same family 

name (which had yet to be presented to participants; t(39) = -.566, p = .574, d = .09).  

Post-learning similarity ratings (Figure 3.3b) also differed by pair type (F(1.67, 

65.13) = 91.93, p < .001, 𝜂𝑝
2= .702, GG), again driven by higher ratings for pairs of faces 

that shared a parent (category-relevant or irrelevant) compared to faces that did not share 
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a parent (both t(39) ≥ 12.664, p < .001, d ≥ 2.002). In contrast to our previous study, we 

did not find evidence for a category bias in post-learning ratings, as ratings remained 

comparable between pairs of faces that shared a relevant parent and those that shared an 

irrelevant parent (t(39) = 0.211, p = .834, d = .033).  

A 2x3 (timepoint [pre-learning, post-learning] x pair-type [shared parent-same 

family name, shared parent-different family name, not related] repeated measures 

ANOVA showed a significant main effect of timepoint (F(1,39) = 5.890, p = .020, 𝜂𝑝
2  = 

.131) driven by greater perceived similarity ratings before learning compared to after 

(Figure 3.3c; t(39) = 2.406, p = .020, d = .38) and a significant main effect of pair-type 

(F(1.739, 67.806) = 110.575, p < .001, 𝜂𝑝
2= .739, GG) where faces that shared a parent 

were rated as more similar than unrelated faces (both t(39) ≥ 14.127, p < .001, d ≥ 

2.234). The interaction between timepoint and pair-type was not significant (F(2, 78) = 

.740, p = .480, 𝜂𝑝
2= .019).  

Although the overall effect of the category bias in post-learning similarity ratings 

was not significant, in our prior work we found a post-learning category bias in 

perception that predicted generalization performance (Ashby et al., 2020). Thus, we 

wanted to examine whether individual differences in the category-bias were still related 

to performance on the generalization task. We predicted that we would replicate our 

result from our previous behavioral study finding a positive relationship between the 

post-learning category-bias in perception and generalization. As predicted, Pearson 

correlation showed a significant relationship such that larger post-learning category 

biases in perception were associated with better generalization performance during the 

categorization task (Figure 3.3d; r(39) = .57, p < . 001). Further, the category bias on 
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perceived similarity post-learning remained a significant predictor of subsequent 

generalization performance even when pre-learning similarity ratings were considered 

(multiple regression: pre-learning category bias b = .137, t(39) = 0.69, p = .49; post-

learning category bias b = .47, t(39) = 2.36, p = .024). These results successfully replicate 

our previous work providing further evidence that a learning-evoked category bias in 

perceptual similarity ratings may be a useful indirect measure of memory generalization 

when task-related demands to generalize are minimized.  

Region of Interest Analyses 

Classification of category-relevant and category-irrelevant visual 

information. Each face-blend that was viewed during learning contained features that 

were both category-relevant and category-irrelevant. Our first goal was to determine 

whether category-biased neural representations are detectable during learning. We 

predicted that we would find category-biased neural representations that extended beyond 

the physical similarity of the stimuli by showing neural pattern classification for 

Figure 3.3. Behavioral Category Bias. A. Average similarity ratings for faces that share a parent and 

family name, faces that only share a parent, and faces that don’t share any parents before learning. B. 

Average similarity ratings for the same pairwise comparisons after learning. No significant category bias 

in perception was found averaged across subjects. C. Changes in similarity ratings from pre- to post-

learning. An overall significant decrease in perceived similarity for faces. D. Positive relationship 

between indirect (category bias in perception) and direct (categorization accuracy for new faces) 

measures of memory generalization.    
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category-relevant information to a larger degree than category-irrelevant information. 

Our second goal was to determine if category-biased neural representations during 

learning are uniquely represented in putative generalization regions (VMPFC, MTG, and 

AHIP). We predicted that category-biased representations would be measurable in 

putative generalization regions but not in control regions. 

To test this hypothesis, we first examined classifier performance within putative 

generalization regions. MVPA classifier performance for decoding category-relevant and 

category-irrelevant information during learning in each of the a-priori ROIs is presented 

in Figure 3.4a (left side). Significance for all t-tests was determined by a Bonferroni 

adjusted alpha level of p = .0167 (𝛼 = .05 divided by 3 regions). One-sample t-tests 

compared classifier accuracy for generalization regions against chance performance 

(33.3% for 3 categories) revealing significant decoding of category-relevant information 

in MTG (t(39) = 3.95, p < .001, d = .57), which remained significant after correcting for 

multiple comparisons  

No other generalization regions significantly decoded category-relevant 

information and none of the three regions decoded category-irrelevant information. To 

evaluate whether MTG had greater classification accuracy for category-relevant vs. 

category-irrelevant information, we followed up with a paired-samples t-test to compare 

decoding accuracies across conditions. We found better decoding performance within 

MTG for category-relevant information than category-irrelevant information (t(39) = 

2.31, p = .013, d = .37, one-tailed) indicating a neural category bias within MTG during 

learning. Thus, our pattern classification results provide compelling evidence for a neural 

category bias in MTG, but we did not see significant evidence for category-biased 
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representations in the other hypothesized generalization regions—although VMPFC 

Figure 3.4. Pattern classification and pattern similarity analyses within six a-priori regions of 

interest. A. Mean classifier accuracies across all of paired-associates learning for category-

relevant (blue) and category-irrelevant (red) parent face decoding. B. Pattern similarity—

depicted as effect sizes—for category representations (green) across all of the paired-associates 

learning. Error bars represent the across-subject SEM. Stars indicate regions where pattern 

classification was significantly greater than chance (.333 for three categories) and survived 

Bonferroni correction for multiple comparisons (p < .0167). Tildes indicate regions where 

pattern similarity was significantly greater than zero uncorrected but did not survive correction 

for multiple comparisons.  
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followed the same pattern numerically. 

Next, we examined classifier performance within the control regions (Figure 3.4a, 

right side). We predicted that visual control regions (LO, PFUS) would be sensitive to the 

physical similarity of the faces rather than the learned category information and thus 

would classify both category-relevant and category-irrelevant information to a similar 

degree. As PHIP has been shown to be involved in episodic memory we did not have any 

specific predictions for the patterns of activity we may see in this region during a 

category-learning task with specificity goals. One-sample t-tests compared classifier 

accuracy for the control regions against chance performance revealing significant 

decoding of category-relevant information in LO (t(39) = 5.31, p < .001, d = .79) that 

survived correction for multiple comparisons. As predicted we also found significant 

decoding of category-irrelevant information in LO (t(39) = 3.64, p < .001, d = .52), 

indicating that visual cortex was sensitive to the physical similarity of the faces. While 

the classification of category-relevant information in LO was greater than category-

irrelevant information, the difference did not reach significance (t(39) = 1.73, one-tailed 

uncorrected p = .046, two-tailed corrected p > 0.05).  

Neural pattern similarity representations of category information. Our 

second approach to testing for category-bias in neural representations was to leverage 

RSA, determining if neural activity show greater similarity for pairs of faces that shared a 

category-relevant parent face than pairs of faces that shared a category-irrelevant parent 

face. We predicted that generalization regions would show significant category 

representations indicating a learning-driven neural category bias.  
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We first examined evidence for category bias in neural representations in the 

hypothesized generalization regions (Figure 3.4b, left side).  One-sample t-tests 

compared differences in pattern similarity against zero revealing significant category 

representations in VMPFC (t(39) = 2.21, p = .0165, d = .35, one-tailed) and MTG (t(39) 

= 2.06, p = .023, d = .33, one-tailed). Category representations in VMPFC survived 

correction for multiple comparisons while category representations in MTG did not (p > 

.0167). Next, we examined category representations in the control regions (Figure 3.4b, 

right side) and found a significant category representation in LO (t(39) = 2.18, p = .0175, 

d = .34) which also did not survive correction for multiple comparisons but remained 

marginal. Overall, two of the hypothesized generalization regions, as well as LO, showed 

some evidence of category bias in neural representations of individual faces. 

Whole-Brain Searchlight Analyses 

The ROI-based classification analyses indicated that learning-related category 

information is measurable during encoding in MTG and LO. The ROI-based pattern 

similarity analyses further suggest that a neural category-bias may be measurable during 

learning in VMPFC, MTG, and LO during encoding; however, only representations in 

VMPFC remained significant once corrected for multiple comparisons. To further test to 

what degree any potential category-biased representations are unique to hypothesized 

generalization regions or rather wide-spread across the brain, we conducted a whole-brain 

searchlight to allow for a more data-driven approach to find regions which may carry 

learning-related category information during encoding. 

Searchlight classification of category-relevant and category-irrelevant 

information. Whole-brain searchlight maps for decoding of category-relevant and 
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category-irrelevant information across the learning phase are presented in Figure 3.5a. 

Figure 3.5. Whole-brain Searchlight Results. A. MVPA searchlight maps for category-relevant 

(blue) and category-irrelevant (red) decoding across all four runs of learning. Category-

irrelevant decoding in LO largely overlapped with decoding for category-relevant information 

(purple). B. RSA searchlight map for category representations (shared parent same family name 

– shared parent different family name). Animations fully displaying the pattern of results across 

the entire brain are available on OSF for both MVPA and RSA searchlight results.  
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For category-relevant classification, using Threshold-Free Cluster Enhancement in FSL 

randomize yielded a single large cluster that survived cluster correction but encompassed 

many functional regions (Multi-Regional Cluster peak: MNI -42, 26, 4; t = 6.29; 43,497 

voxels). To better characterize the large cluster, we applied an additional voxel-wise 

correction (t = 3.5) to the already thresholded map in order to parse the cluster into 

definable functional regions (Table 3.1). Notably, regions that classified category-

Cluster size is the number of voxels; peak coordinate is given in MNI space. L = left; R = Right. Sub-

clusters were obtained by applying additional voxel-wise thresholding (t = 3.5) and are identified in 

italics. 

 

Table 3.1. Learning Phase Searchlight MVPA Results. Peak coordinates are reported 

separately for regions significantly classifying category-relevant and category-irrelevant 

information.  
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relevant information were widespread and distributed across large portions of the frontal 

lobes, parietal lobes, occipital lobes and the midline. In contrast, MVPA searchlight for 

category-irrelevant classification yielded only a single small cluster fully confined to LO 

(no additional thresholding applied). This cluster almost entirely overlapped with 

classification of category-relevant information in the visual cortex (see purple in Figure 

3.5a).   

Searchlight neural pattern similarity representations of category 

information. Next we used the whole-brain searchlight approach to perform the RSA 

analysis and look for a neural category bias (shared parent-same family name > shared 

parent-different family) across the entire brain. Whole-brain searchlight maps depicting 

category-biased representations across all of the learning phase are presented in Figure 

3.5b. Category-representations survived cluster correction in bilateral frontal pole, left 

superior frontal gyrus + middle frontal gyrus, and the left precentral gyrus (Table 3.2). 

The pattern of results across searchlight analyses demonstrates that during 

learning many regions spontaneously form category-biased neural representations even 

though task-demands at encoding emphasized specificity. The category-irrelevant 

information is important for the explicit task goals of remembering the full name for each 

specific face, but despite this our results indicate that neural representations are biased 

Cluster size is the number of voxels; peak coordinate is given in MNI space. L = left; R = Right.  

 

Table 3.2. Searchlight RSA Results. Peak coordinates are reported for regions with a 

significant category-biased neural representation during learning.  
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towards category-relevant information. Further, category-relevant information as well as 

neural category-bias seem to be relatively widespread across the brain and are not unique 

to our hypothesized generalization regions.  

Discussion 

 Prior work has indicated that category learning induces a perceptual category-bias 

where items within categories are perceived as more similar to one another than items 

across category boundaries. A category-bias in perception has also been demonstrated 

under other task conditions that vary from those of the traditional category learning 

paradigm extending these findings to a task where category-irrelevant features are also 

important for explicit task goals (S. R. Ashby et al., 2020). To directly test whether neural 

category-biased representations are formed spontaneously during learning we scanned 

individuals using fMRI as they completed an observational paired-associates learning 

task that required maintenance of both category-relevant and category-irrelevant 

information. Participants learned face-full name associations using facial stimuli that 

were blended to maintain physical similarity both within and across family category 

boundaries. Ratings of perceptual similarity were collected both before and immediately 

after learning and a subsequent categorization task that included never-studied face-

blends was administered to measure memory generalization. Although the category bias 

in similarity ratings did not reach significance across the group, we replicated our prior 

work that showed that individual differences in similarity ratings category-bias predicted 

performance on a subsequent generalization task. Pattern information analyses of fMRI 

data revealed evidence for significant or marginal category-biased neural representations 

during learning in putative generalization regions (middle temporal gyrus and 
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ventromedial prefrontal cortex) that served as regions of interest. Unexpectedly, we 

found evidence for both category-relevant and irrelevant information in lateral occipital 

cortex with numerically greater evidence for category-relevant information. Furthermore, 

whole-brain searchlight analyses showed evidence for category-relevant information 

widely distributed across the brain. Together, our results indicate that category 

information is measurable during learning (even under task conditions that emphasize 

learning face-specific information) demonstrating that category-biased neural 

representations form spontaneously during encoding and are not merely the product of 

generalization task-goals at retrieval.  

Category-bias in behavioral ratings predicts subsequent generalization performance 

We found an overall decrease in similarity ratings after learning which replicated 

our prior findings (S. R. Ashby et al., 2020). The paired-associates task required 

individuals to pay attention to both the category-relevant and the category-irrelevant 

features as task goals at encoding required participants to discriminate not only between 

families but also between “brothers” within the same family. The overall expansion effect 

in similarity ratings after learning in this task indicates that category learning may utilize 

feature weighting where more attentional resources are allocated to features that support 

the learning goals of the task at hand (Nosofsky, 1991).  In our prior study we found that 

though task goals were to learn individual identities, merely including the shared family 

name category label was sufficient to elicit a category bias in perceptual similarity 

ratings. Here, we did not find an overall category-bias in post-learning similarity ratings 

across all subjects. However, we did replicate our prior finding that individual differences 

in the strength of the category-bias in post-learning similarity ratings predicts subsequent 
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generalization of category information to new instances, even when controlling for pre-

existing perceptual similarity biases. This is consistent with traditional category-learning 

work that has theorized that a category bias in perception is due to an attentional shift to 

items and features that are learned to be relevant to the learned category (Goldstone & 

Steyvers, 2001; Kruschke, 1996; Nosofsky, 1991). Together with our prior work (S. R. 

Ashby et al., 2020), we show a novel evidence for this effect, where category-irrelevant 

information was still relevant to task goals at encoding and the mere presence of the 

shared family label was sufficient to induce a category bias in some individuals which 

allowed them to generalize the category label to never-studied faces during the surprise 

categorization task. Individuals who generalized information well showed the largest 

distortion in their perceptual representations of the face-blend stimuli even though face-

blends were controlled for physical similarity within and across category boundaries.  

Category-biased neural representations are measurable during encoding 

Whether related events are linked on-the-fly at retrieval in response to 

generalization demands (Banino et al., 2016; Carpenter & Schacter, 2017, 2018) or 

whether they are spontaneously linked during encoding (Shohamy & Wagner, 2008; 

Zeithamova, Dominick, et al., 2012) remains a hotly debated discussion in the literature. 

Our prior work provided preliminary behavioral evidence that a category bias in 

perceptual similarity ratings may be a good indicator of the degree of available 

generalizable category knowledge prior to explicit generalization task demands (Ashby et 

al., 2020). Thus, category-biased information prior to retrieval may indicate that 

generalization may occur spontaneously during learning. While measuring the perceptual 

category-bias after learning greatly minimized task-related demands to make 
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generalization decisions, it was not possible to rule out that probing similarity judgments 

may have induced a strategic generalization demand to rate shared family faces as more 

similar to one another. The current study allowed us to more definitively determine 

whether category-biased representations are formed during encoding by observing neural 

evidence for a category-bias during learning, in the absence of explicit task demands. 

Among the hypothesized generalization regions, we found the most robust 

evidence for category-biased neural representations in the middle temporal gyrus (MTG). 

Category-relevant information was decodable in neural patterns of activity during 

learning to a greater extent than category-irrelevant information. Studies of semantic gist 

memory have found the MTG to be involved in generalization processes by evaluating 

incoming information in light of existing schema representations (Turney & Dennis, 

2017; Webb, Turney, & Dennis, 2016). Deng, Booth, Chou, Ding, and Peng (2008) found 

learning-related increases in MTG activation when processing semantically related 

transfer items but not for trained stimuli which may be reflective of accessing semantic 

information when integrating new information with existing knowledge. Our findings are 

consistent with this prior work indicating that the MTG is sensitive to the generalizable 

category-relevant information during learning and may contribute to updating the 

category representation during learning.  We also found modest evidence for category-

biased information in the ventromedial prefrontal cortex (VMPFC) which survived 

correction for multiple comparisons and is consistent with other work which show 

evidence for abstracted memory representations in VMPFC (Bowman & Zeithamova, 

2018; Kumaran et al., 2009).   
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Unexpectedly we did not see evidence for category-biased information in anterior 

hippocampus (AHIP). As past work has found evidence for abstract, category 

representations in AHIP during categorization tasks or traditional category-learning 

paradigms (Bowman, Iwashita, et al., 2020; Bowman & Zeithamova, 2018), we speculate 

that the lack of category-biased representations within hippocampus in the current study 

may reflect disparate task goals. The learning goals of the present study required 

individuals to encode individual face-name pairs and avoid interference between items 

within the same category. Thus, the hippocampus in the current task may require more 

resources allotted to pattern separation processes (Yassa & Stark, 2011) in order to 

reduce interference in light of task goals.   

We also found classification for category-relevant information during learning 

that was not unique to our theorized memory generalization regions. Instead we found 

evidence for category-relevant information more widespread across the brain. 

Classification for category-relevant information also involved regions theorized to 

maintain working memory in light of task goals (caudate nucleus) and bias attention 

towards category-relevant information (inferior frontal gyrus). As the caudate nucleus 

(CN) is consistently activated during learning tasks in animals (Fernandez-Ruiz, Wang, 

Aigner, & Mishkin, 2001; Teng, Stefanacci, Squire, & Zola, 2000) and in studies of 

human category learning  (Poldrack, Prabhakaran, Seger, & Gabrieli, 1999; Seger & 

Cincotta, 2005) finding category-relevant information in this region is consistent with 

past work. It’s been posited that CN activity may be modulated by working memory load 

(Poldrack et al., 1999) and more recent work has found evidence for stronger CN activity 

when encountering new overlapping stimuli (Brown & Stern, 2014). Activity in inferior 
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frontal gyrus (IFG) has been shown in several experiments of semantic memory 

(Thompson-Schill, D’Esposito, Aguirre, & Farah, 1997; A. D. Wagner, Pare-Blagoev, 

Clark, & Poldrack, 2001) and learning-related activation increases in IFG have been 

observed during processing of never-studied “transfer” items in a semantic learning task 

(Deng et al., 2008). Together, these results provide evidence for category-biased shifts in 

attentional processes during learning. CN representations for the category-relevant 

information during learning in the current study may be reflective of the working 

memory resources needed in the current task to maintain the category-relevant features 

while updating the appropriate category-representation in light of new face-blends 

encountered during learning. Additionally, IFG may support category learning by 

actively evaluating the importance of incoming information during learning. This is in 

line with suggestions that the IFG may work to evaluate semantic representations in light 

of the task at hand (Gabrieli, Poldrack, & Desmond, 1998; Gold & Buckner, 2002; 

Poldrack et al., 1999; A. D. Wagner et al., 2001) and may serve as a key region for 

biasing attention towards category-relevant information (Mack et al., 2013).   

Category-biased neural representations may reflect attentional allocation to 

category-relevant information 

Theories of category learning postulate that a key part of learning is an allocation 

of attentional resources away from category-irrelevant information to category-relevant 

features. This results in a stretching and shrinking of perceptual space where items within 

a category are perceived as more similar to one another and are more difficult to 

discriminate (Goldstone et al., 2001; Gureckis & Goldstone, 2008; Kurtz, 1996; 

Livingston et al., 1998; Soto, 2019), while items from different categories become less 
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similar to one another (Goldstone et al., 2001) and are easier to discriminate (Beale & 

Keil, 1995; Folstein, Palmeri, & Gauthier, 2013; Goldstone, 1994a; Gureckis & 

Goldstone, 2008). Here we see that category-relevant information can be decoded across 

large portions of the brain including regions theorized to maintain working memory in 

light of task goals and bias attention towards category-relevant information. While 

information for physically similar faces that did not align with category membership was 

decodable in the brain, the extent of brain involvement in representing this category-

irrelevant information was small and largely overlapped with representations for 

category-relevant information.  

Neural pattern similarity analyses indicated several regions including 

ventromedial prefrontal cortex (VMPFC), and to a marginal degree the lateral occipital 

cortex (LO) and MTG, that represented faces that shared a parent and family name as 

more similar to one another than faces that shared a parent but differed in their family 

name. Although we hypothesized that VMPFC would reflect a category bias during 

learning, our finding of category-biased representations in this region are tenuous as are 

the marginal findings in LO and MTG. This finding is consistent with prior work by 

Mack et al., (2013) that showed learned attention-weighted neural similarity patterns 

during category learning are widespread across cortex and include visual cortices, but 

contrasts with other work that has found abstract category representations predominately 

driven by these regions (Bowman, Iwashita, et al., 2020; Zeithamova & Bowman, 2020; 

Zeithamova, Maddox, & Schnyer, 2008). We speculate that these differences may reflect 

the differences in the attentional shifts required by distinctive category structures. In the 

category learning paradigms that previously found strong category representations in 
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VMPFC and MTG, all features of the stimuli were equally relevant for categorization and 

learning involved primarily linking together category labels. In contrast, the category 

structure in the current study was more similar to that of Mack et al. (2013) which 

required learning both which features are relevant and irrelevant to determine category 

membership. Thus, the neural category bias may reflect an attentional shift to category-

relevant features, which employs a large extent of the brain rather than being specific to 

regions implicating in generalization and memory integration. Here we extend these 

findings to a task where the category-irrelevant information cannot merely be ignored and 

instead is important to maintain to accomplish the task goals that require individuation of 

all faces including those within the same family category. Though the current study 

provides evidence for widespread category-biased neural representations during learning 

it is important to note that the current study cannot distinguish the style of category-

biased representations formed during learning. Whether the category representations 

formed during learning are abstract, generalized representations of the families as would 

be predicted by prototype theory (Posner & Keele, 1968) or whether they are individual, 

specific representations for face-family name associations as predicted by exemplar 

theory (Kruschke, 1992; Nosofsky, 1986) is unknown because both theories would 

predict similar attentional shifts in perceptual space.   

Summary 

The current findings build off our prior behavioral work showing category-biased 

perceptual effects after learning and extends those findings to demonstrate category-

biased neural representations during learning. Critically we found category-biased neural 

representations throughout the cortex during a learning task that contained category 
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information but emphasized differentiating stimuli both within and between category 

boundaries. Thus, our findings demonstrate that neural category representations can form 

spontaneously during learning in the absence of explicit generalization task demands. We 

also extend prior findings of attention-weighted representations widely distributed across 

the cortex during retrieval to a learning task that requires attention to both category-

relevant and category-irrelevant information.  
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CHAPTER IV 

HIPPOCAMPAL INTERACTIONS WITH CORTICAL MEMORY REGIONS 

DURING SPONTANEOUS GENERALIZATION 

 

 The hippocampus has long been known to support detailed episodic memory 

(Scoville & Milner, 1957), but recent work has also implicated the hippocampus as an 

important structure for memory generalization (Bowman & Zeithamova, 2018; Shohamy 

& Wagner, 2008; Zeithamova, Dominick, et al., 2012). How the hippocampus is able to 

support both processes is not well understood and is currently an emerging area of 

interest within the literature (Berens & Bird, 2017; Schapiro et al., 2017). One proposal 

calls for a division of labor expressed along the long-axis of the hippocampus with the 

posterior portion supporting memory specificity and the anterior portion supporting 

memory generalization (Brunec et al., 2018; Collin, Milivojevic, & Doeller, 2015; 

Poppenk et al., 2013). Recent work from our lab (see Frank, Bowman, & Zeithamova, 

2019) found evidence for anterior/posterior dissociations showing differential intrinsic 

connections between posterior hippocampus and known specificity regions and between 

anterior hippocampus and known generalization regions. Furthermore, individual 

differences in hippocampal connectivity with the ventromedial prefrontal cortex was 

associated with individual differences in memory generalization performance. Although 

differential connections between anterior/posterior hippocampus and several cortical 

regions persisted across multiple task phases of the experiment including resting state, 

connectivity between inferior frontal gyrus and the hippocampus was less stable 

indicating this connection may be driven more by task engagement. Thus, the extent to 
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which differential anterior/posterior hippocampal connections with putative 

generalization and specificity regions reflects stable connections or differential 

engagement depending on task goals is less understood. In the current study, we sought to 

test the differential anterior/posterior hippocampal connections in the context of a novel 

paradigm where task goals emphasize memory specificity, but individuals also 

spontaneously generalize information during learning. Additionally, because memory 

generalization occurs spontaneously and is not the explicit goal of the novel task, we 

tested whether individual differences in hippocampal connectivity are associated with 

behavioral measures of memory generalization under these circumstances.  

Division of Labor Within the Hippocampus 

 Long-axis specialization of the hippocampus has been found in various domains. 

In rodent work, receptive field size varies along the hippocampal axis with the smallest 

fields, representing more fine-grained detailed information, residing in in the dorsal 

hippocampus (analogous to the human posterior hippocampus), and larger receptive 

fields, representing more course-grained information, residing in the ventral hippocampus 

(analogous to human anterior hippocampus; see Poppenk et al., 2013). Additional work 

examining spatial representations in the hippocampus have found greater posterior 

compared to anterior activity for detailed representations of individual features and exact 

locations (Doeller, King, & Burgess, 2008; Hassabis et al., 2009; Nadel, Hoscheidt, & 

Ryan, 2013) and greater anterior compared to posterior activity for representations of 

more relative locations (Ekstrom, Copara, Isham, Wang, & Yonelinas, 2011; Morgan, 

MacEvoy, Aguirre, & Epstein, 2011).  
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In humans, studies of associative inference where pairs of items are encoded that 

share an overlapping element (AB, BC pairs), representations for the individual AB and 

BC pairs remained individualized in the posterior hippocampus while there was evidence 

in anterior hippocampus for an integrated ABC representation (Schlichting et al., 2015). 

Along the same lines, more recent work examining category learning found generalized 

concept representations in the anterior hippocampus but not the posterior hippocampus 

both during category learning (Bowman, Iwashita, et al., 2020) and generalization of 

category information to new examples (Bowman & Zeithamova, 2018). Thus, 

overwhelming evidence suggests that the hippocampus can support both processes 

simultaneously via a long-axis division of labor (for review see Sekeres, Winocur, & 

Moscovitch, 2018) with the posterior hippocampus supporting specificity and anterior 

hippocampus supporting generalization.  

Cortical Regions Supporting Memory Generalization 

 In addition to the differential functions of the hippocampus supporting specificity 

and generalization, other cortical regions also differentially contribute to these processes.  

The ventromedial prefrontal cortex (VMPFC) has been shown to support the construction 

of schema representations (Baldassano, Hasson, & Norman, 2018; Brod, Lindenberger, 

Werkle-Bergner, & Shing, 2015; Ghosh, Moscovitch, Colella, & Gilbo, 2014) and to 

support memory integration by linking together memories during encoding (Schlichting 

et al., 2015; Zeithamova, Schlichting, et al., 2012) and facilitating generalization of 

conceptual information to never-before seen stimuli (Bowman et al., 2020; Bowman & 

Zeithamova, 2018; Zeithamova, Maddox, & Schnyer, 2008; for review see Zeithamova & 

Bowman, 2020). Further, the VMPFC and anterior hippocampus are known to interact 
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with one another in formation of generalized memory representations (Pajkert et al., 

2017; Zeithamova, Dominick, et al., 2012), providing support to the long-axis division of 

labor account for hippocampal specialization. Portions of temporal cortices have also 

been implicated in generalization. The middle temporal gyrus (MTG) is recruited by 

semantic memory processes (Mummery et al., 2000; Renoult, Irish, Moscovitch, & Rugg, 

2019), concept learning tasks (Bowman & Zeithamova, 2018), and is also a region that is 

frequently reported in investigations of “gist” representations (Dennis et al., 2008; 

Turney & Dennis, 2017). A study that used TMS to inhibit neural activity within the 

MTG induced impairment in the ability to flexibly retrieve conceptual knowledge (Davey 

et al., 2015) further supporting the role of MTG as a region vital for storing and 

manipulating conceptual knowledge in service of memory generalization.  

Cortical Regions Supporting Memory Specificity 

While the hippocampus has long been studied as the premiere structure for 

episodic memory, other cortical regions have also been implicated in representing 

detailed, item-specific information. Portions of lateral parietal cortex, namely angular 

gyrus (ANG), has been implicated in preventing interference between similar memories 

in service of specificity (Hutchinson, Uncapher, & Wagner, 2009; Kuhl & Chun, 2014; 

Xiao et al., 2017), and studies of exemplar models of categorization (which rely on each 

item encountered being stored as an individual, unique representation) also show 

exemplar correlates within lateral parietal cortices (Mack et al., 2013). Other work 

utilizing TMS disruption of activity within ANG found impairments with retrieval of 

concepts at a more specific level. For example, when presented with a learned image of a 

dog on the screen participants had difficulty retrieving the specific verbal label 
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corresponding to the breed “Corgi”, but not the more general category membership 

“Animal” (Davey et al., 2015). The inferior frontal gyrus (IFG) is another region that 

promotes specificity by supporting autobiographical retrieval (Greenberg et al., 2005) and 

resolving interference between related events (Bowman & Dennis, 2016; Kuhl, 

Dudukovic, Kahn, & Wagner, 2007; Stramaccia, Penolazzi, Altoè, & Galfano, 2017) to 

preserve specificity.  

Prior Study that Identified an Anterior/Posterior Dissociation in Functional 

Connectivity to Memory Specificity and Generalization Regions  

 Recent work by Frank, Bowman & Zeithamova (2019) set out to explore how the 

hippocampus may interact with these cortical generalization and specificity regions in 

order to further support the dual-role hypothesis of the hippocampus. In their study, they 

tracked the intrinsic functional connectivity between the anterior and posterior 

hippocampus and putative generalization (VMPFC, MTG) and specificity (ANG, IFG) 

regions. Participants completed a traditional feedback-based category learning paradigm 

outside the scanner. After learning, participants were scanned during three task phases: 

resting state, passive viewing, and a concept generalization task. As predicted, low 

frequency fluctuations in specificity regions (ANG, IFG) was more strongly coupled with 

low frequency fluctuations in posterior compared to anterior hippocampus.  Low 

frequency fluctuations in VMPFC was more strongly coupled with low frequency 

fluctuations in anterior compared to posterior hippocampus while evidence for coupling 

between MTG and anterior hippocampus was not reliable. Notably, these couplings 

remained fairly stable across the three different task phases although connectivity with 

IFG did increase during phases that involved stimulus presentation (i.e. greater functional 
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connectivity between hippocampus and IFG during each task phase compared to rest) 

indicating that interactions between hippocampus and IFG may be affected by task 

engagement.  

These findings are the first of their kind in the literature to show differential 

relationships between anterior and posterior hippocampus and cortical regions supporting 

generalization and specificity. Although their results remained stable across various 

phases of their experiment in most regions, it’s still unknown whether these findings 

would replicate in a completely different task during encoding rather than after learning 

has already taken place. If these results truly reflect intrinsic connections between the 

hippocampus and cortical regions, we would predict that these findings would be 

replicable in a drastically different paradigm.  

The Current Study 

 In the current study, we sought to replicate and extend the findings by Frank and 

colleagues (2019). Our primary goal was to determine the stability of differences in 

hippocampal-cortical connectivity along the long-axis of the hippocampus by examining 

intrinsic connectivity during a specificity-focused paired associates learning task. We 

also explored whether individual differences in hippocampal-cortical connectivity was 

associated with behavioral measures of memory generalization during learning that elicits 

spontaneous generalization. During fMRI, participants completed the same observational, 

face-full names paired associates learning as was described in Chapter’s 2 and 3 of the 

dissertation. To measure intrinsic connections between regions we utilized the same 

measures of background connectivity as implemented by Frank and colleagues (2019) by 

removing the trial-by-trial signal due to task-related fluctuations and measuring the 
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remaining “background” fluctuations that are thought to be indicative of the intrinsic 

connections between regions (Van Dijk et al., 2010). Given the prior study’s findings that 

background connectivity was stable across levels of engagement (i.e. differential 

anterior/posterior connectivity with generalization regions was not greater during the 

generalization task) and other studies that have also found background connectivity 

measures to show similar information as resting-state connectivity analyses (Frank, 

Preston, & Zeithamova, 2019; Gratton et al., 2018; Touroutoglou, Andreano, Barrett, & 

Dickerson, 2015), we hypothesized that the differential connectivity effects uncovered by 

Frank et al. (2019) are stable and reflect intrinsic connections which will be replicable 

under different task conditions and with very different stimuli. Specifically, we predicted 

that we would find the posterior hippocampus to be more functionally connected to 

hypothesized specificity regions (IFG, ANG) and the anterior hippocampus to be more 

functionally connected to hypothesized generalization regions (VMPFC, MTG) during 

encoding.  

In Chapter 3 of the dissertation we found evidence for category-biased neural 

representations in cortical visual regions, namely the lateral occipital cortex (LO) and 

posterior fusiform gyrus (PFUS). This is consistent with other literature that has found 

hippocampal connectivity with the visual cortex. Learning-related connectivity changes 

between the hippocampus and fusiform gyrus has been shown in tasks that utilize facial 

stimuli (Bokde et al., 2006; Takashima et al., 2009; I. C. Wagner, Rütgen, & Lamm, 

2020) and increased connectivity between the hippocampus and fusiform gyrus during 

sleep has been shown to benefit subsequent learning for face-location associations (van 

Dongen, Takashima, Barth, & Fernández, 2011). Hippocampal connectivity with the 
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lateral occipital cortex following learning has been associated with better retrieval 

performance (Tambini, Ketz, & Davachi, 2010), and enhanced connectivity between the 

anterior hippocampus and high-level visual cortex has been shown to predict individual 

differences in memory for high-reward associations (Murty, Tompary, Adcock, & 

Davachi, 2017). Thus, we predicted that we would find the hippocampus to be 

functionally connected to higher order visual cortex (PFUS, LO) during encoding. 

Lastly, as Frank et al. (2019) found preliminary evidence indicating that 

connectivity between anterior hippocampus and VMPFC predicts generalization 

performance during categorization, we were interested in whether the same evidence 

would be seen during encoding that elicits spontaneous generalization. Although an 

examination of individual differences predicting behavior require larger sample sizes to 

be adequately powered, we reasoned that an exploratory approach to the data may be 

informative when interpreted cautiously and in conjunction with prior findings. We 

predicted that individual differences in VMPFC-anterior hippocampal connectivity would 

be associated with performance on behavioral measures of memory generalization during 

encoding.   

Method 

Participants 

 Participants were collected as part of the project presented in Ashby and 

Zeithamova (in prep) and discussed in Chapter 3 of the dissertation. Forty-four 

participants were recruited from the University of Oregon community, gave written 

informed consent, and scanned at the Lewis Center for Neuroimaging on the university 

campus. Four participants were excluded for excess motion (two participants), scanner 
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operator error (one participant), and an undisclosed neurological condition (one 

participant). Thus, analyses included the remaining forty participants (22 female, 18 

male; age 18-30 years; Mage = 21.33, SDage = 2.92). All research activities were approved 

by the University of Oregon Research Compliance Services.  

Procedure and fMRI Data Acquisition 

 Participants completed the same experimental procedure and fMRI scanning was 

completed using the same acquisition procedures previously described (Ashby & 

Zeithamova, in prep; see also Chapter 3 of the dissertation).  

Regions of Interest (ROIs) 

Regions of Interest were defined in each individual participant’s native space 

using both the cortical and subcortical segmentation routines from Freesurfer version 6 

(https://surfer.nmr.mgh.harvard.edu/) of the T1-Weighted MPRAGE anatomical image. 

Bilateral masks for each ROI were created by collapsing together across hemispheres.  

Given recent work that has suggested a division of labor along the long axis of the 

hippocampus, with posterior hippocampus (PHIP) supporting memory specificity and 

anterior hippocampus (AHIP) supporting memory generalization, we examined these 

regions separately. Anterior and posterior hippocampal ROIs were defined by dividing 

the Freesurfer hippocampal ROI at the middle slice. In the event that there were an odd 

number of hippocampal slices for a given participant, the middle slice was assigned to the 

posterior hippocampus.   

Two regions of interest (ROIs) were selected for their hypothesized roles in 

memory specificity: inferior frontal gyrus (IFG) and angular gyrus (ANG). The IFG ROI 

was obtained by combining the three IFG subregions—Freesurfer labels: pars 

https://surfer.nmr.mgh.harvard.edu/
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opercularis, pars orbitalis, and pars triangularis—while the ANG ROI was defined using 

the 2009 Freesurfer parcellation. Two additional ROIs were selected for their 

hypothesized roles in memory generalization: ventromedial prefrontal cortex (VMPFC) 

and middle temporal gyrus (MTG). The VMPFC ROI was defined as the Freesurfer 

medial orbitofrontal cortex label (MOFC). Lastly, because our prior work showed that 

category information was represented in higher-order visual cortex (Chapter 3), we also 

included two additional Visual ROIs: lateral occipital cortex (LO), posterior fusiform 

gyrus (PFUS). 

fMRI Preprocessing 

 Raw dicom images were converted to Nifti format using MRIcron’s 

(https://www.nitr.org/projects/mricron) dcm2nii function. Functional, behavioral and 

anatomical data were organized in the Brain Imaging Data Structure (BIDS) format for 

public dissemination on OpenNeuro (forthcoming). First, using FSL Version 6 

(www.fmrib.ox.ac.uk/fsl), functional images were skull stripped using the Brain 

Extraction Tool (BET) and corrected for motion within each scanner run using FLIRT to 

realign all images within a run to the middle volume. Across-run realignment was then 

applied to functional images for each run using Advanced Normalization Tools (ANTs; 

http://stnava.github.io/ANTs/) with the first volume of the first run of the training task 

used as the reference volume. The first volumes of all other task runs were registered to 

the reference volume and the resulting transformation was applied to the remaining 

functional runs. The registered functional data was next passed into an FSL FEAT model 

to apply a high-pass temporal filter (60s) with minimal spatial smoothing (2mm FWHM 

Gaussian Kernel).  

https://www.nitr.org/projects/mricron
http://www.fmrib.ox.ac.uk/fsl
http://stnava.github.io/ANTs/
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 According to past work examining functional connectivity (see Murphy, Birn, & 

Bandettini, 2013; Power, Barnes, Snyder, Schlaggar, & Petersen, 2012), connectivity 

measures can be artificially inflated by noisy data. To better control for physiological 

confounds we extracted the timeseries signal for cerebrospinal fluid (csf), white matter, 

(wm), and whole-brain signal (wb). Next, to control for motion artifacts we also 

calculated the framewise-displacement (FD) and the global signal change (DVARS) for 

each functional scan. These were all used as nuisance regressors when calculating 

connectivity (see below) and also used to determine if individual volumes needed to be 

scrubbed from analyses and excluded. Volumes were excluded from analyses if either the 

FD was greater than 0.5mm or if DVARS was over 0.5%. Additionally, when volumes 

were flagged for exclusion, we also scrubbed the volume before and after the flagged 

motion event. Our scrubbing procedure resulted in removal of an average of .65% of 

volumes from analysis.  

Calculating Background Connectivity  

In order to measure background connectivity, we filtered out any task-based 

activity (i.e. mutual responses to stimulus onset) that could drive coactivation between 

regions that may not actually be functionally connected (Frank, Bowman, et al., 2019; 

Norman-Haignere, McCarthy, Chun, & Turk-Browne, 2012; Tambini, Rimmele, Phelps, 

& Davachi, 2017). We used a low-pass filtering approach by setting the low-pass filter 

below the frequency of the task to remove task-related signals. Low-pass filtering was 

accomplished by applying a Gaussian linear (10s) bandpass filter to remove functional 

activity that was cycling faster than the task-driven frequency (8s trials). The 10s filter 

was chosen by examining the power spectrum of the lateral occipital cortex from a 



 

 89 

handful of subjects (see Figure 4.1 for a representative subject) and setting a conservative 

threshold that we felt was appropriate to remove the task-related frequencies. Volume 

scrubbing as described above was completed after low-pass filtering and timeseries was 

extracted from the low-pass filtered data for each ROI.  

 To examine connectivity, we calculated partial correlations between each 

hippocampal ROI (AHIP, PHIP) and each cortical memory ROI (VMPFC, MTG, IFG, 

ANG) and each visual ROI (LO, PFUS). We controlled for motion and physiological 

noise by adding the six standard realignment motion parameters (rotation and translation 

in each X, Y, Z plane), cerebrospinal fluid, white matter, whole brain signal, plus their 

derivatives as nuisance regressors. Volumes that were scrubbed were removed from all 

regressors. The correlation coefficients were then Fisher z-transformed for analysis.  

  

Figure 4.1. Bandpass filtering for a representative subject. Task signal from the LO before (left) 

and after (right) the bandpass filter was applied. The task frequency is 8s (solid red bar). To 

only let signal through the filter that is slower than the task frequency we set a filter below the 

task frequency at 10s (dashed green line). The conservative filter ensured that task-driven 

coactivation was removed from analyses (see right). 
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Results 

Connectivity with Cortical Memory Regions 

To determine whether functional connectivity to cortical regions is different for 

anterior and posterior portions of the hippocampus, we conducted a 2 [Hippocampus: 

anterior, posterior] x 4 [Cortical ROI: VMPFC, MTG, IFG, ANG] repeated-measures 

ANOVA (Figure 4.2). Of interest was a hippocampus ROI x cortical ROI interaction. We 

predicted that the posterior hippocampus would be more functionally connected to 

regions previously implicated in memory specificity (IFG, ANG) and anterior 

hippocampus would be more functionally connected to known generalization regions 

(VMPFC, MTG). As predicted, there was a significant hippocampus ROI by cortical ROI 

interaction (F(1.83, 71.27) = 9.636, p < .001, 𝜂𝑝
2 = .198, GG). For significant interactions, 

follow-up t-tests were conducted to compare the anterior and posterior hippocampus 

connectivity with each of the four cortical ROIs. In line with our predictions, we found 

that VMPFC was more functionally connected to anterior hippocampus (t(39) = 2.52, p = 

.008, d = .399, one-tailed) while ANG was more functionally connected to posterior 

hippocampus (t(39) = 3.80, p <.001, d = .60, one-tailed). Contrary to our predictions, 

MTG and IFG were functionally connected to the same degree with both hippocampal 

ROIs (both t’s < 0.43, p’s > .33 one-tailed). We found a significant main effect of 

Cortical ROI (F(2.22, 86.73) = 5.128, p = .006, 𝜂𝑝
2 = .116, GG) driven by significantly 

less functional connectivity overall between the hippocampus and ANG compared to all 
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other cortical regions (all cortical regions compared to ANG t > 2.32, p ≤ .025). Lastly, 

there was no significant main effect of hippocampal ROI (F(1, 39) = 0, p = .994,  𝜂𝑝
2 = 0).  

Connectivity with Visual Regions 

 Past work has shown the hippocampus to be linked with perceptual regions (for 

review see A. C. H. Lee, Yeung, & Barense, 2012). Work in mice has found correlated 

spatial representations in primary visual cortex and hippocampus (Saleem, Diamanti, 

Fournier, Harris, & Carandini, 2018) even in the absence of visual information (Fournier, 

Saleem, Diamanti, Wells, & Harris, 2019), indicating that the hippocampus 

communicates with visual regions. In Chapter 3 of the dissertation we unexpectedly 

found category-relevant information represented in visual cortex. Thus, we reasoned that 

visual regions may be functionally connected to the hippocampus but whether there 

Figure 4.2. Functional Connectivity Results.  Functional connectivity between anterior 

hippocampus (dark purple), posterior hippocampus (light purple) and the six ROIs are 

presented. Connectivity values are Fischer Z transformed for comparisons. Stars designate 

significant differences in hippocampal connectivity for VMPFC and ANG.  
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would be anterior vs. posterior connectivity dissociations with visual regions is unknown. 

To explore differential connectivity between anterior and posterior hippocampus and 

visual control regions, we conducted a 2 [Hippocampal ROI: anterior, posterior] x 2 

[Visual ROI: LO, PFUS] repeated-measures ANOVA. We found a significant main effect 

of visual ROI (F(1,39) = 17.28, p < .001, 𝜂𝑝
2  = .31) driven by larger functional 

connectivity between the hippocampus and PFUS (t(39) = 4.16, p < .001, d = .657; see 

Figure 3.2). There was no main effect of hippocampal ROI connectivity (F(1, 39) = 2.42, 

p = .128, 𝜂𝑝
2 = .058) nor a hippocampal ROI by visual ROI interaction (F(1, 39) = 1.04, p 

= .314, 𝜂𝑝
2 = .026) indicating that anterior and posterior hippocampus were functionally 

connected with visual regions to the same degree.  

Connectivity-Behavior Relationships: Exploratory Analyses  

Next, we wanted to examine how functional connectivity between hippocampus 

and putative generalization and specificity regions may be related to our behavioral 

measures of memory generalization and specificity. Although we do not have the power 

necessary to properly examine individual differences, we wanted to explore the 

possibility that these connectivity measures are related to our behavioral measures of 

memory generalization. We predicted that functional connectivity between AHIP and 

memory generalization regions (VMPFC, MTG) would be correlated with performance 

on behavioral measures of memory generalization (generalization accuracy, category bias 

in similarity ratings). Using a Pearson’s correlation, we did not find any significant 

correlations between AHIP - putative generalization regions connectivity and behavioral 

measures of memory generalization (all r’s < 0.13, p’s >.44). We also predicted that 

functional connectivity between PHIP and memory specificity regions (IFG, ANG) 
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would be associated with performance on behavioral measures of memory specificity 

(first name recall, corrected hit rate). There was no significant correlation between PHIP - 

putative specificity regions connectivity and behavioral measures of memory specificity 

(all r’s < 0.12, p’s >. 38). We did not have specific predictions about how AHIP 

connectivity with specificity regions or PHIP connectivity with generalization regions 

would be associated with behavior, and we did not find any correlation with behavior for 

those connections (all r’s < .23, p’s > .14). 

Chapter 3 of the dissertation showed learning-related category representations in 

visual cortex and prior work by other research groups indicated learning-related 

hippocampus-visual cortex connectivity predicting individual differences in memory 

(Murty et al., 2017; Takashima et al., 2009; Tambini et al., 2010). Next, we examined 

correlations between hippocampal connectivity with the visual regions and behavioral 

measures of memory generalization (generalization accuracy, category bias). We first 

examined connectivity relationships with generalization performance. We found a 

significant relationship between AHIP-PFUS connectivity and generalization accuracy 

(r(39) = 0.385, p = .014), where greater functional connectivity between AHIP and PFUS 

was associated with better performance on the generalization test (Figure 4.3a; top). 

Functional connectivity between AHIP and LO was marginally related to generalization 

performance (r(39) = .279, p = .081, see Figure 4.3b; top). Next, we examined 

connectivity relationships with the indirect generalization measure—the category bias in 

perception. We found a marginal relationship between AHIP-PFUS connectivity and the 

category bias in perception (r(39) = .298, p = .062, see Figure 4.3a; bottom). When 

examining PFUS connectivity correlations with the two generalization measures we 
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found only a single significant relationship between PHIP-PFUS connectivity and the 

category bias in perception measure (r(39) = .432, p = .005; see Figure 4.3c; bottom); all 

other correlations were not significant (see Figure 4.3c top & Figure 4.3d top and 

bottom). No correlations survived correction for multiple comparisons (Bonferroni 

corrected 𝛼 = .0125 for 4 comparisons). Although the exploratory analyses must be taken 

with caution due to the low powered approach and concerns with multiple comparisons, 

results preliminarily indicate that connections between anterior/posterior hippocampus 

and higher order visual cortex may be associated with how well individuals generalize 

information to never-before studied examples.  

  

Figure 4.3. Correlations between anterior and posterior hippocampus connectivity with visual 

control regions and behavioral measures of memory generalization. A. Relationship between 

AHIP-PFUS connectivity and memory generalization accuracy. B. Relationship between AHIP-

LO connectivity and memory generalization accuracy. C. Relationship between AHIP-PFUS 

connectivity and the indirect memory generalization measure—category bias in perception. D. 

Relationship between PHIP-PFUS connectivity and the category bias in perception. None of the 

correlations survived correction for multiple comparisons (Bonferroni corrected 𝛼 = .0125, 4 

comparisons). 
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Discussion 

The main aim of the current study was to replicate findings by Frank and 

colleagues (2019) showing differential hippocampal connectivity with cortical memory 

regions in service of memory generalization and specificity within a task that emphasizes 

memory specificity.  We tested whether there was evidence for differential connections 

between the hippocampus (posterior, anterior) and cortical memory regions known to 

support memory specificity (ANG, IFG) and memory generalization (VMPFC, MTG). 

Consistent with findings from Frank and colleagues (2019), we found the ANG to be 

more functionally connected to the posterior hippocampus and VMPFC to be more 

functionally connected to the anterior hippocampus. We also did not find differential 

connectivity preferences between the hippocampus and the MTG. In contrast to the 

original work, we did not find evidence for differential hippocampal connectivity with 

the IFG. When exploring connectivity-behavior relationships, we did not find evidence 

for individual differences in hippocampal connectivity with cortical memory regions 

tracking individual differences in behavioral measures of specificity or generalization. 

Unexpectedly, we found individual differences in hippocampal connectivity with higher-

level visual regions (LO/PFUS) that tracked individual differences in measures of 

memory generalization.  Taken together, the current findings replicated findings from the 

original study showing differential connectivity between anterior and posterior 

hippocampus with ANG and VMPFC during a novel learning task that focuses on 

specificity but also elicits spontaneous generalization. Our findings strengthen the prior 

work by adding additional evidence that connections between anterior hippocampus and 

VMPFC and between posterior hippocampus and ANG reflect stable, intrinsic 
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relationships that are replicable under different task demands. Through exploratory 

analysis of connectivity-behavior relationships we also add new insight into the possible 

relationships between the hippocampus and higher order visual regions in support of 

spontaneous generalization. 

Posterior Hippocampus Connections with Specificity Regions 

 Past work has implicated the ANG as a region supporting retrieval of detailed 

episodic memory (Johnson, Suzuki, & Rugg, 2013; Kuhl & Chun, 2014; H. Lee, Samide, 

Richter, & Kuhl, 2019; Richter, Cooper, Bays, & Simons, 2016; Xiao et al., 2017) and the  

IFG as a region primarily responsible for resolving interference between highly similar or 

related items (Bowman & Dennis, 2016; Kuhl et al., 2007). Recent findings by Frank, 

Bowman, and Zeithamova (2019) demonstrated that both ANG and IFG are more strongly 

connected with the posterior compared to the anterior hippocampus when collapsed across 

multiple experimental phases. As predicted, we replicated the finding that the ANG was 

more functionally connected to the posterior hippocampus during the paired associates 

learning. In the original study, the ANG-posterior hippocampus connectivity was stable 

across different task phases. Here we provide additional evidence for the stability of this 

finding by demonstrating the same finding it an independent dataset and during a 

drastically different task phase. However, in contrast to the original study, we did not find 

any posterior vs. anterior connectivity differences with the IFG. While Frank et al. (2019) 

did find evidence for greater posterior hippocampal-IFG connectivity this finding was 

barely significant. Further, their results also showed that hippocampal-IFG connectivity 

varied by task phase demonstrating less differential connectivity with increasingly more 

task engagement. As the current study examined background connectivity in the context of 
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an observational paired associates learning paradigm our finding is not at odds with the 

original paper. Rather, the current result provides further evidence that hippocampal-IFG 

connectivity may be driven by task engagement whereas connectivity between the 

hippocampus and the ANG did not vary across task phases and thus reflects a more stable, 

intrinsic connection.  

Anterior Hippocampus Connections with Generalization Regions 

 The VMPFC and MTG have been shown to support integration of information 

across experiences in service of memory generalization through their involvement in 

schema representations (van Kesteren et al., 2013), overgeneralization resulting in false 

memories (Garoff-Eaton, Slotnick, & Schacter, 2006), and concept generalization 

(Bowman, Iwashita, et al., 2020; Bowman & Zeithamova, 2018). Because more recent 

work has indicated that the anterior hippocampus represents information at a course-

grained scale that is advantageous for generalization (Brunec et al., 2018; Collin et al., 

2015), we predicted that the anterior hippocampus would be more functionally connected 

to VMPFC and MTG. As predicted, we replicated the finding that the VMPFC was more 

functionally connected with the anterior hippocampus. This is in line with work that shows 

interactions between the hippocampus and VMPFC in support of integration across 

memories (Van Kesteren, Rijpkema, Ruiter, & Fernández, 2010; Zeithamova, Dominick, 

et al., 2012) but extends these findings to more specifically implicate the anterior portion 

of the hippocampus in this process.  

 Connectivity between the hippocampus and VMPFC has been shown to relate to 

memory generalization performance in prior work (Frank, Bowman, et al., 2019; Gerraty, 

Davidow, Wimmer, Kahn, & Shohamy, 2014; Kumaran et al., 2009; Van Kesteren et al., 
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2010; Zeithamova et al., 2008). Frank et al. (2019) found stronger VMPFC-anterior 

hippocampus connectivity to be associated with worse generalization performance. This 

finding was counterintuitive as prior work examining connectivity-behavior relationships 

found that task-based connectivity was associated with stronger generalization 

performance (Kumaran et al., 2009; Zeithamova et al., 2008). However, the authors noted 

that they were not the first to find a negative relationship between VMPFC-hippocampal 

background connectivity and generalization performance (see also Gerraty, Davidow, 

Wimmer, Kahn, & Shohamy, 2014; Van Kesteren et al., 2010) reasoning that lower levels 

of baseline or post-encoding background connectivity may indicate that information has 

already been successfully integrated.  

To test this hypothesis, we also examined whether low-frequency fluctuations 

between the VMPFC and hippocampus were associated with measures of memory 

generalization. The current study included two measures of memory generalization: 1) a 

direct measure of memory generalization as performance on an explicit generalization test, 

and 2) an indirect measure of memory generalization as a category bias in perceptual 

similarity ratings after learning. In contrast with the original study, we found that neither 

measure of memory generalization was significantly associated with the strength of 

VMPFC-anterior or VMPFC-posterior hippocampal connectivity. Although the current 

study utilized a larger sample size than the original, we acknowledge that the sample size 

of the current study is still not optimal for examining individual differences. Whether our 

disparate findings reflect a true null finding, are due to task differences, or are due to an 

underpowered ability to measure individual differences in the current data cannot be 

determined. Future work that is specifically designed with studying these individual 
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differences is needed in order to determine the nature of the relationship between VMPFC-

hippocampal connectivity and behavior.  

No Differential Connectivity Preferences Between the Hippocampus and MTG 

Given the wealth of prior work that has implicated the MTG in studies that examine 

memory integration (Bonnici et al., 2012; Takashima et al., 2009; Tompary & Davachi, 

2017), we predicted that the anterior hippocampus would be more functionally connected 

to MTG than the posterior hippocampus. However, we did not find evidence for differential 

connectivity between the hippocampus and MTG in the current study. Though there was a 

numerical difference between anterior and posterior hippocampus connectivity with MTG, 

this difference did not approach reaching significance which is consistent with Frank et al. 

(2019)’s marginal evidence for anterior hippocampus-MTG connectivity. Although the 

prior study did not find any evidence for changes in hippocampal-MTG connectivity across 

task phases, more recent work has indicated that the MTG may communicate with multiple 

systems to support memory integration. Ren et al. (2020) observed that greater functional 

connectivity between MTG and the hippocampus was associated with the ability to 

construct new concepts while greater connectivity between MTG and executive control 

regions was associated with breaking down the boundaries of old concepts. As such, the 

mechanism through which the MTG supports concepts and generalization may be through 

its interaction with multiple neural systems of which the hippocampus is just one.  Thus, 

measures of background connectivity between anterior hippocampus and MTG may not be 

the best indicator of the relationship between these two regions. 
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Individual Differences in Hippocampal Connectivity with Cortical Visual Regions 

Tracks Generalization Performance 

 In Chapter 3 we found that category information was represented in higher-order 

visual cortex. Therefore, we included two additional visual regions in our analyses (LO, 

PFUS) that were not part of the original study. Although we did not find any significant 

anterior vs. posterior hippocampal connectivity differences with either visual region, we 

examined whether there were any connectivity links with behavioral measures of memory 

generalization. We found a significant positive relationship between performance on the 

generalization task and PFUS-anterior hippocampal connectivity, with a similar pattern for 

PFUS-posterior hippocampal connectivity that did not reach significance. We also found a 

significant positive relationship between the category bias in perceptual similarity measure 

of memory generalization and PFUS-posterior hippocampus connectivity, with a similar 

pattern for PFUS-anterior hippocampal connectivity that did not reach significance. We 

did not find any significant relationships between behavior and LO-hippocampal 

connectivity.  

 Our findings for hippocampal-visual cortex connectivity are consistent with past 

research demonstrating task-related changes in functional connectivity between the 

hippocampus and higher order visual cortex. Increased connectivity between the 

hippocampus and fusiform face area has been demonstrated during encoding of face 

information (Rajah, McIntosh, & Grady, 1999) and during imagination processes involving 

construction of new, never-encountered scenes (Zeidman, Mullally, & Maguire, 2015). 

Findings by Zeidman et al. (2015) are particularly relevant to the present study as 

imagination of never-encountered scenes rely on an integrative process that may be similar 
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to the process utilized for successful memory generalization. Increased hippocampal 

connectivity with visual cortex has also been implicated in subsequent memory effects 

where greater connectivity between the hippocampus and visual cortex at encoding is 

associated with better memory at retrieval (Ranganath, Heller, Cohen, Brozinsky, & 

Rissman, 2005) and disruption of connectivity between the hippocampus and higher order 

visual cortex is evident in elderly individuals diagnosed with Alzheimer’s Disease (Wang 

et al., 2006). Together, past work indicates that communication between the hippocampus 

and higher order visual cortex is integral for successful memory. Our current findings 

extend the importance of communication between these regions to a new aspect of 

memory: spontaneous memory generalization.  

Conclusions 

 The current study provides additional support for theories of functional 

dissociations along the long axis of the hippocampus by demonstrating connections 

between the anterior hippocampus and a key generalization region (VMPFC) and between 

the posterior hippocampus and a key specificity region (ANG). Replication of these 

findings under learning conditions that emphasize memory specificity but also elicit 

spontaneous generalization bolster previous work further confirming that these 

connections reflect stable, intrinsic communication networks between regions. Further, 

unexpected exploratory findings for hippocampal-higher order visual cortex connectivity 

relationships with increased memory generalization provide preliminary evidence that the 

hippocampus interacts with visual cortex to support spontaneous generalization during 

learning.   
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CHAPTER V 
 

GENERAL DISCUSSION 

 

  

The goal of the dissertation was to evaluate the behavioral and neural mechanisms 

that support spontaneous generalization during learning that emphasizes memory 

specificity. Often memory generalization has been studied under learning conditions that 

either explicitly prompt generalization or under conditions where generalization proceeds 

more incidentally to the task at hand. However, our real-world observations often 

highlight circumstances in which it may be beneficial to remember the details of our 

individual experiences as well as the commonalities across experiences simultaneously. 

To our knowledge there is no research in the literature that has determined whether 

memory generalization proceeds during learning that emphasizes maintaining specificity. 

Thus, we developed a novel, observational, paired associates learning task where a shared 

label provided an opportunity to form categorical knowledge but learning goals explicitly 

required participants to differentiate all stimuli, even those with shared labels.  

Integrated Summary of Results 

In our behavioral testing (Chapter 2) we found evidence for a category bias in 

perceived similarity ratings indicating items learned to be within a category were 

perceived as more similar to one another than equally physically similar faces from 

different families. The category bias in perception predicted performance on an explicit 

generalization task that required applying learned category labels to never-studied 

stimuli. Critically, the category-bias in perception was measurable immediately after 

learning and prior to the categorization task that had explicit generalization demands. 

Thus, we reasoned that a category bias in perception may be a good behavioral index of 
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memory generalization that occurs during encoding rather than in response to task-

demands to generalize. However, because collecting perceived similarity ratings may 

itself carry a minimal task-demand to rate same-category items as more similar to one 

another, the extent to which the category-bias reflected bias acquired during learning 

itself could not be definitively determined.  

To better determine whether the category bias observed in Chapter 2 reflected real 

category-biased changes that occurred during learning, we examined neural biases during 

learning using functional MRI (Chapter 3). We replicated our previous finding that 

individual differences in category-bias in perceptual similarity ratings predicted memory 

generalization performance. Overall, during learning we found evidence for widespread 

category-biased neural representations throughout the cortex. This included some regions 

implicated in prior work as important structures for memory generalization, but also other 

regions, including higher-order visual cortex. Results indicated that although both 

category-relevant and category-irrelevant information was pertinent to task goals during 

encoding, representations were overwhelmingly biased towards category-relevant 

information. Our findings are consistent with past work that indicates category learning 

may induce attentional shifts towards category-relevant information (Goldstone & 

Steyvers, 2001; Kruschke, 1996; Medin & Schaffer, 1978; Nosofsky, 1991; Nosofsky, 

1986) but extend these findings to a task where category-irrelevant information is still 

relevant for the explicit task goals.  

Our behavioral findings that individuals were able to both remember the 

individual stimuli encountered during training as well as form generalizable category 

knowledge may indicate that memory for specific details is maintained alongside 
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generalizable category information. Given the well-known hippocampal role in 

supporting memory for specific details (Scoville & Milner, 1957; Squire & Zola, 1998), 

and more recent evidence that implicates the anterior hippocampus in memory 

generalization (Bowman, Iwashita, et al., 2020; Bowman & Zeithamova, 2018; Kumaran 

et al., 2009), we explored whether the hippocampus could support both processes via an 

anterior/posterior division of labor (Chapter 4). We examined background connectivity 

during the paired associates learning task to determine whether anterior hippocampus is 

more functionally connected with putative memory generalization regions and whether 

posterior hippocampus is more functionally connected with putative memory specificity 

regions. Consistent with prior findings by Frank, Bowman, and Zeithamova (2019), we 

found functional dissociations along the long axis of the hippocampus and extend these 

findings to a task that emphasizes memory specificity but elicits spontaneous 

generalization. Although hippocampal connectivity with these putative specificity and 

generalization regions did not track task behavioral performance, preliminary exploratory 

findings demonstrated that greater connectivity between the hippocampus and higher-

order visual cortex was associated with increased memory generalization. Our findings 

indicate that there are differential intrinsic connections between the hippocampus and key 

cortical generalization and specificity regions which may guide spontaneous 

generalization during encoding. The hippocampus may also interact with higher-order 

visual cortex to support spontaneous generalization during learning.  

Together, our results provide evidence that spontaneous generalization may occur 

during learning even when task-demands during encoding require differentiation of all 

stimuli. Category-biased neural representations, which are also reflected in category-
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biased perceptual similarity ratings, spontaneously form during encoding. While 

widespread cortex reflects category-biased neural representations, the hippocampus may 

also be at play by providing simultaneous communication to specificity and 

generalization networks during learning.  

Category Learning Biases Attention to Category-Relevant Information Even When 

Task Goals Emphasize Specificity 

  Attention has long been assumed to guide successful category learning. Exemplar 

models of category learning posit that categorization involves comparing the similarity of 

previously learned items with new incoming information to determine category 

membership (Medin & Schaffer, 1978; Nosofsky, 1986). Alternatively, prototype models 

posit that categorization involves comparing the similarity of new incoming information 

to a “prototypical” category representation created by extracting the central tendency 

across all learned category exemplars (Homa et al., 1973; Posner & Keele, 1968). While 

the hypothesized mechanisms underlying category learning in these two models are quite 

different (comparisons to all previously learned items vs. comparisons to an abstract 

representation) one thing they do share in common is their prediction of attentional shifts 

to category-relevant information during learning. Specifically, attentional shifts serve to 

“compress” and “expand” perceptual space.  When items are learned to belong to the 

same category more attention is allocated towards features of stimuli that would help 

determine category membership (i.e. category-relevant information). Thus, items within a 

category become less discriminable from one another (Gureckis & Goldstone, 2008) and 

are perceived as more similar to one another after learning (Goldstone et al., 2001; Kurtz, 

1996; Livingston et al., 1998).  Additionally, when items are learned to belong to 
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different categories, less attention is allocated to the features that distinguish categories 

resulting in these items being more discriminable (Beale & Keil, 1995; Folstein et al., 

2013) and perceived as less similar to one another after learning (Livingston et al., 1998).  

Exemplar models of category learning predict that individuals should be best at 

categorizing old items and new items that are closest to the old exemplars (Nosofsky, 

1987; Zaki, Nosofsky, Stanton, & Cohen, 2003). Thus, shifting attention to category-

relevant features would guide in determining how similar new items are to the already-

stored memory representations of each old item. Prior work has found evidence for 

attention-biased exemplar representations in the brain (Mack et al., 2013). These 

attention-biased representations were found in lateral occipital cortex, inferior parietal 

cortex, inferior frontal gyrus, and insular cortex. Consistent with this prior work, we 

found evidence for category-biased information widespread across the cortex during 

learning including higher-level visual cortices indicating that category-relevant 

information was prioritized. On the other hand, Mack and colleagues (2013) also 

examined an exemplar model without selective attention that instead was derived from 

the physical similarity of the training stimuli and found only a single region in primary 

visual cortex tracked this information. Our finding of only a single region in lateral 

occipital cortex that represented category-irrelevant information is also consistent with 

this prior work.  

Prototype models of category learning predict that individuals should be best at 

categorizing the never-studied category prototypes themselves (even better than 

categorizing learned exemplars) and that performance should suffer as exemplars share 

less features with the prototype (Minda & Smith, 2001). Thus, shifting attention to 
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category-relevant features guides in determining how similar new items are to the stored 

category prototype.  Prior work has found evidence for abstract category representations 

in the anterior hippocampus as well as established memory generalization regions like the 

ventromedial prefrontal cortex and middle temporal gyrus (Bowman, Iwashita, et al., 

2020; Bowman & Zeithamova, 2018). Consistent with this work we found evidence for 

category-biased information in ventromedial prefrontal cortex and middle temporal gyrus 

during learning and demonstrated intrinsic connections between anterior hippocampus 

and middle temporal gyrus. Although abstract prototype representations in prior work 

were found to be unique to hypothesized generalization regions, we found evidence for 

category-biased information more widespread across the brain. We hypothesize that these 

differences may be due to the structure of the categories learned and differences in task 

goals. In prior studies (Bowman, Iwashita, et al., 2020; Bowman & Zeithamova, 2018), 

all features of the stimuli were equally relevant for determining category while in the 

novel paired associates task used here participants had to learn both the relevant and 

irrelevant category features in order to categorize as well as tell all stimuli apart from one 

another. Thus, in the current task attentional shifts to complete task goals may have 

recruited a larger extent of the brain than was required in these prior studies.   

 In the current experiments it is clear that related experiences are already linked in 

some manner at encoding resulting in behavioral and neural category-biases. However, 

because both exemplar and prototype models predict the same attentional shifts towards 

category-relevant information, it is not possible to determine whether we can consider the 

representations we observed during encoding as truly “generalized” memory 

representations. However, given recent findings by Bowman, Iwashita and Zeithamova 
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(2020) that show evidence for both prototype and exemplar representations formed in 

parallel during the learning process, we speculate that individuals may store both 

exemplar and prototype representations during encoding. While we cannot fit formal 

prototype and exemplar models to the data collected in the current study, behavioral data 

are consistent with this idea. Individuals were able to remember the first names of the 

stimuli across two experiments presented in Chapters 2 and 3. Further, in Chapter 3 we 

found good recognition memory performance which has also been shown in another 

study using the same paradigm in both younger and older adults (Bowman, Ashby, & 

Zeithamova, 2020). This indicates that participants must have stored representations of 

individual faces. Additionally, across experiments participants were able to successfully 

categorize never-seen faces indicating that although learning emphasized specificity (and 

there is good behavioral evidence for successful specificity) they were still able to extract 

category information in service of memory generalization. Because our results 

demonstrated that individuals attained a good level of specificity in their memories for 

the individual training faces as well as being able to generalize to never-studied faces, it 

may indicate that under the task-demands of the current paradigm both specific and 

generalized memory representations are constructed during learning.  Our findings extend 

prior knowledge for the role of attentional shifts in category learning to a new paradigm 

which prioritizes both category-relevant and category-irrelevant information.  

Does Category Bias in Perception Reflect a True Learning-Driven Perceptual 

Change or a Strategic Decision to Generalize Because of Similar Labels? 

Learning category information is thought to alter perception such that items 

within a category are viewed as more similar and/or items from different categories are 
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viewed as less similar to one another after learning (Beale & Keil, 1995; Goldstone, 

1994a, 1994b; Goldstone et al., 2001; Rosch & Mervis, 1975). However, there has been 

some concern in the literature about whether these perceptual category biases after 

category learning reflect actual changes in perception or merely a strategic judgment bias 

to rate same-category items as more similar than between-category items (Goldstone et 

al., 2001). Throughout the studies presented in the dissertation, we found evidence for 

category-biased perceptual ratings changes that also predicted generalization success. 

Further, we found category-biased neural representations during learning indicating that 

category knowledge may be spontaneously linked at encoding rather than in response to 

explicit generalization task demands. However, though the category bias predicted 

generalization performance, we cannot fully determine whether or not a strategic decision 

to rate same-category faces as more similar to one another is reflected in the category-

bias measure. Given the findings, a combination of perceptual changes and strategic 

judgment bias may be reflected in the perceived similarity ratings.  

To test this idea, we pre-registered and are in the process of running a new 

behavioral study to determine to what degree the category bias in similarity ratings after 

category learning indicates a true change in perception/attention vs. a strategic decision 

bias. In the currently ongoing study, we tracked category bias after a traditional feedback-

based category learning task with category structures learned under two conditions 

(Figure 5.1). For participants randomly assigned to the first condition (N = 93), category 

membership is in line with the physical similarity of face-blend stimuli and items in the 

same category share physical characteristics (as was true in the experiments presented 

throughout the dissertation). For participants randomly assigned to the second condition 
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(N = 97), category membership is completely dissociated from physical similarity and 

items in the same category do not share any physical characteristics (although items 

across category boundaries still share physical similarities).  

Preliminary results from this study are presented in Figure 5.2. Unexpectedly we 

found strong evidence for a category bias in perception in the condition where within-

category faces shared physical similarity, but no evidence for a category bias in the 

condition where faces did not share within-category similarities (Figure 5.2b). Notably, 

learning the category structure was more difficult in the non-physical similarity condition 

(Figure 5.2a, red line) and thus we ran a control analysis where we limited the subjects 

included in Condition 2 to only be the top performers (N = 34, see Figure 5.2c) to equate 

the two groups for learning. However, even after controlling for the degree of learning by 

Figure 5.1. Different family category structures for two conditions. A. In condition 1, family 

assignment is determined by blending with shared ‘A’ parents. B. In condition 2, family 

assignment is dissociated from physical similarity excluding any shared parents. 
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the end of training, a category bias in perception only emerged in the condition where 

faces within a category shared physical similarities (Figure 5.2d). Because a strategic 

judgment bias account would predict a category bias in both conditions—as shared labels 

should bias increased similarity regardless of physical similarity—our preliminary data 

Figure 5.2. Preliminary data indicating category-bias reflects true learning-related perceptual 

changes. A. Mean accuracy across all five training blocks of the feedback-based category 

learning task. Learning the category structure in Condition 2 was more difficult than in Condition 

1. B. A significant post-learning category bias is present in the condition in which within-

category faces share physical similarity. C. Training performance across all five training blocks 

after subjects in Condition 2 were limited to top performers. By block five, performance between 

groups is equated. D. A significant post-learning category bias is present only in Condition 1 

even when both groups are equated for learning.  
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indicate that the category-bias in perceived similarity ratings reflect true changes in 

perception following learning.  

Our results are consistent with work by Goldstone and colleagues (2001) who 

examined differences in similarity ratings between categorized objects and neutral, 

uncategorized objects. They reasoned that if similarity ratings reflected an actual change 

in perception all objects learned to be within the same category should have similar 

ratings when compared to a never-studied neutral object (e.g. A and B are in the same 

category and E is the neutral stimulus. Similarity ratings for A/E and B/E should become 

more similar after learning). Alternatively, if strategic judgment bias accounted for the 

similarity ratings then they predicted that there should not be any greater concordance of 

similarity ratings between objects in the same category compared to a neutral object. 

Consistent with learning-induced perceptual changes they found that same-category items 

relative to a neutral item became more similar to one another after learning. Together, 

these findings provide exciting new evidence that the category-bias in perception 

measure collected in the current studies is an accurate reflection of real biases in 

perception that indicate the degree of category knowledge acquired during learning. The 

ability to measure the category-bias in perception allows for the detection of 

generalization processes under minimal task-demands and extends our ability to detect 

generalization in paradigms without explicit generalization tests.  

The Role of the Hippocampus in Spontaneous Category Learning 

 The most widely known and accepted function of the hippocampus is to support 

encoding of detailed episodic memory (Scoville & Milner, 1957) and to reduce 

interference between similar experiences as they are encountered through pattern 



 

 113 

separation (Yassa & Stark, 2011). However, more recent work has begun to uncover 

contributions of the hippocampus to other processes like episodic inference (Ryan et al., 

2016; Schlichting et al., 2015; Shohamy & Wagner, 2008; Zeithamova, Dominick, et al., 

2012; Zeithamova & Preston, 2010). It has been theorized that the hippocampus may be 

able to support multiple processes via a division of labor along the long axis of the 

hippocampal body (Brunec et al., 2018; Poppenk et al., 2013). Consistent with this theory 

we replicated previous findings for differential anterior/posterior hippocampal 

connectivity with ventromedial prefrontal cortex and angular gyrus (Frank, Bowman, et 

al., 2019). Specifically, we found greater functional connectivity between the anterior 

hippocampus and the ventromedial prefrontal cortex and greater connectivity between the 

posterior hippocampus and angular gyrus. In contrast with work that suggests the anterior 

hippocampus may play a role in memory generalization (Bowman, Iwashita, et al., 2020; 

Bowman & Zeithamova, 2018), we did not find any evidence across our studies for 

category-biased representations in anterior hippocampus.   

As our study is the first to our knowledge to examine neural representations 

underlying category learning in a task that emphasizes specificity, we suspect that the 

relative lack of hippocampal involvement in representing category biased information 

may be due to task-demands to treat all information separately, even items within the 

same category. Though neural category bias was measurable throughout the cortex during 

learning, the hippocampus may have been recruited by our task to perform more pattern 

separation processes as needed for task goals to differentiate all stimuli from one another, 

even “brothers” within the same family. 

 To our surprise, we did find evidence for category-biased information in higher 
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order visual cortices and preliminary evidence indicating that the hippocampus may 

interact with the visual cortex to support memory generalization. While the hippocampus 

has been traditionally thought of as a region that encodes detailed memories, recent work 

has found the hippocampus to also be involved in perceptual discrimination (Barense et 

al., 2005; A. C. H. Lee & Rudebeck, 2010). A representational-hierarchical model has 

considered that medial temporal lobe structures like the perirhinal cortex may serve as an 

extension of the ventral visual stream (Saksida & Bussey, 2010; Ungerleider & Mishkin, 

1982) which is involved in object identification (Goodale & Milner, 1992). Because the 

hippocampus is largely connected with the perirhinal cortex, it has further been suggested 

that the hippocampus itself may sit at the top of the hierarchy and may be important for 

higher-order visual processing like assessing combinations of features to allow for 

successful discrimination of complex stimuli (for review see Lee, Yeung, & Barense, 

2012). Our findings that enhanced intrinsic connections between hippocampus and visual 

cortex predict better memory generalization performance are consistent with this idea. 

Due to the complex nature of the stimuli category structure in the current paradigm, 

interactions between the hippocampus and visual cortex may reflect attentional processes 

for determining which features are category-relevant and which are category-irrelevant. 

Thus, although category-biased representations were not found during learning in the 

hippocampus, the hippocampus may have facilitated category-biased representations in 

visual cortex as evidenced through intrinsic connections between regions.  

Broader Implications 

 Our finding that inclusion of a mere category label was enough to bias 

representations of individual faces both perceptually and neurally are timely in light of 
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current social concerns regarding racism. Implicit bias is the notion that our perceptions 

or actions are unconsciously stereotyped to value one group above another even though 

we may not have conscious awareness of said bias (Amodio, 2014). A stereotype in and 

of itself can be considered a type of generalization about a particular group of people 

(Stevens & Abernethy, 2018) and thus due to underlying cultural biases we tend to 

generalize people by placing them into clusters based on race. Implicit bias comes in to 

play when we “overgeneralize” individuals or entire racial groups into additional 

categories (e.g. good/bad, criminal/law-abiding, truthful/liar etc.).   

Prior work has postulated that negative racially driven biases develop through an 

associative learning process (Olsson, Ebert, Banaji, & Phelps, 2005) that proceeds much 

like the current experiments presented here. However, rather than merely pairing faces 

and names (or even just people that share racial features) race is often paired with fear 

and that race-fear association results in a negative bias towards other groups (Santos, 

Meyer-Lindenberg, & Deruelle, 2010). Thus, once an association is made, neural 

representations for racial categories may become biased much like the category-

representations we observed in the current studies with the added complexity of fear 

associations.  

The current results add an interesting layer to the implicit bias discussion. The 

fact that we found such widespread evidence for perceptual and neural category biases 

using faces that were held constant for in-group and out-group physical similarity is 

striking considering that racial biases are rooted in very salient physical differences 

between groups. As our preliminary data presented above indicates that perceptual 

evidence for category biases require at least some degree of shared physical similarity to 
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manifest, we speculate that representations may be biased on the account of race to a 

larger degree than we observed here and/or may even include more widespread cortical 

involvement. This is consistent with prior work that has implicated the amygdala in racial 

bias (Amodio, 2014) as well as other work that has found dorsolateral prefrontal cortex 

and anterior cingulate cortex modulation to a greater degree in individuals who measure 

high on behavioral measures of implicit bias (Richeson et al., 2003).  

Unfortunately, other work has demonstrated that implicit bias is quite difficult to 

extinguish (Bouton, 1994; Sloman, 1996). Our results are consistent with this idea as we 

found that biased representations were measurable even when individuals were tasked 

with focusing on each person as an individual. Still, participants in the current study 

formed behavioral and neural category biased representations although category 

information was not pertinent to the task at hand. It has been proposed that this difficulty 

in extinguishing racial biases stems from consistent immersion in cultural routines (e.g. 

news and entertainment media consumption) that reinforce negative stereotypes 

(Amodio, 2014). We suspect that part of the difficulty with extinguishing implicit bias 

may also be due to the spontaneous nature of generalization. We found evidence that 

information is spontaneously linked as it is encoded and not just in response to 

generalization judgment demands. As individuals encounter racial biases in media, they 

may immediately begin to link that information with existing representations and 

therefore the biased representation is reactivated during encoding. Thus, biased 

representations are brought back to memory consistently and extinguishing already-

established racial biases is an uphill battle. More research is needed to understand the 

best methods in which we can overcome this challenge. While memory generalization is 
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a useful heuristic to make quick work of organizing the world around us into meaningful 

clusters of information, implicit bias is a clear example of how this heuristic can be 

disadvantageous and harmful. Moving forward, it may be that the best way to improve 

implicit bias is to stop negative race associations from even occurring in the first place. 

Thus, a two-fold approach is needed where we can establish ways to root out our own 

already-established implicit biases, or at least actively work against established biases, 

while also creating a better world where the younger generation never creates these types 

of associations in the first place. 

General Conclusions 

 Across three empirical studies described in Chapters 2-4, we investigated the 

behavioral and neural mechanisms that support spontaneous generalization during 

learning that emphasizes memory specificity. We demonstrated that the mere presence of 

a category label was sufficient to cause individuals to link category-relevant information 

in support of memory generalization even though task goals required differentiation of all 

stimuli and encoding of both category-relevant and category-irrelevant information. We 

demonstrated that representations spontaneously become more category-biased during 

encoding as evidenced through behavioral biases in perception and neural biases during 

encoding throughout the brain. Together, our results inform our understanding of theories 

of memory generalization by demonstrating conditions under which memory 

generalization may proceed spontaneously during encoding and has broader implications 

for our understanding of the nature of stereotyping and implicit cognitive biases. 
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